1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_sem 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_sem 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, const char *func, 339 unsigned int line) 340 { 341 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 342 343 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 344 if (bdev_read_only(sb->s_bdev)) 345 return; 346 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 347 ext4_update_tstamp(es, s_last_error_time); 348 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 349 es->s_last_error_line = cpu_to_le32(line); 350 if (es->s_last_error_errcode == 0) 351 es->s_last_error_errcode = EXT4_ERR_EFSCORRUPTED; 352 if (!es->s_first_error_time) { 353 es->s_first_error_time = es->s_last_error_time; 354 es->s_first_error_time_hi = es->s_last_error_time_hi; 355 strncpy(es->s_first_error_func, func, 356 sizeof(es->s_first_error_func)); 357 es->s_first_error_line = cpu_to_le32(line); 358 es->s_first_error_ino = es->s_last_error_ino; 359 es->s_first_error_block = es->s_last_error_block; 360 es->s_first_error_errcode = es->s_last_error_errcode; 361 } 362 /* 363 * Start the daily error reporting function if it hasn't been 364 * started already 365 */ 366 if (!es->s_error_count) 367 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 368 le32_add_cpu(&es->s_error_count, 1); 369 } 370 371 static void save_error_info(struct super_block *sb, const char *func, 372 unsigned int line) 373 { 374 __save_error_info(sb, func, line); 375 ext4_commit_super(sb, 1); 376 } 377 378 /* 379 * The del_gendisk() function uninitializes the disk-specific data 380 * structures, including the bdi structure, without telling anyone 381 * else. Once this happens, any attempt to call mark_buffer_dirty() 382 * (for example, by ext4_commit_super), will cause a kernel OOPS. 383 * This is a kludge to prevent these oops until we can put in a proper 384 * hook in del_gendisk() to inform the VFS and file system layers. 385 */ 386 static int block_device_ejected(struct super_block *sb) 387 { 388 struct inode *bd_inode = sb->s_bdev->bd_inode; 389 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 390 391 return bdi->dev == NULL; 392 } 393 394 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 395 { 396 struct super_block *sb = journal->j_private; 397 struct ext4_sb_info *sbi = EXT4_SB(sb); 398 int error = is_journal_aborted(journal); 399 struct ext4_journal_cb_entry *jce; 400 401 BUG_ON(txn->t_state == T_FINISHED); 402 403 ext4_process_freed_data(sb, txn->t_tid); 404 405 spin_lock(&sbi->s_md_lock); 406 while (!list_empty(&txn->t_private_list)) { 407 jce = list_entry(txn->t_private_list.next, 408 struct ext4_journal_cb_entry, jce_list); 409 list_del_init(&jce->jce_list); 410 spin_unlock(&sbi->s_md_lock); 411 jce->jce_func(sb, jce, error); 412 spin_lock(&sbi->s_md_lock); 413 } 414 spin_unlock(&sbi->s_md_lock); 415 } 416 417 static bool system_going_down(void) 418 { 419 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 420 || system_state == SYSTEM_RESTART; 421 } 422 423 /* Deal with the reporting of failure conditions on a filesystem such as 424 * inconsistencies detected or read IO failures. 425 * 426 * On ext2, we can store the error state of the filesystem in the 427 * superblock. That is not possible on ext4, because we may have other 428 * write ordering constraints on the superblock which prevent us from 429 * writing it out straight away; and given that the journal is about to 430 * be aborted, we can't rely on the current, or future, transactions to 431 * write out the superblock safely. 432 * 433 * We'll just use the jbd2_journal_abort() error code to record an error in 434 * the journal instead. On recovery, the journal will complain about 435 * that error until we've noted it down and cleared it. 436 */ 437 438 static void ext4_handle_error(struct super_block *sb) 439 { 440 if (test_opt(sb, WARN_ON_ERROR)) 441 WARN_ON_ONCE(1); 442 443 if (sb_rdonly(sb)) 444 return; 445 446 if (!test_opt(sb, ERRORS_CONT)) { 447 journal_t *journal = EXT4_SB(sb)->s_journal; 448 449 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 450 if (journal) 451 jbd2_journal_abort(journal, -EIO); 452 } 453 /* 454 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 455 * could panic during 'reboot -f' as the underlying device got already 456 * disabled. 457 */ 458 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 459 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 460 /* 461 * Make sure updated value of ->s_mount_flags will be visible 462 * before ->s_flags update 463 */ 464 smp_wmb(); 465 sb->s_flags |= SB_RDONLY; 466 } else if (test_opt(sb, ERRORS_PANIC)) { 467 if (EXT4_SB(sb)->s_journal && 468 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 469 return; 470 panic("EXT4-fs (device %s): panic forced after error\n", 471 sb->s_id); 472 } 473 } 474 475 #define ext4_error_ratelimit(sb) \ 476 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 477 "EXT4-fs error") 478 479 void __ext4_error(struct super_block *sb, const char *function, 480 unsigned int line, const char *fmt, ...) 481 { 482 struct va_format vaf; 483 va_list args; 484 485 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 486 return; 487 488 trace_ext4_error(sb, function, line); 489 if (ext4_error_ratelimit(sb)) { 490 va_start(args, fmt); 491 vaf.fmt = fmt; 492 vaf.va = &args; 493 printk(KERN_CRIT 494 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 495 sb->s_id, function, line, current->comm, &vaf); 496 va_end(args); 497 } 498 save_error_info(sb, function, line); 499 ext4_handle_error(sb); 500 } 501 502 void __ext4_error_inode(struct inode *inode, const char *function, 503 unsigned int line, ext4_fsblk_t block, 504 const char *fmt, ...) 505 { 506 va_list args; 507 struct va_format vaf; 508 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 509 510 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 511 return; 512 513 trace_ext4_error(inode->i_sb, function, line); 514 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 515 es->s_last_error_block = cpu_to_le64(block); 516 if (ext4_error_ratelimit(inode->i_sb)) { 517 va_start(args, fmt); 518 vaf.fmt = fmt; 519 vaf.va = &args; 520 if (block) 521 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 522 "inode #%lu: block %llu: comm %s: %pV\n", 523 inode->i_sb->s_id, function, line, inode->i_ino, 524 block, current->comm, &vaf); 525 else 526 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 527 "inode #%lu: comm %s: %pV\n", 528 inode->i_sb->s_id, function, line, inode->i_ino, 529 current->comm, &vaf); 530 va_end(args); 531 } 532 save_error_info(inode->i_sb, function, line); 533 ext4_handle_error(inode->i_sb); 534 } 535 536 void __ext4_error_file(struct file *file, const char *function, 537 unsigned int line, ext4_fsblk_t block, 538 const char *fmt, ...) 539 { 540 va_list args; 541 struct va_format vaf; 542 struct ext4_super_block *es; 543 struct inode *inode = file_inode(file); 544 char pathname[80], *path; 545 546 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 547 return; 548 549 trace_ext4_error(inode->i_sb, function, line); 550 es = EXT4_SB(inode->i_sb)->s_es; 551 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 552 if (ext4_error_ratelimit(inode->i_sb)) { 553 path = file_path(file, pathname, sizeof(pathname)); 554 if (IS_ERR(path)) 555 path = "(unknown)"; 556 va_start(args, fmt); 557 vaf.fmt = fmt; 558 vaf.va = &args; 559 if (block) 560 printk(KERN_CRIT 561 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 562 "block %llu: comm %s: path %s: %pV\n", 563 inode->i_sb->s_id, function, line, inode->i_ino, 564 block, current->comm, path, &vaf); 565 else 566 printk(KERN_CRIT 567 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 568 "comm %s: path %s: %pV\n", 569 inode->i_sb->s_id, function, line, inode->i_ino, 570 current->comm, path, &vaf); 571 va_end(args); 572 } 573 save_error_info(inode->i_sb, function, line); 574 ext4_handle_error(inode->i_sb); 575 } 576 577 const char *ext4_decode_error(struct super_block *sb, int errno, 578 char nbuf[16]) 579 { 580 char *errstr = NULL; 581 582 switch (errno) { 583 case -EFSCORRUPTED: 584 errstr = "Corrupt filesystem"; 585 break; 586 case -EFSBADCRC: 587 errstr = "Filesystem failed CRC"; 588 break; 589 case -EIO: 590 errstr = "IO failure"; 591 break; 592 case -ENOMEM: 593 errstr = "Out of memory"; 594 break; 595 case -EROFS: 596 if (!sb || (EXT4_SB(sb)->s_journal && 597 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 598 errstr = "Journal has aborted"; 599 else 600 errstr = "Readonly filesystem"; 601 break; 602 default: 603 /* If the caller passed in an extra buffer for unknown 604 * errors, textualise them now. Else we just return 605 * NULL. */ 606 if (nbuf) { 607 /* Check for truncated error codes... */ 608 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 609 errstr = nbuf; 610 } 611 break; 612 } 613 614 return errstr; 615 } 616 617 void ext4_set_errno(struct super_block *sb, int err) 618 { 619 if (err < 0) 620 err = -err; 621 622 switch (err) { 623 case EIO: 624 err = EXT4_ERR_EIO; 625 break; 626 case ENOMEM: 627 err = EXT4_ERR_ENOMEM; 628 break; 629 case EFSBADCRC: 630 err = EXT4_ERR_EFSBADCRC; 631 break; 632 case EFSCORRUPTED: 633 err = EXT4_ERR_EFSCORRUPTED; 634 break; 635 case ENOSPC: 636 err = EXT4_ERR_ENOSPC; 637 break; 638 case ENOKEY: 639 err = EXT4_ERR_ENOKEY; 640 break; 641 case EROFS: 642 err = EXT4_ERR_EROFS; 643 break; 644 case EFBIG: 645 err = EXT4_ERR_EFBIG; 646 break; 647 case EEXIST: 648 err = EXT4_ERR_EEXIST; 649 break; 650 case ERANGE: 651 err = EXT4_ERR_ERANGE; 652 break; 653 case EOVERFLOW: 654 err = EXT4_ERR_EOVERFLOW; 655 break; 656 case EBUSY: 657 err = EXT4_ERR_EBUSY; 658 break; 659 case ENOTDIR: 660 err = EXT4_ERR_ENOTDIR; 661 break; 662 case ENOTEMPTY: 663 err = EXT4_ERR_ENOTEMPTY; 664 break; 665 case ESHUTDOWN: 666 err = EXT4_ERR_ESHUTDOWN; 667 break; 668 case EFAULT: 669 err = EXT4_ERR_EFAULT; 670 break; 671 default: 672 err = EXT4_ERR_UNKNOWN; 673 } 674 EXT4_SB(sb)->s_es->s_last_error_errcode = err; 675 } 676 677 /* __ext4_std_error decodes expected errors from journaling functions 678 * automatically and invokes the appropriate error response. */ 679 680 void __ext4_std_error(struct super_block *sb, const char *function, 681 unsigned int line, int errno) 682 { 683 char nbuf[16]; 684 const char *errstr; 685 686 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 687 return; 688 689 /* Special case: if the error is EROFS, and we're not already 690 * inside a transaction, then there's really no point in logging 691 * an error. */ 692 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 693 return; 694 695 if (ext4_error_ratelimit(sb)) { 696 errstr = ext4_decode_error(sb, errno, nbuf); 697 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 698 sb->s_id, function, line, errstr); 699 } 700 701 ext4_set_errno(sb, -errno); 702 save_error_info(sb, function, line); 703 ext4_handle_error(sb); 704 } 705 706 /* 707 * ext4_abort is a much stronger failure handler than ext4_error. The 708 * abort function may be used to deal with unrecoverable failures such 709 * as journal IO errors or ENOMEM at a critical moment in log management. 710 * 711 * We unconditionally force the filesystem into an ABORT|READONLY state, 712 * unless the error response on the fs has been set to panic in which 713 * case we take the easy way out and panic immediately. 714 */ 715 716 void __ext4_abort(struct super_block *sb, const char *function, 717 unsigned int line, const char *fmt, ...) 718 { 719 struct va_format vaf; 720 va_list args; 721 722 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 723 return; 724 725 save_error_info(sb, function, line); 726 va_start(args, fmt); 727 vaf.fmt = fmt; 728 vaf.va = &args; 729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 730 sb->s_id, function, line, &vaf); 731 va_end(args); 732 733 if (sb_rdonly(sb) == 0) { 734 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 735 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 736 /* 737 * Make sure updated value of ->s_mount_flags will be visible 738 * before ->s_flags update 739 */ 740 smp_wmb(); 741 sb->s_flags |= SB_RDONLY; 742 if (EXT4_SB(sb)->s_journal) 743 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 744 save_error_info(sb, function, line); 745 } 746 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 747 if (EXT4_SB(sb)->s_journal && 748 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 749 return; 750 panic("EXT4-fs panic from previous error\n"); 751 } 752 } 753 754 void __ext4_msg(struct super_block *sb, 755 const char *prefix, const char *fmt, ...) 756 { 757 struct va_format vaf; 758 va_list args; 759 760 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 761 return; 762 763 va_start(args, fmt); 764 vaf.fmt = fmt; 765 vaf.va = &args; 766 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 767 va_end(args); 768 } 769 770 #define ext4_warning_ratelimit(sb) \ 771 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 772 "EXT4-fs warning") 773 774 void __ext4_warning(struct super_block *sb, const char *function, 775 unsigned int line, const char *fmt, ...) 776 { 777 struct va_format vaf; 778 va_list args; 779 780 if (!ext4_warning_ratelimit(sb)) 781 return; 782 783 va_start(args, fmt); 784 vaf.fmt = fmt; 785 vaf.va = &args; 786 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 787 sb->s_id, function, line, &vaf); 788 va_end(args); 789 } 790 791 void __ext4_warning_inode(const struct inode *inode, const char *function, 792 unsigned int line, const char *fmt, ...) 793 { 794 struct va_format vaf; 795 va_list args; 796 797 if (!ext4_warning_ratelimit(inode->i_sb)) 798 return; 799 800 va_start(args, fmt); 801 vaf.fmt = fmt; 802 vaf.va = &args; 803 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 804 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 805 function, line, inode->i_ino, current->comm, &vaf); 806 va_end(args); 807 } 808 809 void __ext4_grp_locked_error(const char *function, unsigned int line, 810 struct super_block *sb, ext4_group_t grp, 811 unsigned long ino, ext4_fsblk_t block, 812 const char *fmt, ...) 813 __releases(bitlock) 814 __acquires(bitlock) 815 { 816 struct va_format vaf; 817 va_list args; 818 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 819 820 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 821 return; 822 823 trace_ext4_error(sb, function, line); 824 es->s_last_error_ino = cpu_to_le32(ino); 825 es->s_last_error_block = cpu_to_le64(block); 826 __save_error_info(sb, function, line); 827 828 if (ext4_error_ratelimit(sb)) { 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 833 sb->s_id, function, line, grp); 834 if (ino) 835 printk(KERN_CONT "inode %lu: ", ino); 836 if (block) 837 printk(KERN_CONT "block %llu:", 838 (unsigned long long) block); 839 printk(KERN_CONT "%pV\n", &vaf); 840 va_end(args); 841 } 842 843 if (test_opt(sb, WARN_ON_ERROR)) 844 WARN_ON_ONCE(1); 845 846 if (test_opt(sb, ERRORS_CONT)) { 847 ext4_commit_super(sb, 0); 848 return; 849 } 850 851 ext4_unlock_group(sb, grp); 852 ext4_commit_super(sb, 1); 853 ext4_handle_error(sb); 854 /* 855 * We only get here in the ERRORS_RO case; relocking the group 856 * may be dangerous, but nothing bad will happen since the 857 * filesystem will have already been marked read/only and the 858 * journal has been aborted. We return 1 as a hint to callers 859 * who might what to use the return value from 860 * ext4_grp_locked_error() to distinguish between the 861 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 862 * aggressively from the ext4 function in question, with a 863 * more appropriate error code. 864 */ 865 ext4_lock_group(sb, grp); 866 return; 867 } 868 869 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 870 ext4_group_t group, 871 unsigned int flags) 872 { 873 struct ext4_sb_info *sbi = EXT4_SB(sb); 874 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 875 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 876 int ret; 877 878 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 879 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 880 &grp->bb_state); 881 if (!ret) 882 percpu_counter_sub(&sbi->s_freeclusters_counter, 883 grp->bb_free); 884 } 885 886 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 887 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 888 &grp->bb_state); 889 if (!ret && gdp) { 890 int count; 891 892 count = ext4_free_inodes_count(sb, gdp); 893 percpu_counter_sub(&sbi->s_freeinodes_counter, 894 count); 895 } 896 } 897 } 898 899 void ext4_update_dynamic_rev(struct super_block *sb) 900 { 901 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 902 903 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 904 return; 905 906 ext4_warning(sb, 907 "updating to rev %d because of new feature flag, " 908 "running e2fsck is recommended", 909 EXT4_DYNAMIC_REV); 910 911 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 912 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 913 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 914 /* leave es->s_feature_*compat flags alone */ 915 /* es->s_uuid will be set by e2fsck if empty */ 916 917 /* 918 * The rest of the superblock fields should be zero, and if not it 919 * means they are likely already in use, so leave them alone. We 920 * can leave it up to e2fsck to clean up any inconsistencies there. 921 */ 922 } 923 924 /* 925 * Open the external journal device 926 */ 927 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 928 { 929 struct block_device *bdev; 930 char b[BDEVNAME_SIZE]; 931 932 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 933 if (IS_ERR(bdev)) 934 goto fail; 935 return bdev; 936 937 fail: 938 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 939 __bdevname(dev, b), PTR_ERR(bdev)); 940 return NULL; 941 } 942 943 /* 944 * Release the journal device 945 */ 946 static void ext4_blkdev_put(struct block_device *bdev) 947 { 948 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 949 } 950 951 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 952 { 953 struct block_device *bdev; 954 bdev = sbi->journal_bdev; 955 if (bdev) { 956 ext4_blkdev_put(bdev); 957 sbi->journal_bdev = NULL; 958 } 959 } 960 961 static inline struct inode *orphan_list_entry(struct list_head *l) 962 { 963 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 964 } 965 966 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 967 { 968 struct list_head *l; 969 970 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 971 le32_to_cpu(sbi->s_es->s_last_orphan)); 972 973 printk(KERN_ERR "sb_info orphan list:\n"); 974 list_for_each(l, &sbi->s_orphan) { 975 struct inode *inode = orphan_list_entry(l); 976 printk(KERN_ERR " " 977 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 978 inode->i_sb->s_id, inode->i_ino, inode, 979 inode->i_mode, inode->i_nlink, 980 NEXT_ORPHAN(inode)); 981 } 982 } 983 984 #ifdef CONFIG_QUOTA 985 static int ext4_quota_off(struct super_block *sb, int type); 986 987 static inline void ext4_quota_off_umount(struct super_block *sb) 988 { 989 int type; 990 991 /* Use our quota_off function to clear inode flags etc. */ 992 for (type = 0; type < EXT4_MAXQUOTAS; type++) 993 ext4_quota_off(sb, type); 994 } 995 996 /* 997 * This is a helper function which is used in the mount/remount 998 * codepaths (which holds s_umount) to fetch the quota file name. 999 */ 1000 static inline char *get_qf_name(struct super_block *sb, 1001 struct ext4_sb_info *sbi, 1002 int type) 1003 { 1004 return rcu_dereference_protected(sbi->s_qf_names[type], 1005 lockdep_is_held(&sb->s_umount)); 1006 } 1007 #else 1008 static inline void ext4_quota_off_umount(struct super_block *sb) 1009 { 1010 } 1011 #endif 1012 1013 static void ext4_put_super(struct super_block *sb) 1014 { 1015 struct ext4_sb_info *sbi = EXT4_SB(sb); 1016 struct ext4_super_block *es = sbi->s_es; 1017 int aborted = 0; 1018 int i, err; 1019 1020 ext4_unregister_li_request(sb); 1021 ext4_quota_off_umount(sb); 1022 1023 destroy_workqueue(sbi->rsv_conversion_wq); 1024 1025 if (sbi->s_journal) { 1026 aborted = is_journal_aborted(sbi->s_journal); 1027 err = jbd2_journal_destroy(sbi->s_journal); 1028 sbi->s_journal = NULL; 1029 if ((err < 0) && !aborted) { 1030 ext4_set_errno(sb, -err); 1031 ext4_abort(sb, "Couldn't clean up the journal"); 1032 } 1033 } 1034 1035 ext4_unregister_sysfs(sb); 1036 ext4_es_unregister_shrinker(sbi); 1037 del_timer_sync(&sbi->s_err_report); 1038 ext4_release_system_zone(sb); 1039 ext4_mb_release(sb); 1040 ext4_ext_release(sb); 1041 1042 if (!sb_rdonly(sb) && !aborted) { 1043 ext4_clear_feature_journal_needs_recovery(sb); 1044 es->s_state = cpu_to_le16(sbi->s_mount_state); 1045 } 1046 if (!sb_rdonly(sb)) 1047 ext4_commit_super(sb, 1); 1048 1049 for (i = 0; i < sbi->s_gdb_count; i++) 1050 brelse(sbi->s_group_desc[i]); 1051 kvfree(sbi->s_group_desc); 1052 kvfree(sbi->s_flex_groups); 1053 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1054 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1055 percpu_counter_destroy(&sbi->s_dirs_counter); 1056 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1057 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 1058 #ifdef CONFIG_QUOTA 1059 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1060 kfree(get_qf_name(sb, sbi, i)); 1061 #endif 1062 1063 /* Debugging code just in case the in-memory inode orphan list 1064 * isn't empty. The on-disk one can be non-empty if we've 1065 * detected an error and taken the fs readonly, but the 1066 * in-memory list had better be clean by this point. */ 1067 if (!list_empty(&sbi->s_orphan)) 1068 dump_orphan_list(sb, sbi); 1069 J_ASSERT(list_empty(&sbi->s_orphan)); 1070 1071 sync_blockdev(sb->s_bdev); 1072 invalidate_bdev(sb->s_bdev); 1073 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1074 /* 1075 * Invalidate the journal device's buffers. We don't want them 1076 * floating about in memory - the physical journal device may 1077 * hotswapped, and it breaks the `ro-after' testing code. 1078 */ 1079 sync_blockdev(sbi->journal_bdev); 1080 invalidate_bdev(sbi->journal_bdev); 1081 ext4_blkdev_remove(sbi); 1082 } 1083 1084 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1085 sbi->s_ea_inode_cache = NULL; 1086 1087 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1088 sbi->s_ea_block_cache = NULL; 1089 1090 if (sbi->s_mmp_tsk) 1091 kthread_stop(sbi->s_mmp_tsk); 1092 brelse(sbi->s_sbh); 1093 sb->s_fs_info = NULL; 1094 /* 1095 * Now that we are completely done shutting down the 1096 * superblock, we need to actually destroy the kobject. 1097 */ 1098 kobject_put(&sbi->s_kobj); 1099 wait_for_completion(&sbi->s_kobj_unregister); 1100 if (sbi->s_chksum_driver) 1101 crypto_free_shash(sbi->s_chksum_driver); 1102 kfree(sbi->s_blockgroup_lock); 1103 fs_put_dax(sbi->s_daxdev); 1104 #ifdef CONFIG_UNICODE 1105 utf8_unload(sbi->s_encoding); 1106 #endif 1107 kfree(sbi); 1108 } 1109 1110 static struct kmem_cache *ext4_inode_cachep; 1111 1112 /* 1113 * Called inside transaction, so use GFP_NOFS 1114 */ 1115 static struct inode *ext4_alloc_inode(struct super_block *sb) 1116 { 1117 struct ext4_inode_info *ei; 1118 1119 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1120 if (!ei) 1121 return NULL; 1122 1123 inode_set_iversion(&ei->vfs_inode, 1); 1124 spin_lock_init(&ei->i_raw_lock); 1125 INIT_LIST_HEAD(&ei->i_prealloc_list); 1126 spin_lock_init(&ei->i_prealloc_lock); 1127 ext4_es_init_tree(&ei->i_es_tree); 1128 rwlock_init(&ei->i_es_lock); 1129 INIT_LIST_HEAD(&ei->i_es_list); 1130 ei->i_es_all_nr = 0; 1131 ei->i_es_shk_nr = 0; 1132 ei->i_es_shrink_lblk = 0; 1133 ei->i_reserved_data_blocks = 0; 1134 spin_lock_init(&(ei->i_block_reservation_lock)); 1135 ext4_init_pending_tree(&ei->i_pending_tree); 1136 #ifdef CONFIG_QUOTA 1137 ei->i_reserved_quota = 0; 1138 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1139 #endif 1140 ei->jinode = NULL; 1141 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1142 spin_lock_init(&ei->i_completed_io_lock); 1143 ei->i_sync_tid = 0; 1144 ei->i_datasync_tid = 0; 1145 atomic_set(&ei->i_unwritten, 0); 1146 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1147 return &ei->vfs_inode; 1148 } 1149 1150 static int ext4_drop_inode(struct inode *inode) 1151 { 1152 int drop = generic_drop_inode(inode); 1153 1154 if (!drop) 1155 drop = fscrypt_drop_inode(inode); 1156 1157 trace_ext4_drop_inode(inode, drop); 1158 return drop; 1159 } 1160 1161 static void ext4_free_in_core_inode(struct inode *inode) 1162 { 1163 fscrypt_free_inode(inode); 1164 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1165 } 1166 1167 static void ext4_destroy_inode(struct inode *inode) 1168 { 1169 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1170 ext4_msg(inode->i_sb, KERN_ERR, 1171 "Inode %lu (%p): orphan list check failed!", 1172 inode->i_ino, EXT4_I(inode)); 1173 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1174 EXT4_I(inode), sizeof(struct ext4_inode_info), 1175 true); 1176 dump_stack(); 1177 } 1178 } 1179 1180 static void init_once(void *foo) 1181 { 1182 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1183 1184 INIT_LIST_HEAD(&ei->i_orphan); 1185 init_rwsem(&ei->xattr_sem); 1186 init_rwsem(&ei->i_data_sem); 1187 init_rwsem(&ei->i_mmap_sem); 1188 inode_init_once(&ei->vfs_inode); 1189 } 1190 1191 static int __init init_inodecache(void) 1192 { 1193 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1194 sizeof(struct ext4_inode_info), 0, 1195 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1196 SLAB_ACCOUNT), 1197 offsetof(struct ext4_inode_info, i_data), 1198 sizeof_field(struct ext4_inode_info, i_data), 1199 init_once); 1200 if (ext4_inode_cachep == NULL) 1201 return -ENOMEM; 1202 return 0; 1203 } 1204 1205 static void destroy_inodecache(void) 1206 { 1207 /* 1208 * Make sure all delayed rcu free inodes are flushed before we 1209 * destroy cache. 1210 */ 1211 rcu_barrier(); 1212 kmem_cache_destroy(ext4_inode_cachep); 1213 } 1214 1215 void ext4_clear_inode(struct inode *inode) 1216 { 1217 invalidate_inode_buffers(inode); 1218 clear_inode(inode); 1219 ext4_discard_preallocations(inode); 1220 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1221 dquot_drop(inode); 1222 if (EXT4_I(inode)->jinode) { 1223 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1224 EXT4_I(inode)->jinode); 1225 jbd2_free_inode(EXT4_I(inode)->jinode); 1226 EXT4_I(inode)->jinode = NULL; 1227 } 1228 fscrypt_put_encryption_info(inode); 1229 fsverity_cleanup_inode(inode); 1230 } 1231 1232 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1233 u64 ino, u32 generation) 1234 { 1235 struct inode *inode; 1236 1237 /* 1238 * Currently we don't know the generation for parent directory, so 1239 * a generation of 0 means "accept any" 1240 */ 1241 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1242 if (IS_ERR(inode)) 1243 return ERR_CAST(inode); 1244 if (generation && inode->i_generation != generation) { 1245 iput(inode); 1246 return ERR_PTR(-ESTALE); 1247 } 1248 1249 return inode; 1250 } 1251 1252 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1253 int fh_len, int fh_type) 1254 { 1255 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1256 ext4_nfs_get_inode); 1257 } 1258 1259 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1260 int fh_len, int fh_type) 1261 { 1262 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1263 ext4_nfs_get_inode); 1264 } 1265 1266 static int ext4_nfs_commit_metadata(struct inode *inode) 1267 { 1268 struct writeback_control wbc = { 1269 .sync_mode = WB_SYNC_ALL 1270 }; 1271 1272 trace_ext4_nfs_commit_metadata(inode); 1273 return ext4_write_inode(inode, &wbc); 1274 } 1275 1276 /* 1277 * Try to release metadata pages (indirect blocks, directories) which are 1278 * mapped via the block device. Since these pages could have journal heads 1279 * which would prevent try_to_free_buffers() from freeing them, we must use 1280 * jbd2 layer's try_to_free_buffers() function to release them. 1281 */ 1282 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1283 gfp_t wait) 1284 { 1285 journal_t *journal = EXT4_SB(sb)->s_journal; 1286 1287 WARN_ON(PageChecked(page)); 1288 if (!page_has_buffers(page)) 1289 return 0; 1290 if (journal) 1291 return jbd2_journal_try_to_free_buffers(journal, page, 1292 wait & ~__GFP_DIRECT_RECLAIM); 1293 return try_to_free_buffers(page); 1294 } 1295 1296 #ifdef CONFIG_FS_ENCRYPTION 1297 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1298 { 1299 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1300 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1301 } 1302 1303 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1304 void *fs_data) 1305 { 1306 handle_t *handle = fs_data; 1307 int res, res2, credits, retries = 0; 1308 1309 /* 1310 * Encrypting the root directory is not allowed because e2fsck expects 1311 * lost+found to exist and be unencrypted, and encrypting the root 1312 * directory would imply encrypting the lost+found directory as well as 1313 * the filename "lost+found" itself. 1314 */ 1315 if (inode->i_ino == EXT4_ROOT_INO) 1316 return -EPERM; 1317 1318 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1319 return -EINVAL; 1320 1321 res = ext4_convert_inline_data(inode); 1322 if (res) 1323 return res; 1324 1325 /* 1326 * If a journal handle was specified, then the encryption context is 1327 * being set on a new inode via inheritance and is part of a larger 1328 * transaction to create the inode. Otherwise the encryption context is 1329 * being set on an existing inode in its own transaction. Only in the 1330 * latter case should the "retry on ENOSPC" logic be used. 1331 */ 1332 1333 if (handle) { 1334 res = ext4_xattr_set_handle(handle, inode, 1335 EXT4_XATTR_INDEX_ENCRYPTION, 1336 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1337 ctx, len, 0); 1338 if (!res) { 1339 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1340 ext4_clear_inode_state(inode, 1341 EXT4_STATE_MAY_INLINE_DATA); 1342 /* 1343 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1344 * S_DAX may be disabled 1345 */ 1346 ext4_set_inode_flags(inode); 1347 } 1348 return res; 1349 } 1350 1351 res = dquot_initialize(inode); 1352 if (res) 1353 return res; 1354 retry: 1355 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1356 &credits); 1357 if (res) 1358 return res; 1359 1360 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1361 if (IS_ERR(handle)) 1362 return PTR_ERR(handle); 1363 1364 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1365 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1366 ctx, len, 0); 1367 if (!res) { 1368 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1369 /* 1370 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1371 * S_DAX may be disabled 1372 */ 1373 ext4_set_inode_flags(inode); 1374 res = ext4_mark_inode_dirty(handle, inode); 1375 if (res) 1376 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1377 } 1378 res2 = ext4_journal_stop(handle); 1379 1380 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1381 goto retry; 1382 if (!res) 1383 res = res2; 1384 return res; 1385 } 1386 1387 static bool ext4_dummy_context(struct inode *inode) 1388 { 1389 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1390 } 1391 1392 static bool ext4_has_stable_inodes(struct super_block *sb) 1393 { 1394 return ext4_has_feature_stable_inodes(sb); 1395 } 1396 1397 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1398 int *ino_bits_ret, int *lblk_bits_ret) 1399 { 1400 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1401 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1402 } 1403 1404 static const struct fscrypt_operations ext4_cryptops = { 1405 .key_prefix = "ext4:", 1406 .get_context = ext4_get_context, 1407 .set_context = ext4_set_context, 1408 .dummy_context = ext4_dummy_context, 1409 .empty_dir = ext4_empty_dir, 1410 .max_namelen = EXT4_NAME_LEN, 1411 .has_stable_inodes = ext4_has_stable_inodes, 1412 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1413 }; 1414 #endif 1415 1416 #ifdef CONFIG_QUOTA 1417 static const char * const quotatypes[] = INITQFNAMES; 1418 #define QTYPE2NAME(t) (quotatypes[t]) 1419 1420 static int ext4_write_dquot(struct dquot *dquot); 1421 static int ext4_acquire_dquot(struct dquot *dquot); 1422 static int ext4_release_dquot(struct dquot *dquot); 1423 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1424 static int ext4_write_info(struct super_block *sb, int type); 1425 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1426 const struct path *path); 1427 static int ext4_quota_on_mount(struct super_block *sb, int type); 1428 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1429 size_t len, loff_t off); 1430 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1431 const char *data, size_t len, loff_t off); 1432 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1433 unsigned int flags); 1434 static int ext4_enable_quotas(struct super_block *sb); 1435 1436 static struct dquot **ext4_get_dquots(struct inode *inode) 1437 { 1438 return EXT4_I(inode)->i_dquot; 1439 } 1440 1441 static const struct dquot_operations ext4_quota_operations = { 1442 .get_reserved_space = ext4_get_reserved_space, 1443 .write_dquot = ext4_write_dquot, 1444 .acquire_dquot = ext4_acquire_dquot, 1445 .release_dquot = ext4_release_dquot, 1446 .mark_dirty = ext4_mark_dquot_dirty, 1447 .write_info = ext4_write_info, 1448 .alloc_dquot = dquot_alloc, 1449 .destroy_dquot = dquot_destroy, 1450 .get_projid = ext4_get_projid, 1451 .get_inode_usage = ext4_get_inode_usage, 1452 .get_next_id = dquot_get_next_id, 1453 }; 1454 1455 static const struct quotactl_ops ext4_qctl_operations = { 1456 .quota_on = ext4_quota_on, 1457 .quota_off = ext4_quota_off, 1458 .quota_sync = dquot_quota_sync, 1459 .get_state = dquot_get_state, 1460 .set_info = dquot_set_dqinfo, 1461 .get_dqblk = dquot_get_dqblk, 1462 .set_dqblk = dquot_set_dqblk, 1463 .get_nextdqblk = dquot_get_next_dqblk, 1464 }; 1465 #endif 1466 1467 static const struct super_operations ext4_sops = { 1468 .alloc_inode = ext4_alloc_inode, 1469 .free_inode = ext4_free_in_core_inode, 1470 .destroy_inode = ext4_destroy_inode, 1471 .write_inode = ext4_write_inode, 1472 .dirty_inode = ext4_dirty_inode, 1473 .drop_inode = ext4_drop_inode, 1474 .evict_inode = ext4_evict_inode, 1475 .put_super = ext4_put_super, 1476 .sync_fs = ext4_sync_fs, 1477 .freeze_fs = ext4_freeze, 1478 .unfreeze_fs = ext4_unfreeze, 1479 .statfs = ext4_statfs, 1480 .remount_fs = ext4_remount, 1481 .show_options = ext4_show_options, 1482 #ifdef CONFIG_QUOTA 1483 .quota_read = ext4_quota_read, 1484 .quota_write = ext4_quota_write, 1485 .get_dquots = ext4_get_dquots, 1486 #endif 1487 .bdev_try_to_free_page = bdev_try_to_free_page, 1488 }; 1489 1490 static const struct export_operations ext4_export_ops = { 1491 .fh_to_dentry = ext4_fh_to_dentry, 1492 .fh_to_parent = ext4_fh_to_parent, 1493 .get_parent = ext4_get_parent, 1494 .commit_metadata = ext4_nfs_commit_metadata, 1495 }; 1496 1497 enum { 1498 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1499 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1500 Opt_nouid32, Opt_debug, Opt_removed, 1501 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1502 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1503 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1504 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1505 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1506 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1507 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1508 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1509 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1510 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1511 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1512 Opt_nowarn_on_error, Opt_mblk_io_submit, 1513 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1514 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1515 Opt_inode_readahead_blks, Opt_journal_ioprio, 1516 Opt_dioread_nolock, Opt_dioread_lock, 1517 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1518 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1519 }; 1520 1521 static const match_table_t tokens = { 1522 {Opt_bsd_df, "bsddf"}, 1523 {Opt_minix_df, "minixdf"}, 1524 {Opt_grpid, "grpid"}, 1525 {Opt_grpid, "bsdgroups"}, 1526 {Opt_nogrpid, "nogrpid"}, 1527 {Opt_nogrpid, "sysvgroups"}, 1528 {Opt_resgid, "resgid=%u"}, 1529 {Opt_resuid, "resuid=%u"}, 1530 {Opt_sb, "sb=%u"}, 1531 {Opt_err_cont, "errors=continue"}, 1532 {Opt_err_panic, "errors=panic"}, 1533 {Opt_err_ro, "errors=remount-ro"}, 1534 {Opt_nouid32, "nouid32"}, 1535 {Opt_debug, "debug"}, 1536 {Opt_removed, "oldalloc"}, 1537 {Opt_removed, "orlov"}, 1538 {Opt_user_xattr, "user_xattr"}, 1539 {Opt_nouser_xattr, "nouser_xattr"}, 1540 {Opt_acl, "acl"}, 1541 {Opt_noacl, "noacl"}, 1542 {Opt_noload, "norecovery"}, 1543 {Opt_noload, "noload"}, 1544 {Opt_removed, "nobh"}, 1545 {Opt_removed, "bh"}, 1546 {Opt_commit, "commit=%u"}, 1547 {Opt_min_batch_time, "min_batch_time=%u"}, 1548 {Opt_max_batch_time, "max_batch_time=%u"}, 1549 {Opt_journal_dev, "journal_dev=%u"}, 1550 {Opt_journal_path, "journal_path=%s"}, 1551 {Opt_journal_checksum, "journal_checksum"}, 1552 {Opt_nojournal_checksum, "nojournal_checksum"}, 1553 {Opt_journal_async_commit, "journal_async_commit"}, 1554 {Opt_abort, "abort"}, 1555 {Opt_data_journal, "data=journal"}, 1556 {Opt_data_ordered, "data=ordered"}, 1557 {Opt_data_writeback, "data=writeback"}, 1558 {Opt_data_err_abort, "data_err=abort"}, 1559 {Opt_data_err_ignore, "data_err=ignore"}, 1560 {Opt_offusrjquota, "usrjquota="}, 1561 {Opt_usrjquota, "usrjquota=%s"}, 1562 {Opt_offgrpjquota, "grpjquota="}, 1563 {Opt_grpjquota, "grpjquota=%s"}, 1564 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1565 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1566 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1567 {Opt_grpquota, "grpquota"}, 1568 {Opt_noquota, "noquota"}, 1569 {Opt_quota, "quota"}, 1570 {Opt_usrquota, "usrquota"}, 1571 {Opt_prjquota, "prjquota"}, 1572 {Opt_barrier, "barrier=%u"}, 1573 {Opt_barrier, "barrier"}, 1574 {Opt_nobarrier, "nobarrier"}, 1575 {Opt_i_version, "i_version"}, 1576 {Opt_dax, "dax"}, 1577 {Opt_stripe, "stripe=%u"}, 1578 {Opt_delalloc, "delalloc"}, 1579 {Opt_warn_on_error, "warn_on_error"}, 1580 {Opt_nowarn_on_error, "nowarn_on_error"}, 1581 {Opt_lazytime, "lazytime"}, 1582 {Opt_nolazytime, "nolazytime"}, 1583 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1584 {Opt_nodelalloc, "nodelalloc"}, 1585 {Opt_removed, "mblk_io_submit"}, 1586 {Opt_removed, "nomblk_io_submit"}, 1587 {Opt_block_validity, "block_validity"}, 1588 {Opt_noblock_validity, "noblock_validity"}, 1589 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1590 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1591 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1592 {Opt_auto_da_alloc, "auto_da_alloc"}, 1593 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1594 {Opt_dioread_nolock, "dioread_nolock"}, 1595 {Opt_dioread_lock, "nodioread_nolock"}, 1596 {Opt_dioread_lock, "dioread_lock"}, 1597 {Opt_discard, "discard"}, 1598 {Opt_nodiscard, "nodiscard"}, 1599 {Opt_init_itable, "init_itable=%u"}, 1600 {Opt_init_itable, "init_itable"}, 1601 {Opt_noinit_itable, "noinit_itable"}, 1602 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1603 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1604 {Opt_nombcache, "nombcache"}, 1605 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1606 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1607 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1608 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1609 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1610 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1611 {Opt_err, NULL}, 1612 }; 1613 1614 static ext4_fsblk_t get_sb_block(void **data) 1615 { 1616 ext4_fsblk_t sb_block; 1617 char *options = (char *) *data; 1618 1619 if (!options || strncmp(options, "sb=", 3) != 0) 1620 return 1; /* Default location */ 1621 1622 options += 3; 1623 /* TODO: use simple_strtoll with >32bit ext4 */ 1624 sb_block = simple_strtoul(options, &options, 0); 1625 if (*options && *options != ',') { 1626 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1627 (char *) *data); 1628 return 1; 1629 } 1630 if (*options == ',') 1631 options++; 1632 *data = (void *) options; 1633 1634 return sb_block; 1635 } 1636 1637 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1638 static const char deprecated_msg[] = 1639 "Mount option \"%s\" will be removed by %s\n" 1640 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1641 1642 #ifdef CONFIG_QUOTA 1643 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1644 { 1645 struct ext4_sb_info *sbi = EXT4_SB(sb); 1646 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1647 int ret = -1; 1648 1649 if (sb_any_quota_loaded(sb) && !old_qname) { 1650 ext4_msg(sb, KERN_ERR, 1651 "Cannot change journaled " 1652 "quota options when quota turned on"); 1653 return -1; 1654 } 1655 if (ext4_has_feature_quota(sb)) { 1656 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1657 "ignored when QUOTA feature is enabled"); 1658 return 1; 1659 } 1660 qname = match_strdup(args); 1661 if (!qname) { 1662 ext4_msg(sb, KERN_ERR, 1663 "Not enough memory for storing quotafile name"); 1664 return -1; 1665 } 1666 if (old_qname) { 1667 if (strcmp(old_qname, qname) == 0) 1668 ret = 1; 1669 else 1670 ext4_msg(sb, KERN_ERR, 1671 "%s quota file already specified", 1672 QTYPE2NAME(qtype)); 1673 goto errout; 1674 } 1675 if (strchr(qname, '/')) { 1676 ext4_msg(sb, KERN_ERR, 1677 "quotafile must be on filesystem root"); 1678 goto errout; 1679 } 1680 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1681 set_opt(sb, QUOTA); 1682 return 1; 1683 errout: 1684 kfree(qname); 1685 return ret; 1686 } 1687 1688 static int clear_qf_name(struct super_block *sb, int qtype) 1689 { 1690 1691 struct ext4_sb_info *sbi = EXT4_SB(sb); 1692 char *old_qname = get_qf_name(sb, sbi, qtype); 1693 1694 if (sb_any_quota_loaded(sb) && old_qname) { 1695 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1696 " when quota turned on"); 1697 return -1; 1698 } 1699 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1700 synchronize_rcu(); 1701 kfree(old_qname); 1702 return 1; 1703 } 1704 #endif 1705 1706 #define MOPT_SET 0x0001 1707 #define MOPT_CLEAR 0x0002 1708 #define MOPT_NOSUPPORT 0x0004 1709 #define MOPT_EXPLICIT 0x0008 1710 #define MOPT_CLEAR_ERR 0x0010 1711 #define MOPT_GTE0 0x0020 1712 #ifdef CONFIG_QUOTA 1713 #define MOPT_Q 0 1714 #define MOPT_QFMT 0x0040 1715 #else 1716 #define MOPT_Q MOPT_NOSUPPORT 1717 #define MOPT_QFMT MOPT_NOSUPPORT 1718 #endif 1719 #define MOPT_DATAJ 0x0080 1720 #define MOPT_NO_EXT2 0x0100 1721 #define MOPT_NO_EXT3 0x0200 1722 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1723 #define MOPT_STRING 0x0400 1724 1725 static const struct mount_opts { 1726 int token; 1727 int mount_opt; 1728 int flags; 1729 } ext4_mount_opts[] = { 1730 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1731 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1732 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1733 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1734 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1735 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1736 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1737 MOPT_EXT4_ONLY | MOPT_SET}, 1738 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1739 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1740 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1741 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1742 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1743 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1744 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1745 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1746 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1747 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1748 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1749 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1750 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1751 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1752 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1753 EXT4_MOUNT_JOURNAL_CHECKSUM), 1754 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1755 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1756 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1757 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1758 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1759 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1760 MOPT_NO_EXT2}, 1761 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1762 MOPT_NO_EXT2}, 1763 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1764 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1765 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1766 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1767 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1768 {Opt_commit, 0, MOPT_GTE0}, 1769 {Opt_max_batch_time, 0, MOPT_GTE0}, 1770 {Opt_min_batch_time, 0, MOPT_GTE0}, 1771 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1772 {Opt_init_itable, 0, MOPT_GTE0}, 1773 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1774 {Opt_stripe, 0, MOPT_GTE0}, 1775 {Opt_resuid, 0, MOPT_GTE0}, 1776 {Opt_resgid, 0, MOPT_GTE0}, 1777 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1778 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1779 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1780 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1781 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1782 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1783 MOPT_NO_EXT2 | MOPT_DATAJ}, 1784 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1785 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1786 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1787 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1788 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1789 #else 1790 {Opt_acl, 0, MOPT_NOSUPPORT}, 1791 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1792 #endif 1793 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1794 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1795 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1796 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1797 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1798 MOPT_SET | MOPT_Q}, 1799 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1800 MOPT_SET | MOPT_Q}, 1801 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1802 MOPT_SET | MOPT_Q}, 1803 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1804 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1805 MOPT_CLEAR | MOPT_Q}, 1806 {Opt_usrjquota, 0, MOPT_Q}, 1807 {Opt_grpjquota, 0, MOPT_Q}, 1808 {Opt_offusrjquota, 0, MOPT_Q}, 1809 {Opt_offgrpjquota, 0, MOPT_Q}, 1810 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1811 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1812 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1813 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1814 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1815 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1816 {Opt_err, 0, 0} 1817 }; 1818 1819 #ifdef CONFIG_UNICODE 1820 static const struct ext4_sb_encodings { 1821 __u16 magic; 1822 char *name; 1823 char *version; 1824 } ext4_sb_encoding_map[] = { 1825 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1826 }; 1827 1828 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1829 const struct ext4_sb_encodings **encoding, 1830 __u16 *flags) 1831 { 1832 __u16 magic = le16_to_cpu(es->s_encoding); 1833 int i; 1834 1835 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1836 if (magic == ext4_sb_encoding_map[i].magic) 1837 break; 1838 1839 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1840 return -EINVAL; 1841 1842 *encoding = &ext4_sb_encoding_map[i]; 1843 *flags = le16_to_cpu(es->s_encoding_flags); 1844 1845 return 0; 1846 } 1847 #endif 1848 1849 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1850 substring_t *args, unsigned long *journal_devnum, 1851 unsigned int *journal_ioprio, int is_remount) 1852 { 1853 struct ext4_sb_info *sbi = EXT4_SB(sb); 1854 const struct mount_opts *m; 1855 kuid_t uid; 1856 kgid_t gid; 1857 int arg = 0; 1858 1859 #ifdef CONFIG_QUOTA 1860 if (token == Opt_usrjquota) 1861 return set_qf_name(sb, USRQUOTA, &args[0]); 1862 else if (token == Opt_grpjquota) 1863 return set_qf_name(sb, GRPQUOTA, &args[0]); 1864 else if (token == Opt_offusrjquota) 1865 return clear_qf_name(sb, USRQUOTA); 1866 else if (token == Opt_offgrpjquota) 1867 return clear_qf_name(sb, GRPQUOTA); 1868 #endif 1869 switch (token) { 1870 case Opt_noacl: 1871 case Opt_nouser_xattr: 1872 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1873 break; 1874 case Opt_sb: 1875 return 1; /* handled by get_sb_block() */ 1876 case Opt_removed: 1877 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1878 return 1; 1879 case Opt_abort: 1880 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1881 return 1; 1882 case Opt_i_version: 1883 sb->s_flags |= SB_I_VERSION; 1884 return 1; 1885 case Opt_lazytime: 1886 sb->s_flags |= SB_LAZYTIME; 1887 return 1; 1888 case Opt_nolazytime: 1889 sb->s_flags &= ~SB_LAZYTIME; 1890 return 1; 1891 } 1892 1893 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1894 if (token == m->token) 1895 break; 1896 1897 if (m->token == Opt_err) { 1898 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1899 "or missing value", opt); 1900 return -1; 1901 } 1902 1903 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1904 ext4_msg(sb, KERN_ERR, 1905 "Mount option \"%s\" incompatible with ext2", opt); 1906 return -1; 1907 } 1908 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1909 ext4_msg(sb, KERN_ERR, 1910 "Mount option \"%s\" incompatible with ext3", opt); 1911 return -1; 1912 } 1913 1914 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1915 return -1; 1916 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1917 return -1; 1918 if (m->flags & MOPT_EXPLICIT) { 1919 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1920 set_opt2(sb, EXPLICIT_DELALLOC); 1921 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1922 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1923 } else 1924 return -1; 1925 } 1926 if (m->flags & MOPT_CLEAR_ERR) 1927 clear_opt(sb, ERRORS_MASK); 1928 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1929 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1930 "options when quota turned on"); 1931 return -1; 1932 } 1933 1934 if (m->flags & MOPT_NOSUPPORT) { 1935 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1936 } else if (token == Opt_commit) { 1937 if (arg == 0) 1938 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1939 else if (arg > INT_MAX / HZ) { 1940 ext4_msg(sb, KERN_ERR, 1941 "Invalid commit interval %d, " 1942 "must be smaller than %d", 1943 arg, INT_MAX / HZ); 1944 return -1; 1945 } 1946 sbi->s_commit_interval = HZ * arg; 1947 } else if (token == Opt_debug_want_extra_isize) { 1948 if ((arg & 1) || 1949 (arg < 4) || 1950 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 1951 ext4_msg(sb, KERN_ERR, 1952 "Invalid want_extra_isize %d", arg); 1953 return -1; 1954 } 1955 sbi->s_want_extra_isize = arg; 1956 } else if (token == Opt_max_batch_time) { 1957 sbi->s_max_batch_time = arg; 1958 } else if (token == Opt_min_batch_time) { 1959 sbi->s_min_batch_time = arg; 1960 } else if (token == Opt_inode_readahead_blks) { 1961 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1962 ext4_msg(sb, KERN_ERR, 1963 "EXT4-fs: inode_readahead_blks must be " 1964 "0 or a power of 2 smaller than 2^31"); 1965 return -1; 1966 } 1967 sbi->s_inode_readahead_blks = arg; 1968 } else if (token == Opt_init_itable) { 1969 set_opt(sb, INIT_INODE_TABLE); 1970 if (!args->from) 1971 arg = EXT4_DEF_LI_WAIT_MULT; 1972 sbi->s_li_wait_mult = arg; 1973 } else if (token == Opt_max_dir_size_kb) { 1974 sbi->s_max_dir_size_kb = arg; 1975 } else if (token == Opt_stripe) { 1976 sbi->s_stripe = arg; 1977 } else if (token == Opt_resuid) { 1978 uid = make_kuid(current_user_ns(), arg); 1979 if (!uid_valid(uid)) { 1980 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1981 return -1; 1982 } 1983 sbi->s_resuid = uid; 1984 } else if (token == Opt_resgid) { 1985 gid = make_kgid(current_user_ns(), arg); 1986 if (!gid_valid(gid)) { 1987 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1988 return -1; 1989 } 1990 sbi->s_resgid = gid; 1991 } else if (token == Opt_journal_dev) { 1992 if (is_remount) { 1993 ext4_msg(sb, KERN_ERR, 1994 "Cannot specify journal on remount"); 1995 return -1; 1996 } 1997 *journal_devnum = arg; 1998 } else if (token == Opt_journal_path) { 1999 char *journal_path; 2000 struct inode *journal_inode; 2001 struct path path; 2002 int error; 2003 2004 if (is_remount) { 2005 ext4_msg(sb, KERN_ERR, 2006 "Cannot specify journal on remount"); 2007 return -1; 2008 } 2009 journal_path = match_strdup(&args[0]); 2010 if (!journal_path) { 2011 ext4_msg(sb, KERN_ERR, "error: could not dup " 2012 "journal device string"); 2013 return -1; 2014 } 2015 2016 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2017 if (error) { 2018 ext4_msg(sb, KERN_ERR, "error: could not find " 2019 "journal device path: error %d", error); 2020 kfree(journal_path); 2021 return -1; 2022 } 2023 2024 journal_inode = d_inode(path.dentry); 2025 if (!S_ISBLK(journal_inode->i_mode)) { 2026 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2027 "is not a block device", journal_path); 2028 path_put(&path); 2029 kfree(journal_path); 2030 return -1; 2031 } 2032 2033 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2034 path_put(&path); 2035 kfree(journal_path); 2036 } else if (token == Opt_journal_ioprio) { 2037 if (arg > 7) { 2038 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2039 " (must be 0-7)"); 2040 return -1; 2041 } 2042 *journal_ioprio = 2043 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2044 } else if (token == Opt_test_dummy_encryption) { 2045 #ifdef CONFIG_FS_ENCRYPTION 2046 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 2047 ext4_msg(sb, KERN_WARNING, 2048 "Test dummy encryption mode enabled"); 2049 #else 2050 ext4_msg(sb, KERN_WARNING, 2051 "Test dummy encryption mount option ignored"); 2052 #endif 2053 } else if (m->flags & MOPT_DATAJ) { 2054 if (is_remount) { 2055 if (!sbi->s_journal) 2056 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2057 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2058 ext4_msg(sb, KERN_ERR, 2059 "Cannot change data mode on remount"); 2060 return -1; 2061 } 2062 } else { 2063 clear_opt(sb, DATA_FLAGS); 2064 sbi->s_mount_opt |= m->mount_opt; 2065 } 2066 #ifdef CONFIG_QUOTA 2067 } else if (m->flags & MOPT_QFMT) { 2068 if (sb_any_quota_loaded(sb) && 2069 sbi->s_jquota_fmt != m->mount_opt) { 2070 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2071 "quota options when quota turned on"); 2072 return -1; 2073 } 2074 if (ext4_has_feature_quota(sb)) { 2075 ext4_msg(sb, KERN_INFO, 2076 "Quota format mount options ignored " 2077 "when QUOTA feature is enabled"); 2078 return 1; 2079 } 2080 sbi->s_jquota_fmt = m->mount_opt; 2081 #endif 2082 } else if (token == Opt_dax) { 2083 #ifdef CONFIG_FS_DAX 2084 ext4_msg(sb, KERN_WARNING, 2085 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2086 sbi->s_mount_opt |= m->mount_opt; 2087 #else 2088 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2089 return -1; 2090 #endif 2091 } else if (token == Opt_data_err_abort) { 2092 sbi->s_mount_opt |= m->mount_opt; 2093 } else if (token == Opt_data_err_ignore) { 2094 sbi->s_mount_opt &= ~m->mount_opt; 2095 } else { 2096 if (!args->from) 2097 arg = 1; 2098 if (m->flags & MOPT_CLEAR) 2099 arg = !arg; 2100 else if (unlikely(!(m->flags & MOPT_SET))) { 2101 ext4_msg(sb, KERN_WARNING, 2102 "buggy handling of option %s", opt); 2103 WARN_ON(1); 2104 return -1; 2105 } 2106 if (arg != 0) 2107 sbi->s_mount_opt |= m->mount_opt; 2108 else 2109 sbi->s_mount_opt &= ~m->mount_opt; 2110 } 2111 return 1; 2112 } 2113 2114 static int parse_options(char *options, struct super_block *sb, 2115 unsigned long *journal_devnum, 2116 unsigned int *journal_ioprio, 2117 int is_remount) 2118 { 2119 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2120 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2121 substring_t args[MAX_OPT_ARGS]; 2122 int token; 2123 2124 if (!options) 2125 return 1; 2126 2127 while ((p = strsep(&options, ",")) != NULL) { 2128 if (!*p) 2129 continue; 2130 /* 2131 * Initialize args struct so we know whether arg was 2132 * found; some options take optional arguments. 2133 */ 2134 args[0].to = args[0].from = NULL; 2135 token = match_token(p, tokens, args); 2136 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2137 journal_ioprio, is_remount) < 0) 2138 return 0; 2139 } 2140 #ifdef CONFIG_QUOTA 2141 /* 2142 * We do the test below only for project quotas. 'usrquota' and 2143 * 'grpquota' mount options are allowed even without quota feature 2144 * to support legacy quotas in quota files. 2145 */ 2146 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2147 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2148 "Cannot enable project quota enforcement."); 2149 return 0; 2150 } 2151 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2152 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2153 if (usr_qf_name || grp_qf_name) { 2154 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2155 clear_opt(sb, USRQUOTA); 2156 2157 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2158 clear_opt(sb, GRPQUOTA); 2159 2160 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2161 ext4_msg(sb, KERN_ERR, "old and new quota " 2162 "format mixing"); 2163 return 0; 2164 } 2165 2166 if (!sbi->s_jquota_fmt) { 2167 ext4_msg(sb, KERN_ERR, "journaled quota format " 2168 "not specified"); 2169 return 0; 2170 } 2171 } 2172 #endif 2173 return 1; 2174 } 2175 2176 static inline void ext4_show_quota_options(struct seq_file *seq, 2177 struct super_block *sb) 2178 { 2179 #if defined(CONFIG_QUOTA) 2180 struct ext4_sb_info *sbi = EXT4_SB(sb); 2181 char *usr_qf_name, *grp_qf_name; 2182 2183 if (sbi->s_jquota_fmt) { 2184 char *fmtname = ""; 2185 2186 switch (sbi->s_jquota_fmt) { 2187 case QFMT_VFS_OLD: 2188 fmtname = "vfsold"; 2189 break; 2190 case QFMT_VFS_V0: 2191 fmtname = "vfsv0"; 2192 break; 2193 case QFMT_VFS_V1: 2194 fmtname = "vfsv1"; 2195 break; 2196 } 2197 seq_printf(seq, ",jqfmt=%s", fmtname); 2198 } 2199 2200 rcu_read_lock(); 2201 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2202 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2203 if (usr_qf_name) 2204 seq_show_option(seq, "usrjquota", usr_qf_name); 2205 if (grp_qf_name) 2206 seq_show_option(seq, "grpjquota", grp_qf_name); 2207 rcu_read_unlock(); 2208 #endif 2209 } 2210 2211 static const char *token2str(int token) 2212 { 2213 const struct match_token *t; 2214 2215 for (t = tokens; t->token != Opt_err; t++) 2216 if (t->token == token && !strchr(t->pattern, '=')) 2217 break; 2218 return t->pattern; 2219 } 2220 2221 /* 2222 * Show an option if 2223 * - it's set to a non-default value OR 2224 * - if the per-sb default is different from the global default 2225 */ 2226 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2227 int nodefs) 2228 { 2229 struct ext4_sb_info *sbi = EXT4_SB(sb); 2230 struct ext4_super_block *es = sbi->s_es; 2231 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2232 const struct mount_opts *m; 2233 char sep = nodefs ? '\n' : ','; 2234 2235 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2236 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2237 2238 if (sbi->s_sb_block != 1) 2239 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2240 2241 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2242 int want_set = m->flags & MOPT_SET; 2243 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2244 (m->flags & MOPT_CLEAR_ERR)) 2245 continue; 2246 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2247 continue; /* skip if same as the default */ 2248 if ((want_set && 2249 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2250 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2251 continue; /* select Opt_noFoo vs Opt_Foo */ 2252 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2253 } 2254 2255 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2256 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2257 SEQ_OPTS_PRINT("resuid=%u", 2258 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2259 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2260 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2261 SEQ_OPTS_PRINT("resgid=%u", 2262 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2263 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2264 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2265 SEQ_OPTS_PUTS("errors=remount-ro"); 2266 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2267 SEQ_OPTS_PUTS("errors=continue"); 2268 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2269 SEQ_OPTS_PUTS("errors=panic"); 2270 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2271 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2272 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2273 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2274 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2275 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2276 if (sb->s_flags & SB_I_VERSION) 2277 SEQ_OPTS_PUTS("i_version"); 2278 if (nodefs || sbi->s_stripe) 2279 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2280 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2281 (sbi->s_mount_opt ^ def_mount_opt)) { 2282 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2283 SEQ_OPTS_PUTS("data=journal"); 2284 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2285 SEQ_OPTS_PUTS("data=ordered"); 2286 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2287 SEQ_OPTS_PUTS("data=writeback"); 2288 } 2289 if (nodefs || 2290 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2291 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2292 sbi->s_inode_readahead_blks); 2293 2294 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2295 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2296 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2297 if (nodefs || sbi->s_max_dir_size_kb) 2298 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2299 if (test_opt(sb, DATA_ERR_ABORT)) 2300 SEQ_OPTS_PUTS("data_err=abort"); 2301 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2302 SEQ_OPTS_PUTS("test_dummy_encryption"); 2303 2304 ext4_show_quota_options(seq, sb); 2305 return 0; 2306 } 2307 2308 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2309 { 2310 return _ext4_show_options(seq, root->d_sb, 0); 2311 } 2312 2313 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2314 { 2315 struct super_block *sb = seq->private; 2316 int rc; 2317 2318 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2319 rc = _ext4_show_options(seq, sb, 1); 2320 seq_puts(seq, "\n"); 2321 return rc; 2322 } 2323 2324 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2325 int read_only) 2326 { 2327 struct ext4_sb_info *sbi = EXT4_SB(sb); 2328 int err = 0; 2329 2330 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2331 ext4_msg(sb, KERN_ERR, "revision level too high, " 2332 "forcing read-only mode"); 2333 err = -EROFS; 2334 } 2335 if (read_only) 2336 goto done; 2337 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2338 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2339 "running e2fsck is recommended"); 2340 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2341 ext4_msg(sb, KERN_WARNING, 2342 "warning: mounting fs with errors, " 2343 "running e2fsck is recommended"); 2344 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2345 le16_to_cpu(es->s_mnt_count) >= 2346 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2347 ext4_msg(sb, KERN_WARNING, 2348 "warning: maximal mount count reached, " 2349 "running e2fsck is recommended"); 2350 else if (le32_to_cpu(es->s_checkinterval) && 2351 (ext4_get_tstamp(es, s_lastcheck) + 2352 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2353 ext4_msg(sb, KERN_WARNING, 2354 "warning: checktime reached, " 2355 "running e2fsck is recommended"); 2356 if (!sbi->s_journal) 2357 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2358 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2359 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2360 le16_add_cpu(&es->s_mnt_count, 1); 2361 ext4_update_tstamp(es, s_mtime); 2362 if (sbi->s_journal) 2363 ext4_set_feature_journal_needs_recovery(sb); 2364 2365 err = ext4_commit_super(sb, 1); 2366 done: 2367 if (test_opt(sb, DEBUG)) 2368 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2369 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2370 sb->s_blocksize, 2371 sbi->s_groups_count, 2372 EXT4_BLOCKS_PER_GROUP(sb), 2373 EXT4_INODES_PER_GROUP(sb), 2374 sbi->s_mount_opt, sbi->s_mount_opt2); 2375 2376 cleancache_init_fs(sb); 2377 return err; 2378 } 2379 2380 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2381 { 2382 struct ext4_sb_info *sbi = EXT4_SB(sb); 2383 struct flex_groups *new_groups; 2384 int size; 2385 2386 if (!sbi->s_log_groups_per_flex) 2387 return 0; 2388 2389 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2390 if (size <= sbi->s_flex_groups_allocated) 2391 return 0; 2392 2393 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2394 new_groups = kvzalloc(size, GFP_KERNEL); 2395 if (!new_groups) { 2396 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2397 size / (int) sizeof(struct flex_groups)); 2398 return -ENOMEM; 2399 } 2400 2401 if (sbi->s_flex_groups) { 2402 memcpy(new_groups, sbi->s_flex_groups, 2403 (sbi->s_flex_groups_allocated * 2404 sizeof(struct flex_groups))); 2405 kvfree(sbi->s_flex_groups); 2406 } 2407 sbi->s_flex_groups = new_groups; 2408 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2409 return 0; 2410 } 2411 2412 static int ext4_fill_flex_info(struct super_block *sb) 2413 { 2414 struct ext4_sb_info *sbi = EXT4_SB(sb); 2415 struct ext4_group_desc *gdp = NULL; 2416 ext4_group_t flex_group; 2417 int i, err; 2418 2419 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2420 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2421 sbi->s_log_groups_per_flex = 0; 2422 return 1; 2423 } 2424 2425 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2426 if (err) 2427 goto failed; 2428 2429 for (i = 0; i < sbi->s_groups_count; i++) { 2430 gdp = ext4_get_group_desc(sb, i, NULL); 2431 2432 flex_group = ext4_flex_group(sbi, i); 2433 atomic_add(ext4_free_inodes_count(sb, gdp), 2434 &sbi->s_flex_groups[flex_group].free_inodes); 2435 atomic64_add(ext4_free_group_clusters(sb, gdp), 2436 &sbi->s_flex_groups[flex_group].free_clusters); 2437 atomic_add(ext4_used_dirs_count(sb, gdp), 2438 &sbi->s_flex_groups[flex_group].used_dirs); 2439 } 2440 2441 return 1; 2442 failed: 2443 return 0; 2444 } 2445 2446 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2447 struct ext4_group_desc *gdp) 2448 { 2449 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2450 __u16 crc = 0; 2451 __le32 le_group = cpu_to_le32(block_group); 2452 struct ext4_sb_info *sbi = EXT4_SB(sb); 2453 2454 if (ext4_has_metadata_csum(sbi->s_sb)) { 2455 /* Use new metadata_csum algorithm */ 2456 __u32 csum32; 2457 __u16 dummy_csum = 0; 2458 2459 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2460 sizeof(le_group)); 2461 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2462 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2463 sizeof(dummy_csum)); 2464 offset += sizeof(dummy_csum); 2465 if (offset < sbi->s_desc_size) 2466 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2467 sbi->s_desc_size - offset); 2468 2469 crc = csum32 & 0xFFFF; 2470 goto out; 2471 } 2472 2473 /* old crc16 code */ 2474 if (!ext4_has_feature_gdt_csum(sb)) 2475 return 0; 2476 2477 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2478 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2479 crc = crc16(crc, (__u8 *)gdp, offset); 2480 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2481 /* for checksum of struct ext4_group_desc do the rest...*/ 2482 if (ext4_has_feature_64bit(sb) && 2483 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2484 crc = crc16(crc, (__u8 *)gdp + offset, 2485 le16_to_cpu(sbi->s_es->s_desc_size) - 2486 offset); 2487 2488 out: 2489 return cpu_to_le16(crc); 2490 } 2491 2492 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2493 struct ext4_group_desc *gdp) 2494 { 2495 if (ext4_has_group_desc_csum(sb) && 2496 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2497 return 0; 2498 2499 return 1; 2500 } 2501 2502 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2503 struct ext4_group_desc *gdp) 2504 { 2505 if (!ext4_has_group_desc_csum(sb)) 2506 return; 2507 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2508 } 2509 2510 /* Called at mount-time, super-block is locked */ 2511 static int ext4_check_descriptors(struct super_block *sb, 2512 ext4_fsblk_t sb_block, 2513 ext4_group_t *first_not_zeroed) 2514 { 2515 struct ext4_sb_info *sbi = EXT4_SB(sb); 2516 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2517 ext4_fsblk_t last_block; 2518 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2519 ext4_fsblk_t block_bitmap; 2520 ext4_fsblk_t inode_bitmap; 2521 ext4_fsblk_t inode_table; 2522 int flexbg_flag = 0; 2523 ext4_group_t i, grp = sbi->s_groups_count; 2524 2525 if (ext4_has_feature_flex_bg(sb)) 2526 flexbg_flag = 1; 2527 2528 ext4_debug("Checking group descriptors"); 2529 2530 for (i = 0; i < sbi->s_groups_count; i++) { 2531 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2532 2533 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2534 last_block = ext4_blocks_count(sbi->s_es) - 1; 2535 else 2536 last_block = first_block + 2537 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2538 2539 if ((grp == sbi->s_groups_count) && 2540 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2541 grp = i; 2542 2543 block_bitmap = ext4_block_bitmap(sb, gdp); 2544 if (block_bitmap == sb_block) { 2545 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2546 "Block bitmap for group %u overlaps " 2547 "superblock", i); 2548 if (!sb_rdonly(sb)) 2549 return 0; 2550 } 2551 if (block_bitmap >= sb_block + 1 && 2552 block_bitmap <= last_bg_block) { 2553 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2554 "Block bitmap for group %u overlaps " 2555 "block group descriptors", i); 2556 if (!sb_rdonly(sb)) 2557 return 0; 2558 } 2559 if (block_bitmap < first_block || block_bitmap > last_block) { 2560 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2561 "Block bitmap for group %u not in group " 2562 "(block %llu)!", i, block_bitmap); 2563 return 0; 2564 } 2565 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2566 if (inode_bitmap == sb_block) { 2567 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2568 "Inode bitmap for group %u overlaps " 2569 "superblock", i); 2570 if (!sb_rdonly(sb)) 2571 return 0; 2572 } 2573 if (inode_bitmap >= sb_block + 1 && 2574 inode_bitmap <= last_bg_block) { 2575 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2576 "Inode bitmap for group %u overlaps " 2577 "block group descriptors", i); 2578 if (!sb_rdonly(sb)) 2579 return 0; 2580 } 2581 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2582 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2583 "Inode bitmap for group %u not in group " 2584 "(block %llu)!", i, inode_bitmap); 2585 return 0; 2586 } 2587 inode_table = ext4_inode_table(sb, gdp); 2588 if (inode_table == sb_block) { 2589 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2590 "Inode table for group %u overlaps " 2591 "superblock", i); 2592 if (!sb_rdonly(sb)) 2593 return 0; 2594 } 2595 if (inode_table >= sb_block + 1 && 2596 inode_table <= last_bg_block) { 2597 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2598 "Inode table for group %u overlaps " 2599 "block group descriptors", i); 2600 if (!sb_rdonly(sb)) 2601 return 0; 2602 } 2603 if (inode_table < first_block || 2604 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2605 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2606 "Inode table for group %u not in group " 2607 "(block %llu)!", i, inode_table); 2608 return 0; 2609 } 2610 ext4_lock_group(sb, i); 2611 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2612 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2613 "Checksum for group %u failed (%u!=%u)", 2614 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2615 gdp)), le16_to_cpu(gdp->bg_checksum)); 2616 if (!sb_rdonly(sb)) { 2617 ext4_unlock_group(sb, i); 2618 return 0; 2619 } 2620 } 2621 ext4_unlock_group(sb, i); 2622 if (!flexbg_flag) 2623 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2624 } 2625 if (NULL != first_not_zeroed) 2626 *first_not_zeroed = grp; 2627 return 1; 2628 } 2629 2630 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2631 * the superblock) which were deleted from all directories, but held open by 2632 * a process at the time of a crash. We walk the list and try to delete these 2633 * inodes at recovery time (only with a read-write filesystem). 2634 * 2635 * In order to keep the orphan inode chain consistent during traversal (in 2636 * case of crash during recovery), we link each inode into the superblock 2637 * orphan list_head and handle it the same way as an inode deletion during 2638 * normal operation (which journals the operations for us). 2639 * 2640 * We only do an iget() and an iput() on each inode, which is very safe if we 2641 * accidentally point at an in-use or already deleted inode. The worst that 2642 * can happen in this case is that we get a "bit already cleared" message from 2643 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2644 * e2fsck was run on this filesystem, and it must have already done the orphan 2645 * inode cleanup for us, so we can safely abort without any further action. 2646 */ 2647 static void ext4_orphan_cleanup(struct super_block *sb, 2648 struct ext4_super_block *es) 2649 { 2650 unsigned int s_flags = sb->s_flags; 2651 int ret, nr_orphans = 0, nr_truncates = 0; 2652 #ifdef CONFIG_QUOTA 2653 int quota_update = 0; 2654 int i; 2655 #endif 2656 if (!es->s_last_orphan) { 2657 jbd_debug(4, "no orphan inodes to clean up\n"); 2658 return; 2659 } 2660 2661 if (bdev_read_only(sb->s_bdev)) { 2662 ext4_msg(sb, KERN_ERR, "write access " 2663 "unavailable, skipping orphan cleanup"); 2664 return; 2665 } 2666 2667 /* Check if feature set would not allow a r/w mount */ 2668 if (!ext4_feature_set_ok(sb, 0)) { 2669 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2670 "unknown ROCOMPAT features"); 2671 return; 2672 } 2673 2674 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2675 /* don't clear list on RO mount w/ errors */ 2676 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2677 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2678 "clearing orphan list.\n"); 2679 es->s_last_orphan = 0; 2680 } 2681 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2682 return; 2683 } 2684 2685 if (s_flags & SB_RDONLY) { 2686 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2687 sb->s_flags &= ~SB_RDONLY; 2688 } 2689 #ifdef CONFIG_QUOTA 2690 /* Needed for iput() to work correctly and not trash data */ 2691 sb->s_flags |= SB_ACTIVE; 2692 2693 /* 2694 * Turn on quotas which were not enabled for read-only mounts if 2695 * filesystem has quota feature, so that they are updated correctly. 2696 */ 2697 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2698 int ret = ext4_enable_quotas(sb); 2699 2700 if (!ret) 2701 quota_update = 1; 2702 else 2703 ext4_msg(sb, KERN_ERR, 2704 "Cannot turn on quotas: error %d", ret); 2705 } 2706 2707 /* Turn on journaled quotas used for old sytle */ 2708 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2709 if (EXT4_SB(sb)->s_qf_names[i]) { 2710 int ret = ext4_quota_on_mount(sb, i); 2711 2712 if (!ret) 2713 quota_update = 1; 2714 else 2715 ext4_msg(sb, KERN_ERR, 2716 "Cannot turn on journaled " 2717 "quota: type %d: error %d", i, ret); 2718 } 2719 } 2720 #endif 2721 2722 while (es->s_last_orphan) { 2723 struct inode *inode; 2724 2725 /* 2726 * We may have encountered an error during cleanup; if 2727 * so, skip the rest. 2728 */ 2729 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2730 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2731 es->s_last_orphan = 0; 2732 break; 2733 } 2734 2735 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2736 if (IS_ERR(inode)) { 2737 es->s_last_orphan = 0; 2738 break; 2739 } 2740 2741 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2742 dquot_initialize(inode); 2743 if (inode->i_nlink) { 2744 if (test_opt(sb, DEBUG)) 2745 ext4_msg(sb, KERN_DEBUG, 2746 "%s: truncating inode %lu to %lld bytes", 2747 __func__, inode->i_ino, inode->i_size); 2748 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2749 inode->i_ino, inode->i_size); 2750 inode_lock(inode); 2751 truncate_inode_pages(inode->i_mapping, inode->i_size); 2752 ret = ext4_truncate(inode); 2753 if (ret) 2754 ext4_std_error(inode->i_sb, ret); 2755 inode_unlock(inode); 2756 nr_truncates++; 2757 } else { 2758 if (test_opt(sb, DEBUG)) 2759 ext4_msg(sb, KERN_DEBUG, 2760 "%s: deleting unreferenced inode %lu", 2761 __func__, inode->i_ino); 2762 jbd_debug(2, "deleting unreferenced inode %lu\n", 2763 inode->i_ino); 2764 nr_orphans++; 2765 } 2766 iput(inode); /* The delete magic happens here! */ 2767 } 2768 2769 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2770 2771 if (nr_orphans) 2772 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2773 PLURAL(nr_orphans)); 2774 if (nr_truncates) 2775 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2776 PLURAL(nr_truncates)); 2777 #ifdef CONFIG_QUOTA 2778 /* Turn off quotas if they were enabled for orphan cleanup */ 2779 if (quota_update) { 2780 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2781 if (sb_dqopt(sb)->files[i]) 2782 dquot_quota_off(sb, i); 2783 } 2784 } 2785 #endif 2786 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2787 } 2788 2789 /* 2790 * Maximal extent format file size. 2791 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2792 * extent format containers, within a sector_t, and within i_blocks 2793 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2794 * so that won't be a limiting factor. 2795 * 2796 * However there is other limiting factor. We do store extents in the form 2797 * of starting block and length, hence the resulting length of the extent 2798 * covering maximum file size must fit into on-disk format containers as 2799 * well. Given that length is always by 1 unit bigger than max unit (because 2800 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2801 * 2802 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2803 */ 2804 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2805 { 2806 loff_t res; 2807 loff_t upper_limit = MAX_LFS_FILESIZE; 2808 2809 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2810 2811 if (!has_huge_files) { 2812 upper_limit = (1LL << 32) - 1; 2813 2814 /* total blocks in file system block size */ 2815 upper_limit >>= (blkbits - 9); 2816 upper_limit <<= blkbits; 2817 } 2818 2819 /* 2820 * 32-bit extent-start container, ee_block. We lower the maxbytes 2821 * by one fs block, so ee_len can cover the extent of maximum file 2822 * size 2823 */ 2824 res = (1LL << 32) - 1; 2825 res <<= blkbits; 2826 2827 /* Sanity check against vm- & vfs- imposed limits */ 2828 if (res > upper_limit) 2829 res = upper_limit; 2830 2831 return res; 2832 } 2833 2834 /* 2835 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2836 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2837 * We need to be 1 filesystem block less than the 2^48 sector limit. 2838 */ 2839 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2840 { 2841 loff_t res = EXT4_NDIR_BLOCKS; 2842 int meta_blocks; 2843 loff_t upper_limit; 2844 /* This is calculated to be the largest file size for a dense, block 2845 * mapped file such that the file's total number of 512-byte sectors, 2846 * including data and all indirect blocks, does not exceed (2^48 - 1). 2847 * 2848 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2849 * number of 512-byte sectors of the file. 2850 */ 2851 2852 if (!has_huge_files) { 2853 /* 2854 * !has_huge_files or implies that the inode i_block field 2855 * represents total file blocks in 2^32 512-byte sectors == 2856 * size of vfs inode i_blocks * 8 2857 */ 2858 upper_limit = (1LL << 32) - 1; 2859 2860 /* total blocks in file system block size */ 2861 upper_limit >>= (bits - 9); 2862 2863 } else { 2864 /* 2865 * We use 48 bit ext4_inode i_blocks 2866 * With EXT4_HUGE_FILE_FL set the i_blocks 2867 * represent total number of blocks in 2868 * file system block size 2869 */ 2870 upper_limit = (1LL << 48) - 1; 2871 2872 } 2873 2874 /* indirect blocks */ 2875 meta_blocks = 1; 2876 /* double indirect blocks */ 2877 meta_blocks += 1 + (1LL << (bits-2)); 2878 /* tripple indirect blocks */ 2879 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2880 2881 upper_limit -= meta_blocks; 2882 upper_limit <<= bits; 2883 2884 res += 1LL << (bits-2); 2885 res += 1LL << (2*(bits-2)); 2886 res += 1LL << (3*(bits-2)); 2887 res <<= bits; 2888 if (res > upper_limit) 2889 res = upper_limit; 2890 2891 if (res > MAX_LFS_FILESIZE) 2892 res = MAX_LFS_FILESIZE; 2893 2894 return res; 2895 } 2896 2897 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2898 ext4_fsblk_t logical_sb_block, int nr) 2899 { 2900 struct ext4_sb_info *sbi = EXT4_SB(sb); 2901 ext4_group_t bg, first_meta_bg; 2902 int has_super = 0; 2903 2904 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2905 2906 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2907 return logical_sb_block + nr + 1; 2908 bg = sbi->s_desc_per_block * nr; 2909 if (ext4_bg_has_super(sb, bg)) 2910 has_super = 1; 2911 2912 /* 2913 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2914 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2915 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2916 * compensate. 2917 */ 2918 if (sb->s_blocksize == 1024 && nr == 0 && 2919 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2920 has_super++; 2921 2922 return (has_super + ext4_group_first_block_no(sb, bg)); 2923 } 2924 2925 /** 2926 * ext4_get_stripe_size: Get the stripe size. 2927 * @sbi: In memory super block info 2928 * 2929 * If we have specified it via mount option, then 2930 * use the mount option value. If the value specified at mount time is 2931 * greater than the blocks per group use the super block value. 2932 * If the super block value is greater than blocks per group return 0. 2933 * Allocator needs it be less than blocks per group. 2934 * 2935 */ 2936 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2937 { 2938 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2939 unsigned long stripe_width = 2940 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2941 int ret; 2942 2943 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2944 ret = sbi->s_stripe; 2945 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2946 ret = stripe_width; 2947 else if (stride && stride <= sbi->s_blocks_per_group) 2948 ret = stride; 2949 else 2950 ret = 0; 2951 2952 /* 2953 * If the stripe width is 1, this makes no sense and 2954 * we set it to 0 to turn off stripe handling code. 2955 */ 2956 if (ret <= 1) 2957 ret = 0; 2958 2959 return ret; 2960 } 2961 2962 /* 2963 * Check whether this filesystem can be mounted based on 2964 * the features present and the RDONLY/RDWR mount requested. 2965 * Returns 1 if this filesystem can be mounted as requested, 2966 * 0 if it cannot be. 2967 */ 2968 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2969 { 2970 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2971 ext4_msg(sb, KERN_ERR, 2972 "Couldn't mount because of " 2973 "unsupported optional features (%x)", 2974 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2975 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2976 return 0; 2977 } 2978 2979 #ifndef CONFIG_UNICODE 2980 if (ext4_has_feature_casefold(sb)) { 2981 ext4_msg(sb, KERN_ERR, 2982 "Filesystem with casefold feature cannot be " 2983 "mounted without CONFIG_UNICODE"); 2984 return 0; 2985 } 2986 #endif 2987 2988 if (readonly) 2989 return 1; 2990 2991 if (ext4_has_feature_readonly(sb)) { 2992 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2993 sb->s_flags |= SB_RDONLY; 2994 return 1; 2995 } 2996 2997 /* Check that feature set is OK for a read-write mount */ 2998 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2999 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3000 "unsupported optional features (%x)", 3001 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3002 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3003 return 0; 3004 } 3005 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3006 ext4_msg(sb, KERN_ERR, 3007 "Can't support bigalloc feature without " 3008 "extents feature\n"); 3009 return 0; 3010 } 3011 3012 #if !defined(CONFIG_QUOTA) || !defined(CONFIG_QFMT_V2) 3013 if (!readonly && (ext4_has_feature_quota(sb) || 3014 ext4_has_feature_project(sb))) { 3015 ext4_msg(sb, KERN_ERR, 3016 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3017 return 0; 3018 } 3019 #endif /* CONFIG_QUOTA */ 3020 return 1; 3021 } 3022 3023 /* 3024 * This function is called once a day if we have errors logged 3025 * on the file system 3026 */ 3027 static void print_daily_error_info(struct timer_list *t) 3028 { 3029 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3030 struct super_block *sb = sbi->s_sb; 3031 struct ext4_super_block *es = sbi->s_es; 3032 3033 if (es->s_error_count) 3034 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3035 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3036 le32_to_cpu(es->s_error_count)); 3037 if (es->s_first_error_time) { 3038 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3039 sb->s_id, 3040 ext4_get_tstamp(es, s_first_error_time), 3041 (int) sizeof(es->s_first_error_func), 3042 es->s_first_error_func, 3043 le32_to_cpu(es->s_first_error_line)); 3044 if (es->s_first_error_ino) 3045 printk(KERN_CONT ": inode %u", 3046 le32_to_cpu(es->s_first_error_ino)); 3047 if (es->s_first_error_block) 3048 printk(KERN_CONT ": block %llu", (unsigned long long) 3049 le64_to_cpu(es->s_first_error_block)); 3050 printk(KERN_CONT "\n"); 3051 } 3052 if (es->s_last_error_time) { 3053 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3054 sb->s_id, 3055 ext4_get_tstamp(es, s_last_error_time), 3056 (int) sizeof(es->s_last_error_func), 3057 es->s_last_error_func, 3058 le32_to_cpu(es->s_last_error_line)); 3059 if (es->s_last_error_ino) 3060 printk(KERN_CONT ": inode %u", 3061 le32_to_cpu(es->s_last_error_ino)); 3062 if (es->s_last_error_block) 3063 printk(KERN_CONT ": block %llu", (unsigned long long) 3064 le64_to_cpu(es->s_last_error_block)); 3065 printk(KERN_CONT "\n"); 3066 } 3067 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3068 } 3069 3070 /* Find next suitable group and run ext4_init_inode_table */ 3071 static int ext4_run_li_request(struct ext4_li_request *elr) 3072 { 3073 struct ext4_group_desc *gdp = NULL; 3074 ext4_group_t group, ngroups; 3075 struct super_block *sb; 3076 unsigned long timeout = 0; 3077 int ret = 0; 3078 3079 sb = elr->lr_super; 3080 ngroups = EXT4_SB(sb)->s_groups_count; 3081 3082 for (group = elr->lr_next_group; group < ngroups; group++) { 3083 gdp = ext4_get_group_desc(sb, group, NULL); 3084 if (!gdp) { 3085 ret = 1; 3086 break; 3087 } 3088 3089 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3090 break; 3091 } 3092 3093 if (group >= ngroups) 3094 ret = 1; 3095 3096 if (!ret) { 3097 timeout = jiffies; 3098 ret = ext4_init_inode_table(sb, group, 3099 elr->lr_timeout ? 0 : 1); 3100 if (elr->lr_timeout == 0) { 3101 timeout = (jiffies - timeout) * 3102 elr->lr_sbi->s_li_wait_mult; 3103 elr->lr_timeout = timeout; 3104 } 3105 elr->lr_next_sched = jiffies + elr->lr_timeout; 3106 elr->lr_next_group = group + 1; 3107 } 3108 return ret; 3109 } 3110 3111 /* 3112 * Remove lr_request from the list_request and free the 3113 * request structure. Should be called with li_list_mtx held 3114 */ 3115 static void ext4_remove_li_request(struct ext4_li_request *elr) 3116 { 3117 struct ext4_sb_info *sbi; 3118 3119 if (!elr) 3120 return; 3121 3122 sbi = elr->lr_sbi; 3123 3124 list_del(&elr->lr_request); 3125 sbi->s_li_request = NULL; 3126 kfree(elr); 3127 } 3128 3129 static void ext4_unregister_li_request(struct super_block *sb) 3130 { 3131 mutex_lock(&ext4_li_mtx); 3132 if (!ext4_li_info) { 3133 mutex_unlock(&ext4_li_mtx); 3134 return; 3135 } 3136 3137 mutex_lock(&ext4_li_info->li_list_mtx); 3138 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3139 mutex_unlock(&ext4_li_info->li_list_mtx); 3140 mutex_unlock(&ext4_li_mtx); 3141 } 3142 3143 static struct task_struct *ext4_lazyinit_task; 3144 3145 /* 3146 * This is the function where ext4lazyinit thread lives. It walks 3147 * through the request list searching for next scheduled filesystem. 3148 * When such a fs is found, run the lazy initialization request 3149 * (ext4_rn_li_request) and keep track of the time spend in this 3150 * function. Based on that time we compute next schedule time of 3151 * the request. When walking through the list is complete, compute 3152 * next waking time and put itself into sleep. 3153 */ 3154 static int ext4_lazyinit_thread(void *arg) 3155 { 3156 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3157 struct list_head *pos, *n; 3158 struct ext4_li_request *elr; 3159 unsigned long next_wakeup, cur; 3160 3161 BUG_ON(NULL == eli); 3162 3163 cont_thread: 3164 while (true) { 3165 next_wakeup = MAX_JIFFY_OFFSET; 3166 3167 mutex_lock(&eli->li_list_mtx); 3168 if (list_empty(&eli->li_request_list)) { 3169 mutex_unlock(&eli->li_list_mtx); 3170 goto exit_thread; 3171 } 3172 list_for_each_safe(pos, n, &eli->li_request_list) { 3173 int err = 0; 3174 int progress = 0; 3175 elr = list_entry(pos, struct ext4_li_request, 3176 lr_request); 3177 3178 if (time_before(jiffies, elr->lr_next_sched)) { 3179 if (time_before(elr->lr_next_sched, next_wakeup)) 3180 next_wakeup = elr->lr_next_sched; 3181 continue; 3182 } 3183 if (down_read_trylock(&elr->lr_super->s_umount)) { 3184 if (sb_start_write_trylock(elr->lr_super)) { 3185 progress = 1; 3186 /* 3187 * We hold sb->s_umount, sb can not 3188 * be removed from the list, it is 3189 * now safe to drop li_list_mtx 3190 */ 3191 mutex_unlock(&eli->li_list_mtx); 3192 err = ext4_run_li_request(elr); 3193 sb_end_write(elr->lr_super); 3194 mutex_lock(&eli->li_list_mtx); 3195 n = pos->next; 3196 } 3197 up_read((&elr->lr_super->s_umount)); 3198 } 3199 /* error, remove the lazy_init job */ 3200 if (err) { 3201 ext4_remove_li_request(elr); 3202 continue; 3203 } 3204 if (!progress) { 3205 elr->lr_next_sched = jiffies + 3206 (prandom_u32() 3207 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3208 } 3209 if (time_before(elr->lr_next_sched, next_wakeup)) 3210 next_wakeup = elr->lr_next_sched; 3211 } 3212 mutex_unlock(&eli->li_list_mtx); 3213 3214 try_to_freeze(); 3215 3216 cur = jiffies; 3217 if ((time_after_eq(cur, next_wakeup)) || 3218 (MAX_JIFFY_OFFSET == next_wakeup)) { 3219 cond_resched(); 3220 continue; 3221 } 3222 3223 schedule_timeout_interruptible(next_wakeup - cur); 3224 3225 if (kthread_should_stop()) { 3226 ext4_clear_request_list(); 3227 goto exit_thread; 3228 } 3229 } 3230 3231 exit_thread: 3232 /* 3233 * It looks like the request list is empty, but we need 3234 * to check it under the li_list_mtx lock, to prevent any 3235 * additions into it, and of course we should lock ext4_li_mtx 3236 * to atomically free the list and ext4_li_info, because at 3237 * this point another ext4 filesystem could be registering 3238 * new one. 3239 */ 3240 mutex_lock(&ext4_li_mtx); 3241 mutex_lock(&eli->li_list_mtx); 3242 if (!list_empty(&eli->li_request_list)) { 3243 mutex_unlock(&eli->li_list_mtx); 3244 mutex_unlock(&ext4_li_mtx); 3245 goto cont_thread; 3246 } 3247 mutex_unlock(&eli->li_list_mtx); 3248 kfree(ext4_li_info); 3249 ext4_li_info = NULL; 3250 mutex_unlock(&ext4_li_mtx); 3251 3252 return 0; 3253 } 3254 3255 static void ext4_clear_request_list(void) 3256 { 3257 struct list_head *pos, *n; 3258 struct ext4_li_request *elr; 3259 3260 mutex_lock(&ext4_li_info->li_list_mtx); 3261 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3262 elr = list_entry(pos, struct ext4_li_request, 3263 lr_request); 3264 ext4_remove_li_request(elr); 3265 } 3266 mutex_unlock(&ext4_li_info->li_list_mtx); 3267 } 3268 3269 static int ext4_run_lazyinit_thread(void) 3270 { 3271 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3272 ext4_li_info, "ext4lazyinit"); 3273 if (IS_ERR(ext4_lazyinit_task)) { 3274 int err = PTR_ERR(ext4_lazyinit_task); 3275 ext4_clear_request_list(); 3276 kfree(ext4_li_info); 3277 ext4_li_info = NULL; 3278 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3279 "initialization thread\n", 3280 err); 3281 return err; 3282 } 3283 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3284 return 0; 3285 } 3286 3287 /* 3288 * Check whether it make sense to run itable init. thread or not. 3289 * If there is at least one uninitialized inode table, return 3290 * corresponding group number, else the loop goes through all 3291 * groups and return total number of groups. 3292 */ 3293 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3294 { 3295 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3296 struct ext4_group_desc *gdp = NULL; 3297 3298 if (!ext4_has_group_desc_csum(sb)) 3299 return ngroups; 3300 3301 for (group = 0; group < ngroups; group++) { 3302 gdp = ext4_get_group_desc(sb, group, NULL); 3303 if (!gdp) 3304 continue; 3305 3306 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3307 break; 3308 } 3309 3310 return group; 3311 } 3312 3313 static int ext4_li_info_new(void) 3314 { 3315 struct ext4_lazy_init *eli = NULL; 3316 3317 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3318 if (!eli) 3319 return -ENOMEM; 3320 3321 INIT_LIST_HEAD(&eli->li_request_list); 3322 mutex_init(&eli->li_list_mtx); 3323 3324 eli->li_state |= EXT4_LAZYINIT_QUIT; 3325 3326 ext4_li_info = eli; 3327 3328 return 0; 3329 } 3330 3331 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3332 ext4_group_t start) 3333 { 3334 struct ext4_sb_info *sbi = EXT4_SB(sb); 3335 struct ext4_li_request *elr; 3336 3337 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3338 if (!elr) 3339 return NULL; 3340 3341 elr->lr_super = sb; 3342 elr->lr_sbi = sbi; 3343 elr->lr_next_group = start; 3344 3345 /* 3346 * Randomize first schedule time of the request to 3347 * spread the inode table initialization requests 3348 * better. 3349 */ 3350 elr->lr_next_sched = jiffies + (prandom_u32() % 3351 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3352 return elr; 3353 } 3354 3355 int ext4_register_li_request(struct super_block *sb, 3356 ext4_group_t first_not_zeroed) 3357 { 3358 struct ext4_sb_info *sbi = EXT4_SB(sb); 3359 struct ext4_li_request *elr = NULL; 3360 ext4_group_t ngroups = sbi->s_groups_count; 3361 int ret = 0; 3362 3363 mutex_lock(&ext4_li_mtx); 3364 if (sbi->s_li_request != NULL) { 3365 /* 3366 * Reset timeout so it can be computed again, because 3367 * s_li_wait_mult might have changed. 3368 */ 3369 sbi->s_li_request->lr_timeout = 0; 3370 goto out; 3371 } 3372 3373 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3374 !test_opt(sb, INIT_INODE_TABLE)) 3375 goto out; 3376 3377 elr = ext4_li_request_new(sb, first_not_zeroed); 3378 if (!elr) { 3379 ret = -ENOMEM; 3380 goto out; 3381 } 3382 3383 if (NULL == ext4_li_info) { 3384 ret = ext4_li_info_new(); 3385 if (ret) 3386 goto out; 3387 } 3388 3389 mutex_lock(&ext4_li_info->li_list_mtx); 3390 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3391 mutex_unlock(&ext4_li_info->li_list_mtx); 3392 3393 sbi->s_li_request = elr; 3394 /* 3395 * set elr to NULL here since it has been inserted to 3396 * the request_list and the removal and free of it is 3397 * handled by ext4_clear_request_list from now on. 3398 */ 3399 elr = NULL; 3400 3401 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3402 ret = ext4_run_lazyinit_thread(); 3403 if (ret) 3404 goto out; 3405 } 3406 out: 3407 mutex_unlock(&ext4_li_mtx); 3408 if (ret) 3409 kfree(elr); 3410 return ret; 3411 } 3412 3413 /* 3414 * We do not need to lock anything since this is called on 3415 * module unload. 3416 */ 3417 static void ext4_destroy_lazyinit_thread(void) 3418 { 3419 /* 3420 * If thread exited earlier 3421 * there's nothing to be done. 3422 */ 3423 if (!ext4_li_info || !ext4_lazyinit_task) 3424 return; 3425 3426 kthread_stop(ext4_lazyinit_task); 3427 } 3428 3429 static int set_journal_csum_feature_set(struct super_block *sb) 3430 { 3431 int ret = 1; 3432 int compat, incompat; 3433 struct ext4_sb_info *sbi = EXT4_SB(sb); 3434 3435 if (ext4_has_metadata_csum(sb)) { 3436 /* journal checksum v3 */ 3437 compat = 0; 3438 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3439 } else { 3440 /* journal checksum v1 */ 3441 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3442 incompat = 0; 3443 } 3444 3445 jbd2_journal_clear_features(sbi->s_journal, 3446 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3447 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3448 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3449 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3450 ret = jbd2_journal_set_features(sbi->s_journal, 3451 compat, 0, 3452 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3453 incompat); 3454 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3455 ret = jbd2_journal_set_features(sbi->s_journal, 3456 compat, 0, 3457 incompat); 3458 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3459 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3460 } else { 3461 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3462 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3463 } 3464 3465 return ret; 3466 } 3467 3468 /* 3469 * Note: calculating the overhead so we can be compatible with 3470 * historical BSD practice is quite difficult in the face of 3471 * clusters/bigalloc. This is because multiple metadata blocks from 3472 * different block group can end up in the same allocation cluster. 3473 * Calculating the exact overhead in the face of clustered allocation 3474 * requires either O(all block bitmaps) in memory or O(number of block 3475 * groups**2) in time. We will still calculate the superblock for 3476 * older file systems --- and if we come across with a bigalloc file 3477 * system with zero in s_overhead_clusters the estimate will be close to 3478 * correct especially for very large cluster sizes --- but for newer 3479 * file systems, it's better to calculate this figure once at mkfs 3480 * time, and store it in the superblock. If the superblock value is 3481 * present (even for non-bigalloc file systems), we will use it. 3482 */ 3483 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3484 char *buf) 3485 { 3486 struct ext4_sb_info *sbi = EXT4_SB(sb); 3487 struct ext4_group_desc *gdp; 3488 ext4_fsblk_t first_block, last_block, b; 3489 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3490 int s, j, count = 0; 3491 3492 if (!ext4_has_feature_bigalloc(sb)) 3493 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3494 sbi->s_itb_per_group + 2); 3495 3496 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3497 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3498 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3499 for (i = 0; i < ngroups; i++) { 3500 gdp = ext4_get_group_desc(sb, i, NULL); 3501 b = ext4_block_bitmap(sb, gdp); 3502 if (b >= first_block && b <= last_block) { 3503 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3504 count++; 3505 } 3506 b = ext4_inode_bitmap(sb, gdp); 3507 if (b >= first_block && b <= last_block) { 3508 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3509 count++; 3510 } 3511 b = ext4_inode_table(sb, gdp); 3512 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3513 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3514 int c = EXT4_B2C(sbi, b - first_block); 3515 ext4_set_bit(c, buf); 3516 count++; 3517 } 3518 if (i != grp) 3519 continue; 3520 s = 0; 3521 if (ext4_bg_has_super(sb, grp)) { 3522 ext4_set_bit(s++, buf); 3523 count++; 3524 } 3525 j = ext4_bg_num_gdb(sb, grp); 3526 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3527 ext4_error(sb, "Invalid number of block group " 3528 "descriptor blocks: %d", j); 3529 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3530 } 3531 count += j; 3532 for (; j > 0; j--) 3533 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3534 } 3535 if (!count) 3536 return 0; 3537 return EXT4_CLUSTERS_PER_GROUP(sb) - 3538 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3539 } 3540 3541 /* 3542 * Compute the overhead and stash it in sbi->s_overhead 3543 */ 3544 int ext4_calculate_overhead(struct super_block *sb) 3545 { 3546 struct ext4_sb_info *sbi = EXT4_SB(sb); 3547 struct ext4_super_block *es = sbi->s_es; 3548 struct inode *j_inode; 3549 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3550 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3551 ext4_fsblk_t overhead = 0; 3552 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3553 3554 if (!buf) 3555 return -ENOMEM; 3556 3557 /* 3558 * Compute the overhead (FS structures). This is constant 3559 * for a given filesystem unless the number of block groups 3560 * changes so we cache the previous value until it does. 3561 */ 3562 3563 /* 3564 * All of the blocks before first_data_block are overhead 3565 */ 3566 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3567 3568 /* 3569 * Add the overhead found in each block group 3570 */ 3571 for (i = 0; i < ngroups; i++) { 3572 int blks; 3573 3574 blks = count_overhead(sb, i, buf); 3575 overhead += blks; 3576 if (blks) 3577 memset(buf, 0, PAGE_SIZE); 3578 cond_resched(); 3579 } 3580 3581 /* 3582 * Add the internal journal blocks whether the journal has been 3583 * loaded or not 3584 */ 3585 if (sbi->s_journal && !sbi->journal_bdev) 3586 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3587 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3588 j_inode = ext4_get_journal_inode(sb, j_inum); 3589 if (j_inode) { 3590 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3591 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3592 iput(j_inode); 3593 } else { 3594 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3595 } 3596 } 3597 sbi->s_overhead = overhead; 3598 smp_wmb(); 3599 free_page((unsigned long) buf); 3600 return 0; 3601 } 3602 3603 static void ext4_set_resv_clusters(struct super_block *sb) 3604 { 3605 ext4_fsblk_t resv_clusters; 3606 struct ext4_sb_info *sbi = EXT4_SB(sb); 3607 3608 /* 3609 * There's no need to reserve anything when we aren't using extents. 3610 * The space estimates are exact, there are no unwritten extents, 3611 * hole punching doesn't need new metadata... This is needed especially 3612 * to keep ext2/3 backward compatibility. 3613 */ 3614 if (!ext4_has_feature_extents(sb)) 3615 return; 3616 /* 3617 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3618 * This should cover the situations where we can not afford to run 3619 * out of space like for example punch hole, or converting 3620 * unwritten extents in delalloc path. In most cases such 3621 * allocation would require 1, or 2 blocks, higher numbers are 3622 * very rare. 3623 */ 3624 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3625 sbi->s_cluster_bits); 3626 3627 do_div(resv_clusters, 50); 3628 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3629 3630 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3631 } 3632 3633 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3634 { 3635 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3636 char *orig_data = kstrdup(data, GFP_KERNEL); 3637 struct buffer_head *bh; 3638 struct ext4_super_block *es = NULL; 3639 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3640 ext4_fsblk_t block; 3641 ext4_fsblk_t sb_block = get_sb_block(&data); 3642 ext4_fsblk_t logical_sb_block; 3643 unsigned long offset = 0; 3644 unsigned long journal_devnum = 0; 3645 unsigned long def_mount_opts; 3646 struct inode *root; 3647 const char *descr; 3648 int ret = -ENOMEM; 3649 int blocksize, clustersize; 3650 unsigned int db_count; 3651 unsigned int i; 3652 int needs_recovery, has_huge_files, has_bigalloc; 3653 __u64 blocks_count; 3654 int err = 0; 3655 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3656 ext4_group_t first_not_zeroed; 3657 3658 if ((data && !orig_data) || !sbi) 3659 goto out_free_base; 3660 3661 sbi->s_daxdev = dax_dev; 3662 sbi->s_blockgroup_lock = 3663 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3664 if (!sbi->s_blockgroup_lock) 3665 goto out_free_base; 3666 3667 sb->s_fs_info = sbi; 3668 sbi->s_sb = sb; 3669 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3670 sbi->s_sb_block = sb_block; 3671 if (sb->s_bdev->bd_part) 3672 sbi->s_sectors_written_start = 3673 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3674 3675 /* Cleanup superblock name */ 3676 strreplace(sb->s_id, '/', '!'); 3677 3678 /* -EINVAL is default */ 3679 ret = -EINVAL; 3680 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3681 if (!blocksize) { 3682 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3683 goto out_fail; 3684 } 3685 3686 /* 3687 * The ext4 superblock will not be buffer aligned for other than 1kB 3688 * block sizes. We need to calculate the offset from buffer start. 3689 */ 3690 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3691 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3692 offset = do_div(logical_sb_block, blocksize); 3693 } else { 3694 logical_sb_block = sb_block; 3695 } 3696 3697 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3698 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3699 goto out_fail; 3700 } 3701 /* 3702 * Note: s_es must be initialized as soon as possible because 3703 * some ext4 macro-instructions depend on its value 3704 */ 3705 es = (struct ext4_super_block *) (bh->b_data + offset); 3706 sbi->s_es = es; 3707 sb->s_magic = le16_to_cpu(es->s_magic); 3708 if (sb->s_magic != EXT4_SUPER_MAGIC) 3709 goto cantfind_ext4; 3710 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3711 3712 /* Warn if metadata_csum and gdt_csum are both set. */ 3713 if (ext4_has_feature_metadata_csum(sb) && 3714 ext4_has_feature_gdt_csum(sb)) 3715 ext4_warning(sb, "metadata_csum and uninit_bg are " 3716 "redundant flags; please run fsck."); 3717 3718 /* Check for a known checksum algorithm */ 3719 if (!ext4_verify_csum_type(sb, es)) { 3720 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3721 "unknown checksum algorithm."); 3722 silent = 1; 3723 goto cantfind_ext4; 3724 } 3725 3726 /* Load the checksum driver */ 3727 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3728 if (IS_ERR(sbi->s_chksum_driver)) { 3729 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3730 ret = PTR_ERR(sbi->s_chksum_driver); 3731 sbi->s_chksum_driver = NULL; 3732 goto failed_mount; 3733 } 3734 3735 /* Check superblock checksum */ 3736 if (!ext4_superblock_csum_verify(sb, es)) { 3737 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3738 "invalid superblock checksum. Run e2fsck?"); 3739 silent = 1; 3740 ret = -EFSBADCRC; 3741 goto cantfind_ext4; 3742 } 3743 3744 /* Precompute checksum seed for all metadata */ 3745 if (ext4_has_feature_csum_seed(sb)) 3746 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3747 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3748 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3749 sizeof(es->s_uuid)); 3750 3751 /* Set defaults before we parse the mount options */ 3752 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3753 set_opt(sb, INIT_INODE_TABLE); 3754 if (def_mount_opts & EXT4_DEFM_DEBUG) 3755 set_opt(sb, DEBUG); 3756 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3757 set_opt(sb, GRPID); 3758 if (def_mount_opts & EXT4_DEFM_UID16) 3759 set_opt(sb, NO_UID32); 3760 /* xattr user namespace & acls are now defaulted on */ 3761 set_opt(sb, XATTR_USER); 3762 set_opt(sb, DIOREAD_NOLOCK); 3763 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3764 set_opt(sb, POSIX_ACL); 3765 #endif 3766 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3767 if (ext4_has_metadata_csum(sb)) 3768 set_opt(sb, JOURNAL_CHECKSUM); 3769 3770 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3771 set_opt(sb, JOURNAL_DATA); 3772 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3773 set_opt(sb, ORDERED_DATA); 3774 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3775 set_opt(sb, WRITEBACK_DATA); 3776 3777 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3778 set_opt(sb, ERRORS_PANIC); 3779 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3780 set_opt(sb, ERRORS_CONT); 3781 else 3782 set_opt(sb, ERRORS_RO); 3783 /* block_validity enabled by default; disable with noblock_validity */ 3784 set_opt(sb, BLOCK_VALIDITY); 3785 if (def_mount_opts & EXT4_DEFM_DISCARD) 3786 set_opt(sb, DISCARD); 3787 3788 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3789 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3790 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3791 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3792 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3793 3794 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3795 set_opt(sb, BARRIER); 3796 3797 /* 3798 * enable delayed allocation by default 3799 * Use -o nodelalloc to turn it off 3800 */ 3801 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3802 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3803 set_opt(sb, DELALLOC); 3804 3805 /* 3806 * set default s_li_wait_mult for lazyinit, for the case there is 3807 * no mount option specified. 3808 */ 3809 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3810 3811 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3812 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3813 blocksize > EXT4_MAX_BLOCK_SIZE) { 3814 ext4_msg(sb, KERN_ERR, 3815 "Unsupported filesystem blocksize %d (%d log_block_size)", 3816 blocksize, le32_to_cpu(es->s_log_block_size)); 3817 goto failed_mount; 3818 } 3819 3820 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3821 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3822 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3823 } else { 3824 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3825 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3826 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3827 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3828 sbi->s_first_ino); 3829 goto failed_mount; 3830 } 3831 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3832 (!is_power_of_2(sbi->s_inode_size)) || 3833 (sbi->s_inode_size > blocksize)) { 3834 ext4_msg(sb, KERN_ERR, 3835 "unsupported inode size: %d", 3836 sbi->s_inode_size); 3837 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3838 goto failed_mount; 3839 } 3840 /* 3841 * i_atime_extra is the last extra field available for 3842 * [acm]times in struct ext4_inode. Checking for that 3843 * field should suffice to ensure we have extra space 3844 * for all three. 3845 */ 3846 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3847 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3848 sb->s_time_gran = 1; 3849 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3850 } else { 3851 sb->s_time_gran = NSEC_PER_SEC; 3852 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3853 } 3854 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3855 } 3856 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3857 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3858 EXT4_GOOD_OLD_INODE_SIZE; 3859 if (ext4_has_feature_extra_isize(sb)) { 3860 unsigned v, max = (sbi->s_inode_size - 3861 EXT4_GOOD_OLD_INODE_SIZE); 3862 3863 v = le16_to_cpu(es->s_want_extra_isize); 3864 if (v > max) { 3865 ext4_msg(sb, KERN_ERR, 3866 "bad s_want_extra_isize: %d", v); 3867 goto failed_mount; 3868 } 3869 if (sbi->s_want_extra_isize < v) 3870 sbi->s_want_extra_isize = v; 3871 3872 v = le16_to_cpu(es->s_min_extra_isize); 3873 if (v > max) { 3874 ext4_msg(sb, KERN_ERR, 3875 "bad s_min_extra_isize: %d", v); 3876 goto failed_mount; 3877 } 3878 if (sbi->s_want_extra_isize < v) 3879 sbi->s_want_extra_isize = v; 3880 } 3881 } 3882 3883 if (sbi->s_es->s_mount_opts[0]) { 3884 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3885 sizeof(sbi->s_es->s_mount_opts), 3886 GFP_KERNEL); 3887 if (!s_mount_opts) 3888 goto failed_mount; 3889 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3890 &journal_ioprio, 0)) { 3891 ext4_msg(sb, KERN_WARNING, 3892 "failed to parse options in superblock: %s", 3893 s_mount_opts); 3894 } 3895 kfree(s_mount_opts); 3896 } 3897 sbi->s_def_mount_opt = sbi->s_mount_opt; 3898 if (!parse_options((char *) data, sb, &journal_devnum, 3899 &journal_ioprio, 0)) 3900 goto failed_mount; 3901 3902 #ifdef CONFIG_UNICODE 3903 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 3904 const struct ext4_sb_encodings *encoding_info; 3905 struct unicode_map *encoding; 3906 __u16 encoding_flags; 3907 3908 if (ext4_has_feature_encrypt(sb)) { 3909 ext4_msg(sb, KERN_ERR, 3910 "Can't mount with encoding and encryption"); 3911 goto failed_mount; 3912 } 3913 3914 if (ext4_sb_read_encoding(es, &encoding_info, 3915 &encoding_flags)) { 3916 ext4_msg(sb, KERN_ERR, 3917 "Encoding requested by superblock is unknown"); 3918 goto failed_mount; 3919 } 3920 3921 encoding = utf8_load(encoding_info->version); 3922 if (IS_ERR(encoding)) { 3923 ext4_msg(sb, KERN_ERR, 3924 "can't mount with superblock charset: %s-%s " 3925 "not supported by the kernel. flags: 0x%x.", 3926 encoding_info->name, encoding_info->version, 3927 encoding_flags); 3928 goto failed_mount; 3929 } 3930 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 3931 "%s-%s with flags 0x%hx", encoding_info->name, 3932 encoding_info->version?:"\b", encoding_flags); 3933 3934 sbi->s_encoding = encoding; 3935 sbi->s_encoding_flags = encoding_flags; 3936 } 3937 #endif 3938 3939 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3940 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 3941 clear_opt(sb, DIOREAD_NOLOCK); 3942 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3943 ext4_msg(sb, KERN_ERR, "can't mount with " 3944 "both data=journal and delalloc"); 3945 goto failed_mount; 3946 } 3947 if (test_opt(sb, DIOREAD_NOLOCK)) { 3948 ext4_msg(sb, KERN_ERR, "can't mount with " 3949 "both data=journal and dioread_nolock"); 3950 goto failed_mount; 3951 } 3952 if (test_opt(sb, DAX)) { 3953 ext4_msg(sb, KERN_ERR, "can't mount with " 3954 "both data=journal and dax"); 3955 goto failed_mount; 3956 } 3957 if (ext4_has_feature_encrypt(sb)) { 3958 ext4_msg(sb, KERN_WARNING, 3959 "encrypted files will use data=ordered " 3960 "instead of data journaling mode"); 3961 } 3962 if (test_opt(sb, DELALLOC)) 3963 clear_opt(sb, DELALLOC); 3964 } else { 3965 sb->s_iflags |= SB_I_CGROUPWB; 3966 } 3967 3968 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3969 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3970 3971 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3972 (ext4_has_compat_features(sb) || 3973 ext4_has_ro_compat_features(sb) || 3974 ext4_has_incompat_features(sb))) 3975 ext4_msg(sb, KERN_WARNING, 3976 "feature flags set on rev 0 fs, " 3977 "running e2fsck is recommended"); 3978 3979 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3980 set_opt2(sb, HURD_COMPAT); 3981 if (ext4_has_feature_64bit(sb)) { 3982 ext4_msg(sb, KERN_ERR, 3983 "The Hurd can't support 64-bit file systems"); 3984 goto failed_mount; 3985 } 3986 3987 /* 3988 * ea_inode feature uses l_i_version field which is not 3989 * available in HURD_COMPAT mode. 3990 */ 3991 if (ext4_has_feature_ea_inode(sb)) { 3992 ext4_msg(sb, KERN_ERR, 3993 "ea_inode feature is not supported for Hurd"); 3994 goto failed_mount; 3995 } 3996 } 3997 3998 if (IS_EXT2_SB(sb)) { 3999 if (ext2_feature_set_ok(sb)) 4000 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4001 "using the ext4 subsystem"); 4002 else { 4003 /* 4004 * If we're probing be silent, if this looks like 4005 * it's actually an ext[34] filesystem. 4006 */ 4007 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4008 goto failed_mount; 4009 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4010 "to feature incompatibilities"); 4011 goto failed_mount; 4012 } 4013 } 4014 4015 if (IS_EXT3_SB(sb)) { 4016 if (ext3_feature_set_ok(sb)) 4017 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4018 "using the ext4 subsystem"); 4019 else { 4020 /* 4021 * If we're probing be silent, if this looks like 4022 * it's actually an ext4 filesystem. 4023 */ 4024 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4025 goto failed_mount; 4026 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4027 "to feature incompatibilities"); 4028 goto failed_mount; 4029 } 4030 } 4031 4032 /* 4033 * Check feature flags regardless of the revision level, since we 4034 * previously didn't change the revision level when setting the flags, 4035 * so there is a chance incompat flags are set on a rev 0 filesystem. 4036 */ 4037 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4038 goto failed_mount; 4039 4040 if (le32_to_cpu(es->s_log_block_size) > 4041 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4042 ext4_msg(sb, KERN_ERR, 4043 "Invalid log block size: %u", 4044 le32_to_cpu(es->s_log_block_size)); 4045 goto failed_mount; 4046 } 4047 if (le32_to_cpu(es->s_log_cluster_size) > 4048 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4049 ext4_msg(sb, KERN_ERR, 4050 "Invalid log cluster size: %u", 4051 le32_to_cpu(es->s_log_cluster_size)); 4052 goto failed_mount; 4053 } 4054 4055 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4056 ext4_msg(sb, KERN_ERR, 4057 "Number of reserved GDT blocks insanely large: %d", 4058 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4059 goto failed_mount; 4060 } 4061 4062 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 4063 if (ext4_has_feature_inline_data(sb)) { 4064 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4065 " that may contain inline data"); 4066 goto failed_mount; 4067 } 4068 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 4069 ext4_msg(sb, KERN_ERR, 4070 "DAX unsupported by block device."); 4071 goto failed_mount; 4072 } 4073 } 4074 4075 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4076 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4077 es->s_encryption_level); 4078 goto failed_mount; 4079 } 4080 4081 if (sb->s_blocksize != blocksize) { 4082 /* Validate the filesystem blocksize */ 4083 if (!sb_set_blocksize(sb, blocksize)) { 4084 ext4_msg(sb, KERN_ERR, "bad block size %d", 4085 blocksize); 4086 goto failed_mount; 4087 } 4088 4089 brelse(bh); 4090 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4091 offset = do_div(logical_sb_block, blocksize); 4092 bh = sb_bread_unmovable(sb, logical_sb_block); 4093 if (!bh) { 4094 ext4_msg(sb, KERN_ERR, 4095 "Can't read superblock on 2nd try"); 4096 goto failed_mount; 4097 } 4098 es = (struct ext4_super_block *)(bh->b_data + offset); 4099 sbi->s_es = es; 4100 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4101 ext4_msg(sb, KERN_ERR, 4102 "Magic mismatch, very weird!"); 4103 goto failed_mount; 4104 } 4105 } 4106 4107 has_huge_files = ext4_has_feature_huge_file(sb); 4108 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4109 has_huge_files); 4110 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4111 4112 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4113 if (ext4_has_feature_64bit(sb)) { 4114 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4115 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4116 !is_power_of_2(sbi->s_desc_size)) { 4117 ext4_msg(sb, KERN_ERR, 4118 "unsupported descriptor size %lu", 4119 sbi->s_desc_size); 4120 goto failed_mount; 4121 } 4122 } else 4123 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4124 4125 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4126 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4127 4128 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4129 if (sbi->s_inodes_per_block == 0) 4130 goto cantfind_ext4; 4131 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4132 sbi->s_inodes_per_group > blocksize * 8) { 4133 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4134 sbi->s_blocks_per_group); 4135 goto failed_mount; 4136 } 4137 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4138 sbi->s_inodes_per_block; 4139 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4140 sbi->s_sbh = bh; 4141 sbi->s_mount_state = le16_to_cpu(es->s_state); 4142 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4143 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4144 4145 for (i = 0; i < 4; i++) 4146 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4147 sbi->s_def_hash_version = es->s_def_hash_version; 4148 if (ext4_has_feature_dir_index(sb)) { 4149 i = le32_to_cpu(es->s_flags); 4150 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4151 sbi->s_hash_unsigned = 3; 4152 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4153 #ifdef __CHAR_UNSIGNED__ 4154 if (!sb_rdonly(sb)) 4155 es->s_flags |= 4156 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4157 sbi->s_hash_unsigned = 3; 4158 #else 4159 if (!sb_rdonly(sb)) 4160 es->s_flags |= 4161 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4162 #endif 4163 } 4164 } 4165 4166 /* Handle clustersize */ 4167 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4168 has_bigalloc = ext4_has_feature_bigalloc(sb); 4169 if (has_bigalloc) { 4170 if (clustersize < blocksize) { 4171 ext4_msg(sb, KERN_ERR, 4172 "cluster size (%d) smaller than " 4173 "block size (%d)", clustersize, blocksize); 4174 goto failed_mount; 4175 } 4176 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4177 le32_to_cpu(es->s_log_block_size); 4178 sbi->s_clusters_per_group = 4179 le32_to_cpu(es->s_clusters_per_group); 4180 if (sbi->s_clusters_per_group > blocksize * 8) { 4181 ext4_msg(sb, KERN_ERR, 4182 "#clusters per group too big: %lu", 4183 sbi->s_clusters_per_group); 4184 goto failed_mount; 4185 } 4186 if (sbi->s_blocks_per_group != 4187 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4188 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4189 "clusters per group (%lu) inconsistent", 4190 sbi->s_blocks_per_group, 4191 sbi->s_clusters_per_group); 4192 goto failed_mount; 4193 } 4194 } else { 4195 if (clustersize != blocksize) { 4196 ext4_msg(sb, KERN_ERR, 4197 "fragment/cluster size (%d) != " 4198 "block size (%d)", clustersize, blocksize); 4199 goto failed_mount; 4200 } 4201 if (sbi->s_blocks_per_group > blocksize * 8) { 4202 ext4_msg(sb, KERN_ERR, 4203 "#blocks per group too big: %lu", 4204 sbi->s_blocks_per_group); 4205 goto failed_mount; 4206 } 4207 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4208 sbi->s_cluster_bits = 0; 4209 } 4210 sbi->s_cluster_ratio = clustersize / blocksize; 4211 4212 /* Do we have standard group size of clustersize * 8 blocks ? */ 4213 if (sbi->s_blocks_per_group == clustersize << 3) 4214 set_opt2(sb, STD_GROUP_SIZE); 4215 4216 /* 4217 * Test whether we have more sectors than will fit in sector_t, 4218 * and whether the max offset is addressable by the page cache. 4219 */ 4220 err = generic_check_addressable(sb->s_blocksize_bits, 4221 ext4_blocks_count(es)); 4222 if (err) { 4223 ext4_msg(sb, KERN_ERR, "filesystem" 4224 " too large to mount safely on this system"); 4225 goto failed_mount; 4226 } 4227 4228 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4229 goto cantfind_ext4; 4230 4231 /* check blocks count against device size */ 4232 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4233 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4234 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4235 "exceeds size of device (%llu blocks)", 4236 ext4_blocks_count(es), blocks_count); 4237 goto failed_mount; 4238 } 4239 4240 /* 4241 * It makes no sense for the first data block to be beyond the end 4242 * of the filesystem. 4243 */ 4244 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4245 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4246 "block %u is beyond end of filesystem (%llu)", 4247 le32_to_cpu(es->s_first_data_block), 4248 ext4_blocks_count(es)); 4249 goto failed_mount; 4250 } 4251 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4252 (sbi->s_cluster_ratio == 1)) { 4253 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4254 "block is 0 with a 1k block and cluster size"); 4255 goto failed_mount; 4256 } 4257 4258 blocks_count = (ext4_blocks_count(es) - 4259 le32_to_cpu(es->s_first_data_block) + 4260 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4261 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4262 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4263 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4264 "(block count %llu, first data block %u, " 4265 "blocks per group %lu)", sbi->s_groups_count, 4266 ext4_blocks_count(es), 4267 le32_to_cpu(es->s_first_data_block), 4268 EXT4_BLOCKS_PER_GROUP(sb)); 4269 goto failed_mount; 4270 } 4271 sbi->s_groups_count = blocks_count; 4272 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4273 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4274 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4275 le32_to_cpu(es->s_inodes_count)) { 4276 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4277 le32_to_cpu(es->s_inodes_count), 4278 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4279 ret = -EINVAL; 4280 goto failed_mount; 4281 } 4282 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4283 EXT4_DESC_PER_BLOCK(sb); 4284 if (ext4_has_feature_meta_bg(sb)) { 4285 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4286 ext4_msg(sb, KERN_WARNING, 4287 "first meta block group too large: %u " 4288 "(group descriptor block count %u)", 4289 le32_to_cpu(es->s_first_meta_bg), db_count); 4290 goto failed_mount; 4291 } 4292 } 4293 sbi->s_group_desc = kvmalloc_array(db_count, 4294 sizeof(struct buffer_head *), 4295 GFP_KERNEL); 4296 if (sbi->s_group_desc == NULL) { 4297 ext4_msg(sb, KERN_ERR, "not enough memory"); 4298 ret = -ENOMEM; 4299 goto failed_mount; 4300 } 4301 4302 bgl_lock_init(sbi->s_blockgroup_lock); 4303 4304 /* Pre-read the descriptors into the buffer cache */ 4305 for (i = 0; i < db_count; i++) { 4306 block = descriptor_loc(sb, logical_sb_block, i); 4307 sb_breadahead(sb, block); 4308 } 4309 4310 for (i = 0; i < db_count; i++) { 4311 block = descriptor_loc(sb, logical_sb_block, i); 4312 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4313 if (!sbi->s_group_desc[i]) { 4314 ext4_msg(sb, KERN_ERR, 4315 "can't read group descriptor %d", i); 4316 db_count = i; 4317 goto failed_mount2; 4318 } 4319 } 4320 sbi->s_gdb_count = db_count; 4321 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4322 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4323 ret = -EFSCORRUPTED; 4324 goto failed_mount2; 4325 } 4326 4327 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4328 4329 /* Register extent status tree shrinker */ 4330 if (ext4_es_register_shrinker(sbi)) 4331 goto failed_mount3; 4332 4333 sbi->s_stripe = ext4_get_stripe_size(sbi); 4334 sbi->s_extent_max_zeroout_kb = 32; 4335 4336 /* 4337 * set up enough so that it can read an inode 4338 */ 4339 sb->s_op = &ext4_sops; 4340 sb->s_export_op = &ext4_export_ops; 4341 sb->s_xattr = ext4_xattr_handlers; 4342 #ifdef CONFIG_FS_ENCRYPTION 4343 sb->s_cop = &ext4_cryptops; 4344 #endif 4345 #ifdef CONFIG_FS_VERITY 4346 sb->s_vop = &ext4_verityops; 4347 #endif 4348 #ifdef CONFIG_QUOTA 4349 sb->dq_op = &ext4_quota_operations; 4350 if (ext4_has_feature_quota(sb)) 4351 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4352 else 4353 sb->s_qcop = &ext4_qctl_operations; 4354 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4355 #endif 4356 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4357 4358 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4359 mutex_init(&sbi->s_orphan_lock); 4360 4361 sb->s_root = NULL; 4362 4363 needs_recovery = (es->s_last_orphan != 0 || 4364 ext4_has_feature_journal_needs_recovery(sb)); 4365 4366 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4367 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4368 goto failed_mount3a; 4369 4370 /* 4371 * The first inode we look at is the journal inode. Don't try 4372 * root first: it may be modified in the journal! 4373 */ 4374 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4375 err = ext4_load_journal(sb, es, journal_devnum); 4376 if (err) 4377 goto failed_mount3a; 4378 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4379 ext4_has_feature_journal_needs_recovery(sb)) { 4380 ext4_msg(sb, KERN_ERR, "required journal recovery " 4381 "suppressed and not mounted read-only"); 4382 goto failed_mount_wq; 4383 } else { 4384 /* Nojournal mode, all journal mount options are illegal */ 4385 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4386 ext4_msg(sb, KERN_ERR, "can't mount with " 4387 "journal_checksum, fs mounted w/o journal"); 4388 goto failed_mount_wq; 4389 } 4390 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4391 ext4_msg(sb, KERN_ERR, "can't mount with " 4392 "journal_async_commit, fs mounted w/o journal"); 4393 goto failed_mount_wq; 4394 } 4395 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4396 ext4_msg(sb, KERN_ERR, "can't mount with " 4397 "commit=%lu, fs mounted w/o journal", 4398 sbi->s_commit_interval / HZ); 4399 goto failed_mount_wq; 4400 } 4401 if (EXT4_MOUNT_DATA_FLAGS & 4402 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4403 ext4_msg(sb, KERN_ERR, "can't mount with " 4404 "data=, fs mounted w/o journal"); 4405 goto failed_mount_wq; 4406 } 4407 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4408 clear_opt(sb, JOURNAL_CHECKSUM); 4409 clear_opt(sb, DATA_FLAGS); 4410 sbi->s_journal = NULL; 4411 needs_recovery = 0; 4412 goto no_journal; 4413 } 4414 4415 if (ext4_has_feature_64bit(sb) && 4416 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4417 JBD2_FEATURE_INCOMPAT_64BIT)) { 4418 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4419 goto failed_mount_wq; 4420 } 4421 4422 if (!set_journal_csum_feature_set(sb)) { 4423 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4424 "feature set"); 4425 goto failed_mount_wq; 4426 } 4427 4428 /* We have now updated the journal if required, so we can 4429 * validate the data journaling mode. */ 4430 switch (test_opt(sb, DATA_FLAGS)) { 4431 case 0: 4432 /* No mode set, assume a default based on the journal 4433 * capabilities: ORDERED_DATA if the journal can 4434 * cope, else JOURNAL_DATA 4435 */ 4436 if (jbd2_journal_check_available_features 4437 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4438 set_opt(sb, ORDERED_DATA); 4439 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4440 } else { 4441 set_opt(sb, JOURNAL_DATA); 4442 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4443 } 4444 break; 4445 4446 case EXT4_MOUNT_ORDERED_DATA: 4447 case EXT4_MOUNT_WRITEBACK_DATA: 4448 if (!jbd2_journal_check_available_features 4449 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4450 ext4_msg(sb, KERN_ERR, "Journal does not support " 4451 "requested data journaling mode"); 4452 goto failed_mount_wq; 4453 } 4454 default: 4455 break; 4456 } 4457 4458 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4459 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4460 ext4_msg(sb, KERN_ERR, "can't mount with " 4461 "journal_async_commit in data=ordered mode"); 4462 goto failed_mount_wq; 4463 } 4464 4465 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4466 4467 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4468 4469 no_journal: 4470 if (!test_opt(sb, NO_MBCACHE)) { 4471 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4472 if (!sbi->s_ea_block_cache) { 4473 ext4_msg(sb, KERN_ERR, 4474 "Failed to create ea_block_cache"); 4475 goto failed_mount_wq; 4476 } 4477 4478 if (ext4_has_feature_ea_inode(sb)) { 4479 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4480 if (!sbi->s_ea_inode_cache) { 4481 ext4_msg(sb, KERN_ERR, 4482 "Failed to create ea_inode_cache"); 4483 goto failed_mount_wq; 4484 } 4485 } 4486 } 4487 4488 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4489 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4490 goto failed_mount_wq; 4491 } 4492 4493 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4494 !ext4_has_feature_encrypt(sb)) { 4495 ext4_set_feature_encrypt(sb); 4496 ext4_commit_super(sb, 1); 4497 } 4498 4499 /* 4500 * Get the # of file system overhead blocks from the 4501 * superblock if present. 4502 */ 4503 if (es->s_overhead_clusters) 4504 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4505 else { 4506 err = ext4_calculate_overhead(sb); 4507 if (err) 4508 goto failed_mount_wq; 4509 } 4510 4511 /* 4512 * The maximum number of concurrent works can be high and 4513 * concurrency isn't really necessary. Limit it to 1. 4514 */ 4515 EXT4_SB(sb)->rsv_conversion_wq = 4516 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4517 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4518 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4519 ret = -ENOMEM; 4520 goto failed_mount4; 4521 } 4522 4523 /* 4524 * The jbd2_journal_load will have done any necessary log recovery, 4525 * so we can safely mount the rest of the filesystem now. 4526 */ 4527 4528 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4529 if (IS_ERR(root)) { 4530 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4531 ret = PTR_ERR(root); 4532 root = NULL; 4533 goto failed_mount4; 4534 } 4535 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4536 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4537 iput(root); 4538 goto failed_mount4; 4539 } 4540 4541 #ifdef CONFIG_UNICODE 4542 if (sbi->s_encoding) 4543 sb->s_d_op = &ext4_dentry_ops; 4544 #endif 4545 4546 sb->s_root = d_make_root(root); 4547 if (!sb->s_root) { 4548 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4549 ret = -ENOMEM; 4550 goto failed_mount4; 4551 } 4552 4553 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4554 if (ret == -EROFS) { 4555 sb->s_flags |= SB_RDONLY; 4556 ret = 0; 4557 } else if (ret) 4558 goto failed_mount4a; 4559 4560 ext4_set_resv_clusters(sb); 4561 4562 err = ext4_setup_system_zone(sb); 4563 if (err) { 4564 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4565 "zone (%d)", err); 4566 goto failed_mount4a; 4567 } 4568 4569 ext4_ext_init(sb); 4570 err = ext4_mb_init(sb); 4571 if (err) { 4572 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4573 err); 4574 goto failed_mount5; 4575 } 4576 4577 block = ext4_count_free_clusters(sb); 4578 ext4_free_blocks_count_set(sbi->s_es, 4579 EXT4_C2B(sbi, block)); 4580 ext4_superblock_csum_set(sb); 4581 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4582 GFP_KERNEL); 4583 if (!err) { 4584 unsigned long freei = ext4_count_free_inodes(sb); 4585 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4586 ext4_superblock_csum_set(sb); 4587 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4588 GFP_KERNEL); 4589 } 4590 if (!err) 4591 err = percpu_counter_init(&sbi->s_dirs_counter, 4592 ext4_count_dirs(sb), GFP_KERNEL); 4593 if (!err) 4594 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4595 GFP_KERNEL); 4596 if (!err) 4597 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4598 4599 if (err) { 4600 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4601 goto failed_mount6; 4602 } 4603 4604 if (ext4_has_feature_flex_bg(sb)) 4605 if (!ext4_fill_flex_info(sb)) { 4606 ext4_msg(sb, KERN_ERR, 4607 "unable to initialize " 4608 "flex_bg meta info!"); 4609 goto failed_mount6; 4610 } 4611 4612 err = ext4_register_li_request(sb, first_not_zeroed); 4613 if (err) 4614 goto failed_mount6; 4615 4616 err = ext4_register_sysfs(sb); 4617 if (err) 4618 goto failed_mount7; 4619 4620 #ifdef CONFIG_QUOTA 4621 /* Enable quota usage during mount. */ 4622 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4623 err = ext4_enable_quotas(sb); 4624 if (err) 4625 goto failed_mount8; 4626 } 4627 #endif /* CONFIG_QUOTA */ 4628 4629 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4630 ext4_orphan_cleanup(sb, es); 4631 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4632 if (needs_recovery) { 4633 ext4_msg(sb, KERN_INFO, "recovery complete"); 4634 ext4_mark_recovery_complete(sb, es); 4635 } 4636 if (EXT4_SB(sb)->s_journal) { 4637 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4638 descr = " journalled data mode"; 4639 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4640 descr = " ordered data mode"; 4641 else 4642 descr = " writeback data mode"; 4643 } else 4644 descr = "out journal"; 4645 4646 if (test_opt(sb, DISCARD)) { 4647 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4648 if (!blk_queue_discard(q)) 4649 ext4_msg(sb, KERN_WARNING, 4650 "mounting with \"discard\" option, but " 4651 "the device does not support discard"); 4652 } 4653 4654 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4655 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4656 "Opts: %.*s%s%s", descr, 4657 (int) sizeof(sbi->s_es->s_mount_opts), 4658 sbi->s_es->s_mount_opts, 4659 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4660 4661 if (es->s_error_count) 4662 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4663 4664 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4665 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4666 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4667 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4668 4669 kfree(orig_data); 4670 return 0; 4671 4672 cantfind_ext4: 4673 if (!silent) 4674 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4675 goto failed_mount; 4676 4677 #ifdef CONFIG_QUOTA 4678 failed_mount8: 4679 ext4_unregister_sysfs(sb); 4680 #endif 4681 failed_mount7: 4682 ext4_unregister_li_request(sb); 4683 failed_mount6: 4684 ext4_mb_release(sb); 4685 if (sbi->s_flex_groups) 4686 kvfree(sbi->s_flex_groups); 4687 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4688 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4689 percpu_counter_destroy(&sbi->s_dirs_counter); 4690 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4691 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 4692 failed_mount5: 4693 ext4_ext_release(sb); 4694 ext4_release_system_zone(sb); 4695 failed_mount4a: 4696 dput(sb->s_root); 4697 sb->s_root = NULL; 4698 failed_mount4: 4699 ext4_msg(sb, KERN_ERR, "mount failed"); 4700 if (EXT4_SB(sb)->rsv_conversion_wq) 4701 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4702 failed_mount_wq: 4703 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4704 sbi->s_ea_inode_cache = NULL; 4705 4706 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4707 sbi->s_ea_block_cache = NULL; 4708 4709 if (sbi->s_journal) { 4710 jbd2_journal_destroy(sbi->s_journal); 4711 sbi->s_journal = NULL; 4712 } 4713 failed_mount3a: 4714 ext4_es_unregister_shrinker(sbi); 4715 failed_mount3: 4716 del_timer_sync(&sbi->s_err_report); 4717 if (sbi->s_mmp_tsk) 4718 kthread_stop(sbi->s_mmp_tsk); 4719 failed_mount2: 4720 for (i = 0; i < db_count; i++) 4721 brelse(sbi->s_group_desc[i]); 4722 kvfree(sbi->s_group_desc); 4723 failed_mount: 4724 if (sbi->s_chksum_driver) 4725 crypto_free_shash(sbi->s_chksum_driver); 4726 4727 #ifdef CONFIG_UNICODE 4728 utf8_unload(sbi->s_encoding); 4729 #endif 4730 4731 #ifdef CONFIG_QUOTA 4732 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4733 kfree(get_qf_name(sb, sbi, i)); 4734 #endif 4735 ext4_blkdev_remove(sbi); 4736 brelse(bh); 4737 out_fail: 4738 sb->s_fs_info = NULL; 4739 kfree(sbi->s_blockgroup_lock); 4740 out_free_base: 4741 kfree(sbi); 4742 kfree(orig_data); 4743 fs_put_dax(dax_dev); 4744 return err ? err : ret; 4745 } 4746 4747 /* 4748 * Setup any per-fs journal parameters now. We'll do this both on 4749 * initial mount, once the journal has been initialised but before we've 4750 * done any recovery; and again on any subsequent remount. 4751 */ 4752 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4753 { 4754 struct ext4_sb_info *sbi = EXT4_SB(sb); 4755 4756 journal->j_commit_interval = sbi->s_commit_interval; 4757 journal->j_min_batch_time = sbi->s_min_batch_time; 4758 journal->j_max_batch_time = sbi->s_max_batch_time; 4759 4760 write_lock(&journal->j_state_lock); 4761 if (test_opt(sb, BARRIER)) 4762 journal->j_flags |= JBD2_BARRIER; 4763 else 4764 journal->j_flags &= ~JBD2_BARRIER; 4765 if (test_opt(sb, DATA_ERR_ABORT)) 4766 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4767 else 4768 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4769 write_unlock(&journal->j_state_lock); 4770 } 4771 4772 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4773 unsigned int journal_inum) 4774 { 4775 struct inode *journal_inode; 4776 4777 /* 4778 * Test for the existence of a valid inode on disk. Bad things 4779 * happen if we iget() an unused inode, as the subsequent iput() 4780 * will try to delete it. 4781 */ 4782 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4783 if (IS_ERR(journal_inode)) { 4784 ext4_msg(sb, KERN_ERR, "no journal found"); 4785 return NULL; 4786 } 4787 if (!journal_inode->i_nlink) { 4788 make_bad_inode(journal_inode); 4789 iput(journal_inode); 4790 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4791 return NULL; 4792 } 4793 4794 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4795 journal_inode, journal_inode->i_size); 4796 if (!S_ISREG(journal_inode->i_mode)) { 4797 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4798 iput(journal_inode); 4799 return NULL; 4800 } 4801 return journal_inode; 4802 } 4803 4804 static journal_t *ext4_get_journal(struct super_block *sb, 4805 unsigned int journal_inum) 4806 { 4807 struct inode *journal_inode; 4808 journal_t *journal; 4809 4810 BUG_ON(!ext4_has_feature_journal(sb)); 4811 4812 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4813 if (!journal_inode) 4814 return NULL; 4815 4816 journal = jbd2_journal_init_inode(journal_inode); 4817 if (!journal) { 4818 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4819 iput(journal_inode); 4820 return NULL; 4821 } 4822 journal->j_private = sb; 4823 ext4_init_journal_params(sb, journal); 4824 return journal; 4825 } 4826 4827 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4828 dev_t j_dev) 4829 { 4830 struct buffer_head *bh; 4831 journal_t *journal; 4832 ext4_fsblk_t start; 4833 ext4_fsblk_t len; 4834 int hblock, blocksize; 4835 ext4_fsblk_t sb_block; 4836 unsigned long offset; 4837 struct ext4_super_block *es; 4838 struct block_device *bdev; 4839 4840 BUG_ON(!ext4_has_feature_journal(sb)); 4841 4842 bdev = ext4_blkdev_get(j_dev, sb); 4843 if (bdev == NULL) 4844 return NULL; 4845 4846 blocksize = sb->s_blocksize; 4847 hblock = bdev_logical_block_size(bdev); 4848 if (blocksize < hblock) { 4849 ext4_msg(sb, KERN_ERR, 4850 "blocksize too small for journal device"); 4851 goto out_bdev; 4852 } 4853 4854 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4855 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4856 set_blocksize(bdev, blocksize); 4857 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4858 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4859 "external journal"); 4860 goto out_bdev; 4861 } 4862 4863 es = (struct ext4_super_block *) (bh->b_data + offset); 4864 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4865 !(le32_to_cpu(es->s_feature_incompat) & 4866 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4867 ext4_msg(sb, KERN_ERR, "external journal has " 4868 "bad superblock"); 4869 brelse(bh); 4870 goto out_bdev; 4871 } 4872 4873 if ((le32_to_cpu(es->s_feature_ro_compat) & 4874 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4875 es->s_checksum != ext4_superblock_csum(sb, es)) { 4876 ext4_msg(sb, KERN_ERR, "external journal has " 4877 "corrupt superblock"); 4878 brelse(bh); 4879 goto out_bdev; 4880 } 4881 4882 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4883 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4884 brelse(bh); 4885 goto out_bdev; 4886 } 4887 4888 len = ext4_blocks_count(es); 4889 start = sb_block + 1; 4890 brelse(bh); /* we're done with the superblock */ 4891 4892 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4893 start, len, blocksize); 4894 if (!journal) { 4895 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4896 goto out_bdev; 4897 } 4898 journal->j_private = sb; 4899 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4900 wait_on_buffer(journal->j_sb_buffer); 4901 if (!buffer_uptodate(journal->j_sb_buffer)) { 4902 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4903 goto out_journal; 4904 } 4905 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4906 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4907 "user (unsupported) - %d", 4908 be32_to_cpu(journal->j_superblock->s_nr_users)); 4909 goto out_journal; 4910 } 4911 EXT4_SB(sb)->journal_bdev = bdev; 4912 ext4_init_journal_params(sb, journal); 4913 return journal; 4914 4915 out_journal: 4916 jbd2_journal_destroy(journal); 4917 out_bdev: 4918 ext4_blkdev_put(bdev); 4919 return NULL; 4920 } 4921 4922 static int ext4_load_journal(struct super_block *sb, 4923 struct ext4_super_block *es, 4924 unsigned long journal_devnum) 4925 { 4926 journal_t *journal; 4927 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4928 dev_t journal_dev; 4929 int err = 0; 4930 int really_read_only; 4931 4932 BUG_ON(!ext4_has_feature_journal(sb)); 4933 4934 if (journal_devnum && 4935 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4936 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4937 "numbers have changed"); 4938 journal_dev = new_decode_dev(journal_devnum); 4939 } else 4940 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4941 4942 really_read_only = bdev_read_only(sb->s_bdev); 4943 4944 /* 4945 * Are we loading a blank journal or performing recovery after a 4946 * crash? For recovery, we need to check in advance whether we 4947 * can get read-write access to the device. 4948 */ 4949 if (ext4_has_feature_journal_needs_recovery(sb)) { 4950 if (sb_rdonly(sb)) { 4951 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4952 "required on readonly filesystem"); 4953 if (really_read_only) { 4954 ext4_msg(sb, KERN_ERR, "write access " 4955 "unavailable, cannot proceed " 4956 "(try mounting with noload)"); 4957 return -EROFS; 4958 } 4959 ext4_msg(sb, KERN_INFO, "write access will " 4960 "be enabled during recovery"); 4961 } 4962 } 4963 4964 if (journal_inum && journal_dev) { 4965 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4966 "and inode journals!"); 4967 return -EINVAL; 4968 } 4969 4970 if (journal_inum) { 4971 if (!(journal = ext4_get_journal(sb, journal_inum))) 4972 return -EINVAL; 4973 } else { 4974 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4975 return -EINVAL; 4976 } 4977 4978 if (!(journal->j_flags & JBD2_BARRIER)) 4979 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4980 4981 if (!ext4_has_feature_journal_needs_recovery(sb)) 4982 err = jbd2_journal_wipe(journal, !really_read_only); 4983 if (!err) { 4984 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4985 if (save) 4986 memcpy(save, ((char *) es) + 4987 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4988 err = jbd2_journal_load(journal); 4989 if (save) 4990 memcpy(((char *) es) + EXT4_S_ERR_START, 4991 save, EXT4_S_ERR_LEN); 4992 kfree(save); 4993 } 4994 4995 if (err) { 4996 ext4_msg(sb, KERN_ERR, "error loading journal"); 4997 jbd2_journal_destroy(journal); 4998 return err; 4999 } 5000 5001 EXT4_SB(sb)->s_journal = journal; 5002 ext4_clear_journal_err(sb, es); 5003 5004 if (!really_read_only && journal_devnum && 5005 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5006 es->s_journal_dev = cpu_to_le32(journal_devnum); 5007 5008 /* Make sure we flush the recovery flag to disk. */ 5009 ext4_commit_super(sb, 1); 5010 } 5011 5012 return 0; 5013 } 5014 5015 static int ext4_commit_super(struct super_block *sb, int sync) 5016 { 5017 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5018 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5019 int error = 0; 5020 5021 if (!sbh || block_device_ejected(sb)) 5022 return error; 5023 5024 /* 5025 * The superblock bh should be mapped, but it might not be if the 5026 * device was hot-removed. Not much we can do but fail the I/O. 5027 */ 5028 if (!buffer_mapped(sbh)) 5029 return error; 5030 5031 /* 5032 * If the file system is mounted read-only, don't update the 5033 * superblock write time. This avoids updating the superblock 5034 * write time when we are mounting the root file system 5035 * read/only but we need to replay the journal; at that point, 5036 * for people who are east of GMT and who make their clock 5037 * tick in localtime for Windows bug-for-bug compatibility, 5038 * the clock is set in the future, and this will cause e2fsck 5039 * to complain and force a full file system check. 5040 */ 5041 if (!(sb->s_flags & SB_RDONLY)) 5042 ext4_update_tstamp(es, s_wtime); 5043 if (sb->s_bdev->bd_part) 5044 es->s_kbytes_written = 5045 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5046 ((part_stat_read(sb->s_bdev->bd_part, 5047 sectors[STAT_WRITE]) - 5048 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5049 else 5050 es->s_kbytes_written = 5051 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5052 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5053 ext4_free_blocks_count_set(es, 5054 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5055 &EXT4_SB(sb)->s_freeclusters_counter))); 5056 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5057 es->s_free_inodes_count = 5058 cpu_to_le32(percpu_counter_sum_positive( 5059 &EXT4_SB(sb)->s_freeinodes_counter)); 5060 BUFFER_TRACE(sbh, "marking dirty"); 5061 ext4_superblock_csum_set(sb); 5062 if (sync) 5063 lock_buffer(sbh); 5064 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5065 /* 5066 * Oh, dear. A previous attempt to write the 5067 * superblock failed. This could happen because the 5068 * USB device was yanked out. Or it could happen to 5069 * be a transient write error and maybe the block will 5070 * be remapped. Nothing we can do but to retry the 5071 * write and hope for the best. 5072 */ 5073 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5074 "superblock detected"); 5075 clear_buffer_write_io_error(sbh); 5076 set_buffer_uptodate(sbh); 5077 } 5078 mark_buffer_dirty(sbh); 5079 if (sync) { 5080 unlock_buffer(sbh); 5081 error = __sync_dirty_buffer(sbh, 5082 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5083 if (buffer_write_io_error(sbh)) { 5084 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5085 "superblock"); 5086 clear_buffer_write_io_error(sbh); 5087 set_buffer_uptodate(sbh); 5088 } 5089 } 5090 return error; 5091 } 5092 5093 /* 5094 * Have we just finished recovery? If so, and if we are mounting (or 5095 * remounting) the filesystem readonly, then we will end up with a 5096 * consistent fs on disk. Record that fact. 5097 */ 5098 static void ext4_mark_recovery_complete(struct super_block *sb, 5099 struct ext4_super_block *es) 5100 { 5101 journal_t *journal = EXT4_SB(sb)->s_journal; 5102 5103 if (!ext4_has_feature_journal(sb)) { 5104 BUG_ON(journal != NULL); 5105 return; 5106 } 5107 jbd2_journal_lock_updates(journal); 5108 if (jbd2_journal_flush(journal) < 0) 5109 goto out; 5110 5111 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5112 ext4_clear_feature_journal_needs_recovery(sb); 5113 ext4_commit_super(sb, 1); 5114 } 5115 5116 out: 5117 jbd2_journal_unlock_updates(journal); 5118 } 5119 5120 /* 5121 * If we are mounting (or read-write remounting) a filesystem whose journal 5122 * has recorded an error from a previous lifetime, move that error to the 5123 * main filesystem now. 5124 */ 5125 static void ext4_clear_journal_err(struct super_block *sb, 5126 struct ext4_super_block *es) 5127 { 5128 journal_t *journal; 5129 int j_errno; 5130 const char *errstr; 5131 5132 BUG_ON(!ext4_has_feature_journal(sb)); 5133 5134 journal = EXT4_SB(sb)->s_journal; 5135 5136 /* 5137 * Now check for any error status which may have been recorded in the 5138 * journal by a prior ext4_error() or ext4_abort() 5139 */ 5140 5141 j_errno = jbd2_journal_errno(journal); 5142 if (j_errno) { 5143 char nbuf[16]; 5144 5145 errstr = ext4_decode_error(sb, j_errno, nbuf); 5146 ext4_warning(sb, "Filesystem error recorded " 5147 "from previous mount: %s", errstr); 5148 ext4_warning(sb, "Marking fs in need of filesystem check."); 5149 5150 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5151 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5152 ext4_commit_super(sb, 1); 5153 5154 jbd2_journal_clear_err(journal); 5155 jbd2_journal_update_sb_errno(journal); 5156 } 5157 } 5158 5159 /* 5160 * Force the running and committing transactions to commit, 5161 * and wait on the commit. 5162 */ 5163 int ext4_force_commit(struct super_block *sb) 5164 { 5165 journal_t *journal; 5166 5167 if (sb_rdonly(sb)) 5168 return 0; 5169 5170 journal = EXT4_SB(sb)->s_journal; 5171 return ext4_journal_force_commit(journal); 5172 } 5173 5174 static int ext4_sync_fs(struct super_block *sb, int wait) 5175 { 5176 int ret = 0; 5177 tid_t target; 5178 bool needs_barrier = false; 5179 struct ext4_sb_info *sbi = EXT4_SB(sb); 5180 5181 if (unlikely(ext4_forced_shutdown(sbi))) 5182 return 0; 5183 5184 trace_ext4_sync_fs(sb, wait); 5185 flush_workqueue(sbi->rsv_conversion_wq); 5186 /* 5187 * Writeback quota in non-journalled quota case - journalled quota has 5188 * no dirty dquots 5189 */ 5190 dquot_writeback_dquots(sb, -1); 5191 /* 5192 * Data writeback is possible w/o journal transaction, so barrier must 5193 * being sent at the end of the function. But we can skip it if 5194 * transaction_commit will do it for us. 5195 */ 5196 if (sbi->s_journal) { 5197 target = jbd2_get_latest_transaction(sbi->s_journal); 5198 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5199 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5200 needs_barrier = true; 5201 5202 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5203 if (wait) 5204 ret = jbd2_log_wait_commit(sbi->s_journal, 5205 target); 5206 } 5207 } else if (wait && test_opt(sb, BARRIER)) 5208 needs_barrier = true; 5209 if (needs_barrier) { 5210 int err; 5211 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5212 if (!ret) 5213 ret = err; 5214 } 5215 5216 return ret; 5217 } 5218 5219 /* 5220 * LVM calls this function before a (read-only) snapshot is created. This 5221 * gives us a chance to flush the journal completely and mark the fs clean. 5222 * 5223 * Note that only this function cannot bring a filesystem to be in a clean 5224 * state independently. It relies on upper layer to stop all data & metadata 5225 * modifications. 5226 */ 5227 static int ext4_freeze(struct super_block *sb) 5228 { 5229 int error = 0; 5230 journal_t *journal; 5231 5232 if (sb_rdonly(sb)) 5233 return 0; 5234 5235 journal = EXT4_SB(sb)->s_journal; 5236 5237 if (journal) { 5238 /* Now we set up the journal barrier. */ 5239 jbd2_journal_lock_updates(journal); 5240 5241 /* 5242 * Don't clear the needs_recovery flag if we failed to 5243 * flush the journal. 5244 */ 5245 error = jbd2_journal_flush(journal); 5246 if (error < 0) 5247 goto out; 5248 5249 /* Journal blocked and flushed, clear needs_recovery flag. */ 5250 ext4_clear_feature_journal_needs_recovery(sb); 5251 } 5252 5253 error = ext4_commit_super(sb, 1); 5254 out: 5255 if (journal) 5256 /* we rely on upper layer to stop further updates */ 5257 jbd2_journal_unlock_updates(journal); 5258 return error; 5259 } 5260 5261 /* 5262 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5263 * flag here, even though the filesystem is not technically dirty yet. 5264 */ 5265 static int ext4_unfreeze(struct super_block *sb) 5266 { 5267 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5268 return 0; 5269 5270 if (EXT4_SB(sb)->s_journal) { 5271 /* Reset the needs_recovery flag before the fs is unlocked. */ 5272 ext4_set_feature_journal_needs_recovery(sb); 5273 } 5274 5275 ext4_commit_super(sb, 1); 5276 return 0; 5277 } 5278 5279 /* 5280 * Structure to save mount options for ext4_remount's benefit 5281 */ 5282 struct ext4_mount_options { 5283 unsigned long s_mount_opt; 5284 unsigned long s_mount_opt2; 5285 kuid_t s_resuid; 5286 kgid_t s_resgid; 5287 unsigned long s_commit_interval; 5288 u32 s_min_batch_time, s_max_batch_time; 5289 #ifdef CONFIG_QUOTA 5290 int s_jquota_fmt; 5291 char *s_qf_names[EXT4_MAXQUOTAS]; 5292 #endif 5293 }; 5294 5295 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5296 { 5297 struct ext4_super_block *es; 5298 struct ext4_sb_info *sbi = EXT4_SB(sb); 5299 unsigned long old_sb_flags; 5300 struct ext4_mount_options old_opts; 5301 int enable_quota = 0; 5302 ext4_group_t g; 5303 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5304 int err = 0; 5305 #ifdef CONFIG_QUOTA 5306 int i, j; 5307 char *to_free[EXT4_MAXQUOTAS]; 5308 #endif 5309 char *orig_data = kstrdup(data, GFP_KERNEL); 5310 5311 if (data && !orig_data) 5312 return -ENOMEM; 5313 5314 /* Store the original options */ 5315 old_sb_flags = sb->s_flags; 5316 old_opts.s_mount_opt = sbi->s_mount_opt; 5317 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5318 old_opts.s_resuid = sbi->s_resuid; 5319 old_opts.s_resgid = sbi->s_resgid; 5320 old_opts.s_commit_interval = sbi->s_commit_interval; 5321 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5322 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5323 #ifdef CONFIG_QUOTA 5324 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5325 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5326 if (sbi->s_qf_names[i]) { 5327 char *qf_name = get_qf_name(sb, sbi, i); 5328 5329 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5330 if (!old_opts.s_qf_names[i]) { 5331 for (j = 0; j < i; j++) 5332 kfree(old_opts.s_qf_names[j]); 5333 kfree(orig_data); 5334 return -ENOMEM; 5335 } 5336 } else 5337 old_opts.s_qf_names[i] = NULL; 5338 #endif 5339 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5340 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5341 5342 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5343 err = -EINVAL; 5344 goto restore_opts; 5345 } 5346 5347 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5348 test_opt(sb, JOURNAL_CHECKSUM)) { 5349 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5350 "during remount not supported; ignoring"); 5351 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5352 } 5353 5354 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5355 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5356 ext4_msg(sb, KERN_ERR, "can't mount with " 5357 "both data=journal and delalloc"); 5358 err = -EINVAL; 5359 goto restore_opts; 5360 } 5361 if (test_opt(sb, DIOREAD_NOLOCK)) { 5362 ext4_msg(sb, KERN_ERR, "can't mount with " 5363 "both data=journal and dioread_nolock"); 5364 err = -EINVAL; 5365 goto restore_opts; 5366 } 5367 if (test_opt(sb, DAX)) { 5368 ext4_msg(sb, KERN_ERR, "can't mount with " 5369 "both data=journal and dax"); 5370 err = -EINVAL; 5371 goto restore_opts; 5372 } 5373 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5374 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5375 ext4_msg(sb, KERN_ERR, "can't mount with " 5376 "journal_async_commit in data=ordered mode"); 5377 err = -EINVAL; 5378 goto restore_opts; 5379 } 5380 } 5381 5382 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5383 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5384 err = -EINVAL; 5385 goto restore_opts; 5386 } 5387 5388 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5389 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5390 "dax flag with busy inodes while remounting"); 5391 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5392 } 5393 5394 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5395 ext4_abort(sb, "Abort forced by user"); 5396 5397 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5398 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5399 5400 es = sbi->s_es; 5401 5402 if (sbi->s_journal) { 5403 ext4_init_journal_params(sb, sbi->s_journal); 5404 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5405 } 5406 5407 if (*flags & SB_LAZYTIME) 5408 sb->s_flags |= SB_LAZYTIME; 5409 5410 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5411 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5412 err = -EROFS; 5413 goto restore_opts; 5414 } 5415 5416 if (*flags & SB_RDONLY) { 5417 err = sync_filesystem(sb); 5418 if (err < 0) 5419 goto restore_opts; 5420 err = dquot_suspend(sb, -1); 5421 if (err < 0) 5422 goto restore_opts; 5423 5424 /* 5425 * First of all, the unconditional stuff we have to do 5426 * to disable replay of the journal when we next remount 5427 */ 5428 sb->s_flags |= SB_RDONLY; 5429 5430 /* 5431 * OK, test if we are remounting a valid rw partition 5432 * readonly, and if so set the rdonly flag and then 5433 * mark the partition as valid again. 5434 */ 5435 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5436 (sbi->s_mount_state & EXT4_VALID_FS)) 5437 es->s_state = cpu_to_le16(sbi->s_mount_state); 5438 5439 if (sbi->s_journal) 5440 ext4_mark_recovery_complete(sb, es); 5441 if (sbi->s_mmp_tsk) 5442 kthread_stop(sbi->s_mmp_tsk); 5443 } else { 5444 /* Make sure we can mount this feature set readwrite */ 5445 if (ext4_has_feature_readonly(sb) || 5446 !ext4_feature_set_ok(sb, 0)) { 5447 err = -EROFS; 5448 goto restore_opts; 5449 } 5450 /* 5451 * Make sure the group descriptor checksums 5452 * are sane. If they aren't, refuse to remount r/w. 5453 */ 5454 for (g = 0; g < sbi->s_groups_count; g++) { 5455 struct ext4_group_desc *gdp = 5456 ext4_get_group_desc(sb, g, NULL); 5457 5458 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5459 ext4_msg(sb, KERN_ERR, 5460 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5461 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5462 le16_to_cpu(gdp->bg_checksum)); 5463 err = -EFSBADCRC; 5464 goto restore_opts; 5465 } 5466 } 5467 5468 /* 5469 * If we have an unprocessed orphan list hanging 5470 * around from a previously readonly bdev mount, 5471 * require a full umount/remount for now. 5472 */ 5473 if (es->s_last_orphan) { 5474 ext4_msg(sb, KERN_WARNING, "Couldn't " 5475 "remount RDWR because of unprocessed " 5476 "orphan inode list. Please " 5477 "umount/remount instead"); 5478 err = -EINVAL; 5479 goto restore_opts; 5480 } 5481 5482 /* 5483 * Mounting a RDONLY partition read-write, so reread 5484 * and store the current valid flag. (It may have 5485 * been changed by e2fsck since we originally mounted 5486 * the partition.) 5487 */ 5488 if (sbi->s_journal) 5489 ext4_clear_journal_err(sb, es); 5490 sbi->s_mount_state = le16_to_cpu(es->s_state); 5491 5492 err = ext4_setup_super(sb, es, 0); 5493 if (err) 5494 goto restore_opts; 5495 5496 sb->s_flags &= ~SB_RDONLY; 5497 if (ext4_has_feature_mmp(sb)) 5498 if (ext4_multi_mount_protect(sb, 5499 le64_to_cpu(es->s_mmp_block))) { 5500 err = -EROFS; 5501 goto restore_opts; 5502 } 5503 enable_quota = 1; 5504 } 5505 } 5506 5507 /* 5508 * Reinitialize lazy itable initialization thread based on 5509 * current settings 5510 */ 5511 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5512 ext4_unregister_li_request(sb); 5513 else { 5514 ext4_group_t first_not_zeroed; 5515 first_not_zeroed = ext4_has_uninit_itable(sb); 5516 ext4_register_li_request(sb, first_not_zeroed); 5517 } 5518 5519 ext4_setup_system_zone(sb); 5520 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5521 err = ext4_commit_super(sb, 1); 5522 if (err) 5523 goto restore_opts; 5524 } 5525 5526 #ifdef CONFIG_QUOTA 5527 /* Release old quota file names */ 5528 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5529 kfree(old_opts.s_qf_names[i]); 5530 if (enable_quota) { 5531 if (sb_any_quota_suspended(sb)) 5532 dquot_resume(sb, -1); 5533 else if (ext4_has_feature_quota(sb)) { 5534 err = ext4_enable_quotas(sb); 5535 if (err) 5536 goto restore_opts; 5537 } 5538 } 5539 #endif 5540 5541 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5542 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5543 kfree(orig_data); 5544 return 0; 5545 5546 restore_opts: 5547 sb->s_flags = old_sb_flags; 5548 sbi->s_mount_opt = old_opts.s_mount_opt; 5549 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5550 sbi->s_resuid = old_opts.s_resuid; 5551 sbi->s_resgid = old_opts.s_resgid; 5552 sbi->s_commit_interval = old_opts.s_commit_interval; 5553 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5554 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5555 #ifdef CONFIG_QUOTA 5556 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5557 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5558 to_free[i] = get_qf_name(sb, sbi, i); 5559 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5560 } 5561 synchronize_rcu(); 5562 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5563 kfree(to_free[i]); 5564 #endif 5565 kfree(orig_data); 5566 return err; 5567 } 5568 5569 #ifdef CONFIG_QUOTA 5570 static int ext4_statfs_project(struct super_block *sb, 5571 kprojid_t projid, struct kstatfs *buf) 5572 { 5573 struct kqid qid; 5574 struct dquot *dquot; 5575 u64 limit; 5576 u64 curblock; 5577 5578 qid = make_kqid_projid(projid); 5579 dquot = dqget(sb, qid); 5580 if (IS_ERR(dquot)) 5581 return PTR_ERR(dquot); 5582 spin_lock(&dquot->dq_dqb_lock); 5583 5584 limit = dquot->dq_dqb.dqb_bsoftlimit; 5585 if (dquot->dq_dqb.dqb_bhardlimit && 5586 (!limit || dquot->dq_dqb.dqb_bhardlimit < limit)) 5587 limit = dquot->dq_dqb.dqb_bhardlimit; 5588 limit >>= sb->s_blocksize_bits; 5589 5590 if (limit && buf->f_blocks > limit) { 5591 curblock = (dquot->dq_dqb.dqb_curspace + 5592 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5593 buf->f_blocks = limit; 5594 buf->f_bfree = buf->f_bavail = 5595 (buf->f_blocks > curblock) ? 5596 (buf->f_blocks - curblock) : 0; 5597 } 5598 5599 limit = dquot->dq_dqb.dqb_isoftlimit; 5600 if (dquot->dq_dqb.dqb_ihardlimit && 5601 (!limit || dquot->dq_dqb.dqb_ihardlimit < limit)) 5602 limit = dquot->dq_dqb.dqb_ihardlimit; 5603 5604 if (limit && buf->f_files > limit) { 5605 buf->f_files = limit; 5606 buf->f_ffree = 5607 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5608 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5609 } 5610 5611 spin_unlock(&dquot->dq_dqb_lock); 5612 dqput(dquot); 5613 return 0; 5614 } 5615 #endif 5616 5617 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5618 { 5619 struct super_block *sb = dentry->d_sb; 5620 struct ext4_sb_info *sbi = EXT4_SB(sb); 5621 struct ext4_super_block *es = sbi->s_es; 5622 ext4_fsblk_t overhead = 0, resv_blocks; 5623 u64 fsid; 5624 s64 bfree; 5625 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5626 5627 if (!test_opt(sb, MINIX_DF)) 5628 overhead = sbi->s_overhead; 5629 5630 buf->f_type = EXT4_SUPER_MAGIC; 5631 buf->f_bsize = sb->s_blocksize; 5632 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5633 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5634 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5635 /* prevent underflow in case that few free space is available */ 5636 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5637 buf->f_bavail = buf->f_bfree - 5638 (ext4_r_blocks_count(es) + resv_blocks); 5639 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5640 buf->f_bavail = 0; 5641 buf->f_files = le32_to_cpu(es->s_inodes_count); 5642 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5643 buf->f_namelen = EXT4_NAME_LEN; 5644 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5645 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5646 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5647 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5648 5649 #ifdef CONFIG_QUOTA 5650 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5651 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5652 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5653 #endif 5654 return 0; 5655 } 5656 5657 5658 #ifdef CONFIG_QUOTA 5659 5660 /* 5661 * Helper functions so that transaction is started before we acquire dqio_sem 5662 * to keep correct lock ordering of transaction > dqio_sem 5663 */ 5664 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5665 { 5666 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5667 } 5668 5669 static int ext4_write_dquot(struct dquot *dquot) 5670 { 5671 int ret, err; 5672 handle_t *handle; 5673 struct inode *inode; 5674 5675 inode = dquot_to_inode(dquot); 5676 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5677 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5678 if (IS_ERR(handle)) 5679 return PTR_ERR(handle); 5680 ret = dquot_commit(dquot); 5681 err = ext4_journal_stop(handle); 5682 if (!ret) 5683 ret = err; 5684 return ret; 5685 } 5686 5687 static int ext4_acquire_dquot(struct dquot *dquot) 5688 { 5689 int ret, err; 5690 handle_t *handle; 5691 5692 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5693 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5694 if (IS_ERR(handle)) 5695 return PTR_ERR(handle); 5696 ret = dquot_acquire(dquot); 5697 err = ext4_journal_stop(handle); 5698 if (!ret) 5699 ret = err; 5700 return ret; 5701 } 5702 5703 static int ext4_release_dquot(struct dquot *dquot) 5704 { 5705 int ret, err; 5706 handle_t *handle; 5707 5708 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5709 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5710 if (IS_ERR(handle)) { 5711 /* Release dquot anyway to avoid endless cycle in dqput() */ 5712 dquot_release(dquot); 5713 return PTR_ERR(handle); 5714 } 5715 ret = dquot_release(dquot); 5716 err = ext4_journal_stop(handle); 5717 if (!ret) 5718 ret = err; 5719 return ret; 5720 } 5721 5722 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5723 { 5724 struct super_block *sb = dquot->dq_sb; 5725 struct ext4_sb_info *sbi = EXT4_SB(sb); 5726 5727 /* Are we journaling quotas? */ 5728 if (ext4_has_feature_quota(sb) || 5729 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5730 dquot_mark_dquot_dirty(dquot); 5731 return ext4_write_dquot(dquot); 5732 } else { 5733 return dquot_mark_dquot_dirty(dquot); 5734 } 5735 } 5736 5737 static int ext4_write_info(struct super_block *sb, int type) 5738 { 5739 int ret, err; 5740 handle_t *handle; 5741 5742 /* Data block + inode block */ 5743 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5744 if (IS_ERR(handle)) 5745 return PTR_ERR(handle); 5746 ret = dquot_commit_info(sb, type); 5747 err = ext4_journal_stop(handle); 5748 if (!ret) 5749 ret = err; 5750 return ret; 5751 } 5752 5753 /* 5754 * Turn on quotas during mount time - we need to find 5755 * the quota file and such... 5756 */ 5757 static int ext4_quota_on_mount(struct super_block *sb, int type) 5758 { 5759 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5760 EXT4_SB(sb)->s_jquota_fmt, type); 5761 } 5762 5763 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5764 { 5765 struct ext4_inode_info *ei = EXT4_I(inode); 5766 5767 /* The first argument of lockdep_set_subclass has to be 5768 * *exactly* the same as the argument to init_rwsem() --- in 5769 * this case, in init_once() --- or lockdep gets unhappy 5770 * because the name of the lock is set using the 5771 * stringification of the argument to init_rwsem(). 5772 */ 5773 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5774 lockdep_set_subclass(&ei->i_data_sem, subclass); 5775 } 5776 5777 /* 5778 * Standard function to be called on quota_on 5779 */ 5780 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5781 const struct path *path) 5782 { 5783 int err; 5784 5785 if (!test_opt(sb, QUOTA)) 5786 return -EINVAL; 5787 5788 /* Quotafile not on the same filesystem? */ 5789 if (path->dentry->d_sb != sb) 5790 return -EXDEV; 5791 /* Journaling quota? */ 5792 if (EXT4_SB(sb)->s_qf_names[type]) { 5793 /* Quotafile not in fs root? */ 5794 if (path->dentry->d_parent != sb->s_root) 5795 ext4_msg(sb, KERN_WARNING, 5796 "Quota file not on filesystem root. " 5797 "Journaled quota will not work"); 5798 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5799 } else { 5800 /* 5801 * Clear the flag just in case mount options changed since 5802 * last time. 5803 */ 5804 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5805 } 5806 5807 /* 5808 * When we journal data on quota file, we have to flush journal to see 5809 * all updates to the file when we bypass pagecache... 5810 */ 5811 if (EXT4_SB(sb)->s_journal && 5812 ext4_should_journal_data(d_inode(path->dentry))) { 5813 /* 5814 * We don't need to lock updates but journal_flush() could 5815 * otherwise be livelocked... 5816 */ 5817 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5818 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5819 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5820 if (err) 5821 return err; 5822 } 5823 5824 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5825 err = dquot_quota_on(sb, type, format_id, path); 5826 if (err) { 5827 lockdep_set_quota_inode(path->dentry->d_inode, 5828 I_DATA_SEM_NORMAL); 5829 } else { 5830 struct inode *inode = d_inode(path->dentry); 5831 handle_t *handle; 5832 5833 /* 5834 * Set inode flags to prevent userspace from messing with quota 5835 * files. If this fails, we return success anyway since quotas 5836 * are already enabled and this is not a hard failure. 5837 */ 5838 inode_lock(inode); 5839 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5840 if (IS_ERR(handle)) 5841 goto unlock_inode; 5842 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5843 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5844 S_NOATIME | S_IMMUTABLE); 5845 ext4_mark_inode_dirty(handle, inode); 5846 ext4_journal_stop(handle); 5847 unlock_inode: 5848 inode_unlock(inode); 5849 } 5850 return err; 5851 } 5852 5853 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5854 unsigned int flags) 5855 { 5856 int err; 5857 struct inode *qf_inode; 5858 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5859 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5860 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5861 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5862 }; 5863 5864 BUG_ON(!ext4_has_feature_quota(sb)); 5865 5866 if (!qf_inums[type]) 5867 return -EPERM; 5868 5869 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5870 if (IS_ERR(qf_inode)) { 5871 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5872 return PTR_ERR(qf_inode); 5873 } 5874 5875 /* Don't account quota for quota files to avoid recursion */ 5876 qf_inode->i_flags |= S_NOQUOTA; 5877 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5878 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 5879 if (err) 5880 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5881 iput(qf_inode); 5882 5883 return err; 5884 } 5885 5886 /* Enable usage tracking for all quota types. */ 5887 static int ext4_enable_quotas(struct super_block *sb) 5888 { 5889 int type, err = 0; 5890 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5891 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5892 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5893 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5894 }; 5895 bool quota_mopt[EXT4_MAXQUOTAS] = { 5896 test_opt(sb, USRQUOTA), 5897 test_opt(sb, GRPQUOTA), 5898 test_opt(sb, PRJQUOTA), 5899 }; 5900 5901 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5902 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5903 if (qf_inums[type]) { 5904 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5905 DQUOT_USAGE_ENABLED | 5906 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5907 if (err) { 5908 ext4_warning(sb, 5909 "Failed to enable quota tracking " 5910 "(type=%d, err=%d). Please run " 5911 "e2fsck to fix.", type, err); 5912 for (type--; type >= 0; type--) 5913 dquot_quota_off(sb, type); 5914 5915 return err; 5916 } 5917 } 5918 } 5919 return 0; 5920 } 5921 5922 static int ext4_quota_off(struct super_block *sb, int type) 5923 { 5924 struct inode *inode = sb_dqopt(sb)->files[type]; 5925 handle_t *handle; 5926 int err; 5927 5928 /* Force all delayed allocation blocks to be allocated. 5929 * Caller already holds s_umount sem */ 5930 if (test_opt(sb, DELALLOC)) 5931 sync_filesystem(sb); 5932 5933 if (!inode || !igrab(inode)) 5934 goto out; 5935 5936 err = dquot_quota_off(sb, type); 5937 if (err || ext4_has_feature_quota(sb)) 5938 goto out_put; 5939 5940 inode_lock(inode); 5941 /* 5942 * Update modification times of quota files when userspace can 5943 * start looking at them. If we fail, we return success anyway since 5944 * this is not a hard failure and quotas are already disabled. 5945 */ 5946 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5947 if (IS_ERR(handle)) 5948 goto out_unlock; 5949 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5950 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5951 inode->i_mtime = inode->i_ctime = current_time(inode); 5952 ext4_mark_inode_dirty(handle, inode); 5953 ext4_journal_stop(handle); 5954 out_unlock: 5955 inode_unlock(inode); 5956 out_put: 5957 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5958 iput(inode); 5959 return err; 5960 out: 5961 return dquot_quota_off(sb, type); 5962 } 5963 5964 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5965 * acquiring the locks... As quota files are never truncated and quota code 5966 * itself serializes the operations (and no one else should touch the files) 5967 * we don't have to be afraid of races */ 5968 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5969 size_t len, loff_t off) 5970 { 5971 struct inode *inode = sb_dqopt(sb)->files[type]; 5972 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5973 int offset = off & (sb->s_blocksize - 1); 5974 int tocopy; 5975 size_t toread; 5976 struct buffer_head *bh; 5977 loff_t i_size = i_size_read(inode); 5978 5979 if (off > i_size) 5980 return 0; 5981 if (off+len > i_size) 5982 len = i_size-off; 5983 toread = len; 5984 while (toread > 0) { 5985 tocopy = sb->s_blocksize - offset < toread ? 5986 sb->s_blocksize - offset : toread; 5987 bh = ext4_bread(NULL, inode, blk, 0); 5988 if (IS_ERR(bh)) 5989 return PTR_ERR(bh); 5990 if (!bh) /* A hole? */ 5991 memset(data, 0, tocopy); 5992 else 5993 memcpy(data, bh->b_data+offset, tocopy); 5994 brelse(bh); 5995 offset = 0; 5996 toread -= tocopy; 5997 data += tocopy; 5998 blk++; 5999 } 6000 return len; 6001 } 6002 6003 /* Write to quotafile (we know the transaction is already started and has 6004 * enough credits) */ 6005 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6006 const char *data, size_t len, loff_t off) 6007 { 6008 struct inode *inode = sb_dqopt(sb)->files[type]; 6009 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6010 int err, offset = off & (sb->s_blocksize - 1); 6011 int retries = 0; 6012 struct buffer_head *bh; 6013 handle_t *handle = journal_current_handle(); 6014 6015 if (EXT4_SB(sb)->s_journal && !handle) { 6016 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6017 " cancelled because transaction is not started", 6018 (unsigned long long)off, (unsigned long long)len); 6019 return -EIO; 6020 } 6021 /* 6022 * Since we account only one data block in transaction credits, 6023 * then it is impossible to cross a block boundary. 6024 */ 6025 if (sb->s_blocksize - offset < len) { 6026 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6027 " cancelled because not block aligned", 6028 (unsigned long long)off, (unsigned long long)len); 6029 return -EIO; 6030 } 6031 6032 do { 6033 bh = ext4_bread(handle, inode, blk, 6034 EXT4_GET_BLOCKS_CREATE | 6035 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6036 } while (PTR_ERR(bh) == -ENOSPC && 6037 ext4_should_retry_alloc(inode->i_sb, &retries)); 6038 if (IS_ERR(bh)) 6039 return PTR_ERR(bh); 6040 if (!bh) 6041 goto out; 6042 BUFFER_TRACE(bh, "get write access"); 6043 err = ext4_journal_get_write_access(handle, bh); 6044 if (err) { 6045 brelse(bh); 6046 return err; 6047 } 6048 lock_buffer(bh); 6049 memcpy(bh->b_data+offset, data, len); 6050 flush_dcache_page(bh->b_page); 6051 unlock_buffer(bh); 6052 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6053 brelse(bh); 6054 out: 6055 if (inode->i_size < off + len) { 6056 i_size_write(inode, off + len); 6057 EXT4_I(inode)->i_disksize = inode->i_size; 6058 ext4_mark_inode_dirty(handle, inode); 6059 } 6060 return len; 6061 } 6062 #endif 6063 6064 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6065 const char *dev_name, void *data) 6066 { 6067 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6068 } 6069 6070 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6071 static inline void register_as_ext2(void) 6072 { 6073 int err = register_filesystem(&ext2_fs_type); 6074 if (err) 6075 printk(KERN_WARNING 6076 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6077 } 6078 6079 static inline void unregister_as_ext2(void) 6080 { 6081 unregister_filesystem(&ext2_fs_type); 6082 } 6083 6084 static inline int ext2_feature_set_ok(struct super_block *sb) 6085 { 6086 if (ext4_has_unknown_ext2_incompat_features(sb)) 6087 return 0; 6088 if (sb_rdonly(sb)) 6089 return 1; 6090 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6091 return 0; 6092 return 1; 6093 } 6094 #else 6095 static inline void register_as_ext2(void) { } 6096 static inline void unregister_as_ext2(void) { } 6097 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6098 #endif 6099 6100 static inline void register_as_ext3(void) 6101 { 6102 int err = register_filesystem(&ext3_fs_type); 6103 if (err) 6104 printk(KERN_WARNING 6105 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6106 } 6107 6108 static inline void unregister_as_ext3(void) 6109 { 6110 unregister_filesystem(&ext3_fs_type); 6111 } 6112 6113 static inline int ext3_feature_set_ok(struct super_block *sb) 6114 { 6115 if (ext4_has_unknown_ext3_incompat_features(sb)) 6116 return 0; 6117 if (!ext4_has_feature_journal(sb)) 6118 return 0; 6119 if (sb_rdonly(sb)) 6120 return 1; 6121 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6122 return 0; 6123 return 1; 6124 } 6125 6126 static struct file_system_type ext4_fs_type = { 6127 .owner = THIS_MODULE, 6128 .name = "ext4", 6129 .mount = ext4_mount, 6130 .kill_sb = kill_block_super, 6131 .fs_flags = FS_REQUIRES_DEV, 6132 }; 6133 MODULE_ALIAS_FS("ext4"); 6134 6135 /* Shared across all ext4 file systems */ 6136 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6137 6138 static int __init ext4_init_fs(void) 6139 { 6140 int i, err; 6141 6142 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6143 ext4_li_info = NULL; 6144 mutex_init(&ext4_li_mtx); 6145 6146 /* Build-time check for flags consistency */ 6147 ext4_check_flag_values(); 6148 6149 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6150 init_waitqueue_head(&ext4__ioend_wq[i]); 6151 6152 err = ext4_init_es(); 6153 if (err) 6154 return err; 6155 6156 err = ext4_init_pending(); 6157 if (err) 6158 goto out7; 6159 6160 err = ext4_init_post_read_processing(); 6161 if (err) 6162 goto out6; 6163 6164 err = ext4_init_pageio(); 6165 if (err) 6166 goto out5; 6167 6168 err = ext4_init_system_zone(); 6169 if (err) 6170 goto out4; 6171 6172 err = ext4_init_sysfs(); 6173 if (err) 6174 goto out3; 6175 6176 err = ext4_init_mballoc(); 6177 if (err) 6178 goto out2; 6179 err = init_inodecache(); 6180 if (err) 6181 goto out1; 6182 register_as_ext3(); 6183 register_as_ext2(); 6184 err = register_filesystem(&ext4_fs_type); 6185 if (err) 6186 goto out; 6187 6188 return 0; 6189 out: 6190 unregister_as_ext2(); 6191 unregister_as_ext3(); 6192 destroy_inodecache(); 6193 out1: 6194 ext4_exit_mballoc(); 6195 out2: 6196 ext4_exit_sysfs(); 6197 out3: 6198 ext4_exit_system_zone(); 6199 out4: 6200 ext4_exit_pageio(); 6201 out5: 6202 ext4_exit_post_read_processing(); 6203 out6: 6204 ext4_exit_pending(); 6205 out7: 6206 ext4_exit_es(); 6207 6208 return err; 6209 } 6210 6211 static void __exit ext4_exit_fs(void) 6212 { 6213 ext4_destroy_lazyinit_thread(); 6214 unregister_as_ext2(); 6215 unregister_as_ext3(); 6216 unregister_filesystem(&ext4_fs_type); 6217 destroy_inodecache(); 6218 ext4_exit_mballoc(); 6219 ext4_exit_sysfs(); 6220 ext4_exit_system_zone(); 6221 ext4_exit_pageio(); 6222 ext4_exit_post_read_processing(); 6223 ext4_exit_es(); 6224 ext4_exit_pending(); 6225 } 6226 6227 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6228 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6229 MODULE_LICENSE("GPL"); 6230 MODULE_SOFTDEP("pre: crc32c"); 6231 module_init(ext4_init_fs) 6232 module_exit(ext4_exit_fs) 6233