1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static void ext4_write_super(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 89 static struct file_system_type ext2_fs_type = { 90 .owner = THIS_MODULE, 91 .name = "ext2", 92 .mount = ext4_mount, 93 .kill_sb = kill_block_super, 94 .fs_flags = FS_REQUIRES_DEV, 95 }; 96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97 #else 98 #define IS_EXT2_SB(sb) (0) 99 #endif 100 101 102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103 static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109 }; 110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 111 #else 112 #define IS_EXT3_SB(sb) (0) 113 #endif 114 115 void *ext4_kvmalloc(size_t size, gfp_t flags) 116 { 117 void *ret; 118 119 ret = kmalloc(size, flags); 120 if (!ret) 121 ret = __vmalloc(size, flags, PAGE_KERNEL); 122 return ret; 123 } 124 125 void *ext4_kvzalloc(size_t size, gfp_t flags) 126 { 127 void *ret; 128 129 ret = kzalloc(size, flags); 130 if (!ret) 131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 132 return ret; 133 } 134 135 void ext4_kvfree(void *ptr) 136 { 137 if (is_vmalloc_addr(ptr)) 138 vfree(ptr); 139 else 140 kfree(ptr); 141 142 } 143 144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 145 struct ext4_group_desc *bg) 146 { 147 return le32_to_cpu(bg->bg_block_bitmap_lo) | 148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 150 } 151 152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 153 struct ext4_group_desc *bg) 154 { 155 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 158 } 159 160 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 161 struct ext4_group_desc *bg) 162 { 163 return le32_to_cpu(bg->bg_inode_table_lo) | 164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 166 } 167 168 __u32 ext4_free_group_clusters(struct super_block *sb, 169 struct ext4_group_desc *bg) 170 { 171 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 174 } 175 176 __u32 ext4_free_inodes_count(struct super_block *sb, 177 struct ext4_group_desc *bg) 178 { 179 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 182 } 183 184 __u32 ext4_used_dirs_count(struct super_block *sb, 185 struct ext4_group_desc *bg) 186 { 187 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 190 } 191 192 __u32 ext4_itable_unused_count(struct super_block *sb, 193 struct ext4_group_desc *bg) 194 { 195 return le16_to_cpu(bg->bg_itable_unused_lo) | 196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 198 } 199 200 void ext4_block_bitmap_set(struct super_block *sb, 201 struct ext4_group_desc *bg, ext4_fsblk_t blk) 202 { 203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 206 } 207 208 void ext4_inode_bitmap_set(struct super_block *sb, 209 struct ext4_group_desc *bg, ext4_fsblk_t blk) 210 { 211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 214 } 215 216 void ext4_inode_table_set(struct super_block *sb, 217 struct ext4_group_desc *bg, ext4_fsblk_t blk) 218 { 219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 222 } 223 224 void ext4_free_group_clusters_set(struct super_block *sb, 225 struct ext4_group_desc *bg, __u32 count) 226 { 227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 230 } 231 232 void ext4_free_inodes_set(struct super_block *sb, 233 struct ext4_group_desc *bg, __u32 count) 234 { 235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 238 } 239 240 void ext4_used_dirs_set(struct super_block *sb, 241 struct ext4_group_desc *bg, __u32 count) 242 { 243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 246 } 247 248 void ext4_itable_unused_set(struct super_block *sb, 249 struct ext4_group_desc *bg, __u32 count) 250 { 251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 254 } 255 256 257 /* Just increment the non-pointer handle value */ 258 static handle_t *ext4_get_nojournal(void) 259 { 260 handle_t *handle = current->journal_info; 261 unsigned long ref_cnt = (unsigned long)handle; 262 263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 264 265 ref_cnt++; 266 handle = (handle_t *)ref_cnt; 267 268 current->journal_info = handle; 269 return handle; 270 } 271 272 273 /* Decrement the non-pointer handle value */ 274 static void ext4_put_nojournal(handle_t *handle) 275 { 276 unsigned long ref_cnt = (unsigned long)handle; 277 278 BUG_ON(ref_cnt == 0); 279 280 ref_cnt--; 281 handle = (handle_t *)ref_cnt; 282 283 current->journal_info = handle; 284 } 285 286 /* 287 * Wrappers for jbd2_journal_start/end. 288 * 289 * The only special thing we need to do here is to make sure that all 290 * journal_end calls result in the superblock being marked dirty, so 291 * that sync() will call the filesystem's write_super callback if 292 * appropriate. 293 * 294 * To avoid j_barrier hold in userspace when a user calls freeze(), 295 * ext4 prevents a new handle from being started by s_frozen, which 296 * is in an upper layer. 297 */ 298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 299 { 300 journal_t *journal; 301 handle_t *handle; 302 303 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 304 if (sb->s_flags & MS_RDONLY) 305 return ERR_PTR(-EROFS); 306 307 journal = EXT4_SB(sb)->s_journal; 308 handle = ext4_journal_current_handle(); 309 310 /* 311 * If a handle has been started, it should be allowed to 312 * finish, otherwise deadlock could happen between freeze 313 * and others(e.g. truncate) due to the restart of the 314 * journal handle if the filesystem is forzen and active 315 * handles are not stopped. 316 */ 317 if (!handle) 318 vfs_check_frozen(sb, SB_FREEZE_TRANS); 319 320 if (!journal) 321 return ext4_get_nojournal(); 322 /* 323 * Special case here: if the journal has aborted behind our 324 * backs (eg. EIO in the commit thread), then we still need to 325 * take the FS itself readonly cleanly. 326 */ 327 if (is_journal_aborted(journal)) { 328 ext4_abort(sb, "Detected aborted journal"); 329 return ERR_PTR(-EROFS); 330 } 331 return jbd2_journal_start(journal, nblocks); 332 } 333 334 /* 335 * The only special thing we need to do here is to make sure that all 336 * jbd2_journal_stop calls result in the superblock being marked dirty, so 337 * that sync() will call the filesystem's write_super callback if 338 * appropriate. 339 */ 340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 341 { 342 struct super_block *sb; 343 int err; 344 int rc; 345 346 if (!ext4_handle_valid(handle)) { 347 ext4_put_nojournal(handle); 348 return 0; 349 } 350 sb = handle->h_transaction->t_journal->j_private; 351 err = handle->h_err; 352 rc = jbd2_journal_stop(handle); 353 354 if (!err) 355 err = rc; 356 if (err) 357 __ext4_std_error(sb, where, line, err); 358 return err; 359 } 360 361 void ext4_journal_abort_handle(const char *caller, unsigned int line, 362 const char *err_fn, struct buffer_head *bh, 363 handle_t *handle, int err) 364 { 365 char nbuf[16]; 366 const char *errstr = ext4_decode_error(NULL, err, nbuf); 367 368 BUG_ON(!ext4_handle_valid(handle)); 369 370 if (bh) 371 BUFFER_TRACE(bh, "abort"); 372 373 if (!handle->h_err) 374 handle->h_err = err; 375 376 if (is_handle_aborted(handle)) 377 return; 378 379 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 380 caller, line, errstr, err_fn); 381 382 jbd2_journal_abort_handle(handle); 383 } 384 385 static void __save_error_info(struct super_block *sb, const char *func, 386 unsigned int line) 387 { 388 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 389 390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 392 es->s_last_error_time = cpu_to_le32(get_seconds()); 393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 394 es->s_last_error_line = cpu_to_le32(line); 395 if (!es->s_first_error_time) { 396 es->s_first_error_time = es->s_last_error_time; 397 strncpy(es->s_first_error_func, func, 398 sizeof(es->s_first_error_func)); 399 es->s_first_error_line = cpu_to_le32(line); 400 es->s_first_error_ino = es->s_last_error_ino; 401 es->s_first_error_block = es->s_last_error_block; 402 } 403 /* 404 * Start the daily error reporting function if it hasn't been 405 * started already 406 */ 407 if (!es->s_error_count) 408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 410 } 411 412 static void save_error_info(struct super_block *sb, const char *func, 413 unsigned int line) 414 { 415 __save_error_info(sb, func, line); 416 ext4_commit_super(sb, 1); 417 } 418 419 /* 420 * The del_gendisk() function uninitializes the disk-specific data 421 * structures, including the bdi structure, without telling anyone 422 * else. Once this happens, any attempt to call mark_buffer_dirty() 423 * (for example, by ext4_commit_super), will cause a kernel OOPS. 424 * This is a kludge to prevent these oops until we can put in a proper 425 * hook in del_gendisk() to inform the VFS and file system layers. 426 */ 427 static int block_device_ejected(struct super_block *sb) 428 { 429 struct inode *bd_inode = sb->s_bdev->bd_inode; 430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 431 432 return bdi->dev == NULL; 433 } 434 435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 436 { 437 struct super_block *sb = journal->j_private; 438 struct ext4_sb_info *sbi = EXT4_SB(sb); 439 int error = is_journal_aborted(journal); 440 struct ext4_journal_cb_entry *jce, *tmp; 441 442 spin_lock(&sbi->s_md_lock); 443 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 444 list_del_init(&jce->jce_list); 445 spin_unlock(&sbi->s_md_lock); 446 jce->jce_func(sb, jce, error); 447 spin_lock(&sbi->s_md_lock); 448 } 449 spin_unlock(&sbi->s_md_lock); 450 } 451 452 /* Deal with the reporting of failure conditions on a filesystem such as 453 * inconsistencies detected or read IO failures. 454 * 455 * On ext2, we can store the error state of the filesystem in the 456 * superblock. That is not possible on ext4, because we may have other 457 * write ordering constraints on the superblock which prevent us from 458 * writing it out straight away; and given that the journal is about to 459 * be aborted, we can't rely on the current, or future, transactions to 460 * write out the superblock safely. 461 * 462 * We'll just use the jbd2_journal_abort() error code to record an error in 463 * the journal instead. On recovery, the journal will complain about 464 * that error until we've noted it down and cleared it. 465 */ 466 467 static void ext4_handle_error(struct super_block *sb) 468 { 469 if (sb->s_flags & MS_RDONLY) 470 return; 471 472 if (!test_opt(sb, ERRORS_CONT)) { 473 journal_t *journal = EXT4_SB(sb)->s_journal; 474 475 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 476 if (journal) 477 jbd2_journal_abort(journal, -EIO); 478 } 479 if (test_opt(sb, ERRORS_RO)) { 480 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 481 sb->s_flags |= MS_RDONLY; 482 } 483 if (test_opt(sb, ERRORS_PANIC)) 484 panic("EXT4-fs (device %s): panic forced after error\n", 485 sb->s_id); 486 } 487 488 void __ext4_error(struct super_block *sb, const char *function, 489 unsigned int line, const char *fmt, ...) 490 { 491 struct va_format vaf; 492 va_list args; 493 494 va_start(args, fmt); 495 vaf.fmt = fmt; 496 vaf.va = &args; 497 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 498 sb->s_id, function, line, current->comm, &vaf); 499 va_end(args); 500 501 ext4_handle_error(sb); 502 } 503 504 void ext4_error_inode(struct inode *inode, const char *function, 505 unsigned int line, ext4_fsblk_t block, 506 const char *fmt, ...) 507 { 508 va_list args; 509 struct va_format vaf; 510 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 511 512 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 513 es->s_last_error_block = cpu_to_le64(block); 514 save_error_info(inode->i_sb, function, line); 515 va_start(args, fmt); 516 vaf.fmt = fmt; 517 vaf.va = &args; 518 if (block) 519 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 520 "inode #%lu: block %llu: comm %s: %pV\n", 521 inode->i_sb->s_id, function, line, inode->i_ino, 522 block, current->comm, &vaf); 523 else 524 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 525 "inode #%lu: comm %s: %pV\n", 526 inode->i_sb->s_id, function, line, inode->i_ino, 527 current->comm, &vaf); 528 va_end(args); 529 530 ext4_handle_error(inode->i_sb); 531 } 532 533 void ext4_error_file(struct file *file, const char *function, 534 unsigned int line, ext4_fsblk_t block, 535 const char *fmt, ...) 536 { 537 va_list args; 538 struct va_format vaf; 539 struct ext4_super_block *es; 540 struct inode *inode = file->f_dentry->d_inode; 541 char pathname[80], *path; 542 543 es = EXT4_SB(inode->i_sb)->s_es; 544 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 545 save_error_info(inode->i_sb, function, line); 546 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 547 if (IS_ERR(path)) 548 path = "(unknown)"; 549 va_start(args, fmt); 550 vaf.fmt = fmt; 551 vaf.va = &args; 552 if (block) 553 printk(KERN_CRIT 554 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 555 "block %llu: comm %s: path %s: %pV\n", 556 inode->i_sb->s_id, function, line, inode->i_ino, 557 block, current->comm, path, &vaf); 558 else 559 printk(KERN_CRIT 560 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 561 "comm %s: path %s: %pV\n", 562 inode->i_sb->s_id, function, line, inode->i_ino, 563 current->comm, path, &vaf); 564 va_end(args); 565 566 ext4_handle_error(inode->i_sb); 567 } 568 569 static const char *ext4_decode_error(struct super_block *sb, int errno, 570 char nbuf[16]) 571 { 572 char *errstr = NULL; 573 574 switch (errno) { 575 case -EIO: 576 errstr = "IO failure"; 577 break; 578 case -ENOMEM: 579 errstr = "Out of memory"; 580 break; 581 case -EROFS: 582 if (!sb || (EXT4_SB(sb)->s_journal && 583 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 584 errstr = "Journal has aborted"; 585 else 586 errstr = "Readonly filesystem"; 587 break; 588 default: 589 /* If the caller passed in an extra buffer for unknown 590 * errors, textualise them now. Else we just return 591 * NULL. */ 592 if (nbuf) { 593 /* Check for truncated error codes... */ 594 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 595 errstr = nbuf; 596 } 597 break; 598 } 599 600 return errstr; 601 } 602 603 /* __ext4_std_error decodes expected errors from journaling functions 604 * automatically and invokes the appropriate error response. */ 605 606 void __ext4_std_error(struct super_block *sb, const char *function, 607 unsigned int line, int errno) 608 { 609 char nbuf[16]; 610 const char *errstr; 611 612 /* Special case: if the error is EROFS, and we're not already 613 * inside a transaction, then there's really no point in logging 614 * an error. */ 615 if (errno == -EROFS && journal_current_handle() == NULL && 616 (sb->s_flags & MS_RDONLY)) 617 return; 618 619 errstr = ext4_decode_error(sb, errno, nbuf); 620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 621 sb->s_id, function, line, errstr); 622 save_error_info(sb, function, line); 623 624 ext4_handle_error(sb); 625 } 626 627 /* 628 * ext4_abort is a much stronger failure handler than ext4_error. The 629 * abort function may be used to deal with unrecoverable failures such 630 * as journal IO errors or ENOMEM at a critical moment in log management. 631 * 632 * We unconditionally force the filesystem into an ABORT|READONLY state, 633 * unless the error response on the fs has been set to panic in which 634 * case we take the easy way out and panic immediately. 635 */ 636 637 void __ext4_abort(struct super_block *sb, const char *function, 638 unsigned int line, const char *fmt, ...) 639 { 640 va_list args; 641 642 save_error_info(sb, function, line); 643 va_start(args, fmt); 644 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 645 function, line); 646 vprintk(fmt, args); 647 printk("\n"); 648 va_end(args); 649 650 if ((sb->s_flags & MS_RDONLY) == 0) { 651 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 652 sb->s_flags |= MS_RDONLY; 653 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 654 if (EXT4_SB(sb)->s_journal) 655 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 656 save_error_info(sb, function, line); 657 } 658 if (test_opt(sb, ERRORS_PANIC)) 659 panic("EXT4-fs panic from previous error\n"); 660 } 661 662 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 663 { 664 struct va_format vaf; 665 va_list args; 666 667 va_start(args, fmt); 668 vaf.fmt = fmt; 669 vaf.va = &args; 670 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 671 va_end(args); 672 } 673 674 void __ext4_warning(struct super_block *sb, const char *function, 675 unsigned int line, const char *fmt, ...) 676 { 677 struct va_format vaf; 678 va_list args; 679 680 va_start(args, fmt); 681 vaf.fmt = fmt; 682 vaf.va = &args; 683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 684 sb->s_id, function, line, &vaf); 685 va_end(args); 686 } 687 688 void __ext4_grp_locked_error(const char *function, unsigned int line, 689 struct super_block *sb, ext4_group_t grp, 690 unsigned long ino, ext4_fsblk_t block, 691 const char *fmt, ...) 692 __releases(bitlock) 693 __acquires(bitlock) 694 { 695 struct va_format vaf; 696 va_list args; 697 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 698 699 es->s_last_error_ino = cpu_to_le32(ino); 700 es->s_last_error_block = cpu_to_le64(block); 701 __save_error_info(sb, function, line); 702 703 va_start(args, fmt); 704 705 vaf.fmt = fmt; 706 vaf.va = &args; 707 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 708 sb->s_id, function, line, grp); 709 if (ino) 710 printk(KERN_CONT "inode %lu: ", ino); 711 if (block) 712 printk(KERN_CONT "block %llu:", (unsigned long long) block); 713 printk(KERN_CONT "%pV\n", &vaf); 714 va_end(args); 715 716 if (test_opt(sb, ERRORS_CONT)) { 717 ext4_commit_super(sb, 0); 718 return; 719 } 720 721 ext4_unlock_group(sb, grp); 722 ext4_handle_error(sb); 723 /* 724 * We only get here in the ERRORS_RO case; relocking the group 725 * may be dangerous, but nothing bad will happen since the 726 * filesystem will have already been marked read/only and the 727 * journal has been aborted. We return 1 as a hint to callers 728 * who might what to use the return value from 729 * ext4_grp_locked_error() to distinguish between the 730 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 731 * aggressively from the ext4 function in question, with a 732 * more appropriate error code. 733 */ 734 ext4_lock_group(sb, grp); 735 return; 736 } 737 738 void ext4_update_dynamic_rev(struct super_block *sb) 739 { 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 743 return; 744 745 ext4_warning(sb, 746 "updating to rev %d because of new feature flag, " 747 "running e2fsck is recommended", 748 EXT4_DYNAMIC_REV); 749 750 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 751 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 752 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 753 /* leave es->s_feature_*compat flags alone */ 754 /* es->s_uuid will be set by e2fsck if empty */ 755 756 /* 757 * The rest of the superblock fields should be zero, and if not it 758 * means they are likely already in use, so leave them alone. We 759 * can leave it up to e2fsck to clean up any inconsistencies there. 760 */ 761 } 762 763 /* 764 * Open the external journal device 765 */ 766 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 767 { 768 struct block_device *bdev; 769 char b[BDEVNAME_SIZE]; 770 771 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 772 if (IS_ERR(bdev)) 773 goto fail; 774 return bdev; 775 776 fail: 777 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 778 __bdevname(dev, b), PTR_ERR(bdev)); 779 return NULL; 780 } 781 782 /* 783 * Release the journal device 784 */ 785 static int ext4_blkdev_put(struct block_device *bdev) 786 { 787 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 788 } 789 790 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 791 { 792 struct block_device *bdev; 793 int ret = -ENODEV; 794 795 bdev = sbi->journal_bdev; 796 if (bdev) { 797 ret = ext4_blkdev_put(bdev); 798 sbi->journal_bdev = NULL; 799 } 800 return ret; 801 } 802 803 static inline struct inode *orphan_list_entry(struct list_head *l) 804 { 805 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 806 } 807 808 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 809 { 810 struct list_head *l; 811 812 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 813 le32_to_cpu(sbi->s_es->s_last_orphan)); 814 815 printk(KERN_ERR "sb_info orphan list:\n"); 816 list_for_each(l, &sbi->s_orphan) { 817 struct inode *inode = orphan_list_entry(l); 818 printk(KERN_ERR " " 819 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 820 inode->i_sb->s_id, inode->i_ino, inode, 821 inode->i_mode, inode->i_nlink, 822 NEXT_ORPHAN(inode)); 823 } 824 } 825 826 static void ext4_put_super(struct super_block *sb) 827 { 828 struct ext4_sb_info *sbi = EXT4_SB(sb); 829 struct ext4_super_block *es = sbi->s_es; 830 int i, err; 831 832 ext4_unregister_li_request(sb); 833 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 834 835 flush_workqueue(sbi->dio_unwritten_wq); 836 destroy_workqueue(sbi->dio_unwritten_wq); 837 838 lock_super(sb); 839 if (sbi->s_journal) { 840 err = jbd2_journal_destroy(sbi->s_journal); 841 sbi->s_journal = NULL; 842 if (err < 0) 843 ext4_abort(sb, "Couldn't clean up the journal"); 844 } 845 846 del_timer(&sbi->s_err_report); 847 ext4_release_system_zone(sb); 848 ext4_mb_release(sb); 849 ext4_ext_release(sb); 850 ext4_xattr_put_super(sb); 851 852 if (!(sb->s_flags & MS_RDONLY)) { 853 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 854 es->s_state = cpu_to_le16(sbi->s_mount_state); 855 } 856 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY)) 857 ext4_commit_super(sb, 1); 858 859 if (sbi->s_proc) { 860 remove_proc_entry("options", sbi->s_proc); 861 remove_proc_entry(sb->s_id, ext4_proc_root); 862 } 863 kobject_del(&sbi->s_kobj); 864 865 for (i = 0; i < sbi->s_gdb_count; i++) 866 brelse(sbi->s_group_desc[i]); 867 ext4_kvfree(sbi->s_group_desc); 868 ext4_kvfree(sbi->s_flex_groups); 869 percpu_counter_destroy(&sbi->s_freeclusters_counter); 870 percpu_counter_destroy(&sbi->s_freeinodes_counter); 871 percpu_counter_destroy(&sbi->s_dirs_counter); 872 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 873 brelse(sbi->s_sbh); 874 #ifdef CONFIG_QUOTA 875 for (i = 0; i < MAXQUOTAS; i++) 876 kfree(sbi->s_qf_names[i]); 877 #endif 878 879 /* Debugging code just in case the in-memory inode orphan list 880 * isn't empty. The on-disk one can be non-empty if we've 881 * detected an error and taken the fs readonly, but the 882 * in-memory list had better be clean by this point. */ 883 if (!list_empty(&sbi->s_orphan)) 884 dump_orphan_list(sb, sbi); 885 J_ASSERT(list_empty(&sbi->s_orphan)); 886 887 invalidate_bdev(sb->s_bdev); 888 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 889 /* 890 * Invalidate the journal device's buffers. We don't want them 891 * floating about in memory - the physical journal device may 892 * hotswapped, and it breaks the `ro-after' testing code. 893 */ 894 sync_blockdev(sbi->journal_bdev); 895 invalidate_bdev(sbi->journal_bdev); 896 ext4_blkdev_remove(sbi); 897 } 898 if (sbi->s_mmp_tsk) 899 kthread_stop(sbi->s_mmp_tsk); 900 sb->s_fs_info = NULL; 901 /* 902 * Now that we are completely done shutting down the 903 * superblock, we need to actually destroy the kobject. 904 */ 905 unlock_super(sb); 906 kobject_put(&sbi->s_kobj); 907 wait_for_completion(&sbi->s_kobj_unregister); 908 kfree(sbi->s_blockgroup_lock); 909 kfree(sbi); 910 } 911 912 static struct kmem_cache *ext4_inode_cachep; 913 914 /* 915 * Called inside transaction, so use GFP_NOFS 916 */ 917 static struct inode *ext4_alloc_inode(struct super_block *sb) 918 { 919 struct ext4_inode_info *ei; 920 921 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 922 if (!ei) 923 return NULL; 924 925 ei->vfs_inode.i_version = 1; 926 ei->vfs_inode.i_data.writeback_index = 0; 927 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 928 INIT_LIST_HEAD(&ei->i_prealloc_list); 929 spin_lock_init(&ei->i_prealloc_lock); 930 ei->i_reserved_data_blocks = 0; 931 ei->i_reserved_meta_blocks = 0; 932 ei->i_allocated_meta_blocks = 0; 933 ei->i_da_metadata_calc_len = 0; 934 spin_lock_init(&(ei->i_block_reservation_lock)); 935 #ifdef CONFIG_QUOTA 936 ei->i_reserved_quota = 0; 937 #endif 938 ei->jinode = NULL; 939 INIT_LIST_HEAD(&ei->i_completed_io_list); 940 spin_lock_init(&ei->i_completed_io_lock); 941 ei->cur_aio_dio = NULL; 942 ei->i_sync_tid = 0; 943 ei->i_datasync_tid = 0; 944 atomic_set(&ei->i_ioend_count, 0); 945 atomic_set(&ei->i_aiodio_unwritten, 0); 946 947 return &ei->vfs_inode; 948 } 949 950 static int ext4_drop_inode(struct inode *inode) 951 { 952 int drop = generic_drop_inode(inode); 953 954 trace_ext4_drop_inode(inode, drop); 955 return drop; 956 } 957 958 static void ext4_i_callback(struct rcu_head *head) 959 { 960 struct inode *inode = container_of(head, struct inode, i_rcu); 961 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 962 } 963 964 static void ext4_destroy_inode(struct inode *inode) 965 { 966 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 967 ext4_msg(inode->i_sb, KERN_ERR, 968 "Inode %lu (%p): orphan list check failed!", 969 inode->i_ino, EXT4_I(inode)); 970 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 971 EXT4_I(inode), sizeof(struct ext4_inode_info), 972 true); 973 dump_stack(); 974 } 975 call_rcu(&inode->i_rcu, ext4_i_callback); 976 } 977 978 static void init_once(void *foo) 979 { 980 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 981 982 INIT_LIST_HEAD(&ei->i_orphan); 983 #ifdef CONFIG_EXT4_FS_XATTR 984 init_rwsem(&ei->xattr_sem); 985 #endif 986 init_rwsem(&ei->i_data_sem); 987 inode_init_once(&ei->vfs_inode); 988 } 989 990 static int init_inodecache(void) 991 { 992 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 993 sizeof(struct ext4_inode_info), 994 0, (SLAB_RECLAIM_ACCOUNT| 995 SLAB_MEM_SPREAD), 996 init_once); 997 if (ext4_inode_cachep == NULL) 998 return -ENOMEM; 999 return 0; 1000 } 1001 1002 static void destroy_inodecache(void) 1003 { 1004 kmem_cache_destroy(ext4_inode_cachep); 1005 } 1006 1007 void ext4_clear_inode(struct inode *inode) 1008 { 1009 invalidate_inode_buffers(inode); 1010 clear_inode(inode); 1011 dquot_drop(inode); 1012 ext4_discard_preallocations(inode); 1013 if (EXT4_I(inode)->jinode) { 1014 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1015 EXT4_I(inode)->jinode); 1016 jbd2_free_inode(EXT4_I(inode)->jinode); 1017 EXT4_I(inode)->jinode = NULL; 1018 } 1019 } 1020 1021 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1022 u64 ino, u32 generation) 1023 { 1024 struct inode *inode; 1025 1026 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1027 return ERR_PTR(-ESTALE); 1028 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1029 return ERR_PTR(-ESTALE); 1030 1031 /* iget isn't really right if the inode is currently unallocated!! 1032 * 1033 * ext4_read_inode will return a bad_inode if the inode had been 1034 * deleted, so we should be safe. 1035 * 1036 * Currently we don't know the generation for parent directory, so 1037 * a generation of 0 means "accept any" 1038 */ 1039 inode = ext4_iget(sb, ino); 1040 if (IS_ERR(inode)) 1041 return ERR_CAST(inode); 1042 if (generation && inode->i_generation != generation) { 1043 iput(inode); 1044 return ERR_PTR(-ESTALE); 1045 } 1046 1047 return inode; 1048 } 1049 1050 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1051 int fh_len, int fh_type) 1052 { 1053 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1054 ext4_nfs_get_inode); 1055 } 1056 1057 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1058 int fh_len, int fh_type) 1059 { 1060 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1061 ext4_nfs_get_inode); 1062 } 1063 1064 /* 1065 * Try to release metadata pages (indirect blocks, directories) which are 1066 * mapped via the block device. Since these pages could have journal heads 1067 * which would prevent try_to_free_buffers() from freeing them, we must use 1068 * jbd2 layer's try_to_free_buffers() function to release them. 1069 */ 1070 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1071 gfp_t wait) 1072 { 1073 journal_t *journal = EXT4_SB(sb)->s_journal; 1074 1075 WARN_ON(PageChecked(page)); 1076 if (!page_has_buffers(page)) 1077 return 0; 1078 if (journal) 1079 return jbd2_journal_try_to_free_buffers(journal, page, 1080 wait & ~__GFP_WAIT); 1081 return try_to_free_buffers(page); 1082 } 1083 1084 #ifdef CONFIG_QUOTA 1085 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1086 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1087 1088 static int ext4_write_dquot(struct dquot *dquot); 1089 static int ext4_acquire_dquot(struct dquot *dquot); 1090 static int ext4_release_dquot(struct dquot *dquot); 1091 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1092 static int ext4_write_info(struct super_block *sb, int type); 1093 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1094 struct path *path); 1095 static int ext4_quota_off(struct super_block *sb, int type); 1096 static int ext4_quota_on_mount(struct super_block *sb, int type); 1097 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1098 size_t len, loff_t off); 1099 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1100 const char *data, size_t len, loff_t off); 1101 1102 static const struct dquot_operations ext4_quota_operations = { 1103 .get_reserved_space = ext4_get_reserved_space, 1104 .write_dquot = ext4_write_dquot, 1105 .acquire_dquot = ext4_acquire_dquot, 1106 .release_dquot = ext4_release_dquot, 1107 .mark_dirty = ext4_mark_dquot_dirty, 1108 .write_info = ext4_write_info, 1109 .alloc_dquot = dquot_alloc, 1110 .destroy_dquot = dquot_destroy, 1111 }; 1112 1113 static const struct quotactl_ops ext4_qctl_operations = { 1114 .quota_on = ext4_quota_on, 1115 .quota_off = ext4_quota_off, 1116 .quota_sync = dquot_quota_sync, 1117 .get_info = dquot_get_dqinfo, 1118 .set_info = dquot_set_dqinfo, 1119 .get_dqblk = dquot_get_dqblk, 1120 .set_dqblk = dquot_set_dqblk 1121 }; 1122 #endif 1123 1124 static const struct super_operations ext4_sops = { 1125 .alloc_inode = ext4_alloc_inode, 1126 .destroy_inode = ext4_destroy_inode, 1127 .write_inode = ext4_write_inode, 1128 .dirty_inode = ext4_dirty_inode, 1129 .drop_inode = ext4_drop_inode, 1130 .evict_inode = ext4_evict_inode, 1131 .put_super = ext4_put_super, 1132 .sync_fs = ext4_sync_fs, 1133 .freeze_fs = ext4_freeze, 1134 .unfreeze_fs = ext4_unfreeze, 1135 .statfs = ext4_statfs, 1136 .remount_fs = ext4_remount, 1137 .show_options = ext4_show_options, 1138 #ifdef CONFIG_QUOTA 1139 .quota_read = ext4_quota_read, 1140 .quota_write = ext4_quota_write, 1141 #endif 1142 .bdev_try_to_free_page = bdev_try_to_free_page, 1143 }; 1144 1145 static const struct super_operations ext4_nojournal_sops = { 1146 .alloc_inode = ext4_alloc_inode, 1147 .destroy_inode = ext4_destroy_inode, 1148 .write_inode = ext4_write_inode, 1149 .dirty_inode = ext4_dirty_inode, 1150 .drop_inode = ext4_drop_inode, 1151 .evict_inode = ext4_evict_inode, 1152 .write_super = ext4_write_super, 1153 .put_super = ext4_put_super, 1154 .statfs = ext4_statfs, 1155 .remount_fs = ext4_remount, 1156 .show_options = ext4_show_options, 1157 #ifdef CONFIG_QUOTA 1158 .quota_read = ext4_quota_read, 1159 .quota_write = ext4_quota_write, 1160 #endif 1161 .bdev_try_to_free_page = bdev_try_to_free_page, 1162 }; 1163 1164 static const struct export_operations ext4_export_ops = { 1165 .fh_to_dentry = ext4_fh_to_dentry, 1166 .fh_to_parent = ext4_fh_to_parent, 1167 .get_parent = ext4_get_parent, 1168 }; 1169 1170 enum { 1171 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1172 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1173 Opt_nouid32, Opt_debug, Opt_removed, 1174 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1175 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1176 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1177 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1178 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1179 Opt_data_err_abort, Opt_data_err_ignore, 1180 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1181 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1182 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1183 Opt_usrquota, Opt_grpquota, Opt_i_version, 1184 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1185 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1186 Opt_inode_readahead_blks, Opt_journal_ioprio, 1187 Opt_dioread_nolock, Opt_dioread_lock, 1188 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1189 }; 1190 1191 static const match_table_t tokens = { 1192 {Opt_bsd_df, "bsddf"}, 1193 {Opt_minix_df, "minixdf"}, 1194 {Opt_grpid, "grpid"}, 1195 {Opt_grpid, "bsdgroups"}, 1196 {Opt_nogrpid, "nogrpid"}, 1197 {Opt_nogrpid, "sysvgroups"}, 1198 {Opt_resgid, "resgid=%u"}, 1199 {Opt_resuid, "resuid=%u"}, 1200 {Opt_sb, "sb=%u"}, 1201 {Opt_err_cont, "errors=continue"}, 1202 {Opt_err_panic, "errors=panic"}, 1203 {Opt_err_ro, "errors=remount-ro"}, 1204 {Opt_nouid32, "nouid32"}, 1205 {Opt_debug, "debug"}, 1206 {Opt_removed, "oldalloc"}, 1207 {Opt_removed, "orlov"}, 1208 {Opt_user_xattr, "user_xattr"}, 1209 {Opt_nouser_xattr, "nouser_xattr"}, 1210 {Opt_acl, "acl"}, 1211 {Opt_noacl, "noacl"}, 1212 {Opt_noload, "norecovery"}, 1213 {Opt_noload, "noload"}, 1214 {Opt_removed, "nobh"}, 1215 {Opt_removed, "bh"}, 1216 {Opt_commit, "commit=%u"}, 1217 {Opt_min_batch_time, "min_batch_time=%u"}, 1218 {Opt_max_batch_time, "max_batch_time=%u"}, 1219 {Opt_journal_dev, "journal_dev=%u"}, 1220 {Opt_journal_checksum, "journal_checksum"}, 1221 {Opt_journal_async_commit, "journal_async_commit"}, 1222 {Opt_abort, "abort"}, 1223 {Opt_data_journal, "data=journal"}, 1224 {Opt_data_ordered, "data=ordered"}, 1225 {Opt_data_writeback, "data=writeback"}, 1226 {Opt_data_err_abort, "data_err=abort"}, 1227 {Opt_data_err_ignore, "data_err=ignore"}, 1228 {Opt_offusrjquota, "usrjquota="}, 1229 {Opt_usrjquota, "usrjquota=%s"}, 1230 {Opt_offgrpjquota, "grpjquota="}, 1231 {Opt_grpjquota, "grpjquota=%s"}, 1232 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1233 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1234 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1235 {Opt_grpquota, "grpquota"}, 1236 {Opt_noquota, "noquota"}, 1237 {Opt_quota, "quota"}, 1238 {Opt_usrquota, "usrquota"}, 1239 {Opt_barrier, "barrier=%u"}, 1240 {Opt_barrier, "barrier"}, 1241 {Opt_nobarrier, "nobarrier"}, 1242 {Opt_i_version, "i_version"}, 1243 {Opt_stripe, "stripe=%u"}, 1244 {Opt_delalloc, "delalloc"}, 1245 {Opt_nodelalloc, "nodelalloc"}, 1246 {Opt_mblk_io_submit, "mblk_io_submit"}, 1247 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1248 {Opt_block_validity, "block_validity"}, 1249 {Opt_noblock_validity, "noblock_validity"}, 1250 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1251 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1252 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1253 {Opt_auto_da_alloc, "auto_da_alloc"}, 1254 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1255 {Opt_dioread_nolock, "dioread_nolock"}, 1256 {Opt_dioread_lock, "dioread_lock"}, 1257 {Opt_discard, "discard"}, 1258 {Opt_nodiscard, "nodiscard"}, 1259 {Opt_init_itable, "init_itable=%u"}, 1260 {Opt_init_itable, "init_itable"}, 1261 {Opt_noinit_itable, "noinit_itable"}, 1262 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1263 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1264 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1265 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1266 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1267 {Opt_err, NULL}, 1268 }; 1269 1270 static ext4_fsblk_t get_sb_block(void **data) 1271 { 1272 ext4_fsblk_t sb_block; 1273 char *options = (char *) *data; 1274 1275 if (!options || strncmp(options, "sb=", 3) != 0) 1276 return 1; /* Default location */ 1277 1278 options += 3; 1279 /* TODO: use simple_strtoll with >32bit ext4 */ 1280 sb_block = simple_strtoul(options, &options, 0); 1281 if (*options && *options != ',') { 1282 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1283 (char *) *data); 1284 return 1; 1285 } 1286 if (*options == ',') 1287 options++; 1288 *data = (void *) options; 1289 1290 return sb_block; 1291 } 1292 1293 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1294 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1295 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1296 1297 #ifdef CONFIG_QUOTA 1298 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1299 { 1300 struct ext4_sb_info *sbi = EXT4_SB(sb); 1301 char *qname; 1302 1303 if (sb_any_quota_loaded(sb) && 1304 !sbi->s_qf_names[qtype]) { 1305 ext4_msg(sb, KERN_ERR, 1306 "Cannot change journaled " 1307 "quota options when quota turned on"); 1308 return -1; 1309 } 1310 qname = match_strdup(args); 1311 if (!qname) { 1312 ext4_msg(sb, KERN_ERR, 1313 "Not enough memory for storing quotafile name"); 1314 return -1; 1315 } 1316 if (sbi->s_qf_names[qtype] && 1317 strcmp(sbi->s_qf_names[qtype], qname)) { 1318 ext4_msg(sb, KERN_ERR, 1319 "%s quota file already specified", QTYPE2NAME(qtype)); 1320 kfree(qname); 1321 return -1; 1322 } 1323 sbi->s_qf_names[qtype] = qname; 1324 if (strchr(sbi->s_qf_names[qtype], '/')) { 1325 ext4_msg(sb, KERN_ERR, 1326 "quotafile must be on filesystem root"); 1327 kfree(sbi->s_qf_names[qtype]); 1328 sbi->s_qf_names[qtype] = NULL; 1329 return -1; 1330 } 1331 set_opt(sb, QUOTA); 1332 return 1; 1333 } 1334 1335 static int clear_qf_name(struct super_block *sb, int qtype) 1336 { 1337 1338 struct ext4_sb_info *sbi = EXT4_SB(sb); 1339 1340 if (sb_any_quota_loaded(sb) && 1341 sbi->s_qf_names[qtype]) { 1342 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1343 " when quota turned on"); 1344 return -1; 1345 } 1346 /* 1347 * The space will be released later when all options are confirmed 1348 * to be correct 1349 */ 1350 sbi->s_qf_names[qtype] = NULL; 1351 return 1; 1352 } 1353 #endif 1354 1355 #define MOPT_SET 0x0001 1356 #define MOPT_CLEAR 0x0002 1357 #define MOPT_NOSUPPORT 0x0004 1358 #define MOPT_EXPLICIT 0x0008 1359 #define MOPT_CLEAR_ERR 0x0010 1360 #define MOPT_GTE0 0x0020 1361 #ifdef CONFIG_QUOTA 1362 #define MOPT_Q 0 1363 #define MOPT_QFMT 0x0040 1364 #else 1365 #define MOPT_Q MOPT_NOSUPPORT 1366 #define MOPT_QFMT MOPT_NOSUPPORT 1367 #endif 1368 #define MOPT_DATAJ 0x0080 1369 1370 static const struct mount_opts { 1371 int token; 1372 int mount_opt; 1373 int flags; 1374 } ext4_mount_opts[] = { 1375 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1376 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1377 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1378 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1379 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1380 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1381 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1382 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1383 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1384 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1385 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1386 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1387 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1388 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1389 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1390 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1391 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1392 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1393 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1394 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1395 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1396 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1398 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1399 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1400 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1401 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1402 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1403 {Opt_commit, 0, MOPT_GTE0}, 1404 {Opt_max_batch_time, 0, MOPT_GTE0}, 1405 {Opt_min_batch_time, 0, MOPT_GTE0}, 1406 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1407 {Opt_init_itable, 0, MOPT_GTE0}, 1408 {Opt_stripe, 0, MOPT_GTE0}, 1409 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1410 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1411 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1412 #ifdef CONFIG_EXT4_FS_XATTR 1413 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1414 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1415 #else 1416 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1417 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1418 #endif 1419 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1420 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1421 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1422 #else 1423 {Opt_acl, 0, MOPT_NOSUPPORT}, 1424 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1425 #endif 1426 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1427 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1428 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1429 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1430 MOPT_SET | MOPT_Q}, 1431 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1432 MOPT_SET | MOPT_Q}, 1433 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1434 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1435 {Opt_usrjquota, 0, MOPT_Q}, 1436 {Opt_grpjquota, 0, MOPT_Q}, 1437 {Opt_offusrjquota, 0, MOPT_Q}, 1438 {Opt_offgrpjquota, 0, MOPT_Q}, 1439 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1440 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1441 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1442 {Opt_err, 0, 0} 1443 }; 1444 1445 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1446 substring_t *args, unsigned long *journal_devnum, 1447 unsigned int *journal_ioprio, int is_remount) 1448 { 1449 struct ext4_sb_info *sbi = EXT4_SB(sb); 1450 const struct mount_opts *m; 1451 kuid_t uid; 1452 kgid_t gid; 1453 int arg = 0; 1454 1455 #ifdef CONFIG_QUOTA 1456 if (token == Opt_usrjquota) 1457 return set_qf_name(sb, USRQUOTA, &args[0]); 1458 else if (token == Opt_grpjquota) 1459 return set_qf_name(sb, GRPQUOTA, &args[0]); 1460 else if (token == Opt_offusrjquota) 1461 return clear_qf_name(sb, USRQUOTA); 1462 else if (token == Opt_offgrpjquota) 1463 return clear_qf_name(sb, GRPQUOTA); 1464 #endif 1465 if (args->from && match_int(args, &arg)) 1466 return -1; 1467 switch (token) { 1468 case Opt_noacl: 1469 case Opt_nouser_xattr: 1470 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1471 break; 1472 case Opt_sb: 1473 return 1; /* handled by get_sb_block() */ 1474 case Opt_removed: 1475 ext4_msg(sb, KERN_WARNING, 1476 "Ignoring removed %s option", opt); 1477 return 1; 1478 case Opt_resuid: 1479 uid = make_kuid(current_user_ns(), arg); 1480 if (!uid_valid(uid)) { 1481 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1482 return -1; 1483 } 1484 sbi->s_resuid = uid; 1485 return 1; 1486 case Opt_resgid: 1487 gid = make_kgid(current_user_ns(), arg); 1488 if (!gid_valid(gid)) { 1489 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1490 return -1; 1491 } 1492 sbi->s_resgid = gid; 1493 return 1; 1494 case Opt_abort: 1495 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1496 return 1; 1497 case Opt_i_version: 1498 sb->s_flags |= MS_I_VERSION; 1499 return 1; 1500 case Opt_journal_dev: 1501 if (is_remount) { 1502 ext4_msg(sb, KERN_ERR, 1503 "Cannot specify journal on remount"); 1504 return -1; 1505 } 1506 *journal_devnum = arg; 1507 return 1; 1508 case Opt_journal_ioprio: 1509 if (arg < 0 || arg > 7) 1510 return -1; 1511 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1512 return 1; 1513 } 1514 1515 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1516 if (token != m->token) 1517 continue; 1518 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1519 return -1; 1520 if (m->flags & MOPT_EXPLICIT) 1521 set_opt2(sb, EXPLICIT_DELALLOC); 1522 if (m->flags & MOPT_CLEAR_ERR) 1523 clear_opt(sb, ERRORS_MASK); 1524 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1525 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1526 "options when quota turned on"); 1527 return -1; 1528 } 1529 1530 if (m->flags & MOPT_NOSUPPORT) { 1531 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1532 } else if (token == Opt_commit) { 1533 if (arg == 0) 1534 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1535 sbi->s_commit_interval = HZ * arg; 1536 } else if (token == Opt_max_batch_time) { 1537 if (arg == 0) 1538 arg = EXT4_DEF_MAX_BATCH_TIME; 1539 sbi->s_max_batch_time = arg; 1540 } else if (token == Opt_min_batch_time) { 1541 sbi->s_min_batch_time = arg; 1542 } else if (token == Opt_inode_readahead_blks) { 1543 if (arg > (1 << 30)) 1544 return -1; 1545 if (arg && !is_power_of_2(arg)) { 1546 ext4_msg(sb, KERN_ERR, 1547 "EXT4-fs: inode_readahead_blks" 1548 " must be a power of 2"); 1549 return -1; 1550 } 1551 sbi->s_inode_readahead_blks = arg; 1552 } else if (token == Opt_init_itable) { 1553 set_opt(sb, INIT_INODE_TABLE); 1554 if (!args->from) 1555 arg = EXT4_DEF_LI_WAIT_MULT; 1556 sbi->s_li_wait_mult = arg; 1557 } else if (token == Opt_stripe) { 1558 sbi->s_stripe = arg; 1559 } else if (m->flags & MOPT_DATAJ) { 1560 if (is_remount) { 1561 if (!sbi->s_journal) 1562 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1563 else if (test_opt(sb, DATA_FLAGS) != 1564 m->mount_opt) { 1565 ext4_msg(sb, KERN_ERR, 1566 "Cannot change data mode on remount"); 1567 return -1; 1568 } 1569 } else { 1570 clear_opt(sb, DATA_FLAGS); 1571 sbi->s_mount_opt |= m->mount_opt; 1572 } 1573 #ifdef CONFIG_QUOTA 1574 } else if (m->flags & MOPT_QFMT) { 1575 if (sb_any_quota_loaded(sb) && 1576 sbi->s_jquota_fmt != m->mount_opt) { 1577 ext4_msg(sb, KERN_ERR, "Cannot " 1578 "change journaled quota options " 1579 "when quota turned on"); 1580 return -1; 1581 } 1582 sbi->s_jquota_fmt = m->mount_opt; 1583 #endif 1584 } else { 1585 if (!args->from) 1586 arg = 1; 1587 if (m->flags & MOPT_CLEAR) 1588 arg = !arg; 1589 else if (unlikely(!(m->flags & MOPT_SET))) { 1590 ext4_msg(sb, KERN_WARNING, 1591 "buggy handling of option %s", opt); 1592 WARN_ON(1); 1593 return -1; 1594 } 1595 if (arg != 0) 1596 sbi->s_mount_opt |= m->mount_opt; 1597 else 1598 sbi->s_mount_opt &= ~m->mount_opt; 1599 } 1600 return 1; 1601 } 1602 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1603 "or missing value", opt); 1604 return -1; 1605 } 1606 1607 static int parse_options(char *options, struct super_block *sb, 1608 unsigned long *journal_devnum, 1609 unsigned int *journal_ioprio, 1610 int is_remount) 1611 { 1612 #ifdef CONFIG_QUOTA 1613 struct ext4_sb_info *sbi = EXT4_SB(sb); 1614 #endif 1615 char *p; 1616 substring_t args[MAX_OPT_ARGS]; 1617 int token; 1618 1619 if (!options) 1620 return 1; 1621 1622 while ((p = strsep(&options, ",")) != NULL) { 1623 if (!*p) 1624 continue; 1625 /* 1626 * Initialize args struct so we know whether arg was 1627 * found; some options take optional arguments. 1628 */ 1629 args[0].to = args[0].from = 0; 1630 token = match_token(p, tokens, args); 1631 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1632 journal_ioprio, is_remount) < 0) 1633 return 0; 1634 } 1635 #ifdef CONFIG_QUOTA 1636 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1637 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1638 clear_opt(sb, USRQUOTA); 1639 1640 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1641 clear_opt(sb, GRPQUOTA); 1642 1643 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1644 ext4_msg(sb, KERN_ERR, "old and new quota " 1645 "format mixing"); 1646 return 0; 1647 } 1648 1649 if (!sbi->s_jquota_fmt) { 1650 ext4_msg(sb, KERN_ERR, "journaled quota format " 1651 "not specified"); 1652 return 0; 1653 } 1654 } else { 1655 if (sbi->s_jquota_fmt) { 1656 ext4_msg(sb, KERN_ERR, "journaled quota format " 1657 "specified with no journaling " 1658 "enabled"); 1659 return 0; 1660 } 1661 } 1662 #endif 1663 return 1; 1664 } 1665 1666 static inline void ext4_show_quota_options(struct seq_file *seq, 1667 struct super_block *sb) 1668 { 1669 #if defined(CONFIG_QUOTA) 1670 struct ext4_sb_info *sbi = EXT4_SB(sb); 1671 1672 if (sbi->s_jquota_fmt) { 1673 char *fmtname = ""; 1674 1675 switch (sbi->s_jquota_fmt) { 1676 case QFMT_VFS_OLD: 1677 fmtname = "vfsold"; 1678 break; 1679 case QFMT_VFS_V0: 1680 fmtname = "vfsv0"; 1681 break; 1682 case QFMT_VFS_V1: 1683 fmtname = "vfsv1"; 1684 break; 1685 } 1686 seq_printf(seq, ",jqfmt=%s", fmtname); 1687 } 1688 1689 if (sbi->s_qf_names[USRQUOTA]) 1690 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1691 1692 if (sbi->s_qf_names[GRPQUOTA]) 1693 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1694 1695 if (test_opt(sb, USRQUOTA)) 1696 seq_puts(seq, ",usrquota"); 1697 1698 if (test_opt(sb, GRPQUOTA)) 1699 seq_puts(seq, ",grpquota"); 1700 #endif 1701 } 1702 1703 static const char *token2str(int token) 1704 { 1705 static const struct match_token *t; 1706 1707 for (t = tokens; t->token != Opt_err; t++) 1708 if (t->token == token && !strchr(t->pattern, '=')) 1709 break; 1710 return t->pattern; 1711 } 1712 1713 /* 1714 * Show an option if 1715 * - it's set to a non-default value OR 1716 * - if the per-sb default is different from the global default 1717 */ 1718 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1719 int nodefs) 1720 { 1721 struct ext4_sb_info *sbi = EXT4_SB(sb); 1722 struct ext4_super_block *es = sbi->s_es; 1723 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1724 const struct mount_opts *m; 1725 char sep = nodefs ? '\n' : ','; 1726 1727 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1728 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1729 1730 if (sbi->s_sb_block != 1) 1731 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1732 1733 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1734 int want_set = m->flags & MOPT_SET; 1735 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1736 (m->flags & MOPT_CLEAR_ERR)) 1737 continue; 1738 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1739 continue; /* skip if same as the default */ 1740 if ((want_set && 1741 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1742 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1743 continue; /* select Opt_noFoo vs Opt_Foo */ 1744 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1745 } 1746 1747 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1748 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1749 SEQ_OPTS_PRINT("resuid=%u", 1750 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1751 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1752 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1753 SEQ_OPTS_PRINT("resgid=%u", 1754 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1755 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1756 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1757 SEQ_OPTS_PUTS("errors=remount-ro"); 1758 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1759 SEQ_OPTS_PUTS("errors=continue"); 1760 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1761 SEQ_OPTS_PUTS("errors=panic"); 1762 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1763 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1764 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1765 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1766 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1767 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1768 if (sb->s_flags & MS_I_VERSION) 1769 SEQ_OPTS_PUTS("i_version"); 1770 if (nodefs || sbi->s_stripe) 1771 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1772 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1773 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1774 SEQ_OPTS_PUTS("data=journal"); 1775 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1776 SEQ_OPTS_PUTS("data=ordered"); 1777 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1778 SEQ_OPTS_PUTS("data=writeback"); 1779 } 1780 if (nodefs || 1781 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1782 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1783 sbi->s_inode_readahead_blks); 1784 1785 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1786 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1787 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1788 1789 ext4_show_quota_options(seq, sb); 1790 return 0; 1791 } 1792 1793 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1794 { 1795 return _ext4_show_options(seq, root->d_sb, 0); 1796 } 1797 1798 static int options_seq_show(struct seq_file *seq, void *offset) 1799 { 1800 struct super_block *sb = seq->private; 1801 int rc; 1802 1803 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1804 rc = _ext4_show_options(seq, sb, 1); 1805 seq_puts(seq, "\n"); 1806 return rc; 1807 } 1808 1809 static int options_open_fs(struct inode *inode, struct file *file) 1810 { 1811 return single_open(file, options_seq_show, PDE(inode)->data); 1812 } 1813 1814 static const struct file_operations ext4_seq_options_fops = { 1815 .owner = THIS_MODULE, 1816 .open = options_open_fs, 1817 .read = seq_read, 1818 .llseek = seq_lseek, 1819 .release = single_release, 1820 }; 1821 1822 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1823 int read_only) 1824 { 1825 struct ext4_sb_info *sbi = EXT4_SB(sb); 1826 int res = 0; 1827 1828 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1829 ext4_msg(sb, KERN_ERR, "revision level too high, " 1830 "forcing read-only mode"); 1831 res = MS_RDONLY; 1832 } 1833 if (read_only) 1834 goto done; 1835 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1836 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1837 "running e2fsck is recommended"); 1838 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1839 ext4_msg(sb, KERN_WARNING, 1840 "warning: mounting fs with errors, " 1841 "running e2fsck is recommended"); 1842 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1843 le16_to_cpu(es->s_mnt_count) >= 1844 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1845 ext4_msg(sb, KERN_WARNING, 1846 "warning: maximal mount count reached, " 1847 "running e2fsck is recommended"); 1848 else if (le32_to_cpu(es->s_checkinterval) && 1849 (le32_to_cpu(es->s_lastcheck) + 1850 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1851 ext4_msg(sb, KERN_WARNING, 1852 "warning: checktime reached, " 1853 "running e2fsck is recommended"); 1854 if (!sbi->s_journal) 1855 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1856 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1857 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1858 le16_add_cpu(&es->s_mnt_count, 1); 1859 es->s_mtime = cpu_to_le32(get_seconds()); 1860 ext4_update_dynamic_rev(sb); 1861 if (sbi->s_journal) 1862 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1863 1864 ext4_commit_super(sb, 1); 1865 done: 1866 if (test_opt(sb, DEBUG)) 1867 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1868 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1869 sb->s_blocksize, 1870 sbi->s_groups_count, 1871 EXT4_BLOCKS_PER_GROUP(sb), 1872 EXT4_INODES_PER_GROUP(sb), 1873 sbi->s_mount_opt, sbi->s_mount_opt2); 1874 1875 cleancache_init_fs(sb); 1876 return res; 1877 } 1878 1879 static int ext4_fill_flex_info(struct super_block *sb) 1880 { 1881 struct ext4_sb_info *sbi = EXT4_SB(sb); 1882 struct ext4_group_desc *gdp = NULL; 1883 ext4_group_t flex_group_count; 1884 ext4_group_t flex_group; 1885 unsigned int groups_per_flex = 0; 1886 size_t size; 1887 int i; 1888 1889 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1890 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1891 sbi->s_log_groups_per_flex = 0; 1892 return 1; 1893 } 1894 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1895 1896 /* We allocate both existing and potentially added groups */ 1897 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1898 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1899 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1900 size = flex_group_count * sizeof(struct flex_groups); 1901 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 1902 if (sbi->s_flex_groups == NULL) { 1903 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 1904 flex_group_count); 1905 goto failed; 1906 } 1907 1908 for (i = 0; i < sbi->s_groups_count; i++) { 1909 gdp = ext4_get_group_desc(sb, i, NULL); 1910 1911 flex_group = ext4_flex_group(sbi, i); 1912 atomic_add(ext4_free_inodes_count(sb, gdp), 1913 &sbi->s_flex_groups[flex_group].free_inodes); 1914 atomic_add(ext4_free_group_clusters(sb, gdp), 1915 &sbi->s_flex_groups[flex_group].free_clusters); 1916 atomic_add(ext4_used_dirs_count(sb, gdp), 1917 &sbi->s_flex_groups[flex_group].used_dirs); 1918 } 1919 1920 return 1; 1921 failed: 1922 return 0; 1923 } 1924 1925 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1926 struct ext4_group_desc *gdp) 1927 { 1928 __u16 crc = 0; 1929 1930 if (sbi->s_es->s_feature_ro_compat & 1931 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1932 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1933 __le32 le_group = cpu_to_le32(block_group); 1934 1935 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1936 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1937 crc = crc16(crc, (__u8 *)gdp, offset); 1938 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1939 /* for checksum of struct ext4_group_desc do the rest...*/ 1940 if ((sbi->s_es->s_feature_incompat & 1941 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1942 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1943 crc = crc16(crc, (__u8 *)gdp + offset, 1944 le16_to_cpu(sbi->s_es->s_desc_size) - 1945 offset); 1946 } 1947 1948 return cpu_to_le16(crc); 1949 } 1950 1951 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1952 struct ext4_group_desc *gdp) 1953 { 1954 if ((sbi->s_es->s_feature_ro_compat & 1955 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1956 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1957 return 0; 1958 1959 return 1; 1960 } 1961 1962 /* Called at mount-time, super-block is locked */ 1963 static int ext4_check_descriptors(struct super_block *sb, 1964 ext4_group_t *first_not_zeroed) 1965 { 1966 struct ext4_sb_info *sbi = EXT4_SB(sb); 1967 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1968 ext4_fsblk_t last_block; 1969 ext4_fsblk_t block_bitmap; 1970 ext4_fsblk_t inode_bitmap; 1971 ext4_fsblk_t inode_table; 1972 int flexbg_flag = 0; 1973 ext4_group_t i, grp = sbi->s_groups_count; 1974 1975 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1976 flexbg_flag = 1; 1977 1978 ext4_debug("Checking group descriptors"); 1979 1980 for (i = 0; i < sbi->s_groups_count; i++) { 1981 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1982 1983 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1984 last_block = ext4_blocks_count(sbi->s_es) - 1; 1985 else 1986 last_block = first_block + 1987 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1988 1989 if ((grp == sbi->s_groups_count) && 1990 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 1991 grp = i; 1992 1993 block_bitmap = ext4_block_bitmap(sb, gdp); 1994 if (block_bitmap < first_block || block_bitmap > last_block) { 1995 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1996 "Block bitmap for group %u not in group " 1997 "(block %llu)!", i, block_bitmap); 1998 return 0; 1999 } 2000 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2001 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2002 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2003 "Inode bitmap for group %u not in group " 2004 "(block %llu)!", i, inode_bitmap); 2005 return 0; 2006 } 2007 inode_table = ext4_inode_table(sb, gdp); 2008 if (inode_table < first_block || 2009 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2010 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2011 "Inode table for group %u not in group " 2012 "(block %llu)!", i, inode_table); 2013 return 0; 2014 } 2015 ext4_lock_group(sb, i); 2016 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2017 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2018 "Checksum for group %u failed (%u!=%u)", 2019 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2020 gdp)), le16_to_cpu(gdp->bg_checksum)); 2021 if (!(sb->s_flags & MS_RDONLY)) { 2022 ext4_unlock_group(sb, i); 2023 return 0; 2024 } 2025 } 2026 ext4_unlock_group(sb, i); 2027 if (!flexbg_flag) 2028 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2029 } 2030 if (NULL != first_not_zeroed) 2031 *first_not_zeroed = grp; 2032 2033 ext4_free_blocks_count_set(sbi->s_es, 2034 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2035 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2036 return 1; 2037 } 2038 2039 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2040 * the superblock) which were deleted from all directories, but held open by 2041 * a process at the time of a crash. We walk the list and try to delete these 2042 * inodes at recovery time (only with a read-write filesystem). 2043 * 2044 * In order to keep the orphan inode chain consistent during traversal (in 2045 * case of crash during recovery), we link each inode into the superblock 2046 * orphan list_head and handle it the same way as an inode deletion during 2047 * normal operation (which journals the operations for us). 2048 * 2049 * We only do an iget() and an iput() on each inode, which is very safe if we 2050 * accidentally point at an in-use or already deleted inode. The worst that 2051 * can happen in this case is that we get a "bit already cleared" message from 2052 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2053 * e2fsck was run on this filesystem, and it must have already done the orphan 2054 * inode cleanup for us, so we can safely abort without any further action. 2055 */ 2056 static void ext4_orphan_cleanup(struct super_block *sb, 2057 struct ext4_super_block *es) 2058 { 2059 unsigned int s_flags = sb->s_flags; 2060 int nr_orphans = 0, nr_truncates = 0; 2061 #ifdef CONFIG_QUOTA 2062 int i; 2063 #endif 2064 if (!es->s_last_orphan) { 2065 jbd_debug(4, "no orphan inodes to clean up\n"); 2066 return; 2067 } 2068 2069 if (bdev_read_only(sb->s_bdev)) { 2070 ext4_msg(sb, KERN_ERR, "write access " 2071 "unavailable, skipping orphan cleanup"); 2072 return; 2073 } 2074 2075 /* Check if feature set would not allow a r/w mount */ 2076 if (!ext4_feature_set_ok(sb, 0)) { 2077 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2078 "unknown ROCOMPAT features"); 2079 return; 2080 } 2081 2082 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2083 if (es->s_last_orphan) 2084 jbd_debug(1, "Errors on filesystem, " 2085 "clearing orphan list.\n"); 2086 es->s_last_orphan = 0; 2087 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2088 return; 2089 } 2090 2091 if (s_flags & MS_RDONLY) { 2092 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2093 sb->s_flags &= ~MS_RDONLY; 2094 } 2095 #ifdef CONFIG_QUOTA 2096 /* Needed for iput() to work correctly and not trash data */ 2097 sb->s_flags |= MS_ACTIVE; 2098 /* Turn on quotas so that they are updated correctly */ 2099 for (i = 0; i < MAXQUOTAS; i++) { 2100 if (EXT4_SB(sb)->s_qf_names[i]) { 2101 int ret = ext4_quota_on_mount(sb, i); 2102 if (ret < 0) 2103 ext4_msg(sb, KERN_ERR, 2104 "Cannot turn on journaled " 2105 "quota: error %d", ret); 2106 } 2107 } 2108 #endif 2109 2110 while (es->s_last_orphan) { 2111 struct inode *inode; 2112 2113 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2114 if (IS_ERR(inode)) { 2115 es->s_last_orphan = 0; 2116 break; 2117 } 2118 2119 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2120 dquot_initialize(inode); 2121 if (inode->i_nlink) { 2122 ext4_msg(sb, KERN_DEBUG, 2123 "%s: truncating inode %lu to %lld bytes", 2124 __func__, inode->i_ino, inode->i_size); 2125 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2126 inode->i_ino, inode->i_size); 2127 ext4_truncate(inode); 2128 nr_truncates++; 2129 } else { 2130 ext4_msg(sb, KERN_DEBUG, 2131 "%s: deleting unreferenced inode %lu", 2132 __func__, inode->i_ino); 2133 jbd_debug(2, "deleting unreferenced inode %lu\n", 2134 inode->i_ino); 2135 nr_orphans++; 2136 } 2137 iput(inode); /* The delete magic happens here! */ 2138 } 2139 2140 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2141 2142 if (nr_orphans) 2143 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2144 PLURAL(nr_orphans)); 2145 if (nr_truncates) 2146 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2147 PLURAL(nr_truncates)); 2148 #ifdef CONFIG_QUOTA 2149 /* Turn quotas off */ 2150 for (i = 0; i < MAXQUOTAS; i++) { 2151 if (sb_dqopt(sb)->files[i]) 2152 dquot_quota_off(sb, i); 2153 } 2154 #endif 2155 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2156 } 2157 2158 /* 2159 * Maximal extent format file size. 2160 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2161 * extent format containers, within a sector_t, and within i_blocks 2162 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2163 * so that won't be a limiting factor. 2164 * 2165 * However there is other limiting factor. We do store extents in the form 2166 * of starting block and length, hence the resulting length of the extent 2167 * covering maximum file size must fit into on-disk format containers as 2168 * well. Given that length is always by 1 unit bigger than max unit (because 2169 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2170 * 2171 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2172 */ 2173 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2174 { 2175 loff_t res; 2176 loff_t upper_limit = MAX_LFS_FILESIZE; 2177 2178 /* small i_blocks in vfs inode? */ 2179 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2180 /* 2181 * CONFIG_LBDAF is not enabled implies the inode 2182 * i_block represent total blocks in 512 bytes 2183 * 32 == size of vfs inode i_blocks * 8 2184 */ 2185 upper_limit = (1LL << 32) - 1; 2186 2187 /* total blocks in file system block size */ 2188 upper_limit >>= (blkbits - 9); 2189 upper_limit <<= blkbits; 2190 } 2191 2192 /* 2193 * 32-bit extent-start container, ee_block. We lower the maxbytes 2194 * by one fs block, so ee_len can cover the extent of maximum file 2195 * size 2196 */ 2197 res = (1LL << 32) - 1; 2198 res <<= blkbits; 2199 2200 /* Sanity check against vm- & vfs- imposed limits */ 2201 if (res > upper_limit) 2202 res = upper_limit; 2203 2204 return res; 2205 } 2206 2207 /* 2208 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2209 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2210 * We need to be 1 filesystem block less than the 2^48 sector limit. 2211 */ 2212 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2213 { 2214 loff_t res = EXT4_NDIR_BLOCKS; 2215 int meta_blocks; 2216 loff_t upper_limit; 2217 /* This is calculated to be the largest file size for a dense, block 2218 * mapped file such that the file's total number of 512-byte sectors, 2219 * including data and all indirect blocks, does not exceed (2^48 - 1). 2220 * 2221 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2222 * number of 512-byte sectors of the file. 2223 */ 2224 2225 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2226 /* 2227 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2228 * the inode i_block field represents total file blocks in 2229 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2230 */ 2231 upper_limit = (1LL << 32) - 1; 2232 2233 /* total blocks in file system block size */ 2234 upper_limit >>= (bits - 9); 2235 2236 } else { 2237 /* 2238 * We use 48 bit ext4_inode i_blocks 2239 * With EXT4_HUGE_FILE_FL set the i_blocks 2240 * represent total number of blocks in 2241 * file system block size 2242 */ 2243 upper_limit = (1LL << 48) - 1; 2244 2245 } 2246 2247 /* indirect blocks */ 2248 meta_blocks = 1; 2249 /* double indirect blocks */ 2250 meta_blocks += 1 + (1LL << (bits-2)); 2251 /* tripple indirect blocks */ 2252 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2253 2254 upper_limit -= meta_blocks; 2255 upper_limit <<= bits; 2256 2257 res += 1LL << (bits-2); 2258 res += 1LL << (2*(bits-2)); 2259 res += 1LL << (3*(bits-2)); 2260 res <<= bits; 2261 if (res > upper_limit) 2262 res = upper_limit; 2263 2264 if (res > MAX_LFS_FILESIZE) 2265 res = MAX_LFS_FILESIZE; 2266 2267 return res; 2268 } 2269 2270 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2271 ext4_fsblk_t logical_sb_block, int nr) 2272 { 2273 struct ext4_sb_info *sbi = EXT4_SB(sb); 2274 ext4_group_t bg, first_meta_bg; 2275 int has_super = 0; 2276 2277 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2278 2279 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2280 nr < first_meta_bg) 2281 return logical_sb_block + nr + 1; 2282 bg = sbi->s_desc_per_block * nr; 2283 if (ext4_bg_has_super(sb, bg)) 2284 has_super = 1; 2285 2286 return (has_super + ext4_group_first_block_no(sb, bg)); 2287 } 2288 2289 /** 2290 * ext4_get_stripe_size: Get the stripe size. 2291 * @sbi: In memory super block info 2292 * 2293 * If we have specified it via mount option, then 2294 * use the mount option value. If the value specified at mount time is 2295 * greater than the blocks per group use the super block value. 2296 * If the super block value is greater than blocks per group return 0. 2297 * Allocator needs it be less than blocks per group. 2298 * 2299 */ 2300 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2301 { 2302 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2303 unsigned long stripe_width = 2304 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2305 int ret; 2306 2307 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2308 ret = sbi->s_stripe; 2309 else if (stripe_width <= sbi->s_blocks_per_group) 2310 ret = stripe_width; 2311 else if (stride <= sbi->s_blocks_per_group) 2312 ret = stride; 2313 else 2314 ret = 0; 2315 2316 /* 2317 * If the stripe width is 1, this makes no sense and 2318 * we set it to 0 to turn off stripe handling code. 2319 */ 2320 if (ret <= 1) 2321 ret = 0; 2322 2323 return ret; 2324 } 2325 2326 /* sysfs supprt */ 2327 2328 struct ext4_attr { 2329 struct attribute attr; 2330 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2331 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2332 const char *, size_t); 2333 int offset; 2334 }; 2335 2336 static int parse_strtoul(const char *buf, 2337 unsigned long max, unsigned long *value) 2338 { 2339 char *endp; 2340 2341 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2342 endp = skip_spaces(endp); 2343 if (*endp || *value > max) 2344 return -EINVAL; 2345 2346 return 0; 2347 } 2348 2349 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2350 struct ext4_sb_info *sbi, 2351 char *buf) 2352 { 2353 return snprintf(buf, PAGE_SIZE, "%llu\n", 2354 (s64) EXT4_C2B(sbi, 2355 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2356 } 2357 2358 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2359 struct ext4_sb_info *sbi, char *buf) 2360 { 2361 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2362 2363 if (!sb->s_bdev->bd_part) 2364 return snprintf(buf, PAGE_SIZE, "0\n"); 2365 return snprintf(buf, PAGE_SIZE, "%lu\n", 2366 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2367 sbi->s_sectors_written_start) >> 1); 2368 } 2369 2370 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2371 struct ext4_sb_info *sbi, char *buf) 2372 { 2373 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2374 2375 if (!sb->s_bdev->bd_part) 2376 return snprintf(buf, PAGE_SIZE, "0\n"); 2377 return snprintf(buf, PAGE_SIZE, "%llu\n", 2378 (unsigned long long)(sbi->s_kbytes_written + 2379 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2380 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2381 } 2382 2383 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2384 struct ext4_sb_info *sbi, 2385 const char *buf, size_t count) 2386 { 2387 unsigned long t; 2388 2389 if (parse_strtoul(buf, 0x40000000, &t)) 2390 return -EINVAL; 2391 2392 if (t && !is_power_of_2(t)) 2393 return -EINVAL; 2394 2395 sbi->s_inode_readahead_blks = t; 2396 return count; 2397 } 2398 2399 static ssize_t sbi_ui_show(struct ext4_attr *a, 2400 struct ext4_sb_info *sbi, char *buf) 2401 { 2402 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2403 2404 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2405 } 2406 2407 static ssize_t sbi_ui_store(struct ext4_attr *a, 2408 struct ext4_sb_info *sbi, 2409 const char *buf, size_t count) 2410 { 2411 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2412 unsigned long t; 2413 2414 if (parse_strtoul(buf, 0xffffffff, &t)) 2415 return -EINVAL; 2416 *ui = t; 2417 return count; 2418 } 2419 2420 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2421 static struct ext4_attr ext4_attr_##_name = { \ 2422 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2423 .show = _show, \ 2424 .store = _store, \ 2425 .offset = offsetof(struct ext4_sb_info, _elname), \ 2426 } 2427 #define EXT4_ATTR(name, mode, show, store) \ 2428 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2429 2430 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2431 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2432 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2433 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2434 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2435 #define ATTR_LIST(name) &ext4_attr_##name.attr 2436 2437 EXT4_RO_ATTR(delayed_allocation_blocks); 2438 EXT4_RO_ATTR(session_write_kbytes); 2439 EXT4_RO_ATTR(lifetime_write_kbytes); 2440 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2441 inode_readahead_blks_store, s_inode_readahead_blks); 2442 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2443 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2444 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2445 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2446 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2447 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2448 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2449 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2450 2451 static struct attribute *ext4_attrs[] = { 2452 ATTR_LIST(delayed_allocation_blocks), 2453 ATTR_LIST(session_write_kbytes), 2454 ATTR_LIST(lifetime_write_kbytes), 2455 ATTR_LIST(inode_readahead_blks), 2456 ATTR_LIST(inode_goal), 2457 ATTR_LIST(mb_stats), 2458 ATTR_LIST(mb_max_to_scan), 2459 ATTR_LIST(mb_min_to_scan), 2460 ATTR_LIST(mb_order2_req), 2461 ATTR_LIST(mb_stream_req), 2462 ATTR_LIST(mb_group_prealloc), 2463 ATTR_LIST(max_writeback_mb_bump), 2464 NULL, 2465 }; 2466 2467 /* Features this copy of ext4 supports */ 2468 EXT4_INFO_ATTR(lazy_itable_init); 2469 EXT4_INFO_ATTR(batched_discard); 2470 2471 static struct attribute *ext4_feat_attrs[] = { 2472 ATTR_LIST(lazy_itable_init), 2473 ATTR_LIST(batched_discard), 2474 NULL, 2475 }; 2476 2477 static ssize_t ext4_attr_show(struct kobject *kobj, 2478 struct attribute *attr, char *buf) 2479 { 2480 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2481 s_kobj); 2482 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2483 2484 return a->show ? a->show(a, sbi, buf) : 0; 2485 } 2486 2487 static ssize_t ext4_attr_store(struct kobject *kobj, 2488 struct attribute *attr, 2489 const char *buf, size_t len) 2490 { 2491 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2492 s_kobj); 2493 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2494 2495 return a->store ? a->store(a, sbi, buf, len) : 0; 2496 } 2497 2498 static void ext4_sb_release(struct kobject *kobj) 2499 { 2500 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2501 s_kobj); 2502 complete(&sbi->s_kobj_unregister); 2503 } 2504 2505 static const struct sysfs_ops ext4_attr_ops = { 2506 .show = ext4_attr_show, 2507 .store = ext4_attr_store, 2508 }; 2509 2510 static struct kobj_type ext4_ktype = { 2511 .default_attrs = ext4_attrs, 2512 .sysfs_ops = &ext4_attr_ops, 2513 .release = ext4_sb_release, 2514 }; 2515 2516 static void ext4_feat_release(struct kobject *kobj) 2517 { 2518 complete(&ext4_feat->f_kobj_unregister); 2519 } 2520 2521 static struct kobj_type ext4_feat_ktype = { 2522 .default_attrs = ext4_feat_attrs, 2523 .sysfs_ops = &ext4_attr_ops, 2524 .release = ext4_feat_release, 2525 }; 2526 2527 /* 2528 * Check whether this filesystem can be mounted based on 2529 * the features present and the RDONLY/RDWR mount requested. 2530 * Returns 1 if this filesystem can be mounted as requested, 2531 * 0 if it cannot be. 2532 */ 2533 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2534 { 2535 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2536 ext4_msg(sb, KERN_ERR, 2537 "Couldn't mount because of " 2538 "unsupported optional features (%x)", 2539 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2540 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2541 return 0; 2542 } 2543 2544 if (readonly) 2545 return 1; 2546 2547 /* Check that feature set is OK for a read-write mount */ 2548 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2549 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2550 "unsupported optional features (%x)", 2551 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2552 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2553 return 0; 2554 } 2555 /* 2556 * Large file size enabled file system can only be mounted 2557 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2558 */ 2559 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2560 if (sizeof(blkcnt_t) < sizeof(u64)) { 2561 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2562 "cannot be mounted RDWR without " 2563 "CONFIG_LBDAF"); 2564 return 0; 2565 } 2566 } 2567 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2568 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2569 ext4_msg(sb, KERN_ERR, 2570 "Can't support bigalloc feature without " 2571 "extents feature\n"); 2572 return 0; 2573 } 2574 return 1; 2575 } 2576 2577 /* 2578 * This function is called once a day if we have errors logged 2579 * on the file system 2580 */ 2581 static void print_daily_error_info(unsigned long arg) 2582 { 2583 struct super_block *sb = (struct super_block *) arg; 2584 struct ext4_sb_info *sbi; 2585 struct ext4_super_block *es; 2586 2587 sbi = EXT4_SB(sb); 2588 es = sbi->s_es; 2589 2590 if (es->s_error_count) 2591 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2592 le32_to_cpu(es->s_error_count)); 2593 if (es->s_first_error_time) { 2594 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2595 sb->s_id, le32_to_cpu(es->s_first_error_time), 2596 (int) sizeof(es->s_first_error_func), 2597 es->s_first_error_func, 2598 le32_to_cpu(es->s_first_error_line)); 2599 if (es->s_first_error_ino) 2600 printk(": inode %u", 2601 le32_to_cpu(es->s_first_error_ino)); 2602 if (es->s_first_error_block) 2603 printk(": block %llu", (unsigned long long) 2604 le64_to_cpu(es->s_first_error_block)); 2605 printk("\n"); 2606 } 2607 if (es->s_last_error_time) { 2608 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2609 sb->s_id, le32_to_cpu(es->s_last_error_time), 2610 (int) sizeof(es->s_last_error_func), 2611 es->s_last_error_func, 2612 le32_to_cpu(es->s_last_error_line)); 2613 if (es->s_last_error_ino) 2614 printk(": inode %u", 2615 le32_to_cpu(es->s_last_error_ino)); 2616 if (es->s_last_error_block) 2617 printk(": block %llu", (unsigned long long) 2618 le64_to_cpu(es->s_last_error_block)); 2619 printk("\n"); 2620 } 2621 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2622 } 2623 2624 /* Find next suitable group and run ext4_init_inode_table */ 2625 static int ext4_run_li_request(struct ext4_li_request *elr) 2626 { 2627 struct ext4_group_desc *gdp = NULL; 2628 ext4_group_t group, ngroups; 2629 struct super_block *sb; 2630 unsigned long timeout = 0; 2631 int ret = 0; 2632 2633 sb = elr->lr_super; 2634 ngroups = EXT4_SB(sb)->s_groups_count; 2635 2636 for (group = elr->lr_next_group; group < ngroups; group++) { 2637 gdp = ext4_get_group_desc(sb, group, NULL); 2638 if (!gdp) { 2639 ret = 1; 2640 break; 2641 } 2642 2643 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2644 break; 2645 } 2646 2647 if (group == ngroups) 2648 ret = 1; 2649 2650 if (!ret) { 2651 timeout = jiffies; 2652 ret = ext4_init_inode_table(sb, group, 2653 elr->lr_timeout ? 0 : 1); 2654 if (elr->lr_timeout == 0) { 2655 timeout = (jiffies - timeout) * 2656 elr->lr_sbi->s_li_wait_mult; 2657 elr->lr_timeout = timeout; 2658 } 2659 elr->lr_next_sched = jiffies + elr->lr_timeout; 2660 elr->lr_next_group = group + 1; 2661 } 2662 2663 return ret; 2664 } 2665 2666 /* 2667 * Remove lr_request from the list_request and free the 2668 * request structure. Should be called with li_list_mtx held 2669 */ 2670 static void ext4_remove_li_request(struct ext4_li_request *elr) 2671 { 2672 struct ext4_sb_info *sbi; 2673 2674 if (!elr) 2675 return; 2676 2677 sbi = elr->lr_sbi; 2678 2679 list_del(&elr->lr_request); 2680 sbi->s_li_request = NULL; 2681 kfree(elr); 2682 } 2683 2684 static void ext4_unregister_li_request(struct super_block *sb) 2685 { 2686 mutex_lock(&ext4_li_mtx); 2687 if (!ext4_li_info) { 2688 mutex_unlock(&ext4_li_mtx); 2689 return; 2690 } 2691 2692 mutex_lock(&ext4_li_info->li_list_mtx); 2693 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2694 mutex_unlock(&ext4_li_info->li_list_mtx); 2695 mutex_unlock(&ext4_li_mtx); 2696 } 2697 2698 static struct task_struct *ext4_lazyinit_task; 2699 2700 /* 2701 * This is the function where ext4lazyinit thread lives. It walks 2702 * through the request list searching for next scheduled filesystem. 2703 * When such a fs is found, run the lazy initialization request 2704 * (ext4_rn_li_request) and keep track of the time spend in this 2705 * function. Based on that time we compute next schedule time of 2706 * the request. When walking through the list is complete, compute 2707 * next waking time and put itself into sleep. 2708 */ 2709 static int ext4_lazyinit_thread(void *arg) 2710 { 2711 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2712 struct list_head *pos, *n; 2713 struct ext4_li_request *elr; 2714 unsigned long next_wakeup, cur; 2715 2716 BUG_ON(NULL == eli); 2717 2718 cont_thread: 2719 while (true) { 2720 next_wakeup = MAX_JIFFY_OFFSET; 2721 2722 mutex_lock(&eli->li_list_mtx); 2723 if (list_empty(&eli->li_request_list)) { 2724 mutex_unlock(&eli->li_list_mtx); 2725 goto exit_thread; 2726 } 2727 2728 list_for_each_safe(pos, n, &eli->li_request_list) { 2729 elr = list_entry(pos, struct ext4_li_request, 2730 lr_request); 2731 2732 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2733 if (ext4_run_li_request(elr) != 0) { 2734 /* error, remove the lazy_init job */ 2735 ext4_remove_li_request(elr); 2736 continue; 2737 } 2738 } 2739 2740 if (time_before(elr->lr_next_sched, next_wakeup)) 2741 next_wakeup = elr->lr_next_sched; 2742 } 2743 mutex_unlock(&eli->li_list_mtx); 2744 2745 try_to_freeze(); 2746 2747 cur = jiffies; 2748 if ((time_after_eq(cur, next_wakeup)) || 2749 (MAX_JIFFY_OFFSET == next_wakeup)) { 2750 cond_resched(); 2751 continue; 2752 } 2753 2754 schedule_timeout_interruptible(next_wakeup - cur); 2755 2756 if (kthread_should_stop()) { 2757 ext4_clear_request_list(); 2758 goto exit_thread; 2759 } 2760 } 2761 2762 exit_thread: 2763 /* 2764 * It looks like the request list is empty, but we need 2765 * to check it under the li_list_mtx lock, to prevent any 2766 * additions into it, and of course we should lock ext4_li_mtx 2767 * to atomically free the list and ext4_li_info, because at 2768 * this point another ext4 filesystem could be registering 2769 * new one. 2770 */ 2771 mutex_lock(&ext4_li_mtx); 2772 mutex_lock(&eli->li_list_mtx); 2773 if (!list_empty(&eli->li_request_list)) { 2774 mutex_unlock(&eli->li_list_mtx); 2775 mutex_unlock(&ext4_li_mtx); 2776 goto cont_thread; 2777 } 2778 mutex_unlock(&eli->li_list_mtx); 2779 kfree(ext4_li_info); 2780 ext4_li_info = NULL; 2781 mutex_unlock(&ext4_li_mtx); 2782 2783 return 0; 2784 } 2785 2786 static void ext4_clear_request_list(void) 2787 { 2788 struct list_head *pos, *n; 2789 struct ext4_li_request *elr; 2790 2791 mutex_lock(&ext4_li_info->li_list_mtx); 2792 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2793 elr = list_entry(pos, struct ext4_li_request, 2794 lr_request); 2795 ext4_remove_li_request(elr); 2796 } 2797 mutex_unlock(&ext4_li_info->li_list_mtx); 2798 } 2799 2800 static int ext4_run_lazyinit_thread(void) 2801 { 2802 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2803 ext4_li_info, "ext4lazyinit"); 2804 if (IS_ERR(ext4_lazyinit_task)) { 2805 int err = PTR_ERR(ext4_lazyinit_task); 2806 ext4_clear_request_list(); 2807 kfree(ext4_li_info); 2808 ext4_li_info = NULL; 2809 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2810 "initialization thread\n", 2811 err); 2812 return err; 2813 } 2814 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2815 return 0; 2816 } 2817 2818 /* 2819 * Check whether it make sense to run itable init. thread or not. 2820 * If there is at least one uninitialized inode table, return 2821 * corresponding group number, else the loop goes through all 2822 * groups and return total number of groups. 2823 */ 2824 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2825 { 2826 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2827 struct ext4_group_desc *gdp = NULL; 2828 2829 for (group = 0; group < ngroups; group++) { 2830 gdp = ext4_get_group_desc(sb, group, NULL); 2831 if (!gdp) 2832 continue; 2833 2834 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2835 break; 2836 } 2837 2838 return group; 2839 } 2840 2841 static int ext4_li_info_new(void) 2842 { 2843 struct ext4_lazy_init *eli = NULL; 2844 2845 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2846 if (!eli) 2847 return -ENOMEM; 2848 2849 INIT_LIST_HEAD(&eli->li_request_list); 2850 mutex_init(&eli->li_list_mtx); 2851 2852 eli->li_state |= EXT4_LAZYINIT_QUIT; 2853 2854 ext4_li_info = eli; 2855 2856 return 0; 2857 } 2858 2859 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2860 ext4_group_t start) 2861 { 2862 struct ext4_sb_info *sbi = EXT4_SB(sb); 2863 struct ext4_li_request *elr; 2864 unsigned long rnd; 2865 2866 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2867 if (!elr) 2868 return NULL; 2869 2870 elr->lr_super = sb; 2871 elr->lr_sbi = sbi; 2872 elr->lr_next_group = start; 2873 2874 /* 2875 * Randomize first schedule time of the request to 2876 * spread the inode table initialization requests 2877 * better. 2878 */ 2879 get_random_bytes(&rnd, sizeof(rnd)); 2880 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2881 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2882 2883 return elr; 2884 } 2885 2886 static int ext4_register_li_request(struct super_block *sb, 2887 ext4_group_t first_not_zeroed) 2888 { 2889 struct ext4_sb_info *sbi = EXT4_SB(sb); 2890 struct ext4_li_request *elr; 2891 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2892 int ret = 0; 2893 2894 if (sbi->s_li_request != NULL) { 2895 /* 2896 * Reset timeout so it can be computed again, because 2897 * s_li_wait_mult might have changed. 2898 */ 2899 sbi->s_li_request->lr_timeout = 0; 2900 return 0; 2901 } 2902 2903 if (first_not_zeroed == ngroups || 2904 (sb->s_flags & MS_RDONLY) || 2905 !test_opt(sb, INIT_INODE_TABLE)) 2906 return 0; 2907 2908 elr = ext4_li_request_new(sb, first_not_zeroed); 2909 if (!elr) 2910 return -ENOMEM; 2911 2912 mutex_lock(&ext4_li_mtx); 2913 2914 if (NULL == ext4_li_info) { 2915 ret = ext4_li_info_new(); 2916 if (ret) 2917 goto out; 2918 } 2919 2920 mutex_lock(&ext4_li_info->li_list_mtx); 2921 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2922 mutex_unlock(&ext4_li_info->li_list_mtx); 2923 2924 sbi->s_li_request = elr; 2925 /* 2926 * set elr to NULL here since it has been inserted to 2927 * the request_list and the removal and free of it is 2928 * handled by ext4_clear_request_list from now on. 2929 */ 2930 elr = NULL; 2931 2932 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2933 ret = ext4_run_lazyinit_thread(); 2934 if (ret) 2935 goto out; 2936 } 2937 out: 2938 mutex_unlock(&ext4_li_mtx); 2939 if (ret) 2940 kfree(elr); 2941 return ret; 2942 } 2943 2944 /* 2945 * We do not need to lock anything since this is called on 2946 * module unload. 2947 */ 2948 static void ext4_destroy_lazyinit_thread(void) 2949 { 2950 /* 2951 * If thread exited earlier 2952 * there's nothing to be done. 2953 */ 2954 if (!ext4_li_info || !ext4_lazyinit_task) 2955 return; 2956 2957 kthread_stop(ext4_lazyinit_task); 2958 } 2959 2960 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2961 { 2962 char *orig_data = kstrdup(data, GFP_KERNEL); 2963 struct buffer_head *bh; 2964 struct ext4_super_block *es = NULL; 2965 struct ext4_sb_info *sbi; 2966 ext4_fsblk_t block; 2967 ext4_fsblk_t sb_block = get_sb_block(&data); 2968 ext4_fsblk_t logical_sb_block; 2969 unsigned long offset = 0; 2970 unsigned long journal_devnum = 0; 2971 unsigned long def_mount_opts; 2972 struct inode *root; 2973 char *cp; 2974 const char *descr; 2975 int ret = -ENOMEM; 2976 int blocksize, clustersize; 2977 unsigned int db_count; 2978 unsigned int i; 2979 int needs_recovery, has_huge_files, has_bigalloc; 2980 __u64 blocks_count; 2981 int err; 2982 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2983 ext4_group_t first_not_zeroed; 2984 2985 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2986 if (!sbi) 2987 goto out_free_orig; 2988 2989 sbi->s_blockgroup_lock = 2990 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2991 if (!sbi->s_blockgroup_lock) { 2992 kfree(sbi); 2993 goto out_free_orig; 2994 } 2995 sb->s_fs_info = sbi; 2996 sbi->s_mount_opt = 0; 2997 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 2998 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 2999 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3000 sbi->s_sb_block = sb_block; 3001 if (sb->s_bdev->bd_part) 3002 sbi->s_sectors_written_start = 3003 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3004 3005 /* Cleanup superblock name */ 3006 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3007 *cp = '!'; 3008 3009 ret = -EINVAL; 3010 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3011 if (!blocksize) { 3012 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3013 goto out_fail; 3014 } 3015 3016 /* 3017 * The ext4 superblock will not be buffer aligned for other than 1kB 3018 * block sizes. We need to calculate the offset from buffer start. 3019 */ 3020 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3021 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3022 offset = do_div(logical_sb_block, blocksize); 3023 } else { 3024 logical_sb_block = sb_block; 3025 } 3026 3027 if (!(bh = sb_bread(sb, logical_sb_block))) { 3028 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3029 goto out_fail; 3030 } 3031 /* 3032 * Note: s_es must be initialized as soon as possible because 3033 * some ext4 macro-instructions depend on its value 3034 */ 3035 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3036 sbi->s_es = es; 3037 sb->s_magic = le16_to_cpu(es->s_magic); 3038 if (sb->s_magic != EXT4_SUPER_MAGIC) 3039 goto cantfind_ext4; 3040 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3041 3042 /* Set defaults before we parse the mount options */ 3043 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3044 set_opt(sb, INIT_INODE_TABLE); 3045 if (def_mount_opts & EXT4_DEFM_DEBUG) 3046 set_opt(sb, DEBUG); 3047 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3048 set_opt(sb, GRPID); 3049 if (def_mount_opts & EXT4_DEFM_UID16) 3050 set_opt(sb, NO_UID32); 3051 /* xattr user namespace & acls are now defaulted on */ 3052 #ifdef CONFIG_EXT4_FS_XATTR 3053 set_opt(sb, XATTR_USER); 3054 #endif 3055 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3056 set_opt(sb, POSIX_ACL); 3057 #endif 3058 set_opt(sb, MBLK_IO_SUBMIT); 3059 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3060 set_opt(sb, JOURNAL_DATA); 3061 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3062 set_opt(sb, ORDERED_DATA); 3063 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3064 set_opt(sb, WRITEBACK_DATA); 3065 3066 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3067 set_opt(sb, ERRORS_PANIC); 3068 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3069 set_opt(sb, ERRORS_CONT); 3070 else 3071 set_opt(sb, ERRORS_RO); 3072 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3073 set_opt(sb, BLOCK_VALIDITY); 3074 if (def_mount_opts & EXT4_DEFM_DISCARD) 3075 set_opt(sb, DISCARD); 3076 3077 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3078 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3079 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3080 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3081 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3082 3083 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3084 set_opt(sb, BARRIER); 3085 3086 /* 3087 * enable delayed allocation by default 3088 * Use -o nodelalloc to turn it off 3089 */ 3090 if (!IS_EXT3_SB(sb) && 3091 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3092 set_opt(sb, DELALLOC); 3093 3094 /* 3095 * set default s_li_wait_mult for lazyinit, for the case there is 3096 * no mount option specified. 3097 */ 3098 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3099 3100 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3101 &journal_devnum, &journal_ioprio, 0)) { 3102 ext4_msg(sb, KERN_WARNING, 3103 "failed to parse options in superblock: %s", 3104 sbi->s_es->s_mount_opts); 3105 } 3106 sbi->s_def_mount_opt = sbi->s_mount_opt; 3107 if (!parse_options((char *) data, sb, &journal_devnum, 3108 &journal_ioprio, 0)) 3109 goto failed_mount; 3110 3111 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3112 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3113 "with data=journal disables delayed " 3114 "allocation and O_DIRECT support!\n"); 3115 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3116 ext4_msg(sb, KERN_ERR, "can't mount with " 3117 "both data=journal and delalloc"); 3118 goto failed_mount; 3119 } 3120 if (test_opt(sb, DIOREAD_NOLOCK)) { 3121 ext4_msg(sb, KERN_ERR, "can't mount with " 3122 "both data=journal and delalloc"); 3123 goto failed_mount; 3124 } 3125 if (test_opt(sb, DELALLOC)) 3126 clear_opt(sb, DELALLOC); 3127 } 3128 3129 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3130 if (test_opt(sb, DIOREAD_NOLOCK)) { 3131 if (blocksize < PAGE_SIZE) { 3132 ext4_msg(sb, KERN_ERR, "can't mount with " 3133 "dioread_nolock if block size != PAGE_SIZE"); 3134 goto failed_mount; 3135 } 3136 } 3137 3138 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3139 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3140 3141 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3142 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3143 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3144 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3145 ext4_msg(sb, KERN_WARNING, 3146 "feature flags set on rev 0 fs, " 3147 "running e2fsck is recommended"); 3148 3149 if (IS_EXT2_SB(sb)) { 3150 if (ext2_feature_set_ok(sb)) 3151 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3152 "using the ext4 subsystem"); 3153 else { 3154 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3155 "to feature incompatibilities"); 3156 goto failed_mount; 3157 } 3158 } 3159 3160 if (IS_EXT3_SB(sb)) { 3161 if (ext3_feature_set_ok(sb)) 3162 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3163 "using the ext4 subsystem"); 3164 else { 3165 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3166 "to feature incompatibilities"); 3167 goto failed_mount; 3168 } 3169 } 3170 3171 /* 3172 * Check feature flags regardless of the revision level, since we 3173 * previously didn't change the revision level when setting the flags, 3174 * so there is a chance incompat flags are set on a rev 0 filesystem. 3175 */ 3176 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3177 goto failed_mount; 3178 3179 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3180 blocksize > EXT4_MAX_BLOCK_SIZE) { 3181 ext4_msg(sb, KERN_ERR, 3182 "Unsupported filesystem blocksize %d", blocksize); 3183 goto failed_mount; 3184 } 3185 3186 if (sb->s_blocksize != blocksize) { 3187 /* Validate the filesystem blocksize */ 3188 if (!sb_set_blocksize(sb, blocksize)) { 3189 ext4_msg(sb, KERN_ERR, "bad block size %d", 3190 blocksize); 3191 goto failed_mount; 3192 } 3193 3194 brelse(bh); 3195 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3196 offset = do_div(logical_sb_block, blocksize); 3197 bh = sb_bread(sb, logical_sb_block); 3198 if (!bh) { 3199 ext4_msg(sb, KERN_ERR, 3200 "Can't read superblock on 2nd try"); 3201 goto failed_mount; 3202 } 3203 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3204 sbi->s_es = es; 3205 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3206 ext4_msg(sb, KERN_ERR, 3207 "Magic mismatch, very weird!"); 3208 goto failed_mount; 3209 } 3210 } 3211 3212 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3213 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3214 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3215 has_huge_files); 3216 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3217 3218 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3219 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3220 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3221 } else { 3222 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3223 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3224 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3225 (!is_power_of_2(sbi->s_inode_size)) || 3226 (sbi->s_inode_size > blocksize)) { 3227 ext4_msg(sb, KERN_ERR, 3228 "unsupported inode size: %d", 3229 sbi->s_inode_size); 3230 goto failed_mount; 3231 } 3232 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3233 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3234 } 3235 3236 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3237 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3238 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3239 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3240 !is_power_of_2(sbi->s_desc_size)) { 3241 ext4_msg(sb, KERN_ERR, 3242 "unsupported descriptor size %lu", 3243 sbi->s_desc_size); 3244 goto failed_mount; 3245 } 3246 } else 3247 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3248 3249 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3250 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3251 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3252 goto cantfind_ext4; 3253 3254 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3255 if (sbi->s_inodes_per_block == 0) 3256 goto cantfind_ext4; 3257 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3258 sbi->s_inodes_per_block; 3259 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3260 sbi->s_sbh = bh; 3261 sbi->s_mount_state = le16_to_cpu(es->s_state); 3262 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3263 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3264 3265 for (i = 0; i < 4; i++) 3266 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3267 sbi->s_def_hash_version = es->s_def_hash_version; 3268 i = le32_to_cpu(es->s_flags); 3269 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3270 sbi->s_hash_unsigned = 3; 3271 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3272 #ifdef __CHAR_UNSIGNED__ 3273 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3274 sbi->s_hash_unsigned = 3; 3275 #else 3276 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3277 #endif 3278 } 3279 3280 /* Handle clustersize */ 3281 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3282 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3283 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3284 if (has_bigalloc) { 3285 if (clustersize < blocksize) { 3286 ext4_msg(sb, KERN_ERR, 3287 "cluster size (%d) smaller than " 3288 "block size (%d)", clustersize, blocksize); 3289 goto failed_mount; 3290 } 3291 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3292 le32_to_cpu(es->s_log_block_size); 3293 sbi->s_clusters_per_group = 3294 le32_to_cpu(es->s_clusters_per_group); 3295 if (sbi->s_clusters_per_group > blocksize * 8) { 3296 ext4_msg(sb, KERN_ERR, 3297 "#clusters per group too big: %lu", 3298 sbi->s_clusters_per_group); 3299 goto failed_mount; 3300 } 3301 if (sbi->s_blocks_per_group != 3302 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3303 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3304 "clusters per group (%lu) inconsistent", 3305 sbi->s_blocks_per_group, 3306 sbi->s_clusters_per_group); 3307 goto failed_mount; 3308 } 3309 } else { 3310 if (clustersize != blocksize) { 3311 ext4_warning(sb, "fragment/cluster size (%d) != " 3312 "block size (%d)", clustersize, 3313 blocksize); 3314 clustersize = blocksize; 3315 } 3316 if (sbi->s_blocks_per_group > blocksize * 8) { 3317 ext4_msg(sb, KERN_ERR, 3318 "#blocks per group too big: %lu", 3319 sbi->s_blocks_per_group); 3320 goto failed_mount; 3321 } 3322 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3323 sbi->s_cluster_bits = 0; 3324 } 3325 sbi->s_cluster_ratio = clustersize / blocksize; 3326 3327 if (sbi->s_inodes_per_group > blocksize * 8) { 3328 ext4_msg(sb, KERN_ERR, 3329 "#inodes per group too big: %lu", 3330 sbi->s_inodes_per_group); 3331 goto failed_mount; 3332 } 3333 3334 /* 3335 * Test whether we have more sectors than will fit in sector_t, 3336 * and whether the max offset is addressable by the page cache. 3337 */ 3338 err = generic_check_addressable(sb->s_blocksize_bits, 3339 ext4_blocks_count(es)); 3340 if (err) { 3341 ext4_msg(sb, KERN_ERR, "filesystem" 3342 " too large to mount safely on this system"); 3343 if (sizeof(sector_t) < 8) 3344 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3345 ret = err; 3346 goto failed_mount; 3347 } 3348 3349 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3350 goto cantfind_ext4; 3351 3352 /* check blocks count against device size */ 3353 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3354 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3355 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3356 "exceeds size of device (%llu blocks)", 3357 ext4_blocks_count(es), blocks_count); 3358 goto failed_mount; 3359 } 3360 3361 /* 3362 * It makes no sense for the first data block to be beyond the end 3363 * of the filesystem. 3364 */ 3365 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3366 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3367 "block %u is beyond end of filesystem (%llu)", 3368 le32_to_cpu(es->s_first_data_block), 3369 ext4_blocks_count(es)); 3370 goto failed_mount; 3371 } 3372 blocks_count = (ext4_blocks_count(es) - 3373 le32_to_cpu(es->s_first_data_block) + 3374 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3375 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3376 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3377 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3378 "(block count %llu, first data block %u, " 3379 "blocks per group %lu)", sbi->s_groups_count, 3380 ext4_blocks_count(es), 3381 le32_to_cpu(es->s_first_data_block), 3382 EXT4_BLOCKS_PER_GROUP(sb)); 3383 goto failed_mount; 3384 } 3385 sbi->s_groups_count = blocks_count; 3386 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3387 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3388 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3389 EXT4_DESC_PER_BLOCK(sb); 3390 sbi->s_group_desc = ext4_kvmalloc(db_count * 3391 sizeof(struct buffer_head *), 3392 GFP_KERNEL); 3393 if (sbi->s_group_desc == NULL) { 3394 ext4_msg(sb, KERN_ERR, "not enough memory"); 3395 goto failed_mount; 3396 } 3397 3398 if (ext4_proc_root) 3399 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3400 3401 if (sbi->s_proc) 3402 proc_create_data("options", S_IRUGO, sbi->s_proc, 3403 &ext4_seq_options_fops, sb); 3404 3405 bgl_lock_init(sbi->s_blockgroup_lock); 3406 3407 for (i = 0; i < db_count; i++) { 3408 block = descriptor_loc(sb, logical_sb_block, i); 3409 sbi->s_group_desc[i] = sb_bread(sb, block); 3410 if (!sbi->s_group_desc[i]) { 3411 ext4_msg(sb, KERN_ERR, 3412 "can't read group descriptor %d", i); 3413 db_count = i; 3414 goto failed_mount2; 3415 } 3416 } 3417 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3418 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3419 goto failed_mount2; 3420 } 3421 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3422 if (!ext4_fill_flex_info(sb)) { 3423 ext4_msg(sb, KERN_ERR, 3424 "unable to initialize " 3425 "flex_bg meta info!"); 3426 goto failed_mount2; 3427 } 3428 3429 sbi->s_gdb_count = db_count; 3430 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3431 spin_lock_init(&sbi->s_next_gen_lock); 3432 3433 init_timer(&sbi->s_err_report); 3434 sbi->s_err_report.function = print_daily_error_info; 3435 sbi->s_err_report.data = (unsigned long) sb; 3436 3437 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3438 ext4_count_free_clusters(sb)); 3439 if (!err) { 3440 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3441 ext4_count_free_inodes(sb)); 3442 } 3443 if (!err) { 3444 err = percpu_counter_init(&sbi->s_dirs_counter, 3445 ext4_count_dirs(sb)); 3446 } 3447 if (!err) { 3448 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3449 } 3450 if (err) { 3451 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3452 goto failed_mount3; 3453 } 3454 3455 sbi->s_stripe = ext4_get_stripe_size(sbi); 3456 sbi->s_max_writeback_mb_bump = 128; 3457 3458 /* 3459 * set up enough so that it can read an inode 3460 */ 3461 if (!test_opt(sb, NOLOAD) && 3462 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3463 sb->s_op = &ext4_sops; 3464 else 3465 sb->s_op = &ext4_nojournal_sops; 3466 sb->s_export_op = &ext4_export_ops; 3467 sb->s_xattr = ext4_xattr_handlers; 3468 #ifdef CONFIG_QUOTA 3469 sb->s_qcop = &ext4_qctl_operations; 3470 sb->dq_op = &ext4_quota_operations; 3471 #endif 3472 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3473 3474 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3475 mutex_init(&sbi->s_orphan_lock); 3476 sbi->s_resize_flags = 0; 3477 3478 sb->s_root = NULL; 3479 3480 needs_recovery = (es->s_last_orphan != 0 || 3481 EXT4_HAS_INCOMPAT_FEATURE(sb, 3482 EXT4_FEATURE_INCOMPAT_RECOVER)); 3483 3484 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3485 !(sb->s_flags & MS_RDONLY)) 3486 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3487 goto failed_mount3; 3488 3489 /* 3490 * The first inode we look at is the journal inode. Don't try 3491 * root first: it may be modified in the journal! 3492 */ 3493 if (!test_opt(sb, NOLOAD) && 3494 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3495 if (ext4_load_journal(sb, es, journal_devnum)) 3496 goto failed_mount3; 3497 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3498 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3499 ext4_msg(sb, KERN_ERR, "required journal recovery " 3500 "suppressed and not mounted read-only"); 3501 goto failed_mount_wq; 3502 } else { 3503 clear_opt(sb, DATA_FLAGS); 3504 sbi->s_journal = NULL; 3505 needs_recovery = 0; 3506 goto no_journal; 3507 } 3508 3509 if (ext4_blocks_count(es) > 0xffffffffULL && 3510 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3511 JBD2_FEATURE_INCOMPAT_64BIT)) { 3512 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3513 goto failed_mount_wq; 3514 } 3515 3516 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3517 jbd2_journal_set_features(sbi->s_journal, 3518 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3519 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3520 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3521 jbd2_journal_set_features(sbi->s_journal, 3522 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3523 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3524 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3525 } else { 3526 jbd2_journal_clear_features(sbi->s_journal, 3527 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3528 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3529 } 3530 3531 /* We have now updated the journal if required, so we can 3532 * validate the data journaling mode. */ 3533 switch (test_opt(sb, DATA_FLAGS)) { 3534 case 0: 3535 /* No mode set, assume a default based on the journal 3536 * capabilities: ORDERED_DATA if the journal can 3537 * cope, else JOURNAL_DATA 3538 */ 3539 if (jbd2_journal_check_available_features 3540 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3541 set_opt(sb, ORDERED_DATA); 3542 else 3543 set_opt(sb, JOURNAL_DATA); 3544 break; 3545 3546 case EXT4_MOUNT_ORDERED_DATA: 3547 case EXT4_MOUNT_WRITEBACK_DATA: 3548 if (!jbd2_journal_check_available_features 3549 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3550 ext4_msg(sb, KERN_ERR, "Journal does not support " 3551 "requested data journaling mode"); 3552 goto failed_mount_wq; 3553 } 3554 default: 3555 break; 3556 } 3557 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3558 3559 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3560 3561 /* 3562 * The journal may have updated the bg summary counts, so we 3563 * need to update the global counters. 3564 */ 3565 percpu_counter_set(&sbi->s_freeclusters_counter, 3566 ext4_count_free_clusters(sb)); 3567 percpu_counter_set(&sbi->s_freeinodes_counter, 3568 ext4_count_free_inodes(sb)); 3569 percpu_counter_set(&sbi->s_dirs_counter, 3570 ext4_count_dirs(sb)); 3571 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3572 3573 no_journal: 3574 /* 3575 * The maximum number of concurrent works can be high and 3576 * concurrency isn't really necessary. Limit it to 1. 3577 */ 3578 EXT4_SB(sb)->dio_unwritten_wq = 3579 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3580 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3581 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3582 goto failed_mount_wq; 3583 } 3584 3585 /* 3586 * The jbd2_journal_load will have done any necessary log recovery, 3587 * so we can safely mount the rest of the filesystem now. 3588 */ 3589 3590 root = ext4_iget(sb, EXT4_ROOT_INO); 3591 if (IS_ERR(root)) { 3592 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3593 ret = PTR_ERR(root); 3594 root = NULL; 3595 goto failed_mount4; 3596 } 3597 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3598 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3599 iput(root); 3600 goto failed_mount4; 3601 } 3602 sb->s_root = d_make_root(root); 3603 if (!sb->s_root) { 3604 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3605 ret = -ENOMEM; 3606 goto failed_mount4; 3607 } 3608 3609 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3610 3611 /* determine the minimum size of new large inodes, if present */ 3612 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3613 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3614 EXT4_GOOD_OLD_INODE_SIZE; 3615 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3616 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3617 if (sbi->s_want_extra_isize < 3618 le16_to_cpu(es->s_want_extra_isize)) 3619 sbi->s_want_extra_isize = 3620 le16_to_cpu(es->s_want_extra_isize); 3621 if (sbi->s_want_extra_isize < 3622 le16_to_cpu(es->s_min_extra_isize)) 3623 sbi->s_want_extra_isize = 3624 le16_to_cpu(es->s_min_extra_isize); 3625 } 3626 } 3627 /* Check if enough inode space is available */ 3628 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3629 sbi->s_inode_size) { 3630 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3631 EXT4_GOOD_OLD_INODE_SIZE; 3632 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3633 "available"); 3634 } 3635 3636 err = ext4_setup_system_zone(sb); 3637 if (err) { 3638 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3639 "zone (%d)", err); 3640 goto failed_mount4a; 3641 } 3642 3643 ext4_ext_init(sb); 3644 err = ext4_mb_init(sb, needs_recovery); 3645 if (err) { 3646 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3647 err); 3648 goto failed_mount5; 3649 } 3650 3651 err = ext4_register_li_request(sb, first_not_zeroed); 3652 if (err) 3653 goto failed_mount6; 3654 3655 sbi->s_kobj.kset = ext4_kset; 3656 init_completion(&sbi->s_kobj_unregister); 3657 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3658 "%s", sb->s_id); 3659 if (err) 3660 goto failed_mount7; 3661 3662 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3663 ext4_orphan_cleanup(sb, es); 3664 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3665 if (needs_recovery) { 3666 ext4_msg(sb, KERN_INFO, "recovery complete"); 3667 ext4_mark_recovery_complete(sb, es); 3668 } 3669 if (EXT4_SB(sb)->s_journal) { 3670 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3671 descr = " journalled data mode"; 3672 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3673 descr = " ordered data mode"; 3674 else 3675 descr = " writeback data mode"; 3676 } else 3677 descr = "out journal"; 3678 3679 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3680 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3681 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3682 3683 if (es->s_error_count) 3684 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3685 3686 kfree(orig_data); 3687 return 0; 3688 3689 cantfind_ext4: 3690 if (!silent) 3691 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3692 goto failed_mount; 3693 3694 failed_mount7: 3695 ext4_unregister_li_request(sb); 3696 failed_mount6: 3697 ext4_mb_release(sb); 3698 failed_mount5: 3699 ext4_ext_release(sb); 3700 ext4_release_system_zone(sb); 3701 failed_mount4a: 3702 dput(sb->s_root); 3703 sb->s_root = NULL; 3704 failed_mount4: 3705 ext4_msg(sb, KERN_ERR, "mount failed"); 3706 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3707 failed_mount_wq: 3708 if (sbi->s_journal) { 3709 jbd2_journal_destroy(sbi->s_journal); 3710 sbi->s_journal = NULL; 3711 } 3712 failed_mount3: 3713 del_timer(&sbi->s_err_report); 3714 if (sbi->s_flex_groups) 3715 ext4_kvfree(sbi->s_flex_groups); 3716 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3717 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3718 percpu_counter_destroy(&sbi->s_dirs_counter); 3719 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3720 if (sbi->s_mmp_tsk) 3721 kthread_stop(sbi->s_mmp_tsk); 3722 failed_mount2: 3723 for (i = 0; i < db_count; i++) 3724 brelse(sbi->s_group_desc[i]); 3725 ext4_kvfree(sbi->s_group_desc); 3726 failed_mount: 3727 if (sbi->s_proc) { 3728 remove_proc_entry("options", sbi->s_proc); 3729 remove_proc_entry(sb->s_id, ext4_proc_root); 3730 } 3731 #ifdef CONFIG_QUOTA 3732 for (i = 0; i < MAXQUOTAS; i++) 3733 kfree(sbi->s_qf_names[i]); 3734 #endif 3735 ext4_blkdev_remove(sbi); 3736 brelse(bh); 3737 out_fail: 3738 sb->s_fs_info = NULL; 3739 kfree(sbi->s_blockgroup_lock); 3740 kfree(sbi); 3741 out_free_orig: 3742 kfree(orig_data); 3743 return ret; 3744 } 3745 3746 /* 3747 * Setup any per-fs journal parameters now. We'll do this both on 3748 * initial mount, once the journal has been initialised but before we've 3749 * done any recovery; and again on any subsequent remount. 3750 */ 3751 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3752 { 3753 struct ext4_sb_info *sbi = EXT4_SB(sb); 3754 3755 journal->j_commit_interval = sbi->s_commit_interval; 3756 journal->j_min_batch_time = sbi->s_min_batch_time; 3757 journal->j_max_batch_time = sbi->s_max_batch_time; 3758 3759 write_lock(&journal->j_state_lock); 3760 if (test_opt(sb, BARRIER)) 3761 journal->j_flags |= JBD2_BARRIER; 3762 else 3763 journal->j_flags &= ~JBD2_BARRIER; 3764 if (test_opt(sb, DATA_ERR_ABORT)) 3765 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3766 else 3767 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3768 write_unlock(&journal->j_state_lock); 3769 } 3770 3771 static journal_t *ext4_get_journal(struct super_block *sb, 3772 unsigned int journal_inum) 3773 { 3774 struct inode *journal_inode; 3775 journal_t *journal; 3776 3777 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3778 3779 /* First, test for the existence of a valid inode on disk. Bad 3780 * things happen if we iget() an unused inode, as the subsequent 3781 * iput() will try to delete it. */ 3782 3783 journal_inode = ext4_iget(sb, journal_inum); 3784 if (IS_ERR(journal_inode)) { 3785 ext4_msg(sb, KERN_ERR, "no journal found"); 3786 return NULL; 3787 } 3788 if (!journal_inode->i_nlink) { 3789 make_bad_inode(journal_inode); 3790 iput(journal_inode); 3791 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3792 return NULL; 3793 } 3794 3795 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3796 journal_inode, journal_inode->i_size); 3797 if (!S_ISREG(journal_inode->i_mode)) { 3798 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3799 iput(journal_inode); 3800 return NULL; 3801 } 3802 3803 journal = jbd2_journal_init_inode(journal_inode); 3804 if (!journal) { 3805 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3806 iput(journal_inode); 3807 return NULL; 3808 } 3809 journal->j_private = sb; 3810 ext4_init_journal_params(sb, journal); 3811 return journal; 3812 } 3813 3814 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3815 dev_t j_dev) 3816 { 3817 struct buffer_head *bh; 3818 journal_t *journal; 3819 ext4_fsblk_t start; 3820 ext4_fsblk_t len; 3821 int hblock, blocksize; 3822 ext4_fsblk_t sb_block; 3823 unsigned long offset; 3824 struct ext4_super_block *es; 3825 struct block_device *bdev; 3826 3827 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3828 3829 bdev = ext4_blkdev_get(j_dev, sb); 3830 if (bdev == NULL) 3831 return NULL; 3832 3833 blocksize = sb->s_blocksize; 3834 hblock = bdev_logical_block_size(bdev); 3835 if (blocksize < hblock) { 3836 ext4_msg(sb, KERN_ERR, 3837 "blocksize too small for journal device"); 3838 goto out_bdev; 3839 } 3840 3841 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3842 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3843 set_blocksize(bdev, blocksize); 3844 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3845 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3846 "external journal"); 3847 goto out_bdev; 3848 } 3849 3850 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3851 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3852 !(le32_to_cpu(es->s_feature_incompat) & 3853 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3854 ext4_msg(sb, KERN_ERR, "external journal has " 3855 "bad superblock"); 3856 brelse(bh); 3857 goto out_bdev; 3858 } 3859 3860 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3861 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3862 brelse(bh); 3863 goto out_bdev; 3864 } 3865 3866 len = ext4_blocks_count(es); 3867 start = sb_block + 1; 3868 brelse(bh); /* we're done with the superblock */ 3869 3870 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3871 start, len, blocksize); 3872 if (!journal) { 3873 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3874 goto out_bdev; 3875 } 3876 journal->j_private = sb; 3877 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3878 wait_on_buffer(journal->j_sb_buffer); 3879 if (!buffer_uptodate(journal->j_sb_buffer)) { 3880 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3881 goto out_journal; 3882 } 3883 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3884 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3885 "user (unsupported) - %d", 3886 be32_to_cpu(journal->j_superblock->s_nr_users)); 3887 goto out_journal; 3888 } 3889 EXT4_SB(sb)->journal_bdev = bdev; 3890 ext4_init_journal_params(sb, journal); 3891 return journal; 3892 3893 out_journal: 3894 jbd2_journal_destroy(journal); 3895 out_bdev: 3896 ext4_blkdev_put(bdev); 3897 return NULL; 3898 } 3899 3900 static int ext4_load_journal(struct super_block *sb, 3901 struct ext4_super_block *es, 3902 unsigned long journal_devnum) 3903 { 3904 journal_t *journal; 3905 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3906 dev_t journal_dev; 3907 int err = 0; 3908 int really_read_only; 3909 3910 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3911 3912 if (journal_devnum && 3913 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3914 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3915 "numbers have changed"); 3916 journal_dev = new_decode_dev(journal_devnum); 3917 } else 3918 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3919 3920 really_read_only = bdev_read_only(sb->s_bdev); 3921 3922 /* 3923 * Are we loading a blank journal or performing recovery after a 3924 * crash? For recovery, we need to check in advance whether we 3925 * can get read-write access to the device. 3926 */ 3927 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3928 if (sb->s_flags & MS_RDONLY) { 3929 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3930 "required on readonly filesystem"); 3931 if (really_read_only) { 3932 ext4_msg(sb, KERN_ERR, "write access " 3933 "unavailable, cannot proceed"); 3934 return -EROFS; 3935 } 3936 ext4_msg(sb, KERN_INFO, "write access will " 3937 "be enabled during recovery"); 3938 } 3939 } 3940 3941 if (journal_inum && journal_dev) { 3942 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3943 "and inode journals!"); 3944 return -EINVAL; 3945 } 3946 3947 if (journal_inum) { 3948 if (!(journal = ext4_get_journal(sb, journal_inum))) 3949 return -EINVAL; 3950 } else { 3951 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3952 return -EINVAL; 3953 } 3954 3955 if (!(journal->j_flags & JBD2_BARRIER)) 3956 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3957 3958 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3959 err = jbd2_journal_wipe(journal, !really_read_only); 3960 if (!err) { 3961 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 3962 if (save) 3963 memcpy(save, ((char *) es) + 3964 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 3965 err = jbd2_journal_load(journal); 3966 if (save) 3967 memcpy(((char *) es) + EXT4_S_ERR_START, 3968 save, EXT4_S_ERR_LEN); 3969 kfree(save); 3970 } 3971 3972 if (err) { 3973 ext4_msg(sb, KERN_ERR, "error loading journal"); 3974 jbd2_journal_destroy(journal); 3975 return err; 3976 } 3977 3978 EXT4_SB(sb)->s_journal = journal; 3979 ext4_clear_journal_err(sb, es); 3980 3981 if (!really_read_only && journal_devnum && 3982 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3983 es->s_journal_dev = cpu_to_le32(journal_devnum); 3984 3985 /* Make sure we flush the recovery flag to disk. */ 3986 ext4_commit_super(sb, 1); 3987 } 3988 3989 return 0; 3990 } 3991 3992 static int ext4_commit_super(struct super_block *sb, int sync) 3993 { 3994 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3995 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3996 int error = 0; 3997 3998 if (!sbh || block_device_ejected(sb)) 3999 return error; 4000 if (buffer_write_io_error(sbh)) { 4001 /* 4002 * Oh, dear. A previous attempt to write the 4003 * superblock failed. This could happen because the 4004 * USB device was yanked out. Or it could happen to 4005 * be a transient write error and maybe the block will 4006 * be remapped. Nothing we can do but to retry the 4007 * write and hope for the best. 4008 */ 4009 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4010 "superblock detected"); 4011 clear_buffer_write_io_error(sbh); 4012 set_buffer_uptodate(sbh); 4013 } 4014 /* 4015 * If the file system is mounted read-only, don't update the 4016 * superblock write time. This avoids updating the superblock 4017 * write time when we are mounting the root file system 4018 * read/only but we need to replay the journal; at that point, 4019 * for people who are east of GMT and who make their clock 4020 * tick in localtime for Windows bug-for-bug compatibility, 4021 * the clock is set in the future, and this will cause e2fsck 4022 * to complain and force a full file system check. 4023 */ 4024 if (!(sb->s_flags & MS_RDONLY)) 4025 es->s_wtime = cpu_to_le32(get_seconds()); 4026 if (sb->s_bdev->bd_part) 4027 es->s_kbytes_written = 4028 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4029 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4030 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4031 else 4032 es->s_kbytes_written = 4033 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4034 ext4_free_blocks_count_set(es, 4035 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4036 &EXT4_SB(sb)->s_freeclusters_counter))); 4037 es->s_free_inodes_count = 4038 cpu_to_le32(percpu_counter_sum_positive( 4039 &EXT4_SB(sb)->s_freeinodes_counter)); 4040 sb->s_dirt = 0; 4041 BUFFER_TRACE(sbh, "marking dirty"); 4042 mark_buffer_dirty(sbh); 4043 if (sync) { 4044 error = sync_dirty_buffer(sbh); 4045 if (error) 4046 return error; 4047 4048 error = buffer_write_io_error(sbh); 4049 if (error) { 4050 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4051 "superblock"); 4052 clear_buffer_write_io_error(sbh); 4053 set_buffer_uptodate(sbh); 4054 } 4055 } 4056 return error; 4057 } 4058 4059 /* 4060 * Have we just finished recovery? If so, and if we are mounting (or 4061 * remounting) the filesystem readonly, then we will end up with a 4062 * consistent fs on disk. Record that fact. 4063 */ 4064 static void ext4_mark_recovery_complete(struct super_block *sb, 4065 struct ext4_super_block *es) 4066 { 4067 journal_t *journal = EXT4_SB(sb)->s_journal; 4068 4069 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4070 BUG_ON(journal != NULL); 4071 return; 4072 } 4073 jbd2_journal_lock_updates(journal); 4074 if (jbd2_journal_flush(journal) < 0) 4075 goto out; 4076 4077 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4078 sb->s_flags & MS_RDONLY) { 4079 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4080 ext4_commit_super(sb, 1); 4081 } 4082 4083 out: 4084 jbd2_journal_unlock_updates(journal); 4085 } 4086 4087 /* 4088 * If we are mounting (or read-write remounting) a filesystem whose journal 4089 * has recorded an error from a previous lifetime, move that error to the 4090 * main filesystem now. 4091 */ 4092 static void ext4_clear_journal_err(struct super_block *sb, 4093 struct ext4_super_block *es) 4094 { 4095 journal_t *journal; 4096 int j_errno; 4097 const char *errstr; 4098 4099 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4100 4101 journal = EXT4_SB(sb)->s_journal; 4102 4103 /* 4104 * Now check for any error status which may have been recorded in the 4105 * journal by a prior ext4_error() or ext4_abort() 4106 */ 4107 4108 j_errno = jbd2_journal_errno(journal); 4109 if (j_errno) { 4110 char nbuf[16]; 4111 4112 errstr = ext4_decode_error(sb, j_errno, nbuf); 4113 ext4_warning(sb, "Filesystem error recorded " 4114 "from previous mount: %s", errstr); 4115 ext4_warning(sb, "Marking fs in need of filesystem check."); 4116 4117 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4118 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4119 ext4_commit_super(sb, 1); 4120 4121 jbd2_journal_clear_err(journal); 4122 } 4123 } 4124 4125 /* 4126 * Force the running and committing transactions to commit, 4127 * and wait on the commit. 4128 */ 4129 int ext4_force_commit(struct super_block *sb) 4130 { 4131 journal_t *journal; 4132 int ret = 0; 4133 4134 if (sb->s_flags & MS_RDONLY) 4135 return 0; 4136 4137 journal = EXT4_SB(sb)->s_journal; 4138 if (journal) { 4139 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4140 ret = ext4_journal_force_commit(journal); 4141 } 4142 4143 return ret; 4144 } 4145 4146 static void ext4_write_super(struct super_block *sb) 4147 { 4148 lock_super(sb); 4149 ext4_commit_super(sb, 1); 4150 unlock_super(sb); 4151 } 4152 4153 static int ext4_sync_fs(struct super_block *sb, int wait) 4154 { 4155 int ret = 0; 4156 tid_t target; 4157 struct ext4_sb_info *sbi = EXT4_SB(sb); 4158 4159 trace_ext4_sync_fs(sb, wait); 4160 flush_workqueue(sbi->dio_unwritten_wq); 4161 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4162 if (wait) 4163 jbd2_log_wait_commit(sbi->s_journal, target); 4164 } 4165 return ret; 4166 } 4167 4168 /* 4169 * LVM calls this function before a (read-only) snapshot is created. This 4170 * gives us a chance to flush the journal completely and mark the fs clean. 4171 * 4172 * Note that only this function cannot bring a filesystem to be in a clean 4173 * state independently, because ext4 prevents a new handle from being started 4174 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4175 * the upper layer. 4176 */ 4177 static int ext4_freeze(struct super_block *sb) 4178 { 4179 int error = 0; 4180 journal_t *journal; 4181 4182 if (sb->s_flags & MS_RDONLY) 4183 return 0; 4184 4185 journal = EXT4_SB(sb)->s_journal; 4186 4187 /* Now we set up the journal barrier. */ 4188 jbd2_journal_lock_updates(journal); 4189 4190 /* 4191 * Don't clear the needs_recovery flag if we failed to flush 4192 * the journal. 4193 */ 4194 error = jbd2_journal_flush(journal); 4195 if (error < 0) 4196 goto out; 4197 4198 /* Journal blocked and flushed, clear needs_recovery flag. */ 4199 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4200 error = ext4_commit_super(sb, 1); 4201 out: 4202 /* we rely on s_frozen to stop further updates */ 4203 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4204 return error; 4205 } 4206 4207 /* 4208 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4209 * flag here, even though the filesystem is not technically dirty yet. 4210 */ 4211 static int ext4_unfreeze(struct super_block *sb) 4212 { 4213 if (sb->s_flags & MS_RDONLY) 4214 return 0; 4215 4216 lock_super(sb); 4217 /* Reset the needs_recovery flag before the fs is unlocked. */ 4218 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4219 ext4_commit_super(sb, 1); 4220 unlock_super(sb); 4221 return 0; 4222 } 4223 4224 /* 4225 * Structure to save mount options for ext4_remount's benefit 4226 */ 4227 struct ext4_mount_options { 4228 unsigned long s_mount_opt; 4229 unsigned long s_mount_opt2; 4230 kuid_t s_resuid; 4231 kgid_t s_resgid; 4232 unsigned long s_commit_interval; 4233 u32 s_min_batch_time, s_max_batch_time; 4234 #ifdef CONFIG_QUOTA 4235 int s_jquota_fmt; 4236 char *s_qf_names[MAXQUOTAS]; 4237 #endif 4238 }; 4239 4240 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4241 { 4242 struct ext4_super_block *es; 4243 struct ext4_sb_info *sbi = EXT4_SB(sb); 4244 unsigned long old_sb_flags; 4245 struct ext4_mount_options old_opts; 4246 int enable_quota = 0; 4247 ext4_group_t g; 4248 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4249 int err = 0; 4250 #ifdef CONFIG_QUOTA 4251 int i; 4252 #endif 4253 char *orig_data = kstrdup(data, GFP_KERNEL); 4254 4255 /* Store the original options */ 4256 lock_super(sb); 4257 old_sb_flags = sb->s_flags; 4258 old_opts.s_mount_opt = sbi->s_mount_opt; 4259 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4260 old_opts.s_resuid = sbi->s_resuid; 4261 old_opts.s_resgid = sbi->s_resgid; 4262 old_opts.s_commit_interval = sbi->s_commit_interval; 4263 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4264 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4265 #ifdef CONFIG_QUOTA 4266 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4267 for (i = 0; i < MAXQUOTAS; i++) 4268 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4269 #endif 4270 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4271 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4272 4273 /* 4274 * Allow the "check" option to be passed as a remount option. 4275 */ 4276 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4277 err = -EINVAL; 4278 goto restore_opts; 4279 } 4280 4281 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4282 ext4_abort(sb, "Abort forced by user"); 4283 4284 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4285 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4286 4287 es = sbi->s_es; 4288 4289 if (sbi->s_journal) { 4290 ext4_init_journal_params(sb, sbi->s_journal); 4291 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4292 } 4293 4294 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4295 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4296 err = -EROFS; 4297 goto restore_opts; 4298 } 4299 4300 if (*flags & MS_RDONLY) { 4301 err = dquot_suspend(sb, -1); 4302 if (err < 0) 4303 goto restore_opts; 4304 4305 /* 4306 * First of all, the unconditional stuff we have to do 4307 * to disable replay of the journal when we next remount 4308 */ 4309 sb->s_flags |= MS_RDONLY; 4310 4311 /* 4312 * OK, test if we are remounting a valid rw partition 4313 * readonly, and if so set the rdonly flag and then 4314 * mark the partition as valid again. 4315 */ 4316 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4317 (sbi->s_mount_state & EXT4_VALID_FS)) 4318 es->s_state = cpu_to_le16(sbi->s_mount_state); 4319 4320 if (sbi->s_journal) 4321 ext4_mark_recovery_complete(sb, es); 4322 } else { 4323 /* Make sure we can mount this feature set readwrite */ 4324 if (!ext4_feature_set_ok(sb, 0)) { 4325 err = -EROFS; 4326 goto restore_opts; 4327 } 4328 /* 4329 * Make sure the group descriptor checksums 4330 * are sane. If they aren't, refuse to remount r/w. 4331 */ 4332 for (g = 0; g < sbi->s_groups_count; g++) { 4333 struct ext4_group_desc *gdp = 4334 ext4_get_group_desc(sb, g, NULL); 4335 4336 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4337 ext4_msg(sb, KERN_ERR, 4338 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4339 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4340 le16_to_cpu(gdp->bg_checksum)); 4341 err = -EINVAL; 4342 goto restore_opts; 4343 } 4344 } 4345 4346 /* 4347 * If we have an unprocessed orphan list hanging 4348 * around from a previously readonly bdev mount, 4349 * require a full umount/remount for now. 4350 */ 4351 if (es->s_last_orphan) { 4352 ext4_msg(sb, KERN_WARNING, "Couldn't " 4353 "remount RDWR because of unprocessed " 4354 "orphan inode list. Please " 4355 "umount/remount instead"); 4356 err = -EINVAL; 4357 goto restore_opts; 4358 } 4359 4360 /* 4361 * Mounting a RDONLY partition read-write, so reread 4362 * and store the current valid flag. (It may have 4363 * been changed by e2fsck since we originally mounted 4364 * the partition.) 4365 */ 4366 if (sbi->s_journal) 4367 ext4_clear_journal_err(sb, es); 4368 sbi->s_mount_state = le16_to_cpu(es->s_state); 4369 if (!ext4_setup_super(sb, es, 0)) 4370 sb->s_flags &= ~MS_RDONLY; 4371 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4372 EXT4_FEATURE_INCOMPAT_MMP)) 4373 if (ext4_multi_mount_protect(sb, 4374 le64_to_cpu(es->s_mmp_block))) { 4375 err = -EROFS; 4376 goto restore_opts; 4377 } 4378 enable_quota = 1; 4379 } 4380 } 4381 4382 /* 4383 * Reinitialize lazy itable initialization thread based on 4384 * current settings 4385 */ 4386 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4387 ext4_unregister_li_request(sb); 4388 else { 4389 ext4_group_t first_not_zeroed; 4390 first_not_zeroed = ext4_has_uninit_itable(sb); 4391 ext4_register_li_request(sb, first_not_zeroed); 4392 } 4393 4394 ext4_setup_system_zone(sb); 4395 if (sbi->s_journal == NULL) 4396 ext4_commit_super(sb, 1); 4397 4398 #ifdef CONFIG_QUOTA 4399 /* Release old quota file names */ 4400 for (i = 0; i < MAXQUOTAS; i++) 4401 if (old_opts.s_qf_names[i] && 4402 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4403 kfree(old_opts.s_qf_names[i]); 4404 #endif 4405 unlock_super(sb); 4406 if (enable_quota) 4407 dquot_resume(sb, -1); 4408 4409 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4410 kfree(orig_data); 4411 return 0; 4412 4413 restore_opts: 4414 sb->s_flags = old_sb_flags; 4415 sbi->s_mount_opt = old_opts.s_mount_opt; 4416 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4417 sbi->s_resuid = old_opts.s_resuid; 4418 sbi->s_resgid = old_opts.s_resgid; 4419 sbi->s_commit_interval = old_opts.s_commit_interval; 4420 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4421 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4422 #ifdef CONFIG_QUOTA 4423 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4424 for (i = 0; i < MAXQUOTAS; i++) { 4425 if (sbi->s_qf_names[i] && 4426 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4427 kfree(sbi->s_qf_names[i]); 4428 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4429 } 4430 #endif 4431 unlock_super(sb); 4432 kfree(orig_data); 4433 return err; 4434 } 4435 4436 /* 4437 * Note: calculating the overhead so we can be compatible with 4438 * historical BSD practice is quite difficult in the face of 4439 * clusters/bigalloc. This is because multiple metadata blocks from 4440 * different block group can end up in the same allocation cluster. 4441 * Calculating the exact overhead in the face of clustered allocation 4442 * requires either O(all block bitmaps) in memory or O(number of block 4443 * groups**2) in time. We will still calculate the superblock for 4444 * older file systems --- and if we come across with a bigalloc file 4445 * system with zero in s_overhead_clusters the estimate will be close to 4446 * correct especially for very large cluster sizes --- but for newer 4447 * file systems, it's better to calculate this figure once at mkfs 4448 * time, and store it in the superblock. If the superblock value is 4449 * present (even for non-bigalloc file systems), we will use it. 4450 */ 4451 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4452 { 4453 struct super_block *sb = dentry->d_sb; 4454 struct ext4_sb_info *sbi = EXT4_SB(sb); 4455 struct ext4_super_block *es = sbi->s_es; 4456 struct ext4_group_desc *gdp; 4457 u64 fsid; 4458 s64 bfree; 4459 4460 if (test_opt(sb, MINIX_DF)) { 4461 sbi->s_overhead_last = 0; 4462 } else if (es->s_overhead_clusters) { 4463 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters); 4464 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4465 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4466 ext4_fsblk_t overhead = 0; 4467 4468 /* 4469 * Compute the overhead (FS structures). This is constant 4470 * for a given filesystem unless the number of block groups 4471 * changes so we cache the previous value until it does. 4472 */ 4473 4474 /* 4475 * All of the blocks before first_data_block are 4476 * overhead 4477 */ 4478 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4479 4480 /* 4481 * Add the overhead found in each block group 4482 */ 4483 for (i = 0; i < ngroups; i++) { 4484 gdp = ext4_get_group_desc(sb, i, NULL); 4485 overhead += ext4_num_overhead_clusters(sb, i, gdp); 4486 cond_resched(); 4487 } 4488 sbi->s_overhead_last = overhead; 4489 smp_wmb(); 4490 sbi->s_blocks_last = ext4_blocks_count(es); 4491 } 4492 4493 buf->f_type = EXT4_SUPER_MAGIC; 4494 buf->f_bsize = sb->s_blocksize; 4495 buf->f_blocks = (ext4_blocks_count(es) - 4496 EXT4_C2B(sbi, sbi->s_overhead_last)); 4497 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4498 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4499 /* prevent underflow in case that few free space is available */ 4500 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4501 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4502 if (buf->f_bfree < ext4_r_blocks_count(es)) 4503 buf->f_bavail = 0; 4504 buf->f_files = le32_to_cpu(es->s_inodes_count); 4505 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4506 buf->f_namelen = EXT4_NAME_LEN; 4507 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4508 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4509 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4510 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4511 4512 return 0; 4513 } 4514 4515 /* Helper function for writing quotas on sync - we need to start transaction 4516 * before quota file is locked for write. Otherwise the are possible deadlocks: 4517 * Process 1 Process 2 4518 * ext4_create() quota_sync() 4519 * jbd2_journal_start() write_dquot() 4520 * dquot_initialize() down(dqio_mutex) 4521 * down(dqio_mutex) jbd2_journal_start() 4522 * 4523 */ 4524 4525 #ifdef CONFIG_QUOTA 4526 4527 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4528 { 4529 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4530 } 4531 4532 static int ext4_write_dquot(struct dquot *dquot) 4533 { 4534 int ret, err; 4535 handle_t *handle; 4536 struct inode *inode; 4537 4538 inode = dquot_to_inode(dquot); 4539 handle = ext4_journal_start(inode, 4540 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4541 if (IS_ERR(handle)) 4542 return PTR_ERR(handle); 4543 ret = dquot_commit(dquot); 4544 err = ext4_journal_stop(handle); 4545 if (!ret) 4546 ret = err; 4547 return ret; 4548 } 4549 4550 static int ext4_acquire_dquot(struct dquot *dquot) 4551 { 4552 int ret, err; 4553 handle_t *handle; 4554 4555 handle = ext4_journal_start(dquot_to_inode(dquot), 4556 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4557 if (IS_ERR(handle)) 4558 return PTR_ERR(handle); 4559 ret = dquot_acquire(dquot); 4560 err = ext4_journal_stop(handle); 4561 if (!ret) 4562 ret = err; 4563 return ret; 4564 } 4565 4566 static int ext4_release_dquot(struct dquot *dquot) 4567 { 4568 int ret, err; 4569 handle_t *handle; 4570 4571 handle = ext4_journal_start(dquot_to_inode(dquot), 4572 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4573 if (IS_ERR(handle)) { 4574 /* Release dquot anyway to avoid endless cycle in dqput() */ 4575 dquot_release(dquot); 4576 return PTR_ERR(handle); 4577 } 4578 ret = dquot_release(dquot); 4579 err = ext4_journal_stop(handle); 4580 if (!ret) 4581 ret = err; 4582 return ret; 4583 } 4584 4585 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4586 { 4587 /* Are we journaling quotas? */ 4588 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4589 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4590 dquot_mark_dquot_dirty(dquot); 4591 return ext4_write_dquot(dquot); 4592 } else { 4593 return dquot_mark_dquot_dirty(dquot); 4594 } 4595 } 4596 4597 static int ext4_write_info(struct super_block *sb, int type) 4598 { 4599 int ret, err; 4600 handle_t *handle; 4601 4602 /* Data block + inode block */ 4603 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4604 if (IS_ERR(handle)) 4605 return PTR_ERR(handle); 4606 ret = dquot_commit_info(sb, type); 4607 err = ext4_journal_stop(handle); 4608 if (!ret) 4609 ret = err; 4610 return ret; 4611 } 4612 4613 /* 4614 * Turn on quotas during mount time - we need to find 4615 * the quota file and such... 4616 */ 4617 static int ext4_quota_on_mount(struct super_block *sb, int type) 4618 { 4619 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4620 EXT4_SB(sb)->s_jquota_fmt, type); 4621 } 4622 4623 /* 4624 * Standard function to be called on quota_on 4625 */ 4626 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4627 struct path *path) 4628 { 4629 int err; 4630 4631 if (!test_opt(sb, QUOTA)) 4632 return -EINVAL; 4633 4634 /* Quotafile not on the same filesystem? */ 4635 if (path->dentry->d_sb != sb) 4636 return -EXDEV; 4637 /* Journaling quota? */ 4638 if (EXT4_SB(sb)->s_qf_names[type]) { 4639 /* Quotafile not in fs root? */ 4640 if (path->dentry->d_parent != sb->s_root) 4641 ext4_msg(sb, KERN_WARNING, 4642 "Quota file not on filesystem root. " 4643 "Journaled quota will not work"); 4644 } 4645 4646 /* 4647 * When we journal data on quota file, we have to flush journal to see 4648 * all updates to the file when we bypass pagecache... 4649 */ 4650 if (EXT4_SB(sb)->s_journal && 4651 ext4_should_journal_data(path->dentry->d_inode)) { 4652 /* 4653 * We don't need to lock updates but journal_flush() could 4654 * otherwise be livelocked... 4655 */ 4656 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4657 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4658 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4659 if (err) 4660 return err; 4661 } 4662 4663 return dquot_quota_on(sb, type, format_id, path); 4664 } 4665 4666 static int ext4_quota_off(struct super_block *sb, int type) 4667 { 4668 struct inode *inode = sb_dqopt(sb)->files[type]; 4669 handle_t *handle; 4670 4671 /* Force all delayed allocation blocks to be allocated. 4672 * Caller already holds s_umount sem */ 4673 if (test_opt(sb, DELALLOC)) 4674 sync_filesystem(sb); 4675 4676 if (!inode) 4677 goto out; 4678 4679 /* Update modification times of quota files when userspace can 4680 * start looking at them */ 4681 handle = ext4_journal_start(inode, 1); 4682 if (IS_ERR(handle)) 4683 goto out; 4684 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4685 ext4_mark_inode_dirty(handle, inode); 4686 ext4_journal_stop(handle); 4687 4688 out: 4689 return dquot_quota_off(sb, type); 4690 } 4691 4692 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4693 * acquiring the locks... As quota files are never truncated and quota code 4694 * itself serializes the operations (and no one else should touch the files) 4695 * we don't have to be afraid of races */ 4696 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4697 size_t len, loff_t off) 4698 { 4699 struct inode *inode = sb_dqopt(sb)->files[type]; 4700 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4701 int err = 0; 4702 int offset = off & (sb->s_blocksize - 1); 4703 int tocopy; 4704 size_t toread; 4705 struct buffer_head *bh; 4706 loff_t i_size = i_size_read(inode); 4707 4708 if (off > i_size) 4709 return 0; 4710 if (off+len > i_size) 4711 len = i_size-off; 4712 toread = len; 4713 while (toread > 0) { 4714 tocopy = sb->s_blocksize - offset < toread ? 4715 sb->s_blocksize - offset : toread; 4716 bh = ext4_bread(NULL, inode, blk, 0, &err); 4717 if (err) 4718 return err; 4719 if (!bh) /* A hole? */ 4720 memset(data, 0, tocopy); 4721 else 4722 memcpy(data, bh->b_data+offset, tocopy); 4723 brelse(bh); 4724 offset = 0; 4725 toread -= tocopy; 4726 data += tocopy; 4727 blk++; 4728 } 4729 return len; 4730 } 4731 4732 /* Write to quotafile (we know the transaction is already started and has 4733 * enough credits) */ 4734 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4735 const char *data, size_t len, loff_t off) 4736 { 4737 struct inode *inode = sb_dqopt(sb)->files[type]; 4738 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4739 int err = 0; 4740 int offset = off & (sb->s_blocksize - 1); 4741 struct buffer_head *bh; 4742 handle_t *handle = journal_current_handle(); 4743 4744 if (EXT4_SB(sb)->s_journal && !handle) { 4745 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4746 " cancelled because transaction is not started", 4747 (unsigned long long)off, (unsigned long long)len); 4748 return -EIO; 4749 } 4750 /* 4751 * Since we account only one data block in transaction credits, 4752 * then it is impossible to cross a block boundary. 4753 */ 4754 if (sb->s_blocksize - offset < len) { 4755 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4756 " cancelled because not block aligned", 4757 (unsigned long long)off, (unsigned long long)len); 4758 return -EIO; 4759 } 4760 4761 bh = ext4_bread(handle, inode, blk, 1, &err); 4762 if (!bh) 4763 goto out; 4764 err = ext4_journal_get_write_access(handle, bh); 4765 if (err) { 4766 brelse(bh); 4767 goto out; 4768 } 4769 lock_buffer(bh); 4770 memcpy(bh->b_data+offset, data, len); 4771 flush_dcache_page(bh->b_page); 4772 unlock_buffer(bh); 4773 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4774 brelse(bh); 4775 out: 4776 if (err) 4777 return err; 4778 if (inode->i_size < off + len) { 4779 i_size_write(inode, off + len); 4780 EXT4_I(inode)->i_disksize = inode->i_size; 4781 ext4_mark_inode_dirty(handle, inode); 4782 } 4783 return len; 4784 } 4785 4786 #endif 4787 4788 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4789 const char *dev_name, void *data) 4790 { 4791 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4792 } 4793 4794 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4795 static inline void register_as_ext2(void) 4796 { 4797 int err = register_filesystem(&ext2_fs_type); 4798 if (err) 4799 printk(KERN_WARNING 4800 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4801 } 4802 4803 static inline void unregister_as_ext2(void) 4804 { 4805 unregister_filesystem(&ext2_fs_type); 4806 } 4807 4808 static inline int ext2_feature_set_ok(struct super_block *sb) 4809 { 4810 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 4811 return 0; 4812 if (sb->s_flags & MS_RDONLY) 4813 return 1; 4814 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 4815 return 0; 4816 return 1; 4817 } 4818 MODULE_ALIAS("ext2"); 4819 #else 4820 static inline void register_as_ext2(void) { } 4821 static inline void unregister_as_ext2(void) { } 4822 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 4823 #endif 4824 4825 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4826 static inline void register_as_ext3(void) 4827 { 4828 int err = register_filesystem(&ext3_fs_type); 4829 if (err) 4830 printk(KERN_WARNING 4831 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4832 } 4833 4834 static inline void unregister_as_ext3(void) 4835 { 4836 unregister_filesystem(&ext3_fs_type); 4837 } 4838 4839 static inline int ext3_feature_set_ok(struct super_block *sb) 4840 { 4841 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 4842 return 0; 4843 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 4844 return 0; 4845 if (sb->s_flags & MS_RDONLY) 4846 return 1; 4847 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 4848 return 0; 4849 return 1; 4850 } 4851 MODULE_ALIAS("ext3"); 4852 #else 4853 static inline void register_as_ext3(void) { } 4854 static inline void unregister_as_ext3(void) { } 4855 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 4856 #endif 4857 4858 static struct file_system_type ext4_fs_type = { 4859 .owner = THIS_MODULE, 4860 .name = "ext4", 4861 .mount = ext4_mount, 4862 .kill_sb = kill_block_super, 4863 .fs_flags = FS_REQUIRES_DEV, 4864 }; 4865 4866 static int __init ext4_init_feat_adverts(void) 4867 { 4868 struct ext4_features *ef; 4869 int ret = -ENOMEM; 4870 4871 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4872 if (!ef) 4873 goto out; 4874 4875 ef->f_kobj.kset = ext4_kset; 4876 init_completion(&ef->f_kobj_unregister); 4877 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4878 "features"); 4879 if (ret) { 4880 kfree(ef); 4881 goto out; 4882 } 4883 4884 ext4_feat = ef; 4885 ret = 0; 4886 out: 4887 return ret; 4888 } 4889 4890 static void ext4_exit_feat_adverts(void) 4891 { 4892 kobject_put(&ext4_feat->f_kobj); 4893 wait_for_completion(&ext4_feat->f_kobj_unregister); 4894 kfree(ext4_feat); 4895 } 4896 4897 /* Shared across all ext4 file systems */ 4898 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 4899 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 4900 4901 static int __init ext4_init_fs(void) 4902 { 4903 int i, err; 4904 4905 ext4_li_info = NULL; 4906 mutex_init(&ext4_li_mtx); 4907 4908 ext4_check_flag_values(); 4909 4910 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 4911 mutex_init(&ext4__aio_mutex[i]); 4912 init_waitqueue_head(&ext4__ioend_wq[i]); 4913 } 4914 4915 err = ext4_init_pageio(); 4916 if (err) 4917 return err; 4918 err = ext4_init_system_zone(); 4919 if (err) 4920 goto out6; 4921 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4922 if (!ext4_kset) 4923 goto out5; 4924 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4925 4926 err = ext4_init_feat_adverts(); 4927 if (err) 4928 goto out4; 4929 4930 err = ext4_init_mballoc(); 4931 if (err) 4932 goto out3; 4933 4934 err = ext4_init_xattr(); 4935 if (err) 4936 goto out2; 4937 err = init_inodecache(); 4938 if (err) 4939 goto out1; 4940 register_as_ext3(); 4941 register_as_ext2(); 4942 err = register_filesystem(&ext4_fs_type); 4943 if (err) 4944 goto out; 4945 4946 return 0; 4947 out: 4948 unregister_as_ext2(); 4949 unregister_as_ext3(); 4950 destroy_inodecache(); 4951 out1: 4952 ext4_exit_xattr(); 4953 out2: 4954 ext4_exit_mballoc(); 4955 out3: 4956 ext4_exit_feat_adverts(); 4957 out4: 4958 if (ext4_proc_root) 4959 remove_proc_entry("fs/ext4", NULL); 4960 kset_unregister(ext4_kset); 4961 out5: 4962 ext4_exit_system_zone(); 4963 out6: 4964 ext4_exit_pageio(); 4965 return err; 4966 } 4967 4968 static void __exit ext4_exit_fs(void) 4969 { 4970 ext4_destroy_lazyinit_thread(); 4971 unregister_as_ext2(); 4972 unregister_as_ext3(); 4973 unregister_filesystem(&ext4_fs_type); 4974 destroy_inodecache(); 4975 ext4_exit_xattr(); 4976 ext4_exit_mballoc(); 4977 ext4_exit_feat_adverts(); 4978 remove_proc_entry("fs/ext4", NULL); 4979 kset_unregister(ext4_kset); 4980 ext4_exit_system_zone(); 4981 ext4_exit_pageio(); 4982 } 4983 4984 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4985 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4986 MODULE_LICENSE("GPL"); 4987 module_init(ext4_init_fs) 4988 module_exit(ext4_exit_fs) 4989