1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static int ext4_mballoc_ready; 59 static struct ratelimit_state ext4_mount_msg_ratelimit; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static int ext4_remount(struct super_block *sb, int *flags, char *data); 71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 72 static int ext4_unfreeze(struct super_block *sb); 73 static int ext4_freeze(struct super_block *sb); 74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 75 const char *dev_name, void *data); 76 static inline int ext2_feature_set_ok(struct super_block *sb); 77 static inline int ext3_feature_set_ok(struct super_block *sb); 78 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 79 static void ext4_destroy_lazyinit_thread(void); 80 static void ext4_unregister_li_request(struct super_block *sb); 81 static void ext4_clear_request_list(void); 82 83 /* 84 * Lock ordering 85 * 86 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 87 * i_mmap_rwsem (inode->i_mmap_rwsem)! 88 * 89 * page fault path: 90 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 91 * page lock -> i_data_sem (rw) 92 * 93 * buffered write path: 94 * sb_start_write -> i_mutex -> mmap_sem 95 * sb_start_write -> i_mutex -> transaction start -> page lock -> 96 * i_data_sem (rw) 97 * 98 * truncate: 99 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 100 * i_mmap_rwsem (w) -> page lock 101 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 102 * transaction start -> i_data_sem (rw) 103 * 104 * direct IO: 105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 107 * transaction start -> i_data_sem (rw) 108 * 109 * writepages: 110 * transaction start -> page lock(s) -> i_data_sem (rw) 111 */ 112 113 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 114 static struct file_system_type ext2_fs_type = { 115 .owner = THIS_MODULE, 116 .name = "ext2", 117 .mount = ext4_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 MODULE_ALIAS_FS("ext2"); 122 MODULE_ALIAS("ext2"); 123 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 124 #else 125 #define IS_EXT2_SB(sb) (0) 126 #endif 127 128 129 static struct file_system_type ext3_fs_type = { 130 .owner = THIS_MODULE, 131 .name = "ext3", 132 .mount = ext4_mount, 133 .kill_sb = kill_block_super, 134 .fs_flags = FS_REQUIRES_DEV, 135 }; 136 MODULE_ALIAS_FS("ext3"); 137 MODULE_ALIAS("ext3"); 138 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 139 140 static int ext4_verify_csum_type(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!ext4_has_feature_metadata_csum(sb)) 144 return 1; 145 146 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 147 } 148 149 static __le32 ext4_superblock_csum(struct super_block *sb, 150 struct ext4_super_block *es) 151 { 152 struct ext4_sb_info *sbi = EXT4_SB(sb); 153 int offset = offsetof(struct ext4_super_block, s_checksum); 154 __u32 csum; 155 156 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 157 158 return cpu_to_le32(csum); 159 } 160 161 static int ext4_superblock_csum_verify(struct super_block *sb, 162 struct ext4_super_block *es) 163 { 164 if (!ext4_has_metadata_csum(sb)) 165 return 1; 166 167 return es->s_checksum == ext4_superblock_csum(sb, es); 168 } 169 170 void ext4_superblock_csum_set(struct super_block *sb) 171 { 172 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 173 174 if (!ext4_has_metadata_csum(sb)) 175 return; 176 177 es->s_checksum = ext4_superblock_csum(sb, es); 178 } 179 180 void *ext4_kvmalloc(size_t size, gfp_t flags) 181 { 182 void *ret; 183 184 ret = kmalloc(size, flags | __GFP_NOWARN); 185 if (!ret) 186 ret = __vmalloc(size, flags, PAGE_KERNEL); 187 return ret; 188 } 189 190 void *ext4_kvzalloc(size_t size, gfp_t flags) 191 { 192 void *ret; 193 194 ret = kzalloc(size, flags | __GFP_NOWARN); 195 if (!ret) 196 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 197 return ret; 198 } 199 200 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 201 struct ext4_group_desc *bg) 202 { 203 return le32_to_cpu(bg->bg_block_bitmap_lo) | 204 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 205 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 206 } 207 208 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 209 struct ext4_group_desc *bg) 210 { 211 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 212 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 213 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 214 } 215 216 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 217 struct ext4_group_desc *bg) 218 { 219 return le32_to_cpu(bg->bg_inode_table_lo) | 220 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 221 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 222 } 223 224 __u32 ext4_free_group_clusters(struct super_block *sb, 225 struct ext4_group_desc *bg) 226 { 227 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 228 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 229 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 230 } 231 232 __u32 ext4_free_inodes_count(struct super_block *sb, 233 struct ext4_group_desc *bg) 234 { 235 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 236 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 237 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 238 } 239 240 __u32 ext4_used_dirs_count(struct super_block *sb, 241 struct ext4_group_desc *bg) 242 { 243 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 244 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 245 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 246 } 247 248 __u32 ext4_itable_unused_count(struct super_block *sb, 249 struct ext4_group_desc *bg) 250 { 251 return le16_to_cpu(bg->bg_itable_unused_lo) | 252 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 253 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 254 } 255 256 void ext4_block_bitmap_set(struct super_block *sb, 257 struct ext4_group_desc *bg, ext4_fsblk_t blk) 258 { 259 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 260 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 261 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 262 } 263 264 void ext4_inode_bitmap_set(struct super_block *sb, 265 struct ext4_group_desc *bg, ext4_fsblk_t blk) 266 { 267 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 268 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 269 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 270 } 271 272 void ext4_inode_table_set(struct super_block *sb, 273 struct ext4_group_desc *bg, ext4_fsblk_t blk) 274 { 275 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 276 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 277 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 278 } 279 280 void ext4_free_group_clusters_set(struct super_block *sb, 281 struct ext4_group_desc *bg, __u32 count) 282 { 283 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 284 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 285 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 286 } 287 288 void ext4_free_inodes_set(struct super_block *sb, 289 struct ext4_group_desc *bg, __u32 count) 290 { 291 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 292 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 293 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 294 } 295 296 void ext4_used_dirs_set(struct super_block *sb, 297 struct ext4_group_desc *bg, __u32 count) 298 { 299 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 300 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 301 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 302 } 303 304 void ext4_itable_unused_set(struct super_block *sb, 305 struct ext4_group_desc *bg, __u32 count) 306 { 307 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 308 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 309 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 310 } 311 312 313 static void __save_error_info(struct super_block *sb, const char *func, 314 unsigned int line) 315 { 316 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 317 318 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 319 if (bdev_read_only(sb->s_bdev)) 320 return; 321 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 322 es->s_last_error_time = cpu_to_le32(get_seconds()); 323 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 324 es->s_last_error_line = cpu_to_le32(line); 325 if (!es->s_first_error_time) { 326 es->s_first_error_time = es->s_last_error_time; 327 strncpy(es->s_first_error_func, func, 328 sizeof(es->s_first_error_func)); 329 es->s_first_error_line = cpu_to_le32(line); 330 es->s_first_error_ino = es->s_last_error_ino; 331 es->s_first_error_block = es->s_last_error_block; 332 } 333 /* 334 * Start the daily error reporting function if it hasn't been 335 * started already 336 */ 337 if (!es->s_error_count) 338 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 339 le32_add_cpu(&es->s_error_count, 1); 340 } 341 342 static void save_error_info(struct super_block *sb, const char *func, 343 unsigned int line) 344 { 345 __save_error_info(sb, func, line); 346 ext4_commit_super(sb, 1); 347 } 348 349 /* 350 * The del_gendisk() function uninitializes the disk-specific data 351 * structures, including the bdi structure, without telling anyone 352 * else. Once this happens, any attempt to call mark_buffer_dirty() 353 * (for example, by ext4_commit_super), will cause a kernel OOPS. 354 * This is a kludge to prevent these oops until we can put in a proper 355 * hook in del_gendisk() to inform the VFS and file system layers. 356 */ 357 static int block_device_ejected(struct super_block *sb) 358 { 359 struct inode *bd_inode = sb->s_bdev->bd_inode; 360 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 361 362 return bdi->dev == NULL; 363 } 364 365 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 366 { 367 struct super_block *sb = journal->j_private; 368 struct ext4_sb_info *sbi = EXT4_SB(sb); 369 int error = is_journal_aborted(journal); 370 struct ext4_journal_cb_entry *jce; 371 372 BUG_ON(txn->t_state == T_FINISHED); 373 spin_lock(&sbi->s_md_lock); 374 while (!list_empty(&txn->t_private_list)) { 375 jce = list_entry(txn->t_private_list.next, 376 struct ext4_journal_cb_entry, jce_list); 377 list_del_init(&jce->jce_list); 378 spin_unlock(&sbi->s_md_lock); 379 jce->jce_func(sb, jce, error); 380 spin_lock(&sbi->s_md_lock); 381 } 382 spin_unlock(&sbi->s_md_lock); 383 } 384 385 /* Deal with the reporting of failure conditions on a filesystem such as 386 * inconsistencies detected or read IO failures. 387 * 388 * On ext2, we can store the error state of the filesystem in the 389 * superblock. That is not possible on ext4, because we may have other 390 * write ordering constraints on the superblock which prevent us from 391 * writing it out straight away; and given that the journal is about to 392 * be aborted, we can't rely on the current, or future, transactions to 393 * write out the superblock safely. 394 * 395 * We'll just use the jbd2_journal_abort() error code to record an error in 396 * the journal instead. On recovery, the journal will complain about 397 * that error until we've noted it down and cleared it. 398 */ 399 400 static void ext4_handle_error(struct super_block *sb) 401 { 402 if (sb->s_flags & MS_RDONLY) 403 return; 404 405 if (!test_opt(sb, ERRORS_CONT)) { 406 journal_t *journal = EXT4_SB(sb)->s_journal; 407 408 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 409 if (journal) 410 jbd2_journal_abort(journal, -EIO); 411 } 412 if (test_opt(sb, ERRORS_RO)) { 413 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 414 /* 415 * Make sure updated value of ->s_mount_flags will be visible 416 * before ->s_flags update 417 */ 418 smp_wmb(); 419 sb->s_flags |= MS_RDONLY; 420 } 421 if (test_opt(sb, ERRORS_PANIC)) { 422 if (EXT4_SB(sb)->s_journal && 423 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 424 return; 425 panic("EXT4-fs (device %s): panic forced after error\n", 426 sb->s_id); 427 } 428 } 429 430 #define ext4_error_ratelimit(sb) \ 431 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 432 "EXT4-fs error") 433 434 void __ext4_error(struct super_block *sb, const char *function, 435 unsigned int line, const char *fmt, ...) 436 { 437 struct va_format vaf; 438 va_list args; 439 440 if (ext4_error_ratelimit(sb)) { 441 va_start(args, fmt); 442 vaf.fmt = fmt; 443 vaf.va = &args; 444 printk(KERN_CRIT 445 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 446 sb->s_id, function, line, current->comm, &vaf); 447 va_end(args); 448 } 449 save_error_info(sb, function, line); 450 ext4_handle_error(sb); 451 } 452 453 void __ext4_error_inode(struct inode *inode, const char *function, 454 unsigned int line, ext4_fsblk_t block, 455 const char *fmt, ...) 456 { 457 va_list args; 458 struct va_format vaf; 459 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 460 461 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 462 es->s_last_error_block = cpu_to_le64(block); 463 if (ext4_error_ratelimit(inode->i_sb)) { 464 va_start(args, fmt); 465 vaf.fmt = fmt; 466 vaf.va = &args; 467 if (block) 468 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 469 "inode #%lu: block %llu: comm %s: %pV\n", 470 inode->i_sb->s_id, function, line, inode->i_ino, 471 block, current->comm, &vaf); 472 else 473 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 474 "inode #%lu: comm %s: %pV\n", 475 inode->i_sb->s_id, function, line, inode->i_ino, 476 current->comm, &vaf); 477 va_end(args); 478 } 479 save_error_info(inode->i_sb, function, line); 480 ext4_handle_error(inode->i_sb); 481 } 482 483 void __ext4_error_file(struct file *file, const char *function, 484 unsigned int line, ext4_fsblk_t block, 485 const char *fmt, ...) 486 { 487 va_list args; 488 struct va_format vaf; 489 struct ext4_super_block *es; 490 struct inode *inode = file_inode(file); 491 char pathname[80], *path; 492 493 es = EXT4_SB(inode->i_sb)->s_es; 494 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 495 if (ext4_error_ratelimit(inode->i_sb)) { 496 path = file_path(file, pathname, sizeof(pathname)); 497 if (IS_ERR(path)) 498 path = "(unknown)"; 499 va_start(args, fmt); 500 vaf.fmt = fmt; 501 vaf.va = &args; 502 if (block) 503 printk(KERN_CRIT 504 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 505 "block %llu: comm %s: path %s: %pV\n", 506 inode->i_sb->s_id, function, line, inode->i_ino, 507 block, current->comm, path, &vaf); 508 else 509 printk(KERN_CRIT 510 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 511 "comm %s: path %s: %pV\n", 512 inode->i_sb->s_id, function, line, inode->i_ino, 513 current->comm, path, &vaf); 514 va_end(args); 515 } 516 save_error_info(inode->i_sb, function, line); 517 ext4_handle_error(inode->i_sb); 518 } 519 520 const char *ext4_decode_error(struct super_block *sb, int errno, 521 char nbuf[16]) 522 { 523 char *errstr = NULL; 524 525 switch (errno) { 526 case -EFSCORRUPTED: 527 errstr = "Corrupt filesystem"; 528 break; 529 case -EFSBADCRC: 530 errstr = "Filesystem failed CRC"; 531 break; 532 case -EIO: 533 errstr = "IO failure"; 534 break; 535 case -ENOMEM: 536 errstr = "Out of memory"; 537 break; 538 case -EROFS: 539 if (!sb || (EXT4_SB(sb)->s_journal && 540 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 541 errstr = "Journal has aborted"; 542 else 543 errstr = "Readonly filesystem"; 544 break; 545 default: 546 /* If the caller passed in an extra buffer for unknown 547 * errors, textualise them now. Else we just return 548 * NULL. */ 549 if (nbuf) { 550 /* Check for truncated error codes... */ 551 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 552 errstr = nbuf; 553 } 554 break; 555 } 556 557 return errstr; 558 } 559 560 /* __ext4_std_error decodes expected errors from journaling functions 561 * automatically and invokes the appropriate error response. */ 562 563 void __ext4_std_error(struct super_block *sb, const char *function, 564 unsigned int line, int errno) 565 { 566 char nbuf[16]; 567 const char *errstr; 568 569 /* Special case: if the error is EROFS, and we're not already 570 * inside a transaction, then there's really no point in logging 571 * an error. */ 572 if (errno == -EROFS && journal_current_handle() == NULL && 573 (sb->s_flags & MS_RDONLY)) 574 return; 575 576 if (ext4_error_ratelimit(sb)) { 577 errstr = ext4_decode_error(sb, errno, nbuf); 578 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 579 sb->s_id, function, line, errstr); 580 } 581 582 save_error_info(sb, function, line); 583 ext4_handle_error(sb); 584 } 585 586 /* 587 * ext4_abort is a much stronger failure handler than ext4_error. The 588 * abort function may be used to deal with unrecoverable failures such 589 * as journal IO errors or ENOMEM at a critical moment in log management. 590 * 591 * We unconditionally force the filesystem into an ABORT|READONLY state, 592 * unless the error response on the fs has been set to panic in which 593 * case we take the easy way out and panic immediately. 594 */ 595 596 void __ext4_abort(struct super_block *sb, const char *function, 597 unsigned int line, const char *fmt, ...) 598 { 599 va_list args; 600 601 save_error_info(sb, function, line); 602 va_start(args, fmt); 603 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 604 function, line); 605 vprintk(fmt, args); 606 printk("\n"); 607 va_end(args); 608 609 if ((sb->s_flags & MS_RDONLY) == 0) { 610 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 611 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 612 /* 613 * Make sure updated value of ->s_mount_flags will be visible 614 * before ->s_flags update 615 */ 616 smp_wmb(); 617 sb->s_flags |= MS_RDONLY; 618 if (EXT4_SB(sb)->s_journal) 619 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 620 save_error_info(sb, function, line); 621 } 622 if (test_opt(sb, ERRORS_PANIC)) { 623 if (EXT4_SB(sb)->s_journal && 624 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 625 return; 626 panic("EXT4-fs panic from previous error\n"); 627 } 628 } 629 630 void __ext4_msg(struct super_block *sb, 631 const char *prefix, const char *fmt, ...) 632 { 633 struct va_format vaf; 634 va_list args; 635 636 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 637 return; 638 639 va_start(args, fmt); 640 vaf.fmt = fmt; 641 vaf.va = &args; 642 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 643 va_end(args); 644 } 645 646 #define ext4_warning_ratelimit(sb) \ 647 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 648 "EXT4-fs warning") 649 650 void __ext4_warning(struct super_block *sb, const char *function, 651 unsigned int line, const char *fmt, ...) 652 { 653 struct va_format vaf; 654 va_list args; 655 656 if (!ext4_warning_ratelimit(sb)) 657 return; 658 659 va_start(args, fmt); 660 vaf.fmt = fmt; 661 vaf.va = &args; 662 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 663 sb->s_id, function, line, &vaf); 664 va_end(args); 665 } 666 667 void __ext4_warning_inode(const struct inode *inode, const char *function, 668 unsigned int line, const char *fmt, ...) 669 { 670 struct va_format vaf; 671 va_list args; 672 673 if (!ext4_warning_ratelimit(inode->i_sb)) 674 return; 675 676 va_start(args, fmt); 677 vaf.fmt = fmt; 678 vaf.va = &args; 679 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 680 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 681 function, line, inode->i_ino, current->comm, &vaf); 682 va_end(args); 683 } 684 685 void __ext4_grp_locked_error(const char *function, unsigned int line, 686 struct super_block *sb, ext4_group_t grp, 687 unsigned long ino, ext4_fsblk_t block, 688 const char *fmt, ...) 689 __releases(bitlock) 690 __acquires(bitlock) 691 { 692 struct va_format vaf; 693 va_list args; 694 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 695 696 es->s_last_error_ino = cpu_to_le32(ino); 697 es->s_last_error_block = cpu_to_le64(block); 698 __save_error_info(sb, function, line); 699 700 if (ext4_error_ratelimit(sb)) { 701 va_start(args, fmt); 702 vaf.fmt = fmt; 703 vaf.va = &args; 704 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 705 sb->s_id, function, line, grp); 706 if (ino) 707 printk(KERN_CONT "inode %lu: ", ino); 708 if (block) 709 printk(KERN_CONT "block %llu:", 710 (unsigned long long) block); 711 printk(KERN_CONT "%pV\n", &vaf); 712 va_end(args); 713 } 714 715 if (test_opt(sb, ERRORS_CONT)) { 716 ext4_commit_super(sb, 0); 717 return; 718 } 719 720 ext4_unlock_group(sb, grp); 721 ext4_handle_error(sb); 722 /* 723 * We only get here in the ERRORS_RO case; relocking the group 724 * may be dangerous, but nothing bad will happen since the 725 * filesystem will have already been marked read/only and the 726 * journal has been aborted. We return 1 as a hint to callers 727 * who might what to use the return value from 728 * ext4_grp_locked_error() to distinguish between the 729 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 730 * aggressively from the ext4 function in question, with a 731 * more appropriate error code. 732 */ 733 ext4_lock_group(sb, grp); 734 return; 735 } 736 737 void ext4_update_dynamic_rev(struct super_block *sb) 738 { 739 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 740 741 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 742 return; 743 744 ext4_warning(sb, 745 "updating to rev %d because of new feature flag, " 746 "running e2fsck is recommended", 747 EXT4_DYNAMIC_REV); 748 749 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 750 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 751 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 752 /* leave es->s_feature_*compat flags alone */ 753 /* es->s_uuid will be set by e2fsck if empty */ 754 755 /* 756 * The rest of the superblock fields should be zero, and if not it 757 * means they are likely already in use, so leave them alone. We 758 * can leave it up to e2fsck to clean up any inconsistencies there. 759 */ 760 } 761 762 /* 763 * Open the external journal device 764 */ 765 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 766 { 767 struct block_device *bdev; 768 char b[BDEVNAME_SIZE]; 769 770 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 771 if (IS_ERR(bdev)) 772 goto fail; 773 return bdev; 774 775 fail: 776 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 777 __bdevname(dev, b), PTR_ERR(bdev)); 778 return NULL; 779 } 780 781 /* 782 * Release the journal device 783 */ 784 static void ext4_blkdev_put(struct block_device *bdev) 785 { 786 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 787 } 788 789 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 790 { 791 struct block_device *bdev; 792 bdev = sbi->journal_bdev; 793 if (bdev) { 794 ext4_blkdev_put(bdev); 795 sbi->journal_bdev = NULL; 796 } 797 } 798 799 static inline struct inode *orphan_list_entry(struct list_head *l) 800 { 801 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 802 } 803 804 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 805 { 806 struct list_head *l; 807 808 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 809 le32_to_cpu(sbi->s_es->s_last_orphan)); 810 811 printk(KERN_ERR "sb_info orphan list:\n"); 812 list_for_each(l, &sbi->s_orphan) { 813 struct inode *inode = orphan_list_entry(l); 814 printk(KERN_ERR " " 815 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 816 inode->i_sb->s_id, inode->i_ino, inode, 817 inode->i_mode, inode->i_nlink, 818 NEXT_ORPHAN(inode)); 819 } 820 } 821 822 static void ext4_put_super(struct super_block *sb) 823 { 824 struct ext4_sb_info *sbi = EXT4_SB(sb); 825 struct ext4_super_block *es = sbi->s_es; 826 int i, err; 827 828 ext4_unregister_li_request(sb); 829 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 830 831 flush_workqueue(sbi->rsv_conversion_wq); 832 destroy_workqueue(sbi->rsv_conversion_wq); 833 834 if (sbi->s_journal) { 835 err = jbd2_journal_destroy(sbi->s_journal); 836 sbi->s_journal = NULL; 837 if (err < 0) 838 ext4_abort(sb, "Couldn't clean up the journal"); 839 } 840 841 ext4_unregister_sysfs(sb); 842 ext4_es_unregister_shrinker(sbi); 843 del_timer_sync(&sbi->s_err_report); 844 ext4_release_system_zone(sb); 845 ext4_mb_release(sb); 846 ext4_ext_release(sb); 847 ext4_xattr_put_super(sb); 848 849 if (!(sb->s_flags & MS_RDONLY)) { 850 ext4_clear_feature_journal_needs_recovery(sb); 851 es->s_state = cpu_to_le16(sbi->s_mount_state); 852 } 853 if (!(sb->s_flags & MS_RDONLY)) 854 ext4_commit_super(sb, 1); 855 856 for (i = 0; i < sbi->s_gdb_count; i++) 857 brelse(sbi->s_group_desc[i]); 858 kvfree(sbi->s_group_desc); 859 kvfree(sbi->s_flex_groups); 860 percpu_counter_destroy(&sbi->s_freeclusters_counter); 861 percpu_counter_destroy(&sbi->s_freeinodes_counter); 862 percpu_counter_destroy(&sbi->s_dirs_counter); 863 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 864 brelse(sbi->s_sbh); 865 #ifdef CONFIG_QUOTA 866 for (i = 0; i < EXT4_MAXQUOTAS; i++) 867 kfree(sbi->s_qf_names[i]); 868 #endif 869 870 /* Debugging code just in case the in-memory inode orphan list 871 * isn't empty. The on-disk one can be non-empty if we've 872 * detected an error and taken the fs readonly, but the 873 * in-memory list had better be clean by this point. */ 874 if (!list_empty(&sbi->s_orphan)) 875 dump_orphan_list(sb, sbi); 876 J_ASSERT(list_empty(&sbi->s_orphan)); 877 878 sync_blockdev(sb->s_bdev); 879 invalidate_bdev(sb->s_bdev); 880 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 881 /* 882 * Invalidate the journal device's buffers. We don't want them 883 * floating about in memory - the physical journal device may 884 * hotswapped, and it breaks the `ro-after' testing code. 885 */ 886 sync_blockdev(sbi->journal_bdev); 887 invalidate_bdev(sbi->journal_bdev); 888 ext4_blkdev_remove(sbi); 889 } 890 if (sbi->s_mb_cache) { 891 ext4_xattr_destroy_cache(sbi->s_mb_cache); 892 sbi->s_mb_cache = NULL; 893 } 894 if (sbi->s_mmp_tsk) 895 kthread_stop(sbi->s_mmp_tsk); 896 sb->s_fs_info = NULL; 897 /* 898 * Now that we are completely done shutting down the 899 * superblock, we need to actually destroy the kobject. 900 */ 901 kobject_put(&sbi->s_kobj); 902 wait_for_completion(&sbi->s_kobj_unregister); 903 if (sbi->s_chksum_driver) 904 crypto_free_shash(sbi->s_chksum_driver); 905 kfree(sbi->s_blockgroup_lock); 906 kfree(sbi); 907 } 908 909 static struct kmem_cache *ext4_inode_cachep; 910 911 /* 912 * Called inside transaction, so use GFP_NOFS 913 */ 914 static struct inode *ext4_alloc_inode(struct super_block *sb) 915 { 916 struct ext4_inode_info *ei; 917 918 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 919 if (!ei) 920 return NULL; 921 922 ei->vfs_inode.i_version = 1; 923 spin_lock_init(&ei->i_raw_lock); 924 INIT_LIST_HEAD(&ei->i_prealloc_list); 925 spin_lock_init(&ei->i_prealloc_lock); 926 ext4_es_init_tree(&ei->i_es_tree); 927 rwlock_init(&ei->i_es_lock); 928 INIT_LIST_HEAD(&ei->i_es_list); 929 ei->i_es_all_nr = 0; 930 ei->i_es_shk_nr = 0; 931 ei->i_es_shrink_lblk = 0; 932 ei->i_reserved_data_blocks = 0; 933 ei->i_reserved_meta_blocks = 0; 934 ei->i_allocated_meta_blocks = 0; 935 ei->i_da_metadata_calc_len = 0; 936 ei->i_da_metadata_calc_last_lblock = 0; 937 spin_lock_init(&(ei->i_block_reservation_lock)); 938 #ifdef CONFIG_QUOTA 939 ei->i_reserved_quota = 0; 940 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 941 #endif 942 ei->jinode = NULL; 943 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 944 spin_lock_init(&ei->i_completed_io_lock); 945 ei->i_sync_tid = 0; 946 ei->i_datasync_tid = 0; 947 atomic_set(&ei->i_ioend_count, 0); 948 atomic_set(&ei->i_unwritten, 0); 949 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 950 #ifdef CONFIG_EXT4_FS_ENCRYPTION 951 ei->i_crypt_info = NULL; 952 #endif 953 return &ei->vfs_inode; 954 } 955 956 static int ext4_drop_inode(struct inode *inode) 957 { 958 int drop = generic_drop_inode(inode); 959 960 trace_ext4_drop_inode(inode, drop); 961 return drop; 962 } 963 964 static void ext4_i_callback(struct rcu_head *head) 965 { 966 struct inode *inode = container_of(head, struct inode, i_rcu); 967 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 968 } 969 970 static void ext4_destroy_inode(struct inode *inode) 971 { 972 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 973 ext4_msg(inode->i_sb, KERN_ERR, 974 "Inode %lu (%p): orphan list check failed!", 975 inode->i_ino, EXT4_I(inode)); 976 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 977 EXT4_I(inode), sizeof(struct ext4_inode_info), 978 true); 979 dump_stack(); 980 } 981 call_rcu(&inode->i_rcu, ext4_i_callback); 982 } 983 984 static void init_once(void *foo) 985 { 986 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 987 988 INIT_LIST_HEAD(&ei->i_orphan); 989 init_rwsem(&ei->xattr_sem); 990 init_rwsem(&ei->i_data_sem); 991 init_rwsem(&ei->i_mmap_sem); 992 inode_init_once(&ei->vfs_inode); 993 } 994 995 static int __init init_inodecache(void) 996 { 997 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 998 sizeof(struct ext4_inode_info), 999 0, (SLAB_RECLAIM_ACCOUNT| 1000 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1001 init_once); 1002 if (ext4_inode_cachep == NULL) 1003 return -ENOMEM; 1004 return 0; 1005 } 1006 1007 static void destroy_inodecache(void) 1008 { 1009 /* 1010 * Make sure all delayed rcu free inodes are flushed before we 1011 * destroy cache. 1012 */ 1013 rcu_barrier(); 1014 kmem_cache_destroy(ext4_inode_cachep); 1015 } 1016 1017 void ext4_clear_inode(struct inode *inode) 1018 { 1019 invalidate_inode_buffers(inode); 1020 clear_inode(inode); 1021 dquot_drop(inode); 1022 ext4_discard_preallocations(inode); 1023 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1024 if (EXT4_I(inode)->jinode) { 1025 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1026 EXT4_I(inode)->jinode); 1027 jbd2_free_inode(EXT4_I(inode)->jinode); 1028 EXT4_I(inode)->jinode = NULL; 1029 } 1030 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1031 if (EXT4_I(inode)->i_crypt_info) 1032 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 1033 #endif 1034 } 1035 1036 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1037 u64 ino, u32 generation) 1038 { 1039 struct inode *inode; 1040 1041 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1042 return ERR_PTR(-ESTALE); 1043 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1044 return ERR_PTR(-ESTALE); 1045 1046 /* iget isn't really right if the inode is currently unallocated!! 1047 * 1048 * ext4_read_inode will return a bad_inode if the inode had been 1049 * deleted, so we should be safe. 1050 * 1051 * Currently we don't know the generation for parent directory, so 1052 * a generation of 0 means "accept any" 1053 */ 1054 inode = ext4_iget_normal(sb, ino); 1055 if (IS_ERR(inode)) 1056 return ERR_CAST(inode); 1057 if (generation && inode->i_generation != generation) { 1058 iput(inode); 1059 return ERR_PTR(-ESTALE); 1060 } 1061 1062 return inode; 1063 } 1064 1065 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1066 int fh_len, int fh_type) 1067 { 1068 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1069 ext4_nfs_get_inode); 1070 } 1071 1072 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1073 int fh_len, int fh_type) 1074 { 1075 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1076 ext4_nfs_get_inode); 1077 } 1078 1079 /* 1080 * Try to release metadata pages (indirect blocks, directories) which are 1081 * mapped via the block device. Since these pages could have journal heads 1082 * which would prevent try_to_free_buffers() from freeing them, we must use 1083 * jbd2 layer's try_to_free_buffers() function to release them. 1084 */ 1085 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1086 gfp_t wait) 1087 { 1088 journal_t *journal = EXT4_SB(sb)->s_journal; 1089 1090 WARN_ON(PageChecked(page)); 1091 if (!page_has_buffers(page)) 1092 return 0; 1093 if (journal) 1094 return jbd2_journal_try_to_free_buffers(journal, page, 1095 wait & ~__GFP_DIRECT_RECLAIM); 1096 return try_to_free_buffers(page); 1097 } 1098 1099 #ifdef CONFIG_QUOTA 1100 static char *quotatypes[] = INITQFNAMES; 1101 #define QTYPE2NAME(t) (quotatypes[t]) 1102 1103 static int ext4_write_dquot(struct dquot *dquot); 1104 static int ext4_acquire_dquot(struct dquot *dquot); 1105 static int ext4_release_dquot(struct dquot *dquot); 1106 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1107 static int ext4_write_info(struct super_block *sb, int type); 1108 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1109 struct path *path); 1110 static int ext4_quota_off(struct super_block *sb, int type); 1111 static int ext4_quota_on_mount(struct super_block *sb, int type); 1112 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1113 size_t len, loff_t off); 1114 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1115 const char *data, size_t len, loff_t off); 1116 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1117 unsigned int flags); 1118 static int ext4_enable_quotas(struct super_block *sb); 1119 1120 static struct dquot **ext4_get_dquots(struct inode *inode) 1121 { 1122 return EXT4_I(inode)->i_dquot; 1123 } 1124 1125 static const struct dquot_operations ext4_quota_operations = { 1126 .get_reserved_space = ext4_get_reserved_space, 1127 .write_dquot = ext4_write_dquot, 1128 .acquire_dquot = ext4_acquire_dquot, 1129 .release_dquot = ext4_release_dquot, 1130 .mark_dirty = ext4_mark_dquot_dirty, 1131 .write_info = ext4_write_info, 1132 .alloc_dquot = dquot_alloc, 1133 .destroy_dquot = dquot_destroy, 1134 .get_projid = ext4_get_projid, 1135 }; 1136 1137 static const struct quotactl_ops ext4_qctl_operations = { 1138 .quota_on = ext4_quota_on, 1139 .quota_off = ext4_quota_off, 1140 .quota_sync = dquot_quota_sync, 1141 .get_state = dquot_get_state, 1142 .set_info = dquot_set_dqinfo, 1143 .get_dqblk = dquot_get_dqblk, 1144 .set_dqblk = dquot_set_dqblk 1145 }; 1146 #endif 1147 1148 static const struct super_operations ext4_sops = { 1149 .alloc_inode = ext4_alloc_inode, 1150 .destroy_inode = ext4_destroy_inode, 1151 .write_inode = ext4_write_inode, 1152 .dirty_inode = ext4_dirty_inode, 1153 .drop_inode = ext4_drop_inode, 1154 .evict_inode = ext4_evict_inode, 1155 .put_super = ext4_put_super, 1156 .sync_fs = ext4_sync_fs, 1157 .freeze_fs = ext4_freeze, 1158 .unfreeze_fs = ext4_unfreeze, 1159 .statfs = ext4_statfs, 1160 .remount_fs = ext4_remount, 1161 .show_options = ext4_show_options, 1162 #ifdef CONFIG_QUOTA 1163 .quota_read = ext4_quota_read, 1164 .quota_write = ext4_quota_write, 1165 .get_dquots = ext4_get_dquots, 1166 #endif 1167 .bdev_try_to_free_page = bdev_try_to_free_page, 1168 }; 1169 1170 static const struct export_operations ext4_export_ops = { 1171 .fh_to_dentry = ext4_fh_to_dentry, 1172 .fh_to_parent = ext4_fh_to_parent, 1173 .get_parent = ext4_get_parent, 1174 }; 1175 1176 enum { 1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1179 Opt_nouid32, Opt_debug, Opt_removed, 1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1183 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1185 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1189 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1191 Opt_lazytime, Opt_nolazytime, 1192 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1193 Opt_inode_readahead_blks, Opt_journal_ioprio, 1194 Opt_dioread_nolock, Opt_dioread_lock, 1195 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1196 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1197 }; 1198 1199 static const match_table_t tokens = { 1200 {Opt_bsd_df, "bsddf"}, 1201 {Opt_minix_df, "minixdf"}, 1202 {Opt_grpid, "grpid"}, 1203 {Opt_grpid, "bsdgroups"}, 1204 {Opt_nogrpid, "nogrpid"}, 1205 {Opt_nogrpid, "sysvgroups"}, 1206 {Opt_resgid, "resgid=%u"}, 1207 {Opt_resuid, "resuid=%u"}, 1208 {Opt_sb, "sb=%u"}, 1209 {Opt_err_cont, "errors=continue"}, 1210 {Opt_err_panic, "errors=panic"}, 1211 {Opt_err_ro, "errors=remount-ro"}, 1212 {Opt_nouid32, "nouid32"}, 1213 {Opt_debug, "debug"}, 1214 {Opt_removed, "oldalloc"}, 1215 {Opt_removed, "orlov"}, 1216 {Opt_user_xattr, "user_xattr"}, 1217 {Opt_nouser_xattr, "nouser_xattr"}, 1218 {Opt_acl, "acl"}, 1219 {Opt_noacl, "noacl"}, 1220 {Opt_noload, "norecovery"}, 1221 {Opt_noload, "noload"}, 1222 {Opt_removed, "nobh"}, 1223 {Opt_removed, "bh"}, 1224 {Opt_commit, "commit=%u"}, 1225 {Opt_min_batch_time, "min_batch_time=%u"}, 1226 {Opt_max_batch_time, "max_batch_time=%u"}, 1227 {Opt_journal_dev, "journal_dev=%u"}, 1228 {Opt_journal_path, "journal_path=%s"}, 1229 {Opt_journal_checksum, "journal_checksum"}, 1230 {Opt_nojournal_checksum, "nojournal_checksum"}, 1231 {Opt_journal_async_commit, "journal_async_commit"}, 1232 {Opt_abort, "abort"}, 1233 {Opt_data_journal, "data=journal"}, 1234 {Opt_data_ordered, "data=ordered"}, 1235 {Opt_data_writeback, "data=writeback"}, 1236 {Opt_data_err_abort, "data_err=abort"}, 1237 {Opt_data_err_ignore, "data_err=ignore"}, 1238 {Opt_offusrjquota, "usrjquota="}, 1239 {Opt_usrjquota, "usrjquota=%s"}, 1240 {Opt_offgrpjquota, "grpjquota="}, 1241 {Opt_grpjquota, "grpjquota=%s"}, 1242 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1243 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1244 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1245 {Opt_grpquota, "grpquota"}, 1246 {Opt_noquota, "noquota"}, 1247 {Opt_quota, "quota"}, 1248 {Opt_usrquota, "usrquota"}, 1249 {Opt_barrier, "barrier=%u"}, 1250 {Opt_barrier, "barrier"}, 1251 {Opt_nobarrier, "nobarrier"}, 1252 {Opt_i_version, "i_version"}, 1253 {Opt_dax, "dax"}, 1254 {Opt_stripe, "stripe=%u"}, 1255 {Opt_delalloc, "delalloc"}, 1256 {Opt_lazytime, "lazytime"}, 1257 {Opt_nolazytime, "nolazytime"}, 1258 {Opt_nodelalloc, "nodelalloc"}, 1259 {Opt_removed, "mblk_io_submit"}, 1260 {Opt_removed, "nomblk_io_submit"}, 1261 {Opt_block_validity, "block_validity"}, 1262 {Opt_noblock_validity, "noblock_validity"}, 1263 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1264 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1265 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1266 {Opt_auto_da_alloc, "auto_da_alloc"}, 1267 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1268 {Opt_dioread_nolock, "dioread_nolock"}, 1269 {Opt_dioread_lock, "dioread_lock"}, 1270 {Opt_discard, "discard"}, 1271 {Opt_nodiscard, "nodiscard"}, 1272 {Opt_init_itable, "init_itable=%u"}, 1273 {Opt_init_itable, "init_itable"}, 1274 {Opt_noinit_itable, "noinit_itable"}, 1275 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1276 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1277 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1278 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1279 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1280 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1281 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1282 {Opt_err, NULL}, 1283 }; 1284 1285 static ext4_fsblk_t get_sb_block(void **data) 1286 { 1287 ext4_fsblk_t sb_block; 1288 char *options = (char *) *data; 1289 1290 if (!options || strncmp(options, "sb=", 3) != 0) 1291 return 1; /* Default location */ 1292 1293 options += 3; 1294 /* TODO: use simple_strtoll with >32bit ext4 */ 1295 sb_block = simple_strtoul(options, &options, 0); 1296 if (*options && *options != ',') { 1297 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1298 (char *) *data); 1299 return 1; 1300 } 1301 if (*options == ',') 1302 options++; 1303 *data = (void *) options; 1304 1305 return sb_block; 1306 } 1307 1308 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1309 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1310 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1311 1312 #ifdef CONFIG_QUOTA 1313 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1314 { 1315 struct ext4_sb_info *sbi = EXT4_SB(sb); 1316 char *qname; 1317 int ret = -1; 1318 1319 if (sb_any_quota_loaded(sb) && 1320 !sbi->s_qf_names[qtype]) { 1321 ext4_msg(sb, KERN_ERR, 1322 "Cannot change journaled " 1323 "quota options when quota turned on"); 1324 return -1; 1325 } 1326 if (ext4_has_feature_quota(sb)) { 1327 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1328 "when QUOTA feature is enabled"); 1329 return -1; 1330 } 1331 qname = match_strdup(args); 1332 if (!qname) { 1333 ext4_msg(sb, KERN_ERR, 1334 "Not enough memory for storing quotafile name"); 1335 return -1; 1336 } 1337 if (sbi->s_qf_names[qtype]) { 1338 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1339 ret = 1; 1340 else 1341 ext4_msg(sb, KERN_ERR, 1342 "%s quota file already specified", 1343 QTYPE2NAME(qtype)); 1344 goto errout; 1345 } 1346 if (strchr(qname, '/')) { 1347 ext4_msg(sb, KERN_ERR, 1348 "quotafile must be on filesystem root"); 1349 goto errout; 1350 } 1351 sbi->s_qf_names[qtype] = qname; 1352 set_opt(sb, QUOTA); 1353 return 1; 1354 errout: 1355 kfree(qname); 1356 return ret; 1357 } 1358 1359 static int clear_qf_name(struct super_block *sb, int qtype) 1360 { 1361 1362 struct ext4_sb_info *sbi = EXT4_SB(sb); 1363 1364 if (sb_any_quota_loaded(sb) && 1365 sbi->s_qf_names[qtype]) { 1366 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1367 " when quota turned on"); 1368 return -1; 1369 } 1370 kfree(sbi->s_qf_names[qtype]); 1371 sbi->s_qf_names[qtype] = NULL; 1372 return 1; 1373 } 1374 #endif 1375 1376 #define MOPT_SET 0x0001 1377 #define MOPT_CLEAR 0x0002 1378 #define MOPT_NOSUPPORT 0x0004 1379 #define MOPT_EXPLICIT 0x0008 1380 #define MOPT_CLEAR_ERR 0x0010 1381 #define MOPT_GTE0 0x0020 1382 #ifdef CONFIG_QUOTA 1383 #define MOPT_Q 0 1384 #define MOPT_QFMT 0x0040 1385 #else 1386 #define MOPT_Q MOPT_NOSUPPORT 1387 #define MOPT_QFMT MOPT_NOSUPPORT 1388 #endif 1389 #define MOPT_DATAJ 0x0080 1390 #define MOPT_NO_EXT2 0x0100 1391 #define MOPT_NO_EXT3 0x0200 1392 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1393 #define MOPT_STRING 0x0400 1394 1395 static const struct mount_opts { 1396 int token; 1397 int mount_opt; 1398 int flags; 1399 } ext4_mount_opts[] = { 1400 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1401 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1402 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1403 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1404 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1405 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1406 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1407 MOPT_EXT4_ONLY | MOPT_SET}, 1408 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1409 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1410 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1411 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1412 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1413 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1414 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1415 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1416 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1417 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1418 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1420 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1421 EXT4_MOUNT_JOURNAL_CHECKSUM), 1422 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1423 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1424 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1425 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1426 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1427 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1428 MOPT_NO_EXT2 | MOPT_SET}, 1429 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1430 MOPT_NO_EXT2 | MOPT_CLEAR}, 1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1436 {Opt_commit, 0, MOPT_GTE0}, 1437 {Opt_max_batch_time, 0, MOPT_GTE0}, 1438 {Opt_min_batch_time, 0, MOPT_GTE0}, 1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1440 {Opt_init_itable, 0, MOPT_GTE0}, 1441 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1442 {Opt_stripe, 0, MOPT_GTE0}, 1443 {Opt_resuid, 0, MOPT_GTE0}, 1444 {Opt_resgid, 0, MOPT_GTE0}, 1445 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1446 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1447 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1448 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1449 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1450 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1451 MOPT_NO_EXT2 | MOPT_DATAJ}, 1452 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1453 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1454 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1455 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1456 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1457 #else 1458 {Opt_acl, 0, MOPT_NOSUPPORT}, 1459 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1460 #endif 1461 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1462 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1463 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1464 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1465 MOPT_SET | MOPT_Q}, 1466 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1467 MOPT_SET | MOPT_Q}, 1468 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1469 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1470 {Opt_usrjquota, 0, MOPT_Q}, 1471 {Opt_grpjquota, 0, MOPT_Q}, 1472 {Opt_offusrjquota, 0, MOPT_Q}, 1473 {Opt_offgrpjquota, 0, MOPT_Q}, 1474 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1475 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1476 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1477 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1478 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1479 {Opt_err, 0, 0} 1480 }; 1481 1482 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1483 substring_t *args, unsigned long *journal_devnum, 1484 unsigned int *journal_ioprio, int is_remount) 1485 { 1486 struct ext4_sb_info *sbi = EXT4_SB(sb); 1487 const struct mount_opts *m; 1488 kuid_t uid; 1489 kgid_t gid; 1490 int arg = 0; 1491 1492 #ifdef CONFIG_QUOTA 1493 if (token == Opt_usrjquota) 1494 return set_qf_name(sb, USRQUOTA, &args[0]); 1495 else if (token == Opt_grpjquota) 1496 return set_qf_name(sb, GRPQUOTA, &args[0]); 1497 else if (token == Opt_offusrjquota) 1498 return clear_qf_name(sb, USRQUOTA); 1499 else if (token == Opt_offgrpjquota) 1500 return clear_qf_name(sb, GRPQUOTA); 1501 #endif 1502 switch (token) { 1503 case Opt_noacl: 1504 case Opt_nouser_xattr: 1505 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1506 break; 1507 case Opt_sb: 1508 return 1; /* handled by get_sb_block() */ 1509 case Opt_removed: 1510 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1511 return 1; 1512 case Opt_abort: 1513 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1514 return 1; 1515 case Opt_i_version: 1516 sb->s_flags |= MS_I_VERSION; 1517 return 1; 1518 case Opt_lazytime: 1519 sb->s_flags |= MS_LAZYTIME; 1520 return 1; 1521 case Opt_nolazytime: 1522 sb->s_flags &= ~MS_LAZYTIME; 1523 return 1; 1524 } 1525 1526 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1527 if (token == m->token) 1528 break; 1529 1530 if (m->token == Opt_err) { 1531 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1532 "or missing value", opt); 1533 return -1; 1534 } 1535 1536 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1537 ext4_msg(sb, KERN_ERR, 1538 "Mount option \"%s\" incompatible with ext2", opt); 1539 return -1; 1540 } 1541 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Mount option \"%s\" incompatible with ext3", opt); 1544 return -1; 1545 } 1546 1547 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1548 return -1; 1549 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1550 return -1; 1551 if (m->flags & MOPT_EXPLICIT) { 1552 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1553 set_opt2(sb, EXPLICIT_DELALLOC); 1554 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1555 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1556 } else 1557 return -1; 1558 } 1559 if (m->flags & MOPT_CLEAR_ERR) 1560 clear_opt(sb, ERRORS_MASK); 1561 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1562 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1563 "options when quota turned on"); 1564 return -1; 1565 } 1566 1567 if (m->flags & MOPT_NOSUPPORT) { 1568 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1569 } else if (token == Opt_commit) { 1570 if (arg == 0) 1571 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1572 sbi->s_commit_interval = HZ * arg; 1573 } else if (token == Opt_max_batch_time) { 1574 sbi->s_max_batch_time = arg; 1575 } else if (token == Opt_min_batch_time) { 1576 sbi->s_min_batch_time = arg; 1577 } else if (token == Opt_inode_readahead_blks) { 1578 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1579 ext4_msg(sb, KERN_ERR, 1580 "EXT4-fs: inode_readahead_blks must be " 1581 "0 or a power of 2 smaller than 2^31"); 1582 return -1; 1583 } 1584 sbi->s_inode_readahead_blks = arg; 1585 } else if (token == Opt_init_itable) { 1586 set_opt(sb, INIT_INODE_TABLE); 1587 if (!args->from) 1588 arg = EXT4_DEF_LI_WAIT_MULT; 1589 sbi->s_li_wait_mult = arg; 1590 } else if (token == Opt_max_dir_size_kb) { 1591 sbi->s_max_dir_size_kb = arg; 1592 } else if (token == Opt_stripe) { 1593 sbi->s_stripe = arg; 1594 } else if (token == Opt_resuid) { 1595 uid = make_kuid(current_user_ns(), arg); 1596 if (!uid_valid(uid)) { 1597 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1598 return -1; 1599 } 1600 sbi->s_resuid = uid; 1601 } else if (token == Opt_resgid) { 1602 gid = make_kgid(current_user_ns(), arg); 1603 if (!gid_valid(gid)) { 1604 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1605 return -1; 1606 } 1607 sbi->s_resgid = gid; 1608 } else if (token == Opt_journal_dev) { 1609 if (is_remount) { 1610 ext4_msg(sb, KERN_ERR, 1611 "Cannot specify journal on remount"); 1612 return -1; 1613 } 1614 *journal_devnum = arg; 1615 } else if (token == Opt_journal_path) { 1616 char *journal_path; 1617 struct inode *journal_inode; 1618 struct path path; 1619 int error; 1620 1621 if (is_remount) { 1622 ext4_msg(sb, KERN_ERR, 1623 "Cannot specify journal on remount"); 1624 return -1; 1625 } 1626 journal_path = match_strdup(&args[0]); 1627 if (!journal_path) { 1628 ext4_msg(sb, KERN_ERR, "error: could not dup " 1629 "journal device string"); 1630 return -1; 1631 } 1632 1633 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1634 if (error) { 1635 ext4_msg(sb, KERN_ERR, "error: could not find " 1636 "journal device path: error %d", error); 1637 kfree(journal_path); 1638 return -1; 1639 } 1640 1641 journal_inode = d_inode(path.dentry); 1642 if (!S_ISBLK(journal_inode->i_mode)) { 1643 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1644 "is not a block device", journal_path); 1645 path_put(&path); 1646 kfree(journal_path); 1647 return -1; 1648 } 1649 1650 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1651 path_put(&path); 1652 kfree(journal_path); 1653 } else if (token == Opt_journal_ioprio) { 1654 if (arg > 7) { 1655 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1656 " (must be 0-7)"); 1657 return -1; 1658 } 1659 *journal_ioprio = 1660 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1661 } else if (token == Opt_test_dummy_encryption) { 1662 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1663 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1664 ext4_msg(sb, KERN_WARNING, 1665 "Test dummy encryption mode enabled"); 1666 #else 1667 ext4_msg(sb, KERN_WARNING, 1668 "Test dummy encryption mount option ignored"); 1669 #endif 1670 } else if (m->flags & MOPT_DATAJ) { 1671 if (is_remount) { 1672 if (!sbi->s_journal) 1673 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1674 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1675 ext4_msg(sb, KERN_ERR, 1676 "Cannot change data mode on remount"); 1677 return -1; 1678 } 1679 } else { 1680 clear_opt(sb, DATA_FLAGS); 1681 sbi->s_mount_opt |= m->mount_opt; 1682 } 1683 #ifdef CONFIG_QUOTA 1684 } else if (m->flags & MOPT_QFMT) { 1685 if (sb_any_quota_loaded(sb) && 1686 sbi->s_jquota_fmt != m->mount_opt) { 1687 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1688 "quota options when quota turned on"); 1689 return -1; 1690 } 1691 if (ext4_has_feature_quota(sb)) { 1692 ext4_msg(sb, KERN_ERR, 1693 "Cannot set journaled quota options " 1694 "when QUOTA feature is enabled"); 1695 return -1; 1696 } 1697 sbi->s_jquota_fmt = m->mount_opt; 1698 #endif 1699 } else if (token == Opt_dax) { 1700 #ifdef CONFIG_FS_DAX 1701 ext4_msg(sb, KERN_WARNING, 1702 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1703 sbi->s_mount_opt |= m->mount_opt; 1704 #else 1705 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1706 return -1; 1707 #endif 1708 } else { 1709 if (!args->from) 1710 arg = 1; 1711 if (m->flags & MOPT_CLEAR) 1712 arg = !arg; 1713 else if (unlikely(!(m->flags & MOPT_SET))) { 1714 ext4_msg(sb, KERN_WARNING, 1715 "buggy handling of option %s", opt); 1716 WARN_ON(1); 1717 return -1; 1718 } 1719 if (arg != 0) 1720 sbi->s_mount_opt |= m->mount_opt; 1721 else 1722 sbi->s_mount_opt &= ~m->mount_opt; 1723 } 1724 return 1; 1725 } 1726 1727 static int parse_options(char *options, struct super_block *sb, 1728 unsigned long *journal_devnum, 1729 unsigned int *journal_ioprio, 1730 int is_remount) 1731 { 1732 struct ext4_sb_info *sbi = EXT4_SB(sb); 1733 char *p; 1734 substring_t args[MAX_OPT_ARGS]; 1735 int token; 1736 1737 if (!options) 1738 return 1; 1739 1740 while ((p = strsep(&options, ",")) != NULL) { 1741 if (!*p) 1742 continue; 1743 /* 1744 * Initialize args struct so we know whether arg was 1745 * found; some options take optional arguments. 1746 */ 1747 args[0].to = args[0].from = NULL; 1748 token = match_token(p, tokens, args); 1749 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1750 journal_ioprio, is_remount) < 0) 1751 return 0; 1752 } 1753 #ifdef CONFIG_QUOTA 1754 if (ext4_has_feature_quota(sb) && 1755 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1756 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1757 "feature is enabled"); 1758 return 0; 1759 } 1760 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1761 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1762 clear_opt(sb, USRQUOTA); 1763 1764 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1765 clear_opt(sb, GRPQUOTA); 1766 1767 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1768 ext4_msg(sb, KERN_ERR, "old and new quota " 1769 "format mixing"); 1770 return 0; 1771 } 1772 1773 if (!sbi->s_jquota_fmt) { 1774 ext4_msg(sb, KERN_ERR, "journaled quota format " 1775 "not specified"); 1776 return 0; 1777 } 1778 } 1779 #endif 1780 if (test_opt(sb, DIOREAD_NOLOCK)) { 1781 int blocksize = 1782 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1783 1784 if (blocksize < PAGE_CACHE_SIZE) { 1785 ext4_msg(sb, KERN_ERR, "can't mount with " 1786 "dioread_nolock if block size != PAGE_SIZE"); 1787 return 0; 1788 } 1789 } 1790 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1791 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1792 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1793 "in data=ordered mode"); 1794 return 0; 1795 } 1796 return 1; 1797 } 1798 1799 static inline void ext4_show_quota_options(struct seq_file *seq, 1800 struct super_block *sb) 1801 { 1802 #if defined(CONFIG_QUOTA) 1803 struct ext4_sb_info *sbi = EXT4_SB(sb); 1804 1805 if (sbi->s_jquota_fmt) { 1806 char *fmtname = ""; 1807 1808 switch (sbi->s_jquota_fmt) { 1809 case QFMT_VFS_OLD: 1810 fmtname = "vfsold"; 1811 break; 1812 case QFMT_VFS_V0: 1813 fmtname = "vfsv0"; 1814 break; 1815 case QFMT_VFS_V1: 1816 fmtname = "vfsv1"; 1817 break; 1818 } 1819 seq_printf(seq, ",jqfmt=%s", fmtname); 1820 } 1821 1822 if (sbi->s_qf_names[USRQUOTA]) 1823 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1824 1825 if (sbi->s_qf_names[GRPQUOTA]) 1826 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1827 #endif 1828 } 1829 1830 static const char *token2str(int token) 1831 { 1832 const struct match_token *t; 1833 1834 for (t = tokens; t->token != Opt_err; t++) 1835 if (t->token == token && !strchr(t->pattern, '=')) 1836 break; 1837 return t->pattern; 1838 } 1839 1840 /* 1841 * Show an option if 1842 * - it's set to a non-default value OR 1843 * - if the per-sb default is different from the global default 1844 */ 1845 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1846 int nodefs) 1847 { 1848 struct ext4_sb_info *sbi = EXT4_SB(sb); 1849 struct ext4_super_block *es = sbi->s_es; 1850 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1851 const struct mount_opts *m; 1852 char sep = nodefs ? '\n' : ','; 1853 1854 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1855 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1856 1857 if (sbi->s_sb_block != 1) 1858 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1859 1860 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1861 int want_set = m->flags & MOPT_SET; 1862 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1863 (m->flags & MOPT_CLEAR_ERR)) 1864 continue; 1865 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1866 continue; /* skip if same as the default */ 1867 if ((want_set && 1868 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1869 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1870 continue; /* select Opt_noFoo vs Opt_Foo */ 1871 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1872 } 1873 1874 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1875 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1876 SEQ_OPTS_PRINT("resuid=%u", 1877 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1878 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1879 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1880 SEQ_OPTS_PRINT("resgid=%u", 1881 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1882 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1883 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1884 SEQ_OPTS_PUTS("errors=remount-ro"); 1885 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1886 SEQ_OPTS_PUTS("errors=continue"); 1887 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1888 SEQ_OPTS_PUTS("errors=panic"); 1889 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1890 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1891 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1892 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1893 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1894 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1895 if (sb->s_flags & MS_I_VERSION) 1896 SEQ_OPTS_PUTS("i_version"); 1897 if (nodefs || sbi->s_stripe) 1898 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1899 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1900 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1901 SEQ_OPTS_PUTS("data=journal"); 1902 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1903 SEQ_OPTS_PUTS("data=ordered"); 1904 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1905 SEQ_OPTS_PUTS("data=writeback"); 1906 } 1907 if (nodefs || 1908 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1909 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1910 sbi->s_inode_readahead_blks); 1911 1912 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1913 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1914 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1915 if (nodefs || sbi->s_max_dir_size_kb) 1916 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1917 1918 ext4_show_quota_options(seq, sb); 1919 return 0; 1920 } 1921 1922 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1923 { 1924 return _ext4_show_options(seq, root->d_sb, 0); 1925 } 1926 1927 int ext4_seq_options_show(struct seq_file *seq, void *offset) 1928 { 1929 struct super_block *sb = seq->private; 1930 int rc; 1931 1932 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1933 rc = _ext4_show_options(seq, sb, 1); 1934 seq_puts(seq, "\n"); 1935 return rc; 1936 } 1937 1938 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1939 int read_only) 1940 { 1941 struct ext4_sb_info *sbi = EXT4_SB(sb); 1942 int res = 0; 1943 1944 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1945 ext4_msg(sb, KERN_ERR, "revision level too high, " 1946 "forcing read-only mode"); 1947 res = MS_RDONLY; 1948 } 1949 if (read_only) 1950 goto done; 1951 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1952 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1953 "running e2fsck is recommended"); 1954 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1955 ext4_msg(sb, KERN_WARNING, 1956 "warning: mounting fs with errors, " 1957 "running e2fsck is recommended"); 1958 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1959 le16_to_cpu(es->s_mnt_count) >= 1960 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1961 ext4_msg(sb, KERN_WARNING, 1962 "warning: maximal mount count reached, " 1963 "running e2fsck is recommended"); 1964 else if (le32_to_cpu(es->s_checkinterval) && 1965 (le32_to_cpu(es->s_lastcheck) + 1966 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1967 ext4_msg(sb, KERN_WARNING, 1968 "warning: checktime reached, " 1969 "running e2fsck is recommended"); 1970 if (!sbi->s_journal) 1971 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1972 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1973 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1974 le16_add_cpu(&es->s_mnt_count, 1); 1975 es->s_mtime = cpu_to_le32(get_seconds()); 1976 ext4_update_dynamic_rev(sb); 1977 if (sbi->s_journal) 1978 ext4_set_feature_journal_needs_recovery(sb); 1979 1980 ext4_commit_super(sb, 1); 1981 done: 1982 if (test_opt(sb, DEBUG)) 1983 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1984 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1985 sb->s_blocksize, 1986 sbi->s_groups_count, 1987 EXT4_BLOCKS_PER_GROUP(sb), 1988 EXT4_INODES_PER_GROUP(sb), 1989 sbi->s_mount_opt, sbi->s_mount_opt2); 1990 1991 cleancache_init_fs(sb); 1992 return res; 1993 } 1994 1995 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1996 { 1997 struct ext4_sb_info *sbi = EXT4_SB(sb); 1998 struct flex_groups *new_groups; 1999 int size; 2000 2001 if (!sbi->s_log_groups_per_flex) 2002 return 0; 2003 2004 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2005 if (size <= sbi->s_flex_groups_allocated) 2006 return 0; 2007 2008 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2009 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2010 if (!new_groups) { 2011 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2012 size / (int) sizeof(struct flex_groups)); 2013 return -ENOMEM; 2014 } 2015 2016 if (sbi->s_flex_groups) { 2017 memcpy(new_groups, sbi->s_flex_groups, 2018 (sbi->s_flex_groups_allocated * 2019 sizeof(struct flex_groups))); 2020 kvfree(sbi->s_flex_groups); 2021 } 2022 sbi->s_flex_groups = new_groups; 2023 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2024 return 0; 2025 } 2026 2027 static int ext4_fill_flex_info(struct super_block *sb) 2028 { 2029 struct ext4_sb_info *sbi = EXT4_SB(sb); 2030 struct ext4_group_desc *gdp = NULL; 2031 ext4_group_t flex_group; 2032 int i, err; 2033 2034 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2035 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2036 sbi->s_log_groups_per_flex = 0; 2037 return 1; 2038 } 2039 2040 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2041 if (err) 2042 goto failed; 2043 2044 for (i = 0; i < sbi->s_groups_count; i++) { 2045 gdp = ext4_get_group_desc(sb, i, NULL); 2046 2047 flex_group = ext4_flex_group(sbi, i); 2048 atomic_add(ext4_free_inodes_count(sb, gdp), 2049 &sbi->s_flex_groups[flex_group].free_inodes); 2050 atomic64_add(ext4_free_group_clusters(sb, gdp), 2051 &sbi->s_flex_groups[flex_group].free_clusters); 2052 atomic_add(ext4_used_dirs_count(sb, gdp), 2053 &sbi->s_flex_groups[flex_group].used_dirs); 2054 } 2055 2056 return 1; 2057 failed: 2058 return 0; 2059 } 2060 2061 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2062 struct ext4_group_desc *gdp) 2063 { 2064 int offset; 2065 __u16 crc = 0; 2066 __le32 le_group = cpu_to_le32(block_group); 2067 struct ext4_sb_info *sbi = EXT4_SB(sb); 2068 2069 if (ext4_has_metadata_csum(sbi->s_sb)) { 2070 /* Use new metadata_csum algorithm */ 2071 __le16 save_csum; 2072 __u32 csum32; 2073 2074 save_csum = gdp->bg_checksum; 2075 gdp->bg_checksum = 0; 2076 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2077 sizeof(le_group)); 2078 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2079 sbi->s_desc_size); 2080 gdp->bg_checksum = save_csum; 2081 2082 crc = csum32 & 0xFFFF; 2083 goto out; 2084 } 2085 2086 /* old crc16 code */ 2087 if (!ext4_has_feature_gdt_csum(sb)) 2088 return 0; 2089 2090 offset = offsetof(struct ext4_group_desc, bg_checksum); 2091 2092 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2093 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2094 crc = crc16(crc, (__u8 *)gdp, offset); 2095 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2096 /* for checksum of struct ext4_group_desc do the rest...*/ 2097 if (ext4_has_feature_64bit(sb) && 2098 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2099 crc = crc16(crc, (__u8 *)gdp + offset, 2100 le16_to_cpu(sbi->s_es->s_desc_size) - 2101 offset); 2102 2103 out: 2104 return cpu_to_le16(crc); 2105 } 2106 2107 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2108 struct ext4_group_desc *gdp) 2109 { 2110 if (ext4_has_group_desc_csum(sb) && 2111 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2112 return 0; 2113 2114 return 1; 2115 } 2116 2117 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2118 struct ext4_group_desc *gdp) 2119 { 2120 if (!ext4_has_group_desc_csum(sb)) 2121 return; 2122 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2123 } 2124 2125 /* Called at mount-time, super-block is locked */ 2126 static int ext4_check_descriptors(struct super_block *sb, 2127 ext4_group_t *first_not_zeroed) 2128 { 2129 struct ext4_sb_info *sbi = EXT4_SB(sb); 2130 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2131 ext4_fsblk_t last_block; 2132 ext4_fsblk_t block_bitmap; 2133 ext4_fsblk_t inode_bitmap; 2134 ext4_fsblk_t inode_table; 2135 int flexbg_flag = 0; 2136 ext4_group_t i, grp = sbi->s_groups_count; 2137 2138 if (ext4_has_feature_flex_bg(sb)) 2139 flexbg_flag = 1; 2140 2141 ext4_debug("Checking group descriptors"); 2142 2143 for (i = 0; i < sbi->s_groups_count; i++) { 2144 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2145 2146 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2147 last_block = ext4_blocks_count(sbi->s_es) - 1; 2148 else 2149 last_block = first_block + 2150 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2151 2152 if ((grp == sbi->s_groups_count) && 2153 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2154 grp = i; 2155 2156 block_bitmap = ext4_block_bitmap(sb, gdp); 2157 if (block_bitmap < first_block || block_bitmap > last_block) { 2158 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2159 "Block bitmap for group %u not in group " 2160 "(block %llu)!", i, block_bitmap); 2161 return 0; 2162 } 2163 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2164 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2165 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2166 "Inode bitmap for group %u not in group " 2167 "(block %llu)!", i, inode_bitmap); 2168 return 0; 2169 } 2170 inode_table = ext4_inode_table(sb, gdp); 2171 if (inode_table < first_block || 2172 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2173 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2174 "Inode table for group %u not in group " 2175 "(block %llu)!", i, inode_table); 2176 return 0; 2177 } 2178 ext4_lock_group(sb, i); 2179 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2180 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2181 "Checksum for group %u failed (%u!=%u)", 2182 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2183 gdp)), le16_to_cpu(gdp->bg_checksum)); 2184 if (!(sb->s_flags & MS_RDONLY)) { 2185 ext4_unlock_group(sb, i); 2186 return 0; 2187 } 2188 } 2189 ext4_unlock_group(sb, i); 2190 if (!flexbg_flag) 2191 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2192 } 2193 if (NULL != first_not_zeroed) 2194 *first_not_zeroed = grp; 2195 return 1; 2196 } 2197 2198 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2199 * the superblock) which were deleted from all directories, but held open by 2200 * a process at the time of a crash. We walk the list and try to delete these 2201 * inodes at recovery time (only with a read-write filesystem). 2202 * 2203 * In order to keep the orphan inode chain consistent during traversal (in 2204 * case of crash during recovery), we link each inode into the superblock 2205 * orphan list_head and handle it the same way as an inode deletion during 2206 * normal operation (which journals the operations for us). 2207 * 2208 * We only do an iget() and an iput() on each inode, which is very safe if we 2209 * accidentally point at an in-use or already deleted inode. The worst that 2210 * can happen in this case is that we get a "bit already cleared" message from 2211 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2212 * e2fsck was run on this filesystem, and it must have already done the orphan 2213 * inode cleanup for us, so we can safely abort without any further action. 2214 */ 2215 static void ext4_orphan_cleanup(struct super_block *sb, 2216 struct ext4_super_block *es) 2217 { 2218 unsigned int s_flags = sb->s_flags; 2219 int nr_orphans = 0, nr_truncates = 0; 2220 #ifdef CONFIG_QUOTA 2221 int i; 2222 #endif 2223 if (!es->s_last_orphan) { 2224 jbd_debug(4, "no orphan inodes to clean up\n"); 2225 return; 2226 } 2227 2228 if (bdev_read_only(sb->s_bdev)) { 2229 ext4_msg(sb, KERN_ERR, "write access " 2230 "unavailable, skipping orphan cleanup"); 2231 return; 2232 } 2233 2234 /* Check if feature set would not allow a r/w mount */ 2235 if (!ext4_feature_set_ok(sb, 0)) { 2236 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2237 "unknown ROCOMPAT features"); 2238 return; 2239 } 2240 2241 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2242 /* don't clear list on RO mount w/ errors */ 2243 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2244 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2245 "clearing orphan list.\n"); 2246 es->s_last_orphan = 0; 2247 } 2248 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2249 return; 2250 } 2251 2252 if (s_flags & MS_RDONLY) { 2253 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2254 sb->s_flags &= ~MS_RDONLY; 2255 } 2256 #ifdef CONFIG_QUOTA 2257 /* Needed for iput() to work correctly and not trash data */ 2258 sb->s_flags |= MS_ACTIVE; 2259 /* Turn on quotas so that they are updated correctly */ 2260 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2261 if (EXT4_SB(sb)->s_qf_names[i]) { 2262 int ret = ext4_quota_on_mount(sb, i); 2263 if (ret < 0) 2264 ext4_msg(sb, KERN_ERR, 2265 "Cannot turn on journaled " 2266 "quota: error %d", ret); 2267 } 2268 } 2269 #endif 2270 2271 while (es->s_last_orphan) { 2272 struct inode *inode; 2273 2274 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2275 if (IS_ERR(inode)) { 2276 es->s_last_orphan = 0; 2277 break; 2278 } 2279 2280 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2281 dquot_initialize(inode); 2282 if (inode->i_nlink) { 2283 if (test_opt(sb, DEBUG)) 2284 ext4_msg(sb, KERN_DEBUG, 2285 "%s: truncating inode %lu to %lld bytes", 2286 __func__, inode->i_ino, inode->i_size); 2287 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2288 inode->i_ino, inode->i_size); 2289 inode_lock(inode); 2290 truncate_inode_pages(inode->i_mapping, inode->i_size); 2291 ext4_truncate(inode); 2292 inode_unlock(inode); 2293 nr_truncates++; 2294 } else { 2295 if (test_opt(sb, DEBUG)) 2296 ext4_msg(sb, KERN_DEBUG, 2297 "%s: deleting unreferenced inode %lu", 2298 __func__, inode->i_ino); 2299 jbd_debug(2, "deleting unreferenced inode %lu\n", 2300 inode->i_ino); 2301 nr_orphans++; 2302 } 2303 iput(inode); /* The delete magic happens here! */ 2304 } 2305 2306 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2307 2308 if (nr_orphans) 2309 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2310 PLURAL(nr_orphans)); 2311 if (nr_truncates) 2312 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2313 PLURAL(nr_truncates)); 2314 #ifdef CONFIG_QUOTA 2315 /* Turn quotas off */ 2316 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2317 if (sb_dqopt(sb)->files[i]) 2318 dquot_quota_off(sb, i); 2319 } 2320 #endif 2321 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2322 } 2323 2324 /* 2325 * Maximal extent format file size. 2326 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2327 * extent format containers, within a sector_t, and within i_blocks 2328 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2329 * so that won't be a limiting factor. 2330 * 2331 * However there is other limiting factor. We do store extents in the form 2332 * of starting block and length, hence the resulting length of the extent 2333 * covering maximum file size must fit into on-disk format containers as 2334 * well. Given that length is always by 1 unit bigger than max unit (because 2335 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2336 * 2337 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2338 */ 2339 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2340 { 2341 loff_t res; 2342 loff_t upper_limit = MAX_LFS_FILESIZE; 2343 2344 /* small i_blocks in vfs inode? */ 2345 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2346 /* 2347 * CONFIG_LBDAF is not enabled implies the inode 2348 * i_block represent total blocks in 512 bytes 2349 * 32 == size of vfs inode i_blocks * 8 2350 */ 2351 upper_limit = (1LL << 32) - 1; 2352 2353 /* total blocks in file system block size */ 2354 upper_limit >>= (blkbits - 9); 2355 upper_limit <<= blkbits; 2356 } 2357 2358 /* 2359 * 32-bit extent-start container, ee_block. We lower the maxbytes 2360 * by one fs block, so ee_len can cover the extent of maximum file 2361 * size 2362 */ 2363 res = (1LL << 32) - 1; 2364 res <<= blkbits; 2365 2366 /* Sanity check against vm- & vfs- imposed limits */ 2367 if (res > upper_limit) 2368 res = upper_limit; 2369 2370 return res; 2371 } 2372 2373 /* 2374 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2375 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2376 * We need to be 1 filesystem block less than the 2^48 sector limit. 2377 */ 2378 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2379 { 2380 loff_t res = EXT4_NDIR_BLOCKS; 2381 int meta_blocks; 2382 loff_t upper_limit; 2383 /* This is calculated to be the largest file size for a dense, block 2384 * mapped file such that the file's total number of 512-byte sectors, 2385 * including data and all indirect blocks, does not exceed (2^48 - 1). 2386 * 2387 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2388 * number of 512-byte sectors of the file. 2389 */ 2390 2391 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2392 /* 2393 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2394 * the inode i_block field represents total file blocks in 2395 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2396 */ 2397 upper_limit = (1LL << 32) - 1; 2398 2399 /* total blocks in file system block size */ 2400 upper_limit >>= (bits - 9); 2401 2402 } else { 2403 /* 2404 * We use 48 bit ext4_inode i_blocks 2405 * With EXT4_HUGE_FILE_FL set the i_blocks 2406 * represent total number of blocks in 2407 * file system block size 2408 */ 2409 upper_limit = (1LL << 48) - 1; 2410 2411 } 2412 2413 /* indirect blocks */ 2414 meta_blocks = 1; 2415 /* double indirect blocks */ 2416 meta_blocks += 1 + (1LL << (bits-2)); 2417 /* tripple indirect blocks */ 2418 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2419 2420 upper_limit -= meta_blocks; 2421 upper_limit <<= bits; 2422 2423 res += 1LL << (bits-2); 2424 res += 1LL << (2*(bits-2)); 2425 res += 1LL << (3*(bits-2)); 2426 res <<= bits; 2427 if (res > upper_limit) 2428 res = upper_limit; 2429 2430 if (res > MAX_LFS_FILESIZE) 2431 res = MAX_LFS_FILESIZE; 2432 2433 return res; 2434 } 2435 2436 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2437 ext4_fsblk_t logical_sb_block, int nr) 2438 { 2439 struct ext4_sb_info *sbi = EXT4_SB(sb); 2440 ext4_group_t bg, first_meta_bg; 2441 int has_super = 0; 2442 2443 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2444 2445 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2446 return logical_sb_block + nr + 1; 2447 bg = sbi->s_desc_per_block * nr; 2448 if (ext4_bg_has_super(sb, bg)) 2449 has_super = 1; 2450 2451 /* 2452 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2453 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2454 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2455 * compensate. 2456 */ 2457 if (sb->s_blocksize == 1024 && nr == 0 && 2458 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2459 has_super++; 2460 2461 return (has_super + ext4_group_first_block_no(sb, bg)); 2462 } 2463 2464 /** 2465 * ext4_get_stripe_size: Get the stripe size. 2466 * @sbi: In memory super block info 2467 * 2468 * If we have specified it via mount option, then 2469 * use the mount option value. If the value specified at mount time is 2470 * greater than the blocks per group use the super block value. 2471 * If the super block value is greater than blocks per group return 0. 2472 * Allocator needs it be less than blocks per group. 2473 * 2474 */ 2475 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2476 { 2477 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2478 unsigned long stripe_width = 2479 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2480 int ret; 2481 2482 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2483 ret = sbi->s_stripe; 2484 else if (stripe_width <= sbi->s_blocks_per_group) 2485 ret = stripe_width; 2486 else if (stride <= sbi->s_blocks_per_group) 2487 ret = stride; 2488 else 2489 ret = 0; 2490 2491 /* 2492 * If the stripe width is 1, this makes no sense and 2493 * we set it to 0 to turn off stripe handling code. 2494 */ 2495 if (ret <= 1) 2496 ret = 0; 2497 2498 return ret; 2499 } 2500 2501 /* 2502 * Check whether this filesystem can be mounted based on 2503 * the features present and the RDONLY/RDWR mount requested. 2504 * Returns 1 if this filesystem can be mounted as requested, 2505 * 0 if it cannot be. 2506 */ 2507 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2508 { 2509 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2510 ext4_msg(sb, KERN_ERR, 2511 "Couldn't mount because of " 2512 "unsupported optional features (%x)", 2513 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2514 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2515 return 0; 2516 } 2517 2518 if (readonly) 2519 return 1; 2520 2521 if (ext4_has_feature_readonly(sb)) { 2522 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2523 sb->s_flags |= MS_RDONLY; 2524 return 1; 2525 } 2526 2527 /* Check that feature set is OK for a read-write mount */ 2528 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2529 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2530 "unsupported optional features (%x)", 2531 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2532 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2533 return 0; 2534 } 2535 /* 2536 * Large file size enabled file system can only be mounted 2537 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2538 */ 2539 if (ext4_has_feature_huge_file(sb)) { 2540 if (sizeof(blkcnt_t) < sizeof(u64)) { 2541 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2542 "cannot be mounted RDWR without " 2543 "CONFIG_LBDAF"); 2544 return 0; 2545 } 2546 } 2547 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2548 ext4_msg(sb, KERN_ERR, 2549 "Can't support bigalloc feature without " 2550 "extents feature\n"); 2551 return 0; 2552 } 2553 2554 #ifndef CONFIG_QUOTA 2555 if (ext4_has_feature_quota(sb) && !readonly) { 2556 ext4_msg(sb, KERN_ERR, 2557 "Filesystem with quota feature cannot be mounted RDWR " 2558 "without CONFIG_QUOTA"); 2559 return 0; 2560 } 2561 if (ext4_has_feature_project(sb) && !readonly) { 2562 ext4_msg(sb, KERN_ERR, 2563 "Filesystem with project quota feature cannot be mounted RDWR " 2564 "without CONFIG_QUOTA"); 2565 return 0; 2566 } 2567 #endif /* CONFIG_QUOTA */ 2568 return 1; 2569 } 2570 2571 /* 2572 * This function is called once a day if we have errors logged 2573 * on the file system 2574 */ 2575 static void print_daily_error_info(unsigned long arg) 2576 { 2577 struct super_block *sb = (struct super_block *) arg; 2578 struct ext4_sb_info *sbi; 2579 struct ext4_super_block *es; 2580 2581 sbi = EXT4_SB(sb); 2582 es = sbi->s_es; 2583 2584 if (es->s_error_count) 2585 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2586 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2587 le32_to_cpu(es->s_error_count)); 2588 if (es->s_first_error_time) { 2589 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2590 sb->s_id, le32_to_cpu(es->s_first_error_time), 2591 (int) sizeof(es->s_first_error_func), 2592 es->s_first_error_func, 2593 le32_to_cpu(es->s_first_error_line)); 2594 if (es->s_first_error_ino) 2595 printk(": inode %u", 2596 le32_to_cpu(es->s_first_error_ino)); 2597 if (es->s_first_error_block) 2598 printk(": block %llu", (unsigned long long) 2599 le64_to_cpu(es->s_first_error_block)); 2600 printk("\n"); 2601 } 2602 if (es->s_last_error_time) { 2603 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2604 sb->s_id, le32_to_cpu(es->s_last_error_time), 2605 (int) sizeof(es->s_last_error_func), 2606 es->s_last_error_func, 2607 le32_to_cpu(es->s_last_error_line)); 2608 if (es->s_last_error_ino) 2609 printk(": inode %u", 2610 le32_to_cpu(es->s_last_error_ino)); 2611 if (es->s_last_error_block) 2612 printk(": block %llu", (unsigned long long) 2613 le64_to_cpu(es->s_last_error_block)); 2614 printk("\n"); 2615 } 2616 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2617 } 2618 2619 /* Find next suitable group and run ext4_init_inode_table */ 2620 static int ext4_run_li_request(struct ext4_li_request *elr) 2621 { 2622 struct ext4_group_desc *gdp = NULL; 2623 ext4_group_t group, ngroups; 2624 struct super_block *sb; 2625 unsigned long timeout = 0; 2626 int ret = 0; 2627 2628 sb = elr->lr_super; 2629 ngroups = EXT4_SB(sb)->s_groups_count; 2630 2631 sb_start_write(sb); 2632 for (group = elr->lr_next_group; group < ngroups; group++) { 2633 gdp = ext4_get_group_desc(sb, group, NULL); 2634 if (!gdp) { 2635 ret = 1; 2636 break; 2637 } 2638 2639 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2640 break; 2641 } 2642 2643 if (group >= ngroups) 2644 ret = 1; 2645 2646 if (!ret) { 2647 timeout = jiffies; 2648 ret = ext4_init_inode_table(sb, group, 2649 elr->lr_timeout ? 0 : 1); 2650 if (elr->lr_timeout == 0) { 2651 timeout = (jiffies - timeout) * 2652 elr->lr_sbi->s_li_wait_mult; 2653 elr->lr_timeout = timeout; 2654 } 2655 elr->lr_next_sched = jiffies + elr->lr_timeout; 2656 elr->lr_next_group = group + 1; 2657 } 2658 sb_end_write(sb); 2659 2660 return ret; 2661 } 2662 2663 /* 2664 * Remove lr_request from the list_request and free the 2665 * request structure. Should be called with li_list_mtx held 2666 */ 2667 static void ext4_remove_li_request(struct ext4_li_request *elr) 2668 { 2669 struct ext4_sb_info *sbi; 2670 2671 if (!elr) 2672 return; 2673 2674 sbi = elr->lr_sbi; 2675 2676 list_del(&elr->lr_request); 2677 sbi->s_li_request = NULL; 2678 kfree(elr); 2679 } 2680 2681 static void ext4_unregister_li_request(struct super_block *sb) 2682 { 2683 mutex_lock(&ext4_li_mtx); 2684 if (!ext4_li_info) { 2685 mutex_unlock(&ext4_li_mtx); 2686 return; 2687 } 2688 2689 mutex_lock(&ext4_li_info->li_list_mtx); 2690 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2691 mutex_unlock(&ext4_li_info->li_list_mtx); 2692 mutex_unlock(&ext4_li_mtx); 2693 } 2694 2695 static struct task_struct *ext4_lazyinit_task; 2696 2697 /* 2698 * This is the function where ext4lazyinit thread lives. It walks 2699 * through the request list searching for next scheduled filesystem. 2700 * When such a fs is found, run the lazy initialization request 2701 * (ext4_rn_li_request) and keep track of the time spend in this 2702 * function. Based on that time we compute next schedule time of 2703 * the request. When walking through the list is complete, compute 2704 * next waking time and put itself into sleep. 2705 */ 2706 static int ext4_lazyinit_thread(void *arg) 2707 { 2708 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2709 struct list_head *pos, *n; 2710 struct ext4_li_request *elr; 2711 unsigned long next_wakeup, cur; 2712 2713 BUG_ON(NULL == eli); 2714 2715 cont_thread: 2716 while (true) { 2717 next_wakeup = MAX_JIFFY_OFFSET; 2718 2719 mutex_lock(&eli->li_list_mtx); 2720 if (list_empty(&eli->li_request_list)) { 2721 mutex_unlock(&eli->li_list_mtx); 2722 goto exit_thread; 2723 } 2724 2725 list_for_each_safe(pos, n, &eli->li_request_list) { 2726 elr = list_entry(pos, struct ext4_li_request, 2727 lr_request); 2728 2729 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2730 if (ext4_run_li_request(elr) != 0) { 2731 /* error, remove the lazy_init job */ 2732 ext4_remove_li_request(elr); 2733 continue; 2734 } 2735 } 2736 2737 if (time_before(elr->lr_next_sched, next_wakeup)) 2738 next_wakeup = elr->lr_next_sched; 2739 } 2740 mutex_unlock(&eli->li_list_mtx); 2741 2742 try_to_freeze(); 2743 2744 cur = jiffies; 2745 if ((time_after_eq(cur, next_wakeup)) || 2746 (MAX_JIFFY_OFFSET == next_wakeup)) { 2747 cond_resched(); 2748 continue; 2749 } 2750 2751 schedule_timeout_interruptible(next_wakeup - cur); 2752 2753 if (kthread_should_stop()) { 2754 ext4_clear_request_list(); 2755 goto exit_thread; 2756 } 2757 } 2758 2759 exit_thread: 2760 /* 2761 * It looks like the request list is empty, but we need 2762 * to check it under the li_list_mtx lock, to prevent any 2763 * additions into it, and of course we should lock ext4_li_mtx 2764 * to atomically free the list and ext4_li_info, because at 2765 * this point another ext4 filesystem could be registering 2766 * new one. 2767 */ 2768 mutex_lock(&ext4_li_mtx); 2769 mutex_lock(&eli->li_list_mtx); 2770 if (!list_empty(&eli->li_request_list)) { 2771 mutex_unlock(&eli->li_list_mtx); 2772 mutex_unlock(&ext4_li_mtx); 2773 goto cont_thread; 2774 } 2775 mutex_unlock(&eli->li_list_mtx); 2776 kfree(ext4_li_info); 2777 ext4_li_info = NULL; 2778 mutex_unlock(&ext4_li_mtx); 2779 2780 return 0; 2781 } 2782 2783 static void ext4_clear_request_list(void) 2784 { 2785 struct list_head *pos, *n; 2786 struct ext4_li_request *elr; 2787 2788 mutex_lock(&ext4_li_info->li_list_mtx); 2789 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2790 elr = list_entry(pos, struct ext4_li_request, 2791 lr_request); 2792 ext4_remove_li_request(elr); 2793 } 2794 mutex_unlock(&ext4_li_info->li_list_mtx); 2795 } 2796 2797 static int ext4_run_lazyinit_thread(void) 2798 { 2799 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2800 ext4_li_info, "ext4lazyinit"); 2801 if (IS_ERR(ext4_lazyinit_task)) { 2802 int err = PTR_ERR(ext4_lazyinit_task); 2803 ext4_clear_request_list(); 2804 kfree(ext4_li_info); 2805 ext4_li_info = NULL; 2806 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2807 "initialization thread\n", 2808 err); 2809 return err; 2810 } 2811 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2812 return 0; 2813 } 2814 2815 /* 2816 * Check whether it make sense to run itable init. thread or not. 2817 * If there is at least one uninitialized inode table, return 2818 * corresponding group number, else the loop goes through all 2819 * groups and return total number of groups. 2820 */ 2821 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2822 { 2823 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2824 struct ext4_group_desc *gdp = NULL; 2825 2826 for (group = 0; group < ngroups; group++) { 2827 gdp = ext4_get_group_desc(sb, group, NULL); 2828 if (!gdp) 2829 continue; 2830 2831 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2832 break; 2833 } 2834 2835 return group; 2836 } 2837 2838 static int ext4_li_info_new(void) 2839 { 2840 struct ext4_lazy_init *eli = NULL; 2841 2842 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2843 if (!eli) 2844 return -ENOMEM; 2845 2846 INIT_LIST_HEAD(&eli->li_request_list); 2847 mutex_init(&eli->li_list_mtx); 2848 2849 eli->li_state |= EXT4_LAZYINIT_QUIT; 2850 2851 ext4_li_info = eli; 2852 2853 return 0; 2854 } 2855 2856 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2857 ext4_group_t start) 2858 { 2859 struct ext4_sb_info *sbi = EXT4_SB(sb); 2860 struct ext4_li_request *elr; 2861 2862 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2863 if (!elr) 2864 return NULL; 2865 2866 elr->lr_super = sb; 2867 elr->lr_sbi = sbi; 2868 elr->lr_next_group = start; 2869 2870 /* 2871 * Randomize first schedule time of the request to 2872 * spread the inode table initialization requests 2873 * better. 2874 */ 2875 elr->lr_next_sched = jiffies + (prandom_u32() % 2876 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2877 return elr; 2878 } 2879 2880 int ext4_register_li_request(struct super_block *sb, 2881 ext4_group_t first_not_zeroed) 2882 { 2883 struct ext4_sb_info *sbi = EXT4_SB(sb); 2884 struct ext4_li_request *elr = NULL; 2885 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2886 int ret = 0; 2887 2888 mutex_lock(&ext4_li_mtx); 2889 if (sbi->s_li_request != NULL) { 2890 /* 2891 * Reset timeout so it can be computed again, because 2892 * s_li_wait_mult might have changed. 2893 */ 2894 sbi->s_li_request->lr_timeout = 0; 2895 goto out; 2896 } 2897 2898 if (first_not_zeroed == ngroups || 2899 (sb->s_flags & MS_RDONLY) || 2900 !test_opt(sb, INIT_INODE_TABLE)) 2901 goto out; 2902 2903 elr = ext4_li_request_new(sb, first_not_zeroed); 2904 if (!elr) { 2905 ret = -ENOMEM; 2906 goto out; 2907 } 2908 2909 if (NULL == ext4_li_info) { 2910 ret = ext4_li_info_new(); 2911 if (ret) 2912 goto out; 2913 } 2914 2915 mutex_lock(&ext4_li_info->li_list_mtx); 2916 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2917 mutex_unlock(&ext4_li_info->li_list_mtx); 2918 2919 sbi->s_li_request = elr; 2920 /* 2921 * set elr to NULL here since it has been inserted to 2922 * the request_list and the removal and free of it is 2923 * handled by ext4_clear_request_list from now on. 2924 */ 2925 elr = NULL; 2926 2927 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2928 ret = ext4_run_lazyinit_thread(); 2929 if (ret) 2930 goto out; 2931 } 2932 out: 2933 mutex_unlock(&ext4_li_mtx); 2934 if (ret) 2935 kfree(elr); 2936 return ret; 2937 } 2938 2939 /* 2940 * We do not need to lock anything since this is called on 2941 * module unload. 2942 */ 2943 static void ext4_destroy_lazyinit_thread(void) 2944 { 2945 /* 2946 * If thread exited earlier 2947 * there's nothing to be done. 2948 */ 2949 if (!ext4_li_info || !ext4_lazyinit_task) 2950 return; 2951 2952 kthread_stop(ext4_lazyinit_task); 2953 } 2954 2955 static int set_journal_csum_feature_set(struct super_block *sb) 2956 { 2957 int ret = 1; 2958 int compat, incompat; 2959 struct ext4_sb_info *sbi = EXT4_SB(sb); 2960 2961 if (ext4_has_metadata_csum(sb)) { 2962 /* journal checksum v3 */ 2963 compat = 0; 2964 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 2965 } else { 2966 /* journal checksum v1 */ 2967 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 2968 incompat = 0; 2969 } 2970 2971 jbd2_journal_clear_features(sbi->s_journal, 2972 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2973 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 2974 JBD2_FEATURE_INCOMPAT_CSUM_V2); 2975 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2976 ret = jbd2_journal_set_features(sbi->s_journal, 2977 compat, 0, 2978 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 2979 incompat); 2980 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2981 ret = jbd2_journal_set_features(sbi->s_journal, 2982 compat, 0, 2983 incompat); 2984 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2985 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2986 } else { 2987 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2988 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2989 } 2990 2991 return ret; 2992 } 2993 2994 /* 2995 * Note: calculating the overhead so we can be compatible with 2996 * historical BSD practice is quite difficult in the face of 2997 * clusters/bigalloc. This is because multiple metadata blocks from 2998 * different block group can end up in the same allocation cluster. 2999 * Calculating the exact overhead in the face of clustered allocation 3000 * requires either O(all block bitmaps) in memory or O(number of block 3001 * groups**2) in time. We will still calculate the superblock for 3002 * older file systems --- and if we come across with a bigalloc file 3003 * system with zero in s_overhead_clusters the estimate will be close to 3004 * correct especially for very large cluster sizes --- but for newer 3005 * file systems, it's better to calculate this figure once at mkfs 3006 * time, and store it in the superblock. If the superblock value is 3007 * present (even for non-bigalloc file systems), we will use it. 3008 */ 3009 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3010 char *buf) 3011 { 3012 struct ext4_sb_info *sbi = EXT4_SB(sb); 3013 struct ext4_group_desc *gdp; 3014 ext4_fsblk_t first_block, last_block, b; 3015 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3016 int s, j, count = 0; 3017 3018 if (!ext4_has_feature_bigalloc(sb)) 3019 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3020 sbi->s_itb_per_group + 2); 3021 3022 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3023 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3024 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3025 for (i = 0; i < ngroups; i++) { 3026 gdp = ext4_get_group_desc(sb, i, NULL); 3027 b = ext4_block_bitmap(sb, gdp); 3028 if (b >= first_block && b <= last_block) { 3029 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3030 count++; 3031 } 3032 b = ext4_inode_bitmap(sb, gdp); 3033 if (b >= first_block && b <= last_block) { 3034 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3035 count++; 3036 } 3037 b = ext4_inode_table(sb, gdp); 3038 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3039 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3040 int c = EXT4_B2C(sbi, b - first_block); 3041 ext4_set_bit(c, buf); 3042 count++; 3043 } 3044 if (i != grp) 3045 continue; 3046 s = 0; 3047 if (ext4_bg_has_super(sb, grp)) { 3048 ext4_set_bit(s++, buf); 3049 count++; 3050 } 3051 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3052 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3053 count++; 3054 } 3055 } 3056 if (!count) 3057 return 0; 3058 return EXT4_CLUSTERS_PER_GROUP(sb) - 3059 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3060 } 3061 3062 /* 3063 * Compute the overhead and stash it in sbi->s_overhead 3064 */ 3065 int ext4_calculate_overhead(struct super_block *sb) 3066 { 3067 struct ext4_sb_info *sbi = EXT4_SB(sb); 3068 struct ext4_super_block *es = sbi->s_es; 3069 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3070 ext4_fsblk_t overhead = 0; 3071 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3072 3073 if (!buf) 3074 return -ENOMEM; 3075 3076 /* 3077 * Compute the overhead (FS structures). This is constant 3078 * for a given filesystem unless the number of block groups 3079 * changes so we cache the previous value until it does. 3080 */ 3081 3082 /* 3083 * All of the blocks before first_data_block are overhead 3084 */ 3085 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3086 3087 /* 3088 * Add the overhead found in each block group 3089 */ 3090 for (i = 0; i < ngroups; i++) { 3091 int blks; 3092 3093 blks = count_overhead(sb, i, buf); 3094 overhead += blks; 3095 if (blks) 3096 memset(buf, 0, PAGE_SIZE); 3097 cond_resched(); 3098 } 3099 /* Add the internal journal blocks as well */ 3100 if (sbi->s_journal && !sbi->journal_bdev) 3101 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3102 3103 sbi->s_overhead = overhead; 3104 smp_wmb(); 3105 free_page((unsigned long) buf); 3106 return 0; 3107 } 3108 3109 static void ext4_set_resv_clusters(struct super_block *sb) 3110 { 3111 ext4_fsblk_t resv_clusters; 3112 struct ext4_sb_info *sbi = EXT4_SB(sb); 3113 3114 /* 3115 * There's no need to reserve anything when we aren't using extents. 3116 * The space estimates are exact, there are no unwritten extents, 3117 * hole punching doesn't need new metadata... This is needed especially 3118 * to keep ext2/3 backward compatibility. 3119 */ 3120 if (!ext4_has_feature_extents(sb)) 3121 return; 3122 /* 3123 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3124 * This should cover the situations where we can not afford to run 3125 * out of space like for example punch hole, or converting 3126 * unwritten extents in delalloc path. In most cases such 3127 * allocation would require 1, or 2 blocks, higher numbers are 3128 * very rare. 3129 */ 3130 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3131 sbi->s_cluster_bits); 3132 3133 do_div(resv_clusters, 50); 3134 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3135 3136 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3137 } 3138 3139 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3140 { 3141 char *orig_data = kstrdup(data, GFP_KERNEL); 3142 struct buffer_head *bh; 3143 struct ext4_super_block *es = NULL; 3144 struct ext4_sb_info *sbi; 3145 ext4_fsblk_t block; 3146 ext4_fsblk_t sb_block = get_sb_block(&data); 3147 ext4_fsblk_t logical_sb_block; 3148 unsigned long offset = 0; 3149 unsigned long journal_devnum = 0; 3150 unsigned long def_mount_opts; 3151 struct inode *root; 3152 const char *descr; 3153 int ret = -ENOMEM; 3154 int blocksize, clustersize; 3155 unsigned int db_count; 3156 unsigned int i; 3157 int needs_recovery, has_huge_files, has_bigalloc; 3158 __u64 blocks_count; 3159 int err = 0; 3160 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3161 ext4_group_t first_not_zeroed; 3162 3163 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3164 if (!sbi) 3165 goto out_free_orig; 3166 3167 sbi->s_blockgroup_lock = 3168 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3169 if (!sbi->s_blockgroup_lock) { 3170 kfree(sbi); 3171 goto out_free_orig; 3172 } 3173 sb->s_fs_info = sbi; 3174 sbi->s_sb = sb; 3175 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3176 sbi->s_sb_block = sb_block; 3177 if (sb->s_bdev->bd_part) 3178 sbi->s_sectors_written_start = 3179 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3180 3181 /* Cleanup superblock name */ 3182 strreplace(sb->s_id, '/', '!'); 3183 3184 /* -EINVAL is default */ 3185 ret = -EINVAL; 3186 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3187 if (!blocksize) { 3188 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3189 goto out_fail; 3190 } 3191 3192 /* 3193 * The ext4 superblock will not be buffer aligned for other than 1kB 3194 * block sizes. We need to calculate the offset from buffer start. 3195 */ 3196 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3197 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3198 offset = do_div(logical_sb_block, blocksize); 3199 } else { 3200 logical_sb_block = sb_block; 3201 } 3202 3203 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3204 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3205 goto out_fail; 3206 } 3207 /* 3208 * Note: s_es must be initialized as soon as possible because 3209 * some ext4 macro-instructions depend on its value 3210 */ 3211 es = (struct ext4_super_block *) (bh->b_data + offset); 3212 sbi->s_es = es; 3213 sb->s_magic = le16_to_cpu(es->s_magic); 3214 if (sb->s_magic != EXT4_SUPER_MAGIC) 3215 goto cantfind_ext4; 3216 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3217 3218 /* Warn if metadata_csum and gdt_csum are both set. */ 3219 if (ext4_has_feature_metadata_csum(sb) && 3220 ext4_has_feature_gdt_csum(sb)) 3221 ext4_warning(sb, "metadata_csum and uninit_bg are " 3222 "redundant flags; please run fsck."); 3223 3224 /* Check for a known checksum algorithm */ 3225 if (!ext4_verify_csum_type(sb, es)) { 3226 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3227 "unknown checksum algorithm."); 3228 silent = 1; 3229 goto cantfind_ext4; 3230 } 3231 3232 /* Load the checksum driver */ 3233 if (ext4_has_feature_metadata_csum(sb)) { 3234 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3235 if (IS_ERR(sbi->s_chksum_driver)) { 3236 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3237 ret = PTR_ERR(sbi->s_chksum_driver); 3238 sbi->s_chksum_driver = NULL; 3239 goto failed_mount; 3240 } 3241 } 3242 3243 /* Check superblock checksum */ 3244 if (!ext4_superblock_csum_verify(sb, es)) { 3245 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3246 "invalid superblock checksum. Run e2fsck?"); 3247 silent = 1; 3248 ret = -EFSBADCRC; 3249 goto cantfind_ext4; 3250 } 3251 3252 /* Precompute checksum seed for all metadata */ 3253 if (ext4_has_feature_csum_seed(sb)) 3254 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3255 else if (ext4_has_metadata_csum(sb)) 3256 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3257 sizeof(es->s_uuid)); 3258 3259 /* Set defaults before we parse the mount options */ 3260 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3261 set_opt(sb, INIT_INODE_TABLE); 3262 if (def_mount_opts & EXT4_DEFM_DEBUG) 3263 set_opt(sb, DEBUG); 3264 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3265 set_opt(sb, GRPID); 3266 if (def_mount_opts & EXT4_DEFM_UID16) 3267 set_opt(sb, NO_UID32); 3268 /* xattr user namespace & acls are now defaulted on */ 3269 set_opt(sb, XATTR_USER); 3270 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3271 set_opt(sb, POSIX_ACL); 3272 #endif 3273 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3274 if (ext4_has_metadata_csum(sb)) 3275 set_opt(sb, JOURNAL_CHECKSUM); 3276 3277 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3278 set_opt(sb, JOURNAL_DATA); 3279 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3280 set_opt(sb, ORDERED_DATA); 3281 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3282 set_opt(sb, WRITEBACK_DATA); 3283 3284 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3285 set_opt(sb, ERRORS_PANIC); 3286 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3287 set_opt(sb, ERRORS_CONT); 3288 else 3289 set_opt(sb, ERRORS_RO); 3290 /* block_validity enabled by default; disable with noblock_validity */ 3291 set_opt(sb, BLOCK_VALIDITY); 3292 if (def_mount_opts & EXT4_DEFM_DISCARD) 3293 set_opt(sb, DISCARD); 3294 3295 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3296 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3297 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3298 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3299 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3300 3301 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3302 set_opt(sb, BARRIER); 3303 3304 /* 3305 * enable delayed allocation by default 3306 * Use -o nodelalloc to turn it off 3307 */ 3308 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3309 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3310 set_opt(sb, DELALLOC); 3311 3312 /* 3313 * set default s_li_wait_mult for lazyinit, for the case there is 3314 * no mount option specified. 3315 */ 3316 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3317 3318 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3319 &journal_devnum, &journal_ioprio, 0)) { 3320 ext4_msg(sb, KERN_WARNING, 3321 "failed to parse options in superblock: %s", 3322 sbi->s_es->s_mount_opts); 3323 } 3324 sbi->s_def_mount_opt = sbi->s_mount_opt; 3325 if (!parse_options((char *) data, sb, &journal_devnum, 3326 &journal_ioprio, 0)) 3327 goto failed_mount; 3328 3329 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3330 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3331 "with data=journal disables delayed " 3332 "allocation and O_DIRECT support!\n"); 3333 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3334 ext4_msg(sb, KERN_ERR, "can't mount with " 3335 "both data=journal and delalloc"); 3336 goto failed_mount; 3337 } 3338 if (test_opt(sb, DIOREAD_NOLOCK)) { 3339 ext4_msg(sb, KERN_ERR, "can't mount with " 3340 "both data=journal and dioread_nolock"); 3341 goto failed_mount; 3342 } 3343 if (test_opt(sb, DAX)) { 3344 ext4_msg(sb, KERN_ERR, "can't mount with " 3345 "both data=journal and dax"); 3346 goto failed_mount; 3347 } 3348 if (test_opt(sb, DELALLOC)) 3349 clear_opt(sb, DELALLOC); 3350 } else { 3351 sb->s_iflags |= SB_I_CGROUPWB; 3352 } 3353 3354 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3355 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3356 3357 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3358 (ext4_has_compat_features(sb) || 3359 ext4_has_ro_compat_features(sb) || 3360 ext4_has_incompat_features(sb))) 3361 ext4_msg(sb, KERN_WARNING, 3362 "feature flags set on rev 0 fs, " 3363 "running e2fsck is recommended"); 3364 3365 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3366 set_opt2(sb, HURD_COMPAT); 3367 if (ext4_has_feature_64bit(sb)) { 3368 ext4_msg(sb, KERN_ERR, 3369 "The Hurd can't support 64-bit file systems"); 3370 goto failed_mount; 3371 } 3372 } 3373 3374 if (IS_EXT2_SB(sb)) { 3375 if (ext2_feature_set_ok(sb)) 3376 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3377 "using the ext4 subsystem"); 3378 else { 3379 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3380 "to feature incompatibilities"); 3381 goto failed_mount; 3382 } 3383 } 3384 3385 if (IS_EXT3_SB(sb)) { 3386 if (ext3_feature_set_ok(sb)) 3387 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3388 "using the ext4 subsystem"); 3389 else { 3390 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3391 "to feature incompatibilities"); 3392 goto failed_mount; 3393 } 3394 } 3395 3396 /* 3397 * Check feature flags regardless of the revision level, since we 3398 * previously didn't change the revision level when setting the flags, 3399 * so there is a chance incompat flags are set on a rev 0 filesystem. 3400 */ 3401 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3402 goto failed_mount; 3403 3404 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3405 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3406 blocksize > EXT4_MAX_BLOCK_SIZE) { 3407 ext4_msg(sb, KERN_ERR, 3408 "Unsupported filesystem blocksize %d", blocksize); 3409 goto failed_mount; 3410 } 3411 3412 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3413 if (blocksize != PAGE_SIZE) { 3414 ext4_msg(sb, KERN_ERR, 3415 "error: unsupported blocksize for dax"); 3416 goto failed_mount; 3417 } 3418 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3419 ext4_msg(sb, KERN_ERR, 3420 "error: device does not support dax"); 3421 goto failed_mount; 3422 } 3423 } 3424 3425 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3426 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3427 es->s_encryption_level); 3428 goto failed_mount; 3429 } 3430 3431 if (sb->s_blocksize != blocksize) { 3432 /* Validate the filesystem blocksize */ 3433 if (!sb_set_blocksize(sb, blocksize)) { 3434 ext4_msg(sb, KERN_ERR, "bad block size %d", 3435 blocksize); 3436 goto failed_mount; 3437 } 3438 3439 brelse(bh); 3440 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3441 offset = do_div(logical_sb_block, blocksize); 3442 bh = sb_bread_unmovable(sb, logical_sb_block); 3443 if (!bh) { 3444 ext4_msg(sb, KERN_ERR, 3445 "Can't read superblock on 2nd try"); 3446 goto failed_mount; 3447 } 3448 es = (struct ext4_super_block *)(bh->b_data + offset); 3449 sbi->s_es = es; 3450 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3451 ext4_msg(sb, KERN_ERR, 3452 "Magic mismatch, very weird!"); 3453 goto failed_mount; 3454 } 3455 } 3456 3457 has_huge_files = ext4_has_feature_huge_file(sb); 3458 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3459 has_huge_files); 3460 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3461 3462 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3463 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3464 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3465 } else { 3466 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3467 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3468 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3469 (!is_power_of_2(sbi->s_inode_size)) || 3470 (sbi->s_inode_size > blocksize)) { 3471 ext4_msg(sb, KERN_ERR, 3472 "unsupported inode size: %d", 3473 sbi->s_inode_size); 3474 goto failed_mount; 3475 } 3476 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3477 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3478 } 3479 3480 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3481 if (ext4_has_feature_64bit(sb)) { 3482 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3483 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3484 !is_power_of_2(sbi->s_desc_size)) { 3485 ext4_msg(sb, KERN_ERR, 3486 "unsupported descriptor size %lu", 3487 sbi->s_desc_size); 3488 goto failed_mount; 3489 } 3490 } else 3491 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3492 3493 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3494 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3495 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3496 goto cantfind_ext4; 3497 3498 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3499 if (sbi->s_inodes_per_block == 0) 3500 goto cantfind_ext4; 3501 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3502 sbi->s_inodes_per_block; 3503 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3504 sbi->s_sbh = bh; 3505 sbi->s_mount_state = le16_to_cpu(es->s_state); 3506 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3507 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3508 3509 for (i = 0; i < 4; i++) 3510 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3511 sbi->s_def_hash_version = es->s_def_hash_version; 3512 if (ext4_has_feature_dir_index(sb)) { 3513 i = le32_to_cpu(es->s_flags); 3514 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3515 sbi->s_hash_unsigned = 3; 3516 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3517 #ifdef __CHAR_UNSIGNED__ 3518 if (!(sb->s_flags & MS_RDONLY)) 3519 es->s_flags |= 3520 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3521 sbi->s_hash_unsigned = 3; 3522 #else 3523 if (!(sb->s_flags & MS_RDONLY)) 3524 es->s_flags |= 3525 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3526 #endif 3527 } 3528 } 3529 3530 /* Handle clustersize */ 3531 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3532 has_bigalloc = ext4_has_feature_bigalloc(sb); 3533 if (has_bigalloc) { 3534 if (clustersize < blocksize) { 3535 ext4_msg(sb, KERN_ERR, 3536 "cluster size (%d) smaller than " 3537 "block size (%d)", clustersize, blocksize); 3538 goto failed_mount; 3539 } 3540 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3541 le32_to_cpu(es->s_log_block_size); 3542 sbi->s_clusters_per_group = 3543 le32_to_cpu(es->s_clusters_per_group); 3544 if (sbi->s_clusters_per_group > blocksize * 8) { 3545 ext4_msg(sb, KERN_ERR, 3546 "#clusters per group too big: %lu", 3547 sbi->s_clusters_per_group); 3548 goto failed_mount; 3549 } 3550 if (sbi->s_blocks_per_group != 3551 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3552 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3553 "clusters per group (%lu) inconsistent", 3554 sbi->s_blocks_per_group, 3555 sbi->s_clusters_per_group); 3556 goto failed_mount; 3557 } 3558 } else { 3559 if (clustersize != blocksize) { 3560 ext4_warning(sb, "fragment/cluster size (%d) != " 3561 "block size (%d)", clustersize, 3562 blocksize); 3563 clustersize = blocksize; 3564 } 3565 if (sbi->s_blocks_per_group > blocksize * 8) { 3566 ext4_msg(sb, KERN_ERR, 3567 "#blocks per group too big: %lu", 3568 sbi->s_blocks_per_group); 3569 goto failed_mount; 3570 } 3571 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3572 sbi->s_cluster_bits = 0; 3573 } 3574 sbi->s_cluster_ratio = clustersize / blocksize; 3575 3576 if (sbi->s_inodes_per_group > blocksize * 8) { 3577 ext4_msg(sb, KERN_ERR, 3578 "#inodes per group too big: %lu", 3579 sbi->s_inodes_per_group); 3580 goto failed_mount; 3581 } 3582 3583 /* Do we have standard group size of clustersize * 8 blocks ? */ 3584 if (sbi->s_blocks_per_group == clustersize << 3) 3585 set_opt2(sb, STD_GROUP_SIZE); 3586 3587 /* 3588 * Test whether we have more sectors than will fit in sector_t, 3589 * and whether the max offset is addressable by the page cache. 3590 */ 3591 err = generic_check_addressable(sb->s_blocksize_bits, 3592 ext4_blocks_count(es)); 3593 if (err) { 3594 ext4_msg(sb, KERN_ERR, "filesystem" 3595 " too large to mount safely on this system"); 3596 if (sizeof(sector_t) < 8) 3597 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3598 goto failed_mount; 3599 } 3600 3601 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3602 goto cantfind_ext4; 3603 3604 /* check blocks count against device size */ 3605 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3606 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3607 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3608 "exceeds size of device (%llu blocks)", 3609 ext4_blocks_count(es), blocks_count); 3610 goto failed_mount; 3611 } 3612 3613 /* 3614 * It makes no sense for the first data block to be beyond the end 3615 * of the filesystem. 3616 */ 3617 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3618 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3619 "block %u is beyond end of filesystem (%llu)", 3620 le32_to_cpu(es->s_first_data_block), 3621 ext4_blocks_count(es)); 3622 goto failed_mount; 3623 } 3624 blocks_count = (ext4_blocks_count(es) - 3625 le32_to_cpu(es->s_first_data_block) + 3626 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3627 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3628 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3629 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3630 "(block count %llu, first data block %u, " 3631 "blocks per group %lu)", sbi->s_groups_count, 3632 ext4_blocks_count(es), 3633 le32_to_cpu(es->s_first_data_block), 3634 EXT4_BLOCKS_PER_GROUP(sb)); 3635 goto failed_mount; 3636 } 3637 sbi->s_groups_count = blocks_count; 3638 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3639 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3640 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3641 EXT4_DESC_PER_BLOCK(sb); 3642 sbi->s_group_desc = ext4_kvmalloc(db_count * 3643 sizeof(struct buffer_head *), 3644 GFP_KERNEL); 3645 if (sbi->s_group_desc == NULL) { 3646 ext4_msg(sb, KERN_ERR, "not enough memory"); 3647 ret = -ENOMEM; 3648 goto failed_mount; 3649 } 3650 3651 bgl_lock_init(sbi->s_blockgroup_lock); 3652 3653 for (i = 0; i < db_count; i++) { 3654 block = descriptor_loc(sb, logical_sb_block, i); 3655 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3656 if (!sbi->s_group_desc[i]) { 3657 ext4_msg(sb, KERN_ERR, 3658 "can't read group descriptor %d", i); 3659 db_count = i; 3660 goto failed_mount2; 3661 } 3662 } 3663 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3664 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3665 ret = -EFSCORRUPTED; 3666 goto failed_mount2; 3667 } 3668 3669 sbi->s_gdb_count = db_count; 3670 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3671 spin_lock_init(&sbi->s_next_gen_lock); 3672 3673 setup_timer(&sbi->s_err_report, print_daily_error_info, 3674 (unsigned long) sb); 3675 3676 /* Register extent status tree shrinker */ 3677 if (ext4_es_register_shrinker(sbi)) 3678 goto failed_mount3; 3679 3680 sbi->s_stripe = ext4_get_stripe_size(sbi); 3681 sbi->s_extent_max_zeroout_kb = 32; 3682 3683 /* 3684 * set up enough so that it can read an inode 3685 */ 3686 sb->s_op = &ext4_sops; 3687 sb->s_export_op = &ext4_export_ops; 3688 sb->s_xattr = ext4_xattr_handlers; 3689 #ifdef CONFIG_QUOTA 3690 sb->dq_op = &ext4_quota_operations; 3691 if (ext4_has_feature_quota(sb)) 3692 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3693 else 3694 sb->s_qcop = &ext4_qctl_operations; 3695 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3696 #endif 3697 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3698 3699 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3700 mutex_init(&sbi->s_orphan_lock); 3701 3702 sb->s_root = NULL; 3703 3704 needs_recovery = (es->s_last_orphan != 0 || 3705 ext4_has_feature_journal_needs_recovery(sb)); 3706 3707 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3708 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3709 goto failed_mount3a; 3710 3711 /* 3712 * The first inode we look at is the journal inode. Don't try 3713 * root first: it may be modified in the journal! 3714 */ 3715 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3716 if (ext4_load_journal(sb, es, journal_devnum)) 3717 goto failed_mount3a; 3718 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3719 ext4_has_feature_journal_needs_recovery(sb)) { 3720 ext4_msg(sb, KERN_ERR, "required journal recovery " 3721 "suppressed and not mounted read-only"); 3722 goto failed_mount_wq; 3723 } else { 3724 /* Nojournal mode, all journal mount options are illegal */ 3725 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3726 ext4_msg(sb, KERN_ERR, "can't mount with " 3727 "journal_checksum, fs mounted w/o journal"); 3728 goto failed_mount_wq; 3729 } 3730 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3731 ext4_msg(sb, KERN_ERR, "can't mount with " 3732 "journal_async_commit, fs mounted w/o journal"); 3733 goto failed_mount_wq; 3734 } 3735 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3736 ext4_msg(sb, KERN_ERR, "can't mount with " 3737 "commit=%lu, fs mounted w/o journal", 3738 sbi->s_commit_interval / HZ); 3739 goto failed_mount_wq; 3740 } 3741 if (EXT4_MOUNT_DATA_FLAGS & 3742 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3743 ext4_msg(sb, KERN_ERR, "can't mount with " 3744 "data=, fs mounted w/o journal"); 3745 goto failed_mount_wq; 3746 } 3747 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3748 clear_opt(sb, JOURNAL_CHECKSUM); 3749 clear_opt(sb, DATA_FLAGS); 3750 sbi->s_journal = NULL; 3751 needs_recovery = 0; 3752 goto no_journal; 3753 } 3754 3755 if (ext4_has_feature_64bit(sb) && 3756 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3757 JBD2_FEATURE_INCOMPAT_64BIT)) { 3758 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3759 goto failed_mount_wq; 3760 } 3761 3762 if (!set_journal_csum_feature_set(sb)) { 3763 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3764 "feature set"); 3765 goto failed_mount_wq; 3766 } 3767 3768 /* We have now updated the journal if required, so we can 3769 * validate the data journaling mode. */ 3770 switch (test_opt(sb, DATA_FLAGS)) { 3771 case 0: 3772 /* No mode set, assume a default based on the journal 3773 * capabilities: ORDERED_DATA if the journal can 3774 * cope, else JOURNAL_DATA 3775 */ 3776 if (jbd2_journal_check_available_features 3777 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3778 set_opt(sb, ORDERED_DATA); 3779 else 3780 set_opt(sb, JOURNAL_DATA); 3781 break; 3782 3783 case EXT4_MOUNT_ORDERED_DATA: 3784 case EXT4_MOUNT_WRITEBACK_DATA: 3785 if (!jbd2_journal_check_available_features 3786 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3787 ext4_msg(sb, KERN_ERR, "Journal does not support " 3788 "requested data journaling mode"); 3789 goto failed_mount_wq; 3790 } 3791 default: 3792 break; 3793 } 3794 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3795 3796 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3797 3798 no_journal: 3799 if (ext4_mballoc_ready) { 3800 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 3801 if (!sbi->s_mb_cache) { 3802 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3803 goto failed_mount_wq; 3804 } 3805 } 3806 3807 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3808 (blocksize != PAGE_CACHE_SIZE)) { 3809 ext4_msg(sb, KERN_ERR, 3810 "Unsupported blocksize for fs encryption"); 3811 goto failed_mount_wq; 3812 } 3813 3814 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3815 !ext4_has_feature_encrypt(sb)) { 3816 ext4_set_feature_encrypt(sb); 3817 ext4_commit_super(sb, 1); 3818 } 3819 3820 /* 3821 * Get the # of file system overhead blocks from the 3822 * superblock if present. 3823 */ 3824 if (es->s_overhead_clusters) 3825 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3826 else { 3827 err = ext4_calculate_overhead(sb); 3828 if (err) 3829 goto failed_mount_wq; 3830 } 3831 3832 /* 3833 * The maximum number of concurrent works can be high and 3834 * concurrency isn't really necessary. Limit it to 1. 3835 */ 3836 EXT4_SB(sb)->rsv_conversion_wq = 3837 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3838 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3839 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3840 ret = -ENOMEM; 3841 goto failed_mount4; 3842 } 3843 3844 /* 3845 * The jbd2_journal_load will have done any necessary log recovery, 3846 * so we can safely mount the rest of the filesystem now. 3847 */ 3848 3849 root = ext4_iget(sb, EXT4_ROOT_INO); 3850 if (IS_ERR(root)) { 3851 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3852 ret = PTR_ERR(root); 3853 root = NULL; 3854 goto failed_mount4; 3855 } 3856 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3857 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3858 iput(root); 3859 goto failed_mount4; 3860 } 3861 sb->s_root = d_make_root(root); 3862 if (!sb->s_root) { 3863 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3864 ret = -ENOMEM; 3865 goto failed_mount4; 3866 } 3867 3868 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3869 sb->s_flags |= MS_RDONLY; 3870 3871 /* determine the minimum size of new large inodes, if present */ 3872 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3873 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3874 EXT4_GOOD_OLD_INODE_SIZE; 3875 if (ext4_has_feature_extra_isize(sb)) { 3876 if (sbi->s_want_extra_isize < 3877 le16_to_cpu(es->s_want_extra_isize)) 3878 sbi->s_want_extra_isize = 3879 le16_to_cpu(es->s_want_extra_isize); 3880 if (sbi->s_want_extra_isize < 3881 le16_to_cpu(es->s_min_extra_isize)) 3882 sbi->s_want_extra_isize = 3883 le16_to_cpu(es->s_min_extra_isize); 3884 } 3885 } 3886 /* Check if enough inode space is available */ 3887 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3888 sbi->s_inode_size) { 3889 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3890 EXT4_GOOD_OLD_INODE_SIZE; 3891 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3892 "available"); 3893 } 3894 3895 ext4_set_resv_clusters(sb); 3896 3897 err = ext4_setup_system_zone(sb); 3898 if (err) { 3899 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3900 "zone (%d)", err); 3901 goto failed_mount4a; 3902 } 3903 3904 ext4_ext_init(sb); 3905 err = ext4_mb_init(sb); 3906 if (err) { 3907 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3908 err); 3909 goto failed_mount5; 3910 } 3911 3912 block = ext4_count_free_clusters(sb); 3913 ext4_free_blocks_count_set(sbi->s_es, 3914 EXT4_C2B(sbi, block)); 3915 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 3916 GFP_KERNEL); 3917 if (!err) { 3918 unsigned long freei = ext4_count_free_inodes(sb); 3919 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 3920 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 3921 GFP_KERNEL); 3922 } 3923 if (!err) 3924 err = percpu_counter_init(&sbi->s_dirs_counter, 3925 ext4_count_dirs(sb), GFP_KERNEL); 3926 if (!err) 3927 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 3928 GFP_KERNEL); 3929 if (err) { 3930 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3931 goto failed_mount6; 3932 } 3933 3934 if (ext4_has_feature_flex_bg(sb)) 3935 if (!ext4_fill_flex_info(sb)) { 3936 ext4_msg(sb, KERN_ERR, 3937 "unable to initialize " 3938 "flex_bg meta info!"); 3939 goto failed_mount6; 3940 } 3941 3942 err = ext4_register_li_request(sb, first_not_zeroed); 3943 if (err) 3944 goto failed_mount6; 3945 3946 err = ext4_register_sysfs(sb); 3947 if (err) 3948 goto failed_mount7; 3949 3950 #ifdef CONFIG_QUOTA 3951 /* Enable quota usage during mount. */ 3952 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 3953 err = ext4_enable_quotas(sb); 3954 if (err) 3955 goto failed_mount8; 3956 } 3957 #endif /* CONFIG_QUOTA */ 3958 3959 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3960 ext4_orphan_cleanup(sb, es); 3961 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3962 if (needs_recovery) { 3963 ext4_msg(sb, KERN_INFO, "recovery complete"); 3964 ext4_mark_recovery_complete(sb, es); 3965 } 3966 if (EXT4_SB(sb)->s_journal) { 3967 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3968 descr = " journalled data mode"; 3969 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3970 descr = " ordered data mode"; 3971 else 3972 descr = " writeback data mode"; 3973 } else 3974 descr = "out journal"; 3975 3976 if (test_opt(sb, DISCARD)) { 3977 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3978 if (!blk_queue_discard(q)) 3979 ext4_msg(sb, KERN_WARNING, 3980 "mounting with \"discard\" option, but " 3981 "the device does not support discard"); 3982 } 3983 3984 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 3985 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3986 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3987 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3988 3989 if (es->s_error_count) 3990 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3991 3992 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 3993 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 3994 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 3995 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 3996 3997 kfree(orig_data); 3998 return 0; 3999 4000 cantfind_ext4: 4001 if (!silent) 4002 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4003 goto failed_mount; 4004 4005 #ifdef CONFIG_QUOTA 4006 failed_mount8: 4007 ext4_unregister_sysfs(sb); 4008 #endif 4009 failed_mount7: 4010 ext4_unregister_li_request(sb); 4011 failed_mount6: 4012 ext4_mb_release(sb); 4013 if (sbi->s_flex_groups) 4014 kvfree(sbi->s_flex_groups); 4015 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4016 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4017 percpu_counter_destroy(&sbi->s_dirs_counter); 4018 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4019 failed_mount5: 4020 ext4_ext_release(sb); 4021 ext4_release_system_zone(sb); 4022 failed_mount4a: 4023 dput(sb->s_root); 4024 sb->s_root = NULL; 4025 failed_mount4: 4026 ext4_msg(sb, KERN_ERR, "mount failed"); 4027 if (EXT4_SB(sb)->rsv_conversion_wq) 4028 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4029 failed_mount_wq: 4030 if (sbi->s_journal) { 4031 jbd2_journal_destroy(sbi->s_journal); 4032 sbi->s_journal = NULL; 4033 } 4034 failed_mount3a: 4035 ext4_es_unregister_shrinker(sbi); 4036 failed_mount3: 4037 del_timer_sync(&sbi->s_err_report); 4038 if (sbi->s_mmp_tsk) 4039 kthread_stop(sbi->s_mmp_tsk); 4040 failed_mount2: 4041 for (i = 0; i < db_count; i++) 4042 brelse(sbi->s_group_desc[i]); 4043 kvfree(sbi->s_group_desc); 4044 failed_mount: 4045 if (sbi->s_chksum_driver) 4046 crypto_free_shash(sbi->s_chksum_driver); 4047 #ifdef CONFIG_QUOTA 4048 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4049 kfree(sbi->s_qf_names[i]); 4050 #endif 4051 ext4_blkdev_remove(sbi); 4052 brelse(bh); 4053 out_fail: 4054 sb->s_fs_info = NULL; 4055 kfree(sbi->s_blockgroup_lock); 4056 kfree(sbi); 4057 out_free_orig: 4058 kfree(orig_data); 4059 return err ? err : ret; 4060 } 4061 4062 /* 4063 * Setup any per-fs journal parameters now. We'll do this both on 4064 * initial mount, once the journal has been initialised but before we've 4065 * done any recovery; and again on any subsequent remount. 4066 */ 4067 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4068 { 4069 struct ext4_sb_info *sbi = EXT4_SB(sb); 4070 4071 journal->j_commit_interval = sbi->s_commit_interval; 4072 journal->j_min_batch_time = sbi->s_min_batch_time; 4073 journal->j_max_batch_time = sbi->s_max_batch_time; 4074 4075 write_lock(&journal->j_state_lock); 4076 if (test_opt(sb, BARRIER)) 4077 journal->j_flags |= JBD2_BARRIER; 4078 else 4079 journal->j_flags &= ~JBD2_BARRIER; 4080 if (test_opt(sb, DATA_ERR_ABORT)) 4081 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4082 else 4083 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4084 write_unlock(&journal->j_state_lock); 4085 } 4086 4087 static journal_t *ext4_get_journal(struct super_block *sb, 4088 unsigned int journal_inum) 4089 { 4090 struct inode *journal_inode; 4091 journal_t *journal; 4092 4093 BUG_ON(!ext4_has_feature_journal(sb)); 4094 4095 /* First, test for the existence of a valid inode on disk. Bad 4096 * things happen if we iget() an unused inode, as the subsequent 4097 * iput() will try to delete it. */ 4098 4099 journal_inode = ext4_iget(sb, journal_inum); 4100 if (IS_ERR(journal_inode)) { 4101 ext4_msg(sb, KERN_ERR, "no journal found"); 4102 return NULL; 4103 } 4104 if (!journal_inode->i_nlink) { 4105 make_bad_inode(journal_inode); 4106 iput(journal_inode); 4107 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4108 return NULL; 4109 } 4110 4111 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4112 journal_inode, journal_inode->i_size); 4113 if (!S_ISREG(journal_inode->i_mode)) { 4114 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4115 iput(journal_inode); 4116 return NULL; 4117 } 4118 4119 journal = jbd2_journal_init_inode(journal_inode); 4120 if (!journal) { 4121 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4122 iput(journal_inode); 4123 return NULL; 4124 } 4125 journal->j_private = sb; 4126 ext4_init_journal_params(sb, journal); 4127 return journal; 4128 } 4129 4130 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4131 dev_t j_dev) 4132 { 4133 struct buffer_head *bh; 4134 journal_t *journal; 4135 ext4_fsblk_t start; 4136 ext4_fsblk_t len; 4137 int hblock, blocksize; 4138 ext4_fsblk_t sb_block; 4139 unsigned long offset; 4140 struct ext4_super_block *es; 4141 struct block_device *bdev; 4142 4143 BUG_ON(!ext4_has_feature_journal(sb)); 4144 4145 bdev = ext4_blkdev_get(j_dev, sb); 4146 if (bdev == NULL) 4147 return NULL; 4148 4149 blocksize = sb->s_blocksize; 4150 hblock = bdev_logical_block_size(bdev); 4151 if (blocksize < hblock) { 4152 ext4_msg(sb, KERN_ERR, 4153 "blocksize too small for journal device"); 4154 goto out_bdev; 4155 } 4156 4157 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4158 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4159 set_blocksize(bdev, blocksize); 4160 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4161 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4162 "external journal"); 4163 goto out_bdev; 4164 } 4165 4166 es = (struct ext4_super_block *) (bh->b_data + offset); 4167 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4168 !(le32_to_cpu(es->s_feature_incompat) & 4169 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4170 ext4_msg(sb, KERN_ERR, "external journal has " 4171 "bad superblock"); 4172 brelse(bh); 4173 goto out_bdev; 4174 } 4175 4176 if ((le32_to_cpu(es->s_feature_ro_compat) & 4177 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4178 es->s_checksum != ext4_superblock_csum(sb, es)) { 4179 ext4_msg(sb, KERN_ERR, "external journal has " 4180 "corrupt superblock"); 4181 brelse(bh); 4182 goto out_bdev; 4183 } 4184 4185 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4186 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4187 brelse(bh); 4188 goto out_bdev; 4189 } 4190 4191 len = ext4_blocks_count(es); 4192 start = sb_block + 1; 4193 brelse(bh); /* we're done with the superblock */ 4194 4195 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4196 start, len, blocksize); 4197 if (!journal) { 4198 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4199 goto out_bdev; 4200 } 4201 journal->j_private = sb; 4202 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4203 wait_on_buffer(journal->j_sb_buffer); 4204 if (!buffer_uptodate(journal->j_sb_buffer)) { 4205 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4206 goto out_journal; 4207 } 4208 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4209 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4210 "user (unsupported) - %d", 4211 be32_to_cpu(journal->j_superblock->s_nr_users)); 4212 goto out_journal; 4213 } 4214 EXT4_SB(sb)->journal_bdev = bdev; 4215 ext4_init_journal_params(sb, journal); 4216 return journal; 4217 4218 out_journal: 4219 jbd2_journal_destroy(journal); 4220 out_bdev: 4221 ext4_blkdev_put(bdev); 4222 return NULL; 4223 } 4224 4225 static int ext4_load_journal(struct super_block *sb, 4226 struct ext4_super_block *es, 4227 unsigned long journal_devnum) 4228 { 4229 journal_t *journal; 4230 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4231 dev_t journal_dev; 4232 int err = 0; 4233 int really_read_only; 4234 4235 BUG_ON(!ext4_has_feature_journal(sb)); 4236 4237 if (journal_devnum && 4238 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4239 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4240 "numbers have changed"); 4241 journal_dev = new_decode_dev(journal_devnum); 4242 } else 4243 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4244 4245 really_read_only = bdev_read_only(sb->s_bdev); 4246 4247 /* 4248 * Are we loading a blank journal or performing recovery after a 4249 * crash? For recovery, we need to check in advance whether we 4250 * can get read-write access to the device. 4251 */ 4252 if (ext4_has_feature_journal_needs_recovery(sb)) { 4253 if (sb->s_flags & MS_RDONLY) { 4254 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4255 "required on readonly filesystem"); 4256 if (really_read_only) { 4257 ext4_msg(sb, KERN_ERR, "write access " 4258 "unavailable, cannot proceed"); 4259 return -EROFS; 4260 } 4261 ext4_msg(sb, KERN_INFO, "write access will " 4262 "be enabled during recovery"); 4263 } 4264 } 4265 4266 if (journal_inum && journal_dev) { 4267 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4268 "and inode journals!"); 4269 return -EINVAL; 4270 } 4271 4272 if (journal_inum) { 4273 if (!(journal = ext4_get_journal(sb, journal_inum))) 4274 return -EINVAL; 4275 } else { 4276 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4277 return -EINVAL; 4278 } 4279 4280 if (!(journal->j_flags & JBD2_BARRIER)) 4281 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4282 4283 if (!ext4_has_feature_journal_needs_recovery(sb)) 4284 err = jbd2_journal_wipe(journal, !really_read_only); 4285 if (!err) { 4286 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4287 if (save) 4288 memcpy(save, ((char *) es) + 4289 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4290 err = jbd2_journal_load(journal); 4291 if (save) 4292 memcpy(((char *) es) + EXT4_S_ERR_START, 4293 save, EXT4_S_ERR_LEN); 4294 kfree(save); 4295 } 4296 4297 if (err) { 4298 ext4_msg(sb, KERN_ERR, "error loading journal"); 4299 jbd2_journal_destroy(journal); 4300 return err; 4301 } 4302 4303 EXT4_SB(sb)->s_journal = journal; 4304 ext4_clear_journal_err(sb, es); 4305 4306 if (!really_read_only && journal_devnum && 4307 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4308 es->s_journal_dev = cpu_to_le32(journal_devnum); 4309 4310 /* Make sure we flush the recovery flag to disk. */ 4311 ext4_commit_super(sb, 1); 4312 } 4313 4314 return 0; 4315 } 4316 4317 static int ext4_commit_super(struct super_block *sb, int sync) 4318 { 4319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4320 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4321 int error = 0; 4322 4323 if (!sbh || block_device_ejected(sb)) 4324 return error; 4325 if (buffer_write_io_error(sbh)) { 4326 /* 4327 * Oh, dear. A previous attempt to write the 4328 * superblock failed. This could happen because the 4329 * USB device was yanked out. Or it could happen to 4330 * be a transient write error and maybe the block will 4331 * be remapped. Nothing we can do but to retry the 4332 * write and hope for the best. 4333 */ 4334 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4335 "superblock detected"); 4336 clear_buffer_write_io_error(sbh); 4337 set_buffer_uptodate(sbh); 4338 } 4339 /* 4340 * If the file system is mounted read-only, don't update the 4341 * superblock write time. This avoids updating the superblock 4342 * write time when we are mounting the root file system 4343 * read/only but we need to replay the journal; at that point, 4344 * for people who are east of GMT and who make their clock 4345 * tick in localtime for Windows bug-for-bug compatibility, 4346 * the clock is set in the future, and this will cause e2fsck 4347 * to complain and force a full file system check. 4348 */ 4349 if (!(sb->s_flags & MS_RDONLY)) 4350 es->s_wtime = cpu_to_le32(get_seconds()); 4351 if (sb->s_bdev->bd_part) 4352 es->s_kbytes_written = 4353 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4354 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4355 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4356 else 4357 es->s_kbytes_written = 4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4359 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4360 ext4_free_blocks_count_set(es, 4361 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4362 &EXT4_SB(sb)->s_freeclusters_counter))); 4363 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4364 es->s_free_inodes_count = 4365 cpu_to_le32(percpu_counter_sum_positive( 4366 &EXT4_SB(sb)->s_freeinodes_counter)); 4367 BUFFER_TRACE(sbh, "marking dirty"); 4368 ext4_superblock_csum_set(sb); 4369 mark_buffer_dirty(sbh); 4370 if (sync) { 4371 error = __sync_dirty_buffer(sbh, 4372 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4373 if (error) 4374 return error; 4375 4376 error = buffer_write_io_error(sbh); 4377 if (error) { 4378 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4379 "superblock"); 4380 clear_buffer_write_io_error(sbh); 4381 set_buffer_uptodate(sbh); 4382 } 4383 } 4384 return error; 4385 } 4386 4387 /* 4388 * Have we just finished recovery? If so, and if we are mounting (or 4389 * remounting) the filesystem readonly, then we will end up with a 4390 * consistent fs on disk. Record that fact. 4391 */ 4392 static void ext4_mark_recovery_complete(struct super_block *sb, 4393 struct ext4_super_block *es) 4394 { 4395 journal_t *journal = EXT4_SB(sb)->s_journal; 4396 4397 if (!ext4_has_feature_journal(sb)) { 4398 BUG_ON(journal != NULL); 4399 return; 4400 } 4401 jbd2_journal_lock_updates(journal); 4402 if (jbd2_journal_flush(journal) < 0) 4403 goto out; 4404 4405 if (ext4_has_feature_journal_needs_recovery(sb) && 4406 sb->s_flags & MS_RDONLY) { 4407 ext4_clear_feature_journal_needs_recovery(sb); 4408 ext4_commit_super(sb, 1); 4409 } 4410 4411 out: 4412 jbd2_journal_unlock_updates(journal); 4413 } 4414 4415 /* 4416 * If we are mounting (or read-write remounting) a filesystem whose journal 4417 * has recorded an error from a previous lifetime, move that error to the 4418 * main filesystem now. 4419 */ 4420 static void ext4_clear_journal_err(struct super_block *sb, 4421 struct ext4_super_block *es) 4422 { 4423 journal_t *journal; 4424 int j_errno; 4425 const char *errstr; 4426 4427 BUG_ON(!ext4_has_feature_journal(sb)); 4428 4429 journal = EXT4_SB(sb)->s_journal; 4430 4431 /* 4432 * Now check for any error status which may have been recorded in the 4433 * journal by a prior ext4_error() or ext4_abort() 4434 */ 4435 4436 j_errno = jbd2_journal_errno(journal); 4437 if (j_errno) { 4438 char nbuf[16]; 4439 4440 errstr = ext4_decode_error(sb, j_errno, nbuf); 4441 ext4_warning(sb, "Filesystem error recorded " 4442 "from previous mount: %s", errstr); 4443 ext4_warning(sb, "Marking fs in need of filesystem check."); 4444 4445 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4446 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4447 ext4_commit_super(sb, 1); 4448 4449 jbd2_journal_clear_err(journal); 4450 jbd2_journal_update_sb_errno(journal); 4451 } 4452 } 4453 4454 /* 4455 * Force the running and committing transactions to commit, 4456 * and wait on the commit. 4457 */ 4458 int ext4_force_commit(struct super_block *sb) 4459 { 4460 journal_t *journal; 4461 4462 if (sb->s_flags & MS_RDONLY) 4463 return 0; 4464 4465 journal = EXT4_SB(sb)->s_journal; 4466 return ext4_journal_force_commit(journal); 4467 } 4468 4469 static int ext4_sync_fs(struct super_block *sb, int wait) 4470 { 4471 int ret = 0; 4472 tid_t target; 4473 bool needs_barrier = false; 4474 struct ext4_sb_info *sbi = EXT4_SB(sb); 4475 4476 trace_ext4_sync_fs(sb, wait); 4477 flush_workqueue(sbi->rsv_conversion_wq); 4478 /* 4479 * Writeback quota in non-journalled quota case - journalled quota has 4480 * no dirty dquots 4481 */ 4482 dquot_writeback_dquots(sb, -1); 4483 /* 4484 * Data writeback is possible w/o journal transaction, so barrier must 4485 * being sent at the end of the function. But we can skip it if 4486 * transaction_commit will do it for us. 4487 */ 4488 if (sbi->s_journal) { 4489 target = jbd2_get_latest_transaction(sbi->s_journal); 4490 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4491 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4492 needs_barrier = true; 4493 4494 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4495 if (wait) 4496 ret = jbd2_log_wait_commit(sbi->s_journal, 4497 target); 4498 } 4499 } else if (wait && test_opt(sb, BARRIER)) 4500 needs_barrier = true; 4501 if (needs_barrier) { 4502 int err; 4503 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4504 if (!ret) 4505 ret = err; 4506 } 4507 4508 return ret; 4509 } 4510 4511 /* 4512 * LVM calls this function before a (read-only) snapshot is created. This 4513 * gives us a chance to flush the journal completely and mark the fs clean. 4514 * 4515 * Note that only this function cannot bring a filesystem to be in a clean 4516 * state independently. It relies on upper layer to stop all data & metadata 4517 * modifications. 4518 */ 4519 static int ext4_freeze(struct super_block *sb) 4520 { 4521 int error = 0; 4522 journal_t *journal; 4523 4524 if (sb->s_flags & MS_RDONLY) 4525 return 0; 4526 4527 journal = EXT4_SB(sb)->s_journal; 4528 4529 if (journal) { 4530 /* Now we set up the journal barrier. */ 4531 jbd2_journal_lock_updates(journal); 4532 4533 /* 4534 * Don't clear the needs_recovery flag if we failed to 4535 * flush the journal. 4536 */ 4537 error = jbd2_journal_flush(journal); 4538 if (error < 0) 4539 goto out; 4540 4541 /* Journal blocked and flushed, clear needs_recovery flag. */ 4542 ext4_clear_feature_journal_needs_recovery(sb); 4543 } 4544 4545 error = ext4_commit_super(sb, 1); 4546 out: 4547 if (journal) 4548 /* we rely on upper layer to stop further updates */ 4549 jbd2_journal_unlock_updates(journal); 4550 return error; 4551 } 4552 4553 /* 4554 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4555 * flag here, even though the filesystem is not technically dirty yet. 4556 */ 4557 static int ext4_unfreeze(struct super_block *sb) 4558 { 4559 if (sb->s_flags & MS_RDONLY) 4560 return 0; 4561 4562 if (EXT4_SB(sb)->s_journal) { 4563 /* Reset the needs_recovery flag before the fs is unlocked. */ 4564 ext4_set_feature_journal_needs_recovery(sb); 4565 } 4566 4567 ext4_commit_super(sb, 1); 4568 return 0; 4569 } 4570 4571 /* 4572 * Structure to save mount options for ext4_remount's benefit 4573 */ 4574 struct ext4_mount_options { 4575 unsigned long s_mount_opt; 4576 unsigned long s_mount_opt2; 4577 kuid_t s_resuid; 4578 kgid_t s_resgid; 4579 unsigned long s_commit_interval; 4580 u32 s_min_batch_time, s_max_batch_time; 4581 #ifdef CONFIG_QUOTA 4582 int s_jquota_fmt; 4583 char *s_qf_names[EXT4_MAXQUOTAS]; 4584 #endif 4585 }; 4586 4587 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4588 { 4589 struct ext4_super_block *es; 4590 struct ext4_sb_info *sbi = EXT4_SB(sb); 4591 unsigned long old_sb_flags; 4592 struct ext4_mount_options old_opts; 4593 int enable_quota = 0; 4594 ext4_group_t g; 4595 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4596 int err = 0; 4597 #ifdef CONFIG_QUOTA 4598 int i, j; 4599 #endif 4600 char *orig_data = kstrdup(data, GFP_KERNEL); 4601 4602 /* Store the original options */ 4603 old_sb_flags = sb->s_flags; 4604 old_opts.s_mount_opt = sbi->s_mount_opt; 4605 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4606 old_opts.s_resuid = sbi->s_resuid; 4607 old_opts.s_resgid = sbi->s_resgid; 4608 old_opts.s_commit_interval = sbi->s_commit_interval; 4609 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4610 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4611 #ifdef CONFIG_QUOTA 4612 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4613 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4614 if (sbi->s_qf_names[i]) { 4615 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4616 GFP_KERNEL); 4617 if (!old_opts.s_qf_names[i]) { 4618 for (j = 0; j < i; j++) 4619 kfree(old_opts.s_qf_names[j]); 4620 kfree(orig_data); 4621 return -ENOMEM; 4622 } 4623 } else 4624 old_opts.s_qf_names[i] = NULL; 4625 #endif 4626 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4627 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4628 4629 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4630 err = -EINVAL; 4631 goto restore_opts; 4632 } 4633 4634 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4635 test_opt(sb, JOURNAL_CHECKSUM)) { 4636 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4637 "during remount not supported; ignoring"); 4638 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4639 } 4640 4641 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4642 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4643 ext4_msg(sb, KERN_ERR, "can't mount with " 4644 "both data=journal and delalloc"); 4645 err = -EINVAL; 4646 goto restore_opts; 4647 } 4648 if (test_opt(sb, DIOREAD_NOLOCK)) { 4649 ext4_msg(sb, KERN_ERR, "can't mount with " 4650 "both data=journal and dioread_nolock"); 4651 err = -EINVAL; 4652 goto restore_opts; 4653 } 4654 if (test_opt(sb, DAX)) { 4655 ext4_msg(sb, KERN_ERR, "can't mount with " 4656 "both data=journal and dax"); 4657 err = -EINVAL; 4658 goto restore_opts; 4659 } 4660 } 4661 4662 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4663 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4664 "dax flag with busy inodes while remounting"); 4665 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4666 } 4667 4668 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4669 ext4_abort(sb, "Abort forced by user"); 4670 4671 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4672 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4673 4674 es = sbi->s_es; 4675 4676 if (sbi->s_journal) { 4677 ext4_init_journal_params(sb, sbi->s_journal); 4678 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4679 } 4680 4681 if (*flags & MS_LAZYTIME) 4682 sb->s_flags |= MS_LAZYTIME; 4683 4684 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4685 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4686 err = -EROFS; 4687 goto restore_opts; 4688 } 4689 4690 if (*flags & MS_RDONLY) { 4691 err = sync_filesystem(sb); 4692 if (err < 0) 4693 goto restore_opts; 4694 err = dquot_suspend(sb, -1); 4695 if (err < 0) 4696 goto restore_opts; 4697 4698 /* 4699 * First of all, the unconditional stuff we have to do 4700 * to disable replay of the journal when we next remount 4701 */ 4702 sb->s_flags |= MS_RDONLY; 4703 4704 /* 4705 * OK, test if we are remounting a valid rw partition 4706 * readonly, and if so set the rdonly flag and then 4707 * mark the partition as valid again. 4708 */ 4709 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4710 (sbi->s_mount_state & EXT4_VALID_FS)) 4711 es->s_state = cpu_to_le16(sbi->s_mount_state); 4712 4713 if (sbi->s_journal) 4714 ext4_mark_recovery_complete(sb, es); 4715 } else { 4716 /* Make sure we can mount this feature set readwrite */ 4717 if (ext4_has_feature_readonly(sb) || 4718 !ext4_feature_set_ok(sb, 0)) { 4719 err = -EROFS; 4720 goto restore_opts; 4721 } 4722 /* 4723 * Make sure the group descriptor checksums 4724 * are sane. If they aren't, refuse to remount r/w. 4725 */ 4726 for (g = 0; g < sbi->s_groups_count; g++) { 4727 struct ext4_group_desc *gdp = 4728 ext4_get_group_desc(sb, g, NULL); 4729 4730 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4731 ext4_msg(sb, KERN_ERR, 4732 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4733 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4734 le16_to_cpu(gdp->bg_checksum)); 4735 err = -EFSBADCRC; 4736 goto restore_opts; 4737 } 4738 } 4739 4740 /* 4741 * If we have an unprocessed orphan list hanging 4742 * around from a previously readonly bdev mount, 4743 * require a full umount/remount for now. 4744 */ 4745 if (es->s_last_orphan) { 4746 ext4_msg(sb, KERN_WARNING, "Couldn't " 4747 "remount RDWR because of unprocessed " 4748 "orphan inode list. Please " 4749 "umount/remount instead"); 4750 err = -EINVAL; 4751 goto restore_opts; 4752 } 4753 4754 /* 4755 * Mounting a RDONLY partition read-write, so reread 4756 * and store the current valid flag. (It may have 4757 * been changed by e2fsck since we originally mounted 4758 * the partition.) 4759 */ 4760 if (sbi->s_journal) 4761 ext4_clear_journal_err(sb, es); 4762 sbi->s_mount_state = le16_to_cpu(es->s_state); 4763 if (!ext4_setup_super(sb, es, 0)) 4764 sb->s_flags &= ~MS_RDONLY; 4765 if (ext4_has_feature_mmp(sb)) 4766 if (ext4_multi_mount_protect(sb, 4767 le64_to_cpu(es->s_mmp_block))) { 4768 err = -EROFS; 4769 goto restore_opts; 4770 } 4771 enable_quota = 1; 4772 } 4773 } 4774 4775 /* 4776 * Reinitialize lazy itable initialization thread based on 4777 * current settings 4778 */ 4779 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4780 ext4_unregister_li_request(sb); 4781 else { 4782 ext4_group_t first_not_zeroed; 4783 first_not_zeroed = ext4_has_uninit_itable(sb); 4784 ext4_register_li_request(sb, first_not_zeroed); 4785 } 4786 4787 ext4_setup_system_zone(sb); 4788 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4789 ext4_commit_super(sb, 1); 4790 4791 #ifdef CONFIG_QUOTA 4792 /* Release old quota file names */ 4793 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4794 kfree(old_opts.s_qf_names[i]); 4795 if (enable_quota) { 4796 if (sb_any_quota_suspended(sb)) 4797 dquot_resume(sb, -1); 4798 else if (ext4_has_feature_quota(sb)) { 4799 err = ext4_enable_quotas(sb); 4800 if (err) 4801 goto restore_opts; 4802 } 4803 } 4804 #endif 4805 4806 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4807 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4808 kfree(orig_data); 4809 return 0; 4810 4811 restore_opts: 4812 sb->s_flags = old_sb_flags; 4813 sbi->s_mount_opt = old_opts.s_mount_opt; 4814 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4815 sbi->s_resuid = old_opts.s_resuid; 4816 sbi->s_resgid = old_opts.s_resgid; 4817 sbi->s_commit_interval = old_opts.s_commit_interval; 4818 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4819 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4820 #ifdef CONFIG_QUOTA 4821 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4822 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4823 kfree(sbi->s_qf_names[i]); 4824 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4825 } 4826 #endif 4827 kfree(orig_data); 4828 return err; 4829 } 4830 4831 #ifdef CONFIG_QUOTA 4832 static int ext4_statfs_project(struct super_block *sb, 4833 kprojid_t projid, struct kstatfs *buf) 4834 { 4835 struct kqid qid; 4836 struct dquot *dquot; 4837 u64 limit; 4838 u64 curblock; 4839 4840 qid = make_kqid_projid(projid); 4841 dquot = dqget(sb, qid); 4842 if (IS_ERR(dquot)) 4843 return PTR_ERR(dquot); 4844 spin_lock(&dq_data_lock); 4845 4846 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 4847 dquot->dq_dqb.dqb_bsoftlimit : 4848 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 4849 if (limit && buf->f_blocks > limit) { 4850 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 4851 buf->f_blocks = limit; 4852 buf->f_bfree = buf->f_bavail = 4853 (buf->f_blocks > curblock) ? 4854 (buf->f_blocks - curblock) : 0; 4855 } 4856 4857 limit = dquot->dq_dqb.dqb_isoftlimit ? 4858 dquot->dq_dqb.dqb_isoftlimit : 4859 dquot->dq_dqb.dqb_ihardlimit; 4860 if (limit && buf->f_files > limit) { 4861 buf->f_files = limit; 4862 buf->f_ffree = 4863 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 4864 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 4865 } 4866 4867 spin_unlock(&dq_data_lock); 4868 dqput(dquot); 4869 return 0; 4870 } 4871 #endif 4872 4873 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4874 { 4875 struct super_block *sb = dentry->d_sb; 4876 struct ext4_sb_info *sbi = EXT4_SB(sb); 4877 struct ext4_super_block *es = sbi->s_es; 4878 ext4_fsblk_t overhead = 0, resv_blocks; 4879 u64 fsid; 4880 s64 bfree; 4881 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4882 4883 if (!test_opt(sb, MINIX_DF)) 4884 overhead = sbi->s_overhead; 4885 4886 buf->f_type = EXT4_SUPER_MAGIC; 4887 buf->f_bsize = sb->s_blocksize; 4888 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4889 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4890 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4891 /* prevent underflow in case that few free space is available */ 4892 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4893 buf->f_bavail = buf->f_bfree - 4894 (ext4_r_blocks_count(es) + resv_blocks); 4895 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4896 buf->f_bavail = 0; 4897 buf->f_files = le32_to_cpu(es->s_inodes_count); 4898 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4899 buf->f_namelen = EXT4_NAME_LEN; 4900 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4901 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4902 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4903 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4904 4905 #ifdef CONFIG_QUOTA 4906 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 4907 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 4908 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 4909 #endif 4910 return 0; 4911 } 4912 4913 /* Helper function for writing quotas on sync - we need to start transaction 4914 * before quota file is locked for write. Otherwise the are possible deadlocks: 4915 * Process 1 Process 2 4916 * ext4_create() quota_sync() 4917 * jbd2_journal_start() write_dquot() 4918 * dquot_initialize() down(dqio_mutex) 4919 * down(dqio_mutex) jbd2_journal_start() 4920 * 4921 */ 4922 4923 #ifdef CONFIG_QUOTA 4924 4925 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4926 { 4927 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4928 } 4929 4930 static int ext4_write_dquot(struct dquot *dquot) 4931 { 4932 int ret, err; 4933 handle_t *handle; 4934 struct inode *inode; 4935 4936 inode = dquot_to_inode(dquot); 4937 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4938 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4939 if (IS_ERR(handle)) 4940 return PTR_ERR(handle); 4941 ret = dquot_commit(dquot); 4942 err = ext4_journal_stop(handle); 4943 if (!ret) 4944 ret = err; 4945 return ret; 4946 } 4947 4948 static int ext4_acquire_dquot(struct dquot *dquot) 4949 { 4950 int ret, err; 4951 handle_t *handle; 4952 4953 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4954 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4955 if (IS_ERR(handle)) 4956 return PTR_ERR(handle); 4957 ret = dquot_acquire(dquot); 4958 err = ext4_journal_stop(handle); 4959 if (!ret) 4960 ret = err; 4961 return ret; 4962 } 4963 4964 static int ext4_release_dquot(struct dquot *dquot) 4965 { 4966 int ret, err; 4967 handle_t *handle; 4968 4969 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4970 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4971 if (IS_ERR(handle)) { 4972 /* Release dquot anyway to avoid endless cycle in dqput() */ 4973 dquot_release(dquot); 4974 return PTR_ERR(handle); 4975 } 4976 ret = dquot_release(dquot); 4977 err = ext4_journal_stop(handle); 4978 if (!ret) 4979 ret = err; 4980 return ret; 4981 } 4982 4983 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4984 { 4985 struct super_block *sb = dquot->dq_sb; 4986 struct ext4_sb_info *sbi = EXT4_SB(sb); 4987 4988 /* Are we journaling quotas? */ 4989 if (ext4_has_feature_quota(sb) || 4990 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4991 dquot_mark_dquot_dirty(dquot); 4992 return ext4_write_dquot(dquot); 4993 } else { 4994 return dquot_mark_dquot_dirty(dquot); 4995 } 4996 } 4997 4998 static int ext4_write_info(struct super_block *sb, int type) 4999 { 5000 int ret, err; 5001 handle_t *handle; 5002 5003 /* Data block + inode block */ 5004 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5005 if (IS_ERR(handle)) 5006 return PTR_ERR(handle); 5007 ret = dquot_commit_info(sb, type); 5008 err = ext4_journal_stop(handle); 5009 if (!ret) 5010 ret = err; 5011 return ret; 5012 } 5013 5014 /* 5015 * Turn on quotas during mount time - we need to find 5016 * the quota file and such... 5017 */ 5018 static int ext4_quota_on_mount(struct super_block *sb, int type) 5019 { 5020 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5021 EXT4_SB(sb)->s_jquota_fmt, type); 5022 } 5023 5024 /* 5025 * Standard function to be called on quota_on 5026 */ 5027 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5028 struct path *path) 5029 { 5030 int err; 5031 5032 if (!test_opt(sb, QUOTA)) 5033 return -EINVAL; 5034 5035 /* Quotafile not on the same filesystem? */ 5036 if (path->dentry->d_sb != sb) 5037 return -EXDEV; 5038 /* Journaling quota? */ 5039 if (EXT4_SB(sb)->s_qf_names[type]) { 5040 /* Quotafile not in fs root? */ 5041 if (path->dentry->d_parent != sb->s_root) 5042 ext4_msg(sb, KERN_WARNING, 5043 "Quota file not on filesystem root. " 5044 "Journaled quota will not work"); 5045 } 5046 5047 /* 5048 * When we journal data on quota file, we have to flush journal to see 5049 * all updates to the file when we bypass pagecache... 5050 */ 5051 if (EXT4_SB(sb)->s_journal && 5052 ext4_should_journal_data(d_inode(path->dentry))) { 5053 /* 5054 * We don't need to lock updates but journal_flush() could 5055 * otherwise be livelocked... 5056 */ 5057 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5058 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5059 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5060 if (err) 5061 return err; 5062 } 5063 5064 return dquot_quota_on(sb, type, format_id, path); 5065 } 5066 5067 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5068 unsigned int flags) 5069 { 5070 int err; 5071 struct inode *qf_inode; 5072 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5073 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5074 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5075 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5076 }; 5077 5078 BUG_ON(!ext4_has_feature_quota(sb)); 5079 5080 if (!qf_inums[type]) 5081 return -EPERM; 5082 5083 qf_inode = ext4_iget(sb, qf_inums[type]); 5084 if (IS_ERR(qf_inode)) { 5085 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5086 return PTR_ERR(qf_inode); 5087 } 5088 5089 /* Don't account quota for quota files to avoid recursion */ 5090 qf_inode->i_flags |= S_NOQUOTA; 5091 err = dquot_enable(qf_inode, type, format_id, flags); 5092 iput(qf_inode); 5093 5094 return err; 5095 } 5096 5097 /* Enable usage tracking for all quota types. */ 5098 static int ext4_enable_quotas(struct super_block *sb) 5099 { 5100 int type, err = 0; 5101 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5102 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5103 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5104 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5105 }; 5106 5107 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5108 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5109 if (qf_inums[type]) { 5110 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5111 DQUOT_USAGE_ENABLED); 5112 if (err) { 5113 ext4_warning(sb, 5114 "Failed to enable quota tracking " 5115 "(type=%d, err=%d). Please run " 5116 "e2fsck to fix.", type, err); 5117 return err; 5118 } 5119 } 5120 } 5121 return 0; 5122 } 5123 5124 static int ext4_quota_off(struct super_block *sb, int type) 5125 { 5126 struct inode *inode = sb_dqopt(sb)->files[type]; 5127 handle_t *handle; 5128 5129 /* Force all delayed allocation blocks to be allocated. 5130 * Caller already holds s_umount sem */ 5131 if (test_opt(sb, DELALLOC)) 5132 sync_filesystem(sb); 5133 5134 if (!inode) 5135 goto out; 5136 5137 /* Update modification times of quota files when userspace can 5138 * start looking at them */ 5139 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5140 if (IS_ERR(handle)) 5141 goto out; 5142 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5143 ext4_mark_inode_dirty(handle, inode); 5144 ext4_journal_stop(handle); 5145 5146 out: 5147 return dquot_quota_off(sb, type); 5148 } 5149 5150 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5151 * acquiring the locks... As quota files are never truncated and quota code 5152 * itself serializes the operations (and no one else should touch the files) 5153 * we don't have to be afraid of races */ 5154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5155 size_t len, loff_t off) 5156 { 5157 struct inode *inode = sb_dqopt(sb)->files[type]; 5158 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5159 int offset = off & (sb->s_blocksize - 1); 5160 int tocopy; 5161 size_t toread; 5162 struct buffer_head *bh; 5163 loff_t i_size = i_size_read(inode); 5164 5165 if (off > i_size) 5166 return 0; 5167 if (off+len > i_size) 5168 len = i_size-off; 5169 toread = len; 5170 while (toread > 0) { 5171 tocopy = sb->s_blocksize - offset < toread ? 5172 sb->s_blocksize - offset : toread; 5173 bh = ext4_bread(NULL, inode, blk, 0); 5174 if (IS_ERR(bh)) 5175 return PTR_ERR(bh); 5176 if (!bh) /* A hole? */ 5177 memset(data, 0, tocopy); 5178 else 5179 memcpy(data, bh->b_data+offset, tocopy); 5180 brelse(bh); 5181 offset = 0; 5182 toread -= tocopy; 5183 data += tocopy; 5184 blk++; 5185 } 5186 return len; 5187 } 5188 5189 /* Write to quotafile (we know the transaction is already started and has 5190 * enough credits) */ 5191 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5192 const char *data, size_t len, loff_t off) 5193 { 5194 struct inode *inode = sb_dqopt(sb)->files[type]; 5195 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5196 int err, offset = off & (sb->s_blocksize - 1); 5197 int retries = 0; 5198 struct buffer_head *bh; 5199 handle_t *handle = journal_current_handle(); 5200 5201 if (EXT4_SB(sb)->s_journal && !handle) { 5202 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5203 " cancelled because transaction is not started", 5204 (unsigned long long)off, (unsigned long long)len); 5205 return -EIO; 5206 } 5207 /* 5208 * Since we account only one data block in transaction credits, 5209 * then it is impossible to cross a block boundary. 5210 */ 5211 if (sb->s_blocksize - offset < len) { 5212 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5213 " cancelled because not block aligned", 5214 (unsigned long long)off, (unsigned long long)len); 5215 return -EIO; 5216 } 5217 5218 do { 5219 bh = ext4_bread(handle, inode, blk, 5220 EXT4_GET_BLOCKS_CREATE | 5221 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5222 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5223 ext4_should_retry_alloc(inode->i_sb, &retries)); 5224 if (IS_ERR(bh)) 5225 return PTR_ERR(bh); 5226 if (!bh) 5227 goto out; 5228 BUFFER_TRACE(bh, "get write access"); 5229 err = ext4_journal_get_write_access(handle, bh); 5230 if (err) { 5231 brelse(bh); 5232 return err; 5233 } 5234 lock_buffer(bh); 5235 memcpy(bh->b_data+offset, data, len); 5236 flush_dcache_page(bh->b_page); 5237 unlock_buffer(bh); 5238 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5239 brelse(bh); 5240 out: 5241 if (inode->i_size < off + len) { 5242 i_size_write(inode, off + len); 5243 EXT4_I(inode)->i_disksize = inode->i_size; 5244 ext4_mark_inode_dirty(handle, inode); 5245 } 5246 return len; 5247 } 5248 5249 #endif 5250 5251 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5252 const char *dev_name, void *data) 5253 { 5254 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5255 } 5256 5257 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5258 static inline void register_as_ext2(void) 5259 { 5260 int err = register_filesystem(&ext2_fs_type); 5261 if (err) 5262 printk(KERN_WARNING 5263 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5264 } 5265 5266 static inline void unregister_as_ext2(void) 5267 { 5268 unregister_filesystem(&ext2_fs_type); 5269 } 5270 5271 static inline int ext2_feature_set_ok(struct super_block *sb) 5272 { 5273 if (ext4_has_unknown_ext2_incompat_features(sb)) 5274 return 0; 5275 if (sb->s_flags & MS_RDONLY) 5276 return 1; 5277 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5278 return 0; 5279 return 1; 5280 } 5281 #else 5282 static inline void register_as_ext2(void) { } 5283 static inline void unregister_as_ext2(void) { } 5284 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5285 #endif 5286 5287 static inline void register_as_ext3(void) 5288 { 5289 int err = register_filesystem(&ext3_fs_type); 5290 if (err) 5291 printk(KERN_WARNING 5292 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5293 } 5294 5295 static inline void unregister_as_ext3(void) 5296 { 5297 unregister_filesystem(&ext3_fs_type); 5298 } 5299 5300 static inline int ext3_feature_set_ok(struct super_block *sb) 5301 { 5302 if (ext4_has_unknown_ext3_incompat_features(sb)) 5303 return 0; 5304 if (!ext4_has_feature_journal(sb)) 5305 return 0; 5306 if (sb->s_flags & MS_RDONLY) 5307 return 1; 5308 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5309 return 0; 5310 return 1; 5311 } 5312 5313 static struct file_system_type ext4_fs_type = { 5314 .owner = THIS_MODULE, 5315 .name = "ext4", 5316 .mount = ext4_mount, 5317 .kill_sb = kill_block_super, 5318 .fs_flags = FS_REQUIRES_DEV, 5319 }; 5320 MODULE_ALIAS_FS("ext4"); 5321 5322 /* Shared across all ext4 file systems */ 5323 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5324 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5325 5326 static int __init ext4_init_fs(void) 5327 { 5328 int i, err; 5329 5330 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5331 ext4_li_info = NULL; 5332 mutex_init(&ext4_li_mtx); 5333 5334 /* Build-time check for flags consistency */ 5335 ext4_check_flag_values(); 5336 5337 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5338 mutex_init(&ext4__aio_mutex[i]); 5339 init_waitqueue_head(&ext4__ioend_wq[i]); 5340 } 5341 5342 err = ext4_init_es(); 5343 if (err) 5344 return err; 5345 5346 err = ext4_init_pageio(); 5347 if (err) 5348 goto out5; 5349 5350 err = ext4_init_system_zone(); 5351 if (err) 5352 goto out4; 5353 5354 err = ext4_init_sysfs(); 5355 if (err) 5356 goto out3; 5357 5358 err = ext4_init_mballoc(); 5359 if (err) 5360 goto out2; 5361 else 5362 ext4_mballoc_ready = 1; 5363 err = init_inodecache(); 5364 if (err) 5365 goto out1; 5366 register_as_ext3(); 5367 register_as_ext2(); 5368 err = register_filesystem(&ext4_fs_type); 5369 if (err) 5370 goto out; 5371 5372 return 0; 5373 out: 5374 unregister_as_ext2(); 5375 unregister_as_ext3(); 5376 destroy_inodecache(); 5377 out1: 5378 ext4_mballoc_ready = 0; 5379 ext4_exit_mballoc(); 5380 out2: 5381 ext4_exit_sysfs(); 5382 out3: 5383 ext4_exit_system_zone(); 5384 out4: 5385 ext4_exit_pageio(); 5386 out5: 5387 ext4_exit_es(); 5388 5389 return err; 5390 } 5391 5392 static void __exit ext4_exit_fs(void) 5393 { 5394 ext4_exit_crypto(); 5395 ext4_destroy_lazyinit_thread(); 5396 unregister_as_ext2(); 5397 unregister_as_ext3(); 5398 unregister_filesystem(&ext4_fs_type); 5399 destroy_inodecache(); 5400 ext4_exit_mballoc(); 5401 ext4_exit_sysfs(); 5402 ext4_exit_system_zone(); 5403 ext4_exit_pageio(); 5404 ext4_exit_es(); 5405 } 5406 5407 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5408 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5409 MODULE_LICENSE("GPL"); 5410 module_init(ext4_init_fs) 5411 module_exit(ext4_exit_fs) 5412