1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static inline int ext2_feature_set_ok(struct super_block *sb); 79 static inline int ext3_feature_set_ok(struct super_block *sb); 80 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81 static void ext4_destroy_lazyinit_thread(void); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 85 86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 87 static struct file_system_type ext2_fs_type = { 88 .owner = THIS_MODULE, 89 .name = "ext2", 90 .mount = ext4_mount, 91 .kill_sb = kill_block_super, 92 .fs_flags = FS_REQUIRES_DEV, 93 }; 94 MODULE_ALIAS_FS("ext2"); 95 MODULE_ALIAS("ext2"); 96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97 #else 98 #define IS_EXT2_SB(sb) (0) 99 #endif 100 101 102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103 static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109 }; 110 MODULE_ALIAS_FS("ext3"); 111 MODULE_ALIAS("ext3"); 112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 113 #else 114 #define IS_EXT3_SB(sb) (0) 115 #endif 116 117 static int ext4_verify_csum_type(struct super_block *sb, 118 struct ext4_super_block *es) 119 { 120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 122 return 1; 123 124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 125 } 126 127 static __le32 ext4_superblock_csum(struct super_block *sb, 128 struct ext4_super_block *es) 129 { 130 struct ext4_sb_info *sbi = EXT4_SB(sb); 131 int offset = offsetof(struct ext4_super_block, s_checksum); 132 __u32 csum; 133 134 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 135 136 return cpu_to_le32(csum); 137 } 138 139 int ext4_superblock_csum_verify(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147 } 148 149 void ext4_superblock_csum_set(struct super_block *sb) 150 { 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 155 return; 156 157 es->s_checksum = ext4_superblock_csum(sb, es); 158 } 159 160 void *ext4_kvmalloc(size_t size, gfp_t flags) 161 { 162 void *ret; 163 164 ret = kmalloc(size, flags); 165 if (!ret) 166 ret = __vmalloc(size, flags, PAGE_KERNEL); 167 return ret; 168 } 169 170 void *ext4_kvzalloc(size_t size, gfp_t flags) 171 { 172 void *ret; 173 174 ret = kzalloc(size, flags); 175 if (!ret) 176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 177 return ret; 178 } 179 180 void ext4_kvfree(void *ptr) 181 { 182 if (is_vmalloc_addr(ptr)) 183 vfree(ptr); 184 else 185 kfree(ptr); 186 187 } 188 189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 190 struct ext4_group_desc *bg) 191 { 192 return le32_to_cpu(bg->bg_block_bitmap_lo) | 193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 195 } 196 197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 198 struct ext4_group_desc *bg) 199 { 200 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 203 } 204 205 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 206 struct ext4_group_desc *bg) 207 { 208 return le32_to_cpu(bg->bg_inode_table_lo) | 209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 211 } 212 213 __u32 ext4_free_group_clusters(struct super_block *sb, 214 struct ext4_group_desc *bg) 215 { 216 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 219 } 220 221 __u32 ext4_free_inodes_count(struct super_block *sb, 222 struct ext4_group_desc *bg) 223 { 224 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 227 } 228 229 __u32 ext4_used_dirs_count(struct super_block *sb, 230 struct ext4_group_desc *bg) 231 { 232 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 235 } 236 237 __u32 ext4_itable_unused_count(struct super_block *sb, 238 struct ext4_group_desc *bg) 239 { 240 return le16_to_cpu(bg->bg_itable_unused_lo) | 241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 243 } 244 245 void ext4_block_bitmap_set(struct super_block *sb, 246 struct ext4_group_desc *bg, ext4_fsblk_t blk) 247 { 248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 251 } 252 253 void ext4_inode_bitmap_set(struct super_block *sb, 254 struct ext4_group_desc *bg, ext4_fsblk_t blk) 255 { 256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 259 } 260 261 void ext4_inode_table_set(struct super_block *sb, 262 struct ext4_group_desc *bg, ext4_fsblk_t blk) 263 { 264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 267 } 268 269 void ext4_free_group_clusters_set(struct super_block *sb, 270 struct ext4_group_desc *bg, __u32 count) 271 { 272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 275 } 276 277 void ext4_free_inodes_set(struct super_block *sb, 278 struct ext4_group_desc *bg, __u32 count) 279 { 280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 283 } 284 285 void ext4_used_dirs_set(struct super_block *sb, 286 struct ext4_group_desc *bg, __u32 count) 287 { 288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 291 } 292 293 void ext4_itable_unused_set(struct super_block *sb, 294 struct ext4_group_desc *bg, __u32 count) 295 { 296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 299 } 300 301 302 static void __save_error_info(struct super_block *sb, const char *func, 303 unsigned int line) 304 { 305 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 306 307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 309 es->s_last_error_time = cpu_to_le32(get_seconds()); 310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 311 es->s_last_error_line = cpu_to_le32(line); 312 if (!es->s_first_error_time) { 313 es->s_first_error_time = es->s_last_error_time; 314 strncpy(es->s_first_error_func, func, 315 sizeof(es->s_first_error_func)); 316 es->s_first_error_line = cpu_to_le32(line); 317 es->s_first_error_ino = es->s_last_error_ino; 318 es->s_first_error_block = es->s_last_error_block; 319 } 320 /* 321 * Start the daily error reporting function if it hasn't been 322 * started already 323 */ 324 if (!es->s_error_count) 325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 326 le32_add_cpu(&es->s_error_count, 1); 327 } 328 329 static void save_error_info(struct super_block *sb, const char *func, 330 unsigned int line) 331 { 332 __save_error_info(sb, func, line); 333 ext4_commit_super(sb, 1); 334 } 335 336 /* 337 * The del_gendisk() function uninitializes the disk-specific data 338 * structures, including the bdi structure, without telling anyone 339 * else. Once this happens, any attempt to call mark_buffer_dirty() 340 * (for example, by ext4_commit_super), will cause a kernel OOPS. 341 * This is a kludge to prevent these oops until we can put in a proper 342 * hook in del_gendisk() to inform the VFS and file system layers. 343 */ 344 static int block_device_ejected(struct super_block *sb) 345 { 346 struct inode *bd_inode = sb->s_bdev->bd_inode; 347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 348 349 return bdi->dev == NULL; 350 } 351 352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 353 { 354 struct super_block *sb = journal->j_private; 355 struct ext4_sb_info *sbi = EXT4_SB(sb); 356 int error = is_journal_aborted(journal); 357 struct ext4_journal_cb_entry *jce; 358 359 BUG_ON(txn->t_state == T_FINISHED); 360 spin_lock(&sbi->s_md_lock); 361 while (!list_empty(&txn->t_private_list)) { 362 jce = list_entry(txn->t_private_list.next, 363 struct ext4_journal_cb_entry, jce_list); 364 list_del_init(&jce->jce_list); 365 spin_unlock(&sbi->s_md_lock); 366 jce->jce_func(sb, jce, error); 367 spin_lock(&sbi->s_md_lock); 368 } 369 spin_unlock(&sbi->s_md_lock); 370 } 371 372 /* Deal with the reporting of failure conditions on a filesystem such as 373 * inconsistencies detected or read IO failures. 374 * 375 * On ext2, we can store the error state of the filesystem in the 376 * superblock. That is not possible on ext4, because we may have other 377 * write ordering constraints on the superblock which prevent us from 378 * writing it out straight away; and given that the journal is about to 379 * be aborted, we can't rely on the current, or future, transactions to 380 * write out the superblock safely. 381 * 382 * We'll just use the jbd2_journal_abort() error code to record an error in 383 * the journal instead. On recovery, the journal will complain about 384 * that error until we've noted it down and cleared it. 385 */ 386 387 static void ext4_handle_error(struct super_block *sb) 388 { 389 if (sb->s_flags & MS_RDONLY) 390 return; 391 392 if (!test_opt(sb, ERRORS_CONT)) { 393 journal_t *journal = EXT4_SB(sb)->s_journal; 394 395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 396 if (journal) 397 jbd2_journal_abort(journal, -EIO); 398 } 399 if (test_opt(sb, ERRORS_RO)) { 400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 401 sb->s_flags |= MS_RDONLY; 402 } 403 if (test_opt(sb, ERRORS_PANIC)) 404 panic("EXT4-fs (device %s): panic forced after error\n", 405 sb->s_id); 406 } 407 408 void __ext4_error(struct super_block *sb, const char *function, 409 unsigned int line, const char *fmt, ...) 410 { 411 struct va_format vaf; 412 va_list args; 413 414 va_start(args, fmt); 415 vaf.fmt = fmt; 416 vaf.va = &args; 417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 418 sb->s_id, function, line, current->comm, &vaf); 419 va_end(args); 420 save_error_info(sb, function, line); 421 422 ext4_handle_error(sb); 423 } 424 425 void ext4_error_inode(struct inode *inode, const char *function, 426 unsigned int line, ext4_fsblk_t block, 427 const char *fmt, ...) 428 { 429 va_list args; 430 struct va_format vaf; 431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 432 433 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 434 es->s_last_error_block = cpu_to_le64(block); 435 save_error_info(inode->i_sb, function, line); 436 va_start(args, fmt); 437 vaf.fmt = fmt; 438 vaf.va = &args; 439 if (block) 440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 441 "inode #%lu: block %llu: comm %s: %pV\n", 442 inode->i_sb->s_id, function, line, inode->i_ino, 443 block, current->comm, &vaf); 444 else 445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 446 "inode #%lu: comm %s: %pV\n", 447 inode->i_sb->s_id, function, line, inode->i_ino, 448 current->comm, &vaf); 449 va_end(args); 450 451 ext4_handle_error(inode->i_sb); 452 } 453 454 void ext4_error_file(struct file *file, const char *function, 455 unsigned int line, ext4_fsblk_t block, 456 const char *fmt, ...) 457 { 458 va_list args; 459 struct va_format vaf; 460 struct ext4_super_block *es; 461 struct inode *inode = file_inode(file); 462 char pathname[80], *path; 463 464 es = EXT4_SB(inode->i_sb)->s_es; 465 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 466 save_error_info(inode->i_sb, function, line); 467 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 468 if (IS_ERR(path)) 469 path = "(unknown)"; 470 va_start(args, fmt); 471 vaf.fmt = fmt; 472 vaf.va = &args; 473 if (block) 474 printk(KERN_CRIT 475 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 476 "block %llu: comm %s: path %s: %pV\n", 477 inode->i_sb->s_id, function, line, inode->i_ino, 478 block, current->comm, path, &vaf); 479 else 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 482 "comm %s: path %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 current->comm, path, &vaf); 485 va_end(args); 486 487 ext4_handle_error(inode->i_sb); 488 } 489 490 const char *ext4_decode_error(struct super_block *sb, int errno, 491 char nbuf[16]) 492 { 493 char *errstr = NULL; 494 495 switch (errno) { 496 case -EIO: 497 errstr = "IO failure"; 498 break; 499 case -ENOMEM: 500 errstr = "Out of memory"; 501 break; 502 case -EROFS: 503 if (!sb || (EXT4_SB(sb)->s_journal && 504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 505 errstr = "Journal has aborted"; 506 else 507 errstr = "Readonly filesystem"; 508 break; 509 default: 510 /* If the caller passed in an extra buffer for unknown 511 * errors, textualise them now. Else we just return 512 * NULL. */ 513 if (nbuf) { 514 /* Check for truncated error codes... */ 515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 516 errstr = nbuf; 517 } 518 break; 519 } 520 521 return errstr; 522 } 523 524 /* __ext4_std_error decodes expected errors from journaling functions 525 * automatically and invokes the appropriate error response. */ 526 527 void __ext4_std_error(struct super_block *sb, const char *function, 528 unsigned int line, int errno) 529 { 530 char nbuf[16]; 531 const char *errstr; 532 533 /* Special case: if the error is EROFS, and we're not already 534 * inside a transaction, then there's really no point in logging 535 * an error. */ 536 if (errno == -EROFS && journal_current_handle() == NULL && 537 (sb->s_flags & MS_RDONLY)) 538 return; 539 540 errstr = ext4_decode_error(sb, errno, nbuf); 541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 542 sb->s_id, function, line, errstr); 543 save_error_info(sb, function, line); 544 545 ext4_handle_error(sb); 546 } 547 548 /* 549 * ext4_abort is a much stronger failure handler than ext4_error. The 550 * abort function may be used to deal with unrecoverable failures such 551 * as journal IO errors or ENOMEM at a critical moment in log management. 552 * 553 * We unconditionally force the filesystem into an ABORT|READONLY state, 554 * unless the error response on the fs has been set to panic in which 555 * case we take the easy way out and panic immediately. 556 */ 557 558 void __ext4_abort(struct super_block *sb, const char *function, 559 unsigned int line, const char *fmt, ...) 560 { 561 va_list args; 562 563 save_error_info(sb, function, line); 564 va_start(args, fmt); 565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 566 function, line); 567 vprintk(fmt, args); 568 printk("\n"); 569 va_end(args); 570 571 if ((sb->s_flags & MS_RDONLY) == 0) { 572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 573 sb->s_flags |= MS_RDONLY; 574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 575 if (EXT4_SB(sb)->s_journal) 576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 577 save_error_info(sb, function, line); 578 } 579 if (test_opt(sb, ERRORS_PANIC)) 580 panic("EXT4-fs panic from previous error\n"); 581 } 582 583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 584 { 585 struct va_format vaf; 586 va_list args; 587 588 va_start(args, fmt); 589 vaf.fmt = fmt; 590 vaf.va = &args; 591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 592 va_end(args); 593 } 594 595 void __ext4_warning(struct super_block *sb, const char *function, 596 unsigned int line, const char *fmt, ...) 597 { 598 struct va_format vaf; 599 va_list args; 600 601 va_start(args, fmt); 602 vaf.fmt = fmt; 603 vaf.va = &args; 604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 605 sb->s_id, function, line, &vaf); 606 va_end(args); 607 } 608 609 void __ext4_grp_locked_error(const char *function, unsigned int line, 610 struct super_block *sb, ext4_group_t grp, 611 unsigned long ino, ext4_fsblk_t block, 612 const char *fmt, ...) 613 __releases(bitlock) 614 __acquires(bitlock) 615 { 616 struct va_format vaf; 617 va_list args; 618 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 619 620 es->s_last_error_ino = cpu_to_le32(ino); 621 es->s_last_error_block = cpu_to_le64(block); 622 __save_error_info(sb, function, line); 623 624 va_start(args, fmt); 625 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 629 sb->s_id, function, line, grp); 630 if (ino) 631 printk(KERN_CONT "inode %lu: ", ino); 632 if (block) 633 printk(KERN_CONT "block %llu:", (unsigned long long) block); 634 printk(KERN_CONT "%pV\n", &vaf); 635 va_end(args); 636 637 if (test_opt(sb, ERRORS_CONT)) { 638 ext4_commit_super(sb, 0); 639 return; 640 } 641 642 ext4_unlock_group(sb, grp); 643 ext4_handle_error(sb); 644 /* 645 * We only get here in the ERRORS_RO case; relocking the group 646 * may be dangerous, but nothing bad will happen since the 647 * filesystem will have already been marked read/only and the 648 * journal has been aborted. We return 1 as a hint to callers 649 * who might what to use the return value from 650 * ext4_grp_locked_error() to distinguish between the 651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 652 * aggressively from the ext4 function in question, with a 653 * more appropriate error code. 654 */ 655 ext4_lock_group(sb, grp); 656 return; 657 } 658 659 void ext4_update_dynamic_rev(struct super_block *sb) 660 { 661 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 662 663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 664 return; 665 666 ext4_warning(sb, 667 "updating to rev %d because of new feature flag, " 668 "running e2fsck is recommended", 669 EXT4_DYNAMIC_REV); 670 671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 674 /* leave es->s_feature_*compat flags alone */ 675 /* es->s_uuid will be set by e2fsck if empty */ 676 677 /* 678 * The rest of the superblock fields should be zero, and if not it 679 * means they are likely already in use, so leave them alone. We 680 * can leave it up to e2fsck to clean up any inconsistencies there. 681 */ 682 } 683 684 /* 685 * Open the external journal device 686 */ 687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 688 { 689 struct block_device *bdev; 690 char b[BDEVNAME_SIZE]; 691 692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 693 if (IS_ERR(bdev)) 694 goto fail; 695 return bdev; 696 697 fail: 698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 699 __bdevname(dev, b), PTR_ERR(bdev)); 700 return NULL; 701 } 702 703 /* 704 * Release the journal device 705 */ 706 static int ext4_blkdev_put(struct block_device *bdev) 707 { 708 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 709 } 710 711 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 712 { 713 struct block_device *bdev; 714 int ret = -ENODEV; 715 716 bdev = sbi->journal_bdev; 717 if (bdev) { 718 ret = ext4_blkdev_put(bdev); 719 sbi->journal_bdev = NULL; 720 } 721 return ret; 722 } 723 724 static inline struct inode *orphan_list_entry(struct list_head *l) 725 { 726 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 727 } 728 729 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 730 { 731 struct list_head *l; 732 733 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 734 le32_to_cpu(sbi->s_es->s_last_orphan)); 735 736 printk(KERN_ERR "sb_info orphan list:\n"); 737 list_for_each(l, &sbi->s_orphan) { 738 struct inode *inode = orphan_list_entry(l); 739 printk(KERN_ERR " " 740 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 741 inode->i_sb->s_id, inode->i_ino, inode, 742 inode->i_mode, inode->i_nlink, 743 NEXT_ORPHAN(inode)); 744 } 745 } 746 747 static void ext4_put_super(struct super_block *sb) 748 { 749 struct ext4_sb_info *sbi = EXT4_SB(sb); 750 struct ext4_super_block *es = sbi->s_es; 751 int i, err; 752 753 ext4_unregister_li_request(sb); 754 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 755 756 flush_workqueue(sbi->dio_unwritten_wq); 757 destroy_workqueue(sbi->dio_unwritten_wq); 758 759 if (sbi->s_journal) { 760 err = jbd2_journal_destroy(sbi->s_journal); 761 sbi->s_journal = NULL; 762 if (err < 0) 763 ext4_abort(sb, "Couldn't clean up the journal"); 764 } 765 766 ext4_es_unregister_shrinker(sb); 767 del_timer(&sbi->s_err_report); 768 ext4_release_system_zone(sb); 769 ext4_mb_release(sb); 770 ext4_ext_release(sb); 771 ext4_xattr_put_super(sb); 772 773 if (!(sb->s_flags & MS_RDONLY)) { 774 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 775 es->s_state = cpu_to_le16(sbi->s_mount_state); 776 } 777 if (!(sb->s_flags & MS_RDONLY)) 778 ext4_commit_super(sb, 1); 779 780 if (sbi->s_proc) { 781 remove_proc_entry("options", sbi->s_proc); 782 remove_proc_entry(sb->s_id, ext4_proc_root); 783 } 784 kobject_del(&sbi->s_kobj); 785 786 for (i = 0; i < sbi->s_gdb_count; i++) 787 brelse(sbi->s_group_desc[i]); 788 ext4_kvfree(sbi->s_group_desc); 789 ext4_kvfree(sbi->s_flex_groups); 790 percpu_counter_destroy(&sbi->s_freeclusters_counter); 791 percpu_counter_destroy(&sbi->s_freeinodes_counter); 792 percpu_counter_destroy(&sbi->s_dirs_counter); 793 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 794 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 795 brelse(sbi->s_sbh); 796 #ifdef CONFIG_QUOTA 797 for (i = 0; i < MAXQUOTAS; i++) 798 kfree(sbi->s_qf_names[i]); 799 #endif 800 801 /* Debugging code just in case the in-memory inode orphan list 802 * isn't empty. The on-disk one can be non-empty if we've 803 * detected an error and taken the fs readonly, but the 804 * in-memory list had better be clean by this point. */ 805 if (!list_empty(&sbi->s_orphan)) 806 dump_orphan_list(sb, sbi); 807 J_ASSERT(list_empty(&sbi->s_orphan)); 808 809 invalidate_bdev(sb->s_bdev); 810 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 811 /* 812 * Invalidate the journal device's buffers. We don't want them 813 * floating about in memory - the physical journal device may 814 * hotswapped, and it breaks the `ro-after' testing code. 815 */ 816 sync_blockdev(sbi->journal_bdev); 817 invalidate_bdev(sbi->journal_bdev); 818 ext4_blkdev_remove(sbi); 819 } 820 if (sbi->s_mmp_tsk) 821 kthread_stop(sbi->s_mmp_tsk); 822 sb->s_fs_info = NULL; 823 /* 824 * Now that we are completely done shutting down the 825 * superblock, we need to actually destroy the kobject. 826 */ 827 kobject_put(&sbi->s_kobj); 828 wait_for_completion(&sbi->s_kobj_unregister); 829 if (sbi->s_chksum_driver) 830 crypto_free_shash(sbi->s_chksum_driver); 831 kfree(sbi->s_blockgroup_lock); 832 kfree(sbi); 833 } 834 835 static struct kmem_cache *ext4_inode_cachep; 836 837 /* 838 * Called inside transaction, so use GFP_NOFS 839 */ 840 static struct inode *ext4_alloc_inode(struct super_block *sb) 841 { 842 struct ext4_inode_info *ei; 843 844 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 845 if (!ei) 846 return NULL; 847 848 ei->vfs_inode.i_version = 1; 849 INIT_LIST_HEAD(&ei->i_prealloc_list); 850 spin_lock_init(&ei->i_prealloc_lock); 851 ext4_es_init_tree(&ei->i_es_tree); 852 rwlock_init(&ei->i_es_lock); 853 INIT_LIST_HEAD(&ei->i_es_lru); 854 ei->i_es_lru_nr = 0; 855 ei->i_reserved_data_blocks = 0; 856 ei->i_reserved_meta_blocks = 0; 857 ei->i_allocated_meta_blocks = 0; 858 ei->i_da_metadata_calc_len = 0; 859 ei->i_da_metadata_calc_last_lblock = 0; 860 spin_lock_init(&(ei->i_block_reservation_lock)); 861 #ifdef CONFIG_QUOTA 862 ei->i_reserved_quota = 0; 863 #endif 864 ei->jinode = NULL; 865 INIT_LIST_HEAD(&ei->i_completed_io_list); 866 spin_lock_init(&ei->i_completed_io_lock); 867 ei->i_sync_tid = 0; 868 ei->i_datasync_tid = 0; 869 atomic_set(&ei->i_ioend_count, 0); 870 atomic_set(&ei->i_unwritten, 0); 871 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work); 872 873 return &ei->vfs_inode; 874 } 875 876 static int ext4_drop_inode(struct inode *inode) 877 { 878 int drop = generic_drop_inode(inode); 879 880 trace_ext4_drop_inode(inode, drop); 881 return drop; 882 } 883 884 static void ext4_i_callback(struct rcu_head *head) 885 { 886 struct inode *inode = container_of(head, struct inode, i_rcu); 887 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 888 } 889 890 static void ext4_destroy_inode(struct inode *inode) 891 { 892 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 893 ext4_msg(inode->i_sb, KERN_ERR, 894 "Inode %lu (%p): orphan list check failed!", 895 inode->i_ino, EXT4_I(inode)); 896 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 897 EXT4_I(inode), sizeof(struct ext4_inode_info), 898 true); 899 dump_stack(); 900 } 901 call_rcu(&inode->i_rcu, ext4_i_callback); 902 } 903 904 static void init_once(void *foo) 905 { 906 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 907 908 INIT_LIST_HEAD(&ei->i_orphan); 909 init_rwsem(&ei->xattr_sem); 910 init_rwsem(&ei->i_data_sem); 911 inode_init_once(&ei->vfs_inode); 912 } 913 914 static int init_inodecache(void) 915 { 916 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 917 sizeof(struct ext4_inode_info), 918 0, (SLAB_RECLAIM_ACCOUNT| 919 SLAB_MEM_SPREAD), 920 init_once); 921 if (ext4_inode_cachep == NULL) 922 return -ENOMEM; 923 return 0; 924 } 925 926 static void destroy_inodecache(void) 927 { 928 /* 929 * Make sure all delayed rcu free inodes are flushed before we 930 * destroy cache. 931 */ 932 rcu_barrier(); 933 kmem_cache_destroy(ext4_inode_cachep); 934 } 935 936 void ext4_clear_inode(struct inode *inode) 937 { 938 invalidate_inode_buffers(inode); 939 clear_inode(inode); 940 dquot_drop(inode); 941 ext4_discard_preallocations(inode); 942 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 943 ext4_es_lru_del(inode); 944 if (EXT4_I(inode)->jinode) { 945 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 946 EXT4_I(inode)->jinode); 947 jbd2_free_inode(EXT4_I(inode)->jinode); 948 EXT4_I(inode)->jinode = NULL; 949 } 950 } 951 952 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 953 u64 ino, u32 generation) 954 { 955 struct inode *inode; 956 957 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 958 return ERR_PTR(-ESTALE); 959 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 960 return ERR_PTR(-ESTALE); 961 962 /* iget isn't really right if the inode is currently unallocated!! 963 * 964 * ext4_read_inode will return a bad_inode if the inode had been 965 * deleted, so we should be safe. 966 * 967 * Currently we don't know the generation for parent directory, so 968 * a generation of 0 means "accept any" 969 */ 970 inode = ext4_iget(sb, ino); 971 if (IS_ERR(inode)) 972 return ERR_CAST(inode); 973 if (generation && inode->i_generation != generation) { 974 iput(inode); 975 return ERR_PTR(-ESTALE); 976 } 977 978 return inode; 979 } 980 981 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 982 int fh_len, int fh_type) 983 { 984 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 985 ext4_nfs_get_inode); 986 } 987 988 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 989 int fh_len, int fh_type) 990 { 991 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 992 ext4_nfs_get_inode); 993 } 994 995 /* 996 * Try to release metadata pages (indirect blocks, directories) which are 997 * mapped via the block device. Since these pages could have journal heads 998 * which would prevent try_to_free_buffers() from freeing them, we must use 999 * jbd2 layer's try_to_free_buffers() function to release them. 1000 */ 1001 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1002 gfp_t wait) 1003 { 1004 journal_t *journal = EXT4_SB(sb)->s_journal; 1005 1006 WARN_ON(PageChecked(page)); 1007 if (!page_has_buffers(page)) 1008 return 0; 1009 if (journal) 1010 return jbd2_journal_try_to_free_buffers(journal, page, 1011 wait & ~__GFP_WAIT); 1012 return try_to_free_buffers(page); 1013 } 1014 1015 #ifdef CONFIG_QUOTA 1016 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1017 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1018 1019 static int ext4_write_dquot(struct dquot *dquot); 1020 static int ext4_acquire_dquot(struct dquot *dquot); 1021 static int ext4_release_dquot(struct dquot *dquot); 1022 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1023 static int ext4_write_info(struct super_block *sb, int type); 1024 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1025 struct path *path); 1026 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1027 int format_id); 1028 static int ext4_quota_off(struct super_block *sb, int type); 1029 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1030 static int ext4_quota_on_mount(struct super_block *sb, int type); 1031 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1032 size_t len, loff_t off); 1033 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1034 const char *data, size_t len, loff_t off); 1035 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1036 unsigned int flags); 1037 static int ext4_enable_quotas(struct super_block *sb); 1038 1039 static const struct dquot_operations ext4_quota_operations = { 1040 .get_reserved_space = ext4_get_reserved_space, 1041 .write_dquot = ext4_write_dquot, 1042 .acquire_dquot = ext4_acquire_dquot, 1043 .release_dquot = ext4_release_dquot, 1044 .mark_dirty = ext4_mark_dquot_dirty, 1045 .write_info = ext4_write_info, 1046 .alloc_dquot = dquot_alloc, 1047 .destroy_dquot = dquot_destroy, 1048 }; 1049 1050 static const struct quotactl_ops ext4_qctl_operations = { 1051 .quota_on = ext4_quota_on, 1052 .quota_off = ext4_quota_off, 1053 .quota_sync = dquot_quota_sync, 1054 .get_info = dquot_get_dqinfo, 1055 .set_info = dquot_set_dqinfo, 1056 .get_dqblk = dquot_get_dqblk, 1057 .set_dqblk = dquot_set_dqblk 1058 }; 1059 1060 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1061 .quota_on_meta = ext4_quota_on_sysfile, 1062 .quota_off = ext4_quota_off_sysfile, 1063 .quota_sync = dquot_quota_sync, 1064 .get_info = dquot_get_dqinfo, 1065 .set_info = dquot_set_dqinfo, 1066 .get_dqblk = dquot_get_dqblk, 1067 .set_dqblk = dquot_set_dqblk 1068 }; 1069 #endif 1070 1071 static const struct super_operations ext4_sops = { 1072 .alloc_inode = ext4_alloc_inode, 1073 .destroy_inode = ext4_destroy_inode, 1074 .write_inode = ext4_write_inode, 1075 .dirty_inode = ext4_dirty_inode, 1076 .drop_inode = ext4_drop_inode, 1077 .evict_inode = ext4_evict_inode, 1078 .put_super = ext4_put_super, 1079 .sync_fs = ext4_sync_fs, 1080 .freeze_fs = ext4_freeze, 1081 .unfreeze_fs = ext4_unfreeze, 1082 .statfs = ext4_statfs, 1083 .remount_fs = ext4_remount, 1084 .show_options = ext4_show_options, 1085 #ifdef CONFIG_QUOTA 1086 .quota_read = ext4_quota_read, 1087 .quota_write = ext4_quota_write, 1088 #endif 1089 .bdev_try_to_free_page = bdev_try_to_free_page, 1090 }; 1091 1092 static const struct super_operations ext4_nojournal_sops = { 1093 .alloc_inode = ext4_alloc_inode, 1094 .destroy_inode = ext4_destroy_inode, 1095 .write_inode = ext4_write_inode, 1096 .dirty_inode = ext4_dirty_inode, 1097 .drop_inode = ext4_drop_inode, 1098 .evict_inode = ext4_evict_inode, 1099 .put_super = ext4_put_super, 1100 .statfs = ext4_statfs, 1101 .remount_fs = ext4_remount, 1102 .show_options = ext4_show_options, 1103 #ifdef CONFIG_QUOTA 1104 .quota_read = ext4_quota_read, 1105 .quota_write = ext4_quota_write, 1106 #endif 1107 .bdev_try_to_free_page = bdev_try_to_free_page, 1108 }; 1109 1110 static const struct export_operations ext4_export_ops = { 1111 .fh_to_dentry = ext4_fh_to_dentry, 1112 .fh_to_parent = ext4_fh_to_parent, 1113 .get_parent = ext4_get_parent, 1114 }; 1115 1116 enum { 1117 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1118 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1119 Opt_nouid32, Opt_debug, Opt_removed, 1120 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1121 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1122 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1123 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1124 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1125 Opt_data_err_abort, Opt_data_err_ignore, 1126 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1127 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1128 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1129 Opt_usrquota, Opt_grpquota, Opt_i_version, 1130 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1131 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1132 Opt_inode_readahead_blks, Opt_journal_ioprio, 1133 Opt_dioread_nolock, Opt_dioread_lock, 1134 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1135 Opt_max_dir_size_kb, 1136 }; 1137 1138 static const match_table_t tokens = { 1139 {Opt_bsd_df, "bsddf"}, 1140 {Opt_minix_df, "minixdf"}, 1141 {Opt_grpid, "grpid"}, 1142 {Opt_grpid, "bsdgroups"}, 1143 {Opt_nogrpid, "nogrpid"}, 1144 {Opt_nogrpid, "sysvgroups"}, 1145 {Opt_resgid, "resgid=%u"}, 1146 {Opt_resuid, "resuid=%u"}, 1147 {Opt_sb, "sb=%u"}, 1148 {Opt_err_cont, "errors=continue"}, 1149 {Opt_err_panic, "errors=panic"}, 1150 {Opt_err_ro, "errors=remount-ro"}, 1151 {Opt_nouid32, "nouid32"}, 1152 {Opt_debug, "debug"}, 1153 {Opt_removed, "oldalloc"}, 1154 {Opt_removed, "orlov"}, 1155 {Opt_user_xattr, "user_xattr"}, 1156 {Opt_nouser_xattr, "nouser_xattr"}, 1157 {Opt_acl, "acl"}, 1158 {Opt_noacl, "noacl"}, 1159 {Opt_noload, "norecovery"}, 1160 {Opt_noload, "noload"}, 1161 {Opt_removed, "nobh"}, 1162 {Opt_removed, "bh"}, 1163 {Opt_commit, "commit=%u"}, 1164 {Opt_min_batch_time, "min_batch_time=%u"}, 1165 {Opt_max_batch_time, "max_batch_time=%u"}, 1166 {Opt_journal_dev, "journal_dev=%u"}, 1167 {Opt_journal_checksum, "journal_checksum"}, 1168 {Opt_journal_async_commit, "journal_async_commit"}, 1169 {Opt_abort, "abort"}, 1170 {Opt_data_journal, "data=journal"}, 1171 {Opt_data_ordered, "data=ordered"}, 1172 {Opt_data_writeback, "data=writeback"}, 1173 {Opt_data_err_abort, "data_err=abort"}, 1174 {Opt_data_err_ignore, "data_err=ignore"}, 1175 {Opt_offusrjquota, "usrjquota="}, 1176 {Opt_usrjquota, "usrjquota=%s"}, 1177 {Opt_offgrpjquota, "grpjquota="}, 1178 {Opt_grpjquota, "grpjquota=%s"}, 1179 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1180 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1181 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1182 {Opt_grpquota, "grpquota"}, 1183 {Opt_noquota, "noquota"}, 1184 {Opt_quota, "quota"}, 1185 {Opt_usrquota, "usrquota"}, 1186 {Opt_barrier, "barrier=%u"}, 1187 {Opt_barrier, "barrier"}, 1188 {Opt_nobarrier, "nobarrier"}, 1189 {Opt_i_version, "i_version"}, 1190 {Opt_stripe, "stripe=%u"}, 1191 {Opt_delalloc, "delalloc"}, 1192 {Opt_nodelalloc, "nodelalloc"}, 1193 {Opt_removed, "mblk_io_submit"}, 1194 {Opt_removed, "nomblk_io_submit"}, 1195 {Opt_block_validity, "block_validity"}, 1196 {Opt_noblock_validity, "noblock_validity"}, 1197 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1198 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1199 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1200 {Opt_auto_da_alloc, "auto_da_alloc"}, 1201 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1202 {Opt_dioread_nolock, "dioread_nolock"}, 1203 {Opt_dioread_lock, "dioread_lock"}, 1204 {Opt_discard, "discard"}, 1205 {Opt_nodiscard, "nodiscard"}, 1206 {Opt_init_itable, "init_itable=%u"}, 1207 {Opt_init_itable, "init_itable"}, 1208 {Opt_noinit_itable, "noinit_itable"}, 1209 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1210 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1211 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1212 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1213 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1214 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1215 {Opt_err, NULL}, 1216 }; 1217 1218 static ext4_fsblk_t get_sb_block(void **data) 1219 { 1220 ext4_fsblk_t sb_block; 1221 char *options = (char *) *data; 1222 1223 if (!options || strncmp(options, "sb=", 3) != 0) 1224 return 1; /* Default location */ 1225 1226 options += 3; 1227 /* TODO: use simple_strtoll with >32bit ext4 */ 1228 sb_block = simple_strtoul(options, &options, 0); 1229 if (*options && *options != ',') { 1230 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1231 (char *) *data); 1232 return 1; 1233 } 1234 if (*options == ',') 1235 options++; 1236 *data = (void *) options; 1237 1238 return sb_block; 1239 } 1240 1241 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1242 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1243 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1244 1245 #ifdef CONFIG_QUOTA 1246 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1247 { 1248 struct ext4_sb_info *sbi = EXT4_SB(sb); 1249 char *qname; 1250 int ret = -1; 1251 1252 if (sb_any_quota_loaded(sb) && 1253 !sbi->s_qf_names[qtype]) { 1254 ext4_msg(sb, KERN_ERR, 1255 "Cannot change journaled " 1256 "quota options when quota turned on"); 1257 return -1; 1258 } 1259 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1260 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1261 "when QUOTA feature is enabled"); 1262 return -1; 1263 } 1264 qname = match_strdup(args); 1265 if (!qname) { 1266 ext4_msg(sb, KERN_ERR, 1267 "Not enough memory for storing quotafile name"); 1268 return -1; 1269 } 1270 if (sbi->s_qf_names[qtype]) { 1271 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1272 ret = 1; 1273 else 1274 ext4_msg(sb, KERN_ERR, 1275 "%s quota file already specified", 1276 QTYPE2NAME(qtype)); 1277 goto errout; 1278 } 1279 if (strchr(qname, '/')) { 1280 ext4_msg(sb, KERN_ERR, 1281 "quotafile must be on filesystem root"); 1282 goto errout; 1283 } 1284 sbi->s_qf_names[qtype] = qname; 1285 set_opt(sb, QUOTA); 1286 return 1; 1287 errout: 1288 kfree(qname); 1289 return ret; 1290 } 1291 1292 static int clear_qf_name(struct super_block *sb, int qtype) 1293 { 1294 1295 struct ext4_sb_info *sbi = EXT4_SB(sb); 1296 1297 if (sb_any_quota_loaded(sb) && 1298 sbi->s_qf_names[qtype]) { 1299 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1300 " when quota turned on"); 1301 return -1; 1302 } 1303 kfree(sbi->s_qf_names[qtype]); 1304 sbi->s_qf_names[qtype] = NULL; 1305 return 1; 1306 } 1307 #endif 1308 1309 #define MOPT_SET 0x0001 1310 #define MOPT_CLEAR 0x0002 1311 #define MOPT_NOSUPPORT 0x0004 1312 #define MOPT_EXPLICIT 0x0008 1313 #define MOPT_CLEAR_ERR 0x0010 1314 #define MOPT_GTE0 0x0020 1315 #ifdef CONFIG_QUOTA 1316 #define MOPT_Q 0 1317 #define MOPT_QFMT 0x0040 1318 #else 1319 #define MOPT_Q MOPT_NOSUPPORT 1320 #define MOPT_QFMT MOPT_NOSUPPORT 1321 #endif 1322 #define MOPT_DATAJ 0x0080 1323 #define MOPT_NO_EXT2 0x0100 1324 #define MOPT_NO_EXT3 0x0200 1325 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1326 1327 static const struct mount_opts { 1328 int token; 1329 int mount_opt; 1330 int flags; 1331 } ext4_mount_opts[] = { 1332 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1333 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1334 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1335 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1336 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1337 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1338 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1339 MOPT_EXT4_ONLY | MOPT_SET}, 1340 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1341 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1342 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1343 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1344 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1345 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1346 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1347 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT}, 1348 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1349 MOPT_EXT4_ONLY | MOPT_SET}, 1350 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1351 EXT4_MOUNT_JOURNAL_CHECKSUM), 1352 MOPT_EXT4_ONLY | MOPT_SET}, 1353 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1354 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1355 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1356 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1357 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1358 MOPT_NO_EXT2 | MOPT_SET}, 1359 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1360 MOPT_NO_EXT2 | MOPT_CLEAR}, 1361 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1362 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1363 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1364 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1365 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1366 {Opt_commit, 0, MOPT_GTE0}, 1367 {Opt_max_batch_time, 0, MOPT_GTE0}, 1368 {Opt_min_batch_time, 0, MOPT_GTE0}, 1369 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1370 {Opt_init_itable, 0, MOPT_GTE0}, 1371 {Opt_stripe, 0, MOPT_GTE0}, 1372 {Opt_resuid, 0, MOPT_GTE0}, 1373 {Opt_resgid, 0, MOPT_GTE0}, 1374 {Opt_journal_dev, 0, MOPT_GTE0}, 1375 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1376 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1377 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1378 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1379 MOPT_NO_EXT2 | MOPT_DATAJ}, 1380 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1381 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1382 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1383 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1384 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1385 #else 1386 {Opt_acl, 0, MOPT_NOSUPPORT}, 1387 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1388 #endif 1389 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1390 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1391 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1392 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1393 MOPT_SET | MOPT_Q}, 1394 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1395 MOPT_SET | MOPT_Q}, 1396 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1397 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1398 {Opt_usrjquota, 0, MOPT_Q}, 1399 {Opt_grpjquota, 0, MOPT_Q}, 1400 {Opt_offusrjquota, 0, MOPT_Q}, 1401 {Opt_offgrpjquota, 0, MOPT_Q}, 1402 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1403 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1404 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1405 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1406 {Opt_err, 0, 0} 1407 }; 1408 1409 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1410 substring_t *args, unsigned long *journal_devnum, 1411 unsigned int *journal_ioprio, int is_remount) 1412 { 1413 struct ext4_sb_info *sbi = EXT4_SB(sb); 1414 const struct mount_opts *m; 1415 kuid_t uid; 1416 kgid_t gid; 1417 int arg = 0; 1418 1419 #ifdef CONFIG_QUOTA 1420 if (token == Opt_usrjquota) 1421 return set_qf_name(sb, USRQUOTA, &args[0]); 1422 else if (token == Opt_grpjquota) 1423 return set_qf_name(sb, GRPQUOTA, &args[0]); 1424 else if (token == Opt_offusrjquota) 1425 return clear_qf_name(sb, USRQUOTA); 1426 else if (token == Opt_offgrpjquota) 1427 return clear_qf_name(sb, GRPQUOTA); 1428 #endif 1429 switch (token) { 1430 case Opt_noacl: 1431 case Opt_nouser_xattr: 1432 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1433 break; 1434 case Opt_sb: 1435 return 1; /* handled by get_sb_block() */ 1436 case Opt_removed: 1437 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1438 return 1; 1439 case Opt_abort: 1440 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1441 return 1; 1442 case Opt_i_version: 1443 sb->s_flags |= MS_I_VERSION; 1444 return 1; 1445 } 1446 1447 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1448 if (token == m->token) 1449 break; 1450 1451 if (m->token == Opt_err) { 1452 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1453 "or missing value", opt); 1454 return -1; 1455 } 1456 1457 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1458 ext4_msg(sb, KERN_ERR, 1459 "Mount option \"%s\" incompatible with ext2", opt); 1460 return -1; 1461 } 1462 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1463 ext4_msg(sb, KERN_ERR, 1464 "Mount option \"%s\" incompatible with ext3", opt); 1465 return -1; 1466 } 1467 1468 if (args->from && match_int(args, &arg)) 1469 return -1; 1470 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1471 return -1; 1472 if (m->flags & MOPT_EXPLICIT) 1473 set_opt2(sb, EXPLICIT_DELALLOC); 1474 if (m->flags & MOPT_CLEAR_ERR) 1475 clear_opt(sb, ERRORS_MASK); 1476 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1477 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1478 "options when quota turned on"); 1479 return -1; 1480 } 1481 1482 if (m->flags & MOPT_NOSUPPORT) { 1483 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1484 } else if (token == Opt_commit) { 1485 if (arg == 0) 1486 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1487 sbi->s_commit_interval = HZ * arg; 1488 } else if (token == Opt_max_batch_time) { 1489 if (arg == 0) 1490 arg = EXT4_DEF_MAX_BATCH_TIME; 1491 sbi->s_max_batch_time = arg; 1492 } else if (token == Opt_min_batch_time) { 1493 sbi->s_min_batch_time = arg; 1494 } else if (token == Opt_inode_readahead_blks) { 1495 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1496 ext4_msg(sb, KERN_ERR, 1497 "EXT4-fs: inode_readahead_blks must be " 1498 "0 or a power of 2 smaller than 2^31"); 1499 return -1; 1500 } 1501 sbi->s_inode_readahead_blks = arg; 1502 } else if (token == Opt_init_itable) { 1503 set_opt(sb, INIT_INODE_TABLE); 1504 if (!args->from) 1505 arg = EXT4_DEF_LI_WAIT_MULT; 1506 sbi->s_li_wait_mult = arg; 1507 } else if (token == Opt_max_dir_size_kb) { 1508 sbi->s_max_dir_size_kb = arg; 1509 } else if (token == Opt_stripe) { 1510 sbi->s_stripe = arg; 1511 } else if (token == Opt_resuid) { 1512 uid = make_kuid(current_user_ns(), arg); 1513 if (!uid_valid(uid)) { 1514 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1515 return -1; 1516 } 1517 sbi->s_resuid = uid; 1518 } else if (token == Opt_resgid) { 1519 gid = make_kgid(current_user_ns(), arg); 1520 if (!gid_valid(gid)) { 1521 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1522 return -1; 1523 } 1524 sbi->s_resgid = gid; 1525 } else if (token == Opt_journal_dev) { 1526 if (is_remount) { 1527 ext4_msg(sb, KERN_ERR, 1528 "Cannot specify journal on remount"); 1529 return -1; 1530 } 1531 *journal_devnum = arg; 1532 } else if (token == Opt_journal_ioprio) { 1533 if (arg > 7) { 1534 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1535 " (must be 0-7)"); 1536 return -1; 1537 } 1538 *journal_ioprio = 1539 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1540 } else if (m->flags & MOPT_DATAJ) { 1541 if (is_remount) { 1542 if (!sbi->s_journal) 1543 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1544 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1545 ext4_msg(sb, KERN_ERR, 1546 "Cannot change data mode on remount"); 1547 return -1; 1548 } 1549 } else { 1550 clear_opt(sb, DATA_FLAGS); 1551 sbi->s_mount_opt |= m->mount_opt; 1552 } 1553 #ifdef CONFIG_QUOTA 1554 } else if (m->flags & MOPT_QFMT) { 1555 if (sb_any_quota_loaded(sb) && 1556 sbi->s_jquota_fmt != m->mount_opt) { 1557 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1558 "quota options when quota turned on"); 1559 return -1; 1560 } 1561 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1562 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1563 ext4_msg(sb, KERN_ERR, 1564 "Cannot set journaled quota options " 1565 "when QUOTA feature is enabled"); 1566 return -1; 1567 } 1568 sbi->s_jquota_fmt = m->mount_opt; 1569 #endif 1570 } else { 1571 if (!args->from) 1572 arg = 1; 1573 if (m->flags & MOPT_CLEAR) 1574 arg = !arg; 1575 else if (unlikely(!(m->flags & MOPT_SET))) { 1576 ext4_msg(sb, KERN_WARNING, 1577 "buggy handling of option %s", opt); 1578 WARN_ON(1); 1579 return -1; 1580 } 1581 if (arg != 0) 1582 sbi->s_mount_opt |= m->mount_opt; 1583 else 1584 sbi->s_mount_opt &= ~m->mount_opt; 1585 } 1586 return 1; 1587 } 1588 1589 static int parse_options(char *options, struct super_block *sb, 1590 unsigned long *journal_devnum, 1591 unsigned int *journal_ioprio, 1592 int is_remount) 1593 { 1594 struct ext4_sb_info *sbi = EXT4_SB(sb); 1595 char *p; 1596 substring_t args[MAX_OPT_ARGS]; 1597 int token; 1598 1599 if (!options) 1600 return 1; 1601 1602 while ((p = strsep(&options, ",")) != NULL) { 1603 if (!*p) 1604 continue; 1605 /* 1606 * Initialize args struct so we know whether arg was 1607 * found; some options take optional arguments. 1608 */ 1609 args[0].to = args[0].from = NULL; 1610 token = match_token(p, tokens, args); 1611 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1612 journal_ioprio, is_remount) < 0) 1613 return 0; 1614 } 1615 #ifdef CONFIG_QUOTA 1616 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1617 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1618 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1619 "feature is enabled"); 1620 return 0; 1621 } 1622 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1623 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1624 clear_opt(sb, USRQUOTA); 1625 1626 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1627 clear_opt(sb, GRPQUOTA); 1628 1629 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1630 ext4_msg(sb, KERN_ERR, "old and new quota " 1631 "format mixing"); 1632 return 0; 1633 } 1634 1635 if (!sbi->s_jquota_fmt) { 1636 ext4_msg(sb, KERN_ERR, "journaled quota format " 1637 "not specified"); 1638 return 0; 1639 } 1640 } else { 1641 if (sbi->s_jquota_fmt) { 1642 ext4_msg(sb, KERN_ERR, "journaled quota format " 1643 "specified with no journaling " 1644 "enabled"); 1645 return 0; 1646 } 1647 } 1648 #endif 1649 if (test_opt(sb, DIOREAD_NOLOCK)) { 1650 int blocksize = 1651 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1652 1653 if (blocksize < PAGE_CACHE_SIZE) { 1654 ext4_msg(sb, KERN_ERR, "can't mount with " 1655 "dioread_nolock if block size != PAGE_SIZE"); 1656 return 0; 1657 } 1658 } 1659 return 1; 1660 } 1661 1662 static inline void ext4_show_quota_options(struct seq_file *seq, 1663 struct super_block *sb) 1664 { 1665 #if defined(CONFIG_QUOTA) 1666 struct ext4_sb_info *sbi = EXT4_SB(sb); 1667 1668 if (sbi->s_jquota_fmt) { 1669 char *fmtname = ""; 1670 1671 switch (sbi->s_jquota_fmt) { 1672 case QFMT_VFS_OLD: 1673 fmtname = "vfsold"; 1674 break; 1675 case QFMT_VFS_V0: 1676 fmtname = "vfsv0"; 1677 break; 1678 case QFMT_VFS_V1: 1679 fmtname = "vfsv1"; 1680 break; 1681 } 1682 seq_printf(seq, ",jqfmt=%s", fmtname); 1683 } 1684 1685 if (sbi->s_qf_names[USRQUOTA]) 1686 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1687 1688 if (sbi->s_qf_names[GRPQUOTA]) 1689 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1690 1691 if (test_opt(sb, USRQUOTA)) 1692 seq_puts(seq, ",usrquota"); 1693 1694 if (test_opt(sb, GRPQUOTA)) 1695 seq_puts(seq, ",grpquota"); 1696 #endif 1697 } 1698 1699 static const char *token2str(int token) 1700 { 1701 const struct match_token *t; 1702 1703 for (t = tokens; t->token != Opt_err; t++) 1704 if (t->token == token && !strchr(t->pattern, '=')) 1705 break; 1706 return t->pattern; 1707 } 1708 1709 /* 1710 * Show an option if 1711 * - it's set to a non-default value OR 1712 * - if the per-sb default is different from the global default 1713 */ 1714 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1715 int nodefs) 1716 { 1717 struct ext4_sb_info *sbi = EXT4_SB(sb); 1718 struct ext4_super_block *es = sbi->s_es; 1719 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1720 const struct mount_opts *m; 1721 char sep = nodefs ? '\n' : ','; 1722 1723 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1724 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1725 1726 if (sbi->s_sb_block != 1) 1727 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1728 1729 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1730 int want_set = m->flags & MOPT_SET; 1731 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1732 (m->flags & MOPT_CLEAR_ERR)) 1733 continue; 1734 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1735 continue; /* skip if same as the default */ 1736 if ((want_set && 1737 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1738 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1739 continue; /* select Opt_noFoo vs Opt_Foo */ 1740 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1741 } 1742 1743 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1744 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1745 SEQ_OPTS_PRINT("resuid=%u", 1746 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1747 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1748 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1749 SEQ_OPTS_PRINT("resgid=%u", 1750 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1751 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1752 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1753 SEQ_OPTS_PUTS("errors=remount-ro"); 1754 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1755 SEQ_OPTS_PUTS("errors=continue"); 1756 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1757 SEQ_OPTS_PUTS("errors=panic"); 1758 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1759 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1760 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1761 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1762 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1763 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1764 if (sb->s_flags & MS_I_VERSION) 1765 SEQ_OPTS_PUTS("i_version"); 1766 if (nodefs || sbi->s_stripe) 1767 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1768 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1769 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1770 SEQ_OPTS_PUTS("data=journal"); 1771 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1772 SEQ_OPTS_PUTS("data=ordered"); 1773 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1774 SEQ_OPTS_PUTS("data=writeback"); 1775 } 1776 if (nodefs || 1777 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1778 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1779 sbi->s_inode_readahead_blks); 1780 1781 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1782 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1783 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1784 if (nodefs || sbi->s_max_dir_size_kb) 1785 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1786 1787 ext4_show_quota_options(seq, sb); 1788 return 0; 1789 } 1790 1791 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1792 { 1793 return _ext4_show_options(seq, root->d_sb, 0); 1794 } 1795 1796 static int options_seq_show(struct seq_file *seq, void *offset) 1797 { 1798 struct super_block *sb = seq->private; 1799 int rc; 1800 1801 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1802 rc = _ext4_show_options(seq, sb, 1); 1803 seq_puts(seq, "\n"); 1804 return rc; 1805 } 1806 1807 static int options_open_fs(struct inode *inode, struct file *file) 1808 { 1809 return single_open(file, options_seq_show, PDE_DATA(inode)); 1810 } 1811 1812 static const struct file_operations ext4_seq_options_fops = { 1813 .owner = THIS_MODULE, 1814 .open = options_open_fs, 1815 .read = seq_read, 1816 .llseek = seq_lseek, 1817 .release = single_release, 1818 }; 1819 1820 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1821 int read_only) 1822 { 1823 struct ext4_sb_info *sbi = EXT4_SB(sb); 1824 int res = 0; 1825 1826 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1827 ext4_msg(sb, KERN_ERR, "revision level too high, " 1828 "forcing read-only mode"); 1829 res = MS_RDONLY; 1830 } 1831 if (read_only) 1832 goto done; 1833 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1834 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1835 "running e2fsck is recommended"); 1836 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1837 ext4_msg(sb, KERN_WARNING, 1838 "warning: mounting fs with errors, " 1839 "running e2fsck is recommended"); 1840 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1841 le16_to_cpu(es->s_mnt_count) >= 1842 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1843 ext4_msg(sb, KERN_WARNING, 1844 "warning: maximal mount count reached, " 1845 "running e2fsck is recommended"); 1846 else if (le32_to_cpu(es->s_checkinterval) && 1847 (le32_to_cpu(es->s_lastcheck) + 1848 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1849 ext4_msg(sb, KERN_WARNING, 1850 "warning: checktime reached, " 1851 "running e2fsck is recommended"); 1852 if (!sbi->s_journal) 1853 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1854 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1855 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1856 le16_add_cpu(&es->s_mnt_count, 1); 1857 es->s_mtime = cpu_to_le32(get_seconds()); 1858 ext4_update_dynamic_rev(sb); 1859 if (sbi->s_journal) 1860 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1861 1862 ext4_commit_super(sb, 1); 1863 done: 1864 if (test_opt(sb, DEBUG)) 1865 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1866 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1867 sb->s_blocksize, 1868 sbi->s_groups_count, 1869 EXT4_BLOCKS_PER_GROUP(sb), 1870 EXT4_INODES_PER_GROUP(sb), 1871 sbi->s_mount_opt, sbi->s_mount_opt2); 1872 1873 cleancache_init_fs(sb); 1874 return res; 1875 } 1876 1877 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1878 { 1879 struct ext4_sb_info *sbi = EXT4_SB(sb); 1880 struct flex_groups *new_groups; 1881 int size; 1882 1883 if (!sbi->s_log_groups_per_flex) 1884 return 0; 1885 1886 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1887 if (size <= sbi->s_flex_groups_allocated) 1888 return 0; 1889 1890 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1891 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1892 if (!new_groups) { 1893 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1894 size / (int) sizeof(struct flex_groups)); 1895 return -ENOMEM; 1896 } 1897 1898 if (sbi->s_flex_groups) { 1899 memcpy(new_groups, sbi->s_flex_groups, 1900 (sbi->s_flex_groups_allocated * 1901 sizeof(struct flex_groups))); 1902 ext4_kvfree(sbi->s_flex_groups); 1903 } 1904 sbi->s_flex_groups = new_groups; 1905 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1906 return 0; 1907 } 1908 1909 static int ext4_fill_flex_info(struct super_block *sb) 1910 { 1911 struct ext4_sb_info *sbi = EXT4_SB(sb); 1912 struct ext4_group_desc *gdp = NULL; 1913 ext4_group_t flex_group; 1914 unsigned int groups_per_flex = 0; 1915 int i, err; 1916 1917 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1918 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1919 sbi->s_log_groups_per_flex = 0; 1920 return 1; 1921 } 1922 groups_per_flex = 1U << sbi->s_log_groups_per_flex; 1923 1924 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1925 if (err) 1926 goto failed; 1927 1928 for (i = 0; i < sbi->s_groups_count; i++) { 1929 gdp = ext4_get_group_desc(sb, i, NULL); 1930 1931 flex_group = ext4_flex_group(sbi, i); 1932 atomic_add(ext4_free_inodes_count(sb, gdp), 1933 &sbi->s_flex_groups[flex_group].free_inodes); 1934 atomic64_add(ext4_free_group_clusters(sb, gdp), 1935 &sbi->s_flex_groups[flex_group].free_clusters); 1936 atomic_add(ext4_used_dirs_count(sb, gdp), 1937 &sbi->s_flex_groups[flex_group].used_dirs); 1938 } 1939 1940 return 1; 1941 failed: 1942 return 0; 1943 } 1944 1945 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1946 struct ext4_group_desc *gdp) 1947 { 1948 int offset; 1949 __u16 crc = 0; 1950 __le32 le_group = cpu_to_le32(block_group); 1951 1952 if ((sbi->s_es->s_feature_ro_compat & 1953 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1954 /* Use new metadata_csum algorithm */ 1955 __le16 save_csum; 1956 __u32 csum32; 1957 1958 save_csum = gdp->bg_checksum; 1959 gdp->bg_checksum = 0; 1960 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1961 sizeof(le_group)); 1962 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1963 sbi->s_desc_size); 1964 gdp->bg_checksum = save_csum; 1965 1966 crc = csum32 & 0xFFFF; 1967 goto out; 1968 } 1969 1970 /* old crc16 code */ 1971 offset = offsetof(struct ext4_group_desc, bg_checksum); 1972 1973 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1974 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1975 crc = crc16(crc, (__u8 *)gdp, offset); 1976 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1977 /* for checksum of struct ext4_group_desc do the rest...*/ 1978 if ((sbi->s_es->s_feature_incompat & 1979 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1980 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1981 crc = crc16(crc, (__u8 *)gdp + offset, 1982 le16_to_cpu(sbi->s_es->s_desc_size) - 1983 offset); 1984 1985 out: 1986 return cpu_to_le16(crc); 1987 } 1988 1989 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 1990 struct ext4_group_desc *gdp) 1991 { 1992 if (ext4_has_group_desc_csum(sb) && 1993 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 1994 block_group, gdp))) 1995 return 0; 1996 1997 return 1; 1998 } 1999 2000 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2001 struct ext4_group_desc *gdp) 2002 { 2003 if (!ext4_has_group_desc_csum(sb)) 2004 return; 2005 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2006 } 2007 2008 /* Called at mount-time, super-block is locked */ 2009 static int ext4_check_descriptors(struct super_block *sb, 2010 ext4_group_t *first_not_zeroed) 2011 { 2012 struct ext4_sb_info *sbi = EXT4_SB(sb); 2013 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2014 ext4_fsblk_t last_block; 2015 ext4_fsblk_t block_bitmap; 2016 ext4_fsblk_t inode_bitmap; 2017 ext4_fsblk_t inode_table; 2018 int flexbg_flag = 0; 2019 ext4_group_t i, grp = sbi->s_groups_count; 2020 2021 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2022 flexbg_flag = 1; 2023 2024 ext4_debug("Checking group descriptors"); 2025 2026 for (i = 0; i < sbi->s_groups_count; i++) { 2027 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2028 2029 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2030 last_block = ext4_blocks_count(sbi->s_es) - 1; 2031 else 2032 last_block = first_block + 2033 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2034 2035 if ((grp == sbi->s_groups_count) && 2036 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2037 grp = i; 2038 2039 block_bitmap = ext4_block_bitmap(sb, gdp); 2040 if (block_bitmap < first_block || block_bitmap > last_block) { 2041 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2042 "Block bitmap for group %u not in group " 2043 "(block %llu)!", i, block_bitmap); 2044 return 0; 2045 } 2046 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2047 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2048 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2049 "Inode bitmap for group %u not in group " 2050 "(block %llu)!", i, inode_bitmap); 2051 return 0; 2052 } 2053 inode_table = ext4_inode_table(sb, gdp); 2054 if (inode_table < first_block || 2055 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2056 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2057 "Inode table for group %u not in group " 2058 "(block %llu)!", i, inode_table); 2059 return 0; 2060 } 2061 ext4_lock_group(sb, i); 2062 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2063 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2064 "Checksum for group %u failed (%u!=%u)", 2065 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2066 gdp)), le16_to_cpu(gdp->bg_checksum)); 2067 if (!(sb->s_flags & MS_RDONLY)) { 2068 ext4_unlock_group(sb, i); 2069 return 0; 2070 } 2071 } 2072 ext4_unlock_group(sb, i); 2073 if (!flexbg_flag) 2074 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2075 } 2076 if (NULL != first_not_zeroed) 2077 *first_not_zeroed = grp; 2078 2079 ext4_free_blocks_count_set(sbi->s_es, 2080 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2081 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2082 return 1; 2083 } 2084 2085 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2086 * the superblock) which were deleted from all directories, but held open by 2087 * a process at the time of a crash. We walk the list and try to delete these 2088 * inodes at recovery time (only with a read-write filesystem). 2089 * 2090 * In order to keep the orphan inode chain consistent during traversal (in 2091 * case of crash during recovery), we link each inode into the superblock 2092 * orphan list_head and handle it the same way as an inode deletion during 2093 * normal operation (which journals the operations for us). 2094 * 2095 * We only do an iget() and an iput() on each inode, which is very safe if we 2096 * accidentally point at an in-use or already deleted inode. The worst that 2097 * can happen in this case is that we get a "bit already cleared" message from 2098 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2099 * e2fsck was run on this filesystem, and it must have already done the orphan 2100 * inode cleanup for us, so we can safely abort without any further action. 2101 */ 2102 static void ext4_orphan_cleanup(struct super_block *sb, 2103 struct ext4_super_block *es) 2104 { 2105 unsigned int s_flags = sb->s_flags; 2106 int nr_orphans = 0, nr_truncates = 0; 2107 #ifdef CONFIG_QUOTA 2108 int i; 2109 #endif 2110 if (!es->s_last_orphan) { 2111 jbd_debug(4, "no orphan inodes to clean up\n"); 2112 return; 2113 } 2114 2115 if (bdev_read_only(sb->s_bdev)) { 2116 ext4_msg(sb, KERN_ERR, "write access " 2117 "unavailable, skipping orphan cleanup"); 2118 return; 2119 } 2120 2121 /* Check if feature set would not allow a r/w mount */ 2122 if (!ext4_feature_set_ok(sb, 0)) { 2123 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2124 "unknown ROCOMPAT features"); 2125 return; 2126 } 2127 2128 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2129 /* don't clear list on RO mount w/ errors */ 2130 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2131 jbd_debug(1, "Errors on filesystem, " 2132 "clearing orphan list.\n"); 2133 es->s_last_orphan = 0; 2134 } 2135 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2136 return; 2137 } 2138 2139 if (s_flags & MS_RDONLY) { 2140 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2141 sb->s_flags &= ~MS_RDONLY; 2142 } 2143 #ifdef CONFIG_QUOTA 2144 /* Needed for iput() to work correctly and not trash data */ 2145 sb->s_flags |= MS_ACTIVE; 2146 /* Turn on quotas so that they are updated correctly */ 2147 for (i = 0; i < MAXQUOTAS; i++) { 2148 if (EXT4_SB(sb)->s_qf_names[i]) { 2149 int ret = ext4_quota_on_mount(sb, i); 2150 if (ret < 0) 2151 ext4_msg(sb, KERN_ERR, 2152 "Cannot turn on journaled " 2153 "quota: error %d", ret); 2154 } 2155 } 2156 #endif 2157 2158 while (es->s_last_orphan) { 2159 struct inode *inode; 2160 2161 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2162 if (IS_ERR(inode)) { 2163 es->s_last_orphan = 0; 2164 break; 2165 } 2166 2167 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2168 dquot_initialize(inode); 2169 if (inode->i_nlink) { 2170 ext4_msg(sb, KERN_DEBUG, 2171 "%s: truncating inode %lu to %lld bytes", 2172 __func__, inode->i_ino, inode->i_size); 2173 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2174 inode->i_ino, inode->i_size); 2175 mutex_lock(&inode->i_mutex); 2176 ext4_truncate(inode); 2177 mutex_unlock(&inode->i_mutex); 2178 nr_truncates++; 2179 } else { 2180 ext4_msg(sb, KERN_DEBUG, 2181 "%s: deleting unreferenced inode %lu", 2182 __func__, inode->i_ino); 2183 jbd_debug(2, "deleting unreferenced inode %lu\n", 2184 inode->i_ino); 2185 nr_orphans++; 2186 } 2187 iput(inode); /* The delete magic happens here! */ 2188 } 2189 2190 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2191 2192 if (nr_orphans) 2193 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2194 PLURAL(nr_orphans)); 2195 if (nr_truncates) 2196 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2197 PLURAL(nr_truncates)); 2198 #ifdef CONFIG_QUOTA 2199 /* Turn quotas off */ 2200 for (i = 0; i < MAXQUOTAS; i++) { 2201 if (sb_dqopt(sb)->files[i]) 2202 dquot_quota_off(sb, i); 2203 } 2204 #endif 2205 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2206 } 2207 2208 /* 2209 * Maximal extent format file size. 2210 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2211 * extent format containers, within a sector_t, and within i_blocks 2212 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2213 * so that won't be a limiting factor. 2214 * 2215 * However there is other limiting factor. We do store extents in the form 2216 * of starting block and length, hence the resulting length of the extent 2217 * covering maximum file size must fit into on-disk format containers as 2218 * well. Given that length is always by 1 unit bigger than max unit (because 2219 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2220 * 2221 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2222 */ 2223 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2224 { 2225 loff_t res; 2226 loff_t upper_limit = MAX_LFS_FILESIZE; 2227 2228 /* small i_blocks in vfs inode? */ 2229 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2230 /* 2231 * CONFIG_LBDAF is not enabled implies the inode 2232 * i_block represent total blocks in 512 bytes 2233 * 32 == size of vfs inode i_blocks * 8 2234 */ 2235 upper_limit = (1LL << 32) - 1; 2236 2237 /* total blocks in file system block size */ 2238 upper_limit >>= (blkbits - 9); 2239 upper_limit <<= blkbits; 2240 } 2241 2242 /* 2243 * 32-bit extent-start container, ee_block. We lower the maxbytes 2244 * by one fs block, so ee_len can cover the extent of maximum file 2245 * size 2246 */ 2247 res = (1LL << 32) - 1; 2248 res <<= blkbits; 2249 2250 /* Sanity check against vm- & vfs- imposed limits */ 2251 if (res > upper_limit) 2252 res = upper_limit; 2253 2254 return res; 2255 } 2256 2257 /* 2258 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2259 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2260 * We need to be 1 filesystem block less than the 2^48 sector limit. 2261 */ 2262 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2263 { 2264 loff_t res = EXT4_NDIR_BLOCKS; 2265 int meta_blocks; 2266 loff_t upper_limit; 2267 /* This is calculated to be the largest file size for a dense, block 2268 * mapped file such that the file's total number of 512-byte sectors, 2269 * including data and all indirect blocks, does not exceed (2^48 - 1). 2270 * 2271 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2272 * number of 512-byte sectors of the file. 2273 */ 2274 2275 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2276 /* 2277 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2278 * the inode i_block field represents total file blocks in 2279 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2280 */ 2281 upper_limit = (1LL << 32) - 1; 2282 2283 /* total blocks in file system block size */ 2284 upper_limit >>= (bits - 9); 2285 2286 } else { 2287 /* 2288 * We use 48 bit ext4_inode i_blocks 2289 * With EXT4_HUGE_FILE_FL set the i_blocks 2290 * represent total number of blocks in 2291 * file system block size 2292 */ 2293 upper_limit = (1LL << 48) - 1; 2294 2295 } 2296 2297 /* indirect blocks */ 2298 meta_blocks = 1; 2299 /* double indirect blocks */ 2300 meta_blocks += 1 + (1LL << (bits-2)); 2301 /* tripple indirect blocks */ 2302 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2303 2304 upper_limit -= meta_blocks; 2305 upper_limit <<= bits; 2306 2307 res += 1LL << (bits-2); 2308 res += 1LL << (2*(bits-2)); 2309 res += 1LL << (3*(bits-2)); 2310 res <<= bits; 2311 if (res > upper_limit) 2312 res = upper_limit; 2313 2314 if (res > MAX_LFS_FILESIZE) 2315 res = MAX_LFS_FILESIZE; 2316 2317 return res; 2318 } 2319 2320 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2321 ext4_fsblk_t logical_sb_block, int nr) 2322 { 2323 struct ext4_sb_info *sbi = EXT4_SB(sb); 2324 ext4_group_t bg, first_meta_bg; 2325 int has_super = 0; 2326 2327 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2328 2329 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2330 nr < first_meta_bg) 2331 return logical_sb_block + nr + 1; 2332 bg = sbi->s_desc_per_block * nr; 2333 if (ext4_bg_has_super(sb, bg)) 2334 has_super = 1; 2335 2336 return (has_super + ext4_group_first_block_no(sb, bg)); 2337 } 2338 2339 /** 2340 * ext4_get_stripe_size: Get the stripe size. 2341 * @sbi: In memory super block info 2342 * 2343 * If we have specified it via mount option, then 2344 * use the mount option value. If the value specified at mount time is 2345 * greater than the blocks per group use the super block value. 2346 * If the super block value is greater than blocks per group return 0. 2347 * Allocator needs it be less than blocks per group. 2348 * 2349 */ 2350 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2351 { 2352 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2353 unsigned long stripe_width = 2354 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2355 int ret; 2356 2357 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2358 ret = sbi->s_stripe; 2359 else if (stripe_width <= sbi->s_blocks_per_group) 2360 ret = stripe_width; 2361 else if (stride <= sbi->s_blocks_per_group) 2362 ret = stride; 2363 else 2364 ret = 0; 2365 2366 /* 2367 * If the stripe width is 1, this makes no sense and 2368 * we set it to 0 to turn off stripe handling code. 2369 */ 2370 if (ret <= 1) 2371 ret = 0; 2372 2373 return ret; 2374 } 2375 2376 /* sysfs supprt */ 2377 2378 struct ext4_attr { 2379 struct attribute attr; 2380 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2381 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2382 const char *, size_t); 2383 int offset; 2384 }; 2385 2386 static int parse_strtoull(const char *buf, 2387 unsigned long long max, unsigned long long *value) 2388 { 2389 int ret; 2390 2391 ret = kstrtoull(skip_spaces(buf), 0, value); 2392 if (!ret && *value > max) 2393 ret = -EINVAL; 2394 return ret; 2395 } 2396 2397 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2398 struct ext4_sb_info *sbi, 2399 char *buf) 2400 { 2401 return snprintf(buf, PAGE_SIZE, "%llu\n", 2402 (s64) EXT4_C2B(sbi, 2403 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2404 } 2405 2406 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2407 struct ext4_sb_info *sbi, char *buf) 2408 { 2409 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2410 2411 if (!sb->s_bdev->bd_part) 2412 return snprintf(buf, PAGE_SIZE, "0\n"); 2413 return snprintf(buf, PAGE_SIZE, "%lu\n", 2414 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2415 sbi->s_sectors_written_start) >> 1); 2416 } 2417 2418 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2419 struct ext4_sb_info *sbi, char *buf) 2420 { 2421 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2422 2423 if (!sb->s_bdev->bd_part) 2424 return snprintf(buf, PAGE_SIZE, "0\n"); 2425 return snprintf(buf, PAGE_SIZE, "%llu\n", 2426 (unsigned long long)(sbi->s_kbytes_written + 2427 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2428 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2429 } 2430 2431 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2432 struct ext4_sb_info *sbi, 2433 const char *buf, size_t count) 2434 { 2435 unsigned long t; 2436 int ret; 2437 2438 ret = kstrtoul(skip_spaces(buf), 0, &t); 2439 if (ret) 2440 return ret; 2441 2442 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2443 return -EINVAL; 2444 2445 sbi->s_inode_readahead_blks = t; 2446 return count; 2447 } 2448 2449 static ssize_t sbi_ui_show(struct ext4_attr *a, 2450 struct ext4_sb_info *sbi, char *buf) 2451 { 2452 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2453 2454 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2455 } 2456 2457 static ssize_t sbi_ui_store(struct ext4_attr *a, 2458 struct ext4_sb_info *sbi, 2459 const char *buf, size_t count) 2460 { 2461 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2462 unsigned long t; 2463 int ret; 2464 2465 ret = kstrtoul(skip_spaces(buf), 0, &t); 2466 if (ret) 2467 return ret; 2468 *ui = t; 2469 return count; 2470 } 2471 2472 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2473 struct ext4_sb_info *sbi, char *buf) 2474 { 2475 return snprintf(buf, PAGE_SIZE, "%llu\n", 2476 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2477 } 2478 2479 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2480 struct ext4_sb_info *sbi, 2481 const char *buf, size_t count) 2482 { 2483 unsigned long long val; 2484 int ret; 2485 2486 if (parse_strtoull(buf, -1ULL, &val)) 2487 return -EINVAL; 2488 ret = ext4_reserve_clusters(sbi, val); 2489 2490 return ret ? ret : count; 2491 } 2492 2493 static ssize_t trigger_test_error(struct ext4_attr *a, 2494 struct ext4_sb_info *sbi, 2495 const char *buf, size_t count) 2496 { 2497 int len = count; 2498 2499 if (!capable(CAP_SYS_ADMIN)) 2500 return -EPERM; 2501 2502 if (len && buf[len-1] == '\n') 2503 len--; 2504 2505 if (len) 2506 ext4_error(sbi->s_sb, "%.*s", len, buf); 2507 return count; 2508 } 2509 2510 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2511 static struct ext4_attr ext4_attr_##_name = { \ 2512 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2513 .show = _show, \ 2514 .store = _store, \ 2515 .offset = offsetof(struct ext4_sb_info, _elname), \ 2516 } 2517 #define EXT4_ATTR(name, mode, show, store) \ 2518 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2519 2520 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2521 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2522 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2523 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2524 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2525 #define ATTR_LIST(name) &ext4_attr_##name.attr 2526 2527 EXT4_RO_ATTR(delayed_allocation_blocks); 2528 EXT4_RO_ATTR(session_write_kbytes); 2529 EXT4_RO_ATTR(lifetime_write_kbytes); 2530 EXT4_RW_ATTR(reserved_clusters); 2531 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2532 inode_readahead_blks_store, s_inode_readahead_blks); 2533 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2534 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2535 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2536 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2537 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2538 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2539 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2540 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2541 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2542 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2543 2544 static struct attribute *ext4_attrs[] = { 2545 ATTR_LIST(delayed_allocation_blocks), 2546 ATTR_LIST(session_write_kbytes), 2547 ATTR_LIST(lifetime_write_kbytes), 2548 ATTR_LIST(reserved_clusters), 2549 ATTR_LIST(inode_readahead_blks), 2550 ATTR_LIST(inode_goal), 2551 ATTR_LIST(mb_stats), 2552 ATTR_LIST(mb_max_to_scan), 2553 ATTR_LIST(mb_min_to_scan), 2554 ATTR_LIST(mb_order2_req), 2555 ATTR_LIST(mb_stream_req), 2556 ATTR_LIST(mb_group_prealloc), 2557 ATTR_LIST(max_writeback_mb_bump), 2558 ATTR_LIST(extent_max_zeroout_kb), 2559 ATTR_LIST(trigger_fs_error), 2560 NULL, 2561 }; 2562 2563 /* Features this copy of ext4 supports */ 2564 EXT4_INFO_ATTR(lazy_itable_init); 2565 EXT4_INFO_ATTR(batched_discard); 2566 EXT4_INFO_ATTR(meta_bg_resize); 2567 2568 static struct attribute *ext4_feat_attrs[] = { 2569 ATTR_LIST(lazy_itable_init), 2570 ATTR_LIST(batched_discard), 2571 ATTR_LIST(meta_bg_resize), 2572 NULL, 2573 }; 2574 2575 static ssize_t ext4_attr_show(struct kobject *kobj, 2576 struct attribute *attr, char *buf) 2577 { 2578 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2579 s_kobj); 2580 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2581 2582 return a->show ? a->show(a, sbi, buf) : 0; 2583 } 2584 2585 static ssize_t ext4_attr_store(struct kobject *kobj, 2586 struct attribute *attr, 2587 const char *buf, size_t len) 2588 { 2589 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2590 s_kobj); 2591 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2592 2593 return a->store ? a->store(a, sbi, buf, len) : 0; 2594 } 2595 2596 static void ext4_sb_release(struct kobject *kobj) 2597 { 2598 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2599 s_kobj); 2600 complete(&sbi->s_kobj_unregister); 2601 } 2602 2603 static const struct sysfs_ops ext4_attr_ops = { 2604 .show = ext4_attr_show, 2605 .store = ext4_attr_store, 2606 }; 2607 2608 static struct kobj_type ext4_ktype = { 2609 .default_attrs = ext4_attrs, 2610 .sysfs_ops = &ext4_attr_ops, 2611 .release = ext4_sb_release, 2612 }; 2613 2614 static void ext4_feat_release(struct kobject *kobj) 2615 { 2616 complete(&ext4_feat->f_kobj_unregister); 2617 } 2618 2619 static struct kobj_type ext4_feat_ktype = { 2620 .default_attrs = ext4_feat_attrs, 2621 .sysfs_ops = &ext4_attr_ops, 2622 .release = ext4_feat_release, 2623 }; 2624 2625 /* 2626 * Check whether this filesystem can be mounted based on 2627 * the features present and the RDONLY/RDWR mount requested. 2628 * Returns 1 if this filesystem can be mounted as requested, 2629 * 0 if it cannot be. 2630 */ 2631 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2632 { 2633 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2634 ext4_msg(sb, KERN_ERR, 2635 "Couldn't mount because of " 2636 "unsupported optional features (%x)", 2637 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2638 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2639 return 0; 2640 } 2641 2642 if (readonly) 2643 return 1; 2644 2645 /* Check that feature set is OK for a read-write mount */ 2646 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2647 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2648 "unsupported optional features (%x)", 2649 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2650 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2651 return 0; 2652 } 2653 /* 2654 * Large file size enabled file system can only be mounted 2655 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2656 */ 2657 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2658 if (sizeof(blkcnt_t) < sizeof(u64)) { 2659 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2660 "cannot be mounted RDWR without " 2661 "CONFIG_LBDAF"); 2662 return 0; 2663 } 2664 } 2665 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2666 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2667 ext4_msg(sb, KERN_ERR, 2668 "Can't support bigalloc feature without " 2669 "extents feature\n"); 2670 return 0; 2671 } 2672 2673 #ifndef CONFIG_QUOTA 2674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2675 !readonly) { 2676 ext4_msg(sb, KERN_ERR, 2677 "Filesystem with quota feature cannot be mounted RDWR " 2678 "without CONFIG_QUOTA"); 2679 return 0; 2680 } 2681 #endif /* CONFIG_QUOTA */ 2682 return 1; 2683 } 2684 2685 /* 2686 * This function is called once a day if we have errors logged 2687 * on the file system 2688 */ 2689 static void print_daily_error_info(unsigned long arg) 2690 { 2691 struct super_block *sb = (struct super_block *) arg; 2692 struct ext4_sb_info *sbi; 2693 struct ext4_super_block *es; 2694 2695 sbi = EXT4_SB(sb); 2696 es = sbi->s_es; 2697 2698 if (es->s_error_count) 2699 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2700 le32_to_cpu(es->s_error_count)); 2701 if (es->s_first_error_time) { 2702 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2703 sb->s_id, le32_to_cpu(es->s_first_error_time), 2704 (int) sizeof(es->s_first_error_func), 2705 es->s_first_error_func, 2706 le32_to_cpu(es->s_first_error_line)); 2707 if (es->s_first_error_ino) 2708 printk(": inode %u", 2709 le32_to_cpu(es->s_first_error_ino)); 2710 if (es->s_first_error_block) 2711 printk(": block %llu", (unsigned long long) 2712 le64_to_cpu(es->s_first_error_block)); 2713 printk("\n"); 2714 } 2715 if (es->s_last_error_time) { 2716 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2717 sb->s_id, le32_to_cpu(es->s_last_error_time), 2718 (int) sizeof(es->s_last_error_func), 2719 es->s_last_error_func, 2720 le32_to_cpu(es->s_last_error_line)); 2721 if (es->s_last_error_ino) 2722 printk(": inode %u", 2723 le32_to_cpu(es->s_last_error_ino)); 2724 if (es->s_last_error_block) 2725 printk(": block %llu", (unsigned long long) 2726 le64_to_cpu(es->s_last_error_block)); 2727 printk("\n"); 2728 } 2729 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2730 } 2731 2732 /* Find next suitable group and run ext4_init_inode_table */ 2733 static int ext4_run_li_request(struct ext4_li_request *elr) 2734 { 2735 struct ext4_group_desc *gdp = NULL; 2736 ext4_group_t group, ngroups; 2737 struct super_block *sb; 2738 unsigned long timeout = 0; 2739 int ret = 0; 2740 2741 sb = elr->lr_super; 2742 ngroups = EXT4_SB(sb)->s_groups_count; 2743 2744 sb_start_write(sb); 2745 for (group = elr->lr_next_group; group < ngroups; group++) { 2746 gdp = ext4_get_group_desc(sb, group, NULL); 2747 if (!gdp) { 2748 ret = 1; 2749 break; 2750 } 2751 2752 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2753 break; 2754 } 2755 2756 if (group >= ngroups) 2757 ret = 1; 2758 2759 if (!ret) { 2760 timeout = jiffies; 2761 ret = ext4_init_inode_table(sb, group, 2762 elr->lr_timeout ? 0 : 1); 2763 if (elr->lr_timeout == 0) { 2764 timeout = (jiffies - timeout) * 2765 elr->lr_sbi->s_li_wait_mult; 2766 elr->lr_timeout = timeout; 2767 } 2768 elr->lr_next_sched = jiffies + elr->lr_timeout; 2769 elr->lr_next_group = group + 1; 2770 } 2771 sb_end_write(sb); 2772 2773 return ret; 2774 } 2775 2776 /* 2777 * Remove lr_request from the list_request and free the 2778 * request structure. Should be called with li_list_mtx held 2779 */ 2780 static void ext4_remove_li_request(struct ext4_li_request *elr) 2781 { 2782 struct ext4_sb_info *sbi; 2783 2784 if (!elr) 2785 return; 2786 2787 sbi = elr->lr_sbi; 2788 2789 list_del(&elr->lr_request); 2790 sbi->s_li_request = NULL; 2791 kfree(elr); 2792 } 2793 2794 static void ext4_unregister_li_request(struct super_block *sb) 2795 { 2796 mutex_lock(&ext4_li_mtx); 2797 if (!ext4_li_info) { 2798 mutex_unlock(&ext4_li_mtx); 2799 return; 2800 } 2801 2802 mutex_lock(&ext4_li_info->li_list_mtx); 2803 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2804 mutex_unlock(&ext4_li_info->li_list_mtx); 2805 mutex_unlock(&ext4_li_mtx); 2806 } 2807 2808 static struct task_struct *ext4_lazyinit_task; 2809 2810 /* 2811 * This is the function where ext4lazyinit thread lives. It walks 2812 * through the request list searching for next scheduled filesystem. 2813 * When such a fs is found, run the lazy initialization request 2814 * (ext4_rn_li_request) and keep track of the time spend in this 2815 * function. Based on that time we compute next schedule time of 2816 * the request. When walking through the list is complete, compute 2817 * next waking time and put itself into sleep. 2818 */ 2819 static int ext4_lazyinit_thread(void *arg) 2820 { 2821 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2822 struct list_head *pos, *n; 2823 struct ext4_li_request *elr; 2824 unsigned long next_wakeup, cur; 2825 2826 BUG_ON(NULL == eli); 2827 2828 cont_thread: 2829 while (true) { 2830 next_wakeup = MAX_JIFFY_OFFSET; 2831 2832 mutex_lock(&eli->li_list_mtx); 2833 if (list_empty(&eli->li_request_list)) { 2834 mutex_unlock(&eli->li_list_mtx); 2835 goto exit_thread; 2836 } 2837 2838 list_for_each_safe(pos, n, &eli->li_request_list) { 2839 elr = list_entry(pos, struct ext4_li_request, 2840 lr_request); 2841 2842 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2843 if (ext4_run_li_request(elr) != 0) { 2844 /* error, remove the lazy_init job */ 2845 ext4_remove_li_request(elr); 2846 continue; 2847 } 2848 } 2849 2850 if (time_before(elr->lr_next_sched, next_wakeup)) 2851 next_wakeup = elr->lr_next_sched; 2852 } 2853 mutex_unlock(&eli->li_list_mtx); 2854 2855 try_to_freeze(); 2856 2857 cur = jiffies; 2858 if ((time_after_eq(cur, next_wakeup)) || 2859 (MAX_JIFFY_OFFSET == next_wakeup)) { 2860 cond_resched(); 2861 continue; 2862 } 2863 2864 schedule_timeout_interruptible(next_wakeup - cur); 2865 2866 if (kthread_should_stop()) { 2867 ext4_clear_request_list(); 2868 goto exit_thread; 2869 } 2870 } 2871 2872 exit_thread: 2873 /* 2874 * It looks like the request list is empty, but we need 2875 * to check it under the li_list_mtx lock, to prevent any 2876 * additions into it, and of course we should lock ext4_li_mtx 2877 * to atomically free the list and ext4_li_info, because at 2878 * this point another ext4 filesystem could be registering 2879 * new one. 2880 */ 2881 mutex_lock(&ext4_li_mtx); 2882 mutex_lock(&eli->li_list_mtx); 2883 if (!list_empty(&eli->li_request_list)) { 2884 mutex_unlock(&eli->li_list_mtx); 2885 mutex_unlock(&ext4_li_mtx); 2886 goto cont_thread; 2887 } 2888 mutex_unlock(&eli->li_list_mtx); 2889 kfree(ext4_li_info); 2890 ext4_li_info = NULL; 2891 mutex_unlock(&ext4_li_mtx); 2892 2893 return 0; 2894 } 2895 2896 static void ext4_clear_request_list(void) 2897 { 2898 struct list_head *pos, *n; 2899 struct ext4_li_request *elr; 2900 2901 mutex_lock(&ext4_li_info->li_list_mtx); 2902 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2903 elr = list_entry(pos, struct ext4_li_request, 2904 lr_request); 2905 ext4_remove_li_request(elr); 2906 } 2907 mutex_unlock(&ext4_li_info->li_list_mtx); 2908 } 2909 2910 static int ext4_run_lazyinit_thread(void) 2911 { 2912 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2913 ext4_li_info, "ext4lazyinit"); 2914 if (IS_ERR(ext4_lazyinit_task)) { 2915 int err = PTR_ERR(ext4_lazyinit_task); 2916 ext4_clear_request_list(); 2917 kfree(ext4_li_info); 2918 ext4_li_info = NULL; 2919 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2920 "initialization thread\n", 2921 err); 2922 return err; 2923 } 2924 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2925 return 0; 2926 } 2927 2928 /* 2929 * Check whether it make sense to run itable init. thread or not. 2930 * If there is at least one uninitialized inode table, return 2931 * corresponding group number, else the loop goes through all 2932 * groups and return total number of groups. 2933 */ 2934 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2935 { 2936 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2937 struct ext4_group_desc *gdp = NULL; 2938 2939 for (group = 0; group < ngroups; group++) { 2940 gdp = ext4_get_group_desc(sb, group, NULL); 2941 if (!gdp) 2942 continue; 2943 2944 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2945 break; 2946 } 2947 2948 return group; 2949 } 2950 2951 static int ext4_li_info_new(void) 2952 { 2953 struct ext4_lazy_init *eli = NULL; 2954 2955 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2956 if (!eli) 2957 return -ENOMEM; 2958 2959 INIT_LIST_HEAD(&eli->li_request_list); 2960 mutex_init(&eli->li_list_mtx); 2961 2962 eli->li_state |= EXT4_LAZYINIT_QUIT; 2963 2964 ext4_li_info = eli; 2965 2966 return 0; 2967 } 2968 2969 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2970 ext4_group_t start) 2971 { 2972 struct ext4_sb_info *sbi = EXT4_SB(sb); 2973 struct ext4_li_request *elr; 2974 unsigned long rnd; 2975 2976 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2977 if (!elr) 2978 return NULL; 2979 2980 elr->lr_super = sb; 2981 elr->lr_sbi = sbi; 2982 elr->lr_next_group = start; 2983 2984 /* 2985 * Randomize first schedule time of the request to 2986 * spread the inode table initialization requests 2987 * better. 2988 */ 2989 get_random_bytes(&rnd, sizeof(rnd)); 2990 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2991 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2992 2993 return elr; 2994 } 2995 2996 int ext4_register_li_request(struct super_block *sb, 2997 ext4_group_t first_not_zeroed) 2998 { 2999 struct ext4_sb_info *sbi = EXT4_SB(sb); 3000 struct ext4_li_request *elr = NULL; 3001 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3002 int ret = 0; 3003 3004 mutex_lock(&ext4_li_mtx); 3005 if (sbi->s_li_request != NULL) { 3006 /* 3007 * Reset timeout so it can be computed again, because 3008 * s_li_wait_mult might have changed. 3009 */ 3010 sbi->s_li_request->lr_timeout = 0; 3011 goto out; 3012 } 3013 3014 if (first_not_zeroed == ngroups || 3015 (sb->s_flags & MS_RDONLY) || 3016 !test_opt(sb, INIT_INODE_TABLE)) 3017 goto out; 3018 3019 elr = ext4_li_request_new(sb, first_not_zeroed); 3020 if (!elr) { 3021 ret = -ENOMEM; 3022 goto out; 3023 } 3024 3025 if (NULL == ext4_li_info) { 3026 ret = ext4_li_info_new(); 3027 if (ret) 3028 goto out; 3029 } 3030 3031 mutex_lock(&ext4_li_info->li_list_mtx); 3032 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3033 mutex_unlock(&ext4_li_info->li_list_mtx); 3034 3035 sbi->s_li_request = elr; 3036 /* 3037 * set elr to NULL here since it has been inserted to 3038 * the request_list and the removal and free of it is 3039 * handled by ext4_clear_request_list from now on. 3040 */ 3041 elr = NULL; 3042 3043 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3044 ret = ext4_run_lazyinit_thread(); 3045 if (ret) 3046 goto out; 3047 } 3048 out: 3049 mutex_unlock(&ext4_li_mtx); 3050 if (ret) 3051 kfree(elr); 3052 return ret; 3053 } 3054 3055 /* 3056 * We do not need to lock anything since this is called on 3057 * module unload. 3058 */ 3059 static void ext4_destroy_lazyinit_thread(void) 3060 { 3061 /* 3062 * If thread exited earlier 3063 * there's nothing to be done. 3064 */ 3065 if (!ext4_li_info || !ext4_lazyinit_task) 3066 return; 3067 3068 kthread_stop(ext4_lazyinit_task); 3069 } 3070 3071 static int set_journal_csum_feature_set(struct super_block *sb) 3072 { 3073 int ret = 1; 3074 int compat, incompat; 3075 struct ext4_sb_info *sbi = EXT4_SB(sb); 3076 3077 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3078 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3079 /* journal checksum v2 */ 3080 compat = 0; 3081 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3082 } else { 3083 /* journal checksum v1 */ 3084 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3085 incompat = 0; 3086 } 3087 3088 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3089 ret = jbd2_journal_set_features(sbi->s_journal, 3090 compat, 0, 3091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3092 incompat); 3093 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3094 ret = jbd2_journal_set_features(sbi->s_journal, 3095 compat, 0, 3096 incompat); 3097 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3098 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3099 } else { 3100 jbd2_journal_clear_features(sbi->s_journal, 3101 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3102 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3103 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3104 } 3105 3106 return ret; 3107 } 3108 3109 /* 3110 * Note: calculating the overhead so we can be compatible with 3111 * historical BSD practice is quite difficult in the face of 3112 * clusters/bigalloc. This is because multiple metadata blocks from 3113 * different block group can end up in the same allocation cluster. 3114 * Calculating the exact overhead in the face of clustered allocation 3115 * requires either O(all block bitmaps) in memory or O(number of block 3116 * groups**2) in time. We will still calculate the superblock for 3117 * older file systems --- and if we come across with a bigalloc file 3118 * system with zero in s_overhead_clusters the estimate will be close to 3119 * correct especially for very large cluster sizes --- but for newer 3120 * file systems, it's better to calculate this figure once at mkfs 3121 * time, and store it in the superblock. If the superblock value is 3122 * present (even for non-bigalloc file systems), we will use it. 3123 */ 3124 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3125 char *buf) 3126 { 3127 struct ext4_sb_info *sbi = EXT4_SB(sb); 3128 struct ext4_group_desc *gdp; 3129 ext4_fsblk_t first_block, last_block, b; 3130 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3131 int s, j, count = 0; 3132 3133 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3134 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3135 sbi->s_itb_per_group + 2); 3136 3137 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3138 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3139 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3140 for (i = 0; i < ngroups; i++) { 3141 gdp = ext4_get_group_desc(sb, i, NULL); 3142 b = ext4_block_bitmap(sb, gdp); 3143 if (b >= first_block && b <= last_block) { 3144 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3145 count++; 3146 } 3147 b = ext4_inode_bitmap(sb, gdp); 3148 if (b >= first_block && b <= last_block) { 3149 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3150 count++; 3151 } 3152 b = ext4_inode_table(sb, gdp); 3153 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3154 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3155 int c = EXT4_B2C(sbi, b - first_block); 3156 ext4_set_bit(c, buf); 3157 count++; 3158 } 3159 if (i != grp) 3160 continue; 3161 s = 0; 3162 if (ext4_bg_has_super(sb, grp)) { 3163 ext4_set_bit(s++, buf); 3164 count++; 3165 } 3166 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3167 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3168 count++; 3169 } 3170 } 3171 if (!count) 3172 return 0; 3173 return EXT4_CLUSTERS_PER_GROUP(sb) - 3174 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3175 } 3176 3177 /* 3178 * Compute the overhead and stash it in sbi->s_overhead 3179 */ 3180 int ext4_calculate_overhead(struct super_block *sb) 3181 { 3182 struct ext4_sb_info *sbi = EXT4_SB(sb); 3183 struct ext4_super_block *es = sbi->s_es; 3184 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3185 ext4_fsblk_t overhead = 0; 3186 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3187 3188 if (!buf) 3189 return -ENOMEM; 3190 3191 /* 3192 * Compute the overhead (FS structures). This is constant 3193 * for a given filesystem unless the number of block groups 3194 * changes so we cache the previous value until it does. 3195 */ 3196 3197 /* 3198 * All of the blocks before first_data_block are overhead 3199 */ 3200 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3201 3202 /* 3203 * Add the overhead found in each block group 3204 */ 3205 for (i = 0; i < ngroups; i++) { 3206 int blks; 3207 3208 blks = count_overhead(sb, i, buf); 3209 overhead += blks; 3210 if (blks) 3211 memset(buf, 0, PAGE_SIZE); 3212 cond_resched(); 3213 } 3214 /* Add the journal blocks as well */ 3215 if (sbi->s_journal) 3216 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3217 3218 sbi->s_overhead = overhead; 3219 smp_wmb(); 3220 free_page((unsigned long) buf); 3221 return 0; 3222 } 3223 3224 3225 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi) 3226 { 3227 ext4_fsblk_t resv_clusters; 3228 3229 /* 3230 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3231 * This should cover the situations where we can not afford to run 3232 * out of space like for example punch hole, or converting 3233 * uninitialized extents in delalloc path. In most cases such 3234 * allocation would require 1, or 2 blocks, higher numbers are 3235 * very rare. 3236 */ 3237 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits; 3238 3239 do_div(resv_clusters, 50); 3240 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3241 3242 return resv_clusters; 3243 } 3244 3245 3246 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3247 { 3248 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3249 sbi->s_cluster_bits; 3250 3251 if (count >= clusters) 3252 return -EINVAL; 3253 3254 atomic64_set(&sbi->s_resv_clusters, count); 3255 return 0; 3256 } 3257 3258 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3259 { 3260 char *orig_data = kstrdup(data, GFP_KERNEL); 3261 struct buffer_head *bh; 3262 struct ext4_super_block *es = NULL; 3263 struct ext4_sb_info *sbi; 3264 ext4_fsblk_t block; 3265 ext4_fsblk_t sb_block = get_sb_block(&data); 3266 ext4_fsblk_t logical_sb_block; 3267 unsigned long offset = 0; 3268 unsigned long journal_devnum = 0; 3269 unsigned long def_mount_opts; 3270 struct inode *root; 3271 char *cp; 3272 const char *descr; 3273 int ret = -ENOMEM; 3274 int blocksize, clustersize; 3275 unsigned int db_count; 3276 unsigned int i; 3277 int needs_recovery, has_huge_files, has_bigalloc; 3278 __u64 blocks_count; 3279 int err = 0; 3280 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3281 ext4_group_t first_not_zeroed; 3282 3283 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3284 if (!sbi) 3285 goto out_free_orig; 3286 3287 sbi->s_blockgroup_lock = 3288 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3289 if (!sbi->s_blockgroup_lock) { 3290 kfree(sbi); 3291 goto out_free_orig; 3292 } 3293 sb->s_fs_info = sbi; 3294 sbi->s_sb = sb; 3295 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3296 sbi->s_sb_block = sb_block; 3297 if (sb->s_bdev->bd_part) 3298 sbi->s_sectors_written_start = 3299 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3300 3301 /* Cleanup superblock name */ 3302 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3303 *cp = '!'; 3304 3305 /* -EINVAL is default */ 3306 ret = -EINVAL; 3307 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3308 if (!blocksize) { 3309 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3310 goto out_fail; 3311 } 3312 3313 /* 3314 * The ext4 superblock will not be buffer aligned for other than 1kB 3315 * block sizes. We need to calculate the offset from buffer start. 3316 */ 3317 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3318 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3319 offset = do_div(logical_sb_block, blocksize); 3320 } else { 3321 logical_sb_block = sb_block; 3322 } 3323 3324 if (!(bh = sb_bread(sb, logical_sb_block))) { 3325 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3326 goto out_fail; 3327 } 3328 /* 3329 * Note: s_es must be initialized as soon as possible because 3330 * some ext4 macro-instructions depend on its value 3331 */ 3332 es = (struct ext4_super_block *) (bh->b_data + offset); 3333 sbi->s_es = es; 3334 sb->s_magic = le16_to_cpu(es->s_magic); 3335 if (sb->s_magic != EXT4_SUPER_MAGIC) 3336 goto cantfind_ext4; 3337 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3338 3339 /* Warn if metadata_csum and gdt_csum are both set. */ 3340 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3341 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3342 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3343 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3344 "redundant flags; please run fsck."); 3345 3346 /* Check for a known checksum algorithm */ 3347 if (!ext4_verify_csum_type(sb, es)) { 3348 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3349 "unknown checksum algorithm."); 3350 silent = 1; 3351 goto cantfind_ext4; 3352 } 3353 3354 /* Load the checksum driver */ 3355 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3356 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3357 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3358 if (IS_ERR(sbi->s_chksum_driver)) { 3359 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3360 ret = PTR_ERR(sbi->s_chksum_driver); 3361 sbi->s_chksum_driver = NULL; 3362 goto failed_mount; 3363 } 3364 } 3365 3366 /* Check superblock checksum */ 3367 if (!ext4_superblock_csum_verify(sb, es)) { 3368 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3369 "invalid superblock checksum. Run e2fsck?"); 3370 silent = 1; 3371 goto cantfind_ext4; 3372 } 3373 3374 /* Precompute checksum seed for all metadata */ 3375 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3376 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3377 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3378 sizeof(es->s_uuid)); 3379 3380 /* Set defaults before we parse the mount options */ 3381 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3382 set_opt(sb, INIT_INODE_TABLE); 3383 if (def_mount_opts & EXT4_DEFM_DEBUG) 3384 set_opt(sb, DEBUG); 3385 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3386 set_opt(sb, GRPID); 3387 if (def_mount_opts & EXT4_DEFM_UID16) 3388 set_opt(sb, NO_UID32); 3389 /* xattr user namespace & acls are now defaulted on */ 3390 set_opt(sb, XATTR_USER); 3391 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3392 set_opt(sb, POSIX_ACL); 3393 #endif 3394 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3395 set_opt(sb, JOURNAL_DATA); 3396 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3397 set_opt(sb, ORDERED_DATA); 3398 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3399 set_opt(sb, WRITEBACK_DATA); 3400 3401 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3402 set_opt(sb, ERRORS_PANIC); 3403 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3404 set_opt(sb, ERRORS_CONT); 3405 else 3406 set_opt(sb, ERRORS_RO); 3407 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3408 set_opt(sb, BLOCK_VALIDITY); 3409 if (def_mount_opts & EXT4_DEFM_DISCARD) 3410 set_opt(sb, DISCARD); 3411 3412 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3413 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3414 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3415 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3416 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3417 3418 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3419 set_opt(sb, BARRIER); 3420 3421 /* 3422 * enable delayed allocation by default 3423 * Use -o nodelalloc to turn it off 3424 */ 3425 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3426 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3427 set_opt(sb, DELALLOC); 3428 3429 /* 3430 * set default s_li_wait_mult for lazyinit, for the case there is 3431 * no mount option specified. 3432 */ 3433 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3434 3435 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3436 &journal_devnum, &journal_ioprio, 0)) { 3437 ext4_msg(sb, KERN_WARNING, 3438 "failed to parse options in superblock: %s", 3439 sbi->s_es->s_mount_opts); 3440 } 3441 sbi->s_def_mount_opt = sbi->s_mount_opt; 3442 if (!parse_options((char *) data, sb, &journal_devnum, 3443 &journal_ioprio, 0)) 3444 goto failed_mount; 3445 3446 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3447 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3448 "with data=journal disables delayed " 3449 "allocation and O_DIRECT support!\n"); 3450 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3451 ext4_msg(sb, KERN_ERR, "can't mount with " 3452 "both data=journal and delalloc"); 3453 goto failed_mount; 3454 } 3455 if (test_opt(sb, DIOREAD_NOLOCK)) { 3456 ext4_msg(sb, KERN_ERR, "can't mount with " 3457 "both data=journal and delalloc"); 3458 goto failed_mount; 3459 } 3460 if (test_opt(sb, DELALLOC)) 3461 clear_opt(sb, DELALLOC); 3462 } 3463 3464 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3465 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3466 3467 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3468 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3469 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3470 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3471 ext4_msg(sb, KERN_WARNING, 3472 "feature flags set on rev 0 fs, " 3473 "running e2fsck is recommended"); 3474 3475 if (IS_EXT2_SB(sb)) { 3476 if (ext2_feature_set_ok(sb)) 3477 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3478 "using the ext4 subsystem"); 3479 else { 3480 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3481 "to feature incompatibilities"); 3482 goto failed_mount; 3483 } 3484 } 3485 3486 if (IS_EXT3_SB(sb)) { 3487 if (ext3_feature_set_ok(sb)) 3488 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3489 "using the ext4 subsystem"); 3490 else { 3491 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3492 "to feature incompatibilities"); 3493 goto failed_mount; 3494 } 3495 } 3496 3497 /* 3498 * Check feature flags regardless of the revision level, since we 3499 * previously didn't change the revision level when setting the flags, 3500 * so there is a chance incompat flags are set on a rev 0 filesystem. 3501 */ 3502 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3503 goto failed_mount; 3504 3505 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3506 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3507 blocksize > EXT4_MAX_BLOCK_SIZE) { 3508 ext4_msg(sb, KERN_ERR, 3509 "Unsupported filesystem blocksize %d", blocksize); 3510 goto failed_mount; 3511 } 3512 3513 if (sb->s_blocksize != blocksize) { 3514 /* Validate the filesystem blocksize */ 3515 if (!sb_set_blocksize(sb, blocksize)) { 3516 ext4_msg(sb, KERN_ERR, "bad block size %d", 3517 blocksize); 3518 goto failed_mount; 3519 } 3520 3521 brelse(bh); 3522 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3523 offset = do_div(logical_sb_block, blocksize); 3524 bh = sb_bread(sb, logical_sb_block); 3525 if (!bh) { 3526 ext4_msg(sb, KERN_ERR, 3527 "Can't read superblock on 2nd try"); 3528 goto failed_mount; 3529 } 3530 es = (struct ext4_super_block *)(bh->b_data + offset); 3531 sbi->s_es = es; 3532 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3533 ext4_msg(sb, KERN_ERR, 3534 "Magic mismatch, very weird!"); 3535 goto failed_mount; 3536 } 3537 } 3538 3539 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3540 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3541 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3542 has_huge_files); 3543 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3544 3545 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3546 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3547 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3548 } else { 3549 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3550 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3551 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3552 (!is_power_of_2(sbi->s_inode_size)) || 3553 (sbi->s_inode_size > blocksize)) { 3554 ext4_msg(sb, KERN_ERR, 3555 "unsupported inode size: %d", 3556 sbi->s_inode_size); 3557 goto failed_mount; 3558 } 3559 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3560 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3561 } 3562 3563 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3564 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3565 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3566 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3567 !is_power_of_2(sbi->s_desc_size)) { 3568 ext4_msg(sb, KERN_ERR, 3569 "unsupported descriptor size %lu", 3570 sbi->s_desc_size); 3571 goto failed_mount; 3572 } 3573 } else 3574 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3575 3576 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3577 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3578 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3579 goto cantfind_ext4; 3580 3581 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3582 if (sbi->s_inodes_per_block == 0) 3583 goto cantfind_ext4; 3584 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3585 sbi->s_inodes_per_block; 3586 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3587 sbi->s_sbh = bh; 3588 sbi->s_mount_state = le16_to_cpu(es->s_state); 3589 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3590 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3591 3592 /* Do we have standard group size of blocksize * 8 blocks ? */ 3593 if (sbi->s_blocks_per_group == blocksize << 3) 3594 set_opt2(sb, STD_GROUP_SIZE); 3595 3596 for (i = 0; i < 4; i++) 3597 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3598 sbi->s_def_hash_version = es->s_def_hash_version; 3599 i = le32_to_cpu(es->s_flags); 3600 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3601 sbi->s_hash_unsigned = 3; 3602 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3603 #ifdef __CHAR_UNSIGNED__ 3604 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3605 sbi->s_hash_unsigned = 3; 3606 #else 3607 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3608 #endif 3609 } 3610 3611 /* Handle clustersize */ 3612 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3613 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3614 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3615 if (has_bigalloc) { 3616 if (clustersize < blocksize) { 3617 ext4_msg(sb, KERN_ERR, 3618 "cluster size (%d) smaller than " 3619 "block size (%d)", clustersize, blocksize); 3620 goto failed_mount; 3621 } 3622 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3623 le32_to_cpu(es->s_log_block_size); 3624 sbi->s_clusters_per_group = 3625 le32_to_cpu(es->s_clusters_per_group); 3626 if (sbi->s_clusters_per_group > blocksize * 8) { 3627 ext4_msg(sb, KERN_ERR, 3628 "#clusters per group too big: %lu", 3629 sbi->s_clusters_per_group); 3630 goto failed_mount; 3631 } 3632 if (sbi->s_blocks_per_group != 3633 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3634 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3635 "clusters per group (%lu) inconsistent", 3636 sbi->s_blocks_per_group, 3637 sbi->s_clusters_per_group); 3638 goto failed_mount; 3639 } 3640 } else { 3641 if (clustersize != blocksize) { 3642 ext4_warning(sb, "fragment/cluster size (%d) != " 3643 "block size (%d)", clustersize, 3644 blocksize); 3645 clustersize = blocksize; 3646 } 3647 if (sbi->s_blocks_per_group > blocksize * 8) { 3648 ext4_msg(sb, KERN_ERR, 3649 "#blocks per group too big: %lu", 3650 sbi->s_blocks_per_group); 3651 goto failed_mount; 3652 } 3653 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3654 sbi->s_cluster_bits = 0; 3655 } 3656 sbi->s_cluster_ratio = clustersize / blocksize; 3657 3658 if (sbi->s_inodes_per_group > blocksize * 8) { 3659 ext4_msg(sb, KERN_ERR, 3660 "#inodes per group too big: %lu", 3661 sbi->s_inodes_per_group); 3662 goto failed_mount; 3663 } 3664 3665 /* 3666 * Test whether we have more sectors than will fit in sector_t, 3667 * and whether the max offset is addressable by the page cache. 3668 */ 3669 err = generic_check_addressable(sb->s_blocksize_bits, 3670 ext4_blocks_count(es)); 3671 if (err) { 3672 ext4_msg(sb, KERN_ERR, "filesystem" 3673 " too large to mount safely on this system"); 3674 if (sizeof(sector_t) < 8) 3675 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3676 goto failed_mount; 3677 } 3678 3679 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3680 goto cantfind_ext4; 3681 3682 /* check blocks count against device size */ 3683 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3684 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3685 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3686 "exceeds size of device (%llu blocks)", 3687 ext4_blocks_count(es), blocks_count); 3688 goto failed_mount; 3689 } 3690 3691 /* 3692 * It makes no sense for the first data block to be beyond the end 3693 * of the filesystem. 3694 */ 3695 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3696 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3697 "block %u is beyond end of filesystem (%llu)", 3698 le32_to_cpu(es->s_first_data_block), 3699 ext4_blocks_count(es)); 3700 goto failed_mount; 3701 } 3702 blocks_count = (ext4_blocks_count(es) - 3703 le32_to_cpu(es->s_first_data_block) + 3704 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3705 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3706 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3707 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3708 "(block count %llu, first data block %u, " 3709 "blocks per group %lu)", sbi->s_groups_count, 3710 ext4_blocks_count(es), 3711 le32_to_cpu(es->s_first_data_block), 3712 EXT4_BLOCKS_PER_GROUP(sb)); 3713 goto failed_mount; 3714 } 3715 sbi->s_groups_count = blocks_count; 3716 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3717 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3718 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3719 EXT4_DESC_PER_BLOCK(sb); 3720 sbi->s_group_desc = ext4_kvmalloc(db_count * 3721 sizeof(struct buffer_head *), 3722 GFP_KERNEL); 3723 if (sbi->s_group_desc == NULL) { 3724 ext4_msg(sb, KERN_ERR, "not enough memory"); 3725 ret = -ENOMEM; 3726 goto failed_mount; 3727 } 3728 3729 if (ext4_proc_root) 3730 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3731 3732 if (sbi->s_proc) 3733 proc_create_data("options", S_IRUGO, sbi->s_proc, 3734 &ext4_seq_options_fops, sb); 3735 3736 bgl_lock_init(sbi->s_blockgroup_lock); 3737 3738 for (i = 0; i < db_count; i++) { 3739 block = descriptor_loc(sb, logical_sb_block, i); 3740 sbi->s_group_desc[i] = sb_bread(sb, block); 3741 if (!sbi->s_group_desc[i]) { 3742 ext4_msg(sb, KERN_ERR, 3743 "can't read group descriptor %d", i); 3744 db_count = i; 3745 goto failed_mount2; 3746 } 3747 } 3748 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3749 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3750 goto failed_mount2; 3751 } 3752 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3753 if (!ext4_fill_flex_info(sb)) { 3754 ext4_msg(sb, KERN_ERR, 3755 "unable to initialize " 3756 "flex_bg meta info!"); 3757 goto failed_mount2; 3758 } 3759 3760 sbi->s_gdb_count = db_count; 3761 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3762 spin_lock_init(&sbi->s_next_gen_lock); 3763 3764 init_timer(&sbi->s_err_report); 3765 sbi->s_err_report.function = print_daily_error_info; 3766 sbi->s_err_report.data = (unsigned long) sb; 3767 3768 /* Register extent status tree shrinker */ 3769 ext4_es_register_shrinker(sb); 3770 3771 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3772 ext4_count_free_clusters(sb)); 3773 if (!err) { 3774 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3775 ext4_count_free_inodes(sb)); 3776 } 3777 if (!err) { 3778 err = percpu_counter_init(&sbi->s_dirs_counter, 3779 ext4_count_dirs(sb)); 3780 } 3781 if (!err) { 3782 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3783 } 3784 if (!err) { 3785 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3786 } 3787 if (err) { 3788 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3789 goto failed_mount3; 3790 } 3791 3792 sbi->s_stripe = ext4_get_stripe_size(sbi); 3793 sbi->s_max_writeback_mb_bump = 128; 3794 sbi->s_extent_max_zeroout_kb = 32; 3795 3796 /* 3797 * set up enough so that it can read an inode 3798 */ 3799 if (!test_opt(sb, NOLOAD) && 3800 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3801 sb->s_op = &ext4_sops; 3802 else 3803 sb->s_op = &ext4_nojournal_sops; 3804 sb->s_export_op = &ext4_export_ops; 3805 sb->s_xattr = ext4_xattr_handlers; 3806 #ifdef CONFIG_QUOTA 3807 sb->dq_op = &ext4_quota_operations; 3808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3809 sb->s_qcop = &ext4_qctl_sysfile_operations; 3810 else 3811 sb->s_qcop = &ext4_qctl_operations; 3812 #endif 3813 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3814 3815 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3816 mutex_init(&sbi->s_orphan_lock); 3817 3818 sb->s_root = NULL; 3819 3820 needs_recovery = (es->s_last_orphan != 0 || 3821 EXT4_HAS_INCOMPAT_FEATURE(sb, 3822 EXT4_FEATURE_INCOMPAT_RECOVER)); 3823 3824 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3825 !(sb->s_flags & MS_RDONLY)) 3826 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3827 goto failed_mount3; 3828 3829 /* 3830 * The first inode we look at is the journal inode. Don't try 3831 * root first: it may be modified in the journal! 3832 */ 3833 if (!test_opt(sb, NOLOAD) && 3834 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3835 if (ext4_load_journal(sb, es, journal_devnum)) 3836 goto failed_mount3; 3837 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3838 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3839 ext4_msg(sb, KERN_ERR, "required journal recovery " 3840 "suppressed and not mounted read-only"); 3841 goto failed_mount_wq; 3842 } else { 3843 clear_opt(sb, DATA_FLAGS); 3844 sbi->s_journal = NULL; 3845 needs_recovery = 0; 3846 goto no_journal; 3847 } 3848 3849 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3850 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3851 JBD2_FEATURE_INCOMPAT_64BIT)) { 3852 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3853 goto failed_mount_wq; 3854 } 3855 3856 if (!set_journal_csum_feature_set(sb)) { 3857 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3858 "feature set"); 3859 goto failed_mount_wq; 3860 } 3861 3862 /* We have now updated the journal if required, so we can 3863 * validate the data journaling mode. */ 3864 switch (test_opt(sb, DATA_FLAGS)) { 3865 case 0: 3866 /* No mode set, assume a default based on the journal 3867 * capabilities: ORDERED_DATA if the journal can 3868 * cope, else JOURNAL_DATA 3869 */ 3870 if (jbd2_journal_check_available_features 3871 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3872 set_opt(sb, ORDERED_DATA); 3873 else 3874 set_opt(sb, JOURNAL_DATA); 3875 break; 3876 3877 case EXT4_MOUNT_ORDERED_DATA: 3878 case EXT4_MOUNT_WRITEBACK_DATA: 3879 if (!jbd2_journal_check_available_features 3880 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3881 ext4_msg(sb, KERN_ERR, "Journal does not support " 3882 "requested data journaling mode"); 3883 goto failed_mount_wq; 3884 } 3885 default: 3886 break; 3887 } 3888 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3889 3890 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3891 3892 /* 3893 * The journal may have updated the bg summary counts, so we 3894 * need to update the global counters. 3895 */ 3896 percpu_counter_set(&sbi->s_freeclusters_counter, 3897 ext4_count_free_clusters(sb)); 3898 percpu_counter_set(&sbi->s_freeinodes_counter, 3899 ext4_count_free_inodes(sb)); 3900 percpu_counter_set(&sbi->s_dirs_counter, 3901 ext4_count_dirs(sb)); 3902 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3903 3904 no_journal: 3905 /* 3906 * Get the # of file system overhead blocks from the 3907 * superblock if present. 3908 */ 3909 if (es->s_overhead_clusters) 3910 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3911 else { 3912 err = ext4_calculate_overhead(sb); 3913 if (err) 3914 goto failed_mount_wq; 3915 } 3916 3917 /* 3918 * The maximum number of concurrent works can be high and 3919 * concurrency isn't really necessary. Limit it to 1. 3920 */ 3921 EXT4_SB(sb)->dio_unwritten_wq = 3922 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3923 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3924 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3925 ret = -ENOMEM; 3926 goto failed_mount_wq; 3927 } 3928 3929 /* 3930 * The jbd2_journal_load will have done any necessary log recovery, 3931 * so we can safely mount the rest of the filesystem now. 3932 */ 3933 3934 root = ext4_iget(sb, EXT4_ROOT_INO); 3935 if (IS_ERR(root)) { 3936 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3937 ret = PTR_ERR(root); 3938 root = NULL; 3939 goto failed_mount4; 3940 } 3941 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3942 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3943 iput(root); 3944 goto failed_mount4; 3945 } 3946 sb->s_root = d_make_root(root); 3947 if (!sb->s_root) { 3948 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3949 ret = -ENOMEM; 3950 goto failed_mount4; 3951 } 3952 3953 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3954 sb->s_flags |= MS_RDONLY; 3955 3956 /* determine the minimum size of new large inodes, if present */ 3957 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3958 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3959 EXT4_GOOD_OLD_INODE_SIZE; 3960 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3961 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3962 if (sbi->s_want_extra_isize < 3963 le16_to_cpu(es->s_want_extra_isize)) 3964 sbi->s_want_extra_isize = 3965 le16_to_cpu(es->s_want_extra_isize); 3966 if (sbi->s_want_extra_isize < 3967 le16_to_cpu(es->s_min_extra_isize)) 3968 sbi->s_want_extra_isize = 3969 le16_to_cpu(es->s_min_extra_isize); 3970 } 3971 } 3972 /* Check if enough inode space is available */ 3973 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3974 sbi->s_inode_size) { 3975 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3976 EXT4_GOOD_OLD_INODE_SIZE; 3977 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3978 "available"); 3979 } 3980 3981 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi)); 3982 if (err) { 3983 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 3984 "reserved pool", ext4_calculate_resv_clusters(sbi)); 3985 goto failed_mount4a; 3986 } 3987 3988 err = ext4_setup_system_zone(sb); 3989 if (err) { 3990 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3991 "zone (%d)", err); 3992 goto failed_mount4a; 3993 } 3994 3995 ext4_ext_init(sb); 3996 err = ext4_mb_init(sb); 3997 if (err) { 3998 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3999 err); 4000 goto failed_mount5; 4001 } 4002 4003 err = ext4_register_li_request(sb, first_not_zeroed); 4004 if (err) 4005 goto failed_mount6; 4006 4007 sbi->s_kobj.kset = ext4_kset; 4008 init_completion(&sbi->s_kobj_unregister); 4009 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4010 "%s", sb->s_id); 4011 if (err) 4012 goto failed_mount7; 4013 4014 #ifdef CONFIG_QUOTA 4015 /* Enable quota usage during mount. */ 4016 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4017 !(sb->s_flags & MS_RDONLY)) { 4018 err = ext4_enable_quotas(sb); 4019 if (err) 4020 goto failed_mount8; 4021 } 4022 #endif /* CONFIG_QUOTA */ 4023 4024 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4025 ext4_orphan_cleanup(sb, es); 4026 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4027 if (needs_recovery) { 4028 ext4_msg(sb, KERN_INFO, "recovery complete"); 4029 ext4_mark_recovery_complete(sb, es); 4030 } 4031 if (EXT4_SB(sb)->s_journal) { 4032 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4033 descr = " journalled data mode"; 4034 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4035 descr = " ordered data mode"; 4036 else 4037 descr = " writeback data mode"; 4038 } else 4039 descr = "out journal"; 4040 4041 if (test_opt(sb, DISCARD)) { 4042 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4043 if (!blk_queue_discard(q)) 4044 ext4_msg(sb, KERN_WARNING, 4045 "mounting with \"discard\" option, but " 4046 "the device does not support discard"); 4047 } 4048 4049 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4050 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4051 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4052 4053 if (es->s_error_count) 4054 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4055 4056 kfree(orig_data); 4057 return 0; 4058 4059 cantfind_ext4: 4060 if (!silent) 4061 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4062 goto failed_mount; 4063 4064 #ifdef CONFIG_QUOTA 4065 failed_mount8: 4066 kobject_del(&sbi->s_kobj); 4067 #endif 4068 failed_mount7: 4069 ext4_unregister_li_request(sb); 4070 failed_mount6: 4071 ext4_mb_release(sb); 4072 failed_mount5: 4073 ext4_ext_release(sb); 4074 ext4_release_system_zone(sb); 4075 failed_mount4a: 4076 dput(sb->s_root); 4077 sb->s_root = NULL; 4078 failed_mount4: 4079 ext4_msg(sb, KERN_ERR, "mount failed"); 4080 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4081 failed_mount_wq: 4082 if (sbi->s_journal) { 4083 jbd2_journal_destroy(sbi->s_journal); 4084 sbi->s_journal = NULL; 4085 } 4086 failed_mount3: 4087 ext4_es_unregister_shrinker(sb); 4088 del_timer(&sbi->s_err_report); 4089 if (sbi->s_flex_groups) 4090 ext4_kvfree(sbi->s_flex_groups); 4091 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4092 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4093 percpu_counter_destroy(&sbi->s_dirs_counter); 4094 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4095 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4096 if (sbi->s_mmp_tsk) 4097 kthread_stop(sbi->s_mmp_tsk); 4098 failed_mount2: 4099 for (i = 0; i < db_count; i++) 4100 brelse(sbi->s_group_desc[i]); 4101 ext4_kvfree(sbi->s_group_desc); 4102 failed_mount: 4103 if (sbi->s_chksum_driver) 4104 crypto_free_shash(sbi->s_chksum_driver); 4105 if (sbi->s_proc) { 4106 remove_proc_entry("options", sbi->s_proc); 4107 remove_proc_entry(sb->s_id, ext4_proc_root); 4108 } 4109 #ifdef CONFIG_QUOTA 4110 for (i = 0; i < MAXQUOTAS; i++) 4111 kfree(sbi->s_qf_names[i]); 4112 #endif 4113 ext4_blkdev_remove(sbi); 4114 brelse(bh); 4115 out_fail: 4116 sb->s_fs_info = NULL; 4117 kfree(sbi->s_blockgroup_lock); 4118 kfree(sbi); 4119 out_free_orig: 4120 kfree(orig_data); 4121 return err ? err : ret; 4122 } 4123 4124 /* 4125 * Setup any per-fs journal parameters now. We'll do this both on 4126 * initial mount, once the journal has been initialised but before we've 4127 * done any recovery; and again on any subsequent remount. 4128 */ 4129 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4130 { 4131 struct ext4_sb_info *sbi = EXT4_SB(sb); 4132 4133 journal->j_commit_interval = sbi->s_commit_interval; 4134 journal->j_min_batch_time = sbi->s_min_batch_time; 4135 journal->j_max_batch_time = sbi->s_max_batch_time; 4136 4137 write_lock(&journal->j_state_lock); 4138 if (test_opt(sb, BARRIER)) 4139 journal->j_flags |= JBD2_BARRIER; 4140 else 4141 journal->j_flags &= ~JBD2_BARRIER; 4142 if (test_opt(sb, DATA_ERR_ABORT)) 4143 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4144 else 4145 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4146 write_unlock(&journal->j_state_lock); 4147 } 4148 4149 static journal_t *ext4_get_journal(struct super_block *sb, 4150 unsigned int journal_inum) 4151 { 4152 struct inode *journal_inode; 4153 journal_t *journal; 4154 4155 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4156 4157 /* First, test for the existence of a valid inode on disk. Bad 4158 * things happen if we iget() an unused inode, as the subsequent 4159 * iput() will try to delete it. */ 4160 4161 journal_inode = ext4_iget(sb, journal_inum); 4162 if (IS_ERR(journal_inode)) { 4163 ext4_msg(sb, KERN_ERR, "no journal found"); 4164 return NULL; 4165 } 4166 if (!journal_inode->i_nlink) { 4167 make_bad_inode(journal_inode); 4168 iput(journal_inode); 4169 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4170 return NULL; 4171 } 4172 4173 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4174 journal_inode, journal_inode->i_size); 4175 if (!S_ISREG(journal_inode->i_mode)) { 4176 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4177 iput(journal_inode); 4178 return NULL; 4179 } 4180 4181 journal = jbd2_journal_init_inode(journal_inode); 4182 if (!journal) { 4183 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4184 iput(journal_inode); 4185 return NULL; 4186 } 4187 journal->j_private = sb; 4188 ext4_init_journal_params(sb, journal); 4189 return journal; 4190 } 4191 4192 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4193 dev_t j_dev) 4194 { 4195 struct buffer_head *bh; 4196 journal_t *journal; 4197 ext4_fsblk_t start; 4198 ext4_fsblk_t len; 4199 int hblock, blocksize; 4200 ext4_fsblk_t sb_block; 4201 unsigned long offset; 4202 struct ext4_super_block *es; 4203 struct block_device *bdev; 4204 4205 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4206 4207 bdev = ext4_blkdev_get(j_dev, sb); 4208 if (bdev == NULL) 4209 return NULL; 4210 4211 blocksize = sb->s_blocksize; 4212 hblock = bdev_logical_block_size(bdev); 4213 if (blocksize < hblock) { 4214 ext4_msg(sb, KERN_ERR, 4215 "blocksize too small for journal device"); 4216 goto out_bdev; 4217 } 4218 4219 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4220 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4221 set_blocksize(bdev, blocksize); 4222 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4223 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4224 "external journal"); 4225 goto out_bdev; 4226 } 4227 4228 es = (struct ext4_super_block *) (bh->b_data + offset); 4229 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4230 !(le32_to_cpu(es->s_feature_incompat) & 4231 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4232 ext4_msg(sb, KERN_ERR, "external journal has " 4233 "bad superblock"); 4234 brelse(bh); 4235 goto out_bdev; 4236 } 4237 4238 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4239 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4240 brelse(bh); 4241 goto out_bdev; 4242 } 4243 4244 len = ext4_blocks_count(es); 4245 start = sb_block + 1; 4246 brelse(bh); /* we're done with the superblock */ 4247 4248 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4249 start, len, blocksize); 4250 if (!journal) { 4251 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4252 goto out_bdev; 4253 } 4254 journal->j_private = sb; 4255 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4256 wait_on_buffer(journal->j_sb_buffer); 4257 if (!buffer_uptodate(journal->j_sb_buffer)) { 4258 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4259 goto out_journal; 4260 } 4261 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4262 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4263 "user (unsupported) - %d", 4264 be32_to_cpu(journal->j_superblock->s_nr_users)); 4265 goto out_journal; 4266 } 4267 EXT4_SB(sb)->journal_bdev = bdev; 4268 ext4_init_journal_params(sb, journal); 4269 return journal; 4270 4271 out_journal: 4272 jbd2_journal_destroy(journal); 4273 out_bdev: 4274 ext4_blkdev_put(bdev); 4275 return NULL; 4276 } 4277 4278 static int ext4_load_journal(struct super_block *sb, 4279 struct ext4_super_block *es, 4280 unsigned long journal_devnum) 4281 { 4282 journal_t *journal; 4283 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4284 dev_t journal_dev; 4285 int err = 0; 4286 int really_read_only; 4287 4288 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4289 4290 if (journal_devnum && 4291 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4292 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4293 "numbers have changed"); 4294 journal_dev = new_decode_dev(journal_devnum); 4295 } else 4296 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4297 4298 really_read_only = bdev_read_only(sb->s_bdev); 4299 4300 /* 4301 * Are we loading a blank journal or performing recovery after a 4302 * crash? For recovery, we need to check in advance whether we 4303 * can get read-write access to the device. 4304 */ 4305 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4306 if (sb->s_flags & MS_RDONLY) { 4307 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4308 "required on readonly filesystem"); 4309 if (really_read_only) { 4310 ext4_msg(sb, KERN_ERR, "write access " 4311 "unavailable, cannot proceed"); 4312 return -EROFS; 4313 } 4314 ext4_msg(sb, KERN_INFO, "write access will " 4315 "be enabled during recovery"); 4316 } 4317 } 4318 4319 if (journal_inum && journal_dev) { 4320 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4321 "and inode journals!"); 4322 return -EINVAL; 4323 } 4324 4325 if (journal_inum) { 4326 if (!(journal = ext4_get_journal(sb, journal_inum))) 4327 return -EINVAL; 4328 } else { 4329 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4330 return -EINVAL; 4331 } 4332 4333 if (!(journal->j_flags & JBD2_BARRIER)) 4334 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4335 4336 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4337 err = jbd2_journal_wipe(journal, !really_read_only); 4338 if (!err) { 4339 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4340 if (save) 4341 memcpy(save, ((char *) es) + 4342 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4343 err = jbd2_journal_load(journal); 4344 if (save) 4345 memcpy(((char *) es) + EXT4_S_ERR_START, 4346 save, EXT4_S_ERR_LEN); 4347 kfree(save); 4348 } 4349 4350 if (err) { 4351 ext4_msg(sb, KERN_ERR, "error loading journal"); 4352 jbd2_journal_destroy(journal); 4353 return err; 4354 } 4355 4356 EXT4_SB(sb)->s_journal = journal; 4357 ext4_clear_journal_err(sb, es); 4358 4359 if (!really_read_only && journal_devnum && 4360 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4361 es->s_journal_dev = cpu_to_le32(journal_devnum); 4362 4363 /* Make sure we flush the recovery flag to disk. */ 4364 ext4_commit_super(sb, 1); 4365 } 4366 4367 return 0; 4368 } 4369 4370 static int ext4_commit_super(struct super_block *sb, int sync) 4371 { 4372 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4373 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4374 int error = 0; 4375 4376 if (!sbh || block_device_ejected(sb)) 4377 return error; 4378 if (buffer_write_io_error(sbh)) { 4379 /* 4380 * Oh, dear. A previous attempt to write the 4381 * superblock failed. This could happen because the 4382 * USB device was yanked out. Or it could happen to 4383 * be a transient write error and maybe the block will 4384 * be remapped. Nothing we can do but to retry the 4385 * write and hope for the best. 4386 */ 4387 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4388 "superblock detected"); 4389 clear_buffer_write_io_error(sbh); 4390 set_buffer_uptodate(sbh); 4391 } 4392 /* 4393 * If the file system is mounted read-only, don't update the 4394 * superblock write time. This avoids updating the superblock 4395 * write time when we are mounting the root file system 4396 * read/only but we need to replay the journal; at that point, 4397 * for people who are east of GMT and who make their clock 4398 * tick in localtime for Windows bug-for-bug compatibility, 4399 * the clock is set in the future, and this will cause e2fsck 4400 * to complain and force a full file system check. 4401 */ 4402 if (!(sb->s_flags & MS_RDONLY)) 4403 es->s_wtime = cpu_to_le32(get_seconds()); 4404 if (sb->s_bdev->bd_part) 4405 es->s_kbytes_written = 4406 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4407 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4408 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4409 else 4410 es->s_kbytes_written = 4411 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4412 ext4_free_blocks_count_set(es, 4413 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4414 &EXT4_SB(sb)->s_freeclusters_counter))); 4415 es->s_free_inodes_count = 4416 cpu_to_le32(percpu_counter_sum_positive( 4417 &EXT4_SB(sb)->s_freeinodes_counter)); 4418 BUFFER_TRACE(sbh, "marking dirty"); 4419 ext4_superblock_csum_set(sb); 4420 mark_buffer_dirty(sbh); 4421 if (sync) { 4422 error = sync_dirty_buffer(sbh); 4423 if (error) 4424 return error; 4425 4426 error = buffer_write_io_error(sbh); 4427 if (error) { 4428 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4429 "superblock"); 4430 clear_buffer_write_io_error(sbh); 4431 set_buffer_uptodate(sbh); 4432 } 4433 } 4434 return error; 4435 } 4436 4437 /* 4438 * Have we just finished recovery? If so, and if we are mounting (or 4439 * remounting) the filesystem readonly, then we will end up with a 4440 * consistent fs on disk. Record that fact. 4441 */ 4442 static void ext4_mark_recovery_complete(struct super_block *sb, 4443 struct ext4_super_block *es) 4444 { 4445 journal_t *journal = EXT4_SB(sb)->s_journal; 4446 4447 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4448 BUG_ON(journal != NULL); 4449 return; 4450 } 4451 jbd2_journal_lock_updates(journal); 4452 if (jbd2_journal_flush(journal) < 0) 4453 goto out; 4454 4455 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4456 sb->s_flags & MS_RDONLY) { 4457 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4458 ext4_commit_super(sb, 1); 4459 } 4460 4461 out: 4462 jbd2_journal_unlock_updates(journal); 4463 } 4464 4465 /* 4466 * If we are mounting (or read-write remounting) a filesystem whose journal 4467 * has recorded an error from a previous lifetime, move that error to the 4468 * main filesystem now. 4469 */ 4470 static void ext4_clear_journal_err(struct super_block *sb, 4471 struct ext4_super_block *es) 4472 { 4473 journal_t *journal; 4474 int j_errno; 4475 const char *errstr; 4476 4477 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4478 4479 journal = EXT4_SB(sb)->s_journal; 4480 4481 /* 4482 * Now check for any error status which may have been recorded in the 4483 * journal by a prior ext4_error() or ext4_abort() 4484 */ 4485 4486 j_errno = jbd2_journal_errno(journal); 4487 if (j_errno) { 4488 char nbuf[16]; 4489 4490 errstr = ext4_decode_error(sb, j_errno, nbuf); 4491 ext4_warning(sb, "Filesystem error recorded " 4492 "from previous mount: %s", errstr); 4493 ext4_warning(sb, "Marking fs in need of filesystem check."); 4494 4495 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4496 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4497 ext4_commit_super(sb, 1); 4498 4499 jbd2_journal_clear_err(journal); 4500 jbd2_journal_update_sb_errno(journal); 4501 } 4502 } 4503 4504 /* 4505 * Force the running and committing transactions to commit, 4506 * and wait on the commit. 4507 */ 4508 int ext4_force_commit(struct super_block *sb) 4509 { 4510 journal_t *journal; 4511 4512 if (sb->s_flags & MS_RDONLY) 4513 return 0; 4514 4515 journal = EXT4_SB(sb)->s_journal; 4516 return ext4_journal_force_commit(journal); 4517 } 4518 4519 static int ext4_sync_fs(struct super_block *sb, int wait) 4520 { 4521 int ret = 0; 4522 tid_t target; 4523 struct ext4_sb_info *sbi = EXT4_SB(sb); 4524 4525 trace_ext4_sync_fs(sb, wait); 4526 flush_workqueue(sbi->dio_unwritten_wq); 4527 /* 4528 * Writeback quota in non-journalled quota case - journalled quota has 4529 * no dirty dquots 4530 */ 4531 dquot_writeback_dquots(sb, -1); 4532 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4533 if (wait) 4534 jbd2_log_wait_commit(sbi->s_journal, target); 4535 } 4536 return ret; 4537 } 4538 4539 /* 4540 * LVM calls this function before a (read-only) snapshot is created. This 4541 * gives us a chance to flush the journal completely and mark the fs clean. 4542 * 4543 * Note that only this function cannot bring a filesystem to be in a clean 4544 * state independently. It relies on upper layer to stop all data & metadata 4545 * modifications. 4546 */ 4547 static int ext4_freeze(struct super_block *sb) 4548 { 4549 int error = 0; 4550 journal_t *journal; 4551 4552 if (sb->s_flags & MS_RDONLY) 4553 return 0; 4554 4555 journal = EXT4_SB(sb)->s_journal; 4556 4557 /* Now we set up the journal barrier. */ 4558 jbd2_journal_lock_updates(journal); 4559 4560 /* 4561 * Don't clear the needs_recovery flag if we failed to flush 4562 * the journal. 4563 */ 4564 error = jbd2_journal_flush(journal); 4565 if (error < 0) 4566 goto out; 4567 4568 /* Journal blocked and flushed, clear needs_recovery flag. */ 4569 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4570 error = ext4_commit_super(sb, 1); 4571 out: 4572 /* we rely on upper layer to stop further updates */ 4573 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4574 return error; 4575 } 4576 4577 /* 4578 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4579 * flag here, even though the filesystem is not technically dirty yet. 4580 */ 4581 static int ext4_unfreeze(struct super_block *sb) 4582 { 4583 if (sb->s_flags & MS_RDONLY) 4584 return 0; 4585 4586 /* Reset the needs_recovery flag before the fs is unlocked. */ 4587 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4588 ext4_commit_super(sb, 1); 4589 return 0; 4590 } 4591 4592 /* 4593 * Structure to save mount options for ext4_remount's benefit 4594 */ 4595 struct ext4_mount_options { 4596 unsigned long s_mount_opt; 4597 unsigned long s_mount_opt2; 4598 kuid_t s_resuid; 4599 kgid_t s_resgid; 4600 unsigned long s_commit_interval; 4601 u32 s_min_batch_time, s_max_batch_time; 4602 #ifdef CONFIG_QUOTA 4603 int s_jquota_fmt; 4604 char *s_qf_names[MAXQUOTAS]; 4605 #endif 4606 }; 4607 4608 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4609 { 4610 struct ext4_super_block *es; 4611 struct ext4_sb_info *sbi = EXT4_SB(sb); 4612 unsigned long old_sb_flags; 4613 struct ext4_mount_options old_opts; 4614 int enable_quota = 0; 4615 ext4_group_t g; 4616 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4617 int err = 0; 4618 #ifdef CONFIG_QUOTA 4619 int i, j; 4620 #endif 4621 char *orig_data = kstrdup(data, GFP_KERNEL); 4622 4623 /* Store the original options */ 4624 old_sb_flags = sb->s_flags; 4625 old_opts.s_mount_opt = sbi->s_mount_opt; 4626 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4627 old_opts.s_resuid = sbi->s_resuid; 4628 old_opts.s_resgid = sbi->s_resgid; 4629 old_opts.s_commit_interval = sbi->s_commit_interval; 4630 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4631 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4632 #ifdef CONFIG_QUOTA 4633 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4634 for (i = 0; i < MAXQUOTAS; i++) 4635 if (sbi->s_qf_names[i]) { 4636 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4637 GFP_KERNEL); 4638 if (!old_opts.s_qf_names[i]) { 4639 for (j = 0; j < i; j++) 4640 kfree(old_opts.s_qf_names[j]); 4641 kfree(orig_data); 4642 return -ENOMEM; 4643 } 4644 } else 4645 old_opts.s_qf_names[i] = NULL; 4646 #endif 4647 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4648 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4649 4650 /* 4651 * Allow the "check" option to be passed as a remount option. 4652 */ 4653 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4654 err = -EINVAL; 4655 goto restore_opts; 4656 } 4657 4658 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4659 ext4_abort(sb, "Abort forced by user"); 4660 4661 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4662 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4663 4664 es = sbi->s_es; 4665 4666 if (sbi->s_journal) { 4667 ext4_init_journal_params(sb, sbi->s_journal); 4668 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4669 } 4670 4671 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4672 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4673 err = -EROFS; 4674 goto restore_opts; 4675 } 4676 4677 if (*flags & MS_RDONLY) { 4678 err = dquot_suspend(sb, -1); 4679 if (err < 0) 4680 goto restore_opts; 4681 4682 /* 4683 * First of all, the unconditional stuff we have to do 4684 * to disable replay of the journal when we next remount 4685 */ 4686 sb->s_flags |= MS_RDONLY; 4687 4688 /* 4689 * OK, test if we are remounting a valid rw partition 4690 * readonly, and if so set the rdonly flag and then 4691 * mark the partition as valid again. 4692 */ 4693 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4694 (sbi->s_mount_state & EXT4_VALID_FS)) 4695 es->s_state = cpu_to_le16(sbi->s_mount_state); 4696 4697 if (sbi->s_journal) 4698 ext4_mark_recovery_complete(sb, es); 4699 } else { 4700 /* Make sure we can mount this feature set readwrite */ 4701 if (!ext4_feature_set_ok(sb, 0)) { 4702 err = -EROFS; 4703 goto restore_opts; 4704 } 4705 /* 4706 * Make sure the group descriptor checksums 4707 * are sane. If they aren't, refuse to remount r/w. 4708 */ 4709 for (g = 0; g < sbi->s_groups_count; g++) { 4710 struct ext4_group_desc *gdp = 4711 ext4_get_group_desc(sb, g, NULL); 4712 4713 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4714 ext4_msg(sb, KERN_ERR, 4715 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4716 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4717 le16_to_cpu(gdp->bg_checksum)); 4718 err = -EINVAL; 4719 goto restore_opts; 4720 } 4721 } 4722 4723 /* 4724 * If we have an unprocessed orphan list hanging 4725 * around from a previously readonly bdev mount, 4726 * require a full umount/remount for now. 4727 */ 4728 if (es->s_last_orphan) { 4729 ext4_msg(sb, KERN_WARNING, "Couldn't " 4730 "remount RDWR because of unprocessed " 4731 "orphan inode list. Please " 4732 "umount/remount instead"); 4733 err = -EINVAL; 4734 goto restore_opts; 4735 } 4736 4737 /* 4738 * Mounting a RDONLY partition read-write, so reread 4739 * and store the current valid flag. (It may have 4740 * been changed by e2fsck since we originally mounted 4741 * the partition.) 4742 */ 4743 if (sbi->s_journal) 4744 ext4_clear_journal_err(sb, es); 4745 sbi->s_mount_state = le16_to_cpu(es->s_state); 4746 if (!ext4_setup_super(sb, es, 0)) 4747 sb->s_flags &= ~MS_RDONLY; 4748 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4749 EXT4_FEATURE_INCOMPAT_MMP)) 4750 if (ext4_multi_mount_protect(sb, 4751 le64_to_cpu(es->s_mmp_block))) { 4752 err = -EROFS; 4753 goto restore_opts; 4754 } 4755 enable_quota = 1; 4756 } 4757 } 4758 4759 /* 4760 * Reinitialize lazy itable initialization thread based on 4761 * current settings 4762 */ 4763 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4764 ext4_unregister_li_request(sb); 4765 else { 4766 ext4_group_t first_not_zeroed; 4767 first_not_zeroed = ext4_has_uninit_itable(sb); 4768 ext4_register_li_request(sb, first_not_zeroed); 4769 } 4770 4771 ext4_setup_system_zone(sb); 4772 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4773 ext4_commit_super(sb, 1); 4774 4775 #ifdef CONFIG_QUOTA 4776 /* Release old quota file names */ 4777 for (i = 0; i < MAXQUOTAS; i++) 4778 kfree(old_opts.s_qf_names[i]); 4779 if (enable_quota) { 4780 if (sb_any_quota_suspended(sb)) 4781 dquot_resume(sb, -1); 4782 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4783 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4784 err = ext4_enable_quotas(sb); 4785 if (err) 4786 goto restore_opts; 4787 } 4788 } 4789 #endif 4790 4791 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4792 kfree(orig_data); 4793 return 0; 4794 4795 restore_opts: 4796 sb->s_flags = old_sb_flags; 4797 sbi->s_mount_opt = old_opts.s_mount_opt; 4798 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4799 sbi->s_resuid = old_opts.s_resuid; 4800 sbi->s_resgid = old_opts.s_resgid; 4801 sbi->s_commit_interval = old_opts.s_commit_interval; 4802 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4803 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4804 #ifdef CONFIG_QUOTA 4805 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4806 for (i = 0; i < MAXQUOTAS; i++) { 4807 kfree(sbi->s_qf_names[i]); 4808 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4809 } 4810 #endif 4811 kfree(orig_data); 4812 return err; 4813 } 4814 4815 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4816 { 4817 struct super_block *sb = dentry->d_sb; 4818 struct ext4_sb_info *sbi = EXT4_SB(sb); 4819 struct ext4_super_block *es = sbi->s_es; 4820 ext4_fsblk_t overhead = 0, resv_blocks; 4821 u64 fsid; 4822 s64 bfree; 4823 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4824 4825 if (!test_opt(sb, MINIX_DF)) 4826 overhead = sbi->s_overhead; 4827 4828 buf->f_type = EXT4_SUPER_MAGIC; 4829 buf->f_bsize = sb->s_blocksize; 4830 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4831 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4832 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4833 /* prevent underflow in case that few free space is available */ 4834 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4835 buf->f_bavail = buf->f_bfree - 4836 (ext4_r_blocks_count(es) + resv_blocks); 4837 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4838 buf->f_bavail = 0; 4839 buf->f_files = le32_to_cpu(es->s_inodes_count); 4840 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4841 buf->f_namelen = EXT4_NAME_LEN; 4842 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4843 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4844 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4845 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4846 4847 return 0; 4848 } 4849 4850 /* Helper function for writing quotas on sync - we need to start transaction 4851 * before quota file is locked for write. Otherwise the are possible deadlocks: 4852 * Process 1 Process 2 4853 * ext4_create() quota_sync() 4854 * jbd2_journal_start() write_dquot() 4855 * dquot_initialize() down(dqio_mutex) 4856 * down(dqio_mutex) jbd2_journal_start() 4857 * 4858 */ 4859 4860 #ifdef CONFIG_QUOTA 4861 4862 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4863 { 4864 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4865 } 4866 4867 static int ext4_write_dquot(struct dquot *dquot) 4868 { 4869 int ret, err; 4870 handle_t *handle; 4871 struct inode *inode; 4872 4873 inode = dquot_to_inode(dquot); 4874 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4875 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4876 if (IS_ERR(handle)) 4877 return PTR_ERR(handle); 4878 ret = dquot_commit(dquot); 4879 err = ext4_journal_stop(handle); 4880 if (!ret) 4881 ret = err; 4882 return ret; 4883 } 4884 4885 static int ext4_acquire_dquot(struct dquot *dquot) 4886 { 4887 int ret, err; 4888 handle_t *handle; 4889 4890 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4891 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4892 if (IS_ERR(handle)) 4893 return PTR_ERR(handle); 4894 ret = dquot_acquire(dquot); 4895 err = ext4_journal_stop(handle); 4896 if (!ret) 4897 ret = err; 4898 return ret; 4899 } 4900 4901 static int ext4_release_dquot(struct dquot *dquot) 4902 { 4903 int ret, err; 4904 handle_t *handle; 4905 4906 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4907 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4908 if (IS_ERR(handle)) { 4909 /* Release dquot anyway to avoid endless cycle in dqput() */ 4910 dquot_release(dquot); 4911 return PTR_ERR(handle); 4912 } 4913 ret = dquot_release(dquot); 4914 err = ext4_journal_stop(handle); 4915 if (!ret) 4916 ret = err; 4917 return ret; 4918 } 4919 4920 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4921 { 4922 struct super_block *sb = dquot->dq_sb; 4923 struct ext4_sb_info *sbi = EXT4_SB(sb); 4924 4925 /* Are we journaling quotas? */ 4926 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 4927 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4928 dquot_mark_dquot_dirty(dquot); 4929 return ext4_write_dquot(dquot); 4930 } else { 4931 return dquot_mark_dquot_dirty(dquot); 4932 } 4933 } 4934 4935 static int ext4_write_info(struct super_block *sb, int type) 4936 { 4937 int ret, err; 4938 handle_t *handle; 4939 4940 /* Data block + inode block */ 4941 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 4942 if (IS_ERR(handle)) 4943 return PTR_ERR(handle); 4944 ret = dquot_commit_info(sb, type); 4945 err = ext4_journal_stop(handle); 4946 if (!ret) 4947 ret = err; 4948 return ret; 4949 } 4950 4951 /* 4952 * Turn on quotas during mount time - we need to find 4953 * the quota file and such... 4954 */ 4955 static int ext4_quota_on_mount(struct super_block *sb, int type) 4956 { 4957 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4958 EXT4_SB(sb)->s_jquota_fmt, type); 4959 } 4960 4961 /* 4962 * Standard function to be called on quota_on 4963 */ 4964 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4965 struct path *path) 4966 { 4967 int err; 4968 4969 if (!test_opt(sb, QUOTA)) 4970 return -EINVAL; 4971 4972 /* Quotafile not on the same filesystem? */ 4973 if (path->dentry->d_sb != sb) 4974 return -EXDEV; 4975 /* Journaling quota? */ 4976 if (EXT4_SB(sb)->s_qf_names[type]) { 4977 /* Quotafile not in fs root? */ 4978 if (path->dentry->d_parent != sb->s_root) 4979 ext4_msg(sb, KERN_WARNING, 4980 "Quota file not on filesystem root. " 4981 "Journaled quota will not work"); 4982 } 4983 4984 /* 4985 * When we journal data on quota file, we have to flush journal to see 4986 * all updates to the file when we bypass pagecache... 4987 */ 4988 if (EXT4_SB(sb)->s_journal && 4989 ext4_should_journal_data(path->dentry->d_inode)) { 4990 /* 4991 * We don't need to lock updates but journal_flush() could 4992 * otherwise be livelocked... 4993 */ 4994 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4995 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4996 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4997 if (err) 4998 return err; 4999 } 5000 5001 return dquot_quota_on(sb, type, format_id, path); 5002 } 5003 5004 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5005 unsigned int flags) 5006 { 5007 int err; 5008 struct inode *qf_inode; 5009 unsigned long qf_inums[MAXQUOTAS] = { 5010 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5011 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5012 }; 5013 5014 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5015 5016 if (!qf_inums[type]) 5017 return -EPERM; 5018 5019 qf_inode = ext4_iget(sb, qf_inums[type]); 5020 if (IS_ERR(qf_inode)) { 5021 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5022 return PTR_ERR(qf_inode); 5023 } 5024 5025 /* Don't account quota for quota files to avoid recursion */ 5026 qf_inode->i_flags |= S_NOQUOTA; 5027 err = dquot_enable(qf_inode, type, format_id, flags); 5028 iput(qf_inode); 5029 5030 return err; 5031 } 5032 5033 /* Enable usage tracking for all quota types. */ 5034 static int ext4_enable_quotas(struct super_block *sb) 5035 { 5036 int type, err = 0; 5037 unsigned long qf_inums[MAXQUOTAS] = { 5038 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5039 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5040 }; 5041 5042 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5043 for (type = 0; type < MAXQUOTAS; type++) { 5044 if (qf_inums[type]) { 5045 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5046 DQUOT_USAGE_ENABLED); 5047 if (err) { 5048 ext4_warning(sb, 5049 "Failed to enable quota tracking " 5050 "(type=%d, err=%d). Please run " 5051 "e2fsck to fix.", type, err); 5052 return err; 5053 } 5054 } 5055 } 5056 return 0; 5057 } 5058 5059 /* 5060 * quota_on function that is used when QUOTA feature is set. 5061 */ 5062 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5063 int format_id) 5064 { 5065 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5066 return -EINVAL; 5067 5068 /* 5069 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5070 */ 5071 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5072 } 5073 5074 static int ext4_quota_off(struct super_block *sb, int type) 5075 { 5076 struct inode *inode = sb_dqopt(sb)->files[type]; 5077 handle_t *handle; 5078 5079 /* Force all delayed allocation blocks to be allocated. 5080 * Caller already holds s_umount sem */ 5081 if (test_opt(sb, DELALLOC)) 5082 sync_filesystem(sb); 5083 5084 if (!inode) 5085 goto out; 5086 5087 /* Update modification times of quota files when userspace can 5088 * start looking at them */ 5089 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5090 if (IS_ERR(handle)) 5091 goto out; 5092 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5093 ext4_mark_inode_dirty(handle, inode); 5094 ext4_journal_stop(handle); 5095 5096 out: 5097 return dquot_quota_off(sb, type); 5098 } 5099 5100 /* 5101 * quota_off function that is used when QUOTA feature is set. 5102 */ 5103 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5104 { 5105 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5106 return -EINVAL; 5107 5108 /* Disable only the limits. */ 5109 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5110 } 5111 5112 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5113 * acquiring the locks... As quota files are never truncated and quota code 5114 * itself serializes the operations (and no one else should touch the files) 5115 * we don't have to be afraid of races */ 5116 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5117 size_t len, loff_t off) 5118 { 5119 struct inode *inode = sb_dqopt(sb)->files[type]; 5120 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5121 int err = 0; 5122 int offset = off & (sb->s_blocksize - 1); 5123 int tocopy; 5124 size_t toread; 5125 struct buffer_head *bh; 5126 loff_t i_size = i_size_read(inode); 5127 5128 if (off > i_size) 5129 return 0; 5130 if (off+len > i_size) 5131 len = i_size-off; 5132 toread = len; 5133 while (toread > 0) { 5134 tocopy = sb->s_blocksize - offset < toread ? 5135 sb->s_blocksize - offset : toread; 5136 bh = ext4_bread(NULL, inode, blk, 0, &err); 5137 if (err) 5138 return err; 5139 if (!bh) /* A hole? */ 5140 memset(data, 0, tocopy); 5141 else 5142 memcpy(data, bh->b_data+offset, tocopy); 5143 brelse(bh); 5144 offset = 0; 5145 toread -= tocopy; 5146 data += tocopy; 5147 blk++; 5148 } 5149 return len; 5150 } 5151 5152 /* Write to quotafile (we know the transaction is already started and has 5153 * enough credits) */ 5154 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5155 const char *data, size_t len, loff_t off) 5156 { 5157 struct inode *inode = sb_dqopt(sb)->files[type]; 5158 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5159 int err = 0; 5160 int offset = off & (sb->s_blocksize - 1); 5161 struct buffer_head *bh; 5162 handle_t *handle = journal_current_handle(); 5163 5164 if (EXT4_SB(sb)->s_journal && !handle) { 5165 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5166 " cancelled because transaction is not started", 5167 (unsigned long long)off, (unsigned long long)len); 5168 return -EIO; 5169 } 5170 /* 5171 * Since we account only one data block in transaction credits, 5172 * then it is impossible to cross a block boundary. 5173 */ 5174 if (sb->s_blocksize - offset < len) { 5175 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5176 " cancelled because not block aligned", 5177 (unsigned long long)off, (unsigned long long)len); 5178 return -EIO; 5179 } 5180 5181 bh = ext4_bread(handle, inode, blk, 1, &err); 5182 if (!bh) 5183 goto out; 5184 err = ext4_journal_get_write_access(handle, bh); 5185 if (err) { 5186 brelse(bh); 5187 goto out; 5188 } 5189 lock_buffer(bh); 5190 memcpy(bh->b_data+offset, data, len); 5191 flush_dcache_page(bh->b_page); 5192 unlock_buffer(bh); 5193 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5194 brelse(bh); 5195 out: 5196 if (err) 5197 return err; 5198 if (inode->i_size < off + len) { 5199 i_size_write(inode, off + len); 5200 EXT4_I(inode)->i_disksize = inode->i_size; 5201 ext4_mark_inode_dirty(handle, inode); 5202 } 5203 return len; 5204 } 5205 5206 #endif 5207 5208 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5209 const char *dev_name, void *data) 5210 { 5211 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5212 } 5213 5214 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5215 static inline void register_as_ext2(void) 5216 { 5217 int err = register_filesystem(&ext2_fs_type); 5218 if (err) 5219 printk(KERN_WARNING 5220 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5221 } 5222 5223 static inline void unregister_as_ext2(void) 5224 { 5225 unregister_filesystem(&ext2_fs_type); 5226 } 5227 5228 static inline int ext2_feature_set_ok(struct super_block *sb) 5229 { 5230 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5231 return 0; 5232 if (sb->s_flags & MS_RDONLY) 5233 return 1; 5234 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5235 return 0; 5236 return 1; 5237 } 5238 #else 5239 static inline void register_as_ext2(void) { } 5240 static inline void unregister_as_ext2(void) { } 5241 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5242 #endif 5243 5244 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5245 static inline void register_as_ext3(void) 5246 { 5247 int err = register_filesystem(&ext3_fs_type); 5248 if (err) 5249 printk(KERN_WARNING 5250 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5251 } 5252 5253 static inline void unregister_as_ext3(void) 5254 { 5255 unregister_filesystem(&ext3_fs_type); 5256 } 5257 5258 static inline int ext3_feature_set_ok(struct super_block *sb) 5259 { 5260 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5261 return 0; 5262 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5263 return 0; 5264 if (sb->s_flags & MS_RDONLY) 5265 return 1; 5266 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5267 return 0; 5268 return 1; 5269 } 5270 #else 5271 static inline void register_as_ext3(void) { } 5272 static inline void unregister_as_ext3(void) { } 5273 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5274 #endif 5275 5276 static struct file_system_type ext4_fs_type = { 5277 .owner = THIS_MODULE, 5278 .name = "ext4", 5279 .mount = ext4_mount, 5280 .kill_sb = kill_block_super, 5281 .fs_flags = FS_REQUIRES_DEV, 5282 }; 5283 MODULE_ALIAS_FS("ext4"); 5284 5285 static int __init ext4_init_feat_adverts(void) 5286 { 5287 struct ext4_features *ef; 5288 int ret = -ENOMEM; 5289 5290 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5291 if (!ef) 5292 goto out; 5293 5294 ef->f_kobj.kset = ext4_kset; 5295 init_completion(&ef->f_kobj_unregister); 5296 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5297 "features"); 5298 if (ret) { 5299 kfree(ef); 5300 goto out; 5301 } 5302 5303 ext4_feat = ef; 5304 ret = 0; 5305 out: 5306 return ret; 5307 } 5308 5309 static void ext4_exit_feat_adverts(void) 5310 { 5311 kobject_put(&ext4_feat->f_kobj); 5312 wait_for_completion(&ext4_feat->f_kobj_unregister); 5313 kfree(ext4_feat); 5314 } 5315 5316 /* Shared across all ext4 file systems */ 5317 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5318 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5319 5320 static int __init ext4_init_fs(void) 5321 { 5322 int i, err; 5323 5324 ext4_li_info = NULL; 5325 mutex_init(&ext4_li_mtx); 5326 5327 /* Build-time check for flags consistency */ 5328 ext4_check_flag_values(); 5329 5330 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5331 mutex_init(&ext4__aio_mutex[i]); 5332 init_waitqueue_head(&ext4__ioend_wq[i]); 5333 } 5334 5335 err = ext4_init_es(); 5336 if (err) 5337 return err; 5338 5339 err = ext4_init_pageio(); 5340 if (err) 5341 goto out7; 5342 5343 err = ext4_init_system_zone(); 5344 if (err) 5345 goto out6; 5346 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5347 if (!ext4_kset) { 5348 err = -ENOMEM; 5349 goto out5; 5350 } 5351 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5352 5353 err = ext4_init_feat_adverts(); 5354 if (err) 5355 goto out4; 5356 5357 err = ext4_init_mballoc(); 5358 if (err) 5359 goto out3; 5360 5361 err = ext4_init_xattr(); 5362 if (err) 5363 goto out2; 5364 err = init_inodecache(); 5365 if (err) 5366 goto out1; 5367 register_as_ext3(); 5368 register_as_ext2(); 5369 err = register_filesystem(&ext4_fs_type); 5370 if (err) 5371 goto out; 5372 5373 return 0; 5374 out: 5375 unregister_as_ext2(); 5376 unregister_as_ext3(); 5377 destroy_inodecache(); 5378 out1: 5379 ext4_exit_xattr(); 5380 out2: 5381 ext4_exit_mballoc(); 5382 out3: 5383 ext4_exit_feat_adverts(); 5384 out4: 5385 if (ext4_proc_root) 5386 remove_proc_entry("fs/ext4", NULL); 5387 kset_unregister(ext4_kset); 5388 out5: 5389 ext4_exit_system_zone(); 5390 out6: 5391 ext4_exit_pageio(); 5392 out7: 5393 ext4_exit_es(); 5394 5395 return err; 5396 } 5397 5398 static void __exit ext4_exit_fs(void) 5399 { 5400 ext4_destroy_lazyinit_thread(); 5401 unregister_as_ext2(); 5402 unregister_as_ext3(); 5403 unregister_filesystem(&ext4_fs_type); 5404 destroy_inodecache(); 5405 ext4_exit_xattr(); 5406 ext4_exit_mballoc(); 5407 ext4_exit_feat_adverts(); 5408 remove_proc_entry("fs/ext4", NULL); 5409 kset_unregister(ext4_kset); 5410 ext4_exit_system_zone(); 5411 ext4_exit_pageio(); 5412 } 5413 5414 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5415 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5416 MODULE_LICENSE("GPL"); 5417 module_init(ext4_init_fs) 5418 module_exit(ext4_exit_fs) 5419