xref: /linux/fs/ext4/super.c (revision daa121128a2d2ac6006159e2c47676e4fcd21eab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io)
165 {
166 	/*
167 	 * buffer's verified bit is no longer valid after reading from
168 	 * disk again due to write out error, clear it to make sure we
169 	 * recheck the buffer contents.
170 	 */
171 	clear_buffer_verified(bh);
172 
173 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 	get_bh(bh);
175 	submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 			 bh_end_io_t *end_io)
180 {
181 	BUG_ON(!buffer_locked(bh));
182 
183 	if (ext4_buffer_uptodate(bh)) {
184 		unlock_buffer(bh);
185 		return;
186 	}
187 	__ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 	BUG_ON(!buffer_locked(bh));
193 
194 	if (ext4_buffer_uptodate(bh)) {
195 		unlock_buffer(bh);
196 		return 0;
197 	}
198 
199 	__ext4_read_bh(bh, op_flags, end_io);
200 
201 	wait_on_buffer(bh);
202 	if (buffer_uptodate(bh))
203 		return 0;
204 	return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 	lock_buffer(bh);
210 	if (!wait) {
211 		ext4_read_bh_nowait(bh, op_flags, NULL);
212 		return 0;
213 	}
214 	return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 					       sector_t block,
225 					       blk_opf_t op_flags, gfp_t gfp)
226 {
227 	struct buffer_head *bh;
228 	int ret;
229 
230 	bh = sb_getblk_gfp(sb, block, gfp);
231 	if (bh == NULL)
232 		return ERR_PTR(-ENOMEM);
233 	if (ext4_buffer_uptodate(bh))
234 		return bh;
235 
236 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 	if (ret) {
238 		put_bh(bh);
239 		return ERR_PTR(ret);
240 	}
241 	return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 				   blk_opf_t op_flags)
246 {
247 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
248 			~__GFP_FS) | __GFP_MOVABLE;
249 
250 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
251 }
252 
253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
254 					    sector_t block)
255 {
256 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
257 			~__GFP_FS);
258 
259 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
260 }
261 
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
263 {
264 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
265 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
266 
267 	if (likely(bh)) {
268 		if (trylock_buffer(bh))
269 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
270 		brelse(bh);
271 	}
272 }
273 
274 static int ext4_verify_csum_type(struct super_block *sb,
275 				 struct ext4_super_block *es)
276 {
277 	if (!ext4_has_feature_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282 
283 __le32 ext4_superblock_csum(struct super_block *sb,
284 			    struct ext4_super_block *es)
285 {
286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
287 	int offset = offsetof(struct ext4_super_block, s_checksum);
288 	__u32 csum;
289 
290 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291 
292 	return cpu_to_le32(csum);
293 }
294 
295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 				       struct ext4_super_block *es)
297 {
298 	if (!ext4_has_metadata_csum(sb))
299 		return 1;
300 
301 	return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303 
304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307 
308 	if (!ext4_has_metadata_csum(sb))
309 		return;
310 
311 	es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313 
314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321 
322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 			       struct ext4_group_desc *bg)
324 {
325 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329 
330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le32_to_cpu(bg->bg_inode_table_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337 
338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 			       struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345 
346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 			      struct ext4_group_desc *bg)
348 {
349 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
350 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 }
353 
354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 			      struct ext4_group_desc *bg)
356 {
357 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361 
362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 			      struct ext4_group_desc *bg)
364 {
365 	return le16_to_cpu(bg->bg_itable_unused_lo) |
366 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369 
370 void ext4_block_bitmap_set(struct super_block *sb,
371 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
378 void ext4_inode_bitmap_set(struct super_block *sb,
379 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385 
386 void ext4_inode_table_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393 
394 void ext4_free_group_clusters_set(struct super_block *sb,
395 				  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401 
402 void ext4_free_inodes_set(struct super_block *sb,
403 			  struct ext4_group_desc *bg, __u32 count)
404 {
405 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
406 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 }
409 
410 void ext4_used_dirs_set(struct super_block *sb,
411 			  struct ext4_group_desc *bg, __u32 count)
412 {
413 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417 
418 void ext4_itable_unused_set(struct super_block *sb,
419 			  struct ext4_group_desc *bg, __u32 count)
420 {
421 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425 
426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 	now = clamp_val(now, 0, (1ull << 40) - 1);
429 
430 	*lo = cpu_to_le32(lower_32_bits(now));
431 	*hi = upper_32_bits(now);
432 }
433 
434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 			     ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446 
447 /*
448  * The ext4_maybe_update_superblock() function checks and updates the
449  * superblock if needed.
450  *
451  * This function is designed to update the on-disk superblock only under
452  * certain conditions to prevent excessive disk writes and unnecessary
453  * waking of the disk from sleep. The superblock will be updated if:
454  * 1. More than an hour has passed since the last superblock update, and
455  * 2. More than 16MB have been written since the last superblock update.
456  *
457  * @sb: The superblock
458  */
459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 	struct ext4_sb_info *sbi = EXT4_SB(sb);
462 	struct ext4_super_block *es = sbi->s_es;
463 	journal_t *journal = sbi->s_journal;
464 	time64_t now;
465 	__u64 last_update;
466 	__u64 lifetime_write_kbytes;
467 	__u64 diff_size;
468 
469 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
471 		return;
472 
473 	now = ktime_get_real_seconds();
474 	last_update = ext4_get_tstamp(es, s_wtime);
475 
476 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 		return;
478 
479 	lifetime_write_kbytes = sbi->s_kbytes_written +
480 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 		  sbi->s_sectors_written_start) >> 1);
482 
483 	/* Get the number of kilobytes not written to disk to account
484 	 * for statistics and compare with a multiple of 16 MB. This
485 	 * is used to determine when the next superblock commit should
486 	 * occur (i.e. not more often than once per 16MB if there was
487 	 * less written in an hour).
488 	 */
489 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490 
491 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494 
495 /*
496  * The del_gendisk() function uninitializes the disk-specific data
497  * structures, including the bdi structure, without telling anyone
498  * else.  Once this happens, any attempt to call mark_buffer_dirty()
499  * (for example, by ext4_commit_super), will cause a kernel OOPS.
500  * This is a kludge to prevent these oops until we can put in a proper
501  * hook in del_gendisk() to inform the VFS and file system layers.
502  */
503 static int block_device_ejected(struct super_block *sb)
504 {
505 	struct inode *bd_inode = sb->s_bdev->bd_inode;
506 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507 
508 	return bdi->dev == NULL;
509 }
510 
511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 	struct super_block		*sb = journal->j_private;
514 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
515 	int				error = is_journal_aborted(journal);
516 	struct ext4_journal_cb_entry	*jce;
517 
518 	BUG_ON(txn->t_state == T_FINISHED);
519 
520 	ext4_process_freed_data(sb, txn->t_tid);
521 	ext4_maybe_update_superblock(sb);
522 
523 	spin_lock(&sbi->s_md_lock);
524 	while (!list_empty(&txn->t_private_list)) {
525 		jce = list_entry(txn->t_private_list.next,
526 				 struct ext4_journal_cb_entry, jce_list);
527 		list_del_init(&jce->jce_list);
528 		spin_unlock(&sbi->s_md_lock);
529 		jce->jce_func(sb, jce, error);
530 		spin_lock(&sbi->s_md_lock);
531 	}
532 	spin_unlock(&sbi->s_md_lock);
533 }
534 
535 /*
536  * This writepage callback for write_cache_pages()
537  * takes care of a few cases after page cleaning.
538  *
539  * write_cache_pages() already checks for dirty pages
540  * and calls clear_page_dirty_for_io(), which we want,
541  * to write protect the pages.
542  *
543  * However, we may have to redirty a page (see below.)
544  */
545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 					      struct writeback_control *wbc,
547 					      void *data)
548 {
549 	transaction_t *transaction = (transaction_t *) data;
550 	struct buffer_head *bh, *head;
551 	struct journal_head *jh;
552 
553 	bh = head = folio_buffers(folio);
554 	do {
555 		/*
556 		 * We have to redirty a page in these cases:
557 		 * 1) If buffer is dirty, it means the page was dirty because it
558 		 * contains a buffer that needs checkpointing. So the dirty bit
559 		 * needs to be preserved so that checkpointing writes the buffer
560 		 * properly.
561 		 * 2) If buffer is not part of the committing transaction
562 		 * (we may have just accidentally come across this buffer because
563 		 * inode range tracking is not exact) or if the currently running
564 		 * transaction already contains this buffer as well, dirty bit
565 		 * needs to be preserved so that the buffer gets writeprotected
566 		 * properly on running transaction's commit.
567 		 */
568 		jh = bh2jh(bh);
569 		if (buffer_dirty(bh) ||
570 		    (jh && (jh->b_transaction != transaction ||
571 			    jh->b_next_transaction))) {
572 			folio_redirty_for_writepage(wbc, folio);
573 			goto out;
574 		}
575 	} while ((bh = bh->b_this_page) != head);
576 
577 out:
578 	return AOP_WRITEPAGE_ACTIVATE;
579 }
580 
581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 	struct writeback_control wbc = {
585 		.sync_mode =  WB_SYNC_ALL,
586 		.nr_to_write = LONG_MAX,
587 		.range_start = jinode->i_dirty_start,
588 		.range_end = jinode->i_dirty_end,
589         };
590 
591 	return write_cache_pages(mapping, &wbc,
592 				 ext4_journalled_writepage_callback,
593 				 jinode->i_transaction);
594 }
595 
596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 	int ret;
599 
600 	if (ext4_should_journal_data(jinode->i_vfs_inode))
601 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 	else
603 		ret = ext4_normal_submit_inode_data_buffers(jinode);
604 	return ret;
605 }
606 
607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 	int ret = 0;
610 
611 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
613 
614 	return ret;
615 }
616 
617 static bool system_going_down(void)
618 {
619 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 		|| system_state == SYSTEM_RESTART;
621 }
622 
623 struct ext4_err_translation {
624 	int code;
625 	int errno;
626 };
627 
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629 
630 static struct ext4_err_translation err_translation[] = {
631 	EXT4_ERR_TRANSLATE(EIO),
632 	EXT4_ERR_TRANSLATE(ENOMEM),
633 	EXT4_ERR_TRANSLATE(EFSBADCRC),
634 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 	EXT4_ERR_TRANSLATE(ENOSPC),
636 	EXT4_ERR_TRANSLATE(ENOKEY),
637 	EXT4_ERR_TRANSLATE(EROFS),
638 	EXT4_ERR_TRANSLATE(EFBIG),
639 	EXT4_ERR_TRANSLATE(EEXIST),
640 	EXT4_ERR_TRANSLATE(ERANGE),
641 	EXT4_ERR_TRANSLATE(EOVERFLOW),
642 	EXT4_ERR_TRANSLATE(EBUSY),
643 	EXT4_ERR_TRANSLATE(ENOTDIR),
644 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 	EXT4_ERR_TRANSLATE(EFAULT),
647 };
648 
649 static int ext4_errno_to_code(int errno)
650 {
651 	int i;
652 
653 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 		if (err_translation[i].errno == errno)
655 			return err_translation[i].code;
656 	return EXT4_ERR_UNKNOWN;
657 }
658 
659 static void save_error_info(struct super_block *sb, int error,
660 			    __u32 ino, __u64 block,
661 			    const char *func, unsigned int line)
662 {
663 	struct ext4_sb_info *sbi = EXT4_SB(sb);
664 
665 	/* We default to EFSCORRUPTED error... */
666 	if (error == 0)
667 		error = EFSCORRUPTED;
668 
669 	spin_lock(&sbi->s_error_lock);
670 	sbi->s_add_error_count++;
671 	sbi->s_last_error_code = error;
672 	sbi->s_last_error_line = line;
673 	sbi->s_last_error_ino = ino;
674 	sbi->s_last_error_block = block;
675 	sbi->s_last_error_func = func;
676 	sbi->s_last_error_time = ktime_get_real_seconds();
677 	if (!sbi->s_first_error_time) {
678 		sbi->s_first_error_code = error;
679 		sbi->s_first_error_line = line;
680 		sbi->s_first_error_ino = ino;
681 		sbi->s_first_error_block = block;
682 		sbi->s_first_error_func = func;
683 		sbi->s_first_error_time = sbi->s_last_error_time;
684 	}
685 	spin_unlock(&sbi->s_error_lock);
686 }
687 
688 /* Deal with the reporting of failure conditions on a filesystem such as
689  * inconsistencies detected or read IO failures.
690  *
691  * On ext2, we can store the error state of the filesystem in the
692  * superblock.  That is not possible on ext4, because we may have other
693  * write ordering constraints on the superblock which prevent us from
694  * writing it out straight away; and given that the journal is about to
695  * be aborted, we can't rely on the current, or future, transactions to
696  * write out the superblock safely.
697  *
698  * We'll just use the jbd2_journal_abort() error code to record an error in
699  * the journal instead.  On recovery, the journal will complain about
700  * that error until we've noted it down and cleared it.
701  *
702  * If force_ro is set, we unconditionally force the filesystem into an
703  * ABORT|READONLY state, unless the error response on the fs has been set to
704  * panic in which case we take the easy way out and panic immediately. This is
705  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706  * at a critical moment in log management.
707  */
708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 			      __u32 ino, __u64 block,
710 			      const char *func, unsigned int line)
711 {
712 	journal_t *journal = EXT4_SB(sb)->s_journal;
713 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714 
715 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 	if (test_opt(sb, WARN_ON_ERROR))
717 		WARN_ON_ONCE(1);
718 
719 	if (!continue_fs && !sb_rdonly(sb)) {
720 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 		if (journal)
722 			jbd2_journal_abort(journal, -EIO);
723 	}
724 
725 	if (!bdev_read_only(sb->s_bdev)) {
726 		save_error_info(sb, error, ino, block, func, line);
727 		/*
728 		 * In case the fs should keep running, we need to writeout
729 		 * superblock through the journal. Due to lock ordering
730 		 * constraints, it may not be safe to do it right here so we
731 		 * defer superblock flushing to a workqueue.
732 		 */
733 		if (continue_fs && journal)
734 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
735 		else
736 			ext4_commit_super(sb);
737 	}
738 
739 	/*
740 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 	 * could panic during 'reboot -f' as the underlying device got already
742 	 * disabled.
743 	 */
744 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 		panic("EXT4-fs (device %s): panic forced after error\n",
746 			sb->s_id);
747 	}
748 
749 	if (sb_rdonly(sb) || continue_fs)
750 		return;
751 
752 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
753 	/*
754 	 * Make sure updated value of ->s_mount_flags will be visible before
755 	 * ->s_flags update
756 	 */
757 	smp_wmb();
758 	sb->s_flags |= SB_RDONLY;
759 }
760 
761 static void update_super_work(struct work_struct *work)
762 {
763 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
764 						s_sb_upd_work);
765 	journal_t *journal = sbi->s_journal;
766 	handle_t *handle;
767 
768 	/*
769 	 * If the journal is still running, we have to write out superblock
770 	 * through the journal to avoid collisions of other journalled sb
771 	 * updates.
772 	 *
773 	 * We use directly jbd2 functions here to avoid recursing back into
774 	 * ext4 error handling code during handling of previous errors.
775 	 */
776 	if (!sb_rdonly(sbi->s_sb) && journal) {
777 		struct buffer_head *sbh = sbi->s_sbh;
778 		bool call_notify_err = false;
779 
780 		handle = jbd2_journal_start(journal, 1);
781 		if (IS_ERR(handle))
782 			goto write_directly;
783 		if (jbd2_journal_get_write_access(handle, sbh)) {
784 			jbd2_journal_stop(handle);
785 			goto write_directly;
786 		}
787 
788 		if (sbi->s_add_error_count > 0)
789 			call_notify_err = true;
790 
791 		ext4_update_super(sbi->s_sb);
792 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
793 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
794 				 "superblock detected");
795 			clear_buffer_write_io_error(sbh);
796 			set_buffer_uptodate(sbh);
797 		}
798 
799 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
800 			jbd2_journal_stop(handle);
801 			goto write_directly;
802 		}
803 		jbd2_journal_stop(handle);
804 
805 		if (call_notify_err)
806 			ext4_notify_error_sysfs(sbi);
807 
808 		return;
809 	}
810 write_directly:
811 	/*
812 	 * Write through journal failed. Write sb directly to get error info
813 	 * out and hope for the best.
814 	 */
815 	ext4_commit_super(sbi->s_sb);
816 	ext4_notify_error_sysfs(sbi);
817 }
818 
819 #define ext4_error_ratelimit(sb)					\
820 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
821 			     "EXT4-fs error")
822 
823 void __ext4_error(struct super_block *sb, const char *function,
824 		  unsigned int line, bool force_ro, int error, __u64 block,
825 		  const char *fmt, ...)
826 {
827 	struct va_format vaf;
828 	va_list args;
829 
830 	if (unlikely(ext4_forced_shutdown(sb)))
831 		return;
832 
833 	trace_ext4_error(sb, function, line);
834 	if (ext4_error_ratelimit(sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		printk(KERN_CRIT
839 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
840 		       sb->s_id, function, line, current->comm, &vaf);
841 		va_end(args);
842 	}
843 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
844 
845 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
846 }
847 
848 void __ext4_error_inode(struct inode *inode, const char *function,
849 			unsigned int line, ext4_fsblk_t block, int error,
850 			const char *fmt, ...)
851 {
852 	va_list args;
853 	struct va_format vaf;
854 
855 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
856 		return;
857 
858 	trace_ext4_error(inode->i_sb, function, line);
859 	if (ext4_error_ratelimit(inode->i_sb)) {
860 		va_start(args, fmt);
861 		vaf.fmt = fmt;
862 		vaf.va = &args;
863 		if (block)
864 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
865 			       "inode #%lu: block %llu: comm %s: %pV\n",
866 			       inode->i_sb->s_id, function, line, inode->i_ino,
867 			       block, current->comm, &vaf);
868 		else
869 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
870 			       "inode #%lu: comm %s: %pV\n",
871 			       inode->i_sb->s_id, function, line, inode->i_ino,
872 			       current->comm, &vaf);
873 		va_end(args);
874 	}
875 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
876 
877 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
878 			  function, line);
879 }
880 
881 void __ext4_error_file(struct file *file, const char *function,
882 		       unsigned int line, ext4_fsblk_t block,
883 		       const char *fmt, ...)
884 {
885 	va_list args;
886 	struct va_format vaf;
887 	struct inode *inode = file_inode(file);
888 	char pathname[80], *path;
889 
890 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
891 		return;
892 
893 	trace_ext4_error(inode->i_sb, function, line);
894 	if (ext4_error_ratelimit(inode->i_sb)) {
895 		path = file_path(file, pathname, sizeof(pathname));
896 		if (IS_ERR(path))
897 			path = "(unknown)";
898 		va_start(args, fmt);
899 		vaf.fmt = fmt;
900 		vaf.va = &args;
901 		if (block)
902 			printk(KERN_CRIT
903 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
904 			       "block %llu: comm %s: path %s: %pV\n",
905 			       inode->i_sb->s_id, function, line, inode->i_ino,
906 			       block, current->comm, path, &vaf);
907 		else
908 			printk(KERN_CRIT
909 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
910 			       "comm %s: path %s: %pV\n",
911 			       inode->i_sb->s_id, function, line, inode->i_ino,
912 			       current->comm, path, &vaf);
913 		va_end(args);
914 	}
915 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
916 
917 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
918 			  function, line);
919 }
920 
921 const char *ext4_decode_error(struct super_block *sb, int errno,
922 			      char nbuf[16])
923 {
924 	char *errstr = NULL;
925 
926 	switch (errno) {
927 	case -EFSCORRUPTED:
928 		errstr = "Corrupt filesystem";
929 		break;
930 	case -EFSBADCRC:
931 		errstr = "Filesystem failed CRC";
932 		break;
933 	case -EIO:
934 		errstr = "IO failure";
935 		break;
936 	case -ENOMEM:
937 		errstr = "Out of memory";
938 		break;
939 	case -EROFS:
940 		if (!sb || (EXT4_SB(sb)->s_journal &&
941 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
942 			errstr = "Journal has aborted";
943 		else
944 			errstr = "Readonly filesystem";
945 		break;
946 	default:
947 		/* If the caller passed in an extra buffer for unknown
948 		 * errors, textualise them now.  Else we just return
949 		 * NULL. */
950 		if (nbuf) {
951 			/* Check for truncated error codes... */
952 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
953 				errstr = nbuf;
954 		}
955 		break;
956 	}
957 
958 	return errstr;
959 }
960 
961 /* __ext4_std_error decodes expected errors from journaling functions
962  * automatically and invokes the appropriate error response.  */
963 
964 void __ext4_std_error(struct super_block *sb, const char *function,
965 		      unsigned int line, int errno)
966 {
967 	char nbuf[16];
968 	const char *errstr;
969 
970 	if (unlikely(ext4_forced_shutdown(sb)))
971 		return;
972 
973 	/* Special case: if the error is EROFS, and we're not already
974 	 * inside a transaction, then there's really no point in logging
975 	 * an error. */
976 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
977 		return;
978 
979 	if (ext4_error_ratelimit(sb)) {
980 		errstr = ext4_decode_error(sb, errno, nbuf);
981 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
982 		       sb->s_id, function, line, errstr);
983 	}
984 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
985 
986 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
987 }
988 
989 void __ext4_msg(struct super_block *sb,
990 		const char *prefix, const char *fmt, ...)
991 {
992 	struct va_format vaf;
993 	va_list args;
994 
995 	if (sb) {
996 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
997 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
998 				  "EXT4-fs"))
999 			return;
1000 	}
1001 
1002 	va_start(args, fmt);
1003 	vaf.fmt = fmt;
1004 	vaf.va = &args;
1005 	if (sb)
1006 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007 	else
1008 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009 	va_end(args);
1010 }
1011 
1012 static int ext4_warning_ratelimit(struct super_block *sb)
1013 {
1014 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016 			    "EXT4-fs warning");
1017 }
1018 
1019 void __ext4_warning(struct super_block *sb, const char *function,
1020 		    unsigned int line, const char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	if (!ext4_warning_ratelimit(sb))
1026 		return;
1027 
1028 	va_start(args, fmt);
1029 	vaf.fmt = fmt;
1030 	vaf.va = &args;
1031 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032 	       sb->s_id, function, line, &vaf);
1033 	va_end(args);
1034 }
1035 
1036 void __ext4_warning_inode(const struct inode *inode, const char *function,
1037 			  unsigned int line, const char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	if (!ext4_warning_ratelimit(inode->i_sb))
1043 		return;
1044 
1045 	va_start(args, fmt);
1046 	vaf.fmt = fmt;
1047 	vaf.va = &args;
1048 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050 	       function, line, inode->i_ino, current->comm, &vaf);
1051 	va_end(args);
1052 }
1053 
1054 void __ext4_grp_locked_error(const char *function, unsigned int line,
1055 			     struct super_block *sb, ext4_group_t grp,
1056 			     unsigned long ino, ext4_fsblk_t block,
1057 			     const char *fmt, ...)
1058 __releases(bitlock)
1059 __acquires(bitlock)
1060 {
1061 	struct va_format vaf;
1062 	va_list args;
1063 
1064 	if (unlikely(ext4_forced_shutdown(sb)))
1065 		return;
1066 
1067 	trace_ext4_error(sb, function, line);
1068 	if (ext4_error_ratelimit(sb)) {
1069 		va_start(args, fmt);
1070 		vaf.fmt = fmt;
1071 		vaf.va = &args;
1072 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073 		       sb->s_id, function, line, grp);
1074 		if (ino)
1075 			printk(KERN_CONT "inode %lu: ", ino);
1076 		if (block)
1077 			printk(KERN_CONT "block %llu:",
1078 			       (unsigned long long) block);
1079 		printk(KERN_CONT "%pV\n", &vaf);
1080 		va_end(args);
1081 	}
1082 
1083 	if (test_opt(sb, ERRORS_CONT)) {
1084 		if (test_opt(sb, WARN_ON_ERROR))
1085 			WARN_ON_ONCE(1);
1086 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087 		if (!bdev_read_only(sb->s_bdev)) {
1088 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089 					line);
1090 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091 		}
1092 		return;
1093 	}
1094 	ext4_unlock_group(sb, grp);
1095 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096 	/*
1097 	 * We only get here in the ERRORS_RO case; relocking the group
1098 	 * may be dangerous, but nothing bad will happen since the
1099 	 * filesystem will have already been marked read/only and the
1100 	 * journal has been aborted.  We return 1 as a hint to callers
1101 	 * who might what to use the return value from
1102 	 * ext4_grp_locked_error() to distinguish between the
1103 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104 	 * aggressively from the ext4 function in question, with a
1105 	 * more appropriate error code.
1106 	 */
1107 	ext4_lock_group(sb, grp);
1108 	return;
1109 }
1110 
1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112 				     ext4_group_t group,
1113 				     unsigned int flags)
1114 {
1115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118 	int ret;
1119 
1120 	if (!grp || !gdp)
1121 		return;
1122 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124 					    &grp->bb_state);
1125 		if (!ret)
1126 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127 					   grp->bb_free);
1128 	}
1129 
1130 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132 					    &grp->bb_state);
1133 		if (!ret && gdp) {
1134 			int count;
1135 
1136 			count = ext4_free_inodes_count(sb, gdp);
1137 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138 					   count);
1139 		}
1140 	}
1141 }
1142 
1143 void ext4_update_dynamic_rev(struct super_block *sb)
1144 {
1145 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146 
1147 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148 		return;
1149 
1150 	ext4_warning(sb,
1151 		     "updating to rev %d because of new feature flag, "
1152 		     "running e2fsck is recommended",
1153 		     EXT4_DYNAMIC_REV);
1154 
1155 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158 	/* leave es->s_feature_*compat flags alone */
1159 	/* es->s_uuid will be set by e2fsck if empty */
1160 
1161 	/*
1162 	 * The rest of the superblock fields should be zero, and if not it
1163 	 * means they are likely already in use, so leave them alone.  We
1164 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165 	 */
1166 }
1167 
1168 static inline struct inode *orphan_list_entry(struct list_head *l)
1169 {
1170 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171 }
1172 
1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174 {
1175 	struct list_head *l;
1176 
1177 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179 
1180 	printk(KERN_ERR "sb_info orphan list:\n");
1181 	list_for_each(l, &sbi->s_orphan) {
1182 		struct inode *inode = orphan_list_entry(l);
1183 		printk(KERN_ERR "  "
1184 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185 		       inode->i_sb->s_id, inode->i_ino, inode,
1186 		       inode->i_mode, inode->i_nlink,
1187 		       NEXT_ORPHAN(inode));
1188 	}
1189 }
1190 
1191 #ifdef CONFIG_QUOTA
1192 static int ext4_quota_off(struct super_block *sb, int type);
1193 
1194 static inline void ext4_quotas_off(struct super_block *sb, int type)
1195 {
1196 	BUG_ON(type > EXT4_MAXQUOTAS);
1197 
1198 	/* Use our quota_off function to clear inode flags etc. */
1199 	for (type--; type >= 0; type--)
1200 		ext4_quota_off(sb, type);
1201 }
1202 
1203 /*
1204  * This is a helper function which is used in the mount/remount
1205  * codepaths (which holds s_umount) to fetch the quota file name.
1206  */
1207 static inline char *get_qf_name(struct super_block *sb,
1208 				struct ext4_sb_info *sbi,
1209 				int type)
1210 {
1211 	return rcu_dereference_protected(sbi->s_qf_names[type],
1212 					 lockdep_is_held(&sb->s_umount));
1213 }
1214 #else
1215 static inline void ext4_quotas_off(struct super_block *sb, int type)
1216 {
1217 }
1218 #endif
1219 
1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221 {
1222 	ext4_fsblk_t block;
1223 	int err;
1224 
1225 	block = ext4_count_free_clusters(sbi->s_sb);
1226 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228 				  GFP_KERNEL);
1229 	if (!err) {
1230 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233 					  GFP_KERNEL);
1234 	}
1235 	if (!err)
1236 		err = percpu_counter_init(&sbi->s_dirs_counter,
1237 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238 	if (!err)
1239 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240 					  GFP_KERNEL);
1241 	if (!err)
1242 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243 					  GFP_KERNEL);
1244 	if (!err)
1245 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246 
1247 	if (err)
1248 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249 
1250 	return err;
1251 }
1252 
1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254 {
1255 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257 	percpu_counter_destroy(&sbi->s_dirs_counter);
1258 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261 }
1262 
1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264 {
1265 	struct buffer_head **group_desc;
1266 	int i;
1267 
1268 	rcu_read_lock();
1269 	group_desc = rcu_dereference(sbi->s_group_desc);
1270 	for (i = 0; i < sbi->s_gdb_count; i++)
1271 		brelse(group_desc[i]);
1272 	kvfree(group_desc);
1273 	rcu_read_unlock();
1274 }
1275 
1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277 {
1278 	struct flex_groups **flex_groups;
1279 	int i;
1280 
1281 	rcu_read_lock();
1282 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283 	if (flex_groups) {
1284 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285 			kvfree(flex_groups[i]);
1286 		kvfree(flex_groups);
1287 	}
1288 	rcu_read_unlock();
1289 }
1290 
1291 static void ext4_put_super(struct super_block *sb)
1292 {
1293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294 	struct ext4_super_block *es = sbi->s_es;
1295 	int aborted = 0;
1296 	int err;
1297 
1298 	/*
1299 	 * Unregister sysfs before destroying jbd2 journal.
1300 	 * Since we could still access attr_journal_task attribute via sysfs
1301 	 * path which could have sbi->s_journal->j_task as NULL
1302 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304 	 * read metadata verify failed then will queue error work.
1305 	 * update_super_work will call start_this_handle may trigger
1306 	 * BUG_ON.
1307 	 */
1308 	ext4_unregister_sysfs(sb);
1309 
1310 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312 			 &sb->s_uuid);
1313 
1314 	ext4_unregister_li_request(sb);
1315 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316 
1317 	flush_work(&sbi->s_sb_upd_work);
1318 	destroy_workqueue(sbi->rsv_conversion_wq);
1319 	ext4_release_orphan_info(sb);
1320 
1321 	if (sbi->s_journal) {
1322 		aborted = is_journal_aborted(sbi->s_journal);
1323 		err = jbd2_journal_destroy(sbi->s_journal);
1324 		sbi->s_journal = NULL;
1325 		if ((err < 0) && !aborted) {
1326 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327 		}
1328 	}
1329 
1330 	ext4_es_unregister_shrinker(sbi);
1331 	timer_shutdown_sync(&sbi->s_err_report);
1332 	ext4_release_system_zone(sb);
1333 	ext4_mb_release(sb);
1334 	ext4_ext_release(sb);
1335 
1336 	if (!sb_rdonly(sb) && !aborted) {
1337 		ext4_clear_feature_journal_needs_recovery(sb);
1338 		ext4_clear_feature_orphan_present(sb);
1339 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340 	}
1341 	if (!sb_rdonly(sb))
1342 		ext4_commit_super(sb);
1343 
1344 	ext4_group_desc_free(sbi);
1345 	ext4_flex_groups_free(sbi);
1346 	ext4_percpu_param_destroy(sbi);
1347 #ifdef CONFIG_QUOTA
1348 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349 		kfree(get_qf_name(sb, sbi, i));
1350 #endif
1351 
1352 	/* Debugging code just in case the in-memory inode orphan list
1353 	 * isn't empty.  The on-disk one can be non-empty if we've
1354 	 * detected an error and taken the fs readonly, but the
1355 	 * in-memory list had better be clean by this point. */
1356 	if (!list_empty(&sbi->s_orphan))
1357 		dump_orphan_list(sb, sbi);
1358 	ASSERT(list_empty(&sbi->s_orphan));
1359 
1360 	sync_blockdev(sb->s_bdev);
1361 	invalidate_bdev(sb->s_bdev);
1362 	if (sbi->s_journal_bdev_file) {
1363 		/*
1364 		 * Invalidate the journal device's buffers.  We don't want them
1365 		 * floating about in memory - the physical journal device may
1366 		 * hotswapped, and it breaks the `ro-after' testing code.
1367 		 */
1368 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1369 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1370 	}
1371 
1372 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373 	sbi->s_ea_inode_cache = NULL;
1374 
1375 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376 	sbi->s_ea_block_cache = NULL;
1377 
1378 	ext4_stop_mmpd(sbi);
1379 
1380 	brelse(sbi->s_sbh);
1381 	sb->s_fs_info = NULL;
1382 	/*
1383 	 * Now that we are completely done shutting down the
1384 	 * superblock, we need to actually destroy the kobject.
1385 	 */
1386 	kobject_put(&sbi->s_kobj);
1387 	wait_for_completion(&sbi->s_kobj_unregister);
1388 	if (sbi->s_chksum_driver)
1389 		crypto_free_shash(sbi->s_chksum_driver);
1390 	kfree(sbi->s_blockgroup_lock);
1391 	fs_put_dax(sbi->s_daxdev, NULL);
1392 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393 #if IS_ENABLED(CONFIG_UNICODE)
1394 	utf8_unload(sb->s_encoding);
1395 #endif
1396 	kfree(sbi);
1397 }
1398 
1399 static struct kmem_cache *ext4_inode_cachep;
1400 
1401 /*
1402  * Called inside transaction, so use GFP_NOFS
1403  */
1404 static struct inode *ext4_alloc_inode(struct super_block *sb)
1405 {
1406 	struct ext4_inode_info *ei;
1407 
1408 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409 	if (!ei)
1410 		return NULL;
1411 
1412 	inode_set_iversion(&ei->vfs_inode, 1);
1413 	ei->i_flags = 0;
1414 	spin_lock_init(&ei->i_raw_lock);
1415 	ei->i_prealloc_node = RB_ROOT;
1416 	atomic_set(&ei->i_prealloc_active, 0);
1417 	rwlock_init(&ei->i_prealloc_lock);
1418 	ext4_es_init_tree(&ei->i_es_tree);
1419 	rwlock_init(&ei->i_es_lock);
1420 	INIT_LIST_HEAD(&ei->i_es_list);
1421 	ei->i_es_all_nr = 0;
1422 	ei->i_es_shk_nr = 0;
1423 	ei->i_es_shrink_lblk = 0;
1424 	ei->i_reserved_data_blocks = 0;
1425 	spin_lock_init(&(ei->i_block_reservation_lock));
1426 	ext4_init_pending_tree(&ei->i_pending_tree);
1427 #ifdef CONFIG_QUOTA
1428 	ei->i_reserved_quota = 0;
1429 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430 #endif
1431 	ei->jinode = NULL;
1432 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433 	spin_lock_init(&ei->i_completed_io_lock);
1434 	ei->i_sync_tid = 0;
1435 	ei->i_datasync_tid = 0;
1436 	atomic_set(&ei->i_unwritten, 0);
1437 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438 	ext4_fc_init_inode(&ei->vfs_inode);
1439 	mutex_init(&ei->i_fc_lock);
1440 	return &ei->vfs_inode;
1441 }
1442 
1443 static int ext4_drop_inode(struct inode *inode)
1444 {
1445 	int drop = generic_drop_inode(inode);
1446 
1447 	if (!drop)
1448 		drop = fscrypt_drop_inode(inode);
1449 
1450 	trace_ext4_drop_inode(inode, drop);
1451 	return drop;
1452 }
1453 
1454 static void ext4_free_in_core_inode(struct inode *inode)
1455 {
1456 	fscrypt_free_inode(inode);
1457 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458 		pr_warn("%s: inode %ld still in fc list",
1459 			__func__, inode->i_ino);
1460 	}
1461 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462 }
1463 
1464 static void ext4_destroy_inode(struct inode *inode)
1465 {
1466 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467 		ext4_msg(inode->i_sb, KERN_ERR,
1468 			 "Inode %lu (%p): orphan list check failed!",
1469 			 inode->i_ino, EXT4_I(inode));
1470 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472 				true);
1473 		dump_stack();
1474 	}
1475 
1476 	if (EXT4_I(inode)->i_reserved_data_blocks)
1477 		ext4_msg(inode->i_sb, KERN_ERR,
1478 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479 			 inode->i_ino, EXT4_I(inode),
1480 			 EXT4_I(inode)->i_reserved_data_blocks);
1481 }
1482 
1483 static void ext4_shutdown(struct super_block *sb)
1484 {
1485        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486 }
1487 
1488 static void init_once(void *foo)
1489 {
1490 	struct ext4_inode_info *ei = foo;
1491 
1492 	INIT_LIST_HEAD(&ei->i_orphan);
1493 	init_rwsem(&ei->xattr_sem);
1494 	init_rwsem(&ei->i_data_sem);
1495 	inode_init_once(&ei->vfs_inode);
1496 	ext4_fc_init_inode(&ei->vfs_inode);
1497 }
1498 
1499 static int __init init_inodecache(void)
1500 {
1501 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502 				sizeof(struct ext4_inode_info), 0,
1503 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1504 				offsetof(struct ext4_inode_info, i_data),
1505 				sizeof_field(struct ext4_inode_info, i_data),
1506 				init_once);
1507 	if (ext4_inode_cachep == NULL)
1508 		return -ENOMEM;
1509 	return 0;
1510 }
1511 
1512 static void destroy_inodecache(void)
1513 {
1514 	/*
1515 	 * Make sure all delayed rcu free inodes are flushed before we
1516 	 * destroy cache.
1517 	 */
1518 	rcu_barrier();
1519 	kmem_cache_destroy(ext4_inode_cachep);
1520 }
1521 
1522 void ext4_clear_inode(struct inode *inode)
1523 {
1524 	ext4_fc_del(inode);
1525 	invalidate_inode_buffers(inode);
1526 	clear_inode(inode);
1527 	ext4_discard_preallocations(inode);
1528 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1529 	dquot_drop(inode);
1530 	if (EXT4_I(inode)->jinode) {
1531 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532 					       EXT4_I(inode)->jinode);
1533 		jbd2_free_inode(EXT4_I(inode)->jinode);
1534 		EXT4_I(inode)->jinode = NULL;
1535 	}
1536 	fscrypt_put_encryption_info(inode);
1537 	fsverity_cleanup_inode(inode);
1538 }
1539 
1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541 					u64 ino, u32 generation)
1542 {
1543 	struct inode *inode;
1544 
1545 	/*
1546 	 * Currently we don't know the generation for parent directory, so
1547 	 * a generation of 0 means "accept any"
1548 	 */
1549 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1550 	if (IS_ERR(inode))
1551 		return ERR_CAST(inode);
1552 	if (generation && inode->i_generation != generation) {
1553 		iput(inode);
1554 		return ERR_PTR(-ESTALE);
1555 	}
1556 
1557 	return inode;
1558 }
1559 
1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561 					int fh_len, int fh_type)
1562 {
1563 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564 				    ext4_nfs_get_inode);
1565 }
1566 
1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568 					int fh_len, int fh_type)
1569 {
1570 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571 				    ext4_nfs_get_inode);
1572 }
1573 
1574 static int ext4_nfs_commit_metadata(struct inode *inode)
1575 {
1576 	struct writeback_control wbc = {
1577 		.sync_mode = WB_SYNC_ALL
1578 	};
1579 
1580 	trace_ext4_nfs_commit_metadata(inode);
1581 	return ext4_write_inode(inode, &wbc);
1582 }
1583 
1584 #ifdef CONFIG_QUOTA
1585 static const char * const quotatypes[] = INITQFNAMES;
1586 #define QTYPE2NAME(t) (quotatypes[t])
1587 
1588 static int ext4_write_dquot(struct dquot *dquot);
1589 static int ext4_acquire_dquot(struct dquot *dquot);
1590 static int ext4_release_dquot(struct dquot *dquot);
1591 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592 static int ext4_write_info(struct super_block *sb, int type);
1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594 			 const struct path *path);
1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 			       size_t len, loff_t off);
1597 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 				const char *data, size_t len, loff_t off);
1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 			     unsigned int flags);
1601 
1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1603 {
1604 	return EXT4_I(inode)->i_dquot;
1605 }
1606 
1607 static const struct dquot_operations ext4_quota_operations = {
1608 	.get_reserved_space	= ext4_get_reserved_space,
1609 	.write_dquot		= ext4_write_dquot,
1610 	.acquire_dquot		= ext4_acquire_dquot,
1611 	.release_dquot		= ext4_release_dquot,
1612 	.mark_dirty		= ext4_mark_dquot_dirty,
1613 	.write_info		= ext4_write_info,
1614 	.alloc_dquot		= dquot_alloc,
1615 	.destroy_dquot		= dquot_destroy,
1616 	.get_projid		= ext4_get_projid,
1617 	.get_inode_usage	= ext4_get_inode_usage,
1618 	.get_next_id		= dquot_get_next_id,
1619 };
1620 
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 	.quota_on	= ext4_quota_on,
1623 	.quota_off	= ext4_quota_off,
1624 	.quota_sync	= dquot_quota_sync,
1625 	.get_state	= dquot_get_state,
1626 	.set_info	= dquot_set_dqinfo,
1627 	.get_dqblk	= dquot_get_dqblk,
1628 	.set_dqblk	= dquot_set_dqblk,
1629 	.get_nextdqblk	= dquot_get_next_dqblk,
1630 };
1631 #endif
1632 
1633 static const struct super_operations ext4_sops = {
1634 	.alloc_inode	= ext4_alloc_inode,
1635 	.free_inode	= ext4_free_in_core_inode,
1636 	.destroy_inode	= ext4_destroy_inode,
1637 	.write_inode	= ext4_write_inode,
1638 	.dirty_inode	= ext4_dirty_inode,
1639 	.drop_inode	= ext4_drop_inode,
1640 	.evict_inode	= ext4_evict_inode,
1641 	.put_super	= ext4_put_super,
1642 	.sync_fs	= ext4_sync_fs,
1643 	.freeze_fs	= ext4_freeze,
1644 	.unfreeze_fs	= ext4_unfreeze,
1645 	.statfs		= ext4_statfs,
1646 	.show_options	= ext4_show_options,
1647 	.shutdown	= ext4_shutdown,
1648 #ifdef CONFIG_QUOTA
1649 	.quota_read	= ext4_quota_read,
1650 	.quota_write	= ext4_quota_write,
1651 	.get_dquots	= ext4_get_dquots,
1652 #endif
1653 };
1654 
1655 static const struct export_operations ext4_export_ops = {
1656 	.encode_fh = generic_encode_ino32_fh,
1657 	.fh_to_dentry = ext4_fh_to_dentry,
1658 	.fh_to_parent = ext4_fh_to_parent,
1659 	.get_parent = ext4_get_parent,
1660 	.commit_metadata = ext4_nfs_commit_metadata,
1661 };
1662 
1663 enum {
1664 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 	Opt_resgid, Opt_resuid, Opt_sb,
1666 	Opt_nouid32, Opt_debug, Opt_removed,
1667 	Opt_user_xattr, Opt_acl,
1668 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 	Opt_inlinecrypt,
1674 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1675 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1680 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 	Opt_dioread_nolock, Opt_dioread_lock,
1683 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691 
1692 static const struct constant_table ext4_param_errors[] = {
1693 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1694 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1695 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1696 	{}
1697 };
1698 
1699 static const struct constant_table ext4_param_data[] = {
1700 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1701 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1702 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1703 	{}
1704 };
1705 
1706 static const struct constant_table ext4_param_data_err[] = {
1707 	{"abort",	Opt_data_err_abort},
1708 	{"ignore",	Opt_data_err_ignore},
1709 	{}
1710 };
1711 
1712 static const struct constant_table ext4_param_jqfmt[] = {
1713 	{"vfsold",	QFMT_VFS_OLD},
1714 	{"vfsv0",	QFMT_VFS_V0},
1715 	{"vfsv1",	QFMT_VFS_V1},
1716 	{}
1717 };
1718 
1719 static const struct constant_table ext4_param_dax[] = {
1720 	{"always",	Opt_dax_always},
1721 	{"inode",	Opt_dax_inode},
1722 	{"never",	Opt_dax_never},
1723 	{}
1724 };
1725 
1726 /*
1727  * Mount option specification
1728  * We don't use fsparam_flag_no because of the way we set the
1729  * options and the way we show them in _ext4_show_options(). To
1730  * keep the changes to a minimum, let's keep the negative options
1731  * separate for now.
1732  */
1733 static const struct fs_parameter_spec ext4_param_specs[] = {
1734 	fsparam_flag	("bsddf",		Opt_bsd_df),
1735 	fsparam_flag	("minixdf",		Opt_minix_df),
1736 	fsparam_flag	("grpid",		Opt_grpid),
1737 	fsparam_flag	("bsdgroups",		Opt_grpid),
1738 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1739 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1740 	fsparam_u32	("resgid",		Opt_resgid),
1741 	fsparam_u32	("resuid",		Opt_resuid),
1742 	fsparam_u32	("sb",			Opt_sb),
1743 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1744 	fsparam_flag	("nouid32",		Opt_nouid32),
1745 	fsparam_flag	("debug",		Opt_debug),
1746 	fsparam_flag	("oldalloc",		Opt_removed),
1747 	fsparam_flag	("orlov",		Opt_removed),
1748 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1749 	fsparam_flag	("acl",			Opt_acl),
1750 	fsparam_flag	("norecovery",		Opt_noload),
1751 	fsparam_flag	("noload",		Opt_noload),
1752 	fsparam_flag	("bh",			Opt_removed),
1753 	fsparam_flag	("nobh",		Opt_removed),
1754 	fsparam_u32	("commit",		Opt_commit),
1755 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1756 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1757 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1758 	fsparam_bdev	("journal_path",	Opt_journal_path),
1759 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1760 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1761 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1762 	fsparam_flag	("abort",		Opt_abort),
1763 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1764 	fsparam_enum	("data_err",		Opt_data_err,
1765 						ext4_param_data_err),
1766 	fsparam_string_empty
1767 			("usrjquota",		Opt_usrjquota),
1768 	fsparam_string_empty
1769 			("grpjquota",		Opt_grpjquota),
1770 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1771 	fsparam_flag	("grpquota",		Opt_grpquota),
1772 	fsparam_flag	("quota",		Opt_quota),
1773 	fsparam_flag	("noquota",		Opt_noquota),
1774 	fsparam_flag	("usrquota",		Opt_usrquota),
1775 	fsparam_flag	("prjquota",		Opt_prjquota),
1776 	fsparam_flag	("barrier",		Opt_barrier),
1777 	fsparam_u32	("barrier",		Opt_barrier),
1778 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1779 	fsparam_flag	("i_version",		Opt_removed),
1780 	fsparam_flag	("dax",			Opt_dax),
1781 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1782 	fsparam_u32	("stripe",		Opt_stripe),
1783 	fsparam_flag	("delalloc",		Opt_delalloc),
1784 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1785 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1786 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1787 	fsparam_u32	("debug_want_extra_isize",
1788 						Opt_debug_want_extra_isize),
1789 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1790 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1791 	fsparam_flag	("block_validity",	Opt_block_validity),
1792 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1793 	fsparam_u32	("inode_readahead_blks",
1794 						Opt_inode_readahead_blks),
1795 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1796 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1797 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1798 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1799 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1800 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1801 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1802 	fsparam_flag	("discard",		Opt_discard),
1803 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1804 	fsparam_u32	("init_itable",		Opt_init_itable),
1805 	fsparam_flag	("init_itable",		Opt_init_itable),
1806 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1807 #ifdef CONFIG_EXT4_DEBUG
1808 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1809 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1810 #endif
1811 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1812 	fsparam_flag	("test_dummy_encryption",
1813 						Opt_test_dummy_encryption),
1814 	fsparam_string	("test_dummy_encryption",
1815 						Opt_test_dummy_encryption),
1816 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1817 	fsparam_flag	("nombcache",		Opt_nombcache),
1818 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1819 	fsparam_flag	("prefetch_block_bitmaps",
1820 						Opt_removed),
1821 	fsparam_flag	("no_prefetch_block_bitmaps",
1822 						Opt_no_prefetch_block_bitmaps),
1823 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1824 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1825 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1826 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1827 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1828 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1829 	{}
1830 };
1831 
1832 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1833 
1834 #define MOPT_SET	0x0001
1835 #define MOPT_CLEAR	0x0002
1836 #define MOPT_NOSUPPORT	0x0004
1837 #define MOPT_EXPLICIT	0x0008
1838 #ifdef CONFIG_QUOTA
1839 #define MOPT_Q		0
1840 #define MOPT_QFMT	0x0010
1841 #else
1842 #define MOPT_Q		MOPT_NOSUPPORT
1843 #define MOPT_QFMT	MOPT_NOSUPPORT
1844 #endif
1845 #define MOPT_NO_EXT2	0x0020
1846 #define MOPT_NO_EXT3	0x0040
1847 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1848 #define MOPT_SKIP	0x0080
1849 #define	MOPT_2		0x0100
1850 
1851 static const struct mount_opts {
1852 	int	token;
1853 	int	mount_opt;
1854 	int	flags;
1855 } ext4_mount_opts[] = {
1856 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1857 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1858 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1859 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1860 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1861 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1862 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1863 	 MOPT_EXT4_ONLY | MOPT_SET},
1864 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1865 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1866 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1867 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1868 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1869 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1870 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1871 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1872 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1873 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1874 	{Opt_commit, 0, MOPT_NO_EXT2},
1875 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1876 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1878 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1879 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1880 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1881 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1882 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1883 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1884 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1885 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1886 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1887 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1888 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1889 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1890 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1891 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1892 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1893 	{Opt_data, 0, MOPT_NO_EXT2},
1894 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1895 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1896 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1897 #else
1898 	{Opt_acl, 0, MOPT_NOSUPPORT},
1899 #endif
1900 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1901 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1902 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1903 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1904 							MOPT_SET | MOPT_Q},
1905 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1906 							MOPT_SET | MOPT_Q},
1907 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1908 							MOPT_SET | MOPT_Q},
1909 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1910 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1911 							MOPT_CLEAR | MOPT_Q},
1912 	{Opt_usrjquota, 0, MOPT_Q},
1913 	{Opt_grpjquota, 0, MOPT_Q},
1914 	{Opt_jqfmt, 0, MOPT_QFMT},
1915 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1916 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1917 	 MOPT_SET},
1918 #ifdef CONFIG_EXT4_DEBUG
1919 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1920 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1921 #endif
1922 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1923 	{Opt_err, 0, 0}
1924 };
1925 
1926 #if IS_ENABLED(CONFIG_UNICODE)
1927 static const struct ext4_sb_encodings {
1928 	__u16 magic;
1929 	char *name;
1930 	unsigned int version;
1931 } ext4_sb_encoding_map[] = {
1932 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1933 };
1934 
1935 static const struct ext4_sb_encodings *
1936 ext4_sb_read_encoding(const struct ext4_super_block *es)
1937 {
1938 	__u16 magic = le16_to_cpu(es->s_encoding);
1939 	int i;
1940 
1941 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1942 		if (magic == ext4_sb_encoding_map[i].magic)
1943 			return &ext4_sb_encoding_map[i];
1944 
1945 	return NULL;
1946 }
1947 #endif
1948 
1949 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1950 #define EXT4_SPEC_JQFMT				(1 <<  1)
1951 #define EXT4_SPEC_DATAJ				(1 <<  2)
1952 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1953 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1954 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1955 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1956 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1957 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1958 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1959 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1960 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1961 #define EXT4_SPEC_s_stripe			(1 << 13)
1962 #define EXT4_SPEC_s_resuid			(1 << 14)
1963 #define EXT4_SPEC_s_resgid			(1 << 15)
1964 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1965 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1966 #define EXT4_SPEC_s_sb_block			(1 << 18)
1967 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1968 
1969 struct ext4_fs_context {
1970 	char		*s_qf_names[EXT4_MAXQUOTAS];
1971 	struct fscrypt_dummy_policy dummy_enc_policy;
1972 	int		s_jquota_fmt;	/* Format of quota to use */
1973 #ifdef CONFIG_EXT4_DEBUG
1974 	int s_fc_debug_max_replay;
1975 #endif
1976 	unsigned short	qname_spec;
1977 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1978 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1979 	unsigned long	journal_devnum;
1980 	unsigned long	s_commit_interval;
1981 	unsigned long	s_stripe;
1982 	unsigned int	s_inode_readahead_blks;
1983 	unsigned int	s_want_extra_isize;
1984 	unsigned int	s_li_wait_mult;
1985 	unsigned int	s_max_dir_size_kb;
1986 	unsigned int	journal_ioprio;
1987 	unsigned int	vals_s_mount_opt;
1988 	unsigned int	mask_s_mount_opt;
1989 	unsigned int	vals_s_mount_opt2;
1990 	unsigned int	mask_s_mount_opt2;
1991 	unsigned int	opt_flags;	/* MOPT flags */
1992 	unsigned int	spec;
1993 	u32		s_max_batch_time;
1994 	u32		s_min_batch_time;
1995 	kuid_t		s_resuid;
1996 	kgid_t		s_resgid;
1997 	ext4_fsblk_t	s_sb_block;
1998 };
1999 
2000 static void ext4_fc_free(struct fs_context *fc)
2001 {
2002 	struct ext4_fs_context *ctx = fc->fs_private;
2003 	int i;
2004 
2005 	if (!ctx)
2006 		return;
2007 
2008 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2009 		kfree(ctx->s_qf_names[i]);
2010 
2011 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2012 	kfree(ctx);
2013 }
2014 
2015 int ext4_init_fs_context(struct fs_context *fc)
2016 {
2017 	struct ext4_fs_context *ctx;
2018 
2019 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2020 	if (!ctx)
2021 		return -ENOMEM;
2022 
2023 	fc->fs_private = ctx;
2024 	fc->ops = &ext4_context_ops;
2025 
2026 	return 0;
2027 }
2028 
2029 #ifdef CONFIG_QUOTA
2030 /*
2031  * Note the name of the specified quota file.
2032  */
2033 static int note_qf_name(struct fs_context *fc, int qtype,
2034 		       struct fs_parameter *param)
2035 {
2036 	struct ext4_fs_context *ctx = fc->fs_private;
2037 	char *qname;
2038 
2039 	if (param->size < 1) {
2040 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2041 		return -EINVAL;
2042 	}
2043 	if (strchr(param->string, '/')) {
2044 		ext4_msg(NULL, KERN_ERR,
2045 			 "quotafile must be on filesystem root");
2046 		return -EINVAL;
2047 	}
2048 	if (ctx->s_qf_names[qtype]) {
2049 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2050 			ext4_msg(NULL, KERN_ERR,
2051 				 "%s quota file already specified",
2052 				 QTYPE2NAME(qtype));
2053 			return -EINVAL;
2054 		}
2055 		return 0;
2056 	}
2057 
2058 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2059 	if (!qname) {
2060 		ext4_msg(NULL, KERN_ERR,
2061 			 "Not enough memory for storing quotafile name");
2062 		return -ENOMEM;
2063 	}
2064 	ctx->s_qf_names[qtype] = qname;
2065 	ctx->qname_spec |= 1 << qtype;
2066 	ctx->spec |= EXT4_SPEC_JQUOTA;
2067 	return 0;
2068 }
2069 
2070 /*
2071  * Clear the name of the specified quota file.
2072  */
2073 static int unnote_qf_name(struct fs_context *fc, int qtype)
2074 {
2075 	struct ext4_fs_context *ctx = fc->fs_private;
2076 
2077 	kfree(ctx->s_qf_names[qtype]);
2078 
2079 	ctx->s_qf_names[qtype] = NULL;
2080 	ctx->qname_spec |= 1 << qtype;
2081 	ctx->spec |= EXT4_SPEC_JQUOTA;
2082 	return 0;
2083 }
2084 #endif
2085 
2086 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2087 					    struct ext4_fs_context *ctx)
2088 {
2089 	int err;
2090 
2091 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2092 		ext4_msg(NULL, KERN_WARNING,
2093 			 "test_dummy_encryption option not supported");
2094 		return -EINVAL;
2095 	}
2096 	err = fscrypt_parse_test_dummy_encryption(param,
2097 						  &ctx->dummy_enc_policy);
2098 	if (err == -EINVAL) {
2099 		ext4_msg(NULL, KERN_WARNING,
2100 			 "Value of option \"%s\" is unrecognized", param->key);
2101 	} else if (err == -EEXIST) {
2102 		ext4_msg(NULL, KERN_WARNING,
2103 			 "Conflicting test_dummy_encryption options");
2104 		return -EINVAL;
2105 	}
2106 	return err;
2107 }
2108 
2109 #define EXT4_SET_CTX(name)						\
2110 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2111 				  unsigned long flag)			\
2112 {									\
2113 	ctx->mask_s_##name |= flag;					\
2114 	ctx->vals_s_##name |= flag;					\
2115 }
2116 
2117 #define EXT4_CLEAR_CTX(name)						\
2118 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2119 				    unsigned long flag)			\
2120 {									\
2121 	ctx->mask_s_##name |= flag;					\
2122 	ctx->vals_s_##name &= ~flag;					\
2123 }
2124 
2125 #define EXT4_TEST_CTX(name)						\
2126 static inline unsigned long						\
2127 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2128 {									\
2129 	return (ctx->vals_s_##name & flag);				\
2130 }
2131 
2132 EXT4_SET_CTX(flags); /* set only */
2133 EXT4_SET_CTX(mount_opt);
2134 EXT4_CLEAR_CTX(mount_opt);
2135 EXT4_TEST_CTX(mount_opt);
2136 EXT4_SET_CTX(mount_opt2);
2137 EXT4_CLEAR_CTX(mount_opt2);
2138 EXT4_TEST_CTX(mount_opt2);
2139 
2140 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2141 {
2142 	struct ext4_fs_context *ctx = fc->fs_private;
2143 	struct fs_parse_result result;
2144 	const struct mount_opts *m;
2145 	int is_remount;
2146 	kuid_t uid;
2147 	kgid_t gid;
2148 	int token;
2149 
2150 	token = fs_parse(fc, ext4_param_specs, param, &result);
2151 	if (token < 0)
2152 		return token;
2153 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2154 
2155 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2156 		if (token == m->token)
2157 			break;
2158 
2159 	ctx->opt_flags |= m->flags;
2160 
2161 	if (m->flags & MOPT_EXPLICIT) {
2162 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2163 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2164 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2165 			ctx_set_mount_opt2(ctx,
2166 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2167 		} else
2168 			return -EINVAL;
2169 	}
2170 
2171 	if (m->flags & MOPT_NOSUPPORT) {
2172 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2173 			 param->key);
2174 		return 0;
2175 	}
2176 
2177 	switch (token) {
2178 #ifdef CONFIG_QUOTA
2179 	case Opt_usrjquota:
2180 		if (!*param->string)
2181 			return unnote_qf_name(fc, USRQUOTA);
2182 		else
2183 			return note_qf_name(fc, USRQUOTA, param);
2184 	case Opt_grpjquota:
2185 		if (!*param->string)
2186 			return unnote_qf_name(fc, GRPQUOTA);
2187 		else
2188 			return note_qf_name(fc, GRPQUOTA, param);
2189 #endif
2190 	case Opt_sb:
2191 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2192 			ext4_msg(NULL, KERN_WARNING,
2193 				 "Ignoring %s option on remount", param->key);
2194 		} else {
2195 			ctx->s_sb_block = result.uint_32;
2196 			ctx->spec |= EXT4_SPEC_s_sb_block;
2197 		}
2198 		return 0;
2199 	case Opt_removed:
2200 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2201 			 param->key);
2202 		return 0;
2203 	case Opt_inlinecrypt:
2204 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2205 		ctx_set_flags(ctx, SB_INLINECRYPT);
2206 #else
2207 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2208 #endif
2209 		return 0;
2210 	case Opt_errors:
2211 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2212 		ctx_set_mount_opt(ctx, result.uint_32);
2213 		return 0;
2214 #ifdef CONFIG_QUOTA
2215 	case Opt_jqfmt:
2216 		ctx->s_jquota_fmt = result.uint_32;
2217 		ctx->spec |= EXT4_SPEC_JQFMT;
2218 		return 0;
2219 #endif
2220 	case Opt_data:
2221 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2222 		ctx_set_mount_opt(ctx, result.uint_32);
2223 		ctx->spec |= EXT4_SPEC_DATAJ;
2224 		return 0;
2225 	case Opt_commit:
2226 		if (result.uint_32 == 0)
2227 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2228 		else if (result.uint_32 > INT_MAX / HZ) {
2229 			ext4_msg(NULL, KERN_ERR,
2230 				 "Invalid commit interval %d, "
2231 				 "must be smaller than %d",
2232 				 result.uint_32, INT_MAX / HZ);
2233 			return -EINVAL;
2234 		}
2235 		ctx->s_commit_interval = HZ * result.uint_32;
2236 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2237 		return 0;
2238 	case Opt_debug_want_extra_isize:
2239 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2240 			ext4_msg(NULL, KERN_ERR,
2241 				 "Invalid want_extra_isize %d", result.uint_32);
2242 			return -EINVAL;
2243 		}
2244 		ctx->s_want_extra_isize = result.uint_32;
2245 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2246 		return 0;
2247 	case Opt_max_batch_time:
2248 		ctx->s_max_batch_time = result.uint_32;
2249 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2250 		return 0;
2251 	case Opt_min_batch_time:
2252 		ctx->s_min_batch_time = result.uint_32;
2253 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2254 		return 0;
2255 	case Opt_inode_readahead_blks:
2256 		if (result.uint_32 &&
2257 		    (result.uint_32 > (1 << 30) ||
2258 		     !is_power_of_2(result.uint_32))) {
2259 			ext4_msg(NULL, KERN_ERR,
2260 				 "EXT4-fs: inode_readahead_blks must be "
2261 				 "0 or a power of 2 smaller than 2^31");
2262 			return -EINVAL;
2263 		}
2264 		ctx->s_inode_readahead_blks = result.uint_32;
2265 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2266 		return 0;
2267 	case Opt_init_itable:
2268 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2269 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2270 		if (param->type == fs_value_is_string)
2271 			ctx->s_li_wait_mult = result.uint_32;
2272 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2273 		return 0;
2274 	case Opt_max_dir_size_kb:
2275 		ctx->s_max_dir_size_kb = result.uint_32;
2276 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2277 		return 0;
2278 #ifdef CONFIG_EXT4_DEBUG
2279 	case Opt_fc_debug_max_replay:
2280 		ctx->s_fc_debug_max_replay = result.uint_32;
2281 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2282 		return 0;
2283 #endif
2284 	case Opt_stripe:
2285 		ctx->s_stripe = result.uint_32;
2286 		ctx->spec |= EXT4_SPEC_s_stripe;
2287 		return 0;
2288 	case Opt_resuid:
2289 		uid = make_kuid(current_user_ns(), result.uint_32);
2290 		if (!uid_valid(uid)) {
2291 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2292 				 result.uint_32);
2293 			return -EINVAL;
2294 		}
2295 		ctx->s_resuid = uid;
2296 		ctx->spec |= EXT4_SPEC_s_resuid;
2297 		return 0;
2298 	case Opt_resgid:
2299 		gid = make_kgid(current_user_ns(), result.uint_32);
2300 		if (!gid_valid(gid)) {
2301 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2302 				 result.uint_32);
2303 			return -EINVAL;
2304 		}
2305 		ctx->s_resgid = gid;
2306 		ctx->spec |= EXT4_SPEC_s_resgid;
2307 		return 0;
2308 	case Opt_journal_dev:
2309 		if (is_remount) {
2310 			ext4_msg(NULL, KERN_ERR,
2311 				 "Cannot specify journal on remount");
2312 			return -EINVAL;
2313 		}
2314 		ctx->journal_devnum = result.uint_32;
2315 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2316 		return 0;
2317 	case Opt_journal_path:
2318 	{
2319 		struct inode *journal_inode;
2320 		struct path path;
2321 		int error;
2322 
2323 		if (is_remount) {
2324 			ext4_msg(NULL, KERN_ERR,
2325 				 "Cannot specify journal on remount");
2326 			return -EINVAL;
2327 		}
2328 
2329 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2330 		if (error) {
2331 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2332 				 "journal device path");
2333 			return -EINVAL;
2334 		}
2335 
2336 		journal_inode = d_inode(path.dentry);
2337 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2338 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2339 		path_put(&path);
2340 		return 0;
2341 	}
2342 	case Opt_journal_ioprio:
2343 		if (result.uint_32 > 7) {
2344 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2345 				 " (must be 0-7)");
2346 			return -EINVAL;
2347 		}
2348 		ctx->journal_ioprio =
2349 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2350 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2351 		return 0;
2352 	case Opt_test_dummy_encryption:
2353 		return ext4_parse_test_dummy_encryption(param, ctx);
2354 	case Opt_dax:
2355 	case Opt_dax_type:
2356 #ifdef CONFIG_FS_DAX
2357 	{
2358 		int type = (token == Opt_dax) ?
2359 			   Opt_dax : result.uint_32;
2360 
2361 		switch (type) {
2362 		case Opt_dax:
2363 		case Opt_dax_always:
2364 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2365 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2366 			break;
2367 		case Opt_dax_never:
2368 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2369 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2370 			break;
2371 		case Opt_dax_inode:
2372 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2373 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2374 			/* Strictly for printing options */
2375 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2376 			break;
2377 		}
2378 		return 0;
2379 	}
2380 #else
2381 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2382 		return -EINVAL;
2383 #endif
2384 	case Opt_data_err:
2385 		if (result.uint_32 == Opt_data_err_abort)
2386 			ctx_set_mount_opt(ctx, m->mount_opt);
2387 		else if (result.uint_32 == Opt_data_err_ignore)
2388 			ctx_clear_mount_opt(ctx, m->mount_opt);
2389 		return 0;
2390 	case Opt_mb_optimize_scan:
2391 		if (result.int_32 == 1) {
2392 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2393 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2394 		} else if (result.int_32 == 0) {
2395 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2396 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2397 		} else {
2398 			ext4_msg(NULL, KERN_WARNING,
2399 				 "mb_optimize_scan should be set to 0 or 1.");
2400 			return -EINVAL;
2401 		}
2402 		return 0;
2403 	}
2404 
2405 	/*
2406 	 * At this point we should only be getting options requiring MOPT_SET,
2407 	 * or MOPT_CLEAR. Anything else is a bug
2408 	 */
2409 	if (m->token == Opt_err) {
2410 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2411 			 param->key);
2412 		WARN_ON(1);
2413 		return -EINVAL;
2414 	}
2415 
2416 	else {
2417 		unsigned int set = 0;
2418 
2419 		if ((param->type == fs_value_is_flag) ||
2420 		    result.uint_32 > 0)
2421 			set = 1;
2422 
2423 		if (m->flags & MOPT_CLEAR)
2424 			set = !set;
2425 		else if (unlikely(!(m->flags & MOPT_SET))) {
2426 			ext4_msg(NULL, KERN_WARNING,
2427 				 "buggy handling of option %s",
2428 				 param->key);
2429 			WARN_ON(1);
2430 			return -EINVAL;
2431 		}
2432 		if (m->flags & MOPT_2) {
2433 			if (set != 0)
2434 				ctx_set_mount_opt2(ctx, m->mount_opt);
2435 			else
2436 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2437 		} else {
2438 			if (set != 0)
2439 				ctx_set_mount_opt(ctx, m->mount_opt);
2440 			else
2441 				ctx_clear_mount_opt(ctx, m->mount_opt);
2442 		}
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static int parse_options(struct fs_context *fc, char *options)
2449 {
2450 	struct fs_parameter param;
2451 	int ret;
2452 	char *key;
2453 
2454 	if (!options)
2455 		return 0;
2456 
2457 	while ((key = strsep(&options, ",")) != NULL) {
2458 		if (*key) {
2459 			size_t v_len = 0;
2460 			char *value = strchr(key, '=');
2461 
2462 			param.type = fs_value_is_flag;
2463 			param.string = NULL;
2464 
2465 			if (value) {
2466 				if (value == key)
2467 					continue;
2468 
2469 				*value++ = 0;
2470 				v_len = strlen(value);
2471 				param.string = kmemdup_nul(value, v_len,
2472 							   GFP_KERNEL);
2473 				if (!param.string)
2474 					return -ENOMEM;
2475 				param.type = fs_value_is_string;
2476 			}
2477 
2478 			param.key = key;
2479 			param.size = v_len;
2480 
2481 			ret = ext4_parse_param(fc, &param);
2482 			kfree(param.string);
2483 			if (ret < 0)
2484 				return ret;
2485 		}
2486 	}
2487 
2488 	ret = ext4_validate_options(fc);
2489 	if (ret < 0)
2490 		return ret;
2491 
2492 	return 0;
2493 }
2494 
2495 static int parse_apply_sb_mount_options(struct super_block *sb,
2496 					struct ext4_fs_context *m_ctx)
2497 {
2498 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2499 	char *s_mount_opts = NULL;
2500 	struct ext4_fs_context *s_ctx = NULL;
2501 	struct fs_context *fc = NULL;
2502 	int ret = -ENOMEM;
2503 
2504 	if (!sbi->s_es->s_mount_opts[0])
2505 		return 0;
2506 
2507 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2508 				sizeof(sbi->s_es->s_mount_opts),
2509 				GFP_KERNEL);
2510 	if (!s_mount_opts)
2511 		return ret;
2512 
2513 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2514 	if (!fc)
2515 		goto out_free;
2516 
2517 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2518 	if (!s_ctx)
2519 		goto out_free;
2520 
2521 	fc->fs_private = s_ctx;
2522 	fc->s_fs_info = sbi;
2523 
2524 	ret = parse_options(fc, s_mount_opts);
2525 	if (ret < 0)
2526 		goto parse_failed;
2527 
2528 	ret = ext4_check_opt_consistency(fc, sb);
2529 	if (ret < 0) {
2530 parse_failed:
2531 		ext4_msg(sb, KERN_WARNING,
2532 			 "failed to parse options in superblock: %s",
2533 			 s_mount_opts);
2534 		ret = 0;
2535 		goto out_free;
2536 	}
2537 
2538 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2539 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2540 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2541 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2542 
2543 	ext4_apply_options(fc, sb);
2544 	ret = 0;
2545 
2546 out_free:
2547 	if (fc) {
2548 		ext4_fc_free(fc);
2549 		kfree(fc);
2550 	}
2551 	kfree(s_mount_opts);
2552 	return ret;
2553 }
2554 
2555 static void ext4_apply_quota_options(struct fs_context *fc,
2556 				     struct super_block *sb)
2557 {
2558 #ifdef CONFIG_QUOTA
2559 	bool quota_feature = ext4_has_feature_quota(sb);
2560 	struct ext4_fs_context *ctx = fc->fs_private;
2561 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2562 	char *qname;
2563 	int i;
2564 
2565 	if (quota_feature)
2566 		return;
2567 
2568 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2569 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2570 			if (!(ctx->qname_spec & (1 << i)))
2571 				continue;
2572 
2573 			qname = ctx->s_qf_names[i]; /* May be NULL */
2574 			if (qname)
2575 				set_opt(sb, QUOTA);
2576 			ctx->s_qf_names[i] = NULL;
2577 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2578 						lockdep_is_held(&sb->s_umount));
2579 			if (qname)
2580 				kfree_rcu_mightsleep(qname);
2581 		}
2582 	}
2583 
2584 	if (ctx->spec & EXT4_SPEC_JQFMT)
2585 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2586 #endif
2587 }
2588 
2589 /*
2590  * Check quota settings consistency.
2591  */
2592 static int ext4_check_quota_consistency(struct fs_context *fc,
2593 					struct super_block *sb)
2594 {
2595 #ifdef CONFIG_QUOTA
2596 	struct ext4_fs_context *ctx = fc->fs_private;
2597 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2598 	bool quota_feature = ext4_has_feature_quota(sb);
2599 	bool quota_loaded = sb_any_quota_loaded(sb);
2600 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2601 	int quota_flags, i;
2602 
2603 	/*
2604 	 * We do the test below only for project quotas. 'usrquota' and
2605 	 * 'grpquota' mount options are allowed even without quota feature
2606 	 * to support legacy quotas in quota files.
2607 	 */
2608 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2609 	    !ext4_has_feature_project(sb)) {
2610 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2611 			 "Cannot enable project quota enforcement.");
2612 		return -EINVAL;
2613 	}
2614 
2615 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2616 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2617 	if (quota_loaded &&
2618 	    ctx->mask_s_mount_opt & quota_flags &&
2619 	    !ctx_test_mount_opt(ctx, quota_flags))
2620 		goto err_quota_change;
2621 
2622 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2623 
2624 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2625 			if (!(ctx->qname_spec & (1 << i)))
2626 				continue;
2627 
2628 			if (quota_loaded &&
2629 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2630 				goto err_jquota_change;
2631 
2632 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2633 			    strcmp(get_qf_name(sb, sbi, i),
2634 				   ctx->s_qf_names[i]) != 0)
2635 				goto err_jquota_specified;
2636 		}
2637 
2638 		if (quota_feature) {
2639 			ext4_msg(NULL, KERN_INFO,
2640 				 "Journaled quota options ignored when "
2641 				 "QUOTA feature is enabled");
2642 			return 0;
2643 		}
2644 	}
2645 
2646 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2647 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2648 			goto err_jquota_change;
2649 		if (quota_feature) {
2650 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2651 				 "ignored when QUOTA feature is enabled");
2652 			return 0;
2653 		}
2654 	}
2655 
2656 	/* Make sure we don't mix old and new quota format */
2657 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2658 		       ctx->s_qf_names[USRQUOTA]);
2659 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2660 		       ctx->s_qf_names[GRPQUOTA]);
2661 
2662 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2663 		    test_opt(sb, USRQUOTA));
2664 
2665 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2666 		    test_opt(sb, GRPQUOTA));
2667 
2668 	if (usr_qf_name) {
2669 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2670 		usrquota = false;
2671 	}
2672 	if (grp_qf_name) {
2673 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2674 		grpquota = false;
2675 	}
2676 
2677 	if (usr_qf_name || grp_qf_name) {
2678 		if (usrquota || grpquota) {
2679 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2680 				 "format mixing");
2681 			return -EINVAL;
2682 		}
2683 
2684 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2685 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2686 				 "not specified");
2687 			return -EINVAL;
2688 		}
2689 	}
2690 
2691 	return 0;
2692 
2693 err_quota_change:
2694 	ext4_msg(NULL, KERN_ERR,
2695 		 "Cannot change quota options when quota turned on");
2696 	return -EINVAL;
2697 err_jquota_change:
2698 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2699 		 "options when quota turned on");
2700 	return -EINVAL;
2701 err_jquota_specified:
2702 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2703 		 QTYPE2NAME(i));
2704 	return -EINVAL;
2705 #else
2706 	return 0;
2707 #endif
2708 }
2709 
2710 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2711 					    struct super_block *sb)
2712 {
2713 	const struct ext4_fs_context *ctx = fc->fs_private;
2714 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2715 
2716 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2717 		return 0;
2718 
2719 	if (!ext4_has_feature_encrypt(sb)) {
2720 		ext4_msg(NULL, KERN_WARNING,
2721 			 "test_dummy_encryption requires encrypt feature");
2722 		return -EINVAL;
2723 	}
2724 	/*
2725 	 * This mount option is just for testing, and it's not worthwhile to
2726 	 * implement the extra complexity (e.g. RCU protection) that would be
2727 	 * needed to allow it to be set or changed during remount.  We do allow
2728 	 * it to be specified during remount, but only if there is no change.
2729 	 */
2730 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2731 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2732 						 &ctx->dummy_enc_policy))
2733 			return 0;
2734 		ext4_msg(NULL, KERN_WARNING,
2735 			 "Can't set or change test_dummy_encryption on remount");
2736 		return -EINVAL;
2737 	}
2738 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2739 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2740 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2741 						 &ctx->dummy_enc_policy))
2742 			return 0;
2743 		ext4_msg(NULL, KERN_WARNING,
2744 			 "Conflicting test_dummy_encryption options");
2745 		return -EINVAL;
2746 	}
2747 	return 0;
2748 }
2749 
2750 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2751 					     struct super_block *sb)
2752 {
2753 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2754 	    /* if already set, it was already verified to be the same */
2755 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2756 		return;
2757 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2758 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2759 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2760 }
2761 
2762 static int ext4_check_opt_consistency(struct fs_context *fc,
2763 				      struct super_block *sb)
2764 {
2765 	struct ext4_fs_context *ctx = fc->fs_private;
2766 	struct ext4_sb_info *sbi = fc->s_fs_info;
2767 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2768 	int err;
2769 
2770 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2771 		ext4_msg(NULL, KERN_ERR,
2772 			 "Mount option(s) incompatible with ext2");
2773 		return -EINVAL;
2774 	}
2775 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2776 		ext4_msg(NULL, KERN_ERR,
2777 			 "Mount option(s) incompatible with ext3");
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (ctx->s_want_extra_isize >
2782 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2783 		ext4_msg(NULL, KERN_ERR,
2784 			 "Invalid want_extra_isize %d",
2785 			 ctx->s_want_extra_isize);
2786 		return -EINVAL;
2787 	}
2788 
2789 	err = ext4_check_test_dummy_encryption(fc, sb);
2790 	if (err)
2791 		return err;
2792 
2793 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2794 		if (!sbi->s_journal) {
2795 			ext4_msg(NULL, KERN_WARNING,
2796 				 "Remounting file system with no journal "
2797 				 "so ignoring journalled data option");
2798 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2799 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2800 			   test_opt(sb, DATA_FLAGS)) {
2801 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2802 				 "on remount");
2803 			return -EINVAL;
2804 		}
2805 	}
2806 
2807 	if (is_remount) {
2808 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2809 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2810 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2811 				 "both data=journal and dax");
2812 			return -EINVAL;
2813 		}
2814 
2815 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2816 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2817 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2818 fail_dax_change_remount:
2819 			ext4_msg(NULL, KERN_ERR, "can't change "
2820 				 "dax mount option while remounting");
2821 			return -EINVAL;
2822 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2823 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2824 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2825 			goto fail_dax_change_remount;
2826 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2827 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2828 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2829 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2830 			goto fail_dax_change_remount;
2831 		}
2832 	}
2833 
2834 	return ext4_check_quota_consistency(fc, sb);
2835 }
2836 
2837 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2838 {
2839 	struct ext4_fs_context *ctx = fc->fs_private;
2840 	struct ext4_sb_info *sbi = fc->s_fs_info;
2841 
2842 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2843 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2844 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2845 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2846 	sb->s_flags &= ~ctx->mask_s_flags;
2847 	sb->s_flags |= ctx->vals_s_flags;
2848 
2849 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2850 	APPLY(s_commit_interval);
2851 	APPLY(s_stripe);
2852 	APPLY(s_max_batch_time);
2853 	APPLY(s_min_batch_time);
2854 	APPLY(s_want_extra_isize);
2855 	APPLY(s_inode_readahead_blks);
2856 	APPLY(s_max_dir_size_kb);
2857 	APPLY(s_li_wait_mult);
2858 	APPLY(s_resgid);
2859 	APPLY(s_resuid);
2860 
2861 #ifdef CONFIG_EXT4_DEBUG
2862 	APPLY(s_fc_debug_max_replay);
2863 #endif
2864 
2865 	ext4_apply_quota_options(fc, sb);
2866 	ext4_apply_test_dummy_encryption(ctx, sb);
2867 }
2868 
2869 
2870 static int ext4_validate_options(struct fs_context *fc)
2871 {
2872 #ifdef CONFIG_QUOTA
2873 	struct ext4_fs_context *ctx = fc->fs_private;
2874 	char *usr_qf_name, *grp_qf_name;
2875 
2876 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2877 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2878 
2879 	if (usr_qf_name || grp_qf_name) {
2880 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2881 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2882 
2883 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2884 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2885 
2886 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2887 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2888 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2889 				 "format mixing");
2890 			return -EINVAL;
2891 		}
2892 	}
2893 #endif
2894 	return 1;
2895 }
2896 
2897 static inline void ext4_show_quota_options(struct seq_file *seq,
2898 					   struct super_block *sb)
2899 {
2900 #if defined(CONFIG_QUOTA)
2901 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2902 	char *usr_qf_name, *grp_qf_name;
2903 
2904 	if (sbi->s_jquota_fmt) {
2905 		char *fmtname = "";
2906 
2907 		switch (sbi->s_jquota_fmt) {
2908 		case QFMT_VFS_OLD:
2909 			fmtname = "vfsold";
2910 			break;
2911 		case QFMT_VFS_V0:
2912 			fmtname = "vfsv0";
2913 			break;
2914 		case QFMT_VFS_V1:
2915 			fmtname = "vfsv1";
2916 			break;
2917 		}
2918 		seq_printf(seq, ",jqfmt=%s", fmtname);
2919 	}
2920 
2921 	rcu_read_lock();
2922 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2923 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2924 	if (usr_qf_name)
2925 		seq_show_option(seq, "usrjquota", usr_qf_name);
2926 	if (grp_qf_name)
2927 		seq_show_option(seq, "grpjquota", grp_qf_name);
2928 	rcu_read_unlock();
2929 #endif
2930 }
2931 
2932 static const char *token2str(int token)
2933 {
2934 	const struct fs_parameter_spec *spec;
2935 
2936 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2937 		if (spec->opt == token && !spec->type)
2938 			break;
2939 	return spec->name;
2940 }
2941 
2942 /*
2943  * Show an option if
2944  *  - it's set to a non-default value OR
2945  *  - if the per-sb default is different from the global default
2946  */
2947 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2948 			      int nodefs)
2949 {
2950 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2951 	struct ext4_super_block *es = sbi->s_es;
2952 	int def_errors;
2953 	const struct mount_opts *m;
2954 	char sep = nodefs ? '\n' : ',';
2955 
2956 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2957 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2958 
2959 	if (sbi->s_sb_block != 1)
2960 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2961 
2962 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2963 		int want_set = m->flags & MOPT_SET;
2964 		int opt_2 = m->flags & MOPT_2;
2965 		unsigned int mount_opt, def_mount_opt;
2966 
2967 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2968 		    m->flags & MOPT_SKIP)
2969 			continue;
2970 
2971 		if (opt_2) {
2972 			mount_opt = sbi->s_mount_opt2;
2973 			def_mount_opt = sbi->s_def_mount_opt2;
2974 		} else {
2975 			mount_opt = sbi->s_mount_opt;
2976 			def_mount_opt = sbi->s_def_mount_opt;
2977 		}
2978 		/* skip if same as the default */
2979 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2980 			continue;
2981 		/* select Opt_noFoo vs Opt_Foo */
2982 		if ((want_set &&
2983 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2984 		    (!want_set && (mount_opt & m->mount_opt)))
2985 			continue;
2986 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2987 	}
2988 
2989 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2990 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2991 		SEQ_OPTS_PRINT("resuid=%u",
2992 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2993 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2994 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2995 		SEQ_OPTS_PRINT("resgid=%u",
2996 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2997 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2998 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2999 		SEQ_OPTS_PUTS("errors=remount-ro");
3000 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3001 		SEQ_OPTS_PUTS("errors=continue");
3002 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3003 		SEQ_OPTS_PUTS("errors=panic");
3004 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3005 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3006 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3007 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3008 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3009 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3010 	if (nodefs || sbi->s_stripe)
3011 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3012 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3013 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3014 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3015 			SEQ_OPTS_PUTS("data=journal");
3016 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3017 			SEQ_OPTS_PUTS("data=ordered");
3018 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3019 			SEQ_OPTS_PUTS("data=writeback");
3020 	}
3021 	if (nodefs ||
3022 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3023 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3024 			       sbi->s_inode_readahead_blks);
3025 
3026 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3027 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3028 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3029 	if (nodefs || sbi->s_max_dir_size_kb)
3030 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3031 	if (test_opt(sb, DATA_ERR_ABORT))
3032 		SEQ_OPTS_PUTS("data_err=abort");
3033 
3034 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3035 
3036 	if (sb->s_flags & SB_INLINECRYPT)
3037 		SEQ_OPTS_PUTS("inlinecrypt");
3038 
3039 	if (test_opt(sb, DAX_ALWAYS)) {
3040 		if (IS_EXT2_SB(sb))
3041 			SEQ_OPTS_PUTS("dax");
3042 		else
3043 			SEQ_OPTS_PUTS("dax=always");
3044 	} else if (test_opt2(sb, DAX_NEVER)) {
3045 		SEQ_OPTS_PUTS("dax=never");
3046 	} else if (test_opt2(sb, DAX_INODE)) {
3047 		SEQ_OPTS_PUTS("dax=inode");
3048 	}
3049 
3050 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3051 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3052 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3053 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3054 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3055 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3056 	}
3057 
3058 	ext4_show_quota_options(seq, sb);
3059 	return 0;
3060 }
3061 
3062 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3063 {
3064 	return _ext4_show_options(seq, root->d_sb, 0);
3065 }
3066 
3067 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3068 {
3069 	struct super_block *sb = seq->private;
3070 	int rc;
3071 
3072 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3073 	rc = _ext4_show_options(seq, sb, 1);
3074 	seq_puts(seq, "\n");
3075 	return rc;
3076 }
3077 
3078 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3079 			    int read_only)
3080 {
3081 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3082 	int err = 0;
3083 
3084 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3085 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3086 			 "forcing read-only mode");
3087 		err = -EROFS;
3088 		goto done;
3089 	}
3090 	if (read_only)
3091 		goto done;
3092 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3093 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3094 			 "running e2fsck is recommended");
3095 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3096 		ext4_msg(sb, KERN_WARNING,
3097 			 "warning: mounting fs with errors, "
3098 			 "running e2fsck is recommended");
3099 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3100 		 le16_to_cpu(es->s_mnt_count) >=
3101 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3102 		ext4_msg(sb, KERN_WARNING,
3103 			 "warning: maximal mount count reached, "
3104 			 "running e2fsck is recommended");
3105 	else if (le32_to_cpu(es->s_checkinterval) &&
3106 		 (ext4_get_tstamp(es, s_lastcheck) +
3107 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3108 		ext4_msg(sb, KERN_WARNING,
3109 			 "warning: checktime reached, "
3110 			 "running e2fsck is recommended");
3111 	if (!sbi->s_journal)
3112 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3113 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3114 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3115 	le16_add_cpu(&es->s_mnt_count, 1);
3116 	ext4_update_tstamp(es, s_mtime);
3117 	if (sbi->s_journal) {
3118 		ext4_set_feature_journal_needs_recovery(sb);
3119 		if (ext4_has_feature_orphan_file(sb))
3120 			ext4_set_feature_orphan_present(sb);
3121 	}
3122 
3123 	err = ext4_commit_super(sb);
3124 done:
3125 	if (test_opt(sb, DEBUG))
3126 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3127 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3128 			sb->s_blocksize,
3129 			sbi->s_groups_count,
3130 			EXT4_BLOCKS_PER_GROUP(sb),
3131 			EXT4_INODES_PER_GROUP(sb),
3132 			sbi->s_mount_opt, sbi->s_mount_opt2);
3133 	return err;
3134 }
3135 
3136 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3137 {
3138 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3139 	struct flex_groups **old_groups, **new_groups;
3140 	int size, i, j;
3141 
3142 	if (!sbi->s_log_groups_per_flex)
3143 		return 0;
3144 
3145 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3146 	if (size <= sbi->s_flex_groups_allocated)
3147 		return 0;
3148 
3149 	new_groups = kvzalloc(roundup_pow_of_two(size *
3150 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3151 	if (!new_groups) {
3152 		ext4_msg(sb, KERN_ERR,
3153 			 "not enough memory for %d flex group pointers", size);
3154 		return -ENOMEM;
3155 	}
3156 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3157 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3158 					 sizeof(struct flex_groups)),
3159 					 GFP_KERNEL);
3160 		if (!new_groups[i]) {
3161 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3162 				kvfree(new_groups[j]);
3163 			kvfree(new_groups);
3164 			ext4_msg(sb, KERN_ERR,
3165 				 "not enough memory for %d flex groups", size);
3166 			return -ENOMEM;
3167 		}
3168 	}
3169 	rcu_read_lock();
3170 	old_groups = rcu_dereference(sbi->s_flex_groups);
3171 	if (old_groups)
3172 		memcpy(new_groups, old_groups,
3173 		       (sbi->s_flex_groups_allocated *
3174 			sizeof(struct flex_groups *)));
3175 	rcu_read_unlock();
3176 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3177 	sbi->s_flex_groups_allocated = size;
3178 	if (old_groups)
3179 		ext4_kvfree_array_rcu(old_groups);
3180 	return 0;
3181 }
3182 
3183 static int ext4_fill_flex_info(struct super_block *sb)
3184 {
3185 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3186 	struct ext4_group_desc *gdp = NULL;
3187 	struct flex_groups *fg;
3188 	ext4_group_t flex_group;
3189 	int i, err;
3190 
3191 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3192 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3193 		sbi->s_log_groups_per_flex = 0;
3194 		return 1;
3195 	}
3196 
3197 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3198 	if (err)
3199 		goto failed;
3200 
3201 	for (i = 0; i < sbi->s_groups_count; i++) {
3202 		gdp = ext4_get_group_desc(sb, i, NULL);
3203 
3204 		flex_group = ext4_flex_group(sbi, i);
3205 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3206 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3207 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3208 			     &fg->free_clusters);
3209 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3210 	}
3211 
3212 	return 1;
3213 failed:
3214 	return 0;
3215 }
3216 
3217 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3218 				   struct ext4_group_desc *gdp)
3219 {
3220 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3221 	__u16 crc = 0;
3222 	__le32 le_group = cpu_to_le32(block_group);
3223 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3224 
3225 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3226 		/* Use new metadata_csum algorithm */
3227 		__u32 csum32;
3228 		__u16 dummy_csum = 0;
3229 
3230 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3231 				     sizeof(le_group));
3232 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3233 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3234 				     sizeof(dummy_csum));
3235 		offset += sizeof(dummy_csum);
3236 		if (offset < sbi->s_desc_size)
3237 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3238 					     sbi->s_desc_size - offset);
3239 
3240 		crc = csum32 & 0xFFFF;
3241 		goto out;
3242 	}
3243 
3244 	/* old crc16 code */
3245 	if (!ext4_has_feature_gdt_csum(sb))
3246 		return 0;
3247 
3248 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3249 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3250 	crc = crc16(crc, (__u8 *)gdp, offset);
3251 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3252 	/* for checksum of struct ext4_group_desc do the rest...*/
3253 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3254 		crc = crc16(crc, (__u8 *)gdp + offset,
3255 			    sbi->s_desc_size - offset);
3256 
3257 out:
3258 	return cpu_to_le16(crc);
3259 }
3260 
3261 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3262 				struct ext4_group_desc *gdp)
3263 {
3264 	if (ext4_has_group_desc_csum(sb) &&
3265 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3266 		return 0;
3267 
3268 	return 1;
3269 }
3270 
3271 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3272 			      struct ext4_group_desc *gdp)
3273 {
3274 	if (!ext4_has_group_desc_csum(sb))
3275 		return;
3276 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3277 }
3278 
3279 /* Called at mount-time, super-block is locked */
3280 static int ext4_check_descriptors(struct super_block *sb,
3281 				  ext4_fsblk_t sb_block,
3282 				  ext4_group_t *first_not_zeroed)
3283 {
3284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3285 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3286 	ext4_fsblk_t last_block;
3287 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3288 	ext4_fsblk_t block_bitmap;
3289 	ext4_fsblk_t inode_bitmap;
3290 	ext4_fsblk_t inode_table;
3291 	int flexbg_flag = 0;
3292 	ext4_group_t i, grp = sbi->s_groups_count;
3293 
3294 	if (ext4_has_feature_flex_bg(sb))
3295 		flexbg_flag = 1;
3296 
3297 	ext4_debug("Checking group descriptors");
3298 
3299 	for (i = 0; i < sbi->s_groups_count; i++) {
3300 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3301 
3302 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3303 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3304 		else
3305 			last_block = first_block +
3306 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3307 
3308 		if ((grp == sbi->s_groups_count) &&
3309 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3310 			grp = i;
3311 
3312 		block_bitmap = ext4_block_bitmap(sb, gdp);
3313 		if (block_bitmap == sb_block) {
3314 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3315 				 "Block bitmap for group %u overlaps "
3316 				 "superblock", i);
3317 			if (!sb_rdonly(sb))
3318 				return 0;
3319 		}
3320 		if (block_bitmap >= sb_block + 1 &&
3321 		    block_bitmap <= last_bg_block) {
3322 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3323 				 "Block bitmap for group %u overlaps "
3324 				 "block group descriptors", i);
3325 			if (!sb_rdonly(sb))
3326 				return 0;
3327 		}
3328 		if (block_bitmap < first_block || block_bitmap > last_block) {
3329 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330 			       "Block bitmap for group %u not in group "
3331 			       "(block %llu)!", i, block_bitmap);
3332 			return 0;
3333 		}
3334 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3335 		if (inode_bitmap == sb_block) {
3336 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337 				 "Inode bitmap for group %u overlaps "
3338 				 "superblock", i);
3339 			if (!sb_rdonly(sb))
3340 				return 0;
3341 		}
3342 		if (inode_bitmap >= sb_block + 1 &&
3343 		    inode_bitmap <= last_bg_block) {
3344 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3345 				 "Inode bitmap for group %u overlaps "
3346 				 "block group descriptors", i);
3347 			if (!sb_rdonly(sb))
3348 				return 0;
3349 		}
3350 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3351 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 			       "Inode bitmap for group %u not in group "
3353 			       "(block %llu)!", i, inode_bitmap);
3354 			return 0;
3355 		}
3356 		inode_table = ext4_inode_table(sb, gdp);
3357 		if (inode_table == sb_block) {
3358 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359 				 "Inode table for group %u overlaps "
3360 				 "superblock", i);
3361 			if (!sb_rdonly(sb))
3362 				return 0;
3363 		}
3364 		if (inode_table >= sb_block + 1 &&
3365 		    inode_table <= last_bg_block) {
3366 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367 				 "Inode table for group %u overlaps "
3368 				 "block group descriptors", i);
3369 			if (!sb_rdonly(sb))
3370 				return 0;
3371 		}
3372 		if (inode_table < first_block ||
3373 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3374 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375 			       "Inode table for group %u not in group "
3376 			       "(block %llu)!", i, inode_table);
3377 			return 0;
3378 		}
3379 		ext4_lock_group(sb, i);
3380 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3381 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3382 				 "Checksum for group %u failed (%u!=%u)",
3383 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3384 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3385 			if (!sb_rdonly(sb)) {
3386 				ext4_unlock_group(sb, i);
3387 				return 0;
3388 			}
3389 		}
3390 		ext4_unlock_group(sb, i);
3391 		if (!flexbg_flag)
3392 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3393 	}
3394 	if (NULL != first_not_zeroed)
3395 		*first_not_zeroed = grp;
3396 	return 1;
3397 }
3398 
3399 /*
3400  * Maximal extent format file size.
3401  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3402  * extent format containers, within a sector_t, and within i_blocks
3403  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3404  * so that won't be a limiting factor.
3405  *
3406  * However there is other limiting factor. We do store extents in the form
3407  * of starting block and length, hence the resulting length of the extent
3408  * covering maximum file size must fit into on-disk format containers as
3409  * well. Given that length is always by 1 unit bigger than max unit (because
3410  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3411  *
3412  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3413  */
3414 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3415 {
3416 	loff_t res;
3417 	loff_t upper_limit = MAX_LFS_FILESIZE;
3418 
3419 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3420 
3421 	if (!has_huge_files) {
3422 		upper_limit = (1LL << 32) - 1;
3423 
3424 		/* total blocks in file system block size */
3425 		upper_limit >>= (blkbits - 9);
3426 		upper_limit <<= blkbits;
3427 	}
3428 
3429 	/*
3430 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3431 	 * by one fs block, so ee_len can cover the extent of maximum file
3432 	 * size
3433 	 */
3434 	res = (1LL << 32) - 1;
3435 	res <<= blkbits;
3436 
3437 	/* Sanity check against vm- & vfs- imposed limits */
3438 	if (res > upper_limit)
3439 		res = upper_limit;
3440 
3441 	return res;
3442 }
3443 
3444 /*
3445  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3446  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3447  * We need to be 1 filesystem block less than the 2^48 sector limit.
3448  */
3449 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3450 {
3451 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3452 	int meta_blocks;
3453 	unsigned int ppb = 1 << (bits - 2);
3454 
3455 	/*
3456 	 * This is calculated to be the largest file size for a dense, block
3457 	 * mapped file such that the file's total number of 512-byte sectors,
3458 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3459 	 *
3460 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3461 	 * number of 512-byte sectors of the file.
3462 	 */
3463 	if (!has_huge_files) {
3464 		/*
3465 		 * !has_huge_files or implies that the inode i_block field
3466 		 * represents total file blocks in 2^32 512-byte sectors ==
3467 		 * size of vfs inode i_blocks * 8
3468 		 */
3469 		upper_limit = (1LL << 32) - 1;
3470 
3471 		/* total blocks in file system block size */
3472 		upper_limit >>= (bits - 9);
3473 
3474 	} else {
3475 		/*
3476 		 * We use 48 bit ext4_inode i_blocks
3477 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3478 		 * represent total number of blocks in
3479 		 * file system block size
3480 		 */
3481 		upper_limit = (1LL << 48) - 1;
3482 
3483 	}
3484 
3485 	/* Compute how many blocks we can address by block tree */
3486 	res += ppb;
3487 	res += ppb * ppb;
3488 	res += ((loff_t)ppb) * ppb * ppb;
3489 	/* Compute how many metadata blocks are needed */
3490 	meta_blocks = 1;
3491 	meta_blocks += 1 + ppb;
3492 	meta_blocks += 1 + ppb + ppb * ppb;
3493 	/* Does block tree limit file size? */
3494 	if (res + meta_blocks <= upper_limit)
3495 		goto check_lfs;
3496 
3497 	res = upper_limit;
3498 	/* How many metadata blocks are needed for addressing upper_limit? */
3499 	upper_limit -= EXT4_NDIR_BLOCKS;
3500 	/* indirect blocks */
3501 	meta_blocks = 1;
3502 	upper_limit -= ppb;
3503 	/* double indirect blocks */
3504 	if (upper_limit < ppb * ppb) {
3505 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3506 		res -= meta_blocks;
3507 		goto check_lfs;
3508 	}
3509 	meta_blocks += 1 + ppb;
3510 	upper_limit -= ppb * ppb;
3511 	/* tripple indirect blocks for the rest */
3512 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3513 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3514 	res -= meta_blocks;
3515 check_lfs:
3516 	res <<= bits;
3517 	if (res > MAX_LFS_FILESIZE)
3518 		res = MAX_LFS_FILESIZE;
3519 
3520 	return res;
3521 }
3522 
3523 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3524 				   ext4_fsblk_t logical_sb_block, int nr)
3525 {
3526 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3527 	ext4_group_t bg, first_meta_bg;
3528 	int has_super = 0;
3529 
3530 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3531 
3532 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3533 		return logical_sb_block + nr + 1;
3534 	bg = sbi->s_desc_per_block * nr;
3535 	if (ext4_bg_has_super(sb, bg))
3536 		has_super = 1;
3537 
3538 	/*
3539 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3540 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3541 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3542 	 * compensate.
3543 	 */
3544 	if (sb->s_blocksize == 1024 && nr == 0 &&
3545 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3546 		has_super++;
3547 
3548 	return (has_super + ext4_group_first_block_no(sb, bg));
3549 }
3550 
3551 /**
3552  * ext4_get_stripe_size: Get the stripe size.
3553  * @sbi: In memory super block info
3554  *
3555  * If we have specified it via mount option, then
3556  * use the mount option value. If the value specified at mount time is
3557  * greater than the blocks per group use the super block value.
3558  * If the super block value is greater than blocks per group return 0.
3559  * Allocator needs it be less than blocks per group.
3560  *
3561  */
3562 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3563 {
3564 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3565 	unsigned long stripe_width =
3566 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3567 	int ret;
3568 
3569 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3570 		ret = sbi->s_stripe;
3571 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3572 		ret = stripe_width;
3573 	else if (stride && stride <= sbi->s_blocks_per_group)
3574 		ret = stride;
3575 	else
3576 		ret = 0;
3577 
3578 	/*
3579 	 * If the stripe width is 1, this makes no sense and
3580 	 * we set it to 0 to turn off stripe handling code.
3581 	 */
3582 	if (ret <= 1)
3583 		ret = 0;
3584 
3585 	return ret;
3586 }
3587 
3588 /*
3589  * Check whether this filesystem can be mounted based on
3590  * the features present and the RDONLY/RDWR mount requested.
3591  * Returns 1 if this filesystem can be mounted as requested,
3592  * 0 if it cannot be.
3593  */
3594 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3595 {
3596 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3597 		ext4_msg(sb, KERN_ERR,
3598 			"Couldn't mount because of "
3599 			"unsupported optional features (%x)",
3600 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3601 			~EXT4_FEATURE_INCOMPAT_SUPP));
3602 		return 0;
3603 	}
3604 
3605 #if !IS_ENABLED(CONFIG_UNICODE)
3606 	if (ext4_has_feature_casefold(sb)) {
3607 		ext4_msg(sb, KERN_ERR,
3608 			 "Filesystem with casefold feature cannot be "
3609 			 "mounted without CONFIG_UNICODE");
3610 		return 0;
3611 	}
3612 #endif
3613 
3614 	if (readonly)
3615 		return 1;
3616 
3617 	if (ext4_has_feature_readonly(sb)) {
3618 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3619 		sb->s_flags |= SB_RDONLY;
3620 		return 1;
3621 	}
3622 
3623 	/* Check that feature set is OK for a read-write mount */
3624 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3625 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3626 			 "unsupported optional features (%x)",
3627 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3628 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3629 		return 0;
3630 	}
3631 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3632 		ext4_msg(sb, KERN_ERR,
3633 			 "Can't support bigalloc feature without "
3634 			 "extents feature\n");
3635 		return 0;
3636 	}
3637 
3638 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3639 	if (!readonly && (ext4_has_feature_quota(sb) ||
3640 			  ext4_has_feature_project(sb))) {
3641 		ext4_msg(sb, KERN_ERR,
3642 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3643 		return 0;
3644 	}
3645 #endif  /* CONFIG_QUOTA */
3646 	return 1;
3647 }
3648 
3649 /*
3650  * This function is called once a day if we have errors logged
3651  * on the file system
3652  */
3653 static void print_daily_error_info(struct timer_list *t)
3654 {
3655 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3656 	struct super_block *sb = sbi->s_sb;
3657 	struct ext4_super_block *es = sbi->s_es;
3658 
3659 	if (es->s_error_count)
3660 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3661 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3662 			 le32_to_cpu(es->s_error_count));
3663 	if (es->s_first_error_time) {
3664 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3665 		       sb->s_id,
3666 		       ext4_get_tstamp(es, s_first_error_time),
3667 		       (int) sizeof(es->s_first_error_func),
3668 		       es->s_first_error_func,
3669 		       le32_to_cpu(es->s_first_error_line));
3670 		if (es->s_first_error_ino)
3671 			printk(KERN_CONT ": inode %u",
3672 			       le32_to_cpu(es->s_first_error_ino));
3673 		if (es->s_first_error_block)
3674 			printk(KERN_CONT ": block %llu", (unsigned long long)
3675 			       le64_to_cpu(es->s_first_error_block));
3676 		printk(KERN_CONT "\n");
3677 	}
3678 	if (es->s_last_error_time) {
3679 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3680 		       sb->s_id,
3681 		       ext4_get_tstamp(es, s_last_error_time),
3682 		       (int) sizeof(es->s_last_error_func),
3683 		       es->s_last_error_func,
3684 		       le32_to_cpu(es->s_last_error_line));
3685 		if (es->s_last_error_ino)
3686 			printk(KERN_CONT ": inode %u",
3687 			       le32_to_cpu(es->s_last_error_ino));
3688 		if (es->s_last_error_block)
3689 			printk(KERN_CONT ": block %llu", (unsigned long long)
3690 			       le64_to_cpu(es->s_last_error_block));
3691 		printk(KERN_CONT "\n");
3692 	}
3693 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3694 }
3695 
3696 /* Find next suitable group and run ext4_init_inode_table */
3697 static int ext4_run_li_request(struct ext4_li_request *elr)
3698 {
3699 	struct ext4_group_desc *gdp = NULL;
3700 	struct super_block *sb = elr->lr_super;
3701 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3702 	ext4_group_t group = elr->lr_next_group;
3703 	unsigned int prefetch_ios = 0;
3704 	int ret = 0;
3705 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3706 	u64 start_time;
3707 
3708 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3709 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3710 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3711 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3712 		if (group >= elr->lr_next_group) {
3713 			ret = 1;
3714 			if (elr->lr_first_not_zeroed != ngroups &&
3715 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3716 				elr->lr_next_group = elr->lr_first_not_zeroed;
3717 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3718 				ret = 0;
3719 			}
3720 		}
3721 		return ret;
3722 	}
3723 
3724 	for (; group < ngroups; group++) {
3725 		gdp = ext4_get_group_desc(sb, group, NULL);
3726 		if (!gdp) {
3727 			ret = 1;
3728 			break;
3729 		}
3730 
3731 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3732 			break;
3733 	}
3734 
3735 	if (group >= ngroups)
3736 		ret = 1;
3737 
3738 	if (!ret) {
3739 		start_time = ktime_get_real_ns();
3740 		ret = ext4_init_inode_table(sb, group,
3741 					    elr->lr_timeout ? 0 : 1);
3742 		trace_ext4_lazy_itable_init(sb, group);
3743 		if (elr->lr_timeout == 0) {
3744 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3745 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3746 		}
3747 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3748 		elr->lr_next_group = group + 1;
3749 	}
3750 	return ret;
3751 }
3752 
3753 /*
3754  * Remove lr_request from the list_request and free the
3755  * request structure. Should be called with li_list_mtx held
3756  */
3757 static void ext4_remove_li_request(struct ext4_li_request *elr)
3758 {
3759 	if (!elr)
3760 		return;
3761 
3762 	list_del(&elr->lr_request);
3763 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3764 	kfree(elr);
3765 }
3766 
3767 static void ext4_unregister_li_request(struct super_block *sb)
3768 {
3769 	mutex_lock(&ext4_li_mtx);
3770 	if (!ext4_li_info) {
3771 		mutex_unlock(&ext4_li_mtx);
3772 		return;
3773 	}
3774 
3775 	mutex_lock(&ext4_li_info->li_list_mtx);
3776 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3777 	mutex_unlock(&ext4_li_info->li_list_mtx);
3778 	mutex_unlock(&ext4_li_mtx);
3779 }
3780 
3781 static struct task_struct *ext4_lazyinit_task;
3782 
3783 /*
3784  * This is the function where ext4lazyinit thread lives. It walks
3785  * through the request list searching for next scheduled filesystem.
3786  * When such a fs is found, run the lazy initialization request
3787  * (ext4_rn_li_request) and keep track of the time spend in this
3788  * function. Based on that time we compute next schedule time of
3789  * the request. When walking through the list is complete, compute
3790  * next waking time and put itself into sleep.
3791  */
3792 static int ext4_lazyinit_thread(void *arg)
3793 {
3794 	struct ext4_lazy_init *eli = arg;
3795 	struct list_head *pos, *n;
3796 	struct ext4_li_request *elr;
3797 	unsigned long next_wakeup, cur;
3798 
3799 	BUG_ON(NULL == eli);
3800 	set_freezable();
3801 
3802 cont_thread:
3803 	while (true) {
3804 		next_wakeup = MAX_JIFFY_OFFSET;
3805 
3806 		mutex_lock(&eli->li_list_mtx);
3807 		if (list_empty(&eli->li_request_list)) {
3808 			mutex_unlock(&eli->li_list_mtx);
3809 			goto exit_thread;
3810 		}
3811 		list_for_each_safe(pos, n, &eli->li_request_list) {
3812 			int err = 0;
3813 			int progress = 0;
3814 			elr = list_entry(pos, struct ext4_li_request,
3815 					 lr_request);
3816 
3817 			if (time_before(jiffies, elr->lr_next_sched)) {
3818 				if (time_before(elr->lr_next_sched, next_wakeup))
3819 					next_wakeup = elr->lr_next_sched;
3820 				continue;
3821 			}
3822 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3823 				if (sb_start_write_trylock(elr->lr_super)) {
3824 					progress = 1;
3825 					/*
3826 					 * We hold sb->s_umount, sb can not
3827 					 * be removed from the list, it is
3828 					 * now safe to drop li_list_mtx
3829 					 */
3830 					mutex_unlock(&eli->li_list_mtx);
3831 					err = ext4_run_li_request(elr);
3832 					sb_end_write(elr->lr_super);
3833 					mutex_lock(&eli->li_list_mtx);
3834 					n = pos->next;
3835 				}
3836 				up_read((&elr->lr_super->s_umount));
3837 			}
3838 			/* error, remove the lazy_init job */
3839 			if (err) {
3840 				ext4_remove_li_request(elr);
3841 				continue;
3842 			}
3843 			if (!progress) {
3844 				elr->lr_next_sched = jiffies +
3845 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3846 			}
3847 			if (time_before(elr->lr_next_sched, next_wakeup))
3848 				next_wakeup = elr->lr_next_sched;
3849 		}
3850 		mutex_unlock(&eli->li_list_mtx);
3851 
3852 		try_to_freeze();
3853 
3854 		cur = jiffies;
3855 		if ((time_after_eq(cur, next_wakeup)) ||
3856 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3857 			cond_resched();
3858 			continue;
3859 		}
3860 
3861 		schedule_timeout_interruptible(next_wakeup - cur);
3862 
3863 		if (kthread_should_stop()) {
3864 			ext4_clear_request_list();
3865 			goto exit_thread;
3866 		}
3867 	}
3868 
3869 exit_thread:
3870 	/*
3871 	 * It looks like the request list is empty, but we need
3872 	 * to check it under the li_list_mtx lock, to prevent any
3873 	 * additions into it, and of course we should lock ext4_li_mtx
3874 	 * to atomically free the list and ext4_li_info, because at
3875 	 * this point another ext4 filesystem could be registering
3876 	 * new one.
3877 	 */
3878 	mutex_lock(&ext4_li_mtx);
3879 	mutex_lock(&eli->li_list_mtx);
3880 	if (!list_empty(&eli->li_request_list)) {
3881 		mutex_unlock(&eli->li_list_mtx);
3882 		mutex_unlock(&ext4_li_mtx);
3883 		goto cont_thread;
3884 	}
3885 	mutex_unlock(&eli->li_list_mtx);
3886 	kfree(ext4_li_info);
3887 	ext4_li_info = NULL;
3888 	mutex_unlock(&ext4_li_mtx);
3889 
3890 	return 0;
3891 }
3892 
3893 static void ext4_clear_request_list(void)
3894 {
3895 	struct list_head *pos, *n;
3896 	struct ext4_li_request *elr;
3897 
3898 	mutex_lock(&ext4_li_info->li_list_mtx);
3899 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3900 		elr = list_entry(pos, struct ext4_li_request,
3901 				 lr_request);
3902 		ext4_remove_li_request(elr);
3903 	}
3904 	mutex_unlock(&ext4_li_info->li_list_mtx);
3905 }
3906 
3907 static int ext4_run_lazyinit_thread(void)
3908 {
3909 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3910 					 ext4_li_info, "ext4lazyinit");
3911 	if (IS_ERR(ext4_lazyinit_task)) {
3912 		int err = PTR_ERR(ext4_lazyinit_task);
3913 		ext4_clear_request_list();
3914 		kfree(ext4_li_info);
3915 		ext4_li_info = NULL;
3916 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3917 				 "initialization thread\n",
3918 				 err);
3919 		return err;
3920 	}
3921 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3922 	return 0;
3923 }
3924 
3925 /*
3926  * Check whether it make sense to run itable init. thread or not.
3927  * If there is at least one uninitialized inode table, return
3928  * corresponding group number, else the loop goes through all
3929  * groups and return total number of groups.
3930  */
3931 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3932 {
3933 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3934 	struct ext4_group_desc *gdp = NULL;
3935 
3936 	if (!ext4_has_group_desc_csum(sb))
3937 		return ngroups;
3938 
3939 	for (group = 0; group < ngroups; group++) {
3940 		gdp = ext4_get_group_desc(sb, group, NULL);
3941 		if (!gdp)
3942 			continue;
3943 
3944 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3945 			break;
3946 	}
3947 
3948 	return group;
3949 }
3950 
3951 static int ext4_li_info_new(void)
3952 {
3953 	struct ext4_lazy_init *eli = NULL;
3954 
3955 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3956 	if (!eli)
3957 		return -ENOMEM;
3958 
3959 	INIT_LIST_HEAD(&eli->li_request_list);
3960 	mutex_init(&eli->li_list_mtx);
3961 
3962 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3963 
3964 	ext4_li_info = eli;
3965 
3966 	return 0;
3967 }
3968 
3969 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3970 					    ext4_group_t start)
3971 {
3972 	struct ext4_li_request *elr;
3973 
3974 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3975 	if (!elr)
3976 		return NULL;
3977 
3978 	elr->lr_super = sb;
3979 	elr->lr_first_not_zeroed = start;
3980 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3981 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3982 		elr->lr_next_group = start;
3983 	} else {
3984 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3985 	}
3986 
3987 	/*
3988 	 * Randomize first schedule time of the request to
3989 	 * spread the inode table initialization requests
3990 	 * better.
3991 	 */
3992 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3993 	return elr;
3994 }
3995 
3996 int ext4_register_li_request(struct super_block *sb,
3997 			     ext4_group_t first_not_zeroed)
3998 {
3999 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4000 	struct ext4_li_request *elr = NULL;
4001 	ext4_group_t ngroups = sbi->s_groups_count;
4002 	int ret = 0;
4003 
4004 	mutex_lock(&ext4_li_mtx);
4005 	if (sbi->s_li_request != NULL) {
4006 		/*
4007 		 * Reset timeout so it can be computed again, because
4008 		 * s_li_wait_mult might have changed.
4009 		 */
4010 		sbi->s_li_request->lr_timeout = 0;
4011 		goto out;
4012 	}
4013 
4014 	if (sb_rdonly(sb) ||
4015 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4016 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4017 		goto out;
4018 
4019 	elr = ext4_li_request_new(sb, first_not_zeroed);
4020 	if (!elr) {
4021 		ret = -ENOMEM;
4022 		goto out;
4023 	}
4024 
4025 	if (NULL == ext4_li_info) {
4026 		ret = ext4_li_info_new();
4027 		if (ret)
4028 			goto out;
4029 	}
4030 
4031 	mutex_lock(&ext4_li_info->li_list_mtx);
4032 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4033 	mutex_unlock(&ext4_li_info->li_list_mtx);
4034 
4035 	sbi->s_li_request = elr;
4036 	/*
4037 	 * set elr to NULL here since it has been inserted to
4038 	 * the request_list and the removal and free of it is
4039 	 * handled by ext4_clear_request_list from now on.
4040 	 */
4041 	elr = NULL;
4042 
4043 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4044 		ret = ext4_run_lazyinit_thread();
4045 		if (ret)
4046 			goto out;
4047 	}
4048 out:
4049 	mutex_unlock(&ext4_li_mtx);
4050 	if (ret)
4051 		kfree(elr);
4052 	return ret;
4053 }
4054 
4055 /*
4056  * We do not need to lock anything since this is called on
4057  * module unload.
4058  */
4059 static void ext4_destroy_lazyinit_thread(void)
4060 {
4061 	/*
4062 	 * If thread exited earlier
4063 	 * there's nothing to be done.
4064 	 */
4065 	if (!ext4_li_info || !ext4_lazyinit_task)
4066 		return;
4067 
4068 	kthread_stop(ext4_lazyinit_task);
4069 }
4070 
4071 static int set_journal_csum_feature_set(struct super_block *sb)
4072 {
4073 	int ret = 1;
4074 	int compat, incompat;
4075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4076 
4077 	if (ext4_has_metadata_csum(sb)) {
4078 		/* journal checksum v3 */
4079 		compat = 0;
4080 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4081 	} else {
4082 		/* journal checksum v1 */
4083 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4084 		incompat = 0;
4085 	}
4086 
4087 	jbd2_journal_clear_features(sbi->s_journal,
4088 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4089 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4090 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4091 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4092 		ret = jbd2_journal_set_features(sbi->s_journal,
4093 				compat, 0,
4094 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4095 				incompat);
4096 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4097 		ret = jbd2_journal_set_features(sbi->s_journal,
4098 				compat, 0,
4099 				incompat);
4100 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4101 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4102 	} else {
4103 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4104 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4105 	}
4106 
4107 	return ret;
4108 }
4109 
4110 /*
4111  * Note: calculating the overhead so we can be compatible with
4112  * historical BSD practice is quite difficult in the face of
4113  * clusters/bigalloc.  This is because multiple metadata blocks from
4114  * different block group can end up in the same allocation cluster.
4115  * Calculating the exact overhead in the face of clustered allocation
4116  * requires either O(all block bitmaps) in memory or O(number of block
4117  * groups**2) in time.  We will still calculate the superblock for
4118  * older file systems --- and if we come across with a bigalloc file
4119  * system with zero in s_overhead_clusters the estimate will be close to
4120  * correct especially for very large cluster sizes --- but for newer
4121  * file systems, it's better to calculate this figure once at mkfs
4122  * time, and store it in the superblock.  If the superblock value is
4123  * present (even for non-bigalloc file systems), we will use it.
4124  */
4125 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4126 			  char *buf)
4127 {
4128 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4129 	struct ext4_group_desc	*gdp;
4130 	ext4_fsblk_t		first_block, last_block, b;
4131 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4132 	int			s, j, count = 0;
4133 	int			has_super = ext4_bg_has_super(sb, grp);
4134 
4135 	if (!ext4_has_feature_bigalloc(sb))
4136 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4137 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4138 			sbi->s_itb_per_group + 2);
4139 
4140 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4141 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4142 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4143 	for (i = 0; i < ngroups; i++) {
4144 		gdp = ext4_get_group_desc(sb, i, NULL);
4145 		b = ext4_block_bitmap(sb, gdp);
4146 		if (b >= first_block && b <= last_block) {
4147 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4148 			count++;
4149 		}
4150 		b = ext4_inode_bitmap(sb, gdp);
4151 		if (b >= first_block && b <= last_block) {
4152 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4153 			count++;
4154 		}
4155 		b = ext4_inode_table(sb, gdp);
4156 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4157 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4158 				int c = EXT4_B2C(sbi, b - first_block);
4159 				ext4_set_bit(c, buf);
4160 				count++;
4161 			}
4162 		if (i != grp)
4163 			continue;
4164 		s = 0;
4165 		if (ext4_bg_has_super(sb, grp)) {
4166 			ext4_set_bit(s++, buf);
4167 			count++;
4168 		}
4169 		j = ext4_bg_num_gdb(sb, grp);
4170 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4171 			ext4_error(sb, "Invalid number of block group "
4172 				   "descriptor blocks: %d", j);
4173 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4174 		}
4175 		count += j;
4176 		for (; j > 0; j--)
4177 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4178 	}
4179 	if (!count)
4180 		return 0;
4181 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4182 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4183 }
4184 
4185 /*
4186  * Compute the overhead and stash it in sbi->s_overhead
4187  */
4188 int ext4_calculate_overhead(struct super_block *sb)
4189 {
4190 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4191 	struct ext4_super_block *es = sbi->s_es;
4192 	struct inode *j_inode;
4193 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4194 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4195 	ext4_fsblk_t overhead = 0;
4196 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4197 
4198 	if (!buf)
4199 		return -ENOMEM;
4200 
4201 	/*
4202 	 * Compute the overhead (FS structures).  This is constant
4203 	 * for a given filesystem unless the number of block groups
4204 	 * changes so we cache the previous value until it does.
4205 	 */
4206 
4207 	/*
4208 	 * All of the blocks before first_data_block are overhead
4209 	 */
4210 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4211 
4212 	/*
4213 	 * Add the overhead found in each block group
4214 	 */
4215 	for (i = 0; i < ngroups; i++) {
4216 		int blks;
4217 
4218 		blks = count_overhead(sb, i, buf);
4219 		overhead += blks;
4220 		if (blks)
4221 			memset(buf, 0, PAGE_SIZE);
4222 		cond_resched();
4223 	}
4224 
4225 	/*
4226 	 * Add the internal journal blocks whether the journal has been
4227 	 * loaded or not
4228 	 */
4229 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4230 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4231 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4232 		/* j_inum for internal journal is non-zero */
4233 		j_inode = ext4_get_journal_inode(sb, j_inum);
4234 		if (!IS_ERR(j_inode)) {
4235 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4236 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4237 			iput(j_inode);
4238 		} else {
4239 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4240 		}
4241 	}
4242 	sbi->s_overhead = overhead;
4243 	smp_wmb();
4244 	free_page((unsigned long) buf);
4245 	return 0;
4246 }
4247 
4248 static void ext4_set_resv_clusters(struct super_block *sb)
4249 {
4250 	ext4_fsblk_t resv_clusters;
4251 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4252 
4253 	/*
4254 	 * There's no need to reserve anything when we aren't using extents.
4255 	 * The space estimates are exact, there are no unwritten extents,
4256 	 * hole punching doesn't need new metadata... This is needed especially
4257 	 * to keep ext2/3 backward compatibility.
4258 	 */
4259 	if (!ext4_has_feature_extents(sb))
4260 		return;
4261 	/*
4262 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4263 	 * This should cover the situations where we can not afford to run
4264 	 * out of space like for example punch hole, or converting
4265 	 * unwritten extents in delalloc path. In most cases such
4266 	 * allocation would require 1, or 2 blocks, higher numbers are
4267 	 * very rare.
4268 	 */
4269 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4270 			 sbi->s_cluster_bits);
4271 
4272 	do_div(resv_clusters, 50);
4273 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4274 
4275 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4276 }
4277 
4278 static const char *ext4_quota_mode(struct super_block *sb)
4279 {
4280 #ifdef CONFIG_QUOTA
4281 	if (!ext4_quota_capable(sb))
4282 		return "none";
4283 
4284 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4285 		return "journalled";
4286 	else
4287 		return "writeback";
4288 #else
4289 	return "disabled";
4290 #endif
4291 }
4292 
4293 static void ext4_setup_csum_trigger(struct super_block *sb,
4294 				    enum ext4_journal_trigger_type type,
4295 				    void (*trigger)(
4296 					struct jbd2_buffer_trigger_type *type,
4297 					struct buffer_head *bh,
4298 					void *mapped_data,
4299 					size_t size))
4300 {
4301 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4302 
4303 	sbi->s_journal_triggers[type].sb = sb;
4304 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4305 }
4306 
4307 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4308 {
4309 	if (!sbi)
4310 		return;
4311 
4312 	kfree(sbi->s_blockgroup_lock);
4313 	fs_put_dax(sbi->s_daxdev, NULL);
4314 	kfree(sbi);
4315 }
4316 
4317 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4318 {
4319 	struct ext4_sb_info *sbi;
4320 
4321 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4322 	if (!sbi)
4323 		return NULL;
4324 
4325 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4326 					   NULL, NULL);
4327 
4328 	sbi->s_blockgroup_lock =
4329 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4330 
4331 	if (!sbi->s_blockgroup_lock)
4332 		goto err_out;
4333 
4334 	sb->s_fs_info = sbi;
4335 	sbi->s_sb = sb;
4336 	return sbi;
4337 err_out:
4338 	fs_put_dax(sbi->s_daxdev, NULL);
4339 	kfree(sbi);
4340 	return NULL;
4341 }
4342 
4343 static void ext4_set_def_opts(struct super_block *sb,
4344 			      struct ext4_super_block *es)
4345 {
4346 	unsigned long def_mount_opts;
4347 
4348 	/* Set defaults before we parse the mount options */
4349 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4350 	set_opt(sb, INIT_INODE_TABLE);
4351 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4352 		set_opt(sb, DEBUG);
4353 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4354 		set_opt(sb, GRPID);
4355 	if (def_mount_opts & EXT4_DEFM_UID16)
4356 		set_opt(sb, NO_UID32);
4357 	/* xattr user namespace & acls are now defaulted on */
4358 	set_opt(sb, XATTR_USER);
4359 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4360 	set_opt(sb, POSIX_ACL);
4361 #endif
4362 	if (ext4_has_feature_fast_commit(sb))
4363 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4364 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4365 	if (ext4_has_metadata_csum(sb))
4366 		set_opt(sb, JOURNAL_CHECKSUM);
4367 
4368 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4369 		set_opt(sb, JOURNAL_DATA);
4370 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4371 		set_opt(sb, ORDERED_DATA);
4372 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4373 		set_opt(sb, WRITEBACK_DATA);
4374 
4375 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4376 		set_opt(sb, ERRORS_PANIC);
4377 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4378 		set_opt(sb, ERRORS_CONT);
4379 	else
4380 		set_opt(sb, ERRORS_RO);
4381 	/* block_validity enabled by default; disable with noblock_validity */
4382 	set_opt(sb, BLOCK_VALIDITY);
4383 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4384 		set_opt(sb, DISCARD);
4385 
4386 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4387 		set_opt(sb, BARRIER);
4388 
4389 	/*
4390 	 * enable delayed allocation by default
4391 	 * Use -o nodelalloc to turn it off
4392 	 */
4393 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4394 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4395 		set_opt(sb, DELALLOC);
4396 
4397 	if (sb->s_blocksize <= PAGE_SIZE)
4398 		set_opt(sb, DIOREAD_NOLOCK);
4399 }
4400 
4401 static int ext4_handle_clustersize(struct super_block *sb)
4402 {
4403 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4404 	struct ext4_super_block *es = sbi->s_es;
4405 	int clustersize;
4406 
4407 	/* Handle clustersize */
4408 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4409 	if (ext4_has_feature_bigalloc(sb)) {
4410 		if (clustersize < sb->s_blocksize) {
4411 			ext4_msg(sb, KERN_ERR,
4412 				 "cluster size (%d) smaller than "
4413 				 "block size (%lu)", clustersize, sb->s_blocksize);
4414 			return -EINVAL;
4415 		}
4416 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4417 			le32_to_cpu(es->s_log_block_size);
4418 	} else {
4419 		if (clustersize != sb->s_blocksize) {
4420 			ext4_msg(sb, KERN_ERR,
4421 				 "fragment/cluster size (%d) != "
4422 				 "block size (%lu)", clustersize, sb->s_blocksize);
4423 			return -EINVAL;
4424 		}
4425 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4426 			ext4_msg(sb, KERN_ERR,
4427 				 "#blocks per group too big: %lu",
4428 				 sbi->s_blocks_per_group);
4429 			return -EINVAL;
4430 		}
4431 		sbi->s_cluster_bits = 0;
4432 	}
4433 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4434 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4435 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4436 			 sbi->s_clusters_per_group);
4437 		return -EINVAL;
4438 	}
4439 	if (sbi->s_blocks_per_group !=
4440 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4441 		ext4_msg(sb, KERN_ERR,
4442 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4443 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4444 		return -EINVAL;
4445 	}
4446 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4447 
4448 	/* Do we have standard group size of clustersize * 8 blocks ? */
4449 	if (sbi->s_blocks_per_group == clustersize << 3)
4450 		set_opt2(sb, STD_GROUP_SIZE);
4451 
4452 	return 0;
4453 }
4454 
4455 static void ext4_fast_commit_init(struct super_block *sb)
4456 {
4457 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4458 
4459 	/* Initialize fast commit stuff */
4460 	atomic_set(&sbi->s_fc_subtid, 0);
4461 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4462 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4463 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4464 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4465 	sbi->s_fc_bytes = 0;
4466 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4467 	sbi->s_fc_ineligible_tid = 0;
4468 	spin_lock_init(&sbi->s_fc_lock);
4469 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4470 	sbi->s_fc_replay_state.fc_regions = NULL;
4471 	sbi->s_fc_replay_state.fc_regions_size = 0;
4472 	sbi->s_fc_replay_state.fc_regions_used = 0;
4473 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4474 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4475 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4476 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4477 }
4478 
4479 static int ext4_inode_info_init(struct super_block *sb,
4480 				struct ext4_super_block *es)
4481 {
4482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4483 
4484 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4485 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4486 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4487 	} else {
4488 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4489 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4490 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4491 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4492 				 sbi->s_first_ino);
4493 			return -EINVAL;
4494 		}
4495 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4496 		    (!is_power_of_2(sbi->s_inode_size)) ||
4497 		    (sbi->s_inode_size > sb->s_blocksize)) {
4498 			ext4_msg(sb, KERN_ERR,
4499 			       "unsupported inode size: %d",
4500 			       sbi->s_inode_size);
4501 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4502 			return -EINVAL;
4503 		}
4504 		/*
4505 		 * i_atime_extra is the last extra field available for
4506 		 * [acm]times in struct ext4_inode. Checking for that
4507 		 * field should suffice to ensure we have extra space
4508 		 * for all three.
4509 		 */
4510 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4511 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4512 			sb->s_time_gran = 1;
4513 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4514 		} else {
4515 			sb->s_time_gran = NSEC_PER_SEC;
4516 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4517 		}
4518 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4519 	}
4520 
4521 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4522 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4523 			EXT4_GOOD_OLD_INODE_SIZE;
4524 		if (ext4_has_feature_extra_isize(sb)) {
4525 			unsigned v, max = (sbi->s_inode_size -
4526 					   EXT4_GOOD_OLD_INODE_SIZE);
4527 
4528 			v = le16_to_cpu(es->s_want_extra_isize);
4529 			if (v > max) {
4530 				ext4_msg(sb, KERN_ERR,
4531 					 "bad s_want_extra_isize: %d", v);
4532 				return -EINVAL;
4533 			}
4534 			if (sbi->s_want_extra_isize < v)
4535 				sbi->s_want_extra_isize = v;
4536 
4537 			v = le16_to_cpu(es->s_min_extra_isize);
4538 			if (v > max) {
4539 				ext4_msg(sb, KERN_ERR,
4540 					 "bad s_min_extra_isize: %d", v);
4541 				return -EINVAL;
4542 			}
4543 			if (sbi->s_want_extra_isize < v)
4544 				sbi->s_want_extra_isize = v;
4545 		}
4546 	}
4547 
4548 	return 0;
4549 }
4550 
4551 #if IS_ENABLED(CONFIG_UNICODE)
4552 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4553 {
4554 	const struct ext4_sb_encodings *encoding_info;
4555 	struct unicode_map *encoding;
4556 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4557 
4558 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4559 		return 0;
4560 
4561 	encoding_info = ext4_sb_read_encoding(es);
4562 	if (!encoding_info) {
4563 		ext4_msg(sb, KERN_ERR,
4564 			"Encoding requested by superblock is unknown");
4565 		return -EINVAL;
4566 	}
4567 
4568 	encoding = utf8_load(encoding_info->version);
4569 	if (IS_ERR(encoding)) {
4570 		ext4_msg(sb, KERN_ERR,
4571 			"can't mount with superblock charset: %s-%u.%u.%u "
4572 			"not supported by the kernel. flags: 0x%x.",
4573 			encoding_info->name,
4574 			unicode_major(encoding_info->version),
4575 			unicode_minor(encoding_info->version),
4576 			unicode_rev(encoding_info->version),
4577 			encoding_flags);
4578 		return -EINVAL;
4579 	}
4580 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4581 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4582 		unicode_major(encoding_info->version),
4583 		unicode_minor(encoding_info->version),
4584 		unicode_rev(encoding_info->version),
4585 		encoding_flags);
4586 
4587 	sb->s_encoding = encoding;
4588 	sb->s_encoding_flags = encoding_flags;
4589 
4590 	return 0;
4591 }
4592 #else
4593 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4594 {
4595 	return 0;
4596 }
4597 #endif
4598 
4599 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4600 {
4601 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4602 
4603 	/* Warn if metadata_csum and gdt_csum are both set. */
4604 	if (ext4_has_feature_metadata_csum(sb) &&
4605 	    ext4_has_feature_gdt_csum(sb))
4606 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4607 			     "redundant flags; please run fsck.");
4608 
4609 	/* Check for a known checksum algorithm */
4610 	if (!ext4_verify_csum_type(sb, es)) {
4611 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4612 			 "unknown checksum algorithm.");
4613 		return -EINVAL;
4614 	}
4615 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4616 				ext4_orphan_file_block_trigger);
4617 
4618 	/* Load the checksum driver */
4619 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4620 	if (IS_ERR(sbi->s_chksum_driver)) {
4621 		int ret = PTR_ERR(sbi->s_chksum_driver);
4622 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4623 		sbi->s_chksum_driver = NULL;
4624 		return ret;
4625 	}
4626 
4627 	/* Check superblock checksum */
4628 	if (!ext4_superblock_csum_verify(sb, es)) {
4629 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4630 			 "invalid superblock checksum.  Run e2fsck?");
4631 		return -EFSBADCRC;
4632 	}
4633 
4634 	/* Precompute checksum seed for all metadata */
4635 	if (ext4_has_feature_csum_seed(sb))
4636 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4637 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4638 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4639 					       sizeof(es->s_uuid));
4640 	return 0;
4641 }
4642 
4643 static int ext4_check_feature_compatibility(struct super_block *sb,
4644 					    struct ext4_super_block *es,
4645 					    int silent)
4646 {
4647 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4648 
4649 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4650 	    (ext4_has_compat_features(sb) ||
4651 	     ext4_has_ro_compat_features(sb) ||
4652 	     ext4_has_incompat_features(sb)))
4653 		ext4_msg(sb, KERN_WARNING,
4654 		       "feature flags set on rev 0 fs, "
4655 		       "running e2fsck is recommended");
4656 
4657 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4658 		set_opt2(sb, HURD_COMPAT);
4659 		if (ext4_has_feature_64bit(sb)) {
4660 			ext4_msg(sb, KERN_ERR,
4661 				 "The Hurd can't support 64-bit file systems");
4662 			return -EINVAL;
4663 		}
4664 
4665 		/*
4666 		 * ea_inode feature uses l_i_version field which is not
4667 		 * available in HURD_COMPAT mode.
4668 		 */
4669 		if (ext4_has_feature_ea_inode(sb)) {
4670 			ext4_msg(sb, KERN_ERR,
4671 				 "ea_inode feature is not supported for Hurd");
4672 			return -EINVAL;
4673 		}
4674 	}
4675 
4676 	if (IS_EXT2_SB(sb)) {
4677 		if (ext2_feature_set_ok(sb))
4678 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4679 				 "using the ext4 subsystem");
4680 		else {
4681 			/*
4682 			 * If we're probing be silent, if this looks like
4683 			 * it's actually an ext[34] filesystem.
4684 			 */
4685 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4686 				return -EINVAL;
4687 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4688 				 "to feature incompatibilities");
4689 			return -EINVAL;
4690 		}
4691 	}
4692 
4693 	if (IS_EXT3_SB(sb)) {
4694 		if (ext3_feature_set_ok(sb))
4695 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4696 				 "using the ext4 subsystem");
4697 		else {
4698 			/*
4699 			 * If we're probing be silent, if this looks like
4700 			 * it's actually an ext4 filesystem.
4701 			 */
4702 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4703 				return -EINVAL;
4704 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4705 				 "to feature incompatibilities");
4706 			return -EINVAL;
4707 		}
4708 	}
4709 
4710 	/*
4711 	 * Check feature flags regardless of the revision level, since we
4712 	 * previously didn't change the revision level when setting the flags,
4713 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4714 	 */
4715 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4716 		return -EINVAL;
4717 
4718 	if (sbi->s_daxdev) {
4719 		if (sb->s_blocksize == PAGE_SIZE)
4720 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4721 		else
4722 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4723 	}
4724 
4725 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4726 		if (ext4_has_feature_inline_data(sb)) {
4727 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4728 					" that may contain inline data");
4729 			return -EINVAL;
4730 		}
4731 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4732 			ext4_msg(sb, KERN_ERR,
4733 				"DAX unsupported by block device.");
4734 			return -EINVAL;
4735 		}
4736 	}
4737 
4738 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4739 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4740 			 es->s_encryption_level);
4741 		return -EINVAL;
4742 	}
4743 
4744 	return 0;
4745 }
4746 
4747 static int ext4_check_geometry(struct super_block *sb,
4748 			       struct ext4_super_block *es)
4749 {
4750 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4751 	__u64 blocks_count;
4752 	int err;
4753 
4754 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4755 		ext4_msg(sb, KERN_ERR,
4756 			 "Number of reserved GDT blocks insanely large: %d",
4757 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4758 		return -EINVAL;
4759 	}
4760 	/*
4761 	 * Test whether we have more sectors than will fit in sector_t,
4762 	 * and whether the max offset is addressable by the page cache.
4763 	 */
4764 	err = generic_check_addressable(sb->s_blocksize_bits,
4765 					ext4_blocks_count(es));
4766 	if (err) {
4767 		ext4_msg(sb, KERN_ERR, "filesystem"
4768 			 " too large to mount safely on this system");
4769 		return err;
4770 	}
4771 
4772 	/* check blocks count against device size */
4773 	blocks_count = sb_bdev_nr_blocks(sb);
4774 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4775 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4776 		       "exceeds size of device (%llu blocks)",
4777 		       ext4_blocks_count(es), blocks_count);
4778 		return -EINVAL;
4779 	}
4780 
4781 	/*
4782 	 * It makes no sense for the first data block to be beyond the end
4783 	 * of the filesystem.
4784 	 */
4785 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4786 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4787 			 "block %u is beyond end of filesystem (%llu)",
4788 			 le32_to_cpu(es->s_first_data_block),
4789 			 ext4_blocks_count(es));
4790 		return -EINVAL;
4791 	}
4792 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4793 	    (sbi->s_cluster_ratio == 1)) {
4794 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4795 			 "block is 0 with a 1k block and cluster size");
4796 		return -EINVAL;
4797 	}
4798 
4799 	blocks_count = (ext4_blocks_count(es) -
4800 			le32_to_cpu(es->s_first_data_block) +
4801 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4802 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4803 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4804 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4805 		       "(block count %llu, first data block %u, "
4806 		       "blocks per group %lu)", blocks_count,
4807 		       ext4_blocks_count(es),
4808 		       le32_to_cpu(es->s_first_data_block),
4809 		       EXT4_BLOCKS_PER_GROUP(sb));
4810 		return -EINVAL;
4811 	}
4812 	sbi->s_groups_count = blocks_count;
4813 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4814 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4815 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4816 	    le32_to_cpu(es->s_inodes_count)) {
4817 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4818 			 le32_to_cpu(es->s_inodes_count),
4819 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4820 		return -EINVAL;
4821 	}
4822 
4823 	return 0;
4824 }
4825 
4826 static int ext4_group_desc_init(struct super_block *sb,
4827 				struct ext4_super_block *es,
4828 				ext4_fsblk_t logical_sb_block,
4829 				ext4_group_t *first_not_zeroed)
4830 {
4831 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4832 	unsigned int db_count;
4833 	ext4_fsblk_t block;
4834 	int i;
4835 
4836 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4837 		   EXT4_DESC_PER_BLOCK(sb);
4838 	if (ext4_has_feature_meta_bg(sb)) {
4839 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4840 			ext4_msg(sb, KERN_WARNING,
4841 				 "first meta block group too large: %u "
4842 				 "(group descriptor block count %u)",
4843 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4844 			return -EINVAL;
4845 		}
4846 	}
4847 	rcu_assign_pointer(sbi->s_group_desc,
4848 			   kvmalloc_array(db_count,
4849 					  sizeof(struct buffer_head *),
4850 					  GFP_KERNEL));
4851 	if (sbi->s_group_desc == NULL) {
4852 		ext4_msg(sb, KERN_ERR, "not enough memory");
4853 		return -ENOMEM;
4854 	}
4855 
4856 	bgl_lock_init(sbi->s_blockgroup_lock);
4857 
4858 	/* Pre-read the descriptors into the buffer cache */
4859 	for (i = 0; i < db_count; i++) {
4860 		block = descriptor_loc(sb, logical_sb_block, i);
4861 		ext4_sb_breadahead_unmovable(sb, block);
4862 	}
4863 
4864 	for (i = 0; i < db_count; i++) {
4865 		struct buffer_head *bh;
4866 
4867 		block = descriptor_loc(sb, logical_sb_block, i);
4868 		bh = ext4_sb_bread_unmovable(sb, block);
4869 		if (IS_ERR(bh)) {
4870 			ext4_msg(sb, KERN_ERR,
4871 			       "can't read group descriptor %d", i);
4872 			sbi->s_gdb_count = i;
4873 			return PTR_ERR(bh);
4874 		}
4875 		rcu_read_lock();
4876 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4877 		rcu_read_unlock();
4878 	}
4879 	sbi->s_gdb_count = db_count;
4880 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4881 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4882 		return -EFSCORRUPTED;
4883 	}
4884 
4885 	return 0;
4886 }
4887 
4888 static int ext4_load_and_init_journal(struct super_block *sb,
4889 				      struct ext4_super_block *es,
4890 				      struct ext4_fs_context *ctx)
4891 {
4892 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4893 	int err;
4894 
4895 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4896 	if (err)
4897 		return err;
4898 
4899 	if (ext4_has_feature_64bit(sb) &&
4900 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4901 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4902 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4903 		goto out;
4904 	}
4905 
4906 	if (!set_journal_csum_feature_set(sb)) {
4907 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4908 			 "feature set");
4909 		goto out;
4910 	}
4911 
4912 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4913 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4914 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4915 		ext4_msg(sb, KERN_ERR,
4916 			"Failed to set fast commit journal feature");
4917 		goto out;
4918 	}
4919 
4920 	/* We have now updated the journal if required, so we can
4921 	 * validate the data journaling mode. */
4922 	switch (test_opt(sb, DATA_FLAGS)) {
4923 	case 0:
4924 		/* No mode set, assume a default based on the journal
4925 		 * capabilities: ORDERED_DATA if the journal can
4926 		 * cope, else JOURNAL_DATA
4927 		 */
4928 		if (jbd2_journal_check_available_features
4929 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4930 			set_opt(sb, ORDERED_DATA);
4931 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4932 		} else {
4933 			set_opt(sb, JOURNAL_DATA);
4934 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4935 		}
4936 		break;
4937 
4938 	case EXT4_MOUNT_ORDERED_DATA:
4939 	case EXT4_MOUNT_WRITEBACK_DATA:
4940 		if (!jbd2_journal_check_available_features
4941 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4942 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4943 			       "requested data journaling mode");
4944 			goto out;
4945 		}
4946 		break;
4947 	default:
4948 		break;
4949 	}
4950 
4951 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4952 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4953 		ext4_msg(sb, KERN_ERR, "can't mount with "
4954 			"journal_async_commit in data=ordered mode");
4955 		goto out;
4956 	}
4957 
4958 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4959 
4960 	sbi->s_journal->j_submit_inode_data_buffers =
4961 		ext4_journal_submit_inode_data_buffers;
4962 	sbi->s_journal->j_finish_inode_data_buffers =
4963 		ext4_journal_finish_inode_data_buffers;
4964 
4965 	return 0;
4966 
4967 out:
4968 	/* flush s_sb_upd_work before destroying the journal. */
4969 	flush_work(&sbi->s_sb_upd_work);
4970 	jbd2_journal_destroy(sbi->s_journal);
4971 	sbi->s_journal = NULL;
4972 	return -EINVAL;
4973 }
4974 
4975 static int ext4_check_journal_data_mode(struct super_block *sb)
4976 {
4977 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4978 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4979 			    "data=journal disables delayed allocation, "
4980 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4981 		/* can't mount with both data=journal and dioread_nolock. */
4982 		clear_opt(sb, DIOREAD_NOLOCK);
4983 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4984 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4985 			ext4_msg(sb, KERN_ERR, "can't mount with "
4986 				 "both data=journal and delalloc");
4987 			return -EINVAL;
4988 		}
4989 		if (test_opt(sb, DAX_ALWAYS)) {
4990 			ext4_msg(sb, KERN_ERR, "can't mount with "
4991 				 "both data=journal and dax");
4992 			return -EINVAL;
4993 		}
4994 		if (ext4_has_feature_encrypt(sb)) {
4995 			ext4_msg(sb, KERN_WARNING,
4996 				 "encrypted files will use data=ordered "
4997 				 "instead of data journaling mode");
4998 		}
4999 		if (test_opt(sb, DELALLOC))
5000 			clear_opt(sb, DELALLOC);
5001 	} else {
5002 		sb->s_iflags |= SB_I_CGROUPWB;
5003 	}
5004 
5005 	return 0;
5006 }
5007 
5008 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5009 			   int silent)
5010 {
5011 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5012 	struct ext4_super_block *es;
5013 	ext4_fsblk_t logical_sb_block;
5014 	unsigned long offset = 0;
5015 	struct buffer_head *bh;
5016 	int ret = -EINVAL;
5017 	int blocksize;
5018 
5019 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5020 	if (!blocksize) {
5021 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5022 		return -EINVAL;
5023 	}
5024 
5025 	/*
5026 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5027 	 * block sizes.  We need to calculate the offset from buffer start.
5028 	 */
5029 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5030 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5031 		offset = do_div(logical_sb_block, blocksize);
5032 	} else {
5033 		logical_sb_block = sbi->s_sb_block;
5034 	}
5035 
5036 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5037 	if (IS_ERR(bh)) {
5038 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5039 		return PTR_ERR(bh);
5040 	}
5041 	/*
5042 	 * Note: s_es must be initialized as soon as possible because
5043 	 *       some ext4 macro-instructions depend on its value
5044 	 */
5045 	es = (struct ext4_super_block *) (bh->b_data + offset);
5046 	sbi->s_es = es;
5047 	sb->s_magic = le16_to_cpu(es->s_magic);
5048 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5049 		if (!silent)
5050 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5051 		goto out;
5052 	}
5053 
5054 	if (le32_to_cpu(es->s_log_block_size) >
5055 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5056 		ext4_msg(sb, KERN_ERR,
5057 			 "Invalid log block size: %u",
5058 			 le32_to_cpu(es->s_log_block_size));
5059 		goto out;
5060 	}
5061 	if (le32_to_cpu(es->s_log_cluster_size) >
5062 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5063 		ext4_msg(sb, KERN_ERR,
5064 			 "Invalid log cluster size: %u",
5065 			 le32_to_cpu(es->s_log_cluster_size));
5066 		goto out;
5067 	}
5068 
5069 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5070 
5071 	/*
5072 	 * If the default block size is not the same as the real block size,
5073 	 * we need to reload it.
5074 	 */
5075 	if (sb->s_blocksize == blocksize) {
5076 		*lsb = logical_sb_block;
5077 		sbi->s_sbh = bh;
5078 		return 0;
5079 	}
5080 
5081 	/*
5082 	 * bh must be released before kill_bdev(), otherwise
5083 	 * it won't be freed and its page also. kill_bdev()
5084 	 * is called by sb_set_blocksize().
5085 	 */
5086 	brelse(bh);
5087 	/* Validate the filesystem blocksize */
5088 	if (!sb_set_blocksize(sb, blocksize)) {
5089 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5090 				blocksize);
5091 		bh = NULL;
5092 		goto out;
5093 	}
5094 
5095 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5096 	offset = do_div(logical_sb_block, blocksize);
5097 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5098 	if (IS_ERR(bh)) {
5099 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5100 		ret = PTR_ERR(bh);
5101 		bh = NULL;
5102 		goto out;
5103 	}
5104 	es = (struct ext4_super_block *)(bh->b_data + offset);
5105 	sbi->s_es = es;
5106 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5107 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5108 		goto out;
5109 	}
5110 	*lsb = logical_sb_block;
5111 	sbi->s_sbh = bh;
5112 	return 0;
5113 out:
5114 	brelse(bh);
5115 	return ret;
5116 }
5117 
5118 static void ext4_hash_info_init(struct super_block *sb)
5119 {
5120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5121 	struct ext4_super_block *es = sbi->s_es;
5122 	unsigned int i;
5123 
5124 	for (i = 0; i < 4; i++)
5125 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5126 
5127 	sbi->s_def_hash_version = es->s_def_hash_version;
5128 	if (ext4_has_feature_dir_index(sb)) {
5129 		i = le32_to_cpu(es->s_flags);
5130 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5131 			sbi->s_hash_unsigned = 3;
5132 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5133 #ifdef __CHAR_UNSIGNED__
5134 			if (!sb_rdonly(sb))
5135 				es->s_flags |=
5136 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5137 			sbi->s_hash_unsigned = 3;
5138 #else
5139 			if (!sb_rdonly(sb))
5140 				es->s_flags |=
5141 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5142 #endif
5143 		}
5144 	}
5145 }
5146 
5147 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5148 {
5149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5150 	struct ext4_super_block *es = sbi->s_es;
5151 	int has_huge_files;
5152 
5153 	has_huge_files = ext4_has_feature_huge_file(sb);
5154 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5155 						      has_huge_files);
5156 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5157 
5158 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5159 	if (ext4_has_feature_64bit(sb)) {
5160 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5161 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5162 		    !is_power_of_2(sbi->s_desc_size)) {
5163 			ext4_msg(sb, KERN_ERR,
5164 			       "unsupported descriptor size %lu",
5165 			       sbi->s_desc_size);
5166 			return -EINVAL;
5167 		}
5168 	} else
5169 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5170 
5171 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5172 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5173 
5174 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5175 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5176 		if (!silent)
5177 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5178 		return -EINVAL;
5179 	}
5180 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5181 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5182 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5183 			 sbi->s_inodes_per_group);
5184 		return -EINVAL;
5185 	}
5186 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5187 					sbi->s_inodes_per_block;
5188 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5189 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5190 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5191 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5192 
5193 	return 0;
5194 }
5195 
5196 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5197 {
5198 	struct ext4_super_block *es = NULL;
5199 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5200 	ext4_fsblk_t logical_sb_block;
5201 	struct inode *root;
5202 	int needs_recovery;
5203 	int err;
5204 	ext4_group_t first_not_zeroed;
5205 	struct ext4_fs_context *ctx = fc->fs_private;
5206 	int silent = fc->sb_flags & SB_SILENT;
5207 
5208 	/* Set defaults for the variables that will be set during parsing */
5209 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5210 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5211 
5212 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5213 	sbi->s_sectors_written_start =
5214 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5215 
5216 	err = ext4_load_super(sb, &logical_sb_block, silent);
5217 	if (err)
5218 		goto out_fail;
5219 
5220 	es = sbi->s_es;
5221 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5222 
5223 	err = ext4_init_metadata_csum(sb, es);
5224 	if (err)
5225 		goto failed_mount;
5226 
5227 	ext4_set_def_opts(sb, es);
5228 
5229 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5230 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5231 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5232 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5233 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5234 
5235 	/*
5236 	 * set default s_li_wait_mult for lazyinit, for the case there is
5237 	 * no mount option specified.
5238 	 */
5239 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5240 
5241 	err = ext4_inode_info_init(sb, es);
5242 	if (err)
5243 		goto failed_mount;
5244 
5245 	err = parse_apply_sb_mount_options(sb, ctx);
5246 	if (err < 0)
5247 		goto failed_mount;
5248 
5249 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5250 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5251 
5252 	err = ext4_check_opt_consistency(fc, sb);
5253 	if (err < 0)
5254 		goto failed_mount;
5255 
5256 	ext4_apply_options(fc, sb);
5257 
5258 	err = ext4_encoding_init(sb, es);
5259 	if (err)
5260 		goto failed_mount;
5261 
5262 	err = ext4_check_journal_data_mode(sb);
5263 	if (err)
5264 		goto failed_mount;
5265 
5266 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5267 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5268 
5269 	/* i_version is always enabled now */
5270 	sb->s_flags |= SB_I_VERSION;
5271 
5272 	err = ext4_check_feature_compatibility(sb, es, silent);
5273 	if (err)
5274 		goto failed_mount;
5275 
5276 	err = ext4_block_group_meta_init(sb, silent);
5277 	if (err)
5278 		goto failed_mount;
5279 
5280 	ext4_hash_info_init(sb);
5281 
5282 	err = ext4_handle_clustersize(sb);
5283 	if (err)
5284 		goto failed_mount;
5285 
5286 	err = ext4_check_geometry(sb, es);
5287 	if (err)
5288 		goto failed_mount;
5289 
5290 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5291 	spin_lock_init(&sbi->s_error_lock);
5292 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5293 
5294 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5295 	if (err)
5296 		goto failed_mount3;
5297 
5298 	err = ext4_es_register_shrinker(sbi);
5299 	if (err)
5300 		goto failed_mount3;
5301 
5302 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5303 	/*
5304 	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5305 	 * cluster, just disable stripe and alert user to simpfy code and avoid
5306 	 * stripe aligned allocation which will rarely successes.
5307 	 */
5308 	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5309 	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5310 		ext4_msg(sb, KERN_WARNING,
5311 			 "stripe (%lu) is not aligned with cluster size (%u), "
5312 			 "stripe is disabled",
5313 			 sbi->s_stripe, sbi->s_cluster_ratio);
5314 		sbi->s_stripe = 0;
5315 	}
5316 	sbi->s_extent_max_zeroout_kb = 32;
5317 
5318 	/*
5319 	 * set up enough so that it can read an inode
5320 	 */
5321 	sb->s_op = &ext4_sops;
5322 	sb->s_export_op = &ext4_export_ops;
5323 	sb->s_xattr = ext4_xattr_handlers;
5324 #ifdef CONFIG_FS_ENCRYPTION
5325 	sb->s_cop = &ext4_cryptops;
5326 #endif
5327 #ifdef CONFIG_FS_VERITY
5328 	sb->s_vop = &ext4_verityops;
5329 #endif
5330 #ifdef CONFIG_QUOTA
5331 	sb->dq_op = &ext4_quota_operations;
5332 	if (ext4_has_feature_quota(sb))
5333 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5334 	else
5335 		sb->s_qcop = &ext4_qctl_operations;
5336 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5337 #endif
5338 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5339 	super_set_sysfs_name_bdev(sb);
5340 
5341 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5342 	mutex_init(&sbi->s_orphan_lock);
5343 
5344 	ext4_fast_commit_init(sb);
5345 
5346 	sb->s_root = NULL;
5347 
5348 	needs_recovery = (es->s_last_orphan != 0 ||
5349 			  ext4_has_feature_orphan_present(sb) ||
5350 			  ext4_has_feature_journal_needs_recovery(sb));
5351 
5352 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5353 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5354 		if (err)
5355 			goto failed_mount3a;
5356 	}
5357 
5358 	err = -EINVAL;
5359 	/*
5360 	 * The first inode we look at is the journal inode.  Don't try
5361 	 * root first: it may be modified in the journal!
5362 	 */
5363 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5364 		err = ext4_load_and_init_journal(sb, es, ctx);
5365 		if (err)
5366 			goto failed_mount3a;
5367 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5368 		   ext4_has_feature_journal_needs_recovery(sb)) {
5369 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5370 		       "suppressed and not mounted read-only");
5371 		goto failed_mount3a;
5372 	} else {
5373 		/* Nojournal mode, all journal mount options are illegal */
5374 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5375 			ext4_msg(sb, KERN_ERR, "can't mount with "
5376 				 "journal_async_commit, fs mounted w/o journal");
5377 			goto failed_mount3a;
5378 		}
5379 
5380 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5381 			ext4_msg(sb, KERN_ERR, "can't mount with "
5382 				 "journal_checksum, fs mounted w/o journal");
5383 			goto failed_mount3a;
5384 		}
5385 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5386 			ext4_msg(sb, KERN_ERR, "can't mount with "
5387 				 "commit=%lu, fs mounted w/o journal",
5388 				 sbi->s_commit_interval / HZ);
5389 			goto failed_mount3a;
5390 		}
5391 		if (EXT4_MOUNT_DATA_FLAGS &
5392 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5393 			ext4_msg(sb, KERN_ERR, "can't mount with "
5394 				 "data=, fs mounted w/o journal");
5395 			goto failed_mount3a;
5396 		}
5397 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5398 		clear_opt(sb, JOURNAL_CHECKSUM);
5399 		clear_opt(sb, DATA_FLAGS);
5400 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5401 		sbi->s_journal = NULL;
5402 		needs_recovery = 0;
5403 	}
5404 
5405 	if (!test_opt(sb, NO_MBCACHE)) {
5406 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5407 		if (!sbi->s_ea_block_cache) {
5408 			ext4_msg(sb, KERN_ERR,
5409 				 "Failed to create ea_block_cache");
5410 			err = -EINVAL;
5411 			goto failed_mount_wq;
5412 		}
5413 
5414 		if (ext4_has_feature_ea_inode(sb)) {
5415 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5416 			if (!sbi->s_ea_inode_cache) {
5417 				ext4_msg(sb, KERN_ERR,
5418 					 "Failed to create ea_inode_cache");
5419 				err = -EINVAL;
5420 				goto failed_mount_wq;
5421 			}
5422 		}
5423 	}
5424 
5425 	/*
5426 	 * Get the # of file system overhead blocks from the
5427 	 * superblock if present.
5428 	 */
5429 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5430 	/* ignore the precalculated value if it is ridiculous */
5431 	if (sbi->s_overhead > ext4_blocks_count(es))
5432 		sbi->s_overhead = 0;
5433 	/*
5434 	 * If the bigalloc feature is not enabled recalculating the
5435 	 * overhead doesn't take long, so we might as well just redo
5436 	 * it to make sure we are using the correct value.
5437 	 */
5438 	if (!ext4_has_feature_bigalloc(sb))
5439 		sbi->s_overhead = 0;
5440 	if (sbi->s_overhead == 0) {
5441 		err = ext4_calculate_overhead(sb);
5442 		if (err)
5443 			goto failed_mount_wq;
5444 	}
5445 
5446 	/*
5447 	 * The maximum number of concurrent works can be high and
5448 	 * concurrency isn't really necessary.  Limit it to 1.
5449 	 */
5450 	EXT4_SB(sb)->rsv_conversion_wq =
5451 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5452 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5453 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5454 		err = -ENOMEM;
5455 		goto failed_mount4;
5456 	}
5457 
5458 	/*
5459 	 * The jbd2_journal_load will have done any necessary log recovery,
5460 	 * so we can safely mount the rest of the filesystem now.
5461 	 */
5462 
5463 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5464 	if (IS_ERR(root)) {
5465 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5466 		err = PTR_ERR(root);
5467 		root = NULL;
5468 		goto failed_mount4;
5469 	}
5470 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5471 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5472 		iput(root);
5473 		err = -EFSCORRUPTED;
5474 		goto failed_mount4;
5475 	}
5476 
5477 	generic_set_sb_d_ops(sb);
5478 	sb->s_root = d_make_root(root);
5479 	if (!sb->s_root) {
5480 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5481 		err = -ENOMEM;
5482 		goto failed_mount4;
5483 	}
5484 
5485 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5486 	if (err == -EROFS) {
5487 		sb->s_flags |= SB_RDONLY;
5488 	} else if (err)
5489 		goto failed_mount4a;
5490 
5491 	ext4_set_resv_clusters(sb);
5492 
5493 	if (test_opt(sb, BLOCK_VALIDITY)) {
5494 		err = ext4_setup_system_zone(sb);
5495 		if (err) {
5496 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5497 				 "zone (%d)", err);
5498 			goto failed_mount4a;
5499 		}
5500 	}
5501 	ext4_fc_replay_cleanup(sb);
5502 
5503 	ext4_ext_init(sb);
5504 
5505 	/*
5506 	 * Enable optimize_scan if number of groups is > threshold. This can be
5507 	 * turned off by passing "mb_optimize_scan=0". This can also be
5508 	 * turned on forcefully by passing "mb_optimize_scan=1".
5509 	 */
5510 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5511 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5512 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5513 		else
5514 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5515 	}
5516 
5517 	err = ext4_mb_init(sb);
5518 	if (err) {
5519 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5520 			 err);
5521 		goto failed_mount5;
5522 	}
5523 
5524 	/*
5525 	 * We can only set up the journal commit callback once
5526 	 * mballoc is initialized
5527 	 */
5528 	if (sbi->s_journal)
5529 		sbi->s_journal->j_commit_callback =
5530 			ext4_journal_commit_callback;
5531 
5532 	err = ext4_percpu_param_init(sbi);
5533 	if (err)
5534 		goto failed_mount6;
5535 
5536 	if (ext4_has_feature_flex_bg(sb))
5537 		if (!ext4_fill_flex_info(sb)) {
5538 			ext4_msg(sb, KERN_ERR,
5539 			       "unable to initialize "
5540 			       "flex_bg meta info!");
5541 			err = -ENOMEM;
5542 			goto failed_mount6;
5543 		}
5544 
5545 	err = ext4_register_li_request(sb, first_not_zeroed);
5546 	if (err)
5547 		goto failed_mount6;
5548 
5549 	err = ext4_init_orphan_info(sb);
5550 	if (err)
5551 		goto failed_mount7;
5552 #ifdef CONFIG_QUOTA
5553 	/* Enable quota usage during mount. */
5554 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5555 		err = ext4_enable_quotas(sb);
5556 		if (err)
5557 			goto failed_mount8;
5558 	}
5559 #endif  /* CONFIG_QUOTA */
5560 
5561 	/*
5562 	 * Save the original bdev mapping's wb_err value which could be
5563 	 * used to detect the metadata async write error.
5564 	 */
5565 	spin_lock_init(&sbi->s_bdev_wb_lock);
5566 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5567 				 &sbi->s_bdev_wb_err);
5568 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5569 	ext4_orphan_cleanup(sb, es);
5570 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5571 	/*
5572 	 * Update the checksum after updating free space/inode counters and
5573 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5574 	 * checksum in the buffer cache until it is written out and
5575 	 * e2fsprogs programs trying to open a file system immediately
5576 	 * after it is mounted can fail.
5577 	 */
5578 	ext4_superblock_csum_set(sb);
5579 	if (needs_recovery) {
5580 		ext4_msg(sb, KERN_INFO, "recovery complete");
5581 		err = ext4_mark_recovery_complete(sb, es);
5582 		if (err)
5583 			goto failed_mount9;
5584 	}
5585 
5586 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5587 		ext4_msg(sb, KERN_WARNING,
5588 			 "mounting with \"discard\" option, but the device does not support discard");
5589 
5590 	if (es->s_error_count)
5591 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5592 
5593 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5594 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5595 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5596 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5597 	atomic_set(&sbi->s_warning_count, 0);
5598 	atomic_set(&sbi->s_msg_count, 0);
5599 
5600 	/* Register sysfs after all initializations are complete. */
5601 	err = ext4_register_sysfs(sb);
5602 	if (err)
5603 		goto failed_mount9;
5604 
5605 	return 0;
5606 
5607 failed_mount9:
5608 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5609 failed_mount8: __maybe_unused
5610 	ext4_release_orphan_info(sb);
5611 failed_mount7:
5612 	ext4_unregister_li_request(sb);
5613 failed_mount6:
5614 	ext4_mb_release(sb);
5615 	ext4_flex_groups_free(sbi);
5616 	ext4_percpu_param_destroy(sbi);
5617 failed_mount5:
5618 	ext4_ext_release(sb);
5619 	ext4_release_system_zone(sb);
5620 failed_mount4a:
5621 	dput(sb->s_root);
5622 	sb->s_root = NULL;
5623 failed_mount4:
5624 	ext4_msg(sb, KERN_ERR, "mount failed");
5625 	if (EXT4_SB(sb)->rsv_conversion_wq)
5626 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5627 failed_mount_wq:
5628 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5629 	sbi->s_ea_inode_cache = NULL;
5630 
5631 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5632 	sbi->s_ea_block_cache = NULL;
5633 
5634 	if (sbi->s_journal) {
5635 		/* flush s_sb_upd_work before journal destroy. */
5636 		flush_work(&sbi->s_sb_upd_work);
5637 		jbd2_journal_destroy(sbi->s_journal);
5638 		sbi->s_journal = NULL;
5639 	}
5640 failed_mount3a:
5641 	ext4_es_unregister_shrinker(sbi);
5642 failed_mount3:
5643 	/* flush s_sb_upd_work before sbi destroy */
5644 	flush_work(&sbi->s_sb_upd_work);
5645 	del_timer_sync(&sbi->s_err_report);
5646 	ext4_stop_mmpd(sbi);
5647 	ext4_group_desc_free(sbi);
5648 failed_mount:
5649 	if (sbi->s_chksum_driver)
5650 		crypto_free_shash(sbi->s_chksum_driver);
5651 
5652 #if IS_ENABLED(CONFIG_UNICODE)
5653 	utf8_unload(sb->s_encoding);
5654 #endif
5655 
5656 #ifdef CONFIG_QUOTA
5657 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5658 		kfree(get_qf_name(sb, sbi, i));
5659 #endif
5660 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5661 	brelse(sbi->s_sbh);
5662 	if (sbi->s_journal_bdev_file) {
5663 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5664 		bdev_fput(sbi->s_journal_bdev_file);
5665 	}
5666 out_fail:
5667 	invalidate_bdev(sb->s_bdev);
5668 	sb->s_fs_info = NULL;
5669 	return err;
5670 }
5671 
5672 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5673 {
5674 	struct ext4_fs_context *ctx = fc->fs_private;
5675 	struct ext4_sb_info *sbi;
5676 	const char *descr;
5677 	int ret;
5678 
5679 	sbi = ext4_alloc_sbi(sb);
5680 	if (!sbi)
5681 		return -ENOMEM;
5682 
5683 	fc->s_fs_info = sbi;
5684 
5685 	/* Cleanup superblock name */
5686 	strreplace(sb->s_id, '/', '!');
5687 
5688 	sbi->s_sb_block = 1;	/* Default super block location */
5689 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5690 		sbi->s_sb_block = ctx->s_sb_block;
5691 
5692 	ret = __ext4_fill_super(fc, sb);
5693 	if (ret < 0)
5694 		goto free_sbi;
5695 
5696 	if (sbi->s_journal) {
5697 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5698 			descr = " journalled data mode";
5699 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5700 			descr = " ordered data mode";
5701 		else
5702 			descr = " writeback data mode";
5703 	} else
5704 		descr = "out journal";
5705 
5706 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5707 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5708 			 "Quota mode: %s.", &sb->s_uuid,
5709 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5710 			 ext4_quota_mode(sb));
5711 
5712 	/* Update the s_overhead_clusters if necessary */
5713 	ext4_update_overhead(sb, false);
5714 	return 0;
5715 
5716 free_sbi:
5717 	ext4_free_sbi(sbi);
5718 	fc->s_fs_info = NULL;
5719 	return ret;
5720 }
5721 
5722 static int ext4_get_tree(struct fs_context *fc)
5723 {
5724 	return get_tree_bdev(fc, ext4_fill_super);
5725 }
5726 
5727 /*
5728  * Setup any per-fs journal parameters now.  We'll do this both on
5729  * initial mount, once the journal has been initialised but before we've
5730  * done any recovery; and again on any subsequent remount.
5731  */
5732 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5733 {
5734 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5735 
5736 	journal->j_commit_interval = sbi->s_commit_interval;
5737 	journal->j_min_batch_time = sbi->s_min_batch_time;
5738 	journal->j_max_batch_time = sbi->s_max_batch_time;
5739 	ext4_fc_init(sb, journal);
5740 
5741 	write_lock(&journal->j_state_lock);
5742 	if (test_opt(sb, BARRIER))
5743 		journal->j_flags |= JBD2_BARRIER;
5744 	else
5745 		journal->j_flags &= ~JBD2_BARRIER;
5746 	if (test_opt(sb, DATA_ERR_ABORT))
5747 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5748 	else
5749 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5750 	/*
5751 	 * Always enable journal cycle record option, letting the journal
5752 	 * records log transactions continuously between each mount.
5753 	 */
5754 	journal->j_flags |= JBD2_CYCLE_RECORD;
5755 	write_unlock(&journal->j_state_lock);
5756 }
5757 
5758 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5759 					     unsigned int journal_inum)
5760 {
5761 	struct inode *journal_inode;
5762 
5763 	/*
5764 	 * Test for the existence of a valid inode on disk.  Bad things
5765 	 * happen if we iget() an unused inode, as the subsequent iput()
5766 	 * will try to delete it.
5767 	 */
5768 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5769 	if (IS_ERR(journal_inode)) {
5770 		ext4_msg(sb, KERN_ERR, "no journal found");
5771 		return ERR_CAST(journal_inode);
5772 	}
5773 	if (!journal_inode->i_nlink) {
5774 		make_bad_inode(journal_inode);
5775 		iput(journal_inode);
5776 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5777 		return ERR_PTR(-EFSCORRUPTED);
5778 	}
5779 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5780 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5781 		iput(journal_inode);
5782 		return ERR_PTR(-EFSCORRUPTED);
5783 	}
5784 
5785 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5786 		  journal_inode, journal_inode->i_size);
5787 	return journal_inode;
5788 }
5789 
5790 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5791 {
5792 	struct ext4_map_blocks map;
5793 	int ret;
5794 
5795 	if (journal->j_inode == NULL)
5796 		return 0;
5797 
5798 	map.m_lblk = *block;
5799 	map.m_len = 1;
5800 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5801 	if (ret <= 0) {
5802 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5803 			 "journal bmap failed: block %llu ret %d\n",
5804 			 *block, ret);
5805 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5806 		return ret;
5807 	}
5808 	*block = map.m_pblk;
5809 	return 0;
5810 }
5811 
5812 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5813 					  unsigned int journal_inum)
5814 {
5815 	struct inode *journal_inode;
5816 	journal_t *journal;
5817 
5818 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5819 	if (IS_ERR(journal_inode))
5820 		return ERR_CAST(journal_inode);
5821 
5822 	journal = jbd2_journal_init_inode(journal_inode);
5823 	if (IS_ERR(journal)) {
5824 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5825 		iput(journal_inode);
5826 		return ERR_CAST(journal);
5827 	}
5828 	journal->j_private = sb;
5829 	journal->j_bmap = ext4_journal_bmap;
5830 	ext4_init_journal_params(sb, journal);
5831 	return journal;
5832 }
5833 
5834 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5835 					dev_t j_dev, ext4_fsblk_t *j_start,
5836 					ext4_fsblk_t *j_len)
5837 {
5838 	struct buffer_head *bh;
5839 	struct block_device *bdev;
5840 	struct file *bdev_file;
5841 	int hblock, blocksize;
5842 	ext4_fsblk_t sb_block;
5843 	unsigned long offset;
5844 	struct ext4_super_block *es;
5845 	int errno;
5846 
5847 	bdev_file = bdev_file_open_by_dev(j_dev,
5848 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5849 		sb, &fs_holder_ops);
5850 	if (IS_ERR(bdev_file)) {
5851 		ext4_msg(sb, KERN_ERR,
5852 			 "failed to open journal device unknown-block(%u,%u) %ld",
5853 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5854 		return bdev_file;
5855 	}
5856 
5857 	bdev = file_bdev(bdev_file);
5858 	blocksize = sb->s_blocksize;
5859 	hblock = bdev_logical_block_size(bdev);
5860 	if (blocksize < hblock) {
5861 		ext4_msg(sb, KERN_ERR,
5862 			"blocksize too small for journal device");
5863 		errno = -EINVAL;
5864 		goto out_bdev;
5865 	}
5866 
5867 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5868 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5869 	set_blocksize(bdev, blocksize);
5870 	bh = __bread(bdev, sb_block, blocksize);
5871 	if (!bh) {
5872 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5873 		       "external journal");
5874 		errno = -EINVAL;
5875 		goto out_bdev;
5876 	}
5877 
5878 	es = (struct ext4_super_block *) (bh->b_data + offset);
5879 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5880 	    !(le32_to_cpu(es->s_feature_incompat) &
5881 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5882 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5883 		errno = -EFSCORRUPTED;
5884 		goto out_bh;
5885 	}
5886 
5887 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5888 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5889 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5890 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5891 		errno = -EFSCORRUPTED;
5892 		goto out_bh;
5893 	}
5894 
5895 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5896 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5897 		errno = -EFSCORRUPTED;
5898 		goto out_bh;
5899 	}
5900 
5901 	*j_start = sb_block + 1;
5902 	*j_len = ext4_blocks_count(es);
5903 	brelse(bh);
5904 	return bdev_file;
5905 
5906 out_bh:
5907 	brelse(bh);
5908 out_bdev:
5909 	bdev_fput(bdev_file);
5910 	return ERR_PTR(errno);
5911 }
5912 
5913 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5914 					dev_t j_dev)
5915 {
5916 	journal_t *journal;
5917 	ext4_fsblk_t j_start;
5918 	ext4_fsblk_t j_len;
5919 	struct file *bdev_file;
5920 	int errno = 0;
5921 
5922 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5923 	if (IS_ERR(bdev_file))
5924 		return ERR_CAST(bdev_file);
5925 
5926 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5927 					j_len, sb->s_blocksize);
5928 	if (IS_ERR(journal)) {
5929 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5930 		errno = PTR_ERR(journal);
5931 		goto out_bdev;
5932 	}
5933 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5934 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5935 					"user (unsupported) - %d",
5936 			be32_to_cpu(journal->j_superblock->s_nr_users));
5937 		errno = -EINVAL;
5938 		goto out_journal;
5939 	}
5940 	journal->j_private = sb;
5941 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5942 	ext4_init_journal_params(sb, journal);
5943 	return journal;
5944 
5945 out_journal:
5946 	jbd2_journal_destroy(journal);
5947 out_bdev:
5948 	bdev_fput(bdev_file);
5949 	return ERR_PTR(errno);
5950 }
5951 
5952 static int ext4_load_journal(struct super_block *sb,
5953 			     struct ext4_super_block *es,
5954 			     unsigned long journal_devnum)
5955 {
5956 	journal_t *journal;
5957 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5958 	dev_t journal_dev;
5959 	int err = 0;
5960 	int really_read_only;
5961 	int journal_dev_ro;
5962 
5963 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5964 		return -EFSCORRUPTED;
5965 
5966 	if (journal_devnum &&
5967 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5968 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5969 			"numbers have changed");
5970 		journal_dev = new_decode_dev(journal_devnum);
5971 	} else
5972 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5973 
5974 	if (journal_inum && journal_dev) {
5975 		ext4_msg(sb, KERN_ERR,
5976 			 "filesystem has both journal inode and journal device!");
5977 		return -EINVAL;
5978 	}
5979 
5980 	if (journal_inum) {
5981 		journal = ext4_open_inode_journal(sb, journal_inum);
5982 		if (IS_ERR(journal))
5983 			return PTR_ERR(journal);
5984 	} else {
5985 		journal = ext4_open_dev_journal(sb, journal_dev);
5986 		if (IS_ERR(journal))
5987 			return PTR_ERR(journal);
5988 	}
5989 
5990 	journal_dev_ro = bdev_read_only(journal->j_dev);
5991 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5992 
5993 	if (journal_dev_ro && !sb_rdonly(sb)) {
5994 		ext4_msg(sb, KERN_ERR,
5995 			 "journal device read-only, try mounting with '-o ro'");
5996 		err = -EROFS;
5997 		goto err_out;
5998 	}
5999 
6000 	/*
6001 	 * Are we loading a blank journal or performing recovery after a
6002 	 * crash?  For recovery, we need to check in advance whether we
6003 	 * can get read-write access to the device.
6004 	 */
6005 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6006 		if (sb_rdonly(sb)) {
6007 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6008 					"required on readonly filesystem");
6009 			if (really_read_only) {
6010 				ext4_msg(sb, KERN_ERR, "write access "
6011 					"unavailable, cannot proceed "
6012 					"(try mounting with noload)");
6013 				err = -EROFS;
6014 				goto err_out;
6015 			}
6016 			ext4_msg(sb, KERN_INFO, "write access will "
6017 			       "be enabled during recovery");
6018 		}
6019 	}
6020 
6021 	if (!(journal->j_flags & JBD2_BARRIER))
6022 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6023 
6024 	if (!ext4_has_feature_journal_needs_recovery(sb))
6025 		err = jbd2_journal_wipe(journal, !really_read_only);
6026 	if (!err) {
6027 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6028 		__le16 orig_state;
6029 		bool changed = false;
6030 
6031 		if (save)
6032 			memcpy(save, ((char *) es) +
6033 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6034 		err = jbd2_journal_load(journal);
6035 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6036 				   save, EXT4_S_ERR_LEN)) {
6037 			memcpy(((char *) es) + EXT4_S_ERR_START,
6038 			       save, EXT4_S_ERR_LEN);
6039 			changed = true;
6040 		}
6041 		kfree(save);
6042 		orig_state = es->s_state;
6043 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6044 					   EXT4_ERROR_FS);
6045 		if (orig_state != es->s_state)
6046 			changed = true;
6047 		/* Write out restored error information to the superblock */
6048 		if (changed && !really_read_only) {
6049 			int err2;
6050 			err2 = ext4_commit_super(sb);
6051 			err = err ? : err2;
6052 		}
6053 	}
6054 
6055 	if (err) {
6056 		ext4_msg(sb, KERN_ERR, "error loading journal");
6057 		goto err_out;
6058 	}
6059 
6060 	EXT4_SB(sb)->s_journal = journal;
6061 	err = ext4_clear_journal_err(sb, es);
6062 	if (err) {
6063 		EXT4_SB(sb)->s_journal = NULL;
6064 		jbd2_journal_destroy(journal);
6065 		return err;
6066 	}
6067 
6068 	if (!really_read_only && journal_devnum &&
6069 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6070 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6071 		ext4_commit_super(sb);
6072 	}
6073 	if (!really_read_only && journal_inum &&
6074 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6075 		es->s_journal_inum = cpu_to_le32(journal_inum);
6076 		ext4_commit_super(sb);
6077 	}
6078 
6079 	return 0;
6080 
6081 err_out:
6082 	jbd2_journal_destroy(journal);
6083 	return err;
6084 }
6085 
6086 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6087 static void ext4_update_super(struct super_block *sb)
6088 {
6089 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6090 	struct ext4_super_block *es = sbi->s_es;
6091 	struct buffer_head *sbh = sbi->s_sbh;
6092 
6093 	lock_buffer(sbh);
6094 	/*
6095 	 * If the file system is mounted read-only, don't update the
6096 	 * superblock write time.  This avoids updating the superblock
6097 	 * write time when we are mounting the root file system
6098 	 * read/only but we need to replay the journal; at that point,
6099 	 * for people who are east of GMT and who make their clock
6100 	 * tick in localtime for Windows bug-for-bug compatibility,
6101 	 * the clock is set in the future, and this will cause e2fsck
6102 	 * to complain and force a full file system check.
6103 	 */
6104 	if (!sb_rdonly(sb))
6105 		ext4_update_tstamp(es, s_wtime);
6106 	es->s_kbytes_written =
6107 		cpu_to_le64(sbi->s_kbytes_written +
6108 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6109 		      sbi->s_sectors_written_start) >> 1));
6110 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6111 		ext4_free_blocks_count_set(es,
6112 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6113 				&sbi->s_freeclusters_counter)));
6114 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6115 		es->s_free_inodes_count =
6116 			cpu_to_le32(percpu_counter_sum_positive(
6117 				&sbi->s_freeinodes_counter));
6118 	/* Copy error information to the on-disk superblock */
6119 	spin_lock(&sbi->s_error_lock);
6120 	if (sbi->s_add_error_count > 0) {
6121 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6122 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6123 			__ext4_update_tstamp(&es->s_first_error_time,
6124 					     &es->s_first_error_time_hi,
6125 					     sbi->s_first_error_time);
6126 			strtomem_pad(es->s_first_error_func,
6127 				     sbi->s_first_error_func, 0);
6128 			es->s_first_error_line =
6129 				cpu_to_le32(sbi->s_first_error_line);
6130 			es->s_first_error_ino =
6131 				cpu_to_le32(sbi->s_first_error_ino);
6132 			es->s_first_error_block =
6133 				cpu_to_le64(sbi->s_first_error_block);
6134 			es->s_first_error_errcode =
6135 				ext4_errno_to_code(sbi->s_first_error_code);
6136 		}
6137 		__ext4_update_tstamp(&es->s_last_error_time,
6138 				     &es->s_last_error_time_hi,
6139 				     sbi->s_last_error_time);
6140 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6141 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6142 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6143 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6144 		es->s_last_error_errcode =
6145 				ext4_errno_to_code(sbi->s_last_error_code);
6146 		/*
6147 		 * Start the daily error reporting function if it hasn't been
6148 		 * started already
6149 		 */
6150 		if (!es->s_error_count)
6151 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6152 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6153 		sbi->s_add_error_count = 0;
6154 	}
6155 	spin_unlock(&sbi->s_error_lock);
6156 
6157 	ext4_superblock_csum_set(sb);
6158 	unlock_buffer(sbh);
6159 }
6160 
6161 static int ext4_commit_super(struct super_block *sb)
6162 {
6163 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6164 
6165 	if (!sbh)
6166 		return -EINVAL;
6167 	if (block_device_ejected(sb))
6168 		return -ENODEV;
6169 
6170 	ext4_update_super(sb);
6171 
6172 	lock_buffer(sbh);
6173 	/* Buffer got discarded which means block device got invalidated */
6174 	if (!buffer_mapped(sbh)) {
6175 		unlock_buffer(sbh);
6176 		return -EIO;
6177 	}
6178 
6179 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6180 		/*
6181 		 * Oh, dear.  A previous attempt to write the
6182 		 * superblock failed.  This could happen because the
6183 		 * USB device was yanked out.  Or it could happen to
6184 		 * be a transient write error and maybe the block will
6185 		 * be remapped.  Nothing we can do but to retry the
6186 		 * write and hope for the best.
6187 		 */
6188 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6189 		       "superblock detected");
6190 		clear_buffer_write_io_error(sbh);
6191 		set_buffer_uptodate(sbh);
6192 	}
6193 	get_bh(sbh);
6194 	/* Clear potential dirty bit if it was journalled update */
6195 	clear_buffer_dirty(sbh);
6196 	sbh->b_end_io = end_buffer_write_sync;
6197 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6198 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6199 	wait_on_buffer(sbh);
6200 	if (buffer_write_io_error(sbh)) {
6201 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6202 		       "superblock");
6203 		clear_buffer_write_io_error(sbh);
6204 		set_buffer_uptodate(sbh);
6205 		return -EIO;
6206 	}
6207 	return 0;
6208 }
6209 
6210 /*
6211  * Have we just finished recovery?  If so, and if we are mounting (or
6212  * remounting) the filesystem readonly, then we will end up with a
6213  * consistent fs on disk.  Record that fact.
6214  */
6215 static int ext4_mark_recovery_complete(struct super_block *sb,
6216 				       struct ext4_super_block *es)
6217 {
6218 	int err;
6219 	journal_t *journal = EXT4_SB(sb)->s_journal;
6220 
6221 	if (!ext4_has_feature_journal(sb)) {
6222 		if (journal != NULL) {
6223 			ext4_error(sb, "Journal got removed while the fs was "
6224 				   "mounted!");
6225 			return -EFSCORRUPTED;
6226 		}
6227 		return 0;
6228 	}
6229 	jbd2_journal_lock_updates(journal);
6230 	err = jbd2_journal_flush(journal, 0);
6231 	if (err < 0)
6232 		goto out;
6233 
6234 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6235 	    ext4_has_feature_orphan_present(sb))) {
6236 		if (!ext4_orphan_file_empty(sb)) {
6237 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6238 			err = -EFSCORRUPTED;
6239 			goto out;
6240 		}
6241 		ext4_clear_feature_journal_needs_recovery(sb);
6242 		ext4_clear_feature_orphan_present(sb);
6243 		ext4_commit_super(sb);
6244 	}
6245 out:
6246 	jbd2_journal_unlock_updates(journal);
6247 	return err;
6248 }
6249 
6250 /*
6251  * If we are mounting (or read-write remounting) a filesystem whose journal
6252  * has recorded an error from a previous lifetime, move that error to the
6253  * main filesystem now.
6254  */
6255 static int ext4_clear_journal_err(struct super_block *sb,
6256 				   struct ext4_super_block *es)
6257 {
6258 	journal_t *journal;
6259 	int j_errno;
6260 	const char *errstr;
6261 
6262 	if (!ext4_has_feature_journal(sb)) {
6263 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6264 		return -EFSCORRUPTED;
6265 	}
6266 
6267 	journal = EXT4_SB(sb)->s_journal;
6268 
6269 	/*
6270 	 * Now check for any error status which may have been recorded in the
6271 	 * journal by a prior ext4_error() or ext4_abort()
6272 	 */
6273 
6274 	j_errno = jbd2_journal_errno(journal);
6275 	if (j_errno) {
6276 		char nbuf[16];
6277 
6278 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6279 		ext4_warning(sb, "Filesystem error recorded "
6280 			     "from previous mount: %s", errstr);
6281 
6282 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6283 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6284 		j_errno = ext4_commit_super(sb);
6285 		if (j_errno)
6286 			return j_errno;
6287 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6288 
6289 		jbd2_journal_clear_err(journal);
6290 		jbd2_journal_update_sb_errno(journal);
6291 	}
6292 	return 0;
6293 }
6294 
6295 /*
6296  * Force the running and committing transactions to commit,
6297  * and wait on the commit.
6298  */
6299 int ext4_force_commit(struct super_block *sb)
6300 {
6301 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6302 }
6303 
6304 static int ext4_sync_fs(struct super_block *sb, int wait)
6305 {
6306 	int ret = 0;
6307 	tid_t target;
6308 	bool needs_barrier = false;
6309 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6310 
6311 	if (unlikely(ext4_forced_shutdown(sb)))
6312 		return 0;
6313 
6314 	trace_ext4_sync_fs(sb, wait);
6315 	flush_workqueue(sbi->rsv_conversion_wq);
6316 	/*
6317 	 * Writeback quota in non-journalled quota case - journalled quota has
6318 	 * no dirty dquots
6319 	 */
6320 	dquot_writeback_dquots(sb, -1);
6321 	/*
6322 	 * Data writeback is possible w/o journal transaction, so barrier must
6323 	 * being sent at the end of the function. But we can skip it if
6324 	 * transaction_commit will do it for us.
6325 	 */
6326 	if (sbi->s_journal) {
6327 		target = jbd2_get_latest_transaction(sbi->s_journal);
6328 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6329 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6330 			needs_barrier = true;
6331 
6332 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6333 			if (wait)
6334 				ret = jbd2_log_wait_commit(sbi->s_journal,
6335 							   target);
6336 		}
6337 	} else if (wait && test_opt(sb, BARRIER))
6338 		needs_barrier = true;
6339 	if (needs_barrier) {
6340 		int err;
6341 		err = blkdev_issue_flush(sb->s_bdev);
6342 		if (!ret)
6343 			ret = err;
6344 	}
6345 
6346 	return ret;
6347 }
6348 
6349 /*
6350  * LVM calls this function before a (read-only) snapshot is created.  This
6351  * gives us a chance to flush the journal completely and mark the fs clean.
6352  *
6353  * Note that only this function cannot bring a filesystem to be in a clean
6354  * state independently. It relies on upper layer to stop all data & metadata
6355  * modifications.
6356  */
6357 static int ext4_freeze(struct super_block *sb)
6358 {
6359 	int error = 0;
6360 	journal_t *journal = EXT4_SB(sb)->s_journal;
6361 
6362 	if (journal) {
6363 		/* Now we set up the journal barrier. */
6364 		jbd2_journal_lock_updates(journal);
6365 
6366 		/*
6367 		 * Don't clear the needs_recovery flag if we failed to
6368 		 * flush the journal.
6369 		 */
6370 		error = jbd2_journal_flush(journal, 0);
6371 		if (error < 0)
6372 			goto out;
6373 
6374 		/* Journal blocked and flushed, clear needs_recovery flag. */
6375 		ext4_clear_feature_journal_needs_recovery(sb);
6376 		if (ext4_orphan_file_empty(sb))
6377 			ext4_clear_feature_orphan_present(sb);
6378 	}
6379 
6380 	error = ext4_commit_super(sb);
6381 out:
6382 	if (journal)
6383 		/* we rely on upper layer to stop further updates */
6384 		jbd2_journal_unlock_updates(journal);
6385 	return error;
6386 }
6387 
6388 /*
6389  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6390  * flag here, even though the filesystem is not technically dirty yet.
6391  */
6392 static int ext4_unfreeze(struct super_block *sb)
6393 {
6394 	if (ext4_forced_shutdown(sb))
6395 		return 0;
6396 
6397 	if (EXT4_SB(sb)->s_journal) {
6398 		/* Reset the needs_recovery flag before the fs is unlocked. */
6399 		ext4_set_feature_journal_needs_recovery(sb);
6400 		if (ext4_has_feature_orphan_file(sb))
6401 			ext4_set_feature_orphan_present(sb);
6402 	}
6403 
6404 	ext4_commit_super(sb);
6405 	return 0;
6406 }
6407 
6408 /*
6409  * Structure to save mount options for ext4_remount's benefit
6410  */
6411 struct ext4_mount_options {
6412 	unsigned long s_mount_opt;
6413 	unsigned long s_mount_opt2;
6414 	kuid_t s_resuid;
6415 	kgid_t s_resgid;
6416 	unsigned long s_commit_interval;
6417 	u32 s_min_batch_time, s_max_batch_time;
6418 #ifdef CONFIG_QUOTA
6419 	int s_jquota_fmt;
6420 	char *s_qf_names[EXT4_MAXQUOTAS];
6421 #endif
6422 };
6423 
6424 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6425 {
6426 	struct ext4_fs_context *ctx = fc->fs_private;
6427 	struct ext4_super_block *es;
6428 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6429 	unsigned long old_sb_flags;
6430 	struct ext4_mount_options old_opts;
6431 	ext4_group_t g;
6432 	int err = 0;
6433 	int alloc_ctx;
6434 #ifdef CONFIG_QUOTA
6435 	int enable_quota = 0;
6436 	int i, j;
6437 	char *to_free[EXT4_MAXQUOTAS];
6438 #endif
6439 
6440 
6441 	/* Store the original options */
6442 	old_sb_flags = sb->s_flags;
6443 	old_opts.s_mount_opt = sbi->s_mount_opt;
6444 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6445 	old_opts.s_resuid = sbi->s_resuid;
6446 	old_opts.s_resgid = sbi->s_resgid;
6447 	old_opts.s_commit_interval = sbi->s_commit_interval;
6448 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6449 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6450 #ifdef CONFIG_QUOTA
6451 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6452 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6453 		if (sbi->s_qf_names[i]) {
6454 			char *qf_name = get_qf_name(sb, sbi, i);
6455 
6456 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6457 			if (!old_opts.s_qf_names[i]) {
6458 				for (j = 0; j < i; j++)
6459 					kfree(old_opts.s_qf_names[j]);
6460 				return -ENOMEM;
6461 			}
6462 		} else
6463 			old_opts.s_qf_names[i] = NULL;
6464 #endif
6465 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6466 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6467 			ctx->journal_ioprio =
6468 				sbi->s_journal->j_task->io_context->ioprio;
6469 		else
6470 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6471 
6472 	}
6473 
6474 	/*
6475 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6476 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6477 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6478 	 * here s_writepages_rwsem to avoid race between writepages ops and
6479 	 * remount.
6480 	 */
6481 	alloc_ctx = ext4_writepages_down_write(sb);
6482 	ext4_apply_options(fc, sb);
6483 	ext4_writepages_up_write(sb, alloc_ctx);
6484 
6485 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6486 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6487 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6488 			 "during remount not supported; ignoring");
6489 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6490 	}
6491 
6492 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6493 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6494 			ext4_msg(sb, KERN_ERR, "can't mount with "
6495 				 "both data=journal and delalloc");
6496 			err = -EINVAL;
6497 			goto restore_opts;
6498 		}
6499 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6500 			ext4_msg(sb, KERN_ERR, "can't mount with "
6501 				 "both data=journal and dioread_nolock");
6502 			err = -EINVAL;
6503 			goto restore_opts;
6504 		}
6505 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6506 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6507 			ext4_msg(sb, KERN_ERR, "can't mount with "
6508 				"journal_async_commit in data=ordered mode");
6509 			err = -EINVAL;
6510 			goto restore_opts;
6511 		}
6512 	}
6513 
6514 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6515 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6516 		err = -EINVAL;
6517 		goto restore_opts;
6518 	}
6519 
6520 	if (test_opt2(sb, ABORT))
6521 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6522 
6523 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6524 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6525 
6526 	es = sbi->s_es;
6527 
6528 	if (sbi->s_journal) {
6529 		ext4_init_journal_params(sb, sbi->s_journal);
6530 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6531 	}
6532 
6533 	/* Flush outstanding errors before changing fs state */
6534 	flush_work(&sbi->s_sb_upd_work);
6535 
6536 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6537 		if (ext4_forced_shutdown(sb)) {
6538 			err = -EROFS;
6539 			goto restore_opts;
6540 		}
6541 
6542 		if (fc->sb_flags & SB_RDONLY) {
6543 			err = sync_filesystem(sb);
6544 			if (err < 0)
6545 				goto restore_opts;
6546 			err = dquot_suspend(sb, -1);
6547 			if (err < 0)
6548 				goto restore_opts;
6549 
6550 			/*
6551 			 * First of all, the unconditional stuff we have to do
6552 			 * to disable replay of the journal when we next remount
6553 			 */
6554 			sb->s_flags |= SB_RDONLY;
6555 
6556 			/*
6557 			 * OK, test if we are remounting a valid rw partition
6558 			 * readonly, and if so set the rdonly flag and then
6559 			 * mark the partition as valid again.
6560 			 */
6561 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6562 			    (sbi->s_mount_state & EXT4_VALID_FS))
6563 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6564 
6565 			if (sbi->s_journal) {
6566 				/*
6567 				 * We let remount-ro finish even if marking fs
6568 				 * as clean failed...
6569 				 */
6570 				ext4_mark_recovery_complete(sb, es);
6571 			}
6572 		} else {
6573 			/* Make sure we can mount this feature set readwrite */
6574 			if (ext4_has_feature_readonly(sb) ||
6575 			    !ext4_feature_set_ok(sb, 0)) {
6576 				err = -EROFS;
6577 				goto restore_opts;
6578 			}
6579 			/*
6580 			 * Make sure the group descriptor checksums
6581 			 * are sane.  If they aren't, refuse to remount r/w.
6582 			 */
6583 			for (g = 0; g < sbi->s_groups_count; g++) {
6584 				struct ext4_group_desc *gdp =
6585 					ext4_get_group_desc(sb, g, NULL);
6586 
6587 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6588 					ext4_msg(sb, KERN_ERR,
6589 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6590 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6591 					       le16_to_cpu(gdp->bg_checksum));
6592 					err = -EFSBADCRC;
6593 					goto restore_opts;
6594 				}
6595 			}
6596 
6597 			/*
6598 			 * If we have an unprocessed orphan list hanging
6599 			 * around from a previously readonly bdev mount,
6600 			 * require a full umount/remount for now.
6601 			 */
6602 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6603 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6604 				       "remount RDWR because of unprocessed "
6605 				       "orphan inode list.  Please "
6606 				       "umount/remount instead");
6607 				err = -EINVAL;
6608 				goto restore_opts;
6609 			}
6610 
6611 			/*
6612 			 * Mounting a RDONLY partition read-write, so reread
6613 			 * and store the current valid flag.  (It may have
6614 			 * been changed by e2fsck since we originally mounted
6615 			 * the partition.)
6616 			 */
6617 			if (sbi->s_journal) {
6618 				err = ext4_clear_journal_err(sb, es);
6619 				if (err)
6620 					goto restore_opts;
6621 			}
6622 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6623 					      ~EXT4_FC_REPLAY);
6624 
6625 			err = ext4_setup_super(sb, es, 0);
6626 			if (err)
6627 				goto restore_opts;
6628 
6629 			sb->s_flags &= ~SB_RDONLY;
6630 			if (ext4_has_feature_mmp(sb)) {
6631 				err = ext4_multi_mount_protect(sb,
6632 						le64_to_cpu(es->s_mmp_block));
6633 				if (err)
6634 					goto restore_opts;
6635 			}
6636 #ifdef CONFIG_QUOTA
6637 			enable_quota = 1;
6638 #endif
6639 		}
6640 	}
6641 
6642 	/*
6643 	 * Handle creation of system zone data early because it can fail.
6644 	 * Releasing of existing data is done when we are sure remount will
6645 	 * succeed.
6646 	 */
6647 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6648 		err = ext4_setup_system_zone(sb);
6649 		if (err)
6650 			goto restore_opts;
6651 	}
6652 
6653 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6654 		err = ext4_commit_super(sb);
6655 		if (err)
6656 			goto restore_opts;
6657 	}
6658 
6659 #ifdef CONFIG_QUOTA
6660 	if (enable_quota) {
6661 		if (sb_any_quota_suspended(sb))
6662 			dquot_resume(sb, -1);
6663 		else if (ext4_has_feature_quota(sb)) {
6664 			err = ext4_enable_quotas(sb);
6665 			if (err)
6666 				goto restore_opts;
6667 		}
6668 	}
6669 	/* Release old quota file names */
6670 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6671 		kfree(old_opts.s_qf_names[i]);
6672 #endif
6673 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6674 		ext4_release_system_zone(sb);
6675 
6676 	/*
6677 	 * Reinitialize lazy itable initialization thread based on
6678 	 * current settings
6679 	 */
6680 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6681 		ext4_unregister_li_request(sb);
6682 	else {
6683 		ext4_group_t first_not_zeroed;
6684 		first_not_zeroed = ext4_has_uninit_itable(sb);
6685 		ext4_register_li_request(sb, first_not_zeroed);
6686 	}
6687 
6688 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6689 		ext4_stop_mmpd(sbi);
6690 
6691 	return 0;
6692 
6693 restore_opts:
6694 	/*
6695 	 * If there was a failing r/w to ro transition, we may need to
6696 	 * re-enable quota
6697 	 */
6698 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6699 	    sb_any_quota_suspended(sb))
6700 		dquot_resume(sb, -1);
6701 
6702 	alloc_ctx = ext4_writepages_down_write(sb);
6703 	sb->s_flags = old_sb_flags;
6704 	sbi->s_mount_opt = old_opts.s_mount_opt;
6705 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6706 	sbi->s_resuid = old_opts.s_resuid;
6707 	sbi->s_resgid = old_opts.s_resgid;
6708 	sbi->s_commit_interval = old_opts.s_commit_interval;
6709 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6710 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6711 	ext4_writepages_up_write(sb, alloc_ctx);
6712 
6713 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6714 		ext4_release_system_zone(sb);
6715 #ifdef CONFIG_QUOTA
6716 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6717 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6718 		to_free[i] = get_qf_name(sb, sbi, i);
6719 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6720 	}
6721 	synchronize_rcu();
6722 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6723 		kfree(to_free[i]);
6724 #endif
6725 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6726 		ext4_stop_mmpd(sbi);
6727 	return err;
6728 }
6729 
6730 static int ext4_reconfigure(struct fs_context *fc)
6731 {
6732 	struct super_block *sb = fc->root->d_sb;
6733 	int ret;
6734 
6735 	fc->s_fs_info = EXT4_SB(sb);
6736 
6737 	ret = ext4_check_opt_consistency(fc, sb);
6738 	if (ret < 0)
6739 		return ret;
6740 
6741 	ret = __ext4_remount(fc, sb);
6742 	if (ret < 0)
6743 		return ret;
6744 
6745 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6746 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6747 		 ext4_quota_mode(sb));
6748 
6749 	return 0;
6750 }
6751 
6752 #ifdef CONFIG_QUOTA
6753 static int ext4_statfs_project(struct super_block *sb,
6754 			       kprojid_t projid, struct kstatfs *buf)
6755 {
6756 	struct kqid qid;
6757 	struct dquot *dquot;
6758 	u64 limit;
6759 	u64 curblock;
6760 
6761 	qid = make_kqid_projid(projid);
6762 	dquot = dqget(sb, qid);
6763 	if (IS_ERR(dquot))
6764 		return PTR_ERR(dquot);
6765 	spin_lock(&dquot->dq_dqb_lock);
6766 
6767 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6768 			     dquot->dq_dqb.dqb_bhardlimit);
6769 	limit >>= sb->s_blocksize_bits;
6770 
6771 	if (limit && buf->f_blocks > limit) {
6772 		curblock = (dquot->dq_dqb.dqb_curspace +
6773 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6774 		buf->f_blocks = limit;
6775 		buf->f_bfree = buf->f_bavail =
6776 			(buf->f_blocks > curblock) ?
6777 			 (buf->f_blocks - curblock) : 0;
6778 	}
6779 
6780 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6781 			     dquot->dq_dqb.dqb_ihardlimit);
6782 	if (limit && buf->f_files > limit) {
6783 		buf->f_files = limit;
6784 		buf->f_ffree =
6785 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6786 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6787 	}
6788 
6789 	spin_unlock(&dquot->dq_dqb_lock);
6790 	dqput(dquot);
6791 	return 0;
6792 }
6793 #endif
6794 
6795 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6796 {
6797 	struct super_block *sb = dentry->d_sb;
6798 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6799 	struct ext4_super_block *es = sbi->s_es;
6800 	ext4_fsblk_t overhead = 0, resv_blocks;
6801 	s64 bfree;
6802 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6803 
6804 	if (!test_opt(sb, MINIX_DF))
6805 		overhead = sbi->s_overhead;
6806 
6807 	buf->f_type = EXT4_SUPER_MAGIC;
6808 	buf->f_bsize = sb->s_blocksize;
6809 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6810 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6811 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6812 	/* prevent underflow in case that few free space is available */
6813 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6814 	buf->f_bavail = buf->f_bfree -
6815 			(ext4_r_blocks_count(es) + resv_blocks);
6816 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6817 		buf->f_bavail = 0;
6818 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6819 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6820 	buf->f_namelen = EXT4_NAME_LEN;
6821 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6822 
6823 #ifdef CONFIG_QUOTA
6824 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6825 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6826 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6827 #endif
6828 	return 0;
6829 }
6830 
6831 
6832 #ifdef CONFIG_QUOTA
6833 
6834 /*
6835  * Helper functions so that transaction is started before we acquire dqio_sem
6836  * to keep correct lock ordering of transaction > dqio_sem
6837  */
6838 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6839 {
6840 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6841 }
6842 
6843 static int ext4_write_dquot(struct dquot *dquot)
6844 {
6845 	int ret, err;
6846 	handle_t *handle;
6847 	struct inode *inode;
6848 
6849 	inode = dquot_to_inode(dquot);
6850 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6851 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6852 	if (IS_ERR(handle))
6853 		return PTR_ERR(handle);
6854 	ret = dquot_commit(dquot);
6855 	if (ret < 0)
6856 		ext4_error_err(dquot->dq_sb, -ret,
6857 			       "Failed to commit dquot type %d",
6858 			       dquot->dq_id.type);
6859 	err = ext4_journal_stop(handle);
6860 	if (!ret)
6861 		ret = err;
6862 	return ret;
6863 }
6864 
6865 static int ext4_acquire_dquot(struct dquot *dquot)
6866 {
6867 	int ret, err;
6868 	handle_t *handle;
6869 
6870 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6871 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6872 	if (IS_ERR(handle))
6873 		return PTR_ERR(handle);
6874 	ret = dquot_acquire(dquot);
6875 	if (ret < 0)
6876 		ext4_error_err(dquot->dq_sb, -ret,
6877 			      "Failed to acquire dquot type %d",
6878 			      dquot->dq_id.type);
6879 	err = ext4_journal_stop(handle);
6880 	if (!ret)
6881 		ret = err;
6882 	return ret;
6883 }
6884 
6885 static int ext4_release_dquot(struct dquot *dquot)
6886 {
6887 	int ret, err;
6888 	handle_t *handle;
6889 
6890 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6891 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6892 	if (IS_ERR(handle)) {
6893 		/* Release dquot anyway to avoid endless cycle in dqput() */
6894 		dquot_release(dquot);
6895 		return PTR_ERR(handle);
6896 	}
6897 	ret = dquot_release(dquot);
6898 	if (ret < 0)
6899 		ext4_error_err(dquot->dq_sb, -ret,
6900 			       "Failed to release dquot type %d",
6901 			       dquot->dq_id.type);
6902 	err = ext4_journal_stop(handle);
6903 	if (!ret)
6904 		ret = err;
6905 	return ret;
6906 }
6907 
6908 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6909 {
6910 	struct super_block *sb = dquot->dq_sb;
6911 
6912 	if (ext4_is_quota_journalled(sb)) {
6913 		dquot_mark_dquot_dirty(dquot);
6914 		return ext4_write_dquot(dquot);
6915 	} else {
6916 		return dquot_mark_dquot_dirty(dquot);
6917 	}
6918 }
6919 
6920 static int ext4_write_info(struct super_block *sb, int type)
6921 {
6922 	int ret, err;
6923 	handle_t *handle;
6924 
6925 	/* Data block + inode block */
6926 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6927 	if (IS_ERR(handle))
6928 		return PTR_ERR(handle);
6929 	ret = dquot_commit_info(sb, type);
6930 	err = ext4_journal_stop(handle);
6931 	if (!ret)
6932 		ret = err;
6933 	return ret;
6934 }
6935 
6936 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6937 {
6938 	struct ext4_inode_info *ei = EXT4_I(inode);
6939 
6940 	/* The first argument of lockdep_set_subclass has to be
6941 	 * *exactly* the same as the argument to init_rwsem() --- in
6942 	 * this case, in init_once() --- or lockdep gets unhappy
6943 	 * because the name of the lock is set using the
6944 	 * stringification of the argument to init_rwsem().
6945 	 */
6946 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6947 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6948 }
6949 
6950 /*
6951  * Standard function to be called on quota_on
6952  */
6953 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6954 			 const struct path *path)
6955 {
6956 	int err;
6957 
6958 	if (!test_opt(sb, QUOTA))
6959 		return -EINVAL;
6960 
6961 	/* Quotafile not on the same filesystem? */
6962 	if (path->dentry->d_sb != sb)
6963 		return -EXDEV;
6964 
6965 	/* Quota already enabled for this file? */
6966 	if (IS_NOQUOTA(d_inode(path->dentry)))
6967 		return -EBUSY;
6968 
6969 	/* Journaling quota? */
6970 	if (EXT4_SB(sb)->s_qf_names[type]) {
6971 		/* Quotafile not in fs root? */
6972 		if (path->dentry->d_parent != sb->s_root)
6973 			ext4_msg(sb, KERN_WARNING,
6974 				"Quota file not on filesystem root. "
6975 				"Journaled quota will not work");
6976 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6977 	} else {
6978 		/*
6979 		 * Clear the flag just in case mount options changed since
6980 		 * last time.
6981 		 */
6982 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6983 	}
6984 
6985 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6986 	err = dquot_quota_on(sb, type, format_id, path);
6987 	if (!err) {
6988 		struct inode *inode = d_inode(path->dentry);
6989 		handle_t *handle;
6990 
6991 		/*
6992 		 * Set inode flags to prevent userspace from messing with quota
6993 		 * files. If this fails, we return success anyway since quotas
6994 		 * are already enabled and this is not a hard failure.
6995 		 */
6996 		inode_lock(inode);
6997 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6998 		if (IS_ERR(handle))
6999 			goto unlock_inode;
7000 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7001 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7002 				S_NOATIME | S_IMMUTABLE);
7003 		err = ext4_mark_inode_dirty(handle, inode);
7004 		ext4_journal_stop(handle);
7005 	unlock_inode:
7006 		inode_unlock(inode);
7007 		if (err)
7008 			dquot_quota_off(sb, type);
7009 	}
7010 	if (err)
7011 		lockdep_set_quota_inode(path->dentry->d_inode,
7012 					     I_DATA_SEM_NORMAL);
7013 	return err;
7014 }
7015 
7016 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7017 {
7018 	switch (type) {
7019 	case USRQUOTA:
7020 		return qf_inum == EXT4_USR_QUOTA_INO;
7021 	case GRPQUOTA:
7022 		return qf_inum == EXT4_GRP_QUOTA_INO;
7023 	case PRJQUOTA:
7024 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7025 	default:
7026 		BUG();
7027 	}
7028 }
7029 
7030 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7031 			     unsigned int flags)
7032 {
7033 	int err;
7034 	struct inode *qf_inode;
7035 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7036 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7037 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7038 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7039 	};
7040 
7041 	BUG_ON(!ext4_has_feature_quota(sb));
7042 
7043 	if (!qf_inums[type])
7044 		return -EPERM;
7045 
7046 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7047 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7048 				qf_inums[type], type);
7049 		return -EUCLEAN;
7050 	}
7051 
7052 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7053 	if (IS_ERR(qf_inode)) {
7054 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7055 				qf_inums[type], type);
7056 		return PTR_ERR(qf_inode);
7057 	}
7058 
7059 	/* Don't account quota for quota files to avoid recursion */
7060 	qf_inode->i_flags |= S_NOQUOTA;
7061 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7062 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7063 	if (err)
7064 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7065 	iput(qf_inode);
7066 
7067 	return err;
7068 }
7069 
7070 /* Enable usage tracking for all quota types. */
7071 int ext4_enable_quotas(struct super_block *sb)
7072 {
7073 	int type, err = 0;
7074 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7075 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7076 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7077 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7078 	};
7079 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7080 		test_opt(sb, USRQUOTA),
7081 		test_opt(sb, GRPQUOTA),
7082 		test_opt(sb, PRJQUOTA),
7083 	};
7084 
7085 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7086 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7087 		if (qf_inums[type]) {
7088 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7089 				DQUOT_USAGE_ENABLED |
7090 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7091 			if (err) {
7092 				ext4_warning(sb,
7093 					"Failed to enable quota tracking "
7094 					"(type=%d, err=%d, ino=%lu). "
7095 					"Please run e2fsck to fix.", type,
7096 					err, qf_inums[type]);
7097 
7098 				ext4_quotas_off(sb, type);
7099 				return err;
7100 			}
7101 		}
7102 	}
7103 	return 0;
7104 }
7105 
7106 static int ext4_quota_off(struct super_block *sb, int type)
7107 {
7108 	struct inode *inode = sb_dqopt(sb)->files[type];
7109 	handle_t *handle;
7110 	int err;
7111 
7112 	/* Force all delayed allocation blocks to be allocated.
7113 	 * Caller already holds s_umount sem */
7114 	if (test_opt(sb, DELALLOC))
7115 		sync_filesystem(sb);
7116 
7117 	if (!inode || !igrab(inode))
7118 		goto out;
7119 
7120 	err = dquot_quota_off(sb, type);
7121 	if (err || ext4_has_feature_quota(sb))
7122 		goto out_put;
7123 	/*
7124 	 * When the filesystem was remounted read-only first, we cannot cleanup
7125 	 * inode flags here. Bad luck but people should be using QUOTA feature
7126 	 * these days anyway.
7127 	 */
7128 	if (sb_rdonly(sb))
7129 		goto out_put;
7130 
7131 	inode_lock(inode);
7132 	/*
7133 	 * Update modification times of quota files when userspace can
7134 	 * start looking at them. If we fail, we return success anyway since
7135 	 * this is not a hard failure and quotas are already disabled.
7136 	 */
7137 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7138 	if (IS_ERR(handle)) {
7139 		err = PTR_ERR(handle);
7140 		goto out_unlock;
7141 	}
7142 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7143 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7144 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7145 	err = ext4_mark_inode_dirty(handle, inode);
7146 	ext4_journal_stop(handle);
7147 out_unlock:
7148 	inode_unlock(inode);
7149 out_put:
7150 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7151 	iput(inode);
7152 	return err;
7153 out:
7154 	return dquot_quota_off(sb, type);
7155 }
7156 
7157 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7158  * acquiring the locks... As quota files are never truncated and quota code
7159  * itself serializes the operations (and no one else should touch the files)
7160  * we don't have to be afraid of races */
7161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7162 			       size_t len, loff_t off)
7163 {
7164 	struct inode *inode = sb_dqopt(sb)->files[type];
7165 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7166 	int offset = off & (sb->s_blocksize - 1);
7167 	int tocopy;
7168 	size_t toread;
7169 	struct buffer_head *bh;
7170 	loff_t i_size = i_size_read(inode);
7171 
7172 	if (off > i_size)
7173 		return 0;
7174 	if (off+len > i_size)
7175 		len = i_size-off;
7176 	toread = len;
7177 	while (toread > 0) {
7178 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7179 		bh = ext4_bread(NULL, inode, blk, 0);
7180 		if (IS_ERR(bh))
7181 			return PTR_ERR(bh);
7182 		if (!bh)	/* A hole? */
7183 			memset(data, 0, tocopy);
7184 		else
7185 			memcpy(data, bh->b_data+offset, tocopy);
7186 		brelse(bh);
7187 		offset = 0;
7188 		toread -= tocopy;
7189 		data += tocopy;
7190 		blk++;
7191 	}
7192 	return len;
7193 }
7194 
7195 /* Write to quotafile (we know the transaction is already started and has
7196  * enough credits) */
7197 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7198 				const char *data, size_t len, loff_t off)
7199 {
7200 	struct inode *inode = sb_dqopt(sb)->files[type];
7201 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7202 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7203 	int retries = 0;
7204 	struct buffer_head *bh;
7205 	handle_t *handle = journal_current_handle();
7206 
7207 	if (!handle) {
7208 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7209 			" cancelled because transaction is not started",
7210 			(unsigned long long)off, (unsigned long long)len);
7211 		return -EIO;
7212 	}
7213 	/*
7214 	 * Since we account only one data block in transaction credits,
7215 	 * then it is impossible to cross a block boundary.
7216 	 */
7217 	if (sb->s_blocksize - offset < len) {
7218 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7219 			" cancelled because not block aligned",
7220 			(unsigned long long)off, (unsigned long long)len);
7221 		return -EIO;
7222 	}
7223 
7224 	do {
7225 		bh = ext4_bread(handle, inode, blk,
7226 				EXT4_GET_BLOCKS_CREATE |
7227 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7228 	} while (PTR_ERR(bh) == -ENOSPC &&
7229 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7230 	if (IS_ERR(bh))
7231 		return PTR_ERR(bh);
7232 	if (!bh)
7233 		goto out;
7234 	BUFFER_TRACE(bh, "get write access");
7235 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7236 	if (err) {
7237 		brelse(bh);
7238 		return err;
7239 	}
7240 	lock_buffer(bh);
7241 	memcpy(bh->b_data+offset, data, len);
7242 	flush_dcache_page(bh->b_page);
7243 	unlock_buffer(bh);
7244 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7245 	brelse(bh);
7246 out:
7247 	if (inode->i_size < off + len) {
7248 		i_size_write(inode, off + len);
7249 		EXT4_I(inode)->i_disksize = inode->i_size;
7250 		err2 = ext4_mark_inode_dirty(handle, inode);
7251 		if (unlikely(err2 && !err))
7252 			err = err2;
7253 	}
7254 	return err ? err : len;
7255 }
7256 #endif
7257 
7258 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7259 static inline void register_as_ext2(void)
7260 {
7261 	int err = register_filesystem(&ext2_fs_type);
7262 	if (err)
7263 		printk(KERN_WARNING
7264 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7265 }
7266 
7267 static inline void unregister_as_ext2(void)
7268 {
7269 	unregister_filesystem(&ext2_fs_type);
7270 }
7271 
7272 static inline int ext2_feature_set_ok(struct super_block *sb)
7273 {
7274 	if (ext4_has_unknown_ext2_incompat_features(sb))
7275 		return 0;
7276 	if (sb_rdonly(sb))
7277 		return 1;
7278 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7279 		return 0;
7280 	return 1;
7281 }
7282 #else
7283 static inline void register_as_ext2(void) { }
7284 static inline void unregister_as_ext2(void) { }
7285 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7286 #endif
7287 
7288 static inline void register_as_ext3(void)
7289 {
7290 	int err = register_filesystem(&ext3_fs_type);
7291 	if (err)
7292 		printk(KERN_WARNING
7293 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7294 }
7295 
7296 static inline void unregister_as_ext3(void)
7297 {
7298 	unregister_filesystem(&ext3_fs_type);
7299 }
7300 
7301 static inline int ext3_feature_set_ok(struct super_block *sb)
7302 {
7303 	if (ext4_has_unknown_ext3_incompat_features(sb))
7304 		return 0;
7305 	if (!ext4_has_feature_journal(sb))
7306 		return 0;
7307 	if (sb_rdonly(sb))
7308 		return 1;
7309 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7310 		return 0;
7311 	return 1;
7312 }
7313 
7314 static void ext4_kill_sb(struct super_block *sb)
7315 {
7316 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7317 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7318 
7319 	kill_block_super(sb);
7320 
7321 	if (bdev_file)
7322 		bdev_fput(bdev_file);
7323 }
7324 
7325 static struct file_system_type ext4_fs_type = {
7326 	.owner			= THIS_MODULE,
7327 	.name			= "ext4",
7328 	.init_fs_context	= ext4_init_fs_context,
7329 	.parameters		= ext4_param_specs,
7330 	.kill_sb		= ext4_kill_sb,
7331 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7332 };
7333 MODULE_ALIAS_FS("ext4");
7334 
7335 /* Shared across all ext4 file systems */
7336 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7337 
7338 static int __init ext4_init_fs(void)
7339 {
7340 	int i, err;
7341 
7342 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7343 	ext4_li_info = NULL;
7344 
7345 	/* Build-time check for flags consistency */
7346 	ext4_check_flag_values();
7347 
7348 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7349 		init_waitqueue_head(&ext4__ioend_wq[i]);
7350 
7351 	err = ext4_init_es();
7352 	if (err)
7353 		return err;
7354 
7355 	err = ext4_init_pending();
7356 	if (err)
7357 		goto out7;
7358 
7359 	err = ext4_init_post_read_processing();
7360 	if (err)
7361 		goto out6;
7362 
7363 	err = ext4_init_pageio();
7364 	if (err)
7365 		goto out5;
7366 
7367 	err = ext4_init_system_zone();
7368 	if (err)
7369 		goto out4;
7370 
7371 	err = ext4_init_sysfs();
7372 	if (err)
7373 		goto out3;
7374 
7375 	err = ext4_init_mballoc();
7376 	if (err)
7377 		goto out2;
7378 	err = init_inodecache();
7379 	if (err)
7380 		goto out1;
7381 
7382 	err = ext4_fc_init_dentry_cache();
7383 	if (err)
7384 		goto out05;
7385 
7386 	register_as_ext3();
7387 	register_as_ext2();
7388 	err = register_filesystem(&ext4_fs_type);
7389 	if (err)
7390 		goto out;
7391 
7392 	return 0;
7393 out:
7394 	unregister_as_ext2();
7395 	unregister_as_ext3();
7396 	ext4_fc_destroy_dentry_cache();
7397 out05:
7398 	destroy_inodecache();
7399 out1:
7400 	ext4_exit_mballoc();
7401 out2:
7402 	ext4_exit_sysfs();
7403 out3:
7404 	ext4_exit_system_zone();
7405 out4:
7406 	ext4_exit_pageio();
7407 out5:
7408 	ext4_exit_post_read_processing();
7409 out6:
7410 	ext4_exit_pending();
7411 out7:
7412 	ext4_exit_es();
7413 
7414 	return err;
7415 }
7416 
7417 static void __exit ext4_exit_fs(void)
7418 {
7419 	ext4_destroy_lazyinit_thread();
7420 	unregister_as_ext2();
7421 	unregister_as_ext3();
7422 	unregister_filesystem(&ext4_fs_type);
7423 	ext4_fc_destroy_dentry_cache();
7424 	destroy_inodecache();
7425 	ext4_exit_mballoc();
7426 	ext4_exit_sysfs();
7427 	ext4_exit_system_zone();
7428 	ext4_exit_pageio();
7429 	ext4_exit_post_read_processing();
7430 	ext4_exit_es();
7431 	ext4_exit_pending();
7432 }
7433 
7434 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7435 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7436 MODULE_LICENSE("GPL");
7437 MODULE_SOFTDEP("pre: crc32c");
7438 module_init(ext4_init_fs)
7439 module_exit(ext4_exit_fs)
7440