1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 316 { 317 time64_t now = ktime_get_real_seconds(); 318 319 now = clamp_val(now, 0, (1ull << 40) - 1); 320 321 *lo = cpu_to_le32(lower_32_bits(now)); 322 *hi = upper_32_bits(now); 323 } 324 325 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 326 { 327 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 328 } 329 #define ext4_update_tstamp(es, tstamp) \ 330 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 331 #define ext4_get_tstamp(es, tstamp) \ 332 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 333 334 static void __save_error_info(struct super_block *sb, const char *func, 335 unsigned int line) 336 { 337 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 338 339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 340 if (bdev_read_only(sb->s_bdev)) 341 return; 342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 343 ext4_update_tstamp(es, s_last_error_time); 344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 345 es->s_last_error_line = cpu_to_le32(line); 346 if (!es->s_first_error_time) { 347 es->s_first_error_time = es->s_last_error_time; 348 es->s_first_error_time_hi = es->s_last_error_time_hi; 349 strncpy(es->s_first_error_func, func, 350 sizeof(es->s_first_error_func)); 351 es->s_first_error_line = cpu_to_le32(line); 352 es->s_first_error_ino = es->s_last_error_ino; 353 es->s_first_error_block = es->s_last_error_block; 354 } 355 /* 356 * Start the daily error reporting function if it hasn't been 357 * started already 358 */ 359 if (!es->s_error_count) 360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 361 le32_add_cpu(&es->s_error_count, 1); 362 } 363 364 static void save_error_info(struct super_block *sb, const char *func, 365 unsigned int line) 366 { 367 __save_error_info(sb, func, line); 368 ext4_commit_super(sb, 1); 369 } 370 371 /* 372 * The del_gendisk() function uninitializes the disk-specific data 373 * structures, including the bdi structure, without telling anyone 374 * else. Once this happens, any attempt to call mark_buffer_dirty() 375 * (for example, by ext4_commit_super), will cause a kernel OOPS. 376 * This is a kludge to prevent these oops until we can put in a proper 377 * hook in del_gendisk() to inform the VFS and file system layers. 378 */ 379 static int block_device_ejected(struct super_block *sb) 380 { 381 struct inode *bd_inode = sb->s_bdev->bd_inode; 382 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 383 384 return bdi->dev == NULL; 385 } 386 387 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 388 { 389 struct super_block *sb = journal->j_private; 390 struct ext4_sb_info *sbi = EXT4_SB(sb); 391 int error = is_journal_aborted(journal); 392 struct ext4_journal_cb_entry *jce; 393 394 BUG_ON(txn->t_state == T_FINISHED); 395 396 ext4_process_freed_data(sb, txn->t_tid); 397 398 spin_lock(&sbi->s_md_lock); 399 while (!list_empty(&txn->t_private_list)) { 400 jce = list_entry(txn->t_private_list.next, 401 struct ext4_journal_cb_entry, jce_list); 402 list_del_init(&jce->jce_list); 403 spin_unlock(&sbi->s_md_lock); 404 jce->jce_func(sb, jce, error); 405 spin_lock(&sbi->s_md_lock); 406 } 407 spin_unlock(&sbi->s_md_lock); 408 } 409 410 /* Deal with the reporting of failure conditions on a filesystem such as 411 * inconsistencies detected or read IO failures. 412 * 413 * On ext2, we can store the error state of the filesystem in the 414 * superblock. That is not possible on ext4, because we may have other 415 * write ordering constraints on the superblock which prevent us from 416 * writing it out straight away; and given that the journal is about to 417 * be aborted, we can't rely on the current, or future, transactions to 418 * write out the superblock safely. 419 * 420 * We'll just use the jbd2_journal_abort() error code to record an error in 421 * the journal instead. On recovery, the journal will complain about 422 * that error until we've noted it down and cleared it. 423 */ 424 425 static void ext4_handle_error(struct super_block *sb) 426 { 427 if (test_opt(sb, WARN_ON_ERROR)) 428 WARN_ON_ONCE(1); 429 430 if (sb_rdonly(sb)) 431 return; 432 433 if (!test_opt(sb, ERRORS_CONT)) { 434 journal_t *journal = EXT4_SB(sb)->s_journal; 435 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (journal) 438 jbd2_journal_abort(journal, -EIO); 439 } 440 if (test_opt(sb, ERRORS_RO)) { 441 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 442 /* 443 * Make sure updated value of ->s_mount_flags will be visible 444 * before ->s_flags update 445 */ 446 smp_wmb(); 447 sb->s_flags |= SB_RDONLY; 448 } 449 if (test_opt(sb, ERRORS_PANIC)) { 450 if (EXT4_SB(sb)->s_journal && 451 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 452 return; 453 panic("EXT4-fs (device %s): panic forced after error\n", 454 sb->s_id); 455 } 456 } 457 458 #define ext4_error_ratelimit(sb) \ 459 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 460 "EXT4-fs error") 461 462 void __ext4_error(struct super_block *sb, const char *function, 463 unsigned int line, const char *fmt, ...) 464 { 465 struct va_format vaf; 466 va_list args; 467 468 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 469 return; 470 471 trace_ext4_error(sb, function, line); 472 if (ext4_error_ratelimit(sb)) { 473 va_start(args, fmt); 474 vaf.fmt = fmt; 475 vaf.va = &args; 476 printk(KERN_CRIT 477 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 478 sb->s_id, function, line, current->comm, &vaf); 479 va_end(args); 480 } 481 save_error_info(sb, function, line); 482 ext4_handle_error(sb); 483 } 484 485 void __ext4_error_inode(struct inode *inode, const char *function, 486 unsigned int line, ext4_fsblk_t block, 487 const char *fmt, ...) 488 { 489 va_list args; 490 struct va_format vaf; 491 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 492 493 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 494 return; 495 496 trace_ext4_error(inode->i_sb, function, line); 497 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 498 es->s_last_error_block = cpu_to_le64(block); 499 if (ext4_error_ratelimit(inode->i_sb)) { 500 va_start(args, fmt); 501 vaf.fmt = fmt; 502 vaf.va = &args; 503 if (block) 504 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 505 "inode #%lu: block %llu: comm %s: %pV\n", 506 inode->i_sb->s_id, function, line, inode->i_ino, 507 block, current->comm, &vaf); 508 else 509 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 510 "inode #%lu: comm %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 void __ext4_error_file(struct file *file, const char *function, 520 unsigned int line, ext4_fsblk_t block, 521 const char *fmt, ...) 522 { 523 va_list args; 524 struct va_format vaf; 525 struct ext4_super_block *es; 526 struct inode *inode = file_inode(file); 527 char pathname[80], *path; 528 529 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 530 return; 531 532 trace_ext4_error(inode->i_sb, function, line); 533 es = EXT4_SB(inode->i_sb)->s_es; 534 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 535 if (ext4_error_ratelimit(inode->i_sb)) { 536 path = file_path(file, pathname, sizeof(pathname)); 537 if (IS_ERR(path)) 538 path = "(unknown)"; 539 va_start(args, fmt); 540 vaf.fmt = fmt; 541 vaf.va = &args; 542 if (block) 543 printk(KERN_CRIT 544 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 545 "block %llu: comm %s: path %s: %pV\n", 546 inode->i_sb->s_id, function, line, inode->i_ino, 547 block, current->comm, path, &vaf); 548 else 549 printk(KERN_CRIT 550 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 551 "comm %s: path %s: %pV\n", 552 inode->i_sb->s_id, function, line, inode->i_ino, 553 current->comm, path, &vaf); 554 va_end(args); 555 } 556 save_error_info(inode->i_sb, function, line); 557 ext4_handle_error(inode->i_sb); 558 } 559 560 const char *ext4_decode_error(struct super_block *sb, int errno, 561 char nbuf[16]) 562 { 563 char *errstr = NULL; 564 565 switch (errno) { 566 case -EFSCORRUPTED: 567 errstr = "Corrupt filesystem"; 568 break; 569 case -EFSBADCRC: 570 errstr = "Filesystem failed CRC"; 571 break; 572 case -EIO: 573 errstr = "IO failure"; 574 break; 575 case -ENOMEM: 576 errstr = "Out of memory"; 577 break; 578 case -EROFS: 579 if (!sb || (EXT4_SB(sb)->s_journal && 580 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 581 errstr = "Journal has aborted"; 582 else 583 errstr = "Readonly filesystem"; 584 break; 585 default: 586 /* If the caller passed in an extra buffer for unknown 587 * errors, textualise them now. Else we just return 588 * NULL. */ 589 if (nbuf) { 590 /* Check for truncated error codes... */ 591 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 592 errstr = nbuf; 593 } 594 break; 595 } 596 597 return errstr; 598 } 599 600 /* __ext4_std_error decodes expected errors from journaling functions 601 * automatically and invokes the appropriate error response. */ 602 603 void __ext4_std_error(struct super_block *sb, const char *function, 604 unsigned int line, int errno) 605 { 606 char nbuf[16]; 607 const char *errstr; 608 609 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 610 return; 611 612 /* Special case: if the error is EROFS, and we're not already 613 * inside a transaction, then there's really no point in logging 614 * an error. */ 615 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 616 return; 617 618 if (ext4_error_ratelimit(sb)) { 619 errstr = ext4_decode_error(sb, errno, nbuf); 620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 621 sb->s_id, function, line, errstr); 622 } 623 624 save_error_info(sb, function, line); 625 ext4_handle_error(sb); 626 } 627 628 /* 629 * ext4_abort is a much stronger failure handler than ext4_error. The 630 * abort function may be used to deal with unrecoverable failures such 631 * as journal IO errors or ENOMEM at a critical moment in log management. 632 * 633 * We unconditionally force the filesystem into an ABORT|READONLY state, 634 * unless the error response on the fs has been set to panic in which 635 * case we take the easy way out and panic immediately. 636 */ 637 638 void __ext4_abort(struct super_block *sb, const char *function, 639 unsigned int line, const char *fmt, ...) 640 { 641 struct va_format vaf; 642 va_list args; 643 644 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 645 return; 646 647 save_error_info(sb, function, line); 648 va_start(args, fmt); 649 vaf.fmt = fmt; 650 vaf.va = &args; 651 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 652 sb->s_id, function, line, &vaf); 653 va_end(args); 654 655 if (sb_rdonly(sb) == 0) { 656 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 658 /* 659 * Make sure updated value of ->s_mount_flags will be visible 660 * before ->s_flags update 661 */ 662 smp_wmb(); 663 sb->s_flags |= SB_RDONLY; 664 if (EXT4_SB(sb)->s_journal) 665 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 666 save_error_info(sb, function, line); 667 } 668 if (test_opt(sb, ERRORS_PANIC)) { 669 if (EXT4_SB(sb)->s_journal && 670 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 671 return; 672 panic("EXT4-fs panic from previous error\n"); 673 } 674 } 675 676 void __ext4_msg(struct super_block *sb, 677 const char *prefix, const char *fmt, ...) 678 { 679 struct va_format vaf; 680 va_list args; 681 682 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 683 return; 684 685 va_start(args, fmt); 686 vaf.fmt = fmt; 687 vaf.va = &args; 688 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 689 va_end(args); 690 } 691 692 #define ext4_warning_ratelimit(sb) \ 693 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 694 "EXT4-fs warning") 695 696 void __ext4_warning(struct super_block *sb, const char *function, 697 unsigned int line, const char *fmt, ...) 698 { 699 struct va_format vaf; 700 va_list args; 701 702 if (!ext4_warning_ratelimit(sb)) 703 return; 704 705 va_start(args, fmt); 706 vaf.fmt = fmt; 707 vaf.va = &args; 708 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 709 sb->s_id, function, line, &vaf); 710 va_end(args); 711 } 712 713 void __ext4_warning_inode(const struct inode *inode, const char *function, 714 unsigned int line, const char *fmt, ...) 715 { 716 struct va_format vaf; 717 va_list args; 718 719 if (!ext4_warning_ratelimit(inode->i_sb)) 720 return; 721 722 va_start(args, fmt); 723 vaf.fmt = fmt; 724 vaf.va = &args; 725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 726 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 727 function, line, inode->i_ino, current->comm, &vaf); 728 va_end(args); 729 } 730 731 void __ext4_grp_locked_error(const char *function, unsigned int line, 732 struct super_block *sb, ext4_group_t grp, 733 unsigned long ino, ext4_fsblk_t block, 734 const char *fmt, ...) 735 __releases(bitlock) 736 __acquires(bitlock) 737 { 738 struct va_format vaf; 739 va_list args; 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 743 return; 744 745 trace_ext4_error(sb, function, line); 746 es->s_last_error_ino = cpu_to_le32(ino); 747 es->s_last_error_block = cpu_to_le64(block); 748 __save_error_info(sb, function, line); 749 750 if (ext4_error_ratelimit(sb)) { 751 va_start(args, fmt); 752 vaf.fmt = fmt; 753 vaf.va = &args; 754 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 755 sb->s_id, function, line, grp); 756 if (ino) 757 printk(KERN_CONT "inode %lu: ", ino); 758 if (block) 759 printk(KERN_CONT "block %llu:", 760 (unsigned long long) block); 761 printk(KERN_CONT "%pV\n", &vaf); 762 va_end(args); 763 } 764 765 if (test_opt(sb, WARN_ON_ERROR)) 766 WARN_ON_ONCE(1); 767 768 if (test_opt(sb, ERRORS_CONT)) { 769 ext4_commit_super(sb, 0); 770 return; 771 } 772 773 ext4_unlock_group(sb, grp); 774 ext4_commit_super(sb, 1); 775 ext4_handle_error(sb); 776 /* 777 * We only get here in the ERRORS_RO case; relocking the group 778 * may be dangerous, but nothing bad will happen since the 779 * filesystem will have already been marked read/only and the 780 * journal has been aborted. We return 1 as a hint to callers 781 * who might what to use the return value from 782 * ext4_grp_locked_error() to distinguish between the 783 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 784 * aggressively from the ext4 function in question, with a 785 * more appropriate error code. 786 */ 787 ext4_lock_group(sb, grp); 788 return; 789 } 790 791 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 792 ext4_group_t group, 793 unsigned int flags) 794 { 795 struct ext4_sb_info *sbi = EXT4_SB(sb); 796 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 797 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 798 int ret; 799 800 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 801 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 802 &grp->bb_state); 803 if (!ret) 804 percpu_counter_sub(&sbi->s_freeclusters_counter, 805 grp->bb_free); 806 } 807 808 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 809 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 810 &grp->bb_state); 811 if (!ret && gdp) { 812 int count; 813 814 count = ext4_free_inodes_count(sb, gdp); 815 percpu_counter_sub(&sbi->s_freeinodes_counter, 816 count); 817 } 818 } 819 } 820 821 void ext4_update_dynamic_rev(struct super_block *sb) 822 { 823 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 824 825 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 826 return; 827 828 ext4_warning(sb, 829 "updating to rev %d because of new feature flag, " 830 "running e2fsck is recommended", 831 EXT4_DYNAMIC_REV); 832 833 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 834 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 835 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 836 /* leave es->s_feature_*compat flags alone */ 837 /* es->s_uuid will be set by e2fsck if empty */ 838 839 /* 840 * The rest of the superblock fields should be zero, and if not it 841 * means they are likely already in use, so leave them alone. We 842 * can leave it up to e2fsck to clean up any inconsistencies there. 843 */ 844 } 845 846 /* 847 * Open the external journal device 848 */ 849 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 850 { 851 struct block_device *bdev; 852 char b[BDEVNAME_SIZE]; 853 854 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 855 if (IS_ERR(bdev)) 856 goto fail; 857 return bdev; 858 859 fail: 860 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 861 __bdevname(dev, b), PTR_ERR(bdev)); 862 return NULL; 863 } 864 865 /* 866 * Release the journal device 867 */ 868 static void ext4_blkdev_put(struct block_device *bdev) 869 { 870 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 871 } 872 873 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 874 { 875 struct block_device *bdev; 876 bdev = sbi->journal_bdev; 877 if (bdev) { 878 ext4_blkdev_put(bdev); 879 sbi->journal_bdev = NULL; 880 } 881 } 882 883 static inline struct inode *orphan_list_entry(struct list_head *l) 884 { 885 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 886 } 887 888 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 889 { 890 struct list_head *l; 891 892 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 893 le32_to_cpu(sbi->s_es->s_last_orphan)); 894 895 printk(KERN_ERR "sb_info orphan list:\n"); 896 list_for_each(l, &sbi->s_orphan) { 897 struct inode *inode = orphan_list_entry(l); 898 printk(KERN_ERR " " 899 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 900 inode->i_sb->s_id, inode->i_ino, inode, 901 inode->i_mode, inode->i_nlink, 902 NEXT_ORPHAN(inode)); 903 } 904 } 905 906 #ifdef CONFIG_QUOTA 907 static int ext4_quota_off(struct super_block *sb, int type); 908 909 static inline void ext4_quota_off_umount(struct super_block *sb) 910 { 911 int type; 912 913 /* Use our quota_off function to clear inode flags etc. */ 914 for (type = 0; type < EXT4_MAXQUOTAS; type++) 915 ext4_quota_off(sb, type); 916 } 917 #else 918 static inline void ext4_quota_off_umount(struct super_block *sb) 919 { 920 } 921 #endif 922 923 static void ext4_put_super(struct super_block *sb) 924 { 925 struct ext4_sb_info *sbi = EXT4_SB(sb); 926 struct ext4_super_block *es = sbi->s_es; 927 int aborted = 0; 928 int i, err; 929 930 ext4_unregister_li_request(sb); 931 ext4_quota_off_umount(sb); 932 933 destroy_workqueue(sbi->rsv_conversion_wq); 934 935 if (sbi->s_journal) { 936 aborted = is_journal_aborted(sbi->s_journal); 937 err = jbd2_journal_destroy(sbi->s_journal); 938 sbi->s_journal = NULL; 939 if ((err < 0) && !aborted) 940 ext4_abort(sb, "Couldn't clean up the journal"); 941 } 942 943 ext4_unregister_sysfs(sb); 944 ext4_es_unregister_shrinker(sbi); 945 del_timer_sync(&sbi->s_err_report); 946 ext4_release_system_zone(sb); 947 ext4_mb_release(sb); 948 ext4_ext_release(sb); 949 950 if (!sb_rdonly(sb) && !aborted) { 951 ext4_clear_feature_journal_needs_recovery(sb); 952 es->s_state = cpu_to_le16(sbi->s_mount_state); 953 } 954 if (!sb_rdonly(sb)) 955 ext4_commit_super(sb, 1); 956 957 for (i = 0; i < sbi->s_gdb_count; i++) 958 brelse(sbi->s_group_desc[i]); 959 kvfree(sbi->s_group_desc); 960 kvfree(sbi->s_flex_groups); 961 percpu_counter_destroy(&sbi->s_freeclusters_counter); 962 percpu_counter_destroy(&sbi->s_freeinodes_counter); 963 percpu_counter_destroy(&sbi->s_dirs_counter); 964 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 965 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 966 #ifdef CONFIG_QUOTA 967 for (i = 0; i < EXT4_MAXQUOTAS; i++) 968 kfree(sbi->s_qf_names[i]); 969 #endif 970 971 /* Debugging code just in case the in-memory inode orphan list 972 * isn't empty. The on-disk one can be non-empty if we've 973 * detected an error and taken the fs readonly, but the 974 * in-memory list had better be clean by this point. */ 975 if (!list_empty(&sbi->s_orphan)) 976 dump_orphan_list(sb, sbi); 977 J_ASSERT(list_empty(&sbi->s_orphan)); 978 979 sync_blockdev(sb->s_bdev); 980 invalidate_bdev(sb->s_bdev); 981 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 982 /* 983 * Invalidate the journal device's buffers. We don't want them 984 * floating about in memory - the physical journal device may 985 * hotswapped, and it breaks the `ro-after' testing code. 986 */ 987 sync_blockdev(sbi->journal_bdev); 988 invalidate_bdev(sbi->journal_bdev); 989 ext4_blkdev_remove(sbi); 990 } 991 if (sbi->s_ea_inode_cache) { 992 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 993 sbi->s_ea_inode_cache = NULL; 994 } 995 if (sbi->s_ea_block_cache) { 996 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 997 sbi->s_ea_block_cache = NULL; 998 } 999 if (sbi->s_mmp_tsk) 1000 kthread_stop(sbi->s_mmp_tsk); 1001 brelse(sbi->s_sbh); 1002 sb->s_fs_info = NULL; 1003 /* 1004 * Now that we are completely done shutting down the 1005 * superblock, we need to actually destroy the kobject. 1006 */ 1007 kobject_put(&sbi->s_kobj); 1008 wait_for_completion(&sbi->s_kobj_unregister); 1009 if (sbi->s_chksum_driver) 1010 crypto_free_shash(sbi->s_chksum_driver); 1011 kfree(sbi->s_blockgroup_lock); 1012 fs_put_dax(sbi->s_daxdev); 1013 kfree(sbi); 1014 } 1015 1016 static struct kmem_cache *ext4_inode_cachep; 1017 1018 /* 1019 * Called inside transaction, so use GFP_NOFS 1020 */ 1021 static struct inode *ext4_alloc_inode(struct super_block *sb) 1022 { 1023 struct ext4_inode_info *ei; 1024 1025 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1026 if (!ei) 1027 return NULL; 1028 1029 inode_set_iversion(&ei->vfs_inode, 1); 1030 spin_lock_init(&ei->i_raw_lock); 1031 INIT_LIST_HEAD(&ei->i_prealloc_list); 1032 spin_lock_init(&ei->i_prealloc_lock); 1033 ext4_es_init_tree(&ei->i_es_tree); 1034 rwlock_init(&ei->i_es_lock); 1035 INIT_LIST_HEAD(&ei->i_es_list); 1036 ei->i_es_all_nr = 0; 1037 ei->i_es_shk_nr = 0; 1038 ei->i_es_shrink_lblk = 0; 1039 ei->i_reserved_data_blocks = 0; 1040 ei->i_da_metadata_calc_len = 0; 1041 ei->i_da_metadata_calc_last_lblock = 0; 1042 spin_lock_init(&(ei->i_block_reservation_lock)); 1043 #ifdef CONFIG_QUOTA 1044 ei->i_reserved_quota = 0; 1045 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1046 #endif 1047 ei->jinode = NULL; 1048 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1049 spin_lock_init(&ei->i_completed_io_lock); 1050 ei->i_sync_tid = 0; 1051 ei->i_datasync_tid = 0; 1052 atomic_set(&ei->i_unwritten, 0); 1053 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1054 return &ei->vfs_inode; 1055 } 1056 1057 static int ext4_drop_inode(struct inode *inode) 1058 { 1059 int drop = generic_drop_inode(inode); 1060 1061 trace_ext4_drop_inode(inode, drop); 1062 return drop; 1063 } 1064 1065 static void ext4_i_callback(struct rcu_head *head) 1066 { 1067 struct inode *inode = container_of(head, struct inode, i_rcu); 1068 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1069 } 1070 1071 static void ext4_destroy_inode(struct inode *inode) 1072 { 1073 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1074 ext4_msg(inode->i_sb, KERN_ERR, 1075 "Inode %lu (%p): orphan list check failed!", 1076 inode->i_ino, EXT4_I(inode)); 1077 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1078 EXT4_I(inode), sizeof(struct ext4_inode_info), 1079 true); 1080 dump_stack(); 1081 } 1082 call_rcu(&inode->i_rcu, ext4_i_callback); 1083 } 1084 1085 static void init_once(void *foo) 1086 { 1087 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1088 1089 INIT_LIST_HEAD(&ei->i_orphan); 1090 init_rwsem(&ei->xattr_sem); 1091 init_rwsem(&ei->i_data_sem); 1092 init_rwsem(&ei->i_mmap_sem); 1093 inode_init_once(&ei->vfs_inode); 1094 } 1095 1096 static int __init init_inodecache(void) 1097 { 1098 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1099 sizeof(struct ext4_inode_info), 0, 1100 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1101 SLAB_ACCOUNT), 1102 offsetof(struct ext4_inode_info, i_data), 1103 sizeof_field(struct ext4_inode_info, i_data), 1104 init_once); 1105 if (ext4_inode_cachep == NULL) 1106 return -ENOMEM; 1107 return 0; 1108 } 1109 1110 static void destroy_inodecache(void) 1111 { 1112 /* 1113 * Make sure all delayed rcu free inodes are flushed before we 1114 * destroy cache. 1115 */ 1116 rcu_barrier(); 1117 kmem_cache_destroy(ext4_inode_cachep); 1118 } 1119 1120 void ext4_clear_inode(struct inode *inode) 1121 { 1122 invalidate_inode_buffers(inode); 1123 clear_inode(inode); 1124 dquot_drop(inode); 1125 ext4_discard_preallocations(inode); 1126 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1127 if (EXT4_I(inode)->jinode) { 1128 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1129 EXT4_I(inode)->jinode); 1130 jbd2_free_inode(EXT4_I(inode)->jinode); 1131 EXT4_I(inode)->jinode = NULL; 1132 } 1133 fscrypt_put_encryption_info(inode); 1134 } 1135 1136 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1137 u64 ino, u32 generation) 1138 { 1139 struct inode *inode; 1140 1141 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1142 return ERR_PTR(-ESTALE); 1143 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1144 return ERR_PTR(-ESTALE); 1145 1146 /* iget isn't really right if the inode is currently unallocated!! 1147 * 1148 * ext4_read_inode will return a bad_inode if the inode had been 1149 * deleted, so we should be safe. 1150 * 1151 * Currently we don't know the generation for parent directory, so 1152 * a generation of 0 means "accept any" 1153 */ 1154 inode = ext4_iget_normal(sb, ino); 1155 if (IS_ERR(inode)) 1156 return ERR_CAST(inode); 1157 if (generation && inode->i_generation != generation) { 1158 iput(inode); 1159 return ERR_PTR(-ESTALE); 1160 } 1161 1162 return inode; 1163 } 1164 1165 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1166 int fh_len, int fh_type) 1167 { 1168 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1169 ext4_nfs_get_inode); 1170 } 1171 1172 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1173 int fh_len, int fh_type) 1174 { 1175 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1176 ext4_nfs_get_inode); 1177 } 1178 1179 /* 1180 * Try to release metadata pages (indirect blocks, directories) which are 1181 * mapped via the block device. Since these pages could have journal heads 1182 * which would prevent try_to_free_buffers() from freeing them, we must use 1183 * jbd2 layer's try_to_free_buffers() function to release them. 1184 */ 1185 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1186 gfp_t wait) 1187 { 1188 journal_t *journal = EXT4_SB(sb)->s_journal; 1189 1190 WARN_ON(PageChecked(page)); 1191 if (!page_has_buffers(page)) 1192 return 0; 1193 if (journal) 1194 return jbd2_journal_try_to_free_buffers(journal, page, 1195 wait & ~__GFP_DIRECT_RECLAIM); 1196 return try_to_free_buffers(page); 1197 } 1198 1199 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1200 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1201 { 1202 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1203 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1204 } 1205 1206 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1207 void *fs_data) 1208 { 1209 handle_t *handle = fs_data; 1210 int res, res2, credits, retries = 0; 1211 1212 /* 1213 * Encrypting the root directory is not allowed because e2fsck expects 1214 * lost+found to exist and be unencrypted, and encrypting the root 1215 * directory would imply encrypting the lost+found directory as well as 1216 * the filename "lost+found" itself. 1217 */ 1218 if (inode->i_ino == EXT4_ROOT_INO) 1219 return -EPERM; 1220 1221 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1222 return -EINVAL; 1223 1224 res = ext4_convert_inline_data(inode); 1225 if (res) 1226 return res; 1227 1228 /* 1229 * If a journal handle was specified, then the encryption context is 1230 * being set on a new inode via inheritance and is part of a larger 1231 * transaction to create the inode. Otherwise the encryption context is 1232 * being set on an existing inode in its own transaction. Only in the 1233 * latter case should the "retry on ENOSPC" logic be used. 1234 */ 1235 1236 if (handle) { 1237 res = ext4_xattr_set_handle(handle, inode, 1238 EXT4_XATTR_INDEX_ENCRYPTION, 1239 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1240 ctx, len, 0); 1241 if (!res) { 1242 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1243 ext4_clear_inode_state(inode, 1244 EXT4_STATE_MAY_INLINE_DATA); 1245 /* 1246 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1247 * S_DAX may be disabled 1248 */ 1249 ext4_set_inode_flags(inode); 1250 } 1251 return res; 1252 } 1253 1254 res = dquot_initialize(inode); 1255 if (res) 1256 return res; 1257 retry: 1258 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1259 &credits); 1260 if (res) 1261 return res; 1262 1263 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1264 if (IS_ERR(handle)) 1265 return PTR_ERR(handle); 1266 1267 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1268 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1269 ctx, len, 0); 1270 if (!res) { 1271 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1272 /* 1273 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1274 * S_DAX may be disabled 1275 */ 1276 ext4_set_inode_flags(inode); 1277 res = ext4_mark_inode_dirty(handle, inode); 1278 if (res) 1279 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1280 } 1281 res2 = ext4_journal_stop(handle); 1282 1283 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1284 goto retry; 1285 if (!res) 1286 res = res2; 1287 return res; 1288 } 1289 1290 static bool ext4_dummy_context(struct inode *inode) 1291 { 1292 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1293 } 1294 1295 static const struct fscrypt_operations ext4_cryptops = { 1296 .key_prefix = "ext4:", 1297 .get_context = ext4_get_context, 1298 .set_context = ext4_set_context, 1299 .dummy_context = ext4_dummy_context, 1300 .empty_dir = ext4_empty_dir, 1301 .max_namelen = EXT4_NAME_LEN, 1302 }; 1303 #endif 1304 1305 #ifdef CONFIG_QUOTA 1306 static const char * const quotatypes[] = INITQFNAMES; 1307 #define QTYPE2NAME(t) (quotatypes[t]) 1308 1309 static int ext4_write_dquot(struct dquot *dquot); 1310 static int ext4_acquire_dquot(struct dquot *dquot); 1311 static int ext4_release_dquot(struct dquot *dquot); 1312 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1313 static int ext4_write_info(struct super_block *sb, int type); 1314 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1315 const struct path *path); 1316 static int ext4_quota_on_mount(struct super_block *sb, int type); 1317 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1318 size_t len, loff_t off); 1319 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1320 const char *data, size_t len, loff_t off); 1321 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1322 unsigned int flags); 1323 static int ext4_enable_quotas(struct super_block *sb); 1324 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1325 1326 static struct dquot **ext4_get_dquots(struct inode *inode) 1327 { 1328 return EXT4_I(inode)->i_dquot; 1329 } 1330 1331 static const struct dquot_operations ext4_quota_operations = { 1332 .get_reserved_space = ext4_get_reserved_space, 1333 .write_dquot = ext4_write_dquot, 1334 .acquire_dquot = ext4_acquire_dquot, 1335 .release_dquot = ext4_release_dquot, 1336 .mark_dirty = ext4_mark_dquot_dirty, 1337 .write_info = ext4_write_info, 1338 .alloc_dquot = dquot_alloc, 1339 .destroy_dquot = dquot_destroy, 1340 .get_projid = ext4_get_projid, 1341 .get_inode_usage = ext4_get_inode_usage, 1342 .get_next_id = ext4_get_next_id, 1343 }; 1344 1345 static const struct quotactl_ops ext4_qctl_operations = { 1346 .quota_on = ext4_quota_on, 1347 .quota_off = ext4_quota_off, 1348 .quota_sync = dquot_quota_sync, 1349 .get_state = dquot_get_state, 1350 .set_info = dquot_set_dqinfo, 1351 .get_dqblk = dquot_get_dqblk, 1352 .set_dqblk = dquot_set_dqblk, 1353 .get_nextdqblk = dquot_get_next_dqblk, 1354 }; 1355 #endif 1356 1357 static const struct super_operations ext4_sops = { 1358 .alloc_inode = ext4_alloc_inode, 1359 .destroy_inode = ext4_destroy_inode, 1360 .write_inode = ext4_write_inode, 1361 .dirty_inode = ext4_dirty_inode, 1362 .drop_inode = ext4_drop_inode, 1363 .evict_inode = ext4_evict_inode, 1364 .put_super = ext4_put_super, 1365 .sync_fs = ext4_sync_fs, 1366 .freeze_fs = ext4_freeze, 1367 .unfreeze_fs = ext4_unfreeze, 1368 .statfs = ext4_statfs, 1369 .remount_fs = ext4_remount, 1370 .show_options = ext4_show_options, 1371 #ifdef CONFIG_QUOTA 1372 .quota_read = ext4_quota_read, 1373 .quota_write = ext4_quota_write, 1374 .get_dquots = ext4_get_dquots, 1375 #endif 1376 .bdev_try_to_free_page = bdev_try_to_free_page, 1377 }; 1378 1379 static const struct export_operations ext4_export_ops = { 1380 .fh_to_dentry = ext4_fh_to_dentry, 1381 .fh_to_parent = ext4_fh_to_parent, 1382 .get_parent = ext4_get_parent, 1383 }; 1384 1385 enum { 1386 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1387 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1388 Opt_nouid32, Opt_debug, Opt_removed, 1389 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1390 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1391 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1392 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1393 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1394 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1395 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1396 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1397 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1398 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1399 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1400 Opt_nowarn_on_error, Opt_mblk_io_submit, 1401 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1402 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1403 Opt_inode_readahead_blks, Opt_journal_ioprio, 1404 Opt_dioread_nolock, Opt_dioread_lock, 1405 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1406 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1407 }; 1408 1409 static const match_table_t tokens = { 1410 {Opt_bsd_df, "bsddf"}, 1411 {Opt_minix_df, "minixdf"}, 1412 {Opt_grpid, "grpid"}, 1413 {Opt_grpid, "bsdgroups"}, 1414 {Opt_nogrpid, "nogrpid"}, 1415 {Opt_nogrpid, "sysvgroups"}, 1416 {Opt_resgid, "resgid=%u"}, 1417 {Opt_resuid, "resuid=%u"}, 1418 {Opt_sb, "sb=%u"}, 1419 {Opt_err_cont, "errors=continue"}, 1420 {Opt_err_panic, "errors=panic"}, 1421 {Opt_err_ro, "errors=remount-ro"}, 1422 {Opt_nouid32, "nouid32"}, 1423 {Opt_debug, "debug"}, 1424 {Opt_removed, "oldalloc"}, 1425 {Opt_removed, "orlov"}, 1426 {Opt_user_xattr, "user_xattr"}, 1427 {Opt_nouser_xattr, "nouser_xattr"}, 1428 {Opt_acl, "acl"}, 1429 {Opt_noacl, "noacl"}, 1430 {Opt_noload, "norecovery"}, 1431 {Opt_noload, "noload"}, 1432 {Opt_removed, "nobh"}, 1433 {Opt_removed, "bh"}, 1434 {Opt_commit, "commit=%u"}, 1435 {Opt_min_batch_time, "min_batch_time=%u"}, 1436 {Opt_max_batch_time, "max_batch_time=%u"}, 1437 {Opt_journal_dev, "journal_dev=%u"}, 1438 {Opt_journal_path, "journal_path=%s"}, 1439 {Opt_journal_checksum, "journal_checksum"}, 1440 {Opt_nojournal_checksum, "nojournal_checksum"}, 1441 {Opt_journal_async_commit, "journal_async_commit"}, 1442 {Opt_abort, "abort"}, 1443 {Opt_data_journal, "data=journal"}, 1444 {Opt_data_ordered, "data=ordered"}, 1445 {Opt_data_writeback, "data=writeback"}, 1446 {Opt_data_err_abort, "data_err=abort"}, 1447 {Opt_data_err_ignore, "data_err=ignore"}, 1448 {Opt_offusrjquota, "usrjquota="}, 1449 {Opt_usrjquota, "usrjquota=%s"}, 1450 {Opt_offgrpjquota, "grpjquota="}, 1451 {Opt_grpjquota, "grpjquota=%s"}, 1452 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1453 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1454 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1455 {Opt_grpquota, "grpquota"}, 1456 {Opt_noquota, "noquota"}, 1457 {Opt_quota, "quota"}, 1458 {Opt_usrquota, "usrquota"}, 1459 {Opt_prjquota, "prjquota"}, 1460 {Opt_barrier, "barrier=%u"}, 1461 {Opt_barrier, "barrier"}, 1462 {Opt_nobarrier, "nobarrier"}, 1463 {Opt_i_version, "i_version"}, 1464 {Opt_dax, "dax"}, 1465 {Opt_stripe, "stripe=%u"}, 1466 {Opt_delalloc, "delalloc"}, 1467 {Opt_warn_on_error, "warn_on_error"}, 1468 {Opt_nowarn_on_error, "nowarn_on_error"}, 1469 {Opt_lazytime, "lazytime"}, 1470 {Opt_nolazytime, "nolazytime"}, 1471 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1472 {Opt_nodelalloc, "nodelalloc"}, 1473 {Opt_removed, "mblk_io_submit"}, 1474 {Opt_removed, "nomblk_io_submit"}, 1475 {Opt_block_validity, "block_validity"}, 1476 {Opt_noblock_validity, "noblock_validity"}, 1477 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1478 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1479 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1480 {Opt_auto_da_alloc, "auto_da_alloc"}, 1481 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1482 {Opt_dioread_nolock, "dioread_nolock"}, 1483 {Opt_dioread_lock, "dioread_lock"}, 1484 {Opt_discard, "discard"}, 1485 {Opt_nodiscard, "nodiscard"}, 1486 {Opt_init_itable, "init_itable=%u"}, 1487 {Opt_init_itable, "init_itable"}, 1488 {Opt_noinit_itable, "noinit_itable"}, 1489 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1490 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1491 {Opt_nombcache, "nombcache"}, 1492 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1493 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1494 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1495 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1496 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1497 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1498 {Opt_err, NULL}, 1499 }; 1500 1501 static ext4_fsblk_t get_sb_block(void **data) 1502 { 1503 ext4_fsblk_t sb_block; 1504 char *options = (char *) *data; 1505 1506 if (!options || strncmp(options, "sb=", 3) != 0) 1507 return 1; /* Default location */ 1508 1509 options += 3; 1510 /* TODO: use simple_strtoll with >32bit ext4 */ 1511 sb_block = simple_strtoul(options, &options, 0); 1512 if (*options && *options != ',') { 1513 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1514 (char *) *data); 1515 return 1; 1516 } 1517 if (*options == ',') 1518 options++; 1519 *data = (void *) options; 1520 1521 return sb_block; 1522 } 1523 1524 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1525 static const char deprecated_msg[] = 1526 "Mount option \"%s\" will be removed by %s\n" 1527 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1528 1529 #ifdef CONFIG_QUOTA 1530 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1531 { 1532 struct ext4_sb_info *sbi = EXT4_SB(sb); 1533 char *qname; 1534 int ret = -1; 1535 1536 if (sb_any_quota_loaded(sb) && 1537 !sbi->s_qf_names[qtype]) { 1538 ext4_msg(sb, KERN_ERR, 1539 "Cannot change journaled " 1540 "quota options when quota turned on"); 1541 return -1; 1542 } 1543 if (ext4_has_feature_quota(sb)) { 1544 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1545 "ignored when QUOTA feature is enabled"); 1546 return 1; 1547 } 1548 qname = match_strdup(args); 1549 if (!qname) { 1550 ext4_msg(sb, KERN_ERR, 1551 "Not enough memory for storing quotafile name"); 1552 return -1; 1553 } 1554 if (sbi->s_qf_names[qtype]) { 1555 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1556 ret = 1; 1557 else 1558 ext4_msg(sb, KERN_ERR, 1559 "%s quota file already specified", 1560 QTYPE2NAME(qtype)); 1561 goto errout; 1562 } 1563 if (strchr(qname, '/')) { 1564 ext4_msg(sb, KERN_ERR, 1565 "quotafile must be on filesystem root"); 1566 goto errout; 1567 } 1568 sbi->s_qf_names[qtype] = qname; 1569 set_opt(sb, QUOTA); 1570 return 1; 1571 errout: 1572 kfree(qname); 1573 return ret; 1574 } 1575 1576 static int clear_qf_name(struct super_block *sb, int qtype) 1577 { 1578 1579 struct ext4_sb_info *sbi = EXT4_SB(sb); 1580 1581 if (sb_any_quota_loaded(sb) && 1582 sbi->s_qf_names[qtype]) { 1583 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1584 " when quota turned on"); 1585 return -1; 1586 } 1587 kfree(sbi->s_qf_names[qtype]); 1588 sbi->s_qf_names[qtype] = NULL; 1589 return 1; 1590 } 1591 #endif 1592 1593 #define MOPT_SET 0x0001 1594 #define MOPT_CLEAR 0x0002 1595 #define MOPT_NOSUPPORT 0x0004 1596 #define MOPT_EXPLICIT 0x0008 1597 #define MOPT_CLEAR_ERR 0x0010 1598 #define MOPT_GTE0 0x0020 1599 #ifdef CONFIG_QUOTA 1600 #define MOPT_Q 0 1601 #define MOPT_QFMT 0x0040 1602 #else 1603 #define MOPT_Q MOPT_NOSUPPORT 1604 #define MOPT_QFMT MOPT_NOSUPPORT 1605 #endif 1606 #define MOPT_DATAJ 0x0080 1607 #define MOPT_NO_EXT2 0x0100 1608 #define MOPT_NO_EXT3 0x0200 1609 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1610 #define MOPT_STRING 0x0400 1611 1612 static const struct mount_opts { 1613 int token; 1614 int mount_opt; 1615 int flags; 1616 } ext4_mount_opts[] = { 1617 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1618 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1619 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1620 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1621 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1622 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1623 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1624 MOPT_EXT4_ONLY | MOPT_SET}, 1625 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1626 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1627 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1628 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1629 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1630 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1631 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1632 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1633 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1634 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1635 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1636 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1637 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1638 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1639 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1640 EXT4_MOUNT_JOURNAL_CHECKSUM), 1641 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1642 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1643 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1644 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1645 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1646 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1647 MOPT_NO_EXT2}, 1648 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1649 MOPT_NO_EXT2}, 1650 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1651 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1652 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1653 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1654 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1655 {Opt_commit, 0, MOPT_GTE0}, 1656 {Opt_max_batch_time, 0, MOPT_GTE0}, 1657 {Opt_min_batch_time, 0, MOPT_GTE0}, 1658 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1659 {Opt_init_itable, 0, MOPT_GTE0}, 1660 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1661 {Opt_stripe, 0, MOPT_GTE0}, 1662 {Opt_resuid, 0, MOPT_GTE0}, 1663 {Opt_resgid, 0, MOPT_GTE0}, 1664 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1665 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1666 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1667 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1668 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1669 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1670 MOPT_NO_EXT2 | MOPT_DATAJ}, 1671 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1672 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1673 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1674 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1675 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1676 #else 1677 {Opt_acl, 0, MOPT_NOSUPPORT}, 1678 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1679 #endif 1680 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1681 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1682 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1683 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1684 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1685 MOPT_SET | MOPT_Q}, 1686 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1687 MOPT_SET | MOPT_Q}, 1688 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1689 MOPT_SET | MOPT_Q}, 1690 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1691 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1692 MOPT_CLEAR | MOPT_Q}, 1693 {Opt_usrjquota, 0, MOPT_Q}, 1694 {Opt_grpjquota, 0, MOPT_Q}, 1695 {Opt_offusrjquota, 0, MOPT_Q}, 1696 {Opt_offgrpjquota, 0, MOPT_Q}, 1697 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1698 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1699 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1700 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1701 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1702 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1703 {Opt_err, 0, 0} 1704 }; 1705 1706 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1707 substring_t *args, unsigned long *journal_devnum, 1708 unsigned int *journal_ioprio, int is_remount) 1709 { 1710 struct ext4_sb_info *sbi = EXT4_SB(sb); 1711 const struct mount_opts *m; 1712 kuid_t uid; 1713 kgid_t gid; 1714 int arg = 0; 1715 1716 #ifdef CONFIG_QUOTA 1717 if (token == Opt_usrjquota) 1718 return set_qf_name(sb, USRQUOTA, &args[0]); 1719 else if (token == Opt_grpjquota) 1720 return set_qf_name(sb, GRPQUOTA, &args[0]); 1721 else if (token == Opt_offusrjquota) 1722 return clear_qf_name(sb, USRQUOTA); 1723 else if (token == Opt_offgrpjquota) 1724 return clear_qf_name(sb, GRPQUOTA); 1725 #endif 1726 switch (token) { 1727 case Opt_noacl: 1728 case Opt_nouser_xattr: 1729 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1730 break; 1731 case Opt_sb: 1732 return 1; /* handled by get_sb_block() */ 1733 case Opt_removed: 1734 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1735 return 1; 1736 case Opt_abort: 1737 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1738 return 1; 1739 case Opt_i_version: 1740 sb->s_flags |= SB_I_VERSION; 1741 return 1; 1742 case Opt_lazytime: 1743 sb->s_flags |= SB_LAZYTIME; 1744 return 1; 1745 case Opt_nolazytime: 1746 sb->s_flags &= ~SB_LAZYTIME; 1747 return 1; 1748 } 1749 1750 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1751 if (token == m->token) 1752 break; 1753 1754 if (m->token == Opt_err) { 1755 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1756 "or missing value", opt); 1757 return -1; 1758 } 1759 1760 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1761 ext4_msg(sb, KERN_ERR, 1762 "Mount option \"%s\" incompatible with ext2", opt); 1763 return -1; 1764 } 1765 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1766 ext4_msg(sb, KERN_ERR, 1767 "Mount option \"%s\" incompatible with ext3", opt); 1768 return -1; 1769 } 1770 1771 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1772 return -1; 1773 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1774 return -1; 1775 if (m->flags & MOPT_EXPLICIT) { 1776 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1777 set_opt2(sb, EXPLICIT_DELALLOC); 1778 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1779 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1780 } else 1781 return -1; 1782 } 1783 if (m->flags & MOPT_CLEAR_ERR) 1784 clear_opt(sb, ERRORS_MASK); 1785 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1786 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1787 "options when quota turned on"); 1788 return -1; 1789 } 1790 1791 if (m->flags & MOPT_NOSUPPORT) { 1792 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1793 } else if (token == Opt_commit) { 1794 if (arg == 0) 1795 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1796 sbi->s_commit_interval = HZ * arg; 1797 } else if (token == Opt_debug_want_extra_isize) { 1798 sbi->s_want_extra_isize = arg; 1799 } else if (token == Opt_max_batch_time) { 1800 sbi->s_max_batch_time = arg; 1801 } else if (token == Opt_min_batch_time) { 1802 sbi->s_min_batch_time = arg; 1803 } else if (token == Opt_inode_readahead_blks) { 1804 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1805 ext4_msg(sb, KERN_ERR, 1806 "EXT4-fs: inode_readahead_blks must be " 1807 "0 or a power of 2 smaller than 2^31"); 1808 return -1; 1809 } 1810 sbi->s_inode_readahead_blks = arg; 1811 } else if (token == Opt_init_itable) { 1812 set_opt(sb, INIT_INODE_TABLE); 1813 if (!args->from) 1814 arg = EXT4_DEF_LI_WAIT_MULT; 1815 sbi->s_li_wait_mult = arg; 1816 } else if (token == Opt_max_dir_size_kb) { 1817 sbi->s_max_dir_size_kb = arg; 1818 } else if (token == Opt_stripe) { 1819 sbi->s_stripe = arg; 1820 } else if (token == Opt_resuid) { 1821 uid = make_kuid(current_user_ns(), arg); 1822 if (!uid_valid(uid)) { 1823 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1824 return -1; 1825 } 1826 sbi->s_resuid = uid; 1827 } else if (token == Opt_resgid) { 1828 gid = make_kgid(current_user_ns(), arg); 1829 if (!gid_valid(gid)) { 1830 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1831 return -1; 1832 } 1833 sbi->s_resgid = gid; 1834 } else if (token == Opt_journal_dev) { 1835 if (is_remount) { 1836 ext4_msg(sb, KERN_ERR, 1837 "Cannot specify journal on remount"); 1838 return -1; 1839 } 1840 *journal_devnum = arg; 1841 } else if (token == Opt_journal_path) { 1842 char *journal_path; 1843 struct inode *journal_inode; 1844 struct path path; 1845 int error; 1846 1847 if (is_remount) { 1848 ext4_msg(sb, KERN_ERR, 1849 "Cannot specify journal on remount"); 1850 return -1; 1851 } 1852 journal_path = match_strdup(&args[0]); 1853 if (!journal_path) { 1854 ext4_msg(sb, KERN_ERR, "error: could not dup " 1855 "journal device string"); 1856 return -1; 1857 } 1858 1859 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1860 if (error) { 1861 ext4_msg(sb, KERN_ERR, "error: could not find " 1862 "journal device path: error %d", error); 1863 kfree(journal_path); 1864 return -1; 1865 } 1866 1867 journal_inode = d_inode(path.dentry); 1868 if (!S_ISBLK(journal_inode->i_mode)) { 1869 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1870 "is not a block device", journal_path); 1871 path_put(&path); 1872 kfree(journal_path); 1873 return -1; 1874 } 1875 1876 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1877 path_put(&path); 1878 kfree(journal_path); 1879 } else if (token == Opt_journal_ioprio) { 1880 if (arg > 7) { 1881 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1882 " (must be 0-7)"); 1883 return -1; 1884 } 1885 *journal_ioprio = 1886 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1887 } else if (token == Opt_test_dummy_encryption) { 1888 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1889 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1890 ext4_msg(sb, KERN_WARNING, 1891 "Test dummy encryption mode enabled"); 1892 #else 1893 ext4_msg(sb, KERN_WARNING, 1894 "Test dummy encryption mount option ignored"); 1895 #endif 1896 } else if (m->flags & MOPT_DATAJ) { 1897 if (is_remount) { 1898 if (!sbi->s_journal) 1899 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1900 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1901 ext4_msg(sb, KERN_ERR, 1902 "Cannot change data mode on remount"); 1903 return -1; 1904 } 1905 } else { 1906 clear_opt(sb, DATA_FLAGS); 1907 sbi->s_mount_opt |= m->mount_opt; 1908 } 1909 #ifdef CONFIG_QUOTA 1910 } else if (m->flags & MOPT_QFMT) { 1911 if (sb_any_quota_loaded(sb) && 1912 sbi->s_jquota_fmt != m->mount_opt) { 1913 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1914 "quota options when quota turned on"); 1915 return -1; 1916 } 1917 if (ext4_has_feature_quota(sb)) { 1918 ext4_msg(sb, KERN_INFO, 1919 "Quota format mount options ignored " 1920 "when QUOTA feature is enabled"); 1921 return 1; 1922 } 1923 sbi->s_jquota_fmt = m->mount_opt; 1924 #endif 1925 } else if (token == Opt_dax) { 1926 #ifdef CONFIG_FS_DAX 1927 ext4_msg(sb, KERN_WARNING, 1928 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1929 sbi->s_mount_opt |= m->mount_opt; 1930 #else 1931 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1932 return -1; 1933 #endif 1934 } else if (token == Opt_data_err_abort) { 1935 sbi->s_mount_opt |= m->mount_opt; 1936 } else if (token == Opt_data_err_ignore) { 1937 sbi->s_mount_opt &= ~m->mount_opt; 1938 } else { 1939 if (!args->from) 1940 arg = 1; 1941 if (m->flags & MOPT_CLEAR) 1942 arg = !arg; 1943 else if (unlikely(!(m->flags & MOPT_SET))) { 1944 ext4_msg(sb, KERN_WARNING, 1945 "buggy handling of option %s", opt); 1946 WARN_ON(1); 1947 return -1; 1948 } 1949 if (arg != 0) 1950 sbi->s_mount_opt |= m->mount_opt; 1951 else 1952 sbi->s_mount_opt &= ~m->mount_opt; 1953 } 1954 return 1; 1955 } 1956 1957 static int parse_options(char *options, struct super_block *sb, 1958 unsigned long *journal_devnum, 1959 unsigned int *journal_ioprio, 1960 int is_remount) 1961 { 1962 struct ext4_sb_info *sbi = EXT4_SB(sb); 1963 char *p; 1964 substring_t args[MAX_OPT_ARGS]; 1965 int token; 1966 1967 if (!options) 1968 return 1; 1969 1970 while ((p = strsep(&options, ",")) != NULL) { 1971 if (!*p) 1972 continue; 1973 /* 1974 * Initialize args struct so we know whether arg was 1975 * found; some options take optional arguments. 1976 */ 1977 args[0].to = args[0].from = NULL; 1978 token = match_token(p, tokens, args); 1979 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1980 journal_ioprio, is_remount) < 0) 1981 return 0; 1982 } 1983 #ifdef CONFIG_QUOTA 1984 /* 1985 * We do the test below only for project quotas. 'usrquota' and 1986 * 'grpquota' mount options are allowed even without quota feature 1987 * to support legacy quotas in quota files. 1988 */ 1989 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1990 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1991 "Cannot enable project quota enforcement."); 1992 return 0; 1993 } 1994 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1995 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1996 clear_opt(sb, USRQUOTA); 1997 1998 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1999 clear_opt(sb, GRPQUOTA); 2000 2001 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2002 ext4_msg(sb, KERN_ERR, "old and new quota " 2003 "format mixing"); 2004 return 0; 2005 } 2006 2007 if (!sbi->s_jquota_fmt) { 2008 ext4_msg(sb, KERN_ERR, "journaled quota format " 2009 "not specified"); 2010 return 0; 2011 } 2012 } 2013 #endif 2014 if (test_opt(sb, DIOREAD_NOLOCK)) { 2015 int blocksize = 2016 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2017 2018 if (blocksize < PAGE_SIZE) { 2019 ext4_msg(sb, KERN_ERR, "can't mount with " 2020 "dioread_nolock if block size != PAGE_SIZE"); 2021 return 0; 2022 } 2023 } 2024 return 1; 2025 } 2026 2027 static inline void ext4_show_quota_options(struct seq_file *seq, 2028 struct super_block *sb) 2029 { 2030 #if defined(CONFIG_QUOTA) 2031 struct ext4_sb_info *sbi = EXT4_SB(sb); 2032 2033 if (sbi->s_jquota_fmt) { 2034 char *fmtname = ""; 2035 2036 switch (sbi->s_jquota_fmt) { 2037 case QFMT_VFS_OLD: 2038 fmtname = "vfsold"; 2039 break; 2040 case QFMT_VFS_V0: 2041 fmtname = "vfsv0"; 2042 break; 2043 case QFMT_VFS_V1: 2044 fmtname = "vfsv1"; 2045 break; 2046 } 2047 seq_printf(seq, ",jqfmt=%s", fmtname); 2048 } 2049 2050 if (sbi->s_qf_names[USRQUOTA]) 2051 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 2052 2053 if (sbi->s_qf_names[GRPQUOTA]) 2054 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 2055 #endif 2056 } 2057 2058 static const char *token2str(int token) 2059 { 2060 const struct match_token *t; 2061 2062 for (t = tokens; t->token != Opt_err; t++) 2063 if (t->token == token && !strchr(t->pattern, '=')) 2064 break; 2065 return t->pattern; 2066 } 2067 2068 /* 2069 * Show an option if 2070 * - it's set to a non-default value OR 2071 * - if the per-sb default is different from the global default 2072 */ 2073 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2074 int nodefs) 2075 { 2076 struct ext4_sb_info *sbi = EXT4_SB(sb); 2077 struct ext4_super_block *es = sbi->s_es; 2078 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2079 const struct mount_opts *m; 2080 char sep = nodefs ? '\n' : ','; 2081 2082 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2083 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2084 2085 if (sbi->s_sb_block != 1) 2086 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2087 2088 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2089 int want_set = m->flags & MOPT_SET; 2090 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2091 (m->flags & MOPT_CLEAR_ERR)) 2092 continue; 2093 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2094 continue; /* skip if same as the default */ 2095 if ((want_set && 2096 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2097 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2098 continue; /* select Opt_noFoo vs Opt_Foo */ 2099 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2100 } 2101 2102 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2103 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2104 SEQ_OPTS_PRINT("resuid=%u", 2105 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2106 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2107 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2108 SEQ_OPTS_PRINT("resgid=%u", 2109 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2110 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2111 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2112 SEQ_OPTS_PUTS("errors=remount-ro"); 2113 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2114 SEQ_OPTS_PUTS("errors=continue"); 2115 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2116 SEQ_OPTS_PUTS("errors=panic"); 2117 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2118 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2119 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2120 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2121 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2122 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2123 if (sb->s_flags & SB_I_VERSION) 2124 SEQ_OPTS_PUTS("i_version"); 2125 if (nodefs || sbi->s_stripe) 2126 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2127 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2128 (sbi->s_mount_opt ^ def_mount_opt)) { 2129 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2130 SEQ_OPTS_PUTS("data=journal"); 2131 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2132 SEQ_OPTS_PUTS("data=ordered"); 2133 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2134 SEQ_OPTS_PUTS("data=writeback"); 2135 } 2136 if (nodefs || 2137 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2138 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2139 sbi->s_inode_readahead_blks); 2140 2141 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2142 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2143 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2144 if (nodefs || sbi->s_max_dir_size_kb) 2145 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2146 if (test_opt(sb, DATA_ERR_ABORT)) 2147 SEQ_OPTS_PUTS("data_err=abort"); 2148 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2149 SEQ_OPTS_PUTS("test_dummy_encryption"); 2150 2151 ext4_show_quota_options(seq, sb); 2152 return 0; 2153 } 2154 2155 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2156 { 2157 return _ext4_show_options(seq, root->d_sb, 0); 2158 } 2159 2160 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2161 { 2162 struct super_block *sb = seq->private; 2163 int rc; 2164 2165 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2166 rc = _ext4_show_options(seq, sb, 1); 2167 seq_puts(seq, "\n"); 2168 return rc; 2169 } 2170 2171 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2172 int read_only) 2173 { 2174 struct ext4_sb_info *sbi = EXT4_SB(sb); 2175 int err = 0; 2176 2177 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2178 ext4_msg(sb, KERN_ERR, "revision level too high, " 2179 "forcing read-only mode"); 2180 err = -EROFS; 2181 } 2182 if (read_only) 2183 goto done; 2184 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2185 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2186 "running e2fsck is recommended"); 2187 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2188 ext4_msg(sb, KERN_WARNING, 2189 "warning: mounting fs with errors, " 2190 "running e2fsck is recommended"); 2191 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2192 le16_to_cpu(es->s_mnt_count) >= 2193 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2194 ext4_msg(sb, KERN_WARNING, 2195 "warning: maximal mount count reached, " 2196 "running e2fsck is recommended"); 2197 else if (le32_to_cpu(es->s_checkinterval) && 2198 (ext4_get_tstamp(es, s_lastcheck) + 2199 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2200 ext4_msg(sb, KERN_WARNING, 2201 "warning: checktime reached, " 2202 "running e2fsck is recommended"); 2203 if (!sbi->s_journal) 2204 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2205 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2206 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2207 le16_add_cpu(&es->s_mnt_count, 1); 2208 ext4_update_tstamp(es, s_mtime); 2209 ext4_update_dynamic_rev(sb); 2210 if (sbi->s_journal) 2211 ext4_set_feature_journal_needs_recovery(sb); 2212 2213 err = ext4_commit_super(sb, 1); 2214 done: 2215 if (test_opt(sb, DEBUG)) 2216 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2217 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2218 sb->s_blocksize, 2219 sbi->s_groups_count, 2220 EXT4_BLOCKS_PER_GROUP(sb), 2221 EXT4_INODES_PER_GROUP(sb), 2222 sbi->s_mount_opt, sbi->s_mount_opt2); 2223 2224 cleancache_init_fs(sb); 2225 return err; 2226 } 2227 2228 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2229 { 2230 struct ext4_sb_info *sbi = EXT4_SB(sb); 2231 struct flex_groups *new_groups; 2232 int size; 2233 2234 if (!sbi->s_log_groups_per_flex) 2235 return 0; 2236 2237 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2238 if (size <= sbi->s_flex_groups_allocated) 2239 return 0; 2240 2241 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2242 new_groups = kvzalloc(size, GFP_KERNEL); 2243 if (!new_groups) { 2244 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2245 size / (int) sizeof(struct flex_groups)); 2246 return -ENOMEM; 2247 } 2248 2249 if (sbi->s_flex_groups) { 2250 memcpy(new_groups, sbi->s_flex_groups, 2251 (sbi->s_flex_groups_allocated * 2252 sizeof(struct flex_groups))); 2253 kvfree(sbi->s_flex_groups); 2254 } 2255 sbi->s_flex_groups = new_groups; 2256 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2257 return 0; 2258 } 2259 2260 static int ext4_fill_flex_info(struct super_block *sb) 2261 { 2262 struct ext4_sb_info *sbi = EXT4_SB(sb); 2263 struct ext4_group_desc *gdp = NULL; 2264 ext4_group_t flex_group; 2265 int i, err; 2266 2267 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2268 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2269 sbi->s_log_groups_per_flex = 0; 2270 return 1; 2271 } 2272 2273 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2274 if (err) 2275 goto failed; 2276 2277 for (i = 0; i < sbi->s_groups_count; i++) { 2278 gdp = ext4_get_group_desc(sb, i, NULL); 2279 2280 flex_group = ext4_flex_group(sbi, i); 2281 atomic_add(ext4_free_inodes_count(sb, gdp), 2282 &sbi->s_flex_groups[flex_group].free_inodes); 2283 atomic64_add(ext4_free_group_clusters(sb, gdp), 2284 &sbi->s_flex_groups[flex_group].free_clusters); 2285 atomic_add(ext4_used_dirs_count(sb, gdp), 2286 &sbi->s_flex_groups[flex_group].used_dirs); 2287 } 2288 2289 return 1; 2290 failed: 2291 return 0; 2292 } 2293 2294 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2295 struct ext4_group_desc *gdp) 2296 { 2297 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2298 __u16 crc = 0; 2299 __le32 le_group = cpu_to_le32(block_group); 2300 struct ext4_sb_info *sbi = EXT4_SB(sb); 2301 2302 if (ext4_has_metadata_csum(sbi->s_sb)) { 2303 /* Use new metadata_csum algorithm */ 2304 __u32 csum32; 2305 __u16 dummy_csum = 0; 2306 2307 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2308 sizeof(le_group)); 2309 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2310 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2311 sizeof(dummy_csum)); 2312 offset += sizeof(dummy_csum); 2313 if (offset < sbi->s_desc_size) 2314 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2315 sbi->s_desc_size - offset); 2316 2317 crc = csum32 & 0xFFFF; 2318 goto out; 2319 } 2320 2321 /* old crc16 code */ 2322 if (!ext4_has_feature_gdt_csum(sb)) 2323 return 0; 2324 2325 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2326 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2327 crc = crc16(crc, (__u8 *)gdp, offset); 2328 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2329 /* for checksum of struct ext4_group_desc do the rest...*/ 2330 if (ext4_has_feature_64bit(sb) && 2331 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2332 crc = crc16(crc, (__u8 *)gdp + offset, 2333 le16_to_cpu(sbi->s_es->s_desc_size) - 2334 offset); 2335 2336 out: 2337 return cpu_to_le16(crc); 2338 } 2339 2340 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2341 struct ext4_group_desc *gdp) 2342 { 2343 if (ext4_has_group_desc_csum(sb) && 2344 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2345 return 0; 2346 2347 return 1; 2348 } 2349 2350 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2351 struct ext4_group_desc *gdp) 2352 { 2353 if (!ext4_has_group_desc_csum(sb)) 2354 return; 2355 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2356 } 2357 2358 /* Called at mount-time, super-block is locked */ 2359 static int ext4_check_descriptors(struct super_block *sb, 2360 ext4_fsblk_t sb_block, 2361 ext4_group_t *first_not_zeroed) 2362 { 2363 struct ext4_sb_info *sbi = EXT4_SB(sb); 2364 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2365 ext4_fsblk_t last_block; 2366 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2367 ext4_fsblk_t block_bitmap; 2368 ext4_fsblk_t inode_bitmap; 2369 ext4_fsblk_t inode_table; 2370 int flexbg_flag = 0; 2371 ext4_group_t i, grp = sbi->s_groups_count; 2372 2373 if (ext4_has_feature_flex_bg(sb)) 2374 flexbg_flag = 1; 2375 2376 ext4_debug("Checking group descriptors"); 2377 2378 for (i = 0; i < sbi->s_groups_count; i++) { 2379 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2380 2381 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2382 last_block = ext4_blocks_count(sbi->s_es) - 1; 2383 else 2384 last_block = first_block + 2385 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2386 2387 if ((grp == sbi->s_groups_count) && 2388 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2389 grp = i; 2390 2391 block_bitmap = ext4_block_bitmap(sb, gdp); 2392 if (block_bitmap == sb_block) { 2393 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2394 "Block bitmap for group %u overlaps " 2395 "superblock", i); 2396 if (!sb_rdonly(sb)) 2397 return 0; 2398 } 2399 if (block_bitmap >= sb_block + 1 && 2400 block_bitmap <= last_bg_block) { 2401 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2402 "Block bitmap for group %u overlaps " 2403 "block group descriptors", i); 2404 if (!sb_rdonly(sb)) 2405 return 0; 2406 } 2407 if (block_bitmap < first_block || block_bitmap > last_block) { 2408 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2409 "Block bitmap for group %u not in group " 2410 "(block %llu)!", i, block_bitmap); 2411 return 0; 2412 } 2413 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2414 if (inode_bitmap == sb_block) { 2415 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2416 "Inode bitmap for group %u overlaps " 2417 "superblock", i); 2418 if (!sb_rdonly(sb)) 2419 return 0; 2420 } 2421 if (inode_bitmap >= sb_block + 1 && 2422 inode_bitmap <= last_bg_block) { 2423 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2424 "Inode bitmap for group %u overlaps " 2425 "block group descriptors", i); 2426 if (!sb_rdonly(sb)) 2427 return 0; 2428 } 2429 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2430 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2431 "Inode bitmap for group %u not in group " 2432 "(block %llu)!", i, inode_bitmap); 2433 return 0; 2434 } 2435 inode_table = ext4_inode_table(sb, gdp); 2436 if (inode_table == sb_block) { 2437 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2438 "Inode table for group %u overlaps " 2439 "superblock", i); 2440 if (!sb_rdonly(sb)) 2441 return 0; 2442 } 2443 if (inode_table >= sb_block + 1 && 2444 inode_table <= last_bg_block) { 2445 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2446 "Inode table for group %u overlaps " 2447 "block group descriptors", i); 2448 if (!sb_rdonly(sb)) 2449 return 0; 2450 } 2451 if (inode_table < first_block || 2452 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2453 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2454 "Inode table for group %u not in group " 2455 "(block %llu)!", i, inode_table); 2456 return 0; 2457 } 2458 ext4_lock_group(sb, i); 2459 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2460 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2461 "Checksum for group %u failed (%u!=%u)", 2462 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2463 gdp)), le16_to_cpu(gdp->bg_checksum)); 2464 if (!sb_rdonly(sb)) { 2465 ext4_unlock_group(sb, i); 2466 return 0; 2467 } 2468 } 2469 ext4_unlock_group(sb, i); 2470 if (!flexbg_flag) 2471 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2472 } 2473 if (NULL != first_not_zeroed) 2474 *first_not_zeroed = grp; 2475 return 1; 2476 } 2477 2478 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2479 * the superblock) which were deleted from all directories, but held open by 2480 * a process at the time of a crash. We walk the list and try to delete these 2481 * inodes at recovery time (only with a read-write filesystem). 2482 * 2483 * In order to keep the orphan inode chain consistent during traversal (in 2484 * case of crash during recovery), we link each inode into the superblock 2485 * orphan list_head and handle it the same way as an inode deletion during 2486 * normal operation (which journals the operations for us). 2487 * 2488 * We only do an iget() and an iput() on each inode, which is very safe if we 2489 * accidentally point at an in-use or already deleted inode. The worst that 2490 * can happen in this case is that we get a "bit already cleared" message from 2491 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2492 * e2fsck was run on this filesystem, and it must have already done the orphan 2493 * inode cleanup for us, so we can safely abort without any further action. 2494 */ 2495 static void ext4_orphan_cleanup(struct super_block *sb, 2496 struct ext4_super_block *es) 2497 { 2498 unsigned int s_flags = sb->s_flags; 2499 int ret, nr_orphans = 0, nr_truncates = 0; 2500 #ifdef CONFIG_QUOTA 2501 int quota_update = 0; 2502 int i; 2503 #endif 2504 if (!es->s_last_orphan) { 2505 jbd_debug(4, "no orphan inodes to clean up\n"); 2506 return; 2507 } 2508 2509 if (bdev_read_only(sb->s_bdev)) { 2510 ext4_msg(sb, KERN_ERR, "write access " 2511 "unavailable, skipping orphan cleanup"); 2512 return; 2513 } 2514 2515 /* Check if feature set would not allow a r/w mount */ 2516 if (!ext4_feature_set_ok(sb, 0)) { 2517 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2518 "unknown ROCOMPAT features"); 2519 return; 2520 } 2521 2522 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2523 /* don't clear list on RO mount w/ errors */ 2524 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2525 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2526 "clearing orphan list.\n"); 2527 es->s_last_orphan = 0; 2528 } 2529 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2530 return; 2531 } 2532 2533 if (s_flags & SB_RDONLY) { 2534 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2535 sb->s_flags &= ~SB_RDONLY; 2536 } 2537 #ifdef CONFIG_QUOTA 2538 /* Needed for iput() to work correctly and not trash data */ 2539 sb->s_flags |= SB_ACTIVE; 2540 2541 /* 2542 * Turn on quotas which were not enabled for read-only mounts if 2543 * filesystem has quota feature, so that they are updated correctly. 2544 */ 2545 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2546 int ret = ext4_enable_quotas(sb); 2547 2548 if (!ret) 2549 quota_update = 1; 2550 else 2551 ext4_msg(sb, KERN_ERR, 2552 "Cannot turn on quotas: error %d", ret); 2553 } 2554 2555 /* Turn on journaled quotas used for old sytle */ 2556 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2557 if (EXT4_SB(sb)->s_qf_names[i]) { 2558 int ret = ext4_quota_on_mount(sb, i); 2559 2560 if (!ret) 2561 quota_update = 1; 2562 else 2563 ext4_msg(sb, KERN_ERR, 2564 "Cannot turn on journaled " 2565 "quota: type %d: error %d", i, ret); 2566 } 2567 } 2568 #endif 2569 2570 while (es->s_last_orphan) { 2571 struct inode *inode; 2572 2573 /* 2574 * We may have encountered an error during cleanup; if 2575 * so, skip the rest. 2576 */ 2577 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2578 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2579 es->s_last_orphan = 0; 2580 break; 2581 } 2582 2583 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2584 if (IS_ERR(inode)) { 2585 es->s_last_orphan = 0; 2586 break; 2587 } 2588 2589 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2590 dquot_initialize(inode); 2591 if (inode->i_nlink) { 2592 if (test_opt(sb, DEBUG)) 2593 ext4_msg(sb, KERN_DEBUG, 2594 "%s: truncating inode %lu to %lld bytes", 2595 __func__, inode->i_ino, inode->i_size); 2596 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2597 inode->i_ino, inode->i_size); 2598 inode_lock(inode); 2599 truncate_inode_pages(inode->i_mapping, inode->i_size); 2600 ret = ext4_truncate(inode); 2601 if (ret) 2602 ext4_std_error(inode->i_sb, ret); 2603 inode_unlock(inode); 2604 nr_truncates++; 2605 } else { 2606 if (test_opt(sb, DEBUG)) 2607 ext4_msg(sb, KERN_DEBUG, 2608 "%s: deleting unreferenced inode %lu", 2609 __func__, inode->i_ino); 2610 jbd_debug(2, "deleting unreferenced inode %lu\n", 2611 inode->i_ino); 2612 nr_orphans++; 2613 } 2614 iput(inode); /* The delete magic happens here! */ 2615 } 2616 2617 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2618 2619 if (nr_orphans) 2620 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2621 PLURAL(nr_orphans)); 2622 if (nr_truncates) 2623 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2624 PLURAL(nr_truncates)); 2625 #ifdef CONFIG_QUOTA 2626 /* Turn off quotas if they were enabled for orphan cleanup */ 2627 if (quota_update) { 2628 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2629 if (sb_dqopt(sb)->files[i]) 2630 dquot_quota_off(sb, i); 2631 } 2632 } 2633 #endif 2634 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2635 } 2636 2637 /* 2638 * Maximal extent format file size. 2639 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2640 * extent format containers, within a sector_t, and within i_blocks 2641 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2642 * so that won't be a limiting factor. 2643 * 2644 * However there is other limiting factor. We do store extents in the form 2645 * of starting block and length, hence the resulting length of the extent 2646 * covering maximum file size must fit into on-disk format containers as 2647 * well. Given that length is always by 1 unit bigger than max unit (because 2648 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2649 * 2650 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2651 */ 2652 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2653 { 2654 loff_t res; 2655 loff_t upper_limit = MAX_LFS_FILESIZE; 2656 2657 /* small i_blocks in vfs inode? */ 2658 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2659 /* 2660 * CONFIG_LBDAF is not enabled implies the inode 2661 * i_block represent total blocks in 512 bytes 2662 * 32 == size of vfs inode i_blocks * 8 2663 */ 2664 upper_limit = (1LL << 32) - 1; 2665 2666 /* total blocks in file system block size */ 2667 upper_limit >>= (blkbits - 9); 2668 upper_limit <<= blkbits; 2669 } 2670 2671 /* 2672 * 32-bit extent-start container, ee_block. We lower the maxbytes 2673 * by one fs block, so ee_len can cover the extent of maximum file 2674 * size 2675 */ 2676 res = (1LL << 32) - 1; 2677 res <<= blkbits; 2678 2679 /* Sanity check against vm- & vfs- imposed limits */ 2680 if (res > upper_limit) 2681 res = upper_limit; 2682 2683 return res; 2684 } 2685 2686 /* 2687 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2688 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2689 * We need to be 1 filesystem block less than the 2^48 sector limit. 2690 */ 2691 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2692 { 2693 loff_t res = EXT4_NDIR_BLOCKS; 2694 int meta_blocks; 2695 loff_t upper_limit; 2696 /* This is calculated to be the largest file size for a dense, block 2697 * mapped file such that the file's total number of 512-byte sectors, 2698 * including data and all indirect blocks, does not exceed (2^48 - 1). 2699 * 2700 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2701 * number of 512-byte sectors of the file. 2702 */ 2703 2704 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2705 /* 2706 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2707 * the inode i_block field represents total file blocks in 2708 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2709 */ 2710 upper_limit = (1LL << 32) - 1; 2711 2712 /* total blocks in file system block size */ 2713 upper_limit >>= (bits - 9); 2714 2715 } else { 2716 /* 2717 * We use 48 bit ext4_inode i_blocks 2718 * With EXT4_HUGE_FILE_FL set the i_blocks 2719 * represent total number of blocks in 2720 * file system block size 2721 */ 2722 upper_limit = (1LL << 48) - 1; 2723 2724 } 2725 2726 /* indirect blocks */ 2727 meta_blocks = 1; 2728 /* double indirect blocks */ 2729 meta_blocks += 1 + (1LL << (bits-2)); 2730 /* tripple indirect blocks */ 2731 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2732 2733 upper_limit -= meta_blocks; 2734 upper_limit <<= bits; 2735 2736 res += 1LL << (bits-2); 2737 res += 1LL << (2*(bits-2)); 2738 res += 1LL << (3*(bits-2)); 2739 res <<= bits; 2740 if (res > upper_limit) 2741 res = upper_limit; 2742 2743 if (res > MAX_LFS_FILESIZE) 2744 res = MAX_LFS_FILESIZE; 2745 2746 return res; 2747 } 2748 2749 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2750 ext4_fsblk_t logical_sb_block, int nr) 2751 { 2752 struct ext4_sb_info *sbi = EXT4_SB(sb); 2753 ext4_group_t bg, first_meta_bg; 2754 int has_super = 0; 2755 2756 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2757 2758 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2759 return logical_sb_block + nr + 1; 2760 bg = sbi->s_desc_per_block * nr; 2761 if (ext4_bg_has_super(sb, bg)) 2762 has_super = 1; 2763 2764 /* 2765 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2766 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2767 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2768 * compensate. 2769 */ 2770 if (sb->s_blocksize == 1024 && nr == 0 && 2771 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2772 has_super++; 2773 2774 return (has_super + ext4_group_first_block_no(sb, bg)); 2775 } 2776 2777 /** 2778 * ext4_get_stripe_size: Get the stripe size. 2779 * @sbi: In memory super block info 2780 * 2781 * If we have specified it via mount option, then 2782 * use the mount option value. If the value specified at mount time is 2783 * greater than the blocks per group use the super block value. 2784 * If the super block value is greater than blocks per group return 0. 2785 * Allocator needs it be less than blocks per group. 2786 * 2787 */ 2788 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2789 { 2790 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2791 unsigned long stripe_width = 2792 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2793 int ret; 2794 2795 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2796 ret = sbi->s_stripe; 2797 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2798 ret = stripe_width; 2799 else if (stride && stride <= sbi->s_blocks_per_group) 2800 ret = stride; 2801 else 2802 ret = 0; 2803 2804 /* 2805 * If the stripe width is 1, this makes no sense and 2806 * we set it to 0 to turn off stripe handling code. 2807 */ 2808 if (ret <= 1) 2809 ret = 0; 2810 2811 return ret; 2812 } 2813 2814 /* 2815 * Check whether this filesystem can be mounted based on 2816 * the features present and the RDONLY/RDWR mount requested. 2817 * Returns 1 if this filesystem can be mounted as requested, 2818 * 0 if it cannot be. 2819 */ 2820 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2821 { 2822 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2823 ext4_msg(sb, KERN_ERR, 2824 "Couldn't mount because of " 2825 "unsupported optional features (%x)", 2826 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2827 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2828 return 0; 2829 } 2830 2831 if (readonly) 2832 return 1; 2833 2834 if (ext4_has_feature_readonly(sb)) { 2835 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2836 sb->s_flags |= SB_RDONLY; 2837 return 1; 2838 } 2839 2840 /* Check that feature set is OK for a read-write mount */ 2841 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2842 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2843 "unsupported optional features (%x)", 2844 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2845 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2846 return 0; 2847 } 2848 /* 2849 * Large file size enabled file system can only be mounted 2850 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2851 */ 2852 if (ext4_has_feature_huge_file(sb)) { 2853 if (sizeof(blkcnt_t) < sizeof(u64)) { 2854 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2855 "cannot be mounted RDWR without " 2856 "CONFIG_LBDAF"); 2857 return 0; 2858 } 2859 } 2860 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2861 ext4_msg(sb, KERN_ERR, 2862 "Can't support bigalloc feature without " 2863 "extents feature\n"); 2864 return 0; 2865 } 2866 2867 #ifndef CONFIG_QUOTA 2868 if (ext4_has_feature_quota(sb) && !readonly) { 2869 ext4_msg(sb, KERN_ERR, 2870 "Filesystem with quota feature cannot be mounted RDWR " 2871 "without CONFIG_QUOTA"); 2872 return 0; 2873 } 2874 if (ext4_has_feature_project(sb) && !readonly) { 2875 ext4_msg(sb, KERN_ERR, 2876 "Filesystem with project quota feature cannot be mounted RDWR " 2877 "without CONFIG_QUOTA"); 2878 return 0; 2879 } 2880 #endif /* CONFIG_QUOTA */ 2881 return 1; 2882 } 2883 2884 /* 2885 * This function is called once a day if we have errors logged 2886 * on the file system 2887 */ 2888 static void print_daily_error_info(struct timer_list *t) 2889 { 2890 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2891 struct super_block *sb = sbi->s_sb; 2892 struct ext4_super_block *es = sbi->s_es; 2893 2894 if (es->s_error_count) 2895 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2896 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2897 le32_to_cpu(es->s_error_count)); 2898 if (es->s_first_error_time) { 2899 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 2900 sb->s_id, 2901 ext4_get_tstamp(es, s_first_error_time), 2902 (int) sizeof(es->s_first_error_func), 2903 es->s_first_error_func, 2904 le32_to_cpu(es->s_first_error_line)); 2905 if (es->s_first_error_ino) 2906 printk(KERN_CONT ": inode %u", 2907 le32_to_cpu(es->s_first_error_ino)); 2908 if (es->s_first_error_block) 2909 printk(KERN_CONT ": block %llu", (unsigned long long) 2910 le64_to_cpu(es->s_first_error_block)); 2911 printk(KERN_CONT "\n"); 2912 } 2913 if (es->s_last_error_time) { 2914 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 2915 sb->s_id, 2916 ext4_get_tstamp(es, s_last_error_time), 2917 (int) sizeof(es->s_last_error_func), 2918 es->s_last_error_func, 2919 le32_to_cpu(es->s_last_error_line)); 2920 if (es->s_last_error_ino) 2921 printk(KERN_CONT ": inode %u", 2922 le32_to_cpu(es->s_last_error_ino)); 2923 if (es->s_last_error_block) 2924 printk(KERN_CONT ": block %llu", (unsigned long long) 2925 le64_to_cpu(es->s_last_error_block)); 2926 printk(KERN_CONT "\n"); 2927 } 2928 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2929 } 2930 2931 /* Find next suitable group and run ext4_init_inode_table */ 2932 static int ext4_run_li_request(struct ext4_li_request *elr) 2933 { 2934 struct ext4_group_desc *gdp = NULL; 2935 ext4_group_t group, ngroups; 2936 struct super_block *sb; 2937 unsigned long timeout = 0; 2938 int ret = 0; 2939 2940 sb = elr->lr_super; 2941 ngroups = EXT4_SB(sb)->s_groups_count; 2942 2943 for (group = elr->lr_next_group; group < ngroups; group++) { 2944 gdp = ext4_get_group_desc(sb, group, NULL); 2945 if (!gdp) { 2946 ret = 1; 2947 break; 2948 } 2949 2950 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2951 break; 2952 } 2953 2954 if (group >= ngroups) 2955 ret = 1; 2956 2957 if (!ret) { 2958 timeout = jiffies; 2959 ret = ext4_init_inode_table(sb, group, 2960 elr->lr_timeout ? 0 : 1); 2961 if (elr->lr_timeout == 0) { 2962 timeout = (jiffies - timeout) * 2963 elr->lr_sbi->s_li_wait_mult; 2964 elr->lr_timeout = timeout; 2965 } 2966 elr->lr_next_sched = jiffies + elr->lr_timeout; 2967 elr->lr_next_group = group + 1; 2968 } 2969 return ret; 2970 } 2971 2972 /* 2973 * Remove lr_request from the list_request and free the 2974 * request structure. Should be called with li_list_mtx held 2975 */ 2976 static void ext4_remove_li_request(struct ext4_li_request *elr) 2977 { 2978 struct ext4_sb_info *sbi; 2979 2980 if (!elr) 2981 return; 2982 2983 sbi = elr->lr_sbi; 2984 2985 list_del(&elr->lr_request); 2986 sbi->s_li_request = NULL; 2987 kfree(elr); 2988 } 2989 2990 static void ext4_unregister_li_request(struct super_block *sb) 2991 { 2992 mutex_lock(&ext4_li_mtx); 2993 if (!ext4_li_info) { 2994 mutex_unlock(&ext4_li_mtx); 2995 return; 2996 } 2997 2998 mutex_lock(&ext4_li_info->li_list_mtx); 2999 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3000 mutex_unlock(&ext4_li_info->li_list_mtx); 3001 mutex_unlock(&ext4_li_mtx); 3002 } 3003 3004 static struct task_struct *ext4_lazyinit_task; 3005 3006 /* 3007 * This is the function where ext4lazyinit thread lives. It walks 3008 * through the request list searching for next scheduled filesystem. 3009 * When such a fs is found, run the lazy initialization request 3010 * (ext4_rn_li_request) and keep track of the time spend in this 3011 * function. Based on that time we compute next schedule time of 3012 * the request. When walking through the list is complete, compute 3013 * next waking time and put itself into sleep. 3014 */ 3015 static int ext4_lazyinit_thread(void *arg) 3016 { 3017 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3018 struct list_head *pos, *n; 3019 struct ext4_li_request *elr; 3020 unsigned long next_wakeup, cur; 3021 3022 BUG_ON(NULL == eli); 3023 3024 cont_thread: 3025 while (true) { 3026 next_wakeup = MAX_JIFFY_OFFSET; 3027 3028 mutex_lock(&eli->li_list_mtx); 3029 if (list_empty(&eli->li_request_list)) { 3030 mutex_unlock(&eli->li_list_mtx); 3031 goto exit_thread; 3032 } 3033 list_for_each_safe(pos, n, &eli->li_request_list) { 3034 int err = 0; 3035 int progress = 0; 3036 elr = list_entry(pos, struct ext4_li_request, 3037 lr_request); 3038 3039 if (time_before(jiffies, elr->lr_next_sched)) { 3040 if (time_before(elr->lr_next_sched, next_wakeup)) 3041 next_wakeup = elr->lr_next_sched; 3042 continue; 3043 } 3044 if (down_read_trylock(&elr->lr_super->s_umount)) { 3045 if (sb_start_write_trylock(elr->lr_super)) { 3046 progress = 1; 3047 /* 3048 * We hold sb->s_umount, sb can not 3049 * be removed from the list, it is 3050 * now safe to drop li_list_mtx 3051 */ 3052 mutex_unlock(&eli->li_list_mtx); 3053 err = ext4_run_li_request(elr); 3054 sb_end_write(elr->lr_super); 3055 mutex_lock(&eli->li_list_mtx); 3056 n = pos->next; 3057 } 3058 up_read((&elr->lr_super->s_umount)); 3059 } 3060 /* error, remove the lazy_init job */ 3061 if (err) { 3062 ext4_remove_li_request(elr); 3063 continue; 3064 } 3065 if (!progress) { 3066 elr->lr_next_sched = jiffies + 3067 (prandom_u32() 3068 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3069 } 3070 if (time_before(elr->lr_next_sched, next_wakeup)) 3071 next_wakeup = elr->lr_next_sched; 3072 } 3073 mutex_unlock(&eli->li_list_mtx); 3074 3075 try_to_freeze(); 3076 3077 cur = jiffies; 3078 if ((time_after_eq(cur, next_wakeup)) || 3079 (MAX_JIFFY_OFFSET == next_wakeup)) { 3080 cond_resched(); 3081 continue; 3082 } 3083 3084 schedule_timeout_interruptible(next_wakeup - cur); 3085 3086 if (kthread_should_stop()) { 3087 ext4_clear_request_list(); 3088 goto exit_thread; 3089 } 3090 } 3091 3092 exit_thread: 3093 /* 3094 * It looks like the request list is empty, but we need 3095 * to check it under the li_list_mtx lock, to prevent any 3096 * additions into it, and of course we should lock ext4_li_mtx 3097 * to atomically free the list and ext4_li_info, because at 3098 * this point another ext4 filesystem could be registering 3099 * new one. 3100 */ 3101 mutex_lock(&ext4_li_mtx); 3102 mutex_lock(&eli->li_list_mtx); 3103 if (!list_empty(&eli->li_request_list)) { 3104 mutex_unlock(&eli->li_list_mtx); 3105 mutex_unlock(&ext4_li_mtx); 3106 goto cont_thread; 3107 } 3108 mutex_unlock(&eli->li_list_mtx); 3109 kfree(ext4_li_info); 3110 ext4_li_info = NULL; 3111 mutex_unlock(&ext4_li_mtx); 3112 3113 return 0; 3114 } 3115 3116 static void ext4_clear_request_list(void) 3117 { 3118 struct list_head *pos, *n; 3119 struct ext4_li_request *elr; 3120 3121 mutex_lock(&ext4_li_info->li_list_mtx); 3122 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3123 elr = list_entry(pos, struct ext4_li_request, 3124 lr_request); 3125 ext4_remove_li_request(elr); 3126 } 3127 mutex_unlock(&ext4_li_info->li_list_mtx); 3128 } 3129 3130 static int ext4_run_lazyinit_thread(void) 3131 { 3132 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3133 ext4_li_info, "ext4lazyinit"); 3134 if (IS_ERR(ext4_lazyinit_task)) { 3135 int err = PTR_ERR(ext4_lazyinit_task); 3136 ext4_clear_request_list(); 3137 kfree(ext4_li_info); 3138 ext4_li_info = NULL; 3139 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3140 "initialization thread\n", 3141 err); 3142 return err; 3143 } 3144 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3145 return 0; 3146 } 3147 3148 /* 3149 * Check whether it make sense to run itable init. thread or not. 3150 * If there is at least one uninitialized inode table, return 3151 * corresponding group number, else the loop goes through all 3152 * groups and return total number of groups. 3153 */ 3154 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3155 { 3156 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3157 struct ext4_group_desc *gdp = NULL; 3158 3159 if (!ext4_has_group_desc_csum(sb)) 3160 return ngroups; 3161 3162 for (group = 0; group < ngroups; group++) { 3163 gdp = ext4_get_group_desc(sb, group, NULL); 3164 if (!gdp) 3165 continue; 3166 3167 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3168 break; 3169 } 3170 3171 return group; 3172 } 3173 3174 static int ext4_li_info_new(void) 3175 { 3176 struct ext4_lazy_init *eli = NULL; 3177 3178 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3179 if (!eli) 3180 return -ENOMEM; 3181 3182 INIT_LIST_HEAD(&eli->li_request_list); 3183 mutex_init(&eli->li_list_mtx); 3184 3185 eli->li_state |= EXT4_LAZYINIT_QUIT; 3186 3187 ext4_li_info = eli; 3188 3189 return 0; 3190 } 3191 3192 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3193 ext4_group_t start) 3194 { 3195 struct ext4_sb_info *sbi = EXT4_SB(sb); 3196 struct ext4_li_request *elr; 3197 3198 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3199 if (!elr) 3200 return NULL; 3201 3202 elr->lr_super = sb; 3203 elr->lr_sbi = sbi; 3204 elr->lr_next_group = start; 3205 3206 /* 3207 * Randomize first schedule time of the request to 3208 * spread the inode table initialization requests 3209 * better. 3210 */ 3211 elr->lr_next_sched = jiffies + (prandom_u32() % 3212 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3213 return elr; 3214 } 3215 3216 int ext4_register_li_request(struct super_block *sb, 3217 ext4_group_t first_not_zeroed) 3218 { 3219 struct ext4_sb_info *sbi = EXT4_SB(sb); 3220 struct ext4_li_request *elr = NULL; 3221 ext4_group_t ngroups = sbi->s_groups_count; 3222 int ret = 0; 3223 3224 mutex_lock(&ext4_li_mtx); 3225 if (sbi->s_li_request != NULL) { 3226 /* 3227 * Reset timeout so it can be computed again, because 3228 * s_li_wait_mult might have changed. 3229 */ 3230 sbi->s_li_request->lr_timeout = 0; 3231 goto out; 3232 } 3233 3234 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3235 !test_opt(sb, INIT_INODE_TABLE)) 3236 goto out; 3237 3238 elr = ext4_li_request_new(sb, first_not_zeroed); 3239 if (!elr) { 3240 ret = -ENOMEM; 3241 goto out; 3242 } 3243 3244 if (NULL == ext4_li_info) { 3245 ret = ext4_li_info_new(); 3246 if (ret) 3247 goto out; 3248 } 3249 3250 mutex_lock(&ext4_li_info->li_list_mtx); 3251 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3252 mutex_unlock(&ext4_li_info->li_list_mtx); 3253 3254 sbi->s_li_request = elr; 3255 /* 3256 * set elr to NULL here since it has been inserted to 3257 * the request_list and the removal and free of it is 3258 * handled by ext4_clear_request_list from now on. 3259 */ 3260 elr = NULL; 3261 3262 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3263 ret = ext4_run_lazyinit_thread(); 3264 if (ret) 3265 goto out; 3266 } 3267 out: 3268 mutex_unlock(&ext4_li_mtx); 3269 if (ret) 3270 kfree(elr); 3271 return ret; 3272 } 3273 3274 /* 3275 * We do not need to lock anything since this is called on 3276 * module unload. 3277 */ 3278 static void ext4_destroy_lazyinit_thread(void) 3279 { 3280 /* 3281 * If thread exited earlier 3282 * there's nothing to be done. 3283 */ 3284 if (!ext4_li_info || !ext4_lazyinit_task) 3285 return; 3286 3287 kthread_stop(ext4_lazyinit_task); 3288 } 3289 3290 static int set_journal_csum_feature_set(struct super_block *sb) 3291 { 3292 int ret = 1; 3293 int compat, incompat; 3294 struct ext4_sb_info *sbi = EXT4_SB(sb); 3295 3296 if (ext4_has_metadata_csum(sb)) { 3297 /* journal checksum v3 */ 3298 compat = 0; 3299 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3300 } else { 3301 /* journal checksum v1 */ 3302 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3303 incompat = 0; 3304 } 3305 3306 jbd2_journal_clear_features(sbi->s_journal, 3307 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3308 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3309 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3310 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3311 ret = jbd2_journal_set_features(sbi->s_journal, 3312 compat, 0, 3313 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3314 incompat); 3315 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3316 ret = jbd2_journal_set_features(sbi->s_journal, 3317 compat, 0, 3318 incompat); 3319 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3320 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3321 } else { 3322 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3323 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3324 } 3325 3326 return ret; 3327 } 3328 3329 /* 3330 * Note: calculating the overhead so we can be compatible with 3331 * historical BSD practice is quite difficult in the face of 3332 * clusters/bigalloc. This is because multiple metadata blocks from 3333 * different block group can end up in the same allocation cluster. 3334 * Calculating the exact overhead in the face of clustered allocation 3335 * requires either O(all block bitmaps) in memory or O(number of block 3336 * groups**2) in time. We will still calculate the superblock for 3337 * older file systems --- and if we come across with a bigalloc file 3338 * system with zero in s_overhead_clusters the estimate will be close to 3339 * correct especially for very large cluster sizes --- but for newer 3340 * file systems, it's better to calculate this figure once at mkfs 3341 * time, and store it in the superblock. If the superblock value is 3342 * present (even for non-bigalloc file systems), we will use it. 3343 */ 3344 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3345 char *buf) 3346 { 3347 struct ext4_sb_info *sbi = EXT4_SB(sb); 3348 struct ext4_group_desc *gdp; 3349 ext4_fsblk_t first_block, last_block, b; 3350 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3351 int s, j, count = 0; 3352 3353 if (!ext4_has_feature_bigalloc(sb)) 3354 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3355 sbi->s_itb_per_group + 2); 3356 3357 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3358 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3359 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3360 for (i = 0; i < ngroups; i++) { 3361 gdp = ext4_get_group_desc(sb, i, NULL); 3362 b = ext4_block_bitmap(sb, gdp); 3363 if (b >= first_block && b <= last_block) { 3364 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3365 count++; 3366 } 3367 b = ext4_inode_bitmap(sb, gdp); 3368 if (b >= first_block && b <= last_block) { 3369 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3370 count++; 3371 } 3372 b = ext4_inode_table(sb, gdp); 3373 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3374 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3375 int c = EXT4_B2C(sbi, b - first_block); 3376 ext4_set_bit(c, buf); 3377 count++; 3378 } 3379 if (i != grp) 3380 continue; 3381 s = 0; 3382 if (ext4_bg_has_super(sb, grp)) { 3383 ext4_set_bit(s++, buf); 3384 count++; 3385 } 3386 j = ext4_bg_num_gdb(sb, grp); 3387 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3388 ext4_error(sb, "Invalid number of block group " 3389 "descriptor blocks: %d", j); 3390 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3391 } 3392 count += j; 3393 for (; j > 0; j--) 3394 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3395 } 3396 if (!count) 3397 return 0; 3398 return EXT4_CLUSTERS_PER_GROUP(sb) - 3399 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3400 } 3401 3402 /* 3403 * Compute the overhead and stash it in sbi->s_overhead 3404 */ 3405 int ext4_calculate_overhead(struct super_block *sb) 3406 { 3407 struct ext4_sb_info *sbi = EXT4_SB(sb); 3408 struct ext4_super_block *es = sbi->s_es; 3409 struct inode *j_inode; 3410 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3411 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3412 ext4_fsblk_t overhead = 0; 3413 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3414 3415 if (!buf) 3416 return -ENOMEM; 3417 3418 /* 3419 * Compute the overhead (FS structures). This is constant 3420 * for a given filesystem unless the number of block groups 3421 * changes so we cache the previous value until it does. 3422 */ 3423 3424 /* 3425 * All of the blocks before first_data_block are overhead 3426 */ 3427 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3428 3429 /* 3430 * Add the overhead found in each block group 3431 */ 3432 for (i = 0; i < ngroups; i++) { 3433 int blks; 3434 3435 blks = count_overhead(sb, i, buf); 3436 overhead += blks; 3437 if (blks) 3438 memset(buf, 0, PAGE_SIZE); 3439 cond_resched(); 3440 } 3441 3442 /* 3443 * Add the internal journal blocks whether the journal has been 3444 * loaded or not 3445 */ 3446 if (sbi->s_journal && !sbi->journal_bdev) 3447 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3448 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3449 j_inode = ext4_get_journal_inode(sb, j_inum); 3450 if (j_inode) { 3451 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3452 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3453 iput(j_inode); 3454 } else { 3455 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3456 } 3457 } 3458 sbi->s_overhead = overhead; 3459 smp_wmb(); 3460 free_page((unsigned long) buf); 3461 return 0; 3462 } 3463 3464 static void ext4_set_resv_clusters(struct super_block *sb) 3465 { 3466 ext4_fsblk_t resv_clusters; 3467 struct ext4_sb_info *sbi = EXT4_SB(sb); 3468 3469 /* 3470 * There's no need to reserve anything when we aren't using extents. 3471 * The space estimates are exact, there are no unwritten extents, 3472 * hole punching doesn't need new metadata... This is needed especially 3473 * to keep ext2/3 backward compatibility. 3474 */ 3475 if (!ext4_has_feature_extents(sb)) 3476 return; 3477 /* 3478 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3479 * This should cover the situations where we can not afford to run 3480 * out of space like for example punch hole, or converting 3481 * unwritten extents in delalloc path. In most cases such 3482 * allocation would require 1, or 2 blocks, higher numbers are 3483 * very rare. 3484 */ 3485 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3486 sbi->s_cluster_bits); 3487 3488 do_div(resv_clusters, 50); 3489 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3490 3491 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3492 } 3493 3494 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3495 { 3496 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3497 char *orig_data = kstrdup(data, GFP_KERNEL); 3498 struct buffer_head *bh; 3499 struct ext4_super_block *es = NULL; 3500 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3501 ext4_fsblk_t block; 3502 ext4_fsblk_t sb_block = get_sb_block(&data); 3503 ext4_fsblk_t logical_sb_block; 3504 unsigned long offset = 0; 3505 unsigned long journal_devnum = 0; 3506 unsigned long def_mount_opts; 3507 struct inode *root; 3508 const char *descr; 3509 int ret = -ENOMEM; 3510 int blocksize, clustersize; 3511 unsigned int db_count; 3512 unsigned int i; 3513 int needs_recovery, has_huge_files, has_bigalloc; 3514 __u64 blocks_count; 3515 int err = 0; 3516 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3517 ext4_group_t first_not_zeroed; 3518 3519 if ((data && !orig_data) || !sbi) 3520 goto out_free_base; 3521 3522 sbi->s_daxdev = dax_dev; 3523 sbi->s_blockgroup_lock = 3524 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3525 if (!sbi->s_blockgroup_lock) 3526 goto out_free_base; 3527 3528 sb->s_fs_info = sbi; 3529 sbi->s_sb = sb; 3530 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3531 sbi->s_sb_block = sb_block; 3532 if (sb->s_bdev->bd_part) 3533 sbi->s_sectors_written_start = 3534 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3535 3536 /* Cleanup superblock name */ 3537 strreplace(sb->s_id, '/', '!'); 3538 3539 /* -EINVAL is default */ 3540 ret = -EINVAL; 3541 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3542 if (!blocksize) { 3543 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3544 goto out_fail; 3545 } 3546 3547 /* 3548 * The ext4 superblock will not be buffer aligned for other than 1kB 3549 * block sizes. We need to calculate the offset from buffer start. 3550 */ 3551 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3552 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3553 offset = do_div(logical_sb_block, blocksize); 3554 } else { 3555 logical_sb_block = sb_block; 3556 } 3557 3558 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3559 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3560 goto out_fail; 3561 } 3562 /* 3563 * Note: s_es must be initialized as soon as possible because 3564 * some ext4 macro-instructions depend on its value 3565 */ 3566 es = (struct ext4_super_block *) (bh->b_data + offset); 3567 sbi->s_es = es; 3568 sb->s_magic = le16_to_cpu(es->s_magic); 3569 if (sb->s_magic != EXT4_SUPER_MAGIC) 3570 goto cantfind_ext4; 3571 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3572 3573 /* Warn if metadata_csum and gdt_csum are both set. */ 3574 if (ext4_has_feature_metadata_csum(sb) && 3575 ext4_has_feature_gdt_csum(sb)) 3576 ext4_warning(sb, "metadata_csum and uninit_bg are " 3577 "redundant flags; please run fsck."); 3578 3579 /* Check for a known checksum algorithm */ 3580 if (!ext4_verify_csum_type(sb, es)) { 3581 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3582 "unknown checksum algorithm."); 3583 silent = 1; 3584 goto cantfind_ext4; 3585 } 3586 3587 /* Load the checksum driver */ 3588 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3589 if (IS_ERR(sbi->s_chksum_driver)) { 3590 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3591 ret = PTR_ERR(sbi->s_chksum_driver); 3592 sbi->s_chksum_driver = NULL; 3593 goto failed_mount; 3594 } 3595 3596 /* Check superblock checksum */ 3597 if (!ext4_superblock_csum_verify(sb, es)) { 3598 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3599 "invalid superblock checksum. Run e2fsck?"); 3600 silent = 1; 3601 ret = -EFSBADCRC; 3602 goto cantfind_ext4; 3603 } 3604 3605 /* Precompute checksum seed for all metadata */ 3606 if (ext4_has_feature_csum_seed(sb)) 3607 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3608 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3609 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3610 sizeof(es->s_uuid)); 3611 3612 /* Set defaults before we parse the mount options */ 3613 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3614 set_opt(sb, INIT_INODE_TABLE); 3615 if (def_mount_opts & EXT4_DEFM_DEBUG) 3616 set_opt(sb, DEBUG); 3617 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3618 set_opt(sb, GRPID); 3619 if (def_mount_opts & EXT4_DEFM_UID16) 3620 set_opt(sb, NO_UID32); 3621 /* xattr user namespace & acls are now defaulted on */ 3622 set_opt(sb, XATTR_USER); 3623 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3624 set_opt(sb, POSIX_ACL); 3625 #endif 3626 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3627 if (ext4_has_metadata_csum(sb)) 3628 set_opt(sb, JOURNAL_CHECKSUM); 3629 3630 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3631 set_opt(sb, JOURNAL_DATA); 3632 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3633 set_opt(sb, ORDERED_DATA); 3634 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3635 set_opt(sb, WRITEBACK_DATA); 3636 3637 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3638 set_opt(sb, ERRORS_PANIC); 3639 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3640 set_opt(sb, ERRORS_CONT); 3641 else 3642 set_opt(sb, ERRORS_RO); 3643 /* block_validity enabled by default; disable with noblock_validity */ 3644 set_opt(sb, BLOCK_VALIDITY); 3645 if (def_mount_opts & EXT4_DEFM_DISCARD) 3646 set_opt(sb, DISCARD); 3647 3648 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3649 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3650 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3651 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3652 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3653 3654 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3655 set_opt(sb, BARRIER); 3656 3657 /* 3658 * enable delayed allocation by default 3659 * Use -o nodelalloc to turn it off 3660 */ 3661 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3662 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3663 set_opt(sb, DELALLOC); 3664 3665 /* 3666 * set default s_li_wait_mult for lazyinit, for the case there is 3667 * no mount option specified. 3668 */ 3669 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3670 3671 if (sbi->s_es->s_mount_opts[0]) { 3672 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3673 sizeof(sbi->s_es->s_mount_opts), 3674 GFP_KERNEL); 3675 if (!s_mount_opts) 3676 goto failed_mount; 3677 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3678 &journal_ioprio, 0)) { 3679 ext4_msg(sb, KERN_WARNING, 3680 "failed to parse options in superblock: %s", 3681 s_mount_opts); 3682 } 3683 kfree(s_mount_opts); 3684 } 3685 sbi->s_def_mount_opt = sbi->s_mount_opt; 3686 if (!parse_options((char *) data, sb, &journal_devnum, 3687 &journal_ioprio, 0)) 3688 goto failed_mount; 3689 3690 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3691 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3692 "with data=journal disables delayed " 3693 "allocation and O_DIRECT support!\n"); 3694 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3695 ext4_msg(sb, KERN_ERR, "can't mount with " 3696 "both data=journal and delalloc"); 3697 goto failed_mount; 3698 } 3699 if (test_opt(sb, DIOREAD_NOLOCK)) { 3700 ext4_msg(sb, KERN_ERR, "can't mount with " 3701 "both data=journal and dioread_nolock"); 3702 goto failed_mount; 3703 } 3704 if (test_opt(sb, DAX)) { 3705 ext4_msg(sb, KERN_ERR, "can't mount with " 3706 "both data=journal and dax"); 3707 goto failed_mount; 3708 } 3709 if (ext4_has_feature_encrypt(sb)) { 3710 ext4_msg(sb, KERN_WARNING, 3711 "encrypted files will use data=ordered " 3712 "instead of data journaling mode"); 3713 } 3714 if (test_opt(sb, DELALLOC)) 3715 clear_opt(sb, DELALLOC); 3716 } else { 3717 sb->s_iflags |= SB_I_CGROUPWB; 3718 } 3719 3720 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3721 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3722 3723 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3724 (ext4_has_compat_features(sb) || 3725 ext4_has_ro_compat_features(sb) || 3726 ext4_has_incompat_features(sb))) 3727 ext4_msg(sb, KERN_WARNING, 3728 "feature flags set on rev 0 fs, " 3729 "running e2fsck is recommended"); 3730 3731 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3732 set_opt2(sb, HURD_COMPAT); 3733 if (ext4_has_feature_64bit(sb)) { 3734 ext4_msg(sb, KERN_ERR, 3735 "The Hurd can't support 64-bit file systems"); 3736 goto failed_mount; 3737 } 3738 3739 /* 3740 * ea_inode feature uses l_i_version field which is not 3741 * available in HURD_COMPAT mode. 3742 */ 3743 if (ext4_has_feature_ea_inode(sb)) { 3744 ext4_msg(sb, KERN_ERR, 3745 "ea_inode feature is not supported for Hurd"); 3746 goto failed_mount; 3747 } 3748 } 3749 3750 if (IS_EXT2_SB(sb)) { 3751 if (ext2_feature_set_ok(sb)) 3752 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3753 "using the ext4 subsystem"); 3754 else { 3755 /* 3756 * If we're probing be silent, if this looks like 3757 * it's actually an ext[34] filesystem. 3758 */ 3759 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3760 goto failed_mount; 3761 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3762 "to feature incompatibilities"); 3763 goto failed_mount; 3764 } 3765 } 3766 3767 if (IS_EXT3_SB(sb)) { 3768 if (ext3_feature_set_ok(sb)) 3769 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3770 "using the ext4 subsystem"); 3771 else { 3772 /* 3773 * If we're probing be silent, if this looks like 3774 * it's actually an ext4 filesystem. 3775 */ 3776 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3777 goto failed_mount; 3778 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3779 "to feature incompatibilities"); 3780 goto failed_mount; 3781 } 3782 } 3783 3784 /* 3785 * Check feature flags regardless of the revision level, since we 3786 * previously didn't change the revision level when setting the flags, 3787 * so there is a chance incompat flags are set on a rev 0 filesystem. 3788 */ 3789 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3790 goto failed_mount; 3791 3792 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3793 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3794 blocksize > EXT4_MAX_BLOCK_SIZE) { 3795 ext4_msg(sb, KERN_ERR, 3796 "Unsupported filesystem blocksize %d (%d log_block_size)", 3797 blocksize, le32_to_cpu(es->s_log_block_size)); 3798 goto failed_mount; 3799 } 3800 if (le32_to_cpu(es->s_log_block_size) > 3801 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3802 ext4_msg(sb, KERN_ERR, 3803 "Invalid log block size: %u", 3804 le32_to_cpu(es->s_log_block_size)); 3805 goto failed_mount; 3806 } 3807 if (le32_to_cpu(es->s_log_cluster_size) > 3808 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3809 ext4_msg(sb, KERN_ERR, 3810 "Invalid log cluster size: %u", 3811 le32_to_cpu(es->s_log_cluster_size)); 3812 goto failed_mount; 3813 } 3814 3815 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3816 ext4_msg(sb, KERN_ERR, 3817 "Number of reserved GDT blocks insanely large: %d", 3818 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3819 goto failed_mount; 3820 } 3821 3822 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3823 if (ext4_has_feature_inline_data(sb)) { 3824 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3825 " that may contain inline data"); 3826 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3827 } 3828 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3829 ext4_msg(sb, KERN_ERR, 3830 "DAX unsupported by block device. Turning off DAX."); 3831 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3832 } 3833 } 3834 3835 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3836 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3837 es->s_encryption_level); 3838 goto failed_mount; 3839 } 3840 3841 if (sb->s_blocksize != blocksize) { 3842 /* Validate the filesystem blocksize */ 3843 if (!sb_set_blocksize(sb, blocksize)) { 3844 ext4_msg(sb, KERN_ERR, "bad block size %d", 3845 blocksize); 3846 goto failed_mount; 3847 } 3848 3849 brelse(bh); 3850 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3851 offset = do_div(logical_sb_block, blocksize); 3852 bh = sb_bread_unmovable(sb, logical_sb_block); 3853 if (!bh) { 3854 ext4_msg(sb, KERN_ERR, 3855 "Can't read superblock on 2nd try"); 3856 goto failed_mount; 3857 } 3858 es = (struct ext4_super_block *)(bh->b_data + offset); 3859 sbi->s_es = es; 3860 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3861 ext4_msg(sb, KERN_ERR, 3862 "Magic mismatch, very weird!"); 3863 goto failed_mount; 3864 } 3865 } 3866 3867 has_huge_files = ext4_has_feature_huge_file(sb); 3868 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3869 has_huge_files); 3870 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3871 3872 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3873 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3874 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3875 } else { 3876 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3877 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3878 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3879 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3880 sbi->s_first_ino); 3881 goto failed_mount; 3882 } 3883 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3884 (!is_power_of_2(sbi->s_inode_size)) || 3885 (sbi->s_inode_size > blocksize)) { 3886 ext4_msg(sb, KERN_ERR, 3887 "unsupported inode size: %d", 3888 sbi->s_inode_size); 3889 goto failed_mount; 3890 } 3891 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3892 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3893 } 3894 3895 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3896 if (ext4_has_feature_64bit(sb)) { 3897 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3898 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3899 !is_power_of_2(sbi->s_desc_size)) { 3900 ext4_msg(sb, KERN_ERR, 3901 "unsupported descriptor size %lu", 3902 sbi->s_desc_size); 3903 goto failed_mount; 3904 } 3905 } else 3906 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3907 3908 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3909 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3910 3911 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3912 if (sbi->s_inodes_per_block == 0) 3913 goto cantfind_ext4; 3914 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3915 sbi->s_inodes_per_group > blocksize * 8) { 3916 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3917 sbi->s_blocks_per_group); 3918 goto failed_mount; 3919 } 3920 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3921 sbi->s_inodes_per_block; 3922 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3923 sbi->s_sbh = bh; 3924 sbi->s_mount_state = le16_to_cpu(es->s_state); 3925 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3926 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3927 3928 for (i = 0; i < 4; i++) 3929 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3930 sbi->s_def_hash_version = es->s_def_hash_version; 3931 if (ext4_has_feature_dir_index(sb)) { 3932 i = le32_to_cpu(es->s_flags); 3933 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3934 sbi->s_hash_unsigned = 3; 3935 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3936 #ifdef __CHAR_UNSIGNED__ 3937 if (!sb_rdonly(sb)) 3938 es->s_flags |= 3939 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3940 sbi->s_hash_unsigned = 3; 3941 #else 3942 if (!sb_rdonly(sb)) 3943 es->s_flags |= 3944 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3945 #endif 3946 } 3947 } 3948 3949 /* Handle clustersize */ 3950 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3951 has_bigalloc = ext4_has_feature_bigalloc(sb); 3952 if (has_bigalloc) { 3953 if (clustersize < blocksize) { 3954 ext4_msg(sb, KERN_ERR, 3955 "cluster size (%d) smaller than " 3956 "block size (%d)", clustersize, blocksize); 3957 goto failed_mount; 3958 } 3959 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3960 le32_to_cpu(es->s_log_block_size); 3961 sbi->s_clusters_per_group = 3962 le32_to_cpu(es->s_clusters_per_group); 3963 if (sbi->s_clusters_per_group > blocksize * 8) { 3964 ext4_msg(sb, KERN_ERR, 3965 "#clusters per group too big: %lu", 3966 sbi->s_clusters_per_group); 3967 goto failed_mount; 3968 } 3969 if (sbi->s_blocks_per_group != 3970 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3971 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3972 "clusters per group (%lu) inconsistent", 3973 sbi->s_blocks_per_group, 3974 sbi->s_clusters_per_group); 3975 goto failed_mount; 3976 } 3977 } else { 3978 if (clustersize != blocksize) { 3979 ext4_msg(sb, KERN_ERR, 3980 "fragment/cluster size (%d) != " 3981 "block size (%d)", clustersize, blocksize); 3982 goto failed_mount; 3983 } 3984 if (sbi->s_blocks_per_group > blocksize * 8) { 3985 ext4_msg(sb, KERN_ERR, 3986 "#blocks per group too big: %lu", 3987 sbi->s_blocks_per_group); 3988 goto failed_mount; 3989 } 3990 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3991 sbi->s_cluster_bits = 0; 3992 } 3993 sbi->s_cluster_ratio = clustersize / blocksize; 3994 3995 /* Do we have standard group size of clustersize * 8 blocks ? */ 3996 if (sbi->s_blocks_per_group == clustersize << 3) 3997 set_opt2(sb, STD_GROUP_SIZE); 3998 3999 /* 4000 * Test whether we have more sectors than will fit in sector_t, 4001 * and whether the max offset is addressable by the page cache. 4002 */ 4003 err = generic_check_addressable(sb->s_blocksize_bits, 4004 ext4_blocks_count(es)); 4005 if (err) { 4006 ext4_msg(sb, KERN_ERR, "filesystem" 4007 " too large to mount safely on this system"); 4008 if (sizeof(sector_t) < 8) 4009 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 4010 goto failed_mount; 4011 } 4012 4013 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4014 goto cantfind_ext4; 4015 4016 /* check blocks count against device size */ 4017 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4018 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4019 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4020 "exceeds size of device (%llu blocks)", 4021 ext4_blocks_count(es), blocks_count); 4022 goto failed_mount; 4023 } 4024 4025 /* 4026 * It makes no sense for the first data block to be beyond the end 4027 * of the filesystem. 4028 */ 4029 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4030 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4031 "block %u is beyond end of filesystem (%llu)", 4032 le32_to_cpu(es->s_first_data_block), 4033 ext4_blocks_count(es)); 4034 goto failed_mount; 4035 } 4036 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4037 (sbi->s_cluster_ratio == 1)) { 4038 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4039 "block is 0 with a 1k block and cluster size"); 4040 goto failed_mount; 4041 } 4042 4043 blocks_count = (ext4_blocks_count(es) - 4044 le32_to_cpu(es->s_first_data_block) + 4045 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4046 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4047 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4048 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4049 "(block count %llu, first data block %u, " 4050 "blocks per group %lu)", sbi->s_groups_count, 4051 ext4_blocks_count(es), 4052 le32_to_cpu(es->s_first_data_block), 4053 EXT4_BLOCKS_PER_GROUP(sb)); 4054 goto failed_mount; 4055 } 4056 sbi->s_groups_count = blocks_count; 4057 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4058 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4059 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4060 EXT4_DESC_PER_BLOCK(sb); 4061 if (ext4_has_feature_meta_bg(sb)) { 4062 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4063 ext4_msg(sb, KERN_WARNING, 4064 "first meta block group too large: %u " 4065 "(group descriptor block count %u)", 4066 le32_to_cpu(es->s_first_meta_bg), db_count); 4067 goto failed_mount; 4068 } 4069 } 4070 sbi->s_group_desc = kvmalloc_array(db_count, 4071 sizeof(struct buffer_head *), 4072 GFP_KERNEL); 4073 if (sbi->s_group_desc == NULL) { 4074 ext4_msg(sb, KERN_ERR, "not enough memory"); 4075 ret = -ENOMEM; 4076 goto failed_mount; 4077 } 4078 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4079 le32_to_cpu(es->s_inodes_count)) { 4080 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4081 le32_to_cpu(es->s_inodes_count), 4082 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4083 ret = -EINVAL; 4084 goto failed_mount; 4085 } 4086 4087 bgl_lock_init(sbi->s_blockgroup_lock); 4088 4089 /* Pre-read the descriptors into the buffer cache */ 4090 for (i = 0; i < db_count; i++) { 4091 block = descriptor_loc(sb, logical_sb_block, i); 4092 sb_breadahead(sb, block); 4093 } 4094 4095 for (i = 0; i < db_count; i++) { 4096 block = descriptor_loc(sb, logical_sb_block, i); 4097 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4098 if (!sbi->s_group_desc[i]) { 4099 ext4_msg(sb, KERN_ERR, 4100 "can't read group descriptor %d", i); 4101 db_count = i; 4102 goto failed_mount2; 4103 } 4104 } 4105 sbi->s_gdb_count = db_count; 4106 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4107 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4108 ret = -EFSCORRUPTED; 4109 goto failed_mount2; 4110 } 4111 4112 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4113 4114 /* Register extent status tree shrinker */ 4115 if (ext4_es_register_shrinker(sbi)) 4116 goto failed_mount3; 4117 4118 sbi->s_stripe = ext4_get_stripe_size(sbi); 4119 sbi->s_extent_max_zeroout_kb = 32; 4120 4121 /* 4122 * set up enough so that it can read an inode 4123 */ 4124 sb->s_op = &ext4_sops; 4125 sb->s_export_op = &ext4_export_ops; 4126 sb->s_xattr = ext4_xattr_handlers; 4127 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4128 sb->s_cop = &ext4_cryptops; 4129 #endif 4130 #ifdef CONFIG_QUOTA 4131 sb->dq_op = &ext4_quota_operations; 4132 if (ext4_has_feature_quota(sb)) 4133 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4134 else 4135 sb->s_qcop = &ext4_qctl_operations; 4136 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4137 #endif 4138 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4139 4140 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4141 mutex_init(&sbi->s_orphan_lock); 4142 4143 sb->s_root = NULL; 4144 4145 needs_recovery = (es->s_last_orphan != 0 || 4146 ext4_has_feature_journal_needs_recovery(sb)); 4147 4148 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4149 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4150 goto failed_mount3a; 4151 4152 /* 4153 * The first inode we look at is the journal inode. Don't try 4154 * root first: it may be modified in the journal! 4155 */ 4156 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4157 err = ext4_load_journal(sb, es, journal_devnum); 4158 if (err) 4159 goto failed_mount3a; 4160 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4161 ext4_has_feature_journal_needs_recovery(sb)) { 4162 ext4_msg(sb, KERN_ERR, "required journal recovery " 4163 "suppressed and not mounted read-only"); 4164 goto failed_mount_wq; 4165 } else { 4166 /* Nojournal mode, all journal mount options are illegal */ 4167 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4168 ext4_msg(sb, KERN_ERR, "can't mount with " 4169 "journal_checksum, fs mounted w/o journal"); 4170 goto failed_mount_wq; 4171 } 4172 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4173 ext4_msg(sb, KERN_ERR, "can't mount with " 4174 "journal_async_commit, fs mounted w/o journal"); 4175 goto failed_mount_wq; 4176 } 4177 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4178 ext4_msg(sb, KERN_ERR, "can't mount with " 4179 "commit=%lu, fs mounted w/o journal", 4180 sbi->s_commit_interval / HZ); 4181 goto failed_mount_wq; 4182 } 4183 if (EXT4_MOUNT_DATA_FLAGS & 4184 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4185 ext4_msg(sb, KERN_ERR, "can't mount with " 4186 "data=, fs mounted w/o journal"); 4187 goto failed_mount_wq; 4188 } 4189 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4190 clear_opt(sb, JOURNAL_CHECKSUM); 4191 clear_opt(sb, DATA_FLAGS); 4192 sbi->s_journal = NULL; 4193 needs_recovery = 0; 4194 goto no_journal; 4195 } 4196 4197 if (ext4_has_feature_64bit(sb) && 4198 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4199 JBD2_FEATURE_INCOMPAT_64BIT)) { 4200 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4201 goto failed_mount_wq; 4202 } 4203 4204 if (!set_journal_csum_feature_set(sb)) { 4205 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4206 "feature set"); 4207 goto failed_mount_wq; 4208 } 4209 4210 /* We have now updated the journal if required, so we can 4211 * validate the data journaling mode. */ 4212 switch (test_opt(sb, DATA_FLAGS)) { 4213 case 0: 4214 /* No mode set, assume a default based on the journal 4215 * capabilities: ORDERED_DATA if the journal can 4216 * cope, else JOURNAL_DATA 4217 */ 4218 if (jbd2_journal_check_available_features 4219 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4220 set_opt(sb, ORDERED_DATA); 4221 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4222 } else { 4223 set_opt(sb, JOURNAL_DATA); 4224 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4225 } 4226 break; 4227 4228 case EXT4_MOUNT_ORDERED_DATA: 4229 case EXT4_MOUNT_WRITEBACK_DATA: 4230 if (!jbd2_journal_check_available_features 4231 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4232 ext4_msg(sb, KERN_ERR, "Journal does not support " 4233 "requested data journaling mode"); 4234 goto failed_mount_wq; 4235 } 4236 default: 4237 break; 4238 } 4239 4240 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4241 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4242 ext4_msg(sb, KERN_ERR, "can't mount with " 4243 "journal_async_commit in data=ordered mode"); 4244 goto failed_mount_wq; 4245 } 4246 4247 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4248 4249 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4250 4251 no_journal: 4252 if (!test_opt(sb, NO_MBCACHE)) { 4253 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4254 if (!sbi->s_ea_block_cache) { 4255 ext4_msg(sb, KERN_ERR, 4256 "Failed to create ea_block_cache"); 4257 goto failed_mount_wq; 4258 } 4259 4260 if (ext4_has_feature_ea_inode(sb)) { 4261 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4262 if (!sbi->s_ea_inode_cache) { 4263 ext4_msg(sb, KERN_ERR, 4264 "Failed to create ea_inode_cache"); 4265 goto failed_mount_wq; 4266 } 4267 } 4268 } 4269 4270 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4271 (blocksize != PAGE_SIZE)) { 4272 ext4_msg(sb, KERN_ERR, 4273 "Unsupported blocksize for fs encryption"); 4274 goto failed_mount_wq; 4275 } 4276 4277 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4278 !ext4_has_feature_encrypt(sb)) { 4279 ext4_set_feature_encrypt(sb); 4280 ext4_commit_super(sb, 1); 4281 } 4282 4283 /* 4284 * Get the # of file system overhead blocks from the 4285 * superblock if present. 4286 */ 4287 if (es->s_overhead_clusters) 4288 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4289 else { 4290 err = ext4_calculate_overhead(sb); 4291 if (err) 4292 goto failed_mount_wq; 4293 } 4294 4295 /* 4296 * The maximum number of concurrent works can be high and 4297 * concurrency isn't really necessary. Limit it to 1. 4298 */ 4299 EXT4_SB(sb)->rsv_conversion_wq = 4300 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4301 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4302 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4303 ret = -ENOMEM; 4304 goto failed_mount4; 4305 } 4306 4307 /* 4308 * The jbd2_journal_load will have done any necessary log recovery, 4309 * so we can safely mount the rest of the filesystem now. 4310 */ 4311 4312 root = ext4_iget(sb, EXT4_ROOT_INO); 4313 if (IS_ERR(root)) { 4314 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4315 ret = PTR_ERR(root); 4316 root = NULL; 4317 goto failed_mount4; 4318 } 4319 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4320 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4321 iput(root); 4322 goto failed_mount4; 4323 } 4324 sb->s_root = d_make_root(root); 4325 if (!sb->s_root) { 4326 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4327 ret = -ENOMEM; 4328 goto failed_mount4; 4329 } 4330 4331 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4332 if (ret == -EROFS) { 4333 sb->s_flags |= SB_RDONLY; 4334 ret = 0; 4335 } else if (ret) 4336 goto failed_mount4a; 4337 4338 /* determine the minimum size of new large inodes, if present */ 4339 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4340 sbi->s_want_extra_isize == 0) { 4341 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4342 EXT4_GOOD_OLD_INODE_SIZE; 4343 if (ext4_has_feature_extra_isize(sb)) { 4344 if (sbi->s_want_extra_isize < 4345 le16_to_cpu(es->s_want_extra_isize)) 4346 sbi->s_want_extra_isize = 4347 le16_to_cpu(es->s_want_extra_isize); 4348 if (sbi->s_want_extra_isize < 4349 le16_to_cpu(es->s_min_extra_isize)) 4350 sbi->s_want_extra_isize = 4351 le16_to_cpu(es->s_min_extra_isize); 4352 } 4353 } 4354 /* Check if enough inode space is available */ 4355 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4356 sbi->s_inode_size) { 4357 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4358 EXT4_GOOD_OLD_INODE_SIZE; 4359 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4360 "available"); 4361 } 4362 4363 ext4_set_resv_clusters(sb); 4364 4365 err = ext4_setup_system_zone(sb); 4366 if (err) { 4367 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4368 "zone (%d)", err); 4369 goto failed_mount4a; 4370 } 4371 4372 ext4_ext_init(sb); 4373 err = ext4_mb_init(sb); 4374 if (err) { 4375 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4376 err); 4377 goto failed_mount5; 4378 } 4379 4380 block = ext4_count_free_clusters(sb); 4381 ext4_free_blocks_count_set(sbi->s_es, 4382 EXT4_C2B(sbi, block)); 4383 ext4_superblock_csum_set(sb); 4384 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4385 GFP_KERNEL); 4386 if (!err) { 4387 unsigned long freei = ext4_count_free_inodes(sb); 4388 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4389 ext4_superblock_csum_set(sb); 4390 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4391 GFP_KERNEL); 4392 } 4393 if (!err) 4394 err = percpu_counter_init(&sbi->s_dirs_counter, 4395 ext4_count_dirs(sb), GFP_KERNEL); 4396 if (!err) 4397 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4398 GFP_KERNEL); 4399 if (!err) 4400 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4401 4402 if (err) { 4403 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4404 goto failed_mount6; 4405 } 4406 4407 if (ext4_has_feature_flex_bg(sb)) 4408 if (!ext4_fill_flex_info(sb)) { 4409 ext4_msg(sb, KERN_ERR, 4410 "unable to initialize " 4411 "flex_bg meta info!"); 4412 goto failed_mount6; 4413 } 4414 4415 err = ext4_register_li_request(sb, first_not_zeroed); 4416 if (err) 4417 goto failed_mount6; 4418 4419 err = ext4_register_sysfs(sb); 4420 if (err) 4421 goto failed_mount7; 4422 4423 #ifdef CONFIG_QUOTA 4424 /* Enable quota usage during mount. */ 4425 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4426 err = ext4_enable_quotas(sb); 4427 if (err) 4428 goto failed_mount8; 4429 } 4430 #endif /* CONFIG_QUOTA */ 4431 4432 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4433 ext4_orphan_cleanup(sb, es); 4434 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4435 if (needs_recovery) { 4436 ext4_msg(sb, KERN_INFO, "recovery complete"); 4437 ext4_mark_recovery_complete(sb, es); 4438 } 4439 if (EXT4_SB(sb)->s_journal) { 4440 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4441 descr = " journalled data mode"; 4442 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4443 descr = " ordered data mode"; 4444 else 4445 descr = " writeback data mode"; 4446 } else 4447 descr = "out journal"; 4448 4449 if (test_opt(sb, DISCARD)) { 4450 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4451 if (!blk_queue_discard(q)) 4452 ext4_msg(sb, KERN_WARNING, 4453 "mounting with \"discard\" option, but " 4454 "the device does not support discard"); 4455 } 4456 4457 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4458 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4459 "Opts: %.*s%s%s", descr, 4460 (int) sizeof(sbi->s_es->s_mount_opts), 4461 sbi->s_es->s_mount_opts, 4462 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4463 4464 if (es->s_error_count) 4465 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4466 4467 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4468 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4469 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4470 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4471 4472 kfree(orig_data); 4473 return 0; 4474 4475 cantfind_ext4: 4476 if (!silent) 4477 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4478 goto failed_mount; 4479 4480 #ifdef CONFIG_QUOTA 4481 failed_mount8: 4482 ext4_unregister_sysfs(sb); 4483 #endif 4484 failed_mount7: 4485 ext4_unregister_li_request(sb); 4486 failed_mount6: 4487 ext4_mb_release(sb); 4488 if (sbi->s_flex_groups) 4489 kvfree(sbi->s_flex_groups); 4490 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4491 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4492 percpu_counter_destroy(&sbi->s_dirs_counter); 4493 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4494 failed_mount5: 4495 ext4_ext_release(sb); 4496 ext4_release_system_zone(sb); 4497 failed_mount4a: 4498 dput(sb->s_root); 4499 sb->s_root = NULL; 4500 failed_mount4: 4501 ext4_msg(sb, KERN_ERR, "mount failed"); 4502 if (EXT4_SB(sb)->rsv_conversion_wq) 4503 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4504 failed_mount_wq: 4505 if (sbi->s_ea_inode_cache) { 4506 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4507 sbi->s_ea_inode_cache = NULL; 4508 } 4509 if (sbi->s_ea_block_cache) { 4510 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4511 sbi->s_ea_block_cache = NULL; 4512 } 4513 if (sbi->s_journal) { 4514 jbd2_journal_destroy(sbi->s_journal); 4515 sbi->s_journal = NULL; 4516 } 4517 failed_mount3a: 4518 ext4_es_unregister_shrinker(sbi); 4519 failed_mount3: 4520 del_timer_sync(&sbi->s_err_report); 4521 if (sbi->s_mmp_tsk) 4522 kthread_stop(sbi->s_mmp_tsk); 4523 failed_mount2: 4524 for (i = 0; i < db_count; i++) 4525 brelse(sbi->s_group_desc[i]); 4526 kvfree(sbi->s_group_desc); 4527 failed_mount: 4528 if (sbi->s_chksum_driver) 4529 crypto_free_shash(sbi->s_chksum_driver); 4530 #ifdef CONFIG_QUOTA 4531 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4532 kfree(sbi->s_qf_names[i]); 4533 #endif 4534 ext4_blkdev_remove(sbi); 4535 brelse(bh); 4536 out_fail: 4537 sb->s_fs_info = NULL; 4538 kfree(sbi->s_blockgroup_lock); 4539 out_free_base: 4540 kfree(sbi); 4541 kfree(orig_data); 4542 fs_put_dax(dax_dev); 4543 return err ? err : ret; 4544 } 4545 4546 /* 4547 * Setup any per-fs journal parameters now. We'll do this both on 4548 * initial mount, once the journal has been initialised but before we've 4549 * done any recovery; and again on any subsequent remount. 4550 */ 4551 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4552 { 4553 struct ext4_sb_info *sbi = EXT4_SB(sb); 4554 4555 journal->j_commit_interval = sbi->s_commit_interval; 4556 journal->j_min_batch_time = sbi->s_min_batch_time; 4557 journal->j_max_batch_time = sbi->s_max_batch_time; 4558 4559 write_lock(&journal->j_state_lock); 4560 if (test_opt(sb, BARRIER)) 4561 journal->j_flags |= JBD2_BARRIER; 4562 else 4563 journal->j_flags &= ~JBD2_BARRIER; 4564 if (test_opt(sb, DATA_ERR_ABORT)) 4565 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4566 else 4567 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4568 write_unlock(&journal->j_state_lock); 4569 } 4570 4571 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4572 unsigned int journal_inum) 4573 { 4574 struct inode *journal_inode; 4575 4576 /* 4577 * Test for the existence of a valid inode on disk. Bad things 4578 * happen if we iget() an unused inode, as the subsequent iput() 4579 * will try to delete it. 4580 */ 4581 journal_inode = ext4_iget(sb, journal_inum); 4582 if (IS_ERR(journal_inode)) { 4583 ext4_msg(sb, KERN_ERR, "no journal found"); 4584 return NULL; 4585 } 4586 if (!journal_inode->i_nlink) { 4587 make_bad_inode(journal_inode); 4588 iput(journal_inode); 4589 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4590 return NULL; 4591 } 4592 4593 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4594 journal_inode, journal_inode->i_size); 4595 if (!S_ISREG(journal_inode->i_mode)) { 4596 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4597 iput(journal_inode); 4598 return NULL; 4599 } 4600 return journal_inode; 4601 } 4602 4603 static journal_t *ext4_get_journal(struct super_block *sb, 4604 unsigned int journal_inum) 4605 { 4606 struct inode *journal_inode; 4607 journal_t *journal; 4608 4609 BUG_ON(!ext4_has_feature_journal(sb)); 4610 4611 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4612 if (!journal_inode) 4613 return NULL; 4614 4615 journal = jbd2_journal_init_inode(journal_inode); 4616 if (!journal) { 4617 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4618 iput(journal_inode); 4619 return NULL; 4620 } 4621 journal->j_private = sb; 4622 ext4_init_journal_params(sb, journal); 4623 return journal; 4624 } 4625 4626 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4627 dev_t j_dev) 4628 { 4629 struct buffer_head *bh; 4630 journal_t *journal; 4631 ext4_fsblk_t start; 4632 ext4_fsblk_t len; 4633 int hblock, blocksize; 4634 ext4_fsblk_t sb_block; 4635 unsigned long offset; 4636 struct ext4_super_block *es; 4637 struct block_device *bdev; 4638 4639 BUG_ON(!ext4_has_feature_journal(sb)); 4640 4641 bdev = ext4_blkdev_get(j_dev, sb); 4642 if (bdev == NULL) 4643 return NULL; 4644 4645 blocksize = sb->s_blocksize; 4646 hblock = bdev_logical_block_size(bdev); 4647 if (blocksize < hblock) { 4648 ext4_msg(sb, KERN_ERR, 4649 "blocksize too small for journal device"); 4650 goto out_bdev; 4651 } 4652 4653 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4654 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4655 set_blocksize(bdev, blocksize); 4656 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4657 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4658 "external journal"); 4659 goto out_bdev; 4660 } 4661 4662 es = (struct ext4_super_block *) (bh->b_data + offset); 4663 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4664 !(le32_to_cpu(es->s_feature_incompat) & 4665 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4666 ext4_msg(sb, KERN_ERR, "external journal has " 4667 "bad superblock"); 4668 brelse(bh); 4669 goto out_bdev; 4670 } 4671 4672 if ((le32_to_cpu(es->s_feature_ro_compat) & 4673 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4674 es->s_checksum != ext4_superblock_csum(sb, es)) { 4675 ext4_msg(sb, KERN_ERR, "external journal has " 4676 "corrupt superblock"); 4677 brelse(bh); 4678 goto out_bdev; 4679 } 4680 4681 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4682 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4683 brelse(bh); 4684 goto out_bdev; 4685 } 4686 4687 len = ext4_blocks_count(es); 4688 start = sb_block + 1; 4689 brelse(bh); /* we're done with the superblock */ 4690 4691 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4692 start, len, blocksize); 4693 if (!journal) { 4694 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4695 goto out_bdev; 4696 } 4697 journal->j_private = sb; 4698 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4699 wait_on_buffer(journal->j_sb_buffer); 4700 if (!buffer_uptodate(journal->j_sb_buffer)) { 4701 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4702 goto out_journal; 4703 } 4704 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4705 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4706 "user (unsupported) - %d", 4707 be32_to_cpu(journal->j_superblock->s_nr_users)); 4708 goto out_journal; 4709 } 4710 EXT4_SB(sb)->journal_bdev = bdev; 4711 ext4_init_journal_params(sb, journal); 4712 return journal; 4713 4714 out_journal: 4715 jbd2_journal_destroy(journal); 4716 out_bdev: 4717 ext4_blkdev_put(bdev); 4718 return NULL; 4719 } 4720 4721 static int ext4_load_journal(struct super_block *sb, 4722 struct ext4_super_block *es, 4723 unsigned long journal_devnum) 4724 { 4725 journal_t *journal; 4726 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4727 dev_t journal_dev; 4728 int err = 0; 4729 int really_read_only; 4730 4731 BUG_ON(!ext4_has_feature_journal(sb)); 4732 4733 if (journal_devnum && 4734 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4735 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4736 "numbers have changed"); 4737 journal_dev = new_decode_dev(journal_devnum); 4738 } else 4739 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4740 4741 really_read_only = bdev_read_only(sb->s_bdev); 4742 4743 /* 4744 * Are we loading a blank journal or performing recovery after a 4745 * crash? For recovery, we need to check in advance whether we 4746 * can get read-write access to the device. 4747 */ 4748 if (ext4_has_feature_journal_needs_recovery(sb)) { 4749 if (sb_rdonly(sb)) { 4750 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4751 "required on readonly filesystem"); 4752 if (really_read_only) { 4753 ext4_msg(sb, KERN_ERR, "write access " 4754 "unavailable, cannot proceed " 4755 "(try mounting with noload)"); 4756 return -EROFS; 4757 } 4758 ext4_msg(sb, KERN_INFO, "write access will " 4759 "be enabled during recovery"); 4760 } 4761 } 4762 4763 if (journal_inum && journal_dev) { 4764 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4765 "and inode journals!"); 4766 return -EINVAL; 4767 } 4768 4769 if (journal_inum) { 4770 if (!(journal = ext4_get_journal(sb, journal_inum))) 4771 return -EINVAL; 4772 } else { 4773 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4774 return -EINVAL; 4775 } 4776 4777 if (!(journal->j_flags & JBD2_BARRIER)) 4778 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4779 4780 if (!ext4_has_feature_journal_needs_recovery(sb)) 4781 err = jbd2_journal_wipe(journal, !really_read_only); 4782 if (!err) { 4783 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4784 if (save) 4785 memcpy(save, ((char *) es) + 4786 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4787 err = jbd2_journal_load(journal); 4788 if (save) 4789 memcpy(((char *) es) + EXT4_S_ERR_START, 4790 save, EXT4_S_ERR_LEN); 4791 kfree(save); 4792 } 4793 4794 if (err) { 4795 ext4_msg(sb, KERN_ERR, "error loading journal"); 4796 jbd2_journal_destroy(journal); 4797 return err; 4798 } 4799 4800 EXT4_SB(sb)->s_journal = journal; 4801 ext4_clear_journal_err(sb, es); 4802 4803 if (!really_read_only && journal_devnum && 4804 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4805 es->s_journal_dev = cpu_to_le32(journal_devnum); 4806 4807 /* Make sure we flush the recovery flag to disk. */ 4808 ext4_commit_super(sb, 1); 4809 } 4810 4811 return 0; 4812 } 4813 4814 static int ext4_commit_super(struct super_block *sb, int sync) 4815 { 4816 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4817 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4818 int error = 0; 4819 4820 if (!sbh || block_device_ejected(sb)) 4821 return error; 4822 4823 /* 4824 * The superblock bh should be mapped, but it might not be if the 4825 * device was hot-removed. Not much we can do but fail the I/O. 4826 */ 4827 if (!buffer_mapped(sbh)) 4828 return error; 4829 4830 /* 4831 * If the file system is mounted read-only, don't update the 4832 * superblock write time. This avoids updating the superblock 4833 * write time when we are mounting the root file system 4834 * read/only but we need to replay the journal; at that point, 4835 * for people who are east of GMT and who make their clock 4836 * tick in localtime for Windows bug-for-bug compatibility, 4837 * the clock is set in the future, and this will cause e2fsck 4838 * to complain and force a full file system check. 4839 */ 4840 if (!(sb->s_flags & SB_RDONLY)) 4841 ext4_update_tstamp(es, s_wtime); 4842 if (sb->s_bdev->bd_part) 4843 es->s_kbytes_written = 4844 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4845 ((part_stat_read(sb->s_bdev->bd_part, 4846 sectors[STAT_WRITE]) - 4847 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4848 else 4849 es->s_kbytes_written = 4850 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4851 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4852 ext4_free_blocks_count_set(es, 4853 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4854 &EXT4_SB(sb)->s_freeclusters_counter))); 4855 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4856 es->s_free_inodes_count = 4857 cpu_to_le32(percpu_counter_sum_positive( 4858 &EXT4_SB(sb)->s_freeinodes_counter)); 4859 BUFFER_TRACE(sbh, "marking dirty"); 4860 ext4_superblock_csum_set(sb); 4861 if (sync) 4862 lock_buffer(sbh); 4863 if (buffer_write_io_error(sbh)) { 4864 /* 4865 * Oh, dear. A previous attempt to write the 4866 * superblock failed. This could happen because the 4867 * USB device was yanked out. Or it could happen to 4868 * be a transient write error and maybe the block will 4869 * be remapped. Nothing we can do but to retry the 4870 * write and hope for the best. 4871 */ 4872 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4873 "superblock detected"); 4874 clear_buffer_write_io_error(sbh); 4875 set_buffer_uptodate(sbh); 4876 } 4877 mark_buffer_dirty(sbh); 4878 if (sync) { 4879 unlock_buffer(sbh); 4880 error = __sync_dirty_buffer(sbh, 4881 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4882 if (buffer_write_io_error(sbh)) { 4883 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4884 "superblock"); 4885 clear_buffer_write_io_error(sbh); 4886 set_buffer_uptodate(sbh); 4887 } 4888 } 4889 return error; 4890 } 4891 4892 /* 4893 * Have we just finished recovery? If so, and if we are mounting (or 4894 * remounting) the filesystem readonly, then we will end up with a 4895 * consistent fs on disk. Record that fact. 4896 */ 4897 static void ext4_mark_recovery_complete(struct super_block *sb, 4898 struct ext4_super_block *es) 4899 { 4900 journal_t *journal = EXT4_SB(sb)->s_journal; 4901 4902 if (!ext4_has_feature_journal(sb)) { 4903 BUG_ON(journal != NULL); 4904 return; 4905 } 4906 jbd2_journal_lock_updates(journal); 4907 if (jbd2_journal_flush(journal) < 0) 4908 goto out; 4909 4910 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4911 ext4_clear_feature_journal_needs_recovery(sb); 4912 ext4_commit_super(sb, 1); 4913 } 4914 4915 out: 4916 jbd2_journal_unlock_updates(journal); 4917 } 4918 4919 /* 4920 * If we are mounting (or read-write remounting) a filesystem whose journal 4921 * has recorded an error from a previous lifetime, move that error to the 4922 * main filesystem now. 4923 */ 4924 static void ext4_clear_journal_err(struct super_block *sb, 4925 struct ext4_super_block *es) 4926 { 4927 journal_t *journal; 4928 int j_errno; 4929 const char *errstr; 4930 4931 BUG_ON(!ext4_has_feature_journal(sb)); 4932 4933 journal = EXT4_SB(sb)->s_journal; 4934 4935 /* 4936 * Now check for any error status which may have been recorded in the 4937 * journal by a prior ext4_error() or ext4_abort() 4938 */ 4939 4940 j_errno = jbd2_journal_errno(journal); 4941 if (j_errno) { 4942 char nbuf[16]; 4943 4944 errstr = ext4_decode_error(sb, j_errno, nbuf); 4945 ext4_warning(sb, "Filesystem error recorded " 4946 "from previous mount: %s", errstr); 4947 ext4_warning(sb, "Marking fs in need of filesystem check."); 4948 4949 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4950 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4951 ext4_commit_super(sb, 1); 4952 4953 jbd2_journal_clear_err(journal); 4954 jbd2_journal_update_sb_errno(journal); 4955 } 4956 } 4957 4958 /* 4959 * Force the running and committing transactions to commit, 4960 * and wait on the commit. 4961 */ 4962 int ext4_force_commit(struct super_block *sb) 4963 { 4964 journal_t *journal; 4965 4966 if (sb_rdonly(sb)) 4967 return 0; 4968 4969 journal = EXT4_SB(sb)->s_journal; 4970 return ext4_journal_force_commit(journal); 4971 } 4972 4973 static int ext4_sync_fs(struct super_block *sb, int wait) 4974 { 4975 int ret = 0; 4976 tid_t target; 4977 bool needs_barrier = false; 4978 struct ext4_sb_info *sbi = EXT4_SB(sb); 4979 4980 if (unlikely(ext4_forced_shutdown(sbi))) 4981 return 0; 4982 4983 trace_ext4_sync_fs(sb, wait); 4984 flush_workqueue(sbi->rsv_conversion_wq); 4985 /* 4986 * Writeback quota in non-journalled quota case - journalled quota has 4987 * no dirty dquots 4988 */ 4989 dquot_writeback_dquots(sb, -1); 4990 /* 4991 * Data writeback is possible w/o journal transaction, so barrier must 4992 * being sent at the end of the function. But we can skip it if 4993 * transaction_commit will do it for us. 4994 */ 4995 if (sbi->s_journal) { 4996 target = jbd2_get_latest_transaction(sbi->s_journal); 4997 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4998 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4999 needs_barrier = true; 5000 5001 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5002 if (wait) 5003 ret = jbd2_log_wait_commit(sbi->s_journal, 5004 target); 5005 } 5006 } else if (wait && test_opt(sb, BARRIER)) 5007 needs_barrier = true; 5008 if (needs_barrier) { 5009 int err; 5010 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5011 if (!ret) 5012 ret = err; 5013 } 5014 5015 return ret; 5016 } 5017 5018 /* 5019 * LVM calls this function before a (read-only) snapshot is created. This 5020 * gives us a chance to flush the journal completely and mark the fs clean. 5021 * 5022 * Note that only this function cannot bring a filesystem to be in a clean 5023 * state independently. It relies on upper layer to stop all data & metadata 5024 * modifications. 5025 */ 5026 static int ext4_freeze(struct super_block *sb) 5027 { 5028 int error = 0; 5029 journal_t *journal; 5030 5031 if (sb_rdonly(sb)) 5032 return 0; 5033 5034 journal = EXT4_SB(sb)->s_journal; 5035 5036 if (journal) { 5037 /* Now we set up the journal barrier. */ 5038 jbd2_journal_lock_updates(journal); 5039 5040 /* 5041 * Don't clear the needs_recovery flag if we failed to 5042 * flush the journal. 5043 */ 5044 error = jbd2_journal_flush(journal); 5045 if (error < 0) 5046 goto out; 5047 5048 /* Journal blocked and flushed, clear needs_recovery flag. */ 5049 ext4_clear_feature_journal_needs_recovery(sb); 5050 } 5051 5052 error = ext4_commit_super(sb, 1); 5053 out: 5054 if (journal) 5055 /* we rely on upper layer to stop further updates */ 5056 jbd2_journal_unlock_updates(journal); 5057 return error; 5058 } 5059 5060 /* 5061 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5062 * flag here, even though the filesystem is not technically dirty yet. 5063 */ 5064 static int ext4_unfreeze(struct super_block *sb) 5065 { 5066 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5067 return 0; 5068 5069 if (EXT4_SB(sb)->s_journal) { 5070 /* Reset the needs_recovery flag before the fs is unlocked. */ 5071 ext4_set_feature_journal_needs_recovery(sb); 5072 } 5073 5074 ext4_commit_super(sb, 1); 5075 return 0; 5076 } 5077 5078 /* 5079 * Structure to save mount options for ext4_remount's benefit 5080 */ 5081 struct ext4_mount_options { 5082 unsigned long s_mount_opt; 5083 unsigned long s_mount_opt2; 5084 kuid_t s_resuid; 5085 kgid_t s_resgid; 5086 unsigned long s_commit_interval; 5087 u32 s_min_batch_time, s_max_batch_time; 5088 #ifdef CONFIG_QUOTA 5089 int s_jquota_fmt; 5090 char *s_qf_names[EXT4_MAXQUOTAS]; 5091 #endif 5092 }; 5093 5094 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5095 { 5096 struct ext4_super_block *es; 5097 struct ext4_sb_info *sbi = EXT4_SB(sb); 5098 unsigned long old_sb_flags; 5099 struct ext4_mount_options old_opts; 5100 int enable_quota = 0; 5101 ext4_group_t g; 5102 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5103 int err = 0; 5104 #ifdef CONFIG_QUOTA 5105 int i, j; 5106 #endif 5107 char *orig_data = kstrdup(data, GFP_KERNEL); 5108 5109 if (data && !orig_data) 5110 return -ENOMEM; 5111 5112 /* Store the original options */ 5113 old_sb_flags = sb->s_flags; 5114 old_opts.s_mount_opt = sbi->s_mount_opt; 5115 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5116 old_opts.s_resuid = sbi->s_resuid; 5117 old_opts.s_resgid = sbi->s_resgid; 5118 old_opts.s_commit_interval = sbi->s_commit_interval; 5119 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5120 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5121 #ifdef CONFIG_QUOTA 5122 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5123 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5124 if (sbi->s_qf_names[i]) { 5125 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 5126 GFP_KERNEL); 5127 if (!old_opts.s_qf_names[i]) { 5128 for (j = 0; j < i; j++) 5129 kfree(old_opts.s_qf_names[j]); 5130 kfree(orig_data); 5131 return -ENOMEM; 5132 } 5133 } else 5134 old_opts.s_qf_names[i] = NULL; 5135 #endif 5136 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5137 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5138 5139 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5140 err = -EINVAL; 5141 goto restore_opts; 5142 } 5143 5144 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5145 test_opt(sb, JOURNAL_CHECKSUM)) { 5146 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5147 "during remount not supported; ignoring"); 5148 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5149 } 5150 5151 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5152 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5153 ext4_msg(sb, KERN_ERR, "can't mount with " 5154 "both data=journal and delalloc"); 5155 err = -EINVAL; 5156 goto restore_opts; 5157 } 5158 if (test_opt(sb, DIOREAD_NOLOCK)) { 5159 ext4_msg(sb, KERN_ERR, "can't mount with " 5160 "both data=journal and dioread_nolock"); 5161 err = -EINVAL; 5162 goto restore_opts; 5163 } 5164 if (test_opt(sb, DAX)) { 5165 ext4_msg(sb, KERN_ERR, "can't mount with " 5166 "both data=journal and dax"); 5167 err = -EINVAL; 5168 goto restore_opts; 5169 } 5170 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5171 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5172 ext4_msg(sb, KERN_ERR, "can't mount with " 5173 "journal_async_commit in data=ordered mode"); 5174 err = -EINVAL; 5175 goto restore_opts; 5176 } 5177 } 5178 5179 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5180 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5181 err = -EINVAL; 5182 goto restore_opts; 5183 } 5184 5185 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5186 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5187 "dax flag with busy inodes while remounting"); 5188 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5189 } 5190 5191 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5192 ext4_abort(sb, "Abort forced by user"); 5193 5194 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5195 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5196 5197 es = sbi->s_es; 5198 5199 if (sbi->s_journal) { 5200 ext4_init_journal_params(sb, sbi->s_journal); 5201 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5202 } 5203 5204 if (*flags & SB_LAZYTIME) 5205 sb->s_flags |= SB_LAZYTIME; 5206 5207 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5208 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5209 err = -EROFS; 5210 goto restore_opts; 5211 } 5212 5213 if (*flags & SB_RDONLY) { 5214 err = sync_filesystem(sb); 5215 if (err < 0) 5216 goto restore_opts; 5217 err = dquot_suspend(sb, -1); 5218 if (err < 0) 5219 goto restore_opts; 5220 5221 /* 5222 * First of all, the unconditional stuff we have to do 5223 * to disable replay of the journal when we next remount 5224 */ 5225 sb->s_flags |= SB_RDONLY; 5226 5227 /* 5228 * OK, test if we are remounting a valid rw partition 5229 * readonly, and if so set the rdonly flag and then 5230 * mark the partition as valid again. 5231 */ 5232 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5233 (sbi->s_mount_state & EXT4_VALID_FS)) 5234 es->s_state = cpu_to_le16(sbi->s_mount_state); 5235 5236 if (sbi->s_journal) 5237 ext4_mark_recovery_complete(sb, es); 5238 if (sbi->s_mmp_tsk) 5239 kthread_stop(sbi->s_mmp_tsk); 5240 } else { 5241 /* Make sure we can mount this feature set readwrite */ 5242 if (ext4_has_feature_readonly(sb) || 5243 !ext4_feature_set_ok(sb, 0)) { 5244 err = -EROFS; 5245 goto restore_opts; 5246 } 5247 /* 5248 * Make sure the group descriptor checksums 5249 * are sane. If they aren't, refuse to remount r/w. 5250 */ 5251 for (g = 0; g < sbi->s_groups_count; g++) { 5252 struct ext4_group_desc *gdp = 5253 ext4_get_group_desc(sb, g, NULL); 5254 5255 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5256 ext4_msg(sb, KERN_ERR, 5257 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5258 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5259 le16_to_cpu(gdp->bg_checksum)); 5260 err = -EFSBADCRC; 5261 goto restore_opts; 5262 } 5263 } 5264 5265 /* 5266 * If we have an unprocessed orphan list hanging 5267 * around from a previously readonly bdev mount, 5268 * require a full umount/remount for now. 5269 */ 5270 if (es->s_last_orphan) { 5271 ext4_msg(sb, KERN_WARNING, "Couldn't " 5272 "remount RDWR because of unprocessed " 5273 "orphan inode list. Please " 5274 "umount/remount instead"); 5275 err = -EINVAL; 5276 goto restore_opts; 5277 } 5278 5279 /* 5280 * Mounting a RDONLY partition read-write, so reread 5281 * and store the current valid flag. (It may have 5282 * been changed by e2fsck since we originally mounted 5283 * the partition.) 5284 */ 5285 if (sbi->s_journal) 5286 ext4_clear_journal_err(sb, es); 5287 sbi->s_mount_state = le16_to_cpu(es->s_state); 5288 5289 err = ext4_setup_super(sb, es, 0); 5290 if (err) 5291 goto restore_opts; 5292 5293 sb->s_flags &= ~SB_RDONLY; 5294 if (ext4_has_feature_mmp(sb)) 5295 if (ext4_multi_mount_protect(sb, 5296 le64_to_cpu(es->s_mmp_block))) { 5297 err = -EROFS; 5298 goto restore_opts; 5299 } 5300 enable_quota = 1; 5301 } 5302 } 5303 5304 /* 5305 * Reinitialize lazy itable initialization thread based on 5306 * current settings 5307 */ 5308 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5309 ext4_unregister_li_request(sb); 5310 else { 5311 ext4_group_t first_not_zeroed; 5312 first_not_zeroed = ext4_has_uninit_itable(sb); 5313 ext4_register_li_request(sb, first_not_zeroed); 5314 } 5315 5316 ext4_setup_system_zone(sb); 5317 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5318 err = ext4_commit_super(sb, 1); 5319 if (err) 5320 goto restore_opts; 5321 } 5322 5323 #ifdef CONFIG_QUOTA 5324 /* Release old quota file names */ 5325 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5326 kfree(old_opts.s_qf_names[i]); 5327 if (enable_quota) { 5328 if (sb_any_quota_suspended(sb)) 5329 dquot_resume(sb, -1); 5330 else if (ext4_has_feature_quota(sb)) { 5331 err = ext4_enable_quotas(sb); 5332 if (err) 5333 goto restore_opts; 5334 } 5335 } 5336 #endif 5337 5338 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5339 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5340 kfree(orig_data); 5341 return 0; 5342 5343 restore_opts: 5344 sb->s_flags = old_sb_flags; 5345 sbi->s_mount_opt = old_opts.s_mount_opt; 5346 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5347 sbi->s_resuid = old_opts.s_resuid; 5348 sbi->s_resgid = old_opts.s_resgid; 5349 sbi->s_commit_interval = old_opts.s_commit_interval; 5350 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5351 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5352 #ifdef CONFIG_QUOTA 5353 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5354 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5355 kfree(sbi->s_qf_names[i]); 5356 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5357 } 5358 #endif 5359 kfree(orig_data); 5360 return err; 5361 } 5362 5363 #ifdef CONFIG_QUOTA 5364 static int ext4_statfs_project(struct super_block *sb, 5365 kprojid_t projid, struct kstatfs *buf) 5366 { 5367 struct kqid qid; 5368 struct dquot *dquot; 5369 u64 limit; 5370 u64 curblock; 5371 5372 qid = make_kqid_projid(projid); 5373 dquot = dqget(sb, qid); 5374 if (IS_ERR(dquot)) 5375 return PTR_ERR(dquot); 5376 spin_lock(&dquot->dq_dqb_lock); 5377 5378 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5379 dquot->dq_dqb.dqb_bsoftlimit : 5380 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5381 if (limit && buf->f_blocks > limit) { 5382 curblock = (dquot->dq_dqb.dqb_curspace + 5383 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5384 buf->f_blocks = limit; 5385 buf->f_bfree = buf->f_bavail = 5386 (buf->f_blocks > curblock) ? 5387 (buf->f_blocks - curblock) : 0; 5388 } 5389 5390 limit = dquot->dq_dqb.dqb_isoftlimit ? 5391 dquot->dq_dqb.dqb_isoftlimit : 5392 dquot->dq_dqb.dqb_ihardlimit; 5393 if (limit && buf->f_files > limit) { 5394 buf->f_files = limit; 5395 buf->f_ffree = 5396 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5397 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5398 } 5399 5400 spin_unlock(&dquot->dq_dqb_lock); 5401 dqput(dquot); 5402 return 0; 5403 } 5404 #endif 5405 5406 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5407 { 5408 struct super_block *sb = dentry->d_sb; 5409 struct ext4_sb_info *sbi = EXT4_SB(sb); 5410 struct ext4_super_block *es = sbi->s_es; 5411 ext4_fsblk_t overhead = 0, resv_blocks; 5412 u64 fsid; 5413 s64 bfree; 5414 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5415 5416 if (!test_opt(sb, MINIX_DF)) 5417 overhead = sbi->s_overhead; 5418 5419 buf->f_type = EXT4_SUPER_MAGIC; 5420 buf->f_bsize = sb->s_blocksize; 5421 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5422 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5423 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5424 /* prevent underflow in case that few free space is available */ 5425 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5426 buf->f_bavail = buf->f_bfree - 5427 (ext4_r_blocks_count(es) + resv_blocks); 5428 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5429 buf->f_bavail = 0; 5430 buf->f_files = le32_to_cpu(es->s_inodes_count); 5431 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5432 buf->f_namelen = EXT4_NAME_LEN; 5433 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5434 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5435 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5436 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5437 5438 #ifdef CONFIG_QUOTA 5439 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5440 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5441 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5442 #endif 5443 return 0; 5444 } 5445 5446 5447 #ifdef CONFIG_QUOTA 5448 5449 /* 5450 * Helper functions so that transaction is started before we acquire dqio_sem 5451 * to keep correct lock ordering of transaction > dqio_sem 5452 */ 5453 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5454 { 5455 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5456 } 5457 5458 static int ext4_write_dquot(struct dquot *dquot) 5459 { 5460 int ret, err; 5461 handle_t *handle; 5462 struct inode *inode; 5463 5464 inode = dquot_to_inode(dquot); 5465 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5466 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5467 if (IS_ERR(handle)) 5468 return PTR_ERR(handle); 5469 ret = dquot_commit(dquot); 5470 err = ext4_journal_stop(handle); 5471 if (!ret) 5472 ret = err; 5473 return ret; 5474 } 5475 5476 static int ext4_acquire_dquot(struct dquot *dquot) 5477 { 5478 int ret, err; 5479 handle_t *handle; 5480 5481 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5482 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5483 if (IS_ERR(handle)) 5484 return PTR_ERR(handle); 5485 ret = dquot_acquire(dquot); 5486 err = ext4_journal_stop(handle); 5487 if (!ret) 5488 ret = err; 5489 return ret; 5490 } 5491 5492 static int ext4_release_dquot(struct dquot *dquot) 5493 { 5494 int ret, err; 5495 handle_t *handle; 5496 5497 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5498 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5499 if (IS_ERR(handle)) { 5500 /* Release dquot anyway to avoid endless cycle in dqput() */ 5501 dquot_release(dquot); 5502 return PTR_ERR(handle); 5503 } 5504 ret = dquot_release(dquot); 5505 err = ext4_journal_stop(handle); 5506 if (!ret) 5507 ret = err; 5508 return ret; 5509 } 5510 5511 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5512 { 5513 struct super_block *sb = dquot->dq_sb; 5514 struct ext4_sb_info *sbi = EXT4_SB(sb); 5515 5516 /* Are we journaling quotas? */ 5517 if (ext4_has_feature_quota(sb) || 5518 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5519 dquot_mark_dquot_dirty(dquot); 5520 return ext4_write_dquot(dquot); 5521 } else { 5522 return dquot_mark_dquot_dirty(dquot); 5523 } 5524 } 5525 5526 static int ext4_write_info(struct super_block *sb, int type) 5527 { 5528 int ret, err; 5529 handle_t *handle; 5530 5531 /* Data block + inode block */ 5532 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5533 if (IS_ERR(handle)) 5534 return PTR_ERR(handle); 5535 ret = dquot_commit_info(sb, type); 5536 err = ext4_journal_stop(handle); 5537 if (!ret) 5538 ret = err; 5539 return ret; 5540 } 5541 5542 /* 5543 * Turn on quotas during mount time - we need to find 5544 * the quota file and such... 5545 */ 5546 static int ext4_quota_on_mount(struct super_block *sb, int type) 5547 { 5548 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5549 EXT4_SB(sb)->s_jquota_fmt, type); 5550 } 5551 5552 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5553 { 5554 struct ext4_inode_info *ei = EXT4_I(inode); 5555 5556 /* The first argument of lockdep_set_subclass has to be 5557 * *exactly* the same as the argument to init_rwsem() --- in 5558 * this case, in init_once() --- or lockdep gets unhappy 5559 * because the name of the lock is set using the 5560 * stringification of the argument to init_rwsem(). 5561 */ 5562 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5563 lockdep_set_subclass(&ei->i_data_sem, subclass); 5564 } 5565 5566 /* 5567 * Standard function to be called on quota_on 5568 */ 5569 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5570 const struct path *path) 5571 { 5572 int err; 5573 5574 if (!test_opt(sb, QUOTA)) 5575 return -EINVAL; 5576 5577 /* Quotafile not on the same filesystem? */ 5578 if (path->dentry->d_sb != sb) 5579 return -EXDEV; 5580 /* Journaling quota? */ 5581 if (EXT4_SB(sb)->s_qf_names[type]) { 5582 /* Quotafile not in fs root? */ 5583 if (path->dentry->d_parent != sb->s_root) 5584 ext4_msg(sb, KERN_WARNING, 5585 "Quota file not on filesystem root. " 5586 "Journaled quota will not work"); 5587 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5588 } else { 5589 /* 5590 * Clear the flag just in case mount options changed since 5591 * last time. 5592 */ 5593 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5594 } 5595 5596 /* 5597 * When we journal data on quota file, we have to flush journal to see 5598 * all updates to the file when we bypass pagecache... 5599 */ 5600 if (EXT4_SB(sb)->s_journal && 5601 ext4_should_journal_data(d_inode(path->dentry))) { 5602 /* 5603 * We don't need to lock updates but journal_flush() could 5604 * otherwise be livelocked... 5605 */ 5606 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5607 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5608 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5609 if (err) 5610 return err; 5611 } 5612 5613 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5614 err = dquot_quota_on(sb, type, format_id, path); 5615 if (err) { 5616 lockdep_set_quota_inode(path->dentry->d_inode, 5617 I_DATA_SEM_NORMAL); 5618 } else { 5619 struct inode *inode = d_inode(path->dentry); 5620 handle_t *handle; 5621 5622 /* 5623 * Set inode flags to prevent userspace from messing with quota 5624 * files. If this fails, we return success anyway since quotas 5625 * are already enabled and this is not a hard failure. 5626 */ 5627 inode_lock(inode); 5628 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5629 if (IS_ERR(handle)) 5630 goto unlock_inode; 5631 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5632 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5633 S_NOATIME | S_IMMUTABLE); 5634 ext4_mark_inode_dirty(handle, inode); 5635 ext4_journal_stop(handle); 5636 unlock_inode: 5637 inode_unlock(inode); 5638 } 5639 return err; 5640 } 5641 5642 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5643 unsigned int flags) 5644 { 5645 int err; 5646 struct inode *qf_inode; 5647 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5648 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5649 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5650 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5651 }; 5652 5653 BUG_ON(!ext4_has_feature_quota(sb)); 5654 5655 if (!qf_inums[type]) 5656 return -EPERM; 5657 5658 qf_inode = ext4_iget(sb, qf_inums[type]); 5659 if (IS_ERR(qf_inode)) { 5660 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5661 return PTR_ERR(qf_inode); 5662 } 5663 5664 /* Don't account quota for quota files to avoid recursion */ 5665 qf_inode->i_flags |= S_NOQUOTA; 5666 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5667 err = dquot_enable(qf_inode, type, format_id, flags); 5668 iput(qf_inode); 5669 if (err) 5670 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5671 5672 return err; 5673 } 5674 5675 /* Enable usage tracking for all quota types. */ 5676 static int ext4_enable_quotas(struct super_block *sb) 5677 { 5678 int type, err = 0; 5679 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5680 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5681 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5682 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5683 }; 5684 bool quota_mopt[EXT4_MAXQUOTAS] = { 5685 test_opt(sb, USRQUOTA), 5686 test_opt(sb, GRPQUOTA), 5687 test_opt(sb, PRJQUOTA), 5688 }; 5689 5690 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5691 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5692 if (qf_inums[type]) { 5693 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5694 DQUOT_USAGE_ENABLED | 5695 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5696 if (err) { 5697 ext4_warning(sb, 5698 "Failed to enable quota tracking " 5699 "(type=%d, err=%d). Please run " 5700 "e2fsck to fix.", type, err); 5701 for (type--; type >= 0; type--) 5702 dquot_quota_off(sb, type); 5703 5704 return err; 5705 } 5706 } 5707 } 5708 return 0; 5709 } 5710 5711 static int ext4_quota_off(struct super_block *sb, int type) 5712 { 5713 struct inode *inode = sb_dqopt(sb)->files[type]; 5714 handle_t *handle; 5715 int err; 5716 5717 /* Force all delayed allocation blocks to be allocated. 5718 * Caller already holds s_umount sem */ 5719 if (test_opt(sb, DELALLOC)) 5720 sync_filesystem(sb); 5721 5722 if (!inode || !igrab(inode)) 5723 goto out; 5724 5725 err = dquot_quota_off(sb, type); 5726 if (err || ext4_has_feature_quota(sb)) 5727 goto out_put; 5728 5729 inode_lock(inode); 5730 /* 5731 * Update modification times of quota files when userspace can 5732 * start looking at them. If we fail, we return success anyway since 5733 * this is not a hard failure and quotas are already disabled. 5734 */ 5735 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5736 if (IS_ERR(handle)) 5737 goto out_unlock; 5738 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5739 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5740 inode->i_mtime = inode->i_ctime = current_time(inode); 5741 ext4_mark_inode_dirty(handle, inode); 5742 ext4_journal_stop(handle); 5743 out_unlock: 5744 inode_unlock(inode); 5745 out_put: 5746 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5747 iput(inode); 5748 return err; 5749 out: 5750 return dquot_quota_off(sb, type); 5751 } 5752 5753 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5754 * acquiring the locks... As quota files are never truncated and quota code 5755 * itself serializes the operations (and no one else should touch the files) 5756 * we don't have to be afraid of races */ 5757 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5758 size_t len, loff_t off) 5759 { 5760 struct inode *inode = sb_dqopt(sb)->files[type]; 5761 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5762 int offset = off & (sb->s_blocksize - 1); 5763 int tocopy; 5764 size_t toread; 5765 struct buffer_head *bh; 5766 loff_t i_size = i_size_read(inode); 5767 5768 if (off > i_size) 5769 return 0; 5770 if (off+len > i_size) 5771 len = i_size-off; 5772 toread = len; 5773 while (toread > 0) { 5774 tocopy = sb->s_blocksize - offset < toread ? 5775 sb->s_blocksize - offset : toread; 5776 bh = ext4_bread(NULL, inode, blk, 0); 5777 if (IS_ERR(bh)) 5778 return PTR_ERR(bh); 5779 if (!bh) /* A hole? */ 5780 memset(data, 0, tocopy); 5781 else 5782 memcpy(data, bh->b_data+offset, tocopy); 5783 brelse(bh); 5784 offset = 0; 5785 toread -= tocopy; 5786 data += tocopy; 5787 blk++; 5788 } 5789 return len; 5790 } 5791 5792 /* Write to quotafile (we know the transaction is already started and has 5793 * enough credits) */ 5794 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5795 const char *data, size_t len, loff_t off) 5796 { 5797 struct inode *inode = sb_dqopt(sb)->files[type]; 5798 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5799 int err, offset = off & (sb->s_blocksize - 1); 5800 int retries = 0; 5801 struct buffer_head *bh; 5802 handle_t *handle = journal_current_handle(); 5803 5804 if (EXT4_SB(sb)->s_journal && !handle) { 5805 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5806 " cancelled because transaction is not started", 5807 (unsigned long long)off, (unsigned long long)len); 5808 return -EIO; 5809 } 5810 /* 5811 * Since we account only one data block in transaction credits, 5812 * then it is impossible to cross a block boundary. 5813 */ 5814 if (sb->s_blocksize - offset < len) { 5815 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5816 " cancelled because not block aligned", 5817 (unsigned long long)off, (unsigned long long)len); 5818 return -EIO; 5819 } 5820 5821 do { 5822 bh = ext4_bread(handle, inode, blk, 5823 EXT4_GET_BLOCKS_CREATE | 5824 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5825 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5826 ext4_should_retry_alloc(inode->i_sb, &retries)); 5827 if (IS_ERR(bh)) 5828 return PTR_ERR(bh); 5829 if (!bh) 5830 goto out; 5831 BUFFER_TRACE(bh, "get write access"); 5832 err = ext4_journal_get_write_access(handle, bh); 5833 if (err) { 5834 brelse(bh); 5835 return err; 5836 } 5837 lock_buffer(bh); 5838 memcpy(bh->b_data+offset, data, len); 5839 flush_dcache_page(bh->b_page); 5840 unlock_buffer(bh); 5841 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5842 brelse(bh); 5843 out: 5844 if (inode->i_size < off + len) { 5845 i_size_write(inode, off + len); 5846 EXT4_I(inode)->i_disksize = inode->i_size; 5847 ext4_mark_inode_dirty(handle, inode); 5848 } 5849 return len; 5850 } 5851 5852 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5853 { 5854 const struct quota_format_ops *ops; 5855 5856 if (!sb_has_quota_loaded(sb, qid->type)) 5857 return -ESRCH; 5858 ops = sb_dqopt(sb)->ops[qid->type]; 5859 if (!ops || !ops->get_next_id) 5860 return -ENOSYS; 5861 return dquot_get_next_id(sb, qid); 5862 } 5863 #endif 5864 5865 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5866 const char *dev_name, void *data) 5867 { 5868 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5869 } 5870 5871 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5872 static inline void register_as_ext2(void) 5873 { 5874 int err = register_filesystem(&ext2_fs_type); 5875 if (err) 5876 printk(KERN_WARNING 5877 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5878 } 5879 5880 static inline void unregister_as_ext2(void) 5881 { 5882 unregister_filesystem(&ext2_fs_type); 5883 } 5884 5885 static inline int ext2_feature_set_ok(struct super_block *sb) 5886 { 5887 if (ext4_has_unknown_ext2_incompat_features(sb)) 5888 return 0; 5889 if (sb_rdonly(sb)) 5890 return 1; 5891 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5892 return 0; 5893 return 1; 5894 } 5895 #else 5896 static inline void register_as_ext2(void) { } 5897 static inline void unregister_as_ext2(void) { } 5898 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5899 #endif 5900 5901 static inline void register_as_ext3(void) 5902 { 5903 int err = register_filesystem(&ext3_fs_type); 5904 if (err) 5905 printk(KERN_WARNING 5906 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5907 } 5908 5909 static inline void unregister_as_ext3(void) 5910 { 5911 unregister_filesystem(&ext3_fs_type); 5912 } 5913 5914 static inline int ext3_feature_set_ok(struct super_block *sb) 5915 { 5916 if (ext4_has_unknown_ext3_incompat_features(sb)) 5917 return 0; 5918 if (!ext4_has_feature_journal(sb)) 5919 return 0; 5920 if (sb_rdonly(sb)) 5921 return 1; 5922 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5923 return 0; 5924 return 1; 5925 } 5926 5927 static struct file_system_type ext4_fs_type = { 5928 .owner = THIS_MODULE, 5929 .name = "ext4", 5930 .mount = ext4_mount, 5931 .kill_sb = kill_block_super, 5932 .fs_flags = FS_REQUIRES_DEV, 5933 }; 5934 MODULE_ALIAS_FS("ext4"); 5935 5936 /* Shared across all ext4 file systems */ 5937 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5938 5939 static int __init ext4_init_fs(void) 5940 { 5941 int i, err; 5942 5943 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5944 ext4_li_info = NULL; 5945 mutex_init(&ext4_li_mtx); 5946 5947 /* Build-time check for flags consistency */ 5948 ext4_check_flag_values(); 5949 5950 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5951 init_waitqueue_head(&ext4__ioend_wq[i]); 5952 5953 err = ext4_init_es(); 5954 if (err) 5955 return err; 5956 5957 err = ext4_init_pageio(); 5958 if (err) 5959 goto out5; 5960 5961 err = ext4_init_system_zone(); 5962 if (err) 5963 goto out4; 5964 5965 err = ext4_init_sysfs(); 5966 if (err) 5967 goto out3; 5968 5969 err = ext4_init_mballoc(); 5970 if (err) 5971 goto out2; 5972 err = init_inodecache(); 5973 if (err) 5974 goto out1; 5975 register_as_ext3(); 5976 register_as_ext2(); 5977 err = register_filesystem(&ext4_fs_type); 5978 if (err) 5979 goto out; 5980 5981 return 0; 5982 out: 5983 unregister_as_ext2(); 5984 unregister_as_ext3(); 5985 destroy_inodecache(); 5986 out1: 5987 ext4_exit_mballoc(); 5988 out2: 5989 ext4_exit_sysfs(); 5990 out3: 5991 ext4_exit_system_zone(); 5992 out4: 5993 ext4_exit_pageio(); 5994 out5: 5995 ext4_exit_es(); 5996 5997 return err; 5998 } 5999 6000 static void __exit ext4_exit_fs(void) 6001 { 6002 ext4_destroy_lazyinit_thread(); 6003 unregister_as_ext2(); 6004 unregister_as_ext3(); 6005 unregister_filesystem(&ext4_fs_type); 6006 destroy_inodecache(); 6007 ext4_exit_mballoc(); 6008 ext4_exit_sysfs(); 6009 ext4_exit_system_zone(); 6010 ext4_exit_pageio(); 6011 ext4_exit_es(); 6012 } 6013 6014 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6015 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6016 MODULE_LICENSE("GPL"); 6017 MODULE_SOFTDEP("pre: crc32c"); 6018 module_init(ext4_init_fs) 6019 module_exit(ext4_exit_fs) 6020