1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static int ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, int error, 339 __u32 ino, __u64 block, 340 const char *func, unsigned int line) 341 { 342 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 343 int err; 344 345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 346 if (bdev_read_only(sb->s_bdev)) 347 return; 348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 349 ext4_update_tstamp(es, s_last_error_time); 350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 351 es->s_last_error_line = cpu_to_le32(line); 352 es->s_last_error_ino = cpu_to_le32(ino); 353 es->s_last_error_block = cpu_to_le64(block); 354 switch (error) { 355 case EIO: 356 err = EXT4_ERR_EIO; 357 break; 358 case ENOMEM: 359 err = EXT4_ERR_ENOMEM; 360 break; 361 case EFSBADCRC: 362 err = EXT4_ERR_EFSBADCRC; 363 break; 364 case 0: 365 case EFSCORRUPTED: 366 err = EXT4_ERR_EFSCORRUPTED; 367 break; 368 case ENOSPC: 369 err = EXT4_ERR_ENOSPC; 370 break; 371 case ENOKEY: 372 err = EXT4_ERR_ENOKEY; 373 break; 374 case EROFS: 375 err = EXT4_ERR_EROFS; 376 break; 377 case EFBIG: 378 err = EXT4_ERR_EFBIG; 379 break; 380 case EEXIST: 381 err = EXT4_ERR_EEXIST; 382 break; 383 case ERANGE: 384 err = EXT4_ERR_ERANGE; 385 break; 386 case EOVERFLOW: 387 err = EXT4_ERR_EOVERFLOW; 388 break; 389 case EBUSY: 390 err = EXT4_ERR_EBUSY; 391 break; 392 case ENOTDIR: 393 err = EXT4_ERR_ENOTDIR; 394 break; 395 case ENOTEMPTY: 396 err = EXT4_ERR_ENOTEMPTY; 397 break; 398 case ESHUTDOWN: 399 err = EXT4_ERR_ESHUTDOWN; 400 break; 401 case EFAULT: 402 err = EXT4_ERR_EFAULT; 403 break; 404 default: 405 err = EXT4_ERR_UNKNOWN; 406 } 407 es->s_last_error_errcode = err; 408 if (!es->s_first_error_time) { 409 es->s_first_error_time = es->s_last_error_time; 410 es->s_first_error_time_hi = es->s_last_error_time_hi; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 es->s_first_error_errcode = es->s_last_error_errcode; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, int error, 428 __u32 ino, __u64 block, 429 const char *func, unsigned int line) 430 { 431 __save_error_info(sb, error, ino, block, func, line); 432 if (!bdev_read_only(sb->s_bdev)) 433 ext4_commit_super(sb, 1); 434 } 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 static bool system_going_down(void) 476 { 477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 478 || system_state == SYSTEM_RESTART; 479 } 480 481 /* Deal with the reporting of failure conditions on a filesystem such as 482 * inconsistencies detected or read IO failures. 483 * 484 * On ext2, we can store the error state of the filesystem in the 485 * superblock. That is not possible on ext4, because we may have other 486 * write ordering constraints on the superblock which prevent us from 487 * writing it out straight away; and given that the journal is about to 488 * be aborted, we can't rely on the current, or future, transactions to 489 * write out the superblock safely. 490 * 491 * We'll just use the jbd2_journal_abort() error code to record an error in 492 * the journal instead. On recovery, the journal will complain about 493 * that error until we've noted it down and cleared it. 494 */ 495 496 static void ext4_handle_error(struct super_block *sb) 497 { 498 if (test_opt(sb, WARN_ON_ERROR)) 499 WARN_ON_ONCE(1); 500 501 if (sb_rdonly(sb)) 502 return; 503 504 if (!test_opt(sb, ERRORS_CONT)) { 505 journal_t *journal = EXT4_SB(sb)->s_journal; 506 507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 508 if (journal) 509 jbd2_journal_abort(journal, -EIO); 510 } 511 /* 512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 513 * could panic during 'reboot -f' as the underlying device got already 514 * disabled. 515 */ 516 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 518 /* 519 * Make sure updated value of ->s_mount_flags will be visible 520 * before ->s_flags update 521 */ 522 smp_wmb(); 523 sb->s_flags |= SB_RDONLY; 524 } else if (test_opt(sb, ERRORS_PANIC)) { 525 panic("EXT4-fs (device %s): panic forced after error\n", 526 sb->s_id); 527 } 528 } 529 530 #define ext4_error_ratelimit(sb) \ 531 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 532 "EXT4-fs error") 533 534 void __ext4_error(struct super_block *sb, const char *function, 535 unsigned int line, int error, __u64 block, 536 const char *fmt, ...) 537 { 538 struct va_format vaf; 539 va_list args; 540 541 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 542 return; 543 544 trace_ext4_error(sb, function, line); 545 if (ext4_error_ratelimit(sb)) { 546 va_start(args, fmt); 547 vaf.fmt = fmt; 548 vaf.va = &args; 549 printk(KERN_CRIT 550 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 551 sb->s_id, function, line, current->comm, &vaf); 552 va_end(args); 553 } 554 save_error_info(sb, error, 0, block, function, line); 555 ext4_handle_error(sb); 556 } 557 558 void __ext4_error_inode(struct inode *inode, const char *function, 559 unsigned int line, ext4_fsblk_t block, int error, 560 const char *fmt, ...) 561 { 562 va_list args; 563 struct va_format vaf; 564 565 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 566 return; 567 568 trace_ext4_error(inode->i_sb, function, line); 569 if (ext4_error_ratelimit(inode->i_sb)) { 570 va_start(args, fmt); 571 vaf.fmt = fmt; 572 vaf.va = &args; 573 if (block) 574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 575 "inode #%lu: block %llu: comm %s: %pV\n", 576 inode->i_sb->s_id, function, line, inode->i_ino, 577 block, current->comm, &vaf); 578 else 579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 580 "inode #%lu: comm %s: %pV\n", 581 inode->i_sb->s_id, function, line, inode->i_ino, 582 current->comm, &vaf); 583 va_end(args); 584 } 585 save_error_info(inode->i_sb, error, inode->i_ino, block, 586 function, line); 587 ext4_handle_error(inode->i_sb); 588 } 589 590 void __ext4_error_file(struct file *file, const char *function, 591 unsigned int line, ext4_fsblk_t block, 592 const char *fmt, ...) 593 { 594 va_list args; 595 struct va_format vaf; 596 struct inode *inode = file_inode(file); 597 char pathname[80], *path; 598 599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 600 return; 601 602 trace_ext4_error(inode->i_sb, function, line); 603 if (ext4_error_ratelimit(inode->i_sb)) { 604 path = file_path(file, pathname, sizeof(pathname)); 605 if (IS_ERR(path)) 606 path = "(unknown)"; 607 va_start(args, fmt); 608 vaf.fmt = fmt; 609 vaf.va = &args; 610 if (block) 611 printk(KERN_CRIT 612 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 613 "block %llu: comm %s: path %s: %pV\n", 614 inode->i_sb->s_id, function, line, inode->i_ino, 615 block, current->comm, path, &vaf); 616 else 617 printk(KERN_CRIT 618 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 619 "comm %s: path %s: %pV\n", 620 inode->i_sb->s_id, function, line, inode->i_ino, 621 current->comm, path, &vaf); 622 va_end(args); 623 } 624 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 625 function, line); 626 ext4_handle_error(inode->i_sb); 627 } 628 629 const char *ext4_decode_error(struct super_block *sb, int errno, 630 char nbuf[16]) 631 { 632 char *errstr = NULL; 633 634 switch (errno) { 635 case -EFSCORRUPTED: 636 errstr = "Corrupt filesystem"; 637 break; 638 case -EFSBADCRC: 639 errstr = "Filesystem failed CRC"; 640 break; 641 case -EIO: 642 errstr = "IO failure"; 643 break; 644 case -ENOMEM: 645 errstr = "Out of memory"; 646 break; 647 case -EROFS: 648 if (!sb || (EXT4_SB(sb)->s_journal && 649 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 650 errstr = "Journal has aborted"; 651 else 652 errstr = "Readonly filesystem"; 653 break; 654 default: 655 /* If the caller passed in an extra buffer for unknown 656 * errors, textualise them now. Else we just return 657 * NULL. */ 658 if (nbuf) { 659 /* Check for truncated error codes... */ 660 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 661 errstr = nbuf; 662 } 663 break; 664 } 665 666 return errstr; 667 } 668 669 /* __ext4_std_error decodes expected errors from journaling functions 670 * automatically and invokes the appropriate error response. */ 671 672 void __ext4_std_error(struct super_block *sb, const char *function, 673 unsigned int line, int errno) 674 { 675 char nbuf[16]; 676 const char *errstr; 677 678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 679 return; 680 681 /* Special case: if the error is EROFS, and we're not already 682 * inside a transaction, then there's really no point in logging 683 * an error. */ 684 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 685 return; 686 687 if (ext4_error_ratelimit(sb)) { 688 errstr = ext4_decode_error(sb, errno, nbuf); 689 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 690 sb->s_id, function, line, errstr); 691 } 692 693 save_error_info(sb, -errno, 0, 0, function, line); 694 ext4_handle_error(sb); 695 } 696 697 /* 698 * ext4_abort is a much stronger failure handler than ext4_error. The 699 * abort function may be used to deal with unrecoverable failures such 700 * as journal IO errors or ENOMEM at a critical moment in log management. 701 * 702 * We unconditionally force the filesystem into an ABORT|READONLY state, 703 * unless the error response on the fs has been set to panic in which 704 * case we take the easy way out and panic immediately. 705 */ 706 707 void __ext4_abort(struct super_block *sb, const char *function, 708 unsigned int line, int error, const char *fmt, ...) 709 { 710 struct va_format vaf; 711 va_list args; 712 713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 714 return; 715 716 save_error_info(sb, error, 0, 0, function, line); 717 va_start(args, fmt); 718 vaf.fmt = fmt; 719 vaf.va = &args; 720 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 721 sb->s_id, function, line, &vaf); 722 va_end(args); 723 724 if (sb_rdonly(sb) == 0) { 725 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 726 if (EXT4_SB(sb)->s_journal) 727 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 728 729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 730 /* 731 * Make sure updated value of ->s_mount_flags will be visible 732 * before ->s_flags update 733 */ 734 smp_wmb(); 735 sb->s_flags |= SB_RDONLY; 736 } 737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) 738 panic("EXT4-fs panic from previous error\n"); 739 } 740 741 void __ext4_msg(struct super_block *sb, 742 const char *prefix, const char *fmt, ...) 743 { 744 struct va_format vaf; 745 va_list args; 746 747 atomic_inc(&EXT4_SB(sb)->s_msg_count); 748 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 749 return; 750 751 va_start(args, fmt); 752 vaf.fmt = fmt; 753 vaf.va = &args; 754 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 755 va_end(args); 756 } 757 758 static int ext4_warning_ratelimit(struct super_block *sb) 759 { 760 atomic_inc(&EXT4_SB(sb)->s_warning_count); 761 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 762 "EXT4-fs warning"); 763 } 764 765 void __ext4_warning(struct super_block *sb, const char *function, 766 unsigned int line, const char *fmt, ...) 767 { 768 struct va_format vaf; 769 va_list args; 770 771 if (!ext4_warning_ratelimit(sb)) 772 return; 773 774 va_start(args, fmt); 775 vaf.fmt = fmt; 776 vaf.va = &args; 777 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 778 sb->s_id, function, line, &vaf); 779 va_end(args); 780 } 781 782 void __ext4_warning_inode(const struct inode *inode, const char *function, 783 unsigned int line, const char *fmt, ...) 784 { 785 struct va_format vaf; 786 va_list args; 787 788 if (!ext4_warning_ratelimit(inode->i_sb)) 789 return; 790 791 va_start(args, fmt); 792 vaf.fmt = fmt; 793 vaf.va = &args; 794 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 795 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 796 function, line, inode->i_ino, current->comm, &vaf); 797 va_end(args); 798 } 799 800 void __ext4_grp_locked_error(const char *function, unsigned int line, 801 struct super_block *sb, ext4_group_t grp, 802 unsigned long ino, ext4_fsblk_t block, 803 const char *fmt, ...) 804 __releases(bitlock) 805 __acquires(bitlock) 806 { 807 struct va_format vaf; 808 va_list args; 809 810 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 811 return; 812 813 trace_ext4_error(sb, function, line); 814 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 815 816 if (ext4_error_ratelimit(sb)) { 817 va_start(args, fmt); 818 vaf.fmt = fmt; 819 vaf.va = &args; 820 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 821 sb->s_id, function, line, grp); 822 if (ino) 823 printk(KERN_CONT "inode %lu: ", ino); 824 if (block) 825 printk(KERN_CONT "block %llu:", 826 (unsigned long long) block); 827 printk(KERN_CONT "%pV\n", &vaf); 828 va_end(args); 829 } 830 831 if (test_opt(sb, WARN_ON_ERROR)) 832 WARN_ON_ONCE(1); 833 834 if (test_opt(sb, ERRORS_CONT)) { 835 ext4_commit_super(sb, 0); 836 return; 837 } 838 839 ext4_unlock_group(sb, grp); 840 ext4_commit_super(sb, 1); 841 ext4_handle_error(sb); 842 /* 843 * We only get here in the ERRORS_RO case; relocking the group 844 * may be dangerous, but nothing bad will happen since the 845 * filesystem will have already been marked read/only and the 846 * journal has been aborted. We return 1 as a hint to callers 847 * who might what to use the return value from 848 * ext4_grp_locked_error() to distinguish between the 849 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 850 * aggressively from the ext4 function in question, with a 851 * more appropriate error code. 852 */ 853 ext4_lock_group(sb, grp); 854 return; 855 } 856 857 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 858 ext4_group_t group, 859 unsigned int flags) 860 { 861 struct ext4_sb_info *sbi = EXT4_SB(sb); 862 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 863 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 864 int ret; 865 866 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 867 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 868 &grp->bb_state); 869 if (!ret) 870 percpu_counter_sub(&sbi->s_freeclusters_counter, 871 grp->bb_free); 872 } 873 874 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 875 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 876 &grp->bb_state); 877 if (!ret && gdp) { 878 int count; 879 880 count = ext4_free_inodes_count(sb, gdp); 881 percpu_counter_sub(&sbi->s_freeinodes_counter, 882 count); 883 } 884 } 885 } 886 887 void ext4_update_dynamic_rev(struct super_block *sb) 888 { 889 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 890 891 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 892 return; 893 894 ext4_warning(sb, 895 "updating to rev %d because of new feature flag, " 896 "running e2fsck is recommended", 897 EXT4_DYNAMIC_REV); 898 899 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 900 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 901 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 902 /* leave es->s_feature_*compat flags alone */ 903 /* es->s_uuid will be set by e2fsck if empty */ 904 905 /* 906 * The rest of the superblock fields should be zero, and if not it 907 * means they are likely already in use, so leave them alone. We 908 * can leave it up to e2fsck to clean up any inconsistencies there. 909 */ 910 } 911 912 /* 913 * Open the external journal device 914 */ 915 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 916 { 917 struct block_device *bdev; 918 919 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 920 if (IS_ERR(bdev)) 921 goto fail; 922 return bdev; 923 924 fail: 925 ext4_msg(sb, KERN_ERR, 926 "failed to open journal device unknown-block(%u,%u) %ld", 927 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 928 return NULL; 929 } 930 931 /* 932 * Release the journal device 933 */ 934 static void ext4_blkdev_put(struct block_device *bdev) 935 { 936 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 937 } 938 939 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 940 { 941 struct block_device *bdev; 942 bdev = sbi->journal_bdev; 943 if (bdev) { 944 ext4_blkdev_put(bdev); 945 sbi->journal_bdev = NULL; 946 } 947 } 948 949 static inline struct inode *orphan_list_entry(struct list_head *l) 950 { 951 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 952 } 953 954 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 955 { 956 struct list_head *l; 957 958 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 959 le32_to_cpu(sbi->s_es->s_last_orphan)); 960 961 printk(KERN_ERR "sb_info orphan list:\n"); 962 list_for_each(l, &sbi->s_orphan) { 963 struct inode *inode = orphan_list_entry(l); 964 printk(KERN_ERR " " 965 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 966 inode->i_sb->s_id, inode->i_ino, inode, 967 inode->i_mode, inode->i_nlink, 968 NEXT_ORPHAN(inode)); 969 } 970 } 971 972 #ifdef CONFIG_QUOTA 973 static int ext4_quota_off(struct super_block *sb, int type); 974 975 static inline void ext4_quota_off_umount(struct super_block *sb) 976 { 977 int type; 978 979 /* Use our quota_off function to clear inode flags etc. */ 980 for (type = 0; type < EXT4_MAXQUOTAS; type++) 981 ext4_quota_off(sb, type); 982 } 983 984 /* 985 * This is a helper function which is used in the mount/remount 986 * codepaths (which holds s_umount) to fetch the quota file name. 987 */ 988 static inline char *get_qf_name(struct super_block *sb, 989 struct ext4_sb_info *sbi, 990 int type) 991 { 992 return rcu_dereference_protected(sbi->s_qf_names[type], 993 lockdep_is_held(&sb->s_umount)); 994 } 995 #else 996 static inline void ext4_quota_off_umount(struct super_block *sb) 997 { 998 } 999 #endif 1000 1001 static void ext4_put_super(struct super_block *sb) 1002 { 1003 struct ext4_sb_info *sbi = EXT4_SB(sb); 1004 struct ext4_super_block *es = sbi->s_es; 1005 struct buffer_head **group_desc; 1006 struct flex_groups **flex_groups; 1007 int aborted = 0; 1008 int i, err; 1009 1010 ext4_unregister_li_request(sb); 1011 ext4_quota_off_umount(sb); 1012 1013 destroy_workqueue(sbi->rsv_conversion_wq); 1014 1015 /* 1016 * Unregister sysfs before destroying jbd2 journal. 1017 * Since we could still access attr_journal_task attribute via sysfs 1018 * path which could have sbi->s_journal->j_task as NULL 1019 */ 1020 ext4_unregister_sysfs(sb); 1021 1022 if (sbi->s_journal) { 1023 aborted = is_journal_aborted(sbi->s_journal); 1024 err = jbd2_journal_destroy(sbi->s_journal); 1025 sbi->s_journal = NULL; 1026 if ((err < 0) && !aborted) { 1027 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1028 } 1029 } 1030 1031 ext4_es_unregister_shrinker(sbi); 1032 del_timer_sync(&sbi->s_err_report); 1033 ext4_release_system_zone(sb); 1034 ext4_mb_release(sb); 1035 ext4_ext_release(sb); 1036 1037 if (!sb_rdonly(sb) && !aborted) { 1038 ext4_clear_feature_journal_needs_recovery(sb); 1039 es->s_state = cpu_to_le16(sbi->s_mount_state); 1040 } 1041 if (!sb_rdonly(sb)) 1042 ext4_commit_super(sb, 1); 1043 1044 rcu_read_lock(); 1045 group_desc = rcu_dereference(sbi->s_group_desc); 1046 for (i = 0; i < sbi->s_gdb_count; i++) 1047 brelse(group_desc[i]); 1048 kvfree(group_desc); 1049 flex_groups = rcu_dereference(sbi->s_flex_groups); 1050 if (flex_groups) { 1051 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1052 kvfree(flex_groups[i]); 1053 kvfree(flex_groups); 1054 } 1055 rcu_read_unlock(); 1056 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1057 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1058 percpu_counter_destroy(&sbi->s_dirs_counter); 1059 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1060 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1061 #ifdef CONFIG_QUOTA 1062 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1063 kfree(get_qf_name(sb, sbi, i)); 1064 #endif 1065 1066 /* Debugging code just in case the in-memory inode orphan list 1067 * isn't empty. The on-disk one can be non-empty if we've 1068 * detected an error and taken the fs readonly, but the 1069 * in-memory list had better be clean by this point. */ 1070 if (!list_empty(&sbi->s_orphan)) 1071 dump_orphan_list(sb, sbi); 1072 J_ASSERT(list_empty(&sbi->s_orphan)); 1073 1074 sync_blockdev(sb->s_bdev); 1075 invalidate_bdev(sb->s_bdev); 1076 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1077 /* 1078 * Invalidate the journal device's buffers. We don't want them 1079 * floating about in memory - the physical journal device may 1080 * hotswapped, and it breaks the `ro-after' testing code. 1081 */ 1082 sync_blockdev(sbi->journal_bdev); 1083 invalidate_bdev(sbi->journal_bdev); 1084 ext4_blkdev_remove(sbi); 1085 } 1086 1087 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1088 sbi->s_ea_inode_cache = NULL; 1089 1090 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1091 sbi->s_ea_block_cache = NULL; 1092 1093 if (sbi->s_mmp_tsk) 1094 kthread_stop(sbi->s_mmp_tsk); 1095 brelse(sbi->s_sbh); 1096 sb->s_fs_info = NULL; 1097 /* 1098 * Now that we are completely done shutting down the 1099 * superblock, we need to actually destroy the kobject. 1100 */ 1101 kobject_put(&sbi->s_kobj); 1102 wait_for_completion(&sbi->s_kobj_unregister); 1103 if (sbi->s_chksum_driver) 1104 crypto_free_shash(sbi->s_chksum_driver); 1105 kfree(sbi->s_blockgroup_lock); 1106 fs_put_dax(sbi->s_daxdev); 1107 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1108 #ifdef CONFIG_UNICODE 1109 utf8_unload(sbi->s_encoding); 1110 #endif 1111 kfree(sbi); 1112 } 1113 1114 static struct kmem_cache *ext4_inode_cachep; 1115 1116 /* 1117 * Called inside transaction, so use GFP_NOFS 1118 */ 1119 static struct inode *ext4_alloc_inode(struct super_block *sb) 1120 { 1121 struct ext4_inode_info *ei; 1122 1123 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1124 if (!ei) 1125 return NULL; 1126 1127 inode_set_iversion(&ei->vfs_inode, 1); 1128 spin_lock_init(&ei->i_raw_lock); 1129 INIT_LIST_HEAD(&ei->i_prealloc_list); 1130 atomic_set(&ei->i_prealloc_active, 0); 1131 spin_lock_init(&ei->i_prealloc_lock); 1132 ext4_es_init_tree(&ei->i_es_tree); 1133 rwlock_init(&ei->i_es_lock); 1134 INIT_LIST_HEAD(&ei->i_es_list); 1135 ei->i_es_all_nr = 0; 1136 ei->i_es_shk_nr = 0; 1137 ei->i_es_shrink_lblk = 0; 1138 ei->i_reserved_data_blocks = 0; 1139 spin_lock_init(&(ei->i_block_reservation_lock)); 1140 ext4_init_pending_tree(&ei->i_pending_tree); 1141 #ifdef CONFIG_QUOTA 1142 ei->i_reserved_quota = 0; 1143 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1144 #endif 1145 ei->jinode = NULL; 1146 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1147 spin_lock_init(&ei->i_completed_io_lock); 1148 ei->i_sync_tid = 0; 1149 ei->i_datasync_tid = 0; 1150 atomic_set(&ei->i_unwritten, 0); 1151 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1152 return &ei->vfs_inode; 1153 } 1154 1155 static int ext4_drop_inode(struct inode *inode) 1156 { 1157 int drop = generic_drop_inode(inode); 1158 1159 if (!drop) 1160 drop = fscrypt_drop_inode(inode); 1161 1162 trace_ext4_drop_inode(inode, drop); 1163 return drop; 1164 } 1165 1166 static void ext4_free_in_core_inode(struct inode *inode) 1167 { 1168 fscrypt_free_inode(inode); 1169 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1170 } 1171 1172 static void ext4_destroy_inode(struct inode *inode) 1173 { 1174 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1175 ext4_msg(inode->i_sb, KERN_ERR, 1176 "Inode %lu (%p): orphan list check failed!", 1177 inode->i_ino, EXT4_I(inode)); 1178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1179 EXT4_I(inode), sizeof(struct ext4_inode_info), 1180 true); 1181 dump_stack(); 1182 } 1183 } 1184 1185 static void init_once(void *foo) 1186 { 1187 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1188 1189 INIT_LIST_HEAD(&ei->i_orphan); 1190 init_rwsem(&ei->xattr_sem); 1191 init_rwsem(&ei->i_data_sem); 1192 init_rwsem(&ei->i_mmap_sem); 1193 inode_init_once(&ei->vfs_inode); 1194 } 1195 1196 static int __init init_inodecache(void) 1197 { 1198 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1199 sizeof(struct ext4_inode_info), 0, 1200 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1201 SLAB_ACCOUNT), 1202 offsetof(struct ext4_inode_info, i_data), 1203 sizeof_field(struct ext4_inode_info, i_data), 1204 init_once); 1205 if (ext4_inode_cachep == NULL) 1206 return -ENOMEM; 1207 return 0; 1208 } 1209 1210 static void destroy_inodecache(void) 1211 { 1212 /* 1213 * Make sure all delayed rcu free inodes are flushed before we 1214 * destroy cache. 1215 */ 1216 rcu_barrier(); 1217 kmem_cache_destroy(ext4_inode_cachep); 1218 } 1219 1220 void ext4_clear_inode(struct inode *inode) 1221 { 1222 invalidate_inode_buffers(inode); 1223 clear_inode(inode); 1224 ext4_discard_preallocations(inode, 0); 1225 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1226 dquot_drop(inode); 1227 if (EXT4_I(inode)->jinode) { 1228 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1229 EXT4_I(inode)->jinode); 1230 jbd2_free_inode(EXT4_I(inode)->jinode); 1231 EXT4_I(inode)->jinode = NULL; 1232 } 1233 fscrypt_put_encryption_info(inode); 1234 fsverity_cleanup_inode(inode); 1235 } 1236 1237 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1238 u64 ino, u32 generation) 1239 { 1240 struct inode *inode; 1241 1242 /* 1243 * Currently we don't know the generation for parent directory, so 1244 * a generation of 0 means "accept any" 1245 */ 1246 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1247 if (IS_ERR(inode)) 1248 return ERR_CAST(inode); 1249 if (generation && inode->i_generation != generation) { 1250 iput(inode); 1251 return ERR_PTR(-ESTALE); 1252 } 1253 1254 return inode; 1255 } 1256 1257 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1258 int fh_len, int fh_type) 1259 { 1260 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1261 ext4_nfs_get_inode); 1262 } 1263 1264 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1265 int fh_len, int fh_type) 1266 { 1267 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1268 ext4_nfs_get_inode); 1269 } 1270 1271 static int ext4_nfs_commit_metadata(struct inode *inode) 1272 { 1273 struct writeback_control wbc = { 1274 .sync_mode = WB_SYNC_ALL 1275 }; 1276 1277 trace_ext4_nfs_commit_metadata(inode); 1278 return ext4_write_inode(inode, &wbc); 1279 } 1280 1281 /* 1282 * Try to release metadata pages (indirect blocks, directories) which are 1283 * mapped via the block device. Since these pages could have journal heads 1284 * which would prevent try_to_free_buffers() from freeing them, we must use 1285 * jbd2 layer's try_to_free_buffers() function to release them. 1286 */ 1287 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1288 gfp_t wait) 1289 { 1290 journal_t *journal = EXT4_SB(sb)->s_journal; 1291 1292 WARN_ON(PageChecked(page)); 1293 if (!page_has_buffers(page)) 1294 return 0; 1295 if (journal) 1296 return jbd2_journal_try_to_free_buffers(journal, page); 1297 1298 return try_to_free_buffers(page); 1299 } 1300 1301 #ifdef CONFIG_FS_ENCRYPTION 1302 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1303 { 1304 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1305 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1306 } 1307 1308 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1309 void *fs_data) 1310 { 1311 handle_t *handle = fs_data; 1312 int res, res2, credits, retries = 0; 1313 1314 /* 1315 * Encrypting the root directory is not allowed because e2fsck expects 1316 * lost+found to exist and be unencrypted, and encrypting the root 1317 * directory would imply encrypting the lost+found directory as well as 1318 * the filename "lost+found" itself. 1319 */ 1320 if (inode->i_ino == EXT4_ROOT_INO) 1321 return -EPERM; 1322 1323 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1324 return -EINVAL; 1325 1326 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1327 return -EOPNOTSUPP; 1328 1329 res = ext4_convert_inline_data(inode); 1330 if (res) 1331 return res; 1332 1333 /* 1334 * If a journal handle was specified, then the encryption context is 1335 * being set on a new inode via inheritance and is part of a larger 1336 * transaction to create the inode. Otherwise the encryption context is 1337 * being set on an existing inode in its own transaction. Only in the 1338 * latter case should the "retry on ENOSPC" logic be used. 1339 */ 1340 1341 if (handle) { 1342 res = ext4_xattr_set_handle(handle, inode, 1343 EXT4_XATTR_INDEX_ENCRYPTION, 1344 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1345 ctx, len, 0); 1346 if (!res) { 1347 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1348 ext4_clear_inode_state(inode, 1349 EXT4_STATE_MAY_INLINE_DATA); 1350 /* 1351 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1352 * S_DAX may be disabled 1353 */ 1354 ext4_set_inode_flags(inode, false); 1355 } 1356 return res; 1357 } 1358 1359 res = dquot_initialize(inode); 1360 if (res) 1361 return res; 1362 retry: 1363 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1364 &credits); 1365 if (res) 1366 return res; 1367 1368 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1369 if (IS_ERR(handle)) 1370 return PTR_ERR(handle); 1371 1372 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1373 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1374 ctx, len, 0); 1375 if (!res) { 1376 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1377 /* 1378 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1379 * S_DAX may be disabled 1380 */ 1381 ext4_set_inode_flags(inode, false); 1382 res = ext4_mark_inode_dirty(handle, inode); 1383 if (res) 1384 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1385 } 1386 res2 = ext4_journal_stop(handle); 1387 1388 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1389 goto retry; 1390 if (!res) 1391 res = res2; 1392 return res; 1393 } 1394 1395 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1396 { 1397 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1398 } 1399 1400 static bool ext4_has_stable_inodes(struct super_block *sb) 1401 { 1402 return ext4_has_feature_stable_inodes(sb); 1403 } 1404 1405 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1406 int *ino_bits_ret, int *lblk_bits_ret) 1407 { 1408 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1409 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1410 } 1411 1412 static const struct fscrypt_operations ext4_cryptops = { 1413 .key_prefix = "ext4:", 1414 .get_context = ext4_get_context, 1415 .set_context = ext4_set_context, 1416 .get_dummy_policy = ext4_get_dummy_policy, 1417 .empty_dir = ext4_empty_dir, 1418 .max_namelen = EXT4_NAME_LEN, 1419 .has_stable_inodes = ext4_has_stable_inodes, 1420 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1421 }; 1422 #endif 1423 1424 #ifdef CONFIG_QUOTA 1425 static const char * const quotatypes[] = INITQFNAMES; 1426 #define QTYPE2NAME(t) (quotatypes[t]) 1427 1428 static int ext4_write_dquot(struct dquot *dquot); 1429 static int ext4_acquire_dquot(struct dquot *dquot); 1430 static int ext4_release_dquot(struct dquot *dquot); 1431 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1432 static int ext4_write_info(struct super_block *sb, int type); 1433 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1434 const struct path *path); 1435 static int ext4_quota_on_mount(struct super_block *sb, int type); 1436 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1437 size_t len, loff_t off); 1438 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1439 const char *data, size_t len, loff_t off); 1440 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1441 unsigned int flags); 1442 static int ext4_enable_quotas(struct super_block *sb); 1443 1444 static struct dquot **ext4_get_dquots(struct inode *inode) 1445 { 1446 return EXT4_I(inode)->i_dquot; 1447 } 1448 1449 static const struct dquot_operations ext4_quota_operations = { 1450 .get_reserved_space = ext4_get_reserved_space, 1451 .write_dquot = ext4_write_dquot, 1452 .acquire_dquot = ext4_acquire_dquot, 1453 .release_dquot = ext4_release_dquot, 1454 .mark_dirty = ext4_mark_dquot_dirty, 1455 .write_info = ext4_write_info, 1456 .alloc_dquot = dquot_alloc, 1457 .destroy_dquot = dquot_destroy, 1458 .get_projid = ext4_get_projid, 1459 .get_inode_usage = ext4_get_inode_usage, 1460 .get_next_id = dquot_get_next_id, 1461 }; 1462 1463 static const struct quotactl_ops ext4_qctl_operations = { 1464 .quota_on = ext4_quota_on, 1465 .quota_off = ext4_quota_off, 1466 .quota_sync = dquot_quota_sync, 1467 .get_state = dquot_get_state, 1468 .set_info = dquot_set_dqinfo, 1469 .get_dqblk = dquot_get_dqblk, 1470 .set_dqblk = dquot_set_dqblk, 1471 .get_nextdqblk = dquot_get_next_dqblk, 1472 }; 1473 #endif 1474 1475 static const struct super_operations ext4_sops = { 1476 .alloc_inode = ext4_alloc_inode, 1477 .free_inode = ext4_free_in_core_inode, 1478 .destroy_inode = ext4_destroy_inode, 1479 .write_inode = ext4_write_inode, 1480 .dirty_inode = ext4_dirty_inode, 1481 .drop_inode = ext4_drop_inode, 1482 .evict_inode = ext4_evict_inode, 1483 .put_super = ext4_put_super, 1484 .sync_fs = ext4_sync_fs, 1485 .freeze_fs = ext4_freeze, 1486 .unfreeze_fs = ext4_unfreeze, 1487 .statfs = ext4_statfs, 1488 .remount_fs = ext4_remount, 1489 .show_options = ext4_show_options, 1490 #ifdef CONFIG_QUOTA 1491 .quota_read = ext4_quota_read, 1492 .quota_write = ext4_quota_write, 1493 .get_dquots = ext4_get_dquots, 1494 #endif 1495 .bdev_try_to_free_page = bdev_try_to_free_page, 1496 }; 1497 1498 static const struct export_operations ext4_export_ops = { 1499 .fh_to_dentry = ext4_fh_to_dentry, 1500 .fh_to_parent = ext4_fh_to_parent, 1501 .get_parent = ext4_get_parent, 1502 .commit_metadata = ext4_nfs_commit_metadata, 1503 }; 1504 1505 enum { 1506 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1507 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1508 Opt_nouid32, Opt_debug, Opt_removed, 1509 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1510 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1511 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1512 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1513 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1514 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1515 Opt_inlinecrypt, 1516 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1517 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1518 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1519 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1520 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1521 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1522 Opt_nowarn_on_error, Opt_mblk_io_submit, 1523 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1524 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1525 Opt_inode_readahead_blks, Opt_journal_ioprio, 1526 Opt_dioread_nolock, Opt_dioread_lock, 1527 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1528 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1529 Opt_prefetch_block_bitmaps, 1530 }; 1531 1532 static const match_table_t tokens = { 1533 {Opt_bsd_df, "bsddf"}, 1534 {Opt_minix_df, "minixdf"}, 1535 {Opt_grpid, "grpid"}, 1536 {Opt_grpid, "bsdgroups"}, 1537 {Opt_nogrpid, "nogrpid"}, 1538 {Opt_nogrpid, "sysvgroups"}, 1539 {Opt_resgid, "resgid=%u"}, 1540 {Opt_resuid, "resuid=%u"}, 1541 {Opt_sb, "sb=%u"}, 1542 {Opt_err_cont, "errors=continue"}, 1543 {Opt_err_panic, "errors=panic"}, 1544 {Opt_err_ro, "errors=remount-ro"}, 1545 {Opt_nouid32, "nouid32"}, 1546 {Opt_debug, "debug"}, 1547 {Opt_removed, "oldalloc"}, 1548 {Opt_removed, "orlov"}, 1549 {Opt_user_xattr, "user_xattr"}, 1550 {Opt_nouser_xattr, "nouser_xattr"}, 1551 {Opt_acl, "acl"}, 1552 {Opt_noacl, "noacl"}, 1553 {Opt_noload, "norecovery"}, 1554 {Opt_noload, "noload"}, 1555 {Opt_removed, "nobh"}, 1556 {Opt_removed, "bh"}, 1557 {Opt_commit, "commit=%u"}, 1558 {Opt_min_batch_time, "min_batch_time=%u"}, 1559 {Opt_max_batch_time, "max_batch_time=%u"}, 1560 {Opt_journal_dev, "journal_dev=%u"}, 1561 {Opt_journal_path, "journal_path=%s"}, 1562 {Opt_journal_checksum, "journal_checksum"}, 1563 {Opt_nojournal_checksum, "nojournal_checksum"}, 1564 {Opt_journal_async_commit, "journal_async_commit"}, 1565 {Opt_abort, "abort"}, 1566 {Opt_data_journal, "data=journal"}, 1567 {Opt_data_ordered, "data=ordered"}, 1568 {Opt_data_writeback, "data=writeback"}, 1569 {Opt_data_err_abort, "data_err=abort"}, 1570 {Opt_data_err_ignore, "data_err=ignore"}, 1571 {Opt_offusrjquota, "usrjquota="}, 1572 {Opt_usrjquota, "usrjquota=%s"}, 1573 {Opt_offgrpjquota, "grpjquota="}, 1574 {Opt_grpjquota, "grpjquota=%s"}, 1575 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1576 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1577 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1578 {Opt_grpquota, "grpquota"}, 1579 {Opt_noquota, "noquota"}, 1580 {Opt_quota, "quota"}, 1581 {Opt_usrquota, "usrquota"}, 1582 {Opt_prjquota, "prjquota"}, 1583 {Opt_barrier, "barrier=%u"}, 1584 {Opt_barrier, "barrier"}, 1585 {Opt_nobarrier, "nobarrier"}, 1586 {Opt_i_version, "i_version"}, 1587 {Opt_dax, "dax"}, 1588 {Opt_dax_always, "dax=always"}, 1589 {Opt_dax_inode, "dax=inode"}, 1590 {Opt_dax_never, "dax=never"}, 1591 {Opt_stripe, "stripe=%u"}, 1592 {Opt_delalloc, "delalloc"}, 1593 {Opt_warn_on_error, "warn_on_error"}, 1594 {Opt_nowarn_on_error, "nowarn_on_error"}, 1595 {Opt_lazytime, "lazytime"}, 1596 {Opt_nolazytime, "nolazytime"}, 1597 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1598 {Opt_nodelalloc, "nodelalloc"}, 1599 {Opt_removed, "mblk_io_submit"}, 1600 {Opt_removed, "nomblk_io_submit"}, 1601 {Opt_block_validity, "block_validity"}, 1602 {Opt_noblock_validity, "noblock_validity"}, 1603 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1604 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1605 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1606 {Opt_auto_da_alloc, "auto_da_alloc"}, 1607 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1608 {Opt_dioread_nolock, "dioread_nolock"}, 1609 {Opt_dioread_lock, "nodioread_nolock"}, 1610 {Opt_dioread_lock, "dioread_lock"}, 1611 {Opt_discard, "discard"}, 1612 {Opt_nodiscard, "nodiscard"}, 1613 {Opt_init_itable, "init_itable=%u"}, 1614 {Opt_init_itable, "init_itable"}, 1615 {Opt_noinit_itable, "noinit_itable"}, 1616 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1617 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1618 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1619 {Opt_inlinecrypt, "inlinecrypt"}, 1620 {Opt_nombcache, "nombcache"}, 1621 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1622 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, 1623 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1624 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1625 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1626 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1627 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1628 {Opt_err, NULL}, 1629 }; 1630 1631 static ext4_fsblk_t get_sb_block(void **data) 1632 { 1633 ext4_fsblk_t sb_block; 1634 char *options = (char *) *data; 1635 1636 if (!options || strncmp(options, "sb=", 3) != 0) 1637 return 1; /* Default location */ 1638 1639 options += 3; 1640 /* TODO: use simple_strtoll with >32bit ext4 */ 1641 sb_block = simple_strtoul(options, &options, 0); 1642 if (*options && *options != ',') { 1643 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1644 (char *) *data); 1645 return 1; 1646 } 1647 if (*options == ',') 1648 options++; 1649 *data = (void *) options; 1650 1651 return sb_block; 1652 } 1653 1654 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1655 static const char deprecated_msg[] = 1656 "Mount option \"%s\" will be removed by %s\n" 1657 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1658 1659 #ifdef CONFIG_QUOTA 1660 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1661 { 1662 struct ext4_sb_info *sbi = EXT4_SB(sb); 1663 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1664 int ret = -1; 1665 1666 if (sb_any_quota_loaded(sb) && !old_qname) { 1667 ext4_msg(sb, KERN_ERR, 1668 "Cannot change journaled " 1669 "quota options when quota turned on"); 1670 return -1; 1671 } 1672 if (ext4_has_feature_quota(sb)) { 1673 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1674 "ignored when QUOTA feature is enabled"); 1675 return 1; 1676 } 1677 qname = match_strdup(args); 1678 if (!qname) { 1679 ext4_msg(sb, KERN_ERR, 1680 "Not enough memory for storing quotafile name"); 1681 return -1; 1682 } 1683 if (old_qname) { 1684 if (strcmp(old_qname, qname) == 0) 1685 ret = 1; 1686 else 1687 ext4_msg(sb, KERN_ERR, 1688 "%s quota file already specified", 1689 QTYPE2NAME(qtype)); 1690 goto errout; 1691 } 1692 if (strchr(qname, '/')) { 1693 ext4_msg(sb, KERN_ERR, 1694 "quotafile must be on filesystem root"); 1695 goto errout; 1696 } 1697 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1698 set_opt(sb, QUOTA); 1699 return 1; 1700 errout: 1701 kfree(qname); 1702 return ret; 1703 } 1704 1705 static int clear_qf_name(struct super_block *sb, int qtype) 1706 { 1707 1708 struct ext4_sb_info *sbi = EXT4_SB(sb); 1709 char *old_qname = get_qf_name(sb, sbi, qtype); 1710 1711 if (sb_any_quota_loaded(sb) && old_qname) { 1712 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1713 " when quota turned on"); 1714 return -1; 1715 } 1716 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1717 synchronize_rcu(); 1718 kfree(old_qname); 1719 return 1; 1720 } 1721 #endif 1722 1723 #define MOPT_SET 0x0001 1724 #define MOPT_CLEAR 0x0002 1725 #define MOPT_NOSUPPORT 0x0004 1726 #define MOPT_EXPLICIT 0x0008 1727 #define MOPT_CLEAR_ERR 0x0010 1728 #define MOPT_GTE0 0x0020 1729 #ifdef CONFIG_QUOTA 1730 #define MOPT_Q 0 1731 #define MOPT_QFMT 0x0040 1732 #else 1733 #define MOPT_Q MOPT_NOSUPPORT 1734 #define MOPT_QFMT MOPT_NOSUPPORT 1735 #endif 1736 #define MOPT_DATAJ 0x0080 1737 #define MOPT_NO_EXT2 0x0100 1738 #define MOPT_NO_EXT3 0x0200 1739 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1740 #define MOPT_STRING 0x0400 1741 #define MOPT_SKIP 0x0800 1742 1743 static const struct mount_opts { 1744 int token; 1745 int mount_opt; 1746 int flags; 1747 } ext4_mount_opts[] = { 1748 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1749 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1750 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1751 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1752 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1753 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1754 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1755 MOPT_EXT4_ONLY | MOPT_SET}, 1756 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1757 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1758 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1759 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1760 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1761 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1762 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1763 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1764 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1765 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1766 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1767 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1768 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1769 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1770 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1771 EXT4_MOUNT_JOURNAL_CHECKSUM), 1772 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1773 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1774 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1775 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1776 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1777 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1778 MOPT_NO_EXT2}, 1779 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1780 MOPT_NO_EXT2}, 1781 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1782 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1783 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1784 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1785 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1786 {Opt_commit, 0, MOPT_GTE0}, 1787 {Opt_max_batch_time, 0, MOPT_GTE0}, 1788 {Opt_min_batch_time, 0, MOPT_GTE0}, 1789 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1790 {Opt_init_itable, 0, MOPT_GTE0}, 1791 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1792 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1793 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1794 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1795 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1796 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1797 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1798 {Opt_stripe, 0, MOPT_GTE0}, 1799 {Opt_resuid, 0, MOPT_GTE0}, 1800 {Opt_resgid, 0, MOPT_GTE0}, 1801 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1802 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1804 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1805 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1806 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1807 MOPT_NO_EXT2 | MOPT_DATAJ}, 1808 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1809 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1810 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1811 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1812 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1813 #else 1814 {Opt_acl, 0, MOPT_NOSUPPORT}, 1815 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1816 #endif 1817 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1818 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1819 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1820 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1821 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1822 MOPT_SET | MOPT_Q}, 1823 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1824 MOPT_SET | MOPT_Q}, 1825 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1826 MOPT_SET | MOPT_Q}, 1827 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1828 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1829 MOPT_CLEAR | MOPT_Q}, 1830 {Opt_usrjquota, 0, MOPT_Q}, 1831 {Opt_grpjquota, 0, MOPT_Q}, 1832 {Opt_offusrjquota, 0, MOPT_Q}, 1833 {Opt_offgrpjquota, 0, MOPT_Q}, 1834 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1835 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1836 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1837 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1838 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1839 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1840 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, 1841 MOPT_SET}, 1842 {Opt_err, 0, 0} 1843 }; 1844 1845 #ifdef CONFIG_UNICODE 1846 static const struct ext4_sb_encodings { 1847 __u16 magic; 1848 char *name; 1849 char *version; 1850 } ext4_sb_encoding_map[] = { 1851 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1852 }; 1853 1854 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1855 const struct ext4_sb_encodings **encoding, 1856 __u16 *flags) 1857 { 1858 __u16 magic = le16_to_cpu(es->s_encoding); 1859 int i; 1860 1861 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1862 if (magic == ext4_sb_encoding_map[i].magic) 1863 break; 1864 1865 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1866 return -EINVAL; 1867 1868 *encoding = &ext4_sb_encoding_map[i]; 1869 *flags = le16_to_cpu(es->s_encoding_flags); 1870 1871 return 0; 1872 } 1873 #endif 1874 1875 static int ext4_set_test_dummy_encryption(struct super_block *sb, 1876 const char *opt, 1877 const substring_t *arg, 1878 bool is_remount) 1879 { 1880 #ifdef CONFIG_FS_ENCRYPTION 1881 struct ext4_sb_info *sbi = EXT4_SB(sb); 1882 int err; 1883 1884 /* 1885 * This mount option is just for testing, and it's not worthwhile to 1886 * implement the extra complexity (e.g. RCU protection) that would be 1887 * needed to allow it to be set or changed during remount. We do allow 1888 * it to be specified during remount, but only if there is no change. 1889 */ 1890 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 1891 ext4_msg(sb, KERN_WARNING, 1892 "Can't set test_dummy_encryption on remount"); 1893 return -1; 1894 } 1895 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 1896 &sbi->s_dummy_enc_policy); 1897 if (err) { 1898 if (err == -EEXIST) 1899 ext4_msg(sb, KERN_WARNING, 1900 "Can't change test_dummy_encryption on remount"); 1901 else if (err == -EINVAL) 1902 ext4_msg(sb, KERN_WARNING, 1903 "Value of option \"%s\" is unrecognized", opt); 1904 else 1905 ext4_msg(sb, KERN_WARNING, 1906 "Error processing option \"%s\" [%d]", 1907 opt, err); 1908 return -1; 1909 } 1910 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 1911 #else 1912 ext4_msg(sb, KERN_WARNING, 1913 "Test dummy encryption mount option ignored"); 1914 #endif 1915 return 1; 1916 } 1917 1918 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1919 substring_t *args, unsigned long *journal_devnum, 1920 unsigned int *journal_ioprio, int is_remount) 1921 { 1922 struct ext4_sb_info *sbi = EXT4_SB(sb); 1923 const struct mount_opts *m; 1924 kuid_t uid; 1925 kgid_t gid; 1926 int arg = 0; 1927 1928 #ifdef CONFIG_QUOTA 1929 if (token == Opt_usrjquota) 1930 return set_qf_name(sb, USRQUOTA, &args[0]); 1931 else if (token == Opt_grpjquota) 1932 return set_qf_name(sb, GRPQUOTA, &args[0]); 1933 else if (token == Opt_offusrjquota) 1934 return clear_qf_name(sb, USRQUOTA); 1935 else if (token == Opt_offgrpjquota) 1936 return clear_qf_name(sb, GRPQUOTA); 1937 #endif 1938 switch (token) { 1939 case Opt_noacl: 1940 case Opt_nouser_xattr: 1941 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1942 break; 1943 case Opt_sb: 1944 return 1; /* handled by get_sb_block() */ 1945 case Opt_removed: 1946 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1947 return 1; 1948 case Opt_abort: 1949 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1950 return 1; 1951 case Opt_i_version: 1952 sb->s_flags |= SB_I_VERSION; 1953 return 1; 1954 case Opt_lazytime: 1955 sb->s_flags |= SB_LAZYTIME; 1956 return 1; 1957 case Opt_nolazytime: 1958 sb->s_flags &= ~SB_LAZYTIME; 1959 return 1; 1960 case Opt_inlinecrypt: 1961 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1962 sb->s_flags |= SB_INLINECRYPT; 1963 #else 1964 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 1965 #endif 1966 return 1; 1967 } 1968 1969 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1970 if (token == m->token) 1971 break; 1972 1973 if (m->token == Opt_err) { 1974 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1975 "or missing value", opt); 1976 return -1; 1977 } 1978 1979 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1980 ext4_msg(sb, KERN_ERR, 1981 "Mount option \"%s\" incompatible with ext2", opt); 1982 return -1; 1983 } 1984 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1985 ext4_msg(sb, KERN_ERR, 1986 "Mount option \"%s\" incompatible with ext3", opt); 1987 return -1; 1988 } 1989 1990 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1991 return -1; 1992 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1993 return -1; 1994 if (m->flags & MOPT_EXPLICIT) { 1995 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1996 set_opt2(sb, EXPLICIT_DELALLOC); 1997 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1998 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1999 } else 2000 return -1; 2001 } 2002 if (m->flags & MOPT_CLEAR_ERR) 2003 clear_opt(sb, ERRORS_MASK); 2004 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2005 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2006 "options when quota turned on"); 2007 return -1; 2008 } 2009 2010 if (m->flags & MOPT_NOSUPPORT) { 2011 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2012 } else if (token == Opt_commit) { 2013 if (arg == 0) 2014 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2015 else if (arg > INT_MAX / HZ) { 2016 ext4_msg(sb, KERN_ERR, 2017 "Invalid commit interval %d, " 2018 "must be smaller than %d", 2019 arg, INT_MAX / HZ); 2020 return -1; 2021 } 2022 sbi->s_commit_interval = HZ * arg; 2023 } else if (token == Opt_debug_want_extra_isize) { 2024 if ((arg & 1) || 2025 (arg < 4) || 2026 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2027 ext4_msg(sb, KERN_ERR, 2028 "Invalid want_extra_isize %d", arg); 2029 return -1; 2030 } 2031 sbi->s_want_extra_isize = arg; 2032 } else if (token == Opt_max_batch_time) { 2033 sbi->s_max_batch_time = arg; 2034 } else if (token == Opt_min_batch_time) { 2035 sbi->s_min_batch_time = arg; 2036 } else if (token == Opt_inode_readahead_blks) { 2037 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2038 ext4_msg(sb, KERN_ERR, 2039 "EXT4-fs: inode_readahead_blks must be " 2040 "0 or a power of 2 smaller than 2^31"); 2041 return -1; 2042 } 2043 sbi->s_inode_readahead_blks = arg; 2044 } else if (token == Opt_init_itable) { 2045 set_opt(sb, INIT_INODE_TABLE); 2046 if (!args->from) 2047 arg = EXT4_DEF_LI_WAIT_MULT; 2048 sbi->s_li_wait_mult = arg; 2049 } else if (token == Opt_max_dir_size_kb) { 2050 sbi->s_max_dir_size_kb = arg; 2051 } else if (token == Opt_stripe) { 2052 sbi->s_stripe = arg; 2053 } else if (token == Opt_resuid) { 2054 uid = make_kuid(current_user_ns(), arg); 2055 if (!uid_valid(uid)) { 2056 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2057 return -1; 2058 } 2059 sbi->s_resuid = uid; 2060 } else if (token == Opt_resgid) { 2061 gid = make_kgid(current_user_ns(), arg); 2062 if (!gid_valid(gid)) { 2063 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2064 return -1; 2065 } 2066 sbi->s_resgid = gid; 2067 } else if (token == Opt_journal_dev) { 2068 if (is_remount) { 2069 ext4_msg(sb, KERN_ERR, 2070 "Cannot specify journal on remount"); 2071 return -1; 2072 } 2073 *journal_devnum = arg; 2074 } else if (token == Opt_journal_path) { 2075 char *journal_path; 2076 struct inode *journal_inode; 2077 struct path path; 2078 int error; 2079 2080 if (is_remount) { 2081 ext4_msg(sb, KERN_ERR, 2082 "Cannot specify journal on remount"); 2083 return -1; 2084 } 2085 journal_path = match_strdup(&args[0]); 2086 if (!journal_path) { 2087 ext4_msg(sb, KERN_ERR, "error: could not dup " 2088 "journal device string"); 2089 return -1; 2090 } 2091 2092 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2093 if (error) { 2094 ext4_msg(sb, KERN_ERR, "error: could not find " 2095 "journal device path: error %d", error); 2096 kfree(journal_path); 2097 return -1; 2098 } 2099 2100 journal_inode = d_inode(path.dentry); 2101 if (!S_ISBLK(journal_inode->i_mode)) { 2102 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2103 "is not a block device", journal_path); 2104 path_put(&path); 2105 kfree(journal_path); 2106 return -1; 2107 } 2108 2109 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2110 path_put(&path); 2111 kfree(journal_path); 2112 } else if (token == Opt_journal_ioprio) { 2113 if (arg > 7) { 2114 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2115 " (must be 0-7)"); 2116 return -1; 2117 } 2118 *journal_ioprio = 2119 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2120 } else if (token == Opt_test_dummy_encryption) { 2121 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2122 is_remount); 2123 } else if (m->flags & MOPT_DATAJ) { 2124 if (is_remount) { 2125 if (!sbi->s_journal) 2126 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2127 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2128 ext4_msg(sb, KERN_ERR, 2129 "Cannot change data mode on remount"); 2130 return -1; 2131 } 2132 } else { 2133 clear_opt(sb, DATA_FLAGS); 2134 sbi->s_mount_opt |= m->mount_opt; 2135 } 2136 #ifdef CONFIG_QUOTA 2137 } else if (m->flags & MOPT_QFMT) { 2138 if (sb_any_quota_loaded(sb) && 2139 sbi->s_jquota_fmt != m->mount_opt) { 2140 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2141 "quota options when quota turned on"); 2142 return -1; 2143 } 2144 if (ext4_has_feature_quota(sb)) { 2145 ext4_msg(sb, KERN_INFO, 2146 "Quota format mount options ignored " 2147 "when QUOTA feature is enabled"); 2148 return 1; 2149 } 2150 sbi->s_jquota_fmt = m->mount_opt; 2151 #endif 2152 } else if (token == Opt_dax || token == Opt_dax_always || 2153 token == Opt_dax_inode || token == Opt_dax_never) { 2154 #ifdef CONFIG_FS_DAX 2155 switch (token) { 2156 case Opt_dax: 2157 case Opt_dax_always: 2158 if (is_remount && 2159 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2160 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2161 fail_dax_change_remount: 2162 ext4_msg(sb, KERN_ERR, "can't change " 2163 "dax mount option while remounting"); 2164 return -1; 2165 } 2166 if (is_remount && 2167 (test_opt(sb, DATA_FLAGS) == 2168 EXT4_MOUNT_JOURNAL_DATA)) { 2169 ext4_msg(sb, KERN_ERR, "can't mount with " 2170 "both data=journal and dax"); 2171 return -1; 2172 } 2173 ext4_msg(sb, KERN_WARNING, 2174 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2175 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2176 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2177 break; 2178 case Opt_dax_never: 2179 if (is_remount && 2180 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2181 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2182 goto fail_dax_change_remount; 2183 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2184 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2185 break; 2186 case Opt_dax_inode: 2187 if (is_remount && 2188 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2189 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2190 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2191 goto fail_dax_change_remount; 2192 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2193 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2194 /* Strictly for printing options */ 2195 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2196 break; 2197 } 2198 #else 2199 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2200 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2201 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2202 return -1; 2203 #endif 2204 } else if (token == Opt_data_err_abort) { 2205 sbi->s_mount_opt |= m->mount_opt; 2206 } else if (token == Opt_data_err_ignore) { 2207 sbi->s_mount_opt &= ~m->mount_opt; 2208 } else { 2209 if (!args->from) 2210 arg = 1; 2211 if (m->flags & MOPT_CLEAR) 2212 arg = !arg; 2213 else if (unlikely(!(m->flags & MOPT_SET))) { 2214 ext4_msg(sb, KERN_WARNING, 2215 "buggy handling of option %s", opt); 2216 WARN_ON(1); 2217 return -1; 2218 } 2219 if (arg != 0) 2220 sbi->s_mount_opt |= m->mount_opt; 2221 else 2222 sbi->s_mount_opt &= ~m->mount_opt; 2223 } 2224 return 1; 2225 } 2226 2227 static int parse_options(char *options, struct super_block *sb, 2228 unsigned long *journal_devnum, 2229 unsigned int *journal_ioprio, 2230 int is_remount) 2231 { 2232 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2233 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2234 substring_t args[MAX_OPT_ARGS]; 2235 int token; 2236 2237 if (!options) 2238 return 1; 2239 2240 while ((p = strsep(&options, ",")) != NULL) { 2241 if (!*p) 2242 continue; 2243 /* 2244 * Initialize args struct so we know whether arg was 2245 * found; some options take optional arguments. 2246 */ 2247 args[0].to = args[0].from = NULL; 2248 token = match_token(p, tokens, args); 2249 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2250 journal_ioprio, is_remount) < 0) 2251 return 0; 2252 } 2253 #ifdef CONFIG_QUOTA 2254 /* 2255 * We do the test below only for project quotas. 'usrquota' and 2256 * 'grpquota' mount options are allowed even without quota feature 2257 * to support legacy quotas in quota files. 2258 */ 2259 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2260 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2261 "Cannot enable project quota enforcement."); 2262 return 0; 2263 } 2264 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2265 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2266 if (usr_qf_name || grp_qf_name) { 2267 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2268 clear_opt(sb, USRQUOTA); 2269 2270 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2271 clear_opt(sb, GRPQUOTA); 2272 2273 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2274 ext4_msg(sb, KERN_ERR, "old and new quota " 2275 "format mixing"); 2276 return 0; 2277 } 2278 2279 if (!sbi->s_jquota_fmt) { 2280 ext4_msg(sb, KERN_ERR, "journaled quota format " 2281 "not specified"); 2282 return 0; 2283 } 2284 } 2285 #endif 2286 if (test_opt(sb, DIOREAD_NOLOCK)) { 2287 int blocksize = 2288 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2289 if (blocksize < PAGE_SIZE) 2290 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2291 "experimental mount option 'dioread_nolock' " 2292 "for blocksize < PAGE_SIZE"); 2293 } 2294 return 1; 2295 } 2296 2297 static inline void ext4_show_quota_options(struct seq_file *seq, 2298 struct super_block *sb) 2299 { 2300 #if defined(CONFIG_QUOTA) 2301 struct ext4_sb_info *sbi = EXT4_SB(sb); 2302 char *usr_qf_name, *grp_qf_name; 2303 2304 if (sbi->s_jquota_fmt) { 2305 char *fmtname = ""; 2306 2307 switch (sbi->s_jquota_fmt) { 2308 case QFMT_VFS_OLD: 2309 fmtname = "vfsold"; 2310 break; 2311 case QFMT_VFS_V0: 2312 fmtname = "vfsv0"; 2313 break; 2314 case QFMT_VFS_V1: 2315 fmtname = "vfsv1"; 2316 break; 2317 } 2318 seq_printf(seq, ",jqfmt=%s", fmtname); 2319 } 2320 2321 rcu_read_lock(); 2322 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2323 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2324 if (usr_qf_name) 2325 seq_show_option(seq, "usrjquota", usr_qf_name); 2326 if (grp_qf_name) 2327 seq_show_option(seq, "grpjquota", grp_qf_name); 2328 rcu_read_unlock(); 2329 #endif 2330 } 2331 2332 static const char *token2str(int token) 2333 { 2334 const struct match_token *t; 2335 2336 for (t = tokens; t->token != Opt_err; t++) 2337 if (t->token == token && !strchr(t->pattern, '=')) 2338 break; 2339 return t->pattern; 2340 } 2341 2342 /* 2343 * Show an option if 2344 * - it's set to a non-default value OR 2345 * - if the per-sb default is different from the global default 2346 */ 2347 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2348 int nodefs) 2349 { 2350 struct ext4_sb_info *sbi = EXT4_SB(sb); 2351 struct ext4_super_block *es = sbi->s_es; 2352 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2353 const struct mount_opts *m; 2354 char sep = nodefs ? '\n' : ','; 2355 2356 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2357 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2358 2359 if (sbi->s_sb_block != 1) 2360 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2361 2362 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2363 int want_set = m->flags & MOPT_SET; 2364 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2365 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2366 continue; 2367 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2368 continue; /* skip if same as the default */ 2369 if ((want_set && 2370 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2371 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2372 continue; /* select Opt_noFoo vs Opt_Foo */ 2373 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2374 } 2375 2376 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2377 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2378 SEQ_OPTS_PRINT("resuid=%u", 2379 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2380 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2381 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2382 SEQ_OPTS_PRINT("resgid=%u", 2383 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2384 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2385 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2386 SEQ_OPTS_PUTS("errors=remount-ro"); 2387 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2388 SEQ_OPTS_PUTS("errors=continue"); 2389 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2390 SEQ_OPTS_PUTS("errors=panic"); 2391 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2392 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2393 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2394 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2395 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2396 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2397 if (sb->s_flags & SB_I_VERSION) 2398 SEQ_OPTS_PUTS("i_version"); 2399 if (nodefs || sbi->s_stripe) 2400 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2401 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2402 (sbi->s_mount_opt ^ def_mount_opt)) { 2403 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2404 SEQ_OPTS_PUTS("data=journal"); 2405 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2406 SEQ_OPTS_PUTS("data=ordered"); 2407 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2408 SEQ_OPTS_PUTS("data=writeback"); 2409 } 2410 if (nodefs || 2411 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2412 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2413 sbi->s_inode_readahead_blks); 2414 2415 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2416 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2417 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2418 if (nodefs || sbi->s_max_dir_size_kb) 2419 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2420 if (test_opt(sb, DATA_ERR_ABORT)) 2421 SEQ_OPTS_PUTS("data_err=abort"); 2422 2423 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2424 2425 if (sb->s_flags & SB_INLINECRYPT) 2426 SEQ_OPTS_PUTS("inlinecrypt"); 2427 2428 if (test_opt(sb, DAX_ALWAYS)) { 2429 if (IS_EXT2_SB(sb)) 2430 SEQ_OPTS_PUTS("dax"); 2431 else 2432 SEQ_OPTS_PUTS("dax=always"); 2433 } else if (test_opt2(sb, DAX_NEVER)) { 2434 SEQ_OPTS_PUTS("dax=never"); 2435 } else if (test_opt2(sb, DAX_INODE)) { 2436 SEQ_OPTS_PUTS("dax=inode"); 2437 } 2438 2439 ext4_show_quota_options(seq, sb); 2440 return 0; 2441 } 2442 2443 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2444 { 2445 return _ext4_show_options(seq, root->d_sb, 0); 2446 } 2447 2448 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2449 { 2450 struct super_block *sb = seq->private; 2451 int rc; 2452 2453 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2454 rc = _ext4_show_options(seq, sb, 1); 2455 seq_puts(seq, "\n"); 2456 return rc; 2457 } 2458 2459 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2460 int read_only) 2461 { 2462 struct ext4_sb_info *sbi = EXT4_SB(sb); 2463 int err = 0; 2464 2465 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2466 ext4_msg(sb, KERN_ERR, "revision level too high, " 2467 "forcing read-only mode"); 2468 err = -EROFS; 2469 goto done; 2470 } 2471 if (read_only) 2472 goto done; 2473 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2474 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2475 "running e2fsck is recommended"); 2476 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2477 ext4_msg(sb, KERN_WARNING, 2478 "warning: mounting fs with errors, " 2479 "running e2fsck is recommended"); 2480 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2481 le16_to_cpu(es->s_mnt_count) >= 2482 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2483 ext4_msg(sb, KERN_WARNING, 2484 "warning: maximal mount count reached, " 2485 "running e2fsck is recommended"); 2486 else if (le32_to_cpu(es->s_checkinterval) && 2487 (ext4_get_tstamp(es, s_lastcheck) + 2488 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2489 ext4_msg(sb, KERN_WARNING, 2490 "warning: checktime reached, " 2491 "running e2fsck is recommended"); 2492 if (!sbi->s_journal) 2493 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2494 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2495 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2496 le16_add_cpu(&es->s_mnt_count, 1); 2497 ext4_update_tstamp(es, s_mtime); 2498 if (sbi->s_journal) 2499 ext4_set_feature_journal_needs_recovery(sb); 2500 2501 err = ext4_commit_super(sb, 1); 2502 done: 2503 if (test_opt(sb, DEBUG)) 2504 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2505 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2506 sb->s_blocksize, 2507 sbi->s_groups_count, 2508 EXT4_BLOCKS_PER_GROUP(sb), 2509 EXT4_INODES_PER_GROUP(sb), 2510 sbi->s_mount_opt, sbi->s_mount_opt2); 2511 2512 cleancache_init_fs(sb); 2513 return err; 2514 } 2515 2516 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2517 { 2518 struct ext4_sb_info *sbi = EXT4_SB(sb); 2519 struct flex_groups **old_groups, **new_groups; 2520 int size, i, j; 2521 2522 if (!sbi->s_log_groups_per_flex) 2523 return 0; 2524 2525 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2526 if (size <= sbi->s_flex_groups_allocated) 2527 return 0; 2528 2529 new_groups = kvzalloc(roundup_pow_of_two(size * 2530 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2531 if (!new_groups) { 2532 ext4_msg(sb, KERN_ERR, 2533 "not enough memory for %d flex group pointers", size); 2534 return -ENOMEM; 2535 } 2536 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2537 new_groups[i] = kvzalloc(roundup_pow_of_two( 2538 sizeof(struct flex_groups)), 2539 GFP_KERNEL); 2540 if (!new_groups[i]) { 2541 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2542 kvfree(new_groups[j]); 2543 kvfree(new_groups); 2544 ext4_msg(sb, KERN_ERR, 2545 "not enough memory for %d flex groups", size); 2546 return -ENOMEM; 2547 } 2548 } 2549 rcu_read_lock(); 2550 old_groups = rcu_dereference(sbi->s_flex_groups); 2551 if (old_groups) 2552 memcpy(new_groups, old_groups, 2553 (sbi->s_flex_groups_allocated * 2554 sizeof(struct flex_groups *))); 2555 rcu_read_unlock(); 2556 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2557 sbi->s_flex_groups_allocated = size; 2558 if (old_groups) 2559 ext4_kvfree_array_rcu(old_groups); 2560 return 0; 2561 } 2562 2563 static int ext4_fill_flex_info(struct super_block *sb) 2564 { 2565 struct ext4_sb_info *sbi = EXT4_SB(sb); 2566 struct ext4_group_desc *gdp = NULL; 2567 struct flex_groups *fg; 2568 ext4_group_t flex_group; 2569 int i, err; 2570 2571 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2572 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2573 sbi->s_log_groups_per_flex = 0; 2574 return 1; 2575 } 2576 2577 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2578 if (err) 2579 goto failed; 2580 2581 for (i = 0; i < sbi->s_groups_count; i++) { 2582 gdp = ext4_get_group_desc(sb, i, NULL); 2583 2584 flex_group = ext4_flex_group(sbi, i); 2585 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2586 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2587 atomic64_add(ext4_free_group_clusters(sb, gdp), 2588 &fg->free_clusters); 2589 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2590 } 2591 2592 return 1; 2593 failed: 2594 return 0; 2595 } 2596 2597 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2598 struct ext4_group_desc *gdp) 2599 { 2600 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2601 __u16 crc = 0; 2602 __le32 le_group = cpu_to_le32(block_group); 2603 struct ext4_sb_info *sbi = EXT4_SB(sb); 2604 2605 if (ext4_has_metadata_csum(sbi->s_sb)) { 2606 /* Use new metadata_csum algorithm */ 2607 __u32 csum32; 2608 __u16 dummy_csum = 0; 2609 2610 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2611 sizeof(le_group)); 2612 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2613 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2614 sizeof(dummy_csum)); 2615 offset += sizeof(dummy_csum); 2616 if (offset < sbi->s_desc_size) 2617 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2618 sbi->s_desc_size - offset); 2619 2620 crc = csum32 & 0xFFFF; 2621 goto out; 2622 } 2623 2624 /* old crc16 code */ 2625 if (!ext4_has_feature_gdt_csum(sb)) 2626 return 0; 2627 2628 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2629 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2630 crc = crc16(crc, (__u8 *)gdp, offset); 2631 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2632 /* for checksum of struct ext4_group_desc do the rest...*/ 2633 if (ext4_has_feature_64bit(sb) && 2634 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2635 crc = crc16(crc, (__u8 *)gdp + offset, 2636 le16_to_cpu(sbi->s_es->s_desc_size) - 2637 offset); 2638 2639 out: 2640 return cpu_to_le16(crc); 2641 } 2642 2643 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2644 struct ext4_group_desc *gdp) 2645 { 2646 if (ext4_has_group_desc_csum(sb) && 2647 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2648 return 0; 2649 2650 return 1; 2651 } 2652 2653 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2654 struct ext4_group_desc *gdp) 2655 { 2656 if (!ext4_has_group_desc_csum(sb)) 2657 return; 2658 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2659 } 2660 2661 /* Called at mount-time, super-block is locked */ 2662 static int ext4_check_descriptors(struct super_block *sb, 2663 ext4_fsblk_t sb_block, 2664 ext4_group_t *first_not_zeroed) 2665 { 2666 struct ext4_sb_info *sbi = EXT4_SB(sb); 2667 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2668 ext4_fsblk_t last_block; 2669 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2670 ext4_fsblk_t block_bitmap; 2671 ext4_fsblk_t inode_bitmap; 2672 ext4_fsblk_t inode_table; 2673 int flexbg_flag = 0; 2674 ext4_group_t i, grp = sbi->s_groups_count; 2675 2676 if (ext4_has_feature_flex_bg(sb)) 2677 flexbg_flag = 1; 2678 2679 ext4_debug("Checking group descriptors"); 2680 2681 for (i = 0; i < sbi->s_groups_count; i++) { 2682 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2683 2684 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2685 last_block = ext4_blocks_count(sbi->s_es) - 1; 2686 else 2687 last_block = first_block + 2688 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2689 2690 if ((grp == sbi->s_groups_count) && 2691 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2692 grp = i; 2693 2694 block_bitmap = ext4_block_bitmap(sb, gdp); 2695 if (block_bitmap == sb_block) { 2696 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2697 "Block bitmap for group %u overlaps " 2698 "superblock", i); 2699 if (!sb_rdonly(sb)) 2700 return 0; 2701 } 2702 if (block_bitmap >= sb_block + 1 && 2703 block_bitmap <= last_bg_block) { 2704 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2705 "Block bitmap for group %u overlaps " 2706 "block group descriptors", i); 2707 if (!sb_rdonly(sb)) 2708 return 0; 2709 } 2710 if (block_bitmap < first_block || block_bitmap > last_block) { 2711 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2712 "Block bitmap for group %u not in group " 2713 "(block %llu)!", i, block_bitmap); 2714 return 0; 2715 } 2716 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2717 if (inode_bitmap == sb_block) { 2718 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2719 "Inode bitmap for group %u overlaps " 2720 "superblock", i); 2721 if (!sb_rdonly(sb)) 2722 return 0; 2723 } 2724 if (inode_bitmap >= sb_block + 1 && 2725 inode_bitmap <= last_bg_block) { 2726 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2727 "Inode bitmap for group %u overlaps " 2728 "block group descriptors", i); 2729 if (!sb_rdonly(sb)) 2730 return 0; 2731 } 2732 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2733 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2734 "Inode bitmap for group %u not in group " 2735 "(block %llu)!", i, inode_bitmap); 2736 return 0; 2737 } 2738 inode_table = ext4_inode_table(sb, gdp); 2739 if (inode_table == sb_block) { 2740 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2741 "Inode table for group %u overlaps " 2742 "superblock", i); 2743 if (!sb_rdonly(sb)) 2744 return 0; 2745 } 2746 if (inode_table >= sb_block + 1 && 2747 inode_table <= last_bg_block) { 2748 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2749 "Inode table for group %u overlaps " 2750 "block group descriptors", i); 2751 if (!sb_rdonly(sb)) 2752 return 0; 2753 } 2754 if (inode_table < first_block || 2755 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2756 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2757 "Inode table for group %u not in group " 2758 "(block %llu)!", i, inode_table); 2759 return 0; 2760 } 2761 ext4_lock_group(sb, i); 2762 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2763 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2764 "Checksum for group %u failed (%u!=%u)", 2765 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2766 gdp)), le16_to_cpu(gdp->bg_checksum)); 2767 if (!sb_rdonly(sb)) { 2768 ext4_unlock_group(sb, i); 2769 return 0; 2770 } 2771 } 2772 ext4_unlock_group(sb, i); 2773 if (!flexbg_flag) 2774 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2775 } 2776 if (NULL != first_not_zeroed) 2777 *first_not_zeroed = grp; 2778 return 1; 2779 } 2780 2781 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2782 * the superblock) which were deleted from all directories, but held open by 2783 * a process at the time of a crash. We walk the list and try to delete these 2784 * inodes at recovery time (only with a read-write filesystem). 2785 * 2786 * In order to keep the orphan inode chain consistent during traversal (in 2787 * case of crash during recovery), we link each inode into the superblock 2788 * orphan list_head and handle it the same way as an inode deletion during 2789 * normal operation (which journals the operations for us). 2790 * 2791 * We only do an iget() and an iput() on each inode, which is very safe if we 2792 * accidentally point at an in-use or already deleted inode. The worst that 2793 * can happen in this case is that we get a "bit already cleared" message from 2794 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2795 * e2fsck was run on this filesystem, and it must have already done the orphan 2796 * inode cleanup for us, so we can safely abort without any further action. 2797 */ 2798 static void ext4_orphan_cleanup(struct super_block *sb, 2799 struct ext4_super_block *es) 2800 { 2801 unsigned int s_flags = sb->s_flags; 2802 int ret, nr_orphans = 0, nr_truncates = 0; 2803 #ifdef CONFIG_QUOTA 2804 int quota_update = 0; 2805 int i; 2806 #endif 2807 if (!es->s_last_orphan) { 2808 jbd_debug(4, "no orphan inodes to clean up\n"); 2809 return; 2810 } 2811 2812 if (bdev_read_only(sb->s_bdev)) { 2813 ext4_msg(sb, KERN_ERR, "write access " 2814 "unavailable, skipping orphan cleanup"); 2815 return; 2816 } 2817 2818 /* Check if feature set would not allow a r/w mount */ 2819 if (!ext4_feature_set_ok(sb, 0)) { 2820 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2821 "unknown ROCOMPAT features"); 2822 return; 2823 } 2824 2825 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2826 /* don't clear list on RO mount w/ errors */ 2827 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2828 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2829 "clearing orphan list.\n"); 2830 es->s_last_orphan = 0; 2831 } 2832 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2833 return; 2834 } 2835 2836 if (s_flags & SB_RDONLY) { 2837 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2838 sb->s_flags &= ~SB_RDONLY; 2839 } 2840 #ifdef CONFIG_QUOTA 2841 /* Needed for iput() to work correctly and not trash data */ 2842 sb->s_flags |= SB_ACTIVE; 2843 2844 /* 2845 * Turn on quotas which were not enabled for read-only mounts if 2846 * filesystem has quota feature, so that they are updated correctly. 2847 */ 2848 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2849 int ret = ext4_enable_quotas(sb); 2850 2851 if (!ret) 2852 quota_update = 1; 2853 else 2854 ext4_msg(sb, KERN_ERR, 2855 "Cannot turn on quotas: error %d", ret); 2856 } 2857 2858 /* Turn on journaled quotas used for old sytle */ 2859 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2860 if (EXT4_SB(sb)->s_qf_names[i]) { 2861 int ret = ext4_quota_on_mount(sb, i); 2862 2863 if (!ret) 2864 quota_update = 1; 2865 else 2866 ext4_msg(sb, KERN_ERR, 2867 "Cannot turn on journaled " 2868 "quota: type %d: error %d", i, ret); 2869 } 2870 } 2871 #endif 2872 2873 while (es->s_last_orphan) { 2874 struct inode *inode; 2875 2876 /* 2877 * We may have encountered an error during cleanup; if 2878 * so, skip the rest. 2879 */ 2880 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2881 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2882 es->s_last_orphan = 0; 2883 break; 2884 } 2885 2886 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2887 if (IS_ERR(inode)) { 2888 es->s_last_orphan = 0; 2889 break; 2890 } 2891 2892 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2893 dquot_initialize(inode); 2894 if (inode->i_nlink) { 2895 if (test_opt(sb, DEBUG)) 2896 ext4_msg(sb, KERN_DEBUG, 2897 "%s: truncating inode %lu to %lld bytes", 2898 __func__, inode->i_ino, inode->i_size); 2899 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2900 inode->i_ino, inode->i_size); 2901 inode_lock(inode); 2902 truncate_inode_pages(inode->i_mapping, inode->i_size); 2903 ret = ext4_truncate(inode); 2904 if (ret) 2905 ext4_std_error(inode->i_sb, ret); 2906 inode_unlock(inode); 2907 nr_truncates++; 2908 } else { 2909 if (test_opt(sb, DEBUG)) 2910 ext4_msg(sb, KERN_DEBUG, 2911 "%s: deleting unreferenced inode %lu", 2912 __func__, inode->i_ino); 2913 jbd_debug(2, "deleting unreferenced inode %lu\n", 2914 inode->i_ino); 2915 nr_orphans++; 2916 } 2917 iput(inode); /* The delete magic happens here! */ 2918 } 2919 2920 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2921 2922 if (nr_orphans) 2923 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2924 PLURAL(nr_orphans)); 2925 if (nr_truncates) 2926 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2927 PLURAL(nr_truncates)); 2928 #ifdef CONFIG_QUOTA 2929 /* Turn off quotas if they were enabled for orphan cleanup */ 2930 if (quota_update) { 2931 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2932 if (sb_dqopt(sb)->files[i]) 2933 dquot_quota_off(sb, i); 2934 } 2935 } 2936 #endif 2937 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2938 } 2939 2940 /* 2941 * Maximal extent format file size. 2942 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2943 * extent format containers, within a sector_t, and within i_blocks 2944 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2945 * so that won't be a limiting factor. 2946 * 2947 * However there is other limiting factor. We do store extents in the form 2948 * of starting block and length, hence the resulting length of the extent 2949 * covering maximum file size must fit into on-disk format containers as 2950 * well. Given that length is always by 1 unit bigger than max unit (because 2951 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2952 * 2953 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2954 */ 2955 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2956 { 2957 loff_t res; 2958 loff_t upper_limit = MAX_LFS_FILESIZE; 2959 2960 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2961 2962 if (!has_huge_files) { 2963 upper_limit = (1LL << 32) - 1; 2964 2965 /* total blocks in file system block size */ 2966 upper_limit >>= (blkbits - 9); 2967 upper_limit <<= blkbits; 2968 } 2969 2970 /* 2971 * 32-bit extent-start container, ee_block. We lower the maxbytes 2972 * by one fs block, so ee_len can cover the extent of maximum file 2973 * size 2974 */ 2975 res = (1LL << 32) - 1; 2976 res <<= blkbits; 2977 2978 /* Sanity check against vm- & vfs- imposed limits */ 2979 if (res > upper_limit) 2980 res = upper_limit; 2981 2982 return res; 2983 } 2984 2985 /* 2986 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2987 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2988 * We need to be 1 filesystem block less than the 2^48 sector limit. 2989 */ 2990 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2991 { 2992 loff_t res = EXT4_NDIR_BLOCKS; 2993 int meta_blocks; 2994 loff_t upper_limit; 2995 /* This is calculated to be the largest file size for a dense, block 2996 * mapped file such that the file's total number of 512-byte sectors, 2997 * including data and all indirect blocks, does not exceed (2^48 - 1). 2998 * 2999 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3000 * number of 512-byte sectors of the file. 3001 */ 3002 3003 if (!has_huge_files) { 3004 /* 3005 * !has_huge_files or implies that the inode i_block field 3006 * represents total file blocks in 2^32 512-byte sectors == 3007 * size of vfs inode i_blocks * 8 3008 */ 3009 upper_limit = (1LL << 32) - 1; 3010 3011 /* total blocks in file system block size */ 3012 upper_limit >>= (bits - 9); 3013 3014 } else { 3015 /* 3016 * We use 48 bit ext4_inode i_blocks 3017 * With EXT4_HUGE_FILE_FL set the i_blocks 3018 * represent total number of blocks in 3019 * file system block size 3020 */ 3021 upper_limit = (1LL << 48) - 1; 3022 3023 } 3024 3025 /* indirect blocks */ 3026 meta_blocks = 1; 3027 /* double indirect blocks */ 3028 meta_blocks += 1 + (1LL << (bits-2)); 3029 /* tripple indirect blocks */ 3030 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3031 3032 upper_limit -= meta_blocks; 3033 upper_limit <<= bits; 3034 3035 res += 1LL << (bits-2); 3036 res += 1LL << (2*(bits-2)); 3037 res += 1LL << (3*(bits-2)); 3038 res <<= bits; 3039 if (res > upper_limit) 3040 res = upper_limit; 3041 3042 if (res > MAX_LFS_FILESIZE) 3043 res = MAX_LFS_FILESIZE; 3044 3045 return res; 3046 } 3047 3048 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3049 ext4_fsblk_t logical_sb_block, int nr) 3050 { 3051 struct ext4_sb_info *sbi = EXT4_SB(sb); 3052 ext4_group_t bg, first_meta_bg; 3053 int has_super = 0; 3054 3055 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3056 3057 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3058 return logical_sb_block + nr + 1; 3059 bg = sbi->s_desc_per_block * nr; 3060 if (ext4_bg_has_super(sb, bg)) 3061 has_super = 1; 3062 3063 /* 3064 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3065 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3066 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3067 * compensate. 3068 */ 3069 if (sb->s_blocksize == 1024 && nr == 0 && 3070 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3071 has_super++; 3072 3073 return (has_super + ext4_group_first_block_no(sb, bg)); 3074 } 3075 3076 /** 3077 * ext4_get_stripe_size: Get the stripe size. 3078 * @sbi: In memory super block info 3079 * 3080 * If we have specified it via mount option, then 3081 * use the mount option value. If the value specified at mount time is 3082 * greater than the blocks per group use the super block value. 3083 * If the super block value is greater than blocks per group return 0. 3084 * Allocator needs it be less than blocks per group. 3085 * 3086 */ 3087 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3088 { 3089 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3090 unsigned long stripe_width = 3091 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3092 int ret; 3093 3094 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3095 ret = sbi->s_stripe; 3096 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3097 ret = stripe_width; 3098 else if (stride && stride <= sbi->s_blocks_per_group) 3099 ret = stride; 3100 else 3101 ret = 0; 3102 3103 /* 3104 * If the stripe width is 1, this makes no sense and 3105 * we set it to 0 to turn off stripe handling code. 3106 */ 3107 if (ret <= 1) 3108 ret = 0; 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * Check whether this filesystem can be mounted based on 3115 * the features present and the RDONLY/RDWR mount requested. 3116 * Returns 1 if this filesystem can be mounted as requested, 3117 * 0 if it cannot be. 3118 */ 3119 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3120 { 3121 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3122 ext4_msg(sb, KERN_ERR, 3123 "Couldn't mount because of " 3124 "unsupported optional features (%x)", 3125 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3126 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3127 return 0; 3128 } 3129 3130 #ifndef CONFIG_UNICODE 3131 if (ext4_has_feature_casefold(sb)) { 3132 ext4_msg(sb, KERN_ERR, 3133 "Filesystem with casefold feature cannot be " 3134 "mounted without CONFIG_UNICODE"); 3135 return 0; 3136 } 3137 #endif 3138 3139 if (readonly) 3140 return 1; 3141 3142 if (ext4_has_feature_readonly(sb)) { 3143 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3144 sb->s_flags |= SB_RDONLY; 3145 return 1; 3146 } 3147 3148 /* Check that feature set is OK for a read-write mount */ 3149 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3150 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3151 "unsupported optional features (%x)", 3152 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3153 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3154 return 0; 3155 } 3156 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3157 ext4_msg(sb, KERN_ERR, 3158 "Can't support bigalloc feature without " 3159 "extents feature\n"); 3160 return 0; 3161 } 3162 3163 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3164 if (!readonly && (ext4_has_feature_quota(sb) || 3165 ext4_has_feature_project(sb))) { 3166 ext4_msg(sb, KERN_ERR, 3167 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3168 return 0; 3169 } 3170 #endif /* CONFIG_QUOTA */ 3171 return 1; 3172 } 3173 3174 /* 3175 * This function is called once a day if we have errors logged 3176 * on the file system 3177 */ 3178 static void print_daily_error_info(struct timer_list *t) 3179 { 3180 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3181 struct super_block *sb = sbi->s_sb; 3182 struct ext4_super_block *es = sbi->s_es; 3183 3184 if (es->s_error_count) 3185 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3186 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3187 le32_to_cpu(es->s_error_count)); 3188 if (es->s_first_error_time) { 3189 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3190 sb->s_id, 3191 ext4_get_tstamp(es, s_first_error_time), 3192 (int) sizeof(es->s_first_error_func), 3193 es->s_first_error_func, 3194 le32_to_cpu(es->s_first_error_line)); 3195 if (es->s_first_error_ino) 3196 printk(KERN_CONT ": inode %u", 3197 le32_to_cpu(es->s_first_error_ino)); 3198 if (es->s_first_error_block) 3199 printk(KERN_CONT ": block %llu", (unsigned long long) 3200 le64_to_cpu(es->s_first_error_block)); 3201 printk(KERN_CONT "\n"); 3202 } 3203 if (es->s_last_error_time) { 3204 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3205 sb->s_id, 3206 ext4_get_tstamp(es, s_last_error_time), 3207 (int) sizeof(es->s_last_error_func), 3208 es->s_last_error_func, 3209 le32_to_cpu(es->s_last_error_line)); 3210 if (es->s_last_error_ino) 3211 printk(KERN_CONT ": inode %u", 3212 le32_to_cpu(es->s_last_error_ino)); 3213 if (es->s_last_error_block) 3214 printk(KERN_CONT ": block %llu", (unsigned long long) 3215 le64_to_cpu(es->s_last_error_block)); 3216 printk(KERN_CONT "\n"); 3217 } 3218 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3219 } 3220 3221 /* Find next suitable group and run ext4_init_inode_table */ 3222 static int ext4_run_li_request(struct ext4_li_request *elr) 3223 { 3224 struct ext4_group_desc *gdp = NULL; 3225 struct super_block *sb = elr->lr_super; 3226 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3227 ext4_group_t group = elr->lr_next_group; 3228 unsigned long timeout = 0; 3229 unsigned int prefetch_ios = 0; 3230 int ret = 0; 3231 3232 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3233 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3234 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3235 if (prefetch_ios) 3236 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3237 prefetch_ios); 3238 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3239 prefetch_ios); 3240 if (group >= elr->lr_next_group) { 3241 ret = 1; 3242 if (elr->lr_first_not_zeroed != ngroups && 3243 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3244 elr->lr_next_group = elr->lr_first_not_zeroed; 3245 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3246 ret = 0; 3247 } 3248 } 3249 return ret; 3250 } 3251 3252 for (; group < ngroups; group++) { 3253 gdp = ext4_get_group_desc(sb, group, NULL); 3254 if (!gdp) { 3255 ret = 1; 3256 break; 3257 } 3258 3259 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3260 break; 3261 } 3262 3263 if (group >= ngroups) 3264 ret = 1; 3265 3266 if (!ret) { 3267 timeout = jiffies; 3268 ret = ext4_init_inode_table(sb, group, 3269 elr->lr_timeout ? 0 : 1); 3270 trace_ext4_lazy_itable_init(sb, group); 3271 if (elr->lr_timeout == 0) { 3272 timeout = (jiffies - timeout) * 3273 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3274 elr->lr_timeout = timeout; 3275 } 3276 elr->lr_next_sched = jiffies + elr->lr_timeout; 3277 elr->lr_next_group = group + 1; 3278 } 3279 return ret; 3280 } 3281 3282 /* 3283 * Remove lr_request from the list_request and free the 3284 * request structure. Should be called with li_list_mtx held 3285 */ 3286 static void ext4_remove_li_request(struct ext4_li_request *elr) 3287 { 3288 if (!elr) 3289 return; 3290 3291 list_del(&elr->lr_request); 3292 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3293 kfree(elr); 3294 } 3295 3296 static void ext4_unregister_li_request(struct super_block *sb) 3297 { 3298 mutex_lock(&ext4_li_mtx); 3299 if (!ext4_li_info) { 3300 mutex_unlock(&ext4_li_mtx); 3301 return; 3302 } 3303 3304 mutex_lock(&ext4_li_info->li_list_mtx); 3305 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3306 mutex_unlock(&ext4_li_info->li_list_mtx); 3307 mutex_unlock(&ext4_li_mtx); 3308 } 3309 3310 static struct task_struct *ext4_lazyinit_task; 3311 3312 /* 3313 * This is the function where ext4lazyinit thread lives. It walks 3314 * through the request list searching for next scheduled filesystem. 3315 * When such a fs is found, run the lazy initialization request 3316 * (ext4_rn_li_request) and keep track of the time spend in this 3317 * function. Based on that time we compute next schedule time of 3318 * the request. When walking through the list is complete, compute 3319 * next waking time and put itself into sleep. 3320 */ 3321 static int ext4_lazyinit_thread(void *arg) 3322 { 3323 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3324 struct list_head *pos, *n; 3325 struct ext4_li_request *elr; 3326 unsigned long next_wakeup, cur; 3327 3328 BUG_ON(NULL == eli); 3329 3330 cont_thread: 3331 while (true) { 3332 next_wakeup = MAX_JIFFY_OFFSET; 3333 3334 mutex_lock(&eli->li_list_mtx); 3335 if (list_empty(&eli->li_request_list)) { 3336 mutex_unlock(&eli->li_list_mtx); 3337 goto exit_thread; 3338 } 3339 list_for_each_safe(pos, n, &eli->li_request_list) { 3340 int err = 0; 3341 int progress = 0; 3342 elr = list_entry(pos, struct ext4_li_request, 3343 lr_request); 3344 3345 if (time_before(jiffies, elr->lr_next_sched)) { 3346 if (time_before(elr->lr_next_sched, next_wakeup)) 3347 next_wakeup = elr->lr_next_sched; 3348 continue; 3349 } 3350 if (down_read_trylock(&elr->lr_super->s_umount)) { 3351 if (sb_start_write_trylock(elr->lr_super)) { 3352 progress = 1; 3353 /* 3354 * We hold sb->s_umount, sb can not 3355 * be removed from the list, it is 3356 * now safe to drop li_list_mtx 3357 */ 3358 mutex_unlock(&eli->li_list_mtx); 3359 err = ext4_run_li_request(elr); 3360 sb_end_write(elr->lr_super); 3361 mutex_lock(&eli->li_list_mtx); 3362 n = pos->next; 3363 } 3364 up_read((&elr->lr_super->s_umount)); 3365 } 3366 /* error, remove the lazy_init job */ 3367 if (err) { 3368 ext4_remove_li_request(elr); 3369 continue; 3370 } 3371 if (!progress) { 3372 elr->lr_next_sched = jiffies + 3373 (prandom_u32() 3374 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3375 } 3376 if (time_before(elr->lr_next_sched, next_wakeup)) 3377 next_wakeup = elr->lr_next_sched; 3378 } 3379 mutex_unlock(&eli->li_list_mtx); 3380 3381 try_to_freeze(); 3382 3383 cur = jiffies; 3384 if ((time_after_eq(cur, next_wakeup)) || 3385 (MAX_JIFFY_OFFSET == next_wakeup)) { 3386 cond_resched(); 3387 continue; 3388 } 3389 3390 schedule_timeout_interruptible(next_wakeup - cur); 3391 3392 if (kthread_should_stop()) { 3393 ext4_clear_request_list(); 3394 goto exit_thread; 3395 } 3396 } 3397 3398 exit_thread: 3399 /* 3400 * It looks like the request list is empty, but we need 3401 * to check it under the li_list_mtx lock, to prevent any 3402 * additions into it, and of course we should lock ext4_li_mtx 3403 * to atomically free the list and ext4_li_info, because at 3404 * this point another ext4 filesystem could be registering 3405 * new one. 3406 */ 3407 mutex_lock(&ext4_li_mtx); 3408 mutex_lock(&eli->li_list_mtx); 3409 if (!list_empty(&eli->li_request_list)) { 3410 mutex_unlock(&eli->li_list_mtx); 3411 mutex_unlock(&ext4_li_mtx); 3412 goto cont_thread; 3413 } 3414 mutex_unlock(&eli->li_list_mtx); 3415 kfree(ext4_li_info); 3416 ext4_li_info = NULL; 3417 mutex_unlock(&ext4_li_mtx); 3418 3419 return 0; 3420 } 3421 3422 static void ext4_clear_request_list(void) 3423 { 3424 struct list_head *pos, *n; 3425 struct ext4_li_request *elr; 3426 3427 mutex_lock(&ext4_li_info->li_list_mtx); 3428 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3429 elr = list_entry(pos, struct ext4_li_request, 3430 lr_request); 3431 ext4_remove_li_request(elr); 3432 } 3433 mutex_unlock(&ext4_li_info->li_list_mtx); 3434 } 3435 3436 static int ext4_run_lazyinit_thread(void) 3437 { 3438 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3439 ext4_li_info, "ext4lazyinit"); 3440 if (IS_ERR(ext4_lazyinit_task)) { 3441 int err = PTR_ERR(ext4_lazyinit_task); 3442 ext4_clear_request_list(); 3443 kfree(ext4_li_info); 3444 ext4_li_info = NULL; 3445 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3446 "initialization thread\n", 3447 err); 3448 return err; 3449 } 3450 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3451 return 0; 3452 } 3453 3454 /* 3455 * Check whether it make sense to run itable init. thread or not. 3456 * If there is at least one uninitialized inode table, return 3457 * corresponding group number, else the loop goes through all 3458 * groups and return total number of groups. 3459 */ 3460 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3461 { 3462 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3463 struct ext4_group_desc *gdp = NULL; 3464 3465 if (!ext4_has_group_desc_csum(sb)) 3466 return ngroups; 3467 3468 for (group = 0; group < ngroups; group++) { 3469 gdp = ext4_get_group_desc(sb, group, NULL); 3470 if (!gdp) 3471 continue; 3472 3473 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3474 break; 3475 } 3476 3477 return group; 3478 } 3479 3480 static int ext4_li_info_new(void) 3481 { 3482 struct ext4_lazy_init *eli = NULL; 3483 3484 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3485 if (!eli) 3486 return -ENOMEM; 3487 3488 INIT_LIST_HEAD(&eli->li_request_list); 3489 mutex_init(&eli->li_list_mtx); 3490 3491 eli->li_state |= EXT4_LAZYINIT_QUIT; 3492 3493 ext4_li_info = eli; 3494 3495 return 0; 3496 } 3497 3498 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3499 ext4_group_t start) 3500 { 3501 struct ext4_li_request *elr; 3502 3503 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3504 if (!elr) 3505 return NULL; 3506 3507 elr->lr_super = sb; 3508 elr->lr_first_not_zeroed = start; 3509 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS)) 3510 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3511 else { 3512 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3513 elr->lr_next_group = start; 3514 } 3515 3516 /* 3517 * Randomize first schedule time of the request to 3518 * spread the inode table initialization requests 3519 * better. 3520 */ 3521 elr->lr_next_sched = jiffies + (prandom_u32() % 3522 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3523 return elr; 3524 } 3525 3526 int ext4_register_li_request(struct super_block *sb, 3527 ext4_group_t first_not_zeroed) 3528 { 3529 struct ext4_sb_info *sbi = EXT4_SB(sb); 3530 struct ext4_li_request *elr = NULL; 3531 ext4_group_t ngroups = sbi->s_groups_count; 3532 int ret = 0; 3533 3534 mutex_lock(&ext4_li_mtx); 3535 if (sbi->s_li_request != NULL) { 3536 /* 3537 * Reset timeout so it can be computed again, because 3538 * s_li_wait_mult might have changed. 3539 */ 3540 sbi->s_li_request->lr_timeout = 0; 3541 goto out; 3542 } 3543 3544 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) && 3545 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3546 !test_opt(sb, INIT_INODE_TABLE))) 3547 goto out; 3548 3549 elr = ext4_li_request_new(sb, first_not_zeroed); 3550 if (!elr) { 3551 ret = -ENOMEM; 3552 goto out; 3553 } 3554 3555 if (NULL == ext4_li_info) { 3556 ret = ext4_li_info_new(); 3557 if (ret) 3558 goto out; 3559 } 3560 3561 mutex_lock(&ext4_li_info->li_list_mtx); 3562 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3563 mutex_unlock(&ext4_li_info->li_list_mtx); 3564 3565 sbi->s_li_request = elr; 3566 /* 3567 * set elr to NULL here since it has been inserted to 3568 * the request_list and the removal and free of it is 3569 * handled by ext4_clear_request_list from now on. 3570 */ 3571 elr = NULL; 3572 3573 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3574 ret = ext4_run_lazyinit_thread(); 3575 if (ret) 3576 goto out; 3577 } 3578 out: 3579 mutex_unlock(&ext4_li_mtx); 3580 if (ret) 3581 kfree(elr); 3582 return ret; 3583 } 3584 3585 /* 3586 * We do not need to lock anything since this is called on 3587 * module unload. 3588 */ 3589 static void ext4_destroy_lazyinit_thread(void) 3590 { 3591 /* 3592 * If thread exited earlier 3593 * there's nothing to be done. 3594 */ 3595 if (!ext4_li_info || !ext4_lazyinit_task) 3596 return; 3597 3598 kthread_stop(ext4_lazyinit_task); 3599 } 3600 3601 static int set_journal_csum_feature_set(struct super_block *sb) 3602 { 3603 int ret = 1; 3604 int compat, incompat; 3605 struct ext4_sb_info *sbi = EXT4_SB(sb); 3606 3607 if (ext4_has_metadata_csum(sb)) { 3608 /* journal checksum v3 */ 3609 compat = 0; 3610 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3611 } else { 3612 /* journal checksum v1 */ 3613 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3614 incompat = 0; 3615 } 3616 3617 jbd2_journal_clear_features(sbi->s_journal, 3618 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3619 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3620 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3621 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3622 ret = jbd2_journal_set_features(sbi->s_journal, 3623 compat, 0, 3624 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3625 incompat); 3626 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3627 ret = jbd2_journal_set_features(sbi->s_journal, 3628 compat, 0, 3629 incompat); 3630 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3631 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3632 } else { 3633 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3634 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3635 } 3636 3637 return ret; 3638 } 3639 3640 /* 3641 * Note: calculating the overhead so we can be compatible with 3642 * historical BSD practice is quite difficult in the face of 3643 * clusters/bigalloc. This is because multiple metadata blocks from 3644 * different block group can end up in the same allocation cluster. 3645 * Calculating the exact overhead in the face of clustered allocation 3646 * requires either O(all block bitmaps) in memory or O(number of block 3647 * groups**2) in time. We will still calculate the superblock for 3648 * older file systems --- and if we come across with a bigalloc file 3649 * system with zero in s_overhead_clusters the estimate will be close to 3650 * correct especially for very large cluster sizes --- but for newer 3651 * file systems, it's better to calculate this figure once at mkfs 3652 * time, and store it in the superblock. If the superblock value is 3653 * present (even for non-bigalloc file systems), we will use it. 3654 */ 3655 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3656 char *buf) 3657 { 3658 struct ext4_sb_info *sbi = EXT4_SB(sb); 3659 struct ext4_group_desc *gdp; 3660 ext4_fsblk_t first_block, last_block, b; 3661 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3662 int s, j, count = 0; 3663 3664 if (!ext4_has_feature_bigalloc(sb)) 3665 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3666 sbi->s_itb_per_group + 2); 3667 3668 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3669 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3670 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3671 for (i = 0; i < ngroups; i++) { 3672 gdp = ext4_get_group_desc(sb, i, NULL); 3673 b = ext4_block_bitmap(sb, gdp); 3674 if (b >= first_block && b <= last_block) { 3675 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3676 count++; 3677 } 3678 b = ext4_inode_bitmap(sb, gdp); 3679 if (b >= first_block && b <= last_block) { 3680 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3681 count++; 3682 } 3683 b = ext4_inode_table(sb, gdp); 3684 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3685 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3686 int c = EXT4_B2C(sbi, b - first_block); 3687 ext4_set_bit(c, buf); 3688 count++; 3689 } 3690 if (i != grp) 3691 continue; 3692 s = 0; 3693 if (ext4_bg_has_super(sb, grp)) { 3694 ext4_set_bit(s++, buf); 3695 count++; 3696 } 3697 j = ext4_bg_num_gdb(sb, grp); 3698 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3699 ext4_error(sb, "Invalid number of block group " 3700 "descriptor blocks: %d", j); 3701 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3702 } 3703 count += j; 3704 for (; j > 0; j--) 3705 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3706 } 3707 if (!count) 3708 return 0; 3709 return EXT4_CLUSTERS_PER_GROUP(sb) - 3710 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3711 } 3712 3713 /* 3714 * Compute the overhead and stash it in sbi->s_overhead 3715 */ 3716 int ext4_calculate_overhead(struct super_block *sb) 3717 { 3718 struct ext4_sb_info *sbi = EXT4_SB(sb); 3719 struct ext4_super_block *es = sbi->s_es; 3720 struct inode *j_inode; 3721 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3722 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3723 ext4_fsblk_t overhead = 0; 3724 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3725 3726 if (!buf) 3727 return -ENOMEM; 3728 3729 /* 3730 * Compute the overhead (FS structures). This is constant 3731 * for a given filesystem unless the number of block groups 3732 * changes so we cache the previous value until it does. 3733 */ 3734 3735 /* 3736 * All of the blocks before first_data_block are overhead 3737 */ 3738 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3739 3740 /* 3741 * Add the overhead found in each block group 3742 */ 3743 for (i = 0; i < ngroups; i++) { 3744 int blks; 3745 3746 blks = count_overhead(sb, i, buf); 3747 overhead += blks; 3748 if (blks) 3749 memset(buf, 0, PAGE_SIZE); 3750 cond_resched(); 3751 } 3752 3753 /* 3754 * Add the internal journal blocks whether the journal has been 3755 * loaded or not 3756 */ 3757 if (sbi->s_journal && !sbi->journal_bdev) 3758 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3759 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3760 /* j_inum for internal journal is non-zero */ 3761 j_inode = ext4_get_journal_inode(sb, j_inum); 3762 if (j_inode) { 3763 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3764 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3765 iput(j_inode); 3766 } else { 3767 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3768 } 3769 } 3770 sbi->s_overhead = overhead; 3771 smp_wmb(); 3772 free_page((unsigned long) buf); 3773 return 0; 3774 } 3775 3776 static void ext4_set_resv_clusters(struct super_block *sb) 3777 { 3778 ext4_fsblk_t resv_clusters; 3779 struct ext4_sb_info *sbi = EXT4_SB(sb); 3780 3781 /* 3782 * There's no need to reserve anything when we aren't using extents. 3783 * The space estimates are exact, there are no unwritten extents, 3784 * hole punching doesn't need new metadata... This is needed especially 3785 * to keep ext2/3 backward compatibility. 3786 */ 3787 if (!ext4_has_feature_extents(sb)) 3788 return; 3789 /* 3790 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3791 * This should cover the situations where we can not afford to run 3792 * out of space like for example punch hole, or converting 3793 * unwritten extents in delalloc path. In most cases such 3794 * allocation would require 1, or 2 blocks, higher numbers are 3795 * very rare. 3796 */ 3797 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3798 sbi->s_cluster_bits); 3799 3800 do_div(resv_clusters, 50); 3801 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3802 3803 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3804 } 3805 3806 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3807 { 3808 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3809 char *orig_data = kstrdup(data, GFP_KERNEL); 3810 struct buffer_head *bh, **group_desc; 3811 struct ext4_super_block *es = NULL; 3812 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3813 struct flex_groups **flex_groups; 3814 ext4_fsblk_t block; 3815 ext4_fsblk_t sb_block = get_sb_block(&data); 3816 ext4_fsblk_t logical_sb_block; 3817 unsigned long offset = 0; 3818 unsigned long journal_devnum = 0; 3819 unsigned long def_mount_opts; 3820 struct inode *root; 3821 const char *descr; 3822 int ret = -ENOMEM; 3823 int blocksize, clustersize; 3824 unsigned int db_count; 3825 unsigned int i; 3826 int needs_recovery, has_huge_files; 3827 __u64 blocks_count; 3828 int err = 0; 3829 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3830 ext4_group_t first_not_zeroed; 3831 3832 if ((data && !orig_data) || !sbi) 3833 goto out_free_base; 3834 3835 sbi->s_daxdev = dax_dev; 3836 sbi->s_blockgroup_lock = 3837 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3838 if (!sbi->s_blockgroup_lock) 3839 goto out_free_base; 3840 3841 sb->s_fs_info = sbi; 3842 sbi->s_sb = sb; 3843 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3844 sbi->s_sb_block = sb_block; 3845 if (sb->s_bdev->bd_part) 3846 sbi->s_sectors_written_start = 3847 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3848 3849 /* Cleanup superblock name */ 3850 strreplace(sb->s_id, '/', '!'); 3851 3852 /* -EINVAL is default */ 3853 ret = -EINVAL; 3854 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3855 if (!blocksize) { 3856 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3857 goto out_fail; 3858 } 3859 3860 /* 3861 * The ext4 superblock will not be buffer aligned for other than 1kB 3862 * block sizes. We need to calculate the offset from buffer start. 3863 */ 3864 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3865 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3866 offset = do_div(logical_sb_block, blocksize); 3867 } else { 3868 logical_sb_block = sb_block; 3869 } 3870 3871 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3872 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3873 goto out_fail; 3874 } 3875 /* 3876 * Note: s_es must be initialized as soon as possible because 3877 * some ext4 macro-instructions depend on its value 3878 */ 3879 es = (struct ext4_super_block *) (bh->b_data + offset); 3880 sbi->s_es = es; 3881 sb->s_magic = le16_to_cpu(es->s_magic); 3882 if (sb->s_magic != EXT4_SUPER_MAGIC) 3883 goto cantfind_ext4; 3884 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3885 3886 /* Warn if metadata_csum and gdt_csum are both set. */ 3887 if (ext4_has_feature_metadata_csum(sb) && 3888 ext4_has_feature_gdt_csum(sb)) 3889 ext4_warning(sb, "metadata_csum and uninit_bg are " 3890 "redundant flags; please run fsck."); 3891 3892 /* Check for a known checksum algorithm */ 3893 if (!ext4_verify_csum_type(sb, es)) { 3894 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3895 "unknown checksum algorithm."); 3896 silent = 1; 3897 goto cantfind_ext4; 3898 } 3899 3900 /* Load the checksum driver */ 3901 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3902 if (IS_ERR(sbi->s_chksum_driver)) { 3903 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3904 ret = PTR_ERR(sbi->s_chksum_driver); 3905 sbi->s_chksum_driver = NULL; 3906 goto failed_mount; 3907 } 3908 3909 /* Check superblock checksum */ 3910 if (!ext4_superblock_csum_verify(sb, es)) { 3911 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3912 "invalid superblock checksum. Run e2fsck?"); 3913 silent = 1; 3914 ret = -EFSBADCRC; 3915 goto cantfind_ext4; 3916 } 3917 3918 /* Precompute checksum seed for all metadata */ 3919 if (ext4_has_feature_csum_seed(sb)) 3920 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3921 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3922 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3923 sizeof(es->s_uuid)); 3924 3925 /* Set defaults before we parse the mount options */ 3926 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3927 set_opt(sb, INIT_INODE_TABLE); 3928 if (def_mount_opts & EXT4_DEFM_DEBUG) 3929 set_opt(sb, DEBUG); 3930 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3931 set_opt(sb, GRPID); 3932 if (def_mount_opts & EXT4_DEFM_UID16) 3933 set_opt(sb, NO_UID32); 3934 /* xattr user namespace & acls are now defaulted on */ 3935 set_opt(sb, XATTR_USER); 3936 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3937 set_opt(sb, POSIX_ACL); 3938 #endif 3939 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3940 if (ext4_has_metadata_csum(sb)) 3941 set_opt(sb, JOURNAL_CHECKSUM); 3942 3943 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3944 set_opt(sb, JOURNAL_DATA); 3945 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3946 set_opt(sb, ORDERED_DATA); 3947 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3948 set_opt(sb, WRITEBACK_DATA); 3949 3950 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3951 set_opt(sb, ERRORS_PANIC); 3952 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3953 set_opt(sb, ERRORS_CONT); 3954 else 3955 set_opt(sb, ERRORS_RO); 3956 /* block_validity enabled by default; disable with noblock_validity */ 3957 set_opt(sb, BLOCK_VALIDITY); 3958 if (def_mount_opts & EXT4_DEFM_DISCARD) 3959 set_opt(sb, DISCARD); 3960 3961 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3962 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3963 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3964 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3965 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3966 3967 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3968 set_opt(sb, BARRIER); 3969 3970 /* 3971 * enable delayed allocation by default 3972 * Use -o nodelalloc to turn it off 3973 */ 3974 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3975 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3976 set_opt(sb, DELALLOC); 3977 3978 /* 3979 * set default s_li_wait_mult for lazyinit, for the case there is 3980 * no mount option specified. 3981 */ 3982 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3983 3984 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3985 3986 if (blocksize == PAGE_SIZE) 3987 set_opt(sb, DIOREAD_NOLOCK); 3988 3989 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3990 blocksize > EXT4_MAX_BLOCK_SIZE) { 3991 ext4_msg(sb, KERN_ERR, 3992 "Unsupported filesystem blocksize %d (%d log_block_size)", 3993 blocksize, le32_to_cpu(es->s_log_block_size)); 3994 goto failed_mount; 3995 } 3996 3997 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3998 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3999 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4000 } else { 4001 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4002 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4003 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4004 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4005 sbi->s_first_ino); 4006 goto failed_mount; 4007 } 4008 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4009 (!is_power_of_2(sbi->s_inode_size)) || 4010 (sbi->s_inode_size > blocksize)) { 4011 ext4_msg(sb, KERN_ERR, 4012 "unsupported inode size: %d", 4013 sbi->s_inode_size); 4014 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4015 goto failed_mount; 4016 } 4017 /* 4018 * i_atime_extra is the last extra field available for 4019 * [acm]times in struct ext4_inode. Checking for that 4020 * field should suffice to ensure we have extra space 4021 * for all three. 4022 */ 4023 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4024 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4025 sb->s_time_gran = 1; 4026 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4027 } else { 4028 sb->s_time_gran = NSEC_PER_SEC; 4029 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4030 } 4031 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4032 } 4033 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4034 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4035 EXT4_GOOD_OLD_INODE_SIZE; 4036 if (ext4_has_feature_extra_isize(sb)) { 4037 unsigned v, max = (sbi->s_inode_size - 4038 EXT4_GOOD_OLD_INODE_SIZE); 4039 4040 v = le16_to_cpu(es->s_want_extra_isize); 4041 if (v > max) { 4042 ext4_msg(sb, KERN_ERR, 4043 "bad s_want_extra_isize: %d", v); 4044 goto failed_mount; 4045 } 4046 if (sbi->s_want_extra_isize < v) 4047 sbi->s_want_extra_isize = v; 4048 4049 v = le16_to_cpu(es->s_min_extra_isize); 4050 if (v > max) { 4051 ext4_msg(sb, KERN_ERR, 4052 "bad s_min_extra_isize: %d", v); 4053 goto failed_mount; 4054 } 4055 if (sbi->s_want_extra_isize < v) 4056 sbi->s_want_extra_isize = v; 4057 } 4058 } 4059 4060 if (sbi->s_es->s_mount_opts[0]) { 4061 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4062 sizeof(sbi->s_es->s_mount_opts), 4063 GFP_KERNEL); 4064 if (!s_mount_opts) 4065 goto failed_mount; 4066 if (!parse_options(s_mount_opts, sb, &journal_devnum, 4067 &journal_ioprio, 0)) { 4068 ext4_msg(sb, KERN_WARNING, 4069 "failed to parse options in superblock: %s", 4070 s_mount_opts); 4071 } 4072 kfree(s_mount_opts); 4073 } 4074 sbi->s_def_mount_opt = sbi->s_mount_opt; 4075 if (!parse_options((char *) data, sb, &journal_devnum, 4076 &journal_ioprio, 0)) 4077 goto failed_mount; 4078 4079 #ifdef CONFIG_UNICODE 4080 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 4081 const struct ext4_sb_encodings *encoding_info; 4082 struct unicode_map *encoding; 4083 __u16 encoding_flags; 4084 4085 if (ext4_has_feature_encrypt(sb)) { 4086 ext4_msg(sb, KERN_ERR, 4087 "Can't mount with encoding and encryption"); 4088 goto failed_mount; 4089 } 4090 4091 if (ext4_sb_read_encoding(es, &encoding_info, 4092 &encoding_flags)) { 4093 ext4_msg(sb, KERN_ERR, 4094 "Encoding requested by superblock is unknown"); 4095 goto failed_mount; 4096 } 4097 4098 encoding = utf8_load(encoding_info->version); 4099 if (IS_ERR(encoding)) { 4100 ext4_msg(sb, KERN_ERR, 4101 "can't mount with superblock charset: %s-%s " 4102 "not supported by the kernel. flags: 0x%x.", 4103 encoding_info->name, encoding_info->version, 4104 encoding_flags); 4105 goto failed_mount; 4106 } 4107 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4108 "%s-%s with flags 0x%hx", encoding_info->name, 4109 encoding_info->version?:"\b", encoding_flags); 4110 4111 sbi->s_encoding = encoding; 4112 sbi->s_encoding_flags = encoding_flags; 4113 } 4114 #endif 4115 4116 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4117 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 4118 /* can't mount with both data=journal and dioread_nolock. */ 4119 clear_opt(sb, DIOREAD_NOLOCK); 4120 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4121 ext4_msg(sb, KERN_ERR, "can't mount with " 4122 "both data=journal and delalloc"); 4123 goto failed_mount; 4124 } 4125 if (test_opt(sb, DAX_ALWAYS)) { 4126 ext4_msg(sb, KERN_ERR, "can't mount with " 4127 "both data=journal and dax"); 4128 goto failed_mount; 4129 } 4130 if (ext4_has_feature_encrypt(sb)) { 4131 ext4_msg(sb, KERN_WARNING, 4132 "encrypted files will use data=ordered " 4133 "instead of data journaling mode"); 4134 } 4135 if (test_opt(sb, DELALLOC)) 4136 clear_opt(sb, DELALLOC); 4137 } else { 4138 sb->s_iflags |= SB_I_CGROUPWB; 4139 } 4140 4141 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4142 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4143 4144 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4145 (ext4_has_compat_features(sb) || 4146 ext4_has_ro_compat_features(sb) || 4147 ext4_has_incompat_features(sb))) 4148 ext4_msg(sb, KERN_WARNING, 4149 "feature flags set on rev 0 fs, " 4150 "running e2fsck is recommended"); 4151 4152 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4153 set_opt2(sb, HURD_COMPAT); 4154 if (ext4_has_feature_64bit(sb)) { 4155 ext4_msg(sb, KERN_ERR, 4156 "The Hurd can't support 64-bit file systems"); 4157 goto failed_mount; 4158 } 4159 4160 /* 4161 * ea_inode feature uses l_i_version field which is not 4162 * available in HURD_COMPAT mode. 4163 */ 4164 if (ext4_has_feature_ea_inode(sb)) { 4165 ext4_msg(sb, KERN_ERR, 4166 "ea_inode feature is not supported for Hurd"); 4167 goto failed_mount; 4168 } 4169 } 4170 4171 if (IS_EXT2_SB(sb)) { 4172 if (ext2_feature_set_ok(sb)) 4173 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4174 "using the ext4 subsystem"); 4175 else { 4176 /* 4177 * If we're probing be silent, if this looks like 4178 * it's actually an ext[34] filesystem. 4179 */ 4180 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4181 goto failed_mount; 4182 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4183 "to feature incompatibilities"); 4184 goto failed_mount; 4185 } 4186 } 4187 4188 if (IS_EXT3_SB(sb)) { 4189 if (ext3_feature_set_ok(sb)) 4190 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4191 "using the ext4 subsystem"); 4192 else { 4193 /* 4194 * If we're probing be silent, if this looks like 4195 * it's actually an ext4 filesystem. 4196 */ 4197 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4198 goto failed_mount; 4199 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4200 "to feature incompatibilities"); 4201 goto failed_mount; 4202 } 4203 } 4204 4205 /* 4206 * Check feature flags regardless of the revision level, since we 4207 * previously didn't change the revision level when setting the flags, 4208 * so there is a chance incompat flags are set on a rev 0 filesystem. 4209 */ 4210 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4211 goto failed_mount; 4212 4213 if (le32_to_cpu(es->s_log_block_size) > 4214 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4215 ext4_msg(sb, KERN_ERR, 4216 "Invalid log block size: %u", 4217 le32_to_cpu(es->s_log_block_size)); 4218 goto failed_mount; 4219 } 4220 if (le32_to_cpu(es->s_log_cluster_size) > 4221 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4222 ext4_msg(sb, KERN_ERR, 4223 "Invalid log cluster size: %u", 4224 le32_to_cpu(es->s_log_cluster_size)); 4225 goto failed_mount; 4226 } 4227 4228 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4229 ext4_msg(sb, KERN_ERR, 4230 "Number of reserved GDT blocks insanely large: %d", 4231 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4232 goto failed_mount; 4233 } 4234 4235 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4236 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4237 4238 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4239 if (ext4_has_feature_inline_data(sb)) { 4240 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4241 " that may contain inline data"); 4242 goto failed_mount; 4243 } 4244 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4245 ext4_msg(sb, KERN_ERR, 4246 "DAX unsupported by block device."); 4247 goto failed_mount; 4248 } 4249 } 4250 4251 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4252 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4253 es->s_encryption_level); 4254 goto failed_mount; 4255 } 4256 4257 if (sb->s_blocksize != blocksize) { 4258 /* Validate the filesystem blocksize */ 4259 if (!sb_set_blocksize(sb, blocksize)) { 4260 ext4_msg(sb, KERN_ERR, "bad block size %d", 4261 blocksize); 4262 goto failed_mount; 4263 } 4264 4265 brelse(bh); 4266 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4267 offset = do_div(logical_sb_block, blocksize); 4268 bh = sb_bread_unmovable(sb, logical_sb_block); 4269 if (!bh) { 4270 ext4_msg(sb, KERN_ERR, 4271 "Can't read superblock on 2nd try"); 4272 goto failed_mount; 4273 } 4274 es = (struct ext4_super_block *)(bh->b_data + offset); 4275 sbi->s_es = es; 4276 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4277 ext4_msg(sb, KERN_ERR, 4278 "Magic mismatch, very weird!"); 4279 goto failed_mount; 4280 } 4281 } 4282 4283 has_huge_files = ext4_has_feature_huge_file(sb); 4284 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4285 has_huge_files); 4286 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4287 4288 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4289 if (ext4_has_feature_64bit(sb)) { 4290 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4291 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4292 !is_power_of_2(sbi->s_desc_size)) { 4293 ext4_msg(sb, KERN_ERR, 4294 "unsupported descriptor size %lu", 4295 sbi->s_desc_size); 4296 goto failed_mount; 4297 } 4298 } else 4299 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4300 4301 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4302 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4303 4304 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4305 if (sbi->s_inodes_per_block == 0) 4306 goto cantfind_ext4; 4307 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4308 sbi->s_inodes_per_group > blocksize * 8) { 4309 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4310 sbi->s_inodes_per_group); 4311 goto failed_mount; 4312 } 4313 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4314 sbi->s_inodes_per_block; 4315 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4316 sbi->s_sbh = bh; 4317 sbi->s_mount_state = le16_to_cpu(es->s_state); 4318 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4319 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4320 4321 for (i = 0; i < 4; i++) 4322 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4323 sbi->s_def_hash_version = es->s_def_hash_version; 4324 if (ext4_has_feature_dir_index(sb)) { 4325 i = le32_to_cpu(es->s_flags); 4326 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4327 sbi->s_hash_unsigned = 3; 4328 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4329 #ifdef __CHAR_UNSIGNED__ 4330 if (!sb_rdonly(sb)) 4331 es->s_flags |= 4332 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4333 sbi->s_hash_unsigned = 3; 4334 #else 4335 if (!sb_rdonly(sb)) 4336 es->s_flags |= 4337 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4338 #endif 4339 } 4340 } 4341 4342 /* Handle clustersize */ 4343 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4344 if (ext4_has_feature_bigalloc(sb)) { 4345 if (clustersize < blocksize) { 4346 ext4_msg(sb, KERN_ERR, 4347 "cluster size (%d) smaller than " 4348 "block size (%d)", clustersize, blocksize); 4349 goto failed_mount; 4350 } 4351 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4352 le32_to_cpu(es->s_log_block_size); 4353 sbi->s_clusters_per_group = 4354 le32_to_cpu(es->s_clusters_per_group); 4355 if (sbi->s_clusters_per_group > blocksize * 8) { 4356 ext4_msg(sb, KERN_ERR, 4357 "#clusters per group too big: %lu", 4358 sbi->s_clusters_per_group); 4359 goto failed_mount; 4360 } 4361 if (sbi->s_blocks_per_group != 4362 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4363 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4364 "clusters per group (%lu) inconsistent", 4365 sbi->s_blocks_per_group, 4366 sbi->s_clusters_per_group); 4367 goto failed_mount; 4368 } 4369 } else { 4370 if (clustersize != blocksize) { 4371 ext4_msg(sb, KERN_ERR, 4372 "fragment/cluster size (%d) != " 4373 "block size (%d)", clustersize, blocksize); 4374 goto failed_mount; 4375 } 4376 if (sbi->s_blocks_per_group > blocksize * 8) { 4377 ext4_msg(sb, KERN_ERR, 4378 "#blocks per group too big: %lu", 4379 sbi->s_blocks_per_group); 4380 goto failed_mount; 4381 } 4382 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4383 sbi->s_cluster_bits = 0; 4384 } 4385 sbi->s_cluster_ratio = clustersize / blocksize; 4386 4387 /* Do we have standard group size of clustersize * 8 blocks ? */ 4388 if (sbi->s_blocks_per_group == clustersize << 3) 4389 set_opt2(sb, STD_GROUP_SIZE); 4390 4391 /* 4392 * Test whether we have more sectors than will fit in sector_t, 4393 * and whether the max offset is addressable by the page cache. 4394 */ 4395 err = generic_check_addressable(sb->s_blocksize_bits, 4396 ext4_blocks_count(es)); 4397 if (err) { 4398 ext4_msg(sb, KERN_ERR, "filesystem" 4399 " too large to mount safely on this system"); 4400 goto failed_mount; 4401 } 4402 4403 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4404 goto cantfind_ext4; 4405 4406 /* check blocks count against device size */ 4407 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4408 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4409 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4410 "exceeds size of device (%llu blocks)", 4411 ext4_blocks_count(es), blocks_count); 4412 goto failed_mount; 4413 } 4414 4415 /* 4416 * It makes no sense for the first data block to be beyond the end 4417 * of the filesystem. 4418 */ 4419 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4420 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4421 "block %u is beyond end of filesystem (%llu)", 4422 le32_to_cpu(es->s_first_data_block), 4423 ext4_blocks_count(es)); 4424 goto failed_mount; 4425 } 4426 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4427 (sbi->s_cluster_ratio == 1)) { 4428 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4429 "block is 0 with a 1k block and cluster size"); 4430 goto failed_mount; 4431 } 4432 4433 blocks_count = (ext4_blocks_count(es) - 4434 le32_to_cpu(es->s_first_data_block) + 4435 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4436 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4437 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4438 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4439 "(block count %llu, first data block %u, " 4440 "blocks per group %lu)", blocks_count, 4441 ext4_blocks_count(es), 4442 le32_to_cpu(es->s_first_data_block), 4443 EXT4_BLOCKS_PER_GROUP(sb)); 4444 goto failed_mount; 4445 } 4446 sbi->s_groups_count = blocks_count; 4447 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4448 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4449 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4450 le32_to_cpu(es->s_inodes_count)) { 4451 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4452 le32_to_cpu(es->s_inodes_count), 4453 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4454 ret = -EINVAL; 4455 goto failed_mount; 4456 } 4457 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4458 EXT4_DESC_PER_BLOCK(sb); 4459 if (ext4_has_feature_meta_bg(sb)) { 4460 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4461 ext4_msg(sb, KERN_WARNING, 4462 "first meta block group too large: %u " 4463 "(group descriptor block count %u)", 4464 le32_to_cpu(es->s_first_meta_bg), db_count); 4465 goto failed_mount; 4466 } 4467 } 4468 rcu_assign_pointer(sbi->s_group_desc, 4469 kvmalloc_array(db_count, 4470 sizeof(struct buffer_head *), 4471 GFP_KERNEL)); 4472 if (sbi->s_group_desc == NULL) { 4473 ext4_msg(sb, KERN_ERR, "not enough memory"); 4474 ret = -ENOMEM; 4475 goto failed_mount; 4476 } 4477 4478 bgl_lock_init(sbi->s_blockgroup_lock); 4479 4480 /* Pre-read the descriptors into the buffer cache */ 4481 for (i = 0; i < db_count; i++) { 4482 block = descriptor_loc(sb, logical_sb_block, i); 4483 sb_breadahead_unmovable(sb, block); 4484 } 4485 4486 for (i = 0; i < db_count; i++) { 4487 struct buffer_head *bh; 4488 4489 block = descriptor_loc(sb, logical_sb_block, i); 4490 bh = sb_bread_unmovable(sb, block); 4491 if (!bh) { 4492 ext4_msg(sb, KERN_ERR, 4493 "can't read group descriptor %d", i); 4494 db_count = i; 4495 goto failed_mount2; 4496 } 4497 rcu_read_lock(); 4498 rcu_dereference(sbi->s_group_desc)[i] = bh; 4499 rcu_read_unlock(); 4500 } 4501 sbi->s_gdb_count = db_count; 4502 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4503 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4504 ret = -EFSCORRUPTED; 4505 goto failed_mount2; 4506 } 4507 4508 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4509 4510 /* Register extent status tree shrinker */ 4511 if (ext4_es_register_shrinker(sbi)) 4512 goto failed_mount3; 4513 4514 sbi->s_stripe = ext4_get_stripe_size(sbi); 4515 sbi->s_extent_max_zeroout_kb = 32; 4516 4517 /* 4518 * set up enough so that it can read an inode 4519 */ 4520 sb->s_op = &ext4_sops; 4521 sb->s_export_op = &ext4_export_ops; 4522 sb->s_xattr = ext4_xattr_handlers; 4523 #ifdef CONFIG_FS_ENCRYPTION 4524 sb->s_cop = &ext4_cryptops; 4525 #endif 4526 #ifdef CONFIG_FS_VERITY 4527 sb->s_vop = &ext4_verityops; 4528 #endif 4529 #ifdef CONFIG_QUOTA 4530 sb->dq_op = &ext4_quota_operations; 4531 if (ext4_has_feature_quota(sb)) 4532 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4533 else 4534 sb->s_qcop = &ext4_qctl_operations; 4535 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4536 #endif 4537 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4538 4539 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4540 mutex_init(&sbi->s_orphan_lock); 4541 4542 sb->s_root = NULL; 4543 4544 needs_recovery = (es->s_last_orphan != 0 || 4545 ext4_has_feature_journal_needs_recovery(sb)); 4546 4547 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4548 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4549 goto failed_mount3a; 4550 4551 /* 4552 * The first inode we look at is the journal inode. Don't try 4553 * root first: it may be modified in the journal! 4554 */ 4555 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4556 err = ext4_load_journal(sb, es, journal_devnum); 4557 if (err) 4558 goto failed_mount3a; 4559 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4560 ext4_has_feature_journal_needs_recovery(sb)) { 4561 ext4_msg(sb, KERN_ERR, "required journal recovery " 4562 "suppressed and not mounted read-only"); 4563 goto failed_mount_wq; 4564 } else { 4565 /* Nojournal mode, all journal mount options are illegal */ 4566 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4567 ext4_msg(sb, KERN_ERR, "can't mount with " 4568 "journal_checksum, fs mounted w/o journal"); 4569 goto failed_mount_wq; 4570 } 4571 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4572 ext4_msg(sb, KERN_ERR, "can't mount with " 4573 "journal_async_commit, fs mounted w/o journal"); 4574 goto failed_mount_wq; 4575 } 4576 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4577 ext4_msg(sb, KERN_ERR, "can't mount with " 4578 "commit=%lu, fs mounted w/o journal", 4579 sbi->s_commit_interval / HZ); 4580 goto failed_mount_wq; 4581 } 4582 if (EXT4_MOUNT_DATA_FLAGS & 4583 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4584 ext4_msg(sb, KERN_ERR, "can't mount with " 4585 "data=, fs mounted w/o journal"); 4586 goto failed_mount_wq; 4587 } 4588 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4589 clear_opt(sb, JOURNAL_CHECKSUM); 4590 clear_opt(sb, DATA_FLAGS); 4591 sbi->s_journal = NULL; 4592 needs_recovery = 0; 4593 goto no_journal; 4594 } 4595 4596 if (ext4_has_feature_64bit(sb) && 4597 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4598 JBD2_FEATURE_INCOMPAT_64BIT)) { 4599 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4600 goto failed_mount_wq; 4601 } 4602 4603 if (!set_journal_csum_feature_set(sb)) { 4604 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4605 "feature set"); 4606 goto failed_mount_wq; 4607 } 4608 4609 /* We have now updated the journal if required, so we can 4610 * validate the data journaling mode. */ 4611 switch (test_opt(sb, DATA_FLAGS)) { 4612 case 0: 4613 /* No mode set, assume a default based on the journal 4614 * capabilities: ORDERED_DATA if the journal can 4615 * cope, else JOURNAL_DATA 4616 */ 4617 if (jbd2_journal_check_available_features 4618 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4619 set_opt(sb, ORDERED_DATA); 4620 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4621 } else { 4622 set_opt(sb, JOURNAL_DATA); 4623 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4624 } 4625 break; 4626 4627 case EXT4_MOUNT_ORDERED_DATA: 4628 case EXT4_MOUNT_WRITEBACK_DATA: 4629 if (!jbd2_journal_check_available_features 4630 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4631 ext4_msg(sb, KERN_ERR, "Journal does not support " 4632 "requested data journaling mode"); 4633 goto failed_mount_wq; 4634 } 4635 default: 4636 break; 4637 } 4638 4639 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4640 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4641 ext4_msg(sb, KERN_ERR, "can't mount with " 4642 "journal_async_commit in data=ordered mode"); 4643 goto failed_mount_wq; 4644 } 4645 4646 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4647 4648 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4649 4650 no_journal: 4651 if (!test_opt(sb, NO_MBCACHE)) { 4652 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4653 if (!sbi->s_ea_block_cache) { 4654 ext4_msg(sb, KERN_ERR, 4655 "Failed to create ea_block_cache"); 4656 goto failed_mount_wq; 4657 } 4658 4659 if (ext4_has_feature_ea_inode(sb)) { 4660 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4661 if (!sbi->s_ea_inode_cache) { 4662 ext4_msg(sb, KERN_ERR, 4663 "Failed to create ea_inode_cache"); 4664 goto failed_mount_wq; 4665 } 4666 } 4667 } 4668 4669 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4670 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4671 goto failed_mount_wq; 4672 } 4673 4674 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4675 !ext4_has_feature_encrypt(sb)) { 4676 ext4_set_feature_encrypt(sb); 4677 ext4_commit_super(sb, 1); 4678 } 4679 4680 /* 4681 * Get the # of file system overhead blocks from the 4682 * superblock if present. 4683 */ 4684 if (es->s_overhead_clusters) 4685 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4686 else { 4687 err = ext4_calculate_overhead(sb); 4688 if (err) 4689 goto failed_mount_wq; 4690 } 4691 4692 /* 4693 * The maximum number of concurrent works can be high and 4694 * concurrency isn't really necessary. Limit it to 1. 4695 */ 4696 EXT4_SB(sb)->rsv_conversion_wq = 4697 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4698 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4699 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4700 ret = -ENOMEM; 4701 goto failed_mount4; 4702 } 4703 4704 /* 4705 * The jbd2_journal_load will have done any necessary log recovery, 4706 * so we can safely mount the rest of the filesystem now. 4707 */ 4708 4709 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4710 if (IS_ERR(root)) { 4711 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4712 ret = PTR_ERR(root); 4713 root = NULL; 4714 goto failed_mount4; 4715 } 4716 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4717 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4718 iput(root); 4719 goto failed_mount4; 4720 } 4721 4722 #ifdef CONFIG_UNICODE 4723 if (sbi->s_encoding) 4724 sb->s_d_op = &ext4_dentry_ops; 4725 #endif 4726 4727 sb->s_root = d_make_root(root); 4728 if (!sb->s_root) { 4729 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4730 ret = -ENOMEM; 4731 goto failed_mount4; 4732 } 4733 4734 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4735 if (ret == -EROFS) { 4736 sb->s_flags |= SB_RDONLY; 4737 ret = 0; 4738 } else if (ret) 4739 goto failed_mount4a; 4740 4741 ext4_set_resv_clusters(sb); 4742 4743 if (test_opt(sb, BLOCK_VALIDITY)) { 4744 err = ext4_setup_system_zone(sb); 4745 if (err) { 4746 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4747 "zone (%d)", err); 4748 goto failed_mount4a; 4749 } 4750 } 4751 4752 ext4_ext_init(sb); 4753 err = ext4_mb_init(sb); 4754 if (err) { 4755 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4756 err); 4757 goto failed_mount5; 4758 } 4759 4760 block = ext4_count_free_clusters(sb); 4761 ext4_free_blocks_count_set(sbi->s_es, 4762 EXT4_C2B(sbi, block)); 4763 ext4_superblock_csum_set(sb); 4764 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4765 GFP_KERNEL); 4766 if (!err) { 4767 unsigned long freei = ext4_count_free_inodes(sb); 4768 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4769 ext4_superblock_csum_set(sb); 4770 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4771 GFP_KERNEL); 4772 } 4773 if (!err) 4774 err = percpu_counter_init(&sbi->s_dirs_counter, 4775 ext4_count_dirs(sb), GFP_KERNEL); 4776 if (!err) 4777 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4778 GFP_KERNEL); 4779 if (!err) 4780 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4781 4782 if (err) { 4783 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4784 goto failed_mount6; 4785 } 4786 4787 if (ext4_has_feature_flex_bg(sb)) 4788 if (!ext4_fill_flex_info(sb)) { 4789 ext4_msg(sb, KERN_ERR, 4790 "unable to initialize " 4791 "flex_bg meta info!"); 4792 goto failed_mount6; 4793 } 4794 4795 err = ext4_register_li_request(sb, first_not_zeroed); 4796 if (err) 4797 goto failed_mount6; 4798 4799 err = ext4_register_sysfs(sb); 4800 if (err) 4801 goto failed_mount7; 4802 4803 #ifdef CONFIG_QUOTA 4804 /* Enable quota usage during mount. */ 4805 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4806 err = ext4_enable_quotas(sb); 4807 if (err) 4808 goto failed_mount8; 4809 } 4810 #endif /* CONFIG_QUOTA */ 4811 4812 /* 4813 * Save the original bdev mapping's wb_err value which could be 4814 * used to detect the metadata async write error. 4815 */ 4816 spin_lock_init(&sbi->s_bdev_wb_lock); 4817 if (!sb_rdonly(sb)) 4818 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4819 &sbi->s_bdev_wb_err); 4820 sb->s_bdev->bd_super = sb; 4821 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4822 ext4_orphan_cleanup(sb, es); 4823 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4824 if (needs_recovery) { 4825 ext4_msg(sb, KERN_INFO, "recovery complete"); 4826 err = ext4_mark_recovery_complete(sb, es); 4827 if (err) 4828 goto failed_mount8; 4829 } 4830 if (EXT4_SB(sb)->s_journal) { 4831 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4832 descr = " journalled data mode"; 4833 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4834 descr = " ordered data mode"; 4835 else 4836 descr = " writeback data mode"; 4837 } else 4838 descr = "out journal"; 4839 4840 if (test_opt(sb, DISCARD)) { 4841 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4842 if (!blk_queue_discard(q)) 4843 ext4_msg(sb, KERN_WARNING, 4844 "mounting with \"discard\" option, but " 4845 "the device does not support discard"); 4846 } 4847 4848 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4849 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4850 "Opts: %.*s%s%s", descr, 4851 (int) sizeof(sbi->s_es->s_mount_opts), 4852 sbi->s_es->s_mount_opts, 4853 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4854 4855 if (es->s_error_count) 4856 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4857 4858 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4859 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4860 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4861 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4862 atomic_set(&sbi->s_warning_count, 0); 4863 atomic_set(&sbi->s_msg_count, 0); 4864 4865 kfree(orig_data); 4866 return 0; 4867 4868 cantfind_ext4: 4869 if (!silent) 4870 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4871 goto failed_mount; 4872 4873 failed_mount8: 4874 ext4_unregister_sysfs(sb); 4875 failed_mount7: 4876 ext4_unregister_li_request(sb); 4877 failed_mount6: 4878 ext4_mb_release(sb); 4879 rcu_read_lock(); 4880 flex_groups = rcu_dereference(sbi->s_flex_groups); 4881 if (flex_groups) { 4882 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4883 kvfree(flex_groups[i]); 4884 kvfree(flex_groups); 4885 } 4886 rcu_read_unlock(); 4887 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4888 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4889 percpu_counter_destroy(&sbi->s_dirs_counter); 4890 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4891 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4892 failed_mount5: 4893 ext4_ext_release(sb); 4894 ext4_release_system_zone(sb); 4895 failed_mount4a: 4896 dput(sb->s_root); 4897 sb->s_root = NULL; 4898 failed_mount4: 4899 ext4_msg(sb, KERN_ERR, "mount failed"); 4900 if (EXT4_SB(sb)->rsv_conversion_wq) 4901 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4902 failed_mount_wq: 4903 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4904 sbi->s_ea_inode_cache = NULL; 4905 4906 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4907 sbi->s_ea_block_cache = NULL; 4908 4909 if (sbi->s_journal) { 4910 jbd2_journal_destroy(sbi->s_journal); 4911 sbi->s_journal = NULL; 4912 } 4913 failed_mount3a: 4914 ext4_es_unregister_shrinker(sbi); 4915 failed_mount3: 4916 del_timer_sync(&sbi->s_err_report); 4917 if (sbi->s_mmp_tsk) 4918 kthread_stop(sbi->s_mmp_tsk); 4919 failed_mount2: 4920 rcu_read_lock(); 4921 group_desc = rcu_dereference(sbi->s_group_desc); 4922 for (i = 0; i < db_count; i++) 4923 brelse(group_desc[i]); 4924 kvfree(group_desc); 4925 rcu_read_unlock(); 4926 failed_mount: 4927 if (sbi->s_chksum_driver) 4928 crypto_free_shash(sbi->s_chksum_driver); 4929 4930 #ifdef CONFIG_UNICODE 4931 utf8_unload(sbi->s_encoding); 4932 #endif 4933 4934 #ifdef CONFIG_QUOTA 4935 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4936 kfree(get_qf_name(sb, sbi, i)); 4937 #endif 4938 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 4939 ext4_blkdev_remove(sbi); 4940 brelse(bh); 4941 out_fail: 4942 sb->s_fs_info = NULL; 4943 kfree(sbi->s_blockgroup_lock); 4944 out_free_base: 4945 kfree(sbi); 4946 kfree(orig_data); 4947 fs_put_dax(dax_dev); 4948 return err ? err : ret; 4949 } 4950 4951 /* 4952 * Setup any per-fs journal parameters now. We'll do this both on 4953 * initial mount, once the journal has been initialised but before we've 4954 * done any recovery; and again on any subsequent remount. 4955 */ 4956 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4957 { 4958 struct ext4_sb_info *sbi = EXT4_SB(sb); 4959 4960 journal->j_commit_interval = sbi->s_commit_interval; 4961 journal->j_min_batch_time = sbi->s_min_batch_time; 4962 journal->j_max_batch_time = sbi->s_max_batch_time; 4963 4964 write_lock(&journal->j_state_lock); 4965 if (test_opt(sb, BARRIER)) 4966 journal->j_flags |= JBD2_BARRIER; 4967 else 4968 journal->j_flags &= ~JBD2_BARRIER; 4969 if (test_opt(sb, DATA_ERR_ABORT)) 4970 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4971 else 4972 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4973 write_unlock(&journal->j_state_lock); 4974 } 4975 4976 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4977 unsigned int journal_inum) 4978 { 4979 struct inode *journal_inode; 4980 4981 /* 4982 * Test for the existence of a valid inode on disk. Bad things 4983 * happen if we iget() an unused inode, as the subsequent iput() 4984 * will try to delete it. 4985 */ 4986 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4987 if (IS_ERR(journal_inode)) { 4988 ext4_msg(sb, KERN_ERR, "no journal found"); 4989 return NULL; 4990 } 4991 if (!journal_inode->i_nlink) { 4992 make_bad_inode(journal_inode); 4993 iput(journal_inode); 4994 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4995 return NULL; 4996 } 4997 4998 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4999 journal_inode, journal_inode->i_size); 5000 if (!S_ISREG(journal_inode->i_mode)) { 5001 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5002 iput(journal_inode); 5003 return NULL; 5004 } 5005 return journal_inode; 5006 } 5007 5008 static journal_t *ext4_get_journal(struct super_block *sb, 5009 unsigned int journal_inum) 5010 { 5011 struct inode *journal_inode; 5012 journal_t *journal; 5013 5014 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5015 return NULL; 5016 5017 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5018 if (!journal_inode) 5019 return NULL; 5020 5021 journal = jbd2_journal_init_inode(journal_inode); 5022 if (!journal) { 5023 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5024 iput(journal_inode); 5025 return NULL; 5026 } 5027 journal->j_private = sb; 5028 ext4_init_journal_params(sb, journal); 5029 return journal; 5030 } 5031 5032 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5033 dev_t j_dev) 5034 { 5035 struct buffer_head *bh; 5036 journal_t *journal; 5037 ext4_fsblk_t start; 5038 ext4_fsblk_t len; 5039 int hblock, blocksize; 5040 ext4_fsblk_t sb_block; 5041 unsigned long offset; 5042 struct ext4_super_block *es; 5043 struct block_device *bdev; 5044 5045 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5046 return NULL; 5047 5048 bdev = ext4_blkdev_get(j_dev, sb); 5049 if (bdev == NULL) 5050 return NULL; 5051 5052 blocksize = sb->s_blocksize; 5053 hblock = bdev_logical_block_size(bdev); 5054 if (blocksize < hblock) { 5055 ext4_msg(sb, KERN_ERR, 5056 "blocksize too small for journal device"); 5057 goto out_bdev; 5058 } 5059 5060 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5061 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5062 set_blocksize(bdev, blocksize); 5063 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5064 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5065 "external journal"); 5066 goto out_bdev; 5067 } 5068 5069 es = (struct ext4_super_block *) (bh->b_data + offset); 5070 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5071 !(le32_to_cpu(es->s_feature_incompat) & 5072 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5073 ext4_msg(sb, KERN_ERR, "external journal has " 5074 "bad superblock"); 5075 brelse(bh); 5076 goto out_bdev; 5077 } 5078 5079 if ((le32_to_cpu(es->s_feature_ro_compat) & 5080 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5081 es->s_checksum != ext4_superblock_csum(sb, es)) { 5082 ext4_msg(sb, KERN_ERR, "external journal has " 5083 "corrupt superblock"); 5084 brelse(bh); 5085 goto out_bdev; 5086 } 5087 5088 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5089 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5090 brelse(bh); 5091 goto out_bdev; 5092 } 5093 5094 len = ext4_blocks_count(es); 5095 start = sb_block + 1; 5096 brelse(bh); /* we're done with the superblock */ 5097 5098 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5099 start, len, blocksize); 5100 if (!journal) { 5101 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5102 goto out_bdev; 5103 } 5104 journal->j_private = sb; 5105 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 5106 wait_on_buffer(journal->j_sb_buffer); 5107 if (!buffer_uptodate(journal->j_sb_buffer)) { 5108 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5109 goto out_journal; 5110 } 5111 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5112 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5113 "user (unsupported) - %d", 5114 be32_to_cpu(journal->j_superblock->s_nr_users)); 5115 goto out_journal; 5116 } 5117 EXT4_SB(sb)->journal_bdev = bdev; 5118 ext4_init_journal_params(sb, journal); 5119 return journal; 5120 5121 out_journal: 5122 jbd2_journal_destroy(journal); 5123 out_bdev: 5124 ext4_blkdev_put(bdev); 5125 return NULL; 5126 } 5127 5128 static int ext4_load_journal(struct super_block *sb, 5129 struct ext4_super_block *es, 5130 unsigned long journal_devnum) 5131 { 5132 journal_t *journal; 5133 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5134 dev_t journal_dev; 5135 int err = 0; 5136 int really_read_only; 5137 int journal_dev_ro; 5138 5139 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5140 return -EFSCORRUPTED; 5141 5142 if (journal_devnum && 5143 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5144 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5145 "numbers have changed"); 5146 journal_dev = new_decode_dev(journal_devnum); 5147 } else 5148 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5149 5150 if (journal_inum && journal_dev) { 5151 ext4_msg(sb, KERN_ERR, 5152 "filesystem has both journal inode and journal device!"); 5153 return -EINVAL; 5154 } 5155 5156 if (journal_inum) { 5157 journal = ext4_get_journal(sb, journal_inum); 5158 if (!journal) 5159 return -EINVAL; 5160 } else { 5161 journal = ext4_get_dev_journal(sb, journal_dev); 5162 if (!journal) 5163 return -EINVAL; 5164 } 5165 5166 journal_dev_ro = bdev_read_only(journal->j_dev); 5167 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5168 5169 if (journal_dev_ro && !sb_rdonly(sb)) { 5170 ext4_msg(sb, KERN_ERR, 5171 "journal device read-only, try mounting with '-o ro'"); 5172 err = -EROFS; 5173 goto err_out; 5174 } 5175 5176 /* 5177 * Are we loading a blank journal or performing recovery after a 5178 * crash? For recovery, we need to check in advance whether we 5179 * can get read-write access to the device. 5180 */ 5181 if (ext4_has_feature_journal_needs_recovery(sb)) { 5182 if (sb_rdonly(sb)) { 5183 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5184 "required on readonly filesystem"); 5185 if (really_read_only) { 5186 ext4_msg(sb, KERN_ERR, "write access " 5187 "unavailable, cannot proceed " 5188 "(try mounting with noload)"); 5189 err = -EROFS; 5190 goto err_out; 5191 } 5192 ext4_msg(sb, KERN_INFO, "write access will " 5193 "be enabled during recovery"); 5194 } 5195 } 5196 5197 if (!(journal->j_flags & JBD2_BARRIER)) 5198 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5199 5200 if (!ext4_has_feature_journal_needs_recovery(sb)) 5201 err = jbd2_journal_wipe(journal, !really_read_only); 5202 if (!err) { 5203 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5204 if (save) 5205 memcpy(save, ((char *) es) + 5206 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5207 err = jbd2_journal_load(journal); 5208 if (save) 5209 memcpy(((char *) es) + EXT4_S_ERR_START, 5210 save, EXT4_S_ERR_LEN); 5211 kfree(save); 5212 } 5213 5214 if (err) { 5215 ext4_msg(sb, KERN_ERR, "error loading journal"); 5216 goto err_out; 5217 } 5218 5219 EXT4_SB(sb)->s_journal = journal; 5220 err = ext4_clear_journal_err(sb, es); 5221 if (err) { 5222 EXT4_SB(sb)->s_journal = NULL; 5223 jbd2_journal_destroy(journal); 5224 return err; 5225 } 5226 5227 if (!really_read_only && journal_devnum && 5228 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5229 es->s_journal_dev = cpu_to_le32(journal_devnum); 5230 5231 /* Make sure we flush the recovery flag to disk. */ 5232 ext4_commit_super(sb, 1); 5233 } 5234 5235 return 0; 5236 5237 err_out: 5238 jbd2_journal_destroy(journal); 5239 return err; 5240 } 5241 5242 static int ext4_commit_super(struct super_block *sb, int sync) 5243 { 5244 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5245 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5246 int error = 0; 5247 5248 if (!sbh || block_device_ejected(sb)) 5249 return error; 5250 5251 /* 5252 * If the file system is mounted read-only, don't update the 5253 * superblock write time. This avoids updating the superblock 5254 * write time when we are mounting the root file system 5255 * read/only but we need to replay the journal; at that point, 5256 * for people who are east of GMT and who make their clock 5257 * tick in localtime for Windows bug-for-bug compatibility, 5258 * the clock is set in the future, and this will cause e2fsck 5259 * to complain and force a full file system check. 5260 */ 5261 if (!(sb->s_flags & SB_RDONLY)) 5262 ext4_update_tstamp(es, s_wtime); 5263 if (sb->s_bdev->bd_part) 5264 es->s_kbytes_written = 5265 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5266 ((part_stat_read(sb->s_bdev->bd_part, 5267 sectors[STAT_WRITE]) - 5268 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5269 else 5270 es->s_kbytes_written = 5271 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5272 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5273 ext4_free_blocks_count_set(es, 5274 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5275 &EXT4_SB(sb)->s_freeclusters_counter))); 5276 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5277 es->s_free_inodes_count = 5278 cpu_to_le32(percpu_counter_sum_positive( 5279 &EXT4_SB(sb)->s_freeinodes_counter)); 5280 BUFFER_TRACE(sbh, "marking dirty"); 5281 ext4_superblock_csum_set(sb); 5282 if (sync) 5283 lock_buffer(sbh); 5284 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5285 /* 5286 * Oh, dear. A previous attempt to write the 5287 * superblock failed. This could happen because the 5288 * USB device was yanked out. Or it could happen to 5289 * be a transient write error and maybe the block will 5290 * be remapped. Nothing we can do but to retry the 5291 * write and hope for the best. 5292 */ 5293 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5294 "superblock detected"); 5295 clear_buffer_write_io_error(sbh); 5296 set_buffer_uptodate(sbh); 5297 } 5298 mark_buffer_dirty(sbh); 5299 if (sync) { 5300 unlock_buffer(sbh); 5301 error = __sync_dirty_buffer(sbh, 5302 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5303 if (buffer_write_io_error(sbh)) { 5304 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5305 "superblock"); 5306 clear_buffer_write_io_error(sbh); 5307 set_buffer_uptodate(sbh); 5308 } 5309 } 5310 return error; 5311 } 5312 5313 /* 5314 * Have we just finished recovery? If so, and if we are mounting (or 5315 * remounting) the filesystem readonly, then we will end up with a 5316 * consistent fs on disk. Record that fact. 5317 */ 5318 static int ext4_mark_recovery_complete(struct super_block *sb, 5319 struct ext4_super_block *es) 5320 { 5321 int err; 5322 journal_t *journal = EXT4_SB(sb)->s_journal; 5323 5324 if (!ext4_has_feature_journal(sb)) { 5325 if (journal != NULL) { 5326 ext4_error(sb, "Journal got removed while the fs was " 5327 "mounted!"); 5328 return -EFSCORRUPTED; 5329 } 5330 return 0; 5331 } 5332 jbd2_journal_lock_updates(journal); 5333 err = jbd2_journal_flush(journal); 5334 if (err < 0) 5335 goto out; 5336 5337 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5338 ext4_clear_feature_journal_needs_recovery(sb); 5339 ext4_commit_super(sb, 1); 5340 } 5341 out: 5342 jbd2_journal_unlock_updates(journal); 5343 return err; 5344 } 5345 5346 /* 5347 * If we are mounting (or read-write remounting) a filesystem whose journal 5348 * has recorded an error from a previous lifetime, move that error to the 5349 * main filesystem now. 5350 */ 5351 static int ext4_clear_journal_err(struct super_block *sb, 5352 struct ext4_super_block *es) 5353 { 5354 journal_t *journal; 5355 int j_errno; 5356 const char *errstr; 5357 5358 if (!ext4_has_feature_journal(sb)) { 5359 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5360 return -EFSCORRUPTED; 5361 } 5362 5363 journal = EXT4_SB(sb)->s_journal; 5364 5365 /* 5366 * Now check for any error status which may have been recorded in the 5367 * journal by a prior ext4_error() or ext4_abort() 5368 */ 5369 5370 j_errno = jbd2_journal_errno(journal); 5371 if (j_errno) { 5372 char nbuf[16]; 5373 5374 errstr = ext4_decode_error(sb, j_errno, nbuf); 5375 ext4_warning(sb, "Filesystem error recorded " 5376 "from previous mount: %s", errstr); 5377 ext4_warning(sb, "Marking fs in need of filesystem check."); 5378 5379 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5380 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5381 ext4_commit_super(sb, 1); 5382 5383 jbd2_journal_clear_err(journal); 5384 jbd2_journal_update_sb_errno(journal); 5385 } 5386 return 0; 5387 } 5388 5389 /* 5390 * Force the running and committing transactions to commit, 5391 * and wait on the commit. 5392 */ 5393 int ext4_force_commit(struct super_block *sb) 5394 { 5395 journal_t *journal; 5396 5397 if (sb_rdonly(sb)) 5398 return 0; 5399 5400 journal = EXT4_SB(sb)->s_journal; 5401 return ext4_journal_force_commit(journal); 5402 } 5403 5404 static int ext4_sync_fs(struct super_block *sb, int wait) 5405 { 5406 int ret = 0; 5407 tid_t target; 5408 bool needs_barrier = false; 5409 struct ext4_sb_info *sbi = EXT4_SB(sb); 5410 5411 if (unlikely(ext4_forced_shutdown(sbi))) 5412 return 0; 5413 5414 trace_ext4_sync_fs(sb, wait); 5415 flush_workqueue(sbi->rsv_conversion_wq); 5416 /* 5417 * Writeback quota in non-journalled quota case - journalled quota has 5418 * no dirty dquots 5419 */ 5420 dquot_writeback_dquots(sb, -1); 5421 /* 5422 * Data writeback is possible w/o journal transaction, so barrier must 5423 * being sent at the end of the function. But we can skip it if 5424 * transaction_commit will do it for us. 5425 */ 5426 if (sbi->s_journal) { 5427 target = jbd2_get_latest_transaction(sbi->s_journal); 5428 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5429 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5430 needs_barrier = true; 5431 5432 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5433 if (wait) 5434 ret = jbd2_log_wait_commit(sbi->s_journal, 5435 target); 5436 } 5437 } else if (wait && test_opt(sb, BARRIER)) 5438 needs_barrier = true; 5439 if (needs_barrier) { 5440 int err; 5441 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 5442 if (!ret) 5443 ret = err; 5444 } 5445 5446 return ret; 5447 } 5448 5449 /* 5450 * LVM calls this function before a (read-only) snapshot is created. This 5451 * gives us a chance to flush the journal completely and mark the fs clean. 5452 * 5453 * Note that only this function cannot bring a filesystem to be in a clean 5454 * state independently. It relies on upper layer to stop all data & metadata 5455 * modifications. 5456 */ 5457 static int ext4_freeze(struct super_block *sb) 5458 { 5459 int error = 0; 5460 journal_t *journal; 5461 5462 if (sb_rdonly(sb)) 5463 return 0; 5464 5465 journal = EXT4_SB(sb)->s_journal; 5466 5467 if (journal) { 5468 /* Now we set up the journal barrier. */ 5469 jbd2_journal_lock_updates(journal); 5470 5471 /* 5472 * Don't clear the needs_recovery flag if we failed to 5473 * flush the journal. 5474 */ 5475 error = jbd2_journal_flush(journal); 5476 if (error < 0) 5477 goto out; 5478 5479 /* Journal blocked and flushed, clear needs_recovery flag. */ 5480 ext4_clear_feature_journal_needs_recovery(sb); 5481 } 5482 5483 error = ext4_commit_super(sb, 1); 5484 out: 5485 if (journal) 5486 /* we rely on upper layer to stop further updates */ 5487 jbd2_journal_unlock_updates(journal); 5488 return error; 5489 } 5490 5491 /* 5492 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5493 * flag here, even though the filesystem is not technically dirty yet. 5494 */ 5495 static int ext4_unfreeze(struct super_block *sb) 5496 { 5497 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5498 return 0; 5499 5500 if (EXT4_SB(sb)->s_journal) { 5501 /* Reset the needs_recovery flag before the fs is unlocked. */ 5502 ext4_set_feature_journal_needs_recovery(sb); 5503 } 5504 5505 ext4_commit_super(sb, 1); 5506 return 0; 5507 } 5508 5509 /* 5510 * Structure to save mount options for ext4_remount's benefit 5511 */ 5512 struct ext4_mount_options { 5513 unsigned long s_mount_opt; 5514 unsigned long s_mount_opt2; 5515 kuid_t s_resuid; 5516 kgid_t s_resgid; 5517 unsigned long s_commit_interval; 5518 u32 s_min_batch_time, s_max_batch_time; 5519 #ifdef CONFIG_QUOTA 5520 int s_jquota_fmt; 5521 char *s_qf_names[EXT4_MAXQUOTAS]; 5522 #endif 5523 }; 5524 5525 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5526 { 5527 struct ext4_super_block *es; 5528 struct ext4_sb_info *sbi = EXT4_SB(sb); 5529 unsigned long old_sb_flags, vfs_flags; 5530 struct ext4_mount_options old_opts; 5531 int enable_quota = 0; 5532 ext4_group_t g; 5533 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5534 int err = 0; 5535 #ifdef CONFIG_QUOTA 5536 int i, j; 5537 char *to_free[EXT4_MAXQUOTAS]; 5538 #endif 5539 char *orig_data = kstrdup(data, GFP_KERNEL); 5540 5541 if (data && !orig_data) 5542 return -ENOMEM; 5543 5544 /* Store the original options */ 5545 old_sb_flags = sb->s_flags; 5546 old_opts.s_mount_opt = sbi->s_mount_opt; 5547 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5548 old_opts.s_resuid = sbi->s_resuid; 5549 old_opts.s_resgid = sbi->s_resgid; 5550 old_opts.s_commit_interval = sbi->s_commit_interval; 5551 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5552 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5553 #ifdef CONFIG_QUOTA 5554 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5555 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5556 if (sbi->s_qf_names[i]) { 5557 char *qf_name = get_qf_name(sb, sbi, i); 5558 5559 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5560 if (!old_opts.s_qf_names[i]) { 5561 for (j = 0; j < i; j++) 5562 kfree(old_opts.s_qf_names[j]); 5563 kfree(orig_data); 5564 return -ENOMEM; 5565 } 5566 } else 5567 old_opts.s_qf_names[i] = NULL; 5568 #endif 5569 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5570 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5571 5572 /* 5573 * Some options can be enabled by ext4 and/or by VFS mount flag 5574 * either way we need to make sure it matches in both *flags and 5575 * s_flags. Copy those selected flags from *flags to s_flags 5576 */ 5577 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5578 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5579 5580 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5581 err = -EINVAL; 5582 goto restore_opts; 5583 } 5584 5585 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5586 test_opt(sb, JOURNAL_CHECKSUM)) { 5587 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5588 "during remount not supported; ignoring"); 5589 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5590 } 5591 5592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5593 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5594 ext4_msg(sb, KERN_ERR, "can't mount with " 5595 "both data=journal and delalloc"); 5596 err = -EINVAL; 5597 goto restore_opts; 5598 } 5599 if (test_opt(sb, DIOREAD_NOLOCK)) { 5600 ext4_msg(sb, KERN_ERR, "can't mount with " 5601 "both data=journal and dioread_nolock"); 5602 err = -EINVAL; 5603 goto restore_opts; 5604 } 5605 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5606 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5607 ext4_msg(sb, KERN_ERR, "can't mount with " 5608 "journal_async_commit in data=ordered mode"); 5609 err = -EINVAL; 5610 goto restore_opts; 5611 } 5612 } 5613 5614 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5615 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5616 err = -EINVAL; 5617 goto restore_opts; 5618 } 5619 5620 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5621 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5622 5623 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5624 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5625 5626 es = sbi->s_es; 5627 5628 if (sbi->s_journal) { 5629 ext4_init_journal_params(sb, sbi->s_journal); 5630 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5631 } 5632 5633 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5634 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5635 err = -EROFS; 5636 goto restore_opts; 5637 } 5638 5639 if (*flags & SB_RDONLY) { 5640 err = sync_filesystem(sb); 5641 if (err < 0) 5642 goto restore_opts; 5643 err = dquot_suspend(sb, -1); 5644 if (err < 0) 5645 goto restore_opts; 5646 5647 /* 5648 * First of all, the unconditional stuff we have to do 5649 * to disable replay of the journal when we next remount 5650 */ 5651 sb->s_flags |= SB_RDONLY; 5652 5653 /* 5654 * OK, test if we are remounting a valid rw partition 5655 * readonly, and if so set the rdonly flag and then 5656 * mark the partition as valid again. 5657 */ 5658 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5659 (sbi->s_mount_state & EXT4_VALID_FS)) 5660 es->s_state = cpu_to_le16(sbi->s_mount_state); 5661 5662 if (sbi->s_journal) { 5663 /* 5664 * We let remount-ro finish even if marking fs 5665 * as clean failed... 5666 */ 5667 ext4_mark_recovery_complete(sb, es); 5668 } 5669 if (sbi->s_mmp_tsk) 5670 kthread_stop(sbi->s_mmp_tsk); 5671 } else { 5672 /* Make sure we can mount this feature set readwrite */ 5673 if (ext4_has_feature_readonly(sb) || 5674 !ext4_feature_set_ok(sb, 0)) { 5675 err = -EROFS; 5676 goto restore_opts; 5677 } 5678 /* 5679 * Make sure the group descriptor checksums 5680 * are sane. If they aren't, refuse to remount r/w. 5681 */ 5682 for (g = 0; g < sbi->s_groups_count; g++) { 5683 struct ext4_group_desc *gdp = 5684 ext4_get_group_desc(sb, g, NULL); 5685 5686 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5687 ext4_msg(sb, KERN_ERR, 5688 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5689 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5690 le16_to_cpu(gdp->bg_checksum)); 5691 err = -EFSBADCRC; 5692 goto restore_opts; 5693 } 5694 } 5695 5696 /* 5697 * If we have an unprocessed orphan list hanging 5698 * around from a previously readonly bdev mount, 5699 * require a full umount/remount for now. 5700 */ 5701 if (es->s_last_orphan) { 5702 ext4_msg(sb, KERN_WARNING, "Couldn't " 5703 "remount RDWR because of unprocessed " 5704 "orphan inode list. Please " 5705 "umount/remount instead"); 5706 err = -EINVAL; 5707 goto restore_opts; 5708 } 5709 5710 /* 5711 * Update the original bdev mapping's wb_err value 5712 * which could be used to detect the metadata async 5713 * write error. 5714 */ 5715 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5716 &sbi->s_bdev_wb_err); 5717 5718 /* 5719 * Mounting a RDONLY partition read-write, so reread 5720 * and store the current valid flag. (It may have 5721 * been changed by e2fsck since we originally mounted 5722 * the partition.) 5723 */ 5724 if (sbi->s_journal) { 5725 err = ext4_clear_journal_err(sb, es); 5726 if (err) 5727 goto restore_opts; 5728 } 5729 sbi->s_mount_state = le16_to_cpu(es->s_state); 5730 5731 err = ext4_setup_super(sb, es, 0); 5732 if (err) 5733 goto restore_opts; 5734 5735 sb->s_flags &= ~SB_RDONLY; 5736 if (ext4_has_feature_mmp(sb)) 5737 if (ext4_multi_mount_protect(sb, 5738 le64_to_cpu(es->s_mmp_block))) { 5739 err = -EROFS; 5740 goto restore_opts; 5741 } 5742 enable_quota = 1; 5743 } 5744 } 5745 5746 /* 5747 * Reinitialize lazy itable initialization thread based on 5748 * current settings 5749 */ 5750 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5751 ext4_unregister_li_request(sb); 5752 else { 5753 ext4_group_t first_not_zeroed; 5754 first_not_zeroed = ext4_has_uninit_itable(sb); 5755 ext4_register_li_request(sb, first_not_zeroed); 5756 } 5757 5758 /* 5759 * Handle creation of system zone data early because it can fail. 5760 * Releasing of existing data is done when we are sure remount will 5761 * succeed. 5762 */ 5763 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) { 5764 err = ext4_setup_system_zone(sb); 5765 if (err) 5766 goto restore_opts; 5767 } 5768 5769 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5770 err = ext4_commit_super(sb, 1); 5771 if (err) 5772 goto restore_opts; 5773 } 5774 5775 #ifdef CONFIG_QUOTA 5776 /* Release old quota file names */ 5777 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5778 kfree(old_opts.s_qf_names[i]); 5779 if (enable_quota) { 5780 if (sb_any_quota_suspended(sb)) 5781 dquot_resume(sb, -1); 5782 else if (ext4_has_feature_quota(sb)) { 5783 err = ext4_enable_quotas(sb); 5784 if (err) 5785 goto restore_opts; 5786 } 5787 } 5788 #endif 5789 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks) 5790 ext4_release_system_zone(sb); 5791 5792 /* 5793 * Some options can be enabled by ext4 and/or by VFS mount flag 5794 * either way we need to make sure it matches in both *flags and 5795 * s_flags. Copy those selected flags from s_flags to *flags 5796 */ 5797 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 5798 5799 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5800 kfree(orig_data); 5801 return 0; 5802 5803 restore_opts: 5804 sb->s_flags = old_sb_flags; 5805 sbi->s_mount_opt = old_opts.s_mount_opt; 5806 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5807 sbi->s_resuid = old_opts.s_resuid; 5808 sbi->s_resgid = old_opts.s_resgid; 5809 sbi->s_commit_interval = old_opts.s_commit_interval; 5810 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5811 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5812 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks) 5813 ext4_release_system_zone(sb); 5814 #ifdef CONFIG_QUOTA 5815 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5816 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5817 to_free[i] = get_qf_name(sb, sbi, i); 5818 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5819 } 5820 synchronize_rcu(); 5821 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5822 kfree(to_free[i]); 5823 #endif 5824 kfree(orig_data); 5825 return err; 5826 } 5827 5828 #ifdef CONFIG_QUOTA 5829 static int ext4_statfs_project(struct super_block *sb, 5830 kprojid_t projid, struct kstatfs *buf) 5831 { 5832 struct kqid qid; 5833 struct dquot *dquot; 5834 u64 limit; 5835 u64 curblock; 5836 5837 qid = make_kqid_projid(projid); 5838 dquot = dqget(sb, qid); 5839 if (IS_ERR(dquot)) 5840 return PTR_ERR(dquot); 5841 spin_lock(&dquot->dq_dqb_lock); 5842 5843 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 5844 dquot->dq_dqb.dqb_bhardlimit); 5845 limit >>= sb->s_blocksize_bits; 5846 5847 if (limit && buf->f_blocks > limit) { 5848 curblock = (dquot->dq_dqb.dqb_curspace + 5849 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5850 buf->f_blocks = limit; 5851 buf->f_bfree = buf->f_bavail = 5852 (buf->f_blocks > curblock) ? 5853 (buf->f_blocks - curblock) : 0; 5854 } 5855 5856 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 5857 dquot->dq_dqb.dqb_ihardlimit); 5858 if (limit && buf->f_files > limit) { 5859 buf->f_files = limit; 5860 buf->f_ffree = 5861 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5862 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5863 } 5864 5865 spin_unlock(&dquot->dq_dqb_lock); 5866 dqput(dquot); 5867 return 0; 5868 } 5869 #endif 5870 5871 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5872 { 5873 struct super_block *sb = dentry->d_sb; 5874 struct ext4_sb_info *sbi = EXT4_SB(sb); 5875 struct ext4_super_block *es = sbi->s_es; 5876 ext4_fsblk_t overhead = 0, resv_blocks; 5877 u64 fsid; 5878 s64 bfree; 5879 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5880 5881 if (!test_opt(sb, MINIX_DF)) 5882 overhead = sbi->s_overhead; 5883 5884 buf->f_type = EXT4_SUPER_MAGIC; 5885 buf->f_bsize = sb->s_blocksize; 5886 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5887 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5888 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5889 /* prevent underflow in case that few free space is available */ 5890 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5891 buf->f_bavail = buf->f_bfree - 5892 (ext4_r_blocks_count(es) + resv_blocks); 5893 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5894 buf->f_bavail = 0; 5895 buf->f_files = le32_to_cpu(es->s_inodes_count); 5896 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5897 buf->f_namelen = EXT4_NAME_LEN; 5898 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5899 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5900 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5901 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5902 5903 #ifdef CONFIG_QUOTA 5904 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5905 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5906 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5907 #endif 5908 return 0; 5909 } 5910 5911 5912 #ifdef CONFIG_QUOTA 5913 5914 /* 5915 * Helper functions so that transaction is started before we acquire dqio_sem 5916 * to keep correct lock ordering of transaction > dqio_sem 5917 */ 5918 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5919 { 5920 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5921 } 5922 5923 static int ext4_write_dquot(struct dquot *dquot) 5924 { 5925 int ret, err; 5926 handle_t *handle; 5927 struct inode *inode; 5928 5929 inode = dquot_to_inode(dquot); 5930 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5931 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5932 if (IS_ERR(handle)) 5933 return PTR_ERR(handle); 5934 ret = dquot_commit(dquot); 5935 err = ext4_journal_stop(handle); 5936 if (!ret) 5937 ret = err; 5938 return ret; 5939 } 5940 5941 static int ext4_acquire_dquot(struct dquot *dquot) 5942 { 5943 int ret, err; 5944 handle_t *handle; 5945 5946 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5947 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5948 if (IS_ERR(handle)) 5949 return PTR_ERR(handle); 5950 ret = dquot_acquire(dquot); 5951 err = ext4_journal_stop(handle); 5952 if (!ret) 5953 ret = err; 5954 return ret; 5955 } 5956 5957 static int ext4_release_dquot(struct dquot *dquot) 5958 { 5959 int ret, err; 5960 handle_t *handle; 5961 5962 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5963 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5964 if (IS_ERR(handle)) { 5965 /* Release dquot anyway to avoid endless cycle in dqput() */ 5966 dquot_release(dquot); 5967 return PTR_ERR(handle); 5968 } 5969 ret = dquot_release(dquot); 5970 err = ext4_journal_stop(handle); 5971 if (!ret) 5972 ret = err; 5973 return ret; 5974 } 5975 5976 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5977 { 5978 struct super_block *sb = dquot->dq_sb; 5979 struct ext4_sb_info *sbi = EXT4_SB(sb); 5980 5981 /* Are we journaling quotas? */ 5982 if (ext4_has_feature_quota(sb) || 5983 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5984 dquot_mark_dquot_dirty(dquot); 5985 return ext4_write_dquot(dquot); 5986 } else { 5987 return dquot_mark_dquot_dirty(dquot); 5988 } 5989 } 5990 5991 static int ext4_write_info(struct super_block *sb, int type) 5992 { 5993 int ret, err; 5994 handle_t *handle; 5995 5996 /* Data block + inode block */ 5997 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5998 if (IS_ERR(handle)) 5999 return PTR_ERR(handle); 6000 ret = dquot_commit_info(sb, type); 6001 err = ext4_journal_stop(handle); 6002 if (!ret) 6003 ret = err; 6004 return ret; 6005 } 6006 6007 /* 6008 * Turn on quotas during mount time - we need to find 6009 * the quota file and such... 6010 */ 6011 static int ext4_quota_on_mount(struct super_block *sb, int type) 6012 { 6013 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 6014 EXT4_SB(sb)->s_jquota_fmt, type); 6015 } 6016 6017 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6018 { 6019 struct ext4_inode_info *ei = EXT4_I(inode); 6020 6021 /* The first argument of lockdep_set_subclass has to be 6022 * *exactly* the same as the argument to init_rwsem() --- in 6023 * this case, in init_once() --- or lockdep gets unhappy 6024 * because the name of the lock is set using the 6025 * stringification of the argument to init_rwsem(). 6026 */ 6027 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6028 lockdep_set_subclass(&ei->i_data_sem, subclass); 6029 } 6030 6031 /* 6032 * Standard function to be called on quota_on 6033 */ 6034 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6035 const struct path *path) 6036 { 6037 int err; 6038 6039 if (!test_opt(sb, QUOTA)) 6040 return -EINVAL; 6041 6042 /* Quotafile not on the same filesystem? */ 6043 if (path->dentry->d_sb != sb) 6044 return -EXDEV; 6045 /* Journaling quota? */ 6046 if (EXT4_SB(sb)->s_qf_names[type]) { 6047 /* Quotafile not in fs root? */ 6048 if (path->dentry->d_parent != sb->s_root) 6049 ext4_msg(sb, KERN_WARNING, 6050 "Quota file not on filesystem root. " 6051 "Journaled quota will not work"); 6052 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6053 } else { 6054 /* 6055 * Clear the flag just in case mount options changed since 6056 * last time. 6057 */ 6058 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6059 } 6060 6061 /* 6062 * When we journal data on quota file, we have to flush journal to see 6063 * all updates to the file when we bypass pagecache... 6064 */ 6065 if (EXT4_SB(sb)->s_journal && 6066 ext4_should_journal_data(d_inode(path->dentry))) { 6067 /* 6068 * We don't need to lock updates but journal_flush() could 6069 * otherwise be livelocked... 6070 */ 6071 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6072 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 6073 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6074 if (err) 6075 return err; 6076 } 6077 6078 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6079 err = dquot_quota_on(sb, type, format_id, path); 6080 if (err) { 6081 lockdep_set_quota_inode(path->dentry->d_inode, 6082 I_DATA_SEM_NORMAL); 6083 } else { 6084 struct inode *inode = d_inode(path->dentry); 6085 handle_t *handle; 6086 6087 /* 6088 * Set inode flags to prevent userspace from messing with quota 6089 * files. If this fails, we return success anyway since quotas 6090 * are already enabled and this is not a hard failure. 6091 */ 6092 inode_lock(inode); 6093 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6094 if (IS_ERR(handle)) 6095 goto unlock_inode; 6096 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6097 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6098 S_NOATIME | S_IMMUTABLE); 6099 err = ext4_mark_inode_dirty(handle, inode); 6100 ext4_journal_stop(handle); 6101 unlock_inode: 6102 inode_unlock(inode); 6103 } 6104 return err; 6105 } 6106 6107 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6108 unsigned int flags) 6109 { 6110 int err; 6111 struct inode *qf_inode; 6112 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6113 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6114 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6115 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6116 }; 6117 6118 BUG_ON(!ext4_has_feature_quota(sb)); 6119 6120 if (!qf_inums[type]) 6121 return -EPERM; 6122 6123 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6124 if (IS_ERR(qf_inode)) { 6125 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6126 return PTR_ERR(qf_inode); 6127 } 6128 6129 /* Don't account quota for quota files to avoid recursion */ 6130 qf_inode->i_flags |= S_NOQUOTA; 6131 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6132 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6133 if (err) 6134 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6135 iput(qf_inode); 6136 6137 return err; 6138 } 6139 6140 /* Enable usage tracking for all quota types. */ 6141 static int ext4_enable_quotas(struct super_block *sb) 6142 { 6143 int type, err = 0; 6144 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6145 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6146 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6147 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6148 }; 6149 bool quota_mopt[EXT4_MAXQUOTAS] = { 6150 test_opt(sb, USRQUOTA), 6151 test_opt(sb, GRPQUOTA), 6152 test_opt(sb, PRJQUOTA), 6153 }; 6154 6155 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6156 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6157 if (qf_inums[type]) { 6158 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6159 DQUOT_USAGE_ENABLED | 6160 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6161 if (err) { 6162 ext4_warning(sb, 6163 "Failed to enable quota tracking " 6164 "(type=%d, err=%d). Please run " 6165 "e2fsck to fix.", type, err); 6166 for (type--; type >= 0; type--) 6167 dquot_quota_off(sb, type); 6168 6169 return err; 6170 } 6171 } 6172 } 6173 return 0; 6174 } 6175 6176 static int ext4_quota_off(struct super_block *sb, int type) 6177 { 6178 struct inode *inode = sb_dqopt(sb)->files[type]; 6179 handle_t *handle; 6180 int err; 6181 6182 /* Force all delayed allocation blocks to be allocated. 6183 * Caller already holds s_umount sem */ 6184 if (test_opt(sb, DELALLOC)) 6185 sync_filesystem(sb); 6186 6187 if (!inode || !igrab(inode)) 6188 goto out; 6189 6190 err = dquot_quota_off(sb, type); 6191 if (err || ext4_has_feature_quota(sb)) 6192 goto out_put; 6193 6194 inode_lock(inode); 6195 /* 6196 * Update modification times of quota files when userspace can 6197 * start looking at them. If we fail, we return success anyway since 6198 * this is not a hard failure and quotas are already disabled. 6199 */ 6200 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6201 if (IS_ERR(handle)) { 6202 err = PTR_ERR(handle); 6203 goto out_unlock; 6204 } 6205 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6206 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6207 inode->i_mtime = inode->i_ctime = current_time(inode); 6208 err = ext4_mark_inode_dirty(handle, inode); 6209 ext4_journal_stop(handle); 6210 out_unlock: 6211 inode_unlock(inode); 6212 out_put: 6213 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6214 iput(inode); 6215 return err; 6216 out: 6217 return dquot_quota_off(sb, type); 6218 } 6219 6220 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6221 * acquiring the locks... As quota files are never truncated and quota code 6222 * itself serializes the operations (and no one else should touch the files) 6223 * we don't have to be afraid of races */ 6224 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6225 size_t len, loff_t off) 6226 { 6227 struct inode *inode = sb_dqopt(sb)->files[type]; 6228 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6229 int offset = off & (sb->s_blocksize - 1); 6230 int tocopy; 6231 size_t toread; 6232 struct buffer_head *bh; 6233 loff_t i_size = i_size_read(inode); 6234 6235 if (off > i_size) 6236 return 0; 6237 if (off+len > i_size) 6238 len = i_size-off; 6239 toread = len; 6240 while (toread > 0) { 6241 tocopy = sb->s_blocksize - offset < toread ? 6242 sb->s_blocksize - offset : toread; 6243 bh = ext4_bread(NULL, inode, blk, 0); 6244 if (IS_ERR(bh)) 6245 return PTR_ERR(bh); 6246 if (!bh) /* A hole? */ 6247 memset(data, 0, tocopy); 6248 else 6249 memcpy(data, bh->b_data+offset, tocopy); 6250 brelse(bh); 6251 offset = 0; 6252 toread -= tocopy; 6253 data += tocopy; 6254 blk++; 6255 } 6256 return len; 6257 } 6258 6259 /* Write to quotafile (we know the transaction is already started and has 6260 * enough credits) */ 6261 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6262 const char *data, size_t len, loff_t off) 6263 { 6264 struct inode *inode = sb_dqopt(sb)->files[type]; 6265 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6266 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6267 int retries = 0; 6268 struct buffer_head *bh; 6269 handle_t *handle = journal_current_handle(); 6270 6271 if (EXT4_SB(sb)->s_journal && !handle) { 6272 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6273 " cancelled because transaction is not started", 6274 (unsigned long long)off, (unsigned long long)len); 6275 return -EIO; 6276 } 6277 /* 6278 * Since we account only one data block in transaction credits, 6279 * then it is impossible to cross a block boundary. 6280 */ 6281 if (sb->s_blocksize - offset < len) { 6282 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6283 " cancelled because not block aligned", 6284 (unsigned long long)off, (unsigned long long)len); 6285 return -EIO; 6286 } 6287 6288 do { 6289 bh = ext4_bread(handle, inode, blk, 6290 EXT4_GET_BLOCKS_CREATE | 6291 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6292 } while (PTR_ERR(bh) == -ENOSPC && 6293 ext4_should_retry_alloc(inode->i_sb, &retries)); 6294 if (IS_ERR(bh)) 6295 return PTR_ERR(bh); 6296 if (!bh) 6297 goto out; 6298 BUFFER_TRACE(bh, "get write access"); 6299 err = ext4_journal_get_write_access(handle, bh); 6300 if (err) { 6301 brelse(bh); 6302 return err; 6303 } 6304 lock_buffer(bh); 6305 memcpy(bh->b_data+offset, data, len); 6306 flush_dcache_page(bh->b_page); 6307 unlock_buffer(bh); 6308 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6309 brelse(bh); 6310 out: 6311 if (inode->i_size < off + len) { 6312 i_size_write(inode, off + len); 6313 EXT4_I(inode)->i_disksize = inode->i_size; 6314 err2 = ext4_mark_inode_dirty(handle, inode); 6315 if (unlikely(err2 && !err)) 6316 err = err2; 6317 } 6318 return err ? err : len; 6319 } 6320 #endif 6321 6322 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6323 const char *dev_name, void *data) 6324 { 6325 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6326 } 6327 6328 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6329 static inline void register_as_ext2(void) 6330 { 6331 int err = register_filesystem(&ext2_fs_type); 6332 if (err) 6333 printk(KERN_WARNING 6334 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6335 } 6336 6337 static inline void unregister_as_ext2(void) 6338 { 6339 unregister_filesystem(&ext2_fs_type); 6340 } 6341 6342 static inline int ext2_feature_set_ok(struct super_block *sb) 6343 { 6344 if (ext4_has_unknown_ext2_incompat_features(sb)) 6345 return 0; 6346 if (sb_rdonly(sb)) 6347 return 1; 6348 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6349 return 0; 6350 return 1; 6351 } 6352 #else 6353 static inline void register_as_ext2(void) { } 6354 static inline void unregister_as_ext2(void) { } 6355 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6356 #endif 6357 6358 static inline void register_as_ext3(void) 6359 { 6360 int err = register_filesystem(&ext3_fs_type); 6361 if (err) 6362 printk(KERN_WARNING 6363 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6364 } 6365 6366 static inline void unregister_as_ext3(void) 6367 { 6368 unregister_filesystem(&ext3_fs_type); 6369 } 6370 6371 static inline int ext3_feature_set_ok(struct super_block *sb) 6372 { 6373 if (ext4_has_unknown_ext3_incompat_features(sb)) 6374 return 0; 6375 if (!ext4_has_feature_journal(sb)) 6376 return 0; 6377 if (sb_rdonly(sb)) 6378 return 1; 6379 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6380 return 0; 6381 return 1; 6382 } 6383 6384 static struct file_system_type ext4_fs_type = { 6385 .owner = THIS_MODULE, 6386 .name = "ext4", 6387 .mount = ext4_mount, 6388 .kill_sb = kill_block_super, 6389 .fs_flags = FS_REQUIRES_DEV, 6390 }; 6391 MODULE_ALIAS_FS("ext4"); 6392 6393 /* Shared across all ext4 file systems */ 6394 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6395 6396 static int __init ext4_init_fs(void) 6397 { 6398 int i, err; 6399 6400 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6401 ext4_li_info = NULL; 6402 mutex_init(&ext4_li_mtx); 6403 6404 /* Build-time check for flags consistency */ 6405 ext4_check_flag_values(); 6406 6407 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6408 init_waitqueue_head(&ext4__ioend_wq[i]); 6409 6410 err = ext4_init_es(); 6411 if (err) 6412 return err; 6413 6414 err = ext4_init_pending(); 6415 if (err) 6416 goto out7; 6417 6418 err = ext4_init_post_read_processing(); 6419 if (err) 6420 goto out6; 6421 6422 err = ext4_init_pageio(); 6423 if (err) 6424 goto out5; 6425 6426 err = ext4_init_system_zone(); 6427 if (err) 6428 goto out4; 6429 6430 err = ext4_init_sysfs(); 6431 if (err) 6432 goto out3; 6433 6434 err = ext4_init_mballoc(); 6435 if (err) 6436 goto out2; 6437 err = init_inodecache(); 6438 if (err) 6439 goto out1; 6440 register_as_ext3(); 6441 register_as_ext2(); 6442 err = register_filesystem(&ext4_fs_type); 6443 if (err) 6444 goto out; 6445 6446 return 0; 6447 out: 6448 unregister_as_ext2(); 6449 unregister_as_ext3(); 6450 destroy_inodecache(); 6451 out1: 6452 ext4_exit_mballoc(); 6453 out2: 6454 ext4_exit_sysfs(); 6455 out3: 6456 ext4_exit_system_zone(); 6457 out4: 6458 ext4_exit_pageio(); 6459 out5: 6460 ext4_exit_post_read_processing(); 6461 out6: 6462 ext4_exit_pending(); 6463 out7: 6464 ext4_exit_es(); 6465 6466 return err; 6467 } 6468 6469 static void __exit ext4_exit_fs(void) 6470 { 6471 ext4_destroy_lazyinit_thread(); 6472 unregister_as_ext2(); 6473 unregister_as_ext3(); 6474 unregister_filesystem(&ext4_fs_type); 6475 destroy_inodecache(); 6476 ext4_exit_mballoc(); 6477 ext4_exit_sysfs(); 6478 ext4_exit_system_zone(); 6479 ext4_exit_pageio(); 6480 ext4_exit_post_read_processing(); 6481 ext4_exit_es(); 6482 ext4_exit_pending(); 6483 } 6484 6485 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6486 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6487 MODULE_LICENSE("GPL"); 6488 MODULE_SOFTDEP("pre: crc32c"); 6489 module_init(ext4_init_fs) 6490 module_exit(ext4_exit_fs) 6491