1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 #include <linux/fsnotify.h> 50 51 #include "ext4.h" 52 #include "ext4_extents.h" /* Needed for trace points definition */ 53 #include "ext4_jbd2.h" 54 #include "xattr.h" 55 #include "acl.h" 56 #include "mballoc.h" 57 #include "fsmap.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/ext4.h> 61 62 static struct ext4_lazy_init *ext4_li_info; 63 static DEFINE_MUTEX(ext4_li_mtx); 64 static struct ratelimit_state ext4_mount_msg_ratelimit; 65 66 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 67 unsigned long journal_devnum); 68 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 69 static void ext4_update_super(struct super_block *sb); 70 static int ext4_commit_super(struct super_block *sb); 71 static int ext4_mark_recovery_complete(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_clear_journal_err(struct super_block *sb, 74 struct ext4_super_block *es); 75 static int ext4_sync_fs(struct super_block *sb, int wait); 76 static int ext4_remount(struct super_block *sb, int *flags, char *data); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 81 const char *dev_name, void *data); 82 static inline int ext2_feature_set_ok(struct super_block *sb); 83 static inline int ext3_feature_set_ok(struct super_block *sb); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 static struct inode *ext4_get_journal_inode(struct super_block *sb, 88 unsigned int journal_inum); 89 90 /* 91 * Lock ordering 92 * 93 * page fault path: 94 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 95 * -> page lock -> i_data_sem (rw) 96 * 97 * buffered write path: 98 * sb_start_write -> i_mutex -> mmap_lock 99 * sb_start_write -> i_mutex -> transaction start -> page lock -> 100 * i_data_sem (rw) 101 * 102 * truncate: 103 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 104 * page lock 105 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_lock 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 144 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 145 bh_end_io_t *end_io) 146 { 147 /* 148 * buffer's verified bit is no longer valid after reading from 149 * disk again due to write out error, clear it to make sure we 150 * recheck the buffer contents. 151 */ 152 clear_buffer_verified(bh); 153 154 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 155 get_bh(bh); 156 submit_bh(REQ_OP_READ, op_flags, bh); 157 } 158 159 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 160 bh_end_io_t *end_io) 161 { 162 BUG_ON(!buffer_locked(bh)); 163 164 if (ext4_buffer_uptodate(bh)) { 165 unlock_buffer(bh); 166 return; 167 } 168 __ext4_read_bh(bh, op_flags, end_io); 169 } 170 171 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 172 { 173 BUG_ON(!buffer_locked(bh)); 174 175 if (ext4_buffer_uptodate(bh)) { 176 unlock_buffer(bh); 177 return 0; 178 } 179 180 __ext4_read_bh(bh, op_flags, end_io); 181 182 wait_on_buffer(bh); 183 if (buffer_uptodate(bh)) 184 return 0; 185 return -EIO; 186 } 187 188 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 189 { 190 if (trylock_buffer(bh)) { 191 if (wait) 192 return ext4_read_bh(bh, op_flags, NULL); 193 ext4_read_bh_nowait(bh, op_flags, NULL); 194 return 0; 195 } 196 if (wait) { 197 wait_on_buffer(bh); 198 if (buffer_uptodate(bh)) 199 return 0; 200 return -EIO; 201 } 202 return 0; 203 } 204 205 /* 206 * This works like __bread_gfp() except it uses ERR_PTR for error 207 * returns. Currently with sb_bread it's impossible to distinguish 208 * between ENOMEM and EIO situations (since both result in a NULL 209 * return. 210 */ 211 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 212 sector_t block, int op_flags, 213 gfp_t gfp) 214 { 215 struct buffer_head *bh; 216 int ret; 217 218 bh = sb_getblk_gfp(sb, block, gfp); 219 if (bh == NULL) 220 return ERR_PTR(-ENOMEM); 221 if (ext4_buffer_uptodate(bh)) 222 return bh; 223 224 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 225 if (ret) { 226 put_bh(bh); 227 return ERR_PTR(ret); 228 } 229 return bh; 230 } 231 232 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 233 int op_flags) 234 { 235 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 236 } 237 238 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 239 sector_t block) 240 { 241 return __ext4_sb_bread_gfp(sb, block, 0, 0); 242 } 243 244 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 245 { 246 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 247 248 if (likely(bh)) { 249 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 250 brelse(bh); 251 } 252 } 253 254 static int ext4_verify_csum_type(struct super_block *sb, 255 struct ext4_super_block *es) 256 { 257 if (!ext4_has_feature_metadata_csum(sb)) 258 return 1; 259 260 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 261 } 262 263 static __le32 ext4_superblock_csum(struct super_block *sb, 264 struct ext4_super_block *es) 265 { 266 struct ext4_sb_info *sbi = EXT4_SB(sb); 267 int offset = offsetof(struct ext4_super_block, s_checksum); 268 __u32 csum; 269 270 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 271 272 return cpu_to_le32(csum); 273 } 274 275 static int ext4_superblock_csum_verify(struct super_block *sb, 276 struct ext4_super_block *es) 277 { 278 if (!ext4_has_metadata_csum(sb)) 279 return 1; 280 281 return es->s_checksum == ext4_superblock_csum(sb, es); 282 } 283 284 void ext4_superblock_csum_set(struct super_block *sb) 285 { 286 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 287 288 if (!ext4_has_metadata_csum(sb)) 289 return; 290 291 es->s_checksum = ext4_superblock_csum(sb, es); 292 } 293 294 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 295 struct ext4_group_desc *bg) 296 { 297 return le32_to_cpu(bg->bg_block_bitmap_lo) | 298 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 299 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 300 } 301 302 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 303 struct ext4_group_desc *bg) 304 { 305 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 306 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 307 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 308 } 309 310 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 311 struct ext4_group_desc *bg) 312 { 313 return le32_to_cpu(bg->bg_inode_table_lo) | 314 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 315 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 316 } 317 318 __u32 ext4_free_group_clusters(struct super_block *sb, 319 struct ext4_group_desc *bg) 320 { 321 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 322 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 323 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 324 } 325 326 __u32 ext4_free_inodes_count(struct super_block *sb, 327 struct ext4_group_desc *bg) 328 { 329 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 330 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 331 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 332 } 333 334 __u32 ext4_used_dirs_count(struct super_block *sb, 335 struct ext4_group_desc *bg) 336 { 337 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 338 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 339 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 340 } 341 342 __u32 ext4_itable_unused_count(struct super_block *sb, 343 struct ext4_group_desc *bg) 344 { 345 return le16_to_cpu(bg->bg_itable_unused_lo) | 346 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 347 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 348 } 349 350 void ext4_block_bitmap_set(struct super_block *sb, 351 struct ext4_group_desc *bg, ext4_fsblk_t blk) 352 { 353 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 354 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 355 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 356 } 357 358 void ext4_inode_bitmap_set(struct super_block *sb, 359 struct ext4_group_desc *bg, ext4_fsblk_t blk) 360 { 361 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 362 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 363 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 364 } 365 366 void ext4_inode_table_set(struct super_block *sb, 367 struct ext4_group_desc *bg, ext4_fsblk_t blk) 368 { 369 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 370 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 371 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 372 } 373 374 void ext4_free_group_clusters_set(struct super_block *sb, 375 struct ext4_group_desc *bg, __u32 count) 376 { 377 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 378 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 379 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 380 } 381 382 void ext4_free_inodes_set(struct super_block *sb, 383 struct ext4_group_desc *bg, __u32 count) 384 { 385 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 386 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 387 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 388 } 389 390 void ext4_used_dirs_set(struct super_block *sb, 391 struct ext4_group_desc *bg, __u32 count) 392 { 393 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 394 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 395 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 396 } 397 398 void ext4_itable_unused_set(struct super_block *sb, 399 struct ext4_group_desc *bg, __u32 count) 400 { 401 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 402 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 403 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 404 } 405 406 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 407 { 408 now = clamp_val(now, 0, (1ull << 40) - 1); 409 410 *lo = cpu_to_le32(lower_32_bits(now)); 411 *hi = upper_32_bits(now); 412 } 413 414 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 415 { 416 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 417 } 418 #define ext4_update_tstamp(es, tstamp) \ 419 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 420 ktime_get_real_seconds()) 421 #define ext4_get_tstamp(es, tstamp) \ 422 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 423 424 /* 425 * The del_gendisk() function uninitializes the disk-specific data 426 * structures, including the bdi structure, without telling anyone 427 * else. Once this happens, any attempt to call mark_buffer_dirty() 428 * (for example, by ext4_commit_super), will cause a kernel OOPS. 429 * This is a kludge to prevent these oops until we can put in a proper 430 * hook in del_gendisk() to inform the VFS and file system layers. 431 */ 432 static int block_device_ejected(struct super_block *sb) 433 { 434 struct inode *bd_inode = sb->s_bdev->bd_inode; 435 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 436 437 return bdi->dev == NULL; 438 } 439 440 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 441 { 442 struct super_block *sb = journal->j_private; 443 struct ext4_sb_info *sbi = EXT4_SB(sb); 444 int error = is_journal_aborted(journal); 445 struct ext4_journal_cb_entry *jce; 446 447 BUG_ON(txn->t_state == T_FINISHED); 448 449 ext4_process_freed_data(sb, txn->t_tid); 450 451 spin_lock(&sbi->s_md_lock); 452 while (!list_empty(&txn->t_private_list)) { 453 jce = list_entry(txn->t_private_list.next, 454 struct ext4_journal_cb_entry, jce_list); 455 list_del_init(&jce->jce_list); 456 spin_unlock(&sbi->s_md_lock); 457 jce->jce_func(sb, jce, error); 458 spin_lock(&sbi->s_md_lock); 459 } 460 spin_unlock(&sbi->s_md_lock); 461 } 462 463 /* 464 * This writepage callback for write_cache_pages() 465 * takes care of a few cases after page cleaning. 466 * 467 * write_cache_pages() already checks for dirty pages 468 * and calls clear_page_dirty_for_io(), which we want, 469 * to write protect the pages. 470 * 471 * However, we may have to redirty a page (see below.) 472 */ 473 static int ext4_journalled_writepage_callback(struct page *page, 474 struct writeback_control *wbc, 475 void *data) 476 { 477 transaction_t *transaction = (transaction_t *) data; 478 struct buffer_head *bh, *head; 479 struct journal_head *jh; 480 481 bh = head = page_buffers(page); 482 do { 483 /* 484 * We have to redirty a page in these cases: 485 * 1) If buffer is dirty, it means the page was dirty because it 486 * contains a buffer that needs checkpointing. So the dirty bit 487 * needs to be preserved so that checkpointing writes the buffer 488 * properly. 489 * 2) If buffer is not part of the committing transaction 490 * (we may have just accidentally come across this buffer because 491 * inode range tracking is not exact) or if the currently running 492 * transaction already contains this buffer as well, dirty bit 493 * needs to be preserved so that the buffer gets writeprotected 494 * properly on running transaction's commit. 495 */ 496 jh = bh2jh(bh); 497 if (buffer_dirty(bh) || 498 (jh && (jh->b_transaction != transaction || 499 jh->b_next_transaction))) { 500 redirty_page_for_writepage(wbc, page); 501 goto out; 502 } 503 } while ((bh = bh->b_this_page) != head); 504 505 out: 506 return AOP_WRITEPAGE_ACTIVATE; 507 } 508 509 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 510 { 511 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 512 struct writeback_control wbc = { 513 .sync_mode = WB_SYNC_ALL, 514 .nr_to_write = LONG_MAX, 515 .range_start = jinode->i_dirty_start, 516 .range_end = jinode->i_dirty_end, 517 }; 518 519 return write_cache_pages(mapping, &wbc, 520 ext4_journalled_writepage_callback, 521 jinode->i_transaction); 522 } 523 524 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 525 { 526 int ret; 527 528 if (ext4_should_journal_data(jinode->i_vfs_inode)) 529 ret = ext4_journalled_submit_inode_data_buffers(jinode); 530 else 531 ret = jbd2_journal_submit_inode_data_buffers(jinode); 532 533 return ret; 534 } 535 536 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 537 { 538 int ret = 0; 539 540 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 541 ret = jbd2_journal_finish_inode_data_buffers(jinode); 542 543 return ret; 544 } 545 546 static bool system_going_down(void) 547 { 548 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 549 || system_state == SYSTEM_RESTART; 550 } 551 552 struct ext4_err_translation { 553 int code; 554 int errno; 555 }; 556 557 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 558 559 static struct ext4_err_translation err_translation[] = { 560 EXT4_ERR_TRANSLATE(EIO), 561 EXT4_ERR_TRANSLATE(ENOMEM), 562 EXT4_ERR_TRANSLATE(EFSBADCRC), 563 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 564 EXT4_ERR_TRANSLATE(ENOSPC), 565 EXT4_ERR_TRANSLATE(ENOKEY), 566 EXT4_ERR_TRANSLATE(EROFS), 567 EXT4_ERR_TRANSLATE(EFBIG), 568 EXT4_ERR_TRANSLATE(EEXIST), 569 EXT4_ERR_TRANSLATE(ERANGE), 570 EXT4_ERR_TRANSLATE(EOVERFLOW), 571 EXT4_ERR_TRANSLATE(EBUSY), 572 EXT4_ERR_TRANSLATE(ENOTDIR), 573 EXT4_ERR_TRANSLATE(ENOTEMPTY), 574 EXT4_ERR_TRANSLATE(ESHUTDOWN), 575 EXT4_ERR_TRANSLATE(EFAULT), 576 }; 577 578 static int ext4_errno_to_code(int errno) 579 { 580 int i; 581 582 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 583 if (err_translation[i].errno == errno) 584 return err_translation[i].code; 585 return EXT4_ERR_UNKNOWN; 586 } 587 588 static void save_error_info(struct super_block *sb, int error, 589 __u32 ino, __u64 block, 590 const char *func, unsigned int line) 591 { 592 struct ext4_sb_info *sbi = EXT4_SB(sb); 593 594 /* We default to EFSCORRUPTED error... */ 595 if (error == 0) 596 error = EFSCORRUPTED; 597 598 spin_lock(&sbi->s_error_lock); 599 sbi->s_add_error_count++; 600 sbi->s_last_error_code = error; 601 sbi->s_last_error_line = line; 602 sbi->s_last_error_ino = ino; 603 sbi->s_last_error_block = block; 604 sbi->s_last_error_func = func; 605 sbi->s_last_error_time = ktime_get_real_seconds(); 606 if (!sbi->s_first_error_time) { 607 sbi->s_first_error_code = error; 608 sbi->s_first_error_line = line; 609 sbi->s_first_error_ino = ino; 610 sbi->s_first_error_block = block; 611 sbi->s_first_error_func = func; 612 sbi->s_first_error_time = sbi->s_last_error_time; 613 } 614 spin_unlock(&sbi->s_error_lock); 615 } 616 617 /* Deal with the reporting of failure conditions on a filesystem such as 618 * inconsistencies detected or read IO failures. 619 * 620 * On ext2, we can store the error state of the filesystem in the 621 * superblock. That is not possible on ext4, because we may have other 622 * write ordering constraints on the superblock which prevent us from 623 * writing it out straight away; and given that the journal is about to 624 * be aborted, we can't rely on the current, or future, transactions to 625 * write out the superblock safely. 626 * 627 * We'll just use the jbd2_journal_abort() error code to record an error in 628 * the journal instead. On recovery, the journal will complain about 629 * that error until we've noted it down and cleared it. 630 * 631 * If force_ro is set, we unconditionally force the filesystem into an 632 * ABORT|READONLY state, unless the error response on the fs has been set to 633 * panic in which case we take the easy way out and panic immediately. This is 634 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 635 * at a critical moment in log management. 636 */ 637 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 638 __u32 ino, __u64 block, 639 const char *func, unsigned int line) 640 { 641 journal_t *journal = EXT4_SB(sb)->s_journal; 642 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 643 644 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 645 if (test_opt(sb, WARN_ON_ERROR)) 646 WARN_ON_ONCE(1); 647 648 if (!continue_fs && !sb_rdonly(sb)) { 649 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 650 if (journal) 651 jbd2_journal_abort(journal, -EIO); 652 } 653 654 if (!bdev_read_only(sb->s_bdev)) { 655 save_error_info(sb, error, ino, block, func, line); 656 /* 657 * In case the fs should keep running, we need to writeout 658 * superblock through the journal. Due to lock ordering 659 * constraints, it may not be safe to do it right here so we 660 * defer superblock flushing to a workqueue. 661 */ 662 if (continue_fs && journal) 663 schedule_work(&EXT4_SB(sb)->s_error_work); 664 else 665 ext4_commit_super(sb); 666 } 667 668 /* 669 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 670 * could panic during 'reboot -f' as the underlying device got already 671 * disabled. 672 */ 673 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 674 panic("EXT4-fs (device %s): panic forced after error\n", 675 sb->s_id); 676 } 677 678 if (sb_rdonly(sb) || continue_fs) 679 return; 680 681 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 682 /* 683 * Make sure updated value of ->s_mount_flags will be visible before 684 * ->s_flags update 685 */ 686 smp_wmb(); 687 sb->s_flags |= SB_RDONLY; 688 } 689 690 static void flush_stashed_error_work(struct work_struct *work) 691 { 692 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 693 s_error_work); 694 journal_t *journal = sbi->s_journal; 695 handle_t *handle; 696 697 /* 698 * If the journal is still running, we have to write out superblock 699 * through the journal to avoid collisions of other journalled sb 700 * updates. 701 * 702 * We use directly jbd2 functions here to avoid recursing back into 703 * ext4 error handling code during handling of previous errors. 704 */ 705 if (!sb_rdonly(sbi->s_sb) && journal) { 706 struct buffer_head *sbh = sbi->s_sbh; 707 handle = jbd2_journal_start(journal, 1); 708 if (IS_ERR(handle)) 709 goto write_directly; 710 if (jbd2_journal_get_write_access(handle, sbh)) { 711 jbd2_journal_stop(handle); 712 goto write_directly; 713 } 714 ext4_update_super(sbi->s_sb); 715 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 716 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 717 "superblock detected"); 718 clear_buffer_write_io_error(sbh); 719 set_buffer_uptodate(sbh); 720 } 721 722 if (jbd2_journal_dirty_metadata(handle, sbh)) { 723 jbd2_journal_stop(handle); 724 goto write_directly; 725 } 726 jbd2_journal_stop(handle); 727 ext4_notify_error_sysfs(sbi); 728 return; 729 } 730 write_directly: 731 /* 732 * Write through journal failed. Write sb directly to get error info 733 * out and hope for the best. 734 */ 735 ext4_commit_super(sbi->s_sb); 736 ext4_notify_error_sysfs(sbi); 737 } 738 739 #define ext4_error_ratelimit(sb) \ 740 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 741 "EXT4-fs error") 742 743 void __ext4_error(struct super_block *sb, const char *function, 744 unsigned int line, bool force_ro, int error, __u64 block, 745 const char *fmt, ...) 746 { 747 struct va_format vaf; 748 va_list args; 749 750 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 751 return; 752 753 trace_ext4_error(sb, function, line); 754 if (ext4_error_ratelimit(sb)) { 755 va_start(args, fmt); 756 vaf.fmt = fmt; 757 vaf.va = &args; 758 printk(KERN_CRIT 759 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 760 sb->s_id, function, line, current->comm, &vaf); 761 va_end(args); 762 } 763 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 764 765 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 766 } 767 768 void __ext4_error_inode(struct inode *inode, const char *function, 769 unsigned int line, ext4_fsblk_t block, int error, 770 const char *fmt, ...) 771 { 772 va_list args; 773 struct va_format vaf; 774 775 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 776 return; 777 778 trace_ext4_error(inode->i_sb, function, line); 779 if (ext4_error_ratelimit(inode->i_sb)) { 780 va_start(args, fmt); 781 vaf.fmt = fmt; 782 vaf.va = &args; 783 if (block) 784 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 785 "inode #%lu: block %llu: comm %s: %pV\n", 786 inode->i_sb->s_id, function, line, inode->i_ino, 787 block, current->comm, &vaf); 788 else 789 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 790 "inode #%lu: comm %s: %pV\n", 791 inode->i_sb->s_id, function, line, inode->i_ino, 792 current->comm, &vaf); 793 va_end(args); 794 } 795 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 796 797 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 798 function, line); 799 } 800 801 void __ext4_error_file(struct file *file, const char *function, 802 unsigned int line, ext4_fsblk_t block, 803 const char *fmt, ...) 804 { 805 va_list args; 806 struct va_format vaf; 807 struct inode *inode = file_inode(file); 808 char pathname[80], *path; 809 810 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 811 return; 812 813 trace_ext4_error(inode->i_sb, function, line); 814 if (ext4_error_ratelimit(inode->i_sb)) { 815 path = file_path(file, pathname, sizeof(pathname)); 816 if (IS_ERR(path)) 817 path = "(unknown)"; 818 va_start(args, fmt); 819 vaf.fmt = fmt; 820 vaf.va = &args; 821 if (block) 822 printk(KERN_CRIT 823 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 824 "block %llu: comm %s: path %s: %pV\n", 825 inode->i_sb->s_id, function, line, inode->i_ino, 826 block, current->comm, path, &vaf); 827 else 828 printk(KERN_CRIT 829 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 830 "comm %s: path %s: %pV\n", 831 inode->i_sb->s_id, function, line, inode->i_ino, 832 current->comm, path, &vaf); 833 va_end(args); 834 } 835 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 836 837 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 838 function, line); 839 } 840 841 const char *ext4_decode_error(struct super_block *sb, int errno, 842 char nbuf[16]) 843 { 844 char *errstr = NULL; 845 846 switch (errno) { 847 case -EFSCORRUPTED: 848 errstr = "Corrupt filesystem"; 849 break; 850 case -EFSBADCRC: 851 errstr = "Filesystem failed CRC"; 852 break; 853 case -EIO: 854 errstr = "IO failure"; 855 break; 856 case -ENOMEM: 857 errstr = "Out of memory"; 858 break; 859 case -EROFS: 860 if (!sb || (EXT4_SB(sb)->s_journal && 861 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 862 errstr = "Journal has aborted"; 863 else 864 errstr = "Readonly filesystem"; 865 break; 866 default: 867 /* If the caller passed in an extra buffer for unknown 868 * errors, textualise them now. Else we just return 869 * NULL. */ 870 if (nbuf) { 871 /* Check for truncated error codes... */ 872 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 873 errstr = nbuf; 874 } 875 break; 876 } 877 878 return errstr; 879 } 880 881 /* __ext4_std_error decodes expected errors from journaling functions 882 * automatically and invokes the appropriate error response. */ 883 884 void __ext4_std_error(struct super_block *sb, const char *function, 885 unsigned int line, int errno) 886 { 887 char nbuf[16]; 888 const char *errstr; 889 890 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 891 return; 892 893 /* Special case: if the error is EROFS, and we're not already 894 * inside a transaction, then there's really no point in logging 895 * an error. */ 896 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 897 return; 898 899 if (ext4_error_ratelimit(sb)) { 900 errstr = ext4_decode_error(sb, errno, nbuf); 901 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 902 sb->s_id, function, line, errstr); 903 } 904 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 905 906 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 907 } 908 909 void __ext4_msg(struct super_block *sb, 910 const char *prefix, const char *fmt, ...) 911 { 912 struct va_format vaf; 913 va_list args; 914 915 atomic_inc(&EXT4_SB(sb)->s_msg_count); 916 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 917 return; 918 919 va_start(args, fmt); 920 vaf.fmt = fmt; 921 vaf.va = &args; 922 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 923 va_end(args); 924 } 925 926 static int ext4_warning_ratelimit(struct super_block *sb) 927 { 928 atomic_inc(&EXT4_SB(sb)->s_warning_count); 929 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 930 "EXT4-fs warning"); 931 } 932 933 void __ext4_warning(struct super_block *sb, const char *function, 934 unsigned int line, const char *fmt, ...) 935 { 936 struct va_format vaf; 937 va_list args; 938 939 if (!ext4_warning_ratelimit(sb)) 940 return; 941 942 va_start(args, fmt); 943 vaf.fmt = fmt; 944 vaf.va = &args; 945 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 946 sb->s_id, function, line, &vaf); 947 va_end(args); 948 } 949 950 void __ext4_warning_inode(const struct inode *inode, const char *function, 951 unsigned int line, const char *fmt, ...) 952 { 953 struct va_format vaf; 954 va_list args; 955 956 if (!ext4_warning_ratelimit(inode->i_sb)) 957 return; 958 959 va_start(args, fmt); 960 vaf.fmt = fmt; 961 vaf.va = &args; 962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 963 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 964 function, line, inode->i_ino, current->comm, &vaf); 965 va_end(args); 966 } 967 968 void __ext4_grp_locked_error(const char *function, unsigned int line, 969 struct super_block *sb, ext4_group_t grp, 970 unsigned long ino, ext4_fsblk_t block, 971 const char *fmt, ...) 972 __releases(bitlock) 973 __acquires(bitlock) 974 { 975 struct va_format vaf; 976 va_list args; 977 978 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 979 return; 980 981 trace_ext4_error(sb, function, line); 982 if (ext4_error_ratelimit(sb)) { 983 va_start(args, fmt); 984 vaf.fmt = fmt; 985 vaf.va = &args; 986 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 987 sb->s_id, function, line, grp); 988 if (ino) 989 printk(KERN_CONT "inode %lu: ", ino); 990 if (block) 991 printk(KERN_CONT "block %llu:", 992 (unsigned long long) block); 993 printk(KERN_CONT "%pV\n", &vaf); 994 va_end(args); 995 } 996 997 if (test_opt(sb, ERRORS_CONT)) { 998 if (test_opt(sb, WARN_ON_ERROR)) 999 WARN_ON_ONCE(1); 1000 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1001 if (!bdev_read_only(sb->s_bdev)) { 1002 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1003 line); 1004 schedule_work(&EXT4_SB(sb)->s_error_work); 1005 } 1006 return; 1007 } 1008 ext4_unlock_group(sb, grp); 1009 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1010 /* 1011 * We only get here in the ERRORS_RO case; relocking the group 1012 * may be dangerous, but nothing bad will happen since the 1013 * filesystem will have already been marked read/only and the 1014 * journal has been aborted. We return 1 as a hint to callers 1015 * who might what to use the return value from 1016 * ext4_grp_locked_error() to distinguish between the 1017 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1018 * aggressively from the ext4 function in question, with a 1019 * more appropriate error code. 1020 */ 1021 ext4_lock_group(sb, grp); 1022 return; 1023 } 1024 1025 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1026 ext4_group_t group, 1027 unsigned int flags) 1028 { 1029 struct ext4_sb_info *sbi = EXT4_SB(sb); 1030 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1031 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1032 int ret; 1033 1034 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1035 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1036 &grp->bb_state); 1037 if (!ret) 1038 percpu_counter_sub(&sbi->s_freeclusters_counter, 1039 grp->bb_free); 1040 } 1041 1042 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1043 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1044 &grp->bb_state); 1045 if (!ret && gdp) { 1046 int count; 1047 1048 count = ext4_free_inodes_count(sb, gdp); 1049 percpu_counter_sub(&sbi->s_freeinodes_counter, 1050 count); 1051 } 1052 } 1053 } 1054 1055 void ext4_update_dynamic_rev(struct super_block *sb) 1056 { 1057 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1058 1059 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1060 return; 1061 1062 ext4_warning(sb, 1063 "updating to rev %d because of new feature flag, " 1064 "running e2fsck is recommended", 1065 EXT4_DYNAMIC_REV); 1066 1067 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1068 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1069 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1070 /* leave es->s_feature_*compat flags alone */ 1071 /* es->s_uuid will be set by e2fsck if empty */ 1072 1073 /* 1074 * The rest of the superblock fields should be zero, and if not it 1075 * means they are likely already in use, so leave them alone. We 1076 * can leave it up to e2fsck to clean up any inconsistencies there. 1077 */ 1078 } 1079 1080 /* 1081 * Open the external journal device 1082 */ 1083 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1084 { 1085 struct block_device *bdev; 1086 1087 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1088 if (IS_ERR(bdev)) 1089 goto fail; 1090 return bdev; 1091 1092 fail: 1093 ext4_msg(sb, KERN_ERR, 1094 "failed to open journal device unknown-block(%u,%u) %ld", 1095 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1096 return NULL; 1097 } 1098 1099 /* 1100 * Release the journal device 1101 */ 1102 static void ext4_blkdev_put(struct block_device *bdev) 1103 { 1104 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1105 } 1106 1107 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1108 { 1109 struct block_device *bdev; 1110 bdev = sbi->s_journal_bdev; 1111 if (bdev) { 1112 ext4_blkdev_put(bdev); 1113 sbi->s_journal_bdev = NULL; 1114 } 1115 } 1116 1117 static inline struct inode *orphan_list_entry(struct list_head *l) 1118 { 1119 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1120 } 1121 1122 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1123 { 1124 struct list_head *l; 1125 1126 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1127 le32_to_cpu(sbi->s_es->s_last_orphan)); 1128 1129 printk(KERN_ERR "sb_info orphan list:\n"); 1130 list_for_each(l, &sbi->s_orphan) { 1131 struct inode *inode = orphan_list_entry(l); 1132 printk(KERN_ERR " " 1133 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1134 inode->i_sb->s_id, inode->i_ino, inode, 1135 inode->i_mode, inode->i_nlink, 1136 NEXT_ORPHAN(inode)); 1137 } 1138 } 1139 1140 #ifdef CONFIG_QUOTA 1141 static int ext4_quota_off(struct super_block *sb, int type); 1142 1143 static inline void ext4_quota_off_umount(struct super_block *sb) 1144 { 1145 int type; 1146 1147 /* Use our quota_off function to clear inode flags etc. */ 1148 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1149 ext4_quota_off(sb, type); 1150 } 1151 1152 /* 1153 * This is a helper function which is used in the mount/remount 1154 * codepaths (which holds s_umount) to fetch the quota file name. 1155 */ 1156 static inline char *get_qf_name(struct super_block *sb, 1157 struct ext4_sb_info *sbi, 1158 int type) 1159 { 1160 return rcu_dereference_protected(sbi->s_qf_names[type], 1161 lockdep_is_held(&sb->s_umount)); 1162 } 1163 #else 1164 static inline void ext4_quota_off_umount(struct super_block *sb) 1165 { 1166 } 1167 #endif 1168 1169 static void ext4_put_super(struct super_block *sb) 1170 { 1171 struct ext4_sb_info *sbi = EXT4_SB(sb); 1172 struct ext4_super_block *es = sbi->s_es; 1173 struct buffer_head **group_desc; 1174 struct flex_groups **flex_groups; 1175 int aborted = 0; 1176 int i, err; 1177 1178 ext4_unregister_li_request(sb); 1179 ext4_quota_off_umount(sb); 1180 1181 flush_work(&sbi->s_error_work); 1182 destroy_workqueue(sbi->rsv_conversion_wq); 1183 ext4_release_orphan_info(sb); 1184 1185 /* 1186 * Unregister sysfs before destroying jbd2 journal. 1187 * Since we could still access attr_journal_task attribute via sysfs 1188 * path which could have sbi->s_journal->j_task as NULL 1189 */ 1190 ext4_unregister_sysfs(sb); 1191 1192 if (sbi->s_journal) { 1193 aborted = is_journal_aborted(sbi->s_journal); 1194 err = jbd2_journal_destroy(sbi->s_journal); 1195 sbi->s_journal = NULL; 1196 if ((err < 0) && !aborted) { 1197 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1198 } 1199 } 1200 1201 ext4_es_unregister_shrinker(sbi); 1202 del_timer_sync(&sbi->s_err_report); 1203 ext4_release_system_zone(sb); 1204 ext4_mb_release(sb); 1205 ext4_ext_release(sb); 1206 1207 if (!sb_rdonly(sb) && !aborted) { 1208 ext4_clear_feature_journal_needs_recovery(sb); 1209 ext4_clear_feature_orphan_present(sb); 1210 es->s_state = cpu_to_le16(sbi->s_mount_state); 1211 } 1212 if (!sb_rdonly(sb)) 1213 ext4_commit_super(sb); 1214 1215 rcu_read_lock(); 1216 group_desc = rcu_dereference(sbi->s_group_desc); 1217 for (i = 0; i < sbi->s_gdb_count; i++) 1218 brelse(group_desc[i]); 1219 kvfree(group_desc); 1220 flex_groups = rcu_dereference(sbi->s_flex_groups); 1221 if (flex_groups) { 1222 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1223 kvfree(flex_groups[i]); 1224 kvfree(flex_groups); 1225 } 1226 rcu_read_unlock(); 1227 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1228 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1229 percpu_counter_destroy(&sbi->s_dirs_counter); 1230 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1231 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1232 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1233 #ifdef CONFIG_QUOTA 1234 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1235 kfree(get_qf_name(sb, sbi, i)); 1236 #endif 1237 1238 /* Debugging code just in case the in-memory inode orphan list 1239 * isn't empty. The on-disk one can be non-empty if we've 1240 * detected an error and taken the fs readonly, but the 1241 * in-memory list had better be clean by this point. */ 1242 if (!list_empty(&sbi->s_orphan)) 1243 dump_orphan_list(sb, sbi); 1244 ASSERT(list_empty(&sbi->s_orphan)); 1245 1246 sync_blockdev(sb->s_bdev); 1247 invalidate_bdev(sb->s_bdev); 1248 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1249 /* 1250 * Invalidate the journal device's buffers. We don't want them 1251 * floating about in memory - the physical journal device may 1252 * hotswapped, and it breaks the `ro-after' testing code. 1253 */ 1254 sync_blockdev(sbi->s_journal_bdev); 1255 invalidate_bdev(sbi->s_journal_bdev); 1256 ext4_blkdev_remove(sbi); 1257 } 1258 1259 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1260 sbi->s_ea_inode_cache = NULL; 1261 1262 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1263 sbi->s_ea_block_cache = NULL; 1264 1265 ext4_stop_mmpd(sbi); 1266 1267 brelse(sbi->s_sbh); 1268 sb->s_fs_info = NULL; 1269 /* 1270 * Now that we are completely done shutting down the 1271 * superblock, we need to actually destroy the kobject. 1272 */ 1273 kobject_put(&sbi->s_kobj); 1274 wait_for_completion(&sbi->s_kobj_unregister); 1275 if (sbi->s_chksum_driver) 1276 crypto_free_shash(sbi->s_chksum_driver); 1277 kfree(sbi->s_blockgroup_lock); 1278 fs_put_dax(sbi->s_daxdev); 1279 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1280 #ifdef CONFIG_UNICODE 1281 utf8_unload(sb->s_encoding); 1282 #endif 1283 kfree(sbi); 1284 } 1285 1286 static struct kmem_cache *ext4_inode_cachep; 1287 1288 /* 1289 * Called inside transaction, so use GFP_NOFS 1290 */ 1291 static struct inode *ext4_alloc_inode(struct super_block *sb) 1292 { 1293 struct ext4_inode_info *ei; 1294 1295 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1296 if (!ei) 1297 return NULL; 1298 1299 inode_set_iversion(&ei->vfs_inode, 1); 1300 spin_lock_init(&ei->i_raw_lock); 1301 INIT_LIST_HEAD(&ei->i_prealloc_list); 1302 atomic_set(&ei->i_prealloc_active, 0); 1303 spin_lock_init(&ei->i_prealloc_lock); 1304 ext4_es_init_tree(&ei->i_es_tree); 1305 rwlock_init(&ei->i_es_lock); 1306 INIT_LIST_HEAD(&ei->i_es_list); 1307 ei->i_es_all_nr = 0; 1308 ei->i_es_shk_nr = 0; 1309 ei->i_es_shrink_lblk = 0; 1310 ei->i_reserved_data_blocks = 0; 1311 spin_lock_init(&(ei->i_block_reservation_lock)); 1312 ext4_init_pending_tree(&ei->i_pending_tree); 1313 #ifdef CONFIG_QUOTA 1314 ei->i_reserved_quota = 0; 1315 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1316 #endif 1317 ei->jinode = NULL; 1318 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1319 spin_lock_init(&ei->i_completed_io_lock); 1320 ei->i_sync_tid = 0; 1321 ei->i_datasync_tid = 0; 1322 atomic_set(&ei->i_unwritten, 0); 1323 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1324 ext4_fc_init_inode(&ei->vfs_inode); 1325 mutex_init(&ei->i_fc_lock); 1326 return &ei->vfs_inode; 1327 } 1328 1329 static int ext4_drop_inode(struct inode *inode) 1330 { 1331 int drop = generic_drop_inode(inode); 1332 1333 if (!drop) 1334 drop = fscrypt_drop_inode(inode); 1335 1336 trace_ext4_drop_inode(inode, drop); 1337 return drop; 1338 } 1339 1340 static void ext4_free_in_core_inode(struct inode *inode) 1341 { 1342 fscrypt_free_inode(inode); 1343 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1344 pr_warn("%s: inode %ld still in fc list", 1345 __func__, inode->i_ino); 1346 } 1347 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1348 } 1349 1350 static void ext4_destroy_inode(struct inode *inode) 1351 { 1352 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1353 ext4_msg(inode->i_sb, KERN_ERR, 1354 "Inode %lu (%p): orphan list check failed!", 1355 inode->i_ino, EXT4_I(inode)); 1356 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1357 EXT4_I(inode), sizeof(struct ext4_inode_info), 1358 true); 1359 dump_stack(); 1360 } 1361 1362 if (EXT4_I(inode)->i_reserved_data_blocks) 1363 ext4_msg(inode->i_sb, KERN_ERR, 1364 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1365 inode->i_ino, EXT4_I(inode), 1366 EXT4_I(inode)->i_reserved_data_blocks); 1367 } 1368 1369 static void init_once(void *foo) 1370 { 1371 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1372 1373 INIT_LIST_HEAD(&ei->i_orphan); 1374 init_rwsem(&ei->xattr_sem); 1375 init_rwsem(&ei->i_data_sem); 1376 inode_init_once(&ei->vfs_inode); 1377 ext4_fc_init_inode(&ei->vfs_inode); 1378 } 1379 1380 static int __init init_inodecache(void) 1381 { 1382 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1383 sizeof(struct ext4_inode_info), 0, 1384 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1385 SLAB_ACCOUNT), 1386 offsetof(struct ext4_inode_info, i_data), 1387 sizeof_field(struct ext4_inode_info, i_data), 1388 init_once); 1389 if (ext4_inode_cachep == NULL) 1390 return -ENOMEM; 1391 return 0; 1392 } 1393 1394 static void destroy_inodecache(void) 1395 { 1396 /* 1397 * Make sure all delayed rcu free inodes are flushed before we 1398 * destroy cache. 1399 */ 1400 rcu_barrier(); 1401 kmem_cache_destroy(ext4_inode_cachep); 1402 } 1403 1404 void ext4_clear_inode(struct inode *inode) 1405 { 1406 ext4_fc_del(inode); 1407 invalidate_inode_buffers(inode); 1408 clear_inode(inode); 1409 ext4_discard_preallocations(inode, 0); 1410 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1411 dquot_drop(inode); 1412 if (EXT4_I(inode)->jinode) { 1413 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1414 EXT4_I(inode)->jinode); 1415 jbd2_free_inode(EXT4_I(inode)->jinode); 1416 EXT4_I(inode)->jinode = NULL; 1417 } 1418 fscrypt_put_encryption_info(inode); 1419 fsverity_cleanup_inode(inode); 1420 } 1421 1422 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1423 u64 ino, u32 generation) 1424 { 1425 struct inode *inode; 1426 1427 /* 1428 * Currently we don't know the generation for parent directory, so 1429 * a generation of 0 means "accept any" 1430 */ 1431 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1432 if (IS_ERR(inode)) 1433 return ERR_CAST(inode); 1434 if (generation && inode->i_generation != generation) { 1435 iput(inode); 1436 return ERR_PTR(-ESTALE); 1437 } 1438 1439 return inode; 1440 } 1441 1442 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1443 int fh_len, int fh_type) 1444 { 1445 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1446 ext4_nfs_get_inode); 1447 } 1448 1449 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1450 int fh_len, int fh_type) 1451 { 1452 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1453 ext4_nfs_get_inode); 1454 } 1455 1456 static int ext4_nfs_commit_metadata(struct inode *inode) 1457 { 1458 struct writeback_control wbc = { 1459 .sync_mode = WB_SYNC_ALL 1460 }; 1461 1462 trace_ext4_nfs_commit_metadata(inode); 1463 return ext4_write_inode(inode, &wbc); 1464 } 1465 1466 #ifdef CONFIG_FS_ENCRYPTION 1467 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1468 { 1469 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1470 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1471 } 1472 1473 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1474 void *fs_data) 1475 { 1476 handle_t *handle = fs_data; 1477 int res, res2, credits, retries = 0; 1478 1479 /* 1480 * Encrypting the root directory is not allowed because e2fsck expects 1481 * lost+found to exist and be unencrypted, and encrypting the root 1482 * directory would imply encrypting the lost+found directory as well as 1483 * the filename "lost+found" itself. 1484 */ 1485 if (inode->i_ino == EXT4_ROOT_INO) 1486 return -EPERM; 1487 1488 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1489 return -EINVAL; 1490 1491 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1492 return -EOPNOTSUPP; 1493 1494 res = ext4_convert_inline_data(inode); 1495 if (res) 1496 return res; 1497 1498 /* 1499 * If a journal handle was specified, then the encryption context is 1500 * being set on a new inode via inheritance and is part of a larger 1501 * transaction to create the inode. Otherwise the encryption context is 1502 * being set on an existing inode in its own transaction. Only in the 1503 * latter case should the "retry on ENOSPC" logic be used. 1504 */ 1505 1506 if (handle) { 1507 res = ext4_xattr_set_handle(handle, inode, 1508 EXT4_XATTR_INDEX_ENCRYPTION, 1509 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1510 ctx, len, 0); 1511 if (!res) { 1512 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1513 ext4_clear_inode_state(inode, 1514 EXT4_STATE_MAY_INLINE_DATA); 1515 /* 1516 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1517 * S_DAX may be disabled 1518 */ 1519 ext4_set_inode_flags(inode, false); 1520 } 1521 return res; 1522 } 1523 1524 res = dquot_initialize(inode); 1525 if (res) 1526 return res; 1527 retry: 1528 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1529 &credits); 1530 if (res) 1531 return res; 1532 1533 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1534 if (IS_ERR(handle)) 1535 return PTR_ERR(handle); 1536 1537 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1538 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1539 ctx, len, 0); 1540 if (!res) { 1541 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1542 /* 1543 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1544 * S_DAX may be disabled 1545 */ 1546 ext4_set_inode_flags(inode, false); 1547 res = ext4_mark_inode_dirty(handle, inode); 1548 if (res) 1549 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1550 } 1551 res2 = ext4_journal_stop(handle); 1552 1553 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1554 goto retry; 1555 if (!res) 1556 res = res2; 1557 return res; 1558 } 1559 1560 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1561 { 1562 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1563 } 1564 1565 static bool ext4_has_stable_inodes(struct super_block *sb) 1566 { 1567 return ext4_has_feature_stable_inodes(sb); 1568 } 1569 1570 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1571 int *ino_bits_ret, int *lblk_bits_ret) 1572 { 1573 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1574 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1575 } 1576 1577 static const struct fscrypt_operations ext4_cryptops = { 1578 .key_prefix = "ext4:", 1579 .get_context = ext4_get_context, 1580 .set_context = ext4_set_context, 1581 .get_dummy_policy = ext4_get_dummy_policy, 1582 .empty_dir = ext4_empty_dir, 1583 .has_stable_inodes = ext4_has_stable_inodes, 1584 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1585 }; 1586 #endif 1587 1588 #ifdef CONFIG_QUOTA 1589 static const char * const quotatypes[] = INITQFNAMES; 1590 #define QTYPE2NAME(t) (quotatypes[t]) 1591 1592 static int ext4_write_dquot(struct dquot *dquot); 1593 static int ext4_acquire_dquot(struct dquot *dquot); 1594 static int ext4_release_dquot(struct dquot *dquot); 1595 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1596 static int ext4_write_info(struct super_block *sb, int type); 1597 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1598 const struct path *path); 1599 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1600 size_t len, loff_t off); 1601 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1602 const char *data, size_t len, loff_t off); 1603 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1604 unsigned int flags); 1605 1606 static struct dquot **ext4_get_dquots(struct inode *inode) 1607 { 1608 return EXT4_I(inode)->i_dquot; 1609 } 1610 1611 static const struct dquot_operations ext4_quota_operations = { 1612 .get_reserved_space = ext4_get_reserved_space, 1613 .write_dquot = ext4_write_dquot, 1614 .acquire_dquot = ext4_acquire_dquot, 1615 .release_dquot = ext4_release_dquot, 1616 .mark_dirty = ext4_mark_dquot_dirty, 1617 .write_info = ext4_write_info, 1618 .alloc_dquot = dquot_alloc, 1619 .destroy_dquot = dquot_destroy, 1620 .get_projid = ext4_get_projid, 1621 .get_inode_usage = ext4_get_inode_usage, 1622 .get_next_id = dquot_get_next_id, 1623 }; 1624 1625 static const struct quotactl_ops ext4_qctl_operations = { 1626 .quota_on = ext4_quota_on, 1627 .quota_off = ext4_quota_off, 1628 .quota_sync = dquot_quota_sync, 1629 .get_state = dquot_get_state, 1630 .set_info = dquot_set_dqinfo, 1631 .get_dqblk = dquot_get_dqblk, 1632 .set_dqblk = dquot_set_dqblk, 1633 .get_nextdqblk = dquot_get_next_dqblk, 1634 }; 1635 #endif 1636 1637 static const struct super_operations ext4_sops = { 1638 .alloc_inode = ext4_alloc_inode, 1639 .free_inode = ext4_free_in_core_inode, 1640 .destroy_inode = ext4_destroy_inode, 1641 .write_inode = ext4_write_inode, 1642 .dirty_inode = ext4_dirty_inode, 1643 .drop_inode = ext4_drop_inode, 1644 .evict_inode = ext4_evict_inode, 1645 .put_super = ext4_put_super, 1646 .sync_fs = ext4_sync_fs, 1647 .freeze_fs = ext4_freeze, 1648 .unfreeze_fs = ext4_unfreeze, 1649 .statfs = ext4_statfs, 1650 .remount_fs = ext4_remount, 1651 .show_options = ext4_show_options, 1652 #ifdef CONFIG_QUOTA 1653 .quota_read = ext4_quota_read, 1654 .quota_write = ext4_quota_write, 1655 .get_dquots = ext4_get_dquots, 1656 #endif 1657 }; 1658 1659 static const struct export_operations ext4_export_ops = { 1660 .fh_to_dentry = ext4_fh_to_dentry, 1661 .fh_to_parent = ext4_fh_to_parent, 1662 .get_parent = ext4_get_parent, 1663 .commit_metadata = ext4_nfs_commit_metadata, 1664 }; 1665 1666 enum { 1667 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1668 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1669 Opt_nouid32, Opt_debug, Opt_removed, 1670 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1671 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1672 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1673 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1674 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1675 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1676 Opt_inlinecrypt, 1677 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1678 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1679 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1680 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1681 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1682 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1683 Opt_nowarn_on_error, Opt_mblk_io_submit, 1684 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1685 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1686 Opt_inode_readahead_blks, Opt_journal_ioprio, 1687 Opt_dioread_nolock, Opt_dioread_lock, 1688 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1689 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1690 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1691 #ifdef CONFIG_EXT4_DEBUG 1692 Opt_fc_debug_max_replay, Opt_fc_debug_force 1693 #endif 1694 }; 1695 1696 static const match_table_t tokens = { 1697 {Opt_bsd_df, "bsddf"}, 1698 {Opt_minix_df, "minixdf"}, 1699 {Opt_grpid, "grpid"}, 1700 {Opt_grpid, "bsdgroups"}, 1701 {Opt_nogrpid, "nogrpid"}, 1702 {Opt_nogrpid, "sysvgroups"}, 1703 {Opt_resgid, "resgid=%u"}, 1704 {Opt_resuid, "resuid=%u"}, 1705 {Opt_sb, "sb=%u"}, 1706 {Opt_err_cont, "errors=continue"}, 1707 {Opt_err_panic, "errors=panic"}, 1708 {Opt_err_ro, "errors=remount-ro"}, 1709 {Opt_nouid32, "nouid32"}, 1710 {Opt_debug, "debug"}, 1711 {Opt_removed, "oldalloc"}, 1712 {Opt_removed, "orlov"}, 1713 {Opt_user_xattr, "user_xattr"}, 1714 {Opt_nouser_xattr, "nouser_xattr"}, 1715 {Opt_acl, "acl"}, 1716 {Opt_noacl, "noacl"}, 1717 {Opt_noload, "norecovery"}, 1718 {Opt_noload, "noload"}, 1719 {Opt_removed, "nobh"}, 1720 {Opt_removed, "bh"}, 1721 {Opt_commit, "commit=%u"}, 1722 {Opt_min_batch_time, "min_batch_time=%u"}, 1723 {Opt_max_batch_time, "max_batch_time=%u"}, 1724 {Opt_journal_dev, "journal_dev=%u"}, 1725 {Opt_journal_path, "journal_path=%s"}, 1726 {Opt_journal_checksum, "journal_checksum"}, 1727 {Opt_nojournal_checksum, "nojournal_checksum"}, 1728 {Opt_journal_async_commit, "journal_async_commit"}, 1729 {Opt_abort, "abort"}, 1730 {Opt_data_journal, "data=journal"}, 1731 {Opt_data_ordered, "data=ordered"}, 1732 {Opt_data_writeback, "data=writeback"}, 1733 {Opt_data_err_abort, "data_err=abort"}, 1734 {Opt_data_err_ignore, "data_err=ignore"}, 1735 {Opt_offusrjquota, "usrjquota="}, 1736 {Opt_usrjquota, "usrjquota=%s"}, 1737 {Opt_offgrpjquota, "grpjquota="}, 1738 {Opt_grpjquota, "grpjquota=%s"}, 1739 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1740 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1741 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1742 {Opt_grpquota, "grpquota"}, 1743 {Opt_noquota, "noquota"}, 1744 {Opt_quota, "quota"}, 1745 {Opt_usrquota, "usrquota"}, 1746 {Opt_prjquota, "prjquota"}, 1747 {Opt_barrier, "barrier=%u"}, 1748 {Opt_barrier, "barrier"}, 1749 {Opt_nobarrier, "nobarrier"}, 1750 {Opt_i_version, "i_version"}, 1751 {Opt_dax, "dax"}, 1752 {Opt_dax_always, "dax=always"}, 1753 {Opt_dax_inode, "dax=inode"}, 1754 {Opt_dax_never, "dax=never"}, 1755 {Opt_stripe, "stripe=%u"}, 1756 {Opt_delalloc, "delalloc"}, 1757 {Opt_warn_on_error, "warn_on_error"}, 1758 {Opt_nowarn_on_error, "nowarn_on_error"}, 1759 {Opt_lazytime, "lazytime"}, 1760 {Opt_nolazytime, "nolazytime"}, 1761 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1762 {Opt_nodelalloc, "nodelalloc"}, 1763 {Opt_removed, "mblk_io_submit"}, 1764 {Opt_removed, "nomblk_io_submit"}, 1765 {Opt_block_validity, "block_validity"}, 1766 {Opt_noblock_validity, "noblock_validity"}, 1767 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1768 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1769 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1770 {Opt_auto_da_alloc, "auto_da_alloc"}, 1771 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1772 {Opt_dioread_nolock, "dioread_nolock"}, 1773 {Opt_dioread_lock, "nodioread_nolock"}, 1774 {Opt_dioread_lock, "dioread_lock"}, 1775 {Opt_discard, "discard"}, 1776 {Opt_nodiscard, "nodiscard"}, 1777 {Opt_init_itable, "init_itable=%u"}, 1778 {Opt_init_itable, "init_itable"}, 1779 {Opt_noinit_itable, "noinit_itable"}, 1780 #ifdef CONFIG_EXT4_DEBUG 1781 {Opt_fc_debug_force, "fc_debug_force"}, 1782 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1783 #endif 1784 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1785 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1786 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1787 {Opt_inlinecrypt, "inlinecrypt"}, 1788 {Opt_nombcache, "nombcache"}, 1789 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1790 {Opt_removed, "prefetch_block_bitmaps"}, 1791 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1792 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1793 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1794 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1795 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1796 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1797 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1798 {Opt_err, NULL}, 1799 }; 1800 1801 static ext4_fsblk_t get_sb_block(void **data) 1802 { 1803 ext4_fsblk_t sb_block; 1804 char *options = (char *) *data; 1805 1806 if (!options || strncmp(options, "sb=", 3) != 0) 1807 return 1; /* Default location */ 1808 1809 options += 3; 1810 /* TODO: use simple_strtoll with >32bit ext4 */ 1811 sb_block = simple_strtoul(options, &options, 0); 1812 if (*options && *options != ',') { 1813 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1814 (char *) *data); 1815 return 1; 1816 } 1817 if (*options == ',') 1818 options++; 1819 *data = (void *) options; 1820 1821 return sb_block; 1822 } 1823 1824 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1825 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1826 1827 static const char deprecated_msg[] = 1828 "Mount option \"%s\" will be removed by %s\n" 1829 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1830 1831 #ifdef CONFIG_QUOTA 1832 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1833 { 1834 struct ext4_sb_info *sbi = EXT4_SB(sb); 1835 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1836 int ret = -1; 1837 1838 if (sb_any_quota_loaded(sb) && !old_qname) { 1839 ext4_msg(sb, KERN_ERR, 1840 "Cannot change journaled " 1841 "quota options when quota turned on"); 1842 return -1; 1843 } 1844 if (ext4_has_feature_quota(sb)) { 1845 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1846 "ignored when QUOTA feature is enabled"); 1847 return 1; 1848 } 1849 qname = match_strdup(args); 1850 if (!qname) { 1851 ext4_msg(sb, KERN_ERR, 1852 "Not enough memory for storing quotafile name"); 1853 return -1; 1854 } 1855 if (old_qname) { 1856 if (strcmp(old_qname, qname) == 0) 1857 ret = 1; 1858 else 1859 ext4_msg(sb, KERN_ERR, 1860 "%s quota file already specified", 1861 QTYPE2NAME(qtype)); 1862 goto errout; 1863 } 1864 if (strchr(qname, '/')) { 1865 ext4_msg(sb, KERN_ERR, 1866 "quotafile must be on filesystem root"); 1867 goto errout; 1868 } 1869 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1870 set_opt(sb, QUOTA); 1871 return 1; 1872 errout: 1873 kfree(qname); 1874 return ret; 1875 } 1876 1877 static int clear_qf_name(struct super_block *sb, int qtype) 1878 { 1879 1880 struct ext4_sb_info *sbi = EXT4_SB(sb); 1881 char *old_qname = get_qf_name(sb, sbi, qtype); 1882 1883 if (sb_any_quota_loaded(sb) && old_qname) { 1884 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1885 " when quota turned on"); 1886 return -1; 1887 } 1888 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1889 synchronize_rcu(); 1890 kfree(old_qname); 1891 return 1; 1892 } 1893 #endif 1894 1895 #define MOPT_SET 0x0001 1896 #define MOPT_CLEAR 0x0002 1897 #define MOPT_NOSUPPORT 0x0004 1898 #define MOPT_EXPLICIT 0x0008 1899 #define MOPT_CLEAR_ERR 0x0010 1900 #define MOPT_GTE0 0x0020 1901 #ifdef CONFIG_QUOTA 1902 #define MOPT_Q 0 1903 #define MOPT_QFMT 0x0040 1904 #else 1905 #define MOPT_Q MOPT_NOSUPPORT 1906 #define MOPT_QFMT MOPT_NOSUPPORT 1907 #endif 1908 #define MOPT_DATAJ 0x0080 1909 #define MOPT_NO_EXT2 0x0100 1910 #define MOPT_NO_EXT3 0x0200 1911 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1912 #define MOPT_STRING 0x0400 1913 #define MOPT_SKIP 0x0800 1914 #define MOPT_2 0x1000 1915 1916 static const struct mount_opts { 1917 int token; 1918 int mount_opt; 1919 int flags; 1920 } ext4_mount_opts[] = { 1921 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1922 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1923 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1924 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1925 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1926 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1927 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1928 MOPT_EXT4_ONLY | MOPT_SET}, 1929 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1930 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1931 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1932 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1933 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1934 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1935 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1936 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1937 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1938 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1939 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1940 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1941 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1942 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1943 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1944 EXT4_MOUNT_JOURNAL_CHECKSUM), 1945 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1946 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1947 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1948 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1949 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1950 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1951 MOPT_NO_EXT2}, 1952 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1953 MOPT_NO_EXT2}, 1954 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1955 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1956 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1957 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1958 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1959 {Opt_commit, 0, MOPT_GTE0}, 1960 {Opt_max_batch_time, 0, MOPT_GTE0}, 1961 {Opt_min_batch_time, 0, MOPT_GTE0}, 1962 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1963 {Opt_init_itable, 0, MOPT_GTE0}, 1964 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1965 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1966 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1967 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1968 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1969 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1970 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1971 {Opt_stripe, 0, MOPT_GTE0}, 1972 {Opt_resuid, 0, MOPT_GTE0}, 1973 {Opt_resgid, 0, MOPT_GTE0}, 1974 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1975 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1976 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1977 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1978 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1979 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1980 MOPT_NO_EXT2 | MOPT_DATAJ}, 1981 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1982 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1983 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1984 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1985 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1986 #else 1987 {Opt_acl, 0, MOPT_NOSUPPORT}, 1988 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1989 #endif 1990 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1991 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1992 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1993 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1994 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1995 MOPT_SET | MOPT_Q}, 1996 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1997 MOPT_SET | MOPT_Q}, 1998 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1999 MOPT_SET | MOPT_Q}, 2000 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2001 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 2002 MOPT_CLEAR | MOPT_Q}, 2003 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 2004 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 2005 {Opt_offusrjquota, 0, MOPT_Q}, 2006 {Opt_offgrpjquota, 0, MOPT_Q}, 2007 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 2008 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 2009 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2010 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2011 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2012 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2013 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2014 MOPT_SET}, 2015 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2016 #ifdef CONFIG_EXT4_DEBUG 2017 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2018 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2019 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2020 #endif 2021 {Opt_err, 0, 0} 2022 }; 2023 2024 #ifdef CONFIG_UNICODE 2025 static const struct ext4_sb_encodings { 2026 __u16 magic; 2027 char *name; 2028 char *version; 2029 } ext4_sb_encoding_map[] = { 2030 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2031 }; 2032 2033 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2034 const struct ext4_sb_encodings **encoding, 2035 __u16 *flags) 2036 { 2037 __u16 magic = le16_to_cpu(es->s_encoding); 2038 int i; 2039 2040 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2041 if (magic == ext4_sb_encoding_map[i].magic) 2042 break; 2043 2044 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2045 return -EINVAL; 2046 2047 *encoding = &ext4_sb_encoding_map[i]; 2048 *flags = le16_to_cpu(es->s_encoding_flags); 2049 2050 return 0; 2051 } 2052 #endif 2053 2054 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2055 const char *opt, 2056 const substring_t *arg, 2057 bool is_remount) 2058 { 2059 #ifdef CONFIG_FS_ENCRYPTION 2060 struct ext4_sb_info *sbi = EXT4_SB(sb); 2061 int err; 2062 2063 /* 2064 * This mount option is just for testing, and it's not worthwhile to 2065 * implement the extra complexity (e.g. RCU protection) that would be 2066 * needed to allow it to be set or changed during remount. We do allow 2067 * it to be specified during remount, but only if there is no change. 2068 */ 2069 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2070 ext4_msg(sb, KERN_WARNING, 2071 "Can't set test_dummy_encryption on remount"); 2072 return -1; 2073 } 2074 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2075 &sbi->s_dummy_enc_policy); 2076 if (err) { 2077 if (err == -EEXIST) 2078 ext4_msg(sb, KERN_WARNING, 2079 "Can't change test_dummy_encryption on remount"); 2080 else if (err == -EINVAL) 2081 ext4_msg(sb, KERN_WARNING, 2082 "Value of option \"%s\" is unrecognized", opt); 2083 else 2084 ext4_msg(sb, KERN_WARNING, 2085 "Error processing option \"%s\" [%d]", 2086 opt, err); 2087 return -1; 2088 } 2089 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2090 #else 2091 ext4_msg(sb, KERN_WARNING, 2092 "Test dummy encryption mount option ignored"); 2093 #endif 2094 return 1; 2095 } 2096 2097 struct ext4_parsed_options { 2098 unsigned long journal_devnum; 2099 unsigned int journal_ioprio; 2100 int mb_optimize_scan; 2101 }; 2102 2103 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2104 substring_t *args, struct ext4_parsed_options *parsed_opts, 2105 int is_remount) 2106 { 2107 struct ext4_sb_info *sbi = EXT4_SB(sb); 2108 const struct mount_opts *m; 2109 kuid_t uid; 2110 kgid_t gid; 2111 int arg = 0; 2112 2113 #ifdef CONFIG_QUOTA 2114 if (token == Opt_usrjquota) 2115 return set_qf_name(sb, USRQUOTA, &args[0]); 2116 else if (token == Opt_grpjquota) 2117 return set_qf_name(sb, GRPQUOTA, &args[0]); 2118 else if (token == Opt_offusrjquota) 2119 return clear_qf_name(sb, USRQUOTA); 2120 else if (token == Opt_offgrpjquota) 2121 return clear_qf_name(sb, GRPQUOTA); 2122 #endif 2123 switch (token) { 2124 case Opt_noacl: 2125 case Opt_nouser_xattr: 2126 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2127 break; 2128 case Opt_sb: 2129 return 1; /* handled by get_sb_block() */ 2130 case Opt_removed: 2131 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2132 return 1; 2133 case Opt_abort: 2134 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2135 return 1; 2136 case Opt_i_version: 2137 sb->s_flags |= SB_I_VERSION; 2138 return 1; 2139 case Opt_lazytime: 2140 sb->s_flags |= SB_LAZYTIME; 2141 return 1; 2142 case Opt_nolazytime: 2143 sb->s_flags &= ~SB_LAZYTIME; 2144 return 1; 2145 case Opt_inlinecrypt: 2146 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2147 sb->s_flags |= SB_INLINECRYPT; 2148 #else 2149 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2150 #endif 2151 return 1; 2152 } 2153 2154 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2155 if (token == m->token) 2156 break; 2157 2158 if (m->token == Opt_err) { 2159 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2160 "or missing value", opt); 2161 return -1; 2162 } 2163 2164 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2165 ext4_msg(sb, KERN_ERR, 2166 "Mount option \"%s\" incompatible with ext2", opt); 2167 return -1; 2168 } 2169 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2170 ext4_msg(sb, KERN_ERR, 2171 "Mount option \"%s\" incompatible with ext3", opt); 2172 return -1; 2173 } 2174 2175 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2176 return -1; 2177 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2178 return -1; 2179 if (m->flags & MOPT_EXPLICIT) { 2180 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2181 set_opt2(sb, EXPLICIT_DELALLOC); 2182 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2183 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2184 } else 2185 return -1; 2186 } 2187 if (m->flags & MOPT_CLEAR_ERR) 2188 clear_opt(sb, ERRORS_MASK); 2189 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2190 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2191 "options when quota turned on"); 2192 return -1; 2193 } 2194 2195 if (m->flags & MOPT_NOSUPPORT) { 2196 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2197 } else if (token == Opt_commit) { 2198 if (arg == 0) 2199 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2200 else if (arg > INT_MAX / HZ) { 2201 ext4_msg(sb, KERN_ERR, 2202 "Invalid commit interval %d, " 2203 "must be smaller than %d", 2204 arg, INT_MAX / HZ); 2205 return -1; 2206 } 2207 sbi->s_commit_interval = HZ * arg; 2208 } else if (token == Opt_debug_want_extra_isize) { 2209 if ((arg & 1) || 2210 (arg < 4) || 2211 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2212 ext4_msg(sb, KERN_ERR, 2213 "Invalid want_extra_isize %d", arg); 2214 return -1; 2215 } 2216 sbi->s_want_extra_isize = arg; 2217 } else if (token == Opt_max_batch_time) { 2218 sbi->s_max_batch_time = arg; 2219 } else if (token == Opt_min_batch_time) { 2220 sbi->s_min_batch_time = arg; 2221 } else if (token == Opt_inode_readahead_blks) { 2222 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2223 ext4_msg(sb, KERN_ERR, 2224 "EXT4-fs: inode_readahead_blks must be " 2225 "0 or a power of 2 smaller than 2^31"); 2226 return -1; 2227 } 2228 sbi->s_inode_readahead_blks = arg; 2229 } else if (token == Opt_init_itable) { 2230 set_opt(sb, INIT_INODE_TABLE); 2231 if (!args->from) 2232 arg = EXT4_DEF_LI_WAIT_MULT; 2233 sbi->s_li_wait_mult = arg; 2234 } else if (token == Opt_max_dir_size_kb) { 2235 sbi->s_max_dir_size_kb = arg; 2236 #ifdef CONFIG_EXT4_DEBUG 2237 } else if (token == Opt_fc_debug_max_replay) { 2238 sbi->s_fc_debug_max_replay = arg; 2239 #endif 2240 } else if (token == Opt_stripe) { 2241 sbi->s_stripe = arg; 2242 } else if (token == Opt_resuid) { 2243 uid = make_kuid(current_user_ns(), arg); 2244 if (!uid_valid(uid)) { 2245 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2246 return -1; 2247 } 2248 sbi->s_resuid = uid; 2249 } else if (token == Opt_resgid) { 2250 gid = make_kgid(current_user_ns(), arg); 2251 if (!gid_valid(gid)) { 2252 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2253 return -1; 2254 } 2255 sbi->s_resgid = gid; 2256 } else if (token == Opt_journal_dev) { 2257 if (is_remount) { 2258 ext4_msg(sb, KERN_ERR, 2259 "Cannot specify journal on remount"); 2260 return -1; 2261 } 2262 parsed_opts->journal_devnum = arg; 2263 } else if (token == Opt_journal_path) { 2264 char *journal_path; 2265 struct inode *journal_inode; 2266 struct path path; 2267 int error; 2268 2269 if (is_remount) { 2270 ext4_msg(sb, KERN_ERR, 2271 "Cannot specify journal on remount"); 2272 return -1; 2273 } 2274 journal_path = match_strdup(&args[0]); 2275 if (!journal_path) { 2276 ext4_msg(sb, KERN_ERR, "error: could not dup " 2277 "journal device string"); 2278 return -1; 2279 } 2280 2281 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2282 if (error) { 2283 ext4_msg(sb, KERN_ERR, "error: could not find " 2284 "journal device path: error %d", error); 2285 kfree(journal_path); 2286 return -1; 2287 } 2288 2289 journal_inode = d_inode(path.dentry); 2290 if (!S_ISBLK(journal_inode->i_mode)) { 2291 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2292 "is not a block device", journal_path); 2293 path_put(&path); 2294 kfree(journal_path); 2295 return -1; 2296 } 2297 2298 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2299 path_put(&path); 2300 kfree(journal_path); 2301 } else if (token == Opt_journal_ioprio) { 2302 if (arg > 7) { 2303 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2304 " (must be 0-7)"); 2305 return -1; 2306 } 2307 parsed_opts->journal_ioprio = 2308 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2309 } else if (token == Opt_test_dummy_encryption) { 2310 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2311 is_remount); 2312 } else if (m->flags & MOPT_DATAJ) { 2313 if (is_remount) { 2314 if (!sbi->s_journal) 2315 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2316 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2317 ext4_msg(sb, KERN_ERR, 2318 "Cannot change data mode on remount"); 2319 return -1; 2320 } 2321 } else { 2322 clear_opt(sb, DATA_FLAGS); 2323 sbi->s_mount_opt |= m->mount_opt; 2324 } 2325 #ifdef CONFIG_QUOTA 2326 } else if (m->flags & MOPT_QFMT) { 2327 if (sb_any_quota_loaded(sb) && 2328 sbi->s_jquota_fmt != m->mount_opt) { 2329 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2330 "quota options when quota turned on"); 2331 return -1; 2332 } 2333 if (ext4_has_feature_quota(sb)) { 2334 ext4_msg(sb, KERN_INFO, 2335 "Quota format mount options ignored " 2336 "when QUOTA feature is enabled"); 2337 return 1; 2338 } 2339 sbi->s_jquota_fmt = m->mount_opt; 2340 #endif 2341 } else if (token == Opt_dax || token == Opt_dax_always || 2342 token == Opt_dax_inode || token == Opt_dax_never) { 2343 #ifdef CONFIG_FS_DAX 2344 switch (token) { 2345 case Opt_dax: 2346 case Opt_dax_always: 2347 if (is_remount && 2348 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2349 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2350 fail_dax_change_remount: 2351 ext4_msg(sb, KERN_ERR, "can't change " 2352 "dax mount option while remounting"); 2353 return -1; 2354 } 2355 if (is_remount && 2356 (test_opt(sb, DATA_FLAGS) == 2357 EXT4_MOUNT_JOURNAL_DATA)) { 2358 ext4_msg(sb, KERN_ERR, "can't mount with " 2359 "both data=journal and dax"); 2360 return -1; 2361 } 2362 ext4_msg(sb, KERN_WARNING, 2363 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2364 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2365 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2366 break; 2367 case Opt_dax_never: 2368 if (is_remount && 2369 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2370 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2371 goto fail_dax_change_remount; 2372 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2373 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2374 break; 2375 case Opt_dax_inode: 2376 if (is_remount && 2377 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2378 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2379 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2380 goto fail_dax_change_remount; 2381 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2382 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2383 /* Strictly for printing options */ 2384 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2385 break; 2386 } 2387 #else 2388 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2389 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2390 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2391 return -1; 2392 #endif 2393 } else if (token == Opt_data_err_abort) { 2394 sbi->s_mount_opt |= m->mount_opt; 2395 } else if (token == Opt_data_err_ignore) { 2396 sbi->s_mount_opt &= ~m->mount_opt; 2397 } else if (token == Opt_mb_optimize_scan) { 2398 if (arg != 0 && arg != 1) { 2399 ext4_msg(sb, KERN_WARNING, 2400 "mb_optimize_scan should be set to 0 or 1."); 2401 return -1; 2402 } 2403 parsed_opts->mb_optimize_scan = arg; 2404 } else { 2405 if (!args->from) 2406 arg = 1; 2407 if (m->flags & MOPT_CLEAR) 2408 arg = !arg; 2409 else if (unlikely(!(m->flags & MOPT_SET))) { 2410 ext4_msg(sb, KERN_WARNING, 2411 "buggy handling of option %s", opt); 2412 WARN_ON(1); 2413 return -1; 2414 } 2415 if (m->flags & MOPT_2) { 2416 if (arg != 0) 2417 sbi->s_mount_opt2 |= m->mount_opt; 2418 else 2419 sbi->s_mount_opt2 &= ~m->mount_opt; 2420 } else { 2421 if (arg != 0) 2422 sbi->s_mount_opt |= m->mount_opt; 2423 else 2424 sbi->s_mount_opt &= ~m->mount_opt; 2425 } 2426 } 2427 return 1; 2428 } 2429 2430 static int parse_options(char *options, struct super_block *sb, 2431 struct ext4_parsed_options *ret_opts, 2432 int is_remount) 2433 { 2434 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2435 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2436 substring_t args[MAX_OPT_ARGS]; 2437 int token; 2438 2439 if (!options) 2440 return 1; 2441 2442 while ((p = strsep(&options, ",")) != NULL) { 2443 if (!*p) 2444 continue; 2445 /* 2446 * Initialize args struct so we know whether arg was 2447 * found; some options take optional arguments. 2448 */ 2449 args[0].to = args[0].from = NULL; 2450 token = match_token(p, tokens, args); 2451 if (handle_mount_opt(sb, p, token, args, ret_opts, 2452 is_remount) < 0) 2453 return 0; 2454 } 2455 #ifdef CONFIG_QUOTA 2456 /* 2457 * We do the test below only for project quotas. 'usrquota' and 2458 * 'grpquota' mount options are allowed even without quota feature 2459 * to support legacy quotas in quota files. 2460 */ 2461 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2462 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2463 "Cannot enable project quota enforcement."); 2464 return 0; 2465 } 2466 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2467 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2468 if (usr_qf_name || grp_qf_name) { 2469 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2470 clear_opt(sb, USRQUOTA); 2471 2472 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2473 clear_opt(sb, GRPQUOTA); 2474 2475 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2476 ext4_msg(sb, KERN_ERR, "old and new quota " 2477 "format mixing"); 2478 return 0; 2479 } 2480 2481 if (!sbi->s_jquota_fmt) { 2482 ext4_msg(sb, KERN_ERR, "journaled quota format " 2483 "not specified"); 2484 return 0; 2485 } 2486 } 2487 #endif 2488 if (test_opt(sb, DIOREAD_NOLOCK)) { 2489 int blocksize = 2490 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2491 if (blocksize < PAGE_SIZE) 2492 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2493 "experimental mount option 'dioread_nolock' " 2494 "for blocksize < PAGE_SIZE"); 2495 } 2496 return 1; 2497 } 2498 2499 static inline void ext4_show_quota_options(struct seq_file *seq, 2500 struct super_block *sb) 2501 { 2502 #if defined(CONFIG_QUOTA) 2503 struct ext4_sb_info *sbi = EXT4_SB(sb); 2504 char *usr_qf_name, *grp_qf_name; 2505 2506 if (sbi->s_jquota_fmt) { 2507 char *fmtname = ""; 2508 2509 switch (sbi->s_jquota_fmt) { 2510 case QFMT_VFS_OLD: 2511 fmtname = "vfsold"; 2512 break; 2513 case QFMT_VFS_V0: 2514 fmtname = "vfsv0"; 2515 break; 2516 case QFMT_VFS_V1: 2517 fmtname = "vfsv1"; 2518 break; 2519 } 2520 seq_printf(seq, ",jqfmt=%s", fmtname); 2521 } 2522 2523 rcu_read_lock(); 2524 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2525 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2526 if (usr_qf_name) 2527 seq_show_option(seq, "usrjquota", usr_qf_name); 2528 if (grp_qf_name) 2529 seq_show_option(seq, "grpjquota", grp_qf_name); 2530 rcu_read_unlock(); 2531 #endif 2532 } 2533 2534 static const char *token2str(int token) 2535 { 2536 const struct match_token *t; 2537 2538 for (t = tokens; t->token != Opt_err; t++) 2539 if (t->token == token && !strchr(t->pattern, '=')) 2540 break; 2541 return t->pattern; 2542 } 2543 2544 /* 2545 * Show an option if 2546 * - it's set to a non-default value OR 2547 * - if the per-sb default is different from the global default 2548 */ 2549 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2550 int nodefs) 2551 { 2552 struct ext4_sb_info *sbi = EXT4_SB(sb); 2553 struct ext4_super_block *es = sbi->s_es; 2554 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2555 const struct mount_opts *m; 2556 char sep = nodefs ? '\n' : ','; 2557 2558 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2559 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2560 2561 if (sbi->s_sb_block != 1) 2562 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2563 2564 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2565 int want_set = m->flags & MOPT_SET; 2566 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2567 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2568 continue; 2569 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2570 continue; /* skip if same as the default */ 2571 if ((want_set && 2572 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2573 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2574 continue; /* select Opt_noFoo vs Opt_Foo */ 2575 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2576 } 2577 2578 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2579 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2580 SEQ_OPTS_PRINT("resuid=%u", 2581 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2582 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2583 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2584 SEQ_OPTS_PRINT("resgid=%u", 2585 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2586 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2587 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2588 SEQ_OPTS_PUTS("errors=remount-ro"); 2589 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2590 SEQ_OPTS_PUTS("errors=continue"); 2591 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2592 SEQ_OPTS_PUTS("errors=panic"); 2593 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2594 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2595 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2596 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2597 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2598 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2599 if (sb->s_flags & SB_I_VERSION) 2600 SEQ_OPTS_PUTS("i_version"); 2601 if (nodefs || sbi->s_stripe) 2602 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2603 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2604 (sbi->s_mount_opt ^ def_mount_opt)) { 2605 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2606 SEQ_OPTS_PUTS("data=journal"); 2607 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2608 SEQ_OPTS_PUTS("data=ordered"); 2609 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2610 SEQ_OPTS_PUTS("data=writeback"); 2611 } 2612 if (nodefs || 2613 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2614 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2615 sbi->s_inode_readahead_blks); 2616 2617 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2618 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2619 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2620 if (nodefs || sbi->s_max_dir_size_kb) 2621 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2622 if (test_opt(sb, DATA_ERR_ABORT)) 2623 SEQ_OPTS_PUTS("data_err=abort"); 2624 2625 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2626 2627 if (sb->s_flags & SB_INLINECRYPT) 2628 SEQ_OPTS_PUTS("inlinecrypt"); 2629 2630 if (test_opt(sb, DAX_ALWAYS)) { 2631 if (IS_EXT2_SB(sb)) 2632 SEQ_OPTS_PUTS("dax"); 2633 else 2634 SEQ_OPTS_PUTS("dax=always"); 2635 } else if (test_opt2(sb, DAX_NEVER)) { 2636 SEQ_OPTS_PUTS("dax=never"); 2637 } else if (test_opt2(sb, DAX_INODE)) { 2638 SEQ_OPTS_PUTS("dax=inode"); 2639 } 2640 ext4_show_quota_options(seq, sb); 2641 return 0; 2642 } 2643 2644 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2645 { 2646 return _ext4_show_options(seq, root->d_sb, 0); 2647 } 2648 2649 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2650 { 2651 struct super_block *sb = seq->private; 2652 int rc; 2653 2654 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2655 rc = _ext4_show_options(seq, sb, 1); 2656 seq_puts(seq, "\n"); 2657 return rc; 2658 } 2659 2660 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2661 int read_only) 2662 { 2663 struct ext4_sb_info *sbi = EXT4_SB(sb); 2664 int err = 0; 2665 2666 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2667 ext4_msg(sb, KERN_ERR, "revision level too high, " 2668 "forcing read-only mode"); 2669 err = -EROFS; 2670 goto done; 2671 } 2672 if (read_only) 2673 goto done; 2674 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2675 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2676 "running e2fsck is recommended"); 2677 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2678 ext4_msg(sb, KERN_WARNING, 2679 "warning: mounting fs with errors, " 2680 "running e2fsck is recommended"); 2681 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2682 le16_to_cpu(es->s_mnt_count) >= 2683 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2684 ext4_msg(sb, KERN_WARNING, 2685 "warning: maximal mount count reached, " 2686 "running e2fsck is recommended"); 2687 else if (le32_to_cpu(es->s_checkinterval) && 2688 (ext4_get_tstamp(es, s_lastcheck) + 2689 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2690 ext4_msg(sb, KERN_WARNING, 2691 "warning: checktime reached, " 2692 "running e2fsck is recommended"); 2693 if (!sbi->s_journal) 2694 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2695 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2696 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2697 le16_add_cpu(&es->s_mnt_count, 1); 2698 ext4_update_tstamp(es, s_mtime); 2699 if (sbi->s_journal) { 2700 ext4_set_feature_journal_needs_recovery(sb); 2701 if (ext4_has_feature_orphan_file(sb)) 2702 ext4_set_feature_orphan_present(sb); 2703 } 2704 2705 err = ext4_commit_super(sb); 2706 done: 2707 if (test_opt(sb, DEBUG)) 2708 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2709 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2710 sb->s_blocksize, 2711 sbi->s_groups_count, 2712 EXT4_BLOCKS_PER_GROUP(sb), 2713 EXT4_INODES_PER_GROUP(sb), 2714 sbi->s_mount_opt, sbi->s_mount_opt2); 2715 2716 cleancache_init_fs(sb); 2717 return err; 2718 } 2719 2720 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2721 { 2722 struct ext4_sb_info *sbi = EXT4_SB(sb); 2723 struct flex_groups **old_groups, **new_groups; 2724 int size, i, j; 2725 2726 if (!sbi->s_log_groups_per_flex) 2727 return 0; 2728 2729 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2730 if (size <= sbi->s_flex_groups_allocated) 2731 return 0; 2732 2733 new_groups = kvzalloc(roundup_pow_of_two(size * 2734 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2735 if (!new_groups) { 2736 ext4_msg(sb, KERN_ERR, 2737 "not enough memory for %d flex group pointers", size); 2738 return -ENOMEM; 2739 } 2740 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2741 new_groups[i] = kvzalloc(roundup_pow_of_two( 2742 sizeof(struct flex_groups)), 2743 GFP_KERNEL); 2744 if (!new_groups[i]) { 2745 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2746 kvfree(new_groups[j]); 2747 kvfree(new_groups); 2748 ext4_msg(sb, KERN_ERR, 2749 "not enough memory for %d flex groups", size); 2750 return -ENOMEM; 2751 } 2752 } 2753 rcu_read_lock(); 2754 old_groups = rcu_dereference(sbi->s_flex_groups); 2755 if (old_groups) 2756 memcpy(new_groups, old_groups, 2757 (sbi->s_flex_groups_allocated * 2758 sizeof(struct flex_groups *))); 2759 rcu_read_unlock(); 2760 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2761 sbi->s_flex_groups_allocated = size; 2762 if (old_groups) 2763 ext4_kvfree_array_rcu(old_groups); 2764 return 0; 2765 } 2766 2767 static int ext4_fill_flex_info(struct super_block *sb) 2768 { 2769 struct ext4_sb_info *sbi = EXT4_SB(sb); 2770 struct ext4_group_desc *gdp = NULL; 2771 struct flex_groups *fg; 2772 ext4_group_t flex_group; 2773 int i, err; 2774 2775 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2776 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2777 sbi->s_log_groups_per_flex = 0; 2778 return 1; 2779 } 2780 2781 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2782 if (err) 2783 goto failed; 2784 2785 for (i = 0; i < sbi->s_groups_count; i++) { 2786 gdp = ext4_get_group_desc(sb, i, NULL); 2787 2788 flex_group = ext4_flex_group(sbi, i); 2789 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2790 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2791 atomic64_add(ext4_free_group_clusters(sb, gdp), 2792 &fg->free_clusters); 2793 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2794 } 2795 2796 return 1; 2797 failed: 2798 return 0; 2799 } 2800 2801 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2802 struct ext4_group_desc *gdp) 2803 { 2804 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2805 __u16 crc = 0; 2806 __le32 le_group = cpu_to_le32(block_group); 2807 struct ext4_sb_info *sbi = EXT4_SB(sb); 2808 2809 if (ext4_has_metadata_csum(sbi->s_sb)) { 2810 /* Use new metadata_csum algorithm */ 2811 __u32 csum32; 2812 __u16 dummy_csum = 0; 2813 2814 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2815 sizeof(le_group)); 2816 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2817 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2818 sizeof(dummy_csum)); 2819 offset += sizeof(dummy_csum); 2820 if (offset < sbi->s_desc_size) 2821 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2822 sbi->s_desc_size - offset); 2823 2824 crc = csum32 & 0xFFFF; 2825 goto out; 2826 } 2827 2828 /* old crc16 code */ 2829 if (!ext4_has_feature_gdt_csum(sb)) 2830 return 0; 2831 2832 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2833 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2834 crc = crc16(crc, (__u8 *)gdp, offset); 2835 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2836 /* for checksum of struct ext4_group_desc do the rest...*/ 2837 if (ext4_has_feature_64bit(sb) && 2838 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2839 crc = crc16(crc, (__u8 *)gdp + offset, 2840 le16_to_cpu(sbi->s_es->s_desc_size) - 2841 offset); 2842 2843 out: 2844 return cpu_to_le16(crc); 2845 } 2846 2847 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2848 struct ext4_group_desc *gdp) 2849 { 2850 if (ext4_has_group_desc_csum(sb) && 2851 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2852 return 0; 2853 2854 return 1; 2855 } 2856 2857 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2858 struct ext4_group_desc *gdp) 2859 { 2860 if (!ext4_has_group_desc_csum(sb)) 2861 return; 2862 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2863 } 2864 2865 /* Called at mount-time, super-block is locked */ 2866 static int ext4_check_descriptors(struct super_block *sb, 2867 ext4_fsblk_t sb_block, 2868 ext4_group_t *first_not_zeroed) 2869 { 2870 struct ext4_sb_info *sbi = EXT4_SB(sb); 2871 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2872 ext4_fsblk_t last_block; 2873 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2874 ext4_fsblk_t block_bitmap; 2875 ext4_fsblk_t inode_bitmap; 2876 ext4_fsblk_t inode_table; 2877 int flexbg_flag = 0; 2878 ext4_group_t i, grp = sbi->s_groups_count; 2879 2880 if (ext4_has_feature_flex_bg(sb)) 2881 flexbg_flag = 1; 2882 2883 ext4_debug("Checking group descriptors"); 2884 2885 for (i = 0; i < sbi->s_groups_count; i++) { 2886 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2887 2888 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2889 last_block = ext4_blocks_count(sbi->s_es) - 1; 2890 else 2891 last_block = first_block + 2892 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2893 2894 if ((grp == sbi->s_groups_count) && 2895 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2896 grp = i; 2897 2898 block_bitmap = ext4_block_bitmap(sb, gdp); 2899 if (block_bitmap == sb_block) { 2900 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2901 "Block bitmap for group %u overlaps " 2902 "superblock", i); 2903 if (!sb_rdonly(sb)) 2904 return 0; 2905 } 2906 if (block_bitmap >= sb_block + 1 && 2907 block_bitmap <= last_bg_block) { 2908 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2909 "Block bitmap for group %u overlaps " 2910 "block group descriptors", i); 2911 if (!sb_rdonly(sb)) 2912 return 0; 2913 } 2914 if (block_bitmap < first_block || block_bitmap > last_block) { 2915 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2916 "Block bitmap for group %u not in group " 2917 "(block %llu)!", i, block_bitmap); 2918 return 0; 2919 } 2920 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2921 if (inode_bitmap == sb_block) { 2922 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2923 "Inode bitmap for group %u overlaps " 2924 "superblock", i); 2925 if (!sb_rdonly(sb)) 2926 return 0; 2927 } 2928 if (inode_bitmap >= sb_block + 1 && 2929 inode_bitmap <= last_bg_block) { 2930 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2931 "Inode bitmap for group %u overlaps " 2932 "block group descriptors", i); 2933 if (!sb_rdonly(sb)) 2934 return 0; 2935 } 2936 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2937 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2938 "Inode bitmap for group %u not in group " 2939 "(block %llu)!", i, inode_bitmap); 2940 return 0; 2941 } 2942 inode_table = ext4_inode_table(sb, gdp); 2943 if (inode_table == sb_block) { 2944 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2945 "Inode table for group %u overlaps " 2946 "superblock", i); 2947 if (!sb_rdonly(sb)) 2948 return 0; 2949 } 2950 if (inode_table >= sb_block + 1 && 2951 inode_table <= last_bg_block) { 2952 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2953 "Inode table for group %u overlaps " 2954 "block group descriptors", i); 2955 if (!sb_rdonly(sb)) 2956 return 0; 2957 } 2958 if (inode_table < first_block || 2959 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2960 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2961 "Inode table for group %u not in group " 2962 "(block %llu)!", i, inode_table); 2963 return 0; 2964 } 2965 ext4_lock_group(sb, i); 2966 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2967 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2968 "Checksum for group %u failed (%u!=%u)", 2969 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2970 gdp)), le16_to_cpu(gdp->bg_checksum)); 2971 if (!sb_rdonly(sb)) { 2972 ext4_unlock_group(sb, i); 2973 return 0; 2974 } 2975 } 2976 ext4_unlock_group(sb, i); 2977 if (!flexbg_flag) 2978 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2979 } 2980 if (NULL != first_not_zeroed) 2981 *first_not_zeroed = grp; 2982 return 1; 2983 } 2984 2985 /* 2986 * Maximal extent format file size. 2987 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2988 * extent format containers, within a sector_t, and within i_blocks 2989 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2990 * so that won't be a limiting factor. 2991 * 2992 * However there is other limiting factor. We do store extents in the form 2993 * of starting block and length, hence the resulting length of the extent 2994 * covering maximum file size must fit into on-disk format containers as 2995 * well. Given that length is always by 1 unit bigger than max unit (because 2996 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2997 * 2998 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2999 */ 3000 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3001 { 3002 loff_t res; 3003 loff_t upper_limit = MAX_LFS_FILESIZE; 3004 3005 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3006 3007 if (!has_huge_files) { 3008 upper_limit = (1LL << 32) - 1; 3009 3010 /* total blocks in file system block size */ 3011 upper_limit >>= (blkbits - 9); 3012 upper_limit <<= blkbits; 3013 } 3014 3015 /* 3016 * 32-bit extent-start container, ee_block. We lower the maxbytes 3017 * by one fs block, so ee_len can cover the extent of maximum file 3018 * size 3019 */ 3020 res = (1LL << 32) - 1; 3021 res <<= blkbits; 3022 3023 /* Sanity check against vm- & vfs- imposed limits */ 3024 if (res > upper_limit) 3025 res = upper_limit; 3026 3027 return res; 3028 } 3029 3030 /* 3031 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3032 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3033 * We need to be 1 filesystem block less than the 2^48 sector limit. 3034 */ 3035 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3036 { 3037 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS; 3038 int meta_blocks; 3039 3040 /* 3041 * This is calculated to be the largest file size for a dense, block 3042 * mapped file such that the file's total number of 512-byte sectors, 3043 * including data and all indirect blocks, does not exceed (2^48 - 1). 3044 * 3045 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3046 * number of 512-byte sectors of the file. 3047 */ 3048 if (!has_huge_files) { 3049 /* 3050 * !has_huge_files or implies that the inode i_block field 3051 * represents total file blocks in 2^32 512-byte sectors == 3052 * size of vfs inode i_blocks * 8 3053 */ 3054 upper_limit = (1LL << 32) - 1; 3055 3056 /* total blocks in file system block size */ 3057 upper_limit >>= (bits - 9); 3058 3059 } else { 3060 /* 3061 * We use 48 bit ext4_inode i_blocks 3062 * With EXT4_HUGE_FILE_FL set the i_blocks 3063 * represent total number of blocks in 3064 * file system block size 3065 */ 3066 upper_limit = (1LL << 48) - 1; 3067 3068 } 3069 3070 /* indirect blocks */ 3071 meta_blocks = 1; 3072 /* double indirect blocks */ 3073 meta_blocks += 1 + (1LL << (bits-2)); 3074 /* tripple indirect blocks */ 3075 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3076 3077 upper_limit -= meta_blocks; 3078 upper_limit <<= bits; 3079 3080 res += 1LL << (bits-2); 3081 res += 1LL << (2*(bits-2)); 3082 res += 1LL << (3*(bits-2)); 3083 res <<= bits; 3084 if (res > upper_limit) 3085 res = upper_limit; 3086 3087 if (res > MAX_LFS_FILESIZE) 3088 res = MAX_LFS_FILESIZE; 3089 3090 return (loff_t)res; 3091 } 3092 3093 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3094 ext4_fsblk_t logical_sb_block, int nr) 3095 { 3096 struct ext4_sb_info *sbi = EXT4_SB(sb); 3097 ext4_group_t bg, first_meta_bg; 3098 int has_super = 0; 3099 3100 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3101 3102 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3103 return logical_sb_block + nr + 1; 3104 bg = sbi->s_desc_per_block * nr; 3105 if (ext4_bg_has_super(sb, bg)) 3106 has_super = 1; 3107 3108 /* 3109 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3110 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3111 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3112 * compensate. 3113 */ 3114 if (sb->s_blocksize == 1024 && nr == 0 && 3115 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3116 has_super++; 3117 3118 return (has_super + ext4_group_first_block_no(sb, bg)); 3119 } 3120 3121 /** 3122 * ext4_get_stripe_size: Get the stripe size. 3123 * @sbi: In memory super block info 3124 * 3125 * If we have specified it via mount option, then 3126 * use the mount option value. If the value specified at mount time is 3127 * greater than the blocks per group use the super block value. 3128 * If the super block value is greater than blocks per group return 0. 3129 * Allocator needs it be less than blocks per group. 3130 * 3131 */ 3132 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3133 { 3134 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3135 unsigned long stripe_width = 3136 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3137 int ret; 3138 3139 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3140 ret = sbi->s_stripe; 3141 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3142 ret = stripe_width; 3143 else if (stride && stride <= sbi->s_blocks_per_group) 3144 ret = stride; 3145 else 3146 ret = 0; 3147 3148 /* 3149 * If the stripe width is 1, this makes no sense and 3150 * we set it to 0 to turn off stripe handling code. 3151 */ 3152 if (ret <= 1) 3153 ret = 0; 3154 3155 return ret; 3156 } 3157 3158 /* 3159 * Check whether this filesystem can be mounted based on 3160 * the features present and the RDONLY/RDWR mount requested. 3161 * Returns 1 if this filesystem can be mounted as requested, 3162 * 0 if it cannot be. 3163 */ 3164 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3165 { 3166 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3167 ext4_msg(sb, KERN_ERR, 3168 "Couldn't mount because of " 3169 "unsupported optional features (%x)", 3170 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3171 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3172 return 0; 3173 } 3174 3175 #ifndef CONFIG_UNICODE 3176 if (ext4_has_feature_casefold(sb)) { 3177 ext4_msg(sb, KERN_ERR, 3178 "Filesystem with casefold feature cannot be " 3179 "mounted without CONFIG_UNICODE"); 3180 return 0; 3181 } 3182 #endif 3183 3184 if (readonly) 3185 return 1; 3186 3187 if (ext4_has_feature_readonly(sb)) { 3188 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3189 sb->s_flags |= SB_RDONLY; 3190 return 1; 3191 } 3192 3193 /* Check that feature set is OK for a read-write mount */ 3194 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3195 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3196 "unsupported optional features (%x)", 3197 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3198 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3199 return 0; 3200 } 3201 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3202 ext4_msg(sb, KERN_ERR, 3203 "Can't support bigalloc feature without " 3204 "extents feature\n"); 3205 return 0; 3206 } 3207 3208 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3209 if (!readonly && (ext4_has_feature_quota(sb) || 3210 ext4_has_feature_project(sb))) { 3211 ext4_msg(sb, KERN_ERR, 3212 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3213 return 0; 3214 } 3215 #endif /* CONFIG_QUOTA */ 3216 return 1; 3217 } 3218 3219 /* 3220 * This function is called once a day if we have errors logged 3221 * on the file system 3222 */ 3223 static void print_daily_error_info(struct timer_list *t) 3224 { 3225 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3226 struct super_block *sb = sbi->s_sb; 3227 struct ext4_super_block *es = sbi->s_es; 3228 3229 if (es->s_error_count) 3230 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3231 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3232 le32_to_cpu(es->s_error_count)); 3233 if (es->s_first_error_time) { 3234 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3235 sb->s_id, 3236 ext4_get_tstamp(es, s_first_error_time), 3237 (int) sizeof(es->s_first_error_func), 3238 es->s_first_error_func, 3239 le32_to_cpu(es->s_first_error_line)); 3240 if (es->s_first_error_ino) 3241 printk(KERN_CONT ": inode %u", 3242 le32_to_cpu(es->s_first_error_ino)); 3243 if (es->s_first_error_block) 3244 printk(KERN_CONT ": block %llu", (unsigned long long) 3245 le64_to_cpu(es->s_first_error_block)); 3246 printk(KERN_CONT "\n"); 3247 } 3248 if (es->s_last_error_time) { 3249 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3250 sb->s_id, 3251 ext4_get_tstamp(es, s_last_error_time), 3252 (int) sizeof(es->s_last_error_func), 3253 es->s_last_error_func, 3254 le32_to_cpu(es->s_last_error_line)); 3255 if (es->s_last_error_ino) 3256 printk(KERN_CONT ": inode %u", 3257 le32_to_cpu(es->s_last_error_ino)); 3258 if (es->s_last_error_block) 3259 printk(KERN_CONT ": block %llu", (unsigned long long) 3260 le64_to_cpu(es->s_last_error_block)); 3261 printk(KERN_CONT "\n"); 3262 } 3263 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3264 } 3265 3266 /* Find next suitable group and run ext4_init_inode_table */ 3267 static int ext4_run_li_request(struct ext4_li_request *elr) 3268 { 3269 struct ext4_group_desc *gdp = NULL; 3270 struct super_block *sb = elr->lr_super; 3271 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3272 ext4_group_t group = elr->lr_next_group; 3273 unsigned long timeout = 0; 3274 unsigned int prefetch_ios = 0; 3275 int ret = 0; 3276 3277 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3278 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3279 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3280 if (prefetch_ios) 3281 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3282 prefetch_ios); 3283 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3284 prefetch_ios); 3285 if (group >= elr->lr_next_group) { 3286 ret = 1; 3287 if (elr->lr_first_not_zeroed != ngroups && 3288 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3289 elr->lr_next_group = elr->lr_first_not_zeroed; 3290 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3291 ret = 0; 3292 } 3293 } 3294 return ret; 3295 } 3296 3297 for (; group < ngroups; group++) { 3298 gdp = ext4_get_group_desc(sb, group, NULL); 3299 if (!gdp) { 3300 ret = 1; 3301 break; 3302 } 3303 3304 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3305 break; 3306 } 3307 3308 if (group >= ngroups) 3309 ret = 1; 3310 3311 if (!ret) { 3312 timeout = jiffies; 3313 ret = ext4_init_inode_table(sb, group, 3314 elr->lr_timeout ? 0 : 1); 3315 trace_ext4_lazy_itable_init(sb, group); 3316 if (elr->lr_timeout == 0) { 3317 timeout = (jiffies - timeout) * 3318 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3319 elr->lr_timeout = timeout; 3320 } 3321 elr->lr_next_sched = jiffies + elr->lr_timeout; 3322 elr->lr_next_group = group + 1; 3323 } 3324 return ret; 3325 } 3326 3327 /* 3328 * Remove lr_request from the list_request and free the 3329 * request structure. Should be called with li_list_mtx held 3330 */ 3331 static void ext4_remove_li_request(struct ext4_li_request *elr) 3332 { 3333 if (!elr) 3334 return; 3335 3336 list_del(&elr->lr_request); 3337 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3338 kfree(elr); 3339 } 3340 3341 static void ext4_unregister_li_request(struct super_block *sb) 3342 { 3343 mutex_lock(&ext4_li_mtx); 3344 if (!ext4_li_info) { 3345 mutex_unlock(&ext4_li_mtx); 3346 return; 3347 } 3348 3349 mutex_lock(&ext4_li_info->li_list_mtx); 3350 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3351 mutex_unlock(&ext4_li_info->li_list_mtx); 3352 mutex_unlock(&ext4_li_mtx); 3353 } 3354 3355 static struct task_struct *ext4_lazyinit_task; 3356 3357 /* 3358 * This is the function where ext4lazyinit thread lives. It walks 3359 * through the request list searching for next scheduled filesystem. 3360 * When such a fs is found, run the lazy initialization request 3361 * (ext4_rn_li_request) and keep track of the time spend in this 3362 * function. Based on that time we compute next schedule time of 3363 * the request. When walking through the list is complete, compute 3364 * next waking time and put itself into sleep. 3365 */ 3366 static int ext4_lazyinit_thread(void *arg) 3367 { 3368 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3369 struct list_head *pos, *n; 3370 struct ext4_li_request *elr; 3371 unsigned long next_wakeup, cur; 3372 3373 BUG_ON(NULL == eli); 3374 3375 cont_thread: 3376 while (true) { 3377 next_wakeup = MAX_JIFFY_OFFSET; 3378 3379 mutex_lock(&eli->li_list_mtx); 3380 if (list_empty(&eli->li_request_list)) { 3381 mutex_unlock(&eli->li_list_mtx); 3382 goto exit_thread; 3383 } 3384 list_for_each_safe(pos, n, &eli->li_request_list) { 3385 int err = 0; 3386 int progress = 0; 3387 elr = list_entry(pos, struct ext4_li_request, 3388 lr_request); 3389 3390 if (time_before(jiffies, elr->lr_next_sched)) { 3391 if (time_before(elr->lr_next_sched, next_wakeup)) 3392 next_wakeup = elr->lr_next_sched; 3393 continue; 3394 } 3395 if (down_read_trylock(&elr->lr_super->s_umount)) { 3396 if (sb_start_write_trylock(elr->lr_super)) { 3397 progress = 1; 3398 /* 3399 * We hold sb->s_umount, sb can not 3400 * be removed from the list, it is 3401 * now safe to drop li_list_mtx 3402 */ 3403 mutex_unlock(&eli->li_list_mtx); 3404 err = ext4_run_li_request(elr); 3405 sb_end_write(elr->lr_super); 3406 mutex_lock(&eli->li_list_mtx); 3407 n = pos->next; 3408 } 3409 up_read((&elr->lr_super->s_umount)); 3410 } 3411 /* error, remove the lazy_init job */ 3412 if (err) { 3413 ext4_remove_li_request(elr); 3414 continue; 3415 } 3416 if (!progress) { 3417 elr->lr_next_sched = jiffies + 3418 (prandom_u32() 3419 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3420 } 3421 if (time_before(elr->lr_next_sched, next_wakeup)) 3422 next_wakeup = elr->lr_next_sched; 3423 } 3424 mutex_unlock(&eli->li_list_mtx); 3425 3426 try_to_freeze(); 3427 3428 cur = jiffies; 3429 if ((time_after_eq(cur, next_wakeup)) || 3430 (MAX_JIFFY_OFFSET == next_wakeup)) { 3431 cond_resched(); 3432 continue; 3433 } 3434 3435 schedule_timeout_interruptible(next_wakeup - cur); 3436 3437 if (kthread_should_stop()) { 3438 ext4_clear_request_list(); 3439 goto exit_thread; 3440 } 3441 } 3442 3443 exit_thread: 3444 /* 3445 * It looks like the request list is empty, but we need 3446 * to check it under the li_list_mtx lock, to prevent any 3447 * additions into it, and of course we should lock ext4_li_mtx 3448 * to atomically free the list and ext4_li_info, because at 3449 * this point another ext4 filesystem could be registering 3450 * new one. 3451 */ 3452 mutex_lock(&ext4_li_mtx); 3453 mutex_lock(&eli->li_list_mtx); 3454 if (!list_empty(&eli->li_request_list)) { 3455 mutex_unlock(&eli->li_list_mtx); 3456 mutex_unlock(&ext4_li_mtx); 3457 goto cont_thread; 3458 } 3459 mutex_unlock(&eli->li_list_mtx); 3460 kfree(ext4_li_info); 3461 ext4_li_info = NULL; 3462 mutex_unlock(&ext4_li_mtx); 3463 3464 return 0; 3465 } 3466 3467 static void ext4_clear_request_list(void) 3468 { 3469 struct list_head *pos, *n; 3470 struct ext4_li_request *elr; 3471 3472 mutex_lock(&ext4_li_info->li_list_mtx); 3473 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3474 elr = list_entry(pos, struct ext4_li_request, 3475 lr_request); 3476 ext4_remove_li_request(elr); 3477 } 3478 mutex_unlock(&ext4_li_info->li_list_mtx); 3479 } 3480 3481 static int ext4_run_lazyinit_thread(void) 3482 { 3483 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3484 ext4_li_info, "ext4lazyinit"); 3485 if (IS_ERR(ext4_lazyinit_task)) { 3486 int err = PTR_ERR(ext4_lazyinit_task); 3487 ext4_clear_request_list(); 3488 kfree(ext4_li_info); 3489 ext4_li_info = NULL; 3490 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3491 "initialization thread\n", 3492 err); 3493 return err; 3494 } 3495 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3496 return 0; 3497 } 3498 3499 /* 3500 * Check whether it make sense to run itable init. thread or not. 3501 * If there is at least one uninitialized inode table, return 3502 * corresponding group number, else the loop goes through all 3503 * groups and return total number of groups. 3504 */ 3505 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3506 { 3507 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3508 struct ext4_group_desc *gdp = NULL; 3509 3510 if (!ext4_has_group_desc_csum(sb)) 3511 return ngroups; 3512 3513 for (group = 0; group < ngroups; group++) { 3514 gdp = ext4_get_group_desc(sb, group, NULL); 3515 if (!gdp) 3516 continue; 3517 3518 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3519 break; 3520 } 3521 3522 return group; 3523 } 3524 3525 static int ext4_li_info_new(void) 3526 { 3527 struct ext4_lazy_init *eli = NULL; 3528 3529 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3530 if (!eli) 3531 return -ENOMEM; 3532 3533 INIT_LIST_HEAD(&eli->li_request_list); 3534 mutex_init(&eli->li_list_mtx); 3535 3536 eli->li_state |= EXT4_LAZYINIT_QUIT; 3537 3538 ext4_li_info = eli; 3539 3540 return 0; 3541 } 3542 3543 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3544 ext4_group_t start) 3545 { 3546 struct ext4_li_request *elr; 3547 3548 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3549 if (!elr) 3550 return NULL; 3551 3552 elr->lr_super = sb; 3553 elr->lr_first_not_zeroed = start; 3554 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3555 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3556 elr->lr_next_group = start; 3557 } else { 3558 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3559 } 3560 3561 /* 3562 * Randomize first schedule time of the request to 3563 * spread the inode table initialization requests 3564 * better. 3565 */ 3566 elr->lr_next_sched = jiffies + (prandom_u32() % 3567 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3568 return elr; 3569 } 3570 3571 int ext4_register_li_request(struct super_block *sb, 3572 ext4_group_t first_not_zeroed) 3573 { 3574 struct ext4_sb_info *sbi = EXT4_SB(sb); 3575 struct ext4_li_request *elr = NULL; 3576 ext4_group_t ngroups = sbi->s_groups_count; 3577 int ret = 0; 3578 3579 mutex_lock(&ext4_li_mtx); 3580 if (sbi->s_li_request != NULL) { 3581 /* 3582 * Reset timeout so it can be computed again, because 3583 * s_li_wait_mult might have changed. 3584 */ 3585 sbi->s_li_request->lr_timeout = 0; 3586 goto out; 3587 } 3588 3589 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3590 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3591 !test_opt(sb, INIT_INODE_TABLE))) 3592 goto out; 3593 3594 elr = ext4_li_request_new(sb, first_not_zeroed); 3595 if (!elr) { 3596 ret = -ENOMEM; 3597 goto out; 3598 } 3599 3600 if (NULL == ext4_li_info) { 3601 ret = ext4_li_info_new(); 3602 if (ret) 3603 goto out; 3604 } 3605 3606 mutex_lock(&ext4_li_info->li_list_mtx); 3607 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3608 mutex_unlock(&ext4_li_info->li_list_mtx); 3609 3610 sbi->s_li_request = elr; 3611 /* 3612 * set elr to NULL here since it has been inserted to 3613 * the request_list and the removal and free of it is 3614 * handled by ext4_clear_request_list from now on. 3615 */ 3616 elr = NULL; 3617 3618 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3619 ret = ext4_run_lazyinit_thread(); 3620 if (ret) 3621 goto out; 3622 } 3623 out: 3624 mutex_unlock(&ext4_li_mtx); 3625 if (ret) 3626 kfree(elr); 3627 return ret; 3628 } 3629 3630 /* 3631 * We do not need to lock anything since this is called on 3632 * module unload. 3633 */ 3634 static void ext4_destroy_lazyinit_thread(void) 3635 { 3636 /* 3637 * If thread exited earlier 3638 * there's nothing to be done. 3639 */ 3640 if (!ext4_li_info || !ext4_lazyinit_task) 3641 return; 3642 3643 kthread_stop(ext4_lazyinit_task); 3644 } 3645 3646 static int set_journal_csum_feature_set(struct super_block *sb) 3647 { 3648 int ret = 1; 3649 int compat, incompat; 3650 struct ext4_sb_info *sbi = EXT4_SB(sb); 3651 3652 if (ext4_has_metadata_csum(sb)) { 3653 /* journal checksum v3 */ 3654 compat = 0; 3655 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3656 } else { 3657 /* journal checksum v1 */ 3658 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3659 incompat = 0; 3660 } 3661 3662 jbd2_journal_clear_features(sbi->s_journal, 3663 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3664 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3665 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3666 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3667 ret = jbd2_journal_set_features(sbi->s_journal, 3668 compat, 0, 3669 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3670 incompat); 3671 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3672 ret = jbd2_journal_set_features(sbi->s_journal, 3673 compat, 0, 3674 incompat); 3675 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3676 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3677 } else { 3678 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3679 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3680 } 3681 3682 return ret; 3683 } 3684 3685 /* 3686 * Note: calculating the overhead so we can be compatible with 3687 * historical BSD practice is quite difficult in the face of 3688 * clusters/bigalloc. This is because multiple metadata blocks from 3689 * different block group can end up in the same allocation cluster. 3690 * Calculating the exact overhead in the face of clustered allocation 3691 * requires either O(all block bitmaps) in memory or O(number of block 3692 * groups**2) in time. We will still calculate the superblock for 3693 * older file systems --- and if we come across with a bigalloc file 3694 * system with zero in s_overhead_clusters the estimate will be close to 3695 * correct especially for very large cluster sizes --- but for newer 3696 * file systems, it's better to calculate this figure once at mkfs 3697 * time, and store it in the superblock. If the superblock value is 3698 * present (even for non-bigalloc file systems), we will use it. 3699 */ 3700 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3701 char *buf) 3702 { 3703 struct ext4_sb_info *sbi = EXT4_SB(sb); 3704 struct ext4_group_desc *gdp; 3705 ext4_fsblk_t first_block, last_block, b; 3706 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3707 int s, j, count = 0; 3708 3709 if (!ext4_has_feature_bigalloc(sb)) 3710 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3711 sbi->s_itb_per_group + 2); 3712 3713 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3714 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3715 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3716 for (i = 0; i < ngroups; i++) { 3717 gdp = ext4_get_group_desc(sb, i, NULL); 3718 b = ext4_block_bitmap(sb, gdp); 3719 if (b >= first_block && b <= last_block) { 3720 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3721 count++; 3722 } 3723 b = ext4_inode_bitmap(sb, gdp); 3724 if (b >= first_block && b <= last_block) { 3725 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3726 count++; 3727 } 3728 b = ext4_inode_table(sb, gdp); 3729 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3730 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3731 int c = EXT4_B2C(sbi, b - first_block); 3732 ext4_set_bit(c, buf); 3733 count++; 3734 } 3735 if (i != grp) 3736 continue; 3737 s = 0; 3738 if (ext4_bg_has_super(sb, grp)) { 3739 ext4_set_bit(s++, buf); 3740 count++; 3741 } 3742 j = ext4_bg_num_gdb(sb, grp); 3743 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3744 ext4_error(sb, "Invalid number of block group " 3745 "descriptor blocks: %d", j); 3746 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3747 } 3748 count += j; 3749 for (; j > 0; j--) 3750 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3751 } 3752 if (!count) 3753 return 0; 3754 return EXT4_CLUSTERS_PER_GROUP(sb) - 3755 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3756 } 3757 3758 /* 3759 * Compute the overhead and stash it in sbi->s_overhead 3760 */ 3761 int ext4_calculate_overhead(struct super_block *sb) 3762 { 3763 struct ext4_sb_info *sbi = EXT4_SB(sb); 3764 struct ext4_super_block *es = sbi->s_es; 3765 struct inode *j_inode; 3766 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3767 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3768 ext4_fsblk_t overhead = 0; 3769 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3770 3771 if (!buf) 3772 return -ENOMEM; 3773 3774 /* 3775 * Compute the overhead (FS structures). This is constant 3776 * for a given filesystem unless the number of block groups 3777 * changes so we cache the previous value until it does. 3778 */ 3779 3780 /* 3781 * All of the blocks before first_data_block are overhead 3782 */ 3783 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3784 3785 /* 3786 * Add the overhead found in each block group 3787 */ 3788 for (i = 0; i < ngroups; i++) { 3789 int blks; 3790 3791 blks = count_overhead(sb, i, buf); 3792 overhead += blks; 3793 if (blks) 3794 memset(buf, 0, PAGE_SIZE); 3795 cond_resched(); 3796 } 3797 3798 /* 3799 * Add the internal journal blocks whether the journal has been 3800 * loaded or not 3801 */ 3802 if (sbi->s_journal && !sbi->s_journal_bdev) 3803 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3804 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3805 /* j_inum for internal journal is non-zero */ 3806 j_inode = ext4_get_journal_inode(sb, j_inum); 3807 if (j_inode) { 3808 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3809 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3810 iput(j_inode); 3811 } else { 3812 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3813 } 3814 } 3815 sbi->s_overhead = overhead; 3816 smp_wmb(); 3817 free_page((unsigned long) buf); 3818 return 0; 3819 } 3820 3821 static void ext4_set_resv_clusters(struct super_block *sb) 3822 { 3823 ext4_fsblk_t resv_clusters; 3824 struct ext4_sb_info *sbi = EXT4_SB(sb); 3825 3826 /* 3827 * There's no need to reserve anything when we aren't using extents. 3828 * The space estimates are exact, there are no unwritten extents, 3829 * hole punching doesn't need new metadata... This is needed especially 3830 * to keep ext2/3 backward compatibility. 3831 */ 3832 if (!ext4_has_feature_extents(sb)) 3833 return; 3834 /* 3835 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3836 * This should cover the situations where we can not afford to run 3837 * out of space like for example punch hole, or converting 3838 * unwritten extents in delalloc path. In most cases such 3839 * allocation would require 1, or 2 blocks, higher numbers are 3840 * very rare. 3841 */ 3842 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3843 sbi->s_cluster_bits); 3844 3845 do_div(resv_clusters, 50); 3846 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3847 3848 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3849 } 3850 3851 static const char *ext4_quota_mode(struct super_block *sb) 3852 { 3853 #ifdef CONFIG_QUOTA 3854 if (!ext4_quota_capable(sb)) 3855 return "none"; 3856 3857 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3858 return "journalled"; 3859 else 3860 return "writeback"; 3861 #else 3862 return "disabled"; 3863 #endif 3864 } 3865 3866 static void ext4_setup_csum_trigger(struct super_block *sb, 3867 enum ext4_journal_trigger_type type, 3868 void (*trigger)( 3869 struct jbd2_buffer_trigger_type *type, 3870 struct buffer_head *bh, 3871 void *mapped_data, 3872 size_t size)) 3873 { 3874 struct ext4_sb_info *sbi = EXT4_SB(sb); 3875 3876 sbi->s_journal_triggers[type].sb = sb; 3877 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 3878 } 3879 3880 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3881 { 3882 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3883 char *orig_data = kstrdup(data, GFP_KERNEL); 3884 struct buffer_head *bh, **group_desc; 3885 struct ext4_super_block *es = NULL; 3886 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3887 struct flex_groups **flex_groups; 3888 ext4_fsblk_t block; 3889 ext4_fsblk_t sb_block = get_sb_block(&data); 3890 ext4_fsblk_t logical_sb_block; 3891 unsigned long offset = 0; 3892 unsigned long def_mount_opts; 3893 struct inode *root; 3894 const char *descr; 3895 int ret = -ENOMEM; 3896 int blocksize, clustersize; 3897 unsigned int db_count; 3898 unsigned int i; 3899 int needs_recovery, has_huge_files; 3900 __u64 blocks_count; 3901 int err = 0; 3902 ext4_group_t first_not_zeroed; 3903 struct ext4_parsed_options parsed_opts; 3904 3905 /* Set defaults for the variables that will be set during parsing */ 3906 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3907 parsed_opts.journal_devnum = 0; 3908 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 3909 3910 if ((data && !orig_data) || !sbi) 3911 goto out_free_base; 3912 3913 sbi->s_daxdev = dax_dev; 3914 sbi->s_blockgroup_lock = 3915 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3916 if (!sbi->s_blockgroup_lock) 3917 goto out_free_base; 3918 3919 sb->s_fs_info = sbi; 3920 sbi->s_sb = sb; 3921 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3922 sbi->s_sb_block = sb_block; 3923 sbi->s_sectors_written_start = 3924 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 3925 3926 /* Cleanup superblock name */ 3927 strreplace(sb->s_id, '/', '!'); 3928 3929 /* -EINVAL is default */ 3930 ret = -EINVAL; 3931 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3932 if (!blocksize) { 3933 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3934 goto out_fail; 3935 } 3936 3937 /* 3938 * The ext4 superblock will not be buffer aligned for other than 1kB 3939 * block sizes. We need to calculate the offset from buffer start. 3940 */ 3941 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3942 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3943 offset = do_div(logical_sb_block, blocksize); 3944 } else { 3945 logical_sb_block = sb_block; 3946 } 3947 3948 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 3949 if (IS_ERR(bh)) { 3950 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3951 ret = PTR_ERR(bh); 3952 goto out_fail; 3953 } 3954 /* 3955 * Note: s_es must be initialized as soon as possible because 3956 * some ext4 macro-instructions depend on its value 3957 */ 3958 es = (struct ext4_super_block *) (bh->b_data + offset); 3959 sbi->s_es = es; 3960 sb->s_magic = le16_to_cpu(es->s_magic); 3961 if (sb->s_magic != EXT4_SUPER_MAGIC) 3962 goto cantfind_ext4; 3963 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3964 3965 /* Warn if metadata_csum and gdt_csum are both set. */ 3966 if (ext4_has_feature_metadata_csum(sb) && 3967 ext4_has_feature_gdt_csum(sb)) 3968 ext4_warning(sb, "metadata_csum and uninit_bg are " 3969 "redundant flags; please run fsck."); 3970 3971 /* Check for a known checksum algorithm */ 3972 if (!ext4_verify_csum_type(sb, es)) { 3973 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3974 "unknown checksum algorithm."); 3975 silent = 1; 3976 goto cantfind_ext4; 3977 } 3978 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 3979 ext4_orphan_file_block_trigger); 3980 3981 /* Load the checksum driver */ 3982 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3983 if (IS_ERR(sbi->s_chksum_driver)) { 3984 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3985 ret = PTR_ERR(sbi->s_chksum_driver); 3986 sbi->s_chksum_driver = NULL; 3987 goto failed_mount; 3988 } 3989 3990 /* Check superblock checksum */ 3991 if (!ext4_superblock_csum_verify(sb, es)) { 3992 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3993 "invalid superblock checksum. Run e2fsck?"); 3994 silent = 1; 3995 ret = -EFSBADCRC; 3996 goto cantfind_ext4; 3997 } 3998 3999 /* Precompute checksum seed for all metadata */ 4000 if (ext4_has_feature_csum_seed(sb)) 4001 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4002 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4003 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4004 sizeof(es->s_uuid)); 4005 4006 /* Set defaults before we parse the mount options */ 4007 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4008 set_opt(sb, INIT_INODE_TABLE); 4009 if (def_mount_opts & EXT4_DEFM_DEBUG) 4010 set_opt(sb, DEBUG); 4011 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4012 set_opt(sb, GRPID); 4013 if (def_mount_opts & EXT4_DEFM_UID16) 4014 set_opt(sb, NO_UID32); 4015 /* xattr user namespace & acls are now defaulted on */ 4016 set_opt(sb, XATTR_USER); 4017 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4018 set_opt(sb, POSIX_ACL); 4019 #endif 4020 if (ext4_has_feature_fast_commit(sb)) 4021 set_opt2(sb, JOURNAL_FAST_COMMIT); 4022 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4023 if (ext4_has_metadata_csum(sb)) 4024 set_opt(sb, JOURNAL_CHECKSUM); 4025 4026 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4027 set_opt(sb, JOURNAL_DATA); 4028 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4029 set_opt(sb, ORDERED_DATA); 4030 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4031 set_opt(sb, WRITEBACK_DATA); 4032 4033 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4034 set_opt(sb, ERRORS_PANIC); 4035 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4036 set_opt(sb, ERRORS_CONT); 4037 else 4038 set_opt(sb, ERRORS_RO); 4039 /* block_validity enabled by default; disable with noblock_validity */ 4040 set_opt(sb, BLOCK_VALIDITY); 4041 if (def_mount_opts & EXT4_DEFM_DISCARD) 4042 set_opt(sb, DISCARD); 4043 4044 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4045 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4046 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4047 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4048 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4049 4050 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4051 set_opt(sb, BARRIER); 4052 4053 /* 4054 * enable delayed allocation by default 4055 * Use -o nodelalloc to turn it off 4056 */ 4057 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4058 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4059 set_opt(sb, DELALLOC); 4060 4061 /* 4062 * set default s_li_wait_mult for lazyinit, for the case there is 4063 * no mount option specified. 4064 */ 4065 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4066 4067 if (le32_to_cpu(es->s_log_block_size) > 4068 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4069 ext4_msg(sb, KERN_ERR, 4070 "Invalid log block size: %u", 4071 le32_to_cpu(es->s_log_block_size)); 4072 goto failed_mount; 4073 } 4074 if (le32_to_cpu(es->s_log_cluster_size) > 4075 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4076 ext4_msg(sb, KERN_ERR, 4077 "Invalid log cluster size: %u", 4078 le32_to_cpu(es->s_log_cluster_size)); 4079 goto failed_mount; 4080 } 4081 4082 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4083 4084 if (blocksize == PAGE_SIZE) 4085 set_opt(sb, DIOREAD_NOLOCK); 4086 4087 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4088 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4089 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4090 } else { 4091 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4092 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4093 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4094 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4095 sbi->s_first_ino); 4096 goto failed_mount; 4097 } 4098 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4099 (!is_power_of_2(sbi->s_inode_size)) || 4100 (sbi->s_inode_size > blocksize)) { 4101 ext4_msg(sb, KERN_ERR, 4102 "unsupported inode size: %d", 4103 sbi->s_inode_size); 4104 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4105 goto failed_mount; 4106 } 4107 /* 4108 * i_atime_extra is the last extra field available for 4109 * [acm]times in struct ext4_inode. Checking for that 4110 * field should suffice to ensure we have extra space 4111 * for all three. 4112 */ 4113 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4114 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4115 sb->s_time_gran = 1; 4116 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4117 } else { 4118 sb->s_time_gran = NSEC_PER_SEC; 4119 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4120 } 4121 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4122 } 4123 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4124 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4125 EXT4_GOOD_OLD_INODE_SIZE; 4126 if (ext4_has_feature_extra_isize(sb)) { 4127 unsigned v, max = (sbi->s_inode_size - 4128 EXT4_GOOD_OLD_INODE_SIZE); 4129 4130 v = le16_to_cpu(es->s_want_extra_isize); 4131 if (v > max) { 4132 ext4_msg(sb, KERN_ERR, 4133 "bad s_want_extra_isize: %d", v); 4134 goto failed_mount; 4135 } 4136 if (sbi->s_want_extra_isize < v) 4137 sbi->s_want_extra_isize = v; 4138 4139 v = le16_to_cpu(es->s_min_extra_isize); 4140 if (v > max) { 4141 ext4_msg(sb, KERN_ERR, 4142 "bad s_min_extra_isize: %d", v); 4143 goto failed_mount; 4144 } 4145 if (sbi->s_want_extra_isize < v) 4146 sbi->s_want_extra_isize = v; 4147 } 4148 } 4149 4150 if (sbi->s_es->s_mount_opts[0]) { 4151 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4152 sizeof(sbi->s_es->s_mount_opts), 4153 GFP_KERNEL); 4154 if (!s_mount_opts) 4155 goto failed_mount; 4156 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4157 ext4_msg(sb, KERN_WARNING, 4158 "failed to parse options in superblock: %s", 4159 s_mount_opts); 4160 } 4161 kfree(s_mount_opts); 4162 } 4163 sbi->s_def_mount_opt = sbi->s_mount_opt; 4164 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4165 goto failed_mount; 4166 4167 #ifdef CONFIG_UNICODE 4168 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4169 const struct ext4_sb_encodings *encoding_info; 4170 struct unicode_map *encoding; 4171 __u16 encoding_flags; 4172 4173 if (ext4_sb_read_encoding(es, &encoding_info, 4174 &encoding_flags)) { 4175 ext4_msg(sb, KERN_ERR, 4176 "Encoding requested by superblock is unknown"); 4177 goto failed_mount; 4178 } 4179 4180 encoding = utf8_load(encoding_info->version); 4181 if (IS_ERR(encoding)) { 4182 ext4_msg(sb, KERN_ERR, 4183 "can't mount with superblock charset: %s-%s " 4184 "not supported by the kernel. flags: 0x%x.", 4185 encoding_info->name, encoding_info->version, 4186 encoding_flags); 4187 goto failed_mount; 4188 } 4189 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4190 "%s-%s with flags 0x%hx", encoding_info->name, 4191 encoding_info->version?:"\b", encoding_flags); 4192 4193 sb->s_encoding = encoding; 4194 sb->s_encoding_flags = encoding_flags; 4195 } 4196 #endif 4197 4198 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4199 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4200 /* can't mount with both data=journal and dioread_nolock. */ 4201 clear_opt(sb, DIOREAD_NOLOCK); 4202 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4203 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4204 ext4_msg(sb, KERN_ERR, "can't mount with " 4205 "both data=journal and delalloc"); 4206 goto failed_mount; 4207 } 4208 if (test_opt(sb, DAX_ALWAYS)) { 4209 ext4_msg(sb, KERN_ERR, "can't mount with " 4210 "both data=journal and dax"); 4211 goto failed_mount; 4212 } 4213 if (ext4_has_feature_encrypt(sb)) { 4214 ext4_msg(sb, KERN_WARNING, 4215 "encrypted files will use data=ordered " 4216 "instead of data journaling mode"); 4217 } 4218 if (test_opt(sb, DELALLOC)) 4219 clear_opt(sb, DELALLOC); 4220 } else { 4221 sb->s_iflags |= SB_I_CGROUPWB; 4222 } 4223 4224 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4225 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4226 4227 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4228 (ext4_has_compat_features(sb) || 4229 ext4_has_ro_compat_features(sb) || 4230 ext4_has_incompat_features(sb))) 4231 ext4_msg(sb, KERN_WARNING, 4232 "feature flags set on rev 0 fs, " 4233 "running e2fsck is recommended"); 4234 4235 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4236 set_opt2(sb, HURD_COMPAT); 4237 if (ext4_has_feature_64bit(sb)) { 4238 ext4_msg(sb, KERN_ERR, 4239 "The Hurd can't support 64-bit file systems"); 4240 goto failed_mount; 4241 } 4242 4243 /* 4244 * ea_inode feature uses l_i_version field which is not 4245 * available in HURD_COMPAT mode. 4246 */ 4247 if (ext4_has_feature_ea_inode(sb)) { 4248 ext4_msg(sb, KERN_ERR, 4249 "ea_inode feature is not supported for Hurd"); 4250 goto failed_mount; 4251 } 4252 } 4253 4254 if (IS_EXT2_SB(sb)) { 4255 if (ext2_feature_set_ok(sb)) 4256 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4257 "using the ext4 subsystem"); 4258 else { 4259 /* 4260 * If we're probing be silent, if this looks like 4261 * it's actually an ext[34] filesystem. 4262 */ 4263 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4264 goto failed_mount; 4265 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4266 "to feature incompatibilities"); 4267 goto failed_mount; 4268 } 4269 } 4270 4271 if (IS_EXT3_SB(sb)) { 4272 if (ext3_feature_set_ok(sb)) 4273 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4274 "using the ext4 subsystem"); 4275 else { 4276 /* 4277 * If we're probing be silent, if this looks like 4278 * it's actually an ext4 filesystem. 4279 */ 4280 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4281 goto failed_mount; 4282 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4283 "to feature incompatibilities"); 4284 goto failed_mount; 4285 } 4286 } 4287 4288 /* 4289 * Check feature flags regardless of the revision level, since we 4290 * previously didn't change the revision level when setting the flags, 4291 * so there is a chance incompat flags are set on a rev 0 filesystem. 4292 */ 4293 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4294 goto failed_mount; 4295 4296 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4297 ext4_msg(sb, KERN_ERR, 4298 "Number of reserved GDT blocks insanely large: %d", 4299 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4300 goto failed_mount; 4301 } 4302 4303 if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0, 4304 bdev_nr_sectors(sb->s_bdev))) 4305 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4306 4307 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4308 if (ext4_has_feature_inline_data(sb)) { 4309 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4310 " that may contain inline data"); 4311 goto failed_mount; 4312 } 4313 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4314 ext4_msg(sb, KERN_ERR, 4315 "DAX unsupported by block device."); 4316 goto failed_mount; 4317 } 4318 } 4319 4320 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4321 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4322 es->s_encryption_level); 4323 goto failed_mount; 4324 } 4325 4326 if (sb->s_blocksize != blocksize) { 4327 /* 4328 * bh must be released before kill_bdev(), otherwise 4329 * it won't be freed and its page also. kill_bdev() 4330 * is called by sb_set_blocksize(). 4331 */ 4332 brelse(bh); 4333 /* Validate the filesystem blocksize */ 4334 if (!sb_set_blocksize(sb, blocksize)) { 4335 ext4_msg(sb, KERN_ERR, "bad block size %d", 4336 blocksize); 4337 bh = NULL; 4338 goto failed_mount; 4339 } 4340 4341 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4342 offset = do_div(logical_sb_block, blocksize); 4343 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4344 if (IS_ERR(bh)) { 4345 ext4_msg(sb, KERN_ERR, 4346 "Can't read superblock on 2nd try"); 4347 ret = PTR_ERR(bh); 4348 bh = NULL; 4349 goto failed_mount; 4350 } 4351 es = (struct ext4_super_block *)(bh->b_data + offset); 4352 sbi->s_es = es; 4353 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4354 ext4_msg(sb, KERN_ERR, 4355 "Magic mismatch, very weird!"); 4356 goto failed_mount; 4357 } 4358 } 4359 4360 has_huge_files = ext4_has_feature_huge_file(sb); 4361 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4362 has_huge_files); 4363 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4364 4365 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4366 if (ext4_has_feature_64bit(sb)) { 4367 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4368 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4369 !is_power_of_2(sbi->s_desc_size)) { 4370 ext4_msg(sb, KERN_ERR, 4371 "unsupported descriptor size %lu", 4372 sbi->s_desc_size); 4373 goto failed_mount; 4374 } 4375 } else 4376 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4377 4378 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4379 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4380 4381 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4382 if (sbi->s_inodes_per_block == 0) 4383 goto cantfind_ext4; 4384 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4385 sbi->s_inodes_per_group > blocksize * 8) { 4386 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4387 sbi->s_inodes_per_group); 4388 goto failed_mount; 4389 } 4390 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4391 sbi->s_inodes_per_block; 4392 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4393 sbi->s_sbh = bh; 4394 sbi->s_mount_state = le16_to_cpu(es->s_state); 4395 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4396 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4397 4398 for (i = 0; i < 4; i++) 4399 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4400 sbi->s_def_hash_version = es->s_def_hash_version; 4401 if (ext4_has_feature_dir_index(sb)) { 4402 i = le32_to_cpu(es->s_flags); 4403 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4404 sbi->s_hash_unsigned = 3; 4405 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4406 #ifdef __CHAR_UNSIGNED__ 4407 if (!sb_rdonly(sb)) 4408 es->s_flags |= 4409 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4410 sbi->s_hash_unsigned = 3; 4411 #else 4412 if (!sb_rdonly(sb)) 4413 es->s_flags |= 4414 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4415 #endif 4416 } 4417 } 4418 4419 /* Handle clustersize */ 4420 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4421 if (ext4_has_feature_bigalloc(sb)) { 4422 if (clustersize < blocksize) { 4423 ext4_msg(sb, KERN_ERR, 4424 "cluster size (%d) smaller than " 4425 "block size (%d)", clustersize, blocksize); 4426 goto failed_mount; 4427 } 4428 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4429 le32_to_cpu(es->s_log_block_size); 4430 sbi->s_clusters_per_group = 4431 le32_to_cpu(es->s_clusters_per_group); 4432 if (sbi->s_clusters_per_group > blocksize * 8) { 4433 ext4_msg(sb, KERN_ERR, 4434 "#clusters per group too big: %lu", 4435 sbi->s_clusters_per_group); 4436 goto failed_mount; 4437 } 4438 if (sbi->s_blocks_per_group != 4439 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4440 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4441 "clusters per group (%lu) inconsistent", 4442 sbi->s_blocks_per_group, 4443 sbi->s_clusters_per_group); 4444 goto failed_mount; 4445 } 4446 } else { 4447 if (clustersize != blocksize) { 4448 ext4_msg(sb, KERN_ERR, 4449 "fragment/cluster size (%d) != " 4450 "block size (%d)", clustersize, blocksize); 4451 goto failed_mount; 4452 } 4453 if (sbi->s_blocks_per_group > blocksize * 8) { 4454 ext4_msg(sb, KERN_ERR, 4455 "#blocks per group too big: %lu", 4456 sbi->s_blocks_per_group); 4457 goto failed_mount; 4458 } 4459 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4460 sbi->s_cluster_bits = 0; 4461 } 4462 sbi->s_cluster_ratio = clustersize / blocksize; 4463 4464 /* Do we have standard group size of clustersize * 8 blocks ? */ 4465 if (sbi->s_blocks_per_group == clustersize << 3) 4466 set_opt2(sb, STD_GROUP_SIZE); 4467 4468 /* 4469 * Test whether we have more sectors than will fit in sector_t, 4470 * and whether the max offset is addressable by the page cache. 4471 */ 4472 err = generic_check_addressable(sb->s_blocksize_bits, 4473 ext4_blocks_count(es)); 4474 if (err) { 4475 ext4_msg(sb, KERN_ERR, "filesystem" 4476 " too large to mount safely on this system"); 4477 goto failed_mount; 4478 } 4479 4480 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4481 goto cantfind_ext4; 4482 4483 /* check blocks count against device size */ 4484 blocks_count = sb_bdev_nr_blocks(sb); 4485 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4486 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4487 "exceeds size of device (%llu blocks)", 4488 ext4_blocks_count(es), blocks_count); 4489 goto failed_mount; 4490 } 4491 4492 /* 4493 * It makes no sense for the first data block to be beyond the end 4494 * of the filesystem. 4495 */ 4496 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4497 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4498 "block %u is beyond end of filesystem (%llu)", 4499 le32_to_cpu(es->s_first_data_block), 4500 ext4_blocks_count(es)); 4501 goto failed_mount; 4502 } 4503 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4504 (sbi->s_cluster_ratio == 1)) { 4505 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4506 "block is 0 with a 1k block and cluster size"); 4507 goto failed_mount; 4508 } 4509 4510 blocks_count = (ext4_blocks_count(es) - 4511 le32_to_cpu(es->s_first_data_block) + 4512 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4513 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4514 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4515 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4516 "(block count %llu, first data block %u, " 4517 "blocks per group %lu)", blocks_count, 4518 ext4_blocks_count(es), 4519 le32_to_cpu(es->s_first_data_block), 4520 EXT4_BLOCKS_PER_GROUP(sb)); 4521 goto failed_mount; 4522 } 4523 sbi->s_groups_count = blocks_count; 4524 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4525 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4526 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4527 le32_to_cpu(es->s_inodes_count)) { 4528 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4529 le32_to_cpu(es->s_inodes_count), 4530 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4531 ret = -EINVAL; 4532 goto failed_mount; 4533 } 4534 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4535 EXT4_DESC_PER_BLOCK(sb); 4536 if (ext4_has_feature_meta_bg(sb)) { 4537 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4538 ext4_msg(sb, KERN_WARNING, 4539 "first meta block group too large: %u " 4540 "(group descriptor block count %u)", 4541 le32_to_cpu(es->s_first_meta_bg), db_count); 4542 goto failed_mount; 4543 } 4544 } 4545 rcu_assign_pointer(sbi->s_group_desc, 4546 kvmalloc_array(db_count, 4547 sizeof(struct buffer_head *), 4548 GFP_KERNEL)); 4549 if (sbi->s_group_desc == NULL) { 4550 ext4_msg(sb, KERN_ERR, "not enough memory"); 4551 ret = -ENOMEM; 4552 goto failed_mount; 4553 } 4554 4555 bgl_lock_init(sbi->s_blockgroup_lock); 4556 4557 /* Pre-read the descriptors into the buffer cache */ 4558 for (i = 0; i < db_count; i++) { 4559 block = descriptor_loc(sb, logical_sb_block, i); 4560 ext4_sb_breadahead_unmovable(sb, block); 4561 } 4562 4563 for (i = 0; i < db_count; i++) { 4564 struct buffer_head *bh; 4565 4566 block = descriptor_loc(sb, logical_sb_block, i); 4567 bh = ext4_sb_bread_unmovable(sb, block); 4568 if (IS_ERR(bh)) { 4569 ext4_msg(sb, KERN_ERR, 4570 "can't read group descriptor %d", i); 4571 db_count = i; 4572 ret = PTR_ERR(bh); 4573 goto failed_mount2; 4574 } 4575 rcu_read_lock(); 4576 rcu_dereference(sbi->s_group_desc)[i] = bh; 4577 rcu_read_unlock(); 4578 } 4579 sbi->s_gdb_count = db_count; 4580 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4581 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4582 ret = -EFSCORRUPTED; 4583 goto failed_mount2; 4584 } 4585 4586 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4587 spin_lock_init(&sbi->s_error_lock); 4588 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4589 4590 /* Register extent status tree shrinker */ 4591 if (ext4_es_register_shrinker(sbi)) 4592 goto failed_mount3; 4593 4594 sbi->s_stripe = ext4_get_stripe_size(sbi); 4595 sbi->s_extent_max_zeroout_kb = 32; 4596 4597 /* 4598 * set up enough so that it can read an inode 4599 */ 4600 sb->s_op = &ext4_sops; 4601 sb->s_export_op = &ext4_export_ops; 4602 sb->s_xattr = ext4_xattr_handlers; 4603 #ifdef CONFIG_FS_ENCRYPTION 4604 sb->s_cop = &ext4_cryptops; 4605 #endif 4606 #ifdef CONFIG_FS_VERITY 4607 sb->s_vop = &ext4_verityops; 4608 #endif 4609 #ifdef CONFIG_QUOTA 4610 sb->dq_op = &ext4_quota_operations; 4611 if (ext4_has_feature_quota(sb)) 4612 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4613 else 4614 sb->s_qcop = &ext4_qctl_operations; 4615 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4616 #endif 4617 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4618 4619 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4620 mutex_init(&sbi->s_orphan_lock); 4621 4622 /* Initialize fast commit stuff */ 4623 atomic_set(&sbi->s_fc_subtid, 0); 4624 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4625 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4626 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4627 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4628 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4629 sbi->s_fc_bytes = 0; 4630 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4631 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4632 spin_lock_init(&sbi->s_fc_lock); 4633 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4634 sbi->s_fc_replay_state.fc_regions = NULL; 4635 sbi->s_fc_replay_state.fc_regions_size = 0; 4636 sbi->s_fc_replay_state.fc_regions_used = 0; 4637 sbi->s_fc_replay_state.fc_regions_valid = 0; 4638 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4639 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4640 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4641 4642 sb->s_root = NULL; 4643 4644 needs_recovery = (es->s_last_orphan != 0 || 4645 ext4_has_feature_orphan_present(sb) || 4646 ext4_has_feature_journal_needs_recovery(sb)); 4647 4648 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4649 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4650 goto failed_mount3a; 4651 4652 /* 4653 * The first inode we look at is the journal inode. Don't try 4654 * root first: it may be modified in the journal! 4655 */ 4656 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4657 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4658 if (err) 4659 goto failed_mount3a; 4660 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4661 ext4_has_feature_journal_needs_recovery(sb)) { 4662 ext4_msg(sb, KERN_ERR, "required journal recovery " 4663 "suppressed and not mounted read-only"); 4664 goto failed_mount_wq; 4665 } else { 4666 /* Nojournal mode, all journal mount options are illegal */ 4667 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4668 ext4_msg(sb, KERN_ERR, "can't mount with " 4669 "journal_checksum, fs mounted w/o journal"); 4670 goto failed_mount_wq; 4671 } 4672 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4673 ext4_msg(sb, KERN_ERR, "can't mount with " 4674 "journal_async_commit, fs mounted w/o journal"); 4675 goto failed_mount_wq; 4676 } 4677 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4678 ext4_msg(sb, KERN_ERR, "can't mount with " 4679 "commit=%lu, fs mounted w/o journal", 4680 sbi->s_commit_interval / HZ); 4681 goto failed_mount_wq; 4682 } 4683 if (EXT4_MOUNT_DATA_FLAGS & 4684 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4685 ext4_msg(sb, KERN_ERR, "can't mount with " 4686 "data=, fs mounted w/o journal"); 4687 goto failed_mount_wq; 4688 } 4689 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4690 clear_opt(sb, JOURNAL_CHECKSUM); 4691 clear_opt(sb, DATA_FLAGS); 4692 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4693 sbi->s_journal = NULL; 4694 needs_recovery = 0; 4695 goto no_journal; 4696 } 4697 4698 if (ext4_has_feature_64bit(sb) && 4699 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4700 JBD2_FEATURE_INCOMPAT_64BIT)) { 4701 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4702 goto failed_mount_wq; 4703 } 4704 4705 if (!set_journal_csum_feature_set(sb)) { 4706 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4707 "feature set"); 4708 goto failed_mount_wq; 4709 } 4710 4711 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4712 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4713 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4714 ext4_msg(sb, KERN_ERR, 4715 "Failed to set fast commit journal feature"); 4716 goto failed_mount_wq; 4717 } 4718 4719 /* We have now updated the journal if required, so we can 4720 * validate the data journaling mode. */ 4721 switch (test_opt(sb, DATA_FLAGS)) { 4722 case 0: 4723 /* No mode set, assume a default based on the journal 4724 * capabilities: ORDERED_DATA if the journal can 4725 * cope, else JOURNAL_DATA 4726 */ 4727 if (jbd2_journal_check_available_features 4728 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4729 set_opt(sb, ORDERED_DATA); 4730 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4731 } else { 4732 set_opt(sb, JOURNAL_DATA); 4733 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4734 } 4735 break; 4736 4737 case EXT4_MOUNT_ORDERED_DATA: 4738 case EXT4_MOUNT_WRITEBACK_DATA: 4739 if (!jbd2_journal_check_available_features 4740 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4741 ext4_msg(sb, KERN_ERR, "Journal does not support " 4742 "requested data journaling mode"); 4743 goto failed_mount_wq; 4744 } 4745 break; 4746 default: 4747 break; 4748 } 4749 4750 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4751 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4752 ext4_msg(sb, KERN_ERR, "can't mount with " 4753 "journal_async_commit in data=ordered mode"); 4754 goto failed_mount_wq; 4755 } 4756 4757 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4758 4759 sbi->s_journal->j_submit_inode_data_buffers = 4760 ext4_journal_submit_inode_data_buffers; 4761 sbi->s_journal->j_finish_inode_data_buffers = 4762 ext4_journal_finish_inode_data_buffers; 4763 4764 no_journal: 4765 if (!test_opt(sb, NO_MBCACHE)) { 4766 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4767 if (!sbi->s_ea_block_cache) { 4768 ext4_msg(sb, KERN_ERR, 4769 "Failed to create ea_block_cache"); 4770 goto failed_mount_wq; 4771 } 4772 4773 if (ext4_has_feature_ea_inode(sb)) { 4774 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4775 if (!sbi->s_ea_inode_cache) { 4776 ext4_msg(sb, KERN_ERR, 4777 "Failed to create ea_inode_cache"); 4778 goto failed_mount_wq; 4779 } 4780 } 4781 } 4782 4783 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4784 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4785 goto failed_mount_wq; 4786 } 4787 4788 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4789 !ext4_has_feature_encrypt(sb)) { 4790 ext4_set_feature_encrypt(sb); 4791 ext4_commit_super(sb); 4792 } 4793 4794 /* 4795 * Get the # of file system overhead blocks from the 4796 * superblock if present. 4797 */ 4798 if (es->s_overhead_clusters) 4799 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4800 else { 4801 err = ext4_calculate_overhead(sb); 4802 if (err) 4803 goto failed_mount_wq; 4804 } 4805 4806 /* 4807 * The maximum number of concurrent works can be high and 4808 * concurrency isn't really necessary. Limit it to 1. 4809 */ 4810 EXT4_SB(sb)->rsv_conversion_wq = 4811 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4812 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4813 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4814 ret = -ENOMEM; 4815 goto failed_mount4; 4816 } 4817 4818 /* 4819 * The jbd2_journal_load will have done any necessary log recovery, 4820 * so we can safely mount the rest of the filesystem now. 4821 */ 4822 4823 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4824 if (IS_ERR(root)) { 4825 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4826 ret = PTR_ERR(root); 4827 root = NULL; 4828 goto failed_mount4; 4829 } 4830 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4831 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4832 iput(root); 4833 goto failed_mount4; 4834 } 4835 4836 sb->s_root = d_make_root(root); 4837 if (!sb->s_root) { 4838 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4839 ret = -ENOMEM; 4840 goto failed_mount4; 4841 } 4842 4843 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4844 if (ret == -EROFS) { 4845 sb->s_flags |= SB_RDONLY; 4846 ret = 0; 4847 } else if (ret) 4848 goto failed_mount4a; 4849 4850 ext4_set_resv_clusters(sb); 4851 4852 if (test_opt(sb, BLOCK_VALIDITY)) { 4853 err = ext4_setup_system_zone(sb); 4854 if (err) { 4855 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4856 "zone (%d)", err); 4857 goto failed_mount4a; 4858 } 4859 } 4860 ext4_fc_replay_cleanup(sb); 4861 4862 ext4_ext_init(sb); 4863 4864 /* 4865 * Enable optimize_scan if number of groups is > threshold. This can be 4866 * turned off by passing "mb_optimize_scan=0". This can also be 4867 * turned on forcefully by passing "mb_optimize_scan=1". 4868 */ 4869 if (parsed_opts.mb_optimize_scan == 1) 4870 set_opt2(sb, MB_OPTIMIZE_SCAN); 4871 else if (parsed_opts.mb_optimize_scan == 0) 4872 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4873 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 4874 set_opt2(sb, MB_OPTIMIZE_SCAN); 4875 4876 err = ext4_mb_init(sb); 4877 if (err) { 4878 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4879 err); 4880 goto failed_mount5; 4881 } 4882 4883 /* 4884 * We can only set up the journal commit callback once 4885 * mballoc is initialized 4886 */ 4887 if (sbi->s_journal) 4888 sbi->s_journal->j_commit_callback = 4889 ext4_journal_commit_callback; 4890 4891 block = ext4_count_free_clusters(sb); 4892 ext4_free_blocks_count_set(sbi->s_es, 4893 EXT4_C2B(sbi, block)); 4894 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4895 GFP_KERNEL); 4896 if (!err) { 4897 unsigned long freei = ext4_count_free_inodes(sb); 4898 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4899 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4900 GFP_KERNEL); 4901 } 4902 /* 4903 * Update the checksum after updating free space/inode 4904 * counters. Otherwise the superblock can have an incorrect 4905 * checksum in the buffer cache until it is written out and 4906 * e2fsprogs programs trying to open a file system immediately 4907 * after it is mounted can fail. 4908 */ 4909 ext4_superblock_csum_set(sb); 4910 if (!err) 4911 err = percpu_counter_init(&sbi->s_dirs_counter, 4912 ext4_count_dirs(sb), GFP_KERNEL); 4913 if (!err) 4914 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4915 GFP_KERNEL); 4916 if (!err) 4917 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 4918 GFP_KERNEL); 4919 if (!err) 4920 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4921 4922 if (err) { 4923 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4924 goto failed_mount6; 4925 } 4926 4927 if (ext4_has_feature_flex_bg(sb)) 4928 if (!ext4_fill_flex_info(sb)) { 4929 ext4_msg(sb, KERN_ERR, 4930 "unable to initialize " 4931 "flex_bg meta info!"); 4932 ret = -ENOMEM; 4933 goto failed_mount6; 4934 } 4935 4936 err = ext4_register_li_request(sb, first_not_zeroed); 4937 if (err) 4938 goto failed_mount6; 4939 4940 err = ext4_register_sysfs(sb); 4941 if (err) 4942 goto failed_mount7; 4943 4944 err = ext4_init_orphan_info(sb); 4945 if (err) 4946 goto failed_mount8; 4947 #ifdef CONFIG_QUOTA 4948 /* Enable quota usage during mount. */ 4949 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4950 err = ext4_enable_quotas(sb); 4951 if (err) 4952 goto failed_mount9; 4953 } 4954 #endif /* CONFIG_QUOTA */ 4955 4956 /* 4957 * Save the original bdev mapping's wb_err value which could be 4958 * used to detect the metadata async write error. 4959 */ 4960 spin_lock_init(&sbi->s_bdev_wb_lock); 4961 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4962 &sbi->s_bdev_wb_err); 4963 sb->s_bdev->bd_super = sb; 4964 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4965 ext4_orphan_cleanup(sb, es); 4966 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4967 if (needs_recovery) { 4968 ext4_msg(sb, KERN_INFO, "recovery complete"); 4969 err = ext4_mark_recovery_complete(sb, es); 4970 if (err) 4971 goto failed_mount9; 4972 } 4973 if (EXT4_SB(sb)->s_journal) { 4974 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4975 descr = " journalled data mode"; 4976 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4977 descr = " ordered data mode"; 4978 else 4979 descr = " writeback data mode"; 4980 } else 4981 descr = "out journal"; 4982 4983 if (test_opt(sb, DISCARD)) { 4984 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4985 if (!blk_queue_discard(q)) 4986 ext4_msg(sb, KERN_WARNING, 4987 "mounting with \"discard\" option, but " 4988 "the device does not support discard"); 4989 } 4990 4991 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4992 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4993 "Opts: %.*s%s%s. Quota mode: %s.", descr, 4994 (int) sizeof(sbi->s_es->s_mount_opts), 4995 sbi->s_es->s_mount_opts, 4996 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 4997 ext4_quota_mode(sb)); 4998 4999 if (es->s_error_count) 5000 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5001 5002 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5003 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5004 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5005 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5006 atomic_set(&sbi->s_warning_count, 0); 5007 atomic_set(&sbi->s_msg_count, 0); 5008 5009 kfree(orig_data); 5010 return 0; 5011 5012 cantfind_ext4: 5013 if (!silent) 5014 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5015 goto failed_mount; 5016 5017 failed_mount9: 5018 ext4_release_orphan_info(sb); 5019 failed_mount8: 5020 ext4_unregister_sysfs(sb); 5021 kobject_put(&sbi->s_kobj); 5022 failed_mount7: 5023 ext4_unregister_li_request(sb); 5024 failed_mount6: 5025 ext4_mb_release(sb); 5026 rcu_read_lock(); 5027 flex_groups = rcu_dereference(sbi->s_flex_groups); 5028 if (flex_groups) { 5029 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5030 kvfree(flex_groups[i]); 5031 kvfree(flex_groups); 5032 } 5033 rcu_read_unlock(); 5034 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5035 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5036 percpu_counter_destroy(&sbi->s_dirs_counter); 5037 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5038 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5039 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5040 failed_mount5: 5041 ext4_ext_release(sb); 5042 ext4_release_system_zone(sb); 5043 failed_mount4a: 5044 dput(sb->s_root); 5045 sb->s_root = NULL; 5046 failed_mount4: 5047 ext4_msg(sb, KERN_ERR, "mount failed"); 5048 if (EXT4_SB(sb)->rsv_conversion_wq) 5049 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5050 failed_mount_wq: 5051 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5052 sbi->s_ea_inode_cache = NULL; 5053 5054 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5055 sbi->s_ea_block_cache = NULL; 5056 5057 if (sbi->s_journal) { 5058 /* flush s_error_work before journal destroy. */ 5059 flush_work(&sbi->s_error_work); 5060 jbd2_journal_destroy(sbi->s_journal); 5061 sbi->s_journal = NULL; 5062 } 5063 failed_mount3a: 5064 ext4_es_unregister_shrinker(sbi); 5065 failed_mount3: 5066 /* flush s_error_work before sbi destroy */ 5067 flush_work(&sbi->s_error_work); 5068 del_timer_sync(&sbi->s_err_report); 5069 ext4_stop_mmpd(sbi); 5070 failed_mount2: 5071 rcu_read_lock(); 5072 group_desc = rcu_dereference(sbi->s_group_desc); 5073 for (i = 0; i < db_count; i++) 5074 brelse(group_desc[i]); 5075 kvfree(group_desc); 5076 rcu_read_unlock(); 5077 failed_mount: 5078 if (sbi->s_chksum_driver) 5079 crypto_free_shash(sbi->s_chksum_driver); 5080 5081 #ifdef CONFIG_UNICODE 5082 utf8_unload(sb->s_encoding); 5083 #endif 5084 5085 #ifdef CONFIG_QUOTA 5086 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5087 kfree(get_qf_name(sb, sbi, i)); 5088 #endif 5089 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5090 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5091 brelse(bh); 5092 ext4_blkdev_remove(sbi); 5093 out_fail: 5094 sb->s_fs_info = NULL; 5095 kfree(sbi->s_blockgroup_lock); 5096 out_free_base: 5097 kfree(sbi); 5098 kfree(orig_data); 5099 fs_put_dax(dax_dev); 5100 return err ? err : ret; 5101 } 5102 5103 /* 5104 * Setup any per-fs journal parameters now. We'll do this both on 5105 * initial mount, once the journal has been initialised but before we've 5106 * done any recovery; and again on any subsequent remount. 5107 */ 5108 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5109 { 5110 struct ext4_sb_info *sbi = EXT4_SB(sb); 5111 5112 journal->j_commit_interval = sbi->s_commit_interval; 5113 journal->j_min_batch_time = sbi->s_min_batch_time; 5114 journal->j_max_batch_time = sbi->s_max_batch_time; 5115 ext4_fc_init(sb, journal); 5116 5117 write_lock(&journal->j_state_lock); 5118 if (test_opt(sb, BARRIER)) 5119 journal->j_flags |= JBD2_BARRIER; 5120 else 5121 journal->j_flags &= ~JBD2_BARRIER; 5122 if (test_opt(sb, DATA_ERR_ABORT)) 5123 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5124 else 5125 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5126 write_unlock(&journal->j_state_lock); 5127 } 5128 5129 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5130 unsigned int journal_inum) 5131 { 5132 struct inode *journal_inode; 5133 5134 /* 5135 * Test for the existence of a valid inode on disk. Bad things 5136 * happen if we iget() an unused inode, as the subsequent iput() 5137 * will try to delete it. 5138 */ 5139 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5140 if (IS_ERR(journal_inode)) { 5141 ext4_msg(sb, KERN_ERR, "no journal found"); 5142 return NULL; 5143 } 5144 if (!journal_inode->i_nlink) { 5145 make_bad_inode(journal_inode); 5146 iput(journal_inode); 5147 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5148 return NULL; 5149 } 5150 5151 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5152 journal_inode, journal_inode->i_size); 5153 if (!S_ISREG(journal_inode->i_mode)) { 5154 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5155 iput(journal_inode); 5156 return NULL; 5157 } 5158 return journal_inode; 5159 } 5160 5161 static journal_t *ext4_get_journal(struct super_block *sb, 5162 unsigned int journal_inum) 5163 { 5164 struct inode *journal_inode; 5165 journal_t *journal; 5166 5167 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5168 return NULL; 5169 5170 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5171 if (!journal_inode) 5172 return NULL; 5173 5174 journal = jbd2_journal_init_inode(journal_inode); 5175 if (!journal) { 5176 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5177 iput(journal_inode); 5178 return NULL; 5179 } 5180 journal->j_private = sb; 5181 ext4_init_journal_params(sb, journal); 5182 return journal; 5183 } 5184 5185 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5186 dev_t j_dev) 5187 { 5188 struct buffer_head *bh; 5189 journal_t *journal; 5190 ext4_fsblk_t start; 5191 ext4_fsblk_t len; 5192 int hblock, blocksize; 5193 ext4_fsblk_t sb_block; 5194 unsigned long offset; 5195 struct ext4_super_block *es; 5196 struct block_device *bdev; 5197 5198 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5199 return NULL; 5200 5201 bdev = ext4_blkdev_get(j_dev, sb); 5202 if (bdev == NULL) 5203 return NULL; 5204 5205 blocksize = sb->s_blocksize; 5206 hblock = bdev_logical_block_size(bdev); 5207 if (blocksize < hblock) { 5208 ext4_msg(sb, KERN_ERR, 5209 "blocksize too small for journal device"); 5210 goto out_bdev; 5211 } 5212 5213 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5214 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5215 set_blocksize(bdev, blocksize); 5216 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5217 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5218 "external journal"); 5219 goto out_bdev; 5220 } 5221 5222 es = (struct ext4_super_block *) (bh->b_data + offset); 5223 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5224 !(le32_to_cpu(es->s_feature_incompat) & 5225 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5226 ext4_msg(sb, KERN_ERR, "external journal has " 5227 "bad superblock"); 5228 brelse(bh); 5229 goto out_bdev; 5230 } 5231 5232 if ((le32_to_cpu(es->s_feature_ro_compat) & 5233 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5234 es->s_checksum != ext4_superblock_csum(sb, es)) { 5235 ext4_msg(sb, KERN_ERR, "external journal has " 5236 "corrupt superblock"); 5237 brelse(bh); 5238 goto out_bdev; 5239 } 5240 5241 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5242 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5243 brelse(bh); 5244 goto out_bdev; 5245 } 5246 5247 len = ext4_blocks_count(es); 5248 start = sb_block + 1; 5249 brelse(bh); /* we're done with the superblock */ 5250 5251 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5252 start, len, blocksize); 5253 if (!journal) { 5254 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5255 goto out_bdev; 5256 } 5257 journal->j_private = sb; 5258 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5259 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5260 goto out_journal; 5261 } 5262 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5263 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5264 "user (unsupported) - %d", 5265 be32_to_cpu(journal->j_superblock->s_nr_users)); 5266 goto out_journal; 5267 } 5268 EXT4_SB(sb)->s_journal_bdev = bdev; 5269 ext4_init_journal_params(sb, journal); 5270 return journal; 5271 5272 out_journal: 5273 jbd2_journal_destroy(journal); 5274 out_bdev: 5275 ext4_blkdev_put(bdev); 5276 return NULL; 5277 } 5278 5279 static int ext4_load_journal(struct super_block *sb, 5280 struct ext4_super_block *es, 5281 unsigned long journal_devnum) 5282 { 5283 journal_t *journal; 5284 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5285 dev_t journal_dev; 5286 int err = 0; 5287 int really_read_only; 5288 int journal_dev_ro; 5289 5290 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5291 return -EFSCORRUPTED; 5292 5293 if (journal_devnum && 5294 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5295 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5296 "numbers have changed"); 5297 journal_dev = new_decode_dev(journal_devnum); 5298 } else 5299 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5300 5301 if (journal_inum && journal_dev) { 5302 ext4_msg(sb, KERN_ERR, 5303 "filesystem has both journal inode and journal device!"); 5304 return -EINVAL; 5305 } 5306 5307 if (journal_inum) { 5308 journal = ext4_get_journal(sb, journal_inum); 5309 if (!journal) 5310 return -EINVAL; 5311 } else { 5312 journal = ext4_get_dev_journal(sb, journal_dev); 5313 if (!journal) 5314 return -EINVAL; 5315 } 5316 5317 journal_dev_ro = bdev_read_only(journal->j_dev); 5318 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5319 5320 if (journal_dev_ro && !sb_rdonly(sb)) { 5321 ext4_msg(sb, KERN_ERR, 5322 "journal device read-only, try mounting with '-o ro'"); 5323 err = -EROFS; 5324 goto err_out; 5325 } 5326 5327 /* 5328 * Are we loading a blank journal or performing recovery after a 5329 * crash? For recovery, we need to check in advance whether we 5330 * can get read-write access to the device. 5331 */ 5332 if (ext4_has_feature_journal_needs_recovery(sb)) { 5333 if (sb_rdonly(sb)) { 5334 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5335 "required on readonly filesystem"); 5336 if (really_read_only) { 5337 ext4_msg(sb, KERN_ERR, "write access " 5338 "unavailable, cannot proceed " 5339 "(try mounting with noload)"); 5340 err = -EROFS; 5341 goto err_out; 5342 } 5343 ext4_msg(sb, KERN_INFO, "write access will " 5344 "be enabled during recovery"); 5345 } 5346 } 5347 5348 if (!(journal->j_flags & JBD2_BARRIER)) 5349 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5350 5351 if (!ext4_has_feature_journal_needs_recovery(sb)) 5352 err = jbd2_journal_wipe(journal, !really_read_only); 5353 if (!err) { 5354 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5355 if (save) 5356 memcpy(save, ((char *) es) + 5357 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5358 err = jbd2_journal_load(journal); 5359 if (save) 5360 memcpy(((char *) es) + EXT4_S_ERR_START, 5361 save, EXT4_S_ERR_LEN); 5362 kfree(save); 5363 } 5364 5365 if (err) { 5366 ext4_msg(sb, KERN_ERR, "error loading journal"); 5367 goto err_out; 5368 } 5369 5370 EXT4_SB(sb)->s_journal = journal; 5371 err = ext4_clear_journal_err(sb, es); 5372 if (err) { 5373 EXT4_SB(sb)->s_journal = NULL; 5374 jbd2_journal_destroy(journal); 5375 return err; 5376 } 5377 5378 if (!really_read_only && journal_devnum && 5379 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5380 es->s_journal_dev = cpu_to_le32(journal_devnum); 5381 5382 /* Make sure we flush the recovery flag to disk. */ 5383 ext4_commit_super(sb); 5384 } 5385 5386 return 0; 5387 5388 err_out: 5389 jbd2_journal_destroy(journal); 5390 return err; 5391 } 5392 5393 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5394 static void ext4_update_super(struct super_block *sb) 5395 { 5396 struct ext4_sb_info *sbi = EXT4_SB(sb); 5397 struct ext4_super_block *es = sbi->s_es; 5398 struct buffer_head *sbh = sbi->s_sbh; 5399 5400 lock_buffer(sbh); 5401 /* 5402 * If the file system is mounted read-only, don't update the 5403 * superblock write time. This avoids updating the superblock 5404 * write time when we are mounting the root file system 5405 * read/only but we need to replay the journal; at that point, 5406 * for people who are east of GMT and who make their clock 5407 * tick in localtime for Windows bug-for-bug compatibility, 5408 * the clock is set in the future, and this will cause e2fsck 5409 * to complain and force a full file system check. 5410 */ 5411 if (!(sb->s_flags & SB_RDONLY)) 5412 ext4_update_tstamp(es, s_wtime); 5413 es->s_kbytes_written = 5414 cpu_to_le64(sbi->s_kbytes_written + 5415 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5416 sbi->s_sectors_written_start) >> 1)); 5417 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5418 ext4_free_blocks_count_set(es, 5419 EXT4_C2B(sbi, percpu_counter_sum_positive( 5420 &sbi->s_freeclusters_counter))); 5421 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5422 es->s_free_inodes_count = 5423 cpu_to_le32(percpu_counter_sum_positive( 5424 &sbi->s_freeinodes_counter)); 5425 /* Copy error information to the on-disk superblock */ 5426 spin_lock(&sbi->s_error_lock); 5427 if (sbi->s_add_error_count > 0) { 5428 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5429 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5430 __ext4_update_tstamp(&es->s_first_error_time, 5431 &es->s_first_error_time_hi, 5432 sbi->s_first_error_time); 5433 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5434 sizeof(es->s_first_error_func)); 5435 es->s_first_error_line = 5436 cpu_to_le32(sbi->s_first_error_line); 5437 es->s_first_error_ino = 5438 cpu_to_le32(sbi->s_first_error_ino); 5439 es->s_first_error_block = 5440 cpu_to_le64(sbi->s_first_error_block); 5441 es->s_first_error_errcode = 5442 ext4_errno_to_code(sbi->s_first_error_code); 5443 } 5444 __ext4_update_tstamp(&es->s_last_error_time, 5445 &es->s_last_error_time_hi, 5446 sbi->s_last_error_time); 5447 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5448 sizeof(es->s_last_error_func)); 5449 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5450 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5451 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5452 es->s_last_error_errcode = 5453 ext4_errno_to_code(sbi->s_last_error_code); 5454 /* 5455 * Start the daily error reporting function if it hasn't been 5456 * started already 5457 */ 5458 if (!es->s_error_count) 5459 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5460 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5461 sbi->s_add_error_count = 0; 5462 } 5463 spin_unlock(&sbi->s_error_lock); 5464 5465 ext4_superblock_csum_set(sb); 5466 unlock_buffer(sbh); 5467 } 5468 5469 static int ext4_commit_super(struct super_block *sb) 5470 { 5471 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5472 int error = 0; 5473 5474 if (!sbh) 5475 return -EINVAL; 5476 if (block_device_ejected(sb)) 5477 return -ENODEV; 5478 5479 ext4_update_super(sb); 5480 5481 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5482 /* 5483 * Oh, dear. A previous attempt to write the 5484 * superblock failed. This could happen because the 5485 * USB device was yanked out. Or it could happen to 5486 * be a transient write error and maybe the block will 5487 * be remapped. Nothing we can do but to retry the 5488 * write and hope for the best. 5489 */ 5490 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5491 "superblock detected"); 5492 clear_buffer_write_io_error(sbh); 5493 set_buffer_uptodate(sbh); 5494 } 5495 BUFFER_TRACE(sbh, "marking dirty"); 5496 mark_buffer_dirty(sbh); 5497 error = __sync_dirty_buffer(sbh, 5498 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5499 if (buffer_write_io_error(sbh)) { 5500 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5501 "superblock"); 5502 clear_buffer_write_io_error(sbh); 5503 set_buffer_uptodate(sbh); 5504 } 5505 return error; 5506 } 5507 5508 /* 5509 * Have we just finished recovery? If so, and if we are mounting (or 5510 * remounting) the filesystem readonly, then we will end up with a 5511 * consistent fs on disk. Record that fact. 5512 */ 5513 static int ext4_mark_recovery_complete(struct super_block *sb, 5514 struct ext4_super_block *es) 5515 { 5516 int err; 5517 journal_t *journal = EXT4_SB(sb)->s_journal; 5518 5519 if (!ext4_has_feature_journal(sb)) { 5520 if (journal != NULL) { 5521 ext4_error(sb, "Journal got removed while the fs was " 5522 "mounted!"); 5523 return -EFSCORRUPTED; 5524 } 5525 return 0; 5526 } 5527 jbd2_journal_lock_updates(journal); 5528 err = jbd2_journal_flush(journal, 0); 5529 if (err < 0) 5530 goto out; 5531 5532 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5533 ext4_has_feature_orphan_present(sb))) { 5534 if (!ext4_orphan_file_empty(sb)) { 5535 ext4_error(sb, "Orphan file not empty on read-only fs."); 5536 err = -EFSCORRUPTED; 5537 goto out; 5538 } 5539 ext4_clear_feature_journal_needs_recovery(sb); 5540 ext4_clear_feature_orphan_present(sb); 5541 ext4_commit_super(sb); 5542 } 5543 out: 5544 jbd2_journal_unlock_updates(journal); 5545 return err; 5546 } 5547 5548 /* 5549 * If we are mounting (or read-write remounting) a filesystem whose journal 5550 * has recorded an error from a previous lifetime, move that error to the 5551 * main filesystem now. 5552 */ 5553 static int ext4_clear_journal_err(struct super_block *sb, 5554 struct ext4_super_block *es) 5555 { 5556 journal_t *journal; 5557 int j_errno; 5558 const char *errstr; 5559 5560 if (!ext4_has_feature_journal(sb)) { 5561 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5562 return -EFSCORRUPTED; 5563 } 5564 5565 journal = EXT4_SB(sb)->s_journal; 5566 5567 /* 5568 * Now check for any error status which may have been recorded in the 5569 * journal by a prior ext4_error() or ext4_abort() 5570 */ 5571 5572 j_errno = jbd2_journal_errno(journal); 5573 if (j_errno) { 5574 char nbuf[16]; 5575 5576 errstr = ext4_decode_error(sb, j_errno, nbuf); 5577 ext4_warning(sb, "Filesystem error recorded " 5578 "from previous mount: %s", errstr); 5579 ext4_warning(sb, "Marking fs in need of filesystem check."); 5580 5581 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5582 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5583 ext4_commit_super(sb); 5584 5585 jbd2_journal_clear_err(journal); 5586 jbd2_journal_update_sb_errno(journal); 5587 } 5588 return 0; 5589 } 5590 5591 /* 5592 * Force the running and committing transactions to commit, 5593 * and wait on the commit. 5594 */ 5595 int ext4_force_commit(struct super_block *sb) 5596 { 5597 journal_t *journal; 5598 5599 if (sb_rdonly(sb)) 5600 return 0; 5601 5602 journal = EXT4_SB(sb)->s_journal; 5603 return ext4_journal_force_commit(journal); 5604 } 5605 5606 static int ext4_sync_fs(struct super_block *sb, int wait) 5607 { 5608 int ret = 0; 5609 tid_t target; 5610 bool needs_barrier = false; 5611 struct ext4_sb_info *sbi = EXT4_SB(sb); 5612 5613 if (unlikely(ext4_forced_shutdown(sbi))) 5614 return 0; 5615 5616 trace_ext4_sync_fs(sb, wait); 5617 flush_workqueue(sbi->rsv_conversion_wq); 5618 /* 5619 * Writeback quota in non-journalled quota case - journalled quota has 5620 * no dirty dquots 5621 */ 5622 dquot_writeback_dquots(sb, -1); 5623 /* 5624 * Data writeback is possible w/o journal transaction, so barrier must 5625 * being sent at the end of the function. But we can skip it if 5626 * transaction_commit will do it for us. 5627 */ 5628 if (sbi->s_journal) { 5629 target = jbd2_get_latest_transaction(sbi->s_journal); 5630 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5631 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5632 needs_barrier = true; 5633 5634 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5635 if (wait) 5636 ret = jbd2_log_wait_commit(sbi->s_journal, 5637 target); 5638 } 5639 } else if (wait && test_opt(sb, BARRIER)) 5640 needs_barrier = true; 5641 if (needs_barrier) { 5642 int err; 5643 err = blkdev_issue_flush(sb->s_bdev); 5644 if (!ret) 5645 ret = err; 5646 } 5647 5648 return ret; 5649 } 5650 5651 /* 5652 * LVM calls this function before a (read-only) snapshot is created. This 5653 * gives us a chance to flush the journal completely and mark the fs clean. 5654 * 5655 * Note that only this function cannot bring a filesystem to be in a clean 5656 * state independently. It relies on upper layer to stop all data & metadata 5657 * modifications. 5658 */ 5659 static int ext4_freeze(struct super_block *sb) 5660 { 5661 int error = 0; 5662 journal_t *journal; 5663 5664 if (sb_rdonly(sb)) 5665 return 0; 5666 5667 journal = EXT4_SB(sb)->s_journal; 5668 5669 if (journal) { 5670 /* Now we set up the journal barrier. */ 5671 jbd2_journal_lock_updates(journal); 5672 5673 /* 5674 * Don't clear the needs_recovery flag if we failed to 5675 * flush the journal. 5676 */ 5677 error = jbd2_journal_flush(journal, 0); 5678 if (error < 0) 5679 goto out; 5680 5681 /* Journal blocked and flushed, clear needs_recovery flag. */ 5682 ext4_clear_feature_journal_needs_recovery(sb); 5683 if (ext4_orphan_file_empty(sb)) 5684 ext4_clear_feature_orphan_present(sb); 5685 } 5686 5687 error = ext4_commit_super(sb); 5688 out: 5689 if (journal) 5690 /* we rely on upper layer to stop further updates */ 5691 jbd2_journal_unlock_updates(journal); 5692 return error; 5693 } 5694 5695 /* 5696 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5697 * flag here, even though the filesystem is not technically dirty yet. 5698 */ 5699 static int ext4_unfreeze(struct super_block *sb) 5700 { 5701 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5702 return 0; 5703 5704 if (EXT4_SB(sb)->s_journal) { 5705 /* Reset the needs_recovery flag before the fs is unlocked. */ 5706 ext4_set_feature_journal_needs_recovery(sb); 5707 if (ext4_has_feature_orphan_file(sb)) 5708 ext4_set_feature_orphan_present(sb); 5709 } 5710 5711 ext4_commit_super(sb); 5712 return 0; 5713 } 5714 5715 /* 5716 * Structure to save mount options for ext4_remount's benefit 5717 */ 5718 struct ext4_mount_options { 5719 unsigned long s_mount_opt; 5720 unsigned long s_mount_opt2; 5721 kuid_t s_resuid; 5722 kgid_t s_resgid; 5723 unsigned long s_commit_interval; 5724 u32 s_min_batch_time, s_max_batch_time; 5725 #ifdef CONFIG_QUOTA 5726 int s_jquota_fmt; 5727 char *s_qf_names[EXT4_MAXQUOTAS]; 5728 #endif 5729 }; 5730 5731 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5732 { 5733 struct ext4_super_block *es; 5734 struct ext4_sb_info *sbi = EXT4_SB(sb); 5735 unsigned long old_sb_flags, vfs_flags; 5736 struct ext4_mount_options old_opts; 5737 int enable_quota = 0; 5738 ext4_group_t g; 5739 int err = 0; 5740 #ifdef CONFIG_QUOTA 5741 int i, j; 5742 char *to_free[EXT4_MAXQUOTAS]; 5743 #endif 5744 char *orig_data = kstrdup(data, GFP_KERNEL); 5745 struct ext4_parsed_options parsed_opts; 5746 5747 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5748 parsed_opts.journal_devnum = 0; 5749 5750 if (data && !orig_data) 5751 return -ENOMEM; 5752 5753 /* Store the original options */ 5754 old_sb_flags = sb->s_flags; 5755 old_opts.s_mount_opt = sbi->s_mount_opt; 5756 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5757 old_opts.s_resuid = sbi->s_resuid; 5758 old_opts.s_resgid = sbi->s_resgid; 5759 old_opts.s_commit_interval = sbi->s_commit_interval; 5760 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5761 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5762 #ifdef CONFIG_QUOTA 5763 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5764 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5765 if (sbi->s_qf_names[i]) { 5766 char *qf_name = get_qf_name(sb, sbi, i); 5767 5768 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5769 if (!old_opts.s_qf_names[i]) { 5770 for (j = 0; j < i; j++) 5771 kfree(old_opts.s_qf_names[j]); 5772 kfree(orig_data); 5773 return -ENOMEM; 5774 } 5775 } else 5776 old_opts.s_qf_names[i] = NULL; 5777 #endif 5778 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5779 parsed_opts.journal_ioprio = 5780 sbi->s_journal->j_task->io_context->ioprio; 5781 5782 /* 5783 * Some options can be enabled by ext4 and/or by VFS mount flag 5784 * either way we need to make sure it matches in both *flags and 5785 * s_flags. Copy those selected flags from *flags to s_flags 5786 */ 5787 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5788 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5789 5790 if (!parse_options(data, sb, &parsed_opts, 1)) { 5791 err = -EINVAL; 5792 goto restore_opts; 5793 } 5794 5795 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5796 test_opt(sb, JOURNAL_CHECKSUM)) { 5797 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5798 "during remount not supported; ignoring"); 5799 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5800 } 5801 5802 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5803 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5804 ext4_msg(sb, KERN_ERR, "can't mount with " 5805 "both data=journal and delalloc"); 5806 err = -EINVAL; 5807 goto restore_opts; 5808 } 5809 if (test_opt(sb, DIOREAD_NOLOCK)) { 5810 ext4_msg(sb, KERN_ERR, "can't mount with " 5811 "both data=journal and dioread_nolock"); 5812 err = -EINVAL; 5813 goto restore_opts; 5814 } 5815 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5816 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5817 ext4_msg(sb, KERN_ERR, "can't mount with " 5818 "journal_async_commit in data=ordered mode"); 5819 err = -EINVAL; 5820 goto restore_opts; 5821 } 5822 } 5823 5824 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5825 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5826 err = -EINVAL; 5827 goto restore_opts; 5828 } 5829 5830 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5831 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5832 5833 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5834 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5835 5836 es = sbi->s_es; 5837 5838 if (sbi->s_journal) { 5839 ext4_init_journal_params(sb, sbi->s_journal); 5840 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5841 } 5842 5843 /* Flush outstanding errors before changing fs state */ 5844 flush_work(&sbi->s_error_work); 5845 5846 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5847 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5848 err = -EROFS; 5849 goto restore_opts; 5850 } 5851 5852 if (*flags & SB_RDONLY) { 5853 err = sync_filesystem(sb); 5854 if (err < 0) 5855 goto restore_opts; 5856 err = dquot_suspend(sb, -1); 5857 if (err < 0) 5858 goto restore_opts; 5859 5860 /* 5861 * First of all, the unconditional stuff we have to do 5862 * to disable replay of the journal when we next remount 5863 */ 5864 sb->s_flags |= SB_RDONLY; 5865 5866 /* 5867 * OK, test if we are remounting a valid rw partition 5868 * readonly, and if so set the rdonly flag and then 5869 * mark the partition as valid again. 5870 */ 5871 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5872 (sbi->s_mount_state & EXT4_VALID_FS)) 5873 es->s_state = cpu_to_le16(sbi->s_mount_state); 5874 5875 if (sbi->s_journal) { 5876 /* 5877 * We let remount-ro finish even if marking fs 5878 * as clean failed... 5879 */ 5880 ext4_mark_recovery_complete(sb, es); 5881 } 5882 } else { 5883 /* Make sure we can mount this feature set readwrite */ 5884 if (ext4_has_feature_readonly(sb) || 5885 !ext4_feature_set_ok(sb, 0)) { 5886 err = -EROFS; 5887 goto restore_opts; 5888 } 5889 /* 5890 * Make sure the group descriptor checksums 5891 * are sane. If they aren't, refuse to remount r/w. 5892 */ 5893 for (g = 0; g < sbi->s_groups_count; g++) { 5894 struct ext4_group_desc *gdp = 5895 ext4_get_group_desc(sb, g, NULL); 5896 5897 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5898 ext4_msg(sb, KERN_ERR, 5899 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5900 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5901 le16_to_cpu(gdp->bg_checksum)); 5902 err = -EFSBADCRC; 5903 goto restore_opts; 5904 } 5905 } 5906 5907 /* 5908 * If we have an unprocessed orphan list hanging 5909 * around from a previously readonly bdev mount, 5910 * require a full umount/remount for now. 5911 */ 5912 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 5913 ext4_msg(sb, KERN_WARNING, "Couldn't " 5914 "remount RDWR because of unprocessed " 5915 "orphan inode list. Please " 5916 "umount/remount instead"); 5917 err = -EINVAL; 5918 goto restore_opts; 5919 } 5920 5921 /* 5922 * Mounting a RDONLY partition read-write, so reread 5923 * and store the current valid flag. (It may have 5924 * been changed by e2fsck since we originally mounted 5925 * the partition.) 5926 */ 5927 if (sbi->s_journal) { 5928 err = ext4_clear_journal_err(sb, es); 5929 if (err) 5930 goto restore_opts; 5931 } 5932 sbi->s_mount_state = le16_to_cpu(es->s_state); 5933 5934 err = ext4_setup_super(sb, es, 0); 5935 if (err) 5936 goto restore_opts; 5937 5938 sb->s_flags &= ~SB_RDONLY; 5939 if (ext4_has_feature_mmp(sb)) 5940 if (ext4_multi_mount_protect(sb, 5941 le64_to_cpu(es->s_mmp_block))) { 5942 err = -EROFS; 5943 goto restore_opts; 5944 } 5945 enable_quota = 1; 5946 } 5947 } 5948 5949 /* 5950 * Reinitialize lazy itable initialization thread based on 5951 * current settings 5952 */ 5953 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5954 ext4_unregister_li_request(sb); 5955 else { 5956 ext4_group_t first_not_zeroed; 5957 first_not_zeroed = ext4_has_uninit_itable(sb); 5958 ext4_register_li_request(sb, first_not_zeroed); 5959 } 5960 5961 /* 5962 * Handle creation of system zone data early because it can fail. 5963 * Releasing of existing data is done when we are sure remount will 5964 * succeed. 5965 */ 5966 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5967 err = ext4_setup_system_zone(sb); 5968 if (err) 5969 goto restore_opts; 5970 } 5971 5972 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5973 err = ext4_commit_super(sb); 5974 if (err) 5975 goto restore_opts; 5976 } 5977 5978 #ifdef CONFIG_QUOTA 5979 /* Release old quota file names */ 5980 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5981 kfree(old_opts.s_qf_names[i]); 5982 if (enable_quota) { 5983 if (sb_any_quota_suspended(sb)) 5984 dquot_resume(sb, -1); 5985 else if (ext4_has_feature_quota(sb)) { 5986 err = ext4_enable_quotas(sb); 5987 if (err) 5988 goto restore_opts; 5989 } 5990 } 5991 #endif 5992 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 5993 ext4_release_system_zone(sb); 5994 5995 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 5996 ext4_stop_mmpd(sbi); 5997 5998 /* 5999 * Some options can be enabled by ext4 and/or by VFS mount flag 6000 * either way we need to make sure it matches in both *flags and 6001 * s_flags. Copy those selected flags from s_flags to *flags 6002 */ 6003 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 6004 6005 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 6006 orig_data, ext4_quota_mode(sb)); 6007 kfree(orig_data); 6008 return 0; 6009 6010 restore_opts: 6011 sb->s_flags = old_sb_flags; 6012 sbi->s_mount_opt = old_opts.s_mount_opt; 6013 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6014 sbi->s_resuid = old_opts.s_resuid; 6015 sbi->s_resgid = old_opts.s_resgid; 6016 sbi->s_commit_interval = old_opts.s_commit_interval; 6017 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6018 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6019 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6020 ext4_release_system_zone(sb); 6021 #ifdef CONFIG_QUOTA 6022 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6023 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6024 to_free[i] = get_qf_name(sb, sbi, i); 6025 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6026 } 6027 synchronize_rcu(); 6028 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6029 kfree(to_free[i]); 6030 #endif 6031 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6032 ext4_stop_mmpd(sbi); 6033 kfree(orig_data); 6034 return err; 6035 } 6036 6037 #ifdef CONFIG_QUOTA 6038 static int ext4_statfs_project(struct super_block *sb, 6039 kprojid_t projid, struct kstatfs *buf) 6040 { 6041 struct kqid qid; 6042 struct dquot *dquot; 6043 u64 limit; 6044 u64 curblock; 6045 6046 qid = make_kqid_projid(projid); 6047 dquot = dqget(sb, qid); 6048 if (IS_ERR(dquot)) 6049 return PTR_ERR(dquot); 6050 spin_lock(&dquot->dq_dqb_lock); 6051 6052 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6053 dquot->dq_dqb.dqb_bhardlimit); 6054 limit >>= sb->s_blocksize_bits; 6055 6056 if (limit && buf->f_blocks > limit) { 6057 curblock = (dquot->dq_dqb.dqb_curspace + 6058 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6059 buf->f_blocks = limit; 6060 buf->f_bfree = buf->f_bavail = 6061 (buf->f_blocks > curblock) ? 6062 (buf->f_blocks - curblock) : 0; 6063 } 6064 6065 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6066 dquot->dq_dqb.dqb_ihardlimit); 6067 if (limit && buf->f_files > limit) { 6068 buf->f_files = limit; 6069 buf->f_ffree = 6070 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6071 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6072 } 6073 6074 spin_unlock(&dquot->dq_dqb_lock); 6075 dqput(dquot); 6076 return 0; 6077 } 6078 #endif 6079 6080 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6081 { 6082 struct super_block *sb = dentry->d_sb; 6083 struct ext4_sb_info *sbi = EXT4_SB(sb); 6084 struct ext4_super_block *es = sbi->s_es; 6085 ext4_fsblk_t overhead = 0, resv_blocks; 6086 s64 bfree; 6087 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6088 6089 if (!test_opt(sb, MINIX_DF)) 6090 overhead = sbi->s_overhead; 6091 6092 buf->f_type = EXT4_SUPER_MAGIC; 6093 buf->f_bsize = sb->s_blocksize; 6094 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6095 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6096 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6097 /* prevent underflow in case that few free space is available */ 6098 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6099 buf->f_bavail = buf->f_bfree - 6100 (ext4_r_blocks_count(es) + resv_blocks); 6101 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6102 buf->f_bavail = 0; 6103 buf->f_files = le32_to_cpu(es->s_inodes_count); 6104 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6105 buf->f_namelen = EXT4_NAME_LEN; 6106 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6107 6108 #ifdef CONFIG_QUOTA 6109 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6110 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6111 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6112 #endif 6113 return 0; 6114 } 6115 6116 6117 #ifdef CONFIG_QUOTA 6118 6119 /* 6120 * Helper functions so that transaction is started before we acquire dqio_sem 6121 * to keep correct lock ordering of transaction > dqio_sem 6122 */ 6123 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6124 { 6125 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6126 } 6127 6128 static int ext4_write_dquot(struct dquot *dquot) 6129 { 6130 int ret, err; 6131 handle_t *handle; 6132 struct inode *inode; 6133 6134 inode = dquot_to_inode(dquot); 6135 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6136 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6137 if (IS_ERR(handle)) 6138 return PTR_ERR(handle); 6139 ret = dquot_commit(dquot); 6140 err = ext4_journal_stop(handle); 6141 if (!ret) 6142 ret = err; 6143 return ret; 6144 } 6145 6146 static int ext4_acquire_dquot(struct dquot *dquot) 6147 { 6148 int ret, err; 6149 handle_t *handle; 6150 6151 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6152 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6153 if (IS_ERR(handle)) 6154 return PTR_ERR(handle); 6155 ret = dquot_acquire(dquot); 6156 err = ext4_journal_stop(handle); 6157 if (!ret) 6158 ret = err; 6159 return ret; 6160 } 6161 6162 static int ext4_release_dquot(struct dquot *dquot) 6163 { 6164 int ret, err; 6165 handle_t *handle; 6166 6167 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6168 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6169 if (IS_ERR(handle)) { 6170 /* Release dquot anyway to avoid endless cycle in dqput() */ 6171 dquot_release(dquot); 6172 return PTR_ERR(handle); 6173 } 6174 ret = dquot_release(dquot); 6175 err = ext4_journal_stop(handle); 6176 if (!ret) 6177 ret = err; 6178 return ret; 6179 } 6180 6181 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6182 { 6183 struct super_block *sb = dquot->dq_sb; 6184 6185 if (ext4_is_quota_journalled(sb)) { 6186 dquot_mark_dquot_dirty(dquot); 6187 return ext4_write_dquot(dquot); 6188 } else { 6189 return dquot_mark_dquot_dirty(dquot); 6190 } 6191 } 6192 6193 static int ext4_write_info(struct super_block *sb, int type) 6194 { 6195 int ret, err; 6196 handle_t *handle; 6197 6198 /* Data block + inode block */ 6199 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6200 if (IS_ERR(handle)) 6201 return PTR_ERR(handle); 6202 ret = dquot_commit_info(sb, type); 6203 err = ext4_journal_stop(handle); 6204 if (!ret) 6205 ret = err; 6206 return ret; 6207 } 6208 6209 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6210 { 6211 struct ext4_inode_info *ei = EXT4_I(inode); 6212 6213 /* The first argument of lockdep_set_subclass has to be 6214 * *exactly* the same as the argument to init_rwsem() --- in 6215 * this case, in init_once() --- or lockdep gets unhappy 6216 * because the name of the lock is set using the 6217 * stringification of the argument to init_rwsem(). 6218 */ 6219 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6220 lockdep_set_subclass(&ei->i_data_sem, subclass); 6221 } 6222 6223 /* 6224 * Standard function to be called on quota_on 6225 */ 6226 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6227 const struct path *path) 6228 { 6229 int err; 6230 6231 if (!test_opt(sb, QUOTA)) 6232 return -EINVAL; 6233 6234 /* Quotafile not on the same filesystem? */ 6235 if (path->dentry->d_sb != sb) 6236 return -EXDEV; 6237 6238 /* Quota already enabled for this file? */ 6239 if (IS_NOQUOTA(d_inode(path->dentry))) 6240 return -EBUSY; 6241 6242 /* Journaling quota? */ 6243 if (EXT4_SB(sb)->s_qf_names[type]) { 6244 /* Quotafile not in fs root? */ 6245 if (path->dentry->d_parent != sb->s_root) 6246 ext4_msg(sb, KERN_WARNING, 6247 "Quota file not on filesystem root. " 6248 "Journaled quota will not work"); 6249 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6250 } else { 6251 /* 6252 * Clear the flag just in case mount options changed since 6253 * last time. 6254 */ 6255 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6256 } 6257 6258 /* 6259 * When we journal data on quota file, we have to flush journal to see 6260 * all updates to the file when we bypass pagecache... 6261 */ 6262 if (EXT4_SB(sb)->s_journal && 6263 ext4_should_journal_data(d_inode(path->dentry))) { 6264 /* 6265 * We don't need to lock updates but journal_flush() could 6266 * otherwise be livelocked... 6267 */ 6268 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6269 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6270 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6271 if (err) 6272 return err; 6273 } 6274 6275 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6276 err = dquot_quota_on(sb, type, format_id, path); 6277 if (err) { 6278 lockdep_set_quota_inode(path->dentry->d_inode, 6279 I_DATA_SEM_NORMAL); 6280 } else { 6281 struct inode *inode = d_inode(path->dentry); 6282 handle_t *handle; 6283 6284 /* 6285 * Set inode flags to prevent userspace from messing with quota 6286 * files. If this fails, we return success anyway since quotas 6287 * are already enabled and this is not a hard failure. 6288 */ 6289 inode_lock(inode); 6290 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6291 if (IS_ERR(handle)) 6292 goto unlock_inode; 6293 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6294 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6295 S_NOATIME | S_IMMUTABLE); 6296 err = ext4_mark_inode_dirty(handle, inode); 6297 ext4_journal_stop(handle); 6298 unlock_inode: 6299 inode_unlock(inode); 6300 } 6301 return err; 6302 } 6303 6304 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6305 unsigned int flags) 6306 { 6307 int err; 6308 struct inode *qf_inode; 6309 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6310 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6311 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6312 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6313 }; 6314 6315 BUG_ON(!ext4_has_feature_quota(sb)); 6316 6317 if (!qf_inums[type]) 6318 return -EPERM; 6319 6320 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6321 if (IS_ERR(qf_inode)) { 6322 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6323 return PTR_ERR(qf_inode); 6324 } 6325 6326 /* Don't account quota for quota files to avoid recursion */ 6327 qf_inode->i_flags |= S_NOQUOTA; 6328 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6329 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6330 if (err) 6331 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6332 iput(qf_inode); 6333 6334 return err; 6335 } 6336 6337 /* Enable usage tracking for all quota types. */ 6338 int ext4_enable_quotas(struct super_block *sb) 6339 { 6340 int type, err = 0; 6341 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6342 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6343 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6344 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6345 }; 6346 bool quota_mopt[EXT4_MAXQUOTAS] = { 6347 test_opt(sb, USRQUOTA), 6348 test_opt(sb, GRPQUOTA), 6349 test_opt(sb, PRJQUOTA), 6350 }; 6351 6352 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6353 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6354 if (qf_inums[type]) { 6355 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6356 DQUOT_USAGE_ENABLED | 6357 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6358 if (err) { 6359 ext4_warning(sb, 6360 "Failed to enable quota tracking " 6361 "(type=%d, err=%d). Please run " 6362 "e2fsck to fix.", type, err); 6363 for (type--; type >= 0; type--) 6364 dquot_quota_off(sb, type); 6365 6366 return err; 6367 } 6368 } 6369 } 6370 return 0; 6371 } 6372 6373 static int ext4_quota_off(struct super_block *sb, int type) 6374 { 6375 struct inode *inode = sb_dqopt(sb)->files[type]; 6376 handle_t *handle; 6377 int err; 6378 6379 /* Force all delayed allocation blocks to be allocated. 6380 * Caller already holds s_umount sem */ 6381 if (test_opt(sb, DELALLOC)) 6382 sync_filesystem(sb); 6383 6384 if (!inode || !igrab(inode)) 6385 goto out; 6386 6387 err = dquot_quota_off(sb, type); 6388 if (err || ext4_has_feature_quota(sb)) 6389 goto out_put; 6390 6391 inode_lock(inode); 6392 /* 6393 * Update modification times of quota files when userspace can 6394 * start looking at them. If we fail, we return success anyway since 6395 * this is not a hard failure and quotas are already disabled. 6396 */ 6397 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6398 if (IS_ERR(handle)) { 6399 err = PTR_ERR(handle); 6400 goto out_unlock; 6401 } 6402 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6403 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6404 inode->i_mtime = inode->i_ctime = current_time(inode); 6405 err = ext4_mark_inode_dirty(handle, inode); 6406 ext4_journal_stop(handle); 6407 out_unlock: 6408 inode_unlock(inode); 6409 out_put: 6410 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6411 iput(inode); 6412 return err; 6413 out: 6414 return dquot_quota_off(sb, type); 6415 } 6416 6417 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6418 * acquiring the locks... As quota files are never truncated and quota code 6419 * itself serializes the operations (and no one else should touch the files) 6420 * we don't have to be afraid of races */ 6421 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6422 size_t len, loff_t off) 6423 { 6424 struct inode *inode = sb_dqopt(sb)->files[type]; 6425 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6426 int offset = off & (sb->s_blocksize - 1); 6427 int tocopy; 6428 size_t toread; 6429 struct buffer_head *bh; 6430 loff_t i_size = i_size_read(inode); 6431 6432 if (off > i_size) 6433 return 0; 6434 if (off+len > i_size) 6435 len = i_size-off; 6436 toread = len; 6437 while (toread > 0) { 6438 tocopy = sb->s_blocksize - offset < toread ? 6439 sb->s_blocksize - offset : toread; 6440 bh = ext4_bread(NULL, inode, blk, 0); 6441 if (IS_ERR(bh)) 6442 return PTR_ERR(bh); 6443 if (!bh) /* A hole? */ 6444 memset(data, 0, tocopy); 6445 else 6446 memcpy(data, bh->b_data+offset, tocopy); 6447 brelse(bh); 6448 offset = 0; 6449 toread -= tocopy; 6450 data += tocopy; 6451 blk++; 6452 } 6453 return len; 6454 } 6455 6456 /* Write to quotafile (we know the transaction is already started and has 6457 * enough credits) */ 6458 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6459 const char *data, size_t len, loff_t off) 6460 { 6461 struct inode *inode = sb_dqopt(sb)->files[type]; 6462 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6463 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6464 int retries = 0; 6465 struct buffer_head *bh; 6466 handle_t *handle = journal_current_handle(); 6467 6468 if (EXT4_SB(sb)->s_journal && !handle) { 6469 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6470 " cancelled because transaction is not started", 6471 (unsigned long long)off, (unsigned long long)len); 6472 return -EIO; 6473 } 6474 /* 6475 * Since we account only one data block in transaction credits, 6476 * then it is impossible to cross a block boundary. 6477 */ 6478 if (sb->s_blocksize - offset < len) { 6479 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6480 " cancelled because not block aligned", 6481 (unsigned long long)off, (unsigned long long)len); 6482 return -EIO; 6483 } 6484 6485 do { 6486 bh = ext4_bread(handle, inode, blk, 6487 EXT4_GET_BLOCKS_CREATE | 6488 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6489 } while (PTR_ERR(bh) == -ENOSPC && 6490 ext4_should_retry_alloc(inode->i_sb, &retries)); 6491 if (IS_ERR(bh)) 6492 return PTR_ERR(bh); 6493 if (!bh) 6494 goto out; 6495 BUFFER_TRACE(bh, "get write access"); 6496 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6497 if (err) { 6498 brelse(bh); 6499 return err; 6500 } 6501 lock_buffer(bh); 6502 memcpy(bh->b_data+offset, data, len); 6503 flush_dcache_page(bh->b_page); 6504 unlock_buffer(bh); 6505 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6506 brelse(bh); 6507 out: 6508 if (inode->i_size < off + len) { 6509 i_size_write(inode, off + len); 6510 EXT4_I(inode)->i_disksize = inode->i_size; 6511 err2 = ext4_mark_inode_dirty(handle, inode); 6512 if (unlikely(err2 && !err)) 6513 err = err2; 6514 } 6515 return err ? err : len; 6516 } 6517 #endif 6518 6519 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6520 const char *dev_name, void *data) 6521 { 6522 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6523 } 6524 6525 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6526 static inline void register_as_ext2(void) 6527 { 6528 int err = register_filesystem(&ext2_fs_type); 6529 if (err) 6530 printk(KERN_WARNING 6531 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6532 } 6533 6534 static inline void unregister_as_ext2(void) 6535 { 6536 unregister_filesystem(&ext2_fs_type); 6537 } 6538 6539 static inline int ext2_feature_set_ok(struct super_block *sb) 6540 { 6541 if (ext4_has_unknown_ext2_incompat_features(sb)) 6542 return 0; 6543 if (sb_rdonly(sb)) 6544 return 1; 6545 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6546 return 0; 6547 return 1; 6548 } 6549 #else 6550 static inline void register_as_ext2(void) { } 6551 static inline void unregister_as_ext2(void) { } 6552 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6553 #endif 6554 6555 static inline void register_as_ext3(void) 6556 { 6557 int err = register_filesystem(&ext3_fs_type); 6558 if (err) 6559 printk(KERN_WARNING 6560 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6561 } 6562 6563 static inline void unregister_as_ext3(void) 6564 { 6565 unregister_filesystem(&ext3_fs_type); 6566 } 6567 6568 static inline int ext3_feature_set_ok(struct super_block *sb) 6569 { 6570 if (ext4_has_unknown_ext3_incompat_features(sb)) 6571 return 0; 6572 if (!ext4_has_feature_journal(sb)) 6573 return 0; 6574 if (sb_rdonly(sb)) 6575 return 1; 6576 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6577 return 0; 6578 return 1; 6579 } 6580 6581 static struct file_system_type ext4_fs_type = { 6582 .owner = THIS_MODULE, 6583 .name = "ext4", 6584 .mount = ext4_mount, 6585 .kill_sb = kill_block_super, 6586 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6587 }; 6588 MODULE_ALIAS_FS("ext4"); 6589 6590 /* Shared across all ext4 file systems */ 6591 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6592 6593 static int __init ext4_init_fs(void) 6594 { 6595 int i, err; 6596 6597 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6598 ext4_li_info = NULL; 6599 6600 /* Build-time check for flags consistency */ 6601 ext4_check_flag_values(); 6602 6603 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6604 init_waitqueue_head(&ext4__ioend_wq[i]); 6605 6606 err = ext4_init_es(); 6607 if (err) 6608 return err; 6609 6610 err = ext4_init_pending(); 6611 if (err) 6612 goto out7; 6613 6614 err = ext4_init_post_read_processing(); 6615 if (err) 6616 goto out6; 6617 6618 err = ext4_init_pageio(); 6619 if (err) 6620 goto out5; 6621 6622 err = ext4_init_system_zone(); 6623 if (err) 6624 goto out4; 6625 6626 err = ext4_init_sysfs(); 6627 if (err) 6628 goto out3; 6629 6630 err = ext4_init_mballoc(); 6631 if (err) 6632 goto out2; 6633 err = init_inodecache(); 6634 if (err) 6635 goto out1; 6636 6637 err = ext4_fc_init_dentry_cache(); 6638 if (err) 6639 goto out05; 6640 6641 register_as_ext3(); 6642 register_as_ext2(); 6643 err = register_filesystem(&ext4_fs_type); 6644 if (err) 6645 goto out; 6646 6647 return 0; 6648 out: 6649 unregister_as_ext2(); 6650 unregister_as_ext3(); 6651 out05: 6652 destroy_inodecache(); 6653 out1: 6654 ext4_exit_mballoc(); 6655 out2: 6656 ext4_exit_sysfs(); 6657 out3: 6658 ext4_exit_system_zone(); 6659 out4: 6660 ext4_exit_pageio(); 6661 out5: 6662 ext4_exit_post_read_processing(); 6663 out6: 6664 ext4_exit_pending(); 6665 out7: 6666 ext4_exit_es(); 6667 6668 return err; 6669 } 6670 6671 static void __exit ext4_exit_fs(void) 6672 { 6673 ext4_destroy_lazyinit_thread(); 6674 unregister_as_ext2(); 6675 unregister_as_ext3(); 6676 unregister_filesystem(&ext4_fs_type); 6677 destroy_inodecache(); 6678 ext4_exit_mballoc(); 6679 ext4_exit_sysfs(); 6680 ext4_exit_system_zone(); 6681 ext4_exit_pageio(); 6682 ext4_exit_post_read_processing(); 6683 ext4_exit_es(); 6684 ext4_exit_pending(); 6685 } 6686 6687 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6688 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6689 MODULE_LICENSE("GPL"); 6690 MODULE_SOFTDEP("pre: crc32c"); 6691 module_init(ext4_init_fs) 6692 module_exit(ext4_exit_fs) 6693