1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116 { 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122 } 123 124 static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126 { 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134 } 135 136 int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138 { 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb, 147 struct ext4_super_block *es) 148 { 149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 150 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 151 return; 152 153 es->s_checksum = ext4_superblock_csum(sb, es); 154 } 155 156 void *ext4_kvmalloc(size_t size, gfp_t flags) 157 { 158 void *ret; 159 160 ret = kmalloc(size, flags); 161 if (!ret) 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 return ret; 164 } 165 166 void *ext4_kvzalloc(size_t size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = kzalloc(size, flags); 171 if (!ret) 172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 173 return ret; 174 } 175 176 void ext4_kvfree(void *ptr) 177 { 178 if (is_vmalloc_addr(ptr)) 179 vfree(ptr); 180 else 181 kfree(ptr); 182 183 } 184 185 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 186 struct ext4_group_desc *bg) 187 { 188 return le32_to_cpu(bg->bg_block_bitmap_lo) | 189 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 190 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 191 } 192 193 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 194 struct ext4_group_desc *bg) 195 { 196 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 197 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 198 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 199 } 200 201 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_inode_table_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 207 } 208 209 __u32 ext4_free_group_clusters(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 215 } 216 217 __u32 ext4_free_inodes_count(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 223 } 224 225 __u32 ext4_used_dirs_count(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_itable_unused_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_itable_unused_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 239 } 240 241 void ext4_block_bitmap_set(struct super_block *sb, 242 struct ext4_group_desc *bg, ext4_fsblk_t blk) 243 { 244 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 245 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 246 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 247 } 248 249 void ext4_inode_bitmap_set(struct super_block *sb, 250 struct ext4_group_desc *bg, ext4_fsblk_t blk) 251 { 252 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 253 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 254 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 255 } 256 257 void ext4_inode_table_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_free_group_clusters_set(struct super_block *sb, 266 struct ext4_group_desc *bg, __u32 count) 267 { 268 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 271 } 272 273 void ext4_free_inodes_set(struct super_block *sb, 274 struct ext4_group_desc *bg, __u32 count) 275 { 276 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 279 } 280 281 void ext4_used_dirs_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_itable_unused_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 295 } 296 297 298 /* Just increment the non-pointer handle value */ 299 static handle_t *ext4_get_nojournal(void) 300 { 301 handle_t *handle = current->journal_info; 302 unsigned long ref_cnt = (unsigned long)handle; 303 304 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 305 306 ref_cnt++; 307 handle = (handle_t *)ref_cnt; 308 309 current->journal_info = handle; 310 return handle; 311 } 312 313 314 /* Decrement the non-pointer handle value */ 315 static void ext4_put_nojournal(handle_t *handle) 316 { 317 unsigned long ref_cnt = (unsigned long)handle; 318 319 BUG_ON(ref_cnt == 0); 320 321 ref_cnt--; 322 handle = (handle_t *)ref_cnt; 323 324 current->journal_info = handle; 325 } 326 327 /* 328 * Wrappers for jbd2_journal_start/end. 329 * 330 * The only special thing we need to do here is to make sure that all 331 * journal_end calls result in the superblock being marked dirty, so 332 * that sync() will call the filesystem's write_super callback if 333 * appropriate. 334 * 335 * To avoid j_barrier hold in userspace when a user calls freeze(), 336 * ext4 prevents a new handle from being started by s_frozen, which 337 * is in an upper layer. 338 */ 339 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 340 { 341 journal_t *journal; 342 handle_t *handle; 343 344 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 345 if (sb->s_flags & MS_RDONLY) 346 return ERR_PTR(-EROFS); 347 348 journal = EXT4_SB(sb)->s_journal; 349 handle = ext4_journal_current_handle(); 350 351 /* 352 * If a handle has been started, it should be allowed to 353 * finish, otherwise deadlock could happen between freeze 354 * and others(e.g. truncate) due to the restart of the 355 * journal handle if the filesystem is forzen and active 356 * handles are not stopped. 357 */ 358 if (!handle) 359 vfs_check_frozen(sb, SB_FREEZE_TRANS); 360 361 if (!journal) 362 return ext4_get_nojournal(); 363 /* 364 * Special case here: if the journal has aborted behind our 365 * backs (eg. EIO in the commit thread), then we still need to 366 * take the FS itself readonly cleanly. 367 */ 368 if (is_journal_aborted(journal)) { 369 ext4_abort(sb, "Detected aborted journal"); 370 return ERR_PTR(-EROFS); 371 } 372 return jbd2_journal_start(journal, nblocks); 373 } 374 375 /* 376 * The only special thing we need to do here is to make sure that all 377 * jbd2_journal_stop calls result in the superblock being marked dirty, so 378 * that sync() will call the filesystem's write_super callback if 379 * appropriate. 380 */ 381 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 382 { 383 struct super_block *sb; 384 int err; 385 int rc; 386 387 if (!ext4_handle_valid(handle)) { 388 ext4_put_nojournal(handle); 389 return 0; 390 } 391 sb = handle->h_transaction->t_journal->j_private; 392 err = handle->h_err; 393 rc = jbd2_journal_stop(handle); 394 395 if (!err) 396 err = rc; 397 if (err) 398 __ext4_std_error(sb, where, line, err); 399 return err; 400 } 401 402 void ext4_journal_abort_handle(const char *caller, unsigned int line, 403 const char *err_fn, struct buffer_head *bh, 404 handle_t *handle, int err) 405 { 406 char nbuf[16]; 407 const char *errstr = ext4_decode_error(NULL, err, nbuf); 408 409 BUG_ON(!ext4_handle_valid(handle)); 410 411 if (bh) 412 BUFFER_TRACE(bh, "abort"); 413 414 if (!handle->h_err) 415 handle->h_err = err; 416 417 if (is_handle_aborted(handle)) 418 return; 419 420 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 421 caller, line, errstr, err_fn); 422 423 jbd2_journal_abort_handle(handle); 424 } 425 426 static void __save_error_info(struct super_block *sb, const char *func, 427 unsigned int line) 428 { 429 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 430 431 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 432 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 433 es->s_last_error_time = cpu_to_le32(get_seconds()); 434 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 435 es->s_last_error_line = cpu_to_le32(line); 436 if (!es->s_first_error_time) { 437 es->s_first_error_time = es->s_last_error_time; 438 strncpy(es->s_first_error_func, func, 439 sizeof(es->s_first_error_func)); 440 es->s_first_error_line = cpu_to_le32(line); 441 es->s_first_error_ino = es->s_last_error_ino; 442 es->s_first_error_block = es->s_last_error_block; 443 } 444 /* 445 * Start the daily error reporting function if it hasn't been 446 * started already 447 */ 448 if (!es->s_error_count) 449 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 450 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 451 } 452 453 static void save_error_info(struct super_block *sb, const char *func, 454 unsigned int line) 455 { 456 __save_error_info(sb, func, line); 457 ext4_commit_super(sb, 1); 458 } 459 460 /* 461 * The del_gendisk() function uninitializes the disk-specific data 462 * structures, including the bdi structure, without telling anyone 463 * else. Once this happens, any attempt to call mark_buffer_dirty() 464 * (for example, by ext4_commit_super), will cause a kernel OOPS. 465 * This is a kludge to prevent these oops until we can put in a proper 466 * hook in del_gendisk() to inform the VFS and file system layers. 467 */ 468 static int block_device_ejected(struct super_block *sb) 469 { 470 struct inode *bd_inode = sb->s_bdev->bd_inode; 471 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 472 473 return bdi->dev == NULL; 474 } 475 476 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 477 { 478 struct super_block *sb = journal->j_private; 479 struct ext4_sb_info *sbi = EXT4_SB(sb); 480 int error = is_journal_aborted(journal); 481 struct ext4_journal_cb_entry *jce, *tmp; 482 483 spin_lock(&sbi->s_md_lock); 484 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 485 list_del_init(&jce->jce_list); 486 spin_unlock(&sbi->s_md_lock); 487 jce->jce_func(sb, jce, error); 488 spin_lock(&sbi->s_md_lock); 489 } 490 spin_unlock(&sbi->s_md_lock); 491 } 492 493 /* Deal with the reporting of failure conditions on a filesystem such as 494 * inconsistencies detected or read IO failures. 495 * 496 * On ext2, we can store the error state of the filesystem in the 497 * superblock. That is not possible on ext4, because we may have other 498 * write ordering constraints on the superblock which prevent us from 499 * writing it out straight away; and given that the journal is about to 500 * be aborted, we can't rely on the current, or future, transactions to 501 * write out the superblock safely. 502 * 503 * We'll just use the jbd2_journal_abort() error code to record an error in 504 * the journal instead. On recovery, the journal will complain about 505 * that error until we've noted it down and cleared it. 506 */ 507 508 static void ext4_handle_error(struct super_block *sb) 509 { 510 if (sb->s_flags & MS_RDONLY) 511 return; 512 513 if (!test_opt(sb, ERRORS_CONT)) { 514 journal_t *journal = EXT4_SB(sb)->s_journal; 515 516 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 517 if (journal) 518 jbd2_journal_abort(journal, -EIO); 519 } 520 if (test_opt(sb, ERRORS_RO)) { 521 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 522 sb->s_flags |= MS_RDONLY; 523 } 524 if (test_opt(sb, ERRORS_PANIC)) 525 panic("EXT4-fs (device %s): panic forced after error\n", 526 sb->s_id); 527 } 528 529 void __ext4_error(struct super_block *sb, const char *function, 530 unsigned int line, const char *fmt, ...) 531 { 532 struct va_format vaf; 533 va_list args; 534 535 va_start(args, fmt); 536 vaf.fmt = fmt; 537 vaf.va = &args; 538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 539 sb->s_id, function, line, current->comm, &vaf); 540 va_end(args); 541 save_error_info(sb, function, line); 542 543 ext4_handle_error(sb); 544 } 545 546 void ext4_error_inode(struct inode *inode, const char *function, 547 unsigned int line, ext4_fsblk_t block, 548 const char *fmt, ...) 549 { 550 va_list args; 551 struct va_format vaf; 552 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 553 554 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 555 es->s_last_error_block = cpu_to_le64(block); 556 save_error_info(inode->i_sb, function, line); 557 va_start(args, fmt); 558 vaf.fmt = fmt; 559 vaf.va = &args; 560 if (block) 561 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 562 "inode #%lu: block %llu: comm %s: %pV\n", 563 inode->i_sb->s_id, function, line, inode->i_ino, 564 block, current->comm, &vaf); 565 else 566 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 567 "inode #%lu: comm %s: %pV\n", 568 inode->i_sb->s_id, function, line, inode->i_ino, 569 current->comm, &vaf); 570 va_end(args); 571 572 ext4_handle_error(inode->i_sb); 573 } 574 575 void ext4_error_file(struct file *file, const char *function, 576 unsigned int line, ext4_fsblk_t block, 577 const char *fmt, ...) 578 { 579 va_list args; 580 struct va_format vaf; 581 struct ext4_super_block *es; 582 struct inode *inode = file->f_dentry->d_inode; 583 char pathname[80], *path; 584 585 es = EXT4_SB(inode->i_sb)->s_es; 586 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 587 save_error_info(inode->i_sb, function, line); 588 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 589 if (IS_ERR(path)) 590 path = "(unknown)"; 591 va_start(args, fmt); 592 vaf.fmt = fmt; 593 vaf.va = &args; 594 if (block) 595 printk(KERN_CRIT 596 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 597 "block %llu: comm %s: path %s: %pV\n", 598 inode->i_sb->s_id, function, line, inode->i_ino, 599 block, current->comm, path, &vaf); 600 else 601 printk(KERN_CRIT 602 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 603 "comm %s: path %s: %pV\n", 604 inode->i_sb->s_id, function, line, inode->i_ino, 605 current->comm, path, &vaf); 606 va_end(args); 607 608 ext4_handle_error(inode->i_sb); 609 } 610 611 static const char *ext4_decode_error(struct super_block *sb, int errno, 612 char nbuf[16]) 613 { 614 char *errstr = NULL; 615 616 switch (errno) { 617 case -EIO: 618 errstr = "IO failure"; 619 break; 620 case -ENOMEM: 621 errstr = "Out of memory"; 622 break; 623 case -EROFS: 624 if (!sb || (EXT4_SB(sb)->s_journal && 625 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 626 errstr = "Journal has aborted"; 627 else 628 errstr = "Readonly filesystem"; 629 break; 630 default: 631 /* If the caller passed in an extra buffer for unknown 632 * errors, textualise them now. Else we just return 633 * NULL. */ 634 if (nbuf) { 635 /* Check for truncated error codes... */ 636 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 637 errstr = nbuf; 638 } 639 break; 640 } 641 642 return errstr; 643 } 644 645 /* __ext4_std_error decodes expected errors from journaling functions 646 * automatically and invokes the appropriate error response. */ 647 648 void __ext4_std_error(struct super_block *sb, const char *function, 649 unsigned int line, int errno) 650 { 651 char nbuf[16]; 652 const char *errstr; 653 654 /* Special case: if the error is EROFS, and we're not already 655 * inside a transaction, then there's really no point in logging 656 * an error. */ 657 if (errno == -EROFS && journal_current_handle() == NULL && 658 (sb->s_flags & MS_RDONLY)) 659 return; 660 661 errstr = ext4_decode_error(sb, errno, nbuf); 662 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 663 sb->s_id, function, line, errstr); 664 save_error_info(sb, function, line); 665 666 ext4_handle_error(sb); 667 } 668 669 /* 670 * ext4_abort is a much stronger failure handler than ext4_error. The 671 * abort function may be used to deal with unrecoverable failures such 672 * as journal IO errors or ENOMEM at a critical moment in log management. 673 * 674 * We unconditionally force the filesystem into an ABORT|READONLY state, 675 * unless the error response on the fs has been set to panic in which 676 * case we take the easy way out and panic immediately. 677 */ 678 679 void __ext4_abort(struct super_block *sb, const char *function, 680 unsigned int line, const char *fmt, ...) 681 { 682 va_list args; 683 684 save_error_info(sb, function, line); 685 va_start(args, fmt); 686 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 687 function, line); 688 vprintk(fmt, args); 689 printk("\n"); 690 va_end(args); 691 692 if ((sb->s_flags & MS_RDONLY) == 0) { 693 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 694 sb->s_flags |= MS_RDONLY; 695 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 696 if (EXT4_SB(sb)->s_journal) 697 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 698 save_error_info(sb, function, line); 699 } 700 if (test_opt(sb, ERRORS_PANIC)) 701 panic("EXT4-fs panic from previous error\n"); 702 } 703 704 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 705 { 706 struct va_format vaf; 707 va_list args; 708 709 va_start(args, fmt); 710 vaf.fmt = fmt; 711 vaf.va = &args; 712 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 713 va_end(args); 714 } 715 716 void __ext4_warning(struct super_block *sb, const char *function, 717 unsigned int line, const char *fmt, ...) 718 { 719 struct va_format vaf; 720 va_list args; 721 722 va_start(args, fmt); 723 vaf.fmt = fmt; 724 vaf.va = &args; 725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 726 sb->s_id, function, line, &vaf); 727 va_end(args); 728 } 729 730 void __ext4_grp_locked_error(const char *function, unsigned int line, 731 struct super_block *sb, ext4_group_t grp, 732 unsigned long ino, ext4_fsblk_t block, 733 const char *fmt, ...) 734 __releases(bitlock) 735 __acquires(bitlock) 736 { 737 struct va_format vaf; 738 va_list args; 739 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 740 741 es->s_last_error_ino = cpu_to_le32(ino); 742 es->s_last_error_block = cpu_to_le64(block); 743 __save_error_info(sb, function, line); 744 745 va_start(args, fmt); 746 747 vaf.fmt = fmt; 748 vaf.va = &args; 749 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 750 sb->s_id, function, line, grp); 751 if (ino) 752 printk(KERN_CONT "inode %lu: ", ino); 753 if (block) 754 printk(KERN_CONT "block %llu:", (unsigned long long) block); 755 printk(KERN_CONT "%pV\n", &vaf); 756 va_end(args); 757 758 if (test_opt(sb, ERRORS_CONT)) { 759 ext4_commit_super(sb, 0); 760 return; 761 } 762 763 ext4_unlock_group(sb, grp); 764 ext4_handle_error(sb); 765 /* 766 * We only get here in the ERRORS_RO case; relocking the group 767 * may be dangerous, but nothing bad will happen since the 768 * filesystem will have already been marked read/only and the 769 * journal has been aborted. We return 1 as a hint to callers 770 * who might what to use the return value from 771 * ext4_grp_locked_error() to distinguish between the 772 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 773 * aggressively from the ext4 function in question, with a 774 * more appropriate error code. 775 */ 776 ext4_lock_group(sb, grp); 777 return; 778 } 779 780 void ext4_update_dynamic_rev(struct super_block *sb) 781 { 782 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 783 784 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 785 return; 786 787 ext4_warning(sb, 788 "updating to rev %d because of new feature flag, " 789 "running e2fsck is recommended", 790 EXT4_DYNAMIC_REV); 791 792 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 793 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 794 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 795 /* leave es->s_feature_*compat flags alone */ 796 /* es->s_uuid will be set by e2fsck if empty */ 797 798 /* 799 * The rest of the superblock fields should be zero, and if not it 800 * means they are likely already in use, so leave them alone. We 801 * can leave it up to e2fsck to clean up any inconsistencies there. 802 */ 803 } 804 805 /* 806 * Open the external journal device 807 */ 808 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 809 { 810 struct block_device *bdev; 811 char b[BDEVNAME_SIZE]; 812 813 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 814 if (IS_ERR(bdev)) 815 goto fail; 816 return bdev; 817 818 fail: 819 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 820 __bdevname(dev, b), PTR_ERR(bdev)); 821 return NULL; 822 } 823 824 /* 825 * Release the journal device 826 */ 827 static int ext4_blkdev_put(struct block_device *bdev) 828 { 829 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 830 } 831 832 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 833 { 834 struct block_device *bdev; 835 int ret = -ENODEV; 836 837 bdev = sbi->journal_bdev; 838 if (bdev) { 839 ret = ext4_blkdev_put(bdev); 840 sbi->journal_bdev = NULL; 841 } 842 return ret; 843 } 844 845 static inline struct inode *orphan_list_entry(struct list_head *l) 846 { 847 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 848 } 849 850 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 851 { 852 struct list_head *l; 853 854 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 855 le32_to_cpu(sbi->s_es->s_last_orphan)); 856 857 printk(KERN_ERR "sb_info orphan list:\n"); 858 list_for_each(l, &sbi->s_orphan) { 859 struct inode *inode = orphan_list_entry(l); 860 printk(KERN_ERR " " 861 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 862 inode->i_sb->s_id, inode->i_ino, inode, 863 inode->i_mode, inode->i_nlink, 864 NEXT_ORPHAN(inode)); 865 } 866 } 867 868 static void ext4_put_super(struct super_block *sb) 869 { 870 struct ext4_sb_info *sbi = EXT4_SB(sb); 871 struct ext4_super_block *es = sbi->s_es; 872 int i, err; 873 874 ext4_unregister_li_request(sb); 875 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 876 877 flush_workqueue(sbi->dio_unwritten_wq); 878 destroy_workqueue(sbi->dio_unwritten_wq); 879 880 lock_super(sb); 881 if (sbi->s_journal) { 882 err = jbd2_journal_destroy(sbi->s_journal); 883 sbi->s_journal = NULL; 884 if (err < 0) 885 ext4_abort(sb, "Couldn't clean up the journal"); 886 } 887 888 del_timer(&sbi->s_err_report); 889 ext4_release_system_zone(sb); 890 ext4_mb_release(sb); 891 ext4_ext_release(sb); 892 ext4_xattr_put_super(sb); 893 894 if (!(sb->s_flags & MS_RDONLY)) { 895 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 896 es->s_state = cpu_to_le16(sbi->s_mount_state); 897 } 898 if (!(sb->s_flags & MS_RDONLY)) 899 ext4_commit_super(sb, 1); 900 901 if (sbi->s_proc) { 902 remove_proc_entry("options", sbi->s_proc); 903 remove_proc_entry(sb->s_id, ext4_proc_root); 904 } 905 kobject_del(&sbi->s_kobj); 906 907 for (i = 0; i < sbi->s_gdb_count; i++) 908 brelse(sbi->s_group_desc[i]); 909 ext4_kvfree(sbi->s_group_desc); 910 ext4_kvfree(sbi->s_flex_groups); 911 percpu_counter_destroy(&sbi->s_freeclusters_counter); 912 percpu_counter_destroy(&sbi->s_freeinodes_counter); 913 percpu_counter_destroy(&sbi->s_dirs_counter); 914 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 915 brelse(sbi->s_sbh); 916 #ifdef CONFIG_QUOTA 917 for (i = 0; i < MAXQUOTAS; i++) 918 kfree(sbi->s_qf_names[i]); 919 #endif 920 921 /* Debugging code just in case the in-memory inode orphan list 922 * isn't empty. The on-disk one can be non-empty if we've 923 * detected an error and taken the fs readonly, but the 924 * in-memory list had better be clean by this point. */ 925 if (!list_empty(&sbi->s_orphan)) 926 dump_orphan_list(sb, sbi); 927 J_ASSERT(list_empty(&sbi->s_orphan)); 928 929 invalidate_bdev(sb->s_bdev); 930 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 931 /* 932 * Invalidate the journal device's buffers. We don't want them 933 * floating about in memory - the physical journal device may 934 * hotswapped, and it breaks the `ro-after' testing code. 935 */ 936 sync_blockdev(sbi->journal_bdev); 937 invalidate_bdev(sbi->journal_bdev); 938 ext4_blkdev_remove(sbi); 939 } 940 if (sbi->s_mmp_tsk) 941 kthread_stop(sbi->s_mmp_tsk); 942 sb->s_fs_info = NULL; 943 /* 944 * Now that we are completely done shutting down the 945 * superblock, we need to actually destroy the kobject. 946 */ 947 unlock_super(sb); 948 kobject_put(&sbi->s_kobj); 949 wait_for_completion(&sbi->s_kobj_unregister); 950 if (sbi->s_chksum_driver) 951 crypto_free_shash(sbi->s_chksum_driver); 952 kfree(sbi->s_blockgroup_lock); 953 kfree(sbi); 954 } 955 956 static struct kmem_cache *ext4_inode_cachep; 957 958 /* 959 * Called inside transaction, so use GFP_NOFS 960 */ 961 static struct inode *ext4_alloc_inode(struct super_block *sb) 962 { 963 struct ext4_inode_info *ei; 964 965 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 966 if (!ei) 967 return NULL; 968 969 ei->vfs_inode.i_version = 1; 970 ei->vfs_inode.i_data.writeback_index = 0; 971 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 972 INIT_LIST_HEAD(&ei->i_prealloc_list); 973 spin_lock_init(&ei->i_prealloc_lock); 974 ei->i_reserved_data_blocks = 0; 975 ei->i_reserved_meta_blocks = 0; 976 ei->i_allocated_meta_blocks = 0; 977 ei->i_da_metadata_calc_len = 0; 978 spin_lock_init(&(ei->i_block_reservation_lock)); 979 #ifdef CONFIG_QUOTA 980 ei->i_reserved_quota = 0; 981 #endif 982 ei->jinode = NULL; 983 INIT_LIST_HEAD(&ei->i_completed_io_list); 984 spin_lock_init(&ei->i_completed_io_lock); 985 ei->cur_aio_dio = NULL; 986 ei->i_sync_tid = 0; 987 ei->i_datasync_tid = 0; 988 atomic_set(&ei->i_ioend_count, 0); 989 atomic_set(&ei->i_aiodio_unwritten, 0); 990 991 return &ei->vfs_inode; 992 } 993 994 static int ext4_drop_inode(struct inode *inode) 995 { 996 int drop = generic_drop_inode(inode); 997 998 trace_ext4_drop_inode(inode, drop); 999 return drop; 1000 } 1001 1002 static void ext4_i_callback(struct rcu_head *head) 1003 { 1004 struct inode *inode = container_of(head, struct inode, i_rcu); 1005 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1006 } 1007 1008 static void ext4_destroy_inode(struct inode *inode) 1009 { 1010 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1011 ext4_msg(inode->i_sb, KERN_ERR, 1012 "Inode %lu (%p): orphan list check failed!", 1013 inode->i_ino, EXT4_I(inode)); 1014 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1015 EXT4_I(inode), sizeof(struct ext4_inode_info), 1016 true); 1017 dump_stack(); 1018 } 1019 call_rcu(&inode->i_rcu, ext4_i_callback); 1020 } 1021 1022 static void init_once(void *foo) 1023 { 1024 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1025 1026 INIT_LIST_HEAD(&ei->i_orphan); 1027 #ifdef CONFIG_EXT4_FS_XATTR 1028 init_rwsem(&ei->xattr_sem); 1029 #endif 1030 init_rwsem(&ei->i_data_sem); 1031 inode_init_once(&ei->vfs_inode); 1032 } 1033 1034 static int init_inodecache(void) 1035 { 1036 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1037 sizeof(struct ext4_inode_info), 1038 0, (SLAB_RECLAIM_ACCOUNT| 1039 SLAB_MEM_SPREAD), 1040 init_once); 1041 if (ext4_inode_cachep == NULL) 1042 return -ENOMEM; 1043 return 0; 1044 } 1045 1046 static void destroy_inodecache(void) 1047 { 1048 kmem_cache_destroy(ext4_inode_cachep); 1049 } 1050 1051 void ext4_clear_inode(struct inode *inode) 1052 { 1053 invalidate_inode_buffers(inode); 1054 clear_inode(inode); 1055 dquot_drop(inode); 1056 ext4_discard_preallocations(inode); 1057 if (EXT4_I(inode)->jinode) { 1058 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1059 EXT4_I(inode)->jinode); 1060 jbd2_free_inode(EXT4_I(inode)->jinode); 1061 EXT4_I(inode)->jinode = NULL; 1062 } 1063 } 1064 1065 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1066 u64 ino, u32 generation) 1067 { 1068 struct inode *inode; 1069 1070 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1071 return ERR_PTR(-ESTALE); 1072 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1073 return ERR_PTR(-ESTALE); 1074 1075 /* iget isn't really right if the inode is currently unallocated!! 1076 * 1077 * ext4_read_inode will return a bad_inode if the inode had been 1078 * deleted, so we should be safe. 1079 * 1080 * Currently we don't know the generation for parent directory, so 1081 * a generation of 0 means "accept any" 1082 */ 1083 inode = ext4_iget(sb, ino); 1084 if (IS_ERR(inode)) 1085 return ERR_CAST(inode); 1086 if (generation && inode->i_generation != generation) { 1087 iput(inode); 1088 return ERR_PTR(-ESTALE); 1089 } 1090 1091 return inode; 1092 } 1093 1094 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1095 int fh_len, int fh_type) 1096 { 1097 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1098 ext4_nfs_get_inode); 1099 } 1100 1101 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1102 int fh_len, int fh_type) 1103 { 1104 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1105 ext4_nfs_get_inode); 1106 } 1107 1108 /* 1109 * Try to release metadata pages (indirect blocks, directories) which are 1110 * mapped via the block device. Since these pages could have journal heads 1111 * which would prevent try_to_free_buffers() from freeing them, we must use 1112 * jbd2 layer's try_to_free_buffers() function to release them. 1113 */ 1114 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1115 gfp_t wait) 1116 { 1117 journal_t *journal = EXT4_SB(sb)->s_journal; 1118 1119 WARN_ON(PageChecked(page)); 1120 if (!page_has_buffers(page)) 1121 return 0; 1122 if (journal) 1123 return jbd2_journal_try_to_free_buffers(journal, page, 1124 wait & ~__GFP_WAIT); 1125 return try_to_free_buffers(page); 1126 } 1127 1128 #ifdef CONFIG_QUOTA 1129 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1130 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1131 1132 static int ext4_write_dquot(struct dquot *dquot); 1133 static int ext4_acquire_dquot(struct dquot *dquot); 1134 static int ext4_release_dquot(struct dquot *dquot); 1135 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1136 static int ext4_write_info(struct super_block *sb, int type); 1137 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1138 struct path *path); 1139 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1140 int format_id); 1141 static int ext4_quota_off(struct super_block *sb, int type); 1142 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1143 static int ext4_quota_on_mount(struct super_block *sb, int type); 1144 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1145 size_t len, loff_t off); 1146 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1147 const char *data, size_t len, loff_t off); 1148 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1149 unsigned int flags); 1150 static int ext4_enable_quotas(struct super_block *sb); 1151 1152 static const struct dquot_operations ext4_quota_operations = { 1153 .get_reserved_space = ext4_get_reserved_space, 1154 .write_dquot = ext4_write_dquot, 1155 .acquire_dquot = ext4_acquire_dquot, 1156 .release_dquot = ext4_release_dquot, 1157 .mark_dirty = ext4_mark_dquot_dirty, 1158 .write_info = ext4_write_info, 1159 .alloc_dquot = dquot_alloc, 1160 .destroy_dquot = dquot_destroy, 1161 }; 1162 1163 static const struct quotactl_ops ext4_qctl_operations = { 1164 .quota_on = ext4_quota_on, 1165 .quota_off = ext4_quota_off, 1166 .quota_sync = dquot_quota_sync, 1167 .get_info = dquot_get_dqinfo, 1168 .set_info = dquot_set_dqinfo, 1169 .get_dqblk = dquot_get_dqblk, 1170 .set_dqblk = dquot_set_dqblk 1171 }; 1172 1173 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1174 .quota_on_meta = ext4_quota_on_sysfile, 1175 .quota_off = ext4_quota_off_sysfile, 1176 .quota_sync = dquot_quota_sync, 1177 .get_info = dquot_get_dqinfo, 1178 .set_info = dquot_set_dqinfo, 1179 .get_dqblk = dquot_get_dqblk, 1180 .set_dqblk = dquot_set_dqblk 1181 }; 1182 #endif 1183 1184 static const struct super_operations ext4_sops = { 1185 .alloc_inode = ext4_alloc_inode, 1186 .destroy_inode = ext4_destroy_inode, 1187 .write_inode = ext4_write_inode, 1188 .dirty_inode = ext4_dirty_inode, 1189 .drop_inode = ext4_drop_inode, 1190 .evict_inode = ext4_evict_inode, 1191 .put_super = ext4_put_super, 1192 .sync_fs = ext4_sync_fs, 1193 .freeze_fs = ext4_freeze, 1194 .unfreeze_fs = ext4_unfreeze, 1195 .statfs = ext4_statfs, 1196 .remount_fs = ext4_remount, 1197 .show_options = ext4_show_options, 1198 #ifdef CONFIG_QUOTA 1199 .quota_read = ext4_quota_read, 1200 .quota_write = ext4_quota_write, 1201 #endif 1202 .bdev_try_to_free_page = bdev_try_to_free_page, 1203 }; 1204 1205 static const struct super_operations ext4_nojournal_sops = { 1206 .alloc_inode = ext4_alloc_inode, 1207 .destroy_inode = ext4_destroy_inode, 1208 .write_inode = ext4_write_inode, 1209 .dirty_inode = ext4_dirty_inode, 1210 .drop_inode = ext4_drop_inode, 1211 .evict_inode = ext4_evict_inode, 1212 .put_super = ext4_put_super, 1213 .statfs = ext4_statfs, 1214 .remount_fs = ext4_remount, 1215 .show_options = ext4_show_options, 1216 #ifdef CONFIG_QUOTA 1217 .quota_read = ext4_quota_read, 1218 .quota_write = ext4_quota_write, 1219 #endif 1220 .bdev_try_to_free_page = bdev_try_to_free_page, 1221 }; 1222 1223 static const struct export_operations ext4_export_ops = { 1224 .fh_to_dentry = ext4_fh_to_dentry, 1225 .fh_to_parent = ext4_fh_to_parent, 1226 .get_parent = ext4_get_parent, 1227 }; 1228 1229 enum { 1230 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1231 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1232 Opt_nouid32, Opt_debug, Opt_removed, 1233 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1234 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1235 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1236 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1237 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1238 Opt_data_err_abort, Opt_data_err_ignore, 1239 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1240 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1241 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1242 Opt_usrquota, Opt_grpquota, Opt_i_version, 1243 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1244 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1245 Opt_inode_readahead_blks, Opt_journal_ioprio, 1246 Opt_dioread_nolock, Opt_dioread_lock, 1247 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1248 }; 1249 1250 static const match_table_t tokens = { 1251 {Opt_bsd_df, "bsddf"}, 1252 {Opt_minix_df, "minixdf"}, 1253 {Opt_grpid, "grpid"}, 1254 {Opt_grpid, "bsdgroups"}, 1255 {Opt_nogrpid, "nogrpid"}, 1256 {Opt_nogrpid, "sysvgroups"}, 1257 {Opt_resgid, "resgid=%u"}, 1258 {Opt_resuid, "resuid=%u"}, 1259 {Opt_sb, "sb=%u"}, 1260 {Opt_err_cont, "errors=continue"}, 1261 {Opt_err_panic, "errors=panic"}, 1262 {Opt_err_ro, "errors=remount-ro"}, 1263 {Opt_nouid32, "nouid32"}, 1264 {Opt_debug, "debug"}, 1265 {Opt_removed, "oldalloc"}, 1266 {Opt_removed, "orlov"}, 1267 {Opt_user_xattr, "user_xattr"}, 1268 {Opt_nouser_xattr, "nouser_xattr"}, 1269 {Opt_acl, "acl"}, 1270 {Opt_noacl, "noacl"}, 1271 {Opt_noload, "norecovery"}, 1272 {Opt_noload, "noload"}, 1273 {Opt_removed, "nobh"}, 1274 {Opt_removed, "bh"}, 1275 {Opt_commit, "commit=%u"}, 1276 {Opt_min_batch_time, "min_batch_time=%u"}, 1277 {Opt_max_batch_time, "max_batch_time=%u"}, 1278 {Opt_journal_dev, "journal_dev=%u"}, 1279 {Opt_journal_checksum, "journal_checksum"}, 1280 {Opt_journal_async_commit, "journal_async_commit"}, 1281 {Opt_abort, "abort"}, 1282 {Opt_data_journal, "data=journal"}, 1283 {Opt_data_ordered, "data=ordered"}, 1284 {Opt_data_writeback, "data=writeback"}, 1285 {Opt_data_err_abort, "data_err=abort"}, 1286 {Opt_data_err_ignore, "data_err=ignore"}, 1287 {Opt_offusrjquota, "usrjquota="}, 1288 {Opt_usrjquota, "usrjquota=%s"}, 1289 {Opt_offgrpjquota, "grpjquota="}, 1290 {Opt_grpjquota, "grpjquota=%s"}, 1291 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1292 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1293 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1294 {Opt_grpquota, "grpquota"}, 1295 {Opt_noquota, "noquota"}, 1296 {Opt_quota, "quota"}, 1297 {Opt_usrquota, "usrquota"}, 1298 {Opt_barrier, "barrier=%u"}, 1299 {Opt_barrier, "barrier"}, 1300 {Opt_nobarrier, "nobarrier"}, 1301 {Opt_i_version, "i_version"}, 1302 {Opt_stripe, "stripe=%u"}, 1303 {Opt_delalloc, "delalloc"}, 1304 {Opt_nodelalloc, "nodelalloc"}, 1305 {Opt_mblk_io_submit, "mblk_io_submit"}, 1306 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1307 {Opt_block_validity, "block_validity"}, 1308 {Opt_noblock_validity, "noblock_validity"}, 1309 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1310 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1311 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1312 {Opt_auto_da_alloc, "auto_da_alloc"}, 1313 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1314 {Opt_dioread_nolock, "dioread_nolock"}, 1315 {Opt_dioread_lock, "dioread_lock"}, 1316 {Opt_discard, "discard"}, 1317 {Opt_nodiscard, "nodiscard"}, 1318 {Opt_init_itable, "init_itable=%u"}, 1319 {Opt_init_itable, "init_itable"}, 1320 {Opt_noinit_itable, "noinit_itable"}, 1321 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1322 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1323 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1324 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1325 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1326 {Opt_err, NULL}, 1327 }; 1328 1329 static ext4_fsblk_t get_sb_block(void **data) 1330 { 1331 ext4_fsblk_t sb_block; 1332 char *options = (char *) *data; 1333 1334 if (!options || strncmp(options, "sb=", 3) != 0) 1335 return 1; /* Default location */ 1336 1337 options += 3; 1338 /* TODO: use simple_strtoll with >32bit ext4 */ 1339 sb_block = simple_strtoul(options, &options, 0); 1340 if (*options && *options != ',') { 1341 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1342 (char *) *data); 1343 return 1; 1344 } 1345 if (*options == ',') 1346 options++; 1347 *data = (void *) options; 1348 1349 return sb_block; 1350 } 1351 1352 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1353 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1354 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1355 1356 #ifdef CONFIG_QUOTA 1357 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1358 { 1359 struct ext4_sb_info *sbi = EXT4_SB(sb); 1360 char *qname; 1361 1362 if (sb_any_quota_loaded(sb) && 1363 !sbi->s_qf_names[qtype]) { 1364 ext4_msg(sb, KERN_ERR, 1365 "Cannot change journaled " 1366 "quota options when quota turned on"); 1367 return -1; 1368 } 1369 qname = match_strdup(args); 1370 if (!qname) { 1371 ext4_msg(sb, KERN_ERR, 1372 "Not enough memory for storing quotafile name"); 1373 return -1; 1374 } 1375 if (sbi->s_qf_names[qtype] && 1376 strcmp(sbi->s_qf_names[qtype], qname)) { 1377 ext4_msg(sb, KERN_ERR, 1378 "%s quota file already specified", QTYPE2NAME(qtype)); 1379 kfree(qname); 1380 return -1; 1381 } 1382 sbi->s_qf_names[qtype] = qname; 1383 if (strchr(sbi->s_qf_names[qtype], '/')) { 1384 ext4_msg(sb, KERN_ERR, 1385 "quotafile must be on filesystem root"); 1386 kfree(sbi->s_qf_names[qtype]); 1387 sbi->s_qf_names[qtype] = NULL; 1388 return -1; 1389 } 1390 set_opt(sb, QUOTA); 1391 return 1; 1392 } 1393 1394 static int clear_qf_name(struct super_block *sb, int qtype) 1395 { 1396 1397 struct ext4_sb_info *sbi = EXT4_SB(sb); 1398 1399 if (sb_any_quota_loaded(sb) && 1400 sbi->s_qf_names[qtype]) { 1401 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1402 " when quota turned on"); 1403 return -1; 1404 } 1405 /* 1406 * The space will be released later when all options are confirmed 1407 * to be correct 1408 */ 1409 sbi->s_qf_names[qtype] = NULL; 1410 return 1; 1411 } 1412 #endif 1413 1414 #define MOPT_SET 0x0001 1415 #define MOPT_CLEAR 0x0002 1416 #define MOPT_NOSUPPORT 0x0004 1417 #define MOPT_EXPLICIT 0x0008 1418 #define MOPT_CLEAR_ERR 0x0010 1419 #define MOPT_GTE0 0x0020 1420 #ifdef CONFIG_QUOTA 1421 #define MOPT_Q 0 1422 #define MOPT_QFMT 0x0040 1423 #else 1424 #define MOPT_Q MOPT_NOSUPPORT 1425 #define MOPT_QFMT MOPT_NOSUPPORT 1426 #endif 1427 #define MOPT_DATAJ 0x0080 1428 1429 static const struct mount_opts { 1430 int token; 1431 int mount_opt; 1432 int flags; 1433 } ext4_mount_opts[] = { 1434 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1435 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1436 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1437 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1438 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1439 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1440 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1441 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1442 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1443 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1444 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1445 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1446 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1447 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1448 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1449 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1450 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1451 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1452 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1453 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1454 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1455 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1456 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1457 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1458 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1459 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1460 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1461 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1462 {Opt_commit, 0, MOPT_GTE0}, 1463 {Opt_max_batch_time, 0, MOPT_GTE0}, 1464 {Opt_min_batch_time, 0, MOPT_GTE0}, 1465 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1466 {Opt_init_itable, 0, MOPT_GTE0}, 1467 {Opt_stripe, 0, MOPT_GTE0}, 1468 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1469 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1470 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1471 #ifdef CONFIG_EXT4_FS_XATTR 1472 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1473 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1474 #else 1475 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1476 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1477 #endif 1478 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1479 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1480 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1481 #else 1482 {Opt_acl, 0, MOPT_NOSUPPORT}, 1483 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1484 #endif 1485 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1486 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1487 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1488 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1489 MOPT_SET | MOPT_Q}, 1490 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1491 MOPT_SET | MOPT_Q}, 1492 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1493 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1494 {Opt_usrjquota, 0, MOPT_Q}, 1495 {Opt_grpjquota, 0, MOPT_Q}, 1496 {Opt_offusrjquota, 0, MOPT_Q}, 1497 {Opt_offgrpjquota, 0, MOPT_Q}, 1498 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1499 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1500 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1501 {Opt_err, 0, 0} 1502 }; 1503 1504 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1505 substring_t *args, unsigned long *journal_devnum, 1506 unsigned int *journal_ioprio, int is_remount) 1507 { 1508 struct ext4_sb_info *sbi = EXT4_SB(sb); 1509 const struct mount_opts *m; 1510 kuid_t uid; 1511 kgid_t gid; 1512 int arg = 0; 1513 1514 #ifdef CONFIG_QUOTA 1515 if (token == Opt_usrjquota) 1516 return set_qf_name(sb, USRQUOTA, &args[0]); 1517 else if (token == Opt_grpjquota) 1518 return set_qf_name(sb, GRPQUOTA, &args[0]); 1519 else if (token == Opt_offusrjquota) 1520 return clear_qf_name(sb, USRQUOTA); 1521 else if (token == Opt_offgrpjquota) 1522 return clear_qf_name(sb, GRPQUOTA); 1523 #endif 1524 if (args->from && match_int(args, &arg)) 1525 return -1; 1526 switch (token) { 1527 case Opt_noacl: 1528 case Opt_nouser_xattr: 1529 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1530 break; 1531 case Opt_sb: 1532 return 1; /* handled by get_sb_block() */ 1533 case Opt_removed: 1534 ext4_msg(sb, KERN_WARNING, 1535 "Ignoring removed %s option", opt); 1536 return 1; 1537 case Opt_resuid: 1538 uid = make_kuid(current_user_ns(), arg); 1539 if (!uid_valid(uid)) { 1540 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1541 return -1; 1542 } 1543 sbi->s_resuid = uid; 1544 return 1; 1545 case Opt_resgid: 1546 gid = make_kgid(current_user_ns(), arg); 1547 if (!gid_valid(gid)) { 1548 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1549 return -1; 1550 } 1551 sbi->s_resgid = gid; 1552 return 1; 1553 case Opt_abort: 1554 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1555 return 1; 1556 case Opt_i_version: 1557 sb->s_flags |= MS_I_VERSION; 1558 return 1; 1559 case Opt_journal_dev: 1560 if (is_remount) { 1561 ext4_msg(sb, KERN_ERR, 1562 "Cannot specify journal on remount"); 1563 return -1; 1564 } 1565 *journal_devnum = arg; 1566 return 1; 1567 case Opt_journal_ioprio: 1568 if (arg < 0 || arg > 7) 1569 return -1; 1570 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1571 return 1; 1572 } 1573 1574 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1575 if (token != m->token) 1576 continue; 1577 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1578 return -1; 1579 if (m->flags & MOPT_EXPLICIT) 1580 set_opt2(sb, EXPLICIT_DELALLOC); 1581 if (m->flags & MOPT_CLEAR_ERR) 1582 clear_opt(sb, ERRORS_MASK); 1583 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1584 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1585 "options when quota turned on"); 1586 return -1; 1587 } 1588 1589 if (m->flags & MOPT_NOSUPPORT) { 1590 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1591 } else if (token == Opt_commit) { 1592 if (arg == 0) 1593 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1594 sbi->s_commit_interval = HZ * arg; 1595 } else if (token == Opt_max_batch_time) { 1596 if (arg == 0) 1597 arg = EXT4_DEF_MAX_BATCH_TIME; 1598 sbi->s_max_batch_time = arg; 1599 } else if (token == Opt_min_batch_time) { 1600 sbi->s_min_batch_time = arg; 1601 } else if (token == Opt_inode_readahead_blks) { 1602 if (arg > (1 << 30)) 1603 return -1; 1604 if (arg && !is_power_of_2(arg)) { 1605 ext4_msg(sb, KERN_ERR, 1606 "EXT4-fs: inode_readahead_blks" 1607 " must be a power of 2"); 1608 return -1; 1609 } 1610 sbi->s_inode_readahead_blks = arg; 1611 } else if (token == Opt_init_itable) { 1612 set_opt(sb, INIT_INODE_TABLE); 1613 if (!args->from) 1614 arg = EXT4_DEF_LI_WAIT_MULT; 1615 sbi->s_li_wait_mult = arg; 1616 } else if (token == Opt_stripe) { 1617 sbi->s_stripe = arg; 1618 } else if (m->flags & MOPT_DATAJ) { 1619 if (is_remount) { 1620 if (!sbi->s_journal) 1621 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1622 else if (test_opt(sb, DATA_FLAGS) != 1623 m->mount_opt) { 1624 ext4_msg(sb, KERN_ERR, 1625 "Cannot change data mode on remount"); 1626 return -1; 1627 } 1628 } else { 1629 clear_opt(sb, DATA_FLAGS); 1630 sbi->s_mount_opt |= m->mount_opt; 1631 } 1632 #ifdef CONFIG_QUOTA 1633 } else if (m->flags & MOPT_QFMT) { 1634 if (sb_any_quota_loaded(sb) && 1635 sbi->s_jquota_fmt != m->mount_opt) { 1636 ext4_msg(sb, KERN_ERR, "Cannot " 1637 "change journaled quota options " 1638 "when quota turned on"); 1639 return -1; 1640 } 1641 sbi->s_jquota_fmt = m->mount_opt; 1642 #endif 1643 } else { 1644 if (!args->from) 1645 arg = 1; 1646 if (m->flags & MOPT_CLEAR) 1647 arg = !arg; 1648 else if (unlikely(!(m->flags & MOPT_SET))) { 1649 ext4_msg(sb, KERN_WARNING, 1650 "buggy handling of option %s", opt); 1651 WARN_ON(1); 1652 return -1; 1653 } 1654 if (arg != 0) 1655 sbi->s_mount_opt |= m->mount_opt; 1656 else 1657 sbi->s_mount_opt &= ~m->mount_opt; 1658 } 1659 return 1; 1660 } 1661 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1662 "or missing value", opt); 1663 return -1; 1664 } 1665 1666 static int parse_options(char *options, struct super_block *sb, 1667 unsigned long *journal_devnum, 1668 unsigned int *journal_ioprio, 1669 int is_remount) 1670 { 1671 #ifdef CONFIG_QUOTA 1672 struct ext4_sb_info *sbi = EXT4_SB(sb); 1673 #endif 1674 char *p; 1675 substring_t args[MAX_OPT_ARGS]; 1676 int token; 1677 1678 if (!options) 1679 return 1; 1680 1681 while ((p = strsep(&options, ",")) != NULL) { 1682 if (!*p) 1683 continue; 1684 /* 1685 * Initialize args struct so we know whether arg was 1686 * found; some options take optional arguments. 1687 */ 1688 args[0].to = args[0].from = 0; 1689 token = match_token(p, tokens, args); 1690 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1691 journal_ioprio, is_remount) < 0) 1692 return 0; 1693 } 1694 #ifdef CONFIG_QUOTA 1695 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1696 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1697 clear_opt(sb, USRQUOTA); 1698 1699 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1700 clear_opt(sb, GRPQUOTA); 1701 1702 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1703 ext4_msg(sb, KERN_ERR, "old and new quota " 1704 "format mixing"); 1705 return 0; 1706 } 1707 1708 if (!sbi->s_jquota_fmt) { 1709 ext4_msg(sb, KERN_ERR, "journaled quota format " 1710 "not specified"); 1711 return 0; 1712 } 1713 } else { 1714 if (sbi->s_jquota_fmt) { 1715 ext4_msg(sb, KERN_ERR, "journaled quota format " 1716 "specified with no journaling " 1717 "enabled"); 1718 return 0; 1719 } 1720 } 1721 #endif 1722 return 1; 1723 } 1724 1725 static inline void ext4_show_quota_options(struct seq_file *seq, 1726 struct super_block *sb) 1727 { 1728 #if defined(CONFIG_QUOTA) 1729 struct ext4_sb_info *sbi = EXT4_SB(sb); 1730 1731 if (sbi->s_jquota_fmt) { 1732 char *fmtname = ""; 1733 1734 switch (sbi->s_jquota_fmt) { 1735 case QFMT_VFS_OLD: 1736 fmtname = "vfsold"; 1737 break; 1738 case QFMT_VFS_V0: 1739 fmtname = "vfsv0"; 1740 break; 1741 case QFMT_VFS_V1: 1742 fmtname = "vfsv1"; 1743 break; 1744 } 1745 seq_printf(seq, ",jqfmt=%s", fmtname); 1746 } 1747 1748 if (sbi->s_qf_names[USRQUOTA]) 1749 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1750 1751 if (sbi->s_qf_names[GRPQUOTA]) 1752 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1753 1754 if (test_opt(sb, USRQUOTA)) 1755 seq_puts(seq, ",usrquota"); 1756 1757 if (test_opt(sb, GRPQUOTA)) 1758 seq_puts(seq, ",grpquota"); 1759 #endif 1760 } 1761 1762 static const char *token2str(int token) 1763 { 1764 static const struct match_token *t; 1765 1766 for (t = tokens; t->token != Opt_err; t++) 1767 if (t->token == token && !strchr(t->pattern, '=')) 1768 break; 1769 return t->pattern; 1770 } 1771 1772 /* 1773 * Show an option if 1774 * - it's set to a non-default value OR 1775 * - if the per-sb default is different from the global default 1776 */ 1777 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1778 int nodefs) 1779 { 1780 struct ext4_sb_info *sbi = EXT4_SB(sb); 1781 struct ext4_super_block *es = sbi->s_es; 1782 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1783 const struct mount_opts *m; 1784 char sep = nodefs ? '\n' : ','; 1785 1786 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1787 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1788 1789 if (sbi->s_sb_block != 1) 1790 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1791 1792 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1793 int want_set = m->flags & MOPT_SET; 1794 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1795 (m->flags & MOPT_CLEAR_ERR)) 1796 continue; 1797 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1798 continue; /* skip if same as the default */ 1799 if ((want_set && 1800 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1801 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1802 continue; /* select Opt_noFoo vs Opt_Foo */ 1803 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1804 } 1805 1806 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1807 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1808 SEQ_OPTS_PRINT("resuid=%u", 1809 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1810 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1811 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1812 SEQ_OPTS_PRINT("resgid=%u", 1813 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1814 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1815 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1816 SEQ_OPTS_PUTS("errors=remount-ro"); 1817 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1818 SEQ_OPTS_PUTS("errors=continue"); 1819 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1820 SEQ_OPTS_PUTS("errors=panic"); 1821 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1822 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1823 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1824 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1825 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1826 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1827 if (sb->s_flags & MS_I_VERSION) 1828 SEQ_OPTS_PUTS("i_version"); 1829 if (nodefs || sbi->s_stripe) 1830 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1831 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1832 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1833 SEQ_OPTS_PUTS("data=journal"); 1834 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1835 SEQ_OPTS_PUTS("data=ordered"); 1836 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1837 SEQ_OPTS_PUTS("data=writeback"); 1838 } 1839 if (nodefs || 1840 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1841 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1842 sbi->s_inode_readahead_blks); 1843 1844 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1845 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1846 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1847 1848 ext4_show_quota_options(seq, sb); 1849 return 0; 1850 } 1851 1852 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1853 { 1854 return _ext4_show_options(seq, root->d_sb, 0); 1855 } 1856 1857 static int options_seq_show(struct seq_file *seq, void *offset) 1858 { 1859 struct super_block *sb = seq->private; 1860 int rc; 1861 1862 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1863 rc = _ext4_show_options(seq, sb, 1); 1864 seq_puts(seq, "\n"); 1865 return rc; 1866 } 1867 1868 static int options_open_fs(struct inode *inode, struct file *file) 1869 { 1870 return single_open(file, options_seq_show, PDE(inode)->data); 1871 } 1872 1873 static const struct file_operations ext4_seq_options_fops = { 1874 .owner = THIS_MODULE, 1875 .open = options_open_fs, 1876 .read = seq_read, 1877 .llseek = seq_lseek, 1878 .release = single_release, 1879 }; 1880 1881 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1882 int read_only) 1883 { 1884 struct ext4_sb_info *sbi = EXT4_SB(sb); 1885 int res = 0; 1886 1887 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1888 ext4_msg(sb, KERN_ERR, "revision level too high, " 1889 "forcing read-only mode"); 1890 res = MS_RDONLY; 1891 } 1892 if (read_only) 1893 goto done; 1894 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1895 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1896 "running e2fsck is recommended"); 1897 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1898 ext4_msg(sb, KERN_WARNING, 1899 "warning: mounting fs with errors, " 1900 "running e2fsck is recommended"); 1901 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1902 le16_to_cpu(es->s_mnt_count) >= 1903 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1904 ext4_msg(sb, KERN_WARNING, 1905 "warning: maximal mount count reached, " 1906 "running e2fsck is recommended"); 1907 else if (le32_to_cpu(es->s_checkinterval) && 1908 (le32_to_cpu(es->s_lastcheck) + 1909 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1910 ext4_msg(sb, KERN_WARNING, 1911 "warning: checktime reached, " 1912 "running e2fsck is recommended"); 1913 if (!sbi->s_journal) 1914 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1915 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1916 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1917 le16_add_cpu(&es->s_mnt_count, 1); 1918 es->s_mtime = cpu_to_le32(get_seconds()); 1919 ext4_update_dynamic_rev(sb); 1920 if (sbi->s_journal) 1921 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1922 1923 ext4_commit_super(sb, 1); 1924 done: 1925 if (test_opt(sb, DEBUG)) 1926 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1927 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1928 sb->s_blocksize, 1929 sbi->s_groups_count, 1930 EXT4_BLOCKS_PER_GROUP(sb), 1931 EXT4_INODES_PER_GROUP(sb), 1932 sbi->s_mount_opt, sbi->s_mount_opt2); 1933 1934 cleancache_init_fs(sb); 1935 return res; 1936 } 1937 1938 static int ext4_fill_flex_info(struct super_block *sb) 1939 { 1940 struct ext4_sb_info *sbi = EXT4_SB(sb); 1941 struct ext4_group_desc *gdp = NULL; 1942 ext4_group_t flex_group_count; 1943 ext4_group_t flex_group; 1944 unsigned int groups_per_flex = 0; 1945 size_t size; 1946 int i; 1947 1948 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1949 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1950 sbi->s_log_groups_per_flex = 0; 1951 return 1; 1952 } 1953 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1954 1955 /* We allocate both existing and potentially added groups */ 1956 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1957 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1958 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1959 size = flex_group_count * sizeof(struct flex_groups); 1960 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 1961 if (sbi->s_flex_groups == NULL) { 1962 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 1963 flex_group_count); 1964 goto failed; 1965 } 1966 1967 for (i = 0; i < sbi->s_groups_count; i++) { 1968 gdp = ext4_get_group_desc(sb, i, NULL); 1969 1970 flex_group = ext4_flex_group(sbi, i); 1971 atomic_add(ext4_free_inodes_count(sb, gdp), 1972 &sbi->s_flex_groups[flex_group].free_inodes); 1973 atomic_add(ext4_free_group_clusters(sb, gdp), 1974 &sbi->s_flex_groups[flex_group].free_clusters); 1975 atomic_add(ext4_used_dirs_count(sb, gdp), 1976 &sbi->s_flex_groups[flex_group].used_dirs); 1977 } 1978 1979 return 1; 1980 failed: 1981 return 0; 1982 } 1983 1984 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1985 struct ext4_group_desc *gdp) 1986 { 1987 int offset; 1988 __u16 crc = 0; 1989 __le32 le_group = cpu_to_le32(block_group); 1990 1991 if ((sbi->s_es->s_feature_ro_compat & 1992 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1993 /* Use new metadata_csum algorithm */ 1994 __u16 old_csum; 1995 __u32 csum32; 1996 1997 old_csum = gdp->bg_checksum; 1998 gdp->bg_checksum = 0; 1999 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2000 sizeof(le_group)); 2001 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2002 sbi->s_desc_size); 2003 gdp->bg_checksum = old_csum; 2004 2005 crc = csum32 & 0xFFFF; 2006 goto out; 2007 } 2008 2009 /* old crc16 code */ 2010 offset = offsetof(struct ext4_group_desc, bg_checksum); 2011 2012 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2013 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2014 crc = crc16(crc, (__u8 *)gdp, offset); 2015 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2016 /* for checksum of struct ext4_group_desc do the rest...*/ 2017 if ((sbi->s_es->s_feature_incompat & 2018 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2019 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2020 crc = crc16(crc, (__u8 *)gdp + offset, 2021 le16_to_cpu(sbi->s_es->s_desc_size) - 2022 offset); 2023 2024 out: 2025 return cpu_to_le16(crc); 2026 } 2027 2028 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2029 struct ext4_group_desc *gdp) 2030 { 2031 if (ext4_has_group_desc_csum(sb) && 2032 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2033 block_group, gdp))) 2034 return 0; 2035 2036 return 1; 2037 } 2038 2039 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2040 struct ext4_group_desc *gdp) 2041 { 2042 if (!ext4_has_group_desc_csum(sb)) 2043 return; 2044 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2045 } 2046 2047 /* Called at mount-time, super-block is locked */ 2048 static int ext4_check_descriptors(struct super_block *sb, 2049 ext4_group_t *first_not_zeroed) 2050 { 2051 struct ext4_sb_info *sbi = EXT4_SB(sb); 2052 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2053 ext4_fsblk_t last_block; 2054 ext4_fsblk_t block_bitmap; 2055 ext4_fsblk_t inode_bitmap; 2056 ext4_fsblk_t inode_table; 2057 int flexbg_flag = 0; 2058 ext4_group_t i, grp = sbi->s_groups_count; 2059 2060 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2061 flexbg_flag = 1; 2062 2063 ext4_debug("Checking group descriptors"); 2064 2065 for (i = 0; i < sbi->s_groups_count; i++) { 2066 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2067 2068 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2069 last_block = ext4_blocks_count(sbi->s_es) - 1; 2070 else 2071 last_block = first_block + 2072 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2073 2074 if ((grp == sbi->s_groups_count) && 2075 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2076 grp = i; 2077 2078 block_bitmap = ext4_block_bitmap(sb, gdp); 2079 if (block_bitmap < first_block || block_bitmap > last_block) { 2080 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2081 "Block bitmap for group %u not in group " 2082 "(block %llu)!", i, block_bitmap); 2083 return 0; 2084 } 2085 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2086 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2087 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2088 "Inode bitmap for group %u not in group " 2089 "(block %llu)!", i, inode_bitmap); 2090 return 0; 2091 } 2092 inode_table = ext4_inode_table(sb, gdp); 2093 if (inode_table < first_block || 2094 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2095 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2096 "Inode table for group %u not in group " 2097 "(block %llu)!", i, inode_table); 2098 return 0; 2099 } 2100 ext4_lock_group(sb, i); 2101 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2102 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2103 "Checksum for group %u failed (%u!=%u)", 2104 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2105 gdp)), le16_to_cpu(gdp->bg_checksum)); 2106 if (!(sb->s_flags & MS_RDONLY)) { 2107 ext4_unlock_group(sb, i); 2108 return 0; 2109 } 2110 } 2111 ext4_unlock_group(sb, i); 2112 if (!flexbg_flag) 2113 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2114 } 2115 if (NULL != first_not_zeroed) 2116 *first_not_zeroed = grp; 2117 2118 ext4_free_blocks_count_set(sbi->s_es, 2119 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2120 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2121 return 1; 2122 } 2123 2124 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2125 * the superblock) which were deleted from all directories, but held open by 2126 * a process at the time of a crash. We walk the list and try to delete these 2127 * inodes at recovery time (only with a read-write filesystem). 2128 * 2129 * In order to keep the orphan inode chain consistent during traversal (in 2130 * case of crash during recovery), we link each inode into the superblock 2131 * orphan list_head and handle it the same way as an inode deletion during 2132 * normal operation (which journals the operations for us). 2133 * 2134 * We only do an iget() and an iput() on each inode, which is very safe if we 2135 * accidentally point at an in-use or already deleted inode. The worst that 2136 * can happen in this case is that we get a "bit already cleared" message from 2137 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2138 * e2fsck was run on this filesystem, and it must have already done the orphan 2139 * inode cleanup for us, so we can safely abort without any further action. 2140 */ 2141 static void ext4_orphan_cleanup(struct super_block *sb, 2142 struct ext4_super_block *es) 2143 { 2144 unsigned int s_flags = sb->s_flags; 2145 int nr_orphans = 0, nr_truncates = 0; 2146 #ifdef CONFIG_QUOTA 2147 int i; 2148 #endif 2149 if (!es->s_last_orphan) { 2150 jbd_debug(4, "no orphan inodes to clean up\n"); 2151 return; 2152 } 2153 2154 if (bdev_read_only(sb->s_bdev)) { 2155 ext4_msg(sb, KERN_ERR, "write access " 2156 "unavailable, skipping orphan cleanup"); 2157 return; 2158 } 2159 2160 /* Check if feature set would not allow a r/w mount */ 2161 if (!ext4_feature_set_ok(sb, 0)) { 2162 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2163 "unknown ROCOMPAT features"); 2164 return; 2165 } 2166 2167 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2168 if (es->s_last_orphan) 2169 jbd_debug(1, "Errors on filesystem, " 2170 "clearing orphan list.\n"); 2171 es->s_last_orphan = 0; 2172 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2173 return; 2174 } 2175 2176 if (s_flags & MS_RDONLY) { 2177 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2178 sb->s_flags &= ~MS_RDONLY; 2179 } 2180 #ifdef CONFIG_QUOTA 2181 /* Needed for iput() to work correctly and not trash data */ 2182 sb->s_flags |= MS_ACTIVE; 2183 /* Turn on quotas so that they are updated correctly */ 2184 for (i = 0; i < MAXQUOTAS; i++) { 2185 if (EXT4_SB(sb)->s_qf_names[i]) { 2186 int ret = ext4_quota_on_mount(sb, i); 2187 if (ret < 0) 2188 ext4_msg(sb, KERN_ERR, 2189 "Cannot turn on journaled " 2190 "quota: error %d", ret); 2191 } 2192 } 2193 #endif 2194 2195 while (es->s_last_orphan) { 2196 struct inode *inode; 2197 2198 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2199 if (IS_ERR(inode)) { 2200 es->s_last_orphan = 0; 2201 break; 2202 } 2203 2204 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2205 dquot_initialize(inode); 2206 if (inode->i_nlink) { 2207 ext4_msg(sb, KERN_DEBUG, 2208 "%s: truncating inode %lu to %lld bytes", 2209 __func__, inode->i_ino, inode->i_size); 2210 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2211 inode->i_ino, inode->i_size); 2212 ext4_truncate(inode); 2213 nr_truncates++; 2214 } else { 2215 ext4_msg(sb, KERN_DEBUG, 2216 "%s: deleting unreferenced inode %lu", 2217 __func__, inode->i_ino); 2218 jbd_debug(2, "deleting unreferenced inode %lu\n", 2219 inode->i_ino); 2220 nr_orphans++; 2221 } 2222 iput(inode); /* The delete magic happens here! */ 2223 } 2224 2225 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2226 2227 if (nr_orphans) 2228 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2229 PLURAL(nr_orphans)); 2230 if (nr_truncates) 2231 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2232 PLURAL(nr_truncates)); 2233 #ifdef CONFIG_QUOTA 2234 /* Turn quotas off */ 2235 for (i = 0; i < MAXQUOTAS; i++) { 2236 if (sb_dqopt(sb)->files[i]) 2237 dquot_quota_off(sb, i); 2238 } 2239 #endif 2240 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2241 } 2242 2243 /* 2244 * Maximal extent format file size. 2245 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2246 * extent format containers, within a sector_t, and within i_blocks 2247 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2248 * so that won't be a limiting factor. 2249 * 2250 * However there is other limiting factor. We do store extents in the form 2251 * of starting block and length, hence the resulting length of the extent 2252 * covering maximum file size must fit into on-disk format containers as 2253 * well. Given that length is always by 1 unit bigger than max unit (because 2254 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2255 * 2256 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2257 */ 2258 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2259 { 2260 loff_t res; 2261 loff_t upper_limit = MAX_LFS_FILESIZE; 2262 2263 /* small i_blocks in vfs inode? */ 2264 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2265 /* 2266 * CONFIG_LBDAF is not enabled implies the inode 2267 * i_block represent total blocks in 512 bytes 2268 * 32 == size of vfs inode i_blocks * 8 2269 */ 2270 upper_limit = (1LL << 32) - 1; 2271 2272 /* total blocks in file system block size */ 2273 upper_limit >>= (blkbits - 9); 2274 upper_limit <<= blkbits; 2275 } 2276 2277 /* 2278 * 32-bit extent-start container, ee_block. We lower the maxbytes 2279 * by one fs block, so ee_len can cover the extent of maximum file 2280 * size 2281 */ 2282 res = (1LL << 32) - 1; 2283 res <<= blkbits; 2284 2285 /* Sanity check against vm- & vfs- imposed limits */ 2286 if (res > upper_limit) 2287 res = upper_limit; 2288 2289 return res; 2290 } 2291 2292 /* 2293 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2294 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2295 * We need to be 1 filesystem block less than the 2^48 sector limit. 2296 */ 2297 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2298 { 2299 loff_t res = EXT4_NDIR_BLOCKS; 2300 int meta_blocks; 2301 loff_t upper_limit; 2302 /* This is calculated to be the largest file size for a dense, block 2303 * mapped file such that the file's total number of 512-byte sectors, 2304 * including data and all indirect blocks, does not exceed (2^48 - 1). 2305 * 2306 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2307 * number of 512-byte sectors of the file. 2308 */ 2309 2310 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2311 /* 2312 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2313 * the inode i_block field represents total file blocks in 2314 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2315 */ 2316 upper_limit = (1LL << 32) - 1; 2317 2318 /* total blocks in file system block size */ 2319 upper_limit >>= (bits - 9); 2320 2321 } else { 2322 /* 2323 * We use 48 bit ext4_inode i_blocks 2324 * With EXT4_HUGE_FILE_FL set the i_blocks 2325 * represent total number of blocks in 2326 * file system block size 2327 */ 2328 upper_limit = (1LL << 48) - 1; 2329 2330 } 2331 2332 /* indirect blocks */ 2333 meta_blocks = 1; 2334 /* double indirect blocks */ 2335 meta_blocks += 1 + (1LL << (bits-2)); 2336 /* tripple indirect blocks */ 2337 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2338 2339 upper_limit -= meta_blocks; 2340 upper_limit <<= bits; 2341 2342 res += 1LL << (bits-2); 2343 res += 1LL << (2*(bits-2)); 2344 res += 1LL << (3*(bits-2)); 2345 res <<= bits; 2346 if (res > upper_limit) 2347 res = upper_limit; 2348 2349 if (res > MAX_LFS_FILESIZE) 2350 res = MAX_LFS_FILESIZE; 2351 2352 return res; 2353 } 2354 2355 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2356 ext4_fsblk_t logical_sb_block, int nr) 2357 { 2358 struct ext4_sb_info *sbi = EXT4_SB(sb); 2359 ext4_group_t bg, first_meta_bg; 2360 int has_super = 0; 2361 2362 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2363 2364 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2365 nr < first_meta_bg) 2366 return logical_sb_block + nr + 1; 2367 bg = sbi->s_desc_per_block * nr; 2368 if (ext4_bg_has_super(sb, bg)) 2369 has_super = 1; 2370 2371 return (has_super + ext4_group_first_block_no(sb, bg)); 2372 } 2373 2374 /** 2375 * ext4_get_stripe_size: Get the stripe size. 2376 * @sbi: In memory super block info 2377 * 2378 * If we have specified it via mount option, then 2379 * use the mount option value. If the value specified at mount time is 2380 * greater than the blocks per group use the super block value. 2381 * If the super block value is greater than blocks per group return 0. 2382 * Allocator needs it be less than blocks per group. 2383 * 2384 */ 2385 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2386 { 2387 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2388 unsigned long stripe_width = 2389 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2390 int ret; 2391 2392 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2393 ret = sbi->s_stripe; 2394 else if (stripe_width <= sbi->s_blocks_per_group) 2395 ret = stripe_width; 2396 else if (stride <= sbi->s_blocks_per_group) 2397 ret = stride; 2398 else 2399 ret = 0; 2400 2401 /* 2402 * If the stripe width is 1, this makes no sense and 2403 * we set it to 0 to turn off stripe handling code. 2404 */ 2405 if (ret <= 1) 2406 ret = 0; 2407 2408 return ret; 2409 } 2410 2411 /* sysfs supprt */ 2412 2413 struct ext4_attr { 2414 struct attribute attr; 2415 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2416 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2417 const char *, size_t); 2418 int offset; 2419 }; 2420 2421 static int parse_strtoul(const char *buf, 2422 unsigned long max, unsigned long *value) 2423 { 2424 char *endp; 2425 2426 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2427 endp = skip_spaces(endp); 2428 if (*endp || *value > max) 2429 return -EINVAL; 2430 2431 return 0; 2432 } 2433 2434 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2435 struct ext4_sb_info *sbi, 2436 char *buf) 2437 { 2438 return snprintf(buf, PAGE_SIZE, "%llu\n", 2439 (s64) EXT4_C2B(sbi, 2440 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2441 } 2442 2443 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2444 struct ext4_sb_info *sbi, char *buf) 2445 { 2446 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2447 2448 if (!sb->s_bdev->bd_part) 2449 return snprintf(buf, PAGE_SIZE, "0\n"); 2450 return snprintf(buf, PAGE_SIZE, "%lu\n", 2451 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2452 sbi->s_sectors_written_start) >> 1); 2453 } 2454 2455 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2456 struct ext4_sb_info *sbi, char *buf) 2457 { 2458 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2459 2460 if (!sb->s_bdev->bd_part) 2461 return snprintf(buf, PAGE_SIZE, "0\n"); 2462 return snprintf(buf, PAGE_SIZE, "%llu\n", 2463 (unsigned long long)(sbi->s_kbytes_written + 2464 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2465 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2466 } 2467 2468 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2469 struct ext4_sb_info *sbi, 2470 const char *buf, size_t count) 2471 { 2472 unsigned long t; 2473 2474 if (parse_strtoul(buf, 0x40000000, &t)) 2475 return -EINVAL; 2476 2477 if (t && !is_power_of_2(t)) 2478 return -EINVAL; 2479 2480 sbi->s_inode_readahead_blks = t; 2481 return count; 2482 } 2483 2484 static ssize_t sbi_ui_show(struct ext4_attr *a, 2485 struct ext4_sb_info *sbi, char *buf) 2486 { 2487 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2488 2489 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2490 } 2491 2492 static ssize_t sbi_ui_store(struct ext4_attr *a, 2493 struct ext4_sb_info *sbi, 2494 const char *buf, size_t count) 2495 { 2496 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2497 unsigned long t; 2498 2499 if (parse_strtoul(buf, 0xffffffff, &t)) 2500 return -EINVAL; 2501 *ui = t; 2502 return count; 2503 } 2504 2505 static ssize_t trigger_test_error(struct ext4_attr *a, 2506 struct ext4_sb_info *sbi, 2507 const char *buf, size_t count) 2508 { 2509 int len = count; 2510 2511 if (!capable(CAP_SYS_ADMIN)) 2512 return -EPERM; 2513 2514 if (len && buf[len-1] == '\n') 2515 len--; 2516 2517 if (len) 2518 ext4_error(sbi->s_sb, "%.*s", len, buf); 2519 return count; 2520 } 2521 2522 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2523 static struct ext4_attr ext4_attr_##_name = { \ 2524 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2525 .show = _show, \ 2526 .store = _store, \ 2527 .offset = offsetof(struct ext4_sb_info, _elname), \ 2528 } 2529 #define EXT4_ATTR(name, mode, show, store) \ 2530 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2531 2532 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2533 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2534 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2535 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2536 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2537 #define ATTR_LIST(name) &ext4_attr_##name.attr 2538 2539 EXT4_RO_ATTR(delayed_allocation_blocks); 2540 EXT4_RO_ATTR(session_write_kbytes); 2541 EXT4_RO_ATTR(lifetime_write_kbytes); 2542 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2543 inode_readahead_blks_store, s_inode_readahead_blks); 2544 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2545 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2546 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2547 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2548 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2549 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2550 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2551 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2552 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2553 2554 static struct attribute *ext4_attrs[] = { 2555 ATTR_LIST(delayed_allocation_blocks), 2556 ATTR_LIST(session_write_kbytes), 2557 ATTR_LIST(lifetime_write_kbytes), 2558 ATTR_LIST(inode_readahead_blks), 2559 ATTR_LIST(inode_goal), 2560 ATTR_LIST(mb_stats), 2561 ATTR_LIST(mb_max_to_scan), 2562 ATTR_LIST(mb_min_to_scan), 2563 ATTR_LIST(mb_order2_req), 2564 ATTR_LIST(mb_stream_req), 2565 ATTR_LIST(mb_group_prealloc), 2566 ATTR_LIST(max_writeback_mb_bump), 2567 ATTR_LIST(trigger_fs_error), 2568 NULL, 2569 }; 2570 2571 /* Features this copy of ext4 supports */ 2572 EXT4_INFO_ATTR(lazy_itable_init); 2573 EXT4_INFO_ATTR(batched_discard); 2574 2575 static struct attribute *ext4_feat_attrs[] = { 2576 ATTR_LIST(lazy_itable_init), 2577 ATTR_LIST(batched_discard), 2578 NULL, 2579 }; 2580 2581 static ssize_t ext4_attr_show(struct kobject *kobj, 2582 struct attribute *attr, char *buf) 2583 { 2584 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2585 s_kobj); 2586 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2587 2588 return a->show ? a->show(a, sbi, buf) : 0; 2589 } 2590 2591 static ssize_t ext4_attr_store(struct kobject *kobj, 2592 struct attribute *attr, 2593 const char *buf, size_t len) 2594 { 2595 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2596 s_kobj); 2597 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2598 2599 return a->store ? a->store(a, sbi, buf, len) : 0; 2600 } 2601 2602 static void ext4_sb_release(struct kobject *kobj) 2603 { 2604 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2605 s_kobj); 2606 complete(&sbi->s_kobj_unregister); 2607 } 2608 2609 static const struct sysfs_ops ext4_attr_ops = { 2610 .show = ext4_attr_show, 2611 .store = ext4_attr_store, 2612 }; 2613 2614 static struct kobj_type ext4_ktype = { 2615 .default_attrs = ext4_attrs, 2616 .sysfs_ops = &ext4_attr_ops, 2617 .release = ext4_sb_release, 2618 }; 2619 2620 static void ext4_feat_release(struct kobject *kobj) 2621 { 2622 complete(&ext4_feat->f_kobj_unregister); 2623 } 2624 2625 static struct kobj_type ext4_feat_ktype = { 2626 .default_attrs = ext4_feat_attrs, 2627 .sysfs_ops = &ext4_attr_ops, 2628 .release = ext4_feat_release, 2629 }; 2630 2631 /* 2632 * Check whether this filesystem can be mounted based on 2633 * the features present and the RDONLY/RDWR mount requested. 2634 * Returns 1 if this filesystem can be mounted as requested, 2635 * 0 if it cannot be. 2636 */ 2637 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2638 { 2639 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2640 ext4_msg(sb, KERN_ERR, 2641 "Couldn't mount because of " 2642 "unsupported optional features (%x)", 2643 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2644 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2645 return 0; 2646 } 2647 2648 if (readonly) 2649 return 1; 2650 2651 /* Check that feature set is OK for a read-write mount */ 2652 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2653 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2654 "unsupported optional features (%x)", 2655 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2656 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2657 return 0; 2658 } 2659 /* 2660 * Large file size enabled file system can only be mounted 2661 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2662 */ 2663 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2664 if (sizeof(blkcnt_t) < sizeof(u64)) { 2665 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2666 "cannot be mounted RDWR without " 2667 "CONFIG_LBDAF"); 2668 return 0; 2669 } 2670 } 2671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2672 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2673 ext4_msg(sb, KERN_ERR, 2674 "Can't support bigalloc feature without " 2675 "extents feature\n"); 2676 return 0; 2677 } 2678 2679 #ifndef CONFIG_QUOTA 2680 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2681 !readonly) { 2682 ext4_msg(sb, KERN_ERR, 2683 "Filesystem with quota feature cannot be mounted RDWR " 2684 "without CONFIG_QUOTA"); 2685 return 0; 2686 } 2687 #endif /* CONFIG_QUOTA */ 2688 return 1; 2689 } 2690 2691 /* 2692 * This function is called once a day if we have errors logged 2693 * on the file system 2694 */ 2695 static void print_daily_error_info(unsigned long arg) 2696 { 2697 struct super_block *sb = (struct super_block *) arg; 2698 struct ext4_sb_info *sbi; 2699 struct ext4_super_block *es; 2700 2701 sbi = EXT4_SB(sb); 2702 es = sbi->s_es; 2703 2704 if (es->s_error_count) 2705 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2706 le32_to_cpu(es->s_error_count)); 2707 if (es->s_first_error_time) { 2708 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2709 sb->s_id, le32_to_cpu(es->s_first_error_time), 2710 (int) sizeof(es->s_first_error_func), 2711 es->s_first_error_func, 2712 le32_to_cpu(es->s_first_error_line)); 2713 if (es->s_first_error_ino) 2714 printk(": inode %u", 2715 le32_to_cpu(es->s_first_error_ino)); 2716 if (es->s_first_error_block) 2717 printk(": block %llu", (unsigned long long) 2718 le64_to_cpu(es->s_first_error_block)); 2719 printk("\n"); 2720 } 2721 if (es->s_last_error_time) { 2722 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2723 sb->s_id, le32_to_cpu(es->s_last_error_time), 2724 (int) sizeof(es->s_last_error_func), 2725 es->s_last_error_func, 2726 le32_to_cpu(es->s_last_error_line)); 2727 if (es->s_last_error_ino) 2728 printk(": inode %u", 2729 le32_to_cpu(es->s_last_error_ino)); 2730 if (es->s_last_error_block) 2731 printk(": block %llu", (unsigned long long) 2732 le64_to_cpu(es->s_last_error_block)); 2733 printk("\n"); 2734 } 2735 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2736 } 2737 2738 /* Find next suitable group and run ext4_init_inode_table */ 2739 static int ext4_run_li_request(struct ext4_li_request *elr) 2740 { 2741 struct ext4_group_desc *gdp = NULL; 2742 ext4_group_t group, ngroups; 2743 struct super_block *sb; 2744 unsigned long timeout = 0; 2745 int ret = 0; 2746 2747 sb = elr->lr_super; 2748 ngroups = EXT4_SB(sb)->s_groups_count; 2749 2750 for (group = elr->lr_next_group; group < ngroups; group++) { 2751 gdp = ext4_get_group_desc(sb, group, NULL); 2752 if (!gdp) { 2753 ret = 1; 2754 break; 2755 } 2756 2757 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2758 break; 2759 } 2760 2761 if (group == ngroups) 2762 ret = 1; 2763 2764 if (!ret) { 2765 timeout = jiffies; 2766 ret = ext4_init_inode_table(sb, group, 2767 elr->lr_timeout ? 0 : 1); 2768 if (elr->lr_timeout == 0) { 2769 timeout = (jiffies - timeout) * 2770 elr->lr_sbi->s_li_wait_mult; 2771 elr->lr_timeout = timeout; 2772 } 2773 elr->lr_next_sched = jiffies + elr->lr_timeout; 2774 elr->lr_next_group = group + 1; 2775 } 2776 2777 return ret; 2778 } 2779 2780 /* 2781 * Remove lr_request from the list_request and free the 2782 * request structure. Should be called with li_list_mtx held 2783 */ 2784 static void ext4_remove_li_request(struct ext4_li_request *elr) 2785 { 2786 struct ext4_sb_info *sbi; 2787 2788 if (!elr) 2789 return; 2790 2791 sbi = elr->lr_sbi; 2792 2793 list_del(&elr->lr_request); 2794 sbi->s_li_request = NULL; 2795 kfree(elr); 2796 } 2797 2798 static void ext4_unregister_li_request(struct super_block *sb) 2799 { 2800 mutex_lock(&ext4_li_mtx); 2801 if (!ext4_li_info) { 2802 mutex_unlock(&ext4_li_mtx); 2803 return; 2804 } 2805 2806 mutex_lock(&ext4_li_info->li_list_mtx); 2807 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2808 mutex_unlock(&ext4_li_info->li_list_mtx); 2809 mutex_unlock(&ext4_li_mtx); 2810 } 2811 2812 static struct task_struct *ext4_lazyinit_task; 2813 2814 /* 2815 * This is the function where ext4lazyinit thread lives. It walks 2816 * through the request list searching for next scheduled filesystem. 2817 * When such a fs is found, run the lazy initialization request 2818 * (ext4_rn_li_request) and keep track of the time spend in this 2819 * function. Based on that time we compute next schedule time of 2820 * the request. When walking through the list is complete, compute 2821 * next waking time and put itself into sleep. 2822 */ 2823 static int ext4_lazyinit_thread(void *arg) 2824 { 2825 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2826 struct list_head *pos, *n; 2827 struct ext4_li_request *elr; 2828 unsigned long next_wakeup, cur; 2829 2830 BUG_ON(NULL == eli); 2831 2832 cont_thread: 2833 while (true) { 2834 next_wakeup = MAX_JIFFY_OFFSET; 2835 2836 mutex_lock(&eli->li_list_mtx); 2837 if (list_empty(&eli->li_request_list)) { 2838 mutex_unlock(&eli->li_list_mtx); 2839 goto exit_thread; 2840 } 2841 2842 list_for_each_safe(pos, n, &eli->li_request_list) { 2843 elr = list_entry(pos, struct ext4_li_request, 2844 lr_request); 2845 2846 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2847 if (ext4_run_li_request(elr) != 0) { 2848 /* error, remove the lazy_init job */ 2849 ext4_remove_li_request(elr); 2850 continue; 2851 } 2852 } 2853 2854 if (time_before(elr->lr_next_sched, next_wakeup)) 2855 next_wakeup = elr->lr_next_sched; 2856 } 2857 mutex_unlock(&eli->li_list_mtx); 2858 2859 try_to_freeze(); 2860 2861 cur = jiffies; 2862 if ((time_after_eq(cur, next_wakeup)) || 2863 (MAX_JIFFY_OFFSET == next_wakeup)) { 2864 cond_resched(); 2865 continue; 2866 } 2867 2868 schedule_timeout_interruptible(next_wakeup - cur); 2869 2870 if (kthread_should_stop()) { 2871 ext4_clear_request_list(); 2872 goto exit_thread; 2873 } 2874 } 2875 2876 exit_thread: 2877 /* 2878 * It looks like the request list is empty, but we need 2879 * to check it under the li_list_mtx lock, to prevent any 2880 * additions into it, and of course we should lock ext4_li_mtx 2881 * to atomically free the list and ext4_li_info, because at 2882 * this point another ext4 filesystem could be registering 2883 * new one. 2884 */ 2885 mutex_lock(&ext4_li_mtx); 2886 mutex_lock(&eli->li_list_mtx); 2887 if (!list_empty(&eli->li_request_list)) { 2888 mutex_unlock(&eli->li_list_mtx); 2889 mutex_unlock(&ext4_li_mtx); 2890 goto cont_thread; 2891 } 2892 mutex_unlock(&eli->li_list_mtx); 2893 kfree(ext4_li_info); 2894 ext4_li_info = NULL; 2895 mutex_unlock(&ext4_li_mtx); 2896 2897 return 0; 2898 } 2899 2900 static void ext4_clear_request_list(void) 2901 { 2902 struct list_head *pos, *n; 2903 struct ext4_li_request *elr; 2904 2905 mutex_lock(&ext4_li_info->li_list_mtx); 2906 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2907 elr = list_entry(pos, struct ext4_li_request, 2908 lr_request); 2909 ext4_remove_li_request(elr); 2910 } 2911 mutex_unlock(&ext4_li_info->li_list_mtx); 2912 } 2913 2914 static int ext4_run_lazyinit_thread(void) 2915 { 2916 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2917 ext4_li_info, "ext4lazyinit"); 2918 if (IS_ERR(ext4_lazyinit_task)) { 2919 int err = PTR_ERR(ext4_lazyinit_task); 2920 ext4_clear_request_list(); 2921 kfree(ext4_li_info); 2922 ext4_li_info = NULL; 2923 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2924 "initialization thread\n", 2925 err); 2926 return err; 2927 } 2928 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2929 return 0; 2930 } 2931 2932 /* 2933 * Check whether it make sense to run itable init. thread or not. 2934 * If there is at least one uninitialized inode table, return 2935 * corresponding group number, else the loop goes through all 2936 * groups and return total number of groups. 2937 */ 2938 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2939 { 2940 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2941 struct ext4_group_desc *gdp = NULL; 2942 2943 for (group = 0; group < ngroups; group++) { 2944 gdp = ext4_get_group_desc(sb, group, NULL); 2945 if (!gdp) 2946 continue; 2947 2948 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2949 break; 2950 } 2951 2952 return group; 2953 } 2954 2955 static int ext4_li_info_new(void) 2956 { 2957 struct ext4_lazy_init *eli = NULL; 2958 2959 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2960 if (!eli) 2961 return -ENOMEM; 2962 2963 INIT_LIST_HEAD(&eli->li_request_list); 2964 mutex_init(&eli->li_list_mtx); 2965 2966 eli->li_state |= EXT4_LAZYINIT_QUIT; 2967 2968 ext4_li_info = eli; 2969 2970 return 0; 2971 } 2972 2973 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2974 ext4_group_t start) 2975 { 2976 struct ext4_sb_info *sbi = EXT4_SB(sb); 2977 struct ext4_li_request *elr; 2978 unsigned long rnd; 2979 2980 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2981 if (!elr) 2982 return NULL; 2983 2984 elr->lr_super = sb; 2985 elr->lr_sbi = sbi; 2986 elr->lr_next_group = start; 2987 2988 /* 2989 * Randomize first schedule time of the request to 2990 * spread the inode table initialization requests 2991 * better. 2992 */ 2993 get_random_bytes(&rnd, sizeof(rnd)); 2994 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2995 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2996 2997 return elr; 2998 } 2999 3000 static int ext4_register_li_request(struct super_block *sb, 3001 ext4_group_t first_not_zeroed) 3002 { 3003 struct ext4_sb_info *sbi = EXT4_SB(sb); 3004 struct ext4_li_request *elr; 3005 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3006 int ret = 0; 3007 3008 if (sbi->s_li_request != NULL) { 3009 /* 3010 * Reset timeout so it can be computed again, because 3011 * s_li_wait_mult might have changed. 3012 */ 3013 sbi->s_li_request->lr_timeout = 0; 3014 return 0; 3015 } 3016 3017 if (first_not_zeroed == ngroups || 3018 (sb->s_flags & MS_RDONLY) || 3019 !test_opt(sb, INIT_INODE_TABLE)) 3020 return 0; 3021 3022 elr = ext4_li_request_new(sb, first_not_zeroed); 3023 if (!elr) 3024 return -ENOMEM; 3025 3026 mutex_lock(&ext4_li_mtx); 3027 3028 if (NULL == ext4_li_info) { 3029 ret = ext4_li_info_new(); 3030 if (ret) 3031 goto out; 3032 } 3033 3034 mutex_lock(&ext4_li_info->li_list_mtx); 3035 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3036 mutex_unlock(&ext4_li_info->li_list_mtx); 3037 3038 sbi->s_li_request = elr; 3039 /* 3040 * set elr to NULL here since it has been inserted to 3041 * the request_list and the removal and free of it is 3042 * handled by ext4_clear_request_list from now on. 3043 */ 3044 elr = NULL; 3045 3046 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3047 ret = ext4_run_lazyinit_thread(); 3048 if (ret) 3049 goto out; 3050 } 3051 out: 3052 mutex_unlock(&ext4_li_mtx); 3053 if (ret) 3054 kfree(elr); 3055 return ret; 3056 } 3057 3058 /* 3059 * We do not need to lock anything since this is called on 3060 * module unload. 3061 */ 3062 static void ext4_destroy_lazyinit_thread(void) 3063 { 3064 /* 3065 * If thread exited earlier 3066 * there's nothing to be done. 3067 */ 3068 if (!ext4_li_info || !ext4_lazyinit_task) 3069 return; 3070 3071 kthread_stop(ext4_lazyinit_task); 3072 } 3073 3074 static int set_journal_csum_feature_set(struct super_block *sb) 3075 { 3076 int ret = 1; 3077 int compat, incompat; 3078 struct ext4_sb_info *sbi = EXT4_SB(sb); 3079 3080 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3081 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3082 /* journal checksum v2 */ 3083 compat = 0; 3084 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3085 } else { 3086 /* journal checksum v1 */ 3087 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3088 incompat = 0; 3089 } 3090 3091 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3092 ret = jbd2_journal_set_features(sbi->s_journal, 3093 compat, 0, 3094 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3095 incompat); 3096 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3097 ret = jbd2_journal_set_features(sbi->s_journal, 3098 compat, 0, 3099 incompat); 3100 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3101 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3102 } else { 3103 jbd2_journal_clear_features(sbi->s_journal, 3104 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3105 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3106 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3107 } 3108 3109 return ret; 3110 } 3111 3112 /* 3113 * Note: calculating the overhead so we can be compatible with 3114 * historical BSD practice is quite difficult in the face of 3115 * clusters/bigalloc. This is because multiple metadata blocks from 3116 * different block group can end up in the same allocation cluster. 3117 * Calculating the exact overhead in the face of clustered allocation 3118 * requires either O(all block bitmaps) in memory or O(number of block 3119 * groups**2) in time. We will still calculate the superblock for 3120 * older file systems --- and if we come across with a bigalloc file 3121 * system with zero in s_overhead_clusters the estimate will be close to 3122 * correct especially for very large cluster sizes --- but for newer 3123 * file systems, it's better to calculate this figure once at mkfs 3124 * time, and store it in the superblock. If the superblock value is 3125 * present (even for non-bigalloc file systems), we will use it. 3126 */ 3127 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3128 char *buf) 3129 { 3130 struct ext4_sb_info *sbi = EXT4_SB(sb); 3131 struct ext4_group_desc *gdp; 3132 ext4_fsblk_t first_block, last_block, b; 3133 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3134 int s, j, count = 0; 3135 3136 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3137 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3138 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3139 for (i = 0; i < ngroups; i++) { 3140 gdp = ext4_get_group_desc(sb, i, NULL); 3141 b = ext4_block_bitmap(sb, gdp); 3142 if (b >= first_block && b <= last_block) { 3143 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3144 count++; 3145 } 3146 b = ext4_inode_bitmap(sb, gdp); 3147 if (b >= first_block && b <= last_block) { 3148 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3149 count++; 3150 } 3151 b = ext4_inode_table(sb, gdp); 3152 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3153 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3154 int c = EXT4_B2C(sbi, b - first_block); 3155 ext4_set_bit(c, buf); 3156 count++; 3157 } 3158 if (i != grp) 3159 continue; 3160 s = 0; 3161 if (ext4_bg_has_super(sb, grp)) { 3162 ext4_set_bit(s++, buf); 3163 count++; 3164 } 3165 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3166 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3167 count++; 3168 } 3169 } 3170 if (!count) 3171 return 0; 3172 return EXT4_CLUSTERS_PER_GROUP(sb) - 3173 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3174 } 3175 3176 /* 3177 * Compute the overhead and stash it in sbi->s_overhead 3178 */ 3179 int ext4_calculate_overhead(struct super_block *sb) 3180 { 3181 struct ext4_sb_info *sbi = EXT4_SB(sb); 3182 struct ext4_super_block *es = sbi->s_es; 3183 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3184 ext4_fsblk_t overhead = 0; 3185 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3186 3187 memset(buf, 0, PAGE_SIZE); 3188 if (!buf) 3189 return -ENOMEM; 3190 3191 /* 3192 * Compute the overhead (FS structures). This is constant 3193 * for a given filesystem unless the number of block groups 3194 * changes so we cache the previous value until it does. 3195 */ 3196 3197 /* 3198 * All of the blocks before first_data_block are overhead 3199 */ 3200 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3201 3202 /* 3203 * Add the overhead found in each block group 3204 */ 3205 for (i = 0; i < ngroups; i++) { 3206 int blks; 3207 3208 blks = count_overhead(sb, i, buf); 3209 overhead += blks; 3210 if (blks) 3211 memset(buf, 0, PAGE_SIZE); 3212 cond_resched(); 3213 } 3214 sbi->s_overhead = overhead; 3215 smp_wmb(); 3216 free_page((unsigned long) buf); 3217 return 0; 3218 } 3219 3220 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3221 { 3222 char *orig_data = kstrdup(data, GFP_KERNEL); 3223 struct buffer_head *bh; 3224 struct ext4_super_block *es = NULL; 3225 struct ext4_sb_info *sbi; 3226 ext4_fsblk_t block; 3227 ext4_fsblk_t sb_block = get_sb_block(&data); 3228 ext4_fsblk_t logical_sb_block; 3229 unsigned long offset = 0; 3230 unsigned long journal_devnum = 0; 3231 unsigned long def_mount_opts; 3232 struct inode *root; 3233 char *cp; 3234 const char *descr; 3235 int ret = -ENOMEM; 3236 int blocksize, clustersize; 3237 unsigned int db_count; 3238 unsigned int i; 3239 int needs_recovery, has_huge_files, has_bigalloc; 3240 __u64 blocks_count; 3241 int err; 3242 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3243 ext4_group_t first_not_zeroed; 3244 3245 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3246 if (!sbi) 3247 goto out_free_orig; 3248 3249 sbi->s_blockgroup_lock = 3250 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3251 if (!sbi->s_blockgroup_lock) { 3252 kfree(sbi); 3253 goto out_free_orig; 3254 } 3255 sb->s_fs_info = sbi; 3256 sbi->s_sb = sb; 3257 sbi->s_mount_opt = 0; 3258 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 3259 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 3260 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3261 sbi->s_sb_block = sb_block; 3262 if (sb->s_bdev->bd_part) 3263 sbi->s_sectors_written_start = 3264 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3265 3266 /* Cleanup superblock name */ 3267 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3268 *cp = '!'; 3269 3270 ret = -EINVAL; 3271 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3272 if (!blocksize) { 3273 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3274 goto out_fail; 3275 } 3276 3277 /* 3278 * The ext4 superblock will not be buffer aligned for other than 1kB 3279 * block sizes. We need to calculate the offset from buffer start. 3280 */ 3281 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3282 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3283 offset = do_div(logical_sb_block, blocksize); 3284 } else { 3285 logical_sb_block = sb_block; 3286 } 3287 3288 if (!(bh = sb_bread(sb, logical_sb_block))) { 3289 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3290 goto out_fail; 3291 } 3292 /* 3293 * Note: s_es must be initialized as soon as possible because 3294 * some ext4 macro-instructions depend on its value 3295 */ 3296 es = (struct ext4_super_block *) (bh->b_data + offset); 3297 sbi->s_es = es; 3298 sb->s_magic = le16_to_cpu(es->s_magic); 3299 if (sb->s_magic != EXT4_SUPER_MAGIC) 3300 goto cantfind_ext4; 3301 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3302 3303 /* Warn if metadata_csum and gdt_csum are both set. */ 3304 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3305 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3306 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3307 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3308 "redundant flags; please run fsck."); 3309 3310 /* Check for a known checksum algorithm */ 3311 if (!ext4_verify_csum_type(sb, es)) { 3312 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3313 "unknown checksum algorithm."); 3314 silent = 1; 3315 goto cantfind_ext4; 3316 } 3317 3318 /* Load the checksum driver */ 3319 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3320 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3321 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3322 if (IS_ERR(sbi->s_chksum_driver)) { 3323 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3324 ret = PTR_ERR(sbi->s_chksum_driver); 3325 sbi->s_chksum_driver = NULL; 3326 goto failed_mount; 3327 } 3328 } 3329 3330 /* Check superblock checksum */ 3331 if (!ext4_superblock_csum_verify(sb, es)) { 3332 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3333 "invalid superblock checksum. Run e2fsck?"); 3334 silent = 1; 3335 goto cantfind_ext4; 3336 } 3337 3338 /* Precompute checksum seed for all metadata */ 3339 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3340 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3341 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3342 sizeof(es->s_uuid)); 3343 3344 /* Set defaults before we parse the mount options */ 3345 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3346 set_opt(sb, INIT_INODE_TABLE); 3347 if (def_mount_opts & EXT4_DEFM_DEBUG) 3348 set_opt(sb, DEBUG); 3349 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3350 set_opt(sb, GRPID); 3351 if (def_mount_opts & EXT4_DEFM_UID16) 3352 set_opt(sb, NO_UID32); 3353 /* xattr user namespace & acls are now defaulted on */ 3354 #ifdef CONFIG_EXT4_FS_XATTR 3355 set_opt(sb, XATTR_USER); 3356 #endif 3357 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3358 set_opt(sb, POSIX_ACL); 3359 #endif 3360 set_opt(sb, MBLK_IO_SUBMIT); 3361 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3362 set_opt(sb, JOURNAL_DATA); 3363 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3364 set_opt(sb, ORDERED_DATA); 3365 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3366 set_opt(sb, WRITEBACK_DATA); 3367 3368 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3369 set_opt(sb, ERRORS_PANIC); 3370 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3371 set_opt(sb, ERRORS_CONT); 3372 else 3373 set_opt(sb, ERRORS_RO); 3374 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3375 set_opt(sb, BLOCK_VALIDITY); 3376 if (def_mount_opts & EXT4_DEFM_DISCARD) 3377 set_opt(sb, DISCARD); 3378 3379 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3380 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3381 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3382 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3383 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3384 3385 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3386 set_opt(sb, BARRIER); 3387 3388 /* 3389 * enable delayed allocation by default 3390 * Use -o nodelalloc to turn it off 3391 */ 3392 if (!IS_EXT3_SB(sb) && 3393 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3394 set_opt(sb, DELALLOC); 3395 3396 /* 3397 * set default s_li_wait_mult for lazyinit, for the case there is 3398 * no mount option specified. 3399 */ 3400 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3401 3402 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3403 &journal_devnum, &journal_ioprio, 0)) { 3404 ext4_msg(sb, KERN_WARNING, 3405 "failed to parse options in superblock: %s", 3406 sbi->s_es->s_mount_opts); 3407 } 3408 sbi->s_def_mount_opt = sbi->s_mount_opt; 3409 if (!parse_options((char *) data, sb, &journal_devnum, 3410 &journal_ioprio, 0)) 3411 goto failed_mount; 3412 3413 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3414 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3415 "with data=journal disables delayed " 3416 "allocation and O_DIRECT support!\n"); 3417 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3418 ext4_msg(sb, KERN_ERR, "can't mount with " 3419 "both data=journal and delalloc"); 3420 goto failed_mount; 3421 } 3422 if (test_opt(sb, DIOREAD_NOLOCK)) { 3423 ext4_msg(sb, KERN_ERR, "can't mount with " 3424 "both data=journal and delalloc"); 3425 goto failed_mount; 3426 } 3427 if (test_opt(sb, DELALLOC)) 3428 clear_opt(sb, DELALLOC); 3429 } 3430 3431 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3432 if (test_opt(sb, DIOREAD_NOLOCK)) { 3433 if (blocksize < PAGE_SIZE) { 3434 ext4_msg(sb, KERN_ERR, "can't mount with " 3435 "dioread_nolock if block size != PAGE_SIZE"); 3436 goto failed_mount; 3437 } 3438 } 3439 3440 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3441 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3442 3443 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3444 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3445 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3446 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3447 ext4_msg(sb, KERN_WARNING, 3448 "feature flags set on rev 0 fs, " 3449 "running e2fsck is recommended"); 3450 3451 if (IS_EXT2_SB(sb)) { 3452 if (ext2_feature_set_ok(sb)) 3453 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3454 "using the ext4 subsystem"); 3455 else { 3456 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3457 "to feature incompatibilities"); 3458 goto failed_mount; 3459 } 3460 } 3461 3462 if (IS_EXT3_SB(sb)) { 3463 if (ext3_feature_set_ok(sb)) 3464 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3465 "using the ext4 subsystem"); 3466 else { 3467 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3468 "to feature incompatibilities"); 3469 goto failed_mount; 3470 } 3471 } 3472 3473 /* 3474 * Check feature flags regardless of the revision level, since we 3475 * previously didn't change the revision level when setting the flags, 3476 * so there is a chance incompat flags are set on a rev 0 filesystem. 3477 */ 3478 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3479 goto failed_mount; 3480 3481 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3482 blocksize > EXT4_MAX_BLOCK_SIZE) { 3483 ext4_msg(sb, KERN_ERR, 3484 "Unsupported filesystem blocksize %d", blocksize); 3485 goto failed_mount; 3486 } 3487 3488 if (sb->s_blocksize != blocksize) { 3489 /* Validate the filesystem blocksize */ 3490 if (!sb_set_blocksize(sb, blocksize)) { 3491 ext4_msg(sb, KERN_ERR, "bad block size %d", 3492 blocksize); 3493 goto failed_mount; 3494 } 3495 3496 brelse(bh); 3497 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3498 offset = do_div(logical_sb_block, blocksize); 3499 bh = sb_bread(sb, logical_sb_block); 3500 if (!bh) { 3501 ext4_msg(sb, KERN_ERR, 3502 "Can't read superblock on 2nd try"); 3503 goto failed_mount; 3504 } 3505 es = (struct ext4_super_block *)(bh->b_data + offset); 3506 sbi->s_es = es; 3507 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3508 ext4_msg(sb, KERN_ERR, 3509 "Magic mismatch, very weird!"); 3510 goto failed_mount; 3511 } 3512 } 3513 3514 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3515 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3516 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3517 has_huge_files); 3518 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3519 3520 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3521 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3522 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3523 } else { 3524 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3525 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3526 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3527 (!is_power_of_2(sbi->s_inode_size)) || 3528 (sbi->s_inode_size > blocksize)) { 3529 ext4_msg(sb, KERN_ERR, 3530 "unsupported inode size: %d", 3531 sbi->s_inode_size); 3532 goto failed_mount; 3533 } 3534 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3535 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3536 } 3537 3538 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3539 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3540 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3541 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3542 !is_power_of_2(sbi->s_desc_size)) { 3543 ext4_msg(sb, KERN_ERR, 3544 "unsupported descriptor size %lu", 3545 sbi->s_desc_size); 3546 goto failed_mount; 3547 } 3548 } else 3549 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3550 3551 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3552 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3553 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3554 goto cantfind_ext4; 3555 3556 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3557 if (sbi->s_inodes_per_block == 0) 3558 goto cantfind_ext4; 3559 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3560 sbi->s_inodes_per_block; 3561 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3562 sbi->s_sbh = bh; 3563 sbi->s_mount_state = le16_to_cpu(es->s_state); 3564 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3565 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3566 3567 for (i = 0; i < 4; i++) 3568 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3569 sbi->s_def_hash_version = es->s_def_hash_version; 3570 i = le32_to_cpu(es->s_flags); 3571 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3572 sbi->s_hash_unsigned = 3; 3573 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3574 #ifdef __CHAR_UNSIGNED__ 3575 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3576 sbi->s_hash_unsigned = 3; 3577 #else 3578 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3579 #endif 3580 } 3581 3582 /* Handle clustersize */ 3583 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3584 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3585 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3586 if (has_bigalloc) { 3587 if (clustersize < blocksize) { 3588 ext4_msg(sb, KERN_ERR, 3589 "cluster size (%d) smaller than " 3590 "block size (%d)", clustersize, blocksize); 3591 goto failed_mount; 3592 } 3593 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3594 le32_to_cpu(es->s_log_block_size); 3595 sbi->s_clusters_per_group = 3596 le32_to_cpu(es->s_clusters_per_group); 3597 if (sbi->s_clusters_per_group > blocksize * 8) { 3598 ext4_msg(sb, KERN_ERR, 3599 "#clusters per group too big: %lu", 3600 sbi->s_clusters_per_group); 3601 goto failed_mount; 3602 } 3603 if (sbi->s_blocks_per_group != 3604 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3605 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3606 "clusters per group (%lu) inconsistent", 3607 sbi->s_blocks_per_group, 3608 sbi->s_clusters_per_group); 3609 goto failed_mount; 3610 } 3611 } else { 3612 if (clustersize != blocksize) { 3613 ext4_warning(sb, "fragment/cluster size (%d) != " 3614 "block size (%d)", clustersize, 3615 blocksize); 3616 clustersize = blocksize; 3617 } 3618 if (sbi->s_blocks_per_group > blocksize * 8) { 3619 ext4_msg(sb, KERN_ERR, 3620 "#blocks per group too big: %lu", 3621 sbi->s_blocks_per_group); 3622 goto failed_mount; 3623 } 3624 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3625 sbi->s_cluster_bits = 0; 3626 } 3627 sbi->s_cluster_ratio = clustersize / blocksize; 3628 3629 if (sbi->s_inodes_per_group > blocksize * 8) { 3630 ext4_msg(sb, KERN_ERR, 3631 "#inodes per group too big: %lu", 3632 sbi->s_inodes_per_group); 3633 goto failed_mount; 3634 } 3635 3636 /* 3637 * Test whether we have more sectors than will fit in sector_t, 3638 * and whether the max offset is addressable by the page cache. 3639 */ 3640 err = generic_check_addressable(sb->s_blocksize_bits, 3641 ext4_blocks_count(es)); 3642 if (err) { 3643 ext4_msg(sb, KERN_ERR, "filesystem" 3644 " too large to mount safely on this system"); 3645 if (sizeof(sector_t) < 8) 3646 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3647 ret = err; 3648 goto failed_mount; 3649 } 3650 3651 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3652 goto cantfind_ext4; 3653 3654 /* check blocks count against device size */ 3655 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3656 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3657 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3658 "exceeds size of device (%llu blocks)", 3659 ext4_blocks_count(es), blocks_count); 3660 goto failed_mount; 3661 } 3662 3663 /* 3664 * It makes no sense for the first data block to be beyond the end 3665 * of the filesystem. 3666 */ 3667 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3668 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3669 "block %u is beyond end of filesystem (%llu)", 3670 le32_to_cpu(es->s_first_data_block), 3671 ext4_blocks_count(es)); 3672 goto failed_mount; 3673 } 3674 blocks_count = (ext4_blocks_count(es) - 3675 le32_to_cpu(es->s_first_data_block) + 3676 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3677 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3678 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3679 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3680 "(block count %llu, first data block %u, " 3681 "blocks per group %lu)", sbi->s_groups_count, 3682 ext4_blocks_count(es), 3683 le32_to_cpu(es->s_first_data_block), 3684 EXT4_BLOCKS_PER_GROUP(sb)); 3685 goto failed_mount; 3686 } 3687 sbi->s_groups_count = blocks_count; 3688 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3689 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3690 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3691 EXT4_DESC_PER_BLOCK(sb); 3692 sbi->s_group_desc = ext4_kvmalloc(db_count * 3693 sizeof(struct buffer_head *), 3694 GFP_KERNEL); 3695 if (sbi->s_group_desc == NULL) { 3696 ext4_msg(sb, KERN_ERR, "not enough memory"); 3697 ret = -ENOMEM; 3698 goto failed_mount; 3699 } 3700 3701 if (ext4_proc_root) 3702 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3703 3704 if (sbi->s_proc) 3705 proc_create_data("options", S_IRUGO, sbi->s_proc, 3706 &ext4_seq_options_fops, sb); 3707 3708 bgl_lock_init(sbi->s_blockgroup_lock); 3709 3710 for (i = 0; i < db_count; i++) { 3711 block = descriptor_loc(sb, logical_sb_block, i); 3712 sbi->s_group_desc[i] = sb_bread(sb, block); 3713 if (!sbi->s_group_desc[i]) { 3714 ext4_msg(sb, KERN_ERR, 3715 "can't read group descriptor %d", i); 3716 db_count = i; 3717 goto failed_mount2; 3718 } 3719 } 3720 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3721 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3722 goto failed_mount2; 3723 } 3724 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3725 if (!ext4_fill_flex_info(sb)) { 3726 ext4_msg(sb, KERN_ERR, 3727 "unable to initialize " 3728 "flex_bg meta info!"); 3729 goto failed_mount2; 3730 } 3731 3732 sbi->s_gdb_count = db_count; 3733 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3734 spin_lock_init(&sbi->s_next_gen_lock); 3735 3736 init_timer(&sbi->s_err_report); 3737 sbi->s_err_report.function = print_daily_error_info; 3738 sbi->s_err_report.data = (unsigned long) sb; 3739 3740 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3741 ext4_count_free_clusters(sb)); 3742 if (!err) { 3743 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3744 ext4_count_free_inodes(sb)); 3745 } 3746 if (!err) { 3747 err = percpu_counter_init(&sbi->s_dirs_counter, 3748 ext4_count_dirs(sb)); 3749 } 3750 if (!err) { 3751 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3752 } 3753 if (err) { 3754 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3755 ret = err; 3756 goto failed_mount3; 3757 } 3758 3759 sbi->s_stripe = ext4_get_stripe_size(sbi); 3760 sbi->s_max_writeback_mb_bump = 128; 3761 3762 /* 3763 * set up enough so that it can read an inode 3764 */ 3765 if (!test_opt(sb, NOLOAD) && 3766 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3767 sb->s_op = &ext4_sops; 3768 else 3769 sb->s_op = &ext4_nojournal_sops; 3770 sb->s_export_op = &ext4_export_ops; 3771 sb->s_xattr = ext4_xattr_handlers; 3772 #ifdef CONFIG_QUOTA 3773 sb->s_qcop = &ext4_qctl_operations; 3774 sb->dq_op = &ext4_quota_operations; 3775 3776 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 3777 /* Use qctl operations for hidden quota files. */ 3778 sb->s_qcop = &ext4_qctl_sysfile_operations; 3779 } 3780 #endif 3781 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3782 3783 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3784 mutex_init(&sbi->s_orphan_lock); 3785 sbi->s_resize_flags = 0; 3786 3787 sb->s_root = NULL; 3788 3789 needs_recovery = (es->s_last_orphan != 0 || 3790 EXT4_HAS_INCOMPAT_FEATURE(sb, 3791 EXT4_FEATURE_INCOMPAT_RECOVER)); 3792 3793 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3794 !(sb->s_flags & MS_RDONLY)) 3795 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3796 goto failed_mount3; 3797 3798 /* 3799 * The first inode we look at is the journal inode. Don't try 3800 * root first: it may be modified in the journal! 3801 */ 3802 if (!test_opt(sb, NOLOAD) && 3803 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3804 if (ext4_load_journal(sb, es, journal_devnum)) 3805 goto failed_mount3; 3806 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3807 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3808 ext4_msg(sb, KERN_ERR, "required journal recovery " 3809 "suppressed and not mounted read-only"); 3810 goto failed_mount_wq; 3811 } else { 3812 clear_opt(sb, DATA_FLAGS); 3813 sbi->s_journal = NULL; 3814 needs_recovery = 0; 3815 goto no_journal; 3816 } 3817 3818 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3819 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3820 JBD2_FEATURE_INCOMPAT_64BIT)) { 3821 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3822 goto failed_mount_wq; 3823 } 3824 3825 if (!set_journal_csum_feature_set(sb)) { 3826 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3827 "feature set"); 3828 goto failed_mount_wq; 3829 } 3830 3831 /* We have now updated the journal if required, so we can 3832 * validate the data journaling mode. */ 3833 switch (test_opt(sb, DATA_FLAGS)) { 3834 case 0: 3835 /* No mode set, assume a default based on the journal 3836 * capabilities: ORDERED_DATA if the journal can 3837 * cope, else JOURNAL_DATA 3838 */ 3839 if (jbd2_journal_check_available_features 3840 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3841 set_opt(sb, ORDERED_DATA); 3842 else 3843 set_opt(sb, JOURNAL_DATA); 3844 break; 3845 3846 case EXT4_MOUNT_ORDERED_DATA: 3847 case EXT4_MOUNT_WRITEBACK_DATA: 3848 if (!jbd2_journal_check_available_features 3849 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3850 ext4_msg(sb, KERN_ERR, "Journal does not support " 3851 "requested data journaling mode"); 3852 goto failed_mount_wq; 3853 } 3854 default: 3855 break; 3856 } 3857 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3858 3859 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3860 3861 /* 3862 * The journal may have updated the bg summary counts, so we 3863 * need to update the global counters. 3864 */ 3865 percpu_counter_set(&sbi->s_freeclusters_counter, 3866 ext4_count_free_clusters(sb)); 3867 percpu_counter_set(&sbi->s_freeinodes_counter, 3868 ext4_count_free_inodes(sb)); 3869 percpu_counter_set(&sbi->s_dirs_counter, 3870 ext4_count_dirs(sb)); 3871 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3872 3873 no_journal: 3874 /* 3875 * Get the # of file system overhead blocks from the 3876 * superblock if present. 3877 */ 3878 if (es->s_overhead_clusters) 3879 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3880 else { 3881 ret = ext4_calculate_overhead(sb); 3882 if (ret) 3883 goto failed_mount_wq; 3884 } 3885 3886 /* 3887 * The maximum number of concurrent works can be high and 3888 * concurrency isn't really necessary. Limit it to 1. 3889 */ 3890 EXT4_SB(sb)->dio_unwritten_wq = 3891 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3892 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3893 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3894 goto failed_mount_wq; 3895 } 3896 3897 /* 3898 * The jbd2_journal_load will have done any necessary log recovery, 3899 * so we can safely mount the rest of the filesystem now. 3900 */ 3901 3902 root = ext4_iget(sb, EXT4_ROOT_INO); 3903 if (IS_ERR(root)) { 3904 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3905 ret = PTR_ERR(root); 3906 root = NULL; 3907 goto failed_mount4; 3908 } 3909 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3910 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3911 iput(root); 3912 goto failed_mount4; 3913 } 3914 sb->s_root = d_make_root(root); 3915 if (!sb->s_root) { 3916 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3917 ret = -ENOMEM; 3918 goto failed_mount4; 3919 } 3920 3921 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3922 sb->s_flags |= MS_RDONLY; 3923 3924 /* determine the minimum size of new large inodes, if present */ 3925 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3926 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3927 EXT4_GOOD_OLD_INODE_SIZE; 3928 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3929 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3930 if (sbi->s_want_extra_isize < 3931 le16_to_cpu(es->s_want_extra_isize)) 3932 sbi->s_want_extra_isize = 3933 le16_to_cpu(es->s_want_extra_isize); 3934 if (sbi->s_want_extra_isize < 3935 le16_to_cpu(es->s_min_extra_isize)) 3936 sbi->s_want_extra_isize = 3937 le16_to_cpu(es->s_min_extra_isize); 3938 } 3939 } 3940 /* Check if enough inode space is available */ 3941 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3942 sbi->s_inode_size) { 3943 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3944 EXT4_GOOD_OLD_INODE_SIZE; 3945 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3946 "available"); 3947 } 3948 3949 err = ext4_setup_system_zone(sb); 3950 if (err) { 3951 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3952 "zone (%d)", err); 3953 goto failed_mount4a; 3954 } 3955 3956 ext4_ext_init(sb); 3957 err = ext4_mb_init(sb); 3958 if (err) { 3959 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3960 err); 3961 goto failed_mount5; 3962 } 3963 3964 err = ext4_register_li_request(sb, first_not_zeroed); 3965 if (err) 3966 goto failed_mount6; 3967 3968 sbi->s_kobj.kset = ext4_kset; 3969 init_completion(&sbi->s_kobj_unregister); 3970 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3971 "%s", sb->s_id); 3972 if (err) 3973 goto failed_mount7; 3974 3975 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3976 ext4_orphan_cleanup(sb, es); 3977 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3978 if (needs_recovery) { 3979 ext4_msg(sb, KERN_INFO, "recovery complete"); 3980 ext4_mark_recovery_complete(sb, es); 3981 } 3982 if (EXT4_SB(sb)->s_journal) { 3983 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3984 descr = " journalled data mode"; 3985 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3986 descr = " ordered data mode"; 3987 else 3988 descr = " writeback data mode"; 3989 } else 3990 descr = "out journal"; 3991 3992 #ifdef CONFIG_QUOTA 3993 /* Enable quota usage during mount. */ 3994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 3995 !(sb->s_flags & MS_RDONLY)) { 3996 ret = ext4_enable_quotas(sb); 3997 if (ret) 3998 goto failed_mount7; 3999 } 4000 #endif /* CONFIG_QUOTA */ 4001 4002 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4003 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4004 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4005 4006 if (es->s_error_count) 4007 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4008 4009 kfree(orig_data); 4010 return 0; 4011 4012 cantfind_ext4: 4013 if (!silent) 4014 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4015 goto failed_mount; 4016 4017 failed_mount7: 4018 ext4_unregister_li_request(sb); 4019 failed_mount6: 4020 ext4_mb_release(sb); 4021 failed_mount5: 4022 ext4_ext_release(sb); 4023 ext4_release_system_zone(sb); 4024 failed_mount4a: 4025 dput(sb->s_root); 4026 sb->s_root = NULL; 4027 failed_mount4: 4028 ext4_msg(sb, KERN_ERR, "mount failed"); 4029 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4030 failed_mount_wq: 4031 if (sbi->s_journal) { 4032 jbd2_journal_destroy(sbi->s_journal); 4033 sbi->s_journal = NULL; 4034 } 4035 failed_mount3: 4036 del_timer(&sbi->s_err_report); 4037 if (sbi->s_flex_groups) 4038 ext4_kvfree(sbi->s_flex_groups); 4039 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4040 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4041 percpu_counter_destroy(&sbi->s_dirs_counter); 4042 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4043 if (sbi->s_mmp_tsk) 4044 kthread_stop(sbi->s_mmp_tsk); 4045 failed_mount2: 4046 for (i = 0; i < db_count; i++) 4047 brelse(sbi->s_group_desc[i]); 4048 ext4_kvfree(sbi->s_group_desc); 4049 failed_mount: 4050 if (sbi->s_chksum_driver) 4051 crypto_free_shash(sbi->s_chksum_driver); 4052 if (sbi->s_proc) { 4053 remove_proc_entry("options", sbi->s_proc); 4054 remove_proc_entry(sb->s_id, ext4_proc_root); 4055 } 4056 #ifdef CONFIG_QUOTA 4057 for (i = 0; i < MAXQUOTAS; i++) 4058 kfree(sbi->s_qf_names[i]); 4059 #endif 4060 ext4_blkdev_remove(sbi); 4061 brelse(bh); 4062 out_fail: 4063 sb->s_fs_info = NULL; 4064 kfree(sbi->s_blockgroup_lock); 4065 kfree(sbi); 4066 out_free_orig: 4067 kfree(orig_data); 4068 return ret; 4069 } 4070 4071 /* 4072 * Setup any per-fs journal parameters now. We'll do this both on 4073 * initial mount, once the journal has been initialised but before we've 4074 * done any recovery; and again on any subsequent remount. 4075 */ 4076 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4077 { 4078 struct ext4_sb_info *sbi = EXT4_SB(sb); 4079 4080 journal->j_commit_interval = sbi->s_commit_interval; 4081 journal->j_min_batch_time = sbi->s_min_batch_time; 4082 journal->j_max_batch_time = sbi->s_max_batch_time; 4083 4084 write_lock(&journal->j_state_lock); 4085 if (test_opt(sb, BARRIER)) 4086 journal->j_flags |= JBD2_BARRIER; 4087 else 4088 journal->j_flags &= ~JBD2_BARRIER; 4089 if (test_opt(sb, DATA_ERR_ABORT)) 4090 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4091 else 4092 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4093 write_unlock(&journal->j_state_lock); 4094 } 4095 4096 static journal_t *ext4_get_journal(struct super_block *sb, 4097 unsigned int journal_inum) 4098 { 4099 struct inode *journal_inode; 4100 journal_t *journal; 4101 4102 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4103 4104 /* First, test for the existence of a valid inode on disk. Bad 4105 * things happen if we iget() an unused inode, as the subsequent 4106 * iput() will try to delete it. */ 4107 4108 journal_inode = ext4_iget(sb, journal_inum); 4109 if (IS_ERR(journal_inode)) { 4110 ext4_msg(sb, KERN_ERR, "no journal found"); 4111 return NULL; 4112 } 4113 if (!journal_inode->i_nlink) { 4114 make_bad_inode(journal_inode); 4115 iput(journal_inode); 4116 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4117 return NULL; 4118 } 4119 4120 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4121 journal_inode, journal_inode->i_size); 4122 if (!S_ISREG(journal_inode->i_mode)) { 4123 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4124 iput(journal_inode); 4125 return NULL; 4126 } 4127 4128 journal = jbd2_journal_init_inode(journal_inode); 4129 if (!journal) { 4130 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4131 iput(journal_inode); 4132 return NULL; 4133 } 4134 journal->j_private = sb; 4135 ext4_init_journal_params(sb, journal); 4136 return journal; 4137 } 4138 4139 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4140 dev_t j_dev) 4141 { 4142 struct buffer_head *bh; 4143 journal_t *journal; 4144 ext4_fsblk_t start; 4145 ext4_fsblk_t len; 4146 int hblock, blocksize; 4147 ext4_fsblk_t sb_block; 4148 unsigned long offset; 4149 struct ext4_super_block *es; 4150 struct block_device *bdev; 4151 4152 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4153 4154 bdev = ext4_blkdev_get(j_dev, sb); 4155 if (bdev == NULL) 4156 return NULL; 4157 4158 blocksize = sb->s_blocksize; 4159 hblock = bdev_logical_block_size(bdev); 4160 if (blocksize < hblock) { 4161 ext4_msg(sb, KERN_ERR, 4162 "blocksize too small for journal device"); 4163 goto out_bdev; 4164 } 4165 4166 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4167 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4168 set_blocksize(bdev, blocksize); 4169 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4170 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4171 "external journal"); 4172 goto out_bdev; 4173 } 4174 4175 es = (struct ext4_super_block *) (bh->b_data + offset); 4176 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4177 !(le32_to_cpu(es->s_feature_incompat) & 4178 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4179 ext4_msg(sb, KERN_ERR, "external journal has " 4180 "bad superblock"); 4181 brelse(bh); 4182 goto out_bdev; 4183 } 4184 4185 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4186 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4187 brelse(bh); 4188 goto out_bdev; 4189 } 4190 4191 len = ext4_blocks_count(es); 4192 start = sb_block + 1; 4193 brelse(bh); /* we're done with the superblock */ 4194 4195 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4196 start, len, blocksize); 4197 if (!journal) { 4198 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4199 goto out_bdev; 4200 } 4201 journal->j_private = sb; 4202 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4203 wait_on_buffer(journal->j_sb_buffer); 4204 if (!buffer_uptodate(journal->j_sb_buffer)) { 4205 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4206 goto out_journal; 4207 } 4208 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4209 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4210 "user (unsupported) - %d", 4211 be32_to_cpu(journal->j_superblock->s_nr_users)); 4212 goto out_journal; 4213 } 4214 EXT4_SB(sb)->journal_bdev = bdev; 4215 ext4_init_journal_params(sb, journal); 4216 return journal; 4217 4218 out_journal: 4219 jbd2_journal_destroy(journal); 4220 out_bdev: 4221 ext4_blkdev_put(bdev); 4222 return NULL; 4223 } 4224 4225 static int ext4_load_journal(struct super_block *sb, 4226 struct ext4_super_block *es, 4227 unsigned long journal_devnum) 4228 { 4229 journal_t *journal; 4230 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4231 dev_t journal_dev; 4232 int err = 0; 4233 int really_read_only; 4234 4235 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4236 4237 if (journal_devnum && 4238 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4239 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4240 "numbers have changed"); 4241 journal_dev = new_decode_dev(journal_devnum); 4242 } else 4243 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4244 4245 really_read_only = bdev_read_only(sb->s_bdev); 4246 4247 /* 4248 * Are we loading a blank journal or performing recovery after a 4249 * crash? For recovery, we need to check in advance whether we 4250 * can get read-write access to the device. 4251 */ 4252 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4253 if (sb->s_flags & MS_RDONLY) { 4254 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4255 "required on readonly filesystem"); 4256 if (really_read_only) { 4257 ext4_msg(sb, KERN_ERR, "write access " 4258 "unavailable, cannot proceed"); 4259 return -EROFS; 4260 } 4261 ext4_msg(sb, KERN_INFO, "write access will " 4262 "be enabled during recovery"); 4263 } 4264 } 4265 4266 if (journal_inum && journal_dev) { 4267 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4268 "and inode journals!"); 4269 return -EINVAL; 4270 } 4271 4272 if (journal_inum) { 4273 if (!(journal = ext4_get_journal(sb, journal_inum))) 4274 return -EINVAL; 4275 } else { 4276 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4277 return -EINVAL; 4278 } 4279 4280 if (!(journal->j_flags & JBD2_BARRIER)) 4281 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4282 4283 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4284 err = jbd2_journal_wipe(journal, !really_read_only); 4285 if (!err) { 4286 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4287 if (save) 4288 memcpy(save, ((char *) es) + 4289 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4290 err = jbd2_journal_load(journal); 4291 if (save) 4292 memcpy(((char *) es) + EXT4_S_ERR_START, 4293 save, EXT4_S_ERR_LEN); 4294 kfree(save); 4295 } 4296 4297 if (err) { 4298 ext4_msg(sb, KERN_ERR, "error loading journal"); 4299 jbd2_journal_destroy(journal); 4300 return err; 4301 } 4302 4303 EXT4_SB(sb)->s_journal = journal; 4304 ext4_clear_journal_err(sb, es); 4305 4306 if (!really_read_only && journal_devnum && 4307 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4308 es->s_journal_dev = cpu_to_le32(journal_devnum); 4309 4310 /* Make sure we flush the recovery flag to disk. */ 4311 ext4_commit_super(sb, 1); 4312 } 4313 4314 return 0; 4315 } 4316 4317 static int ext4_commit_super(struct super_block *sb, int sync) 4318 { 4319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4320 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4321 int error = 0; 4322 4323 if (!sbh || block_device_ejected(sb)) 4324 return error; 4325 if (buffer_write_io_error(sbh)) { 4326 /* 4327 * Oh, dear. A previous attempt to write the 4328 * superblock failed. This could happen because the 4329 * USB device was yanked out. Or it could happen to 4330 * be a transient write error and maybe the block will 4331 * be remapped. Nothing we can do but to retry the 4332 * write and hope for the best. 4333 */ 4334 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4335 "superblock detected"); 4336 clear_buffer_write_io_error(sbh); 4337 set_buffer_uptodate(sbh); 4338 } 4339 /* 4340 * If the file system is mounted read-only, don't update the 4341 * superblock write time. This avoids updating the superblock 4342 * write time when we are mounting the root file system 4343 * read/only but we need to replay the journal; at that point, 4344 * for people who are east of GMT and who make their clock 4345 * tick in localtime for Windows bug-for-bug compatibility, 4346 * the clock is set in the future, and this will cause e2fsck 4347 * to complain and force a full file system check. 4348 */ 4349 if (!(sb->s_flags & MS_RDONLY)) 4350 es->s_wtime = cpu_to_le32(get_seconds()); 4351 if (sb->s_bdev->bd_part) 4352 es->s_kbytes_written = 4353 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4354 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4355 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4356 else 4357 es->s_kbytes_written = 4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4359 ext4_free_blocks_count_set(es, 4360 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4361 &EXT4_SB(sb)->s_freeclusters_counter))); 4362 es->s_free_inodes_count = 4363 cpu_to_le32(percpu_counter_sum_positive( 4364 &EXT4_SB(sb)->s_freeinodes_counter)); 4365 BUFFER_TRACE(sbh, "marking dirty"); 4366 ext4_superblock_csum_set(sb, es); 4367 mark_buffer_dirty(sbh); 4368 if (sync) { 4369 error = sync_dirty_buffer(sbh); 4370 if (error) 4371 return error; 4372 4373 error = buffer_write_io_error(sbh); 4374 if (error) { 4375 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4376 "superblock"); 4377 clear_buffer_write_io_error(sbh); 4378 set_buffer_uptodate(sbh); 4379 } 4380 } 4381 return error; 4382 } 4383 4384 /* 4385 * Have we just finished recovery? If so, and if we are mounting (or 4386 * remounting) the filesystem readonly, then we will end up with a 4387 * consistent fs on disk. Record that fact. 4388 */ 4389 static void ext4_mark_recovery_complete(struct super_block *sb, 4390 struct ext4_super_block *es) 4391 { 4392 journal_t *journal = EXT4_SB(sb)->s_journal; 4393 4394 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4395 BUG_ON(journal != NULL); 4396 return; 4397 } 4398 jbd2_journal_lock_updates(journal); 4399 if (jbd2_journal_flush(journal) < 0) 4400 goto out; 4401 4402 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4403 sb->s_flags & MS_RDONLY) { 4404 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4405 ext4_commit_super(sb, 1); 4406 } 4407 4408 out: 4409 jbd2_journal_unlock_updates(journal); 4410 } 4411 4412 /* 4413 * If we are mounting (or read-write remounting) a filesystem whose journal 4414 * has recorded an error from a previous lifetime, move that error to the 4415 * main filesystem now. 4416 */ 4417 static void ext4_clear_journal_err(struct super_block *sb, 4418 struct ext4_super_block *es) 4419 { 4420 journal_t *journal; 4421 int j_errno; 4422 const char *errstr; 4423 4424 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4425 4426 journal = EXT4_SB(sb)->s_journal; 4427 4428 /* 4429 * Now check for any error status which may have been recorded in the 4430 * journal by a prior ext4_error() or ext4_abort() 4431 */ 4432 4433 j_errno = jbd2_journal_errno(journal); 4434 if (j_errno) { 4435 char nbuf[16]; 4436 4437 errstr = ext4_decode_error(sb, j_errno, nbuf); 4438 ext4_warning(sb, "Filesystem error recorded " 4439 "from previous mount: %s", errstr); 4440 ext4_warning(sb, "Marking fs in need of filesystem check."); 4441 4442 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4443 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4444 ext4_commit_super(sb, 1); 4445 4446 jbd2_journal_clear_err(journal); 4447 } 4448 } 4449 4450 /* 4451 * Force the running and committing transactions to commit, 4452 * and wait on the commit. 4453 */ 4454 int ext4_force_commit(struct super_block *sb) 4455 { 4456 journal_t *journal; 4457 int ret = 0; 4458 4459 if (sb->s_flags & MS_RDONLY) 4460 return 0; 4461 4462 journal = EXT4_SB(sb)->s_journal; 4463 if (journal) { 4464 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4465 ret = ext4_journal_force_commit(journal); 4466 } 4467 4468 return ret; 4469 } 4470 4471 static int ext4_sync_fs(struct super_block *sb, int wait) 4472 { 4473 int ret = 0; 4474 tid_t target; 4475 struct ext4_sb_info *sbi = EXT4_SB(sb); 4476 4477 trace_ext4_sync_fs(sb, wait); 4478 flush_workqueue(sbi->dio_unwritten_wq); 4479 /* 4480 * Writeback quota in non-journalled quota case - journalled quota has 4481 * no dirty dquots 4482 */ 4483 dquot_writeback_dquots(sb, -1); 4484 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4485 if (wait) 4486 jbd2_log_wait_commit(sbi->s_journal, target); 4487 } 4488 return ret; 4489 } 4490 4491 /* 4492 * LVM calls this function before a (read-only) snapshot is created. This 4493 * gives us a chance to flush the journal completely and mark the fs clean. 4494 * 4495 * Note that only this function cannot bring a filesystem to be in a clean 4496 * state independently, because ext4 prevents a new handle from being started 4497 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4498 * the upper layer. 4499 */ 4500 static int ext4_freeze(struct super_block *sb) 4501 { 4502 int error = 0; 4503 journal_t *journal; 4504 4505 if (sb->s_flags & MS_RDONLY) 4506 return 0; 4507 4508 journal = EXT4_SB(sb)->s_journal; 4509 4510 /* Now we set up the journal barrier. */ 4511 jbd2_journal_lock_updates(journal); 4512 4513 /* 4514 * Don't clear the needs_recovery flag if we failed to flush 4515 * the journal. 4516 */ 4517 error = jbd2_journal_flush(journal); 4518 if (error < 0) 4519 goto out; 4520 4521 /* Journal blocked and flushed, clear needs_recovery flag. */ 4522 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4523 error = ext4_commit_super(sb, 1); 4524 out: 4525 /* we rely on s_frozen to stop further updates */ 4526 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4527 return error; 4528 } 4529 4530 /* 4531 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4532 * flag here, even though the filesystem is not technically dirty yet. 4533 */ 4534 static int ext4_unfreeze(struct super_block *sb) 4535 { 4536 if (sb->s_flags & MS_RDONLY) 4537 return 0; 4538 4539 lock_super(sb); 4540 /* Reset the needs_recovery flag before the fs is unlocked. */ 4541 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4542 ext4_commit_super(sb, 1); 4543 unlock_super(sb); 4544 return 0; 4545 } 4546 4547 /* 4548 * Structure to save mount options for ext4_remount's benefit 4549 */ 4550 struct ext4_mount_options { 4551 unsigned long s_mount_opt; 4552 unsigned long s_mount_opt2; 4553 kuid_t s_resuid; 4554 kgid_t s_resgid; 4555 unsigned long s_commit_interval; 4556 u32 s_min_batch_time, s_max_batch_time; 4557 #ifdef CONFIG_QUOTA 4558 int s_jquota_fmt; 4559 char *s_qf_names[MAXQUOTAS]; 4560 #endif 4561 }; 4562 4563 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4564 { 4565 struct ext4_super_block *es; 4566 struct ext4_sb_info *sbi = EXT4_SB(sb); 4567 unsigned long old_sb_flags; 4568 struct ext4_mount_options old_opts; 4569 int enable_quota = 0; 4570 ext4_group_t g; 4571 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4572 int err = 0; 4573 #ifdef CONFIG_QUOTA 4574 int i; 4575 #endif 4576 char *orig_data = kstrdup(data, GFP_KERNEL); 4577 4578 /* Store the original options */ 4579 lock_super(sb); 4580 old_sb_flags = sb->s_flags; 4581 old_opts.s_mount_opt = sbi->s_mount_opt; 4582 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4583 old_opts.s_resuid = sbi->s_resuid; 4584 old_opts.s_resgid = sbi->s_resgid; 4585 old_opts.s_commit_interval = sbi->s_commit_interval; 4586 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4587 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4588 #ifdef CONFIG_QUOTA 4589 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4590 for (i = 0; i < MAXQUOTAS; i++) 4591 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4592 #endif 4593 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4594 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4595 4596 /* 4597 * Allow the "check" option to be passed as a remount option. 4598 */ 4599 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4600 err = -EINVAL; 4601 goto restore_opts; 4602 } 4603 4604 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4605 ext4_abort(sb, "Abort forced by user"); 4606 4607 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4608 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4609 4610 es = sbi->s_es; 4611 4612 if (sbi->s_journal) { 4613 ext4_init_journal_params(sb, sbi->s_journal); 4614 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4615 } 4616 4617 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4618 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4619 err = -EROFS; 4620 goto restore_opts; 4621 } 4622 4623 if (*flags & MS_RDONLY) { 4624 err = dquot_suspend(sb, -1); 4625 if (err < 0) 4626 goto restore_opts; 4627 4628 /* 4629 * First of all, the unconditional stuff we have to do 4630 * to disable replay of the journal when we next remount 4631 */ 4632 sb->s_flags |= MS_RDONLY; 4633 4634 /* 4635 * OK, test if we are remounting a valid rw partition 4636 * readonly, and if so set the rdonly flag and then 4637 * mark the partition as valid again. 4638 */ 4639 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4640 (sbi->s_mount_state & EXT4_VALID_FS)) 4641 es->s_state = cpu_to_le16(sbi->s_mount_state); 4642 4643 if (sbi->s_journal) 4644 ext4_mark_recovery_complete(sb, es); 4645 } else { 4646 /* Make sure we can mount this feature set readwrite */ 4647 if (!ext4_feature_set_ok(sb, 0)) { 4648 err = -EROFS; 4649 goto restore_opts; 4650 } 4651 /* 4652 * Make sure the group descriptor checksums 4653 * are sane. If they aren't, refuse to remount r/w. 4654 */ 4655 for (g = 0; g < sbi->s_groups_count; g++) { 4656 struct ext4_group_desc *gdp = 4657 ext4_get_group_desc(sb, g, NULL); 4658 4659 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4660 ext4_msg(sb, KERN_ERR, 4661 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4662 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4663 le16_to_cpu(gdp->bg_checksum)); 4664 err = -EINVAL; 4665 goto restore_opts; 4666 } 4667 } 4668 4669 /* 4670 * If we have an unprocessed orphan list hanging 4671 * around from a previously readonly bdev mount, 4672 * require a full umount/remount for now. 4673 */ 4674 if (es->s_last_orphan) { 4675 ext4_msg(sb, KERN_WARNING, "Couldn't " 4676 "remount RDWR because of unprocessed " 4677 "orphan inode list. Please " 4678 "umount/remount instead"); 4679 err = -EINVAL; 4680 goto restore_opts; 4681 } 4682 4683 /* 4684 * Mounting a RDONLY partition read-write, so reread 4685 * and store the current valid flag. (It may have 4686 * been changed by e2fsck since we originally mounted 4687 * the partition.) 4688 */ 4689 if (sbi->s_journal) 4690 ext4_clear_journal_err(sb, es); 4691 sbi->s_mount_state = le16_to_cpu(es->s_state); 4692 if (!ext4_setup_super(sb, es, 0)) 4693 sb->s_flags &= ~MS_RDONLY; 4694 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4695 EXT4_FEATURE_INCOMPAT_MMP)) 4696 if (ext4_multi_mount_protect(sb, 4697 le64_to_cpu(es->s_mmp_block))) { 4698 err = -EROFS; 4699 goto restore_opts; 4700 } 4701 enable_quota = 1; 4702 } 4703 } 4704 4705 /* 4706 * Reinitialize lazy itable initialization thread based on 4707 * current settings 4708 */ 4709 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4710 ext4_unregister_li_request(sb); 4711 else { 4712 ext4_group_t first_not_zeroed; 4713 first_not_zeroed = ext4_has_uninit_itable(sb); 4714 ext4_register_li_request(sb, first_not_zeroed); 4715 } 4716 4717 ext4_setup_system_zone(sb); 4718 if (sbi->s_journal == NULL) 4719 ext4_commit_super(sb, 1); 4720 4721 unlock_super(sb); 4722 #ifdef CONFIG_QUOTA 4723 /* Release old quota file names */ 4724 for (i = 0; i < MAXQUOTAS; i++) 4725 if (old_opts.s_qf_names[i] && 4726 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4727 kfree(old_opts.s_qf_names[i]); 4728 if (enable_quota) { 4729 if (sb_any_quota_suspended(sb)) 4730 dquot_resume(sb, -1); 4731 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4732 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4733 err = ext4_enable_quotas(sb); 4734 if (err) { 4735 lock_super(sb); 4736 goto restore_opts; 4737 } 4738 } 4739 } 4740 #endif 4741 4742 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4743 kfree(orig_data); 4744 return 0; 4745 4746 restore_opts: 4747 sb->s_flags = old_sb_flags; 4748 sbi->s_mount_opt = old_opts.s_mount_opt; 4749 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4750 sbi->s_resuid = old_opts.s_resuid; 4751 sbi->s_resgid = old_opts.s_resgid; 4752 sbi->s_commit_interval = old_opts.s_commit_interval; 4753 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4754 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4755 #ifdef CONFIG_QUOTA 4756 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4757 for (i = 0; i < MAXQUOTAS; i++) { 4758 if (sbi->s_qf_names[i] && 4759 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4760 kfree(sbi->s_qf_names[i]); 4761 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4762 } 4763 #endif 4764 unlock_super(sb); 4765 kfree(orig_data); 4766 return err; 4767 } 4768 4769 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4770 { 4771 struct super_block *sb = dentry->d_sb; 4772 struct ext4_sb_info *sbi = EXT4_SB(sb); 4773 struct ext4_super_block *es = sbi->s_es; 4774 ext4_fsblk_t overhead = 0; 4775 u64 fsid; 4776 s64 bfree; 4777 4778 if (!test_opt(sb, MINIX_DF)) 4779 overhead = sbi->s_overhead; 4780 4781 buf->f_type = EXT4_SUPER_MAGIC; 4782 buf->f_bsize = sb->s_blocksize; 4783 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead); 4784 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4785 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4786 /* prevent underflow in case that few free space is available */ 4787 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4788 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4789 if (buf->f_bfree < ext4_r_blocks_count(es)) 4790 buf->f_bavail = 0; 4791 buf->f_files = le32_to_cpu(es->s_inodes_count); 4792 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4793 buf->f_namelen = EXT4_NAME_LEN; 4794 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4795 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4796 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4797 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4798 4799 return 0; 4800 } 4801 4802 /* Helper function for writing quotas on sync - we need to start transaction 4803 * before quota file is locked for write. Otherwise the are possible deadlocks: 4804 * Process 1 Process 2 4805 * ext4_create() quota_sync() 4806 * jbd2_journal_start() write_dquot() 4807 * dquot_initialize() down(dqio_mutex) 4808 * down(dqio_mutex) jbd2_journal_start() 4809 * 4810 */ 4811 4812 #ifdef CONFIG_QUOTA 4813 4814 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4815 { 4816 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4817 } 4818 4819 static int ext4_write_dquot(struct dquot *dquot) 4820 { 4821 int ret, err; 4822 handle_t *handle; 4823 struct inode *inode; 4824 4825 inode = dquot_to_inode(dquot); 4826 handle = ext4_journal_start(inode, 4827 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4828 if (IS_ERR(handle)) 4829 return PTR_ERR(handle); 4830 ret = dquot_commit(dquot); 4831 err = ext4_journal_stop(handle); 4832 if (!ret) 4833 ret = err; 4834 return ret; 4835 } 4836 4837 static int ext4_acquire_dquot(struct dquot *dquot) 4838 { 4839 int ret, err; 4840 handle_t *handle; 4841 4842 handle = ext4_journal_start(dquot_to_inode(dquot), 4843 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4844 if (IS_ERR(handle)) 4845 return PTR_ERR(handle); 4846 ret = dquot_acquire(dquot); 4847 err = ext4_journal_stop(handle); 4848 if (!ret) 4849 ret = err; 4850 return ret; 4851 } 4852 4853 static int ext4_release_dquot(struct dquot *dquot) 4854 { 4855 int ret, err; 4856 handle_t *handle; 4857 4858 handle = ext4_journal_start(dquot_to_inode(dquot), 4859 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4860 if (IS_ERR(handle)) { 4861 /* Release dquot anyway to avoid endless cycle in dqput() */ 4862 dquot_release(dquot); 4863 return PTR_ERR(handle); 4864 } 4865 ret = dquot_release(dquot); 4866 err = ext4_journal_stop(handle); 4867 if (!ret) 4868 ret = err; 4869 return ret; 4870 } 4871 4872 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4873 { 4874 /* Are we journaling quotas? */ 4875 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4876 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4877 dquot_mark_dquot_dirty(dquot); 4878 return ext4_write_dquot(dquot); 4879 } else { 4880 return dquot_mark_dquot_dirty(dquot); 4881 } 4882 } 4883 4884 static int ext4_write_info(struct super_block *sb, int type) 4885 { 4886 int ret, err; 4887 handle_t *handle; 4888 4889 /* Data block + inode block */ 4890 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4891 if (IS_ERR(handle)) 4892 return PTR_ERR(handle); 4893 ret = dquot_commit_info(sb, type); 4894 err = ext4_journal_stop(handle); 4895 if (!ret) 4896 ret = err; 4897 return ret; 4898 } 4899 4900 /* 4901 * Turn on quotas during mount time - we need to find 4902 * the quota file and such... 4903 */ 4904 static int ext4_quota_on_mount(struct super_block *sb, int type) 4905 { 4906 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4907 EXT4_SB(sb)->s_jquota_fmt, type); 4908 } 4909 4910 /* 4911 * Standard function to be called on quota_on 4912 */ 4913 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4914 struct path *path) 4915 { 4916 int err; 4917 4918 if (!test_opt(sb, QUOTA)) 4919 return -EINVAL; 4920 4921 /* Quotafile not on the same filesystem? */ 4922 if (path->dentry->d_sb != sb) 4923 return -EXDEV; 4924 /* Journaling quota? */ 4925 if (EXT4_SB(sb)->s_qf_names[type]) { 4926 /* Quotafile not in fs root? */ 4927 if (path->dentry->d_parent != sb->s_root) 4928 ext4_msg(sb, KERN_WARNING, 4929 "Quota file not on filesystem root. " 4930 "Journaled quota will not work"); 4931 } 4932 4933 /* 4934 * When we journal data on quota file, we have to flush journal to see 4935 * all updates to the file when we bypass pagecache... 4936 */ 4937 if (EXT4_SB(sb)->s_journal && 4938 ext4_should_journal_data(path->dentry->d_inode)) { 4939 /* 4940 * We don't need to lock updates but journal_flush() could 4941 * otherwise be livelocked... 4942 */ 4943 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4944 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4945 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4946 if (err) 4947 return err; 4948 } 4949 4950 return dquot_quota_on(sb, type, format_id, path); 4951 } 4952 4953 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4954 unsigned int flags) 4955 { 4956 int err; 4957 struct inode *qf_inode; 4958 unsigned long qf_inums[MAXQUOTAS] = { 4959 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4960 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4961 }; 4962 4963 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4964 4965 if (!qf_inums[type]) 4966 return -EPERM; 4967 4968 qf_inode = ext4_iget(sb, qf_inums[type]); 4969 if (IS_ERR(qf_inode)) { 4970 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4971 return PTR_ERR(qf_inode); 4972 } 4973 4974 err = dquot_enable(qf_inode, type, format_id, flags); 4975 iput(qf_inode); 4976 4977 return err; 4978 } 4979 4980 /* Enable usage tracking for all quota types. */ 4981 static int ext4_enable_quotas(struct super_block *sb) 4982 { 4983 int type, err = 0; 4984 unsigned long qf_inums[MAXQUOTAS] = { 4985 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4986 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4987 }; 4988 4989 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4990 for (type = 0; type < MAXQUOTAS; type++) { 4991 if (qf_inums[type]) { 4992 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4993 DQUOT_USAGE_ENABLED); 4994 if (err) { 4995 ext4_warning(sb, 4996 "Failed to enable quota (type=%d) " 4997 "tracking. Please run e2fsck to fix.", 4998 type); 4999 return err; 5000 } 5001 } 5002 } 5003 return 0; 5004 } 5005 5006 /* 5007 * quota_on function that is used when QUOTA feature is set. 5008 */ 5009 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5010 int format_id) 5011 { 5012 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5013 return -EINVAL; 5014 5015 /* 5016 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5017 */ 5018 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5019 } 5020 5021 static int ext4_quota_off(struct super_block *sb, int type) 5022 { 5023 struct inode *inode = sb_dqopt(sb)->files[type]; 5024 handle_t *handle; 5025 5026 /* Force all delayed allocation blocks to be allocated. 5027 * Caller already holds s_umount sem */ 5028 if (test_opt(sb, DELALLOC)) 5029 sync_filesystem(sb); 5030 5031 if (!inode) 5032 goto out; 5033 5034 /* Update modification times of quota files when userspace can 5035 * start looking at them */ 5036 handle = ext4_journal_start(inode, 1); 5037 if (IS_ERR(handle)) 5038 goto out; 5039 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5040 ext4_mark_inode_dirty(handle, inode); 5041 ext4_journal_stop(handle); 5042 5043 out: 5044 return dquot_quota_off(sb, type); 5045 } 5046 5047 /* 5048 * quota_off function that is used when QUOTA feature is set. 5049 */ 5050 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5051 { 5052 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5053 return -EINVAL; 5054 5055 /* Disable only the limits. */ 5056 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5057 } 5058 5059 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5060 * acquiring the locks... As quota files are never truncated and quota code 5061 * itself serializes the operations (and no one else should touch the files) 5062 * we don't have to be afraid of races */ 5063 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5064 size_t len, loff_t off) 5065 { 5066 struct inode *inode = sb_dqopt(sb)->files[type]; 5067 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5068 int err = 0; 5069 int offset = off & (sb->s_blocksize - 1); 5070 int tocopy; 5071 size_t toread; 5072 struct buffer_head *bh; 5073 loff_t i_size = i_size_read(inode); 5074 5075 if (off > i_size) 5076 return 0; 5077 if (off+len > i_size) 5078 len = i_size-off; 5079 toread = len; 5080 while (toread > 0) { 5081 tocopy = sb->s_blocksize - offset < toread ? 5082 sb->s_blocksize - offset : toread; 5083 bh = ext4_bread(NULL, inode, blk, 0, &err); 5084 if (err) 5085 return err; 5086 if (!bh) /* A hole? */ 5087 memset(data, 0, tocopy); 5088 else 5089 memcpy(data, bh->b_data+offset, tocopy); 5090 brelse(bh); 5091 offset = 0; 5092 toread -= tocopy; 5093 data += tocopy; 5094 blk++; 5095 } 5096 return len; 5097 } 5098 5099 /* Write to quotafile (we know the transaction is already started and has 5100 * enough credits) */ 5101 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5102 const char *data, size_t len, loff_t off) 5103 { 5104 struct inode *inode = sb_dqopt(sb)->files[type]; 5105 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5106 int err = 0; 5107 int offset = off & (sb->s_blocksize - 1); 5108 struct buffer_head *bh; 5109 handle_t *handle = journal_current_handle(); 5110 5111 if (EXT4_SB(sb)->s_journal && !handle) { 5112 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5113 " cancelled because transaction is not started", 5114 (unsigned long long)off, (unsigned long long)len); 5115 return -EIO; 5116 } 5117 /* 5118 * Since we account only one data block in transaction credits, 5119 * then it is impossible to cross a block boundary. 5120 */ 5121 if (sb->s_blocksize - offset < len) { 5122 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5123 " cancelled because not block aligned", 5124 (unsigned long long)off, (unsigned long long)len); 5125 return -EIO; 5126 } 5127 5128 bh = ext4_bread(handle, inode, blk, 1, &err); 5129 if (!bh) 5130 goto out; 5131 err = ext4_journal_get_write_access(handle, bh); 5132 if (err) { 5133 brelse(bh); 5134 goto out; 5135 } 5136 lock_buffer(bh); 5137 memcpy(bh->b_data+offset, data, len); 5138 flush_dcache_page(bh->b_page); 5139 unlock_buffer(bh); 5140 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5141 brelse(bh); 5142 out: 5143 if (err) 5144 return err; 5145 if (inode->i_size < off + len) { 5146 i_size_write(inode, off + len); 5147 EXT4_I(inode)->i_disksize = inode->i_size; 5148 ext4_mark_inode_dirty(handle, inode); 5149 } 5150 return len; 5151 } 5152 5153 #endif 5154 5155 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5156 const char *dev_name, void *data) 5157 { 5158 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5159 } 5160 5161 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5162 static inline void register_as_ext2(void) 5163 { 5164 int err = register_filesystem(&ext2_fs_type); 5165 if (err) 5166 printk(KERN_WARNING 5167 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5168 } 5169 5170 static inline void unregister_as_ext2(void) 5171 { 5172 unregister_filesystem(&ext2_fs_type); 5173 } 5174 5175 static inline int ext2_feature_set_ok(struct super_block *sb) 5176 { 5177 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5178 return 0; 5179 if (sb->s_flags & MS_RDONLY) 5180 return 1; 5181 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5182 return 0; 5183 return 1; 5184 } 5185 MODULE_ALIAS("ext2"); 5186 #else 5187 static inline void register_as_ext2(void) { } 5188 static inline void unregister_as_ext2(void) { } 5189 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5190 #endif 5191 5192 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5193 static inline void register_as_ext3(void) 5194 { 5195 int err = register_filesystem(&ext3_fs_type); 5196 if (err) 5197 printk(KERN_WARNING 5198 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5199 } 5200 5201 static inline void unregister_as_ext3(void) 5202 { 5203 unregister_filesystem(&ext3_fs_type); 5204 } 5205 5206 static inline int ext3_feature_set_ok(struct super_block *sb) 5207 { 5208 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5209 return 0; 5210 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5211 return 0; 5212 if (sb->s_flags & MS_RDONLY) 5213 return 1; 5214 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5215 return 0; 5216 return 1; 5217 } 5218 MODULE_ALIAS("ext3"); 5219 #else 5220 static inline void register_as_ext3(void) { } 5221 static inline void unregister_as_ext3(void) { } 5222 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5223 #endif 5224 5225 static struct file_system_type ext4_fs_type = { 5226 .owner = THIS_MODULE, 5227 .name = "ext4", 5228 .mount = ext4_mount, 5229 .kill_sb = kill_block_super, 5230 .fs_flags = FS_REQUIRES_DEV, 5231 }; 5232 5233 static int __init ext4_init_feat_adverts(void) 5234 { 5235 struct ext4_features *ef; 5236 int ret = -ENOMEM; 5237 5238 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5239 if (!ef) 5240 goto out; 5241 5242 ef->f_kobj.kset = ext4_kset; 5243 init_completion(&ef->f_kobj_unregister); 5244 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5245 "features"); 5246 if (ret) { 5247 kfree(ef); 5248 goto out; 5249 } 5250 5251 ext4_feat = ef; 5252 ret = 0; 5253 out: 5254 return ret; 5255 } 5256 5257 static void ext4_exit_feat_adverts(void) 5258 { 5259 kobject_put(&ext4_feat->f_kobj); 5260 wait_for_completion(&ext4_feat->f_kobj_unregister); 5261 kfree(ext4_feat); 5262 } 5263 5264 /* Shared across all ext4 file systems */ 5265 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5266 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5267 5268 static int __init ext4_init_fs(void) 5269 { 5270 int i, err; 5271 5272 ext4_li_info = NULL; 5273 mutex_init(&ext4_li_mtx); 5274 5275 ext4_check_flag_values(); 5276 5277 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5278 mutex_init(&ext4__aio_mutex[i]); 5279 init_waitqueue_head(&ext4__ioend_wq[i]); 5280 } 5281 5282 err = ext4_init_pageio(); 5283 if (err) 5284 return err; 5285 err = ext4_init_system_zone(); 5286 if (err) 5287 goto out6; 5288 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5289 if (!ext4_kset) 5290 goto out5; 5291 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5292 5293 err = ext4_init_feat_adverts(); 5294 if (err) 5295 goto out4; 5296 5297 err = ext4_init_mballoc(); 5298 if (err) 5299 goto out3; 5300 5301 err = ext4_init_xattr(); 5302 if (err) 5303 goto out2; 5304 err = init_inodecache(); 5305 if (err) 5306 goto out1; 5307 register_as_ext3(); 5308 register_as_ext2(); 5309 err = register_filesystem(&ext4_fs_type); 5310 if (err) 5311 goto out; 5312 5313 return 0; 5314 out: 5315 unregister_as_ext2(); 5316 unregister_as_ext3(); 5317 destroy_inodecache(); 5318 out1: 5319 ext4_exit_xattr(); 5320 out2: 5321 ext4_exit_mballoc(); 5322 out3: 5323 ext4_exit_feat_adverts(); 5324 out4: 5325 if (ext4_proc_root) 5326 remove_proc_entry("fs/ext4", NULL); 5327 kset_unregister(ext4_kset); 5328 out5: 5329 ext4_exit_system_zone(); 5330 out6: 5331 ext4_exit_pageio(); 5332 return err; 5333 } 5334 5335 static void __exit ext4_exit_fs(void) 5336 { 5337 ext4_destroy_lazyinit_thread(); 5338 unregister_as_ext2(); 5339 unregister_as_ext3(); 5340 unregister_filesystem(&ext4_fs_type); 5341 destroy_inodecache(); 5342 ext4_exit_xattr(); 5343 ext4_exit_mballoc(); 5344 ext4_exit_feat_adverts(); 5345 remove_proc_entry("fs/ext4", NULL); 5346 kset_unregister(ext4_kset); 5347 ext4_exit_system_zone(); 5348 ext4_exit_pageio(); 5349 } 5350 5351 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5352 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5353 MODULE_LICENSE("GPL"); 5354 module_init(ext4_init_fs) 5355 module_exit(ext4_exit_fs) 5356