1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io) 165 { 166 /* 167 * buffer's verified bit is no longer valid after reading from 168 * disk again due to write out error, clear it to make sure we 169 * recheck the buffer contents. 170 */ 171 clear_buffer_verified(bh); 172 173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 174 get_bh(bh); 175 submit_bh(REQ_OP_READ | op_flags, bh); 176 } 177 178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 179 bh_end_io_t *end_io) 180 { 181 BUG_ON(!buffer_locked(bh)); 182 183 if (ext4_buffer_uptodate(bh)) { 184 unlock_buffer(bh); 185 return; 186 } 187 __ext4_read_bh(bh, op_flags, end_io); 188 } 189 190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 191 { 192 BUG_ON(!buffer_locked(bh)); 193 194 if (ext4_buffer_uptodate(bh)) { 195 unlock_buffer(bh); 196 return 0; 197 } 198 199 __ext4_read_bh(bh, op_flags, end_io); 200 201 wait_on_buffer(bh); 202 if (buffer_uptodate(bh)) 203 return 0; 204 return -EIO; 205 } 206 207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 208 { 209 lock_buffer(bh); 210 if (!wait) { 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 return ext4_read_bh(bh, op_flags, NULL); 215 } 216 217 /* 218 * This works like __bread_gfp() except it uses ERR_PTR for error 219 * returns. Currently with sb_bread it's impossible to distinguish 220 * between ENOMEM and EIO situations (since both result in a NULL 221 * return. 222 */ 223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 224 sector_t block, 225 blk_opf_t op_flags, gfp_t gfp) 226 { 227 struct buffer_head *bh; 228 int ret; 229 230 bh = sb_getblk_gfp(sb, block, gfp); 231 if (bh == NULL) 232 return ERR_PTR(-ENOMEM); 233 if (ext4_buffer_uptodate(bh)) 234 return bh; 235 236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 237 if (ret) { 238 put_bh(bh); 239 return ERR_PTR(ret); 240 } 241 return bh; 242 } 243 244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 245 blk_opf_t op_flags) 246 { 247 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 248 ~__GFP_FS) | __GFP_MOVABLE; 249 250 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 251 } 252 253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 254 sector_t block) 255 { 256 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 257 ~__GFP_FS); 258 259 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 265 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 266 267 if (likely(bh)) { 268 if (trylock_buffer(bh)) 269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 270 brelse(bh); 271 } 272 } 273 274 static int ext4_verify_csum_type(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_feature_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 281 } 282 283 __le32 ext4_superblock_csum(struct super_block *sb, 284 struct ext4_super_block *es) 285 { 286 struct ext4_sb_info *sbi = EXT4_SB(sb); 287 int offset = offsetof(struct ext4_super_block, s_checksum); 288 __u32 csum; 289 290 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 291 292 return cpu_to_le32(csum); 293 } 294 295 static int ext4_superblock_csum_verify(struct super_block *sb, 296 struct ext4_super_block *es) 297 { 298 if (!ext4_has_metadata_csum(sb)) 299 return 1; 300 301 return es->s_checksum == ext4_superblock_csum(sb, es); 302 } 303 304 void ext4_superblock_csum_set(struct super_block *sb) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 if (!ext4_has_metadata_csum(sb)) 309 return; 310 311 es->s_checksum = ext4_superblock_csum(sb, es); 312 } 313 314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_block_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 328 } 329 330 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le32_to_cpu(bg->bg_inode_table_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 336 } 337 338 __u32 ext4_free_group_clusters(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_free_inodes_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_used_dirs_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 360 } 361 362 __u32 ext4_itable_unused_count(struct super_block *sb, 363 struct ext4_group_desc *bg) 364 { 365 return le16_to_cpu(bg->bg_itable_unused_lo) | 366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 368 } 369 370 void ext4_block_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_bitmap_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_inode_table_set(struct super_block *sb, 387 struct ext4_group_desc *bg, ext4_fsblk_t blk) 388 { 389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 392 } 393 394 void ext4_free_group_clusters_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_free_inodes_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_used_dirs_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 416 } 417 418 void ext4_itable_unused_set(struct super_block *sb, 419 struct ext4_group_desc *bg, __u32 count) 420 { 421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 424 } 425 426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 427 { 428 now = clamp_val(now, 0, (1ull << 40) - 1); 429 430 *lo = cpu_to_le32(lower_32_bits(now)); 431 *hi = upper_32_bits(now); 432 } 433 434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 435 { 436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 437 } 438 #define ext4_update_tstamp(es, tstamp) \ 439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 440 ktime_get_real_seconds()) 441 #define ext4_get_tstamp(es, tstamp) \ 442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 443 444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 446 447 /* 448 * The ext4_maybe_update_superblock() function checks and updates the 449 * superblock if needed. 450 * 451 * This function is designed to update the on-disk superblock only under 452 * certain conditions to prevent excessive disk writes and unnecessary 453 * waking of the disk from sleep. The superblock will be updated if: 454 * 1. More than an hour has passed since the last superblock update, and 455 * 2. More than 16MB have been written since the last superblock update. 456 * 457 * @sb: The superblock 458 */ 459 static void ext4_maybe_update_superblock(struct super_block *sb) 460 { 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 struct ext4_super_block *es = sbi->s_es; 463 journal_t *journal = sbi->s_journal; 464 time64_t now; 465 __u64 last_update; 466 __u64 lifetime_write_kbytes; 467 __u64 diff_size; 468 469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 470 !journal || (journal->j_flags & JBD2_UNMOUNT)) 471 return; 472 473 now = ktime_get_real_seconds(); 474 last_update = ext4_get_tstamp(es, s_wtime); 475 476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 477 return; 478 479 lifetime_write_kbytes = sbi->s_kbytes_written + 480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 481 sbi->s_sectors_written_start) >> 1); 482 483 /* Get the number of kilobytes not written to disk to account 484 * for statistics and compare with a multiple of 16 MB. This 485 * is used to determine when the next superblock commit should 486 * occur (i.e. not more often than once per 16MB if there was 487 * less written in an hour). 488 */ 489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 490 491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 493 } 494 495 /* 496 * The del_gendisk() function uninitializes the disk-specific data 497 * structures, including the bdi structure, without telling anyone 498 * else. Once this happens, any attempt to call mark_buffer_dirty() 499 * (for example, by ext4_commit_super), will cause a kernel OOPS. 500 * This is a kludge to prevent these oops until we can put in a proper 501 * hook in del_gendisk() to inform the VFS and file system layers. 502 */ 503 static int block_device_ejected(struct super_block *sb) 504 { 505 struct inode *bd_inode = sb->s_bdev->bd_inode; 506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 507 508 return bdi->dev == NULL; 509 } 510 511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 512 { 513 struct super_block *sb = journal->j_private; 514 struct ext4_sb_info *sbi = EXT4_SB(sb); 515 int error = is_journal_aborted(journal); 516 struct ext4_journal_cb_entry *jce; 517 518 BUG_ON(txn->t_state == T_FINISHED); 519 520 ext4_process_freed_data(sb, txn->t_tid); 521 ext4_maybe_update_superblock(sb); 522 523 spin_lock(&sbi->s_md_lock); 524 while (!list_empty(&txn->t_private_list)) { 525 jce = list_entry(txn->t_private_list.next, 526 struct ext4_journal_cb_entry, jce_list); 527 list_del_init(&jce->jce_list); 528 spin_unlock(&sbi->s_md_lock); 529 jce->jce_func(sb, jce, error); 530 spin_lock(&sbi->s_md_lock); 531 } 532 spin_unlock(&sbi->s_md_lock); 533 } 534 535 /* 536 * This writepage callback for write_cache_pages() 537 * takes care of a few cases after page cleaning. 538 * 539 * write_cache_pages() already checks for dirty pages 540 * and calls clear_page_dirty_for_io(), which we want, 541 * to write protect the pages. 542 * 543 * However, we may have to redirty a page (see below.) 544 */ 545 static int ext4_journalled_writepage_callback(struct folio *folio, 546 struct writeback_control *wbc, 547 void *data) 548 { 549 transaction_t *transaction = (transaction_t *) data; 550 struct buffer_head *bh, *head; 551 struct journal_head *jh; 552 553 bh = head = folio_buffers(folio); 554 do { 555 /* 556 * We have to redirty a page in these cases: 557 * 1) If buffer is dirty, it means the page was dirty because it 558 * contains a buffer that needs checkpointing. So the dirty bit 559 * needs to be preserved so that checkpointing writes the buffer 560 * properly. 561 * 2) If buffer is not part of the committing transaction 562 * (we may have just accidentally come across this buffer because 563 * inode range tracking is not exact) or if the currently running 564 * transaction already contains this buffer as well, dirty bit 565 * needs to be preserved so that the buffer gets writeprotected 566 * properly on running transaction's commit. 567 */ 568 jh = bh2jh(bh); 569 if (buffer_dirty(bh) || 570 (jh && (jh->b_transaction != transaction || 571 jh->b_next_transaction))) { 572 folio_redirty_for_writepage(wbc, folio); 573 goto out; 574 } 575 } while ((bh = bh->b_this_page) != head); 576 577 out: 578 return AOP_WRITEPAGE_ACTIVATE; 579 } 580 581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 582 { 583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 584 struct writeback_control wbc = { 585 .sync_mode = WB_SYNC_ALL, 586 .nr_to_write = LONG_MAX, 587 .range_start = jinode->i_dirty_start, 588 .range_end = jinode->i_dirty_end, 589 }; 590 591 return write_cache_pages(mapping, &wbc, 592 ext4_journalled_writepage_callback, 593 jinode->i_transaction); 594 } 595 596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 597 { 598 int ret; 599 600 if (ext4_should_journal_data(jinode->i_vfs_inode)) 601 ret = ext4_journalled_submit_inode_data_buffers(jinode); 602 else 603 ret = ext4_normal_submit_inode_data_buffers(jinode); 604 return ret; 605 } 606 607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 608 { 609 int ret = 0; 610 611 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 612 ret = jbd2_journal_finish_inode_data_buffers(jinode); 613 614 return ret; 615 } 616 617 static bool system_going_down(void) 618 { 619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 620 || system_state == SYSTEM_RESTART; 621 } 622 623 struct ext4_err_translation { 624 int code; 625 int errno; 626 }; 627 628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 629 630 static struct ext4_err_translation err_translation[] = { 631 EXT4_ERR_TRANSLATE(EIO), 632 EXT4_ERR_TRANSLATE(ENOMEM), 633 EXT4_ERR_TRANSLATE(EFSBADCRC), 634 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 635 EXT4_ERR_TRANSLATE(ENOSPC), 636 EXT4_ERR_TRANSLATE(ENOKEY), 637 EXT4_ERR_TRANSLATE(EROFS), 638 EXT4_ERR_TRANSLATE(EFBIG), 639 EXT4_ERR_TRANSLATE(EEXIST), 640 EXT4_ERR_TRANSLATE(ERANGE), 641 EXT4_ERR_TRANSLATE(EOVERFLOW), 642 EXT4_ERR_TRANSLATE(EBUSY), 643 EXT4_ERR_TRANSLATE(ENOTDIR), 644 EXT4_ERR_TRANSLATE(ENOTEMPTY), 645 EXT4_ERR_TRANSLATE(ESHUTDOWN), 646 EXT4_ERR_TRANSLATE(EFAULT), 647 }; 648 649 static int ext4_errno_to_code(int errno) 650 { 651 int i; 652 653 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 654 if (err_translation[i].errno == errno) 655 return err_translation[i].code; 656 return EXT4_ERR_UNKNOWN; 657 } 658 659 static void save_error_info(struct super_block *sb, int error, 660 __u32 ino, __u64 block, 661 const char *func, unsigned int line) 662 { 663 struct ext4_sb_info *sbi = EXT4_SB(sb); 664 665 /* We default to EFSCORRUPTED error... */ 666 if (error == 0) 667 error = EFSCORRUPTED; 668 669 spin_lock(&sbi->s_error_lock); 670 sbi->s_add_error_count++; 671 sbi->s_last_error_code = error; 672 sbi->s_last_error_line = line; 673 sbi->s_last_error_ino = ino; 674 sbi->s_last_error_block = block; 675 sbi->s_last_error_func = func; 676 sbi->s_last_error_time = ktime_get_real_seconds(); 677 if (!sbi->s_first_error_time) { 678 sbi->s_first_error_code = error; 679 sbi->s_first_error_line = line; 680 sbi->s_first_error_ino = ino; 681 sbi->s_first_error_block = block; 682 sbi->s_first_error_func = func; 683 sbi->s_first_error_time = sbi->s_last_error_time; 684 } 685 spin_unlock(&sbi->s_error_lock); 686 } 687 688 /* Deal with the reporting of failure conditions on a filesystem such as 689 * inconsistencies detected or read IO failures. 690 * 691 * On ext2, we can store the error state of the filesystem in the 692 * superblock. That is not possible on ext4, because we may have other 693 * write ordering constraints on the superblock which prevent us from 694 * writing it out straight away; and given that the journal is about to 695 * be aborted, we can't rely on the current, or future, transactions to 696 * write out the superblock safely. 697 * 698 * We'll just use the jbd2_journal_abort() error code to record an error in 699 * the journal instead. On recovery, the journal will complain about 700 * that error until we've noted it down and cleared it. 701 * 702 * If force_ro is set, we unconditionally force the filesystem into an 703 * ABORT|READONLY state, unless the error response on the fs has been set to 704 * panic in which case we take the easy way out and panic immediately. This is 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 706 * at a critical moment in log management. 707 */ 708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 709 __u32 ino, __u64 block, 710 const char *func, unsigned int line) 711 { 712 journal_t *journal = EXT4_SB(sb)->s_journal; 713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 714 715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 716 if (test_opt(sb, WARN_ON_ERROR)) 717 WARN_ON_ONCE(1); 718 719 if (!continue_fs && !sb_rdonly(sb)) { 720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 721 if (journal) 722 jbd2_journal_abort(journal, -EIO); 723 } 724 725 if (!bdev_read_only(sb->s_bdev)) { 726 save_error_info(sb, error, ino, block, func, line); 727 /* 728 * In case the fs should keep running, we need to writeout 729 * superblock through the journal. Due to lock ordering 730 * constraints, it may not be safe to do it right here so we 731 * defer superblock flushing to a workqueue. 732 */ 733 if (continue_fs && journal) 734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 735 else 736 ext4_commit_super(sb); 737 } 738 739 /* 740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 741 * could panic during 'reboot -f' as the underlying device got already 742 * disabled. 743 */ 744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 745 panic("EXT4-fs (device %s): panic forced after error\n", 746 sb->s_id); 747 } 748 749 if (sb_rdonly(sb) || continue_fs) 750 return; 751 752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 753 /* 754 * Make sure updated value of ->s_mount_flags will be visible before 755 * ->s_flags update 756 */ 757 smp_wmb(); 758 sb->s_flags |= SB_RDONLY; 759 } 760 761 static void update_super_work(struct work_struct *work) 762 { 763 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 764 s_sb_upd_work); 765 journal_t *journal = sbi->s_journal; 766 handle_t *handle; 767 768 /* 769 * If the journal is still running, we have to write out superblock 770 * through the journal to avoid collisions of other journalled sb 771 * updates. 772 * 773 * We use directly jbd2 functions here to avoid recursing back into 774 * ext4 error handling code during handling of previous errors. 775 */ 776 if (!sb_rdonly(sbi->s_sb) && journal) { 777 struct buffer_head *sbh = sbi->s_sbh; 778 bool call_notify_err = false; 779 780 handle = jbd2_journal_start(journal, 1); 781 if (IS_ERR(handle)) 782 goto write_directly; 783 if (jbd2_journal_get_write_access(handle, sbh)) { 784 jbd2_journal_stop(handle); 785 goto write_directly; 786 } 787 788 if (sbi->s_add_error_count > 0) 789 call_notify_err = true; 790 791 ext4_update_super(sbi->s_sb); 792 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 793 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 794 "superblock detected"); 795 clear_buffer_write_io_error(sbh); 796 set_buffer_uptodate(sbh); 797 } 798 799 if (jbd2_journal_dirty_metadata(handle, sbh)) { 800 jbd2_journal_stop(handle); 801 goto write_directly; 802 } 803 jbd2_journal_stop(handle); 804 805 if (call_notify_err) 806 ext4_notify_error_sysfs(sbi); 807 808 return; 809 } 810 write_directly: 811 /* 812 * Write through journal failed. Write sb directly to get error info 813 * out and hope for the best. 814 */ 815 ext4_commit_super(sbi->s_sb); 816 ext4_notify_error_sysfs(sbi); 817 } 818 819 #define ext4_error_ratelimit(sb) \ 820 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 821 "EXT4-fs error") 822 823 void __ext4_error(struct super_block *sb, const char *function, 824 unsigned int line, bool force_ro, int error, __u64 block, 825 const char *fmt, ...) 826 { 827 struct va_format vaf; 828 va_list args; 829 830 if (unlikely(ext4_forced_shutdown(sb))) 831 return; 832 833 trace_ext4_error(sb, function, line); 834 if (ext4_error_ratelimit(sb)) { 835 va_start(args, fmt); 836 vaf.fmt = fmt; 837 vaf.va = &args; 838 printk(KERN_CRIT 839 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 840 sb->s_id, function, line, current->comm, &vaf); 841 va_end(args); 842 } 843 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 844 845 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 846 } 847 848 void __ext4_error_inode(struct inode *inode, const char *function, 849 unsigned int line, ext4_fsblk_t block, int error, 850 const char *fmt, ...) 851 { 852 va_list args; 853 struct va_format vaf; 854 855 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 856 return; 857 858 trace_ext4_error(inode->i_sb, function, line); 859 if (ext4_error_ratelimit(inode->i_sb)) { 860 va_start(args, fmt); 861 vaf.fmt = fmt; 862 vaf.va = &args; 863 if (block) 864 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 865 "inode #%lu: block %llu: comm %s: %pV\n", 866 inode->i_sb->s_id, function, line, inode->i_ino, 867 block, current->comm, &vaf); 868 else 869 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 870 "inode #%lu: comm %s: %pV\n", 871 inode->i_sb->s_id, function, line, inode->i_ino, 872 current->comm, &vaf); 873 va_end(args); 874 } 875 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 876 877 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 878 function, line); 879 } 880 881 void __ext4_error_file(struct file *file, const char *function, 882 unsigned int line, ext4_fsblk_t block, 883 const char *fmt, ...) 884 { 885 va_list args; 886 struct va_format vaf; 887 struct inode *inode = file_inode(file); 888 char pathname[80], *path; 889 890 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 891 return; 892 893 trace_ext4_error(inode->i_sb, function, line); 894 if (ext4_error_ratelimit(inode->i_sb)) { 895 path = file_path(file, pathname, sizeof(pathname)); 896 if (IS_ERR(path)) 897 path = "(unknown)"; 898 va_start(args, fmt); 899 vaf.fmt = fmt; 900 vaf.va = &args; 901 if (block) 902 printk(KERN_CRIT 903 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 904 "block %llu: comm %s: path %s: %pV\n", 905 inode->i_sb->s_id, function, line, inode->i_ino, 906 block, current->comm, path, &vaf); 907 else 908 printk(KERN_CRIT 909 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 910 "comm %s: path %s: %pV\n", 911 inode->i_sb->s_id, function, line, inode->i_ino, 912 current->comm, path, &vaf); 913 va_end(args); 914 } 915 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 916 917 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 918 function, line); 919 } 920 921 const char *ext4_decode_error(struct super_block *sb, int errno, 922 char nbuf[16]) 923 { 924 char *errstr = NULL; 925 926 switch (errno) { 927 case -EFSCORRUPTED: 928 errstr = "Corrupt filesystem"; 929 break; 930 case -EFSBADCRC: 931 errstr = "Filesystem failed CRC"; 932 break; 933 case -EIO: 934 errstr = "IO failure"; 935 break; 936 case -ENOMEM: 937 errstr = "Out of memory"; 938 break; 939 case -EROFS: 940 if (!sb || (EXT4_SB(sb)->s_journal && 941 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 942 errstr = "Journal has aborted"; 943 else 944 errstr = "Readonly filesystem"; 945 break; 946 default: 947 /* If the caller passed in an extra buffer for unknown 948 * errors, textualise them now. Else we just return 949 * NULL. */ 950 if (nbuf) { 951 /* Check for truncated error codes... */ 952 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 953 errstr = nbuf; 954 } 955 break; 956 } 957 958 return errstr; 959 } 960 961 /* __ext4_std_error decodes expected errors from journaling functions 962 * automatically and invokes the appropriate error response. */ 963 964 void __ext4_std_error(struct super_block *sb, const char *function, 965 unsigned int line, int errno) 966 { 967 char nbuf[16]; 968 const char *errstr; 969 970 if (unlikely(ext4_forced_shutdown(sb))) 971 return; 972 973 /* Special case: if the error is EROFS, and we're not already 974 * inside a transaction, then there's really no point in logging 975 * an error. */ 976 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 977 return; 978 979 if (ext4_error_ratelimit(sb)) { 980 errstr = ext4_decode_error(sb, errno, nbuf); 981 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 982 sb->s_id, function, line, errstr); 983 } 984 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 985 986 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 987 } 988 989 void __ext4_msg(struct super_block *sb, 990 const char *prefix, const char *fmt, ...) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (sb) { 996 atomic_inc(&EXT4_SB(sb)->s_msg_count); 997 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 998 "EXT4-fs")) 999 return; 1000 } 1001 1002 va_start(args, fmt); 1003 vaf.fmt = fmt; 1004 vaf.va = &args; 1005 if (sb) 1006 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 1007 else 1008 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 1009 va_end(args); 1010 } 1011 1012 static int ext4_warning_ratelimit(struct super_block *sb) 1013 { 1014 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1015 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1016 "EXT4-fs warning"); 1017 } 1018 1019 void __ext4_warning(struct super_block *sb, const char *function, 1020 unsigned int line, const char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 if (!ext4_warning_ratelimit(sb)) 1026 return; 1027 1028 va_start(args, fmt); 1029 vaf.fmt = fmt; 1030 vaf.va = &args; 1031 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1032 sb->s_id, function, line, &vaf); 1033 va_end(args); 1034 } 1035 1036 void __ext4_warning_inode(const struct inode *inode, const char *function, 1037 unsigned int line, const char *fmt, ...) 1038 { 1039 struct va_format vaf; 1040 va_list args; 1041 1042 if (!ext4_warning_ratelimit(inode->i_sb)) 1043 return; 1044 1045 va_start(args, fmt); 1046 vaf.fmt = fmt; 1047 vaf.va = &args; 1048 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1049 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1050 function, line, inode->i_ino, current->comm, &vaf); 1051 va_end(args); 1052 } 1053 1054 void __ext4_grp_locked_error(const char *function, unsigned int line, 1055 struct super_block *sb, ext4_group_t grp, 1056 unsigned long ino, ext4_fsblk_t block, 1057 const char *fmt, ...) 1058 __releases(bitlock) 1059 __acquires(bitlock) 1060 { 1061 struct va_format vaf; 1062 va_list args; 1063 1064 if (unlikely(ext4_forced_shutdown(sb))) 1065 return; 1066 1067 trace_ext4_error(sb, function, line); 1068 if (ext4_error_ratelimit(sb)) { 1069 va_start(args, fmt); 1070 vaf.fmt = fmt; 1071 vaf.va = &args; 1072 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1073 sb->s_id, function, line, grp); 1074 if (ino) 1075 printk(KERN_CONT "inode %lu: ", ino); 1076 if (block) 1077 printk(KERN_CONT "block %llu:", 1078 (unsigned long long) block); 1079 printk(KERN_CONT "%pV\n", &vaf); 1080 va_end(args); 1081 } 1082 1083 if (test_opt(sb, ERRORS_CONT)) { 1084 if (test_opt(sb, WARN_ON_ERROR)) 1085 WARN_ON_ONCE(1); 1086 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1087 if (!bdev_read_only(sb->s_bdev)) { 1088 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1089 line); 1090 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1091 } 1092 return; 1093 } 1094 ext4_unlock_group(sb, grp); 1095 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1096 /* 1097 * We only get here in the ERRORS_RO case; relocking the group 1098 * may be dangerous, but nothing bad will happen since the 1099 * filesystem will have already been marked read/only and the 1100 * journal has been aborted. We return 1 as a hint to callers 1101 * who might what to use the return value from 1102 * ext4_grp_locked_error() to distinguish between the 1103 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1104 * aggressively from the ext4 function in question, with a 1105 * more appropriate error code. 1106 */ 1107 ext4_lock_group(sb, grp); 1108 return; 1109 } 1110 1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1112 ext4_group_t group, 1113 unsigned int flags) 1114 { 1115 struct ext4_sb_info *sbi = EXT4_SB(sb); 1116 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1117 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1118 int ret; 1119 1120 if (!grp || !gdp) 1121 return; 1122 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1124 &grp->bb_state); 1125 if (!ret) 1126 percpu_counter_sub(&sbi->s_freeclusters_counter, 1127 grp->bb_free); 1128 } 1129 1130 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1131 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1132 &grp->bb_state); 1133 if (!ret && gdp) { 1134 int count; 1135 1136 count = ext4_free_inodes_count(sb, gdp); 1137 percpu_counter_sub(&sbi->s_freeinodes_counter, 1138 count); 1139 } 1140 } 1141 } 1142 1143 void ext4_update_dynamic_rev(struct super_block *sb) 1144 { 1145 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1146 1147 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1148 return; 1149 1150 ext4_warning(sb, 1151 "updating to rev %d because of new feature flag, " 1152 "running e2fsck is recommended", 1153 EXT4_DYNAMIC_REV); 1154 1155 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1156 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1157 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1158 /* leave es->s_feature_*compat flags alone */ 1159 /* es->s_uuid will be set by e2fsck if empty */ 1160 1161 /* 1162 * The rest of the superblock fields should be zero, and if not it 1163 * means they are likely already in use, so leave them alone. We 1164 * can leave it up to e2fsck to clean up any inconsistencies there. 1165 */ 1166 } 1167 1168 static inline struct inode *orphan_list_entry(struct list_head *l) 1169 { 1170 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1171 } 1172 1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1174 { 1175 struct list_head *l; 1176 1177 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1178 le32_to_cpu(sbi->s_es->s_last_orphan)); 1179 1180 printk(KERN_ERR "sb_info orphan list:\n"); 1181 list_for_each(l, &sbi->s_orphan) { 1182 struct inode *inode = orphan_list_entry(l); 1183 printk(KERN_ERR " " 1184 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1185 inode->i_sb->s_id, inode->i_ino, inode, 1186 inode->i_mode, inode->i_nlink, 1187 NEXT_ORPHAN(inode)); 1188 } 1189 } 1190 1191 #ifdef CONFIG_QUOTA 1192 static int ext4_quota_off(struct super_block *sb, int type); 1193 1194 static inline void ext4_quotas_off(struct super_block *sb, int type) 1195 { 1196 BUG_ON(type > EXT4_MAXQUOTAS); 1197 1198 /* Use our quota_off function to clear inode flags etc. */ 1199 for (type--; type >= 0; type--) 1200 ext4_quota_off(sb, type); 1201 } 1202 1203 /* 1204 * This is a helper function which is used in the mount/remount 1205 * codepaths (which holds s_umount) to fetch the quota file name. 1206 */ 1207 static inline char *get_qf_name(struct super_block *sb, 1208 struct ext4_sb_info *sbi, 1209 int type) 1210 { 1211 return rcu_dereference_protected(sbi->s_qf_names[type], 1212 lockdep_is_held(&sb->s_umount)); 1213 } 1214 #else 1215 static inline void ext4_quotas_off(struct super_block *sb, int type) 1216 { 1217 } 1218 #endif 1219 1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1221 { 1222 ext4_fsblk_t block; 1223 int err; 1224 1225 block = ext4_count_free_clusters(sbi->s_sb); 1226 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1227 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1228 GFP_KERNEL); 1229 if (!err) { 1230 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1231 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1232 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1233 GFP_KERNEL); 1234 } 1235 if (!err) 1236 err = percpu_counter_init(&sbi->s_dirs_counter, 1237 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1238 if (!err) 1239 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1240 GFP_KERNEL); 1241 if (!err) 1242 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1243 GFP_KERNEL); 1244 if (!err) 1245 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1246 1247 if (err) 1248 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1249 1250 return err; 1251 } 1252 1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1254 { 1255 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1256 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1257 percpu_counter_destroy(&sbi->s_dirs_counter); 1258 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1259 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1260 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1261 } 1262 1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1264 { 1265 struct buffer_head **group_desc; 1266 int i; 1267 1268 rcu_read_lock(); 1269 group_desc = rcu_dereference(sbi->s_group_desc); 1270 for (i = 0; i < sbi->s_gdb_count; i++) 1271 brelse(group_desc[i]); 1272 kvfree(group_desc); 1273 rcu_read_unlock(); 1274 } 1275 1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1277 { 1278 struct flex_groups **flex_groups; 1279 int i; 1280 1281 rcu_read_lock(); 1282 flex_groups = rcu_dereference(sbi->s_flex_groups); 1283 if (flex_groups) { 1284 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1285 kvfree(flex_groups[i]); 1286 kvfree(flex_groups); 1287 } 1288 rcu_read_unlock(); 1289 } 1290 1291 static void ext4_put_super(struct super_block *sb) 1292 { 1293 struct ext4_sb_info *sbi = EXT4_SB(sb); 1294 struct ext4_super_block *es = sbi->s_es; 1295 int aborted = 0; 1296 int err; 1297 1298 /* 1299 * Unregister sysfs before destroying jbd2 journal. 1300 * Since we could still access attr_journal_task attribute via sysfs 1301 * path which could have sbi->s_journal->j_task as NULL 1302 * Unregister sysfs before flush sbi->s_sb_upd_work. 1303 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1304 * read metadata verify failed then will queue error work. 1305 * update_super_work will call start_this_handle may trigger 1306 * BUG_ON. 1307 */ 1308 ext4_unregister_sysfs(sb); 1309 1310 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1311 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1312 &sb->s_uuid); 1313 1314 ext4_unregister_li_request(sb); 1315 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1316 1317 flush_work(&sbi->s_sb_upd_work); 1318 destroy_workqueue(sbi->rsv_conversion_wq); 1319 ext4_release_orphan_info(sb); 1320 1321 if (sbi->s_journal) { 1322 aborted = is_journal_aborted(sbi->s_journal); 1323 err = jbd2_journal_destroy(sbi->s_journal); 1324 sbi->s_journal = NULL; 1325 if ((err < 0) && !aborted) { 1326 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1327 } 1328 } 1329 1330 ext4_es_unregister_shrinker(sbi); 1331 timer_shutdown_sync(&sbi->s_err_report); 1332 ext4_release_system_zone(sb); 1333 ext4_mb_release(sb); 1334 ext4_ext_release(sb); 1335 1336 if (!sb_rdonly(sb) && !aborted) { 1337 ext4_clear_feature_journal_needs_recovery(sb); 1338 ext4_clear_feature_orphan_present(sb); 1339 es->s_state = cpu_to_le16(sbi->s_mount_state); 1340 } 1341 if (!sb_rdonly(sb)) 1342 ext4_commit_super(sb); 1343 1344 ext4_group_desc_free(sbi); 1345 ext4_flex_groups_free(sbi); 1346 ext4_percpu_param_destroy(sbi); 1347 #ifdef CONFIG_QUOTA 1348 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1349 kfree(get_qf_name(sb, sbi, i)); 1350 #endif 1351 1352 /* Debugging code just in case the in-memory inode orphan list 1353 * isn't empty. The on-disk one can be non-empty if we've 1354 * detected an error and taken the fs readonly, but the 1355 * in-memory list had better be clean by this point. */ 1356 if (!list_empty(&sbi->s_orphan)) 1357 dump_orphan_list(sb, sbi); 1358 ASSERT(list_empty(&sbi->s_orphan)); 1359 1360 sync_blockdev(sb->s_bdev); 1361 invalidate_bdev(sb->s_bdev); 1362 if (sbi->s_journal_bdev_file) { 1363 /* 1364 * Invalidate the journal device's buffers. We don't want them 1365 * floating about in memory - the physical journal device may 1366 * hotswapped, and it breaks the `ro-after' testing code. 1367 */ 1368 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1369 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1370 } 1371 1372 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1373 sbi->s_ea_inode_cache = NULL; 1374 1375 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1376 sbi->s_ea_block_cache = NULL; 1377 1378 ext4_stop_mmpd(sbi); 1379 1380 brelse(sbi->s_sbh); 1381 sb->s_fs_info = NULL; 1382 /* 1383 * Now that we are completely done shutting down the 1384 * superblock, we need to actually destroy the kobject. 1385 */ 1386 kobject_put(&sbi->s_kobj); 1387 wait_for_completion(&sbi->s_kobj_unregister); 1388 if (sbi->s_chksum_driver) 1389 crypto_free_shash(sbi->s_chksum_driver); 1390 kfree(sbi->s_blockgroup_lock); 1391 fs_put_dax(sbi->s_daxdev, NULL); 1392 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1393 #if IS_ENABLED(CONFIG_UNICODE) 1394 utf8_unload(sb->s_encoding); 1395 #endif 1396 kfree(sbi); 1397 } 1398 1399 static struct kmem_cache *ext4_inode_cachep; 1400 1401 /* 1402 * Called inside transaction, so use GFP_NOFS 1403 */ 1404 static struct inode *ext4_alloc_inode(struct super_block *sb) 1405 { 1406 struct ext4_inode_info *ei; 1407 1408 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1409 if (!ei) 1410 return NULL; 1411 1412 inode_set_iversion(&ei->vfs_inode, 1); 1413 ei->i_flags = 0; 1414 spin_lock_init(&ei->i_raw_lock); 1415 ei->i_prealloc_node = RB_ROOT; 1416 atomic_set(&ei->i_prealloc_active, 0); 1417 rwlock_init(&ei->i_prealloc_lock); 1418 ext4_es_init_tree(&ei->i_es_tree); 1419 rwlock_init(&ei->i_es_lock); 1420 INIT_LIST_HEAD(&ei->i_es_list); 1421 ei->i_es_all_nr = 0; 1422 ei->i_es_shk_nr = 0; 1423 ei->i_es_shrink_lblk = 0; 1424 ei->i_reserved_data_blocks = 0; 1425 spin_lock_init(&(ei->i_block_reservation_lock)); 1426 ext4_init_pending_tree(&ei->i_pending_tree); 1427 #ifdef CONFIG_QUOTA 1428 ei->i_reserved_quota = 0; 1429 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1430 #endif 1431 ei->jinode = NULL; 1432 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1433 spin_lock_init(&ei->i_completed_io_lock); 1434 ei->i_sync_tid = 0; 1435 ei->i_datasync_tid = 0; 1436 atomic_set(&ei->i_unwritten, 0); 1437 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1438 ext4_fc_init_inode(&ei->vfs_inode); 1439 mutex_init(&ei->i_fc_lock); 1440 return &ei->vfs_inode; 1441 } 1442 1443 static int ext4_drop_inode(struct inode *inode) 1444 { 1445 int drop = generic_drop_inode(inode); 1446 1447 if (!drop) 1448 drop = fscrypt_drop_inode(inode); 1449 1450 trace_ext4_drop_inode(inode, drop); 1451 return drop; 1452 } 1453 1454 static void ext4_free_in_core_inode(struct inode *inode) 1455 { 1456 fscrypt_free_inode(inode); 1457 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1458 pr_warn("%s: inode %ld still in fc list", 1459 __func__, inode->i_ino); 1460 } 1461 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1462 } 1463 1464 static void ext4_destroy_inode(struct inode *inode) 1465 { 1466 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1467 ext4_msg(inode->i_sb, KERN_ERR, 1468 "Inode %lu (%p): orphan list check failed!", 1469 inode->i_ino, EXT4_I(inode)); 1470 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1471 EXT4_I(inode), sizeof(struct ext4_inode_info), 1472 true); 1473 dump_stack(); 1474 } 1475 1476 if (EXT4_I(inode)->i_reserved_data_blocks) 1477 ext4_msg(inode->i_sb, KERN_ERR, 1478 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1479 inode->i_ino, EXT4_I(inode), 1480 EXT4_I(inode)->i_reserved_data_blocks); 1481 } 1482 1483 static void ext4_shutdown(struct super_block *sb) 1484 { 1485 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1486 } 1487 1488 static void init_once(void *foo) 1489 { 1490 struct ext4_inode_info *ei = foo; 1491 1492 INIT_LIST_HEAD(&ei->i_orphan); 1493 init_rwsem(&ei->xattr_sem); 1494 init_rwsem(&ei->i_data_sem); 1495 inode_init_once(&ei->vfs_inode); 1496 ext4_fc_init_inode(&ei->vfs_inode); 1497 } 1498 1499 static int __init init_inodecache(void) 1500 { 1501 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1502 sizeof(struct ext4_inode_info), 0, 1503 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1504 offsetof(struct ext4_inode_info, i_data), 1505 sizeof_field(struct ext4_inode_info, i_data), 1506 init_once); 1507 if (ext4_inode_cachep == NULL) 1508 return -ENOMEM; 1509 return 0; 1510 } 1511 1512 static void destroy_inodecache(void) 1513 { 1514 /* 1515 * Make sure all delayed rcu free inodes are flushed before we 1516 * destroy cache. 1517 */ 1518 rcu_barrier(); 1519 kmem_cache_destroy(ext4_inode_cachep); 1520 } 1521 1522 void ext4_clear_inode(struct inode *inode) 1523 { 1524 ext4_fc_del(inode); 1525 invalidate_inode_buffers(inode); 1526 clear_inode(inode); 1527 ext4_discard_preallocations(inode); 1528 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1529 dquot_drop(inode); 1530 if (EXT4_I(inode)->jinode) { 1531 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1532 EXT4_I(inode)->jinode); 1533 jbd2_free_inode(EXT4_I(inode)->jinode); 1534 EXT4_I(inode)->jinode = NULL; 1535 } 1536 fscrypt_put_encryption_info(inode); 1537 fsverity_cleanup_inode(inode); 1538 } 1539 1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1541 u64 ino, u32 generation) 1542 { 1543 struct inode *inode; 1544 1545 /* 1546 * Currently we don't know the generation for parent directory, so 1547 * a generation of 0 means "accept any" 1548 */ 1549 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1550 if (IS_ERR(inode)) 1551 return ERR_CAST(inode); 1552 if (generation && inode->i_generation != generation) { 1553 iput(inode); 1554 return ERR_PTR(-ESTALE); 1555 } 1556 1557 return inode; 1558 } 1559 1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1561 int fh_len, int fh_type) 1562 { 1563 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1564 ext4_nfs_get_inode); 1565 } 1566 1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1568 int fh_len, int fh_type) 1569 { 1570 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1571 ext4_nfs_get_inode); 1572 } 1573 1574 static int ext4_nfs_commit_metadata(struct inode *inode) 1575 { 1576 struct writeback_control wbc = { 1577 .sync_mode = WB_SYNC_ALL 1578 }; 1579 1580 trace_ext4_nfs_commit_metadata(inode); 1581 return ext4_write_inode(inode, &wbc); 1582 } 1583 1584 #ifdef CONFIG_QUOTA 1585 static const char * const quotatypes[] = INITQFNAMES; 1586 #define QTYPE2NAME(t) (quotatypes[t]) 1587 1588 static int ext4_write_dquot(struct dquot *dquot); 1589 static int ext4_acquire_dquot(struct dquot *dquot); 1590 static int ext4_release_dquot(struct dquot *dquot); 1591 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1592 static int ext4_write_info(struct super_block *sb, int type); 1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1594 const struct path *path); 1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1596 size_t len, loff_t off); 1597 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1598 const char *data, size_t len, loff_t off); 1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1600 unsigned int flags); 1601 1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1603 { 1604 return EXT4_I(inode)->i_dquot; 1605 } 1606 1607 static const struct dquot_operations ext4_quota_operations = { 1608 .get_reserved_space = ext4_get_reserved_space, 1609 .write_dquot = ext4_write_dquot, 1610 .acquire_dquot = ext4_acquire_dquot, 1611 .release_dquot = ext4_release_dquot, 1612 .mark_dirty = ext4_mark_dquot_dirty, 1613 .write_info = ext4_write_info, 1614 .alloc_dquot = dquot_alloc, 1615 .destroy_dquot = dquot_destroy, 1616 .get_projid = ext4_get_projid, 1617 .get_inode_usage = ext4_get_inode_usage, 1618 .get_next_id = dquot_get_next_id, 1619 }; 1620 1621 static const struct quotactl_ops ext4_qctl_operations = { 1622 .quota_on = ext4_quota_on, 1623 .quota_off = ext4_quota_off, 1624 .quota_sync = dquot_quota_sync, 1625 .get_state = dquot_get_state, 1626 .set_info = dquot_set_dqinfo, 1627 .get_dqblk = dquot_get_dqblk, 1628 .set_dqblk = dquot_set_dqblk, 1629 .get_nextdqblk = dquot_get_next_dqblk, 1630 }; 1631 #endif 1632 1633 static const struct super_operations ext4_sops = { 1634 .alloc_inode = ext4_alloc_inode, 1635 .free_inode = ext4_free_in_core_inode, 1636 .destroy_inode = ext4_destroy_inode, 1637 .write_inode = ext4_write_inode, 1638 .dirty_inode = ext4_dirty_inode, 1639 .drop_inode = ext4_drop_inode, 1640 .evict_inode = ext4_evict_inode, 1641 .put_super = ext4_put_super, 1642 .sync_fs = ext4_sync_fs, 1643 .freeze_fs = ext4_freeze, 1644 .unfreeze_fs = ext4_unfreeze, 1645 .statfs = ext4_statfs, 1646 .show_options = ext4_show_options, 1647 .shutdown = ext4_shutdown, 1648 #ifdef CONFIG_QUOTA 1649 .quota_read = ext4_quota_read, 1650 .quota_write = ext4_quota_write, 1651 .get_dquots = ext4_get_dquots, 1652 #endif 1653 }; 1654 1655 static const struct export_operations ext4_export_ops = { 1656 .encode_fh = generic_encode_ino32_fh, 1657 .fh_to_dentry = ext4_fh_to_dentry, 1658 .fh_to_parent = ext4_fh_to_parent, 1659 .get_parent = ext4_get_parent, 1660 .commit_metadata = ext4_nfs_commit_metadata, 1661 }; 1662 1663 enum { 1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1665 Opt_resgid, Opt_resuid, Opt_sb, 1666 Opt_nouid32, Opt_debug, Opt_removed, 1667 Opt_user_xattr, Opt_acl, 1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1673 Opt_inlinecrypt, 1674 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1675 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1676 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1677 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1678 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1679 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1680 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1681 Opt_inode_readahead_blks, Opt_journal_ioprio, 1682 Opt_dioread_nolock, Opt_dioread_lock, 1683 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1684 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1685 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1686 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1687 #ifdef CONFIG_EXT4_DEBUG 1688 Opt_fc_debug_max_replay, Opt_fc_debug_force 1689 #endif 1690 }; 1691 1692 static const struct constant_table ext4_param_errors[] = { 1693 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1694 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1695 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1696 {} 1697 }; 1698 1699 static const struct constant_table ext4_param_data[] = { 1700 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1701 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1702 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1703 {} 1704 }; 1705 1706 static const struct constant_table ext4_param_data_err[] = { 1707 {"abort", Opt_data_err_abort}, 1708 {"ignore", Opt_data_err_ignore}, 1709 {} 1710 }; 1711 1712 static const struct constant_table ext4_param_jqfmt[] = { 1713 {"vfsold", QFMT_VFS_OLD}, 1714 {"vfsv0", QFMT_VFS_V0}, 1715 {"vfsv1", QFMT_VFS_V1}, 1716 {} 1717 }; 1718 1719 static const struct constant_table ext4_param_dax[] = { 1720 {"always", Opt_dax_always}, 1721 {"inode", Opt_dax_inode}, 1722 {"never", Opt_dax_never}, 1723 {} 1724 }; 1725 1726 /* 1727 * Mount option specification 1728 * We don't use fsparam_flag_no because of the way we set the 1729 * options and the way we show them in _ext4_show_options(). To 1730 * keep the changes to a minimum, let's keep the negative options 1731 * separate for now. 1732 */ 1733 static const struct fs_parameter_spec ext4_param_specs[] = { 1734 fsparam_flag ("bsddf", Opt_bsd_df), 1735 fsparam_flag ("minixdf", Opt_minix_df), 1736 fsparam_flag ("grpid", Opt_grpid), 1737 fsparam_flag ("bsdgroups", Opt_grpid), 1738 fsparam_flag ("nogrpid", Opt_nogrpid), 1739 fsparam_flag ("sysvgroups", Opt_nogrpid), 1740 fsparam_u32 ("resgid", Opt_resgid), 1741 fsparam_u32 ("resuid", Opt_resuid), 1742 fsparam_u32 ("sb", Opt_sb), 1743 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1744 fsparam_flag ("nouid32", Opt_nouid32), 1745 fsparam_flag ("debug", Opt_debug), 1746 fsparam_flag ("oldalloc", Opt_removed), 1747 fsparam_flag ("orlov", Opt_removed), 1748 fsparam_flag ("user_xattr", Opt_user_xattr), 1749 fsparam_flag ("acl", Opt_acl), 1750 fsparam_flag ("norecovery", Opt_noload), 1751 fsparam_flag ("noload", Opt_noload), 1752 fsparam_flag ("bh", Opt_removed), 1753 fsparam_flag ("nobh", Opt_removed), 1754 fsparam_u32 ("commit", Opt_commit), 1755 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1756 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1757 fsparam_u32 ("journal_dev", Opt_journal_dev), 1758 fsparam_bdev ("journal_path", Opt_journal_path), 1759 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1760 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1761 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1762 fsparam_flag ("abort", Opt_abort), 1763 fsparam_enum ("data", Opt_data, ext4_param_data), 1764 fsparam_enum ("data_err", Opt_data_err, 1765 ext4_param_data_err), 1766 fsparam_string_empty 1767 ("usrjquota", Opt_usrjquota), 1768 fsparam_string_empty 1769 ("grpjquota", Opt_grpjquota), 1770 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1771 fsparam_flag ("grpquota", Opt_grpquota), 1772 fsparam_flag ("quota", Opt_quota), 1773 fsparam_flag ("noquota", Opt_noquota), 1774 fsparam_flag ("usrquota", Opt_usrquota), 1775 fsparam_flag ("prjquota", Opt_prjquota), 1776 fsparam_flag ("barrier", Opt_barrier), 1777 fsparam_u32 ("barrier", Opt_barrier), 1778 fsparam_flag ("nobarrier", Opt_nobarrier), 1779 fsparam_flag ("i_version", Opt_removed), 1780 fsparam_flag ("dax", Opt_dax), 1781 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1782 fsparam_u32 ("stripe", Opt_stripe), 1783 fsparam_flag ("delalloc", Opt_delalloc), 1784 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1785 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1786 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1787 fsparam_u32 ("debug_want_extra_isize", 1788 Opt_debug_want_extra_isize), 1789 fsparam_flag ("mblk_io_submit", Opt_removed), 1790 fsparam_flag ("nomblk_io_submit", Opt_removed), 1791 fsparam_flag ("block_validity", Opt_block_validity), 1792 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1793 fsparam_u32 ("inode_readahead_blks", 1794 Opt_inode_readahead_blks), 1795 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1796 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1797 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1798 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1799 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1800 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1801 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1802 fsparam_flag ("discard", Opt_discard), 1803 fsparam_flag ("nodiscard", Opt_nodiscard), 1804 fsparam_u32 ("init_itable", Opt_init_itable), 1805 fsparam_flag ("init_itable", Opt_init_itable), 1806 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1807 #ifdef CONFIG_EXT4_DEBUG 1808 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1809 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1810 #endif 1811 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1812 fsparam_flag ("test_dummy_encryption", 1813 Opt_test_dummy_encryption), 1814 fsparam_string ("test_dummy_encryption", 1815 Opt_test_dummy_encryption), 1816 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1817 fsparam_flag ("nombcache", Opt_nombcache), 1818 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1819 fsparam_flag ("prefetch_block_bitmaps", 1820 Opt_removed), 1821 fsparam_flag ("no_prefetch_block_bitmaps", 1822 Opt_no_prefetch_block_bitmaps), 1823 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1824 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1825 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1826 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1827 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1828 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1829 {} 1830 }; 1831 1832 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1833 1834 #define MOPT_SET 0x0001 1835 #define MOPT_CLEAR 0x0002 1836 #define MOPT_NOSUPPORT 0x0004 1837 #define MOPT_EXPLICIT 0x0008 1838 #ifdef CONFIG_QUOTA 1839 #define MOPT_Q 0 1840 #define MOPT_QFMT 0x0010 1841 #else 1842 #define MOPT_Q MOPT_NOSUPPORT 1843 #define MOPT_QFMT MOPT_NOSUPPORT 1844 #endif 1845 #define MOPT_NO_EXT2 0x0020 1846 #define MOPT_NO_EXT3 0x0040 1847 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1848 #define MOPT_SKIP 0x0080 1849 #define MOPT_2 0x0100 1850 1851 static const struct mount_opts { 1852 int token; 1853 int mount_opt; 1854 int flags; 1855 } ext4_mount_opts[] = { 1856 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1857 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1858 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1859 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1860 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1861 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1862 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1863 MOPT_EXT4_ONLY | MOPT_SET}, 1864 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1865 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1866 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1867 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1868 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1869 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1870 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1871 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1872 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1873 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1874 {Opt_commit, 0, MOPT_NO_EXT2}, 1875 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1876 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1877 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1878 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1879 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1880 EXT4_MOUNT_JOURNAL_CHECKSUM), 1881 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1882 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1883 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1884 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1885 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1886 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1887 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1888 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1889 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1890 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1891 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1892 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1893 {Opt_data, 0, MOPT_NO_EXT2}, 1894 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1895 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1896 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1897 #else 1898 {Opt_acl, 0, MOPT_NOSUPPORT}, 1899 #endif 1900 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1901 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1902 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1903 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1904 MOPT_SET | MOPT_Q}, 1905 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1906 MOPT_SET | MOPT_Q}, 1907 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1908 MOPT_SET | MOPT_Q}, 1909 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1910 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1911 MOPT_CLEAR | MOPT_Q}, 1912 {Opt_usrjquota, 0, MOPT_Q}, 1913 {Opt_grpjquota, 0, MOPT_Q}, 1914 {Opt_jqfmt, 0, MOPT_QFMT}, 1915 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1916 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1917 MOPT_SET}, 1918 #ifdef CONFIG_EXT4_DEBUG 1919 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1920 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1921 #endif 1922 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1923 {Opt_err, 0, 0} 1924 }; 1925 1926 #if IS_ENABLED(CONFIG_UNICODE) 1927 static const struct ext4_sb_encodings { 1928 __u16 magic; 1929 char *name; 1930 unsigned int version; 1931 } ext4_sb_encoding_map[] = { 1932 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1933 }; 1934 1935 static const struct ext4_sb_encodings * 1936 ext4_sb_read_encoding(const struct ext4_super_block *es) 1937 { 1938 __u16 magic = le16_to_cpu(es->s_encoding); 1939 int i; 1940 1941 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1942 if (magic == ext4_sb_encoding_map[i].magic) 1943 return &ext4_sb_encoding_map[i]; 1944 1945 return NULL; 1946 } 1947 #endif 1948 1949 #define EXT4_SPEC_JQUOTA (1 << 0) 1950 #define EXT4_SPEC_JQFMT (1 << 1) 1951 #define EXT4_SPEC_DATAJ (1 << 2) 1952 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1953 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1954 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1955 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1956 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1957 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1958 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1959 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1960 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1961 #define EXT4_SPEC_s_stripe (1 << 13) 1962 #define EXT4_SPEC_s_resuid (1 << 14) 1963 #define EXT4_SPEC_s_resgid (1 << 15) 1964 #define EXT4_SPEC_s_commit_interval (1 << 16) 1965 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1966 #define EXT4_SPEC_s_sb_block (1 << 18) 1967 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1968 1969 struct ext4_fs_context { 1970 char *s_qf_names[EXT4_MAXQUOTAS]; 1971 struct fscrypt_dummy_policy dummy_enc_policy; 1972 int s_jquota_fmt; /* Format of quota to use */ 1973 #ifdef CONFIG_EXT4_DEBUG 1974 int s_fc_debug_max_replay; 1975 #endif 1976 unsigned short qname_spec; 1977 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1978 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1979 unsigned long journal_devnum; 1980 unsigned long s_commit_interval; 1981 unsigned long s_stripe; 1982 unsigned int s_inode_readahead_blks; 1983 unsigned int s_want_extra_isize; 1984 unsigned int s_li_wait_mult; 1985 unsigned int s_max_dir_size_kb; 1986 unsigned int journal_ioprio; 1987 unsigned int vals_s_mount_opt; 1988 unsigned int mask_s_mount_opt; 1989 unsigned int vals_s_mount_opt2; 1990 unsigned int mask_s_mount_opt2; 1991 unsigned int opt_flags; /* MOPT flags */ 1992 unsigned int spec; 1993 u32 s_max_batch_time; 1994 u32 s_min_batch_time; 1995 kuid_t s_resuid; 1996 kgid_t s_resgid; 1997 ext4_fsblk_t s_sb_block; 1998 }; 1999 2000 static void ext4_fc_free(struct fs_context *fc) 2001 { 2002 struct ext4_fs_context *ctx = fc->fs_private; 2003 int i; 2004 2005 if (!ctx) 2006 return; 2007 2008 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2009 kfree(ctx->s_qf_names[i]); 2010 2011 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2012 kfree(ctx); 2013 } 2014 2015 int ext4_init_fs_context(struct fs_context *fc) 2016 { 2017 struct ext4_fs_context *ctx; 2018 2019 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2020 if (!ctx) 2021 return -ENOMEM; 2022 2023 fc->fs_private = ctx; 2024 fc->ops = &ext4_context_ops; 2025 2026 return 0; 2027 } 2028 2029 #ifdef CONFIG_QUOTA 2030 /* 2031 * Note the name of the specified quota file. 2032 */ 2033 static int note_qf_name(struct fs_context *fc, int qtype, 2034 struct fs_parameter *param) 2035 { 2036 struct ext4_fs_context *ctx = fc->fs_private; 2037 char *qname; 2038 2039 if (param->size < 1) { 2040 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2041 return -EINVAL; 2042 } 2043 if (strchr(param->string, '/')) { 2044 ext4_msg(NULL, KERN_ERR, 2045 "quotafile must be on filesystem root"); 2046 return -EINVAL; 2047 } 2048 if (ctx->s_qf_names[qtype]) { 2049 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2050 ext4_msg(NULL, KERN_ERR, 2051 "%s quota file already specified", 2052 QTYPE2NAME(qtype)); 2053 return -EINVAL; 2054 } 2055 return 0; 2056 } 2057 2058 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2059 if (!qname) { 2060 ext4_msg(NULL, KERN_ERR, 2061 "Not enough memory for storing quotafile name"); 2062 return -ENOMEM; 2063 } 2064 ctx->s_qf_names[qtype] = qname; 2065 ctx->qname_spec |= 1 << qtype; 2066 ctx->spec |= EXT4_SPEC_JQUOTA; 2067 return 0; 2068 } 2069 2070 /* 2071 * Clear the name of the specified quota file. 2072 */ 2073 static int unnote_qf_name(struct fs_context *fc, int qtype) 2074 { 2075 struct ext4_fs_context *ctx = fc->fs_private; 2076 2077 kfree(ctx->s_qf_names[qtype]); 2078 2079 ctx->s_qf_names[qtype] = NULL; 2080 ctx->qname_spec |= 1 << qtype; 2081 ctx->spec |= EXT4_SPEC_JQUOTA; 2082 return 0; 2083 } 2084 #endif 2085 2086 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2087 struct ext4_fs_context *ctx) 2088 { 2089 int err; 2090 2091 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2092 ext4_msg(NULL, KERN_WARNING, 2093 "test_dummy_encryption option not supported"); 2094 return -EINVAL; 2095 } 2096 err = fscrypt_parse_test_dummy_encryption(param, 2097 &ctx->dummy_enc_policy); 2098 if (err == -EINVAL) { 2099 ext4_msg(NULL, KERN_WARNING, 2100 "Value of option \"%s\" is unrecognized", param->key); 2101 } else if (err == -EEXIST) { 2102 ext4_msg(NULL, KERN_WARNING, 2103 "Conflicting test_dummy_encryption options"); 2104 return -EINVAL; 2105 } 2106 return err; 2107 } 2108 2109 #define EXT4_SET_CTX(name) \ 2110 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2111 unsigned long flag) \ 2112 { \ 2113 ctx->mask_s_##name |= flag; \ 2114 ctx->vals_s_##name |= flag; \ 2115 } 2116 2117 #define EXT4_CLEAR_CTX(name) \ 2118 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2119 unsigned long flag) \ 2120 { \ 2121 ctx->mask_s_##name |= flag; \ 2122 ctx->vals_s_##name &= ~flag; \ 2123 } 2124 2125 #define EXT4_TEST_CTX(name) \ 2126 static inline unsigned long \ 2127 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2128 { \ 2129 return (ctx->vals_s_##name & flag); \ 2130 } 2131 2132 EXT4_SET_CTX(flags); /* set only */ 2133 EXT4_SET_CTX(mount_opt); 2134 EXT4_CLEAR_CTX(mount_opt); 2135 EXT4_TEST_CTX(mount_opt); 2136 EXT4_SET_CTX(mount_opt2); 2137 EXT4_CLEAR_CTX(mount_opt2); 2138 EXT4_TEST_CTX(mount_opt2); 2139 2140 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2141 { 2142 struct ext4_fs_context *ctx = fc->fs_private; 2143 struct fs_parse_result result; 2144 const struct mount_opts *m; 2145 int is_remount; 2146 kuid_t uid; 2147 kgid_t gid; 2148 int token; 2149 2150 token = fs_parse(fc, ext4_param_specs, param, &result); 2151 if (token < 0) 2152 return token; 2153 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2154 2155 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2156 if (token == m->token) 2157 break; 2158 2159 ctx->opt_flags |= m->flags; 2160 2161 if (m->flags & MOPT_EXPLICIT) { 2162 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2163 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2164 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2165 ctx_set_mount_opt2(ctx, 2166 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2167 } else 2168 return -EINVAL; 2169 } 2170 2171 if (m->flags & MOPT_NOSUPPORT) { 2172 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2173 param->key); 2174 return 0; 2175 } 2176 2177 switch (token) { 2178 #ifdef CONFIG_QUOTA 2179 case Opt_usrjquota: 2180 if (!*param->string) 2181 return unnote_qf_name(fc, USRQUOTA); 2182 else 2183 return note_qf_name(fc, USRQUOTA, param); 2184 case Opt_grpjquota: 2185 if (!*param->string) 2186 return unnote_qf_name(fc, GRPQUOTA); 2187 else 2188 return note_qf_name(fc, GRPQUOTA, param); 2189 #endif 2190 case Opt_sb: 2191 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2192 ext4_msg(NULL, KERN_WARNING, 2193 "Ignoring %s option on remount", param->key); 2194 } else { 2195 ctx->s_sb_block = result.uint_32; 2196 ctx->spec |= EXT4_SPEC_s_sb_block; 2197 } 2198 return 0; 2199 case Opt_removed: 2200 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2201 param->key); 2202 return 0; 2203 case Opt_inlinecrypt: 2204 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2205 ctx_set_flags(ctx, SB_INLINECRYPT); 2206 #else 2207 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2208 #endif 2209 return 0; 2210 case Opt_errors: 2211 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2212 ctx_set_mount_opt(ctx, result.uint_32); 2213 return 0; 2214 #ifdef CONFIG_QUOTA 2215 case Opt_jqfmt: 2216 ctx->s_jquota_fmt = result.uint_32; 2217 ctx->spec |= EXT4_SPEC_JQFMT; 2218 return 0; 2219 #endif 2220 case Opt_data: 2221 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2222 ctx_set_mount_opt(ctx, result.uint_32); 2223 ctx->spec |= EXT4_SPEC_DATAJ; 2224 return 0; 2225 case Opt_commit: 2226 if (result.uint_32 == 0) 2227 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2228 else if (result.uint_32 > INT_MAX / HZ) { 2229 ext4_msg(NULL, KERN_ERR, 2230 "Invalid commit interval %d, " 2231 "must be smaller than %d", 2232 result.uint_32, INT_MAX / HZ); 2233 return -EINVAL; 2234 } 2235 ctx->s_commit_interval = HZ * result.uint_32; 2236 ctx->spec |= EXT4_SPEC_s_commit_interval; 2237 return 0; 2238 case Opt_debug_want_extra_isize: 2239 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2240 ext4_msg(NULL, KERN_ERR, 2241 "Invalid want_extra_isize %d", result.uint_32); 2242 return -EINVAL; 2243 } 2244 ctx->s_want_extra_isize = result.uint_32; 2245 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2246 return 0; 2247 case Opt_max_batch_time: 2248 ctx->s_max_batch_time = result.uint_32; 2249 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2250 return 0; 2251 case Opt_min_batch_time: 2252 ctx->s_min_batch_time = result.uint_32; 2253 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2254 return 0; 2255 case Opt_inode_readahead_blks: 2256 if (result.uint_32 && 2257 (result.uint_32 > (1 << 30) || 2258 !is_power_of_2(result.uint_32))) { 2259 ext4_msg(NULL, KERN_ERR, 2260 "EXT4-fs: inode_readahead_blks must be " 2261 "0 or a power of 2 smaller than 2^31"); 2262 return -EINVAL; 2263 } 2264 ctx->s_inode_readahead_blks = result.uint_32; 2265 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2266 return 0; 2267 case Opt_init_itable: 2268 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2269 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2270 if (param->type == fs_value_is_string) 2271 ctx->s_li_wait_mult = result.uint_32; 2272 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2273 return 0; 2274 case Opt_max_dir_size_kb: 2275 ctx->s_max_dir_size_kb = result.uint_32; 2276 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2277 return 0; 2278 #ifdef CONFIG_EXT4_DEBUG 2279 case Opt_fc_debug_max_replay: 2280 ctx->s_fc_debug_max_replay = result.uint_32; 2281 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2282 return 0; 2283 #endif 2284 case Opt_stripe: 2285 ctx->s_stripe = result.uint_32; 2286 ctx->spec |= EXT4_SPEC_s_stripe; 2287 return 0; 2288 case Opt_resuid: 2289 uid = make_kuid(current_user_ns(), result.uint_32); 2290 if (!uid_valid(uid)) { 2291 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2292 result.uint_32); 2293 return -EINVAL; 2294 } 2295 ctx->s_resuid = uid; 2296 ctx->spec |= EXT4_SPEC_s_resuid; 2297 return 0; 2298 case Opt_resgid: 2299 gid = make_kgid(current_user_ns(), result.uint_32); 2300 if (!gid_valid(gid)) { 2301 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2302 result.uint_32); 2303 return -EINVAL; 2304 } 2305 ctx->s_resgid = gid; 2306 ctx->spec |= EXT4_SPEC_s_resgid; 2307 return 0; 2308 case Opt_journal_dev: 2309 if (is_remount) { 2310 ext4_msg(NULL, KERN_ERR, 2311 "Cannot specify journal on remount"); 2312 return -EINVAL; 2313 } 2314 ctx->journal_devnum = result.uint_32; 2315 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2316 return 0; 2317 case Opt_journal_path: 2318 { 2319 struct inode *journal_inode; 2320 struct path path; 2321 int error; 2322 2323 if (is_remount) { 2324 ext4_msg(NULL, KERN_ERR, 2325 "Cannot specify journal on remount"); 2326 return -EINVAL; 2327 } 2328 2329 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2330 if (error) { 2331 ext4_msg(NULL, KERN_ERR, "error: could not find " 2332 "journal device path"); 2333 return -EINVAL; 2334 } 2335 2336 journal_inode = d_inode(path.dentry); 2337 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2338 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2339 path_put(&path); 2340 return 0; 2341 } 2342 case Opt_journal_ioprio: 2343 if (result.uint_32 > 7) { 2344 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2345 " (must be 0-7)"); 2346 return -EINVAL; 2347 } 2348 ctx->journal_ioprio = 2349 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2350 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2351 return 0; 2352 case Opt_test_dummy_encryption: 2353 return ext4_parse_test_dummy_encryption(param, ctx); 2354 case Opt_dax: 2355 case Opt_dax_type: 2356 #ifdef CONFIG_FS_DAX 2357 { 2358 int type = (token == Opt_dax) ? 2359 Opt_dax : result.uint_32; 2360 2361 switch (type) { 2362 case Opt_dax: 2363 case Opt_dax_always: 2364 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2365 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2366 break; 2367 case Opt_dax_never: 2368 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2369 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2370 break; 2371 case Opt_dax_inode: 2372 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2373 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2374 /* Strictly for printing options */ 2375 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2376 break; 2377 } 2378 return 0; 2379 } 2380 #else 2381 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2382 return -EINVAL; 2383 #endif 2384 case Opt_data_err: 2385 if (result.uint_32 == Opt_data_err_abort) 2386 ctx_set_mount_opt(ctx, m->mount_opt); 2387 else if (result.uint_32 == Opt_data_err_ignore) 2388 ctx_clear_mount_opt(ctx, m->mount_opt); 2389 return 0; 2390 case Opt_mb_optimize_scan: 2391 if (result.int_32 == 1) { 2392 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2393 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2394 } else if (result.int_32 == 0) { 2395 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2396 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2397 } else { 2398 ext4_msg(NULL, KERN_WARNING, 2399 "mb_optimize_scan should be set to 0 or 1."); 2400 return -EINVAL; 2401 } 2402 return 0; 2403 } 2404 2405 /* 2406 * At this point we should only be getting options requiring MOPT_SET, 2407 * or MOPT_CLEAR. Anything else is a bug 2408 */ 2409 if (m->token == Opt_err) { 2410 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2411 param->key); 2412 WARN_ON(1); 2413 return -EINVAL; 2414 } 2415 2416 else { 2417 unsigned int set = 0; 2418 2419 if ((param->type == fs_value_is_flag) || 2420 result.uint_32 > 0) 2421 set = 1; 2422 2423 if (m->flags & MOPT_CLEAR) 2424 set = !set; 2425 else if (unlikely(!(m->flags & MOPT_SET))) { 2426 ext4_msg(NULL, KERN_WARNING, 2427 "buggy handling of option %s", 2428 param->key); 2429 WARN_ON(1); 2430 return -EINVAL; 2431 } 2432 if (m->flags & MOPT_2) { 2433 if (set != 0) 2434 ctx_set_mount_opt2(ctx, m->mount_opt); 2435 else 2436 ctx_clear_mount_opt2(ctx, m->mount_opt); 2437 } else { 2438 if (set != 0) 2439 ctx_set_mount_opt(ctx, m->mount_opt); 2440 else 2441 ctx_clear_mount_opt(ctx, m->mount_opt); 2442 } 2443 } 2444 2445 return 0; 2446 } 2447 2448 static int parse_options(struct fs_context *fc, char *options) 2449 { 2450 struct fs_parameter param; 2451 int ret; 2452 char *key; 2453 2454 if (!options) 2455 return 0; 2456 2457 while ((key = strsep(&options, ",")) != NULL) { 2458 if (*key) { 2459 size_t v_len = 0; 2460 char *value = strchr(key, '='); 2461 2462 param.type = fs_value_is_flag; 2463 param.string = NULL; 2464 2465 if (value) { 2466 if (value == key) 2467 continue; 2468 2469 *value++ = 0; 2470 v_len = strlen(value); 2471 param.string = kmemdup_nul(value, v_len, 2472 GFP_KERNEL); 2473 if (!param.string) 2474 return -ENOMEM; 2475 param.type = fs_value_is_string; 2476 } 2477 2478 param.key = key; 2479 param.size = v_len; 2480 2481 ret = ext4_parse_param(fc, ¶m); 2482 kfree(param.string); 2483 if (ret < 0) 2484 return ret; 2485 } 2486 } 2487 2488 ret = ext4_validate_options(fc); 2489 if (ret < 0) 2490 return ret; 2491 2492 return 0; 2493 } 2494 2495 static int parse_apply_sb_mount_options(struct super_block *sb, 2496 struct ext4_fs_context *m_ctx) 2497 { 2498 struct ext4_sb_info *sbi = EXT4_SB(sb); 2499 char *s_mount_opts = NULL; 2500 struct ext4_fs_context *s_ctx = NULL; 2501 struct fs_context *fc = NULL; 2502 int ret = -ENOMEM; 2503 2504 if (!sbi->s_es->s_mount_opts[0]) 2505 return 0; 2506 2507 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2508 sizeof(sbi->s_es->s_mount_opts), 2509 GFP_KERNEL); 2510 if (!s_mount_opts) 2511 return ret; 2512 2513 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2514 if (!fc) 2515 goto out_free; 2516 2517 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2518 if (!s_ctx) 2519 goto out_free; 2520 2521 fc->fs_private = s_ctx; 2522 fc->s_fs_info = sbi; 2523 2524 ret = parse_options(fc, s_mount_opts); 2525 if (ret < 0) 2526 goto parse_failed; 2527 2528 ret = ext4_check_opt_consistency(fc, sb); 2529 if (ret < 0) { 2530 parse_failed: 2531 ext4_msg(sb, KERN_WARNING, 2532 "failed to parse options in superblock: %s", 2533 s_mount_opts); 2534 ret = 0; 2535 goto out_free; 2536 } 2537 2538 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2539 m_ctx->journal_devnum = s_ctx->journal_devnum; 2540 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2541 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2542 2543 ext4_apply_options(fc, sb); 2544 ret = 0; 2545 2546 out_free: 2547 if (fc) { 2548 ext4_fc_free(fc); 2549 kfree(fc); 2550 } 2551 kfree(s_mount_opts); 2552 return ret; 2553 } 2554 2555 static void ext4_apply_quota_options(struct fs_context *fc, 2556 struct super_block *sb) 2557 { 2558 #ifdef CONFIG_QUOTA 2559 bool quota_feature = ext4_has_feature_quota(sb); 2560 struct ext4_fs_context *ctx = fc->fs_private; 2561 struct ext4_sb_info *sbi = EXT4_SB(sb); 2562 char *qname; 2563 int i; 2564 2565 if (quota_feature) 2566 return; 2567 2568 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2569 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2570 if (!(ctx->qname_spec & (1 << i))) 2571 continue; 2572 2573 qname = ctx->s_qf_names[i]; /* May be NULL */ 2574 if (qname) 2575 set_opt(sb, QUOTA); 2576 ctx->s_qf_names[i] = NULL; 2577 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2578 lockdep_is_held(&sb->s_umount)); 2579 if (qname) 2580 kfree_rcu_mightsleep(qname); 2581 } 2582 } 2583 2584 if (ctx->spec & EXT4_SPEC_JQFMT) 2585 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2586 #endif 2587 } 2588 2589 /* 2590 * Check quota settings consistency. 2591 */ 2592 static int ext4_check_quota_consistency(struct fs_context *fc, 2593 struct super_block *sb) 2594 { 2595 #ifdef CONFIG_QUOTA 2596 struct ext4_fs_context *ctx = fc->fs_private; 2597 struct ext4_sb_info *sbi = EXT4_SB(sb); 2598 bool quota_feature = ext4_has_feature_quota(sb); 2599 bool quota_loaded = sb_any_quota_loaded(sb); 2600 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2601 int quota_flags, i; 2602 2603 /* 2604 * We do the test below only for project quotas. 'usrquota' and 2605 * 'grpquota' mount options are allowed even without quota feature 2606 * to support legacy quotas in quota files. 2607 */ 2608 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2609 !ext4_has_feature_project(sb)) { 2610 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2611 "Cannot enable project quota enforcement."); 2612 return -EINVAL; 2613 } 2614 2615 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2616 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2617 if (quota_loaded && 2618 ctx->mask_s_mount_opt & quota_flags && 2619 !ctx_test_mount_opt(ctx, quota_flags)) 2620 goto err_quota_change; 2621 2622 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2623 2624 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2625 if (!(ctx->qname_spec & (1 << i))) 2626 continue; 2627 2628 if (quota_loaded && 2629 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2630 goto err_jquota_change; 2631 2632 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2633 strcmp(get_qf_name(sb, sbi, i), 2634 ctx->s_qf_names[i]) != 0) 2635 goto err_jquota_specified; 2636 } 2637 2638 if (quota_feature) { 2639 ext4_msg(NULL, KERN_INFO, 2640 "Journaled quota options ignored when " 2641 "QUOTA feature is enabled"); 2642 return 0; 2643 } 2644 } 2645 2646 if (ctx->spec & EXT4_SPEC_JQFMT) { 2647 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2648 goto err_jquota_change; 2649 if (quota_feature) { 2650 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2651 "ignored when QUOTA feature is enabled"); 2652 return 0; 2653 } 2654 } 2655 2656 /* Make sure we don't mix old and new quota format */ 2657 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2658 ctx->s_qf_names[USRQUOTA]); 2659 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2660 ctx->s_qf_names[GRPQUOTA]); 2661 2662 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2663 test_opt(sb, USRQUOTA)); 2664 2665 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2666 test_opt(sb, GRPQUOTA)); 2667 2668 if (usr_qf_name) { 2669 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2670 usrquota = false; 2671 } 2672 if (grp_qf_name) { 2673 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2674 grpquota = false; 2675 } 2676 2677 if (usr_qf_name || grp_qf_name) { 2678 if (usrquota || grpquota) { 2679 ext4_msg(NULL, KERN_ERR, "old and new quota " 2680 "format mixing"); 2681 return -EINVAL; 2682 } 2683 2684 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2685 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2686 "not specified"); 2687 return -EINVAL; 2688 } 2689 } 2690 2691 return 0; 2692 2693 err_quota_change: 2694 ext4_msg(NULL, KERN_ERR, 2695 "Cannot change quota options when quota turned on"); 2696 return -EINVAL; 2697 err_jquota_change: 2698 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2699 "options when quota turned on"); 2700 return -EINVAL; 2701 err_jquota_specified: 2702 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2703 QTYPE2NAME(i)); 2704 return -EINVAL; 2705 #else 2706 return 0; 2707 #endif 2708 } 2709 2710 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2711 struct super_block *sb) 2712 { 2713 const struct ext4_fs_context *ctx = fc->fs_private; 2714 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2715 2716 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2717 return 0; 2718 2719 if (!ext4_has_feature_encrypt(sb)) { 2720 ext4_msg(NULL, KERN_WARNING, 2721 "test_dummy_encryption requires encrypt feature"); 2722 return -EINVAL; 2723 } 2724 /* 2725 * This mount option is just for testing, and it's not worthwhile to 2726 * implement the extra complexity (e.g. RCU protection) that would be 2727 * needed to allow it to be set or changed during remount. We do allow 2728 * it to be specified during remount, but only if there is no change. 2729 */ 2730 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2731 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2732 &ctx->dummy_enc_policy)) 2733 return 0; 2734 ext4_msg(NULL, KERN_WARNING, 2735 "Can't set or change test_dummy_encryption on remount"); 2736 return -EINVAL; 2737 } 2738 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2739 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2740 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2741 &ctx->dummy_enc_policy)) 2742 return 0; 2743 ext4_msg(NULL, KERN_WARNING, 2744 "Conflicting test_dummy_encryption options"); 2745 return -EINVAL; 2746 } 2747 return 0; 2748 } 2749 2750 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2751 struct super_block *sb) 2752 { 2753 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2754 /* if already set, it was already verified to be the same */ 2755 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2756 return; 2757 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2758 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2759 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2760 } 2761 2762 static int ext4_check_opt_consistency(struct fs_context *fc, 2763 struct super_block *sb) 2764 { 2765 struct ext4_fs_context *ctx = fc->fs_private; 2766 struct ext4_sb_info *sbi = fc->s_fs_info; 2767 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2768 int err; 2769 2770 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2771 ext4_msg(NULL, KERN_ERR, 2772 "Mount option(s) incompatible with ext2"); 2773 return -EINVAL; 2774 } 2775 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2776 ext4_msg(NULL, KERN_ERR, 2777 "Mount option(s) incompatible with ext3"); 2778 return -EINVAL; 2779 } 2780 2781 if (ctx->s_want_extra_isize > 2782 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2783 ext4_msg(NULL, KERN_ERR, 2784 "Invalid want_extra_isize %d", 2785 ctx->s_want_extra_isize); 2786 return -EINVAL; 2787 } 2788 2789 err = ext4_check_test_dummy_encryption(fc, sb); 2790 if (err) 2791 return err; 2792 2793 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2794 if (!sbi->s_journal) { 2795 ext4_msg(NULL, KERN_WARNING, 2796 "Remounting file system with no journal " 2797 "so ignoring journalled data option"); 2798 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2799 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2800 test_opt(sb, DATA_FLAGS)) { 2801 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2802 "on remount"); 2803 return -EINVAL; 2804 } 2805 } 2806 2807 if (is_remount) { 2808 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2809 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2810 ext4_msg(NULL, KERN_ERR, "can't mount with " 2811 "both data=journal and dax"); 2812 return -EINVAL; 2813 } 2814 2815 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2816 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2817 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2818 fail_dax_change_remount: 2819 ext4_msg(NULL, KERN_ERR, "can't change " 2820 "dax mount option while remounting"); 2821 return -EINVAL; 2822 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2823 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2824 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2825 goto fail_dax_change_remount; 2826 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2827 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2828 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2829 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2830 goto fail_dax_change_remount; 2831 } 2832 } 2833 2834 return ext4_check_quota_consistency(fc, sb); 2835 } 2836 2837 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2838 { 2839 struct ext4_fs_context *ctx = fc->fs_private; 2840 struct ext4_sb_info *sbi = fc->s_fs_info; 2841 2842 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2843 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2844 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2845 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2846 sb->s_flags &= ~ctx->mask_s_flags; 2847 sb->s_flags |= ctx->vals_s_flags; 2848 2849 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2850 APPLY(s_commit_interval); 2851 APPLY(s_stripe); 2852 APPLY(s_max_batch_time); 2853 APPLY(s_min_batch_time); 2854 APPLY(s_want_extra_isize); 2855 APPLY(s_inode_readahead_blks); 2856 APPLY(s_max_dir_size_kb); 2857 APPLY(s_li_wait_mult); 2858 APPLY(s_resgid); 2859 APPLY(s_resuid); 2860 2861 #ifdef CONFIG_EXT4_DEBUG 2862 APPLY(s_fc_debug_max_replay); 2863 #endif 2864 2865 ext4_apply_quota_options(fc, sb); 2866 ext4_apply_test_dummy_encryption(ctx, sb); 2867 } 2868 2869 2870 static int ext4_validate_options(struct fs_context *fc) 2871 { 2872 #ifdef CONFIG_QUOTA 2873 struct ext4_fs_context *ctx = fc->fs_private; 2874 char *usr_qf_name, *grp_qf_name; 2875 2876 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2877 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2878 2879 if (usr_qf_name || grp_qf_name) { 2880 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2881 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2882 2883 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2884 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2885 2886 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2887 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2888 ext4_msg(NULL, KERN_ERR, "old and new quota " 2889 "format mixing"); 2890 return -EINVAL; 2891 } 2892 } 2893 #endif 2894 return 1; 2895 } 2896 2897 static inline void ext4_show_quota_options(struct seq_file *seq, 2898 struct super_block *sb) 2899 { 2900 #if defined(CONFIG_QUOTA) 2901 struct ext4_sb_info *sbi = EXT4_SB(sb); 2902 char *usr_qf_name, *grp_qf_name; 2903 2904 if (sbi->s_jquota_fmt) { 2905 char *fmtname = ""; 2906 2907 switch (sbi->s_jquota_fmt) { 2908 case QFMT_VFS_OLD: 2909 fmtname = "vfsold"; 2910 break; 2911 case QFMT_VFS_V0: 2912 fmtname = "vfsv0"; 2913 break; 2914 case QFMT_VFS_V1: 2915 fmtname = "vfsv1"; 2916 break; 2917 } 2918 seq_printf(seq, ",jqfmt=%s", fmtname); 2919 } 2920 2921 rcu_read_lock(); 2922 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2923 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2924 if (usr_qf_name) 2925 seq_show_option(seq, "usrjquota", usr_qf_name); 2926 if (grp_qf_name) 2927 seq_show_option(seq, "grpjquota", grp_qf_name); 2928 rcu_read_unlock(); 2929 #endif 2930 } 2931 2932 static const char *token2str(int token) 2933 { 2934 const struct fs_parameter_spec *spec; 2935 2936 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2937 if (spec->opt == token && !spec->type) 2938 break; 2939 return spec->name; 2940 } 2941 2942 /* 2943 * Show an option if 2944 * - it's set to a non-default value OR 2945 * - if the per-sb default is different from the global default 2946 */ 2947 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2948 int nodefs) 2949 { 2950 struct ext4_sb_info *sbi = EXT4_SB(sb); 2951 struct ext4_super_block *es = sbi->s_es; 2952 int def_errors; 2953 const struct mount_opts *m; 2954 char sep = nodefs ? '\n' : ','; 2955 2956 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2957 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2958 2959 if (sbi->s_sb_block != 1) 2960 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2961 2962 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2963 int want_set = m->flags & MOPT_SET; 2964 int opt_2 = m->flags & MOPT_2; 2965 unsigned int mount_opt, def_mount_opt; 2966 2967 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2968 m->flags & MOPT_SKIP) 2969 continue; 2970 2971 if (opt_2) { 2972 mount_opt = sbi->s_mount_opt2; 2973 def_mount_opt = sbi->s_def_mount_opt2; 2974 } else { 2975 mount_opt = sbi->s_mount_opt; 2976 def_mount_opt = sbi->s_def_mount_opt; 2977 } 2978 /* skip if same as the default */ 2979 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2980 continue; 2981 /* select Opt_noFoo vs Opt_Foo */ 2982 if ((want_set && 2983 (mount_opt & m->mount_opt) != m->mount_opt) || 2984 (!want_set && (mount_opt & m->mount_opt))) 2985 continue; 2986 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2987 } 2988 2989 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2990 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2991 SEQ_OPTS_PRINT("resuid=%u", 2992 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2993 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2994 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2995 SEQ_OPTS_PRINT("resgid=%u", 2996 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2997 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2998 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2999 SEQ_OPTS_PUTS("errors=remount-ro"); 3000 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3001 SEQ_OPTS_PUTS("errors=continue"); 3002 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3003 SEQ_OPTS_PUTS("errors=panic"); 3004 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3005 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3006 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3007 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3008 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3009 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3010 if (nodefs || sbi->s_stripe) 3011 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3012 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3013 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3014 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3015 SEQ_OPTS_PUTS("data=journal"); 3016 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3017 SEQ_OPTS_PUTS("data=ordered"); 3018 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3019 SEQ_OPTS_PUTS("data=writeback"); 3020 } 3021 if (nodefs || 3022 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3023 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3024 sbi->s_inode_readahead_blks); 3025 3026 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3027 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3028 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3029 if (nodefs || sbi->s_max_dir_size_kb) 3030 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3031 if (test_opt(sb, DATA_ERR_ABORT)) 3032 SEQ_OPTS_PUTS("data_err=abort"); 3033 3034 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3035 3036 if (sb->s_flags & SB_INLINECRYPT) 3037 SEQ_OPTS_PUTS("inlinecrypt"); 3038 3039 if (test_opt(sb, DAX_ALWAYS)) { 3040 if (IS_EXT2_SB(sb)) 3041 SEQ_OPTS_PUTS("dax"); 3042 else 3043 SEQ_OPTS_PUTS("dax=always"); 3044 } else if (test_opt2(sb, DAX_NEVER)) { 3045 SEQ_OPTS_PUTS("dax=never"); 3046 } else if (test_opt2(sb, DAX_INODE)) { 3047 SEQ_OPTS_PUTS("dax=inode"); 3048 } 3049 3050 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3051 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3052 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3053 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3054 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3055 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3056 } 3057 3058 ext4_show_quota_options(seq, sb); 3059 return 0; 3060 } 3061 3062 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3063 { 3064 return _ext4_show_options(seq, root->d_sb, 0); 3065 } 3066 3067 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3068 { 3069 struct super_block *sb = seq->private; 3070 int rc; 3071 3072 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3073 rc = _ext4_show_options(seq, sb, 1); 3074 seq_puts(seq, "\n"); 3075 return rc; 3076 } 3077 3078 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3079 int read_only) 3080 { 3081 struct ext4_sb_info *sbi = EXT4_SB(sb); 3082 int err = 0; 3083 3084 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3085 ext4_msg(sb, KERN_ERR, "revision level too high, " 3086 "forcing read-only mode"); 3087 err = -EROFS; 3088 goto done; 3089 } 3090 if (read_only) 3091 goto done; 3092 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3093 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3094 "running e2fsck is recommended"); 3095 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3096 ext4_msg(sb, KERN_WARNING, 3097 "warning: mounting fs with errors, " 3098 "running e2fsck is recommended"); 3099 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3100 le16_to_cpu(es->s_mnt_count) >= 3101 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3102 ext4_msg(sb, KERN_WARNING, 3103 "warning: maximal mount count reached, " 3104 "running e2fsck is recommended"); 3105 else if (le32_to_cpu(es->s_checkinterval) && 3106 (ext4_get_tstamp(es, s_lastcheck) + 3107 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3108 ext4_msg(sb, KERN_WARNING, 3109 "warning: checktime reached, " 3110 "running e2fsck is recommended"); 3111 if (!sbi->s_journal) 3112 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3113 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3114 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3115 le16_add_cpu(&es->s_mnt_count, 1); 3116 ext4_update_tstamp(es, s_mtime); 3117 if (sbi->s_journal) { 3118 ext4_set_feature_journal_needs_recovery(sb); 3119 if (ext4_has_feature_orphan_file(sb)) 3120 ext4_set_feature_orphan_present(sb); 3121 } 3122 3123 err = ext4_commit_super(sb); 3124 done: 3125 if (test_opt(sb, DEBUG)) 3126 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3127 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3128 sb->s_blocksize, 3129 sbi->s_groups_count, 3130 EXT4_BLOCKS_PER_GROUP(sb), 3131 EXT4_INODES_PER_GROUP(sb), 3132 sbi->s_mount_opt, sbi->s_mount_opt2); 3133 return err; 3134 } 3135 3136 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3137 { 3138 struct ext4_sb_info *sbi = EXT4_SB(sb); 3139 struct flex_groups **old_groups, **new_groups; 3140 int size, i, j; 3141 3142 if (!sbi->s_log_groups_per_flex) 3143 return 0; 3144 3145 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3146 if (size <= sbi->s_flex_groups_allocated) 3147 return 0; 3148 3149 new_groups = kvzalloc(roundup_pow_of_two(size * 3150 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3151 if (!new_groups) { 3152 ext4_msg(sb, KERN_ERR, 3153 "not enough memory for %d flex group pointers", size); 3154 return -ENOMEM; 3155 } 3156 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3157 new_groups[i] = kvzalloc(roundup_pow_of_two( 3158 sizeof(struct flex_groups)), 3159 GFP_KERNEL); 3160 if (!new_groups[i]) { 3161 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3162 kvfree(new_groups[j]); 3163 kvfree(new_groups); 3164 ext4_msg(sb, KERN_ERR, 3165 "not enough memory for %d flex groups", size); 3166 return -ENOMEM; 3167 } 3168 } 3169 rcu_read_lock(); 3170 old_groups = rcu_dereference(sbi->s_flex_groups); 3171 if (old_groups) 3172 memcpy(new_groups, old_groups, 3173 (sbi->s_flex_groups_allocated * 3174 sizeof(struct flex_groups *))); 3175 rcu_read_unlock(); 3176 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3177 sbi->s_flex_groups_allocated = size; 3178 if (old_groups) 3179 ext4_kvfree_array_rcu(old_groups); 3180 return 0; 3181 } 3182 3183 static int ext4_fill_flex_info(struct super_block *sb) 3184 { 3185 struct ext4_sb_info *sbi = EXT4_SB(sb); 3186 struct ext4_group_desc *gdp = NULL; 3187 struct flex_groups *fg; 3188 ext4_group_t flex_group; 3189 int i, err; 3190 3191 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3192 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3193 sbi->s_log_groups_per_flex = 0; 3194 return 1; 3195 } 3196 3197 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3198 if (err) 3199 goto failed; 3200 3201 for (i = 0; i < sbi->s_groups_count; i++) { 3202 gdp = ext4_get_group_desc(sb, i, NULL); 3203 3204 flex_group = ext4_flex_group(sbi, i); 3205 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3206 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3207 atomic64_add(ext4_free_group_clusters(sb, gdp), 3208 &fg->free_clusters); 3209 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3210 } 3211 3212 return 1; 3213 failed: 3214 return 0; 3215 } 3216 3217 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3218 struct ext4_group_desc *gdp) 3219 { 3220 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3221 __u16 crc = 0; 3222 __le32 le_group = cpu_to_le32(block_group); 3223 struct ext4_sb_info *sbi = EXT4_SB(sb); 3224 3225 if (ext4_has_metadata_csum(sbi->s_sb)) { 3226 /* Use new metadata_csum algorithm */ 3227 __u32 csum32; 3228 __u16 dummy_csum = 0; 3229 3230 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3231 sizeof(le_group)); 3232 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3233 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3234 sizeof(dummy_csum)); 3235 offset += sizeof(dummy_csum); 3236 if (offset < sbi->s_desc_size) 3237 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3238 sbi->s_desc_size - offset); 3239 3240 crc = csum32 & 0xFFFF; 3241 goto out; 3242 } 3243 3244 /* old crc16 code */ 3245 if (!ext4_has_feature_gdt_csum(sb)) 3246 return 0; 3247 3248 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3249 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3250 crc = crc16(crc, (__u8 *)gdp, offset); 3251 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3252 /* for checksum of struct ext4_group_desc do the rest...*/ 3253 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3254 crc = crc16(crc, (__u8 *)gdp + offset, 3255 sbi->s_desc_size - offset); 3256 3257 out: 3258 return cpu_to_le16(crc); 3259 } 3260 3261 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3262 struct ext4_group_desc *gdp) 3263 { 3264 if (ext4_has_group_desc_csum(sb) && 3265 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3266 return 0; 3267 3268 return 1; 3269 } 3270 3271 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3272 struct ext4_group_desc *gdp) 3273 { 3274 if (!ext4_has_group_desc_csum(sb)) 3275 return; 3276 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3277 } 3278 3279 /* Called at mount-time, super-block is locked */ 3280 static int ext4_check_descriptors(struct super_block *sb, 3281 ext4_fsblk_t sb_block, 3282 ext4_group_t *first_not_zeroed) 3283 { 3284 struct ext4_sb_info *sbi = EXT4_SB(sb); 3285 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3286 ext4_fsblk_t last_block; 3287 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3288 ext4_fsblk_t block_bitmap; 3289 ext4_fsblk_t inode_bitmap; 3290 ext4_fsblk_t inode_table; 3291 int flexbg_flag = 0; 3292 ext4_group_t i, grp = sbi->s_groups_count; 3293 3294 if (ext4_has_feature_flex_bg(sb)) 3295 flexbg_flag = 1; 3296 3297 ext4_debug("Checking group descriptors"); 3298 3299 for (i = 0; i < sbi->s_groups_count; i++) { 3300 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3301 3302 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3303 last_block = ext4_blocks_count(sbi->s_es) - 1; 3304 else 3305 last_block = first_block + 3306 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3307 3308 if ((grp == sbi->s_groups_count) && 3309 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3310 grp = i; 3311 3312 block_bitmap = ext4_block_bitmap(sb, gdp); 3313 if (block_bitmap == sb_block) { 3314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3315 "Block bitmap for group %u overlaps " 3316 "superblock", i); 3317 if (!sb_rdonly(sb)) 3318 return 0; 3319 } 3320 if (block_bitmap >= sb_block + 1 && 3321 block_bitmap <= last_bg_block) { 3322 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3323 "Block bitmap for group %u overlaps " 3324 "block group descriptors", i); 3325 if (!sb_rdonly(sb)) 3326 return 0; 3327 } 3328 if (block_bitmap < first_block || block_bitmap > last_block) { 3329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3330 "Block bitmap for group %u not in group " 3331 "(block %llu)!", i, block_bitmap); 3332 return 0; 3333 } 3334 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3335 if (inode_bitmap == sb_block) { 3336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3337 "Inode bitmap for group %u overlaps " 3338 "superblock", i); 3339 if (!sb_rdonly(sb)) 3340 return 0; 3341 } 3342 if (inode_bitmap >= sb_block + 1 && 3343 inode_bitmap <= last_bg_block) { 3344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3345 "Inode bitmap for group %u overlaps " 3346 "block group descriptors", i); 3347 if (!sb_rdonly(sb)) 3348 return 0; 3349 } 3350 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3352 "Inode bitmap for group %u not in group " 3353 "(block %llu)!", i, inode_bitmap); 3354 return 0; 3355 } 3356 inode_table = ext4_inode_table(sb, gdp); 3357 if (inode_table == sb_block) { 3358 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3359 "Inode table for group %u overlaps " 3360 "superblock", i); 3361 if (!sb_rdonly(sb)) 3362 return 0; 3363 } 3364 if (inode_table >= sb_block + 1 && 3365 inode_table <= last_bg_block) { 3366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3367 "Inode table for group %u overlaps " 3368 "block group descriptors", i); 3369 if (!sb_rdonly(sb)) 3370 return 0; 3371 } 3372 if (inode_table < first_block || 3373 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3375 "Inode table for group %u not in group " 3376 "(block %llu)!", i, inode_table); 3377 return 0; 3378 } 3379 ext4_lock_group(sb, i); 3380 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3381 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3382 "Checksum for group %u failed (%u!=%u)", 3383 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3384 gdp)), le16_to_cpu(gdp->bg_checksum)); 3385 if (!sb_rdonly(sb)) { 3386 ext4_unlock_group(sb, i); 3387 return 0; 3388 } 3389 } 3390 ext4_unlock_group(sb, i); 3391 if (!flexbg_flag) 3392 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3393 } 3394 if (NULL != first_not_zeroed) 3395 *first_not_zeroed = grp; 3396 return 1; 3397 } 3398 3399 /* 3400 * Maximal extent format file size. 3401 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3402 * extent format containers, within a sector_t, and within i_blocks 3403 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3404 * so that won't be a limiting factor. 3405 * 3406 * However there is other limiting factor. We do store extents in the form 3407 * of starting block and length, hence the resulting length of the extent 3408 * covering maximum file size must fit into on-disk format containers as 3409 * well. Given that length is always by 1 unit bigger than max unit (because 3410 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3411 * 3412 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3413 */ 3414 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3415 { 3416 loff_t res; 3417 loff_t upper_limit = MAX_LFS_FILESIZE; 3418 3419 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3420 3421 if (!has_huge_files) { 3422 upper_limit = (1LL << 32) - 1; 3423 3424 /* total blocks in file system block size */ 3425 upper_limit >>= (blkbits - 9); 3426 upper_limit <<= blkbits; 3427 } 3428 3429 /* 3430 * 32-bit extent-start container, ee_block. We lower the maxbytes 3431 * by one fs block, so ee_len can cover the extent of maximum file 3432 * size 3433 */ 3434 res = (1LL << 32) - 1; 3435 res <<= blkbits; 3436 3437 /* Sanity check against vm- & vfs- imposed limits */ 3438 if (res > upper_limit) 3439 res = upper_limit; 3440 3441 return res; 3442 } 3443 3444 /* 3445 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3446 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3447 * We need to be 1 filesystem block less than the 2^48 sector limit. 3448 */ 3449 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3450 { 3451 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3452 int meta_blocks; 3453 unsigned int ppb = 1 << (bits - 2); 3454 3455 /* 3456 * This is calculated to be the largest file size for a dense, block 3457 * mapped file such that the file's total number of 512-byte sectors, 3458 * including data and all indirect blocks, does not exceed (2^48 - 1). 3459 * 3460 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3461 * number of 512-byte sectors of the file. 3462 */ 3463 if (!has_huge_files) { 3464 /* 3465 * !has_huge_files or implies that the inode i_block field 3466 * represents total file blocks in 2^32 512-byte sectors == 3467 * size of vfs inode i_blocks * 8 3468 */ 3469 upper_limit = (1LL << 32) - 1; 3470 3471 /* total blocks in file system block size */ 3472 upper_limit >>= (bits - 9); 3473 3474 } else { 3475 /* 3476 * We use 48 bit ext4_inode i_blocks 3477 * With EXT4_HUGE_FILE_FL set the i_blocks 3478 * represent total number of blocks in 3479 * file system block size 3480 */ 3481 upper_limit = (1LL << 48) - 1; 3482 3483 } 3484 3485 /* Compute how many blocks we can address by block tree */ 3486 res += ppb; 3487 res += ppb * ppb; 3488 res += ((loff_t)ppb) * ppb * ppb; 3489 /* Compute how many metadata blocks are needed */ 3490 meta_blocks = 1; 3491 meta_blocks += 1 + ppb; 3492 meta_blocks += 1 + ppb + ppb * ppb; 3493 /* Does block tree limit file size? */ 3494 if (res + meta_blocks <= upper_limit) 3495 goto check_lfs; 3496 3497 res = upper_limit; 3498 /* How many metadata blocks are needed for addressing upper_limit? */ 3499 upper_limit -= EXT4_NDIR_BLOCKS; 3500 /* indirect blocks */ 3501 meta_blocks = 1; 3502 upper_limit -= ppb; 3503 /* double indirect blocks */ 3504 if (upper_limit < ppb * ppb) { 3505 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3506 res -= meta_blocks; 3507 goto check_lfs; 3508 } 3509 meta_blocks += 1 + ppb; 3510 upper_limit -= ppb * ppb; 3511 /* tripple indirect blocks for the rest */ 3512 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3513 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3514 res -= meta_blocks; 3515 check_lfs: 3516 res <<= bits; 3517 if (res > MAX_LFS_FILESIZE) 3518 res = MAX_LFS_FILESIZE; 3519 3520 return res; 3521 } 3522 3523 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3524 ext4_fsblk_t logical_sb_block, int nr) 3525 { 3526 struct ext4_sb_info *sbi = EXT4_SB(sb); 3527 ext4_group_t bg, first_meta_bg; 3528 int has_super = 0; 3529 3530 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3531 3532 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3533 return logical_sb_block + nr + 1; 3534 bg = sbi->s_desc_per_block * nr; 3535 if (ext4_bg_has_super(sb, bg)) 3536 has_super = 1; 3537 3538 /* 3539 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3540 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3541 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3542 * compensate. 3543 */ 3544 if (sb->s_blocksize == 1024 && nr == 0 && 3545 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3546 has_super++; 3547 3548 return (has_super + ext4_group_first_block_no(sb, bg)); 3549 } 3550 3551 /** 3552 * ext4_get_stripe_size: Get the stripe size. 3553 * @sbi: In memory super block info 3554 * 3555 * If we have specified it via mount option, then 3556 * use the mount option value. If the value specified at mount time is 3557 * greater than the blocks per group use the super block value. 3558 * If the super block value is greater than blocks per group return 0. 3559 * Allocator needs it be less than blocks per group. 3560 * 3561 */ 3562 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3563 { 3564 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3565 unsigned long stripe_width = 3566 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3567 int ret; 3568 3569 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3570 ret = sbi->s_stripe; 3571 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3572 ret = stripe_width; 3573 else if (stride && stride <= sbi->s_blocks_per_group) 3574 ret = stride; 3575 else 3576 ret = 0; 3577 3578 /* 3579 * If the stripe width is 1, this makes no sense and 3580 * we set it to 0 to turn off stripe handling code. 3581 */ 3582 if (ret <= 1) 3583 ret = 0; 3584 3585 return ret; 3586 } 3587 3588 /* 3589 * Check whether this filesystem can be mounted based on 3590 * the features present and the RDONLY/RDWR mount requested. 3591 * Returns 1 if this filesystem can be mounted as requested, 3592 * 0 if it cannot be. 3593 */ 3594 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3595 { 3596 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3597 ext4_msg(sb, KERN_ERR, 3598 "Couldn't mount because of " 3599 "unsupported optional features (%x)", 3600 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3601 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3602 return 0; 3603 } 3604 3605 #if !IS_ENABLED(CONFIG_UNICODE) 3606 if (ext4_has_feature_casefold(sb)) { 3607 ext4_msg(sb, KERN_ERR, 3608 "Filesystem with casefold feature cannot be " 3609 "mounted without CONFIG_UNICODE"); 3610 return 0; 3611 } 3612 #endif 3613 3614 if (readonly) 3615 return 1; 3616 3617 if (ext4_has_feature_readonly(sb)) { 3618 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3619 sb->s_flags |= SB_RDONLY; 3620 return 1; 3621 } 3622 3623 /* Check that feature set is OK for a read-write mount */ 3624 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3625 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3626 "unsupported optional features (%x)", 3627 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3628 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3629 return 0; 3630 } 3631 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3632 ext4_msg(sb, KERN_ERR, 3633 "Can't support bigalloc feature without " 3634 "extents feature\n"); 3635 return 0; 3636 } 3637 3638 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3639 if (!readonly && (ext4_has_feature_quota(sb) || 3640 ext4_has_feature_project(sb))) { 3641 ext4_msg(sb, KERN_ERR, 3642 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3643 return 0; 3644 } 3645 #endif /* CONFIG_QUOTA */ 3646 return 1; 3647 } 3648 3649 /* 3650 * This function is called once a day if we have errors logged 3651 * on the file system 3652 */ 3653 static void print_daily_error_info(struct timer_list *t) 3654 { 3655 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3656 struct super_block *sb = sbi->s_sb; 3657 struct ext4_super_block *es = sbi->s_es; 3658 3659 if (es->s_error_count) 3660 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3661 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3662 le32_to_cpu(es->s_error_count)); 3663 if (es->s_first_error_time) { 3664 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3665 sb->s_id, 3666 ext4_get_tstamp(es, s_first_error_time), 3667 (int) sizeof(es->s_first_error_func), 3668 es->s_first_error_func, 3669 le32_to_cpu(es->s_first_error_line)); 3670 if (es->s_first_error_ino) 3671 printk(KERN_CONT ": inode %u", 3672 le32_to_cpu(es->s_first_error_ino)); 3673 if (es->s_first_error_block) 3674 printk(KERN_CONT ": block %llu", (unsigned long long) 3675 le64_to_cpu(es->s_first_error_block)); 3676 printk(KERN_CONT "\n"); 3677 } 3678 if (es->s_last_error_time) { 3679 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3680 sb->s_id, 3681 ext4_get_tstamp(es, s_last_error_time), 3682 (int) sizeof(es->s_last_error_func), 3683 es->s_last_error_func, 3684 le32_to_cpu(es->s_last_error_line)); 3685 if (es->s_last_error_ino) 3686 printk(KERN_CONT ": inode %u", 3687 le32_to_cpu(es->s_last_error_ino)); 3688 if (es->s_last_error_block) 3689 printk(KERN_CONT ": block %llu", (unsigned long long) 3690 le64_to_cpu(es->s_last_error_block)); 3691 printk(KERN_CONT "\n"); 3692 } 3693 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3694 } 3695 3696 /* Find next suitable group and run ext4_init_inode_table */ 3697 static int ext4_run_li_request(struct ext4_li_request *elr) 3698 { 3699 struct ext4_group_desc *gdp = NULL; 3700 struct super_block *sb = elr->lr_super; 3701 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3702 ext4_group_t group = elr->lr_next_group; 3703 unsigned int prefetch_ios = 0; 3704 int ret = 0; 3705 int nr = EXT4_SB(sb)->s_mb_prefetch; 3706 u64 start_time; 3707 3708 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3709 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3710 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3711 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3712 if (group >= elr->lr_next_group) { 3713 ret = 1; 3714 if (elr->lr_first_not_zeroed != ngroups && 3715 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3716 elr->lr_next_group = elr->lr_first_not_zeroed; 3717 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3718 ret = 0; 3719 } 3720 } 3721 return ret; 3722 } 3723 3724 for (; group < ngroups; group++) { 3725 gdp = ext4_get_group_desc(sb, group, NULL); 3726 if (!gdp) { 3727 ret = 1; 3728 break; 3729 } 3730 3731 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3732 break; 3733 } 3734 3735 if (group >= ngroups) 3736 ret = 1; 3737 3738 if (!ret) { 3739 start_time = ktime_get_real_ns(); 3740 ret = ext4_init_inode_table(sb, group, 3741 elr->lr_timeout ? 0 : 1); 3742 trace_ext4_lazy_itable_init(sb, group); 3743 if (elr->lr_timeout == 0) { 3744 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3745 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3746 } 3747 elr->lr_next_sched = jiffies + elr->lr_timeout; 3748 elr->lr_next_group = group + 1; 3749 } 3750 return ret; 3751 } 3752 3753 /* 3754 * Remove lr_request from the list_request and free the 3755 * request structure. Should be called with li_list_mtx held 3756 */ 3757 static void ext4_remove_li_request(struct ext4_li_request *elr) 3758 { 3759 if (!elr) 3760 return; 3761 3762 list_del(&elr->lr_request); 3763 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3764 kfree(elr); 3765 } 3766 3767 static void ext4_unregister_li_request(struct super_block *sb) 3768 { 3769 mutex_lock(&ext4_li_mtx); 3770 if (!ext4_li_info) { 3771 mutex_unlock(&ext4_li_mtx); 3772 return; 3773 } 3774 3775 mutex_lock(&ext4_li_info->li_list_mtx); 3776 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3777 mutex_unlock(&ext4_li_info->li_list_mtx); 3778 mutex_unlock(&ext4_li_mtx); 3779 } 3780 3781 static struct task_struct *ext4_lazyinit_task; 3782 3783 /* 3784 * This is the function where ext4lazyinit thread lives. It walks 3785 * through the request list searching for next scheduled filesystem. 3786 * When such a fs is found, run the lazy initialization request 3787 * (ext4_rn_li_request) and keep track of the time spend in this 3788 * function. Based on that time we compute next schedule time of 3789 * the request. When walking through the list is complete, compute 3790 * next waking time and put itself into sleep. 3791 */ 3792 static int ext4_lazyinit_thread(void *arg) 3793 { 3794 struct ext4_lazy_init *eli = arg; 3795 struct list_head *pos, *n; 3796 struct ext4_li_request *elr; 3797 unsigned long next_wakeup, cur; 3798 3799 BUG_ON(NULL == eli); 3800 set_freezable(); 3801 3802 cont_thread: 3803 while (true) { 3804 next_wakeup = MAX_JIFFY_OFFSET; 3805 3806 mutex_lock(&eli->li_list_mtx); 3807 if (list_empty(&eli->li_request_list)) { 3808 mutex_unlock(&eli->li_list_mtx); 3809 goto exit_thread; 3810 } 3811 list_for_each_safe(pos, n, &eli->li_request_list) { 3812 int err = 0; 3813 int progress = 0; 3814 elr = list_entry(pos, struct ext4_li_request, 3815 lr_request); 3816 3817 if (time_before(jiffies, elr->lr_next_sched)) { 3818 if (time_before(elr->lr_next_sched, next_wakeup)) 3819 next_wakeup = elr->lr_next_sched; 3820 continue; 3821 } 3822 if (down_read_trylock(&elr->lr_super->s_umount)) { 3823 if (sb_start_write_trylock(elr->lr_super)) { 3824 progress = 1; 3825 /* 3826 * We hold sb->s_umount, sb can not 3827 * be removed from the list, it is 3828 * now safe to drop li_list_mtx 3829 */ 3830 mutex_unlock(&eli->li_list_mtx); 3831 err = ext4_run_li_request(elr); 3832 sb_end_write(elr->lr_super); 3833 mutex_lock(&eli->li_list_mtx); 3834 n = pos->next; 3835 } 3836 up_read((&elr->lr_super->s_umount)); 3837 } 3838 /* error, remove the lazy_init job */ 3839 if (err) { 3840 ext4_remove_li_request(elr); 3841 continue; 3842 } 3843 if (!progress) { 3844 elr->lr_next_sched = jiffies + 3845 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3846 } 3847 if (time_before(elr->lr_next_sched, next_wakeup)) 3848 next_wakeup = elr->lr_next_sched; 3849 } 3850 mutex_unlock(&eli->li_list_mtx); 3851 3852 try_to_freeze(); 3853 3854 cur = jiffies; 3855 if ((time_after_eq(cur, next_wakeup)) || 3856 (MAX_JIFFY_OFFSET == next_wakeup)) { 3857 cond_resched(); 3858 continue; 3859 } 3860 3861 schedule_timeout_interruptible(next_wakeup - cur); 3862 3863 if (kthread_should_stop()) { 3864 ext4_clear_request_list(); 3865 goto exit_thread; 3866 } 3867 } 3868 3869 exit_thread: 3870 /* 3871 * It looks like the request list is empty, but we need 3872 * to check it under the li_list_mtx lock, to prevent any 3873 * additions into it, and of course we should lock ext4_li_mtx 3874 * to atomically free the list and ext4_li_info, because at 3875 * this point another ext4 filesystem could be registering 3876 * new one. 3877 */ 3878 mutex_lock(&ext4_li_mtx); 3879 mutex_lock(&eli->li_list_mtx); 3880 if (!list_empty(&eli->li_request_list)) { 3881 mutex_unlock(&eli->li_list_mtx); 3882 mutex_unlock(&ext4_li_mtx); 3883 goto cont_thread; 3884 } 3885 mutex_unlock(&eli->li_list_mtx); 3886 kfree(ext4_li_info); 3887 ext4_li_info = NULL; 3888 mutex_unlock(&ext4_li_mtx); 3889 3890 return 0; 3891 } 3892 3893 static void ext4_clear_request_list(void) 3894 { 3895 struct list_head *pos, *n; 3896 struct ext4_li_request *elr; 3897 3898 mutex_lock(&ext4_li_info->li_list_mtx); 3899 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3900 elr = list_entry(pos, struct ext4_li_request, 3901 lr_request); 3902 ext4_remove_li_request(elr); 3903 } 3904 mutex_unlock(&ext4_li_info->li_list_mtx); 3905 } 3906 3907 static int ext4_run_lazyinit_thread(void) 3908 { 3909 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3910 ext4_li_info, "ext4lazyinit"); 3911 if (IS_ERR(ext4_lazyinit_task)) { 3912 int err = PTR_ERR(ext4_lazyinit_task); 3913 ext4_clear_request_list(); 3914 kfree(ext4_li_info); 3915 ext4_li_info = NULL; 3916 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3917 "initialization thread\n", 3918 err); 3919 return err; 3920 } 3921 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3922 return 0; 3923 } 3924 3925 /* 3926 * Check whether it make sense to run itable init. thread or not. 3927 * If there is at least one uninitialized inode table, return 3928 * corresponding group number, else the loop goes through all 3929 * groups and return total number of groups. 3930 */ 3931 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3932 { 3933 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3934 struct ext4_group_desc *gdp = NULL; 3935 3936 if (!ext4_has_group_desc_csum(sb)) 3937 return ngroups; 3938 3939 for (group = 0; group < ngroups; group++) { 3940 gdp = ext4_get_group_desc(sb, group, NULL); 3941 if (!gdp) 3942 continue; 3943 3944 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3945 break; 3946 } 3947 3948 return group; 3949 } 3950 3951 static int ext4_li_info_new(void) 3952 { 3953 struct ext4_lazy_init *eli = NULL; 3954 3955 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3956 if (!eli) 3957 return -ENOMEM; 3958 3959 INIT_LIST_HEAD(&eli->li_request_list); 3960 mutex_init(&eli->li_list_mtx); 3961 3962 eli->li_state |= EXT4_LAZYINIT_QUIT; 3963 3964 ext4_li_info = eli; 3965 3966 return 0; 3967 } 3968 3969 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3970 ext4_group_t start) 3971 { 3972 struct ext4_li_request *elr; 3973 3974 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3975 if (!elr) 3976 return NULL; 3977 3978 elr->lr_super = sb; 3979 elr->lr_first_not_zeroed = start; 3980 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3981 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3982 elr->lr_next_group = start; 3983 } else { 3984 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3985 } 3986 3987 /* 3988 * Randomize first schedule time of the request to 3989 * spread the inode table initialization requests 3990 * better. 3991 */ 3992 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3993 return elr; 3994 } 3995 3996 int ext4_register_li_request(struct super_block *sb, 3997 ext4_group_t first_not_zeroed) 3998 { 3999 struct ext4_sb_info *sbi = EXT4_SB(sb); 4000 struct ext4_li_request *elr = NULL; 4001 ext4_group_t ngroups = sbi->s_groups_count; 4002 int ret = 0; 4003 4004 mutex_lock(&ext4_li_mtx); 4005 if (sbi->s_li_request != NULL) { 4006 /* 4007 * Reset timeout so it can be computed again, because 4008 * s_li_wait_mult might have changed. 4009 */ 4010 sbi->s_li_request->lr_timeout = 0; 4011 goto out; 4012 } 4013 4014 if (sb_rdonly(sb) || 4015 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4016 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4017 goto out; 4018 4019 elr = ext4_li_request_new(sb, first_not_zeroed); 4020 if (!elr) { 4021 ret = -ENOMEM; 4022 goto out; 4023 } 4024 4025 if (NULL == ext4_li_info) { 4026 ret = ext4_li_info_new(); 4027 if (ret) 4028 goto out; 4029 } 4030 4031 mutex_lock(&ext4_li_info->li_list_mtx); 4032 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4033 mutex_unlock(&ext4_li_info->li_list_mtx); 4034 4035 sbi->s_li_request = elr; 4036 /* 4037 * set elr to NULL here since it has been inserted to 4038 * the request_list and the removal and free of it is 4039 * handled by ext4_clear_request_list from now on. 4040 */ 4041 elr = NULL; 4042 4043 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4044 ret = ext4_run_lazyinit_thread(); 4045 if (ret) 4046 goto out; 4047 } 4048 out: 4049 mutex_unlock(&ext4_li_mtx); 4050 if (ret) 4051 kfree(elr); 4052 return ret; 4053 } 4054 4055 /* 4056 * We do not need to lock anything since this is called on 4057 * module unload. 4058 */ 4059 static void ext4_destroy_lazyinit_thread(void) 4060 { 4061 /* 4062 * If thread exited earlier 4063 * there's nothing to be done. 4064 */ 4065 if (!ext4_li_info || !ext4_lazyinit_task) 4066 return; 4067 4068 kthread_stop(ext4_lazyinit_task); 4069 } 4070 4071 static int set_journal_csum_feature_set(struct super_block *sb) 4072 { 4073 int ret = 1; 4074 int compat, incompat; 4075 struct ext4_sb_info *sbi = EXT4_SB(sb); 4076 4077 if (ext4_has_metadata_csum(sb)) { 4078 /* journal checksum v3 */ 4079 compat = 0; 4080 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4081 } else { 4082 /* journal checksum v1 */ 4083 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4084 incompat = 0; 4085 } 4086 4087 jbd2_journal_clear_features(sbi->s_journal, 4088 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4089 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4090 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4091 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4092 ret = jbd2_journal_set_features(sbi->s_journal, 4093 compat, 0, 4094 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4095 incompat); 4096 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4097 ret = jbd2_journal_set_features(sbi->s_journal, 4098 compat, 0, 4099 incompat); 4100 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4101 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4102 } else { 4103 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4104 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4105 } 4106 4107 return ret; 4108 } 4109 4110 /* 4111 * Note: calculating the overhead so we can be compatible with 4112 * historical BSD practice is quite difficult in the face of 4113 * clusters/bigalloc. This is because multiple metadata blocks from 4114 * different block group can end up in the same allocation cluster. 4115 * Calculating the exact overhead in the face of clustered allocation 4116 * requires either O(all block bitmaps) in memory or O(number of block 4117 * groups**2) in time. We will still calculate the superblock for 4118 * older file systems --- and if we come across with a bigalloc file 4119 * system with zero in s_overhead_clusters the estimate will be close to 4120 * correct especially for very large cluster sizes --- but for newer 4121 * file systems, it's better to calculate this figure once at mkfs 4122 * time, and store it in the superblock. If the superblock value is 4123 * present (even for non-bigalloc file systems), we will use it. 4124 */ 4125 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4126 char *buf) 4127 { 4128 struct ext4_sb_info *sbi = EXT4_SB(sb); 4129 struct ext4_group_desc *gdp; 4130 ext4_fsblk_t first_block, last_block, b; 4131 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4132 int s, j, count = 0; 4133 int has_super = ext4_bg_has_super(sb, grp); 4134 4135 if (!ext4_has_feature_bigalloc(sb)) 4136 return (has_super + ext4_bg_num_gdb(sb, grp) + 4137 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4138 sbi->s_itb_per_group + 2); 4139 4140 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4141 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4142 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4143 for (i = 0; i < ngroups; i++) { 4144 gdp = ext4_get_group_desc(sb, i, NULL); 4145 b = ext4_block_bitmap(sb, gdp); 4146 if (b >= first_block && b <= last_block) { 4147 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4148 count++; 4149 } 4150 b = ext4_inode_bitmap(sb, gdp); 4151 if (b >= first_block && b <= last_block) { 4152 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4153 count++; 4154 } 4155 b = ext4_inode_table(sb, gdp); 4156 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4157 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4158 int c = EXT4_B2C(sbi, b - first_block); 4159 ext4_set_bit(c, buf); 4160 count++; 4161 } 4162 if (i != grp) 4163 continue; 4164 s = 0; 4165 if (ext4_bg_has_super(sb, grp)) { 4166 ext4_set_bit(s++, buf); 4167 count++; 4168 } 4169 j = ext4_bg_num_gdb(sb, grp); 4170 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4171 ext4_error(sb, "Invalid number of block group " 4172 "descriptor blocks: %d", j); 4173 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4174 } 4175 count += j; 4176 for (; j > 0; j--) 4177 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4178 } 4179 if (!count) 4180 return 0; 4181 return EXT4_CLUSTERS_PER_GROUP(sb) - 4182 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4183 } 4184 4185 /* 4186 * Compute the overhead and stash it in sbi->s_overhead 4187 */ 4188 int ext4_calculate_overhead(struct super_block *sb) 4189 { 4190 struct ext4_sb_info *sbi = EXT4_SB(sb); 4191 struct ext4_super_block *es = sbi->s_es; 4192 struct inode *j_inode; 4193 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4194 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4195 ext4_fsblk_t overhead = 0; 4196 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4197 4198 if (!buf) 4199 return -ENOMEM; 4200 4201 /* 4202 * Compute the overhead (FS structures). This is constant 4203 * for a given filesystem unless the number of block groups 4204 * changes so we cache the previous value until it does. 4205 */ 4206 4207 /* 4208 * All of the blocks before first_data_block are overhead 4209 */ 4210 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4211 4212 /* 4213 * Add the overhead found in each block group 4214 */ 4215 for (i = 0; i < ngroups; i++) { 4216 int blks; 4217 4218 blks = count_overhead(sb, i, buf); 4219 overhead += blks; 4220 if (blks) 4221 memset(buf, 0, PAGE_SIZE); 4222 cond_resched(); 4223 } 4224 4225 /* 4226 * Add the internal journal blocks whether the journal has been 4227 * loaded or not 4228 */ 4229 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4230 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4231 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4232 /* j_inum for internal journal is non-zero */ 4233 j_inode = ext4_get_journal_inode(sb, j_inum); 4234 if (!IS_ERR(j_inode)) { 4235 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4236 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4237 iput(j_inode); 4238 } else { 4239 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4240 } 4241 } 4242 sbi->s_overhead = overhead; 4243 smp_wmb(); 4244 free_page((unsigned long) buf); 4245 return 0; 4246 } 4247 4248 static void ext4_set_resv_clusters(struct super_block *sb) 4249 { 4250 ext4_fsblk_t resv_clusters; 4251 struct ext4_sb_info *sbi = EXT4_SB(sb); 4252 4253 /* 4254 * There's no need to reserve anything when we aren't using extents. 4255 * The space estimates are exact, there are no unwritten extents, 4256 * hole punching doesn't need new metadata... This is needed especially 4257 * to keep ext2/3 backward compatibility. 4258 */ 4259 if (!ext4_has_feature_extents(sb)) 4260 return; 4261 /* 4262 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4263 * This should cover the situations where we can not afford to run 4264 * out of space like for example punch hole, or converting 4265 * unwritten extents in delalloc path. In most cases such 4266 * allocation would require 1, or 2 blocks, higher numbers are 4267 * very rare. 4268 */ 4269 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4270 sbi->s_cluster_bits); 4271 4272 do_div(resv_clusters, 50); 4273 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4274 4275 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4276 } 4277 4278 static const char *ext4_quota_mode(struct super_block *sb) 4279 { 4280 #ifdef CONFIG_QUOTA 4281 if (!ext4_quota_capable(sb)) 4282 return "none"; 4283 4284 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4285 return "journalled"; 4286 else 4287 return "writeback"; 4288 #else 4289 return "disabled"; 4290 #endif 4291 } 4292 4293 static void ext4_setup_csum_trigger(struct super_block *sb, 4294 enum ext4_journal_trigger_type type, 4295 void (*trigger)( 4296 struct jbd2_buffer_trigger_type *type, 4297 struct buffer_head *bh, 4298 void *mapped_data, 4299 size_t size)) 4300 { 4301 struct ext4_sb_info *sbi = EXT4_SB(sb); 4302 4303 sbi->s_journal_triggers[type].sb = sb; 4304 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4305 } 4306 4307 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4308 { 4309 if (!sbi) 4310 return; 4311 4312 kfree(sbi->s_blockgroup_lock); 4313 fs_put_dax(sbi->s_daxdev, NULL); 4314 kfree(sbi); 4315 } 4316 4317 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4318 { 4319 struct ext4_sb_info *sbi; 4320 4321 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4322 if (!sbi) 4323 return NULL; 4324 4325 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4326 NULL, NULL); 4327 4328 sbi->s_blockgroup_lock = 4329 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4330 4331 if (!sbi->s_blockgroup_lock) 4332 goto err_out; 4333 4334 sb->s_fs_info = sbi; 4335 sbi->s_sb = sb; 4336 return sbi; 4337 err_out: 4338 fs_put_dax(sbi->s_daxdev, NULL); 4339 kfree(sbi); 4340 return NULL; 4341 } 4342 4343 static void ext4_set_def_opts(struct super_block *sb, 4344 struct ext4_super_block *es) 4345 { 4346 unsigned long def_mount_opts; 4347 4348 /* Set defaults before we parse the mount options */ 4349 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4350 set_opt(sb, INIT_INODE_TABLE); 4351 if (def_mount_opts & EXT4_DEFM_DEBUG) 4352 set_opt(sb, DEBUG); 4353 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4354 set_opt(sb, GRPID); 4355 if (def_mount_opts & EXT4_DEFM_UID16) 4356 set_opt(sb, NO_UID32); 4357 /* xattr user namespace & acls are now defaulted on */ 4358 set_opt(sb, XATTR_USER); 4359 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4360 set_opt(sb, POSIX_ACL); 4361 #endif 4362 if (ext4_has_feature_fast_commit(sb)) 4363 set_opt2(sb, JOURNAL_FAST_COMMIT); 4364 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4365 if (ext4_has_metadata_csum(sb)) 4366 set_opt(sb, JOURNAL_CHECKSUM); 4367 4368 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4369 set_opt(sb, JOURNAL_DATA); 4370 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4371 set_opt(sb, ORDERED_DATA); 4372 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4373 set_opt(sb, WRITEBACK_DATA); 4374 4375 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4376 set_opt(sb, ERRORS_PANIC); 4377 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4378 set_opt(sb, ERRORS_CONT); 4379 else 4380 set_opt(sb, ERRORS_RO); 4381 /* block_validity enabled by default; disable with noblock_validity */ 4382 set_opt(sb, BLOCK_VALIDITY); 4383 if (def_mount_opts & EXT4_DEFM_DISCARD) 4384 set_opt(sb, DISCARD); 4385 4386 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4387 set_opt(sb, BARRIER); 4388 4389 /* 4390 * enable delayed allocation by default 4391 * Use -o nodelalloc to turn it off 4392 */ 4393 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4394 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4395 set_opt(sb, DELALLOC); 4396 4397 if (sb->s_blocksize <= PAGE_SIZE) 4398 set_opt(sb, DIOREAD_NOLOCK); 4399 } 4400 4401 static int ext4_handle_clustersize(struct super_block *sb) 4402 { 4403 struct ext4_sb_info *sbi = EXT4_SB(sb); 4404 struct ext4_super_block *es = sbi->s_es; 4405 int clustersize; 4406 4407 /* Handle clustersize */ 4408 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4409 if (ext4_has_feature_bigalloc(sb)) { 4410 if (clustersize < sb->s_blocksize) { 4411 ext4_msg(sb, KERN_ERR, 4412 "cluster size (%d) smaller than " 4413 "block size (%lu)", clustersize, sb->s_blocksize); 4414 return -EINVAL; 4415 } 4416 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4417 le32_to_cpu(es->s_log_block_size); 4418 } else { 4419 if (clustersize != sb->s_blocksize) { 4420 ext4_msg(sb, KERN_ERR, 4421 "fragment/cluster size (%d) != " 4422 "block size (%lu)", clustersize, sb->s_blocksize); 4423 return -EINVAL; 4424 } 4425 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4426 ext4_msg(sb, KERN_ERR, 4427 "#blocks per group too big: %lu", 4428 sbi->s_blocks_per_group); 4429 return -EINVAL; 4430 } 4431 sbi->s_cluster_bits = 0; 4432 } 4433 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4434 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4435 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4436 sbi->s_clusters_per_group); 4437 return -EINVAL; 4438 } 4439 if (sbi->s_blocks_per_group != 4440 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4441 ext4_msg(sb, KERN_ERR, 4442 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4443 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4444 return -EINVAL; 4445 } 4446 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4447 4448 /* Do we have standard group size of clustersize * 8 blocks ? */ 4449 if (sbi->s_blocks_per_group == clustersize << 3) 4450 set_opt2(sb, STD_GROUP_SIZE); 4451 4452 return 0; 4453 } 4454 4455 static void ext4_fast_commit_init(struct super_block *sb) 4456 { 4457 struct ext4_sb_info *sbi = EXT4_SB(sb); 4458 4459 /* Initialize fast commit stuff */ 4460 atomic_set(&sbi->s_fc_subtid, 0); 4461 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4462 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4463 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4464 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4465 sbi->s_fc_bytes = 0; 4466 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4467 sbi->s_fc_ineligible_tid = 0; 4468 spin_lock_init(&sbi->s_fc_lock); 4469 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4470 sbi->s_fc_replay_state.fc_regions = NULL; 4471 sbi->s_fc_replay_state.fc_regions_size = 0; 4472 sbi->s_fc_replay_state.fc_regions_used = 0; 4473 sbi->s_fc_replay_state.fc_regions_valid = 0; 4474 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4475 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4476 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4477 } 4478 4479 static int ext4_inode_info_init(struct super_block *sb, 4480 struct ext4_super_block *es) 4481 { 4482 struct ext4_sb_info *sbi = EXT4_SB(sb); 4483 4484 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4485 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4486 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4487 } else { 4488 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4489 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4490 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4491 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4492 sbi->s_first_ino); 4493 return -EINVAL; 4494 } 4495 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4496 (!is_power_of_2(sbi->s_inode_size)) || 4497 (sbi->s_inode_size > sb->s_blocksize)) { 4498 ext4_msg(sb, KERN_ERR, 4499 "unsupported inode size: %d", 4500 sbi->s_inode_size); 4501 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4502 return -EINVAL; 4503 } 4504 /* 4505 * i_atime_extra is the last extra field available for 4506 * [acm]times in struct ext4_inode. Checking for that 4507 * field should suffice to ensure we have extra space 4508 * for all three. 4509 */ 4510 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4511 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4512 sb->s_time_gran = 1; 4513 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4514 } else { 4515 sb->s_time_gran = NSEC_PER_SEC; 4516 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4517 } 4518 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4519 } 4520 4521 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4522 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4523 EXT4_GOOD_OLD_INODE_SIZE; 4524 if (ext4_has_feature_extra_isize(sb)) { 4525 unsigned v, max = (sbi->s_inode_size - 4526 EXT4_GOOD_OLD_INODE_SIZE); 4527 4528 v = le16_to_cpu(es->s_want_extra_isize); 4529 if (v > max) { 4530 ext4_msg(sb, KERN_ERR, 4531 "bad s_want_extra_isize: %d", v); 4532 return -EINVAL; 4533 } 4534 if (sbi->s_want_extra_isize < v) 4535 sbi->s_want_extra_isize = v; 4536 4537 v = le16_to_cpu(es->s_min_extra_isize); 4538 if (v > max) { 4539 ext4_msg(sb, KERN_ERR, 4540 "bad s_min_extra_isize: %d", v); 4541 return -EINVAL; 4542 } 4543 if (sbi->s_want_extra_isize < v) 4544 sbi->s_want_extra_isize = v; 4545 } 4546 } 4547 4548 return 0; 4549 } 4550 4551 #if IS_ENABLED(CONFIG_UNICODE) 4552 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4553 { 4554 const struct ext4_sb_encodings *encoding_info; 4555 struct unicode_map *encoding; 4556 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4557 4558 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4559 return 0; 4560 4561 encoding_info = ext4_sb_read_encoding(es); 4562 if (!encoding_info) { 4563 ext4_msg(sb, KERN_ERR, 4564 "Encoding requested by superblock is unknown"); 4565 return -EINVAL; 4566 } 4567 4568 encoding = utf8_load(encoding_info->version); 4569 if (IS_ERR(encoding)) { 4570 ext4_msg(sb, KERN_ERR, 4571 "can't mount with superblock charset: %s-%u.%u.%u " 4572 "not supported by the kernel. flags: 0x%x.", 4573 encoding_info->name, 4574 unicode_major(encoding_info->version), 4575 unicode_minor(encoding_info->version), 4576 unicode_rev(encoding_info->version), 4577 encoding_flags); 4578 return -EINVAL; 4579 } 4580 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4581 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4582 unicode_major(encoding_info->version), 4583 unicode_minor(encoding_info->version), 4584 unicode_rev(encoding_info->version), 4585 encoding_flags); 4586 4587 sb->s_encoding = encoding; 4588 sb->s_encoding_flags = encoding_flags; 4589 4590 return 0; 4591 } 4592 #else 4593 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4594 { 4595 return 0; 4596 } 4597 #endif 4598 4599 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4600 { 4601 struct ext4_sb_info *sbi = EXT4_SB(sb); 4602 4603 /* Warn if metadata_csum and gdt_csum are both set. */ 4604 if (ext4_has_feature_metadata_csum(sb) && 4605 ext4_has_feature_gdt_csum(sb)) 4606 ext4_warning(sb, "metadata_csum and uninit_bg are " 4607 "redundant flags; please run fsck."); 4608 4609 /* Check for a known checksum algorithm */ 4610 if (!ext4_verify_csum_type(sb, es)) { 4611 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4612 "unknown checksum algorithm."); 4613 return -EINVAL; 4614 } 4615 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4616 ext4_orphan_file_block_trigger); 4617 4618 /* Load the checksum driver */ 4619 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4620 if (IS_ERR(sbi->s_chksum_driver)) { 4621 int ret = PTR_ERR(sbi->s_chksum_driver); 4622 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4623 sbi->s_chksum_driver = NULL; 4624 return ret; 4625 } 4626 4627 /* Check superblock checksum */ 4628 if (!ext4_superblock_csum_verify(sb, es)) { 4629 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4630 "invalid superblock checksum. Run e2fsck?"); 4631 return -EFSBADCRC; 4632 } 4633 4634 /* Precompute checksum seed for all metadata */ 4635 if (ext4_has_feature_csum_seed(sb)) 4636 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4637 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4638 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4639 sizeof(es->s_uuid)); 4640 return 0; 4641 } 4642 4643 static int ext4_check_feature_compatibility(struct super_block *sb, 4644 struct ext4_super_block *es, 4645 int silent) 4646 { 4647 struct ext4_sb_info *sbi = EXT4_SB(sb); 4648 4649 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4650 (ext4_has_compat_features(sb) || 4651 ext4_has_ro_compat_features(sb) || 4652 ext4_has_incompat_features(sb))) 4653 ext4_msg(sb, KERN_WARNING, 4654 "feature flags set on rev 0 fs, " 4655 "running e2fsck is recommended"); 4656 4657 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4658 set_opt2(sb, HURD_COMPAT); 4659 if (ext4_has_feature_64bit(sb)) { 4660 ext4_msg(sb, KERN_ERR, 4661 "The Hurd can't support 64-bit file systems"); 4662 return -EINVAL; 4663 } 4664 4665 /* 4666 * ea_inode feature uses l_i_version field which is not 4667 * available in HURD_COMPAT mode. 4668 */ 4669 if (ext4_has_feature_ea_inode(sb)) { 4670 ext4_msg(sb, KERN_ERR, 4671 "ea_inode feature is not supported for Hurd"); 4672 return -EINVAL; 4673 } 4674 } 4675 4676 if (IS_EXT2_SB(sb)) { 4677 if (ext2_feature_set_ok(sb)) 4678 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4679 "using the ext4 subsystem"); 4680 else { 4681 /* 4682 * If we're probing be silent, if this looks like 4683 * it's actually an ext[34] filesystem. 4684 */ 4685 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4686 return -EINVAL; 4687 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4688 "to feature incompatibilities"); 4689 return -EINVAL; 4690 } 4691 } 4692 4693 if (IS_EXT3_SB(sb)) { 4694 if (ext3_feature_set_ok(sb)) 4695 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4696 "using the ext4 subsystem"); 4697 else { 4698 /* 4699 * If we're probing be silent, if this looks like 4700 * it's actually an ext4 filesystem. 4701 */ 4702 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4703 return -EINVAL; 4704 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4705 "to feature incompatibilities"); 4706 return -EINVAL; 4707 } 4708 } 4709 4710 /* 4711 * Check feature flags regardless of the revision level, since we 4712 * previously didn't change the revision level when setting the flags, 4713 * so there is a chance incompat flags are set on a rev 0 filesystem. 4714 */ 4715 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4716 return -EINVAL; 4717 4718 if (sbi->s_daxdev) { 4719 if (sb->s_blocksize == PAGE_SIZE) 4720 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4721 else 4722 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4723 } 4724 4725 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4726 if (ext4_has_feature_inline_data(sb)) { 4727 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4728 " that may contain inline data"); 4729 return -EINVAL; 4730 } 4731 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4732 ext4_msg(sb, KERN_ERR, 4733 "DAX unsupported by block device."); 4734 return -EINVAL; 4735 } 4736 } 4737 4738 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4739 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4740 es->s_encryption_level); 4741 return -EINVAL; 4742 } 4743 4744 return 0; 4745 } 4746 4747 static int ext4_check_geometry(struct super_block *sb, 4748 struct ext4_super_block *es) 4749 { 4750 struct ext4_sb_info *sbi = EXT4_SB(sb); 4751 __u64 blocks_count; 4752 int err; 4753 4754 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4755 ext4_msg(sb, KERN_ERR, 4756 "Number of reserved GDT blocks insanely large: %d", 4757 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4758 return -EINVAL; 4759 } 4760 /* 4761 * Test whether we have more sectors than will fit in sector_t, 4762 * and whether the max offset is addressable by the page cache. 4763 */ 4764 err = generic_check_addressable(sb->s_blocksize_bits, 4765 ext4_blocks_count(es)); 4766 if (err) { 4767 ext4_msg(sb, KERN_ERR, "filesystem" 4768 " too large to mount safely on this system"); 4769 return err; 4770 } 4771 4772 /* check blocks count against device size */ 4773 blocks_count = sb_bdev_nr_blocks(sb); 4774 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4775 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4776 "exceeds size of device (%llu blocks)", 4777 ext4_blocks_count(es), blocks_count); 4778 return -EINVAL; 4779 } 4780 4781 /* 4782 * It makes no sense for the first data block to be beyond the end 4783 * of the filesystem. 4784 */ 4785 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4786 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4787 "block %u is beyond end of filesystem (%llu)", 4788 le32_to_cpu(es->s_first_data_block), 4789 ext4_blocks_count(es)); 4790 return -EINVAL; 4791 } 4792 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4793 (sbi->s_cluster_ratio == 1)) { 4794 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4795 "block is 0 with a 1k block and cluster size"); 4796 return -EINVAL; 4797 } 4798 4799 blocks_count = (ext4_blocks_count(es) - 4800 le32_to_cpu(es->s_first_data_block) + 4801 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4802 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4803 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4804 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4805 "(block count %llu, first data block %u, " 4806 "blocks per group %lu)", blocks_count, 4807 ext4_blocks_count(es), 4808 le32_to_cpu(es->s_first_data_block), 4809 EXT4_BLOCKS_PER_GROUP(sb)); 4810 return -EINVAL; 4811 } 4812 sbi->s_groups_count = blocks_count; 4813 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4814 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4815 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4816 le32_to_cpu(es->s_inodes_count)) { 4817 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4818 le32_to_cpu(es->s_inodes_count), 4819 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4820 return -EINVAL; 4821 } 4822 4823 return 0; 4824 } 4825 4826 static int ext4_group_desc_init(struct super_block *sb, 4827 struct ext4_super_block *es, 4828 ext4_fsblk_t logical_sb_block, 4829 ext4_group_t *first_not_zeroed) 4830 { 4831 struct ext4_sb_info *sbi = EXT4_SB(sb); 4832 unsigned int db_count; 4833 ext4_fsblk_t block; 4834 int i; 4835 4836 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4837 EXT4_DESC_PER_BLOCK(sb); 4838 if (ext4_has_feature_meta_bg(sb)) { 4839 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4840 ext4_msg(sb, KERN_WARNING, 4841 "first meta block group too large: %u " 4842 "(group descriptor block count %u)", 4843 le32_to_cpu(es->s_first_meta_bg), db_count); 4844 return -EINVAL; 4845 } 4846 } 4847 rcu_assign_pointer(sbi->s_group_desc, 4848 kvmalloc_array(db_count, 4849 sizeof(struct buffer_head *), 4850 GFP_KERNEL)); 4851 if (sbi->s_group_desc == NULL) { 4852 ext4_msg(sb, KERN_ERR, "not enough memory"); 4853 return -ENOMEM; 4854 } 4855 4856 bgl_lock_init(sbi->s_blockgroup_lock); 4857 4858 /* Pre-read the descriptors into the buffer cache */ 4859 for (i = 0; i < db_count; i++) { 4860 block = descriptor_loc(sb, logical_sb_block, i); 4861 ext4_sb_breadahead_unmovable(sb, block); 4862 } 4863 4864 for (i = 0; i < db_count; i++) { 4865 struct buffer_head *bh; 4866 4867 block = descriptor_loc(sb, logical_sb_block, i); 4868 bh = ext4_sb_bread_unmovable(sb, block); 4869 if (IS_ERR(bh)) { 4870 ext4_msg(sb, KERN_ERR, 4871 "can't read group descriptor %d", i); 4872 sbi->s_gdb_count = i; 4873 return PTR_ERR(bh); 4874 } 4875 rcu_read_lock(); 4876 rcu_dereference(sbi->s_group_desc)[i] = bh; 4877 rcu_read_unlock(); 4878 } 4879 sbi->s_gdb_count = db_count; 4880 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4881 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4882 return -EFSCORRUPTED; 4883 } 4884 4885 return 0; 4886 } 4887 4888 static int ext4_load_and_init_journal(struct super_block *sb, 4889 struct ext4_super_block *es, 4890 struct ext4_fs_context *ctx) 4891 { 4892 struct ext4_sb_info *sbi = EXT4_SB(sb); 4893 int err; 4894 4895 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4896 if (err) 4897 return err; 4898 4899 if (ext4_has_feature_64bit(sb) && 4900 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4901 JBD2_FEATURE_INCOMPAT_64BIT)) { 4902 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4903 goto out; 4904 } 4905 4906 if (!set_journal_csum_feature_set(sb)) { 4907 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4908 "feature set"); 4909 goto out; 4910 } 4911 4912 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4913 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4914 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4915 ext4_msg(sb, KERN_ERR, 4916 "Failed to set fast commit journal feature"); 4917 goto out; 4918 } 4919 4920 /* We have now updated the journal if required, so we can 4921 * validate the data journaling mode. */ 4922 switch (test_opt(sb, DATA_FLAGS)) { 4923 case 0: 4924 /* No mode set, assume a default based on the journal 4925 * capabilities: ORDERED_DATA if the journal can 4926 * cope, else JOURNAL_DATA 4927 */ 4928 if (jbd2_journal_check_available_features 4929 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4930 set_opt(sb, ORDERED_DATA); 4931 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4932 } else { 4933 set_opt(sb, JOURNAL_DATA); 4934 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4935 } 4936 break; 4937 4938 case EXT4_MOUNT_ORDERED_DATA: 4939 case EXT4_MOUNT_WRITEBACK_DATA: 4940 if (!jbd2_journal_check_available_features 4941 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4942 ext4_msg(sb, KERN_ERR, "Journal does not support " 4943 "requested data journaling mode"); 4944 goto out; 4945 } 4946 break; 4947 default: 4948 break; 4949 } 4950 4951 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4952 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4953 ext4_msg(sb, KERN_ERR, "can't mount with " 4954 "journal_async_commit in data=ordered mode"); 4955 goto out; 4956 } 4957 4958 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4959 4960 sbi->s_journal->j_submit_inode_data_buffers = 4961 ext4_journal_submit_inode_data_buffers; 4962 sbi->s_journal->j_finish_inode_data_buffers = 4963 ext4_journal_finish_inode_data_buffers; 4964 4965 return 0; 4966 4967 out: 4968 /* flush s_sb_upd_work before destroying the journal. */ 4969 flush_work(&sbi->s_sb_upd_work); 4970 jbd2_journal_destroy(sbi->s_journal); 4971 sbi->s_journal = NULL; 4972 return -EINVAL; 4973 } 4974 4975 static int ext4_check_journal_data_mode(struct super_block *sb) 4976 { 4977 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4978 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4979 "data=journal disables delayed allocation, " 4980 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4981 /* can't mount with both data=journal and dioread_nolock. */ 4982 clear_opt(sb, DIOREAD_NOLOCK); 4983 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4984 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4985 ext4_msg(sb, KERN_ERR, "can't mount with " 4986 "both data=journal and delalloc"); 4987 return -EINVAL; 4988 } 4989 if (test_opt(sb, DAX_ALWAYS)) { 4990 ext4_msg(sb, KERN_ERR, "can't mount with " 4991 "both data=journal and dax"); 4992 return -EINVAL; 4993 } 4994 if (ext4_has_feature_encrypt(sb)) { 4995 ext4_msg(sb, KERN_WARNING, 4996 "encrypted files will use data=ordered " 4997 "instead of data journaling mode"); 4998 } 4999 if (test_opt(sb, DELALLOC)) 5000 clear_opt(sb, DELALLOC); 5001 } else { 5002 sb->s_iflags |= SB_I_CGROUPWB; 5003 } 5004 5005 return 0; 5006 } 5007 5008 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5009 int silent) 5010 { 5011 struct ext4_sb_info *sbi = EXT4_SB(sb); 5012 struct ext4_super_block *es; 5013 ext4_fsblk_t logical_sb_block; 5014 unsigned long offset = 0; 5015 struct buffer_head *bh; 5016 int ret = -EINVAL; 5017 int blocksize; 5018 5019 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5020 if (!blocksize) { 5021 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5022 return -EINVAL; 5023 } 5024 5025 /* 5026 * The ext4 superblock will not be buffer aligned for other than 1kB 5027 * block sizes. We need to calculate the offset from buffer start. 5028 */ 5029 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5030 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5031 offset = do_div(logical_sb_block, blocksize); 5032 } else { 5033 logical_sb_block = sbi->s_sb_block; 5034 } 5035 5036 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5037 if (IS_ERR(bh)) { 5038 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5039 return PTR_ERR(bh); 5040 } 5041 /* 5042 * Note: s_es must be initialized as soon as possible because 5043 * some ext4 macro-instructions depend on its value 5044 */ 5045 es = (struct ext4_super_block *) (bh->b_data + offset); 5046 sbi->s_es = es; 5047 sb->s_magic = le16_to_cpu(es->s_magic); 5048 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5049 if (!silent) 5050 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5051 goto out; 5052 } 5053 5054 if (le32_to_cpu(es->s_log_block_size) > 5055 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5056 ext4_msg(sb, KERN_ERR, 5057 "Invalid log block size: %u", 5058 le32_to_cpu(es->s_log_block_size)); 5059 goto out; 5060 } 5061 if (le32_to_cpu(es->s_log_cluster_size) > 5062 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5063 ext4_msg(sb, KERN_ERR, 5064 "Invalid log cluster size: %u", 5065 le32_to_cpu(es->s_log_cluster_size)); 5066 goto out; 5067 } 5068 5069 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5070 5071 /* 5072 * If the default block size is not the same as the real block size, 5073 * we need to reload it. 5074 */ 5075 if (sb->s_blocksize == blocksize) { 5076 *lsb = logical_sb_block; 5077 sbi->s_sbh = bh; 5078 return 0; 5079 } 5080 5081 /* 5082 * bh must be released before kill_bdev(), otherwise 5083 * it won't be freed and its page also. kill_bdev() 5084 * is called by sb_set_blocksize(). 5085 */ 5086 brelse(bh); 5087 /* Validate the filesystem blocksize */ 5088 if (!sb_set_blocksize(sb, blocksize)) { 5089 ext4_msg(sb, KERN_ERR, "bad block size %d", 5090 blocksize); 5091 bh = NULL; 5092 goto out; 5093 } 5094 5095 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5096 offset = do_div(logical_sb_block, blocksize); 5097 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5098 if (IS_ERR(bh)) { 5099 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5100 ret = PTR_ERR(bh); 5101 bh = NULL; 5102 goto out; 5103 } 5104 es = (struct ext4_super_block *)(bh->b_data + offset); 5105 sbi->s_es = es; 5106 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5107 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5108 goto out; 5109 } 5110 *lsb = logical_sb_block; 5111 sbi->s_sbh = bh; 5112 return 0; 5113 out: 5114 brelse(bh); 5115 return ret; 5116 } 5117 5118 static void ext4_hash_info_init(struct super_block *sb) 5119 { 5120 struct ext4_sb_info *sbi = EXT4_SB(sb); 5121 struct ext4_super_block *es = sbi->s_es; 5122 unsigned int i; 5123 5124 for (i = 0; i < 4; i++) 5125 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5126 5127 sbi->s_def_hash_version = es->s_def_hash_version; 5128 if (ext4_has_feature_dir_index(sb)) { 5129 i = le32_to_cpu(es->s_flags); 5130 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5131 sbi->s_hash_unsigned = 3; 5132 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5133 #ifdef __CHAR_UNSIGNED__ 5134 if (!sb_rdonly(sb)) 5135 es->s_flags |= 5136 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5137 sbi->s_hash_unsigned = 3; 5138 #else 5139 if (!sb_rdonly(sb)) 5140 es->s_flags |= 5141 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5142 #endif 5143 } 5144 } 5145 } 5146 5147 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5148 { 5149 struct ext4_sb_info *sbi = EXT4_SB(sb); 5150 struct ext4_super_block *es = sbi->s_es; 5151 int has_huge_files; 5152 5153 has_huge_files = ext4_has_feature_huge_file(sb); 5154 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5155 has_huge_files); 5156 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5157 5158 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5159 if (ext4_has_feature_64bit(sb)) { 5160 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5161 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5162 !is_power_of_2(sbi->s_desc_size)) { 5163 ext4_msg(sb, KERN_ERR, 5164 "unsupported descriptor size %lu", 5165 sbi->s_desc_size); 5166 return -EINVAL; 5167 } 5168 } else 5169 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5170 5171 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5172 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5173 5174 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5175 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5176 if (!silent) 5177 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5178 return -EINVAL; 5179 } 5180 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5181 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5182 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5183 sbi->s_inodes_per_group); 5184 return -EINVAL; 5185 } 5186 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5187 sbi->s_inodes_per_block; 5188 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5189 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5190 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5191 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5192 5193 return 0; 5194 } 5195 5196 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5197 { 5198 struct ext4_super_block *es = NULL; 5199 struct ext4_sb_info *sbi = EXT4_SB(sb); 5200 ext4_fsblk_t logical_sb_block; 5201 struct inode *root; 5202 int needs_recovery; 5203 int err; 5204 ext4_group_t first_not_zeroed; 5205 struct ext4_fs_context *ctx = fc->fs_private; 5206 int silent = fc->sb_flags & SB_SILENT; 5207 5208 /* Set defaults for the variables that will be set during parsing */ 5209 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5210 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5211 5212 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5213 sbi->s_sectors_written_start = 5214 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5215 5216 err = ext4_load_super(sb, &logical_sb_block, silent); 5217 if (err) 5218 goto out_fail; 5219 5220 es = sbi->s_es; 5221 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5222 5223 err = ext4_init_metadata_csum(sb, es); 5224 if (err) 5225 goto failed_mount; 5226 5227 ext4_set_def_opts(sb, es); 5228 5229 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5230 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5231 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5232 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5233 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5234 5235 /* 5236 * set default s_li_wait_mult for lazyinit, for the case there is 5237 * no mount option specified. 5238 */ 5239 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5240 5241 err = ext4_inode_info_init(sb, es); 5242 if (err) 5243 goto failed_mount; 5244 5245 err = parse_apply_sb_mount_options(sb, ctx); 5246 if (err < 0) 5247 goto failed_mount; 5248 5249 sbi->s_def_mount_opt = sbi->s_mount_opt; 5250 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5251 5252 err = ext4_check_opt_consistency(fc, sb); 5253 if (err < 0) 5254 goto failed_mount; 5255 5256 ext4_apply_options(fc, sb); 5257 5258 err = ext4_encoding_init(sb, es); 5259 if (err) 5260 goto failed_mount; 5261 5262 err = ext4_check_journal_data_mode(sb); 5263 if (err) 5264 goto failed_mount; 5265 5266 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5267 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5268 5269 /* i_version is always enabled now */ 5270 sb->s_flags |= SB_I_VERSION; 5271 5272 err = ext4_check_feature_compatibility(sb, es, silent); 5273 if (err) 5274 goto failed_mount; 5275 5276 err = ext4_block_group_meta_init(sb, silent); 5277 if (err) 5278 goto failed_mount; 5279 5280 ext4_hash_info_init(sb); 5281 5282 err = ext4_handle_clustersize(sb); 5283 if (err) 5284 goto failed_mount; 5285 5286 err = ext4_check_geometry(sb, es); 5287 if (err) 5288 goto failed_mount; 5289 5290 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5291 spin_lock_init(&sbi->s_error_lock); 5292 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5293 5294 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5295 if (err) 5296 goto failed_mount3; 5297 5298 err = ext4_es_register_shrinker(sbi); 5299 if (err) 5300 goto failed_mount3; 5301 5302 sbi->s_stripe = ext4_get_stripe_size(sbi); 5303 /* 5304 * It's hard to get stripe aligned blocks if stripe is not aligned with 5305 * cluster, just disable stripe and alert user to simpfy code and avoid 5306 * stripe aligned allocation which will rarely successes. 5307 */ 5308 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 && 5309 sbi->s_stripe % sbi->s_cluster_ratio != 0) { 5310 ext4_msg(sb, KERN_WARNING, 5311 "stripe (%lu) is not aligned with cluster size (%u), " 5312 "stripe is disabled", 5313 sbi->s_stripe, sbi->s_cluster_ratio); 5314 sbi->s_stripe = 0; 5315 } 5316 sbi->s_extent_max_zeroout_kb = 32; 5317 5318 /* 5319 * set up enough so that it can read an inode 5320 */ 5321 sb->s_op = &ext4_sops; 5322 sb->s_export_op = &ext4_export_ops; 5323 sb->s_xattr = ext4_xattr_handlers; 5324 #ifdef CONFIG_FS_ENCRYPTION 5325 sb->s_cop = &ext4_cryptops; 5326 #endif 5327 #ifdef CONFIG_FS_VERITY 5328 sb->s_vop = &ext4_verityops; 5329 #endif 5330 #ifdef CONFIG_QUOTA 5331 sb->dq_op = &ext4_quota_operations; 5332 if (ext4_has_feature_quota(sb)) 5333 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5334 else 5335 sb->s_qcop = &ext4_qctl_operations; 5336 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5337 #endif 5338 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5339 super_set_sysfs_name_bdev(sb); 5340 5341 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5342 mutex_init(&sbi->s_orphan_lock); 5343 5344 ext4_fast_commit_init(sb); 5345 5346 sb->s_root = NULL; 5347 5348 needs_recovery = (es->s_last_orphan != 0 || 5349 ext4_has_feature_orphan_present(sb) || 5350 ext4_has_feature_journal_needs_recovery(sb)); 5351 5352 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5353 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5354 if (err) 5355 goto failed_mount3a; 5356 } 5357 5358 err = -EINVAL; 5359 /* 5360 * The first inode we look at is the journal inode. Don't try 5361 * root first: it may be modified in the journal! 5362 */ 5363 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5364 err = ext4_load_and_init_journal(sb, es, ctx); 5365 if (err) 5366 goto failed_mount3a; 5367 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5368 ext4_has_feature_journal_needs_recovery(sb)) { 5369 ext4_msg(sb, KERN_ERR, "required journal recovery " 5370 "suppressed and not mounted read-only"); 5371 goto failed_mount3a; 5372 } else { 5373 /* Nojournal mode, all journal mount options are illegal */ 5374 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5375 ext4_msg(sb, KERN_ERR, "can't mount with " 5376 "journal_async_commit, fs mounted w/o journal"); 5377 goto failed_mount3a; 5378 } 5379 5380 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5381 ext4_msg(sb, KERN_ERR, "can't mount with " 5382 "journal_checksum, fs mounted w/o journal"); 5383 goto failed_mount3a; 5384 } 5385 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5386 ext4_msg(sb, KERN_ERR, "can't mount with " 5387 "commit=%lu, fs mounted w/o journal", 5388 sbi->s_commit_interval / HZ); 5389 goto failed_mount3a; 5390 } 5391 if (EXT4_MOUNT_DATA_FLAGS & 5392 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5393 ext4_msg(sb, KERN_ERR, "can't mount with " 5394 "data=, fs mounted w/o journal"); 5395 goto failed_mount3a; 5396 } 5397 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5398 clear_opt(sb, JOURNAL_CHECKSUM); 5399 clear_opt(sb, DATA_FLAGS); 5400 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5401 sbi->s_journal = NULL; 5402 needs_recovery = 0; 5403 } 5404 5405 if (!test_opt(sb, NO_MBCACHE)) { 5406 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5407 if (!sbi->s_ea_block_cache) { 5408 ext4_msg(sb, KERN_ERR, 5409 "Failed to create ea_block_cache"); 5410 err = -EINVAL; 5411 goto failed_mount_wq; 5412 } 5413 5414 if (ext4_has_feature_ea_inode(sb)) { 5415 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5416 if (!sbi->s_ea_inode_cache) { 5417 ext4_msg(sb, KERN_ERR, 5418 "Failed to create ea_inode_cache"); 5419 err = -EINVAL; 5420 goto failed_mount_wq; 5421 } 5422 } 5423 } 5424 5425 /* 5426 * Get the # of file system overhead blocks from the 5427 * superblock if present. 5428 */ 5429 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5430 /* ignore the precalculated value if it is ridiculous */ 5431 if (sbi->s_overhead > ext4_blocks_count(es)) 5432 sbi->s_overhead = 0; 5433 /* 5434 * If the bigalloc feature is not enabled recalculating the 5435 * overhead doesn't take long, so we might as well just redo 5436 * it to make sure we are using the correct value. 5437 */ 5438 if (!ext4_has_feature_bigalloc(sb)) 5439 sbi->s_overhead = 0; 5440 if (sbi->s_overhead == 0) { 5441 err = ext4_calculate_overhead(sb); 5442 if (err) 5443 goto failed_mount_wq; 5444 } 5445 5446 /* 5447 * The maximum number of concurrent works can be high and 5448 * concurrency isn't really necessary. Limit it to 1. 5449 */ 5450 EXT4_SB(sb)->rsv_conversion_wq = 5451 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5452 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5453 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5454 err = -ENOMEM; 5455 goto failed_mount4; 5456 } 5457 5458 /* 5459 * The jbd2_journal_load will have done any necessary log recovery, 5460 * so we can safely mount the rest of the filesystem now. 5461 */ 5462 5463 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5464 if (IS_ERR(root)) { 5465 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5466 err = PTR_ERR(root); 5467 root = NULL; 5468 goto failed_mount4; 5469 } 5470 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5471 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5472 iput(root); 5473 err = -EFSCORRUPTED; 5474 goto failed_mount4; 5475 } 5476 5477 generic_set_sb_d_ops(sb); 5478 sb->s_root = d_make_root(root); 5479 if (!sb->s_root) { 5480 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5481 err = -ENOMEM; 5482 goto failed_mount4; 5483 } 5484 5485 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5486 if (err == -EROFS) { 5487 sb->s_flags |= SB_RDONLY; 5488 } else if (err) 5489 goto failed_mount4a; 5490 5491 ext4_set_resv_clusters(sb); 5492 5493 if (test_opt(sb, BLOCK_VALIDITY)) { 5494 err = ext4_setup_system_zone(sb); 5495 if (err) { 5496 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5497 "zone (%d)", err); 5498 goto failed_mount4a; 5499 } 5500 } 5501 ext4_fc_replay_cleanup(sb); 5502 5503 ext4_ext_init(sb); 5504 5505 /* 5506 * Enable optimize_scan if number of groups is > threshold. This can be 5507 * turned off by passing "mb_optimize_scan=0". This can also be 5508 * turned on forcefully by passing "mb_optimize_scan=1". 5509 */ 5510 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5511 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5512 set_opt2(sb, MB_OPTIMIZE_SCAN); 5513 else 5514 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5515 } 5516 5517 err = ext4_mb_init(sb); 5518 if (err) { 5519 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5520 err); 5521 goto failed_mount5; 5522 } 5523 5524 /* 5525 * We can only set up the journal commit callback once 5526 * mballoc is initialized 5527 */ 5528 if (sbi->s_journal) 5529 sbi->s_journal->j_commit_callback = 5530 ext4_journal_commit_callback; 5531 5532 err = ext4_percpu_param_init(sbi); 5533 if (err) 5534 goto failed_mount6; 5535 5536 if (ext4_has_feature_flex_bg(sb)) 5537 if (!ext4_fill_flex_info(sb)) { 5538 ext4_msg(sb, KERN_ERR, 5539 "unable to initialize " 5540 "flex_bg meta info!"); 5541 err = -ENOMEM; 5542 goto failed_mount6; 5543 } 5544 5545 err = ext4_register_li_request(sb, first_not_zeroed); 5546 if (err) 5547 goto failed_mount6; 5548 5549 err = ext4_init_orphan_info(sb); 5550 if (err) 5551 goto failed_mount7; 5552 #ifdef CONFIG_QUOTA 5553 /* Enable quota usage during mount. */ 5554 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5555 err = ext4_enable_quotas(sb); 5556 if (err) 5557 goto failed_mount8; 5558 } 5559 #endif /* CONFIG_QUOTA */ 5560 5561 /* 5562 * Save the original bdev mapping's wb_err value which could be 5563 * used to detect the metadata async write error. 5564 */ 5565 spin_lock_init(&sbi->s_bdev_wb_lock); 5566 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5567 &sbi->s_bdev_wb_err); 5568 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5569 ext4_orphan_cleanup(sb, es); 5570 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5571 /* 5572 * Update the checksum after updating free space/inode counters and 5573 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5574 * checksum in the buffer cache until it is written out and 5575 * e2fsprogs programs trying to open a file system immediately 5576 * after it is mounted can fail. 5577 */ 5578 ext4_superblock_csum_set(sb); 5579 if (needs_recovery) { 5580 ext4_msg(sb, KERN_INFO, "recovery complete"); 5581 err = ext4_mark_recovery_complete(sb, es); 5582 if (err) 5583 goto failed_mount9; 5584 } 5585 5586 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5587 ext4_msg(sb, KERN_WARNING, 5588 "mounting with \"discard\" option, but the device does not support discard"); 5589 5590 if (es->s_error_count) 5591 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5592 5593 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5594 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5595 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5596 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5597 atomic_set(&sbi->s_warning_count, 0); 5598 atomic_set(&sbi->s_msg_count, 0); 5599 5600 /* Register sysfs after all initializations are complete. */ 5601 err = ext4_register_sysfs(sb); 5602 if (err) 5603 goto failed_mount9; 5604 5605 return 0; 5606 5607 failed_mount9: 5608 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5609 failed_mount8: __maybe_unused 5610 ext4_release_orphan_info(sb); 5611 failed_mount7: 5612 ext4_unregister_li_request(sb); 5613 failed_mount6: 5614 ext4_mb_release(sb); 5615 ext4_flex_groups_free(sbi); 5616 ext4_percpu_param_destroy(sbi); 5617 failed_mount5: 5618 ext4_ext_release(sb); 5619 ext4_release_system_zone(sb); 5620 failed_mount4a: 5621 dput(sb->s_root); 5622 sb->s_root = NULL; 5623 failed_mount4: 5624 ext4_msg(sb, KERN_ERR, "mount failed"); 5625 if (EXT4_SB(sb)->rsv_conversion_wq) 5626 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5627 failed_mount_wq: 5628 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5629 sbi->s_ea_inode_cache = NULL; 5630 5631 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5632 sbi->s_ea_block_cache = NULL; 5633 5634 if (sbi->s_journal) { 5635 /* flush s_sb_upd_work before journal destroy. */ 5636 flush_work(&sbi->s_sb_upd_work); 5637 jbd2_journal_destroy(sbi->s_journal); 5638 sbi->s_journal = NULL; 5639 } 5640 failed_mount3a: 5641 ext4_es_unregister_shrinker(sbi); 5642 failed_mount3: 5643 /* flush s_sb_upd_work before sbi destroy */ 5644 flush_work(&sbi->s_sb_upd_work); 5645 del_timer_sync(&sbi->s_err_report); 5646 ext4_stop_mmpd(sbi); 5647 ext4_group_desc_free(sbi); 5648 failed_mount: 5649 if (sbi->s_chksum_driver) 5650 crypto_free_shash(sbi->s_chksum_driver); 5651 5652 #if IS_ENABLED(CONFIG_UNICODE) 5653 utf8_unload(sb->s_encoding); 5654 #endif 5655 5656 #ifdef CONFIG_QUOTA 5657 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5658 kfree(get_qf_name(sb, sbi, i)); 5659 #endif 5660 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5661 brelse(sbi->s_sbh); 5662 if (sbi->s_journal_bdev_file) { 5663 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5664 bdev_fput(sbi->s_journal_bdev_file); 5665 } 5666 out_fail: 5667 invalidate_bdev(sb->s_bdev); 5668 sb->s_fs_info = NULL; 5669 return err; 5670 } 5671 5672 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5673 { 5674 struct ext4_fs_context *ctx = fc->fs_private; 5675 struct ext4_sb_info *sbi; 5676 const char *descr; 5677 int ret; 5678 5679 sbi = ext4_alloc_sbi(sb); 5680 if (!sbi) 5681 return -ENOMEM; 5682 5683 fc->s_fs_info = sbi; 5684 5685 /* Cleanup superblock name */ 5686 strreplace(sb->s_id, '/', '!'); 5687 5688 sbi->s_sb_block = 1; /* Default super block location */ 5689 if (ctx->spec & EXT4_SPEC_s_sb_block) 5690 sbi->s_sb_block = ctx->s_sb_block; 5691 5692 ret = __ext4_fill_super(fc, sb); 5693 if (ret < 0) 5694 goto free_sbi; 5695 5696 if (sbi->s_journal) { 5697 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5698 descr = " journalled data mode"; 5699 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5700 descr = " ordered data mode"; 5701 else 5702 descr = " writeback data mode"; 5703 } else 5704 descr = "out journal"; 5705 5706 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5707 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5708 "Quota mode: %s.", &sb->s_uuid, 5709 sb_rdonly(sb) ? "ro" : "r/w", descr, 5710 ext4_quota_mode(sb)); 5711 5712 /* Update the s_overhead_clusters if necessary */ 5713 ext4_update_overhead(sb, false); 5714 return 0; 5715 5716 free_sbi: 5717 ext4_free_sbi(sbi); 5718 fc->s_fs_info = NULL; 5719 return ret; 5720 } 5721 5722 static int ext4_get_tree(struct fs_context *fc) 5723 { 5724 return get_tree_bdev(fc, ext4_fill_super); 5725 } 5726 5727 /* 5728 * Setup any per-fs journal parameters now. We'll do this both on 5729 * initial mount, once the journal has been initialised but before we've 5730 * done any recovery; and again on any subsequent remount. 5731 */ 5732 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5733 { 5734 struct ext4_sb_info *sbi = EXT4_SB(sb); 5735 5736 journal->j_commit_interval = sbi->s_commit_interval; 5737 journal->j_min_batch_time = sbi->s_min_batch_time; 5738 journal->j_max_batch_time = sbi->s_max_batch_time; 5739 ext4_fc_init(sb, journal); 5740 5741 write_lock(&journal->j_state_lock); 5742 if (test_opt(sb, BARRIER)) 5743 journal->j_flags |= JBD2_BARRIER; 5744 else 5745 journal->j_flags &= ~JBD2_BARRIER; 5746 if (test_opt(sb, DATA_ERR_ABORT)) 5747 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5748 else 5749 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5750 /* 5751 * Always enable journal cycle record option, letting the journal 5752 * records log transactions continuously between each mount. 5753 */ 5754 journal->j_flags |= JBD2_CYCLE_RECORD; 5755 write_unlock(&journal->j_state_lock); 5756 } 5757 5758 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5759 unsigned int journal_inum) 5760 { 5761 struct inode *journal_inode; 5762 5763 /* 5764 * Test for the existence of a valid inode on disk. Bad things 5765 * happen if we iget() an unused inode, as the subsequent iput() 5766 * will try to delete it. 5767 */ 5768 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5769 if (IS_ERR(journal_inode)) { 5770 ext4_msg(sb, KERN_ERR, "no journal found"); 5771 return ERR_CAST(journal_inode); 5772 } 5773 if (!journal_inode->i_nlink) { 5774 make_bad_inode(journal_inode); 5775 iput(journal_inode); 5776 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5777 return ERR_PTR(-EFSCORRUPTED); 5778 } 5779 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5780 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5781 iput(journal_inode); 5782 return ERR_PTR(-EFSCORRUPTED); 5783 } 5784 5785 ext4_debug("Journal inode found at %p: %lld bytes\n", 5786 journal_inode, journal_inode->i_size); 5787 return journal_inode; 5788 } 5789 5790 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5791 { 5792 struct ext4_map_blocks map; 5793 int ret; 5794 5795 if (journal->j_inode == NULL) 5796 return 0; 5797 5798 map.m_lblk = *block; 5799 map.m_len = 1; 5800 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5801 if (ret <= 0) { 5802 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5803 "journal bmap failed: block %llu ret %d\n", 5804 *block, ret); 5805 jbd2_journal_abort(journal, ret ? ret : -EIO); 5806 return ret; 5807 } 5808 *block = map.m_pblk; 5809 return 0; 5810 } 5811 5812 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5813 unsigned int journal_inum) 5814 { 5815 struct inode *journal_inode; 5816 journal_t *journal; 5817 5818 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5819 if (IS_ERR(journal_inode)) 5820 return ERR_CAST(journal_inode); 5821 5822 journal = jbd2_journal_init_inode(journal_inode); 5823 if (IS_ERR(journal)) { 5824 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5825 iput(journal_inode); 5826 return ERR_CAST(journal); 5827 } 5828 journal->j_private = sb; 5829 journal->j_bmap = ext4_journal_bmap; 5830 ext4_init_journal_params(sb, journal); 5831 return journal; 5832 } 5833 5834 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5835 dev_t j_dev, ext4_fsblk_t *j_start, 5836 ext4_fsblk_t *j_len) 5837 { 5838 struct buffer_head *bh; 5839 struct block_device *bdev; 5840 struct file *bdev_file; 5841 int hblock, blocksize; 5842 ext4_fsblk_t sb_block; 5843 unsigned long offset; 5844 struct ext4_super_block *es; 5845 int errno; 5846 5847 bdev_file = bdev_file_open_by_dev(j_dev, 5848 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5849 sb, &fs_holder_ops); 5850 if (IS_ERR(bdev_file)) { 5851 ext4_msg(sb, KERN_ERR, 5852 "failed to open journal device unknown-block(%u,%u) %ld", 5853 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5854 return bdev_file; 5855 } 5856 5857 bdev = file_bdev(bdev_file); 5858 blocksize = sb->s_blocksize; 5859 hblock = bdev_logical_block_size(bdev); 5860 if (blocksize < hblock) { 5861 ext4_msg(sb, KERN_ERR, 5862 "blocksize too small for journal device"); 5863 errno = -EINVAL; 5864 goto out_bdev; 5865 } 5866 5867 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5868 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5869 set_blocksize(bdev, blocksize); 5870 bh = __bread(bdev, sb_block, blocksize); 5871 if (!bh) { 5872 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5873 "external journal"); 5874 errno = -EINVAL; 5875 goto out_bdev; 5876 } 5877 5878 es = (struct ext4_super_block *) (bh->b_data + offset); 5879 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5880 !(le32_to_cpu(es->s_feature_incompat) & 5881 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5882 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5883 errno = -EFSCORRUPTED; 5884 goto out_bh; 5885 } 5886 5887 if ((le32_to_cpu(es->s_feature_ro_compat) & 5888 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5889 es->s_checksum != ext4_superblock_csum(sb, es)) { 5890 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5891 errno = -EFSCORRUPTED; 5892 goto out_bh; 5893 } 5894 5895 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5896 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5897 errno = -EFSCORRUPTED; 5898 goto out_bh; 5899 } 5900 5901 *j_start = sb_block + 1; 5902 *j_len = ext4_blocks_count(es); 5903 brelse(bh); 5904 return bdev_file; 5905 5906 out_bh: 5907 brelse(bh); 5908 out_bdev: 5909 bdev_fput(bdev_file); 5910 return ERR_PTR(errno); 5911 } 5912 5913 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5914 dev_t j_dev) 5915 { 5916 journal_t *journal; 5917 ext4_fsblk_t j_start; 5918 ext4_fsblk_t j_len; 5919 struct file *bdev_file; 5920 int errno = 0; 5921 5922 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5923 if (IS_ERR(bdev_file)) 5924 return ERR_CAST(bdev_file); 5925 5926 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5927 j_len, sb->s_blocksize); 5928 if (IS_ERR(journal)) { 5929 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5930 errno = PTR_ERR(journal); 5931 goto out_bdev; 5932 } 5933 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5934 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5935 "user (unsupported) - %d", 5936 be32_to_cpu(journal->j_superblock->s_nr_users)); 5937 errno = -EINVAL; 5938 goto out_journal; 5939 } 5940 journal->j_private = sb; 5941 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5942 ext4_init_journal_params(sb, journal); 5943 return journal; 5944 5945 out_journal: 5946 jbd2_journal_destroy(journal); 5947 out_bdev: 5948 bdev_fput(bdev_file); 5949 return ERR_PTR(errno); 5950 } 5951 5952 static int ext4_load_journal(struct super_block *sb, 5953 struct ext4_super_block *es, 5954 unsigned long journal_devnum) 5955 { 5956 journal_t *journal; 5957 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5958 dev_t journal_dev; 5959 int err = 0; 5960 int really_read_only; 5961 int journal_dev_ro; 5962 5963 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5964 return -EFSCORRUPTED; 5965 5966 if (journal_devnum && 5967 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5968 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5969 "numbers have changed"); 5970 journal_dev = new_decode_dev(journal_devnum); 5971 } else 5972 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5973 5974 if (journal_inum && journal_dev) { 5975 ext4_msg(sb, KERN_ERR, 5976 "filesystem has both journal inode and journal device!"); 5977 return -EINVAL; 5978 } 5979 5980 if (journal_inum) { 5981 journal = ext4_open_inode_journal(sb, journal_inum); 5982 if (IS_ERR(journal)) 5983 return PTR_ERR(journal); 5984 } else { 5985 journal = ext4_open_dev_journal(sb, journal_dev); 5986 if (IS_ERR(journal)) 5987 return PTR_ERR(journal); 5988 } 5989 5990 journal_dev_ro = bdev_read_only(journal->j_dev); 5991 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5992 5993 if (journal_dev_ro && !sb_rdonly(sb)) { 5994 ext4_msg(sb, KERN_ERR, 5995 "journal device read-only, try mounting with '-o ro'"); 5996 err = -EROFS; 5997 goto err_out; 5998 } 5999 6000 /* 6001 * Are we loading a blank journal or performing recovery after a 6002 * crash? For recovery, we need to check in advance whether we 6003 * can get read-write access to the device. 6004 */ 6005 if (ext4_has_feature_journal_needs_recovery(sb)) { 6006 if (sb_rdonly(sb)) { 6007 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6008 "required on readonly filesystem"); 6009 if (really_read_only) { 6010 ext4_msg(sb, KERN_ERR, "write access " 6011 "unavailable, cannot proceed " 6012 "(try mounting with noload)"); 6013 err = -EROFS; 6014 goto err_out; 6015 } 6016 ext4_msg(sb, KERN_INFO, "write access will " 6017 "be enabled during recovery"); 6018 } 6019 } 6020 6021 if (!(journal->j_flags & JBD2_BARRIER)) 6022 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6023 6024 if (!ext4_has_feature_journal_needs_recovery(sb)) 6025 err = jbd2_journal_wipe(journal, !really_read_only); 6026 if (!err) { 6027 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6028 __le16 orig_state; 6029 bool changed = false; 6030 6031 if (save) 6032 memcpy(save, ((char *) es) + 6033 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6034 err = jbd2_journal_load(journal); 6035 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6036 save, EXT4_S_ERR_LEN)) { 6037 memcpy(((char *) es) + EXT4_S_ERR_START, 6038 save, EXT4_S_ERR_LEN); 6039 changed = true; 6040 } 6041 kfree(save); 6042 orig_state = es->s_state; 6043 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6044 EXT4_ERROR_FS); 6045 if (orig_state != es->s_state) 6046 changed = true; 6047 /* Write out restored error information to the superblock */ 6048 if (changed && !really_read_only) { 6049 int err2; 6050 err2 = ext4_commit_super(sb); 6051 err = err ? : err2; 6052 } 6053 } 6054 6055 if (err) { 6056 ext4_msg(sb, KERN_ERR, "error loading journal"); 6057 goto err_out; 6058 } 6059 6060 EXT4_SB(sb)->s_journal = journal; 6061 err = ext4_clear_journal_err(sb, es); 6062 if (err) { 6063 EXT4_SB(sb)->s_journal = NULL; 6064 jbd2_journal_destroy(journal); 6065 return err; 6066 } 6067 6068 if (!really_read_only && journal_devnum && 6069 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6070 es->s_journal_dev = cpu_to_le32(journal_devnum); 6071 ext4_commit_super(sb); 6072 } 6073 if (!really_read_only && journal_inum && 6074 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6075 es->s_journal_inum = cpu_to_le32(journal_inum); 6076 ext4_commit_super(sb); 6077 } 6078 6079 return 0; 6080 6081 err_out: 6082 jbd2_journal_destroy(journal); 6083 return err; 6084 } 6085 6086 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6087 static void ext4_update_super(struct super_block *sb) 6088 { 6089 struct ext4_sb_info *sbi = EXT4_SB(sb); 6090 struct ext4_super_block *es = sbi->s_es; 6091 struct buffer_head *sbh = sbi->s_sbh; 6092 6093 lock_buffer(sbh); 6094 /* 6095 * If the file system is mounted read-only, don't update the 6096 * superblock write time. This avoids updating the superblock 6097 * write time when we are mounting the root file system 6098 * read/only but we need to replay the journal; at that point, 6099 * for people who are east of GMT and who make their clock 6100 * tick in localtime for Windows bug-for-bug compatibility, 6101 * the clock is set in the future, and this will cause e2fsck 6102 * to complain and force a full file system check. 6103 */ 6104 if (!sb_rdonly(sb)) 6105 ext4_update_tstamp(es, s_wtime); 6106 es->s_kbytes_written = 6107 cpu_to_le64(sbi->s_kbytes_written + 6108 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6109 sbi->s_sectors_written_start) >> 1)); 6110 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6111 ext4_free_blocks_count_set(es, 6112 EXT4_C2B(sbi, percpu_counter_sum_positive( 6113 &sbi->s_freeclusters_counter))); 6114 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6115 es->s_free_inodes_count = 6116 cpu_to_le32(percpu_counter_sum_positive( 6117 &sbi->s_freeinodes_counter)); 6118 /* Copy error information to the on-disk superblock */ 6119 spin_lock(&sbi->s_error_lock); 6120 if (sbi->s_add_error_count > 0) { 6121 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6122 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6123 __ext4_update_tstamp(&es->s_first_error_time, 6124 &es->s_first_error_time_hi, 6125 sbi->s_first_error_time); 6126 strtomem_pad(es->s_first_error_func, 6127 sbi->s_first_error_func, 0); 6128 es->s_first_error_line = 6129 cpu_to_le32(sbi->s_first_error_line); 6130 es->s_first_error_ino = 6131 cpu_to_le32(sbi->s_first_error_ino); 6132 es->s_first_error_block = 6133 cpu_to_le64(sbi->s_first_error_block); 6134 es->s_first_error_errcode = 6135 ext4_errno_to_code(sbi->s_first_error_code); 6136 } 6137 __ext4_update_tstamp(&es->s_last_error_time, 6138 &es->s_last_error_time_hi, 6139 sbi->s_last_error_time); 6140 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0); 6141 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6142 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6143 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6144 es->s_last_error_errcode = 6145 ext4_errno_to_code(sbi->s_last_error_code); 6146 /* 6147 * Start the daily error reporting function if it hasn't been 6148 * started already 6149 */ 6150 if (!es->s_error_count) 6151 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6152 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6153 sbi->s_add_error_count = 0; 6154 } 6155 spin_unlock(&sbi->s_error_lock); 6156 6157 ext4_superblock_csum_set(sb); 6158 unlock_buffer(sbh); 6159 } 6160 6161 static int ext4_commit_super(struct super_block *sb) 6162 { 6163 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6164 6165 if (!sbh) 6166 return -EINVAL; 6167 if (block_device_ejected(sb)) 6168 return -ENODEV; 6169 6170 ext4_update_super(sb); 6171 6172 lock_buffer(sbh); 6173 /* Buffer got discarded which means block device got invalidated */ 6174 if (!buffer_mapped(sbh)) { 6175 unlock_buffer(sbh); 6176 return -EIO; 6177 } 6178 6179 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6180 /* 6181 * Oh, dear. A previous attempt to write the 6182 * superblock failed. This could happen because the 6183 * USB device was yanked out. Or it could happen to 6184 * be a transient write error and maybe the block will 6185 * be remapped. Nothing we can do but to retry the 6186 * write and hope for the best. 6187 */ 6188 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6189 "superblock detected"); 6190 clear_buffer_write_io_error(sbh); 6191 set_buffer_uptodate(sbh); 6192 } 6193 get_bh(sbh); 6194 /* Clear potential dirty bit if it was journalled update */ 6195 clear_buffer_dirty(sbh); 6196 sbh->b_end_io = end_buffer_write_sync; 6197 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6198 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6199 wait_on_buffer(sbh); 6200 if (buffer_write_io_error(sbh)) { 6201 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6202 "superblock"); 6203 clear_buffer_write_io_error(sbh); 6204 set_buffer_uptodate(sbh); 6205 return -EIO; 6206 } 6207 return 0; 6208 } 6209 6210 /* 6211 * Have we just finished recovery? If so, and if we are mounting (or 6212 * remounting) the filesystem readonly, then we will end up with a 6213 * consistent fs on disk. Record that fact. 6214 */ 6215 static int ext4_mark_recovery_complete(struct super_block *sb, 6216 struct ext4_super_block *es) 6217 { 6218 int err; 6219 journal_t *journal = EXT4_SB(sb)->s_journal; 6220 6221 if (!ext4_has_feature_journal(sb)) { 6222 if (journal != NULL) { 6223 ext4_error(sb, "Journal got removed while the fs was " 6224 "mounted!"); 6225 return -EFSCORRUPTED; 6226 } 6227 return 0; 6228 } 6229 jbd2_journal_lock_updates(journal); 6230 err = jbd2_journal_flush(journal, 0); 6231 if (err < 0) 6232 goto out; 6233 6234 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6235 ext4_has_feature_orphan_present(sb))) { 6236 if (!ext4_orphan_file_empty(sb)) { 6237 ext4_error(sb, "Orphan file not empty on read-only fs."); 6238 err = -EFSCORRUPTED; 6239 goto out; 6240 } 6241 ext4_clear_feature_journal_needs_recovery(sb); 6242 ext4_clear_feature_orphan_present(sb); 6243 ext4_commit_super(sb); 6244 } 6245 out: 6246 jbd2_journal_unlock_updates(journal); 6247 return err; 6248 } 6249 6250 /* 6251 * If we are mounting (or read-write remounting) a filesystem whose journal 6252 * has recorded an error from a previous lifetime, move that error to the 6253 * main filesystem now. 6254 */ 6255 static int ext4_clear_journal_err(struct super_block *sb, 6256 struct ext4_super_block *es) 6257 { 6258 journal_t *journal; 6259 int j_errno; 6260 const char *errstr; 6261 6262 if (!ext4_has_feature_journal(sb)) { 6263 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6264 return -EFSCORRUPTED; 6265 } 6266 6267 journal = EXT4_SB(sb)->s_journal; 6268 6269 /* 6270 * Now check for any error status which may have been recorded in the 6271 * journal by a prior ext4_error() or ext4_abort() 6272 */ 6273 6274 j_errno = jbd2_journal_errno(journal); 6275 if (j_errno) { 6276 char nbuf[16]; 6277 6278 errstr = ext4_decode_error(sb, j_errno, nbuf); 6279 ext4_warning(sb, "Filesystem error recorded " 6280 "from previous mount: %s", errstr); 6281 6282 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6283 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6284 j_errno = ext4_commit_super(sb); 6285 if (j_errno) 6286 return j_errno; 6287 ext4_warning(sb, "Marked fs in need of filesystem check."); 6288 6289 jbd2_journal_clear_err(journal); 6290 jbd2_journal_update_sb_errno(journal); 6291 } 6292 return 0; 6293 } 6294 6295 /* 6296 * Force the running and committing transactions to commit, 6297 * and wait on the commit. 6298 */ 6299 int ext4_force_commit(struct super_block *sb) 6300 { 6301 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6302 } 6303 6304 static int ext4_sync_fs(struct super_block *sb, int wait) 6305 { 6306 int ret = 0; 6307 tid_t target; 6308 bool needs_barrier = false; 6309 struct ext4_sb_info *sbi = EXT4_SB(sb); 6310 6311 if (unlikely(ext4_forced_shutdown(sb))) 6312 return 0; 6313 6314 trace_ext4_sync_fs(sb, wait); 6315 flush_workqueue(sbi->rsv_conversion_wq); 6316 /* 6317 * Writeback quota in non-journalled quota case - journalled quota has 6318 * no dirty dquots 6319 */ 6320 dquot_writeback_dquots(sb, -1); 6321 /* 6322 * Data writeback is possible w/o journal transaction, so barrier must 6323 * being sent at the end of the function. But we can skip it if 6324 * transaction_commit will do it for us. 6325 */ 6326 if (sbi->s_journal) { 6327 target = jbd2_get_latest_transaction(sbi->s_journal); 6328 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6329 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6330 needs_barrier = true; 6331 6332 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6333 if (wait) 6334 ret = jbd2_log_wait_commit(sbi->s_journal, 6335 target); 6336 } 6337 } else if (wait && test_opt(sb, BARRIER)) 6338 needs_barrier = true; 6339 if (needs_barrier) { 6340 int err; 6341 err = blkdev_issue_flush(sb->s_bdev); 6342 if (!ret) 6343 ret = err; 6344 } 6345 6346 return ret; 6347 } 6348 6349 /* 6350 * LVM calls this function before a (read-only) snapshot is created. This 6351 * gives us a chance to flush the journal completely and mark the fs clean. 6352 * 6353 * Note that only this function cannot bring a filesystem to be in a clean 6354 * state independently. It relies on upper layer to stop all data & metadata 6355 * modifications. 6356 */ 6357 static int ext4_freeze(struct super_block *sb) 6358 { 6359 int error = 0; 6360 journal_t *journal = EXT4_SB(sb)->s_journal; 6361 6362 if (journal) { 6363 /* Now we set up the journal barrier. */ 6364 jbd2_journal_lock_updates(journal); 6365 6366 /* 6367 * Don't clear the needs_recovery flag if we failed to 6368 * flush the journal. 6369 */ 6370 error = jbd2_journal_flush(journal, 0); 6371 if (error < 0) 6372 goto out; 6373 6374 /* Journal blocked and flushed, clear needs_recovery flag. */ 6375 ext4_clear_feature_journal_needs_recovery(sb); 6376 if (ext4_orphan_file_empty(sb)) 6377 ext4_clear_feature_orphan_present(sb); 6378 } 6379 6380 error = ext4_commit_super(sb); 6381 out: 6382 if (journal) 6383 /* we rely on upper layer to stop further updates */ 6384 jbd2_journal_unlock_updates(journal); 6385 return error; 6386 } 6387 6388 /* 6389 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6390 * flag here, even though the filesystem is not technically dirty yet. 6391 */ 6392 static int ext4_unfreeze(struct super_block *sb) 6393 { 6394 if (ext4_forced_shutdown(sb)) 6395 return 0; 6396 6397 if (EXT4_SB(sb)->s_journal) { 6398 /* Reset the needs_recovery flag before the fs is unlocked. */ 6399 ext4_set_feature_journal_needs_recovery(sb); 6400 if (ext4_has_feature_orphan_file(sb)) 6401 ext4_set_feature_orphan_present(sb); 6402 } 6403 6404 ext4_commit_super(sb); 6405 return 0; 6406 } 6407 6408 /* 6409 * Structure to save mount options for ext4_remount's benefit 6410 */ 6411 struct ext4_mount_options { 6412 unsigned long s_mount_opt; 6413 unsigned long s_mount_opt2; 6414 kuid_t s_resuid; 6415 kgid_t s_resgid; 6416 unsigned long s_commit_interval; 6417 u32 s_min_batch_time, s_max_batch_time; 6418 #ifdef CONFIG_QUOTA 6419 int s_jquota_fmt; 6420 char *s_qf_names[EXT4_MAXQUOTAS]; 6421 #endif 6422 }; 6423 6424 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6425 { 6426 struct ext4_fs_context *ctx = fc->fs_private; 6427 struct ext4_super_block *es; 6428 struct ext4_sb_info *sbi = EXT4_SB(sb); 6429 unsigned long old_sb_flags; 6430 struct ext4_mount_options old_opts; 6431 ext4_group_t g; 6432 int err = 0; 6433 int alloc_ctx; 6434 #ifdef CONFIG_QUOTA 6435 int enable_quota = 0; 6436 int i, j; 6437 char *to_free[EXT4_MAXQUOTAS]; 6438 #endif 6439 6440 6441 /* Store the original options */ 6442 old_sb_flags = sb->s_flags; 6443 old_opts.s_mount_opt = sbi->s_mount_opt; 6444 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6445 old_opts.s_resuid = sbi->s_resuid; 6446 old_opts.s_resgid = sbi->s_resgid; 6447 old_opts.s_commit_interval = sbi->s_commit_interval; 6448 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6449 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6450 #ifdef CONFIG_QUOTA 6451 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6452 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6453 if (sbi->s_qf_names[i]) { 6454 char *qf_name = get_qf_name(sb, sbi, i); 6455 6456 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6457 if (!old_opts.s_qf_names[i]) { 6458 for (j = 0; j < i; j++) 6459 kfree(old_opts.s_qf_names[j]); 6460 return -ENOMEM; 6461 } 6462 } else 6463 old_opts.s_qf_names[i] = NULL; 6464 #endif 6465 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6466 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6467 ctx->journal_ioprio = 6468 sbi->s_journal->j_task->io_context->ioprio; 6469 else 6470 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6471 6472 } 6473 6474 /* 6475 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6476 * two calls to ext4_should_dioread_nolock() to return inconsistent 6477 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6478 * here s_writepages_rwsem to avoid race between writepages ops and 6479 * remount. 6480 */ 6481 alloc_ctx = ext4_writepages_down_write(sb); 6482 ext4_apply_options(fc, sb); 6483 ext4_writepages_up_write(sb, alloc_ctx); 6484 6485 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6486 test_opt(sb, JOURNAL_CHECKSUM)) { 6487 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6488 "during remount not supported; ignoring"); 6489 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6490 } 6491 6492 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6493 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6494 ext4_msg(sb, KERN_ERR, "can't mount with " 6495 "both data=journal and delalloc"); 6496 err = -EINVAL; 6497 goto restore_opts; 6498 } 6499 if (test_opt(sb, DIOREAD_NOLOCK)) { 6500 ext4_msg(sb, KERN_ERR, "can't mount with " 6501 "both data=journal and dioread_nolock"); 6502 err = -EINVAL; 6503 goto restore_opts; 6504 } 6505 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6506 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6507 ext4_msg(sb, KERN_ERR, "can't mount with " 6508 "journal_async_commit in data=ordered mode"); 6509 err = -EINVAL; 6510 goto restore_opts; 6511 } 6512 } 6513 6514 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6515 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6516 err = -EINVAL; 6517 goto restore_opts; 6518 } 6519 6520 if (test_opt2(sb, ABORT)) 6521 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6522 6523 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6524 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6525 6526 es = sbi->s_es; 6527 6528 if (sbi->s_journal) { 6529 ext4_init_journal_params(sb, sbi->s_journal); 6530 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6531 } 6532 6533 /* Flush outstanding errors before changing fs state */ 6534 flush_work(&sbi->s_sb_upd_work); 6535 6536 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6537 if (ext4_forced_shutdown(sb)) { 6538 err = -EROFS; 6539 goto restore_opts; 6540 } 6541 6542 if (fc->sb_flags & SB_RDONLY) { 6543 err = sync_filesystem(sb); 6544 if (err < 0) 6545 goto restore_opts; 6546 err = dquot_suspend(sb, -1); 6547 if (err < 0) 6548 goto restore_opts; 6549 6550 /* 6551 * First of all, the unconditional stuff we have to do 6552 * to disable replay of the journal when we next remount 6553 */ 6554 sb->s_flags |= SB_RDONLY; 6555 6556 /* 6557 * OK, test if we are remounting a valid rw partition 6558 * readonly, and if so set the rdonly flag and then 6559 * mark the partition as valid again. 6560 */ 6561 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6562 (sbi->s_mount_state & EXT4_VALID_FS)) 6563 es->s_state = cpu_to_le16(sbi->s_mount_state); 6564 6565 if (sbi->s_journal) { 6566 /* 6567 * We let remount-ro finish even if marking fs 6568 * as clean failed... 6569 */ 6570 ext4_mark_recovery_complete(sb, es); 6571 } 6572 } else { 6573 /* Make sure we can mount this feature set readwrite */ 6574 if (ext4_has_feature_readonly(sb) || 6575 !ext4_feature_set_ok(sb, 0)) { 6576 err = -EROFS; 6577 goto restore_opts; 6578 } 6579 /* 6580 * Make sure the group descriptor checksums 6581 * are sane. If they aren't, refuse to remount r/w. 6582 */ 6583 for (g = 0; g < sbi->s_groups_count; g++) { 6584 struct ext4_group_desc *gdp = 6585 ext4_get_group_desc(sb, g, NULL); 6586 6587 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6588 ext4_msg(sb, KERN_ERR, 6589 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6590 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6591 le16_to_cpu(gdp->bg_checksum)); 6592 err = -EFSBADCRC; 6593 goto restore_opts; 6594 } 6595 } 6596 6597 /* 6598 * If we have an unprocessed orphan list hanging 6599 * around from a previously readonly bdev mount, 6600 * require a full umount/remount for now. 6601 */ 6602 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6603 ext4_msg(sb, KERN_WARNING, "Couldn't " 6604 "remount RDWR because of unprocessed " 6605 "orphan inode list. Please " 6606 "umount/remount instead"); 6607 err = -EINVAL; 6608 goto restore_opts; 6609 } 6610 6611 /* 6612 * Mounting a RDONLY partition read-write, so reread 6613 * and store the current valid flag. (It may have 6614 * been changed by e2fsck since we originally mounted 6615 * the partition.) 6616 */ 6617 if (sbi->s_journal) { 6618 err = ext4_clear_journal_err(sb, es); 6619 if (err) 6620 goto restore_opts; 6621 } 6622 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6623 ~EXT4_FC_REPLAY); 6624 6625 err = ext4_setup_super(sb, es, 0); 6626 if (err) 6627 goto restore_opts; 6628 6629 sb->s_flags &= ~SB_RDONLY; 6630 if (ext4_has_feature_mmp(sb)) { 6631 err = ext4_multi_mount_protect(sb, 6632 le64_to_cpu(es->s_mmp_block)); 6633 if (err) 6634 goto restore_opts; 6635 } 6636 #ifdef CONFIG_QUOTA 6637 enable_quota = 1; 6638 #endif 6639 } 6640 } 6641 6642 /* 6643 * Handle creation of system zone data early because it can fail. 6644 * Releasing of existing data is done when we are sure remount will 6645 * succeed. 6646 */ 6647 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6648 err = ext4_setup_system_zone(sb); 6649 if (err) 6650 goto restore_opts; 6651 } 6652 6653 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6654 err = ext4_commit_super(sb); 6655 if (err) 6656 goto restore_opts; 6657 } 6658 6659 #ifdef CONFIG_QUOTA 6660 if (enable_quota) { 6661 if (sb_any_quota_suspended(sb)) 6662 dquot_resume(sb, -1); 6663 else if (ext4_has_feature_quota(sb)) { 6664 err = ext4_enable_quotas(sb); 6665 if (err) 6666 goto restore_opts; 6667 } 6668 } 6669 /* Release old quota file names */ 6670 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6671 kfree(old_opts.s_qf_names[i]); 6672 #endif 6673 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6674 ext4_release_system_zone(sb); 6675 6676 /* 6677 * Reinitialize lazy itable initialization thread based on 6678 * current settings 6679 */ 6680 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6681 ext4_unregister_li_request(sb); 6682 else { 6683 ext4_group_t first_not_zeroed; 6684 first_not_zeroed = ext4_has_uninit_itable(sb); 6685 ext4_register_li_request(sb, first_not_zeroed); 6686 } 6687 6688 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6689 ext4_stop_mmpd(sbi); 6690 6691 return 0; 6692 6693 restore_opts: 6694 /* 6695 * If there was a failing r/w to ro transition, we may need to 6696 * re-enable quota 6697 */ 6698 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6699 sb_any_quota_suspended(sb)) 6700 dquot_resume(sb, -1); 6701 6702 alloc_ctx = ext4_writepages_down_write(sb); 6703 sb->s_flags = old_sb_flags; 6704 sbi->s_mount_opt = old_opts.s_mount_opt; 6705 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6706 sbi->s_resuid = old_opts.s_resuid; 6707 sbi->s_resgid = old_opts.s_resgid; 6708 sbi->s_commit_interval = old_opts.s_commit_interval; 6709 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6710 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6711 ext4_writepages_up_write(sb, alloc_ctx); 6712 6713 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6714 ext4_release_system_zone(sb); 6715 #ifdef CONFIG_QUOTA 6716 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6717 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6718 to_free[i] = get_qf_name(sb, sbi, i); 6719 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6720 } 6721 synchronize_rcu(); 6722 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6723 kfree(to_free[i]); 6724 #endif 6725 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6726 ext4_stop_mmpd(sbi); 6727 return err; 6728 } 6729 6730 static int ext4_reconfigure(struct fs_context *fc) 6731 { 6732 struct super_block *sb = fc->root->d_sb; 6733 int ret; 6734 6735 fc->s_fs_info = EXT4_SB(sb); 6736 6737 ret = ext4_check_opt_consistency(fc, sb); 6738 if (ret < 0) 6739 return ret; 6740 6741 ret = __ext4_remount(fc, sb); 6742 if (ret < 0) 6743 return ret; 6744 6745 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6746 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6747 ext4_quota_mode(sb)); 6748 6749 return 0; 6750 } 6751 6752 #ifdef CONFIG_QUOTA 6753 static int ext4_statfs_project(struct super_block *sb, 6754 kprojid_t projid, struct kstatfs *buf) 6755 { 6756 struct kqid qid; 6757 struct dquot *dquot; 6758 u64 limit; 6759 u64 curblock; 6760 6761 qid = make_kqid_projid(projid); 6762 dquot = dqget(sb, qid); 6763 if (IS_ERR(dquot)) 6764 return PTR_ERR(dquot); 6765 spin_lock(&dquot->dq_dqb_lock); 6766 6767 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6768 dquot->dq_dqb.dqb_bhardlimit); 6769 limit >>= sb->s_blocksize_bits; 6770 6771 if (limit && buf->f_blocks > limit) { 6772 curblock = (dquot->dq_dqb.dqb_curspace + 6773 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6774 buf->f_blocks = limit; 6775 buf->f_bfree = buf->f_bavail = 6776 (buf->f_blocks > curblock) ? 6777 (buf->f_blocks - curblock) : 0; 6778 } 6779 6780 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6781 dquot->dq_dqb.dqb_ihardlimit); 6782 if (limit && buf->f_files > limit) { 6783 buf->f_files = limit; 6784 buf->f_ffree = 6785 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6786 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6787 } 6788 6789 spin_unlock(&dquot->dq_dqb_lock); 6790 dqput(dquot); 6791 return 0; 6792 } 6793 #endif 6794 6795 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6796 { 6797 struct super_block *sb = dentry->d_sb; 6798 struct ext4_sb_info *sbi = EXT4_SB(sb); 6799 struct ext4_super_block *es = sbi->s_es; 6800 ext4_fsblk_t overhead = 0, resv_blocks; 6801 s64 bfree; 6802 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6803 6804 if (!test_opt(sb, MINIX_DF)) 6805 overhead = sbi->s_overhead; 6806 6807 buf->f_type = EXT4_SUPER_MAGIC; 6808 buf->f_bsize = sb->s_blocksize; 6809 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6810 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6811 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6812 /* prevent underflow in case that few free space is available */ 6813 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6814 buf->f_bavail = buf->f_bfree - 6815 (ext4_r_blocks_count(es) + resv_blocks); 6816 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6817 buf->f_bavail = 0; 6818 buf->f_files = le32_to_cpu(es->s_inodes_count); 6819 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6820 buf->f_namelen = EXT4_NAME_LEN; 6821 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6822 6823 #ifdef CONFIG_QUOTA 6824 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6825 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6826 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6827 #endif 6828 return 0; 6829 } 6830 6831 6832 #ifdef CONFIG_QUOTA 6833 6834 /* 6835 * Helper functions so that transaction is started before we acquire dqio_sem 6836 * to keep correct lock ordering of transaction > dqio_sem 6837 */ 6838 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6839 { 6840 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6841 } 6842 6843 static int ext4_write_dquot(struct dquot *dquot) 6844 { 6845 int ret, err; 6846 handle_t *handle; 6847 struct inode *inode; 6848 6849 inode = dquot_to_inode(dquot); 6850 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6851 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6852 if (IS_ERR(handle)) 6853 return PTR_ERR(handle); 6854 ret = dquot_commit(dquot); 6855 if (ret < 0) 6856 ext4_error_err(dquot->dq_sb, -ret, 6857 "Failed to commit dquot type %d", 6858 dquot->dq_id.type); 6859 err = ext4_journal_stop(handle); 6860 if (!ret) 6861 ret = err; 6862 return ret; 6863 } 6864 6865 static int ext4_acquire_dquot(struct dquot *dquot) 6866 { 6867 int ret, err; 6868 handle_t *handle; 6869 6870 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6871 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6872 if (IS_ERR(handle)) 6873 return PTR_ERR(handle); 6874 ret = dquot_acquire(dquot); 6875 if (ret < 0) 6876 ext4_error_err(dquot->dq_sb, -ret, 6877 "Failed to acquire dquot type %d", 6878 dquot->dq_id.type); 6879 err = ext4_journal_stop(handle); 6880 if (!ret) 6881 ret = err; 6882 return ret; 6883 } 6884 6885 static int ext4_release_dquot(struct dquot *dquot) 6886 { 6887 int ret, err; 6888 handle_t *handle; 6889 6890 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6891 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6892 if (IS_ERR(handle)) { 6893 /* Release dquot anyway to avoid endless cycle in dqput() */ 6894 dquot_release(dquot); 6895 return PTR_ERR(handle); 6896 } 6897 ret = dquot_release(dquot); 6898 if (ret < 0) 6899 ext4_error_err(dquot->dq_sb, -ret, 6900 "Failed to release dquot type %d", 6901 dquot->dq_id.type); 6902 err = ext4_journal_stop(handle); 6903 if (!ret) 6904 ret = err; 6905 return ret; 6906 } 6907 6908 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6909 { 6910 struct super_block *sb = dquot->dq_sb; 6911 6912 if (ext4_is_quota_journalled(sb)) { 6913 dquot_mark_dquot_dirty(dquot); 6914 return ext4_write_dquot(dquot); 6915 } else { 6916 return dquot_mark_dquot_dirty(dquot); 6917 } 6918 } 6919 6920 static int ext4_write_info(struct super_block *sb, int type) 6921 { 6922 int ret, err; 6923 handle_t *handle; 6924 6925 /* Data block + inode block */ 6926 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6927 if (IS_ERR(handle)) 6928 return PTR_ERR(handle); 6929 ret = dquot_commit_info(sb, type); 6930 err = ext4_journal_stop(handle); 6931 if (!ret) 6932 ret = err; 6933 return ret; 6934 } 6935 6936 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6937 { 6938 struct ext4_inode_info *ei = EXT4_I(inode); 6939 6940 /* The first argument of lockdep_set_subclass has to be 6941 * *exactly* the same as the argument to init_rwsem() --- in 6942 * this case, in init_once() --- or lockdep gets unhappy 6943 * because the name of the lock is set using the 6944 * stringification of the argument to init_rwsem(). 6945 */ 6946 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6947 lockdep_set_subclass(&ei->i_data_sem, subclass); 6948 } 6949 6950 /* 6951 * Standard function to be called on quota_on 6952 */ 6953 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6954 const struct path *path) 6955 { 6956 int err; 6957 6958 if (!test_opt(sb, QUOTA)) 6959 return -EINVAL; 6960 6961 /* Quotafile not on the same filesystem? */ 6962 if (path->dentry->d_sb != sb) 6963 return -EXDEV; 6964 6965 /* Quota already enabled for this file? */ 6966 if (IS_NOQUOTA(d_inode(path->dentry))) 6967 return -EBUSY; 6968 6969 /* Journaling quota? */ 6970 if (EXT4_SB(sb)->s_qf_names[type]) { 6971 /* Quotafile not in fs root? */ 6972 if (path->dentry->d_parent != sb->s_root) 6973 ext4_msg(sb, KERN_WARNING, 6974 "Quota file not on filesystem root. " 6975 "Journaled quota will not work"); 6976 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6977 } else { 6978 /* 6979 * Clear the flag just in case mount options changed since 6980 * last time. 6981 */ 6982 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6983 } 6984 6985 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6986 err = dquot_quota_on(sb, type, format_id, path); 6987 if (!err) { 6988 struct inode *inode = d_inode(path->dentry); 6989 handle_t *handle; 6990 6991 /* 6992 * Set inode flags to prevent userspace from messing with quota 6993 * files. If this fails, we return success anyway since quotas 6994 * are already enabled and this is not a hard failure. 6995 */ 6996 inode_lock(inode); 6997 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6998 if (IS_ERR(handle)) 6999 goto unlock_inode; 7000 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7001 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7002 S_NOATIME | S_IMMUTABLE); 7003 err = ext4_mark_inode_dirty(handle, inode); 7004 ext4_journal_stop(handle); 7005 unlock_inode: 7006 inode_unlock(inode); 7007 if (err) 7008 dquot_quota_off(sb, type); 7009 } 7010 if (err) 7011 lockdep_set_quota_inode(path->dentry->d_inode, 7012 I_DATA_SEM_NORMAL); 7013 return err; 7014 } 7015 7016 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7017 { 7018 switch (type) { 7019 case USRQUOTA: 7020 return qf_inum == EXT4_USR_QUOTA_INO; 7021 case GRPQUOTA: 7022 return qf_inum == EXT4_GRP_QUOTA_INO; 7023 case PRJQUOTA: 7024 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7025 default: 7026 BUG(); 7027 } 7028 } 7029 7030 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7031 unsigned int flags) 7032 { 7033 int err; 7034 struct inode *qf_inode; 7035 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7036 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7037 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7038 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7039 }; 7040 7041 BUG_ON(!ext4_has_feature_quota(sb)); 7042 7043 if (!qf_inums[type]) 7044 return -EPERM; 7045 7046 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7047 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7048 qf_inums[type], type); 7049 return -EUCLEAN; 7050 } 7051 7052 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7053 if (IS_ERR(qf_inode)) { 7054 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7055 qf_inums[type], type); 7056 return PTR_ERR(qf_inode); 7057 } 7058 7059 /* Don't account quota for quota files to avoid recursion */ 7060 qf_inode->i_flags |= S_NOQUOTA; 7061 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7062 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7063 if (err) 7064 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7065 iput(qf_inode); 7066 7067 return err; 7068 } 7069 7070 /* Enable usage tracking for all quota types. */ 7071 int ext4_enable_quotas(struct super_block *sb) 7072 { 7073 int type, err = 0; 7074 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7075 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7076 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7077 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7078 }; 7079 bool quota_mopt[EXT4_MAXQUOTAS] = { 7080 test_opt(sb, USRQUOTA), 7081 test_opt(sb, GRPQUOTA), 7082 test_opt(sb, PRJQUOTA), 7083 }; 7084 7085 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7086 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7087 if (qf_inums[type]) { 7088 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7089 DQUOT_USAGE_ENABLED | 7090 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7091 if (err) { 7092 ext4_warning(sb, 7093 "Failed to enable quota tracking " 7094 "(type=%d, err=%d, ino=%lu). " 7095 "Please run e2fsck to fix.", type, 7096 err, qf_inums[type]); 7097 7098 ext4_quotas_off(sb, type); 7099 return err; 7100 } 7101 } 7102 } 7103 return 0; 7104 } 7105 7106 static int ext4_quota_off(struct super_block *sb, int type) 7107 { 7108 struct inode *inode = sb_dqopt(sb)->files[type]; 7109 handle_t *handle; 7110 int err; 7111 7112 /* Force all delayed allocation blocks to be allocated. 7113 * Caller already holds s_umount sem */ 7114 if (test_opt(sb, DELALLOC)) 7115 sync_filesystem(sb); 7116 7117 if (!inode || !igrab(inode)) 7118 goto out; 7119 7120 err = dquot_quota_off(sb, type); 7121 if (err || ext4_has_feature_quota(sb)) 7122 goto out_put; 7123 /* 7124 * When the filesystem was remounted read-only first, we cannot cleanup 7125 * inode flags here. Bad luck but people should be using QUOTA feature 7126 * these days anyway. 7127 */ 7128 if (sb_rdonly(sb)) 7129 goto out_put; 7130 7131 inode_lock(inode); 7132 /* 7133 * Update modification times of quota files when userspace can 7134 * start looking at them. If we fail, we return success anyway since 7135 * this is not a hard failure and quotas are already disabled. 7136 */ 7137 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7138 if (IS_ERR(handle)) { 7139 err = PTR_ERR(handle); 7140 goto out_unlock; 7141 } 7142 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7143 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7144 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7145 err = ext4_mark_inode_dirty(handle, inode); 7146 ext4_journal_stop(handle); 7147 out_unlock: 7148 inode_unlock(inode); 7149 out_put: 7150 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7151 iput(inode); 7152 return err; 7153 out: 7154 return dquot_quota_off(sb, type); 7155 } 7156 7157 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7158 * acquiring the locks... As quota files are never truncated and quota code 7159 * itself serializes the operations (and no one else should touch the files) 7160 * we don't have to be afraid of races */ 7161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7162 size_t len, loff_t off) 7163 { 7164 struct inode *inode = sb_dqopt(sb)->files[type]; 7165 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7166 int offset = off & (sb->s_blocksize - 1); 7167 int tocopy; 7168 size_t toread; 7169 struct buffer_head *bh; 7170 loff_t i_size = i_size_read(inode); 7171 7172 if (off > i_size) 7173 return 0; 7174 if (off+len > i_size) 7175 len = i_size-off; 7176 toread = len; 7177 while (toread > 0) { 7178 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7179 bh = ext4_bread(NULL, inode, blk, 0); 7180 if (IS_ERR(bh)) 7181 return PTR_ERR(bh); 7182 if (!bh) /* A hole? */ 7183 memset(data, 0, tocopy); 7184 else 7185 memcpy(data, bh->b_data+offset, tocopy); 7186 brelse(bh); 7187 offset = 0; 7188 toread -= tocopy; 7189 data += tocopy; 7190 blk++; 7191 } 7192 return len; 7193 } 7194 7195 /* Write to quotafile (we know the transaction is already started and has 7196 * enough credits) */ 7197 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7198 const char *data, size_t len, loff_t off) 7199 { 7200 struct inode *inode = sb_dqopt(sb)->files[type]; 7201 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7202 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7203 int retries = 0; 7204 struct buffer_head *bh; 7205 handle_t *handle = journal_current_handle(); 7206 7207 if (!handle) { 7208 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7209 " cancelled because transaction is not started", 7210 (unsigned long long)off, (unsigned long long)len); 7211 return -EIO; 7212 } 7213 /* 7214 * Since we account only one data block in transaction credits, 7215 * then it is impossible to cross a block boundary. 7216 */ 7217 if (sb->s_blocksize - offset < len) { 7218 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7219 " cancelled because not block aligned", 7220 (unsigned long long)off, (unsigned long long)len); 7221 return -EIO; 7222 } 7223 7224 do { 7225 bh = ext4_bread(handle, inode, blk, 7226 EXT4_GET_BLOCKS_CREATE | 7227 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7228 } while (PTR_ERR(bh) == -ENOSPC && 7229 ext4_should_retry_alloc(inode->i_sb, &retries)); 7230 if (IS_ERR(bh)) 7231 return PTR_ERR(bh); 7232 if (!bh) 7233 goto out; 7234 BUFFER_TRACE(bh, "get write access"); 7235 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7236 if (err) { 7237 brelse(bh); 7238 return err; 7239 } 7240 lock_buffer(bh); 7241 memcpy(bh->b_data+offset, data, len); 7242 flush_dcache_page(bh->b_page); 7243 unlock_buffer(bh); 7244 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7245 brelse(bh); 7246 out: 7247 if (inode->i_size < off + len) { 7248 i_size_write(inode, off + len); 7249 EXT4_I(inode)->i_disksize = inode->i_size; 7250 err2 = ext4_mark_inode_dirty(handle, inode); 7251 if (unlikely(err2 && !err)) 7252 err = err2; 7253 } 7254 return err ? err : len; 7255 } 7256 #endif 7257 7258 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7259 static inline void register_as_ext2(void) 7260 { 7261 int err = register_filesystem(&ext2_fs_type); 7262 if (err) 7263 printk(KERN_WARNING 7264 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7265 } 7266 7267 static inline void unregister_as_ext2(void) 7268 { 7269 unregister_filesystem(&ext2_fs_type); 7270 } 7271 7272 static inline int ext2_feature_set_ok(struct super_block *sb) 7273 { 7274 if (ext4_has_unknown_ext2_incompat_features(sb)) 7275 return 0; 7276 if (sb_rdonly(sb)) 7277 return 1; 7278 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7279 return 0; 7280 return 1; 7281 } 7282 #else 7283 static inline void register_as_ext2(void) { } 7284 static inline void unregister_as_ext2(void) { } 7285 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7286 #endif 7287 7288 static inline void register_as_ext3(void) 7289 { 7290 int err = register_filesystem(&ext3_fs_type); 7291 if (err) 7292 printk(KERN_WARNING 7293 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7294 } 7295 7296 static inline void unregister_as_ext3(void) 7297 { 7298 unregister_filesystem(&ext3_fs_type); 7299 } 7300 7301 static inline int ext3_feature_set_ok(struct super_block *sb) 7302 { 7303 if (ext4_has_unknown_ext3_incompat_features(sb)) 7304 return 0; 7305 if (!ext4_has_feature_journal(sb)) 7306 return 0; 7307 if (sb_rdonly(sb)) 7308 return 1; 7309 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7310 return 0; 7311 return 1; 7312 } 7313 7314 static void ext4_kill_sb(struct super_block *sb) 7315 { 7316 struct ext4_sb_info *sbi = EXT4_SB(sb); 7317 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7318 7319 kill_block_super(sb); 7320 7321 if (bdev_file) 7322 bdev_fput(bdev_file); 7323 } 7324 7325 static struct file_system_type ext4_fs_type = { 7326 .owner = THIS_MODULE, 7327 .name = "ext4", 7328 .init_fs_context = ext4_init_fs_context, 7329 .parameters = ext4_param_specs, 7330 .kill_sb = ext4_kill_sb, 7331 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7332 }; 7333 MODULE_ALIAS_FS("ext4"); 7334 7335 /* Shared across all ext4 file systems */ 7336 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7337 7338 static int __init ext4_init_fs(void) 7339 { 7340 int i, err; 7341 7342 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7343 ext4_li_info = NULL; 7344 7345 /* Build-time check for flags consistency */ 7346 ext4_check_flag_values(); 7347 7348 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7349 init_waitqueue_head(&ext4__ioend_wq[i]); 7350 7351 err = ext4_init_es(); 7352 if (err) 7353 return err; 7354 7355 err = ext4_init_pending(); 7356 if (err) 7357 goto out7; 7358 7359 err = ext4_init_post_read_processing(); 7360 if (err) 7361 goto out6; 7362 7363 err = ext4_init_pageio(); 7364 if (err) 7365 goto out5; 7366 7367 err = ext4_init_system_zone(); 7368 if (err) 7369 goto out4; 7370 7371 err = ext4_init_sysfs(); 7372 if (err) 7373 goto out3; 7374 7375 err = ext4_init_mballoc(); 7376 if (err) 7377 goto out2; 7378 err = init_inodecache(); 7379 if (err) 7380 goto out1; 7381 7382 err = ext4_fc_init_dentry_cache(); 7383 if (err) 7384 goto out05; 7385 7386 register_as_ext3(); 7387 register_as_ext2(); 7388 err = register_filesystem(&ext4_fs_type); 7389 if (err) 7390 goto out; 7391 7392 return 0; 7393 out: 7394 unregister_as_ext2(); 7395 unregister_as_ext3(); 7396 ext4_fc_destroy_dentry_cache(); 7397 out05: 7398 destroy_inodecache(); 7399 out1: 7400 ext4_exit_mballoc(); 7401 out2: 7402 ext4_exit_sysfs(); 7403 out3: 7404 ext4_exit_system_zone(); 7405 out4: 7406 ext4_exit_pageio(); 7407 out5: 7408 ext4_exit_post_read_processing(); 7409 out6: 7410 ext4_exit_pending(); 7411 out7: 7412 ext4_exit_es(); 7413 7414 return err; 7415 } 7416 7417 static void __exit ext4_exit_fs(void) 7418 { 7419 ext4_destroy_lazyinit_thread(); 7420 unregister_as_ext2(); 7421 unregister_as_ext3(); 7422 unregister_filesystem(&ext4_fs_type); 7423 ext4_fc_destroy_dentry_cache(); 7424 destroy_inodecache(); 7425 ext4_exit_mballoc(); 7426 ext4_exit_sysfs(); 7427 ext4_exit_system_zone(); 7428 ext4_exit_pageio(); 7429 ext4_exit_post_read_processing(); 7430 ext4_exit_es(); 7431 ext4_exit_pending(); 7432 } 7433 7434 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7435 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7436 MODULE_LICENSE("GPL"); 7437 MODULE_SOFTDEP("pre: crc32c"); 7438 module_init(ext4_init_fs) 7439 module_exit(ext4_exit_fs) 7440