1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io) 165 { 166 /* 167 * buffer's verified bit is no longer valid after reading from 168 * disk again due to write out error, clear it to make sure we 169 * recheck the buffer contents. 170 */ 171 clear_buffer_verified(bh); 172 173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 174 get_bh(bh); 175 submit_bh(REQ_OP_READ | op_flags, bh); 176 } 177 178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 179 bh_end_io_t *end_io) 180 { 181 BUG_ON(!buffer_locked(bh)); 182 183 if (ext4_buffer_uptodate(bh)) { 184 unlock_buffer(bh); 185 return; 186 } 187 __ext4_read_bh(bh, op_flags, end_io); 188 } 189 190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 191 { 192 BUG_ON(!buffer_locked(bh)); 193 194 if (ext4_buffer_uptodate(bh)) { 195 unlock_buffer(bh); 196 return 0; 197 } 198 199 __ext4_read_bh(bh, op_flags, end_io); 200 201 wait_on_buffer(bh); 202 if (buffer_uptodate(bh)) 203 return 0; 204 return -EIO; 205 } 206 207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 208 { 209 lock_buffer(bh); 210 if (!wait) { 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 return ext4_read_bh(bh, op_flags, NULL); 215 } 216 217 /* 218 * This works like __bread_gfp() except it uses ERR_PTR for error 219 * returns. Currently with sb_bread it's impossible to distinguish 220 * between ENOMEM and EIO situations (since both result in a NULL 221 * return. 222 */ 223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 224 sector_t block, 225 blk_opf_t op_flags, gfp_t gfp) 226 { 227 struct buffer_head *bh; 228 int ret; 229 230 bh = sb_getblk_gfp(sb, block, gfp); 231 if (bh == NULL) 232 return ERR_PTR(-ENOMEM); 233 if (ext4_buffer_uptodate(bh)) 234 return bh; 235 236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 237 if (ret) { 238 put_bh(bh); 239 return ERR_PTR(ret); 240 } 241 return bh; 242 } 243 244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 245 blk_opf_t op_flags) 246 { 247 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 248 ~__GFP_FS) | __GFP_MOVABLE; 249 250 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 251 } 252 253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 254 sector_t block) 255 { 256 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 257 ~__GFP_FS); 258 259 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 265 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 266 267 if (likely(bh)) { 268 if (trylock_buffer(bh)) 269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 270 brelse(bh); 271 } 272 } 273 274 static int ext4_verify_csum_type(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_feature_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 281 } 282 283 __le32 ext4_superblock_csum(struct super_block *sb, 284 struct ext4_super_block *es) 285 { 286 struct ext4_sb_info *sbi = EXT4_SB(sb); 287 int offset = offsetof(struct ext4_super_block, s_checksum); 288 __u32 csum; 289 290 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 291 292 return cpu_to_le32(csum); 293 } 294 295 static int ext4_superblock_csum_verify(struct super_block *sb, 296 struct ext4_super_block *es) 297 { 298 if (!ext4_has_metadata_csum(sb)) 299 return 1; 300 301 return es->s_checksum == ext4_superblock_csum(sb, es); 302 } 303 304 void ext4_superblock_csum_set(struct super_block *sb) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 if (!ext4_has_metadata_csum(sb)) 309 return; 310 311 es->s_checksum = ext4_superblock_csum(sb, es); 312 } 313 314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_block_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 328 } 329 330 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le32_to_cpu(bg->bg_inode_table_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 336 } 337 338 __u32 ext4_free_group_clusters(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_free_inodes_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_used_dirs_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 360 } 361 362 __u32 ext4_itable_unused_count(struct super_block *sb, 363 struct ext4_group_desc *bg) 364 { 365 return le16_to_cpu(bg->bg_itable_unused_lo) | 366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 368 } 369 370 void ext4_block_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_bitmap_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_inode_table_set(struct super_block *sb, 387 struct ext4_group_desc *bg, ext4_fsblk_t blk) 388 { 389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 392 } 393 394 void ext4_free_group_clusters_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_free_inodes_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_used_dirs_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 416 } 417 418 void ext4_itable_unused_set(struct super_block *sb, 419 struct ext4_group_desc *bg, __u32 count) 420 { 421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 424 } 425 426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 427 { 428 now = clamp_val(now, 0, (1ull << 40) - 1); 429 430 *lo = cpu_to_le32(lower_32_bits(now)); 431 *hi = upper_32_bits(now); 432 } 433 434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 435 { 436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 437 } 438 #define ext4_update_tstamp(es, tstamp) \ 439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 440 ktime_get_real_seconds()) 441 #define ext4_get_tstamp(es, tstamp) \ 442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 443 444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 446 447 /* 448 * The ext4_maybe_update_superblock() function checks and updates the 449 * superblock if needed. 450 * 451 * This function is designed to update the on-disk superblock only under 452 * certain conditions to prevent excessive disk writes and unnecessary 453 * waking of the disk from sleep. The superblock will be updated if: 454 * 1. More than an hour has passed since the last superblock update, and 455 * 2. More than 16MB have been written since the last superblock update. 456 * 457 * @sb: The superblock 458 */ 459 static void ext4_maybe_update_superblock(struct super_block *sb) 460 { 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 struct ext4_super_block *es = sbi->s_es; 463 journal_t *journal = sbi->s_journal; 464 time64_t now; 465 __u64 last_update; 466 __u64 lifetime_write_kbytes; 467 __u64 diff_size; 468 469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 470 !journal || (journal->j_flags & JBD2_UNMOUNT)) 471 return; 472 473 now = ktime_get_real_seconds(); 474 last_update = ext4_get_tstamp(es, s_wtime); 475 476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 477 return; 478 479 lifetime_write_kbytes = sbi->s_kbytes_written + 480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 481 sbi->s_sectors_written_start) >> 1); 482 483 /* Get the number of kilobytes not written to disk to account 484 * for statistics and compare with a multiple of 16 MB. This 485 * is used to determine when the next superblock commit should 486 * occur (i.e. not more often than once per 16MB if there was 487 * less written in an hour). 488 */ 489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 490 491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 493 } 494 495 /* 496 * The del_gendisk() function uninitializes the disk-specific data 497 * structures, including the bdi structure, without telling anyone 498 * else. Once this happens, any attempt to call mark_buffer_dirty() 499 * (for example, by ext4_commit_super), will cause a kernel OOPS. 500 * This is a kludge to prevent these oops until we can put in a proper 501 * hook in del_gendisk() to inform the VFS and file system layers. 502 */ 503 static int block_device_ejected(struct super_block *sb) 504 { 505 struct inode *bd_inode = sb->s_bdev->bd_inode; 506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 507 508 return bdi->dev == NULL; 509 } 510 511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 512 { 513 struct super_block *sb = journal->j_private; 514 struct ext4_sb_info *sbi = EXT4_SB(sb); 515 int error = is_journal_aborted(journal); 516 struct ext4_journal_cb_entry *jce; 517 518 BUG_ON(txn->t_state == T_FINISHED); 519 520 ext4_process_freed_data(sb, txn->t_tid); 521 ext4_maybe_update_superblock(sb); 522 523 spin_lock(&sbi->s_md_lock); 524 while (!list_empty(&txn->t_private_list)) { 525 jce = list_entry(txn->t_private_list.next, 526 struct ext4_journal_cb_entry, jce_list); 527 list_del_init(&jce->jce_list); 528 spin_unlock(&sbi->s_md_lock); 529 jce->jce_func(sb, jce, error); 530 spin_lock(&sbi->s_md_lock); 531 } 532 spin_unlock(&sbi->s_md_lock); 533 } 534 535 /* 536 * This writepage callback for write_cache_pages() 537 * takes care of a few cases after page cleaning. 538 * 539 * write_cache_pages() already checks for dirty pages 540 * and calls clear_page_dirty_for_io(), which we want, 541 * to write protect the pages. 542 * 543 * However, we may have to redirty a page (see below.) 544 */ 545 static int ext4_journalled_writepage_callback(struct folio *folio, 546 struct writeback_control *wbc, 547 void *data) 548 { 549 transaction_t *transaction = (transaction_t *) data; 550 struct buffer_head *bh, *head; 551 struct journal_head *jh; 552 553 bh = head = folio_buffers(folio); 554 do { 555 /* 556 * We have to redirty a page in these cases: 557 * 1) If buffer is dirty, it means the page was dirty because it 558 * contains a buffer that needs checkpointing. So the dirty bit 559 * needs to be preserved so that checkpointing writes the buffer 560 * properly. 561 * 2) If buffer is not part of the committing transaction 562 * (we may have just accidentally come across this buffer because 563 * inode range tracking is not exact) or if the currently running 564 * transaction already contains this buffer as well, dirty bit 565 * needs to be preserved so that the buffer gets writeprotected 566 * properly on running transaction's commit. 567 */ 568 jh = bh2jh(bh); 569 if (buffer_dirty(bh) || 570 (jh && (jh->b_transaction != transaction || 571 jh->b_next_transaction))) { 572 folio_redirty_for_writepage(wbc, folio); 573 goto out; 574 } 575 } while ((bh = bh->b_this_page) != head); 576 577 out: 578 return AOP_WRITEPAGE_ACTIVATE; 579 } 580 581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 582 { 583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 584 struct writeback_control wbc = { 585 .sync_mode = WB_SYNC_ALL, 586 .nr_to_write = LONG_MAX, 587 .range_start = jinode->i_dirty_start, 588 .range_end = jinode->i_dirty_end, 589 }; 590 591 return write_cache_pages(mapping, &wbc, 592 ext4_journalled_writepage_callback, 593 jinode->i_transaction); 594 } 595 596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 597 { 598 int ret; 599 600 if (ext4_should_journal_data(jinode->i_vfs_inode)) 601 ret = ext4_journalled_submit_inode_data_buffers(jinode); 602 else 603 ret = ext4_normal_submit_inode_data_buffers(jinode); 604 return ret; 605 } 606 607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 608 { 609 int ret = 0; 610 611 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 612 ret = jbd2_journal_finish_inode_data_buffers(jinode); 613 614 return ret; 615 } 616 617 static bool system_going_down(void) 618 { 619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 620 || system_state == SYSTEM_RESTART; 621 } 622 623 struct ext4_err_translation { 624 int code; 625 int errno; 626 }; 627 628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 629 630 static struct ext4_err_translation err_translation[] = { 631 EXT4_ERR_TRANSLATE(EIO), 632 EXT4_ERR_TRANSLATE(ENOMEM), 633 EXT4_ERR_TRANSLATE(EFSBADCRC), 634 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 635 EXT4_ERR_TRANSLATE(ENOSPC), 636 EXT4_ERR_TRANSLATE(ENOKEY), 637 EXT4_ERR_TRANSLATE(EROFS), 638 EXT4_ERR_TRANSLATE(EFBIG), 639 EXT4_ERR_TRANSLATE(EEXIST), 640 EXT4_ERR_TRANSLATE(ERANGE), 641 EXT4_ERR_TRANSLATE(EOVERFLOW), 642 EXT4_ERR_TRANSLATE(EBUSY), 643 EXT4_ERR_TRANSLATE(ENOTDIR), 644 EXT4_ERR_TRANSLATE(ENOTEMPTY), 645 EXT4_ERR_TRANSLATE(ESHUTDOWN), 646 EXT4_ERR_TRANSLATE(EFAULT), 647 }; 648 649 static int ext4_errno_to_code(int errno) 650 { 651 int i; 652 653 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 654 if (err_translation[i].errno == errno) 655 return err_translation[i].code; 656 return EXT4_ERR_UNKNOWN; 657 } 658 659 static void save_error_info(struct super_block *sb, int error, 660 __u32 ino, __u64 block, 661 const char *func, unsigned int line) 662 { 663 struct ext4_sb_info *sbi = EXT4_SB(sb); 664 665 /* We default to EFSCORRUPTED error... */ 666 if (error == 0) 667 error = EFSCORRUPTED; 668 669 spin_lock(&sbi->s_error_lock); 670 sbi->s_add_error_count++; 671 sbi->s_last_error_code = error; 672 sbi->s_last_error_line = line; 673 sbi->s_last_error_ino = ino; 674 sbi->s_last_error_block = block; 675 sbi->s_last_error_func = func; 676 sbi->s_last_error_time = ktime_get_real_seconds(); 677 if (!sbi->s_first_error_time) { 678 sbi->s_first_error_code = error; 679 sbi->s_first_error_line = line; 680 sbi->s_first_error_ino = ino; 681 sbi->s_first_error_block = block; 682 sbi->s_first_error_func = func; 683 sbi->s_first_error_time = sbi->s_last_error_time; 684 } 685 spin_unlock(&sbi->s_error_lock); 686 } 687 688 /* Deal with the reporting of failure conditions on a filesystem such as 689 * inconsistencies detected or read IO failures. 690 * 691 * On ext2, we can store the error state of the filesystem in the 692 * superblock. That is not possible on ext4, because we may have other 693 * write ordering constraints on the superblock which prevent us from 694 * writing it out straight away; and given that the journal is about to 695 * be aborted, we can't rely on the current, or future, transactions to 696 * write out the superblock safely. 697 * 698 * We'll just use the jbd2_journal_abort() error code to record an error in 699 * the journal instead. On recovery, the journal will complain about 700 * that error until we've noted it down and cleared it. 701 * 702 * If force_ro is set, we unconditionally force the filesystem into an 703 * ABORT|READONLY state, unless the error response on the fs has been set to 704 * panic in which case we take the easy way out and panic immediately. This is 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 706 * at a critical moment in log management. 707 */ 708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 709 __u32 ino, __u64 block, 710 const char *func, unsigned int line) 711 { 712 journal_t *journal = EXT4_SB(sb)->s_journal; 713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 714 715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 716 if (test_opt(sb, WARN_ON_ERROR)) 717 WARN_ON_ONCE(1); 718 719 if (!continue_fs && !sb_rdonly(sb)) { 720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 721 if (journal) 722 jbd2_journal_abort(journal, -EIO); 723 } 724 725 if (!bdev_read_only(sb->s_bdev)) { 726 save_error_info(sb, error, ino, block, func, line); 727 /* 728 * In case the fs should keep running, we need to writeout 729 * superblock through the journal. Due to lock ordering 730 * constraints, it may not be safe to do it right here so we 731 * defer superblock flushing to a workqueue. 732 */ 733 if (continue_fs && journal) 734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 735 else 736 ext4_commit_super(sb); 737 } 738 739 /* 740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 741 * could panic during 'reboot -f' as the underlying device got already 742 * disabled. 743 */ 744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 745 panic("EXT4-fs (device %s): panic forced after error\n", 746 sb->s_id); 747 } 748 749 if (sb_rdonly(sb) || continue_fs) 750 return; 751 752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 753 /* 754 * Make sure updated value of ->s_mount_flags will be visible before 755 * ->s_flags update 756 */ 757 smp_wmb(); 758 sb->s_flags |= SB_RDONLY; 759 } 760 761 static void update_super_work(struct work_struct *work) 762 { 763 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 764 s_sb_upd_work); 765 journal_t *journal = sbi->s_journal; 766 handle_t *handle; 767 768 /* 769 * If the journal is still running, we have to write out superblock 770 * through the journal to avoid collisions of other journalled sb 771 * updates. 772 * 773 * We use directly jbd2 functions here to avoid recursing back into 774 * ext4 error handling code during handling of previous errors. 775 */ 776 if (!sb_rdonly(sbi->s_sb) && journal) { 777 struct buffer_head *sbh = sbi->s_sbh; 778 bool call_notify_err = false; 779 780 handle = jbd2_journal_start(journal, 1); 781 if (IS_ERR(handle)) 782 goto write_directly; 783 if (jbd2_journal_get_write_access(handle, sbh)) { 784 jbd2_journal_stop(handle); 785 goto write_directly; 786 } 787 788 if (sbi->s_add_error_count > 0) 789 call_notify_err = true; 790 791 ext4_update_super(sbi->s_sb); 792 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 793 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 794 "superblock detected"); 795 clear_buffer_write_io_error(sbh); 796 set_buffer_uptodate(sbh); 797 } 798 799 if (jbd2_journal_dirty_metadata(handle, sbh)) { 800 jbd2_journal_stop(handle); 801 goto write_directly; 802 } 803 jbd2_journal_stop(handle); 804 805 if (call_notify_err) 806 ext4_notify_error_sysfs(sbi); 807 808 return; 809 } 810 write_directly: 811 /* 812 * Write through journal failed. Write sb directly to get error info 813 * out and hope for the best. 814 */ 815 ext4_commit_super(sbi->s_sb); 816 ext4_notify_error_sysfs(sbi); 817 } 818 819 #define ext4_error_ratelimit(sb) \ 820 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 821 "EXT4-fs error") 822 823 void __ext4_error(struct super_block *sb, const char *function, 824 unsigned int line, bool force_ro, int error, __u64 block, 825 const char *fmt, ...) 826 { 827 struct va_format vaf; 828 va_list args; 829 830 if (unlikely(ext4_forced_shutdown(sb))) 831 return; 832 833 trace_ext4_error(sb, function, line); 834 if (ext4_error_ratelimit(sb)) { 835 va_start(args, fmt); 836 vaf.fmt = fmt; 837 vaf.va = &args; 838 printk(KERN_CRIT 839 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 840 sb->s_id, function, line, current->comm, &vaf); 841 va_end(args); 842 } 843 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 844 845 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 846 } 847 848 void __ext4_error_inode(struct inode *inode, const char *function, 849 unsigned int line, ext4_fsblk_t block, int error, 850 const char *fmt, ...) 851 { 852 va_list args; 853 struct va_format vaf; 854 855 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 856 return; 857 858 trace_ext4_error(inode->i_sb, function, line); 859 if (ext4_error_ratelimit(inode->i_sb)) { 860 va_start(args, fmt); 861 vaf.fmt = fmt; 862 vaf.va = &args; 863 if (block) 864 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 865 "inode #%lu: block %llu: comm %s: %pV\n", 866 inode->i_sb->s_id, function, line, inode->i_ino, 867 block, current->comm, &vaf); 868 else 869 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 870 "inode #%lu: comm %s: %pV\n", 871 inode->i_sb->s_id, function, line, inode->i_ino, 872 current->comm, &vaf); 873 va_end(args); 874 } 875 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 876 877 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 878 function, line); 879 } 880 881 void __ext4_error_file(struct file *file, const char *function, 882 unsigned int line, ext4_fsblk_t block, 883 const char *fmt, ...) 884 { 885 va_list args; 886 struct va_format vaf; 887 struct inode *inode = file_inode(file); 888 char pathname[80], *path; 889 890 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 891 return; 892 893 trace_ext4_error(inode->i_sb, function, line); 894 if (ext4_error_ratelimit(inode->i_sb)) { 895 path = file_path(file, pathname, sizeof(pathname)); 896 if (IS_ERR(path)) 897 path = "(unknown)"; 898 va_start(args, fmt); 899 vaf.fmt = fmt; 900 vaf.va = &args; 901 if (block) 902 printk(KERN_CRIT 903 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 904 "block %llu: comm %s: path %s: %pV\n", 905 inode->i_sb->s_id, function, line, inode->i_ino, 906 block, current->comm, path, &vaf); 907 else 908 printk(KERN_CRIT 909 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 910 "comm %s: path %s: %pV\n", 911 inode->i_sb->s_id, function, line, inode->i_ino, 912 current->comm, path, &vaf); 913 va_end(args); 914 } 915 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 916 917 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 918 function, line); 919 } 920 921 const char *ext4_decode_error(struct super_block *sb, int errno, 922 char nbuf[16]) 923 { 924 char *errstr = NULL; 925 926 switch (errno) { 927 case -EFSCORRUPTED: 928 errstr = "Corrupt filesystem"; 929 break; 930 case -EFSBADCRC: 931 errstr = "Filesystem failed CRC"; 932 break; 933 case -EIO: 934 errstr = "IO failure"; 935 break; 936 case -ENOMEM: 937 errstr = "Out of memory"; 938 break; 939 case -EROFS: 940 if (!sb || (EXT4_SB(sb)->s_journal && 941 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 942 errstr = "Journal has aborted"; 943 else 944 errstr = "Readonly filesystem"; 945 break; 946 default: 947 /* If the caller passed in an extra buffer for unknown 948 * errors, textualise them now. Else we just return 949 * NULL. */ 950 if (nbuf) { 951 /* Check for truncated error codes... */ 952 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 953 errstr = nbuf; 954 } 955 break; 956 } 957 958 return errstr; 959 } 960 961 /* __ext4_std_error decodes expected errors from journaling functions 962 * automatically and invokes the appropriate error response. */ 963 964 void __ext4_std_error(struct super_block *sb, const char *function, 965 unsigned int line, int errno) 966 { 967 char nbuf[16]; 968 const char *errstr; 969 970 if (unlikely(ext4_forced_shutdown(sb))) 971 return; 972 973 /* Special case: if the error is EROFS, and we're not already 974 * inside a transaction, then there's really no point in logging 975 * an error. */ 976 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 977 return; 978 979 if (ext4_error_ratelimit(sb)) { 980 errstr = ext4_decode_error(sb, errno, nbuf); 981 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 982 sb->s_id, function, line, errstr); 983 } 984 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 985 986 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 987 } 988 989 void __ext4_msg(struct super_block *sb, 990 const char *prefix, const char *fmt, ...) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (sb) { 996 atomic_inc(&EXT4_SB(sb)->s_msg_count); 997 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 998 "EXT4-fs")) 999 return; 1000 } 1001 1002 va_start(args, fmt); 1003 vaf.fmt = fmt; 1004 vaf.va = &args; 1005 if (sb) 1006 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 1007 else 1008 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 1009 va_end(args); 1010 } 1011 1012 static int ext4_warning_ratelimit(struct super_block *sb) 1013 { 1014 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1015 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1016 "EXT4-fs warning"); 1017 } 1018 1019 void __ext4_warning(struct super_block *sb, const char *function, 1020 unsigned int line, const char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 if (!ext4_warning_ratelimit(sb)) 1026 return; 1027 1028 va_start(args, fmt); 1029 vaf.fmt = fmt; 1030 vaf.va = &args; 1031 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1032 sb->s_id, function, line, &vaf); 1033 va_end(args); 1034 } 1035 1036 void __ext4_warning_inode(const struct inode *inode, const char *function, 1037 unsigned int line, const char *fmt, ...) 1038 { 1039 struct va_format vaf; 1040 va_list args; 1041 1042 if (!ext4_warning_ratelimit(inode->i_sb)) 1043 return; 1044 1045 va_start(args, fmt); 1046 vaf.fmt = fmt; 1047 vaf.va = &args; 1048 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1049 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1050 function, line, inode->i_ino, current->comm, &vaf); 1051 va_end(args); 1052 } 1053 1054 void __ext4_grp_locked_error(const char *function, unsigned int line, 1055 struct super_block *sb, ext4_group_t grp, 1056 unsigned long ino, ext4_fsblk_t block, 1057 const char *fmt, ...) 1058 __releases(bitlock) 1059 __acquires(bitlock) 1060 { 1061 struct va_format vaf; 1062 va_list args; 1063 1064 if (unlikely(ext4_forced_shutdown(sb))) 1065 return; 1066 1067 trace_ext4_error(sb, function, line); 1068 if (ext4_error_ratelimit(sb)) { 1069 va_start(args, fmt); 1070 vaf.fmt = fmt; 1071 vaf.va = &args; 1072 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1073 sb->s_id, function, line, grp); 1074 if (ino) 1075 printk(KERN_CONT "inode %lu: ", ino); 1076 if (block) 1077 printk(KERN_CONT "block %llu:", 1078 (unsigned long long) block); 1079 printk(KERN_CONT "%pV\n", &vaf); 1080 va_end(args); 1081 } 1082 1083 if (test_opt(sb, ERRORS_CONT)) { 1084 if (test_opt(sb, WARN_ON_ERROR)) 1085 WARN_ON_ONCE(1); 1086 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1087 if (!bdev_read_only(sb->s_bdev)) { 1088 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1089 line); 1090 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1091 } 1092 return; 1093 } 1094 ext4_unlock_group(sb, grp); 1095 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1096 /* 1097 * We only get here in the ERRORS_RO case; relocking the group 1098 * may be dangerous, but nothing bad will happen since the 1099 * filesystem will have already been marked read/only and the 1100 * journal has been aborted. We return 1 as a hint to callers 1101 * who might what to use the return value from 1102 * ext4_grp_locked_error() to distinguish between the 1103 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1104 * aggressively from the ext4 function in question, with a 1105 * more appropriate error code. 1106 */ 1107 ext4_lock_group(sb, grp); 1108 return; 1109 } 1110 1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1112 ext4_group_t group, 1113 unsigned int flags) 1114 { 1115 struct ext4_sb_info *sbi = EXT4_SB(sb); 1116 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1117 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1118 int ret; 1119 1120 if (!grp || !gdp) 1121 return; 1122 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1124 &grp->bb_state); 1125 if (!ret) 1126 percpu_counter_sub(&sbi->s_freeclusters_counter, 1127 grp->bb_free); 1128 } 1129 1130 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1131 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1132 &grp->bb_state); 1133 if (!ret && gdp) { 1134 int count; 1135 1136 count = ext4_free_inodes_count(sb, gdp); 1137 percpu_counter_sub(&sbi->s_freeinodes_counter, 1138 count); 1139 } 1140 } 1141 } 1142 1143 void ext4_update_dynamic_rev(struct super_block *sb) 1144 { 1145 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1146 1147 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1148 return; 1149 1150 ext4_warning(sb, 1151 "updating to rev %d because of new feature flag, " 1152 "running e2fsck is recommended", 1153 EXT4_DYNAMIC_REV); 1154 1155 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1156 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1157 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1158 /* leave es->s_feature_*compat flags alone */ 1159 /* es->s_uuid will be set by e2fsck if empty */ 1160 1161 /* 1162 * The rest of the superblock fields should be zero, and if not it 1163 * means they are likely already in use, so leave them alone. We 1164 * can leave it up to e2fsck to clean up any inconsistencies there. 1165 */ 1166 } 1167 1168 static inline struct inode *orphan_list_entry(struct list_head *l) 1169 { 1170 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1171 } 1172 1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1174 { 1175 struct list_head *l; 1176 1177 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1178 le32_to_cpu(sbi->s_es->s_last_orphan)); 1179 1180 printk(KERN_ERR "sb_info orphan list:\n"); 1181 list_for_each(l, &sbi->s_orphan) { 1182 struct inode *inode = orphan_list_entry(l); 1183 printk(KERN_ERR " " 1184 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1185 inode->i_sb->s_id, inode->i_ino, inode, 1186 inode->i_mode, inode->i_nlink, 1187 NEXT_ORPHAN(inode)); 1188 } 1189 } 1190 1191 #ifdef CONFIG_QUOTA 1192 static int ext4_quota_off(struct super_block *sb, int type); 1193 1194 static inline void ext4_quotas_off(struct super_block *sb, int type) 1195 { 1196 BUG_ON(type > EXT4_MAXQUOTAS); 1197 1198 /* Use our quota_off function to clear inode flags etc. */ 1199 for (type--; type >= 0; type--) 1200 ext4_quota_off(sb, type); 1201 } 1202 1203 /* 1204 * This is a helper function which is used in the mount/remount 1205 * codepaths (which holds s_umount) to fetch the quota file name. 1206 */ 1207 static inline char *get_qf_name(struct super_block *sb, 1208 struct ext4_sb_info *sbi, 1209 int type) 1210 { 1211 return rcu_dereference_protected(sbi->s_qf_names[type], 1212 lockdep_is_held(&sb->s_umount)); 1213 } 1214 #else 1215 static inline void ext4_quotas_off(struct super_block *sb, int type) 1216 { 1217 } 1218 #endif 1219 1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1221 { 1222 ext4_fsblk_t block; 1223 int err; 1224 1225 block = ext4_count_free_clusters(sbi->s_sb); 1226 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1227 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1228 GFP_KERNEL); 1229 if (!err) { 1230 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1231 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1232 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1233 GFP_KERNEL); 1234 } 1235 if (!err) 1236 err = percpu_counter_init(&sbi->s_dirs_counter, 1237 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1238 if (!err) 1239 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1240 GFP_KERNEL); 1241 if (!err) 1242 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1243 GFP_KERNEL); 1244 if (!err) 1245 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1246 1247 if (err) 1248 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1249 1250 return err; 1251 } 1252 1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1254 { 1255 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1256 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1257 percpu_counter_destroy(&sbi->s_dirs_counter); 1258 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1259 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1260 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1261 } 1262 1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1264 { 1265 struct buffer_head **group_desc; 1266 int i; 1267 1268 rcu_read_lock(); 1269 group_desc = rcu_dereference(sbi->s_group_desc); 1270 for (i = 0; i < sbi->s_gdb_count; i++) 1271 brelse(group_desc[i]); 1272 kvfree(group_desc); 1273 rcu_read_unlock(); 1274 } 1275 1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1277 { 1278 struct flex_groups **flex_groups; 1279 int i; 1280 1281 rcu_read_lock(); 1282 flex_groups = rcu_dereference(sbi->s_flex_groups); 1283 if (flex_groups) { 1284 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1285 kvfree(flex_groups[i]); 1286 kvfree(flex_groups); 1287 } 1288 rcu_read_unlock(); 1289 } 1290 1291 static void ext4_put_super(struct super_block *sb) 1292 { 1293 struct ext4_sb_info *sbi = EXT4_SB(sb); 1294 struct ext4_super_block *es = sbi->s_es; 1295 int aborted = 0; 1296 int err; 1297 1298 /* 1299 * Unregister sysfs before destroying jbd2 journal. 1300 * Since we could still access attr_journal_task attribute via sysfs 1301 * path which could have sbi->s_journal->j_task as NULL 1302 * Unregister sysfs before flush sbi->s_sb_upd_work. 1303 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1304 * read metadata verify failed then will queue error work. 1305 * update_super_work will call start_this_handle may trigger 1306 * BUG_ON. 1307 */ 1308 ext4_unregister_sysfs(sb); 1309 1310 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1311 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1312 &sb->s_uuid); 1313 1314 ext4_unregister_li_request(sb); 1315 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1316 1317 flush_work(&sbi->s_sb_upd_work); 1318 destroy_workqueue(sbi->rsv_conversion_wq); 1319 ext4_release_orphan_info(sb); 1320 1321 if (sbi->s_journal) { 1322 aborted = is_journal_aborted(sbi->s_journal); 1323 err = jbd2_journal_destroy(sbi->s_journal); 1324 sbi->s_journal = NULL; 1325 if ((err < 0) && !aborted) { 1326 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1327 } 1328 } 1329 1330 ext4_es_unregister_shrinker(sbi); 1331 timer_shutdown_sync(&sbi->s_err_report); 1332 ext4_release_system_zone(sb); 1333 ext4_mb_release(sb); 1334 ext4_ext_release(sb); 1335 1336 if (!sb_rdonly(sb) && !aborted) { 1337 ext4_clear_feature_journal_needs_recovery(sb); 1338 ext4_clear_feature_orphan_present(sb); 1339 es->s_state = cpu_to_le16(sbi->s_mount_state); 1340 } 1341 if (!sb_rdonly(sb)) 1342 ext4_commit_super(sb); 1343 1344 ext4_group_desc_free(sbi); 1345 ext4_flex_groups_free(sbi); 1346 ext4_percpu_param_destroy(sbi); 1347 #ifdef CONFIG_QUOTA 1348 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1349 kfree(get_qf_name(sb, sbi, i)); 1350 #endif 1351 1352 /* Debugging code just in case the in-memory inode orphan list 1353 * isn't empty. The on-disk one can be non-empty if we've 1354 * detected an error and taken the fs readonly, but the 1355 * in-memory list had better be clean by this point. */ 1356 if (!list_empty(&sbi->s_orphan)) 1357 dump_orphan_list(sb, sbi); 1358 ASSERT(list_empty(&sbi->s_orphan)); 1359 1360 sync_blockdev(sb->s_bdev); 1361 invalidate_bdev(sb->s_bdev); 1362 if (sbi->s_journal_bdev_file) { 1363 /* 1364 * Invalidate the journal device's buffers. We don't want them 1365 * floating about in memory - the physical journal device may 1366 * hotswapped, and it breaks the `ro-after' testing code. 1367 */ 1368 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1369 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1370 } 1371 1372 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1373 sbi->s_ea_inode_cache = NULL; 1374 1375 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1376 sbi->s_ea_block_cache = NULL; 1377 1378 ext4_stop_mmpd(sbi); 1379 1380 brelse(sbi->s_sbh); 1381 sb->s_fs_info = NULL; 1382 /* 1383 * Now that we are completely done shutting down the 1384 * superblock, we need to actually destroy the kobject. 1385 */ 1386 kobject_put(&sbi->s_kobj); 1387 wait_for_completion(&sbi->s_kobj_unregister); 1388 if (sbi->s_chksum_driver) 1389 crypto_free_shash(sbi->s_chksum_driver); 1390 kfree(sbi->s_blockgroup_lock); 1391 fs_put_dax(sbi->s_daxdev, NULL); 1392 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1393 #if IS_ENABLED(CONFIG_UNICODE) 1394 utf8_unload(sb->s_encoding); 1395 #endif 1396 kfree(sbi); 1397 } 1398 1399 static struct kmem_cache *ext4_inode_cachep; 1400 1401 /* 1402 * Called inside transaction, so use GFP_NOFS 1403 */ 1404 static struct inode *ext4_alloc_inode(struct super_block *sb) 1405 { 1406 struct ext4_inode_info *ei; 1407 1408 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1409 if (!ei) 1410 return NULL; 1411 1412 inode_set_iversion(&ei->vfs_inode, 1); 1413 ei->i_flags = 0; 1414 spin_lock_init(&ei->i_raw_lock); 1415 ei->i_prealloc_node = RB_ROOT; 1416 atomic_set(&ei->i_prealloc_active, 0); 1417 rwlock_init(&ei->i_prealloc_lock); 1418 ext4_es_init_tree(&ei->i_es_tree); 1419 rwlock_init(&ei->i_es_lock); 1420 INIT_LIST_HEAD(&ei->i_es_list); 1421 ei->i_es_all_nr = 0; 1422 ei->i_es_shk_nr = 0; 1423 ei->i_es_shrink_lblk = 0; 1424 ei->i_reserved_data_blocks = 0; 1425 spin_lock_init(&(ei->i_block_reservation_lock)); 1426 ext4_init_pending_tree(&ei->i_pending_tree); 1427 #ifdef CONFIG_QUOTA 1428 ei->i_reserved_quota = 0; 1429 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1430 #endif 1431 ei->jinode = NULL; 1432 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1433 spin_lock_init(&ei->i_completed_io_lock); 1434 ei->i_sync_tid = 0; 1435 ei->i_datasync_tid = 0; 1436 atomic_set(&ei->i_unwritten, 0); 1437 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1438 ext4_fc_init_inode(&ei->vfs_inode); 1439 mutex_init(&ei->i_fc_lock); 1440 return &ei->vfs_inode; 1441 } 1442 1443 static int ext4_drop_inode(struct inode *inode) 1444 { 1445 int drop = generic_drop_inode(inode); 1446 1447 if (!drop) 1448 drop = fscrypt_drop_inode(inode); 1449 1450 trace_ext4_drop_inode(inode, drop); 1451 return drop; 1452 } 1453 1454 static void ext4_free_in_core_inode(struct inode *inode) 1455 { 1456 fscrypt_free_inode(inode); 1457 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1458 pr_warn("%s: inode %ld still in fc list", 1459 __func__, inode->i_ino); 1460 } 1461 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1462 } 1463 1464 static void ext4_destroy_inode(struct inode *inode) 1465 { 1466 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1467 ext4_msg(inode->i_sb, KERN_ERR, 1468 "Inode %lu (%p): orphan list check failed!", 1469 inode->i_ino, EXT4_I(inode)); 1470 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1471 EXT4_I(inode), sizeof(struct ext4_inode_info), 1472 true); 1473 dump_stack(); 1474 } 1475 1476 if (EXT4_I(inode)->i_reserved_data_blocks) 1477 ext4_msg(inode->i_sb, KERN_ERR, 1478 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1479 inode->i_ino, EXT4_I(inode), 1480 EXT4_I(inode)->i_reserved_data_blocks); 1481 } 1482 1483 static void ext4_shutdown(struct super_block *sb) 1484 { 1485 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1486 } 1487 1488 static void init_once(void *foo) 1489 { 1490 struct ext4_inode_info *ei = foo; 1491 1492 INIT_LIST_HEAD(&ei->i_orphan); 1493 init_rwsem(&ei->xattr_sem); 1494 init_rwsem(&ei->i_data_sem); 1495 inode_init_once(&ei->vfs_inode); 1496 ext4_fc_init_inode(&ei->vfs_inode); 1497 } 1498 1499 static int __init init_inodecache(void) 1500 { 1501 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1502 sizeof(struct ext4_inode_info), 0, 1503 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1504 offsetof(struct ext4_inode_info, i_data), 1505 sizeof_field(struct ext4_inode_info, i_data), 1506 init_once); 1507 if (ext4_inode_cachep == NULL) 1508 return -ENOMEM; 1509 return 0; 1510 } 1511 1512 static void destroy_inodecache(void) 1513 { 1514 /* 1515 * Make sure all delayed rcu free inodes are flushed before we 1516 * destroy cache. 1517 */ 1518 rcu_barrier(); 1519 kmem_cache_destroy(ext4_inode_cachep); 1520 } 1521 1522 void ext4_clear_inode(struct inode *inode) 1523 { 1524 ext4_fc_del(inode); 1525 invalidate_inode_buffers(inode); 1526 clear_inode(inode); 1527 ext4_discard_preallocations(inode); 1528 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1529 dquot_drop(inode); 1530 if (EXT4_I(inode)->jinode) { 1531 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1532 EXT4_I(inode)->jinode); 1533 jbd2_free_inode(EXT4_I(inode)->jinode); 1534 EXT4_I(inode)->jinode = NULL; 1535 } 1536 fscrypt_put_encryption_info(inode); 1537 fsverity_cleanup_inode(inode); 1538 } 1539 1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1541 u64 ino, u32 generation) 1542 { 1543 struct inode *inode; 1544 1545 /* 1546 * Currently we don't know the generation for parent directory, so 1547 * a generation of 0 means "accept any" 1548 */ 1549 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1550 if (IS_ERR(inode)) 1551 return ERR_CAST(inode); 1552 if (generation && inode->i_generation != generation) { 1553 iput(inode); 1554 return ERR_PTR(-ESTALE); 1555 } 1556 1557 return inode; 1558 } 1559 1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1561 int fh_len, int fh_type) 1562 { 1563 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1564 ext4_nfs_get_inode); 1565 } 1566 1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1568 int fh_len, int fh_type) 1569 { 1570 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1571 ext4_nfs_get_inode); 1572 } 1573 1574 static int ext4_nfs_commit_metadata(struct inode *inode) 1575 { 1576 struct writeback_control wbc = { 1577 .sync_mode = WB_SYNC_ALL 1578 }; 1579 1580 trace_ext4_nfs_commit_metadata(inode); 1581 return ext4_write_inode(inode, &wbc); 1582 } 1583 1584 #ifdef CONFIG_QUOTA 1585 static const char * const quotatypes[] = INITQFNAMES; 1586 #define QTYPE2NAME(t) (quotatypes[t]) 1587 1588 static int ext4_write_dquot(struct dquot *dquot); 1589 static int ext4_acquire_dquot(struct dquot *dquot); 1590 static int ext4_release_dquot(struct dquot *dquot); 1591 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1592 static int ext4_write_info(struct super_block *sb, int type); 1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1594 const struct path *path); 1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1596 size_t len, loff_t off); 1597 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1598 const char *data, size_t len, loff_t off); 1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1600 unsigned int flags); 1601 1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1603 { 1604 return EXT4_I(inode)->i_dquot; 1605 } 1606 1607 static const struct dquot_operations ext4_quota_operations = { 1608 .get_reserved_space = ext4_get_reserved_space, 1609 .write_dquot = ext4_write_dquot, 1610 .acquire_dquot = ext4_acquire_dquot, 1611 .release_dquot = ext4_release_dquot, 1612 .mark_dirty = ext4_mark_dquot_dirty, 1613 .write_info = ext4_write_info, 1614 .alloc_dquot = dquot_alloc, 1615 .destroy_dquot = dquot_destroy, 1616 .get_projid = ext4_get_projid, 1617 .get_inode_usage = ext4_get_inode_usage, 1618 .get_next_id = dquot_get_next_id, 1619 }; 1620 1621 static const struct quotactl_ops ext4_qctl_operations = { 1622 .quota_on = ext4_quota_on, 1623 .quota_off = ext4_quota_off, 1624 .quota_sync = dquot_quota_sync, 1625 .get_state = dquot_get_state, 1626 .set_info = dquot_set_dqinfo, 1627 .get_dqblk = dquot_get_dqblk, 1628 .set_dqblk = dquot_set_dqblk, 1629 .get_nextdqblk = dquot_get_next_dqblk, 1630 }; 1631 #endif 1632 1633 static const struct super_operations ext4_sops = { 1634 .alloc_inode = ext4_alloc_inode, 1635 .free_inode = ext4_free_in_core_inode, 1636 .destroy_inode = ext4_destroy_inode, 1637 .write_inode = ext4_write_inode, 1638 .dirty_inode = ext4_dirty_inode, 1639 .drop_inode = ext4_drop_inode, 1640 .evict_inode = ext4_evict_inode, 1641 .put_super = ext4_put_super, 1642 .sync_fs = ext4_sync_fs, 1643 .freeze_fs = ext4_freeze, 1644 .unfreeze_fs = ext4_unfreeze, 1645 .statfs = ext4_statfs, 1646 .show_options = ext4_show_options, 1647 .shutdown = ext4_shutdown, 1648 #ifdef CONFIG_QUOTA 1649 .quota_read = ext4_quota_read, 1650 .quota_write = ext4_quota_write, 1651 .get_dquots = ext4_get_dquots, 1652 #endif 1653 }; 1654 1655 static const struct export_operations ext4_export_ops = { 1656 .encode_fh = generic_encode_ino32_fh, 1657 .fh_to_dentry = ext4_fh_to_dentry, 1658 .fh_to_parent = ext4_fh_to_parent, 1659 .get_parent = ext4_get_parent, 1660 .commit_metadata = ext4_nfs_commit_metadata, 1661 }; 1662 1663 enum { 1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1665 Opt_resgid, Opt_resuid, Opt_sb, 1666 Opt_nouid32, Opt_debug, Opt_removed, 1667 Opt_user_xattr, Opt_acl, 1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1673 Opt_inlinecrypt, 1674 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1675 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1676 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1677 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1678 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1679 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1680 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1681 Opt_inode_readahead_blks, Opt_journal_ioprio, 1682 Opt_dioread_nolock, Opt_dioread_lock, 1683 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1684 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1685 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1686 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1687 #ifdef CONFIG_EXT4_DEBUG 1688 Opt_fc_debug_max_replay, Opt_fc_debug_force 1689 #endif 1690 }; 1691 1692 static const struct constant_table ext4_param_errors[] = { 1693 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1694 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1695 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1696 {} 1697 }; 1698 1699 static const struct constant_table ext4_param_data[] = { 1700 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1701 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1702 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1703 {} 1704 }; 1705 1706 static const struct constant_table ext4_param_data_err[] = { 1707 {"abort", Opt_data_err_abort}, 1708 {"ignore", Opt_data_err_ignore}, 1709 {} 1710 }; 1711 1712 static const struct constant_table ext4_param_jqfmt[] = { 1713 {"vfsold", QFMT_VFS_OLD}, 1714 {"vfsv0", QFMT_VFS_V0}, 1715 {"vfsv1", QFMT_VFS_V1}, 1716 {} 1717 }; 1718 1719 static const struct constant_table ext4_param_dax[] = { 1720 {"always", Opt_dax_always}, 1721 {"inode", Opt_dax_inode}, 1722 {"never", Opt_dax_never}, 1723 {} 1724 }; 1725 1726 /* String parameter that allows empty argument */ 1727 #define fsparam_string_empty(NAME, OPT) \ 1728 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1729 1730 /* 1731 * Mount option specification 1732 * We don't use fsparam_flag_no because of the way we set the 1733 * options and the way we show them in _ext4_show_options(). To 1734 * keep the changes to a minimum, let's keep the negative options 1735 * separate for now. 1736 */ 1737 static const struct fs_parameter_spec ext4_param_specs[] = { 1738 fsparam_flag ("bsddf", Opt_bsd_df), 1739 fsparam_flag ("minixdf", Opt_minix_df), 1740 fsparam_flag ("grpid", Opt_grpid), 1741 fsparam_flag ("bsdgroups", Opt_grpid), 1742 fsparam_flag ("nogrpid", Opt_nogrpid), 1743 fsparam_flag ("sysvgroups", Opt_nogrpid), 1744 fsparam_u32 ("resgid", Opt_resgid), 1745 fsparam_u32 ("resuid", Opt_resuid), 1746 fsparam_u32 ("sb", Opt_sb), 1747 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1748 fsparam_flag ("nouid32", Opt_nouid32), 1749 fsparam_flag ("debug", Opt_debug), 1750 fsparam_flag ("oldalloc", Opt_removed), 1751 fsparam_flag ("orlov", Opt_removed), 1752 fsparam_flag ("user_xattr", Opt_user_xattr), 1753 fsparam_flag ("acl", Opt_acl), 1754 fsparam_flag ("norecovery", Opt_noload), 1755 fsparam_flag ("noload", Opt_noload), 1756 fsparam_flag ("bh", Opt_removed), 1757 fsparam_flag ("nobh", Opt_removed), 1758 fsparam_u32 ("commit", Opt_commit), 1759 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1760 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1761 fsparam_u32 ("journal_dev", Opt_journal_dev), 1762 fsparam_bdev ("journal_path", Opt_journal_path), 1763 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1764 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1765 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1766 fsparam_flag ("abort", Opt_abort), 1767 fsparam_enum ("data", Opt_data, ext4_param_data), 1768 fsparam_enum ("data_err", Opt_data_err, 1769 ext4_param_data_err), 1770 fsparam_string_empty 1771 ("usrjquota", Opt_usrjquota), 1772 fsparam_string_empty 1773 ("grpjquota", Opt_grpjquota), 1774 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1775 fsparam_flag ("grpquota", Opt_grpquota), 1776 fsparam_flag ("quota", Opt_quota), 1777 fsparam_flag ("noquota", Opt_noquota), 1778 fsparam_flag ("usrquota", Opt_usrquota), 1779 fsparam_flag ("prjquota", Opt_prjquota), 1780 fsparam_flag ("barrier", Opt_barrier), 1781 fsparam_u32 ("barrier", Opt_barrier), 1782 fsparam_flag ("nobarrier", Opt_nobarrier), 1783 fsparam_flag ("i_version", Opt_removed), 1784 fsparam_flag ("dax", Opt_dax), 1785 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1786 fsparam_u32 ("stripe", Opt_stripe), 1787 fsparam_flag ("delalloc", Opt_delalloc), 1788 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1789 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1790 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1791 fsparam_u32 ("debug_want_extra_isize", 1792 Opt_debug_want_extra_isize), 1793 fsparam_flag ("mblk_io_submit", Opt_removed), 1794 fsparam_flag ("nomblk_io_submit", Opt_removed), 1795 fsparam_flag ("block_validity", Opt_block_validity), 1796 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1797 fsparam_u32 ("inode_readahead_blks", 1798 Opt_inode_readahead_blks), 1799 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1800 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1801 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1802 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1803 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1804 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1805 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1806 fsparam_flag ("discard", Opt_discard), 1807 fsparam_flag ("nodiscard", Opt_nodiscard), 1808 fsparam_u32 ("init_itable", Opt_init_itable), 1809 fsparam_flag ("init_itable", Opt_init_itable), 1810 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1811 #ifdef CONFIG_EXT4_DEBUG 1812 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1813 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1814 #endif 1815 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1816 fsparam_flag ("test_dummy_encryption", 1817 Opt_test_dummy_encryption), 1818 fsparam_string ("test_dummy_encryption", 1819 Opt_test_dummy_encryption), 1820 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1821 fsparam_flag ("nombcache", Opt_nombcache), 1822 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1823 fsparam_flag ("prefetch_block_bitmaps", 1824 Opt_removed), 1825 fsparam_flag ("no_prefetch_block_bitmaps", 1826 Opt_no_prefetch_block_bitmaps), 1827 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1828 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1829 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1830 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1831 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1832 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1833 {} 1834 }; 1835 1836 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1837 1838 #define MOPT_SET 0x0001 1839 #define MOPT_CLEAR 0x0002 1840 #define MOPT_NOSUPPORT 0x0004 1841 #define MOPT_EXPLICIT 0x0008 1842 #ifdef CONFIG_QUOTA 1843 #define MOPT_Q 0 1844 #define MOPT_QFMT 0x0010 1845 #else 1846 #define MOPT_Q MOPT_NOSUPPORT 1847 #define MOPT_QFMT MOPT_NOSUPPORT 1848 #endif 1849 #define MOPT_NO_EXT2 0x0020 1850 #define MOPT_NO_EXT3 0x0040 1851 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1852 #define MOPT_SKIP 0x0080 1853 #define MOPT_2 0x0100 1854 1855 static const struct mount_opts { 1856 int token; 1857 int mount_opt; 1858 int flags; 1859 } ext4_mount_opts[] = { 1860 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1861 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1862 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1863 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1864 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1865 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1866 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1867 MOPT_EXT4_ONLY | MOPT_SET}, 1868 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1869 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1870 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1871 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1872 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1873 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1874 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1875 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1876 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1877 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1878 {Opt_commit, 0, MOPT_NO_EXT2}, 1879 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1880 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1881 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1882 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1883 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1884 EXT4_MOUNT_JOURNAL_CHECKSUM), 1885 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1886 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1887 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1888 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1889 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1890 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1891 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1892 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1893 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1894 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1895 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1896 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1897 {Opt_data, 0, MOPT_NO_EXT2}, 1898 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1899 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1900 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1901 #else 1902 {Opt_acl, 0, MOPT_NOSUPPORT}, 1903 #endif 1904 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1905 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1906 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1907 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1908 MOPT_SET | MOPT_Q}, 1909 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1910 MOPT_SET | MOPT_Q}, 1911 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1912 MOPT_SET | MOPT_Q}, 1913 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1914 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1915 MOPT_CLEAR | MOPT_Q}, 1916 {Opt_usrjquota, 0, MOPT_Q}, 1917 {Opt_grpjquota, 0, MOPT_Q}, 1918 {Opt_jqfmt, 0, MOPT_QFMT}, 1919 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1920 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1921 MOPT_SET}, 1922 #ifdef CONFIG_EXT4_DEBUG 1923 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1924 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1925 #endif 1926 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1927 {Opt_err, 0, 0} 1928 }; 1929 1930 #if IS_ENABLED(CONFIG_UNICODE) 1931 static const struct ext4_sb_encodings { 1932 __u16 magic; 1933 char *name; 1934 unsigned int version; 1935 } ext4_sb_encoding_map[] = { 1936 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1937 }; 1938 1939 static const struct ext4_sb_encodings * 1940 ext4_sb_read_encoding(const struct ext4_super_block *es) 1941 { 1942 __u16 magic = le16_to_cpu(es->s_encoding); 1943 int i; 1944 1945 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1946 if (magic == ext4_sb_encoding_map[i].magic) 1947 return &ext4_sb_encoding_map[i]; 1948 1949 return NULL; 1950 } 1951 #endif 1952 1953 #define EXT4_SPEC_JQUOTA (1 << 0) 1954 #define EXT4_SPEC_JQFMT (1 << 1) 1955 #define EXT4_SPEC_DATAJ (1 << 2) 1956 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1957 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1958 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1959 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1960 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1961 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1962 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1963 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1964 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1965 #define EXT4_SPEC_s_stripe (1 << 13) 1966 #define EXT4_SPEC_s_resuid (1 << 14) 1967 #define EXT4_SPEC_s_resgid (1 << 15) 1968 #define EXT4_SPEC_s_commit_interval (1 << 16) 1969 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1970 #define EXT4_SPEC_s_sb_block (1 << 18) 1971 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1972 1973 struct ext4_fs_context { 1974 char *s_qf_names[EXT4_MAXQUOTAS]; 1975 struct fscrypt_dummy_policy dummy_enc_policy; 1976 int s_jquota_fmt; /* Format of quota to use */ 1977 #ifdef CONFIG_EXT4_DEBUG 1978 int s_fc_debug_max_replay; 1979 #endif 1980 unsigned short qname_spec; 1981 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1982 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1983 unsigned long journal_devnum; 1984 unsigned long s_commit_interval; 1985 unsigned long s_stripe; 1986 unsigned int s_inode_readahead_blks; 1987 unsigned int s_want_extra_isize; 1988 unsigned int s_li_wait_mult; 1989 unsigned int s_max_dir_size_kb; 1990 unsigned int journal_ioprio; 1991 unsigned int vals_s_mount_opt; 1992 unsigned int mask_s_mount_opt; 1993 unsigned int vals_s_mount_opt2; 1994 unsigned int mask_s_mount_opt2; 1995 unsigned int opt_flags; /* MOPT flags */ 1996 unsigned int spec; 1997 u32 s_max_batch_time; 1998 u32 s_min_batch_time; 1999 kuid_t s_resuid; 2000 kgid_t s_resgid; 2001 ext4_fsblk_t s_sb_block; 2002 }; 2003 2004 static void ext4_fc_free(struct fs_context *fc) 2005 { 2006 struct ext4_fs_context *ctx = fc->fs_private; 2007 int i; 2008 2009 if (!ctx) 2010 return; 2011 2012 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2013 kfree(ctx->s_qf_names[i]); 2014 2015 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2016 kfree(ctx); 2017 } 2018 2019 int ext4_init_fs_context(struct fs_context *fc) 2020 { 2021 struct ext4_fs_context *ctx; 2022 2023 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2024 if (!ctx) 2025 return -ENOMEM; 2026 2027 fc->fs_private = ctx; 2028 fc->ops = &ext4_context_ops; 2029 2030 return 0; 2031 } 2032 2033 #ifdef CONFIG_QUOTA 2034 /* 2035 * Note the name of the specified quota file. 2036 */ 2037 static int note_qf_name(struct fs_context *fc, int qtype, 2038 struct fs_parameter *param) 2039 { 2040 struct ext4_fs_context *ctx = fc->fs_private; 2041 char *qname; 2042 2043 if (param->size < 1) { 2044 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2045 return -EINVAL; 2046 } 2047 if (strchr(param->string, '/')) { 2048 ext4_msg(NULL, KERN_ERR, 2049 "quotafile must be on filesystem root"); 2050 return -EINVAL; 2051 } 2052 if (ctx->s_qf_names[qtype]) { 2053 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2054 ext4_msg(NULL, KERN_ERR, 2055 "%s quota file already specified", 2056 QTYPE2NAME(qtype)); 2057 return -EINVAL; 2058 } 2059 return 0; 2060 } 2061 2062 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2063 if (!qname) { 2064 ext4_msg(NULL, KERN_ERR, 2065 "Not enough memory for storing quotafile name"); 2066 return -ENOMEM; 2067 } 2068 ctx->s_qf_names[qtype] = qname; 2069 ctx->qname_spec |= 1 << qtype; 2070 ctx->spec |= EXT4_SPEC_JQUOTA; 2071 return 0; 2072 } 2073 2074 /* 2075 * Clear the name of the specified quota file. 2076 */ 2077 static int unnote_qf_name(struct fs_context *fc, int qtype) 2078 { 2079 struct ext4_fs_context *ctx = fc->fs_private; 2080 2081 if (ctx->s_qf_names[qtype]) 2082 kfree(ctx->s_qf_names[qtype]); 2083 2084 ctx->s_qf_names[qtype] = NULL; 2085 ctx->qname_spec |= 1 << qtype; 2086 ctx->spec |= EXT4_SPEC_JQUOTA; 2087 return 0; 2088 } 2089 #endif 2090 2091 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2092 struct ext4_fs_context *ctx) 2093 { 2094 int err; 2095 2096 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2097 ext4_msg(NULL, KERN_WARNING, 2098 "test_dummy_encryption option not supported"); 2099 return -EINVAL; 2100 } 2101 err = fscrypt_parse_test_dummy_encryption(param, 2102 &ctx->dummy_enc_policy); 2103 if (err == -EINVAL) { 2104 ext4_msg(NULL, KERN_WARNING, 2105 "Value of option \"%s\" is unrecognized", param->key); 2106 } else if (err == -EEXIST) { 2107 ext4_msg(NULL, KERN_WARNING, 2108 "Conflicting test_dummy_encryption options"); 2109 return -EINVAL; 2110 } 2111 return err; 2112 } 2113 2114 #define EXT4_SET_CTX(name) \ 2115 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2116 unsigned long flag) \ 2117 { \ 2118 ctx->mask_s_##name |= flag; \ 2119 ctx->vals_s_##name |= flag; \ 2120 } 2121 2122 #define EXT4_CLEAR_CTX(name) \ 2123 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2124 unsigned long flag) \ 2125 { \ 2126 ctx->mask_s_##name |= flag; \ 2127 ctx->vals_s_##name &= ~flag; \ 2128 } 2129 2130 #define EXT4_TEST_CTX(name) \ 2131 static inline unsigned long \ 2132 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2133 { \ 2134 return (ctx->vals_s_##name & flag); \ 2135 } 2136 2137 EXT4_SET_CTX(flags); /* set only */ 2138 EXT4_SET_CTX(mount_opt); 2139 EXT4_CLEAR_CTX(mount_opt); 2140 EXT4_TEST_CTX(mount_opt); 2141 EXT4_SET_CTX(mount_opt2); 2142 EXT4_CLEAR_CTX(mount_opt2); 2143 EXT4_TEST_CTX(mount_opt2); 2144 2145 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2146 { 2147 struct ext4_fs_context *ctx = fc->fs_private; 2148 struct fs_parse_result result; 2149 const struct mount_opts *m; 2150 int is_remount; 2151 kuid_t uid; 2152 kgid_t gid; 2153 int token; 2154 2155 token = fs_parse(fc, ext4_param_specs, param, &result); 2156 if (token < 0) 2157 return token; 2158 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2159 2160 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2161 if (token == m->token) 2162 break; 2163 2164 ctx->opt_flags |= m->flags; 2165 2166 if (m->flags & MOPT_EXPLICIT) { 2167 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2168 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2169 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2170 ctx_set_mount_opt2(ctx, 2171 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2172 } else 2173 return -EINVAL; 2174 } 2175 2176 if (m->flags & MOPT_NOSUPPORT) { 2177 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2178 param->key); 2179 return 0; 2180 } 2181 2182 switch (token) { 2183 #ifdef CONFIG_QUOTA 2184 case Opt_usrjquota: 2185 if (!*param->string) 2186 return unnote_qf_name(fc, USRQUOTA); 2187 else 2188 return note_qf_name(fc, USRQUOTA, param); 2189 case Opt_grpjquota: 2190 if (!*param->string) 2191 return unnote_qf_name(fc, GRPQUOTA); 2192 else 2193 return note_qf_name(fc, GRPQUOTA, param); 2194 #endif 2195 case Opt_sb: 2196 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2197 ext4_msg(NULL, KERN_WARNING, 2198 "Ignoring %s option on remount", param->key); 2199 } else { 2200 ctx->s_sb_block = result.uint_32; 2201 ctx->spec |= EXT4_SPEC_s_sb_block; 2202 } 2203 return 0; 2204 case Opt_removed: 2205 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2206 param->key); 2207 return 0; 2208 case Opt_inlinecrypt: 2209 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2210 ctx_set_flags(ctx, SB_INLINECRYPT); 2211 #else 2212 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2213 #endif 2214 return 0; 2215 case Opt_errors: 2216 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2217 ctx_set_mount_opt(ctx, result.uint_32); 2218 return 0; 2219 #ifdef CONFIG_QUOTA 2220 case Opt_jqfmt: 2221 ctx->s_jquota_fmt = result.uint_32; 2222 ctx->spec |= EXT4_SPEC_JQFMT; 2223 return 0; 2224 #endif 2225 case Opt_data: 2226 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2227 ctx_set_mount_opt(ctx, result.uint_32); 2228 ctx->spec |= EXT4_SPEC_DATAJ; 2229 return 0; 2230 case Opt_commit: 2231 if (result.uint_32 == 0) 2232 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2233 else if (result.uint_32 > INT_MAX / HZ) { 2234 ext4_msg(NULL, KERN_ERR, 2235 "Invalid commit interval %d, " 2236 "must be smaller than %d", 2237 result.uint_32, INT_MAX / HZ); 2238 return -EINVAL; 2239 } 2240 ctx->s_commit_interval = HZ * result.uint_32; 2241 ctx->spec |= EXT4_SPEC_s_commit_interval; 2242 return 0; 2243 case Opt_debug_want_extra_isize: 2244 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2245 ext4_msg(NULL, KERN_ERR, 2246 "Invalid want_extra_isize %d", result.uint_32); 2247 return -EINVAL; 2248 } 2249 ctx->s_want_extra_isize = result.uint_32; 2250 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2251 return 0; 2252 case Opt_max_batch_time: 2253 ctx->s_max_batch_time = result.uint_32; 2254 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2255 return 0; 2256 case Opt_min_batch_time: 2257 ctx->s_min_batch_time = result.uint_32; 2258 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2259 return 0; 2260 case Opt_inode_readahead_blks: 2261 if (result.uint_32 && 2262 (result.uint_32 > (1 << 30) || 2263 !is_power_of_2(result.uint_32))) { 2264 ext4_msg(NULL, KERN_ERR, 2265 "EXT4-fs: inode_readahead_blks must be " 2266 "0 or a power of 2 smaller than 2^31"); 2267 return -EINVAL; 2268 } 2269 ctx->s_inode_readahead_blks = result.uint_32; 2270 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2271 return 0; 2272 case Opt_init_itable: 2273 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2274 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2275 if (param->type == fs_value_is_string) 2276 ctx->s_li_wait_mult = result.uint_32; 2277 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2278 return 0; 2279 case Opt_max_dir_size_kb: 2280 ctx->s_max_dir_size_kb = result.uint_32; 2281 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2282 return 0; 2283 #ifdef CONFIG_EXT4_DEBUG 2284 case Opt_fc_debug_max_replay: 2285 ctx->s_fc_debug_max_replay = result.uint_32; 2286 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2287 return 0; 2288 #endif 2289 case Opt_stripe: 2290 ctx->s_stripe = result.uint_32; 2291 ctx->spec |= EXT4_SPEC_s_stripe; 2292 return 0; 2293 case Opt_resuid: 2294 uid = make_kuid(current_user_ns(), result.uint_32); 2295 if (!uid_valid(uid)) { 2296 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2297 result.uint_32); 2298 return -EINVAL; 2299 } 2300 ctx->s_resuid = uid; 2301 ctx->spec |= EXT4_SPEC_s_resuid; 2302 return 0; 2303 case Opt_resgid: 2304 gid = make_kgid(current_user_ns(), result.uint_32); 2305 if (!gid_valid(gid)) { 2306 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2307 result.uint_32); 2308 return -EINVAL; 2309 } 2310 ctx->s_resgid = gid; 2311 ctx->spec |= EXT4_SPEC_s_resgid; 2312 return 0; 2313 case Opt_journal_dev: 2314 if (is_remount) { 2315 ext4_msg(NULL, KERN_ERR, 2316 "Cannot specify journal on remount"); 2317 return -EINVAL; 2318 } 2319 ctx->journal_devnum = result.uint_32; 2320 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2321 return 0; 2322 case Opt_journal_path: 2323 { 2324 struct inode *journal_inode; 2325 struct path path; 2326 int error; 2327 2328 if (is_remount) { 2329 ext4_msg(NULL, KERN_ERR, 2330 "Cannot specify journal on remount"); 2331 return -EINVAL; 2332 } 2333 2334 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2335 if (error) { 2336 ext4_msg(NULL, KERN_ERR, "error: could not find " 2337 "journal device path"); 2338 return -EINVAL; 2339 } 2340 2341 journal_inode = d_inode(path.dentry); 2342 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2343 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2344 path_put(&path); 2345 return 0; 2346 } 2347 case Opt_journal_ioprio: 2348 if (result.uint_32 > 7) { 2349 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2350 " (must be 0-7)"); 2351 return -EINVAL; 2352 } 2353 ctx->journal_ioprio = 2354 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2355 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2356 return 0; 2357 case Opt_test_dummy_encryption: 2358 return ext4_parse_test_dummy_encryption(param, ctx); 2359 case Opt_dax: 2360 case Opt_dax_type: 2361 #ifdef CONFIG_FS_DAX 2362 { 2363 int type = (token == Opt_dax) ? 2364 Opt_dax : result.uint_32; 2365 2366 switch (type) { 2367 case Opt_dax: 2368 case Opt_dax_always: 2369 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2370 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2371 break; 2372 case Opt_dax_never: 2373 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2374 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2375 break; 2376 case Opt_dax_inode: 2377 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2378 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2379 /* Strictly for printing options */ 2380 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2381 break; 2382 } 2383 return 0; 2384 } 2385 #else 2386 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2387 return -EINVAL; 2388 #endif 2389 case Opt_data_err: 2390 if (result.uint_32 == Opt_data_err_abort) 2391 ctx_set_mount_opt(ctx, m->mount_opt); 2392 else if (result.uint_32 == Opt_data_err_ignore) 2393 ctx_clear_mount_opt(ctx, m->mount_opt); 2394 return 0; 2395 case Opt_mb_optimize_scan: 2396 if (result.int_32 == 1) { 2397 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2398 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2399 } else if (result.int_32 == 0) { 2400 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2401 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2402 } else { 2403 ext4_msg(NULL, KERN_WARNING, 2404 "mb_optimize_scan should be set to 0 or 1."); 2405 return -EINVAL; 2406 } 2407 return 0; 2408 } 2409 2410 /* 2411 * At this point we should only be getting options requiring MOPT_SET, 2412 * or MOPT_CLEAR. Anything else is a bug 2413 */ 2414 if (m->token == Opt_err) { 2415 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2416 param->key); 2417 WARN_ON(1); 2418 return -EINVAL; 2419 } 2420 2421 else { 2422 unsigned int set = 0; 2423 2424 if ((param->type == fs_value_is_flag) || 2425 result.uint_32 > 0) 2426 set = 1; 2427 2428 if (m->flags & MOPT_CLEAR) 2429 set = !set; 2430 else if (unlikely(!(m->flags & MOPT_SET))) { 2431 ext4_msg(NULL, KERN_WARNING, 2432 "buggy handling of option %s", 2433 param->key); 2434 WARN_ON(1); 2435 return -EINVAL; 2436 } 2437 if (m->flags & MOPT_2) { 2438 if (set != 0) 2439 ctx_set_mount_opt2(ctx, m->mount_opt); 2440 else 2441 ctx_clear_mount_opt2(ctx, m->mount_opt); 2442 } else { 2443 if (set != 0) 2444 ctx_set_mount_opt(ctx, m->mount_opt); 2445 else 2446 ctx_clear_mount_opt(ctx, m->mount_opt); 2447 } 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int parse_options(struct fs_context *fc, char *options) 2454 { 2455 struct fs_parameter param; 2456 int ret; 2457 char *key; 2458 2459 if (!options) 2460 return 0; 2461 2462 while ((key = strsep(&options, ",")) != NULL) { 2463 if (*key) { 2464 size_t v_len = 0; 2465 char *value = strchr(key, '='); 2466 2467 param.type = fs_value_is_flag; 2468 param.string = NULL; 2469 2470 if (value) { 2471 if (value == key) 2472 continue; 2473 2474 *value++ = 0; 2475 v_len = strlen(value); 2476 param.string = kmemdup_nul(value, v_len, 2477 GFP_KERNEL); 2478 if (!param.string) 2479 return -ENOMEM; 2480 param.type = fs_value_is_string; 2481 } 2482 2483 param.key = key; 2484 param.size = v_len; 2485 2486 ret = ext4_parse_param(fc, ¶m); 2487 if (param.string) 2488 kfree(param.string); 2489 if (ret < 0) 2490 return ret; 2491 } 2492 } 2493 2494 ret = ext4_validate_options(fc); 2495 if (ret < 0) 2496 return ret; 2497 2498 return 0; 2499 } 2500 2501 static int parse_apply_sb_mount_options(struct super_block *sb, 2502 struct ext4_fs_context *m_ctx) 2503 { 2504 struct ext4_sb_info *sbi = EXT4_SB(sb); 2505 char *s_mount_opts = NULL; 2506 struct ext4_fs_context *s_ctx = NULL; 2507 struct fs_context *fc = NULL; 2508 int ret = -ENOMEM; 2509 2510 if (!sbi->s_es->s_mount_opts[0]) 2511 return 0; 2512 2513 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2514 sizeof(sbi->s_es->s_mount_opts), 2515 GFP_KERNEL); 2516 if (!s_mount_opts) 2517 return ret; 2518 2519 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2520 if (!fc) 2521 goto out_free; 2522 2523 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2524 if (!s_ctx) 2525 goto out_free; 2526 2527 fc->fs_private = s_ctx; 2528 fc->s_fs_info = sbi; 2529 2530 ret = parse_options(fc, s_mount_opts); 2531 if (ret < 0) 2532 goto parse_failed; 2533 2534 ret = ext4_check_opt_consistency(fc, sb); 2535 if (ret < 0) { 2536 parse_failed: 2537 ext4_msg(sb, KERN_WARNING, 2538 "failed to parse options in superblock: %s", 2539 s_mount_opts); 2540 ret = 0; 2541 goto out_free; 2542 } 2543 2544 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2545 m_ctx->journal_devnum = s_ctx->journal_devnum; 2546 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2547 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2548 2549 ext4_apply_options(fc, sb); 2550 ret = 0; 2551 2552 out_free: 2553 if (fc) { 2554 ext4_fc_free(fc); 2555 kfree(fc); 2556 } 2557 kfree(s_mount_opts); 2558 return ret; 2559 } 2560 2561 static void ext4_apply_quota_options(struct fs_context *fc, 2562 struct super_block *sb) 2563 { 2564 #ifdef CONFIG_QUOTA 2565 bool quota_feature = ext4_has_feature_quota(sb); 2566 struct ext4_fs_context *ctx = fc->fs_private; 2567 struct ext4_sb_info *sbi = EXT4_SB(sb); 2568 char *qname; 2569 int i; 2570 2571 if (quota_feature) 2572 return; 2573 2574 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2575 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2576 if (!(ctx->qname_spec & (1 << i))) 2577 continue; 2578 2579 qname = ctx->s_qf_names[i]; /* May be NULL */ 2580 if (qname) 2581 set_opt(sb, QUOTA); 2582 ctx->s_qf_names[i] = NULL; 2583 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2584 lockdep_is_held(&sb->s_umount)); 2585 if (qname) 2586 kfree_rcu_mightsleep(qname); 2587 } 2588 } 2589 2590 if (ctx->spec & EXT4_SPEC_JQFMT) 2591 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2592 #endif 2593 } 2594 2595 /* 2596 * Check quota settings consistency. 2597 */ 2598 static int ext4_check_quota_consistency(struct fs_context *fc, 2599 struct super_block *sb) 2600 { 2601 #ifdef CONFIG_QUOTA 2602 struct ext4_fs_context *ctx = fc->fs_private; 2603 struct ext4_sb_info *sbi = EXT4_SB(sb); 2604 bool quota_feature = ext4_has_feature_quota(sb); 2605 bool quota_loaded = sb_any_quota_loaded(sb); 2606 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2607 int quota_flags, i; 2608 2609 /* 2610 * We do the test below only for project quotas. 'usrquota' and 2611 * 'grpquota' mount options are allowed even without quota feature 2612 * to support legacy quotas in quota files. 2613 */ 2614 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2615 !ext4_has_feature_project(sb)) { 2616 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2617 "Cannot enable project quota enforcement."); 2618 return -EINVAL; 2619 } 2620 2621 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2622 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2623 if (quota_loaded && 2624 ctx->mask_s_mount_opt & quota_flags && 2625 !ctx_test_mount_opt(ctx, quota_flags)) 2626 goto err_quota_change; 2627 2628 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2629 2630 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2631 if (!(ctx->qname_spec & (1 << i))) 2632 continue; 2633 2634 if (quota_loaded && 2635 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2636 goto err_jquota_change; 2637 2638 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2639 strcmp(get_qf_name(sb, sbi, i), 2640 ctx->s_qf_names[i]) != 0) 2641 goto err_jquota_specified; 2642 } 2643 2644 if (quota_feature) { 2645 ext4_msg(NULL, KERN_INFO, 2646 "Journaled quota options ignored when " 2647 "QUOTA feature is enabled"); 2648 return 0; 2649 } 2650 } 2651 2652 if (ctx->spec & EXT4_SPEC_JQFMT) { 2653 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2654 goto err_jquota_change; 2655 if (quota_feature) { 2656 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2657 "ignored when QUOTA feature is enabled"); 2658 return 0; 2659 } 2660 } 2661 2662 /* Make sure we don't mix old and new quota format */ 2663 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2664 ctx->s_qf_names[USRQUOTA]); 2665 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2666 ctx->s_qf_names[GRPQUOTA]); 2667 2668 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2669 test_opt(sb, USRQUOTA)); 2670 2671 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2672 test_opt(sb, GRPQUOTA)); 2673 2674 if (usr_qf_name) { 2675 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2676 usrquota = false; 2677 } 2678 if (grp_qf_name) { 2679 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2680 grpquota = false; 2681 } 2682 2683 if (usr_qf_name || grp_qf_name) { 2684 if (usrquota || grpquota) { 2685 ext4_msg(NULL, KERN_ERR, "old and new quota " 2686 "format mixing"); 2687 return -EINVAL; 2688 } 2689 2690 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2691 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2692 "not specified"); 2693 return -EINVAL; 2694 } 2695 } 2696 2697 return 0; 2698 2699 err_quota_change: 2700 ext4_msg(NULL, KERN_ERR, 2701 "Cannot change quota options when quota turned on"); 2702 return -EINVAL; 2703 err_jquota_change: 2704 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2705 "options when quota turned on"); 2706 return -EINVAL; 2707 err_jquota_specified: 2708 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2709 QTYPE2NAME(i)); 2710 return -EINVAL; 2711 #else 2712 return 0; 2713 #endif 2714 } 2715 2716 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2717 struct super_block *sb) 2718 { 2719 const struct ext4_fs_context *ctx = fc->fs_private; 2720 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2721 2722 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2723 return 0; 2724 2725 if (!ext4_has_feature_encrypt(sb)) { 2726 ext4_msg(NULL, KERN_WARNING, 2727 "test_dummy_encryption requires encrypt feature"); 2728 return -EINVAL; 2729 } 2730 /* 2731 * This mount option is just for testing, and it's not worthwhile to 2732 * implement the extra complexity (e.g. RCU protection) that would be 2733 * needed to allow it to be set or changed during remount. We do allow 2734 * it to be specified during remount, but only if there is no change. 2735 */ 2736 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2737 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2738 &ctx->dummy_enc_policy)) 2739 return 0; 2740 ext4_msg(NULL, KERN_WARNING, 2741 "Can't set or change test_dummy_encryption on remount"); 2742 return -EINVAL; 2743 } 2744 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2745 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2746 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2747 &ctx->dummy_enc_policy)) 2748 return 0; 2749 ext4_msg(NULL, KERN_WARNING, 2750 "Conflicting test_dummy_encryption options"); 2751 return -EINVAL; 2752 } 2753 return 0; 2754 } 2755 2756 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2757 struct super_block *sb) 2758 { 2759 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2760 /* if already set, it was already verified to be the same */ 2761 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2762 return; 2763 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2764 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2765 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2766 } 2767 2768 static int ext4_check_opt_consistency(struct fs_context *fc, 2769 struct super_block *sb) 2770 { 2771 struct ext4_fs_context *ctx = fc->fs_private; 2772 struct ext4_sb_info *sbi = fc->s_fs_info; 2773 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2774 int err; 2775 2776 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2777 ext4_msg(NULL, KERN_ERR, 2778 "Mount option(s) incompatible with ext2"); 2779 return -EINVAL; 2780 } 2781 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2782 ext4_msg(NULL, KERN_ERR, 2783 "Mount option(s) incompatible with ext3"); 2784 return -EINVAL; 2785 } 2786 2787 if (ctx->s_want_extra_isize > 2788 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2789 ext4_msg(NULL, KERN_ERR, 2790 "Invalid want_extra_isize %d", 2791 ctx->s_want_extra_isize); 2792 return -EINVAL; 2793 } 2794 2795 err = ext4_check_test_dummy_encryption(fc, sb); 2796 if (err) 2797 return err; 2798 2799 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2800 if (!sbi->s_journal) { 2801 ext4_msg(NULL, KERN_WARNING, 2802 "Remounting file system with no journal " 2803 "so ignoring journalled data option"); 2804 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2805 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2806 test_opt(sb, DATA_FLAGS)) { 2807 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2808 "on remount"); 2809 return -EINVAL; 2810 } 2811 } 2812 2813 if (is_remount) { 2814 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2815 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2816 ext4_msg(NULL, KERN_ERR, "can't mount with " 2817 "both data=journal and dax"); 2818 return -EINVAL; 2819 } 2820 2821 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2822 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2823 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2824 fail_dax_change_remount: 2825 ext4_msg(NULL, KERN_ERR, "can't change " 2826 "dax mount option while remounting"); 2827 return -EINVAL; 2828 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2829 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2830 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2831 goto fail_dax_change_remount; 2832 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2833 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2834 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2835 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2836 goto fail_dax_change_remount; 2837 } 2838 } 2839 2840 return ext4_check_quota_consistency(fc, sb); 2841 } 2842 2843 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2844 { 2845 struct ext4_fs_context *ctx = fc->fs_private; 2846 struct ext4_sb_info *sbi = fc->s_fs_info; 2847 2848 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2849 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2850 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2851 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2852 sb->s_flags &= ~ctx->mask_s_flags; 2853 sb->s_flags |= ctx->vals_s_flags; 2854 2855 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2856 APPLY(s_commit_interval); 2857 APPLY(s_stripe); 2858 APPLY(s_max_batch_time); 2859 APPLY(s_min_batch_time); 2860 APPLY(s_want_extra_isize); 2861 APPLY(s_inode_readahead_blks); 2862 APPLY(s_max_dir_size_kb); 2863 APPLY(s_li_wait_mult); 2864 APPLY(s_resgid); 2865 APPLY(s_resuid); 2866 2867 #ifdef CONFIG_EXT4_DEBUG 2868 APPLY(s_fc_debug_max_replay); 2869 #endif 2870 2871 ext4_apply_quota_options(fc, sb); 2872 ext4_apply_test_dummy_encryption(ctx, sb); 2873 } 2874 2875 2876 static int ext4_validate_options(struct fs_context *fc) 2877 { 2878 #ifdef CONFIG_QUOTA 2879 struct ext4_fs_context *ctx = fc->fs_private; 2880 char *usr_qf_name, *grp_qf_name; 2881 2882 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2883 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2884 2885 if (usr_qf_name || grp_qf_name) { 2886 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2887 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2888 2889 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2890 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2891 2892 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2893 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2894 ext4_msg(NULL, KERN_ERR, "old and new quota " 2895 "format mixing"); 2896 return -EINVAL; 2897 } 2898 } 2899 #endif 2900 return 1; 2901 } 2902 2903 static inline void ext4_show_quota_options(struct seq_file *seq, 2904 struct super_block *sb) 2905 { 2906 #if defined(CONFIG_QUOTA) 2907 struct ext4_sb_info *sbi = EXT4_SB(sb); 2908 char *usr_qf_name, *grp_qf_name; 2909 2910 if (sbi->s_jquota_fmt) { 2911 char *fmtname = ""; 2912 2913 switch (sbi->s_jquota_fmt) { 2914 case QFMT_VFS_OLD: 2915 fmtname = "vfsold"; 2916 break; 2917 case QFMT_VFS_V0: 2918 fmtname = "vfsv0"; 2919 break; 2920 case QFMT_VFS_V1: 2921 fmtname = "vfsv1"; 2922 break; 2923 } 2924 seq_printf(seq, ",jqfmt=%s", fmtname); 2925 } 2926 2927 rcu_read_lock(); 2928 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2929 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2930 if (usr_qf_name) 2931 seq_show_option(seq, "usrjquota", usr_qf_name); 2932 if (grp_qf_name) 2933 seq_show_option(seq, "grpjquota", grp_qf_name); 2934 rcu_read_unlock(); 2935 #endif 2936 } 2937 2938 static const char *token2str(int token) 2939 { 2940 const struct fs_parameter_spec *spec; 2941 2942 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2943 if (spec->opt == token && !spec->type) 2944 break; 2945 return spec->name; 2946 } 2947 2948 /* 2949 * Show an option if 2950 * - it's set to a non-default value OR 2951 * - if the per-sb default is different from the global default 2952 */ 2953 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2954 int nodefs) 2955 { 2956 struct ext4_sb_info *sbi = EXT4_SB(sb); 2957 struct ext4_super_block *es = sbi->s_es; 2958 int def_errors; 2959 const struct mount_opts *m; 2960 char sep = nodefs ? '\n' : ','; 2961 2962 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2963 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2964 2965 if (sbi->s_sb_block != 1) 2966 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2967 2968 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2969 int want_set = m->flags & MOPT_SET; 2970 int opt_2 = m->flags & MOPT_2; 2971 unsigned int mount_opt, def_mount_opt; 2972 2973 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2974 m->flags & MOPT_SKIP) 2975 continue; 2976 2977 if (opt_2) { 2978 mount_opt = sbi->s_mount_opt2; 2979 def_mount_opt = sbi->s_def_mount_opt2; 2980 } else { 2981 mount_opt = sbi->s_mount_opt; 2982 def_mount_opt = sbi->s_def_mount_opt; 2983 } 2984 /* skip if same as the default */ 2985 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2986 continue; 2987 /* select Opt_noFoo vs Opt_Foo */ 2988 if ((want_set && 2989 (mount_opt & m->mount_opt) != m->mount_opt) || 2990 (!want_set && (mount_opt & m->mount_opt))) 2991 continue; 2992 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2993 } 2994 2995 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2996 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2997 SEQ_OPTS_PRINT("resuid=%u", 2998 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2999 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 3000 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 3001 SEQ_OPTS_PRINT("resgid=%u", 3002 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 3003 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 3004 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3005 SEQ_OPTS_PUTS("errors=remount-ro"); 3006 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3007 SEQ_OPTS_PUTS("errors=continue"); 3008 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3009 SEQ_OPTS_PUTS("errors=panic"); 3010 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3011 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3012 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3013 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3014 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3015 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3016 if (nodefs || sbi->s_stripe) 3017 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3018 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3019 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3020 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3021 SEQ_OPTS_PUTS("data=journal"); 3022 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3023 SEQ_OPTS_PUTS("data=ordered"); 3024 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3025 SEQ_OPTS_PUTS("data=writeback"); 3026 } 3027 if (nodefs || 3028 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3029 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3030 sbi->s_inode_readahead_blks); 3031 3032 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3033 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3034 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3035 if (nodefs || sbi->s_max_dir_size_kb) 3036 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3037 if (test_opt(sb, DATA_ERR_ABORT)) 3038 SEQ_OPTS_PUTS("data_err=abort"); 3039 3040 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3041 3042 if (sb->s_flags & SB_INLINECRYPT) 3043 SEQ_OPTS_PUTS("inlinecrypt"); 3044 3045 if (test_opt(sb, DAX_ALWAYS)) { 3046 if (IS_EXT2_SB(sb)) 3047 SEQ_OPTS_PUTS("dax"); 3048 else 3049 SEQ_OPTS_PUTS("dax=always"); 3050 } else if (test_opt2(sb, DAX_NEVER)) { 3051 SEQ_OPTS_PUTS("dax=never"); 3052 } else if (test_opt2(sb, DAX_INODE)) { 3053 SEQ_OPTS_PUTS("dax=inode"); 3054 } 3055 3056 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3057 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3058 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3059 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3060 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3061 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3062 } 3063 3064 ext4_show_quota_options(seq, sb); 3065 return 0; 3066 } 3067 3068 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3069 { 3070 return _ext4_show_options(seq, root->d_sb, 0); 3071 } 3072 3073 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3074 { 3075 struct super_block *sb = seq->private; 3076 int rc; 3077 3078 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3079 rc = _ext4_show_options(seq, sb, 1); 3080 seq_puts(seq, "\n"); 3081 return rc; 3082 } 3083 3084 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3085 int read_only) 3086 { 3087 struct ext4_sb_info *sbi = EXT4_SB(sb); 3088 int err = 0; 3089 3090 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3091 ext4_msg(sb, KERN_ERR, "revision level too high, " 3092 "forcing read-only mode"); 3093 err = -EROFS; 3094 goto done; 3095 } 3096 if (read_only) 3097 goto done; 3098 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3099 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3100 "running e2fsck is recommended"); 3101 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3102 ext4_msg(sb, KERN_WARNING, 3103 "warning: mounting fs with errors, " 3104 "running e2fsck is recommended"); 3105 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3106 le16_to_cpu(es->s_mnt_count) >= 3107 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3108 ext4_msg(sb, KERN_WARNING, 3109 "warning: maximal mount count reached, " 3110 "running e2fsck is recommended"); 3111 else if (le32_to_cpu(es->s_checkinterval) && 3112 (ext4_get_tstamp(es, s_lastcheck) + 3113 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3114 ext4_msg(sb, KERN_WARNING, 3115 "warning: checktime reached, " 3116 "running e2fsck is recommended"); 3117 if (!sbi->s_journal) 3118 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3119 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3120 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3121 le16_add_cpu(&es->s_mnt_count, 1); 3122 ext4_update_tstamp(es, s_mtime); 3123 if (sbi->s_journal) { 3124 ext4_set_feature_journal_needs_recovery(sb); 3125 if (ext4_has_feature_orphan_file(sb)) 3126 ext4_set_feature_orphan_present(sb); 3127 } 3128 3129 err = ext4_commit_super(sb); 3130 done: 3131 if (test_opt(sb, DEBUG)) 3132 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3133 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3134 sb->s_blocksize, 3135 sbi->s_groups_count, 3136 EXT4_BLOCKS_PER_GROUP(sb), 3137 EXT4_INODES_PER_GROUP(sb), 3138 sbi->s_mount_opt, sbi->s_mount_opt2); 3139 return err; 3140 } 3141 3142 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3143 { 3144 struct ext4_sb_info *sbi = EXT4_SB(sb); 3145 struct flex_groups **old_groups, **new_groups; 3146 int size, i, j; 3147 3148 if (!sbi->s_log_groups_per_flex) 3149 return 0; 3150 3151 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3152 if (size <= sbi->s_flex_groups_allocated) 3153 return 0; 3154 3155 new_groups = kvzalloc(roundup_pow_of_two(size * 3156 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3157 if (!new_groups) { 3158 ext4_msg(sb, KERN_ERR, 3159 "not enough memory for %d flex group pointers", size); 3160 return -ENOMEM; 3161 } 3162 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3163 new_groups[i] = kvzalloc(roundup_pow_of_two( 3164 sizeof(struct flex_groups)), 3165 GFP_KERNEL); 3166 if (!new_groups[i]) { 3167 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3168 kvfree(new_groups[j]); 3169 kvfree(new_groups); 3170 ext4_msg(sb, KERN_ERR, 3171 "not enough memory for %d flex groups", size); 3172 return -ENOMEM; 3173 } 3174 } 3175 rcu_read_lock(); 3176 old_groups = rcu_dereference(sbi->s_flex_groups); 3177 if (old_groups) 3178 memcpy(new_groups, old_groups, 3179 (sbi->s_flex_groups_allocated * 3180 sizeof(struct flex_groups *))); 3181 rcu_read_unlock(); 3182 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3183 sbi->s_flex_groups_allocated = size; 3184 if (old_groups) 3185 ext4_kvfree_array_rcu(old_groups); 3186 return 0; 3187 } 3188 3189 static int ext4_fill_flex_info(struct super_block *sb) 3190 { 3191 struct ext4_sb_info *sbi = EXT4_SB(sb); 3192 struct ext4_group_desc *gdp = NULL; 3193 struct flex_groups *fg; 3194 ext4_group_t flex_group; 3195 int i, err; 3196 3197 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3198 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3199 sbi->s_log_groups_per_flex = 0; 3200 return 1; 3201 } 3202 3203 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3204 if (err) 3205 goto failed; 3206 3207 for (i = 0; i < sbi->s_groups_count; i++) { 3208 gdp = ext4_get_group_desc(sb, i, NULL); 3209 3210 flex_group = ext4_flex_group(sbi, i); 3211 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3212 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3213 atomic64_add(ext4_free_group_clusters(sb, gdp), 3214 &fg->free_clusters); 3215 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3216 } 3217 3218 return 1; 3219 failed: 3220 return 0; 3221 } 3222 3223 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3224 struct ext4_group_desc *gdp) 3225 { 3226 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3227 __u16 crc = 0; 3228 __le32 le_group = cpu_to_le32(block_group); 3229 struct ext4_sb_info *sbi = EXT4_SB(sb); 3230 3231 if (ext4_has_metadata_csum(sbi->s_sb)) { 3232 /* Use new metadata_csum algorithm */ 3233 __u32 csum32; 3234 __u16 dummy_csum = 0; 3235 3236 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3237 sizeof(le_group)); 3238 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3239 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3240 sizeof(dummy_csum)); 3241 offset += sizeof(dummy_csum); 3242 if (offset < sbi->s_desc_size) 3243 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3244 sbi->s_desc_size - offset); 3245 3246 crc = csum32 & 0xFFFF; 3247 goto out; 3248 } 3249 3250 /* old crc16 code */ 3251 if (!ext4_has_feature_gdt_csum(sb)) 3252 return 0; 3253 3254 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3255 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3256 crc = crc16(crc, (__u8 *)gdp, offset); 3257 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3258 /* for checksum of struct ext4_group_desc do the rest...*/ 3259 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3260 crc = crc16(crc, (__u8 *)gdp + offset, 3261 sbi->s_desc_size - offset); 3262 3263 out: 3264 return cpu_to_le16(crc); 3265 } 3266 3267 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3268 struct ext4_group_desc *gdp) 3269 { 3270 if (ext4_has_group_desc_csum(sb) && 3271 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3272 return 0; 3273 3274 return 1; 3275 } 3276 3277 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3278 struct ext4_group_desc *gdp) 3279 { 3280 if (!ext4_has_group_desc_csum(sb)) 3281 return; 3282 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3283 } 3284 3285 /* Called at mount-time, super-block is locked */ 3286 static int ext4_check_descriptors(struct super_block *sb, 3287 ext4_fsblk_t sb_block, 3288 ext4_group_t *first_not_zeroed) 3289 { 3290 struct ext4_sb_info *sbi = EXT4_SB(sb); 3291 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3292 ext4_fsblk_t last_block; 3293 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3294 ext4_fsblk_t block_bitmap; 3295 ext4_fsblk_t inode_bitmap; 3296 ext4_fsblk_t inode_table; 3297 int flexbg_flag = 0; 3298 ext4_group_t i, grp = sbi->s_groups_count; 3299 3300 if (ext4_has_feature_flex_bg(sb)) 3301 flexbg_flag = 1; 3302 3303 ext4_debug("Checking group descriptors"); 3304 3305 for (i = 0; i < sbi->s_groups_count; i++) { 3306 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3307 3308 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3309 last_block = ext4_blocks_count(sbi->s_es) - 1; 3310 else 3311 last_block = first_block + 3312 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3313 3314 if ((grp == sbi->s_groups_count) && 3315 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3316 grp = i; 3317 3318 block_bitmap = ext4_block_bitmap(sb, gdp); 3319 if (block_bitmap == sb_block) { 3320 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3321 "Block bitmap for group %u overlaps " 3322 "superblock", i); 3323 if (!sb_rdonly(sb)) 3324 return 0; 3325 } 3326 if (block_bitmap >= sb_block + 1 && 3327 block_bitmap <= last_bg_block) { 3328 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3329 "Block bitmap for group %u overlaps " 3330 "block group descriptors", i); 3331 if (!sb_rdonly(sb)) 3332 return 0; 3333 } 3334 if (block_bitmap < first_block || block_bitmap > last_block) { 3335 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3336 "Block bitmap for group %u not in group " 3337 "(block %llu)!", i, block_bitmap); 3338 return 0; 3339 } 3340 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3341 if (inode_bitmap == sb_block) { 3342 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3343 "Inode bitmap for group %u overlaps " 3344 "superblock", i); 3345 if (!sb_rdonly(sb)) 3346 return 0; 3347 } 3348 if (inode_bitmap >= sb_block + 1 && 3349 inode_bitmap <= last_bg_block) { 3350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3351 "Inode bitmap for group %u overlaps " 3352 "block group descriptors", i); 3353 if (!sb_rdonly(sb)) 3354 return 0; 3355 } 3356 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3358 "Inode bitmap for group %u not in group " 3359 "(block %llu)!", i, inode_bitmap); 3360 return 0; 3361 } 3362 inode_table = ext4_inode_table(sb, gdp); 3363 if (inode_table == sb_block) { 3364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3365 "Inode table for group %u overlaps " 3366 "superblock", i); 3367 if (!sb_rdonly(sb)) 3368 return 0; 3369 } 3370 if (inode_table >= sb_block + 1 && 3371 inode_table <= last_bg_block) { 3372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3373 "Inode table for group %u overlaps " 3374 "block group descriptors", i); 3375 if (!sb_rdonly(sb)) 3376 return 0; 3377 } 3378 if (inode_table < first_block || 3379 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3380 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3381 "Inode table for group %u not in group " 3382 "(block %llu)!", i, inode_table); 3383 return 0; 3384 } 3385 ext4_lock_group(sb, i); 3386 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3387 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3388 "Checksum for group %u failed (%u!=%u)", 3389 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3390 gdp)), le16_to_cpu(gdp->bg_checksum)); 3391 if (!sb_rdonly(sb)) { 3392 ext4_unlock_group(sb, i); 3393 return 0; 3394 } 3395 } 3396 ext4_unlock_group(sb, i); 3397 if (!flexbg_flag) 3398 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3399 } 3400 if (NULL != first_not_zeroed) 3401 *first_not_zeroed = grp; 3402 return 1; 3403 } 3404 3405 /* 3406 * Maximal extent format file size. 3407 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3408 * extent format containers, within a sector_t, and within i_blocks 3409 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3410 * so that won't be a limiting factor. 3411 * 3412 * However there is other limiting factor. We do store extents in the form 3413 * of starting block and length, hence the resulting length of the extent 3414 * covering maximum file size must fit into on-disk format containers as 3415 * well. Given that length is always by 1 unit bigger than max unit (because 3416 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3417 * 3418 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3419 */ 3420 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3421 { 3422 loff_t res; 3423 loff_t upper_limit = MAX_LFS_FILESIZE; 3424 3425 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3426 3427 if (!has_huge_files) { 3428 upper_limit = (1LL << 32) - 1; 3429 3430 /* total blocks in file system block size */ 3431 upper_limit >>= (blkbits - 9); 3432 upper_limit <<= blkbits; 3433 } 3434 3435 /* 3436 * 32-bit extent-start container, ee_block. We lower the maxbytes 3437 * by one fs block, so ee_len can cover the extent of maximum file 3438 * size 3439 */ 3440 res = (1LL << 32) - 1; 3441 res <<= blkbits; 3442 3443 /* Sanity check against vm- & vfs- imposed limits */ 3444 if (res > upper_limit) 3445 res = upper_limit; 3446 3447 return res; 3448 } 3449 3450 /* 3451 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3452 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3453 * We need to be 1 filesystem block less than the 2^48 sector limit. 3454 */ 3455 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3456 { 3457 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3458 int meta_blocks; 3459 unsigned int ppb = 1 << (bits - 2); 3460 3461 /* 3462 * This is calculated to be the largest file size for a dense, block 3463 * mapped file such that the file's total number of 512-byte sectors, 3464 * including data and all indirect blocks, does not exceed (2^48 - 1). 3465 * 3466 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3467 * number of 512-byte sectors of the file. 3468 */ 3469 if (!has_huge_files) { 3470 /* 3471 * !has_huge_files or implies that the inode i_block field 3472 * represents total file blocks in 2^32 512-byte sectors == 3473 * size of vfs inode i_blocks * 8 3474 */ 3475 upper_limit = (1LL << 32) - 1; 3476 3477 /* total blocks in file system block size */ 3478 upper_limit >>= (bits - 9); 3479 3480 } else { 3481 /* 3482 * We use 48 bit ext4_inode i_blocks 3483 * With EXT4_HUGE_FILE_FL set the i_blocks 3484 * represent total number of blocks in 3485 * file system block size 3486 */ 3487 upper_limit = (1LL << 48) - 1; 3488 3489 } 3490 3491 /* Compute how many blocks we can address by block tree */ 3492 res += ppb; 3493 res += ppb * ppb; 3494 res += ((loff_t)ppb) * ppb * ppb; 3495 /* Compute how many metadata blocks are needed */ 3496 meta_blocks = 1; 3497 meta_blocks += 1 + ppb; 3498 meta_blocks += 1 + ppb + ppb * ppb; 3499 /* Does block tree limit file size? */ 3500 if (res + meta_blocks <= upper_limit) 3501 goto check_lfs; 3502 3503 res = upper_limit; 3504 /* How many metadata blocks are needed for addressing upper_limit? */ 3505 upper_limit -= EXT4_NDIR_BLOCKS; 3506 /* indirect blocks */ 3507 meta_blocks = 1; 3508 upper_limit -= ppb; 3509 /* double indirect blocks */ 3510 if (upper_limit < ppb * ppb) { 3511 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3512 res -= meta_blocks; 3513 goto check_lfs; 3514 } 3515 meta_blocks += 1 + ppb; 3516 upper_limit -= ppb * ppb; 3517 /* tripple indirect blocks for the rest */ 3518 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3519 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3520 res -= meta_blocks; 3521 check_lfs: 3522 res <<= bits; 3523 if (res > MAX_LFS_FILESIZE) 3524 res = MAX_LFS_FILESIZE; 3525 3526 return res; 3527 } 3528 3529 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3530 ext4_fsblk_t logical_sb_block, int nr) 3531 { 3532 struct ext4_sb_info *sbi = EXT4_SB(sb); 3533 ext4_group_t bg, first_meta_bg; 3534 int has_super = 0; 3535 3536 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3537 3538 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3539 return logical_sb_block + nr + 1; 3540 bg = sbi->s_desc_per_block * nr; 3541 if (ext4_bg_has_super(sb, bg)) 3542 has_super = 1; 3543 3544 /* 3545 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3546 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3547 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3548 * compensate. 3549 */ 3550 if (sb->s_blocksize == 1024 && nr == 0 && 3551 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3552 has_super++; 3553 3554 return (has_super + ext4_group_first_block_no(sb, bg)); 3555 } 3556 3557 /** 3558 * ext4_get_stripe_size: Get the stripe size. 3559 * @sbi: In memory super block info 3560 * 3561 * If we have specified it via mount option, then 3562 * use the mount option value. If the value specified at mount time is 3563 * greater than the blocks per group use the super block value. 3564 * If the super block value is greater than blocks per group return 0. 3565 * Allocator needs it be less than blocks per group. 3566 * 3567 */ 3568 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3569 { 3570 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3571 unsigned long stripe_width = 3572 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3573 int ret; 3574 3575 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3576 ret = sbi->s_stripe; 3577 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3578 ret = stripe_width; 3579 else if (stride && stride <= sbi->s_blocks_per_group) 3580 ret = stride; 3581 else 3582 ret = 0; 3583 3584 /* 3585 * If the stripe width is 1, this makes no sense and 3586 * we set it to 0 to turn off stripe handling code. 3587 */ 3588 if (ret <= 1) 3589 ret = 0; 3590 3591 return ret; 3592 } 3593 3594 /* 3595 * Check whether this filesystem can be mounted based on 3596 * the features present and the RDONLY/RDWR mount requested. 3597 * Returns 1 if this filesystem can be mounted as requested, 3598 * 0 if it cannot be. 3599 */ 3600 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3601 { 3602 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3603 ext4_msg(sb, KERN_ERR, 3604 "Couldn't mount because of " 3605 "unsupported optional features (%x)", 3606 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3607 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3608 return 0; 3609 } 3610 3611 #if !IS_ENABLED(CONFIG_UNICODE) 3612 if (ext4_has_feature_casefold(sb)) { 3613 ext4_msg(sb, KERN_ERR, 3614 "Filesystem with casefold feature cannot be " 3615 "mounted without CONFIG_UNICODE"); 3616 return 0; 3617 } 3618 #endif 3619 3620 if (readonly) 3621 return 1; 3622 3623 if (ext4_has_feature_readonly(sb)) { 3624 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3625 sb->s_flags |= SB_RDONLY; 3626 return 1; 3627 } 3628 3629 /* Check that feature set is OK for a read-write mount */ 3630 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3631 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3632 "unsupported optional features (%x)", 3633 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3634 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3635 return 0; 3636 } 3637 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3638 ext4_msg(sb, KERN_ERR, 3639 "Can't support bigalloc feature without " 3640 "extents feature\n"); 3641 return 0; 3642 } 3643 3644 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3645 if (!readonly && (ext4_has_feature_quota(sb) || 3646 ext4_has_feature_project(sb))) { 3647 ext4_msg(sb, KERN_ERR, 3648 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3649 return 0; 3650 } 3651 #endif /* CONFIG_QUOTA */ 3652 return 1; 3653 } 3654 3655 /* 3656 * This function is called once a day if we have errors logged 3657 * on the file system 3658 */ 3659 static void print_daily_error_info(struct timer_list *t) 3660 { 3661 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3662 struct super_block *sb = sbi->s_sb; 3663 struct ext4_super_block *es = sbi->s_es; 3664 3665 if (es->s_error_count) 3666 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3667 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3668 le32_to_cpu(es->s_error_count)); 3669 if (es->s_first_error_time) { 3670 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3671 sb->s_id, 3672 ext4_get_tstamp(es, s_first_error_time), 3673 (int) sizeof(es->s_first_error_func), 3674 es->s_first_error_func, 3675 le32_to_cpu(es->s_first_error_line)); 3676 if (es->s_first_error_ino) 3677 printk(KERN_CONT ": inode %u", 3678 le32_to_cpu(es->s_first_error_ino)); 3679 if (es->s_first_error_block) 3680 printk(KERN_CONT ": block %llu", (unsigned long long) 3681 le64_to_cpu(es->s_first_error_block)); 3682 printk(KERN_CONT "\n"); 3683 } 3684 if (es->s_last_error_time) { 3685 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3686 sb->s_id, 3687 ext4_get_tstamp(es, s_last_error_time), 3688 (int) sizeof(es->s_last_error_func), 3689 es->s_last_error_func, 3690 le32_to_cpu(es->s_last_error_line)); 3691 if (es->s_last_error_ino) 3692 printk(KERN_CONT ": inode %u", 3693 le32_to_cpu(es->s_last_error_ino)); 3694 if (es->s_last_error_block) 3695 printk(KERN_CONT ": block %llu", (unsigned long long) 3696 le64_to_cpu(es->s_last_error_block)); 3697 printk(KERN_CONT "\n"); 3698 } 3699 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3700 } 3701 3702 /* Find next suitable group and run ext4_init_inode_table */ 3703 static int ext4_run_li_request(struct ext4_li_request *elr) 3704 { 3705 struct ext4_group_desc *gdp = NULL; 3706 struct super_block *sb = elr->lr_super; 3707 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3708 ext4_group_t group = elr->lr_next_group; 3709 unsigned int prefetch_ios = 0; 3710 int ret = 0; 3711 int nr = EXT4_SB(sb)->s_mb_prefetch; 3712 u64 start_time; 3713 3714 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3715 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3716 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3717 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3718 if (group >= elr->lr_next_group) { 3719 ret = 1; 3720 if (elr->lr_first_not_zeroed != ngroups && 3721 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3722 elr->lr_next_group = elr->lr_first_not_zeroed; 3723 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3724 ret = 0; 3725 } 3726 } 3727 return ret; 3728 } 3729 3730 for (; group < ngroups; group++) { 3731 gdp = ext4_get_group_desc(sb, group, NULL); 3732 if (!gdp) { 3733 ret = 1; 3734 break; 3735 } 3736 3737 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3738 break; 3739 } 3740 3741 if (group >= ngroups) 3742 ret = 1; 3743 3744 if (!ret) { 3745 start_time = ktime_get_real_ns(); 3746 ret = ext4_init_inode_table(sb, group, 3747 elr->lr_timeout ? 0 : 1); 3748 trace_ext4_lazy_itable_init(sb, group); 3749 if (elr->lr_timeout == 0) { 3750 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3751 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3752 } 3753 elr->lr_next_sched = jiffies + elr->lr_timeout; 3754 elr->lr_next_group = group + 1; 3755 } 3756 return ret; 3757 } 3758 3759 /* 3760 * Remove lr_request from the list_request and free the 3761 * request structure. Should be called with li_list_mtx held 3762 */ 3763 static void ext4_remove_li_request(struct ext4_li_request *elr) 3764 { 3765 if (!elr) 3766 return; 3767 3768 list_del(&elr->lr_request); 3769 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3770 kfree(elr); 3771 } 3772 3773 static void ext4_unregister_li_request(struct super_block *sb) 3774 { 3775 mutex_lock(&ext4_li_mtx); 3776 if (!ext4_li_info) { 3777 mutex_unlock(&ext4_li_mtx); 3778 return; 3779 } 3780 3781 mutex_lock(&ext4_li_info->li_list_mtx); 3782 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3783 mutex_unlock(&ext4_li_info->li_list_mtx); 3784 mutex_unlock(&ext4_li_mtx); 3785 } 3786 3787 static struct task_struct *ext4_lazyinit_task; 3788 3789 /* 3790 * This is the function where ext4lazyinit thread lives. It walks 3791 * through the request list searching for next scheduled filesystem. 3792 * When such a fs is found, run the lazy initialization request 3793 * (ext4_rn_li_request) and keep track of the time spend in this 3794 * function. Based on that time we compute next schedule time of 3795 * the request. When walking through the list is complete, compute 3796 * next waking time and put itself into sleep. 3797 */ 3798 static int ext4_lazyinit_thread(void *arg) 3799 { 3800 struct ext4_lazy_init *eli = arg; 3801 struct list_head *pos, *n; 3802 struct ext4_li_request *elr; 3803 unsigned long next_wakeup, cur; 3804 3805 BUG_ON(NULL == eli); 3806 set_freezable(); 3807 3808 cont_thread: 3809 while (true) { 3810 next_wakeup = MAX_JIFFY_OFFSET; 3811 3812 mutex_lock(&eli->li_list_mtx); 3813 if (list_empty(&eli->li_request_list)) { 3814 mutex_unlock(&eli->li_list_mtx); 3815 goto exit_thread; 3816 } 3817 list_for_each_safe(pos, n, &eli->li_request_list) { 3818 int err = 0; 3819 int progress = 0; 3820 elr = list_entry(pos, struct ext4_li_request, 3821 lr_request); 3822 3823 if (time_before(jiffies, elr->lr_next_sched)) { 3824 if (time_before(elr->lr_next_sched, next_wakeup)) 3825 next_wakeup = elr->lr_next_sched; 3826 continue; 3827 } 3828 if (down_read_trylock(&elr->lr_super->s_umount)) { 3829 if (sb_start_write_trylock(elr->lr_super)) { 3830 progress = 1; 3831 /* 3832 * We hold sb->s_umount, sb can not 3833 * be removed from the list, it is 3834 * now safe to drop li_list_mtx 3835 */ 3836 mutex_unlock(&eli->li_list_mtx); 3837 err = ext4_run_li_request(elr); 3838 sb_end_write(elr->lr_super); 3839 mutex_lock(&eli->li_list_mtx); 3840 n = pos->next; 3841 } 3842 up_read((&elr->lr_super->s_umount)); 3843 } 3844 /* error, remove the lazy_init job */ 3845 if (err) { 3846 ext4_remove_li_request(elr); 3847 continue; 3848 } 3849 if (!progress) { 3850 elr->lr_next_sched = jiffies + 3851 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3852 } 3853 if (time_before(elr->lr_next_sched, next_wakeup)) 3854 next_wakeup = elr->lr_next_sched; 3855 } 3856 mutex_unlock(&eli->li_list_mtx); 3857 3858 try_to_freeze(); 3859 3860 cur = jiffies; 3861 if ((time_after_eq(cur, next_wakeup)) || 3862 (MAX_JIFFY_OFFSET == next_wakeup)) { 3863 cond_resched(); 3864 continue; 3865 } 3866 3867 schedule_timeout_interruptible(next_wakeup - cur); 3868 3869 if (kthread_should_stop()) { 3870 ext4_clear_request_list(); 3871 goto exit_thread; 3872 } 3873 } 3874 3875 exit_thread: 3876 /* 3877 * It looks like the request list is empty, but we need 3878 * to check it under the li_list_mtx lock, to prevent any 3879 * additions into it, and of course we should lock ext4_li_mtx 3880 * to atomically free the list and ext4_li_info, because at 3881 * this point another ext4 filesystem could be registering 3882 * new one. 3883 */ 3884 mutex_lock(&ext4_li_mtx); 3885 mutex_lock(&eli->li_list_mtx); 3886 if (!list_empty(&eli->li_request_list)) { 3887 mutex_unlock(&eli->li_list_mtx); 3888 mutex_unlock(&ext4_li_mtx); 3889 goto cont_thread; 3890 } 3891 mutex_unlock(&eli->li_list_mtx); 3892 kfree(ext4_li_info); 3893 ext4_li_info = NULL; 3894 mutex_unlock(&ext4_li_mtx); 3895 3896 return 0; 3897 } 3898 3899 static void ext4_clear_request_list(void) 3900 { 3901 struct list_head *pos, *n; 3902 struct ext4_li_request *elr; 3903 3904 mutex_lock(&ext4_li_info->li_list_mtx); 3905 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3906 elr = list_entry(pos, struct ext4_li_request, 3907 lr_request); 3908 ext4_remove_li_request(elr); 3909 } 3910 mutex_unlock(&ext4_li_info->li_list_mtx); 3911 } 3912 3913 static int ext4_run_lazyinit_thread(void) 3914 { 3915 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3916 ext4_li_info, "ext4lazyinit"); 3917 if (IS_ERR(ext4_lazyinit_task)) { 3918 int err = PTR_ERR(ext4_lazyinit_task); 3919 ext4_clear_request_list(); 3920 kfree(ext4_li_info); 3921 ext4_li_info = NULL; 3922 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3923 "initialization thread\n", 3924 err); 3925 return err; 3926 } 3927 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3928 return 0; 3929 } 3930 3931 /* 3932 * Check whether it make sense to run itable init. thread or not. 3933 * If there is at least one uninitialized inode table, return 3934 * corresponding group number, else the loop goes through all 3935 * groups and return total number of groups. 3936 */ 3937 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3938 { 3939 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3940 struct ext4_group_desc *gdp = NULL; 3941 3942 if (!ext4_has_group_desc_csum(sb)) 3943 return ngroups; 3944 3945 for (group = 0; group < ngroups; group++) { 3946 gdp = ext4_get_group_desc(sb, group, NULL); 3947 if (!gdp) 3948 continue; 3949 3950 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3951 break; 3952 } 3953 3954 return group; 3955 } 3956 3957 static int ext4_li_info_new(void) 3958 { 3959 struct ext4_lazy_init *eli = NULL; 3960 3961 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3962 if (!eli) 3963 return -ENOMEM; 3964 3965 INIT_LIST_HEAD(&eli->li_request_list); 3966 mutex_init(&eli->li_list_mtx); 3967 3968 eli->li_state |= EXT4_LAZYINIT_QUIT; 3969 3970 ext4_li_info = eli; 3971 3972 return 0; 3973 } 3974 3975 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3976 ext4_group_t start) 3977 { 3978 struct ext4_li_request *elr; 3979 3980 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3981 if (!elr) 3982 return NULL; 3983 3984 elr->lr_super = sb; 3985 elr->lr_first_not_zeroed = start; 3986 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3987 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3988 elr->lr_next_group = start; 3989 } else { 3990 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3991 } 3992 3993 /* 3994 * Randomize first schedule time of the request to 3995 * spread the inode table initialization requests 3996 * better. 3997 */ 3998 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3999 return elr; 4000 } 4001 4002 int ext4_register_li_request(struct super_block *sb, 4003 ext4_group_t first_not_zeroed) 4004 { 4005 struct ext4_sb_info *sbi = EXT4_SB(sb); 4006 struct ext4_li_request *elr = NULL; 4007 ext4_group_t ngroups = sbi->s_groups_count; 4008 int ret = 0; 4009 4010 mutex_lock(&ext4_li_mtx); 4011 if (sbi->s_li_request != NULL) { 4012 /* 4013 * Reset timeout so it can be computed again, because 4014 * s_li_wait_mult might have changed. 4015 */ 4016 sbi->s_li_request->lr_timeout = 0; 4017 goto out; 4018 } 4019 4020 if (sb_rdonly(sb) || 4021 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4022 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4023 goto out; 4024 4025 elr = ext4_li_request_new(sb, first_not_zeroed); 4026 if (!elr) { 4027 ret = -ENOMEM; 4028 goto out; 4029 } 4030 4031 if (NULL == ext4_li_info) { 4032 ret = ext4_li_info_new(); 4033 if (ret) 4034 goto out; 4035 } 4036 4037 mutex_lock(&ext4_li_info->li_list_mtx); 4038 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4039 mutex_unlock(&ext4_li_info->li_list_mtx); 4040 4041 sbi->s_li_request = elr; 4042 /* 4043 * set elr to NULL here since it has been inserted to 4044 * the request_list and the removal and free of it is 4045 * handled by ext4_clear_request_list from now on. 4046 */ 4047 elr = NULL; 4048 4049 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4050 ret = ext4_run_lazyinit_thread(); 4051 if (ret) 4052 goto out; 4053 } 4054 out: 4055 mutex_unlock(&ext4_li_mtx); 4056 if (ret) 4057 kfree(elr); 4058 return ret; 4059 } 4060 4061 /* 4062 * We do not need to lock anything since this is called on 4063 * module unload. 4064 */ 4065 static void ext4_destroy_lazyinit_thread(void) 4066 { 4067 /* 4068 * If thread exited earlier 4069 * there's nothing to be done. 4070 */ 4071 if (!ext4_li_info || !ext4_lazyinit_task) 4072 return; 4073 4074 kthread_stop(ext4_lazyinit_task); 4075 } 4076 4077 static int set_journal_csum_feature_set(struct super_block *sb) 4078 { 4079 int ret = 1; 4080 int compat, incompat; 4081 struct ext4_sb_info *sbi = EXT4_SB(sb); 4082 4083 if (ext4_has_metadata_csum(sb)) { 4084 /* journal checksum v3 */ 4085 compat = 0; 4086 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4087 } else { 4088 /* journal checksum v1 */ 4089 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4090 incompat = 0; 4091 } 4092 4093 jbd2_journal_clear_features(sbi->s_journal, 4094 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4095 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4096 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4097 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4098 ret = jbd2_journal_set_features(sbi->s_journal, 4099 compat, 0, 4100 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4101 incompat); 4102 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4103 ret = jbd2_journal_set_features(sbi->s_journal, 4104 compat, 0, 4105 incompat); 4106 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4107 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4108 } else { 4109 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4111 } 4112 4113 return ret; 4114 } 4115 4116 /* 4117 * Note: calculating the overhead so we can be compatible with 4118 * historical BSD practice is quite difficult in the face of 4119 * clusters/bigalloc. This is because multiple metadata blocks from 4120 * different block group can end up in the same allocation cluster. 4121 * Calculating the exact overhead in the face of clustered allocation 4122 * requires either O(all block bitmaps) in memory or O(number of block 4123 * groups**2) in time. We will still calculate the superblock for 4124 * older file systems --- and if we come across with a bigalloc file 4125 * system with zero in s_overhead_clusters the estimate will be close to 4126 * correct especially for very large cluster sizes --- but for newer 4127 * file systems, it's better to calculate this figure once at mkfs 4128 * time, and store it in the superblock. If the superblock value is 4129 * present (even for non-bigalloc file systems), we will use it. 4130 */ 4131 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4132 char *buf) 4133 { 4134 struct ext4_sb_info *sbi = EXT4_SB(sb); 4135 struct ext4_group_desc *gdp; 4136 ext4_fsblk_t first_block, last_block, b; 4137 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4138 int s, j, count = 0; 4139 int has_super = ext4_bg_has_super(sb, grp); 4140 4141 if (!ext4_has_feature_bigalloc(sb)) 4142 return (has_super + ext4_bg_num_gdb(sb, grp) + 4143 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4144 sbi->s_itb_per_group + 2); 4145 4146 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4147 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4148 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4149 for (i = 0; i < ngroups; i++) { 4150 gdp = ext4_get_group_desc(sb, i, NULL); 4151 b = ext4_block_bitmap(sb, gdp); 4152 if (b >= first_block && b <= last_block) { 4153 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4154 count++; 4155 } 4156 b = ext4_inode_bitmap(sb, gdp); 4157 if (b >= first_block && b <= last_block) { 4158 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4159 count++; 4160 } 4161 b = ext4_inode_table(sb, gdp); 4162 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4163 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4164 int c = EXT4_B2C(sbi, b - first_block); 4165 ext4_set_bit(c, buf); 4166 count++; 4167 } 4168 if (i != grp) 4169 continue; 4170 s = 0; 4171 if (ext4_bg_has_super(sb, grp)) { 4172 ext4_set_bit(s++, buf); 4173 count++; 4174 } 4175 j = ext4_bg_num_gdb(sb, grp); 4176 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4177 ext4_error(sb, "Invalid number of block group " 4178 "descriptor blocks: %d", j); 4179 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4180 } 4181 count += j; 4182 for (; j > 0; j--) 4183 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4184 } 4185 if (!count) 4186 return 0; 4187 return EXT4_CLUSTERS_PER_GROUP(sb) - 4188 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4189 } 4190 4191 /* 4192 * Compute the overhead and stash it in sbi->s_overhead 4193 */ 4194 int ext4_calculate_overhead(struct super_block *sb) 4195 { 4196 struct ext4_sb_info *sbi = EXT4_SB(sb); 4197 struct ext4_super_block *es = sbi->s_es; 4198 struct inode *j_inode; 4199 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4200 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4201 ext4_fsblk_t overhead = 0; 4202 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4203 4204 if (!buf) 4205 return -ENOMEM; 4206 4207 /* 4208 * Compute the overhead (FS structures). This is constant 4209 * for a given filesystem unless the number of block groups 4210 * changes so we cache the previous value until it does. 4211 */ 4212 4213 /* 4214 * All of the blocks before first_data_block are overhead 4215 */ 4216 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4217 4218 /* 4219 * Add the overhead found in each block group 4220 */ 4221 for (i = 0; i < ngroups; i++) { 4222 int blks; 4223 4224 blks = count_overhead(sb, i, buf); 4225 overhead += blks; 4226 if (blks) 4227 memset(buf, 0, PAGE_SIZE); 4228 cond_resched(); 4229 } 4230 4231 /* 4232 * Add the internal journal blocks whether the journal has been 4233 * loaded or not 4234 */ 4235 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4236 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4237 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4238 /* j_inum for internal journal is non-zero */ 4239 j_inode = ext4_get_journal_inode(sb, j_inum); 4240 if (!IS_ERR(j_inode)) { 4241 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4242 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4243 iput(j_inode); 4244 } else { 4245 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4246 } 4247 } 4248 sbi->s_overhead = overhead; 4249 smp_wmb(); 4250 free_page((unsigned long) buf); 4251 return 0; 4252 } 4253 4254 static void ext4_set_resv_clusters(struct super_block *sb) 4255 { 4256 ext4_fsblk_t resv_clusters; 4257 struct ext4_sb_info *sbi = EXT4_SB(sb); 4258 4259 /* 4260 * There's no need to reserve anything when we aren't using extents. 4261 * The space estimates are exact, there are no unwritten extents, 4262 * hole punching doesn't need new metadata... This is needed especially 4263 * to keep ext2/3 backward compatibility. 4264 */ 4265 if (!ext4_has_feature_extents(sb)) 4266 return; 4267 /* 4268 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4269 * This should cover the situations where we can not afford to run 4270 * out of space like for example punch hole, or converting 4271 * unwritten extents in delalloc path. In most cases such 4272 * allocation would require 1, or 2 blocks, higher numbers are 4273 * very rare. 4274 */ 4275 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4276 sbi->s_cluster_bits); 4277 4278 do_div(resv_clusters, 50); 4279 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4280 4281 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4282 } 4283 4284 static const char *ext4_quota_mode(struct super_block *sb) 4285 { 4286 #ifdef CONFIG_QUOTA 4287 if (!ext4_quota_capable(sb)) 4288 return "none"; 4289 4290 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4291 return "journalled"; 4292 else 4293 return "writeback"; 4294 #else 4295 return "disabled"; 4296 #endif 4297 } 4298 4299 static void ext4_setup_csum_trigger(struct super_block *sb, 4300 enum ext4_journal_trigger_type type, 4301 void (*trigger)( 4302 struct jbd2_buffer_trigger_type *type, 4303 struct buffer_head *bh, 4304 void *mapped_data, 4305 size_t size)) 4306 { 4307 struct ext4_sb_info *sbi = EXT4_SB(sb); 4308 4309 sbi->s_journal_triggers[type].sb = sb; 4310 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4311 } 4312 4313 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4314 { 4315 if (!sbi) 4316 return; 4317 4318 kfree(sbi->s_blockgroup_lock); 4319 fs_put_dax(sbi->s_daxdev, NULL); 4320 kfree(sbi); 4321 } 4322 4323 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4324 { 4325 struct ext4_sb_info *sbi; 4326 4327 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4328 if (!sbi) 4329 return NULL; 4330 4331 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4332 NULL, NULL); 4333 4334 sbi->s_blockgroup_lock = 4335 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4336 4337 if (!sbi->s_blockgroup_lock) 4338 goto err_out; 4339 4340 sb->s_fs_info = sbi; 4341 sbi->s_sb = sb; 4342 return sbi; 4343 err_out: 4344 fs_put_dax(sbi->s_daxdev, NULL); 4345 kfree(sbi); 4346 return NULL; 4347 } 4348 4349 static void ext4_set_def_opts(struct super_block *sb, 4350 struct ext4_super_block *es) 4351 { 4352 unsigned long def_mount_opts; 4353 4354 /* Set defaults before we parse the mount options */ 4355 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4356 set_opt(sb, INIT_INODE_TABLE); 4357 if (def_mount_opts & EXT4_DEFM_DEBUG) 4358 set_opt(sb, DEBUG); 4359 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4360 set_opt(sb, GRPID); 4361 if (def_mount_opts & EXT4_DEFM_UID16) 4362 set_opt(sb, NO_UID32); 4363 /* xattr user namespace & acls are now defaulted on */ 4364 set_opt(sb, XATTR_USER); 4365 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4366 set_opt(sb, POSIX_ACL); 4367 #endif 4368 if (ext4_has_feature_fast_commit(sb)) 4369 set_opt2(sb, JOURNAL_FAST_COMMIT); 4370 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4371 if (ext4_has_metadata_csum(sb)) 4372 set_opt(sb, JOURNAL_CHECKSUM); 4373 4374 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4375 set_opt(sb, JOURNAL_DATA); 4376 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4377 set_opt(sb, ORDERED_DATA); 4378 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4379 set_opt(sb, WRITEBACK_DATA); 4380 4381 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4382 set_opt(sb, ERRORS_PANIC); 4383 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4384 set_opt(sb, ERRORS_CONT); 4385 else 4386 set_opt(sb, ERRORS_RO); 4387 /* block_validity enabled by default; disable with noblock_validity */ 4388 set_opt(sb, BLOCK_VALIDITY); 4389 if (def_mount_opts & EXT4_DEFM_DISCARD) 4390 set_opt(sb, DISCARD); 4391 4392 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4393 set_opt(sb, BARRIER); 4394 4395 /* 4396 * enable delayed allocation by default 4397 * Use -o nodelalloc to turn it off 4398 */ 4399 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4400 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4401 set_opt(sb, DELALLOC); 4402 4403 if (sb->s_blocksize <= PAGE_SIZE) 4404 set_opt(sb, DIOREAD_NOLOCK); 4405 } 4406 4407 static int ext4_handle_clustersize(struct super_block *sb) 4408 { 4409 struct ext4_sb_info *sbi = EXT4_SB(sb); 4410 struct ext4_super_block *es = sbi->s_es; 4411 int clustersize; 4412 4413 /* Handle clustersize */ 4414 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4415 if (ext4_has_feature_bigalloc(sb)) { 4416 if (clustersize < sb->s_blocksize) { 4417 ext4_msg(sb, KERN_ERR, 4418 "cluster size (%d) smaller than " 4419 "block size (%lu)", clustersize, sb->s_blocksize); 4420 return -EINVAL; 4421 } 4422 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4423 le32_to_cpu(es->s_log_block_size); 4424 sbi->s_clusters_per_group = 4425 le32_to_cpu(es->s_clusters_per_group); 4426 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4427 ext4_msg(sb, KERN_ERR, 4428 "#clusters per group too big: %lu", 4429 sbi->s_clusters_per_group); 4430 return -EINVAL; 4431 } 4432 if (sbi->s_blocks_per_group != 4433 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4434 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4435 "clusters per group (%lu) inconsistent", 4436 sbi->s_blocks_per_group, 4437 sbi->s_clusters_per_group); 4438 return -EINVAL; 4439 } 4440 } else { 4441 if (clustersize != sb->s_blocksize) { 4442 ext4_msg(sb, KERN_ERR, 4443 "fragment/cluster size (%d) != " 4444 "block size (%lu)", clustersize, sb->s_blocksize); 4445 return -EINVAL; 4446 } 4447 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4448 ext4_msg(sb, KERN_ERR, 4449 "#blocks per group too big: %lu", 4450 sbi->s_blocks_per_group); 4451 return -EINVAL; 4452 } 4453 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4454 sbi->s_cluster_bits = 0; 4455 } 4456 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4457 4458 /* Do we have standard group size of clustersize * 8 blocks ? */ 4459 if (sbi->s_blocks_per_group == clustersize << 3) 4460 set_opt2(sb, STD_GROUP_SIZE); 4461 4462 return 0; 4463 } 4464 4465 static void ext4_fast_commit_init(struct super_block *sb) 4466 { 4467 struct ext4_sb_info *sbi = EXT4_SB(sb); 4468 4469 /* Initialize fast commit stuff */ 4470 atomic_set(&sbi->s_fc_subtid, 0); 4471 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4472 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4473 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4474 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4475 sbi->s_fc_bytes = 0; 4476 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4477 sbi->s_fc_ineligible_tid = 0; 4478 spin_lock_init(&sbi->s_fc_lock); 4479 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4480 sbi->s_fc_replay_state.fc_regions = NULL; 4481 sbi->s_fc_replay_state.fc_regions_size = 0; 4482 sbi->s_fc_replay_state.fc_regions_used = 0; 4483 sbi->s_fc_replay_state.fc_regions_valid = 0; 4484 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4485 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4486 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4487 } 4488 4489 static int ext4_inode_info_init(struct super_block *sb, 4490 struct ext4_super_block *es) 4491 { 4492 struct ext4_sb_info *sbi = EXT4_SB(sb); 4493 4494 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4495 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4496 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4497 } else { 4498 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4499 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4500 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4501 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4502 sbi->s_first_ino); 4503 return -EINVAL; 4504 } 4505 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4506 (!is_power_of_2(sbi->s_inode_size)) || 4507 (sbi->s_inode_size > sb->s_blocksize)) { 4508 ext4_msg(sb, KERN_ERR, 4509 "unsupported inode size: %d", 4510 sbi->s_inode_size); 4511 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4512 return -EINVAL; 4513 } 4514 /* 4515 * i_atime_extra is the last extra field available for 4516 * [acm]times in struct ext4_inode. Checking for that 4517 * field should suffice to ensure we have extra space 4518 * for all three. 4519 */ 4520 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4521 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4522 sb->s_time_gran = 1; 4523 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4524 } else { 4525 sb->s_time_gran = NSEC_PER_SEC; 4526 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4527 } 4528 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4529 } 4530 4531 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4532 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4533 EXT4_GOOD_OLD_INODE_SIZE; 4534 if (ext4_has_feature_extra_isize(sb)) { 4535 unsigned v, max = (sbi->s_inode_size - 4536 EXT4_GOOD_OLD_INODE_SIZE); 4537 4538 v = le16_to_cpu(es->s_want_extra_isize); 4539 if (v > max) { 4540 ext4_msg(sb, KERN_ERR, 4541 "bad s_want_extra_isize: %d", v); 4542 return -EINVAL; 4543 } 4544 if (sbi->s_want_extra_isize < v) 4545 sbi->s_want_extra_isize = v; 4546 4547 v = le16_to_cpu(es->s_min_extra_isize); 4548 if (v > max) { 4549 ext4_msg(sb, KERN_ERR, 4550 "bad s_min_extra_isize: %d", v); 4551 return -EINVAL; 4552 } 4553 if (sbi->s_want_extra_isize < v) 4554 sbi->s_want_extra_isize = v; 4555 } 4556 } 4557 4558 return 0; 4559 } 4560 4561 #if IS_ENABLED(CONFIG_UNICODE) 4562 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4563 { 4564 const struct ext4_sb_encodings *encoding_info; 4565 struct unicode_map *encoding; 4566 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4567 4568 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4569 return 0; 4570 4571 encoding_info = ext4_sb_read_encoding(es); 4572 if (!encoding_info) { 4573 ext4_msg(sb, KERN_ERR, 4574 "Encoding requested by superblock is unknown"); 4575 return -EINVAL; 4576 } 4577 4578 encoding = utf8_load(encoding_info->version); 4579 if (IS_ERR(encoding)) { 4580 ext4_msg(sb, KERN_ERR, 4581 "can't mount with superblock charset: %s-%u.%u.%u " 4582 "not supported by the kernel. flags: 0x%x.", 4583 encoding_info->name, 4584 unicode_major(encoding_info->version), 4585 unicode_minor(encoding_info->version), 4586 unicode_rev(encoding_info->version), 4587 encoding_flags); 4588 return -EINVAL; 4589 } 4590 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4591 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4592 unicode_major(encoding_info->version), 4593 unicode_minor(encoding_info->version), 4594 unicode_rev(encoding_info->version), 4595 encoding_flags); 4596 4597 sb->s_encoding = encoding; 4598 sb->s_encoding_flags = encoding_flags; 4599 4600 return 0; 4601 } 4602 #else 4603 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4604 { 4605 return 0; 4606 } 4607 #endif 4608 4609 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4610 { 4611 struct ext4_sb_info *sbi = EXT4_SB(sb); 4612 4613 /* Warn if metadata_csum and gdt_csum are both set. */ 4614 if (ext4_has_feature_metadata_csum(sb) && 4615 ext4_has_feature_gdt_csum(sb)) 4616 ext4_warning(sb, "metadata_csum and uninit_bg are " 4617 "redundant flags; please run fsck."); 4618 4619 /* Check for a known checksum algorithm */ 4620 if (!ext4_verify_csum_type(sb, es)) { 4621 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4622 "unknown checksum algorithm."); 4623 return -EINVAL; 4624 } 4625 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4626 ext4_orphan_file_block_trigger); 4627 4628 /* Load the checksum driver */ 4629 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4630 if (IS_ERR(sbi->s_chksum_driver)) { 4631 int ret = PTR_ERR(sbi->s_chksum_driver); 4632 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4633 sbi->s_chksum_driver = NULL; 4634 return ret; 4635 } 4636 4637 /* Check superblock checksum */ 4638 if (!ext4_superblock_csum_verify(sb, es)) { 4639 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4640 "invalid superblock checksum. Run e2fsck?"); 4641 return -EFSBADCRC; 4642 } 4643 4644 /* Precompute checksum seed for all metadata */ 4645 if (ext4_has_feature_csum_seed(sb)) 4646 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4647 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4648 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4649 sizeof(es->s_uuid)); 4650 return 0; 4651 } 4652 4653 static int ext4_check_feature_compatibility(struct super_block *sb, 4654 struct ext4_super_block *es, 4655 int silent) 4656 { 4657 struct ext4_sb_info *sbi = EXT4_SB(sb); 4658 4659 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4660 (ext4_has_compat_features(sb) || 4661 ext4_has_ro_compat_features(sb) || 4662 ext4_has_incompat_features(sb))) 4663 ext4_msg(sb, KERN_WARNING, 4664 "feature flags set on rev 0 fs, " 4665 "running e2fsck is recommended"); 4666 4667 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4668 set_opt2(sb, HURD_COMPAT); 4669 if (ext4_has_feature_64bit(sb)) { 4670 ext4_msg(sb, KERN_ERR, 4671 "The Hurd can't support 64-bit file systems"); 4672 return -EINVAL; 4673 } 4674 4675 /* 4676 * ea_inode feature uses l_i_version field which is not 4677 * available in HURD_COMPAT mode. 4678 */ 4679 if (ext4_has_feature_ea_inode(sb)) { 4680 ext4_msg(sb, KERN_ERR, 4681 "ea_inode feature is not supported for Hurd"); 4682 return -EINVAL; 4683 } 4684 } 4685 4686 if (IS_EXT2_SB(sb)) { 4687 if (ext2_feature_set_ok(sb)) 4688 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4689 "using the ext4 subsystem"); 4690 else { 4691 /* 4692 * If we're probing be silent, if this looks like 4693 * it's actually an ext[34] filesystem. 4694 */ 4695 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4696 return -EINVAL; 4697 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4698 "to feature incompatibilities"); 4699 return -EINVAL; 4700 } 4701 } 4702 4703 if (IS_EXT3_SB(sb)) { 4704 if (ext3_feature_set_ok(sb)) 4705 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4706 "using the ext4 subsystem"); 4707 else { 4708 /* 4709 * If we're probing be silent, if this looks like 4710 * it's actually an ext4 filesystem. 4711 */ 4712 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4713 return -EINVAL; 4714 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4715 "to feature incompatibilities"); 4716 return -EINVAL; 4717 } 4718 } 4719 4720 /* 4721 * Check feature flags regardless of the revision level, since we 4722 * previously didn't change the revision level when setting the flags, 4723 * so there is a chance incompat flags are set on a rev 0 filesystem. 4724 */ 4725 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4726 return -EINVAL; 4727 4728 if (sbi->s_daxdev) { 4729 if (sb->s_blocksize == PAGE_SIZE) 4730 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4731 else 4732 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4733 } 4734 4735 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4736 if (ext4_has_feature_inline_data(sb)) { 4737 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4738 " that may contain inline data"); 4739 return -EINVAL; 4740 } 4741 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4742 ext4_msg(sb, KERN_ERR, 4743 "DAX unsupported by block device."); 4744 return -EINVAL; 4745 } 4746 } 4747 4748 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4749 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4750 es->s_encryption_level); 4751 return -EINVAL; 4752 } 4753 4754 return 0; 4755 } 4756 4757 static int ext4_check_geometry(struct super_block *sb, 4758 struct ext4_super_block *es) 4759 { 4760 struct ext4_sb_info *sbi = EXT4_SB(sb); 4761 __u64 blocks_count; 4762 int err; 4763 4764 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4765 ext4_msg(sb, KERN_ERR, 4766 "Number of reserved GDT blocks insanely large: %d", 4767 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4768 return -EINVAL; 4769 } 4770 /* 4771 * Test whether we have more sectors than will fit in sector_t, 4772 * and whether the max offset is addressable by the page cache. 4773 */ 4774 err = generic_check_addressable(sb->s_blocksize_bits, 4775 ext4_blocks_count(es)); 4776 if (err) { 4777 ext4_msg(sb, KERN_ERR, "filesystem" 4778 " too large to mount safely on this system"); 4779 return err; 4780 } 4781 4782 /* check blocks count against device size */ 4783 blocks_count = sb_bdev_nr_blocks(sb); 4784 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4785 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4786 "exceeds size of device (%llu blocks)", 4787 ext4_blocks_count(es), blocks_count); 4788 return -EINVAL; 4789 } 4790 4791 /* 4792 * It makes no sense for the first data block to be beyond the end 4793 * of the filesystem. 4794 */ 4795 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4796 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4797 "block %u is beyond end of filesystem (%llu)", 4798 le32_to_cpu(es->s_first_data_block), 4799 ext4_blocks_count(es)); 4800 return -EINVAL; 4801 } 4802 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4803 (sbi->s_cluster_ratio == 1)) { 4804 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4805 "block is 0 with a 1k block and cluster size"); 4806 return -EINVAL; 4807 } 4808 4809 blocks_count = (ext4_blocks_count(es) - 4810 le32_to_cpu(es->s_first_data_block) + 4811 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4812 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4813 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4814 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4815 "(block count %llu, first data block %u, " 4816 "blocks per group %lu)", blocks_count, 4817 ext4_blocks_count(es), 4818 le32_to_cpu(es->s_first_data_block), 4819 EXT4_BLOCKS_PER_GROUP(sb)); 4820 return -EINVAL; 4821 } 4822 sbi->s_groups_count = blocks_count; 4823 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4824 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4825 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4826 le32_to_cpu(es->s_inodes_count)) { 4827 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4828 le32_to_cpu(es->s_inodes_count), 4829 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4830 return -EINVAL; 4831 } 4832 4833 return 0; 4834 } 4835 4836 static int ext4_group_desc_init(struct super_block *sb, 4837 struct ext4_super_block *es, 4838 ext4_fsblk_t logical_sb_block, 4839 ext4_group_t *first_not_zeroed) 4840 { 4841 struct ext4_sb_info *sbi = EXT4_SB(sb); 4842 unsigned int db_count; 4843 ext4_fsblk_t block; 4844 int i; 4845 4846 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4847 EXT4_DESC_PER_BLOCK(sb); 4848 if (ext4_has_feature_meta_bg(sb)) { 4849 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4850 ext4_msg(sb, KERN_WARNING, 4851 "first meta block group too large: %u " 4852 "(group descriptor block count %u)", 4853 le32_to_cpu(es->s_first_meta_bg), db_count); 4854 return -EINVAL; 4855 } 4856 } 4857 rcu_assign_pointer(sbi->s_group_desc, 4858 kvmalloc_array(db_count, 4859 sizeof(struct buffer_head *), 4860 GFP_KERNEL)); 4861 if (sbi->s_group_desc == NULL) { 4862 ext4_msg(sb, KERN_ERR, "not enough memory"); 4863 return -ENOMEM; 4864 } 4865 4866 bgl_lock_init(sbi->s_blockgroup_lock); 4867 4868 /* Pre-read the descriptors into the buffer cache */ 4869 for (i = 0; i < db_count; i++) { 4870 block = descriptor_loc(sb, logical_sb_block, i); 4871 ext4_sb_breadahead_unmovable(sb, block); 4872 } 4873 4874 for (i = 0; i < db_count; i++) { 4875 struct buffer_head *bh; 4876 4877 block = descriptor_loc(sb, logical_sb_block, i); 4878 bh = ext4_sb_bread_unmovable(sb, block); 4879 if (IS_ERR(bh)) { 4880 ext4_msg(sb, KERN_ERR, 4881 "can't read group descriptor %d", i); 4882 sbi->s_gdb_count = i; 4883 return PTR_ERR(bh); 4884 } 4885 rcu_read_lock(); 4886 rcu_dereference(sbi->s_group_desc)[i] = bh; 4887 rcu_read_unlock(); 4888 } 4889 sbi->s_gdb_count = db_count; 4890 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4891 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4892 return -EFSCORRUPTED; 4893 } 4894 4895 return 0; 4896 } 4897 4898 static int ext4_load_and_init_journal(struct super_block *sb, 4899 struct ext4_super_block *es, 4900 struct ext4_fs_context *ctx) 4901 { 4902 struct ext4_sb_info *sbi = EXT4_SB(sb); 4903 int err; 4904 4905 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4906 if (err) 4907 return err; 4908 4909 if (ext4_has_feature_64bit(sb) && 4910 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4911 JBD2_FEATURE_INCOMPAT_64BIT)) { 4912 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4913 goto out; 4914 } 4915 4916 if (!set_journal_csum_feature_set(sb)) { 4917 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4918 "feature set"); 4919 goto out; 4920 } 4921 4922 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4923 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4924 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4925 ext4_msg(sb, KERN_ERR, 4926 "Failed to set fast commit journal feature"); 4927 goto out; 4928 } 4929 4930 /* We have now updated the journal if required, so we can 4931 * validate the data journaling mode. */ 4932 switch (test_opt(sb, DATA_FLAGS)) { 4933 case 0: 4934 /* No mode set, assume a default based on the journal 4935 * capabilities: ORDERED_DATA if the journal can 4936 * cope, else JOURNAL_DATA 4937 */ 4938 if (jbd2_journal_check_available_features 4939 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4940 set_opt(sb, ORDERED_DATA); 4941 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4942 } else { 4943 set_opt(sb, JOURNAL_DATA); 4944 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4945 } 4946 break; 4947 4948 case EXT4_MOUNT_ORDERED_DATA: 4949 case EXT4_MOUNT_WRITEBACK_DATA: 4950 if (!jbd2_journal_check_available_features 4951 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4952 ext4_msg(sb, KERN_ERR, "Journal does not support " 4953 "requested data journaling mode"); 4954 goto out; 4955 } 4956 break; 4957 default: 4958 break; 4959 } 4960 4961 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4962 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4963 ext4_msg(sb, KERN_ERR, "can't mount with " 4964 "journal_async_commit in data=ordered mode"); 4965 goto out; 4966 } 4967 4968 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4969 4970 sbi->s_journal->j_submit_inode_data_buffers = 4971 ext4_journal_submit_inode_data_buffers; 4972 sbi->s_journal->j_finish_inode_data_buffers = 4973 ext4_journal_finish_inode_data_buffers; 4974 4975 return 0; 4976 4977 out: 4978 /* flush s_sb_upd_work before destroying the journal. */ 4979 flush_work(&sbi->s_sb_upd_work); 4980 jbd2_journal_destroy(sbi->s_journal); 4981 sbi->s_journal = NULL; 4982 return -EINVAL; 4983 } 4984 4985 static int ext4_check_journal_data_mode(struct super_block *sb) 4986 { 4987 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4988 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4989 "data=journal disables delayed allocation, " 4990 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4991 /* can't mount with both data=journal and dioread_nolock. */ 4992 clear_opt(sb, DIOREAD_NOLOCK); 4993 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4994 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4995 ext4_msg(sb, KERN_ERR, "can't mount with " 4996 "both data=journal and delalloc"); 4997 return -EINVAL; 4998 } 4999 if (test_opt(sb, DAX_ALWAYS)) { 5000 ext4_msg(sb, KERN_ERR, "can't mount with " 5001 "both data=journal and dax"); 5002 return -EINVAL; 5003 } 5004 if (ext4_has_feature_encrypt(sb)) { 5005 ext4_msg(sb, KERN_WARNING, 5006 "encrypted files will use data=ordered " 5007 "instead of data journaling mode"); 5008 } 5009 if (test_opt(sb, DELALLOC)) 5010 clear_opt(sb, DELALLOC); 5011 } else { 5012 sb->s_iflags |= SB_I_CGROUPWB; 5013 } 5014 5015 return 0; 5016 } 5017 5018 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5019 int silent) 5020 { 5021 struct ext4_sb_info *sbi = EXT4_SB(sb); 5022 struct ext4_super_block *es; 5023 ext4_fsblk_t logical_sb_block; 5024 unsigned long offset = 0; 5025 struct buffer_head *bh; 5026 int ret = -EINVAL; 5027 int blocksize; 5028 5029 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5030 if (!blocksize) { 5031 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5032 return -EINVAL; 5033 } 5034 5035 /* 5036 * The ext4 superblock will not be buffer aligned for other than 1kB 5037 * block sizes. We need to calculate the offset from buffer start. 5038 */ 5039 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5040 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5041 offset = do_div(logical_sb_block, blocksize); 5042 } else { 5043 logical_sb_block = sbi->s_sb_block; 5044 } 5045 5046 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5047 if (IS_ERR(bh)) { 5048 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5049 return PTR_ERR(bh); 5050 } 5051 /* 5052 * Note: s_es must be initialized as soon as possible because 5053 * some ext4 macro-instructions depend on its value 5054 */ 5055 es = (struct ext4_super_block *) (bh->b_data + offset); 5056 sbi->s_es = es; 5057 sb->s_magic = le16_to_cpu(es->s_magic); 5058 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5059 if (!silent) 5060 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5061 goto out; 5062 } 5063 5064 if (le32_to_cpu(es->s_log_block_size) > 5065 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5066 ext4_msg(sb, KERN_ERR, 5067 "Invalid log block size: %u", 5068 le32_to_cpu(es->s_log_block_size)); 5069 goto out; 5070 } 5071 if (le32_to_cpu(es->s_log_cluster_size) > 5072 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5073 ext4_msg(sb, KERN_ERR, 5074 "Invalid log cluster size: %u", 5075 le32_to_cpu(es->s_log_cluster_size)); 5076 goto out; 5077 } 5078 5079 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5080 5081 /* 5082 * If the default block size is not the same as the real block size, 5083 * we need to reload it. 5084 */ 5085 if (sb->s_blocksize == blocksize) { 5086 *lsb = logical_sb_block; 5087 sbi->s_sbh = bh; 5088 return 0; 5089 } 5090 5091 /* 5092 * bh must be released before kill_bdev(), otherwise 5093 * it won't be freed and its page also. kill_bdev() 5094 * is called by sb_set_blocksize(). 5095 */ 5096 brelse(bh); 5097 /* Validate the filesystem blocksize */ 5098 if (!sb_set_blocksize(sb, blocksize)) { 5099 ext4_msg(sb, KERN_ERR, "bad block size %d", 5100 blocksize); 5101 bh = NULL; 5102 goto out; 5103 } 5104 5105 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5106 offset = do_div(logical_sb_block, blocksize); 5107 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5108 if (IS_ERR(bh)) { 5109 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5110 ret = PTR_ERR(bh); 5111 bh = NULL; 5112 goto out; 5113 } 5114 es = (struct ext4_super_block *)(bh->b_data + offset); 5115 sbi->s_es = es; 5116 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5117 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5118 goto out; 5119 } 5120 *lsb = logical_sb_block; 5121 sbi->s_sbh = bh; 5122 return 0; 5123 out: 5124 brelse(bh); 5125 return ret; 5126 } 5127 5128 static void ext4_hash_info_init(struct super_block *sb) 5129 { 5130 struct ext4_sb_info *sbi = EXT4_SB(sb); 5131 struct ext4_super_block *es = sbi->s_es; 5132 unsigned int i; 5133 5134 for (i = 0; i < 4; i++) 5135 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5136 5137 sbi->s_def_hash_version = es->s_def_hash_version; 5138 if (ext4_has_feature_dir_index(sb)) { 5139 i = le32_to_cpu(es->s_flags); 5140 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5141 sbi->s_hash_unsigned = 3; 5142 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5143 #ifdef __CHAR_UNSIGNED__ 5144 if (!sb_rdonly(sb)) 5145 es->s_flags |= 5146 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5147 sbi->s_hash_unsigned = 3; 5148 #else 5149 if (!sb_rdonly(sb)) 5150 es->s_flags |= 5151 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5152 #endif 5153 } 5154 } 5155 } 5156 5157 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5158 { 5159 struct ext4_sb_info *sbi = EXT4_SB(sb); 5160 struct ext4_super_block *es = sbi->s_es; 5161 int has_huge_files; 5162 5163 has_huge_files = ext4_has_feature_huge_file(sb); 5164 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5165 has_huge_files); 5166 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5167 5168 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5169 if (ext4_has_feature_64bit(sb)) { 5170 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5171 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5172 !is_power_of_2(sbi->s_desc_size)) { 5173 ext4_msg(sb, KERN_ERR, 5174 "unsupported descriptor size %lu", 5175 sbi->s_desc_size); 5176 return -EINVAL; 5177 } 5178 } else 5179 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5180 5181 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5182 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5183 5184 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5185 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5186 if (!silent) 5187 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5188 return -EINVAL; 5189 } 5190 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5191 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5192 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5193 sbi->s_inodes_per_group); 5194 return -EINVAL; 5195 } 5196 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5197 sbi->s_inodes_per_block; 5198 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5199 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5200 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5201 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5202 5203 return 0; 5204 } 5205 5206 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5207 { 5208 struct ext4_super_block *es = NULL; 5209 struct ext4_sb_info *sbi = EXT4_SB(sb); 5210 ext4_fsblk_t logical_sb_block; 5211 struct inode *root; 5212 int needs_recovery; 5213 int err; 5214 ext4_group_t first_not_zeroed; 5215 struct ext4_fs_context *ctx = fc->fs_private; 5216 int silent = fc->sb_flags & SB_SILENT; 5217 5218 /* Set defaults for the variables that will be set during parsing */ 5219 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5220 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5221 5222 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5223 sbi->s_sectors_written_start = 5224 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5225 5226 err = ext4_load_super(sb, &logical_sb_block, silent); 5227 if (err) 5228 goto out_fail; 5229 5230 es = sbi->s_es; 5231 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5232 5233 err = ext4_init_metadata_csum(sb, es); 5234 if (err) 5235 goto failed_mount; 5236 5237 ext4_set_def_opts(sb, es); 5238 5239 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5240 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5241 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5242 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5243 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5244 5245 /* 5246 * set default s_li_wait_mult for lazyinit, for the case there is 5247 * no mount option specified. 5248 */ 5249 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5250 5251 err = ext4_inode_info_init(sb, es); 5252 if (err) 5253 goto failed_mount; 5254 5255 err = parse_apply_sb_mount_options(sb, ctx); 5256 if (err < 0) 5257 goto failed_mount; 5258 5259 sbi->s_def_mount_opt = sbi->s_mount_opt; 5260 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5261 5262 err = ext4_check_opt_consistency(fc, sb); 5263 if (err < 0) 5264 goto failed_mount; 5265 5266 ext4_apply_options(fc, sb); 5267 5268 err = ext4_encoding_init(sb, es); 5269 if (err) 5270 goto failed_mount; 5271 5272 err = ext4_check_journal_data_mode(sb); 5273 if (err) 5274 goto failed_mount; 5275 5276 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5277 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5278 5279 /* i_version is always enabled now */ 5280 sb->s_flags |= SB_I_VERSION; 5281 5282 err = ext4_check_feature_compatibility(sb, es, silent); 5283 if (err) 5284 goto failed_mount; 5285 5286 err = ext4_block_group_meta_init(sb, silent); 5287 if (err) 5288 goto failed_mount; 5289 5290 ext4_hash_info_init(sb); 5291 5292 err = ext4_handle_clustersize(sb); 5293 if (err) 5294 goto failed_mount; 5295 5296 err = ext4_check_geometry(sb, es); 5297 if (err) 5298 goto failed_mount; 5299 5300 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5301 spin_lock_init(&sbi->s_error_lock); 5302 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5303 5304 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5305 if (err) 5306 goto failed_mount3; 5307 5308 err = ext4_es_register_shrinker(sbi); 5309 if (err) 5310 goto failed_mount3; 5311 5312 sbi->s_stripe = ext4_get_stripe_size(sbi); 5313 /* 5314 * It's hard to get stripe aligned blocks if stripe is not aligned with 5315 * cluster, just disable stripe and alert user to simpfy code and avoid 5316 * stripe aligned allocation which will rarely successes. 5317 */ 5318 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 && 5319 sbi->s_stripe % sbi->s_cluster_ratio != 0) { 5320 ext4_msg(sb, KERN_WARNING, 5321 "stripe (%lu) is not aligned with cluster size (%u), " 5322 "stripe is disabled", 5323 sbi->s_stripe, sbi->s_cluster_ratio); 5324 sbi->s_stripe = 0; 5325 } 5326 sbi->s_extent_max_zeroout_kb = 32; 5327 5328 /* 5329 * set up enough so that it can read an inode 5330 */ 5331 sb->s_op = &ext4_sops; 5332 sb->s_export_op = &ext4_export_ops; 5333 sb->s_xattr = ext4_xattr_handlers; 5334 #ifdef CONFIG_FS_ENCRYPTION 5335 sb->s_cop = &ext4_cryptops; 5336 #endif 5337 #ifdef CONFIG_FS_VERITY 5338 sb->s_vop = &ext4_verityops; 5339 #endif 5340 #ifdef CONFIG_QUOTA 5341 sb->dq_op = &ext4_quota_operations; 5342 if (ext4_has_feature_quota(sb)) 5343 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5344 else 5345 sb->s_qcop = &ext4_qctl_operations; 5346 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5347 #endif 5348 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5349 5350 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5351 mutex_init(&sbi->s_orphan_lock); 5352 5353 ext4_fast_commit_init(sb); 5354 5355 sb->s_root = NULL; 5356 5357 needs_recovery = (es->s_last_orphan != 0 || 5358 ext4_has_feature_orphan_present(sb) || 5359 ext4_has_feature_journal_needs_recovery(sb)); 5360 5361 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5362 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5363 if (err) 5364 goto failed_mount3a; 5365 } 5366 5367 err = -EINVAL; 5368 /* 5369 * The first inode we look at is the journal inode. Don't try 5370 * root first: it may be modified in the journal! 5371 */ 5372 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5373 err = ext4_load_and_init_journal(sb, es, ctx); 5374 if (err) 5375 goto failed_mount3a; 5376 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5377 ext4_has_feature_journal_needs_recovery(sb)) { 5378 ext4_msg(sb, KERN_ERR, "required journal recovery " 5379 "suppressed and not mounted read-only"); 5380 goto failed_mount3a; 5381 } else { 5382 /* Nojournal mode, all journal mount options are illegal */ 5383 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5384 ext4_msg(sb, KERN_ERR, "can't mount with " 5385 "journal_async_commit, fs mounted w/o journal"); 5386 goto failed_mount3a; 5387 } 5388 5389 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5390 ext4_msg(sb, KERN_ERR, "can't mount with " 5391 "journal_checksum, fs mounted w/o journal"); 5392 goto failed_mount3a; 5393 } 5394 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5395 ext4_msg(sb, KERN_ERR, "can't mount with " 5396 "commit=%lu, fs mounted w/o journal", 5397 sbi->s_commit_interval / HZ); 5398 goto failed_mount3a; 5399 } 5400 if (EXT4_MOUNT_DATA_FLAGS & 5401 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5402 ext4_msg(sb, KERN_ERR, "can't mount with " 5403 "data=, fs mounted w/o journal"); 5404 goto failed_mount3a; 5405 } 5406 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5407 clear_opt(sb, JOURNAL_CHECKSUM); 5408 clear_opt(sb, DATA_FLAGS); 5409 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5410 sbi->s_journal = NULL; 5411 needs_recovery = 0; 5412 } 5413 5414 if (!test_opt(sb, NO_MBCACHE)) { 5415 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5416 if (!sbi->s_ea_block_cache) { 5417 ext4_msg(sb, KERN_ERR, 5418 "Failed to create ea_block_cache"); 5419 err = -EINVAL; 5420 goto failed_mount_wq; 5421 } 5422 5423 if (ext4_has_feature_ea_inode(sb)) { 5424 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5425 if (!sbi->s_ea_inode_cache) { 5426 ext4_msg(sb, KERN_ERR, 5427 "Failed to create ea_inode_cache"); 5428 err = -EINVAL; 5429 goto failed_mount_wq; 5430 } 5431 } 5432 } 5433 5434 /* 5435 * Get the # of file system overhead blocks from the 5436 * superblock if present. 5437 */ 5438 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5439 /* ignore the precalculated value if it is ridiculous */ 5440 if (sbi->s_overhead > ext4_blocks_count(es)) 5441 sbi->s_overhead = 0; 5442 /* 5443 * If the bigalloc feature is not enabled recalculating the 5444 * overhead doesn't take long, so we might as well just redo 5445 * it to make sure we are using the correct value. 5446 */ 5447 if (!ext4_has_feature_bigalloc(sb)) 5448 sbi->s_overhead = 0; 5449 if (sbi->s_overhead == 0) { 5450 err = ext4_calculate_overhead(sb); 5451 if (err) 5452 goto failed_mount_wq; 5453 } 5454 5455 /* 5456 * The maximum number of concurrent works can be high and 5457 * concurrency isn't really necessary. Limit it to 1. 5458 */ 5459 EXT4_SB(sb)->rsv_conversion_wq = 5460 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5461 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5462 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5463 err = -ENOMEM; 5464 goto failed_mount4; 5465 } 5466 5467 /* 5468 * The jbd2_journal_load will have done any necessary log recovery, 5469 * so we can safely mount the rest of the filesystem now. 5470 */ 5471 5472 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5473 if (IS_ERR(root)) { 5474 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5475 err = PTR_ERR(root); 5476 root = NULL; 5477 goto failed_mount4; 5478 } 5479 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5480 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5481 iput(root); 5482 err = -EFSCORRUPTED; 5483 goto failed_mount4; 5484 } 5485 5486 generic_set_sb_d_ops(sb); 5487 sb->s_root = d_make_root(root); 5488 if (!sb->s_root) { 5489 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5490 err = -ENOMEM; 5491 goto failed_mount4; 5492 } 5493 5494 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5495 if (err == -EROFS) { 5496 sb->s_flags |= SB_RDONLY; 5497 } else if (err) 5498 goto failed_mount4a; 5499 5500 ext4_set_resv_clusters(sb); 5501 5502 if (test_opt(sb, BLOCK_VALIDITY)) { 5503 err = ext4_setup_system_zone(sb); 5504 if (err) { 5505 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5506 "zone (%d)", err); 5507 goto failed_mount4a; 5508 } 5509 } 5510 ext4_fc_replay_cleanup(sb); 5511 5512 ext4_ext_init(sb); 5513 5514 /* 5515 * Enable optimize_scan if number of groups is > threshold. This can be 5516 * turned off by passing "mb_optimize_scan=0". This can also be 5517 * turned on forcefully by passing "mb_optimize_scan=1". 5518 */ 5519 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5520 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5521 set_opt2(sb, MB_OPTIMIZE_SCAN); 5522 else 5523 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5524 } 5525 5526 err = ext4_mb_init(sb); 5527 if (err) { 5528 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5529 err); 5530 goto failed_mount5; 5531 } 5532 5533 /* 5534 * We can only set up the journal commit callback once 5535 * mballoc is initialized 5536 */ 5537 if (sbi->s_journal) 5538 sbi->s_journal->j_commit_callback = 5539 ext4_journal_commit_callback; 5540 5541 err = ext4_percpu_param_init(sbi); 5542 if (err) 5543 goto failed_mount6; 5544 5545 if (ext4_has_feature_flex_bg(sb)) 5546 if (!ext4_fill_flex_info(sb)) { 5547 ext4_msg(sb, KERN_ERR, 5548 "unable to initialize " 5549 "flex_bg meta info!"); 5550 err = -ENOMEM; 5551 goto failed_mount6; 5552 } 5553 5554 err = ext4_register_li_request(sb, first_not_zeroed); 5555 if (err) 5556 goto failed_mount6; 5557 5558 err = ext4_register_sysfs(sb); 5559 if (err) 5560 goto failed_mount7; 5561 5562 err = ext4_init_orphan_info(sb); 5563 if (err) 5564 goto failed_mount8; 5565 #ifdef CONFIG_QUOTA 5566 /* Enable quota usage during mount. */ 5567 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5568 err = ext4_enable_quotas(sb); 5569 if (err) 5570 goto failed_mount9; 5571 } 5572 #endif /* CONFIG_QUOTA */ 5573 5574 /* 5575 * Save the original bdev mapping's wb_err value which could be 5576 * used to detect the metadata async write error. 5577 */ 5578 spin_lock_init(&sbi->s_bdev_wb_lock); 5579 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5580 &sbi->s_bdev_wb_err); 5581 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5582 ext4_orphan_cleanup(sb, es); 5583 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5584 /* 5585 * Update the checksum after updating free space/inode counters and 5586 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5587 * checksum in the buffer cache until it is written out and 5588 * e2fsprogs programs trying to open a file system immediately 5589 * after it is mounted can fail. 5590 */ 5591 ext4_superblock_csum_set(sb); 5592 if (needs_recovery) { 5593 ext4_msg(sb, KERN_INFO, "recovery complete"); 5594 err = ext4_mark_recovery_complete(sb, es); 5595 if (err) 5596 goto failed_mount10; 5597 } 5598 5599 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5600 ext4_msg(sb, KERN_WARNING, 5601 "mounting with \"discard\" option, but the device does not support discard"); 5602 5603 if (es->s_error_count) 5604 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5605 5606 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5607 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5608 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5609 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5610 atomic_set(&sbi->s_warning_count, 0); 5611 atomic_set(&sbi->s_msg_count, 0); 5612 5613 return 0; 5614 5615 failed_mount10: 5616 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5617 failed_mount9: __maybe_unused 5618 ext4_release_orphan_info(sb); 5619 failed_mount8: 5620 ext4_unregister_sysfs(sb); 5621 kobject_put(&sbi->s_kobj); 5622 failed_mount7: 5623 ext4_unregister_li_request(sb); 5624 failed_mount6: 5625 ext4_mb_release(sb); 5626 ext4_flex_groups_free(sbi); 5627 ext4_percpu_param_destroy(sbi); 5628 failed_mount5: 5629 ext4_ext_release(sb); 5630 ext4_release_system_zone(sb); 5631 failed_mount4a: 5632 dput(sb->s_root); 5633 sb->s_root = NULL; 5634 failed_mount4: 5635 ext4_msg(sb, KERN_ERR, "mount failed"); 5636 if (EXT4_SB(sb)->rsv_conversion_wq) 5637 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5638 failed_mount_wq: 5639 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5640 sbi->s_ea_inode_cache = NULL; 5641 5642 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5643 sbi->s_ea_block_cache = NULL; 5644 5645 if (sbi->s_journal) { 5646 /* flush s_sb_upd_work before journal destroy. */ 5647 flush_work(&sbi->s_sb_upd_work); 5648 jbd2_journal_destroy(sbi->s_journal); 5649 sbi->s_journal = NULL; 5650 } 5651 failed_mount3a: 5652 ext4_es_unregister_shrinker(sbi); 5653 failed_mount3: 5654 /* flush s_sb_upd_work before sbi destroy */ 5655 flush_work(&sbi->s_sb_upd_work); 5656 del_timer_sync(&sbi->s_err_report); 5657 ext4_stop_mmpd(sbi); 5658 ext4_group_desc_free(sbi); 5659 failed_mount: 5660 if (sbi->s_chksum_driver) 5661 crypto_free_shash(sbi->s_chksum_driver); 5662 5663 #if IS_ENABLED(CONFIG_UNICODE) 5664 utf8_unload(sb->s_encoding); 5665 #endif 5666 5667 #ifdef CONFIG_QUOTA 5668 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5669 kfree(get_qf_name(sb, sbi, i)); 5670 #endif 5671 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5672 brelse(sbi->s_sbh); 5673 if (sbi->s_journal_bdev_file) { 5674 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5675 fput(sbi->s_journal_bdev_file); 5676 } 5677 out_fail: 5678 invalidate_bdev(sb->s_bdev); 5679 sb->s_fs_info = NULL; 5680 return err; 5681 } 5682 5683 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5684 { 5685 struct ext4_fs_context *ctx = fc->fs_private; 5686 struct ext4_sb_info *sbi; 5687 const char *descr; 5688 int ret; 5689 5690 sbi = ext4_alloc_sbi(sb); 5691 if (!sbi) 5692 return -ENOMEM; 5693 5694 fc->s_fs_info = sbi; 5695 5696 /* Cleanup superblock name */ 5697 strreplace(sb->s_id, '/', '!'); 5698 5699 sbi->s_sb_block = 1; /* Default super block location */ 5700 if (ctx->spec & EXT4_SPEC_s_sb_block) 5701 sbi->s_sb_block = ctx->s_sb_block; 5702 5703 ret = __ext4_fill_super(fc, sb); 5704 if (ret < 0) 5705 goto free_sbi; 5706 5707 if (sbi->s_journal) { 5708 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5709 descr = " journalled data mode"; 5710 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5711 descr = " ordered data mode"; 5712 else 5713 descr = " writeback data mode"; 5714 } else 5715 descr = "out journal"; 5716 5717 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5718 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5719 "Quota mode: %s.", &sb->s_uuid, 5720 sb_rdonly(sb) ? "ro" : "r/w", descr, 5721 ext4_quota_mode(sb)); 5722 5723 /* Update the s_overhead_clusters if necessary */ 5724 ext4_update_overhead(sb, false); 5725 return 0; 5726 5727 free_sbi: 5728 ext4_free_sbi(sbi); 5729 fc->s_fs_info = NULL; 5730 return ret; 5731 } 5732 5733 static int ext4_get_tree(struct fs_context *fc) 5734 { 5735 return get_tree_bdev(fc, ext4_fill_super); 5736 } 5737 5738 /* 5739 * Setup any per-fs journal parameters now. We'll do this both on 5740 * initial mount, once the journal has been initialised but before we've 5741 * done any recovery; and again on any subsequent remount. 5742 */ 5743 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5744 { 5745 struct ext4_sb_info *sbi = EXT4_SB(sb); 5746 5747 journal->j_commit_interval = sbi->s_commit_interval; 5748 journal->j_min_batch_time = sbi->s_min_batch_time; 5749 journal->j_max_batch_time = sbi->s_max_batch_time; 5750 ext4_fc_init(sb, journal); 5751 5752 write_lock(&journal->j_state_lock); 5753 if (test_opt(sb, BARRIER)) 5754 journal->j_flags |= JBD2_BARRIER; 5755 else 5756 journal->j_flags &= ~JBD2_BARRIER; 5757 if (test_opt(sb, DATA_ERR_ABORT)) 5758 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5759 else 5760 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5761 /* 5762 * Always enable journal cycle record option, letting the journal 5763 * records log transactions continuously between each mount. 5764 */ 5765 journal->j_flags |= JBD2_CYCLE_RECORD; 5766 write_unlock(&journal->j_state_lock); 5767 } 5768 5769 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5770 unsigned int journal_inum) 5771 { 5772 struct inode *journal_inode; 5773 5774 /* 5775 * Test for the existence of a valid inode on disk. Bad things 5776 * happen if we iget() an unused inode, as the subsequent iput() 5777 * will try to delete it. 5778 */ 5779 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5780 if (IS_ERR(journal_inode)) { 5781 ext4_msg(sb, KERN_ERR, "no journal found"); 5782 return ERR_CAST(journal_inode); 5783 } 5784 if (!journal_inode->i_nlink) { 5785 make_bad_inode(journal_inode); 5786 iput(journal_inode); 5787 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5788 return ERR_PTR(-EFSCORRUPTED); 5789 } 5790 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5791 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5792 iput(journal_inode); 5793 return ERR_PTR(-EFSCORRUPTED); 5794 } 5795 5796 ext4_debug("Journal inode found at %p: %lld bytes\n", 5797 journal_inode, journal_inode->i_size); 5798 return journal_inode; 5799 } 5800 5801 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5802 { 5803 struct ext4_map_blocks map; 5804 int ret; 5805 5806 if (journal->j_inode == NULL) 5807 return 0; 5808 5809 map.m_lblk = *block; 5810 map.m_len = 1; 5811 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5812 if (ret <= 0) { 5813 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5814 "journal bmap failed: block %llu ret %d\n", 5815 *block, ret); 5816 jbd2_journal_abort(journal, ret ? ret : -EIO); 5817 return ret; 5818 } 5819 *block = map.m_pblk; 5820 return 0; 5821 } 5822 5823 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5824 unsigned int journal_inum) 5825 { 5826 struct inode *journal_inode; 5827 journal_t *journal; 5828 5829 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5830 if (IS_ERR(journal_inode)) 5831 return ERR_CAST(journal_inode); 5832 5833 journal = jbd2_journal_init_inode(journal_inode); 5834 if (IS_ERR(journal)) { 5835 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5836 iput(journal_inode); 5837 return ERR_CAST(journal); 5838 } 5839 journal->j_private = sb; 5840 journal->j_bmap = ext4_journal_bmap; 5841 ext4_init_journal_params(sb, journal); 5842 return journal; 5843 } 5844 5845 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5846 dev_t j_dev, ext4_fsblk_t *j_start, 5847 ext4_fsblk_t *j_len) 5848 { 5849 struct buffer_head *bh; 5850 struct block_device *bdev; 5851 struct file *bdev_file; 5852 int hblock, blocksize; 5853 ext4_fsblk_t sb_block; 5854 unsigned long offset; 5855 struct ext4_super_block *es; 5856 int errno; 5857 5858 bdev_file = bdev_file_open_by_dev(j_dev, 5859 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5860 sb, &fs_holder_ops); 5861 if (IS_ERR(bdev_file)) { 5862 ext4_msg(sb, KERN_ERR, 5863 "failed to open journal device unknown-block(%u,%u) %ld", 5864 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5865 return bdev_file; 5866 } 5867 5868 bdev = file_bdev(bdev_file); 5869 blocksize = sb->s_blocksize; 5870 hblock = bdev_logical_block_size(bdev); 5871 if (blocksize < hblock) { 5872 ext4_msg(sb, KERN_ERR, 5873 "blocksize too small for journal device"); 5874 errno = -EINVAL; 5875 goto out_bdev; 5876 } 5877 5878 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5879 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5880 set_blocksize(bdev, blocksize); 5881 bh = __bread(bdev, sb_block, blocksize); 5882 if (!bh) { 5883 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5884 "external journal"); 5885 errno = -EINVAL; 5886 goto out_bdev; 5887 } 5888 5889 es = (struct ext4_super_block *) (bh->b_data + offset); 5890 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5891 !(le32_to_cpu(es->s_feature_incompat) & 5892 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5893 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5894 errno = -EFSCORRUPTED; 5895 goto out_bh; 5896 } 5897 5898 if ((le32_to_cpu(es->s_feature_ro_compat) & 5899 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5900 es->s_checksum != ext4_superblock_csum(sb, es)) { 5901 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5902 errno = -EFSCORRUPTED; 5903 goto out_bh; 5904 } 5905 5906 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5907 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5908 errno = -EFSCORRUPTED; 5909 goto out_bh; 5910 } 5911 5912 *j_start = sb_block + 1; 5913 *j_len = ext4_blocks_count(es); 5914 brelse(bh); 5915 return bdev_file; 5916 5917 out_bh: 5918 brelse(bh); 5919 out_bdev: 5920 fput(bdev_file); 5921 return ERR_PTR(errno); 5922 } 5923 5924 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5925 dev_t j_dev) 5926 { 5927 journal_t *journal; 5928 ext4_fsblk_t j_start; 5929 ext4_fsblk_t j_len; 5930 struct file *bdev_file; 5931 int errno = 0; 5932 5933 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5934 if (IS_ERR(bdev_file)) 5935 return ERR_CAST(bdev_file); 5936 5937 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5938 j_len, sb->s_blocksize); 5939 if (IS_ERR(journal)) { 5940 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5941 errno = PTR_ERR(journal); 5942 goto out_bdev; 5943 } 5944 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5945 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5946 "user (unsupported) - %d", 5947 be32_to_cpu(journal->j_superblock->s_nr_users)); 5948 errno = -EINVAL; 5949 goto out_journal; 5950 } 5951 journal->j_private = sb; 5952 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5953 ext4_init_journal_params(sb, journal); 5954 return journal; 5955 5956 out_journal: 5957 jbd2_journal_destroy(journal); 5958 out_bdev: 5959 fput(bdev_file); 5960 return ERR_PTR(errno); 5961 } 5962 5963 static int ext4_load_journal(struct super_block *sb, 5964 struct ext4_super_block *es, 5965 unsigned long journal_devnum) 5966 { 5967 journal_t *journal; 5968 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5969 dev_t journal_dev; 5970 int err = 0; 5971 int really_read_only; 5972 int journal_dev_ro; 5973 5974 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5975 return -EFSCORRUPTED; 5976 5977 if (journal_devnum && 5978 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5979 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5980 "numbers have changed"); 5981 journal_dev = new_decode_dev(journal_devnum); 5982 } else 5983 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5984 5985 if (journal_inum && journal_dev) { 5986 ext4_msg(sb, KERN_ERR, 5987 "filesystem has both journal inode and journal device!"); 5988 return -EINVAL; 5989 } 5990 5991 if (journal_inum) { 5992 journal = ext4_open_inode_journal(sb, journal_inum); 5993 if (IS_ERR(journal)) 5994 return PTR_ERR(journal); 5995 } else { 5996 journal = ext4_open_dev_journal(sb, journal_dev); 5997 if (IS_ERR(journal)) 5998 return PTR_ERR(journal); 5999 } 6000 6001 journal_dev_ro = bdev_read_only(journal->j_dev); 6002 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 6003 6004 if (journal_dev_ro && !sb_rdonly(sb)) { 6005 ext4_msg(sb, KERN_ERR, 6006 "journal device read-only, try mounting with '-o ro'"); 6007 err = -EROFS; 6008 goto err_out; 6009 } 6010 6011 /* 6012 * Are we loading a blank journal or performing recovery after a 6013 * crash? For recovery, we need to check in advance whether we 6014 * can get read-write access to the device. 6015 */ 6016 if (ext4_has_feature_journal_needs_recovery(sb)) { 6017 if (sb_rdonly(sb)) { 6018 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6019 "required on readonly filesystem"); 6020 if (really_read_only) { 6021 ext4_msg(sb, KERN_ERR, "write access " 6022 "unavailable, cannot proceed " 6023 "(try mounting with noload)"); 6024 err = -EROFS; 6025 goto err_out; 6026 } 6027 ext4_msg(sb, KERN_INFO, "write access will " 6028 "be enabled during recovery"); 6029 } 6030 } 6031 6032 if (!(journal->j_flags & JBD2_BARRIER)) 6033 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6034 6035 if (!ext4_has_feature_journal_needs_recovery(sb)) 6036 err = jbd2_journal_wipe(journal, !really_read_only); 6037 if (!err) { 6038 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6039 __le16 orig_state; 6040 bool changed = false; 6041 6042 if (save) 6043 memcpy(save, ((char *) es) + 6044 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6045 err = jbd2_journal_load(journal); 6046 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6047 save, EXT4_S_ERR_LEN)) { 6048 memcpy(((char *) es) + EXT4_S_ERR_START, 6049 save, EXT4_S_ERR_LEN); 6050 changed = true; 6051 } 6052 kfree(save); 6053 orig_state = es->s_state; 6054 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6055 EXT4_ERROR_FS); 6056 if (orig_state != es->s_state) 6057 changed = true; 6058 /* Write out restored error information to the superblock */ 6059 if (changed && !really_read_only) { 6060 int err2; 6061 err2 = ext4_commit_super(sb); 6062 err = err ? : err2; 6063 } 6064 } 6065 6066 if (err) { 6067 ext4_msg(sb, KERN_ERR, "error loading journal"); 6068 goto err_out; 6069 } 6070 6071 EXT4_SB(sb)->s_journal = journal; 6072 err = ext4_clear_journal_err(sb, es); 6073 if (err) { 6074 EXT4_SB(sb)->s_journal = NULL; 6075 jbd2_journal_destroy(journal); 6076 return err; 6077 } 6078 6079 if (!really_read_only && journal_devnum && 6080 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6081 es->s_journal_dev = cpu_to_le32(journal_devnum); 6082 ext4_commit_super(sb); 6083 } 6084 if (!really_read_only && journal_inum && 6085 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6086 es->s_journal_inum = cpu_to_le32(journal_inum); 6087 ext4_commit_super(sb); 6088 } 6089 6090 return 0; 6091 6092 err_out: 6093 jbd2_journal_destroy(journal); 6094 return err; 6095 } 6096 6097 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6098 static void ext4_update_super(struct super_block *sb) 6099 { 6100 struct ext4_sb_info *sbi = EXT4_SB(sb); 6101 struct ext4_super_block *es = sbi->s_es; 6102 struct buffer_head *sbh = sbi->s_sbh; 6103 6104 lock_buffer(sbh); 6105 /* 6106 * If the file system is mounted read-only, don't update the 6107 * superblock write time. This avoids updating the superblock 6108 * write time when we are mounting the root file system 6109 * read/only but we need to replay the journal; at that point, 6110 * for people who are east of GMT and who make their clock 6111 * tick in localtime for Windows bug-for-bug compatibility, 6112 * the clock is set in the future, and this will cause e2fsck 6113 * to complain and force a full file system check. 6114 */ 6115 if (!sb_rdonly(sb)) 6116 ext4_update_tstamp(es, s_wtime); 6117 es->s_kbytes_written = 6118 cpu_to_le64(sbi->s_kbytes_written + 6119 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6120 sbi->s_sectors_written_start) >> 1)); 6121 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6122 ext4_free_blocks_count_set(es, 6123 EXT4_C2B(sbi, percpu_counter_sum_positive( 6124 &sbi->s_freeclusters_counter))); 6125 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6126 es->s_free_inodes_count = 6127 cpu_to_le32(percpu_counter_sum_positive( 6128 &sbi->s_freeinodes_counter)); 6129 /* Copy error information to the on-disk superblock */ 6130 spin_lock(&sbi->s_error_lock); 6131 if (sbi->s_add_error_count > 0) { 6132 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6133 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6134 __ext4_update_tstamp(&es->s_first_error_time, 6135 &es->s_first_error_time_hi, 6136 sbi->s_first_error_time); 6137 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6138 sizeof(es->s_first_error_func)); 6139 es->s_first_error_line = 6140 cpu_to_le32(sbi->s_first_error_line); 6141 es->s_first_error_ino = 6142 cpu_to_le32(sbi->s_first_error_ino); 6143 es->s_first_error_block = 6144 cpu_to_le64(sbi->s_first_error_block); 6145 es->s_first_error_errcode = 6146 ext4_errno_to_code(sbi->s_first_error_code); 6147 } 6148 __ext4_update_tstamp(&es->s_last_error_time, 6149 &es->s_last_error_time_hi, 6150 sbi->s_last_error_time); 6151 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6152 sizeof(es->s_last_error_func)); 6153 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6154 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6155 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6156 es->s_last_error_errcode = 6157 ext4_errno_to_code(sbi->s_last_error_code); 6158 /* 6159 * Start the daily error reporting function if it hasn't been 6160 * started already 6161 */ 6162 if (!es->s_error_count) 6163 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6164 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6165 sbi->s_add_error_count = 0; 6166 } 6167 spin_unlock(&sbi->s_error_lock); 6168 6169 ext4_superblock_csum_set(sb); 6170 unlock_buffer(sbh); 6171 } 6172 6173 static int ext4_commit_super(struct super_block *sb) 6174 { 6175 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6176 6177 if (!sbh) 6178 return -EINVAL; 6179 if (block_device_ejected(sb)) 6180 return -ENODEV; 6181 6182 ext4_update_super(sb); 6183 6184 lock_buffer(sbh); 6185 /* Buffer got discarded which means block device got invalidated */ 6186 if (!buffer_mapped(sbh)) { 6187 unlock_buffer(sbh); 6188 return -EIO; 6189 } 6190 6191 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6192 /* 6193 * Oh, dear. A previous attempt to write the 6194 * superblock failed. This could happen because the 6195 * USB device was yanked out. Or it could happen to 6196 * be a transient write error and maybe the block will 6197 * be remapped. Nothing we can do but to retry the 6198 * write and hope for the best. 6199 */ 6200 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6201 "superblock detected"); 6202 clear_buffer_write_io_error(sbh); 6203 set_buffer_uptodate(sbh); 6204 } 6205 get_bh(sbh); 6206 /* Clear potential dirty bit if it was journalled update */ 6207 clear_buffer_dirty(sbh); 6208 sbh->b_end_io = end_buffer_write_sync; 6209 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6210 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6211 wait_on_buffer(sbh); 6212 if (buffer_write_io_error(sbh)) { 6213 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6214 "superblock"); 6215 clear_buffer_write_io_error(sbh); 6216 set_buffer_uptodate(sbh); 6217 return -EIO; 6218 } 6219 return 0; 6220 } 6221 6222 /* 6223 * Have we just finished recovery? If so, and if we are mounting (or 6224 * remounting) the filesystem readonly, then we will end up with a 6225 * consistent fs on disk. Record that fact. 6226 */ 6227 static int ext4_mark_recovery_complete(struct super_block *sb, 6228 struct ext4_super_block *es) 6229 { 6230 int err; 6231 journal_t *journal = EXT4_SB(sb)->s_journal; 6232 6233 if (!ext4_has_feature_journal(sb)) { 6234 if (journal != NULL) { 6235 ext4_error(sb, "Journal got removed while the fs was " 6236 "mounted!"); 6237 return -EFSCORRUPTED; 6238 } 6239 return 0; 6240 } 6241 jbd2_journal_lock_updates(journal); 6242 err = jbd2_journal_flush(journal, 0); 6243 if (err < 0) 6244 goto out; 6245 6246 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6247 ext4_has_feature_orphan_present(sb))) { 6248 if (!ext4_orphan_file_empty(sb)) { 6249 ext4_error(sb, "Orphan file not empty on read-only fs."); 6250 err = -EFSCORRUPTED; 6251 goto out; 6252 } 6253 ext4_clear_feature_journal_needs_recovery(sb); 6254 ext4_clear_feature_orphan_present(sb); 6255 ext4_commit_super(sb); 6256 } 6257 out: 6258 jbd2_journal_unlock_updates(journal); 6259 return err; 6260 } 6261 6262 /* 6263 * If we are mounting (or read-write remounting) a filesystem whose journal 6264 * has recorded an error from a previous lifetime, move that error to the 6265 * main filesystem now. 6266 */ 6267 static int ext4_clear_journal_err(struct super_block *sb, 6268 struct ext4_super_block *es) 6269 { 6270 journal_t *journal; 6271 int j_errno; 6272 const char *errstr; 6273 6274 if (!ext4_has_feature_journal(sb)) { 6275 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6276 return -EFSCORRUPTED; 6277 } 6278 6279 journal = EXT4_SB(sb)->s_journal; 6280 6281 /* 6282 * Now check for any error status which may have been recorded in the 6283 * journal by a prior ext4_error() or ext4_abort() 6284 */ 6285 6286 j_errno = jbd2_journal_errno(journal); 6287 if (j_errno) { 6288 char nbuf[16]; 6289 6290 errstr = ext4_decode_error(sb, j_errno, nbuf); 6291 ext4_warning(sb, "Filesystem error recorded " 6292 "from previous mount: %s", errstr); 6293 6294 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6295 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6296 j_errno = ext4_commit_super(sb); 6297 if (j_errno) 6298 return j_errno; 6299 ext4_warning(sb, "Marked fs in need of filesystem check."); 6300 6301 jbd2_journal_clear_err(journal); 6302 jbd2_journal_update_sb_errno(journal); 6303 } 6304 return 0; 6305 } 6306 6307 /* 6308 * Force the running and committing transactions to commit, 6309 * and wait on the commit. 6310 */ 6311 int ext4_force_commit(struct super_block *sb) 6312 { 6313 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6314 } 6315 6316 static int ext4_sync_fs(struct super_block *sb, int wait) 6317 { 6318 int ret = 0; 6319 tid_t target; 6320 bool needs_barrier = false; 6321 struct ext4_sb_info *sbi = EXT4_SB(sb); 6322 6323 if (unlikely(ext4_forced_shutdown(sb))) 6324 return 0; 6325 6326 trace_ext4_sync_fs(sb, wait); 6327 flush_workqueue(sbi->rsv_conversion_wq); 6328 /* 6329 * Writeback quota in non-journalled quota case - journalled quota has 6330 * no dirty dquots 6331 */ 6332 dquot_writeback_dquots(sb, -1); 6333 /* 6334 * Data writeback is possible w/o journal transaction, so barrier must 6335 * being sent at the end of the function. But we can skip it if 6336 * transaction_commit will do it for us. 6337 */ 6338 if (sbi->s_journal) { 6339 target = jbd2_get_latest_transaction(sbi->s_journal); 6340 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6341 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6342 needs_barrier = true; 6343 6344 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6345 if (wait) 6346 ret = jbd2_log_wait_commit(sbi->s_journal, 6347 target); 6348 } 6349 } else if (wait && test_opt(sb, BARRIER)) 6350 needs_barrier = true; 6351 if (needs_barrier) { 6352 int err; 6353 err = blkdev_issue_flush(sb->s_bdev); 6354 if (!ret) 6355 ret = err; 6356 } 6357 6358 return ret; 6359 } 6360 6361 /* 6362 * LVM calls this function before a (read-only) snapshot is created. This 6363 * gives us a chance to flush the journal completely and mark the fs clean. 6364 * 6365 * Note that only this function cannot bring a filesystem to be in a clean 6366 * state independently. It relies on upper layer to stop all data & metadata 6367 * modifications. 6368 */ 6369 static int ext4_freeze(struct super_block *sb) 6370 { 6371 int error = 0; 6372 journal_t *journal = EXT4_SB(sb)->s_journal; 6373 6374 if (journal) { 6375 /* Now we set up the journal barrier. */ 6376 jbd2_journal_lock_updates(journal); 6377 6378 /* 6379 * Don't clear the needs_recovery flag if we failed to 6380 * flush the journal. 6381 */ 6382 error = jbd2_journal_flush(journal, 0); 6383 if (error < 0) 6384 goto out; 6385 6386 /* Journal blocked and flushed, clear needs_recovery flag. */ 6387 ext4_clear_feature_journal_needs_recovery(sb); 6388 if (ext4_orphan_file_empty(sb)) 6389 ext4_clear_feature_orphan_present(sb); 6390 } 6391 6392 error = ext4_commit_super(sb); 6393 out: 6394 if (journal) 6395 /* we rely on upper layer to stop further updates */ 6396 jbd2_journal_unlock_updates(journal); 6397 return error; 6398 } 6399 6400 /* 6401 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6402 * flag here, even though the filesystem is not technically dirty yet. 6403 */ 6404 static int ext4_unfreeze(struct super_block *sb) 6405 { 6406 if (ext4_forced_shutdown(sb)) 6407 return 0; 6408 6409 if (EXT4_SB(sb)->s_journal) { 6410 /* Reset the needs_recovery flag before the fs is unlocked. */ 6411 ext4_set_feature_journal_needs_recovery(sb); 6412 if (ext4_has_feature_orphan_file(sb)) 6413 ext4_set_feature_orphan_present(sb); 6414 } 6415 6416 ext4_commit_super(sb); 6417 return 0; 6418 } 6419 6420 /* 6421 * Structure to save mount options for ext4_remount's benefit 6422 */ 6423 struct ext4_mount_options { 6424 unsigned long s_mount_opt; 6425 unsigned long s_mount_opt2; 6426 kuid_t s_resuid; 6427 kgid_t s_resgid; 6428 unsigned long s_commit_interval; 6429 u32 s_min_batch_time, s_max_batch_time; 6430 #ifdef CONFIG_QUOTA 6431 int s_jquota_fmt; 6432 char *s_qf_names[EXT4_MAXQUOTAS]; 6433 #endif 6434 }; 6435 6436 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6437 { 6438 struct ext4_fs_context *ctx = fc->fs_private; 6439 struct ext4_super_block *es; 6440 struct ext4_sb_info *sbi = EXT4_SB(sb); 6441 unsigned long old_sb_flags; 6442 struct ext4_mount_options old_opts; 6443 ext4_group_t g; 6444 int err = 0; 6445 int alloc_ctx; 6446 #ifdef CONFIG_QUOTA 6447 int enable_quota = 0; 6448 int i, j; 6449 char *to_free[EXT4_MAXQUOTAS]; 6450 #endif 6451 6452 6453 /* Store the original options */ 6454 old_sb_flags = sb->s_flags; 6455 old_opts.s_mount_opt = sbi->s_mount_opt; 6456 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6457 old_opts.s_resuid = sbi->s_resuid; 6458 old_opts.s_resgid = sbi->s_resgid; 6459 old_opts.s_commit_interval = sbi->s_commit_interval; 6460 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6461 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6462 #ifdef CONFIG_QUOTA 6463 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6464 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6465 if (sbi->s_qf_names[i]) { 6466 char *qf_name = get_qf_name(sb, sbi, i); 6467 6468 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6469 if (!old_opts.s_qf_names[i]) { 6470 for (j = 0; j < i; j++) 6471 kfree(old_opts.s_qf_names[j]); 6472 return -ENOMEM; 6473 } 6474 } else 6475 old_opts.s_qf_names[i] = NULL; 6476 #endif 6477 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6478 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6479 ctx->journal_ioprio = 6480 sbi->s_journal->j_task->io_context->ioprio; 6481 else 6482 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6483 6484 } 6485 6486 /* 6487 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6488 * two calls to ext4_should_dioread_nolock() to return inconsistent 6489 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6490 * here s_writepages_rwsem to avoid race between writepages ops and 6491 * remount. 6492 */ 6493 alloc_ctx = ext4_writepages_down_write(sb); 6494 ext4_apply_options(fc, sb); 6495 ext4_writepages_up_write(sb, alloc_ctx); 6496 6497 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6498 test_opt(sb, JOURNAL_CHECKSUM)) { 6499 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6500 "during remount not supported; ignoring"); 6501 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6502 } 6503 6504 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6505 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6506 ext4_msg(sb, KERN_ERR, "can't mount with " 6507 "both data=journal and delalloc"); 6508 err = -EINVAL; 6509 goto restore_opts; 6510 } 6511 if (test_opt(sb, DIOREAD_NOLOCK)) { 6512 ext4_msg(sb, KERN_ERR, "can't mount with " 6513 "both data=journal and dioread_nolock"); 6514 err = -EINVAL; 6515 goto restore_opts; 6516 } 6517 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6518 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6519 ext4_msg(sb, KERN_ERR, "can't mount with " 6520 "journal_async_commit in data=ordered mode"); 6521 err = -EINVAL; 6522 goto restore_opts; 6523 } 6524 } 6525 6526 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6527 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6528 err = -EINVAL; 6529 goto restore_opts; 6530 } 6531 6532 if (test_opt2(sb, ABORT)) 6533 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6534 6535 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6536 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6537 6538 es = sbi->s_es; 6539 6540 if (sbi->s_journal) { 6541 ext4_init_journal_params(sb, sbi->s_journal); 6542 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6543 } 6544 6545 /* Flush outstanding errors before changing fs state */ 6546 flush_work(&sbi->s_sb_upd_work); 6547 6548 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6549 if (ext4_forced_shutdown(sb)) { 6550 err = -EROFS; 6551 goto restore_opts; 6552 } 6553 6554 if (fc->sb_flags & SB_RDONLY) { 6555 err = sync_filesystem(sb); 6556 if (err < 0) 6557 goto restore_opts; 6558 err = dquot_suspend(sb, -1); 6559 if (err < 0) 6560 goto restore_opts; 6561 6562 /* 6563 * First of all, the unconditional stuff we have to do 6564 * to disable replay of the journal when we next remount 6565 */ 6566 sb->s_flags |= SB_RDONLY; 6567 6568 /* 6569 * OK, test if we are remounting a valid rw partition 6570 * readonly, and if so set the rdonly flag and then 6571 * mark the partition as valid again. 6572 */ 6573 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6574 (sbi->s_mount_state & EXT4_VALID_FS)) 6575 es->s_state = cpu_to_le16(sbi->s_mount_state); 6576 6577 if (sbi->s_journal) { 6578 /* 6579 * We let remount-ro finish even if marking fs 6580 * as clean failed... 6581 */ 6582 ext4_mark_recovery_complete(sb, es); 6583 } 6584 } else { 6585 /* Make sure we can mount this feature set readwrite */ 6586 if (ext4_has_feature_readonly(sb) || 6587 !ext4_feature_set_ok(sb, 0)) { 6588 err = -EROFS; 6589 goto restore_opts; 6590 } 6591 /* 6592 * Make sure the group descriptor checksums 6593 * are sane. If they aren't, refuse to remount r/w. 6594 */ 6595 for (g = 0; g < sbi->s_groups_count; g++) { 6596 struct ext4_group_desc *gdp = 6597 ext4_get_group_desc(sb, g, NULL); 6598 6599 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6600 ext4_msg(sb, KERN_ERR, 6601 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6602 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6603 le16_to_cpu(gdp->bg_checksum)); 6604 err = -EFSBADCRC; 6605 goto restore_opts; 6606 } 6607 } 6608 6609 /* 6610 * If we have an unprocessed orphan list hanging 6611 * around from a previously readonly bdev mount, 6612 * require a full umount/remount for now. 6613 */ 6614 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6615 ext4_msg(sb, KERN_WARNING, "Couldn't " 6616 "remount RDWR because of unprocessed " 6617 "orphan inode list. Please " 6618 "umount/remount instead"); 6619 err = -EINVAL; 6620 goto restore_opts; 6621 } 6622 6623 /* 6624 * Mounting a RDONLY partition read-write, so reread 6625 * and store the current valid flag. (It may have 6626 * been changed by e2fsck since we originally mounted 6627 * the partition.) 6628 */ 6629 if (sbi->s_journal) { 6630 err = ext4_clear_journal_err(sb, es); 6631 if (err) 6632 goto restore_opts; 6633 } 6634 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6635 ~EXT4_FC_REPLAY); 6636 6637 err = ext4_setup_super(sb, es, 0); 6638 if (err) 6639 goto restore_opts; 6640 6641 sb->s_flags &= ~SB_RDONLY; 6642 if (ext4_has_feature_mmp(sb)) { 6643 err = ext4_multi_mount_protect(sb, 6644 le64_to_cpu(es->s_mmp_block)); 6645 if (err) 6646 goto restore_opts; 6647 } 6648 #ifdef CONFIG_QUOTA 6649 enable_quota = 1; 6650 #endif 6651 } 6652 } 6653 6654 /* 6655 * Handle creation of system zone data early because it can fail. 6656 * Releasing of existing data is done when we are sure remount will 6657 * succeed. 6658 */ 6659 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6660 err = ext4_setup_system_zone(sb); 6661 if (err) 6662 goto restore_opts; 6663 } 6664 6665 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6666 err = ext4_commit_super(sb); 6667 if (err) 6668 goto restore_opts; 6669 } 6670 6671 #ifdef CONFIG_QUOTA 6672 if (enable_quota) { 6673 if (sb_any_quota_suspended(sb)) 6674 dquot_resume(sb, -1); 6675 else if (ext4_has_feature_quota(sb)) { 6676 err = ext4_enable_quotas(sb); 6677 if (err) 6678 goto restore_opts; 6679 } 6680 } 6681 /* Release old quota file names */ 6682 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6683 kfree(old_opts.s_qf_names[i]); 6684 #endif 6685 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6686 ext4_release_system_zone(sb); 6687 6688 /* 6689 * Reinitialize lazy itable initialization thread based on 6690 * current settings 6691 */ 6692 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6693 ext4_unregister_li_request(sb); 6694 else { 6695 ext4_group_t first_not_zeroed; 6696 first_not_zeroed = ext4_has_uninit_itable(sb); 6697 ext4_register_li_request(sb, first_not_zeroed); 6698 } 6699 6700 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6701 ext4_stop_mmpd(sbi); 6702 6703 return 0; 6704 6705 restore_opts: 6706 /* 6707 * If there was a failing r/w to ro transition, we may need to 6708 * re-enable quota 6709 */ 6710 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6711 sb_any_quota_suspended(sb)) 6712 dquot_resume(sb, -1); 6713 6714 alloc_ctx = ext4_writepages_down_write(sb); 6715 sb->s_flags = old_sb_flags; 6716 sbi->s_mount_opt = old_opts.s_mount_opt; 6717 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6718 sbi->s_resuid = old_opts.s_resuid; 6719 sbi->s_resgid = old_opts.s_resgid; 6720 sbi->s_commit_interval = old_opts.s_commit_interval; 6721 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6722 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6723 ext4_writepages_up_write(sb, alloc_ctx); 6724 6725 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6726 ext4_release_system_zone(sb); 6727 #ifdef CONFIG_QUOTA 6728 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6729 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6730 to_free[i] = get_qf_name(sb, sbi, i); 6731 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6732 } 6733 synchronize_rcu(); 6734 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6735 kfree(to_free[i]); 6736 #endif 6737 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6738 ext4_stop_mmpd(sbi); 6739 return err; 6740 } 6741 6742 static int ext4_reconfigure(struct fs_context *fc) 6743 { 6744 struct super_block *sb = fc->root->d_sb; 6745 int ret; 6746 6747 fc->s_fs_info = EXT4_SB(sb); 6748 6749 ret = ext4_check_opt_consistency(fc, sb); 6750 if (ret < 0) 6751 return ret; 6752 6753 ret = __ext4_remount(fc, sb); 6754 if (ret < 0) 6755 return ret; 6756 6757 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6758 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6759 ext4_quota_mode(sb)); 6760 6761 return 0; 6762 } 6763 6764 #ifdef CONFIG_QUOTA 6765 static int ext4_statfs_project(struct super_block *sb, 6766 kprojid_t projid, struct kstatfs *buf) 6767 { 6768 struct kqid qid; 6769 struct dquot *dquot; 6770 u64 limit; 6771 u64 curblock; 6772 6773 qid = make_kqid_projid(projid); 6774 dquot = dqget(sb, qid); 6775 if (IS_ERR(dquot)) 6776 return PTR_ERR(dquot); 6777 spin_lock(&dquot->dq_dqb_lock); 6778 6779 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6780 dquot->dq_dqb.dqb_bhardlimit); 6781 limit >>= sb->s_blocksize_bits; 6782 6783 if (limit && buf->f_blocks > limit) { 6784 curblock = (dquot->dq_dqb.dqb_curspace + 6785 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6786 buf->f_blocks = limit; 6787 buf->f_bfree = buf->f_bavail = 6788 (buf->f_blocks > curblock) ? 6789 (buf->f_blocks - curblock) : 0; 6790 } 6791 6792 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6793 dquot->dq_dqb.dqb_ihardlimit); 6794 if (limit && buf->f_files > limit) { 6795 buf->f_files = limit; 6796 buf->f_ffree = 6797 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6798 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6799 } 6800 6801 spin_unlock(&dquot->dq_dqb_lock); 6802 dqput(dquot); 6803 return 0; 6804 } 6805 #endif 6806 6807 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6808 { 6809 struct super_block *sb = dentry->d_sb; 6810 struct ext4_sb_info *sbi = EXT4_SB(sb); 6811 struct ext4_super_block *es = sbi->s_es; 6812 ext4_fsblk_t overhead = 0, resv_blocks; 6813 s64 bfree; 6814 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6815 6816 if (!test_opt(sb, MINIX_DF)) 6817 overhead = sbi->s_overhead; 6818 6819 buf->f_type = EXT4_SUPER_MAGIC; 6820 buf->f_bsize = sb->s_blocksize; 6821 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6822 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6823 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6824 /* prevent underflow in case that few free space is available */ 6825 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6826 buf->f_bavail = buf->f_bfree - 6827 (ext4_r_blocks_count(es) + resv_blocks); 6828 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6829 buf->f_bavail = 0; 6830 buf->f_files = le32_to_cpu(es->s_inodes_count); 6831 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6832 buf->f_namelen = EXT4_NAME_LEN; 6833 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6834 6835 #ifdef CONFIG_QUOTA 6836 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6837 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6838 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6839 #endif 6840 return 0; 6841 } 6842 6843 6844 #ifdef CONFIG_QUOTA 6845 6846 /* 6847 * Helper functions so that transaction is started before we acquire dqio_sem 6848 * to keep correct lock ordering of transaction > dqio_sem 6849 */ 6850 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6851 { 6852 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6853 } 6854 6855 static int ext4_write_dquot(struct dquot *dquot) 6856 { 6857 int ret, err; 6858 handle_t *handle; 6859 struct inode *inode; 6860 6861 inode = dquot_to_inode(dquot); 6862 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6863 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6864 if (IS_ERR(handle)) 6865 return PTR_ERR(handle); 6866 ret = dquot_commit(dquot); 6867 err = ext4_journal_stop(handle); 6868 if (!ret) 6869 ret = err; 6870 return ret; 6871 } 6872 6873 static int ext4_acquire_dquot(struct dquot *dquot) 6874 { 6875 int ret, err; 6876 handle_t *handle; 6877 6878 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6879 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6880 if (IS_ERR(handle)) 6881 return PTR_ERR(handle); 6882 ret = dquot_acquire(dquot); 6883 err = ext4_journal_stop(handle); 6884 if (!ret) 6885 ret = err; 6886 return ret; 6887 } 6888 6889 static int ext4_release_dquot(struct dquot *dquot) 6890 { 6891 int ret, err; 6892 handle_t *handle; 6893 6894 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6895 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6896 if (IS_ERR(handle)) { 6897 /* Release dquot anyway to avoid endless cycle in dqput() */ 6898 dquot_release(dquot); 6899 return PTR_ERR(handle); 6900 } 6901 ret = dquot_release(dquot); 6902 err = ext4_journal_stop(handle); 6903 if (!ret) 6904 ret = err; 6905 return ret; 6906 } 6907 6908 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6909 { 6910 struct super_block *sb = dquot->dq_sb; 6911 6912 if (ext4_is_quota_journalled(sb)) { 6913 dquot_mark_dquot_dirty(dquot); 6914 return ext4_write_dquot(dquot); 6915 } else { 6916 return dquot_mark_dquot_dirty(dquot); 6917 } 6918 } 6919 6920 static int ext4_write_info(struct super_block *sb, int type) 6921 { 6922 int ret, err; 6923 handle_t *handle; 6924 6925 /* Data block + inode block */ 6926 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6927 if (IS_ERR(handle)) 6928 return PTR_ERR(handle); 6929 ret = dquot_commit_info(sb, type); 6930 err = ext4_journal_stop(handle); 6931 if (!ret) 6932 ret = err; 6933 return ret; 6934 } 6935 6936 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6937 { 6938 struct ext4_inode_info *ei = EXT4_I(inode); 6939 6940 /* The first argument of lockdep_set_subclass has to be 6941 * *exactly* the same as the argument to init_rwsem() --- in 6942 * this case, in init_once() --- or lockdep gets unhappy 6943 * because the name of the lock is set using the 6944 * stringification of the argument to init_rwsem(). 6945 */ 6946 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6947 lockdep_set_subclass(&ei->i_data_sem, subclass); 6948 } 6949 6950 /* 6951 * Standard function to be called on quota_on 6952 */ 6953 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6954 const struct path *path) 6955 { 6956 int err; 6957 6958 if (!test_opt(sb, QUOTA)) 6959 return -EINVAL; 6960 6961 /* Quotafile not on the same filesystem? */ 6962 if (path->dentry->d_sb != sb) 6963 return -EXDEV; 6964 6965 /* Quota already enabled for this file? */ 6966 if (IS_NOQUOTA(d_inode(path->dentry))) 6967 return -EBUSY; 6968 6969 /* Journaling quota? */ 6970 if (EXT4_SB(sb)->s_qf_names[type]) { 6971 /* Quotafile not in fs root? */ 6972 if (path->dentry->d_parent != sb->s_root) 6973 ext4_msg(sb, KERN_WARNING, 6974 "Quota file not on filesystem root. " 6975 "Journaled quota will not work"); 6976 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6977 } else { 6978 /* 6979 * Clear the flag just in case mount options changed since 6980 * last time. 6981 */ 6982 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6983 } 6984 6985 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6986 err = dquot_quota_on(sb, type, format_id, path); 6987 if (!err) { 6988 struct inode *inode = d_inode(path->dentry); 6989 handle_t *handle; 6990 6991 /* 6992 * Set inode flags to prevent userspace from messing with quota 6993 * files. If this fails, we return success anyway since quotas 6994 * are already enabled and this is not a hard failure. 6995 */ 6996 inode_lock(inode); 6997 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6998 if (IS_ERR(handle)) 6999 goto unlock_inode; 7000 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7001 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7002 S_NOATIME | S_IMMUTABLE); 7003 err = ext4_mark_inode_dirty(handle, inode); 7004 ext4_journal_stop(handle); 7005 unlock_inode: 7006 inode_unlock(inode); 7007 if (err) 7008 dquot_quota_off(sb, type); 7009 } 7010 if (err) 7011 lockdep_set_quota_inode(path->dentry->d_inode, 7012 I_DATA_SEM_NORMAL); 7013 return err; 7014 } 7015 7016 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7017 { 7018 switch (type) { 7019 case USRQUOTA: 7020 return qf_inum == EXT4_USR_QUOTA_INO; 7021 case GRPQUOTA: 7022 return qf_inum == EXT4_GRP_QUOTA_INO; 7023 case PRJQUOTA: 7024 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7025 default: 7026 BUG(); 7027 } 7028 } 7029 7030 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7031 unsigned int flags) 7032 { 7033 int err; 7034 struct inode *qf_inode; 7035 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7036 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7037 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7038 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7039 }; 7040 7041 BUG_ON(!ext4_has_feature_quota(sb)); 7042 7043 if (!qf_inums[type]) 7044 return -EPERM; 7045 7046 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7047 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7048 qf_inums[type], type); 7049 return -EUCLEAN; 7050 } 7051 7052 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7053 if (IS_ERR(qf_inode)) { 7054 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7055 qf_inums[type], type); 7056 return PTR_ERR(qf_inode); 7057 } 7058 7059 /* Don't account quota for quota files to avoid recursion */ 7060 qf_inode->i_flags |= S_NOQUOTA; 7061 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7062 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7063 if (err) 7064 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7065 iput(qf_inode); 7066 7067 return err; 7068 } 7069 7070 /* Enable usage tracking for all quota types. */ 7071 int ext4_enable_quotas(struct super_block *sb) 7072 { 7073 int type, err = 0; 7074 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7075 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7076 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7077 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7078 }; 7079 bool quota_mopt[EXT4_MAXQUOTAS] = { 7080 test_opt(sb, USRQUOTA), 7081 test_opt(sb, GRPQUOTA), 7082 test_opt(sb, PRJQUOTA), 7083 }; 7084 7085 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7086 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7087 if (qf_inums[type]) { 7088 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7089 DQUOT_USAGE_ENABLED | 7090 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7091 if (err) { 7092 ext4_warning(sb, 7093 "Failed to enable quota tracking " 7094 "(type=%d, err=%d, ino=%lu). " 7095 "Please run e2fsck to fix.", type, 7096 err, qf_inums[type]); 7097 7098 ext4_quotas_off(sb, type); 7099 return err; 7100 } 7101 } 7102 } 7103 return 0; 7104 } 7105 7106 static int ext4_quota_off(struct super_block *sb, int type) 7107 { 7108 struct inode *inode = sb_dqopt(sb)->files[type]; 7109 handle_t *handle; 7110 int err; 7111 7112 /* Force all delayed allocation blocks to be allocated. 7113 * Caller already holds s_umount sem */ 7114 if (test_opt(sb, DELALLOC)) 7115 sync_filesystem(sb); 7116 7117 if (!inode || !igrab(inode)) 7118 goto out; 7119 7120 err = dquot_quota_off(sb, type); 7121 if (err || ext4_has_feature_quota(sb)) 7122 goto out_put; 7123 /* 7124 * When the filesystem was remounted read-only first, we cannot cleanup 7125 * inode flags here. Bad luck but people should be using QUOTA feature 7126 * these days anyway. 7127 */ 7128 if (sb_rdonly(sb)) 7129 goto out_put; 7130 7131 inode_lock(inode); 7132 /* 7133 * Update modification times of quota files when userspace can 7134 * start looking at them. If we fail, we return success anyway since 7135 * this is not a hard failure and quotas are already disabled. 7136 */ 7137 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7138 if (IS_ERR(handle)) { 7139 err = PTR_ERR(handle); 7140 goto out_unlock; 7141 } 7142 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7143 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7144 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7145 err = ext4_mark_inode_dirty(handle, inode); 7146 ext4_journal_stop(handle); 7147 out_unlock: 7148 inode_unlock(inode); 7149 out_put: 7150 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7151 iput(inode); 7152 return err; 7153 out: 7154 return dquot_quota_off(sb, type); 7155 } 7156 7157 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7158 * acquiring the locks... As quota files are never truncated and quota code 7159 * itself serializes the operations (and no one else should touch the files) 7160 * we don't have to be afraid of races */ 7161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7162 size_t len, loff_t off) 7163 { 7164 struct inode *inode = sb_dqopt(sb)->files[type]; 7165 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7166 int offset = off & (sb->s_blocksize - 1); 7167 int tocopy; 7168 size_t toread; 7169 struct buffer_head *bh; 7170 loff_t i_size = i_size_read(inode); 7171 7172 if (off > i_size) 7173 return 0; 7174 if (off+len > i_size) 7175 len = i_size-off; 7176 toread = len; 7177 while (toread > 0) { 7178 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7179 bh = ext4_bread(NULL, inode, blk, 0); 7180 if (IS_ERR(bh)) 7181 return PTR_ERR(bh); 7182 if (!bh) /* A hole? */ 7183 memset(data, 0, tocopy); 7184 else 7185 memcpy(data, bh->b_data+offset, tocopy); 7186 brelse(bh); 7187 offset = 0; 7188 toread -= tocopy; 7189 data += tocopy; 7190 blk++; 7191 } 7192 return len; 7193 } 7194 7195 /* Write to quotafile (we know the transaction is already started and has 7196 * enough credits) */ 7197 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7198 const char *data, size_t len, loff_t off) 7199 { 7200 struct inode *inode = sb_dqopt(sb)->files[type]; 7201 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7202 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7203 int retries = 0; 7204 struct buffer_head *bh; 7205 handle_t *handle = journal_current_handle(); 7206 7207 if (!handle) { 7208 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7209 " cancelled because transaction is not started", 7210 (unsigned long long)off, (unsigned long long)len); 7211 return -EIO; 7212 } 7213 /* 7214 * Since we account only one data block in transaction credits, 7215 * then it is impossible to cross a block boundary. 7216 */ 7217 if (sb->s_blocksize - offset < len) { 7218 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7219 " cancelled because not block aligned", 7220 (unsigned long long)off, (unsigned long long)len); 7221 return -EIO; 7222 } 7223 7224 do { 7225 bh = ext4_bread(handle, inode, blk, 7226 EXT4_GET_BLOCKS_CREATE | 7227 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7228 } while (PTR_ERR(bh) == -ENOSPC && 7229 ext4_should_retry_alloc(inode->i_sb, &retries)); 7230 if (IS_ERR(bh)) 7231 return PTR_ERR(bh); 7232 if (!bh) 7233 goto out; 7234 BUFFER_TRACE(bh, "get write access"); 7235 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7236 if (err) { 7237 brelse(bh); 7238 return err; 7239 } 7240 lock_buffer(bh); 7241 memcpy(bh->b_data+offset, data, len); 7242 flush_dcache_page(bh->b_page); 7243 unlock_buffer(bh); 7244 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7245 brelse(bh); 7246 out: 7247 if (inode->i_size < off + len) { 7248 i_size_write(inode, off + len); 7249 EXT4_I(inode)->i_disksize = inode->i_size; 7250 err2 = ext4_mark_inode_dirty(handle, inode); 7251 if (unlikely(err2 && !err)) 7252 err = err2; 7253 } 7254 return err ? err : len; 7255 } 7256 #endif 7257 7258 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7259 static inline void register_as_ext2(void) 7260 { 7261 int err = register_filesystem(&ext2_fs_type); 7262 if (err) 7263 printk(KERN_WARNING 7264 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7265 } 7266 7267 static inline void unregister_as_ext2(void) 7268 { 7269 unregister_filesystem(&ext2_fs_type); 7270 } 7271 7272 static inline int ext2_feature_set_ok(struct super_block *sb) 7273 { 7274 if (ext4_has_unknown_ext2_incompat_features(sb)) 7275 return 0; 7276 if (sb_rdonly(sb)) 7277 return 1; 7278 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7279 return 0; 7280 return 1; 7281 } 7282 #else 7283 static inline void register_as_ext2(void) { } 7284 static inline void unregister_as_ext2(void) { } 7285 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7286 #endif 7287 7288 static inline void register_as_ext3(void) 7289 { 7290 int err = register_filesystem(&ext3_fs_type); 7291 if (err) 7292 printk(KERN_WARNING 7293 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7294 } 7295 7296 static inline void unregister_as_ext3(void) 7297 { 7298 unregister_filesystem(&ext3_fs_type); 7299 } 7300 7301 static inline int ext3_feature_set_ok(struct super_block *sb) 7302 { 7303 if (ext4_has_unknown_ext3_incompat_features(sb)) 7304 return 0; 7305 if (!ext4_has_feature_journal(sb)) 7306 return 0; 7307 if (sb_rdonly(sb)) 7308 return 1; 7309 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7310 return 0; 7311 return 1; 7312 } 7313 7314 static void ext4_kill_sb(struct super_block *sb) 7315 { 7316 struct ext4_sb_info *sbi = EXT4_SB(sb); 7317 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7318 7319 kill_block_super(sb); 7320 7321 if (bdev_file) 7322 fput(bdev_file); 7323 } 7324 7325 static struct file_system_type ext4_fs_type = { 7326 .owner = THIS_MODULE, 7327 .name = "ext4", 7328 .init_fs_context = ext4_init_fs_context, 7329 .parameters = ext4_param_specs, 7330 .kill_sb = ext4_kill_sb, 7331 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7332 }; 7333 MODULE_ALIAS_FS("ext4"); 7334 7335 /* Shared across all ext4 file systems */ 7336 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7337 7338 static int __init ext4_init_fs(void) 7339 { 7340 int i, err; 7341 7342 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7343 ext4_li_info = NULL; 7344 7345 /* Build-time check for flags consistency */ 7346 ext4_check_flag_values(); 7347 7348 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7349 init_waitqueue_head(&ext4__ioend_wq[i]); 7350 7351 err = ext4_init_es(); 7352 if (err) 7353 return err; 7354 7355 err = ext4_init_pending(); 7356 if (err) 7357 goto out7; 7358 7359 err = ext4_init_post_read_processing(); 7360 if (err) 7361 goto out6; 7362 7363 err = ext4_init_pageio(); 7364 if (err) 7365 goto out5; 7366 7367 err = ext4_init_system_zone(); 7368 if (err) 7369 goto out4; 7370 7371 err = ext4_init_sysfs(); 7372 if (err) 7373 goto out3; 7374 7375 err = ext4_init_mballoc(); 7376 if (err) 7377 goto out2; 7378 err = init_inodecache(); 7379 if (err) 7380 goto out1; 7381 7382 err = ext4_fc_init_dentry_cache(); 7383 if (err) 7384 goto out05; 7385 7386 register_as_ext3(); 7387 register_as_ext2(); 7388 err = register_filesystem(&ext4_fs_type); 7389 if (err) 7390 goto out; 7391 7392 return 0; 7393 out: 7394 unregister_as_ext2(); 7395 unregister_as_ext3(); 7396 ext4_fc_destroy_dentry_cache(); 7397 out05: 7398 destroy_inodecache(); 7399 out1: 7400 ext4_exit_mballoc(); 7401 out2: 7402 ext4_exit_sysfs(); 7403 out3: 7404 ext4_exit_system_zone(); 7405 out4: 7406 ext4_exit_pageio(); 7407 out5: 7408 ext4_exit_post_read_processing(); 7409 out6: 7410 ext4_exit_pending(); 7411 out7: 7412 ext4_exit_es(); 7413 7414 return err; 7415 } 7416 7417 static void __exit ext4_exit_fs(void) 7418 { 7419 ext4_destroy_lazyinit_thread(); 7420 unregister_as_ext2(); 7421 unregister_as_ext3(); 7422 unregister_filesystem(&ext4_fs_type); 7423 ext4_fc_destroy_dentry_cache(); 7424 destroy_inodecache(); 7425 ext4_exit_mballoc(); 7426 ext4_exit_sysfs(); 7427 ext4_exit_system_zone(); 7428 ext4_exit_pageio(); 7429 ext4_exit_post_read_processing(); 7430 ext4_exit_es(); 7431 ext4_exit_pending(); 7432 } 7433 7434 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7435 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7436 MODULE_LICENSE("GPL"); 7437 MODULE_SOFTDEP("pre: crc32c"); 7438 module_init(ext4_init_fs) 7439 module_exit(ext4_exit_fs) 7440