1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116 { 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122 } 123 124 static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126 { 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134 } 135 136 int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138 { 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb, 147 struct ext4_super_block *es) 148 { 149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 150 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 151 return; 152 153 es->s_checksum = ext4_superblock_csum(sb, es); 154 } 155 156 void *ext4_kvmalloc(size_t size, gfp_t flags) 157 { 158 void *ret; 159 160 ret = kmalloc(size, flags); 161 if (!ret) 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 return ret; 164 } 165 166 void *ext4_kvzalloc(size_t size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = kzalloc(size, flags); 171 if (!ret) 172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 173 return ret; 174 } 175 176 void ext4_kvfree(void *ptr) 177 { 178 if (is_vmalloc_addr(ptr)) 179 vfree(ptr); 180 else 181 kfree(ptr); 182 183 } 184 185 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 186 struct ext4_group_desc *bg) 187 { 188 return le32_to_cpu(bg->bg_block_bitmap_lo) | 189 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 190 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 191 } 192 193 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 194 struct ext4_group_desc *bg) 195 { 196 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 197 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 198 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 199 } 200 201 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_inode_table_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 207 } 208 209 __u32 ext4_free_group_clusters(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 215 } 216 217 __u32 ext4_free_inodes_count(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 223 } 224 225 __u32 ext4_used_dirs_count(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_itable_unused_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_itable_unused_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 239 } 240 241 void ext4_block_bitmap_set(struct super_block *sb, 242 struct ext4_group_desc *bg, ext4_fsblk_t blk) 243 { 244 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 245 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 246 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 247 } 248 249 void ext4_inode_bitmap_set(struct super_block *sb, 250 struct ext4_group_desc *bg, ext4_fsblk_t blk) 251 { 252 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 253 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 254 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 255 } 256 257 void ext4_inode_table_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_free_group_clusters_set(struct super_block *sb, 266 struct ext4_group_desc *bg, __u32 count) 267 { 268 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 271 } 272 273 void ext4_free_inodes_set(struct super_block *sb, 274 struct ext4_group_desc *bg, __u32 count) 275 { 276 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 279 } 280 281 void ext4_used_dirs_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_itable_unused_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 295 } 296 297 298 /* Just increment the non-pointer handle value */ 299 static handle_t *ext4_get_nojournal(void) 300 { 301 handle_t *handle = current->journal_info; 302 unsigned long ref_cnt = (unsigned long)handle; 303 304 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 305 306 ref_cnt++; 307 handle = (handle_t *)ref_cnt; 308 309 current->journal_info = handle; 310 return handle; 311 } 312 313 314 /* Decrement the non-pointer handle value */ 315 static void ext4_put_nojournal(handle_t *handle) 316 { 317 unsigned long ref_cnt = (unsigned long)handle; 318 319 BUG_ON(ref_cnt == 0); 320 321 ref_cnt--; 322 handle = (handle_t *)ref_cnt; 323 324 current->journal_info = handle; 325 } 326 327 /* 328 * Wrappers for jbd2_journal_start/end. 329 * 330 * The only special thing we need to do here is to make sure that all 331 * journal_end calls result in the superblock being marked dirty, so 332 * that sync() will call the filesystem's write_super callback if 333 * appropriate. 334 */ 335 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 336 { 337 journal_t *journal; 338 339 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 340 if (sb->s_flags & MS_RDONLY) 341 return ERR_PTR(-EROFS); 342 343 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE); 344 journal = EXT4_SB(sb)->s_journal; 345 if (!journal) 346 return ext4_get_nojournal(); 347 /* 348 * Special case here: if the journal has aborted behind our 349 * backs (eg. EIO in the commit thread), then we still need to 350 * take the FS itself readonly cleanly. 351 */ 352 if (is_journal_aborted(journal)) { 353 ext4_abort(sb, "Detected aborted journal"); 354 return ERR_PTR(-EROFS); 355 } 356 return jbd2_journal_start(journal, nblocks); 357 } 358 359 /* 360 * The only special thing we need to do here is to make sure that all 361 * jbd2_journal_stop calls result in the superblock being marked dirty, so 362 * that sync() will call the filesystem's write_super callback if 363 * appropriate. 364 */ 365 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 366 { 367 struct super_block *sb; 368 int err; 369 int rc; 370 371 if (!ext4_handle_valid(handle)) { 372 ext4_put_nojournal(handle); 373 return 0; 374 } 375 sb = handle->h_transaction->t_journal->j_private; 376 err = handle->h_err; 377 rc = jbd2_journal_stop(handle); 378 379 if (!err) 380 err = rc; 381 if (err) 382 __ext4_std_error(sb, where, line, err); 383 return err; 384 } 385 386 void ext4_journal_abort_handle(const char *caller, unsigned int line, 387 const char *err_fn, struct buffer_head *bh, 388 handle_t *handle, int err) 389 { 390 char nbuf[16]; 391 const char *errstr = ext4_decode_error(NULL, err, nbuf); 392 393 BUG_ON(!ext4_handle_valid(handle)); 394 395 if (bh) 396 BUFFER_TRACE(bh, "abort"); 397 398 if (!handle->h_err) 399 handle->h_err = err; 400 401 if (is_handle_aborted(handle)) 402 return; 403 404 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 405 caller, line, errstr, err_fn); 406 407 jbd2_journal_abort_handle(handle); 408 } 409 410 static void __save_error_info(struct super_block *sb, const char *func, 411 unsigned int line) 412 { 413 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 414 415 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 416 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 417 es->s_last_error_time = cpu_to_le32(get_seconds()); 418 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 419 es->s_last_error_line = cpu_to_le32(line); 420 if (!es->s_first_error_time) { 421 es->s_first_error_time = es->s_last_error_time; 422 strncpy(es->s_first_error_func, func, 423 sizeof(es->s_first_error_func)); 424 es->s_first_error_line = cpu_to_le32(line); 425 es->s_first_error_ino = es->s_last_error_ino; 426 es->s_first_error_block = es->s_last_error_block; 427 } 428 /* 429 * Start the daily error reporting function if it hasn't been 430 * started already 431 */ 432 if (!es->s_error_count) 433 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 434 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 435 } 436 437 static void save_error_info(struct super_block *sb, const char *func, 438 unsigned int line) 439 { 440 __save_error_info(sb, func, line); 441 ext4_commit_super(sb, 1); 442 } 443 444 /* 445 * The del_gendisk() function uninitializes the disk-specific data 446 * structures, including the bdi structure, without telling anyone 447 * else. Once this happens, any attempt to call mark_buffer_dirty() 448 * (for example, by ext4_commit_super), will cause a kernel OOPS. 449 * This is a kludge to prevent these oops until we can put in a proper 450 * hook in del_gendisk() to inform the VFS and file system layers. 451 */ 452 static int block_device_ejected(struct super_block *sb) 453 { 454 struct inode *bd_inode = sb->s_bdev->bd_inode; 455 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 456 457 return bdi->dev == NULL; 458 } 459 460 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 461 { 462 struct super_block *sb = journal->j_private; 463 struct ext4_sb_info *sbi = EXT4_SB(sb); 464 int error = is_journal_aborted(journal); 465 struct ext4_journal_cb_entry *jce, *tmp; 466 467 spin_lock(&sbi->s_md_lock); 468 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 469 list_del_init(&jce->jce_list); 470 spin_unlock(&sbi->s_md_lock); 471 jce->jce_func(sb, jce, error); 472 spin_lock(&sbi->s_md_lock); 473 } 474 spin_unlock(&sbi->s_md_lock); 475 } 476 477 /* Deal with the reporting of failure conditions on a filesystem such as 478 * inconsistencies detected or read IO failures. 479 * 480 * On ext2, we can store the error state of the filesystem in the 481 * superblock. That is not possible on ext4, because we may have other 482 * write ordering constraints on the superblock which prevent us from 483 * writing it out straight away; and given that the journal is about to 484 * be aborted, we can't rely on the current, or future, transactions to 485 * write out the superblock safely. 486 * 487 * We'll just use the jbd2_journal_abort() error code to record an error in 488 * the journal instead. On recovery, the journal will complain about 489 * that error until we've noted it down and cleared it. 490 */ 491 492 static void ext4_handle_error(struct super_block *sb) 493 { 494 if (sb->s_flags & MS_RDONLY) 495 return; 496 497 if (!test_opt(sb, ERRORS_CONT)) { 498 journal_t *journal = EXT4_SB(sb)->s_journal; 499 500 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 501 if (journal) 502 jbd2_journal_abort(journal, -EIO); 503 } 504 if (test_opt(sb, ERRORS_RO)) { 505 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 506 sb->s_flags |= MS_RDONLY; 507 } 508 if (test_opt(sb, ERRORS_PANIC)) 509 panic("EXT4-fs (device %s): panic forced after error\n", 510 sb->s_id); 511 } 512 513 void __ext4_error(struct super_block *sb, const char *function, 514 unsigned int line, const char *fmt, ...) 515 { 516 struct va_format vaf; 517 va_list args; 518 519 va_start(args, fmt); 520 vaf.fmt = fmt; 521 vaf.va = &args; 522 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 523 sb->s_id, function, line, current->comm, &vaf); 524 va_end(args); 525 save_error_info(sb, function, line); 526 527 ext4_handle_error(sb); 528 } 529 530 void ext4_error_inode(struct inode *inode, const char *function, 531 unsigned int line, ext4_fsblk_t block, 532 const char *fmt, ...) 533 { 534 va_list args; 535 struct va_format vaf; 536 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 537 538 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 539 es->s_last_error_block = cpu_to_le64(block); 540 save_error_info(inode->i_sb, function, line); 541 va_start(args, fmt); 542 vaf.fmt = fmt; 543 vaf.va = &args; 544 if (block) 545 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 546 "inode #%lu: block %llu: comm %s: %pV\n", 547 inode->i_sb->s_id, function, line, inode->i_ino, 548 block, current->comm, &vaf); 549 else 550 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 551 "inode #%lu: comm %s: %pV\n", 552 inode->i_sb->s_id, function, line, inode->i_ino, 553 current->comm, &vaf); 554 va_end(args); 555 556 ext4_handle_error(inode->i_sb); 557 } 558 559 void ext4_error_file(struct file *file, const char *function, 560 unsigned int line, ext4_fsblk_t block, 561 const char *fmt, ...) 562 { 563 va_list args; 564 struct va_format vaf; 565 struct ext4_super_block *es; 566 struct inode *inode = file->f_dentry->d_inode; 567 char pathname[80], *path; 568 569 es = EXT4_SB(inode->i_sb)->s_es; 570 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 571 save_error_info(inode->i_sb, function, line); 572 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 573 if (IS_ERR(path)) 574 path = "(unknown)"; 575 va_start(args, fmt); 576 vaf.fmt = fmt; 577 vaf.va = &args; 578 if (block) 579 printk(KERN_CRIT 580 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 581 "block %llu: comm %s: path %s: %pV\n", 582 inode->i_sb->s_id, function, line, inode->i_ino, 583 block, current->comm, path, &vaf); 584 else 585 printk(KERN_CRIT 586 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 587 "comm %s: path %s: %pV\n", 588 inode->i_sb->s_id, function, line, inode->i_ino, 589 current->comm, path, &vaf); 590 va_end(args); 591 592 ext4_handle_error(inode->i_sb); 593 } 594 595 static const char *ext4_decode_error(struct super_block *sb, int errno, 596 char nbuf[16]) 597 { 598 char *errstr = NULL; 599 600 switch (errno) { 601 case -EIO: 602 errstr = "IO failure"; 603 break; 604 case -ENOMEM: 605 errstr = "Out of memory"; 606 break; 607 case -EROFS: 608 if (!sb || (EXT4_SB(sb)->s_journal && 609 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 610 errstr = "Journal has aborted"; 611 else 612 errstr = "Readonly filesystem"; 613 break; 614 default: 615 /* If the caller passed in an extra buffer for unknown 616 * errors, textualise them now. Else we just return 617 * NULL. */ 618 if (nbuf) { 619 /* Check for truncated error codes... */ 620 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 621 errstr = nbuf; 622 } 623 break; 624 } 625 626 return errstr; 627 } 628 629 /* __ext4_std_error decodes expected errors from journaling functions 630 * automatically and invokes the appropriate error response. */ 631 632 void __ext4_std_error(struct super_block *sb, const char *function, 633 unsigned int line, int errno) 634 { 635 char nbuf[16]; 636 const char *errstr; 637 638 /* Special case: if the error is EROFS, and we're not already 639 * inside a transaction, then there's really no point in logging 640 * an error. */ 641 if (errno == -EROFS && journal_current_handle() == NULL && 642 (sb->s_flags & MS_RDONLY)) 643 return; 644 645 errstr = ext4_decode_error(sb, errno, nbuf); 646 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 647 sb->s_id, function, line, errstr); 648 save_error_info(sb, function, line); 649 650 ext4_handle_error(sb); 651 } 652 653 /* 654 * ext4_abort is a much stronger failure handler than ext4_error. The 655 * abort function may be used to deal with unrecoverable failures such 656 * as journal IO errors or ENOMEM at a critical moment in log management. 657 * 658 * We unconditionally force the filesystem into an ABORT|READONLY state, 659 * unless the error response on the fs has been set to panic in which 660 * case we take the easy way out and panic immediately. 661 */ 662 663 void __ext4_abort(struct super_block *sb, const char *function, 664 unsigned int line, const char *fmt, ...) 665 { 666 va_list args; 667 668 save_error_info(sb, function, line); 669 va_start(args, fmt); 670 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 671 function, line); 672 vprintk(fmt, args); 673 printk("\n"); 674 va_end(args); 675 676 if ((sb->s_flags & MS_RDONLY) == 0) { 677 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 678 sb->s_flags |= MS_RDONLY; 679 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 680 if (EXT4_SB(sb)->s_journal) 681 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 682 save_error_info(sb, function, line); 683 } 684 if (test_opt(sb, ERRORS_PANIC)) 685 panic("EXT4-fs panic from previous error\n"); 686 } 687 688 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 689 { 690 struct va_format vaf; 691 va_list args; 692 693 va_start(args, fmt); 694 vaf.fmt = fmt; 695 vaf.va = &args; 696 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 697 va_end(args); 698 } 699 700 void __ext4_warning(struct super_block *sb, const char *function, 701 unsigned int line, const char *fmt, ...) 702 { 703 struct va_format vaf; 704 va_list args; 705 706 va_start(args, fmt); 707 vaf.fmt = fmt; 708 vaf.va = &args; 709 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 710 sb->s_id, function, line, &vaf); 711 va_end(args); 712 } 713 714 void __ext4_grp_locked_error(const char *function, unsigned int line, 715 struct super_block *sb, ext4_group_t grp, 716 unsigned long ino, ext4_fsblk_t block, 717 const char *fmt, ...) 718 __releases(bitlock) 719 __acquires(bitlock) 720 { 721 struct va_format vaf; 722 va_list args; 723 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 724 725 es->s_last_error_ino = cpu_to_le32(ino); 726 es->s_last_error_block = cpu_to_le64(block); 727 __save_error_info(sb, function, line); 728 729 va_start(args, fmt); 730 731 vaf.fmt = fmt; 732 vaf.va = &args; 733 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 734 sb->s_id, function, line, grp); 735 if (ino) 736 printk(KERN_CONT "inode %lu: ", ino); 737 if (block) 738 printk(KERN_CONT "block %llu:", (unsigned long long) block); 739 printk(KERN_CONT "%pV\n", &vaf); 740 va_end(args); 741 742 if (test_opt(sb, ERRORS_CONT)) { 743 ext4_commit_super(sb, 0); 744 return; 745 } 746 747 ext4_unlock_group(sb, grp); 748 ext4_handle_error(sb); 749 /* 750 * We only get here in the ERRORS_RO case; relocking the group 751 * may be dangerous, but nothing bad will happen since the 752 * filesystem will have already been marked read/only and the 753 * journal has been aborted. We return 1 as a hint to callers 754 * who might what to use the return value from 755 * ext4_grp_locked_error() to distinguish between the 756 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 757 * aggressively from the ext4 function in question, with a 758 * more appropriate error code. 759 */ 760 ext4_lock_group(sb, grp); 761 return; 762 } 763 764 void ext4_update_dynamic_rev(struct super_block *sb) 765 { 766 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 767 768 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 769 return; 770 771 ext4_warning(sb, 772 "updating to rev %d because of new feature flag, " 773 "running e2fsck is recommended", 774 EXT4_DYNAMIC_REV); 775 776 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 777 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 778 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 779 /* leave es->s_feature_*compat flags alone */ 780 /* es->s_uuid will be set by e2fsck if empty */ 781 782 /* 783 * The rest of the superblock fields should be zero, and if not it 784 * means they are likely already in use, so leave them alone. We 785 * can leave it up to e2fsck to clean up any inconsistencies there. 786 */ 787 } 788 789 /* 790 * Open the external journal device 791 */ 792 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 793 { 794 struct block_device *bdev; 795 char b[BDEVNAME_SIZE]; 796 797 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 798 if (IS_ERR(bdev)) 799 goto fail; 800 return bdev; 801 802 fail: 803 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 804 __bdevname(dev, b), PTR_ERR(bdev)); 805 return NULL; 806 } 807 808 /* 809 * Release the journal device 810 */ 811 static int ext4_blkdev_put(struct block_device *bdev) 812 { 813 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 814 } 815 816 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 817 { 818 struct block_device *bdev; 819 int ret = -ENODEV; 820 821 bdev = sbi->journal_bdev; 822 if (bdev) { 823 ret = ext4_blkdev_put(bdev); 824 sbi->journal_bdev = NULL; 825 } 826 return ret; 827 } 828 829 static inline struct inode *orphan_list_entry(struct list_head *l) 830 { 831 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 832 } 833 834 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 835 { 836 struct list_head *l; 837 838 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 839 le32_to_cpu(sbi->s_es->s_last_orphan)); 840 841 printk(KERN_ERR "sb_info orphan list:\n"); 842 list_for_each(l, &sbi->s_orphan) { 843 struct inode *inode = orphan_list_entry(l); 844 printk(KERN_ERR " " 845 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 846 inode->i_sb->s_id, inode->i_ino, inode, 847 inode->i_mode, inode->i_nlink, 848 NEXT_ORPHAN(inode)); 849 } 850 } 851 852 static void ext4_put_super(struct super_block *sb) 853 { 854 struct ext4_sb_info *sbi = EXT4_SB(sb); 855 struct ext4_super_block *es = sbi->s_es; 856 int i, err; 857 858 ext4_unregister_li_request(sb); 859 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 860 861 flush_workqueue(sbi->dio_unwritten_wq); 862 destroy_workqueue(sbi->dio_unwritten_wq); 863 864 lock_super(sb); 865 if (sbi->s_journal) { 866 err = jbd2_journal_destroy(sbi->s_journal); 867 sbi->s_journal = NULL; 868 if (err < 0) 869 ext4_abort(sb, "Couldn't clean up the journal"); 870 } 871 872 del_timer(&sbi->s_err_report); 873 ext4_release_system_zone(sb); 874 ext4_mb_release(sb); 875 ext4_ext_release(sb); 876 ext4_xattr_put_super(sb); 877 878 if (!(sb->s_flags & MS_RDONLY)) { 879 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 880 es->s_state = cpu_to_le16(sbi->s_mount_state); 881 } 882 if (!(sb->s_flags & MS_RDONLY)) 883 ext4_commit_super(sb, 1); 884 885 if (sbi->s_proc) { 886 remove_proc_entry("options", sbi->s_proc); 887 remove_proc_entry(sb->s_id, ext4_proc_root); 888 } 889 kobject_del(&sbi->s_kobj); 890 891 for (i = 0; i < sbi->s_gdb_count; i++) 892 brelse(sbi->s_group_desc[i]); 893 ext4_kvfree(sbi->s_group_desc); 894 ext4_kvfree(sbi->s_flex_groups); 895 percpu_counter_destroy(&sbi->s_freeclusters_counter); 896 percpu_counter_destroy(&sbi->s_freeinodes_counter); 897 percpu_counter_destroy(&sbi->s_dirs_counter); 898 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 899 brelse(sbi->s_sbh); 900 #ifdef CONFIG_QUOTA 901 for (i = 0; i < MAXQUOTAS; i++) 902 kfree(sbi->s_qf_names[i]); 903 #endif 904 905 /* Debugging code just in case the in-memory inode orphan list 906 * isn't empty. The on-disk one can be non-empty if we've 907 * detected an error and taken the fs readonly, but the 908 * in-memory list had better be clean by this point. */ 909 if (!list_empty(&sbi->s_orphan)) 910 dump_orphan_list(sb, sbi); 911 J_ASSERT(list_empty(&sbi->s_orphan)); 912 913 invalidate_bdev(sb->s_bdev); 914 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 915 /* 916 * Invalidate the journal device's buffers. We don't want them 917 * floating about in memory - the physical journal device may 918 * hotswapped, and it breaks the `ro-after' testing code. 919 */ 920 sync_blockdev(sbi->journal_bdev); 921 invalidate_bdev(sbi->journal_bdev); 922 ext4_blkdev_remove(sbi); 923 } 924 if (sbi->s_mmp_tsk) 925 kthread_stop(sbi->s_mmp_tsk); 926 sb->s_fs_info = NULL; 927 /* 928 * Now that we are completely done shutting down the 929 * superblock, we need to actually destroy the kobject. 930 */ 931 unlock_super(sb); 932 kobject_put(&sbi->s_kobj); 933 wait_for_completion(&sbi->s_kobj_unregister); 934 if (sbi->s_chksum_driver) 935 crypto_free_shash(sbi->s_chksum_driver); 936 kfree(sbi->s_blockgroup_lock); 937 kfree(sbi); 938 } 939 940 static struct kmem_cache *ext4_inode_cachep; 941 942 /* 943 * Called inside transaction, so use GFP_NOFS 944 */ 945 static struct inode *ext4_alloc_inode(struct super_block *sb) 946 { 947 struct ext4_inode_info *ei; 948 949 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 950 if (!ei) 951 return NULL; 952 953 ei->vfs_inode.i_version = 1; 954 ei->vfs_inode.i_data.writeback_index = 0; 955 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 956 INIT_LIST_HEAD(&ei->i_prealloc_list); 957 spin_lock_init(&ei->i_prealloc_lock); 958 ei->i_reserved_data_blocks = 0; 959 ei->i_reserved_meta_blocks = 0; 960 ei->i_allocated_meta_blocks = 0; 961 ei->i_da_metadata_calc_len = 0; 962 spin_lock_init(&(ei->i_block_reservation_lock)); 963 #ifdef CONFIG_QUOTA 964 ei->i_reserved_quota = 0; 965 #endif 966 ei->jinode = NULL; 967 INIT_LIST_HEAD(&ei->i_completed_io_list); 968 spin_lock_init(&ei->i_completed_io_lock); 969 ei->cur_aio_dio = NULL; 970 ei->i_sync_tid = 0; 971 ei->i_datasync_tid = 0; 972 atomic_set(&ei->i_ioend_count, 0); 973 atomic_set(&ei->i_aiodio_unwritten, 0); 974 975 return &ei->vfs_inode; 976 } 977 978 static int ext4_drop_inode(struct inode *inode) 979 { 980 int drop = generic_drop_inode(inode); 981 982 trace_ext4_drop_inode(inode, drop); 983 return drop; 984 } 985 986 static void ext4_i_callback(struct rcu_head *head) 987 { 988 struct inode *inode = container_of(head, struct inode, i_rcu); 989 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 990 } 991 992 static void ext4_destroy_inode(struct inode *inode) 993 { 994 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 995 ext4_msg(inode->i_sb, KERN_ERR, 996 "Inode %lu (%p): orphan list check failed!", 997 inode->i_ino, EXT4_I(inode)); 998 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 999 EXT4_I(inode), sizeof(struct ext4_inode_info), 1000 true); 1001 dump_stack(); 1002 } 1003 call_rcu(&inode->i_rcu, ext4_i_callback); 1004 } 1005 1006 static void init_once(void *foo) 1007 { 1008 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1009 1010 INIT_LIST_HEAD(&ei->i_orphan); 1011 #ifdef CONFIG_EXT4_FS_XATTR 1012 init_rwsem(&ei->xattr_sem); 1013 #endif 1014 init_rwsem(&ei->i_data_sem); 1015 inode_init_once(&ei->vfs_inode); 1016 } 1017 1018 static int init_inodecache(void) 1019 { 1020 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1021 sizeof(struct ext4_inode_info), 1022 0, (SLAB_RECLAIM_ACCOUNT| 1023 SLAB_MEM_SPREAD), 1024 init_once); 1025 if (ext4_inode_cachep == NULL) 1026 return -ENOMEM; 1027 return 0; 1028 } 1029 1030 static void destroy_inodecache(void) 1031 { 1032 kmem_cache_destroy(ext4_inode_cachep); 1033 } 1034 1035 void ext4_clear_inode(struct inode *inode) 1036 { 1037 invalidate_inode_buffers(inode); 1038 clear_inode(inode); 1039 dquot_drop(inode); 1040 ext4_discard_preallocations(inode); 1041 if (EXT4_I(inode)->jinode) { 1042 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1043 EXT4_I(inode)->jinode); 1044 jbd2_free_inode(EXT4_I(inode)->jinode); 1045 EXT4_I(inode)->jinode = NULL; 1046 } 1047 } 1048 1049 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1050 u64 ino, u32 generation) 1051 { 1052 struct inode *inode; 1053 1054 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1055 return ERR_PTR(-ESTALE); 1056 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1057 return ERR_PTR(-ESTALE); 1058 1059 /* iget isn't really right if the inode is currently unallocated!! 1060 * 1061 * ext4_read_inode will return a bad_inode if the inode had been 1062 * deleted, so we should be safe. 1063 * 1064 * Currently we don't know the generation for parent directory, so 1065 * a generation of 0 means "accept any" 1066 */ 1067 inode = ext4_iget(sb, ino); 1068 if (IS_ERR(inode)) 1069 return ERR_CAST(inode); 1070 if (generation && inode->i_generation != generation) { 1071 iput(inode); 1072 return ERR_PTR(-ESTALE); 1073 } 1074 1075 return inode; 1076 } 1077 1078 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1079 int fh_len, int fh_type) 1080 { 1081 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1082 ext4_nfs_get_inode); 1083 } 1084 1085 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1086 int fh_len, int fh_type) 1087 { 1088 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1089 ext4_nfs_get_inode); 1090 } 1091 1092 /* 1093 * Try to release metadata pages (indirect blocks, directories) which are 1094 * mapped via the block device. Since these pages could have journal heads 1095 * which would prevent try_to_free_buffers() from freeing them, we must use 1096 * jbd2 layer's try_to_free_buffers() function to release them. 1097 */ 1098 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1099 gfp_t wait) 1100 { 1101 journal_t *journal = EXT4_SB(sb)->s_journal; 1102 1103 WARN_ON(PageChecked(page)); 1104 if (!page_has_buffers(page)) 1105 return 0; 1106 if (journal) 1107 return jbd2_journal_try_to_free_buffers(journal, page, 1108 wait & ~__GFP_WAIT); 1109 return try_to_free_buffers(page); 1110 } 1111 1112 #ifdef CONFIG_QUOTA 1113 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1114 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1115 1116 static int ext4_write_dquot(struct dquot *dquot); 1117 static int ext4_acquire_dquot(struct dquot *dquot); 1118 static int ext4_release_dquot(struct dquot *dquot); 1119 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1120 static int ext4_write_info(struct super_block *sb, int type); 1121 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1122 struct path *path); 1123 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1124 int format_id); 1125 static int ext4_quota_off(struct super_block *sb, int type); 1126 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1127 static int ext4_quota_on_mount(struct super_block *sb, int type); 1128 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1129 size_t len, loff_t off); 1130 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1131 const char *data, size_t len, loff_t off); 1132 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1133 unsigned int flags); 1134 static int ext4_enable_quotas(struct super_block *sb); 1135 1136 static const struct dquot_operations ext4_quota_operations = { 1137 .get_reserved_space = ext4_get_reserved_space, 1138 .write_dquot = ext4_write_dquot, 1139 .acquire_dquot = ext4_acquire_dquot, 1140 .release_dquot = ext4_release_dquot, 1141 .mark_dirty = ext4_mark_dquot_dirty, 1142 .write_info = ext4_write_info, 1143 .alloc_dquot = dquot_alloc, 1144 .destroy_dquot = dquot_destroy, 1145 }; 1146 1147 static const struct quotactl_ops ext4_qctl_operations = { 1148 .quota_on = ext4_quota_on, 1149 .quota_off = ext4_quota_off, 1150 .quota_sync = dquot_quota_sync, 1151 .get_info = dquot_get_dqinfo, 1152 .set_info = dquot_set_dqinfo, 1153 .get_dqblk = dquot_get_dqblk, 1154 .set_dqblk = dquot_set_dqblk 1155 }; 1156 1157 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1158 .quota_on_meta = ext4_quota_on_sysfile, 1159 .quota_off = ext4_quota_off_sysfile, 1160 .quota_sync = dquot_quota_sync, 1161 .get_info = dquot_get_dqinfo, 1162 .set_info = dquot_set_dqinfo, 1163 .get_dqblk = dquot_get_dqblk, 1164 .set_dqblk = dquot_set_dqblk 1165 }; 1166 #endif 1167 1168 static const struct super_operations ext4_sops = { 1169 .alloc_inode = ext4_alloc_inode, 1170 .destroy_inode = ext4_destroy_inode, 1171 .write_inode = ext4_write_inode, 1172 .dirty_inode = ext4_dirty_inode, 1173 .drop_inode = ext4_drop_inode, 1174 .evict_inode = ext4_evict_inode, 1175 .put_super = ext4_put_super, 1176 .sync_fs = ext4_sync_fs, 1177 .freeze_fs = ext4_freeze, 1178 .unfreeze_fs = ext4_unfreeze, 1179 .statfs = ext4_statfs, 1180 .remount_fs = ext4_remount, 1181 .show_options = ext4_show_options, 1182 #ifdef CONFIG_QUOTA 1183 .quota_read = ext4_quota_read, 1184 .quota_write = ext4_quota_write, 1185 #endif 1186 .bdev_try_to_free_page = bdev_try_to_free_page, 1187 }; 1188 1189 static const struct super_operations ext4_nojournal_sops = { 1190 .alloc_inode = ext4_alloc_inode, 1191 .destroy_inode = ext4_destroy_inode, 1192 .write_inode = ext4_write_inode, 1193 .dirty_inode = ext4_dirty_inode, 1194 .drop_inode = ext4_drop_inode, 1195 .evict_inode = ext4_evict_inode, 1196 .put_super = ext4_put_super, 1197 .statfs = ext4_statfs, 1198 .remount_fs = ext4_remount, 1199 .show_options = ext4_show_options, 1200 #ifdef CONFIG_QUOTA 1201 .quota_read = ext4_quota_read, 1202 .quota_write = ext4_quota_write, 1203 #endif 1204 .bdev_try_to_free_page = bdev_try_to_free_page, 1205 }; 1206 1207 static const struct export_operations ext4_export_ops = { 1208 .fh_to_dentry = ext4_fh_to_dentry, 1209 .fh_to_parent = ext4_fh_to_parent, 1210 .get_parent = ext4_get_parent, 1211 }; 1212 1213 enum { 1214 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1215 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1216 Opt_nouid32, Opt_debug, Opt_removed, 1217 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1218 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1219 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1220 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1221 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1222 Opt_data_err_abort, Opt_data_err_ignore, 1223 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1224 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1225 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1226 Opt_usrquota, Opt_grpquota, Opt_i_version, 1227 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1228 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1229 Opt_inode_readahead_blks, Opt_journal_ioprio, 1230 Opt_dioread_nolock, Opt_dioread_lock, 1231 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1232 }; 1233 1234 static const match_table_t tokens = { 1235 {Opt_bsd_df, "bsddf"}, 1236 {Opt_minix_df, "minixdf"}, 1237 {Opt_grpid, "grpid"}, 1238 {Opt_grpid, "bsdgroups"}, 1239 {Opt_nogrpid, "nogrpid"}, 1240 {Opt_nogrpid, "sysvgroups"}, 1241 {Opt_resgid, "resgid=%u"}, 1242 {Opt_resuid, "resuid=%u"}, 1243 {Opt_sb, "sb=%u"}, 1244 {Opt_err_cont, "errors=continue"}, 1245 {Opt_err_panic, "errors=panic"}, 1246 {Opt_err_ro, "errors=remount-ro"}, 1247 {Opt_nouid32, "nouid32"}, 1248 {Opt_debug, "debug"}, 1249 {Opt_removed, "oldalloc"}, 1250 {Opt_removed, "orlov"}, 1251 {Opt_user_xattr, "user_xattr"}, 1252 {Opt_nouser_xattr, "nouser_xattr"}, 1253 {Opt_acl, "acl"}, 1254 {Opt_noacl, "noacl"}, 1255 {Opt_noload, "norecovery"}, 1256 {Opt_noload, "noload"}, 1257 {Opt_removed, "nobh"}, 1258 {Opt_removed, "bh"}, 1259 {Opt_commit, "commit=%u"}, 1260 {Opt_min_batch_time, "min_batch_time=%u"}, 1261 {Opt_max_batch_time, "max_batch_time=%u"}, 1262 {Opt_journal_dev, "journal_dev=%u"}, 1263 {Opt_journal_checksum, "journal_checksum"}, 1264 {Opt_journal_async_commit, "journal_async_commit"}, 1265 {Opt_abort, "abort"}, 1266 {Opt_data_journal, "data=journal"}, 1267 {Opt_data_ordered, "data=ordered"}, 1268 {Opt_data_writeback, "data=writeback"}, 1269 {Opt_data_err_abort, "data_err=abort"}, 1270 {Opt_data_err_ignore, "data_err=ignore"}, 1271 {Opt_offusrjquota, "usrjquota="}, 1272 {Opt_usrjquota, "usrjquota=%s"}, 1273 {Opt_offgrpjquota, "grpjquota="}, 1274 {Opt_grpjquota, "grpjquota=%s"}, 1275 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1276 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1277 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1278 {Opt_grpquota, "grpquota"}, 1279 {Opt_noquota, "noquota"}, 1280 {Opt_quota, "quota"}, 1281 {Opt_usrquota, "usrquota"}, 1282 {Opt_barrier, "barrier=%u"}, 1283 {Opt_barrier, "barrier"}, 1284 {Opt_nobarrier, "nobarrier"}, 1285 {Opt_i_version, "i_version"}, 1286 {Opt_stripe, "stripe=%u"}, 1287 {Opt_delalloc, "delalloc"}, 1288 {Opt_nodelalloc, "nodelalloc"}, 1289 {Opt_mblk_io_submit, "mblk_io_submit"}, 1290 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1291 {Opt_block_validity, "block_validity"}, 1292 {Opt_noblock_validity, "noblock_validity"}, 1293 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1294 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1295 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1296 {Opt_auto_da_alloc, "auto_da_alloc"}, 1297 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1298 {Opt_dioread_nolock, "dioread_nolock"}, 1299 {Opt_dioread_lock, "dioread_lock"}, 1300 {Opt_discard, "discard"}, 1301 {Opt_nodiscard, "nodiscard"}, 1302 {Opt_init_itable, "init_itable=%u"}, 1303 {Opt_init_itable, "init_itable"}, 1304 {Opt_noinit_itable, "noinit_itable"}, 1305 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1306 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1307 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1308 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1309 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1310 {Opt_err, NULL}, 1311 }; 1312 1313 static ext4_fsblk_t get_sb_block(void **data) 1314 { 1315 ext4_fsblk_t sb_block; 1316 char *options = (char *) *data; 1317 1318 if (!options || strncmp(options, "sb=", 3) != 0) 1319 return 1; /* Default location */ 1320 1321 options += 3; 1322 /* TODO: use simple_strtoll with >32bit ext4 */ 1323 sb_block = simple_strtoul(options, &options, 0); 1324 if (*options && *options != ',') { 1325 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1326 (char *) *data); 1327 return 1; 1328 } 1329 if (*options == ',') 1330 options++; 1331 *data = (void *) options; 1332 1333 return sb_block; 1334 } 1335 1336 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1337 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1338 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1339 1340 #ifdef CONFIG_QUOTA 1341 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1342 { 1343 struct ext4_sb_info *sbi = EXT4_SB(sb); 1344 char *qname; 1345 1346 if (sb_any_quota_loaded(sb) && 1347 !sbi->s_qf_names[qtype]) { 1348 ext4_msg(sb, KERN_ERR, 1349 "Cannot change journaled " 1350 "quota options when quota turned on"); 1351 return -1; 1352 } 1353 qname = match_strdup(args); 1354 if (!qname) { 1355 ext4_msg(sb, KERN_ERR, 1356 "Not enough memory for storing quotafile name"); 1357 return -1; 1358 } 1359 if (sbi->s_qf_names[qtype] && 1360 strcmp(sbi->s_qf_names[qtype], qname)) { 1361 ext4_msg(sb, KERN_ERR, 1362 "%s quota file already specified", QTYPE2NAME(qtype)); 1363 kfree(qname); 1364 return -1; 1365 } 1366 sbi->s_qf_names[qtype] = qname; 1367 if (strchr(sbi->s_qf_names[qtype], '/')) { 1368 ext4_msg(sb, KERN_ERR, 1369 "quotafile must be on filesystem root"); 1370 kfree(sbi->s_qf_names[qtype]); 1371 sbi->s_qf_names[qtype] = NULL; 1372 return -1; 1373 } 1374 set_opt(sb, QUOTA); 1375 return 1; 1376 } 1377 1378 static int clear_qf_name(struct super_block *sb, int qtype) 1379 { 1380 1381 struct ext4_sb_info *sbi = EXT4_SB(sb); 1382 1383 if (sb_any_quota_loaded(sb) && 1384 sbi->s_qf_names[qtype]) { 1385 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1386 " when quota turned on"); 1387 return -1; 1388 } 1389 /* 1390 * The space will be released later when all options are confirmed 1391 * to be correct 1392 */ 1393 sbi->s_qf_names[qtype] = NULL; 1394 return 1; 1395 } 1396 #endif 1397 1398 #define MOPT_SET 0x0001 1399 #define MOPT_CLEAR 0x0002 1400 #define MOPT_NOSUPPORT 0x0004 1401 #define MOPT_EXPLICIT 0x0008 1402 #define MOPT_CLEAR_ERR 0x0010 1403 #define MOPT_GTE0 0x0020 1404 #ifdef CONFIG_QUOTA 1405 #define MOPT_Q 0 1406 #define MOPT_QFMT 0x0040 1407 #else 1408 #define MOPT_Q MOPT_NOSUPPORT 1409 #define MOPT_QFMT MOPT_NOSUPPORT 1410 #endif 1411 #define MOPT_DATAJ 0x0080 1412 1413 static const struct mount_opts { 1414 int token; 1415 int mount_opt; 1416 int flags; 1417 } ext4_mount_opts[] = { 1418 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1419 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1420 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1421 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1422 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1423 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1424 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1425 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1426 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1427 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1428 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1429 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1430 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1431 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1432 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1433 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1434 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1435 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1436 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1437 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1438 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1439 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1440 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1441 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1442 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1443 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1444 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1445 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1446 {Opt_commit, 0, MOPT_GTE0}, 1447 {Opt_max_batch_time, 0, MOPT_GTE0}, 1448 {Opt_min_batch_time, 0, MOPT_GTE0}, 1449 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1450 {Opt_init_itable, 0, MOPT_GTE0}, 1451 {Opt_stripe, 0, MOPT_GTE0}, 1452 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1453 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1454 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1455 #ifdef CONFIG_EXT4_FS_XATTR 1456 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1457 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1458 #else 1459 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1460 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1461 #endif 1462 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1463 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1464 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1465 #else 1466 {Opt_acl, 0, MOPT_NOSUPPORT}, 1467 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1468 #endif 1469 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1470 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1471 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1472 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1473 MOPT_SET | MOPT_Q}, 1474 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1475 MOPT_SET | MOPT_Q}, 1476 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1477 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1478 {Opt_usrjquota, 0, MOPT_Q}, 1479 {Opt_grpjquota, 0, MOPT_Q}, 1480 {Opt_offusrjquota, 0, MOPT_Q}, 1481 {Opt_offgrpjquota, 0, MOPT_Q}, 1482 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1483 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1484 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1485 {Opt_err, 0, 0} 1486 }; 1487 1488 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1489 substring_t *args, unsigned long *journal_devnum, 1490 unsigned int *journal_ioprio, int is_remount) 1491 { 1492 struct ext4_sb_info *sbi = EXT4_SB(sb); 1493 const struct mount_opts *m; 1494 kuid_t uid; 1495 kgid_t gid; 1496 int arg = 0; 1497 1498 #ifdef CONFIG_QUOTA 1499 if (token == Opt_usrjquota) 1500 return set_qf_name(sb, USRQUOTA, &args[0]); 1501 else if (token == Opt_grpjquota) 1502 return set_qf_name(sb, GRPQUOTA, &args[0]); 1503 else if (token == Opt_offusrjquota) 1504 return clear_qf_name(sb, USRQUOTA); 1505 else if (token == Opt_offgrpjquota) 1506 return clear_qf_name(sb, GRPQUOTA); 1507 #endif 1508 if (args->from && match_int(args, &arg)) 1509 return -1; 1510 switch (token) { 1511 case Opt_noacl: 1512 case Opt_nouser_xattr: 1513 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1514 break; 1515 case Opt_sb: 1516 return 1; /* handled by get_sb_block() */ 1517 case Opt_removed: 1518 ext4_msg(sb, KERN_WARNING, 1519 "Ignoring removed %s option", opt); 1520 return 1; 1521 case Opt_resuid: 1522 uid = make_kuid(current_user_ns(), arg); 1523 if (!uid_valid(uid)) { 1524 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1525 return -1; 1526 } 1527 sbi->s_resuid = uid; 1528 return 1; 1529 case Opt_resgid: 1530 gid = make_kgid(current_user_ns(), arg); 1531 if (!gid_valid(gid)) { 1532 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1533 return -1; 1534 } 1535 sbi->s_resgid = gid; 1536 return 1; 1537 case Opt_abort: 1538 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1539 return 1; 1540 case Opt_i_version: 1541 sb->s_flags |= MS_I_VERSION; 1542 return 1; 1543 case Opt_journal_dev: 1544 if (is_remount) { 1545 ext4_msg(sb, KERN_ERR, 1546 "Cannot specify journal on remount"); 1547 return -1; 1548 } 1549 *journal_devnum = arg; 1550 return 1; 1551 case Opt_journal_ioprio: 1552 if (arg < 0 || arg > 7) 1553 return -1; 1554 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1555 return 1; 1556 } 1557 1558 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1559 if (token != m->token) 1560 continue; 1561 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1562 return -1; 1563 if (m->flags & MOPT_EXPLICIT) 1564 set_opt2(sb, EXPLICIT_DELALLOC); 1565 if (m->flags & MOPT_CLEAR_ERR) 1566 clear_opt(sb, ERRORS_MASK); 1567 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1568 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1569 "options when quota turned on"); 1570 return -1; 1571 } 1572 1573 if (m->flags & MOPT_NOSUPPORT) { 1574 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1575 } else if (token == Opt_commit) { 1576 if (arg == 0) 1577 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1578 sbi->s_commit_interval = HZ * arg; 1579 } else if (token == Opt_max_batch_time) { 1580 if (arg == 0) 1581 arg = EXT4_DEF_MAX_BATCH_TIME; 1582 sbi->s_max_batch_time = arg; 1583 } else if (token == Opt_min_batch_time) { 1584 sbi->s_min_batch_time = arg; 1585 } else if (token == Opt_inode_readahead_blks) { 1586 if (arg > (1 << 30)) 1587 return -1; 1588 if (arg && !is_power_of_2(arg)) { 1589 ext4_msg(sb, KERN_ERR, 1590 "EXT4-fs: inode_readahead_blks" 1591 " must be a power of 2"); 1592 return -1; 1593 } 1594 sbi->s_inode_readahead_blks = arg; 1595 } else if (token == Opt_init_itable) { 1596 set_opt(sb, INIT_INODE_TABLE); 1597 if (!args->from) 1598 arg = EXT4_DEF_LI_WAIT_MULT; 1599 sbi->s_li_wait_mult = arg; 1600 } else if (token == Opt_stripe) { 1601 sbi->s_stripe = arg; 1602 } else if (m->flags & MOPT_DATAJ) { 1603 if (is_remount) { 1604 if (!sbi->s_journal) 1605 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1606 else if (test_opt(sb, DATA_FLAGS) != 1607 m->mount_opt) { 1608 ext4_msg(sb, KERN_ERR, 1609 "Cannot change data mode on remount"); 1610 return -1; 1611 } 1612 } else { 1613 clear_opt(sb, DATA_FLAGS); 1614 sbi->s_mount_opt |= m->mount_opt; 1615 } 1616 #ifdef CONFIG_QUOTA 1617 } else if (m->flags & MOPT_QFMT) { 1618 if (sb_any_quota_loaded(sb) && 1619 sbi->s_jquota_fmt != m->mount_opt) { 1620 ext4_msg(sb, KERN_ERR, "Cannot " 1621 "change journaled quota options " 1622 "when quota turned on"); 1623 return -1; 1624 } 1625 sbi->s_jquota_fmt = m->mount_opt; 1626 #endif 1627 } else { 1628 if (!args->from) 1629 arg = 1; 1630 if (m->flags & MOPT_CLEAR) 1631 arg = !arg; 1632 else if (unlikely(!(m->flags & MOPT_SET))) { 1633 ext4_msg(sb, KERN_WARNING, 1634 "buggy handling of option %s", opt); 1635 WARN_ON(1); 1636 return -1; 1637 } 1638 if (arg != 0) 1639 sbi->s_mount_opt |= m->mount_opt; 1640 else 1641 sbi->s_mount_opt &= ~m->mount_opt; 1642 } 1643 return 1; 1644 } 1645 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1646 "or missing value", opt); 1647 return -1; 1648 } 1649 1650 static int parse_options(char *options, struct super_block *sb, 1651 unsigned long *journal_devnum, 1652 unsigned int *journal_ioprio, 1653 int is_remount) 1654 { 1655 #ifdef CONFIG_QUOTA 1656 struct ext4_sb_info *sbi = EXT4_SB(sb); 1657 #endif 1658 char *p; 1659 substring_t args[MAX_OPT_ARGS]; 1660 int token; 1661 1662 if (!options) 1663 return 1; 1664 1665 while ((p = strsep(&options, ",")) != NULL) { 1666 if (!*p) 1667 continue; 1668 /* 1669 * Initialize args struct so we know whether arg was 1670 * found; some options take optional arguments. 1671 */ 1672 args[0].to = args[0].from = 0; 1673 token = match_token(p, tokens, args); 1674 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1675 journal_ioprio, is_remount) < 0) 1676 return 0; 1677 } 1678 #ifdef CONFIG_QUOTA 1679 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1680 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1681 clear_opt(sb, USRQUOTA); 1682 1683 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1684 clear_opt(sb, GRPQUOTA); 1685 1686 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1687 ext4_msg(sb, KERN_ERR, "old and new quota " 1688 "format mixing"); 1689 return 0; 1690 } 1691 1692 if (!sbi->s_jquota_fmt) { 1693 ext4_msg(sb, KERN_ERR, "journaled quota format " 1694 "not specified"); 1695 return 0; 1696 } 1697 } else { 1698 if (sbi->s_jquota_fmt) { 1699 ext4_msg(sb, KERN_ERR, "journaled quota format " 1700 "specified with no journaling " 1701 "enabled"); 1702 return 0; 1703 } 1704 } 1705 #endif 1706 return 1; 1707 } 1708 1709 static inline void ext4_show_quota_options(struct seq_file *seq, 1710 struct super_block *sb) 1711 { 1712 #if defined(CONFIG_QUOTA) 1713 struct ext4_sb_info *sbi = EXT4_SB(sb); 1714 1715 if (sbi->s_jquota_fmt) { 1716 char *fmtname = ""; 1717 1718 switch (sbi->s_jquota_fmt) { 1719 case QFMT_VFS_OLD: 1720 fmtname = "vfsold"; 1721 break; 1722 case QFMT_VFS_V0: 1723 fmtname = "vfsv0"; 1724 break; 1725 case QFMT_VFS_V1: 1726 fmtname = "vfsv1"; 1727 break; 1728 } 1729 seq_printf(seq, ",jqfmt=%s", fmtname); 1730 } 1731 1732 if (sbi->s_qf_names[USRQUOTA]) 1733 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1734 1735 if (sbi->s_qf_names[GRPQUOTA]) 1736 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1737 1738 if (test_opt(sb, USRQUOTA)) 1739 seq_puts(seq, ",usrquota"); 1740 1741 if (test_opt(sb, GRPQUOTA)) 1742 seq_puts(seq, ",grpquota"); 1743 #endif 1744 } 1745 1746 static const char *token2str(int token) 1747 { 1748 static const struct match_token *t; 1749 1750 for (t = tokens; t->token != Opt_err; t++) 1751 if (t->token == token && !strchr(t->pattern, '=')) 1752 break; 1753 return t->pattern; 1754 } 1755 1756 /* 1757 * Show an option if 1758 * - it's set to a non-default value OR 1759 * - if the per-sb default is different from the global default 1760 */ 1761 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1762 int nodefs) 1763 { 1764 struct ext4_sb_info *sbi = EXT4_SB(sb); 1765 struct ext4_super_block *es = sbi->s_es; 1766 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1767 const struct mount_opts *m; 1768 char sep = nodefs ? '\n' : ','; 1769 1770 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1771 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1772 1773 if (sbi->s_sb_block != 1) 1774 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1775 1776 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1777 int want_set = m->flags & MOPT_SET; 1778 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1779 (m->flags & MOPT_CLEAR_ERR)) 1780 continue; 1781 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1782 continue; /* skip if same as the default */ 1783 if ((want_set && 1784 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1785 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1786 continue; /* select Opt_noFoo vs Opt_Foo */ 1787 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1788 } 1789 1790 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1791 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1792 SEQ_OPTS_PRINT("resuid=%u", 1793 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1794 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1795 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1796 SEQ_OPTS_PRINT("resgid=%u", 1797 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1798 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1799 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1800 SEQ_OPTS_PUTS("errors=remount-ro"); 1801 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1802 SEQ_OPTS_PUTS("errors=continue"); 1803 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1804 SEQ_OPTS_PUTS("errors=panic"); 1805 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1806 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1807 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1808 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1809 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1810 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1811 if (sb->s_flags & MS_I_VERSION) 1812 SEQ_OPTS_PUTS("i_version"); 1813 if (nodefs || sbi->s_stripe) 1814 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1815 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1816 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1817 SEQ_OPTS_PUTS("data=journal"); 1818 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1819 SEQ_OPTS_PUTS("data=ordered"); 1820 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1821 SEQ_OPTS_PUTS("data=writeback"); 1822 } 1823 if (nodefs || 1824 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1825 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1826 sbi->s_inode_readahead_blks); 1827 1828 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1829 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1830 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1831 1832 ext4_show_quota_options(seq, sb); 1833 return 0; 1834 } 1835 1836 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1837 { 1838 return _ext4_show_options(seq, root->d_sb, 0); 1839 } 1840 1841 static int options_seq_show(struct seq_file *seq, void *offset) 1842 { 1843 struct super_block *sb = seq->private; 1844 int rc; 1845 1846 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1847 rc = _ext4_show_options(seq, sb, 1); 1848 seq_puts(seq, "\n"); 1849 return rc; 1850 } 1851 1852 static int options_open_fs(struct inode *inode, struct file *file) 1853 { 1854 return single_open(file, options_seq_show, PDE(inode)->data); 1855 } 1856 1857 static const struct file_operations ext4_seq_options_fops = { 1858 .owner = THIS_MODULE, 1859 .open = options_open_fs, 1860 .read = seq_read, 1861 .llseek = seq_lseek, 1862 .release = single_release, 1863 }; 1864 1865 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1866 int read_only) 1867 { 1868 struct ext4_sb_info *sbi = EXT4_SB(sb); 1869 int res = 0; 1870 1871 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1872 ext4_msg(sb, KERN_ERR, "revision level too high, " 1873 "forcing read-only mode"); 1874 res = MS_RDONLY; 1875 } 1876 if (read_only) 1877 goto done; 1878 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1879 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1880 "running e2fsck is recommended"); 1881 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1882 ext4_msg(sb, KERN_WARNING, 1883 "warning: mounting fs with errors, " 1884 "running e2fsck is recommended"); 1885 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1886 le16_to_cpu(es->s_mnt_count) >= 1887 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1888 ext4_msg(sb, KERN_WARNING, 1889 "warning: maximal mount count reached, " 1890 "running e2fsck is recommended"); 1891 else if (le32_to_cpu(es->s_checkinterval) && 1892 (le32_to_cpu(es->s_lastcheck) + 1893 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1894 ext4_msg(sb, KERN_WARNING, 1895 "warning: checktime reached, " 1896 "running e2fsck is recommended"); 1897 if (!sbi->s_journal) 1898 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1899 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1900 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1901 le16_add_cpu(&es->s_mnt_count, 1); 1902 es->s_mtime = cpu_to_le32(get_seconds()); 1903 ext4_update_dynamic_rev(sb); 1904 if (sbi->s_journal) 1905 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1906 1907 ext4_commit_super(sb, 1); 1908 done: 1909 if (test_opt(sb, DEBUG)) 1910 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1911 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1912 sb->s_blocksize, 1913 sbi->s_groups_count, 1914 EXT4_BLOCKS_PER_GROUP(sb), 1915 EXT4_INODES_PER_GROUP(sb), 1916 sbi->s_mount_opt, sbi->s_mount_opt2); 1917 1918 cleancache_init_fs(sb); 1919 return res; 1920 } 1921 1922 static int ext4_fill_flex_info(struct super_block *sb) 1923 { 1924 struct ext4_sb_info *sbi = EXT4_SB(sb); 1925 struct ext4_group_desc *gdp = NULL; 1926 ext4_group_t flex_group_count; 1927 ext4_group_t flex_group; 1928 unsigned int groups_per_flex = 0; 1929 size_t size; 1930 int i; 1931 1932 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1933 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1934 sbi->s_log_groups_per_flex = 0; 1935 return 1; 1936 } 1937 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1938 1939 /* We allocate both existing and potentially added groups */ 1940 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1941 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1942 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1943 size = flex_group_count * sizeof(struct flex_groups); 1944 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 1945 if (sbi->s_flex_groups == NULL) { 1946 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 1947 flex_group_count); 1948 goto failed; 1949 } 1950 1951 for (i = 0; i < sbi->s_groups_count; i++) { 1952 gdp = ext4_get_group_desc(sb, i, NULL); 1953 1954 flex_group = ext4_flex_group(sbi, i); 1955 atomic_add(ext4_free_inodes_count(sb, gdp), 1956 &sbi->s_flex_groups[flex_group].free_inodes); 1957 atomic_add(ext4_free_group_clusters(sb, gdp), 1958 &sbi->s_flex_groups[flex_group].free_clusters); 1959 atomic_add(ext4_used_dirs_count(sb, gdp), 1960 &sbi->s_flex_groups[flex_group].used_dirs); 1961 } 1962 1963 return 1; 1964 failed: 1965 return 0; 1966 } 1967 1968 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1969 struct ext4_group_desc *gdp) 1970 { 1971 int offset; 1972 __u16 crc = 0; 1973 __le32 le_group = cpu_to_le32(block_group); 1974 1975 if ((sbi->s_es->s_feature_ro_compat & 1976 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1977 /* Use new metadata_csum algorithm */ 1978 __u16 old_csum; 1979 __u32 csum32; 1980 1981 old_csum = gdp->bg_checksum; 1982 gdp->bg_checksum = 0; 1983 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1984 sizeof(le_group)); 1985 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1986 sbi->s_desc_size); 1987 gdp->bg_checksum = old_csum; 1988 1989 crc = csum32 & 0xFFFF; 1990 goto out; 1991 } 1992 1993 /* old crc16 code */ 1994 offset = offsetof(struct ext4_group_desc, bg_checksum); 1995 1996 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1997 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1998 crc = crc16(crc, (__u8 *)gdp, offset); 1999 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2000 /* for checksum of struct ext4_group_desc do the rest...*/ 2001 if ((sbi->s_es->s_feature_incompat & 2002 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2003 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2004 crc = crc16(crc, (__u8 *)gdp + offset, 2005 le16_to_cpu(sbi->s_es->s_desc_size) - 2006 offset); 2007 2008 out: 2009 return cpu_to_le16(crc); 2010 } 2011 2012 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2013 struct ext4_group_desc *gdp) 2014 { 2015 if (ext4_has_group_desc_csum(sb) && 2016 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2017 block_group, gdp))) 2018 return 0; 2019 2020 return 1; 2021 } 2022 2023 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2024 struct ext4_group_desc *gdp) 2025 { 2026 if (!ext4_has_group_desc_csum(sb)) 2027 return; 2028 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2029 } 2030 2031 /* Called at mount-time, super-block is locked */ 2032 static int ext4_check_descriptors(struct super_block *sb, 2033 ext4_group_t *first_not_zeroed) 2034 { 2035 struct ext4_sb_info *sbi = EXT4_SB(sb); 2036 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2037 ext4_fsblk_t last_block; 2038 ext4_fsblk_t block_bitmap; 2039 ext4_fsblk_t inode_bitmap; 2040 ext4_fsblk_t inode_table; 2041 int flexbg_flag = 0; 2042 ext4_group_t i, grp = sbi->s_groups_count; 2043 2044 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2045 flexbg_flag = 1; 2046 2047 ext4_debug("Checking group descriptors"); 2048 2049 for (i = 0; i < sbi->s_groups_count; i++) { 2050 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2051 2052 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2053 last_block = ext4_blocks_count(sbi->s_es) - 1; 2054 else 2055 last_block = first_block + 2056 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2057 2058 if ((grp == sbi->s_groups_count) && 2059 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2060 grp = i; 2061 2062 block_bitmap = ext4_block_bitmap(sb, gdp); 2063 if (block_bitmap < first_block || block_bitmap > last_block) { 2064 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2065 "Block bitmap for group %u not in group " 2066 "(block %llu)!", i, block_bitmap); 2067 return 0; 2068 } 2069 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2070 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2071 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2072 "Inode bitmap for group %u not in group " 2073 "(block %llu)!", i, inode_bitmap); 2074 return 0; 2075 } 2076 inode_table = ext4_inode_table(sb, gdp); 2077 if (inode_table < first_block || 2078 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2079 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2080 "Inode table for group %u not in group " 2081 "(block %llu)!", i, inode_table); 2082 return 0; 2083 } 2084 ext4_lock_group(sb, i); 2085 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2086 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2087 "Checksum for group %u failed (%u!=%u)", 2088 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2089 gdp)), le16_to_cpu(gdp->bg_checksum)); 2090 if (!(sb->s_flags & MS_RDONLY)) { 2091 ext4_unlock_group(sb, i); 2092 return 0; 2093 } 2094 } 2095 ext4_unlock_group(sb, i); 2096 if (!flexbg_flag) 2097 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2098 } 2099 if (NULL != first_not_zeroed) 2100 *first_not_zeroed = grp; 2101 2102 ext4_free_blocks_count_set(sbi->s_es, 2103 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2104 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2105 return 1; 2106 } 2107 2108 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2109 * the superblock) which were deleted from all directories, but held open by 2110 * a process at the time of a crash. We walk the list and try to delete these 2111 * inodes at recovery time (only with a read-write filesystem). 2112 * 2113 * In order to keep the orphan inode chain consistent during traversal (in 2114 * case of crash during recovery), we link each inode into the superblock 2115 * orphan list_head and handle it the same way as an inode deletion during 2116 * normal operation (which journals the operations for us). 2117 * 2118 * We only do an iget() and an iput() on each inode, which is very safe if we 2119 * accidentally point at an in-use or already deleted inode. The worst that 2120 * can happen in this case is that we get a "bit already cleared" message from 2121 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2122 * e2fsck was run on this filesystem, and it must have already done the orphan 2123 * inode cleanup for us, so we can safely abort without any further action. 2124 */ 2125 static void ext4_orphan_cleanup(struct super_block *sb, 2126 struct ext4_super_block *es) 2127 { 2128 unsigned int s_flags = sb->s_flags; 2129 int nr_orphans = 0, nr_truncates = 0; 2130 #ifdef CONFIG_QUOTA 2131 int i; 2132 #endif 2133 if (!es->s_last_orphan) { 2134 jbd_debug(4, "no orphan inodes to clean up\n"); 2135 return; 2136 } 2137 2138 if (bdev_read_only(sb->s_bdev)) { 2139 ext4_msg(sb, KERN_ERR, "write access " 2140 "unavailable, skipping orphan cleanup"); 2141 return; 2142 } 2143 2144 /* Check if feature set would not allow a r/w mount */ 2145 if (!ext4_feature_set_ok(sb, 0)) { 2146 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2147 "unknown ROCOMPAT features"); 2148 return; 2149 } 2150 2151 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2152 if (es->s_last_orphan) 2153 jbd_debug(1, "Errors on filesystem, " 2154 "clearing orphan list.\n"); 2155 es->s_last_orphan = 0; 2156 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2157 return; 2158 } 2159 2160 if (s_flags & MS_RDONLY) { 2161 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2162 sb->s_flags &= ~MS_RDONLY; 2163 } 2164 #ifdef CONFIG_QUOTA 2165 /* Needed for iput() to work correctly and not trash data */ 2166 sb->s_flags |= MS_ACTIVE; 2167 /* Turn on quotas so that they are updated correctly */ 2168 for (i = 0; i < MAXQUOTAS; i++) { 2169 if (EXT4_SB(sb)->s_qf_names[i]) { 2170 int ret = ext4_quota_on_mount(sb, i); 2171 if (ret < 0) 2172 ext4_msg(sb, KERN_ERR, 2173 "Cannot turn on journaled " 2174 "quota: error %d", ret); 2175 } 2176 } 2177 #endif 2178 2179 while (es->s_last_orphan) { 2180 struct inode *inode; 2181 2182 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2183 if (IS_ERR(inode)) { 2184 es->s_last_orphan = 0; 2185 break; 2186 } 2187 2188 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2189 dquot_initialize(inode); 2190 if (inode->i_nlink) { 2191 ext4_msg(sb, KERN_DEBUG, 2192 "%s: truncating inode %lu to %lld bytes", 2193 __func__, inode->i_ino, inode->i_size); 2194 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2195 inode->i_ino, inode->i_size); 2196 ext4_truncate(inode); 2197 nr_truncates++; 2198 } else { 2199 ext4_msg(sb, KERN_DEBUG, 2200 "%s: deleting unreferenced inode %lu", 2201 __func__, inode->i_ino); 2202 jbd_debug(2, "deleting unreferenced inode %lu\n", 2203 inode->i_ino); 2204 nr_orphans++; 2205 } 2206 iput(inode); /* The delete magic happens here! */ 2207 } 2208 2209 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2210 2211 if (nr_orphans) 2212 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2213 PLURAL(nr_orphans)); 2214 if (nr_truncates) 2215 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2216 PLURAL(nr_truncates)); 2217 #ifdef CONFIG_QUOTA 2218 /* Turn quotas off */ 2219 for (i = 0; i < MAXQUOTAS; i++) { 2220 if (sb_dqopt(sb)->files[i]) 2221 dquot_quota_off(sb, i); 2222 } 2223 #endif 2224 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2225 } 2226 2227 /* 2228 * Maximal extent format file size. 2229 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2230 * extent format containers, within a sector_t, and within i_blocks 2231 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2232 * so that won't be a limiting factor. 2233 * 2234 * However there is other limiting factor. We do store extents in the form 2235 * of starting block and length, hence the resulting length of the extent 2236 * covering maximum file size must fit into on-disk format containers as 2237 * well. Given that length is always by 1 unit bigger than max unit (because 2238 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2239 * 2240 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2241 */ 2242 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2243 { 2244 loff_t res; 2245 loff_t upper_limit = MAX_LFS_FILESIZE; 2246 2247 /* small i_blocks in vfs inode? */ 2248 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2249 /* 2250 * CONFIG_LBDAF is not enabled implies the inode 2251 * i_block represent total blocks in 512 bytes 2252 * 32 == size of vfs inode i_blocks * 8 2253 */ 2254 upper_limit = (1LL << 32) - 1; 2255 2256 /* total blocks in file system block size */ 2257 upper_limit >>= (blkbits - 9); 2258 upper_limit <<= blkbits; 2259 } 2260 2261 /* 2262 * 32-bit extent-start container, ee_block. We lower the maxbytes 2263 * by one fs block, so ee_len can cover the extent of maximum file 2264 * size 2265 */ 2266 res = (1LL << 32) - 1; 2267 res <<= blkbits; 2268 2269 /* Sanity check against vm- & vfs- imposed limits */ 2270 if (res > upper_limit) 2271 res = upper_limit; 2272 2273 return res; 2274 } 2275 2276 /* 2277 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2278 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2279 * We need to be 1 filesystem block less than the 2^48 sector limit. 2280 */ 2281 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2282 { 2283 loff_t res = EXT4_NDIR_BLOCKS; 2284 int meta_blocks; 2285 loff_t upper_limit; 2286 /* This is calculated to be the largest file size for a dense, block 2287 * mapped file such that the file's total number of 512-byte sectors, 2288 * including data and all indirect blocks, does not exceed (2^48 - 1). 2289 * 2290 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2291 * number of 512-byte sectors of the file. 2292 */ 2293 2294 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2295 /* 2296 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2297 * the inode i_block field represents total file blocks in 2298 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2299 */ 2300 upper_limit = (1LL << 32) - 1; 2301 2302 /* total blocks in file system block size */ 2303 upper_limit >>= (bits - 9); 2304 2305 } else { 2306 /* 2307 * We use 48 bit ext4_inode i_blocks 2308 * With EXT4_HUGE_FILE_FL set the i_blocks 2309 * represent total number of blocks in 2310 * file system block size 2311 */ 2312 upper_limit = (1LL << 48) - 1; 2313 2314 } 2315 2316 /* indirect blocks */ 2317 meta_blocks = 1; 2318 /* double indirect blocks */ 2319 meta_blocks += 1 + (1LL << (bits-2)); 2320 /* tripple indirect blocks */ 2321 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2322 2323 upper_limit -= meta_blocks; 2324 upper_limit <<= bits; 2325 2326 res += 1LL << (bits-2); 2327 res += 1LL << (2*(bits-2)); 2328 res += 1LL << (3*(bits-2)); 2329 res <<= bits; 2330 if (res > upper_limit) 2331 res = upper_limit; 2332 2333 if (res > MAX_LFS_FILESIZE) 2334 res = MAX_LFS_FILESIZE; 2335 2336 return res; 2337 } 2338 2339 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2340 ext4_fsblk_t logical_sb_block, int nr) 2341 { 2342 struct ext4_sb_info *sbi = EXT4_SB(sb); 2343 ext4_group_t bg, first_meta_bg; 2344 int has_super = 0; 2345 2346 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2347 2348 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2349 nr < first_meta_bg) 2350 return logical_sb_block + nr + 1; 2351 bg = sbi->s_desc_per_block * nr; 2352 if (ext4_bg_has_super(sb, bg)) 2353 has_super = 1; 2354 2355 return (has_super + ext4_group_first_block_no(sb, bg)); 2356 } 2357 2358 /** 2359 * ext4_get_stripe_size: Get the stripe size. 2360 * @sbi: In memory super block info 2361 * 2362 * If we have specified it via mount option, then 2363 * use the mount option value. If the value specified at mount time is 2364 * greater than the blocks per group use the super block value. 2365 * If the super block value is greater than blocks per group return 0. 2366 * Allocator needs it be less than blocks per group. 2367 * 2368 */ 2369 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2370 { 2371 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2372 unsigned long stripe_width = 2373 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2374 int ret; 2375 2376 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2377 ret = sbi->s_stripe; 2378 else if (stripe_width <= sbi->s_blocks_per_group) 2379 ret = stripe_width; 2380 else if (stride <= sbi->s_blocks_per_group) 2381 ret = stride; 2382 else 2383 ret = 0; 2384 2385 /* 2386 * If the stripe width is 1, this makes no sense and 2387 * we set it to 0 to turn off stripe handling code. 2388 */ 2389 if (ret <= 1) 2390 ret = 0; 2391 2392 return ret; 2393 } 2394 2395 /* sysfs supprt */ 2396 2397 struct ext4_attr { 2398 struct attribute attr; 2399 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2400 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2401 const char *, size_t); 2402 int offset; 2403 }; 2404 2405 static int parse_strtoul(const char *buf, 2406 unsigned long max, unsigned long *value) 2407 { 2408 char *endp; 2409 2410 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2411 endp = skip_spaces(endp); 2412 if (*endp || *value > max) 2413 return -EINVAL; 2414 2415 return 0; 2416 } 2417 2418 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2419 struct ext4_sb_info *sbi, 2420 char *buf) 2421 { 2422 return snprintf(buf, PAGE_SIZE, "%llu\n", 2423 (s64) EXT4_C2B(sbi, 2424 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2425 } 2426 2427 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2428 struct ext4_sb_info *sbi, char *buf) 2429 { 2430 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2431 2432 if (!sb->s_bdev->bd_part) 2433 return snprintf(buf, PAGE_SIZE, "0\n"); 2434 return snprintf(buf, PAGE_SIZE, "%lu\n", 2435 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2436 sbi->s_sectors_written_start) >> 1); 2437 } 2438 2439 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2440 struct ext4_sb_info *sbi, char *buf) 2441 { 2442 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2443 2444 if (!sb->s_bdev->bd_part) 2445 return snprintf(buf, PAGE_SIZE, "0\n"); 2446 return snprintf(buf, PAGE_SIZE, "%llu\n", 2447 (unsigned long long)(sbi->s_kbytes_written + 2448 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2449 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2450 } 2451 2452 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2453 struct ext4_sb_info *sbi, 2454 const char *buf, size_t count) 2455 { 2456 unsigned long t; 2457 2458 if (parse_strtoul(buf, 0x40000000, &t)) 2459 return -EINVAL; 2460 2461 if (t && !is_power_of_2(t)) 2462 return -EINVAL; 2463 2464 sbi->s_inode_readahead_blks = t; 2465 return count; 2466 } 2467 2468 static ssize_t sbi_ui_show(struct ext4_attr *a, 2469 struct ext4_sb_info *sbi, char *buf) 2470 { 2471 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2472 2473 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2474 } 2475 2476 static ssize_t sbi_ui_store(struct ext4_attr *a, 2477 struct ext4_sb_info *sbi, 2478 const char *buf, size_t count) 2479 { 2480 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2481 unsigned long t; 2482 2483 if (parse_strtoul(buf, 0xffffffff, &t)) 2484 return -EINVAL; 2485 *ui = t; 2486 return count; 2487 } 2488 2489 static ssize_t trigger_test_error(struct ext4_attr *a, 2490 struct ext4_sb_info *sbi, 2491 const char *buf, size_t count) 2492 { 2493 int len = count; 2494 2495 if (!capable(CAP_SYS_ADMIN)) 2496 return -EPERM; 2497 2498 if (len && buf[len-1] == '\n') 2499 len--; 2500 2501 if (len) 2502 ext4_error(sbi->s_sb, "%.*s", len, buf); 2503 return count; 2504 } 2505 2506 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2507 static struct ext4_attr ext4_attr_##_name = { \ 2508 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2509 .show = _show, \ 2510 .store = _store, \ 2511 .offset = offsetof(struct ext4_sb_info, _elname), \ 2512 } 2513 #define EXT4_ATTR(name, mode, show, store) \ 2514 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2515 2516 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2517 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2518 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2519 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2520 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2521 #define ATTR_LIST(name) &ext4_attr_##name.attr 2522 2523 EXT4_RO_ATTR(delayed_allocation_blocks); 2524 EXT4_RO_ATTR(session_write_kbytes); 2525 EXT4_RO_ATTR(lifetime_write_kbytes); 2526 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2527 inode_readahead_blks_store, s_inode_readahead_blks); 2528 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2529 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2530 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2531 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2532 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2533 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2534 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2535 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2536 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2537 2538 static struct attribute *ext4_attrs[] = { 2539 ATTR_LIST(delayed_allocation_blocks), 2540 ATTR_LIST(session_write_kbytes), 2541 ATTR_LIST(lifetime_write_kbytes), 2542 ATTR_LIST(inode_readahead_blks), 2543 ATTR_LIST(inode_goal), 2544 ATTR_LIST(mb_stats), 2545 ATTR_LIST(mb_max_to_scan), 2546 ATTR_LIST(mb_min_to_scan), 2547 ATTR_LIST(mb_order2_req), 2548 ATTR_LIST(mb_stream_req), 2549 ATTR_LIST(mb_group_prealloc), 2550 ATTR_LIST(max_writeback_mb_bump), 2551 ATTR_LIST(trigger_fs_error), 2552 NULL, 2553 }; 2554 2555 /* Features this copy of ext4 supports */ 2556 EXT4_INFO_ATTR(lazy_itable_init); 2557 EXT4_INFO_ATTR(batched_discard); 2558 2559 static struct attribute *ext4_feat_attrs[] = { 2560 ATTR_LIST(lazy_itable_init), 2561 ATTR_LIST(batched_discard), 2562 NULL, 2563 }; 2564 2565 static ssize_t ext4_attr_show(struct kobject *kobj, 2566 struct attribute *attr, char *buf) 2567 { 2568 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2569 s_kobj); 2570 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2571 2572 return a->show ? a->show(a, sbi, buf) : 0; 2573 } 2574 2575 static ssize_t ext4_attr_store(struct kobject *kobj, 2576 struct attribute *attr, 2577 const char *buf, size_t len) 2578 { 2579 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2580 s_kobj); 2581 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2582 2583 return a->store ? a->store(a, sbi, buf, len) : 0; 2584 } 2585 2586 static void ext4_sb_release(struct kobject *kobj) 2587 { 2588 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2589 s_kobj); 2590 complete(&sbi->s_kobj_unregister); 2591 } 2592 2593 static const struct sysfs_ops ext4_attr_ops = { 2594 .show = ext4_attr_show, 2595 .store = ext4_attr_store, 2596 }; 2597 2598 static struct kobj_type ext4_ktype = { 2599 .default_attrs = ext4_attrs, 2600 .sysfs_ops = &ext4_attr_ops, 2601 .release = ext4_sb_release, 2602 }; 2603 2604 static void ext4_feat_release(struct kobject *kobj) 2605 { 2606 complete(&ext4_feat->f_kobj_unregister); 2607 } 2608 2609 static struct kobj_type ext4_feat_ktype = { 2610 .default_attrs = ext4_feat_attrs, 2611 .sysfs_ops = &ext4_attr_ops, 2612 .release = ext4_feat_release, 2613 }; 2614 2615 /* 2616 * Check whether this filesystem can be mounted based on 2617 * the features present and the RDONLY/RDWR mount requested. 2618 * Returns 1 if this filesystem can be mounted as requested, 2619 * 0 if it cannot be. 2620 */ 2621 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2622 { 2623 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2624 ext4_msg(sb, KERN_ERR, 2625 "Couldn't mount because of " 2626 "unsupported optional features (%x)", 2627 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2628 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2629 return 0; 2630 } 2631 2632 if (readonly) 2633 return 1; 2634 2635 /* Check that feature set is OK for a read-write mount */ 2636 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2637 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2638 "unsupported optional features (%x)", 2639 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2640 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2641 return 0; 2642 } 2643 /* 2644 * Large file size enabled file system can only be mounted 2645 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2646 */ 2647 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2648 if (sizeof(blkcnt_t) < sizeof(u64)) { 2649 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2650 "cannot be mounted RDWR without " 2651 "CONFIG_LBDAF"); 2652 return 0; 2653 } 2654 } 2655 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2656 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2657 ext4_msg(sb, KERN_ERR, 2658 "Can't support bigalloc feature without " 2659 "extents feature\n"); 2660 return 0; 2661 } 2662 2663 #ifndef CONFIG_QUOTA 2664 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2665 !readonly) { 2666 ext4_msg(sb, KERN_ERR, 2667 "Filesystem with quota feature cannot be mounted RDWR " 2668 "without CONFIG_QUOTA"); 2669 return 0; 2670 } 2671 #endif /* CONFIG_QUOTA */ 2672 return 1; 2673 } 2674 2675 /* 2676 * This function is called once a day if we have errors logged 2677 * on the file system 2678 */ 2679 static void print_daily_error_info(unsigned long arg) 2680 { 2681 struct super_block *sb = (struct super_block *) arg; 2682 struct ext4_sb_info *sbi; 2683 struct ext4_super_block *es; 2684 2685 sbi = EXT4_SB(sb); 2686 es = sbi->s_es; 2687 2688 if (es->s_error_count) 2689 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2690 le32_to_cpu(es->s_error_count)); 2691 if (es->s_first_error_time) { 2692 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2693 sb->s_id, le32_to_cpu(es->s_first_error_time), 2694 (int) sizeof(es->s_first_error_func), 2695 es->s_first_error_func, 2696 le32_to_cpu(es->s_first_error_line)); 2697 if (es->s_first_error_ino) 2698 printk(": inode %u", 2699 le32_to_cpu(es->s_first_error_ino)); 2700 if (es->s_first_error_block) 2701 printk(": block %llu", (unsigned long long) 2702 le64_to_cpu(es->s_first_error_block)); 2703 printk("\n"); 2704 } 2705 if (es->s_last_error_time) { 2706 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2707 sb->s_id, le32_to_cpu(es->s_last_error_time), 2708 (int) sizeof(es->s_last_error_func), 2709 es->s_last_error_func, 2710 le32_to_cpu(es->s_last_error_line)); 2711 if (es->s_last_error_ino) 2712 printk(": inode %u", 2713 le32_to_cpu(es->s_last_error_ino)); 2714 if (es->s_last_error_block) 2715 printk(": block %llu", (unsigned long long) 2716 le64_to_cpu(es->s_last_error_block)); 2717 printk("\n"); 2718 } 2719 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2720 } 2721 2722 /* Find next suitable group and run ext4_init_inode_table */ 2723 static int ext4_run_li_request(struct ext4_li_request *elr) 2724 { 2725 struct ext4_group_desc *gdp = NULL; 2726 ext4_group_t group, ngroups; 2727 struct super_block *sb; 2728 unsigned long timeout = 0; 2729 int ret = 0; 2730 2731 sb = elr->lr_super; 2732 ngroups = EXT4_SB(sb)->s_groups_count; 2733 2734 sb_start_write(sb); 2735 for (group = elr->lr_next_group; group < ngroups; group++) { 2736 gdp = ext4_get_group_desc(sb, group, NULL); 2737 if (!gdp) { 2738 ret = 1; 2739 break; 2740 } 2741 2742 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2743 break; 2744 } 2745 2746 if (group == ngroups) 2747 ret = 1; 2748 2749 if (!ret) { 2750 timeout = jiffies; 2751 ret = ext4_init_inode_table(sb, group, 2752 elr->lr_timeout ? 0 : 1); 2753 if (elr->lr_timeout == 0) { 2754 timeout = (jiffies - timeout) * 2755 elr->lr_sbi->s_li_wait_mult; 2756 elr->lr_timeout = timeout; 2757 } 2758 elr->lr_next_sched = jiffies + elr->lr_timeout; 2759 elr->lr_next_group = group + 1; 2760 } 2761 sb_end_write(sb); 2762 2763 return ret; 2764 } 2765 2766 /* 2767 * Remove lr_request from the list_request and free the 2768 * request structure. Should be called with li_list_mtx held 2769 */ 2770 static void ext4_remove_li_request(struct ext4_li_request *elr) 2771 { 2772 struct ext4_sb_info *sbi; 2773 2774 if (!elr) 2775 return; 2776 2777 sbi = elr->lr_sbi; 2778 2779 list_del(&elr->lr_request); 2780 sbi->s_li_request = NULL; 2781 kfree(elr); 2782 } 2783 2784 static void ext4_unregister_li_request(struct super_block *sb) 2785 { 2786 mutex_lock(&ext4_li_mtx); 2787 if (!ext4_li_info) { 2788 mutex_unlock(&ext4_li_mtx); 2789 return; 2790 } 2791 2792 mutex_lock(&ext4_li_info->li_list_mtx); 2793 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2794 mutex_unlock(&ext4_li_info->li_list_mtx); 2795 mutex_unlock(&ext4_li_mtx); 2796 } 2797 2798 static struct task_struct *ext4_lazyinit_task; 2799 2800 /* 2801 * This is the function where ext4lazyinit thread lives. It walks 2802 * through the request list searching for next scheduled filesystem. 2803 * When such a fs is found, run the lazy initialization request 2804 * (ext4_rn_li_request) and keep track of the time spend in this 2805 * function. Based on that time we compute next schedule time of 2806 * the request. When walking through the list is complete, compute 2807 * next waking time and put itself into sleep. 2808 */ 2809 static int ext4_lazyinit_thread(void *arg) 2810 { 2811 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2812 struct list_head *pos, *n; 2813 struct ext4_li_request *elr; 2814 unsigned long next_wakeup, cur; 2815 2816 BUG_ON(NULL == eli); 2817 2818 cont_thread: 2819 while (true) { 2820 next_wakeup = MAX_JIFFY_OFFSET; 2821 2822 mutex_lock(&eli->li_list_mtx); 2823 if (list_empty(&eli->li_request_list)) { 2824 mutex_unlock(&eli->li_list_mtx); 2825 goto exit_thread; 2826 } 2827 2828 list_for_each_safe(pos, n, &eli->li_request_list) { 2829 elr = list_entry(pos, struct ext4_li_request, 2830 lr_request); 2831 2832 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2833 if (ext4_run_li_request(elr) != 0) { 2834 /* error, remove the lazy_init job */ 2835 ext4_remove_li_request(elr); 2836 continue; 2837 } 2838 } 2839 2840 if (time_before(elr->lr_next_sched, next_wakeup)) 2841 next_wakeup = elr->lr_next_sched; 2842 } 2843 mutex_unlock(&eli->li_list_mtx); 2844 2845 try_to_freeze(); 2846 2847 cur = jiffies; 2848 if ((time_after_eq(cur, next_wakeup)) || 2849 (MAX_JIFFY_OFFSET == next_wakeup)) { 2850 cond_resched(); 2851 continue; 2852 } 2853 2854 schedule_timeout_interruptible(next_wakeup - cur); 2855 2856 if (kthread_should_stop()) { 2857 ext4_clear_request_list(); 2858 goto exit_thread; 2859 } 2860 } 2861 2862 exit_thread: 2863 /* 2864 * It looks like the request list is empty, but we need 2865 * to check it under the li_list_mtx lock, to prevent any 2866 * additions into it, and of course we should lock ext4_li_mtx 2867 * to atomically free the list and ext4_li_info, because at 2868 * this point another ext4 filesystem could be registering 2869 * new one. 2870 */ 2871 mutex_lock(&ext4_li_mtx); 2872 mutex_lock(&eli->li_list_mtx); 2873 if (!list_empty(&eli->li_request_list)) { 2874 mutex_unlock(&eli->li_list_mtx); 2875 mutex_unlock(&ext4_li_mtx); 2876 goto cont_thread; 2877 } 2878 mutex_unlock(&eli->li_list_mtx); 2879 kfree(ext4_li_info); 2880 ext4_li_info = NULL; 2881 mutex_unlock(&ext4_li_mtx); 2882 2883 return 0; 2884 } 2885 2886 static void ext4_clear_request_list(void) 2887 { 2888 struct list_head *pos, *n; 2889 struct ext4_li_request *elr; 2890 2891 mutex_lock(&ext4_li_info->li_list_mtx); 2892 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2893 elr = list_entry(pos, struct ext4_li_request, 2894 lr_request); 2895 ext4_remove_li_request(elr); 2896 } 2897 mutex_unlock(&ext4_li_info->li_list_mtx); 2898 } 2899 2900 static int ext4_run_lazyinit_thread(void) 2901 { 2902 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2903 ext4_li_info, "ext4lazyinit"); 2904 if (IS_ERR(ext4_lazyinit_task)) { 2905 int err = PTR_ERR(ext4_lazyinit_task); 2906 ext4_clear_request_list(); 2907 kfree(ext4_li_info); 2908 ext4_li_info = NULL; 2909 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2910 "initialization thread\n", 2911 err); 2912 return err; 2913 } 2914 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2915 return 0; 2916 } 2917 2918 /* 2919 * Check whether it make sense to run itable init. thread or not. 2920 * If there is at least one uninitialized inode table, return 2921 * corresponding group number, else the loop goes through all 2922 * groups and return total number of groups. 2923 */ 2924 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2925 { 2926 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2927 struct ext4_group_desc *gdp = NULL; 2928 2929 for (group = 0; group < ngroups; group++) { 2930 gdp = ext4_get_group_desc(sb, group, NULL); 2931 if (!gdp) 2932 continue; 2933 2934 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2935 break; 2936 } 2937 2938 return group; 2939 } 2940 2941 static int ext4_li_info_new(void) 2942 { 2943 struct ext4_lazy_init *eli = NULL; 2944 2945 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2946 if (!eli) 2947 return -ENOMEM; 2948 2949 INIT_LIST_HEAD(&eli->li_request_list); 2950 mutex_init(&eli->li_list_mtx); 2951 2952 eli->li_state |= EXT4_LAZYINIT_QUIT; 2953 2954 ext4_li_info = eli; 2955 2956 return 0; 2957 } 2958 2959 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2960 ext4_group_t start) 2961 { 2962 struct ext4_sb_info *sbi = EXT4_SB(sb); 2963 struct ext4_li_request *elr; 2964 unsigned long rnd; 2965 2966 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2967 if (!elr) 2968 return NULL; 2969 2970 elr->lr_super = sb; 2971 elr->lr_sbi = sbi; 2972 elr->lr_next_group = start; 2973 2974 /* 2975 * Randomize first schedule time of the request to 2976 * spread the inode table initialization requests 2977 * better. 2978 */ 2979 get_random_bytes(&rnd, sizeof(rnd)); 2980 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2981 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2982 2983 return elr; 2984 } 2985 2986 static int ext4_register_li_request(struct super_block *sb, 2987 ext4_group_t first_not_zeroed) 2988 { 2989 struct ext4_sb_info *sbi = EXT4_SB(sb); 2990 struct ext4_li_request *elr; 2991 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2992 int ret = 0; 2993 2994 if (sbi->s_li_request != NULL) { 2995 /* 2996 * Reset timeout so it can be computed again, because 2997 * s_li_wait_mult might have changed. 2998 */ 2999 sbi->s_li_request->lr_timeout = 0; 3000 return 0; 3001 } 3002 3003 if (first_not_zeroed == ngroups || 3004 (sb->s_flags & MS_RDONLY) || 3005 !test_opt(sb, INIT_INODE_TABLE)) 3006 return 0; 3007 3008 elr = ext4_li_request_new(sb, first_not_zeroed); 3009 if (!elr) 3010 return -ENOMEM; 3011 3012 mutex_lock(&ext4_li_mtx); 3013 3014 if (NULL == ext4_li_info) { 3015 ret = ext4_li_info_new(); 3016 if (ret) 3017 goto out; 3018 } 3019 3020 mutex_lock(&ext4_li_info->li_list_mtx); 3021 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3022 mutex_unlock(&ext4_li_info->li_list_mtx); 3023 3024 sbi->s_li_request = elr; 3025 /* 3026 * set elr to NULL here since it has been inserted to 3027 * the request_list and the removal and free of it is 3028 * handled by ext4_clear_request_list from now on. 3029 */ 3030 elr = NULL; 3031 3032 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3033 ret = ext4_run_lazyinit_thread(); 3034 if (ret) 3035 goto out; 3036 } 3037 out: 3038 mutex_unlock(&ext4_li_mtx); 3039 if (ret) 3040 kfree(elr); 3041 return ret; 3042 } 3043 3044 /* 3045 * We do not need to lock anything since this is called on 3046 * module unload. 3047 */ 3048 static void ext4_destroy_lazyinit_thread(void) 3049 { 3050 /* 3051 * If thread exited earlier 3052 * there's nothing to be done. 3053 */ 3054 if (!ext4_li_info || !ext4_lazyinit_task) 3055 return; 3056 3057 kthread_stop(ext4_lazyinit_task); 3058 } 3059 3060 static int set_journal_csum_feature_set(struct super_block *sb) 3061 { 3062 int ret = 1; 3063 int compat, incompat; 3064 struct ext4_sb_info *sbi = EXT4_SB(sb); 3065 3066 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3067 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3068 /* journal checksum v2 */ 3069 compat = 0; 3070 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3071 } else { 3072 /* journal checksum v1 */ 3073 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3074 incompat = 0; 3075 } 3076 3077 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3078 ret = jbd2_journal_set_features(sbi->s_journal, 3079 compat, 0, 3080 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3081 incompat); 3082 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3083 ret = jbd2_journal_set_features(sbi->s_journal, 3084 compat, 0, 3085 incompat); 3086 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3087 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3088 } else { 3089 jbd2_journal_clear_features(sbi->s_journal, 3090 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3092 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3093 } 3094 3095 return ret; 3096 } 3097 3098 /* 3099 * Note: calculating the overhead so we can be compatible with 3100 * historical BSD practice is quite difficult in the face of 3101 * clusters/bigalloc. This is because multiple metadata blocks from 3102 * different block group can end up in the same allocation cluster. 3103 * Calculating the exact overhead in the face of clustered allocation 3104 * requires either O(all block bitmaps) in memory or O(number of block 3105 * groups**2) in time. We will still calculate the superblock for 3106 * older file systems --- and if we come across with a bigalloc file 3107 * system with zero in s_overhead_clusters the estimate will be close to 3108 * correct especially for very large cluster sizes --- but for newer 3109 * file systems, it's better to calculate this figure once at mkfs 3110 * time, and store it in the superblock. If the superblock value is 3111 * present (even for non-bigalloc file systems), we will use it. 3112 */ 3113 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3114 char *buf) 3115 { 3116 struct ext4_sb_info *sbi = EXT4_SB(sb); 3117 struct ext4_group_desc *gdp; 3118 ext4_fsblk_t first_block, last_block, b; 3119 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3120 int s, j, count = 0; 3121 3122 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3123 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3124 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3125 for (i = 0; i < ngroups; i++) { 3126 gdp = ext4_get_group_desc(sb, i, NULL); 3127 b = ext4_block_bitmap(sb, gdp); 3128 if (b >= first_block && b <= last_block) { 3129 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3130 count++; 3131 } 3132 b = ext4_inode_bitmap(sb, gdp); 3133 if (b >= first_block && b <= last_block) { 3134 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3135 count++; 3136 } 3137 b = ext4_inode_table(sb, gdp); 3138 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3139 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3140 int c = EXT4_B2C(sbi, b - first_block); 3141 ext4_set_bit(c, buf); 3142 count++; 3143 } 3144 if (i != grp) 3145 continue; 3146 s = 0; 3147 if (ext4_bg_has_super(sb, grp)) { 3148 ext4_set_bit(s++, buf); 3149 count++; 3150 } 3151 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3152 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3153 count++; 3154 } 3155 } 3156 if (!count) 3157 return 0; 3158 return EXT4_CLUSTERS_PER_GROUP(sb) - 3159 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3160 } 3161 3162 /* 3163 * Compute the overhead and stash it in sbi->s_overhead 3164 */ 3165 int ext4_calculate_overhead(struct super_block *sb) 3166 { 3167 struct ext4_sb_info *sbi = EXT4_SB(sb); 3168 struct ext4_super_block *es = sbi->s_es; 3169 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3170 ext4_fsblk_t overhead = 0; 3171 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3172 3173 memset(buf, 0, PAGE_SIZE); 3174 if (!buf) 3175 return -ENOMEM; 3176 3177 /* 3178 * Compute the overhead (FS structures). This is constant 3179 * for a given filesystem unless the number of block groups 3180 * changes so we cache the previous value until it does. 3181 */ 3182 3183 /* 3184 * All of the blocks before first_data_block are overhead 3185 */ 3186 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3187 3188 /* 3189 * Add the overhead found in each block group 3190 */ 3191 for (i = 0; i < ngroups; i++) { 3192 int blks; 3193 3194 blks = count_overhead(sb, i, buf); 3195 overhead += blks; 3196 if (blks) 3197 memset(buf, 0, PAGE_SIZE); 3198 cond_resched(); 3199 } 3200 sbi->s_overhead = overhead; 3201 smp_wmb(); 3202 free_page((unsigned long) buf); 3203 return 0; 3204 } 3205 3206 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3207 { 3208 char *orig_data = kstrdup(data, GFP_KERNEL); 3209 struct buffer_head *bh; 3210 struct ext4_super_block *es = NULL; 3211 struct ext4_sb_info *sbi; 3212 ext4_fsblk_t block; 3213 ext4_fsblk_t sb_block = get_sb_block(&data); 3214 ext4_fsblk_t logical_sb_block; 3215 unsigned long offset = 0; 3216 unsigned long journal_devnum = 0; 3217 unsigned long def_mount_opts; 3218 struct inode *root; 3219 char *cp; 3220 const char *descr; 3221 int ret = -ENOMEM; 3222 int blocksize, clustersize; 3223 unsigned int db_count; 3224 unsigned int i; 3225 int needs_recovery, has_huge_files, has_bigalloc; 3226 __u64 blocks_count; 3227 int err; 3228 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3229 ext4_group_t first_not_zeroed; 3230 3231 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3232 if (!sbi) 3233 goto out_free_orig; 3234 3235 sbi->s_blockgroup_lock = 3236 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3237 if (!sbi->s_blockgroup_lock) { 3238 kfree(sbi); 3239 goto out_free_orig; 3240 } 3241 sb->s_fs_info = sbi; 3242 sbi->s_sb = sb; 3243 sbi->s_mount_opt = 0; 3244 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 3245 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 3246 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3247 sbi->s_sb_block = sb_block; 3248 if (sb->s_bdev->bd_part) 3249 sbi->s_sectors_written_start = 3250 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3251 3252 /* Cleanup superblock name */ 3253 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3254 *cp = '!'; 3255 3256 ret = -EINVAL; 3257 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3258 if (!blocksize) { 3259 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3260 goto out_fail; 3261 } 3262 3263 /* 3264 * The ext4 superblock will not be buffer aligned for other than 1kB 3265 * block sizes. We need to calculate the offset from buffer start. 3266 */ 3267 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3268 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3269 offset = do_div(logical_sb_block, blocksize); 3270 } else { 3271 logical_sb_block = sb_block; 3272 } 3273 3274 if (!(bh = sb_bread(sb, logical_sb_block))) { 3275 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3276 goto out_fail; 3277 } 3278 /* 3279 * Note: s_es must be initialized as soon as possible because 3280 * some ext4 macro-instructions depend on its value 3281 */ 3282 es = (struct ext4_super_block *) (bh->b_data + offset); 3283 sbi->s_es = es; 3284 sb->s_magic = le16_to_cpu(es->s_magic); 3285 if (sb->s_magic != EXT4_SUPER_MAGIC) 3286 goto cantfind_ext4; 3287 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3288 3289 /* Warn if metadata_csum and gdt_csum are both set. */ 3290 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3291 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3292 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3293 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3294 "redundant flags; please run fsck."); 3295 3296 /* Check for a known checksum algorithm */ 3297 if (!ext4_verify_csum_type(sb, es)) { 3298 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3299 "unknown checksum algorithm."); 3300 silent = 1; 3301 goto cantfind_ext4; 3302 } 3303 3304 /* Load the checksum driver */ 3305 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3306 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3307 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3308 if (IS_ERR(sbi->s_chksum_driver)) { 3309 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3310 ret = PTR_ERR(sbi->s_chksum_driver); 3311 sbi->s_chksum_driver = NULL; 3312 goto failed_mount; 3313 } 3314 } 3315 3316 /* Check superblock checksum */ 3317 if (!ext4_superblock_csum_verify(sb, es)) { 3318 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3319 "invalid superblock checksum. Run e2fsck?"); 3320 silent = 1; 3321 goto cantfind_ext4; 3322 } 3323 3324 /* Precompute checksum seed for all metadata */ 3325 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3326 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3327 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3328 sizeof(es->s_uuid)); 3329 3330 /* Set defaults before we parse the mount options */ 3331 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3332 set_opt(sb, INIT_INODE_TABLE); 3333 if (def_mount_opts & EXT4_DEFM_DEBUG) 3334 set_opt(sb, DEBUG); 3335 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3336 set_opt(sb, GRPID); 3337 if (def_mount_opts & EXT4_DEFM_UID16) 3338 set_opt(sb, NO_UID32); 3339 /* xattr user namespace & acls are now defaulted on */ 3340 #ifdef CONFIG_EXT4_FS_XATTR 3341 set_opt(sb, XATTR_USER); 3342 #endif 3343 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3344 set_opt(sb, POSIX_ACL); 3345 #endif 3346 set_opt(sb, MBLK_IO_SUBMIT); 3347 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3348 set_opt(sb, JOURNAL_DATA); 3349 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3350 set_opt(sb, ORDERED_DATA); 3351 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3352 set_opt(sb, WRITEBACK_DATA); 3353 3354 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3355 set_opt(sb, ERRORS_PANIC); 3356 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3357 set_opt(sb, ERRORS_CONT); 3358 else 3359 set_opt(sb, ERRORS_RO); 3360 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3361 set_opt(sb, BLOCK_VALIDITY); 3362 if (def_mount_opts & EXT4_DEFM_DISCARD) 3363 set_opt(sb, DISCARD); 3364 3365 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3366 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3367 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3368 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3369 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3370 3371 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3372 set_opt(sb, BARRIER); 3373 3374 /* 3375 * enable delayed allocation by default 3376 * Use -o nodelalloc to turn it off 3377 */ 3378 if (!IS_EXT3_SB(sb) && 3379 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3380 set_opt(sb, DELALLOC); 3381 3382 /* 3383 * set default s_li_wait_mult for lazyinit, for the case there is 3384 * no mount option specified. 3385 */ 3386 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3387 3388 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3389 &journal_devnum, &journal_ioprio, 0)) { 3390 ext4_msg(sb, KERN_WARNING, 3391 "failed to parse options in superblock: %s", 3392 sbi->s_es->s_mount_opts); 3393 } 3394 sbi->s_def_mount_opt = sbi->s_mount_opt; 3395 if (!parse_options((char *) data, sb, &journal_devnum, 3396 &journal_ioprio, 0)) 3397 goto failed_mount; 3398 3399 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3400 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3401 "with data=journal disables delayed " 3402 "allocation and O_DIRECT support!\n"); 3403 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3404 ext4_msg(sb, KERN_ERR, "can't mount with " 3405 "both data=journal and delalloc"); 3406 goto failed_mount; 3407 } 3408 if (test_opt(sb, DIOREAD_NOLOCK)) { 3409 ext4_msg(sb, KERN_ERR, "can't mount with " 3410 "both data=journal and delalloc"); 3411 goto failed_mount; 3412 } 3413 if (test_opt(sb, DELALLOC)) 3414 clear_opt(sb, DELALLOC); 3415 } 3416 3417 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3418 if (test_opt(sb, DIOREAD_NOLOCK)) { 3419 if (blocksize < PAGE_SIZE) { 3420 ext4_msg(sb, KERN_ERR, "can't mount with " 3421 "dioread_nolock if block size != PAGE_SIZE"); 3422 goto failed_mount; 3423 } 3424 } 3425 3426 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3427 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3428 3429 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3430 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3431 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3432 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3433 ext4_msg(sb, KERN_WARNING, 3434 "feature flags set on rev 0 fs, " 3435 "running e2fsck is recommended"); 3436 3437 if (IS_EXT2_SB(sb)) { 3438 if (ext2_feature_set_ok(sb)) 3439 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3440 "using the ext4 subsystem"); 3441 else { 3442 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3443 "to feature incompatibilities"); 3444 goto failed_mount; 3445 } 3446 } 3447 3448 if (IS_EXT3_SB(sb)) { 3449 if (ext3_feature_set_ok(sb)) 3450 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3451 "using the ext4 subsystem"); 3452 else { 3453 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3454 "to feature incompatibilities"); 3455 goto failed_mount; 3456 } 3457 } 3458 3459 /* 3460 * Check feature flags regardless of the revision level, since we 3461 * previously didn't change the revision level when setting the flags, 3462 * so there is a chance incompat flags are set on a rev 0 filesystem. 3463 */ 3464 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3465 goto failed_mount; 3466 3467 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3468 blocksize > EXT4_MAX_BLOCK_SIZE) { 3469 ext4_msg(sb, KERN_ERR, 3470 "Unsupported filesystem blocksize %d", blocksize); 3471 goto failed_mount; 3472 } 3473 3474 if (sb->s_blocksize != blocksize) { 3475 /* Validate the filesystem blocksize */ 3476 if (!sb_set_blocksize(sb, blocksize)) { 3477 ext4_msg(sb, KERN_ERR, "bad block size %d", 3478 blocksize); 3479 goto failed_mount; 3480 } 3481 3482 brelse(bh); 3483 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3484 offset = do_div(logical_sb_block, blocksize); 3485 bh = sb_bread(sb, logical_sb_block); 3486 if (!bh) { 3487 ext4_msg(sb, KERN_ERR, 3488 "Can't read superblock on 2nd try"); 3489 goto failed_mount; 3490 } 3491 es = (struct ext4_super_block *)(bh->b_data + offset); 3492 sbi->s_es = es; 3493 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3494 ext4_msg(sb, KERN_ERR, 3495 "Magic mismatch, very weird!"); 3496 goto failed_mount; 3497 } 3498 } 3499 3500 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3501 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3502 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3503 has_huge_files); 3504 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3505 3506 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3507 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3508 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3509 } else { 3510 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3511 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3512 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3513 (!is_power_of_2(sbi->s_inode_size)) || 3514 (sbi->s_inode_size > blocksize)) { 3515 ext4_msg(sb, KERN_ERR, 3516 "unsupported inode size: %d", 3517 sbi->s_inode_size); 3518 goto failed_mount; 3519 } 3520 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3521 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3522 } 3523 3524 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3525 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3526 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3527 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3528 !is_power_of_2(sbi->s_desc_size)) { 3529 ext4_msg(sb, KERN_ERR, 3530 "unsupported descriptor size %lu", 3531 sbi->s_desc_size); 3532 goto failed_mount; 3533 } 3534 } else 3535 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3536 3537 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3538 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3539 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3540 goto cantfind_ext4; 3541 3542 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3543 if (sbi->s_inodes_per_block == 0) 3544 goto cantfind_ext4; 3545 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3546 sbi->s_inodes_per_block; 3547 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3548 sbi->s_sbh = bh; 3549 sbi->s_mount_state = le16_to_cpu(es->s_state); 3550 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3551 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3552 3553 for (i = 0; i < 4; i++) 3554 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3555 sbi->s_def_hash_version = es->s_def_hash_version; 3556 i = le32_to_cpu(es->s_flags); 3557 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3558 sbi->s_hash_unsigned = 3; 3559 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3560 #ifdef __CHAR_UNSIGNED__ 3561 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3562 sbi->s_hash_unsigned = 3; 3563 #else 3564 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3565 #endif 3566 } 3567 3568 /* Handle clustersize */ 3569 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3570 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3571 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3572 if (has_bigalloc) { 3573 if (clustersize < blocksize) { 3574 ext4_msg(sb, KERN_ERR, 3575 "cluster size (%d) smaller than " 3576 "block size (%d)", clustersize, blocksize); 3577 goto failed_mount; 3578 } 3579 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3580 le32_to_cpu(es->s_log_block_size); 3581 sbi->s_clusters_per_group = 3582 le32_to_cpu(es->s_clusters_per_group); 3583 if (sbi->s_clusters_per_group > blocksize * 8) { 3584 ext4_msg(sb, KERN_ERR, 3585 "#clusters per group too big: %lu", 3586 sbi->s_clusters_per_group); 3587 goto failed_mount; 3588 } 3589 if (sbi->s_blocks_per_group != 3590 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3591 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3592 "clusters per group (%lu) inconsistent", 3593 sbi->s_blocks_per_group, 3594 sbi->s_clusters_per_group); 3595 goto failed_mount; 3596 } 3597 } else { 3598 if (clustersize != blocksize) { 3599 ext4_warning(sb, "fragment/cluster size (%d) != " 3600 "block size (%d)", clustersize, 3601 blocksize); 3602 clustersize = blocksize; 3603 } 3604 if (sbi->s_blocks_per_group > blocksize * 8) { 3605 ext4_msg(sb, KERN_ERR, 3606 "#blocks per group too big: %lu", 3607 sbi->s_blocks_per_group); 3608 goto failed_mount; 3609 } 3610 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3611 sbi->s_cluster_bits = 0; 3612 } 3613 sbi->s_cluster_ratio = clustersize / blocksize; 3614 3615 if (sbi->s_inodes_per_group > blocksize * 8) { 3616 ext4_msg(sb, KERN_ERR, 3617 "#inodes per group too big: %lu", 3618 sbi->s_inodes_per_group); 3619 goto failed_mount; 3620 } 3621 3622 /* 3623 * Test whether we have more sectors than will fit in sector_t, 3624 * and whether the max offset is addressable by the page cache. 3625 */ 3626 err = generic_check_addressable(sb->s_blocksize_bits, 3627 ext4_blocks_count(es)); 3628 if (err) { 3629 ext4_msg(sb, KERN_ERR, "filesystem" 3630 " too large to mount safely on this system"); 3631 if (sizeof(sector_t) < 8) 3632 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3633 ret = err; 3634 goto failed_mount; 3635 } 3636 3637 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3638 goto cantfind_ext4; 3639 3640 /* check blocks count against device size */ 3641 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3642 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3643 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3644 "exceeds size of device (%llu blocks)", 3645 ext4_blocks_count(es), blocks_count); 3646 goto failed_mount; 3647 } 3648 3649 /* 3650 * It makes no sense for the first data block to be beyond the end 3651 * of the filesystem. 3652 */ 3653 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3654 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3655 "block %u is beyond end of filesystem (%llu)", 3656 le32_to_cpu(es->s_first_data_block), 3657 ext4_blocks_count(es)); 3658 goto failed_mount; 3659 } 3660 blocks_count = (ext4_blocks_count(es) - 3661 le32_to_cpu(es->s_first_data_block) + 3662 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3663 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3664 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3665 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3666 "(block count %llu, first data block %u, " 3667 "blocks per group %lu)", sbi->s_groups_count, 3668 ext4_blocks_count(es), 3669 le32_to_cpu(es->s_first_data_block), 3670 EXT4_BLOCKS_PER_GROUP(sb)); 3671 goto failed_mount; 3672 } 3673 sbi->s_groups_count = blocks_count; 3674 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3675 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3676 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3677 EXT4_DESC_PER_BLOCK(sb); 3678 sbi->s_group_desc = ext4_kvmalloc(db_count * 3679 sizeof(struct buffer_head *), 3680 GFP_KERNEL); 3681 if (sbi->s_group_desc == NULL) { 3682 ext4_msg(sb, KERN_ERR, "not enough memory"); 3683 ret = -ENOMEM; 3684 goto failed_mount; 3685 } 3686 3687 if (ext4_proc_root) 3688 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3689 3690 if (sbi->s_proc) 3691 proc_create_data("options", S_IRUGO, sbi->s_proc, 3692 &ext4_seq_options_fops, sb); 3693 3694 bgl_lock_init(sbi->s_blockgroup_lock); 3695 3696 for (i = 0; i < db_count; i++) { 3697 block = descriptor_loc(sb, logical_sb_block, i); 3698 sbi->s_group_desc[i] = sb_bread(sb, block); 3699 if (!sbi->s_group_desc[i]) { 3700 ext4_msg(sb, KERN_ERR, 3701 "can't read group descriptor %d", i); 3702 db_count = i; 3703 goto failed_mount2; 3704 } 3705 } 3706 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3707 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3708 goto failed_mount2; 3709 } 3710 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3711 if (!ext4_fill_flex_info(sb)) { 3712 ext4_msg(sb, KERN_ERR, 3713 "unable to initialize " 3714 "flex_bg meta info!"); 3715 goto failed_mount2; 3716 } 3717 3718 sbi->s_gdb_count = db_count; 3719 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3720 spin_lock_init(&sbi->s_next_gen_lock); 3721 3722 init_timer(&sbi->s_err_report); 3723 sbi->s_err_report.function = print_daily_error_info; 3724 sbi->s_err_report.data = (unsigned long) sb; 3725 3726 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3727 ext4_count_free_clusters(sb)); 3728 if (!err) { 3729 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3730 ext4_count_free_inodes(sb)); 3731 } 3732 if (!err) { 3733 err = percpu_counter_init(&sbi->s_dirs_counter, 3734 ext4_count_dirs(sb)); 3735 } 3736 if (!err) { 3737 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3738 } 3739 if (err) { 3740 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3741 ret = err; 3742 goto failed_mount3; 3743 } 3744 3745 sbi->s_stripe = ext4_get_stripe_size(sbi); 3746 sbi->s_max_writeback_mb_bump = 128; 3747 3748 /* 3749 * set up enough so that it can read an inode 3750 */ 3751 if (!test_opt(sb, NOLOAD) && 3752 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3753 sb->s_op = &ext4_sops; 3754 else 3755 sb->s_op = &ext4_nojournal_sops; 3756 sb->s_export_op = &ext4_export_ops; 3757 sb->s_xattr = ext4_xattr_handlers; 3758 #ifdef CONFIG_QUOTA 3759 sb->s_qcop = &ext4_qctl_operations; 3760 sb->dq_op = &ext4_quota_operations; 3761 3762 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 3763 /* Use qctl operations for hidden quota files. */ 3764 sb->s_qcop = &ext4_qctl_sysfile_operations; 3765 } 3766 #endif 3767 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3768 3769 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3770 mutex_init(&sbi->s_orphan_lock); 3771 sbi->s_resize_flags = 0; 3772 3773 sb->s_root = NULL; 3774 3775 needs_recovery = (es->s_last_orphan != 0 || 3776 EXT4_HAS_INCOMPAT_FEATURE(sb, 3777 EXT4_FEATURE_INCOMPAT_RECOVER)); 3778 3779 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3780 !(sb->s_flags & MS_RDONLY)) 3781 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3782 goto failed_mount3; 3783 3784 /* 3785 * The first inode we look at is the journal inode. Don't try 3786 * root first: it may be modified in the journal! 3787 */ 3788 if (!test_opt(sb, NOLOAD) && 3789 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3790 if (ext4_load_journal(sb, es, journal_devnum)) 3791 goto failed_mount3; 3792 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3793 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3794 ext4_msg(sb, KERN_ERR, "required journal recovery " 3795 "suppressed and not mounted read-only"); 3796 goto failed_mount_wq; 3797 } else { 3798 clear_opt(sb, DATA_FLAGS); 3799 sbi->s_journal = NULL; 3800 needs_recovery = 0; 3801 goto no_journal; 3802 } 3803 3804 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3805 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3806 JBD2_FEATURE_INCOMPAT_64BIT)) { 3807 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3808 goto failed_mount_wq; 3809 } 3810 3811 if (!set_journal_csum_feature_set(sb)) { 3812 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3813 "feature set"); 3814 goto failed_mount_wq; 3815 } 3816 3817 /* We have now updated the journal if required, so we can 3818 * validate the data journaling mode. */ 3819 switch (test_opt(sb, DATA_FLAGS)) { 3820 case 0: 3821 /* No mode set, assume a default based on the journal 3822 * capabilities: ORDERED_DATA if the journal can 3823 * cope, else JOURNAL_DATA 3824 */ 3825 if (jbd2_journal_check_available_features 3826 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3827 set_opt(sb, ORDERED_DATA); 3828 else 3829 set_opt(sb, JOURNAL_DATA); 3830 break; 3831 3832 case EXT4_MOUNT_ORDERED_DATA: 3833 case EXT4_MOUNT_WRITEBACK_DATA: 3834 if (!jbd2_journal_check_available_features 3835 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3836 ext4_msg(sb, KERN_ERR, "Journal does not support " 3837 "requested data journaling mode"); 3838 goto failed_mount_wq; 3839 } 3840 default: 3841 break; 3842 } 3843 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3844 3845 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3846 3847 /* 3848 * The journal may have updated the bg summary counts, so we 3849 * need to update the global counters. 3850 */ 3851 percpu_counter_set(&sbi->s_freeclusters_counter, 3852 ext4_count_free_clusters(sb)); 3853 percpu_counter_set(&sbi->s_freeinodes_counter, 3854 ext4_count_free_inodes(sb)); 3855 percpu_counter_set(&sbi->s_dirs_counter, 3856 ext4_count_dirs(sb)); 3857 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3858 3859 no_journal: 3860 /* 3861 * Get the # of file system overhead blocks from the 3862 * superblock if present. 3863 */ 3864 if (es->s_overhead_clusters) 3865 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3866 else { 3867 ret = ext4_calculate_overhead(sb); 3868 if (ret) 3869 goto failed_mount_wq; 3870 } 3871 3872 /* 3873 * The maximum number of concurrent works can be high and 3874 * concurrency isn't really necessary. Limit it to 1. 3875 */ 3876 EXT4_SB(sb)->dio_unwritten_wq = 3877 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3878 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3879 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3880 goto failed_mount_wq; 3881 } 3882 3883 /* 3884 * The jbd2_journal_load will have done any necessary log recovery, 3885 * so we can safely mount the rest of the filesystem now. 3886 */ 3887 3888 root = ext4_iget(sb, EXT4_ROOT_INO); 3889 if (IS_ERR(root)) { 3890 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3891 ret = PTR_ERR(root); 3892 root = NULL; 3893 goto failed_mount4; 3894 } 3895 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3896 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3897 iput(root); 3898 goto failed_mount4; 3899 } 3900 sb->s_root = d_make_root(root); 3901 if (!sb->s_root) { 3902 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3903 ret = -ENOMEM; 3904 goto failed_mount4; 3905 } 3906 3907 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3908 sb->s_flags |= MS_RDONLY; 3909 3910 /* determine the minimum size of new large inodes, if present */ 3911 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3912 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3913 EXT4_GOOD_OLD_INODE_SIZE; 3914 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3915 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3916 if (sbi->s_want_extra_isize < 3917 le16_to_cpu(es->s_want_extra_isize)) 3918 sbi->s_want_extra_isize = 3919 le16_to_cpu(es->s_want_extra_isize); 3920 if (sbi->s_want_extra_isize < 3921 le16_to_cpu(es->s_min_extra_isize)) 3922 sbi->s_want_extra_isize = 3923 le16_to_cpu(es->s_min_extra_isize); 3924 } 3925 } 3926 /* Check if enough inode space is available */ 3927 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3928 sbi->s_inode_size) { 3929 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3930 EXT4_GOOD_OLD_INODE_SIZE; 3931 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3932 "available"); 3933 } 3934 3935 err = ext4_setup_system_zone(sb); 3936 if (err) { 3937 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3938 "zone (%d)", err); 3939 goto failed_mount4a; 3940 } 3941 3942 ext4_ext_init(sb); 3943 err = ext4_mb_init(sb); 3944 if (err) { 3945 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3946 err); 3947 goto failed_mount5; 3948 } 3949 3950 err = ext4_register_li_request(sb, first_not_zeroed); 3951 if (err) 3952 goto failed_mount6; 3953 3954 sbi->s_kobj.kset = ext4_kset; 3955 init_completion(&sbi->s_kobj_unregister); 3956 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3957 "%s", sb->s_id); 3958 if (err) 3959 goto failed_mount7; 3960 3961 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3962 ext4_orphan_cleanup(sb, es); 3963 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3964 if (needs_recovery) { 3965 ext4_msg(sb, KERN_INFO, "recovery complete"); 3966 ext4_mark_recovery_complete(sb, es); 3967 } 3968 if (EXT4_SB(sb)->s_journal) { 3969 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3970 descr = " journalled data mode"; 3971 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3972 descr = " ordered data mode"; 3973 else 3974 descr = " writeback data mode"; 3975 } else 3976 descr = "out journal"; 3977 3978 #ifdef CONFIG_QUOTA 3979 /* Enable quota usage during mount. */ 3980 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 3981 !(sb->s_flags & MS_RDONLY)) { 3982 ret = ext4_enable_quotas(sb); 3983 if (ret) 3984 goto failed_mount7; 3985 } 3986 #endif /* CONFIG_QUOTA */ 3987 3988 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3989 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3990 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3991 3992 if (es->s_error_count) 3993 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3994 3995 kfree(orig_data); 3996 return 0; 3997 3998 cantfind_ext4: 3999 if (!silent) 4000 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4001 goto failed_mount; 4002 4003 failed_mount7: 4004 ext4_unregister_li_request(sb); 4005 failed_mount6: 4006 ext4_mb_release(sb); 4007 failed_mount5: 4008 ext4_ext_release(sb); 4009 ext4_release_system_zone(sb); 4010 failed_mount4a: 4011 dput(sb->s_root); 4012 sb->s_root = NULL; 4013 failed_mount4: 4014 ext4_msg(sb, KERN_ERR, "mount failed"); 4015 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4016 failed_mount_wq: 4017 if (sbi->s_journal) { 4018 jbd2_journal_destroy(sbi->s_journal); 4019 sbi->s_journal = NULL; 4020 } 4021 failed_mount3: 4022 del_timer(&sbi->s_err_report); 4023 if (sbi->s_flex_groups) 4024 ext4_kvfree(sbi->s_flex_groups); 4025 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4026 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4027 percpu_counter_destroy(&sbi->s_dirs_counter); 4028 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4029 if (sbi->s_mmp_tsk) 4030 kthread_stop(sbi->s_mmp_tsk); 4031 failed_mount2: 4032 for (i = 0; i < db_count; i++) 4033 brelse(sbi->s_group_desc[i]); 4034 ext4_kvfree(sbi->s_group_desc); 4035 failed_mount: 4036 if (sbi->s_chksum_driver) 4037 crypto_free_shash(sbi->s_chksum_driver); 4038 if (sbi->s_proc) { 4039 remove_proc_entry("options", sbi->s_proc); 4040 remove_proc_entry(sb->s_id, ext4_proc_root); 4041 } 4042 #ifdef CONFIG_QUOTA 4043 for (i = 0; i < MAXQUOTAS; i++) 4044 kfree(sbi->s_qf_names[i]); 4045 #endif 4046 ext4_blkdev_remove(sbi); 4047 brelse(bh); 4048 out_fail: 4049 sb->s_fs_info = NULL; 4050 kfree(sbi->s_blockgroup_lock); 4051 kfree(sbi); 4052 out_free_orig: 4053 kfree(orig_data); 4054 return ret; 4055 } 4056 4057 /* 4058 * Setup any per-fs journal parameters now. We'll do this both on 4059 * initial mount, once the journal has been initialised but before we've 4060 * done any recovery; and again on any subsequent remount. 4061 */ 4062 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4063 { 4064 struct ext4_sb_info *sbi = EXT4_SB(sb); 4065 4066 journal->j_commit_interval = sbi->s_commit_interval; 4067 journal->j_min_batch_time = sbi->s_min_batch_time; 4068 journal->j_max_batch_time = sbi->s_max_batch_time; 4069 4070 write_lock(&journal->j_state_lock); 4071 if (test_opt(sb, BARRIER)) 4072 journal->j_flags |= JBD2_BARRIER; 4073 else 4074 journal->j_flags &= ~JBD2_BARRIER; 4075 if (test_opt(sb, DATA_ERR_ABORT)) 4076 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4077 else 4078 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4079 write_unlock(&journal->j_state_lock); 4080 } 4081 4082 static journal_t *ext4_get_journal(struct super_block *sb, 4083 unsigned int journal_inum) 4084 { 4085 struct inode *journal_inode; 4086 journal_t *journal; 4087 4088 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4089 4090 /* First, test for the existence of a valid inode on disk. Bad 4091 * things happen if we iget() an unused inode, as the subsequent 4092 * iput() will try to delete it. */ 4093 4094 journal_inode = ext4_iget(sb, journal_inum); 4095 if (IS_ERR(journal_inode)) { 4096 ext4_msg(sb, KERN_ERR, "no journal found"); 4097 return NULL; 4098 } 4099 if (!journal_inode->i_nlink) { 4100 make_bad_inode(journal_inode); 4101 iput(journal_inode); 4102 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4103 return NULL; 4104 } 4105 4106 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4107 journal_inode, journal_inode->i_size); 4108 if (!S_ISREG(journal_inode->i_mode)) { 4109 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4110 iput(journal_inode); 4111 return NULL; 4112 } 4113 4114 journal = jbd2_journal_init_inode(journal_inode); 4115 if (!journal) { 4116 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4117 iput(journal_inode); 4118 return NULL; 4119 } 4120 journal->j_private = sb; 4121 ext4_init_journal_params(sb, journal); 4122 return journal; 4123 } 4124 4125 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4126 dev_t j_dev) 4127 { 4128 struct buffer_head *bh; 4129 journal_t *journal; 4130 ext4_fsblk_t start; 4131 ext4_fsblk_t len; 4132 int hblock, blocksize; 4133 ext4_fsblk_t sb_block; 4134 unsigned long offset; 4135 struct ext4_super_block *es; 4136 struct block_device *bdev; 4137 4138 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4139 4140 bdev = ext4_blkdev_get(j_dev, sb); 4141 if (bdev == NULL) 4142 return NULL; 4143 4144 blocksize = sb->s_blocksize; 4145 hblock = bdev_logical_block_size(bdev); 4146 if (blocksize < hblock) { 4147 ext4_msg(sb, KERN_ERR, 4148 "blocksize too small for journal device"); 4149 goto out_bdev; 4150 } 4151 4152 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4153 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4154 set_blocksize(bdev, blocksize); 4155 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4156 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4157 "external journal"); 4158 goto out_bdev; 4159 } 4160 4161 es = (struct ext4_super_block *) (bh->b_data + offset); 4162 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4163 !(le32_to_cpu(es->s_feature_incompat) & 4164 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4165 ext4_msg(sb, KERN_ERR, "external journal has " 4166 "bad superblock"); 4167 brelse(bh); 4168 goto out_bdev; 4169 } 4170 4171 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4172 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4173 brelse(bh); 4174 goto out_bdev; 4175 } 4176 4177 len = ext4_blocks_count(es); 4178 start = sb_block + 1; 4179 brelse(bh); /* we're done with the superblock */ 4180 4181 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4182 start, len, blocksize); 4183 if (!journal) { 4184 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4185 goto out_bdev; 4186 } 4187 journal->j_private = sb; 4188 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4189 wait_on_buffer(journal->j_sb_buffer); 4190 if (!buffer_uptodate(journal->j_sb_buffer)) { 4191 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4192 goto out_journal; 4193 } 4194 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4195 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4196 "user (unsupported) - %d", 4197 be32_to_cpu(journal->j_superblock->s_nr_users)); 4198 goto out_journal; 4199 } 4200 EXT4_SB(sb)->journal_bdev = bdev; 4201 ext4_init_journal_params(sb, journal); 4202 return journal; 4203 4204 out_journal: 4205 jbd2_journal_destroy(journal); 4206 out_bdev: 4207 ext4_blkdev_put(bdev); 4208 return NULL; 4209 } 4210 4211 static int ext4_load_journal(struct super_block *sb, 4212 struct ext4_super_block *es, 4213 unsigned long journal_devnum) 4214 { 4215 journal_t *journal; 4216 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4217 dev_t journal_dev; 4218 int err = 0; 4219 int really_read_only; 4220 4221 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4222 4223 if (journal_devnum && 4224 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4225 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4226 "numbers have changed"); 4227 journal_dev = new_decode_dev(journal_devnum); 4228 } else 4229 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4230 4231 really_read_only = bdev_read_only(sb->s_bdev); 4232 4233 /* 4234 * Are we loading a blank journal or performing recovery after a 4235 * crash? For recovery, we need to check in advance whether we 4236 * can get read-write access to the device. 4237 */ 4238 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4239 if (sb->s_flags & MS_RDONLY) { 4240 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4241 "required on readonly filesystem"); 4242 if (really_read_only) { 4243 ext4_msg(sb, KERN_ERR, "write access " 4244 "unavailable, cannot proceed"); 4245 return -EROFS; 4246 } 4247 ext4_msg(sb, KERN_INFO, "write access will " 4248 "be enabled during recovery"); 4249 } 4250 } 4251 4252 if (journal_inum && journal_dev) { 4253 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4254 "and inode journals!"); 4255 return -EINVAL; 4256 } 4257 4258 if (journal_inum) { 4259 if (!(journal = ext4_get_journal(sb, journal_inum))) 4260 return -EINVAL; 4261 } else { 4262 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4263 return -EINVAL; 4264 } 4265 4266 if (!(journal->j_flags & JBD2_BARRIER)) 4267 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4268 4269 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4270 err = jbd2_journal_wipe(journal, !really_read_only); 4271 if (!err) { 4272 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4273 if (save) 4274 memcpy(save, ((char *) es) + 4275 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4276 err = jbd2_journal_load(journal); 4277 if (save) 4278 memcpy(((char *) es) + EXT4_S_ERR_START, 4279 save, EXT4_S_ERR_LEN); 4280 kfree(save); 4281 } 4282 4283 if (err) { 4284 ext4_msg(sb, KERN_ERR, "error loading journal"); 4285 jbd2_journal_destroy(journal); 4286 return err; 4287 } 4288 4289 EXT4_SB(sb)->s_journal = journal; 4290 ext4_clear_journal_err(sb, es); 4291 4292 if (!really_read_only && journal_devnum && 4293 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4294 es->s_journal_dev = cpu_to_le32(journal_devnum); 4295 4296 /* Make sure we flush the recovery flag to disk. */ 4297 ext4_commit_super(sb, 1); 4298 } 4299 4300 return 0; 4301 } 4302 4303 static int ext4_commit_super(struct super_block *sb, int sync) 4304 { 4305 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4306 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4307 int error = 0; 4308 4309 if (!sbh || block_device_ejected(sb)) 4310 return error; 4311 if (buffer_write_io_error(sbh)) { 4312 /* 4313 * Oh, dear. A previous attempt to write the 4314 * superblock failed. This could happen because the 4315 * USB device was yanked out. Or it could happen to 4316 * be a transient write error and maybe the block will 4317 * be remapped. Nothing we can do but to retry the 4318 * write and hope for the best. 4319 */ 4320 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4321 "superblock detected"); 4322 clear_buffer_write_io_error(sbh); 4323 set_buffer_uptodate(sbh); 4324 } 4325 /* 4326 * If the file system is mounted read-only, don't update the 4327 * superblock write time. This avoids updating the superblock 4328 * write time when we are mounting the root file system 4329 * read/only but we need to replay the journal; at that point, 4330 * for people who are east of GMT and who make their clock 4331 * tick in localtime for Windows bug-for-bug compatibility, 4332 * the clock is set in the future, and this will cause e2fsck 4333 * to complain and force a full file system check. 4334 */ 4335 if (!(sb->s_flags & MS_RDONLY)) 4336 es->s_wtime = cpu_to_le32(get_seconds()); 4337 if (sb->s_bdev->bd_part) 4338 es->s_kbytes_written = 4339 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4340 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4341 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4342 else 4343 es->s_kbytes_written = 4344 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4345 ext4_free_blocks_count_set(es, 4346 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4347 &EXT4_SB(sb)->s_freeclusters_counter))); 4348 es->s_free_inodes_count = 4349 cpu_to_le32(percpu_counter_sum_positive( 4350 &EXT4_SB(sb)->s_freeinodes_counter)); 4351 BUFFER_TRACE(sbh, "marking dirty"); 4352 ext4_superblock_csum_set(sb, es); 4353 mark_buffer_dirty(sbh); 4354 if (sync) { 4355 error = sync_dirty_buffer(sbh); 4356 if (error) 4357 return error; 4358 4359 error = buffer_write_io_error(sbh); 4360 if (error) { 4361 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4362 "superblock"); 4363 clear_buffer_write_io_error(sbh); 4364 set_buffer_uptodate(sbh); 4365 } 4366 } 4367 return error; 4368 } 4369 4370 /* 4371 * Have we just finished recovery? If so, and if we are mounting (or 4372 * remounting) the filesystem readonly, then we will end up with a 4373 * consistent fs on disk. Record that fact. 4374 */ 4375 static void ext4_mark_recovery_complete(struct super_block *sb, 4376 struct ext4_super_block *es) 4377 { 4378 journal_t *journal = EXT4_SB(sb)->s_journal; 4379 4380 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4381 BUG_ON(journal != NULL); 4382 return; 4383 } 4384 jbd2_journal_lock_updates(journal); 4385 if (jbd2_journal_flush(journal) < 0) 4386 goto out; 4387 4388 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4389 sb->s_flags & MS_RDONLY) { 4390 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4391 ext4_commit_super(sb, 1); 4392 } 4393 4394 out: 4395 jbd2_journal_unlock_updates(journal); 4396 } 4397 4398 /* 4399 * If we are mounting (or read-write remounting) a filesystem whose journal 4400 * has recorded an error from a previous lifetime, move that error to the 4401 * main filesystem now. 4402 */ 4403 static void ext4_clear_journal_err(struct super_block *sb, 4404 struct ext4_super_block *es) 4405 { 4406 journal_t *journal; 4407 int j_errno; 4408 const char *errstr; 4409 4410 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4411 4412 journal = EXT4_SB(sb)->s_journal; 4413 4414 /* 4415 * Now check for any error status which may have been recorded in the 4416 * journal by a prior ext4_error() or ext4_abort() 4417 */ 4418 4419 j_errno = jbd2_journal_errno(journal); 4420 if (j_errno) { 4421 char nbuf[16]; 4422 4423 errstr = ext4_decode_error(sb, j_errno, nbuf); 4424 ext4_warning(sb, "Filesystem error recorded " 4425 "from previous mount: %s", errstr); 4426 ext4_warning(sb, "Marking fs in need of filesystem check."); 4427 4428 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4429 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4430 ext4_commit_super(sb, 1); 4431 4432 jbd2_journal_clear_err(journal); 4433 } 4434 } 4435 4436 /* 4437 * Force the running and committing transactions to commit, 4438 * and wait on the commit. 4439 */ 4440 int ext4_force_commit(struct super_block *sb) 4441 { 4442 journal_t *journal; 4443 int ret = 0; 4444 4445 if (sb->s_flags & MS_RDONLY) 4446 return 0; 4447 4448 journal = EXT4_SB(sb)->s_journal; 4449 if (journal) 4450 ret = ext4_journal_force_commit(journal); 4451 4452 return ret; 4453 } 4454 4455 static int ext4_sync_fs(struct super_block *sb, int wait) 4456 { 4457 int ret = 0; 4458 tid_t target; 4459 struct ext4_sb_info *sbi = EXT4_SB(sb); 4460 4461 trace_ext4_sync_fs(sb, wait); 4462 flush_workqueue(sbi->dio_unwritten_wq); 4463 /* 4464 * Writeback quota in non-journalled quota case - journalled quota has 4465 * no dirty dquots 4466 */ 4467 dquot_writeback_dquots(sb, -1); 4468 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4469 if (wait) 4470 jbd2_log_wait_commit(sbi->s_journal, target); 4471 } 4472 return ret; 4473 } 4474 4475 /* 4476 * LVM calls this function before a (read-only) snapshot is created. This 4477 * gives us a chance to flush the journal completely and mark the fs clean. 4478 * 4479 * Note that only this function cannot bring a filesystem to be in a clean 4480 * state independently. It relies on upper layer to stop all data & metadata 4481 * modifications. 4482 */ 4483 static int ext4_freeze(struct super_block *sb) 4484 { 4485 int error = 0; 4486 journal_t *journal; 4487 4488 if (sb->s_flags & MS_RDONLY) 4489 return 0; 4490 4491 journal = EXT4_SB(sb)->s_journal; 4492 4493 /* Now we set up the journal barrier. */ 4494 jbd2_journal_lock_updates(journal); 4495 4496 /* 4497 * Don't clear the needs_recovery flag if we failed to flush 4498 * the journal. 4499 */ 4500 error = jbd2_journal_flush(journal); 4501 if (error < 0) 4502 goto out; 4503 4504 /* Journal blocked and flushed, clear needs_recovery flag. */ 4505 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4506 error = ext4_commit_super(sb, 1); 4507 out: 4508 /* we rely on upper layer to stop further updates */ 4509 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4510 return error; 4511 } 4512 4513 /* 4514 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4515 * flag here, even though the filesystem is not technically dirty yet. 4516 */ 4517 static int ext4_unfreeze(struct super_block *sb) 4518 { 4519 if (sb->s_flags & MS_RDONLY) 4520 return 0; 4521 4522 lock_super(sb); 4523 /* Reset the needs_recovery flag before the fs is unlocked. */ 4524 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4525 ext4_commit_super(sb, 1); 4526 unlock_super(sb); 4527 return 0; 4528 } 4529 4530 /* 4531 * Structure to save mount options for ext4_remount's benefit 4532 */ 4533 struct ext4_mount_options { 4534 unsigned long s_mount_opt; 4535 unsigned long s_mount_opt2; 4536 kuid_t s_resuid; 4537 kgid_t s_resgid; 4538 unsigned long s_commit_interval; 4539 u32 s_min_batch_time, s_max_batch_time; 4540 #ifdef CONFIG_QUOTA 4541 int s_jquota_fmt; 4542 char *s_qf_names[MAXQUOTAS]; 4543 #endif 4544 }; 4545 4546 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4547 { 4548 struct ext4_super_block *es; 4549 struct ext4_sb_info *sbi = EXT4_SB(sb); 4550 unsigned long old_sb_flags; 4551 struct ext4_mount_options old_opts; 4552 int enable_quota = 0; 4553 ext4_group_t g; 4554 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4555 int err = 0; 4556 #ifdef CONFIG_QUOTA 4557 int i; 4558 #endif 4559 char *orig_data = kstrdup(data, GFP_KERNEL); 4560 4561 /* Store the original options */ 4562 lock_super(sb); 4563 old_sb_flags = sb->s_flags; 4564 old_opts.s_mount_opt = sbi->s_mount_opt; 4565 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4566 old_opts.s_resuid = sbi->s_resuid; 4567 old_opts.s_resgid = sbi->s_resgid; 4568 old_opts.s_commit_interval = sbi->s_commit_interval; 4569 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4570 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4571 #ifdef CONFIG_QUOTA 4572 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4573 for (i = 0; i < MAXQUOTAS; i++) 4574 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4575 #endif 4576 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4577 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4578 4579 /* 4580 * Allow the "check" option to be passed as a remount option. 4581 */ 4582 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4583 err = -EINVAL; 4584 goto restore_opts; 4585 } 4586 4587 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4588 ext4_abort(sb, "Abort forced by user"); 4589 4590 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4591 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4592 4593 es = sbi->s_es; 4594 4595 if (sbi->s_journal) { 4596 ext4_init_journal_params(sb, sbi->s_journal); 4597 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4598 } 4599 4600 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4601 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4602 err = -EROFS; 4603 goto restore_opts; 4604 } 4605 4606 if (*flags & MS_RDONLY) { 4607 err = dquot_suspend(sb, -1); 4608 if (err < 0) 4609 goto restore_opts; 4610 4611 /* 4612 * First of all, the unconditional stuff we have to do 4613 * to disable replay of the journal when we next remount 4614 */ 4615 sb->s_flags |= MS_RDONLY; 4616 4617 /* 4618 * OK, test if we are remounting a valid rw partition 4619 * readonly, and if so set the rdonly flag and then 4620 * mark the partition as valid again. 4621 */ 4622 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4623 (sbi->s_mount_state & EXT4_VALID_FS)) 4624 es->s_state = cpu_to_le16(sbi->s_mount_state); 4625 4626 if (sbi->s_journal) 4627 ext4_mark_recovery_complete(sb, es); 4628 } else { 4629 /* Make sure we can mount this feature set readwrite */ 4630 if (!ext4_feature_set_ok(sb, 0)) { 4631 err = -EROFS; 4632 goto restore_opts; 4633 } 4634 /* 4635 * Make sure the group descriptor checksums 4636 * are sane. If they aren't, refuse to remount r/w. 4637 */ 4638 for (g = 0; g < sbi->s_groups_count; g++) { 4639 struct ext4_group_desc *gdp = 4640 ext4_get_group_desc(sb, g, NULL); 4641 4642 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4643 ext4_msg(sb, KERN_ERR, 4644 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4645 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4646 le16_to_cpu(gdp->bg_checksum)); 4647 err = -EINVAL; 4648 goto restore_opts; 4649 } 4650 } 4651 4652 /* 4653 * If we have an unprocessed orphan list hanging 4654 * around from a previously readonly bdev mount, 4655 * require a full umount/remount for now. 4656 */ 4657 if (es->s_last_orphan) { 4658 ext4_msg(sb, KERN_WARNING, "Couldn't " 4659 "remount RDWR because of unprocessed " 4660 "orphan inode list. Please " 4661 "umount/remount instead"); 4662 err = -EINVAL; 4663 goto restore_opts; 4664 } 4665 4666 /* 4667 * Mounting a RDONLY partition read-write, so reread 4668 * and store the current valid flag. (It may have 4669 * been changed by e2fsck since we originally mounted 4670 * the partition.) 4671 */ 4672 if (sbi->s_journal) 4673 ext4_clear_journal_err(sb, es); 4674 sbi->s_mount_state = le16_to_cpu(es->s_state); 4675 if (!ext4_setup_super(sb, es, 0)) 4676 sb->s_flags &= ~MS_RDONLY; 4677 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4678 EXT4_FEATURE_INCOMPAT_MMP)) 4679 if (ext4_multi_mount_protect(sb, 4680 le64_to_cpu(es->s_mmp_block))) { 4681 err = -EROFS; 4682 goto restore_opts; 4683 } 4684 enable_quota = 1; 4685 } 4686 } 4687 4688 /* 4689 * Reinitialize lazy itable initialization thread based on 4690 * current settings 4691 */ 4692 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4693 ext4_unregister_li_request(sb); 4694 else { 4695 ext4_group_t first_not_zeroed; 4696 first_not_zeroed = ext4_has_uninit_itable(sb); 4697 ext4_register_li_request(sb, first_not_zeroed); 4698 } 4699 4700 ext4_setup_system_zone(sb); 4701 if (sbi->s_journal == NULL) 4702 ext4_commit_super(sb, 1); 4703 4704 unlock_super(sb); 4705 #ifdef CONFIG_QUOTA 4706 /* Release old quota file names */ 4707 for (i = 0; i < MAXQUOTAS; i++) 4708 if (old_opts.s_qf_names[i] && 4709 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4710 kfree(old_opts.s_qf_names[i]); 4711 if (enable_quota) { 4712 if (sb_any_quota_suspended(sb)) 4713 dquot_resume(sb, -1); 4714 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4715 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4716 err = ext4_enable_quotas(sb); 4717 if (err) { 4718 lock_super(sb); 4719 goto restore_opts; 4720 } 4721 } 4722 } 4723 #endif 4724 4725 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4726 kfree(orig_data); 4727 return 0; 4728 4729 restore_opts: 4730 sb->s_flags = old_sb_flags; 4731 sbi->s_mount_opt = old_opts.s_mount_opt; 4732 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4733 sbi->s_resuid = old_opts.s_resuid; 4734 sbi->s_resgid = old_opts.s_resgid; 4735 sbi->s_commit_interval = old_opts.s_commit_interval; 4736 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4737 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4738 #ifdef CONFIG_QUOTA 4739 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4740 for (i = 0; i < MAXQUOTAS; i++) { 4741 if (sbi->s_qf_names[i] && 4742 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4743 kfree(sbi->s_qf_names[i]); 4744 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4745 } 4746 #endif 4747 unlock_super(sb); 4748 kfree(orig_data); 4749 return err; 4750 } 4751 4752 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4753 { 4754 struct super_block *sb = dentry->d_sb; 4755 struct ext4_sb_info *sbi = EXT4_SB(sb); 4756 struct ext4_super_block *es = sbi->s_es; 4757 ext4_fsblk_t overhead = 0; 4758 u64 fsid; 4759 s64 bfree; 4760 4761 if (!test_opt(sb, MINIX_DF)) 4762 overhead = sbi->s_overhead; 4763 4764 buf->f_type = EXT4_SUPER_MAGIC; 4765 buf->f_bsize = sb->s_blocksize; 4766 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead); 4767 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4768 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4769 /* prevent underflow in case that few free space is available */ 4770 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4771 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4772 if (buf->f_bfree < ext4_r_blocks_count(es)) 4773 buf->f_bavail = 0; 4774 buf->f_files = le32_to_cpu(es->s_inodes_count); 4775 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4776 buf->f_namelen = EXT4_NAME_LEN; 4777 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4778 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4779 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4780 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4781 4782 return 0; 4783 } 4784 4785 /* Helper function for writing quotas on sync - we need to start transaction 4786 * before quota file is locked for write. Otherwise the are possible deadlocks: 4787 * Process 1 Process 2 4788 * ext4_create() quota_sync() 4789 * jbd2_journal_start() write_dquot() 4790 * dquot_initialize() down(dqio_mutex) 4791 * down(dqio_mutex) jbd2_journal_start() 4792 * 4793 */ 4794 4795 #ifdef CONFIG_QUOTA 4796 4797 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4798 { 4799 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4800 } 4801 4802 static int ext4_write_dquot(struct dquot *dquot) 4803 { 4804 int ret, err; 4805 handle_t *handle; 4806 struct inode *inode; 4807 4808 inode = dquot_to_inode(dquot); 4809 handle = ext4_journal_start(inode, 4810 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4811 if (IS_ERR(handle)) 4812 return PTR_ERR(handle); 4813 ret = dquot_commit(dquot); 4814 err = ext4_journal_stop(handle); 4815 if (!ret) 4816 ret = err; 4817 return ret; 4818 } 4819 4820 static int ext4_acquire_dquot(struct dquot *dquot) 4821 { 4822 int ret, err; 4823 handle_t *handle; 4824 4825 handle = ext4_journal_start(dquot_to_inode(dquot), 4826 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4827 if (IS_ERR(handle)) 4828 return PTR_ERR(handle); 4829 ret = dquot_acquire(dquot); 4830 err = ext4_journal_stop(handle); 4831 if (!ret) 4832 ret = err; 4833 return ret; 4834 } 4835 4836 static int ext4_release_dquot(struct dquot *dquot) 4837 { 4838 int ret, err; 4839 handle_t *handle; 4840 4841 handle = ext4_journal_start(dquot_to_inode(dquot), 4842 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4843 if (IS_ERR(handle)) { 4844 /* Release dquot anyway to avoid endless cycle in dqput() */ 4845 dquot_release(dquot); 4846 return PTR_ERR(handle); 4847 } 4848 ret = dquot_release(dquot); 4849 err = ext4_journal_stop(handle); 4850 if (!ret) 4851 ret = err; 4852 return ret; 4853 } 4854 4855 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4856 { 4857 /* Are we journaling quotas? */ 4858 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4859 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4860 dquot_mark_dquot_dirty(dquot); 4861 return ext4_write_dquot(dquot); 4862 } else { 4863 return dquot_mark_dquot_dirty(dquot); 4864 } 4865 } 4866 4867 static int ext4_write_info(struct super_block *sb, int type) 4868 { 4869 int ret, err; 4870 handle_t *handle; 4871 4872 /* Data block + inode block */ 4873 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4874 if (IS_ERR(handle)) 4875 return PTR_ERR(handle); 4876 ret = dquot_commit_info(sb, type); 4877 err = ext4_journal_stop(handle); 4878 if (!ret) 4879 ret = err; 4880 return ret; 4881 } 4882 4883 /* 4884 * Turn on quotas during mount time - we need to find 4885 * the quota file and such... 4886 */ 4887 static int ext4_quota_on_mount(struct super_block *sb, int type) 4888 { 4889 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4890 EXT4_SB(sb)->s_jquota_fmt, type); 4891 } 4892 4893 /* 4894 * Standard function to be called on quota_on 4895 */ 4896 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4897 struct path *path) 4898 { 4899 int err; 4900 4901 if (!test_opt(sb, QUOTA)) 4902 return -EINVAL; 4903 4904 /* Quotafile not on the same filesystem? */ 4905 if (path->dentry->d_sb != sb) 4906 return -EXDEV; 4907 /* Journaling quota? */ 4908 if (EXT4_SB(sb)->s_qf_names[type]) { 4909 /* Quotafile not in fs root? */ 4910 if (path->dentry->d_parent != sb->s_root) 4911 ext4_msg(sb, KERN_WARNING, 4912 "Quota file not on filesystem root. " 4913 "Journaled quota will not work"); 4914 } 4915 4916 /* 4917 * When we journal data on quota file, we have to flush journal to see 4918 * all updates to the file when we bypass pagecache... 4919 */ 4920 if (EXT4_SB(sb)->s_journal && 4921 ext4_should_journal_data(path->dentry->d_inode)) { 4922 /* 4923 * We don't need to lock updates but journal_flush() could 4924 * otherwise be livelocked... 4925 */ 4926 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4927 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4928 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4929 if (err) 4930 return err; 4931 } 4932 4933 return dquot_quota_on(sb, type, format_id, path); 4934 } 4935 4936 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4937 unsigned int flags) 4938 { 4939 int err; 4940 struct inode *qf_inode; 4941 unsigned long qf_inums[MAXQUOTAS] = { 4942 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4943 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4944 }; 4945 4946 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4947 4948 if (!qf_inums[type]) 4949 return -EPERM; 4950 4951 qf_inode = ext4_iget(sb, qf_inums[type]); 4952 if (IS_ERR(qf_inode)) { 4953 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4954 return PTR_ERR(qf_inode); 4955 } 4956 4957 err = dquot_enable(qf_inode, type, format_id, flags); 4958 iput(qf_inode); 4959 4960 return err; 4961 } 4962 4963 /* Enable usage tracking for all quota types. */ 4964 static int ext4_enable_quotas(struct super_block *sb) 4965 { 4966 int type, err = 0; 4967 unsigned long qf_inums[MAXQUOTAS] = { 4968 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4969 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4970 }; 4971 4972 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4973 for (type = 0; type < MAXQUOTAS; type++) { 4974 if (qf_inums[type]) { 4975 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4976 DQUOT_USAGE_ENABLED); 4977 if (err) { 4978 ext4_warning(sb, 4979 "Failed to enable quota (type=%d) " 4980 "tracking. Please run e2fsck to fix.", 4981 type); 4982 return err; 4983 } 4984 } 4985 } 4986 return 0; 4987 } 4988 4989 /* 4990 * quota_on function that is used when QUOTA feature is set. 4991 */ 4992 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 4993 int format_id) 4994 { 4995 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 4996 return -EINVAL; 4997 4998 /* 4999 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5000 */ 5001 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5002 } 5003 5004 static int ext4_quota_off(struct super_block *sb, int type) 5005 { 5006 struct inode *inode = sb_dqopt(sb)->files[type]; 5007 handle_t *handle; 5008 5009 /* Force all delayed allocation blocks to be allocated. 5010 * Caller already holds s_umount sem */ 5011 if (test_opt(sb, DELALLOC)) 5012 sync_filesystem(sb); 5013 5014 if (!inode) 5015 goto out; 5016 5017 /* Update modification times of quota files when userspace can 5018 * start looking at them */ 5019 handle = ext4_journal_start(inode, 1); 5020 if (IS_ERR(handle)) 5021 goto out; 5022 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5023 ext4_mark_inode_dirty(handle, inode); 5024 ext4_journal_stop(handle); 5025 5026 out: 5027 return dquot_quota_off(sb, type); 5028 } 5029 5030 /* 5031 * quota_off function that is used when QUOTA feature is set. 5032 */ 5033 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5034 { 5035 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5036 return -EINVAL; 5037 5038 /* Disable only the limits. */ 5039 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5040 } 5041 5042 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5043 * acquiring the locks... As quota files are never truncated and quota code 5044 * itself serializes the operations (and no one else should touch the files) 5045 * we don't have to be afraid of races */ 5046 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5047 size_t len, loff_t off) 5048 { 5049 struct inode *inode = sb_dqopt(sb)->files[type]; 5050 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5051 int err = 0; 5052 int offset = off & (sb->s_blocksize - 1); 5053 int tocopy; 5054 size_t toread; 5055 struct buffer_head *bh; 5056 loff_t i_size = i_size_read(inode); 5057 5058 if (off > i_size) 5059 return 0; 5060 if (off+len > i_size) 5061 len = i_size-off; 5062 toread = len; 5063 while (toread > 0) { 5064 tocopy = sb->s_blocksize - offset < toread ? 5065 sb->s_blocksize - offset : toread; 5066 bh = ext4_bread(NULL, inode, blk, 0, &err); 5067 if (err) 5068 return err; 5069 if (!bh) /* A hole? */ 5070 memset(data, 0, tocopy); 5071 else 5072 memcpy(data, bh->b_data+offset, tocopy); 5073 brelse(bh); 5074 offset = 0; 5075 toread -= tocopy; 5076 data += tocopy; 5077 blk++; 5078 } 5079 return len; 5080 } 5081 5082 /* Write to quotafile (we know the transaction is already started and has 5083 * enough credits) */ 5084 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5085 const char *data, size_t len, loff_t off) 5086 { 5087 struct inode *inode = sb_dqopt(sb)->files[type]; 5088 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5089 int err = 0; 5090 int offset = off & (sb->s_blocksize - 1); 5091 struct buffer_head *bh; 5092 handle_t *handle = journal_current_handle(); 5093 5094 if (EXT4_SB(sb)->s_journal && !handle) { 5095 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5096 " cancelled because transaction is not started", 5097 (unsigned long long)off, (unsigned long long)len); 5098 return -EIO; 5099 } 5100 /* 5101 * Since we account only one data block in transaction credits, 5102 * then it is impossible to cross a block boundary. 5103 */ 5104 if (sb->s_blocksize - offset < len) { 5105 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5106 " cancelled because not block aligned", 5107 (unsigned long long)off, (unsigned long long)len); 5108 return -EIO; 5109 } 5110 5111 bh = ext4_bread(handle, inode, blk, 1, &err); 5112 if (!bh) 5113 goto out; 5114 err = ext4_journal_get_write_access(handle, bh); 5115 if (err) { 5116 brelse(bh); 5117 goto out; 5118 } 5119 lock_buffer(bh); 5120 memcpy(bh->b_data+offset, data, len); 5121 flush_dcache_page(bh->b_page); 5122 unlock_buffer(bh); 5123 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5124 brelse(bh); 5125 out: 5126 if (err) 5127 return err; 5128 if (inode->i_size < off + len) { 5129 i_size_write(inode, off + len); 5130 EXT4_I(inode)->i_disksize = inode->i_size; 5131 ext4_mark_inode_dirty(handle, inode); 5132 } 5133 return len; 5134 } 5135 5136 #endif 5137 5138 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5139 const char *dev_name, void *data) 5140 { 5141 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5142 } 5143 5144 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5145 static inline void register_as_ext2(void) 5146 { 5147 int err = register_filesystem(&ext2_fs_type); 5148 if (err) 5149 printk(KERN_WARNING 5150 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5151 } 5152 5153 static inline void unregister_as_ext2(void) 5154 { 5155 unregister_filesystem(&ext2_fs_type); 5156 } 5157 5158 static inline int ext2_feature_set_ok(struct super_block *sb) 5159 { 5160 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5161 return 0; 5162 if (sb->s_flags & MS_RDONLY) 5163 return 1; 5164 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5165 return 0; 5166 return 1; 5167 } 5168 MODULE_ALIAS("ext2"); 5169 #else 5170 static inline void register_as_ext2(void) { } 5171 static inline void unregister_as_ext2(void) { } 5172 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5173 #endif 5174 5175 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5176 static inline void register_as_ext3(void) 5177 { 5178 int err = register_filesystem(&ext3_fs_type); 5179 if (err) 5180 printk(KERN_WARNING 5181 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5182 } 5183 5184 static inline void unregister_as_ext3(void) 5185 { 5186 unregister_filesystem(&ext3_fs_type); 5187 } 5188 5189 static inline int ext3_feature_set_ok(struct super_block *sb) 5190 { 5191 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5192 return 0; 5193 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5194 return 0; 5195 if (sb->s_flags & MS_RDONLY) 5196 return 1; 5197 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5198 return 0; 5199 return 1; 5200 } 5201 MODULE_ALIAS("ext3"); 5202 #else 5203 static inline void register_as_ext3(void) { } 5204 static inline void unregister_as_ext3(void) { } 5205 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5206 #endif 5207 5208 static struct file_system_type ext4_fs_type = { 5209 .owner = THIS_MODULE, 5210 .name = "ext4", 5211 .mount = ext4_mount, 5212 .kill_sb = kill_block_super, 5213 .fs_flags = FS_REQUIRES_DEV, 5214 }; 5215 5216 static int __init ext4_init_feat_adverts(void) 5217 { 5218 struct ext4_features *ef; 5219 int ret = -ENOMEM; 5220 5221 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5222 if (!ef) 5223 goto out; 5224 5225 ef->f_kobj.kset = ext4_kset; 5226 init_completion(&ef->f_kobj_unregister); 5227 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5228 "features"); 5229 if (ret) { 5230 kfree(ef); 5231 goto out; 5232 } 5233 5234 ext4_feat = ef; 5235 ret = 0; 5236 out: 5237 return ret; 5238 } 5239 5240 static void ext4_exit_feat_adverts(void) 5241 { 5242 kobject_put(&ext4_feat->f_kobj); 5243 wait_for_completion(&ext4_feat->f_kobj_unregister); 5244 kfree(ext4_feat); 5245 } 5246 5247 /* Shared across all ext4 file systems */ 5248 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5249 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5250 5251 static int __init ext4_init_fs(void) 5252 { 5253 int i, err; 5254 5255 ext4_li_info = NULL; 5256 mutex_init(&ext4_li_mtx); 5257 5258 ext4_check_flag_values(); 5259 5260 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5261 mutex_init(&ext4__aio_mutex[i]); 5262 init_waitqueue_head(&ext4__ioend_wq[i]); 5263 } 5264 5265 err = ext4_init_pageio(); 5266 if (err) 5267 return err; 5268 err = ext4_init_system_zone(); 5269 if (err) 5270 goto out6; 5271 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5272 if (!ext4_kset) 5273 goto out5; 5274 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5275 5276 err = ext4_init_feat_adverts(); 5277 if (err) 5278 goto out4; 5279 5280 err = ext4_init_mballoc(); 5281 if (err) 5282 goto out3; 5283 5284 err = ext4_init_xattr(); 5285 if (err) 5286 goto out2; 5287 err = init_inodecache(); 5288 if (err) 5289 goto out1; 5290 register_as_ext3(); 5291 register_as_ext2(); 5292 err = register_filesystem(&ext4_fs_type); 5293 if (err) 5294 goto out; 5295 5296 return 0; 5297 out: 5298 unregister_as_ext2(); 5299 unregister_as_ext3(); 5300 destroy_inodecache(); 5301 out1: 5302 ext4_exit_xattr(); 5303 out2: 5304 ext4_exit_mballoc(); 5305 out3: 5306 ext4_exit_feat_adverts(); 5307 out4: 5308 if (ext4_proc_root) 5309 remove_proc_entry("fs/ext4", NULL); 5310 kset_unregister(ext4_kset); 5311 out5: 5312 ext4_exit_system_zone(); 5313 out6: 5314 ext4_exit_pageio(); 5315 return err; 5316 } 5317 5318 static void __exit ext4_exit_fs(void) 5319 { 5320 ext4_destroy_lazyinit_thread(); 5321 unregister_as_ext2(); 5322 unregister_as_ext3(); 5323 unregister_filesystem(&ext4_fs_type); 5324 destroy_inodecache(); 5325 ext4_exit_xattr(); 5326 ext4_exit_mballoc(); 5327 ext4_exit_feat_adverts(); 5328 remove_proc_entry("fs/ext4", NULL); 5329 kset_unregister(ext4_kset); 5330 ext4_exit_system_zone(); 5331 ext4_exit_pageio(); 5332 } 5333 5334 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5335 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5336 MODULE_LICENSE("GPL"); 5337 module_init(ext4_init_fs) 5338 module_exit(ext4_exit_fs) 5339