1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (sb_rdonly(sb)) 409 return; 410 411 if (!test_opt(sb, ERRORS_CONT)) { 412 journal_t *journal = EXT4_SB(sb)->s_journal; 413 414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 415 if (journal) 416 jbd2_journal_abort(journal, -EIO); 417 } 418 if (test_opt(sb, ERRORS_RO)) { 419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 420 /* 421 * Make sure updated value of ->s_mount_flags will be visible 422 * before ->s_flags update 423 */ 424 smp_wmb(); 425 sb->s_flags |= SB_RDONLY; 426 } 427 if (test_opt(sb, ERRORS_PANIC)) { 428 if (EXT4_SB(sb)->s_journal && 429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 430 return; 431 panic("EXT4-fs (device %s): panic forced after error\n", 432 sb->s_id); 433 } 434 } 435 436 #define ext4_error_ratelimit(sb) \ 437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 438 "EXT4-fs error") 439 440 void __ext4_error(struct super_block *sb, const char *function, 441 unsigned int line, const char *fmt, ...) 442 { 443 struct va_format vaf; 444 va_list args; 445 446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 447 return; 448 449 trace_ext4_error(sb, function, line); 450 if (ext4_error_ratelimit(sb)) { 451 va_start(args, fmt); 452 vaf.fmt = fmt; 453 vaf.va = &args; 454 printk(KERN_CRIT 455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 456 sb->s_id, function, line, current->comm, &vaf); 457 va_end(args); 458 } 459 save_error_info(sb, function, line); 460 ext4_handle_error(sb); 461 } 462 463 void __ext4_error_inode(struct inode *inode, const char *function, 464 unsigned int line, ext4_fsblk_t block, 465 const char *fmt, ...) 466 { 467 va_list args; 468 struct va_format vaf; 469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 470 471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 472 return; 473 474 trace_ext4_error(inode->i_sb, function, line); 475 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 476 es->s_last_error_block = cpu_to_le64(block); 477 if (ext4_error_ratelimit(inode->i_sb)) { 478 va_start(args, fmt); 479 vaf.fmt = fmt; 480 vaf.va = &args; 481 if (block) 482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 483 "inode #%lu: block %llu: comm %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 block, current->comm, &vaf); 486 else 487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 488 "inode #%lu: comm %s: %pV\n", 489 inode->i_sb->s_id, function, line, inode->i_ino, 490 current->comm, &vaf); 491 va_end(args); 492 } 493 save_error_info(inode->i_sb, function, line); 494 ext4_handle_error(inode->i_sb); 495 } 496 497 void __ext4_error_file(struct file *file, const char *function, 498 unsigned int line, ext4_fsblk_t block, 499 const char *fmt, ...) 500 { 501 va_list args; 502 struct va_format vaf; 503 struct ext4_super_block *es; 504 struct inode *inode = file_inode(file); 505 char pathname[80], *path; 506 507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 508 return; 509 510 trace_ext4_error(inode->i_sb, function, line); 511 es = EXT4_SB(inode->i_sb)->s_es; 512 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 513 if (ext4_error_ratelimit(inode->i_sb)) { 514 path = file_path(file, pathname, sizeof(pathname)); 515 if (IS_ERR(path)) 516 path = "(unknown)"; 517 va_start(args, fmt); 518 vaf.fmt = fmt; 519 vaf.va = &args; 520 if (block) 521 printk(KERN_CRIT 522 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 523 "block %llu: comm %s: path %s: %pV\n", 524 inode->i_sb->s_id, function, line, inode->i_ino, 525 block, current->comm, path, &vaf); 526 else 527 printk(KERN_CRIT 528 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 529 "comm %s: path %s: %pV\n", 530 inode->i_sb->s_id, function, line, inode->i_ino, 531 current->comm, path, &vaf); 532 va_end(args); 533 } 534 save_error_info(inode->i_sb, function, line); 535 ext4_handle_error(inode->i_sb); 536 } 537 538 const char *ext4_decode_error(struct super_block *sb, int errno, 539 char nbuf[16]) 540 { 541 char *errstr = NULL; 542 543 switch (errno) { 544 case -EFSCORRUPTED: 545 errstr = "Corrupt filesystem"; 546 break; 547 case -EFSBADCRC: 548 errstr = "Filesystem failed CRC"; 549 break; 550 case -EIO: 551 errstr = "IO failure"; 552 break; 553 case -ENOMEM: 554 errstr = "Out of memory"; 555 break; 556 case -EROFS: 557 if (!sb || (EXT4_SB(sb)->s_journal && 558 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 559 errstr = "Journal has aborted"; 560 else 561 errstr = "Readonly filesystem"; 562 break; 563 default: 564 /* If the caller passed in an extra buffer for unknown 565 * errors, textualise them now. Else we just return 566 * NULL. */ 567 if (nbuf) { 568 /* Check for truncated error codes... */ 569 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 570 errstr = nbuf; 571 } 572 break; 573 } 574 575 return errstr; 576 } 577 578 /* __ext4_std_error decodes expected errors from journaling functions 579 * automatically and invokes the appropriate error response. */ 580 581 void __ext4_std_error(struct super_block *sb, const char *function, 582 unsigned int line, int errno) 583 { 584 char nbuf[16]; 585 const char *errstr; 586 587 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 588 return; 589 590 /* Special case: if the error is EROFS, and we're not already 591 * inside a transaction, then there's really no point in logging 592 * an error. */ 593 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 594 return; 595 596 if (ext4_error_ratelimit(sb)) { 597 errstr = ext4_decode_error(sb, errno, nbuf); 598 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 599 sb->s_id, function, line, errstr); 600 } 601 602 save_error_info(sb, function, line); 603 ext4_handle_error(sb); 604 } 605 606 /* 607 * ext4_abort is a much stronger failure handler than ext4_error. The 608 * abort function may be used to deal with unrecoverable failures such 609 * as journal IO errors or ENOMEM at a critical moment in log management. 610 * 611 * We unconditionally force the filesystem into an ABORT|READONLY state, 612 * unless the error response on the fs has been set to panic in which 613 * case we take the easy way out and panic immediately. 614 */ 615 616 void __ext4_abort(struct super_block *sb, const char *function, 617 unsigned int line, const char *fmt, ...) 618 { 619 struct va_format vaf; 620 va_list args; 621 622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 623 return; 624 625 save_error_info(sb, function, line); 626 va_start(args, fmt); 627 vaf.fmt = fmt; 628 vaf.va = &args; 629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 630 sb->s_id, function, line, &vaf); 631 va_end(args); 632 633 if (sb_rdonly(sb) == 0) { 634 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 635 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 636 /* 637 * Make sure updated value of ->s_mount_flags will be visible 638 * before ->s_flags update 639 */ 640 smp_wmb(); 641 sb->s_flags |= SB_RDONLY; 642 if (EXT4_SB(sb)->s_journal) 643 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 644 save_error_info(sb, function, line); 645 } 646 if (test_opt(sb, ERRORS_PANIC)) { 647 if (EXT4_SB(sb)->s_journal && 648 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 649 return; 650 panic("EXT4-fs panic from previous error\n"); 651 } 652 } 653 654 void __ext4_msg(struct super_block *sb, 655 const char *prefix, const char *fmt, ...) 656 { 657 struct va_format vaf; 658 va_list args; 659 660 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 661 return; 662 663 va_start(args, fmt); 664 vaf.fmt = fmt; 665 vaf.va = &args; 666 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 667 va_end(args); 668 } 669 670 #define ext4_warning_ratelimit(sb) \ 671 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 672 "EXT4-fs warning") 673 674 void __ext4_warning(struct super_block *sb, const char *function, 675 unsigned int line, const char *fmt, ...) 676 { 677 struct va_format vaf; 678 va_list args; 679 680 if (!ext4_warning_ratelimit(sb)) 681 return; 682 683 va_start(args, fmt); 684 vaf.fmt = fmt; 685 vaf.va = &args; 686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 687 sb->s_id, function, line, &vaf); 688 va_end(args); 689 } 690 691 void __ext4_warning_inode(const struct inode *inode, const char *function, 692 unsigned int line, const char *fmt, ...) 693 { 694 struct va_format vaf; 695 va_list args; 696 697 if (!ext4_warning_ratelimit(inode->i_sb)) 698 return; 699 700 va_start(args, fmt); 701 vaf.fmt = fmt; 702 vaf.va = &args; 703 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 704 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 705 function, line, inode->i_ino, current->comm, &vaf); 706 va_end(args); 707 } 708 709 void __ext4_grp_locked_error(const char *function, unsigned int line, 710 struct super_block *sb, ext4_group_t grp, 711 unsigned long ino, ext4_fsblk_t block, 712 const char *fmt, ...) 713 __releases(bitlock) 714 __acquires(bitlock) 715 { 716 struct va_format vaf; 717 va_list args; 718 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 719 720 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 721 return; 722 723 trace_ext4_error(sb, function, line); 724 es->s_last_error_ino = cpu_to_le32(ino); 725 es->s_last_error_block = cpu_to_le64(block); 726 __save_error_info(sb, function, line); 727 728 if (ext4_error_ratelimit(sb)) { 729 va_start(args, fmt); 730 vaf.fmt = fmt; 731 vaf.va = &args; 732 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 733 sb->s_id, function, line, grp); 734 if (ino) 735 printk(KERN_CONT "inode %lu: ", ino); 736 if (block) 737 printk(KERN_CONT "block %llu:", 738 (unsigned long long) block); 739 printk(KERN_CONT "%pV\n", &vaf); 740 va_end(args); 741 } 742 743 if (test_opt(sb, ERRORS_CONT)) { 744 ext4_commit_super(sb, 0); 745 return; 746 } 747 748 ext4_unlock_group(sb, grp); 749 ext4_commit_super(sb, 1); 750 ext4_handle_error(sb); 751 /* 752 * We only get here in the ERRORS_RO case; relocking the group 753 * may be dangerous, but nothing bad will happen since the 754 * filesystem will have already been marked read/only and the 755 * journal has been aborted. We return 1 as a hint to callers 756 * who might what to use the return value from 757 * ext4_grp_locked_error() to distinguish between the 758 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 759 * aggressively from the ext4 function in question, with a 760 * more appropriate error code. 761 */ 762 ext4_lock_group(sb, grp); 763 return; 764 } 765 766 void ext4_update_dynamic_rev(struct super_block *sb) 767 { 768 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 769 770 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 771 return; 772 773 ext4_warning(sb, 774 "updating to rev %d because of new feature flag, " 775 "running e2fsck is recommended", 776 EXT4_DYNAMIC_REV); 777 778 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 779 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 780 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 781 /* leave es->s_feature_*compat flags alone */ 782 /* es->s_uuid will be set by e2fsck if empty */ 783 784 /* 785 * The rest of the superblock fields should be zero, and if not it 786 * means they are likely already in use, so leave them alone. We 787 * can leave it up to e2fsck to clean up any inconsistencies there. 788 */ 789 } 790 791 /* 792 * Open the external journal device 793 */ 794 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 795 { 796 struct block_device *bdev; 797 char b[BDEVNAME_SIZE]; 798 799 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 800 if (IS_ERR(bdev)) 801 goto fail; 802 return bdev; 803 804 fail: 805 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 806 __bdevname(dev, b), PTR_ERR(bdev)); 807 return NULL; 808 } 809 810 /* 811 * Release the journal device 812 */ 813 static void ext4_blkdev_put(struct block_device *bdev) 814 { 815 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 816 } 817 818 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 819 { 820 struct block_device *bdev; 821 bdev = sbi->journal_bdev; 822 if (bdev) { 823 ext4_blkdev_put(bdev); 824 sbi->journal_bdev = NULL; 825 } 826 } 827 828 static inline struct inode *orphan_list_entry(struct list_head *l) 829 { 830 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 831 } 832 833 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 834 { 835 struct list_head *l; 836 837 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 838 le32_to_cpu(sbi->s_es->s_last_orphan)); 839 840 printk(KERN_ERR "sb_info orphan list:\n"); 841 list_for_each(l, &sbi->s_orphan) { 842 struct inode *inode = orphan_list_entry(l); 843 printk(KERN_ERR " " 844 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 845 inode->i_sb->s_id, inode->i_ino, inode, 846 inode->i_mode, inode->i_nlink, 847 NEXT_ORPHAN(inode)); 848 } 849 } 850 851 #ifdef CONFIG_QUOTA 852 static int ext4_quota_off(struct super_block *sb, int type); 853 854 static inline void ext4_quota_off_umount(struct super_block *sb) 855 { 856 int type; 857 858 /* Use our quota_off function to clear inode flags etc. */ 859 for (type = 0; type < EXT4_MAXQUOTAS; type++) 860 ext4_quota_off(sb, type); 861 } 862 #else 863 static inline void ext4_quota_off_umount(struct super_block *sb) 864 { 865 } 866 #endif 867 868 static void ext4_put_super(struct super_block *sb) 869 { 870 struct ext4_sb_info *sbi = EXT4_SB(sb); 871 struct ext4_super_block *es = sbi->s_es; 872 int aborted = 0; 873 int i, err; 874 875 ext4_unregister_li_request(sb); 876 ext4_quota_off_umount(sb); 877 878 destroy_workqueue(sbi->rsv_conversion_wq); 879 880 if (sbi->s_journal) { 881 aborted = is_journal_aborted(sbi->s_journal); 882 err = jbd2_journal_destroy(sbi->s_journal); 883 sbi->s_journal = NULL; 884 if ((err < 0) && !aborted) 885 ext4_abort(sb, "Couldn't clean up the journal"); 886 } 887 888 ext4_unregister_sysfs(sb); 889 ext4_es_unregister_shrinker(sbi); 890 del_timer_sync(&sbi->s_err_report); 891 ext4_release_system_zone(sb); 892 ext4_mb_release(sb); 893 ext4_ext_release(sb); 894 895 if (!sb_rdonly(sb) && !aborted) { 896 ext4_clear_feature_journal_needs_recovery(sb); 897 es->s_state = cpu_to_le16(sbi->s_mount_state); 898 } 899 if (!sb_rdonly(sb)) 900 ext4_commit_super(sb, 1); 901 902 for (i = 0; i < sbi->s_gdb_count; i++) 903 brelse(sbi->s_group_desc[i]); 904 kvfree(sbi->s_group_desc); 905 kvfree(sbi->s_flex_groups); 906 percpu_counter_destroy(&sbi->s_freeclusters_counter); 907 percpu_counter_destroy(&sbi->s_freeinodes_counter); 908 percpu_counter_destroy(&sbi->s_dirs_counter); 909 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 910 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 911 #ifdef CONFIG_QUOTA 912 for (i = 0; i < EXT4_MAXQUOTAS; i++) 913 kfree(sbi->s_qf_names[i]); 914 #endif 915 916 /* Debugging code just in case the in-memory inode orphan list 917 * isn't empty. The on-disk one can be non-empty if we've 918 * detected an error and taken the fs readonly, but the 919 * in-memory list had better be clean by this point. */ 920 if (!list_empty(&sbi->s_orphan)) 921 dump_orphan_list(sb, sbi); 922 J_ASSERT(list_empty(&sbi->s_orphan)); 923 924 sync_blockdev(sb->s_bdev); 925 invalidate_bdev(sb->s_bdev); 926 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 927 /* 928 * Invalidate the journal device's buffers. We don't want them 929 * floating about in memory - the physical journal device may 930 * hotswapped, and it breaks the `ro-after' testing code. 931 */ 932 sync_blockdev(sbi->journal_bdev); 933 invalidate_bdev(sbi->journal_bdev); 934 ext4_blkdev_remove(sbi); 935 } 936 if (sbi->s_ea_inode_cache) { 937 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 938 sbi->s_ea_inode_cache = NULL; 939 } 940 if (sbi->s_ea_block_cache) { 941 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 942 sbi->s_ea_block_cache = NULL; 943 } 944 if (sbi->s_mmp_tsk) 945 kthread_stop(sbi->s_mmp_tsk); 946 brelse(sbi->s_sbh); 947 sb->s_fs_info = NULL; 948 /* 949 * Now that we are completely done shutting down the 950 * superblock, we need to actually destroy the kobject. 951 */ 952 kobject_put(&sbi->s_kobj); 953 wait_for_completion(&sbi->s_kobj_unregister); 954 if (sbi->s_chksum_driver) 955 crypto_free_shash(sbi->s_chksum_driver); 956 kfree(sbi->s_blockgroup_lock); 957 fs_put_dax(sbi->s_daxdev); 958 kfree(sbi); 959 } 960 961 static struct kmem_cache *ext4_inode_cachep; 962 963 /* 964 * Called inside transaction, so use GFP_NOFS 965 */ 966 static struct inode *ext4_alloc_inode(struct super_block *sb) 967 { 968 struct ext4_inode_info *ei; 969 970 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 971 if (!ei) 972 return NULL; 973 974 inode_set_iversion(&ei->vfs_inode, 1); 975 spin_lock_init(&ei->i_raw_lock); 976 INIT_LIST_HEAD(&ei->i_prealloc_list); 977 spin_lock_init(&ei->i_prealloc_lock); 978 ext4_es_init_tree(&ei->i_es_tree); 979 rwlock_init(&ei->i_es_lock); 980 INIT_LIST_HEAD(&ei->i_es_list); 981 ei->i_es_all_nr = 0; 982 ei->i_es_shk_nr = 0; 983 ei->i_es_shrink_lblk = 0; 984 ei->i_reserved_data_blocks = 0; 985 ei->i_da_metadata_calc_len = 0; 986 ei->i_da_metadata_calc_last_lblock = 0; 987 spin_lock_init(&(ei->i_block_reservation_lock)); 988 #ifdef CONFIG_QUOTA 989 ei->i_reserved_quota = 0; 990 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 991 #endif 992 ei->jinode = NULL; 993 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 994 spin_lock_init(&ei->i_completed_io_lock); 995 ei->i_sync_tid = 0; 996 ei->i_datasync_tid = 0; 997 atomic_set(&ei->i_unwritten, 0); 998 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 999 return &ei->vfs_inode; 1000 } 1001 1002 static int ext4_drop_inode(struct inode *inode) 1003 { 1004 int drop = generic_drop_inode(inode); 1005 1006 trace_ext4_drop_inode(inode, drop); 1007 return drop; 1008 } 1009 1010 static void ext4_i_callback(struct rcu_head *head) 1011 { 1012 struct inode *inode = container_of(head, struct inode, i_rcu); 1013 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1014 } 1015 1016 static void ext4_destroy_inode(struct inode *inode) 1017 { 1018 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1019 ext4_msg(inode->i_sb, KERN_ERR, 1020 "Inode %lu (%p): orphan list check failed!", 1021 inode->i_ino, EXT4_I(inode)); 1022 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1023 EXT4_I(inode), sizeof(struct ext4_inode_info), 1024 true); 1025 dump_stack(); 1026 } 1027 call_rcu(&inode->i_rcu, ext4_i_callback); 1028 } 1029 1030 static void init_once(void *foo) 1031 { 1032 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1033 1034 INIT_LIST_HEAD(&ei->i_orphan); 1035 init_rwsem(&ei->xattr_sem); 1036 init_rwsem(&ei->i_data_sem); 1037 init_rwsem(&ei->i_mmap_sem); 1038 inode_init_once(&ei->vfs_inode); 1039 } 1040 1041 static int __init init_inodecache(void) 1042 { 1043 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1044 sizeof(struct ext4_inode_info), 0, 1045 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1046 SLAB_ACCOUNT), 1047 offsetof(struct ext4_inode_info, i_data), 1048 sizeof_field(struct ext4_inode_info, i_data), 1049 init_once); 1050 if (ext4_inode_cachep == NULL) 1051 return -ENOMEM; 1052 return 0; 1053 } 1054 1055 static void destroy_inodecache(void) 1056 { 1057 /* 1058 * Make sure all delayed rcu free inodes are flushed before we 1059 * destroy cache. 1060 */ 1061 rcu_barrier(); 1062 kmem_cache_destroy(ext4_inode_cachep); 1063 } 1064 1065 void ext4_clear_inode(struct inode *inode) 1066 { 1067 invalidate_inode_buffers(inode); 1068 clear_inode(inode); 1069 dquot_drop(inode); 1070 ext4_discard_preallocations(inode); 1071 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1072 if (EXT4_I(inode)->jinode) { 1073 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1074 EXT4_I(inode)->jinode); 1075 jbd2_free_inode(EXT4_I(inode)->jinode); 1076 EXT4_I(inode)->jinode = NULL; 1077 } 1078 fscrypt_put_encryption_info(inode); 1079 } 1080 1081 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1082 u64 ino, u32 generation) 1083 { 1084 struct inode *inode; 1085 1086 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1087 return ERR_PTR(-ESTALE); 1088 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1089 return ERR_PTR(-ESTALE); 1090 1091 /* iget isn't really right if the inode is currently unallocated!! 1092 * 1093 * ext4_read_inode will return a bad_inode if the inode had been 1094 * deleted, so we should be safe. 1095 * 1096 * Currently we don't know the generation for parent directory, so 1097 * a generation of 0 means "accept any" 1098 */ 1099 inode = ext4_iget_normal(sb, ino); 1100 if (IS_ERR(inode)) 1101 return ERR_CAST(inode); 1102 if (generation && inode->i_generation != generation) { 1103 iput(inode); 1104 return ERR_PTR(-ESTALE); 1105 } 1106 1107 return inode; 1108 } 1109 1110 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1111 int fh_len, int fh_type) 1112 { 1113 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1114 ext4_nfs_get_inode); 1115 } 1116 1117 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1118 int fh_len, int fh_type) 1119 { 1120 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1121 ext4_nfs_get_inode); 1122 } 1123 1124 /* 1125 * Try to release metadata pages (indirect blocks, directories) which are 1126 * mapped via the block device. Since these pages could have journal heads 1127 * which would prevent try_to_free_buffers() from freeing them, we must use 1128 * jbd2 layer's try_to_free_buffers() function to release them. 1129 */ 1130 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1131 gfp_t wait) 1132 { 1133 journal_t *journal = EXT4_SB(sb)->s_journal; 1134 1135 WARN_ON(PageChecked(page)); 1136 if (!page_has_buffers(page)) 1137 return 0; 1138 if (journal) 1139 return jbd2_journal_try_to_free_buffers(journal, page, 1140 wait & ~__GFP_DIRECT_RECLAIM); 1141 return try_to_free_buffers(page); 1142 } 1143 1144 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1145 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1146 { 1147 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1148 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1149 } 1150 1151 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1152 void *fs_data) 1153 { 1154 handle_t *handle = fs_data; 1155 int res, res2, credits, retries = 0; 1156 1157 /* 1158 * Encrypting the root directory is not allowed because e2fsck expects 1159 * lost+found to exist and be unencrypted, and encrypting the root 1160 * directory would imply encrypting the lost+found directory as well as 1161 * the filename "lost+found" itself. 1162 */ 1163 if (inode->i_ino == EXT4_ROOT_INO) 1164 return -EPERM; 1165 1166 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1167 return -EINVAL; 1168 1169 res = ext4_convert_inline_data(inode); 1170 if (res) 1171 return res; 1172 1173 /* 1174 * If a journal handle was specified, then the encryption context is 1175 * being set on a new inode via inheritance and is part of a larger 1176 * transaction to create the inode. Otherwise the encryption context is 1177 * being set on an existing inode in its own transaction. Only in the 1178 * latter case should the "retry on ENOSPC" logic be used. 1179 */ 1180 1181 if (handle) { 1182 res = ext4_xattr_set_handle(handle, inode, 1183 EXT4_XATTR_INDEX_ENCRYPTION, 1184 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1185 ctx, len, 0); 1186 if (!res) { 1187 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1188 ext4_clear_inode_state(inode, 1189 EXT4_STATE_MAY_INLINE_DATA); 1190 /* 1191 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1192 * S_DAX may be disabled 1193 */ 1194 ext4_set_inode_flags(inode); 1195 } 1196 return res; 1197 } 1198 1199 res = dquot_initialize(inode); 1200 if (res) 1201 return res; 1202 retry: 1203 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1204 &credits); 1205 if (res) 1206 return res; 1207 1208 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1209 if (IS_ERR(handle)) 1210 return PTR_ERR(handle); 1211 1212 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1213 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1214 ctx, len, 0); 1215 if (!res) { 1216 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1217 /* 1218 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1219 * S_DAX may be disabled 1220 */ 1221 ext4_set_inode_flags(inode); 1222 res = ext4_mark_inode_dirty(handle, inode); 1223 if (res) 1224 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1225 } 1226 res2 = ext4_journal_stop(handle); 1227 1228 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1229 goto retry; 1230 if (!res) 1231 res = res2; 1232 return res; 1233 } 1234 1235 static bool ext4_dummy_context(struct inode *inode) 1236 { 1237 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1238 } 1239 1240 static unsigned ext4_max_namelen(struct inode *inode) 1241 { 1242 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1243 EXT4_NAME_LEN; 1244 } 1245 1246 static const struct fscrypt_operations ext4_cryptops = { 1247 .key_prefix = "ext4:", 1248 .get_context = ext4_get_context, 1249 .set_context = ext4_set_context, 1250 .dummy_context = ext4_dummy_context, 1251 .empty_dir = ext4_empty_dir, 1252 .max_namelen = ext4_max_namelen, 1253 }; 1254 #endif 1255 1256 #ifdef CONFIG_QUOTA 1257 static const char * const quotatypes[] = INITQFNAMES; 1258 #define QTYPE2NAME(t) (quotatypes[t]) 1259 1260 static int ext4_write_dquot(struct dquot *dquot); 1261 static int ext4_acquire_dquot(struct dquot *dquot); 1262 static int ext4_release_dquot(struct dquot *dquot); 1263 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1264 static int ext4_write_info(struct super_block *sb, int type); 1265 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1266 const struct path *path); 1267 static int ext4_quota_on_mount(struct super_block *sb, int type); 1268 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1269 size_t len, loff_t off); 1270 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1271 const char *data, size_t len, loff_t off); 1272 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1273 unsigned int flags); 1274 static int ext4_enable_quotas(struct super_block *sb); 1275 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1276 1277 static struct dquot **ext4_get_dquots(struct inode *inode) 1278 { 1279 return EXT4_I(inode)->i_dquot; 1280 } 1281 1282 static const struct dquot_operations ext4_quota_operations = { 1283 .get_reserved_space = ext4_get_reserved_space, 1284 .write_dquot = ext4_write_dquot, 1285 .acquire_dquot = ext4_acquire_dquot, 1286 .release_dquot = ext4_release_dquot, 1287 .mark_dirty = ext4_mark_dquot_dirty, 1288 .write_info = ext4_write_info, 1289 .alloc_dquot = dquot_alloc, 1290 .destroy_dquot = dquot_destroy, 1291 .get_projid = ext4_get_projid, 1292 .get_inode_usage = ext4_get_inode_usage, 1293 .get_next_id = ext4_get_next_id, 1294 }; 1295 1296 static const struct quotactl_ops ext4_qctl_operations = { 1297 .quota_on = ext4_quota_on, 1298 .quota_off = ext4_quota_off, 1299 .quota_sync = dquot_quota_sync, 1300 .get_state = dquot_get_state, 1301 .set_info = dquot_set_dqinfo, 1302 .get_dqblk = dquot_get_dqblk, 1303 .set_dqblk = dquot_set_dqblk, 1304 .get_nextdqblk = dquot_get_next_dqblk, 1305 }; 1306 #endif 1307 1308 static const struct super_operations ext4_sops = { 1309 .alloc_inode = ext4_alloc_inode, 1310 .destroy_inode = ext4_destroy_inode, 1311 .write_inode = ext4_write_inode, 1312 .dirty_inode = ext4_dirty_inode, 1313 .drop_inode = ext4_drop_inode, 1314 .evict_inode = ext4_evict_inode, 1315 .put_super = ext4_put_super, 1316 .sync_fs = ext4_sync_fs, 1317 .freeze_fs = ext4_freeze, 1318 .unfreeze_fs = ext4_unfreeze, 1319 .statfs = ext4_statfs, 1320 .remount_fs = ext4_remount, 1321 .show_options = ext4_show_options, 1322 #ifdef CONFIG_QUOTA 1323 .quota_read = ext4_quota_read, 1324 .quota_write = ext4_quota_write, 1325 .get_dquots = ext4_get_dquots, 1326 #endif 1327 .bdev_try_to_free_page = bdev_try_to_free_page, 1328 }; 1329 1330 static const struct export_operations ext4_export_ops = { 1331 .fh_to_dentry = ext4_fh_to_dentry, 1332 .fh_to_parent = ext4_fh_to_parent, 1333 .get_parent = ext4_get_parent, 1334 }; 1335 1336 enum { 1337 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1338 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1339 Opt_nouid32, Opt_debug, Opt_removed, 1340 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1341 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1342 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1343 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1344 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1345 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1346 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1347 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1348 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1349 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1350 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1351 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1352 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1353 Opt_inode_readahead_blks, Opt_journal_ioprio, 1354 Opt_dioread_nolock, Opt_dioread_lock, 1355 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1356 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1357 }; 1358 1359 static const match_table_t tokens = { 1360 {Opt_bsd_df, "bsddf"}, 1361 {Opt_minix_df, "minixdf"}, 1362 {Opt_grpid, "grpid"}, 1363 {Opt_grpid, "bsdgroups"}, 1364 {Opt_nogrpid, "nogrpid"}, 1365 {Opt_nogrpid, "sysvgroups"}, 1366 {Opt_resgid, "resgid=%u"}, 1367 {Opt_resuid, "resuid=%u"}, 1368 {Opt_sb, "sb=%u"}, 1369 {Opt_err_cont, "errors=continue"}, 1370 {Opt_err_panic, "errors=panic"}, 1371 {Opt_err_ro, "errors=remount-ro"}, 1372 {Opt_nouid32, "nouid32"}, 1373 {Opt_debug, "debug"}, 1374 {Opt_removed, "oldalloc"}, 1375 {Opt_removed, "orlov"}, 1376 {Opt_user_xattr, "user_xattr"}, 1377 {Opt_nouser_xattr, "nouser_xattr"}, 1378 {Opt_acl, "acl"}, 1379 {Opt_noacl, "noacl"}, 1380 {Opt_noload, "norecovery"}, 1381 {Opt_noload, "noload"}, 1382 {Opt_removed, "nobh"}, 1383 {Opt_removed, "bh"}, 1384 {Opt_commit, "commit=%u"}, 1385 {Opt_min_batch_time, "min_batch_time=%u"}, 1386 {Opt_max_batch_time, "max_batch_time=%u"}, 1387 {Opt_journal_dev, "journal_dev=%u"}, 1388 {Opt_journal_path, "journal_path=%s"}, 1389 {Opt_journal_checksum, "journal_checksum"}, 1390 {Opt_nojournal_checksum, "nojournal_checksum"}, 1391 {Opt_journal_async_commit, "journal_async_commit"}, 1392 {Opt_abort, "abort"}, 1393 {Opt_data_journal, "data=journal"}, 1394 {Opt_data_ordered, "data=ordered"}, 1395 {Opt_data_writeback, "data=writeback"}, 1396 {Opt_data_err_abort, "data_err=abort"}, 1397 {Opt_data_err_ignore, "data_err=ignore"}, 1398 {Opt_offusrjquota, "usrjquota="}, 1399 {Opt_usrjquota, "usrjquota=%s"}, 1400 {Opt_offgrpjquota, "grpjquota="}, 1401 {Opt_grpjquota, "grpjquota=%s"}, 1402 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1403 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1404 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1405 {Opt_grpquota, "grpquota"}, 1406 {Opt_noquota, "noquota"}, 1407 {Opt_quota, "quota"}, 1408 {Opt_usrquota, "usrquota"}, 1409 {Opt_prjquota, "prjquota"}, 1410 {Opt_barrier, "barrier=%u"}, 1411 {Opt_barrier, "barrier"}, 1412 {Opt_nobarrier, "nobarrier"}, 1413 {Opt_i_version, "i_version"}, 1414 {Opt_dax, "dax"}, 1415 {Opt_stripe, "stripe=%u"}, 1416 {Opt_delalloc, "delalloc"}, 1417 {Opt_lazytime, "lazytime"}, 1418 {Opt_nolazytime, "nolazytime"}, 1419 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1420 {Opt_nodelalloc, "nodelalloc"}, 1421 {Opt_removed, "mblk_io_submit"}, 1422 {Opt_removed, "nomblk_io_submit"}, 1423 {Opt_block_validity, "block_validity"}, 1424 {Opt_noblock_validity, "noblock_validity"}, 1425 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1426 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1427 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1428 {Opt_auto_da_alloc, "auto_da_alloc"}, 1429 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1430 {Opt_dioread_nolock, "dioread_nolock"}, 1431 {Opt_dioread_lock, "dioread_lock"}, 1432 {Opt_discard, "discard"}, 1433 {Opt_nodiscard, "nodiscard"}, 1434 {Opt_init_itable, "init_itable=%u"}, 1435 {Opt_init_itable, "init_itable"}, 1436 {Opt_noinit_itable, "noinit_itable"}, 1437 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1438 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1439 {Opt_nombcache, "nombcache"}, 1440 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1441 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1442 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1443 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1444 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1445 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1446 {Opt_err, NULL}, 1447 }; 1448 1449 static ext4_fsblk_t get_sb_block(void **data) 1450 { 1451 ext4_fsblk_t sb_block; 1452 char *options = (char *) *data; 1453 1454 if (!options || strncmp(options, "sb=", 3) != 0) 1455 return 1; /* Default location */ 1456 1457 options += 3; 1458 /* TODO: use simple_strtoll with >32bit ext4 */ 1459 sb_block = simple_strtoul(options, &options, 0); 1460 if (*options && *options != ',') { 1461 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1462 (char *) *data); 1463 return 1; 1464 } 1465 if (*options == ',') 1466 options++; 1467 *data = (void *) options; 1468 1469 return sb_block; 1470 } 1471 1472 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1473 static const char deprecated_msg[] = 1474 "Mount option \"%s\" will be removed by %s\n" 1475 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1476 1477 #ifdef CONFIG_QUOTA 1478 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1479 { 1480 struct ext4_sb_info *sbi = EXT4_SB(sb); 1481 char *qname; 1482 int ret = -1; 1483 1484 if (sb_any_quota_loaded(sb) && 1485 !sbi->s_qf_names[qtype]) { 1486 ext4_msg(sb, KERN_ERR, 1487 "Cannot change journaled " 1488 "quota options when quota turned on"); 1489 return -1; 1490 } 1491 if (ext4_has_feature_quota(sb)) { 1492 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1493 "ignored when QUOTA feature is enabled"); 1494 return 1; 1495 } 1496 qname = match_strdup(args); 1497 if (!qname) { 1498 ext4_msg(sb, KERN_ERR, 1499 "Not enough memory for storing quotafile name"); 1500 return -1; 1501 } 1502 if (sbi->s_qf_names[qtype]) { 1503 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1504 ret = 1; 1505 else 1506 ext4_msg(sb, KERN_ERR, 1507 "%s quota file already specified", 1508 QTYPE2NAME(qtype)); 1509 goto errout; 1510 } 1511 if (strchr(qname, '/')) { 1512 ext4_msg(sb, KERN_ERR, 1513 "quotafile must be on filesystem root"); 1514 goto errout; 1515 } 1516 sbi->s_qf_names[qtype] = qname; 1517 set_opt(sb, QUOTA); 1518 return 1; 1519 errout: 1520 kfree(qname); 1521 return ret; 1522 } 1523 1524 static int clear_qf_name(struct super_block *sb, int qtype) 1525 { 1526 1527 struct ext4_sb_info *sbi = EXT4_SB(sb); 1528 1529 if (sb_any_quota_loaded(sb) && 1530 sbi->s_qf_names[qtype]) { 1531 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1532 " when quota turned on"); 1533 return -1; 1534 } 1535 kfree(sbi->s_qf_names[qtype]); 1536 sbi->s_qf_names[qtype] = NULL; 1537 return 1; 1538 } 1539 #endif 1540 1541 #define MOPT_SET 0x0001 1542 #define MOPT_CLEAR 0x0002 1543 #define MOPT_NOSUPPORT 0x0004 1544 #define MOPT_EXPLICIT 0x0008 1545 #define MOPT_CLEAR_ERR 0x0010 1546 #define MOPT_GTE0 0x0020 1547 #ifdef CONFIG_QUOTA 1548 #define MOPT_Q 0 1549 #define MOPT_QFMT 0x0040 1550 #else 1551 #define MOPT_Q MOPT_NOSUPPORT 1552 #define MOPT_QFMT MOPT_NOSUPPORT 1553 #endif 1554 #define MOPT_DATAJ 0x0080 1555 #define MOPT_NO_EXT2 0x0100 1556 #define MOPT_NO_EXT3 0x0200 1557 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1558 #define MOPT_STRING 0x0400 1559 1560 static const struct mount_opts { 1561 int token; 1562 int mount_opt; 1563 int flags; 1564 } ext4_mount_opts[] = { 1565 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1566 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1567 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1568 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1569 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1570 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1571 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1572 MOPT_EXT4_ONLY | MOPT_SET}, 1573 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1574 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1575 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1576 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1577 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1579 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1580 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1581 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1582 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1583 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1584 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1585 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1586 EXT4_MOUNT_JOURNAL_CHECKSUM), 1587 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1588 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1589 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1590 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1591 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1592 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1593 MOPT_NO_EXT2}, 1594 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1595 MOPT_NO_EXT2}, 1596 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1597 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1598 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1599 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1600 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1601 {Opt_commit, 0, MOPT_GTE0}, 1602 {Opt_max_batch_time, 0, MOPT_GTE0}, 1603 {Opt_min_batch_time, 0, MOPT_GTE0}, 1604 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1605 {Opt_init_itable, 0, MOPT_GTE0}, 1606 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1607 {Opt_stripe, 0, MOPT_GTE0}, 1608 {Opt_resuid, 0, MOPT_GTE0}, 1609 {Opt_resgid, 0, MOPT_GTE0}, 1610 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1611 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1612 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1613 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1614 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1615 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1616 MOPT_NO_EXT2 | MOPT_DATAJ}, 1617 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1618 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1619 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1620 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1621 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1622 #else 1623 {Opt_acl, 0, MOPT_NOSUPPORT}, 1624 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1625 #endif 1626 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1627 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1628 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1629 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1630 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1631 MOPT_SET | MOPT_Q}, 1632 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1633 MOPT_SET | MOPT_Q}, 1634 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1635 MOPT_SET | MOPT_Q}, 1636 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1637 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1638 MOPT_CLEAR | MOPT_Q}, 1639 {Opt_usrjquota, 0, MOPT_Q}, 1640 {Opt_grpjquota, 0, MOPT_Q}, 1641 {Opt_offusrjquota, 0, MOPT_Q}, 1642 {Opt_offgrpjquota, 0, MOPT_Q}, 1643 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1644 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1645 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1646 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1647 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1648 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1649 {Opt_err, 0, 0} 1650 }; 1651 1652 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1653 substring_t *args, unsigned long *journal_devnum, 1654 unsigned int *journal_ioprio, int is_remount) 1655 { 1656 struct ext4_sb_info *sbi = EXT4_SB(sb); 1657 const struct mount_opts *m; 1658 kuid_t uid; 1659 kgid_t gid; 1660 int arg = 0; 1661 1662 #ifdef CONFIG_QUOTA 1663 if (token == Opt_usrjquota) 1664 return set_qf_name(sb, USRQUOTA, &args[0]); 1665 else if (token == Opt_grpjquota) 1666 return set_qf_name(sb, GRPQUOTA, &args[0]); 1667 else if (token == Opt_offusrjquota) 1668 return clear_qf_name(sb, USRQUOTA); 1669 else if (token == Opt_offgrpjquota) 1670 return clear_qf_name(sb, GRPQUOTA); 1671 #endif 1672 switch (token) { 1673 case Opt_noacl: 1674 case Opt_nouser_xattr: 1675 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1676 break; 1677 case Opt_sb: 1678 return 1; /* handled by get_sb_block() */ 1679 case Opt_removed: 1680 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1681 return 1; 1682 case Opt_abort: 1683 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1684 return 1; 1685 case Opt_i_version: 1686 sb->s_flags |= SB_I_VERSION; 1687 return 1; 1688 case Opt_lazytime: 1689 sb->s_flags |= SB_LAZYTIME; 1690 return 1; 1691 case Opt_nolazytime: 1692 sb->s_flags &= ~SB_LAZYTIME; 1693 return 1; 1694 } 1695 1696 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1697 if (token == m->token) 1698 break; 1699 1700 if (m->token == Opt_err) { 1701 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1702 "or missing value", opt); 1703 return -1; 1704 } 1705 1706 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1707 ext4_msg(sb, KERN_ERR, 1708 "Mount option \"%s\" incompatible with ext2", opt); 1709 return -1; 1710 } 1711 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1712 ext4_msg(sb, KERN_ERR, 1713 "Mount option \"%s\" incompatible with ext3", opt); 1714 return -1; 1715 } 1716 1717 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1718 return -1; 1719 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1720 return -1; 1721 if (m->flags & MOPT_EXPLICIT) { 1722 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1723 set_opt2(sb, EXPLICIT_DELALLOC); 1724 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1725 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1726 } else 1727 return -1; 1728 } 1729 if (m->flags & MOPT_CLEAR_ERR) 1730 clear_opt(sb, ERRORS_MASK); 1731 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1732 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1733 "options when quota turned on"); 1734 return -1; 1735 } 1736 1737 if (m->flags & MOPT_NOSUPPORT) { 1738 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1739 } else if (token == Opt_commit) { 1740 if (arg == 0) 1741 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1742 sbi->s_commit_interval = HZ * arg; 1743 } else if (token == Opt_debug_want_extra_isize) { 1744 sbi->s_want_extra_isize = arg; 1745 } else if (token == Opt_max_batch_time) { 1746 sbi->s_max_batch_time = arg; 1747 } else if (token == Opt_min_batch_time) { 1748 sbi->s_min_batch_time = arg; 1749 } else if (token == Opt_inode_readahead_blks) { 1750 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1751 ext4_msg(sb, KERN_ERR, 1752 "EXT4-fs: inode_readahead_blks must be " 1753 "0 or a power of 2 smaller than 2^31"); 1754 return -1; 1755 } 1756 sbi->s_inode_readahead_blks = arg; 1757 } else if (token == Opt_init_itable) { 1758 set_opt(sb, INIT_INODE_TABLE); 1759 if (!args->from) 1760 arg = EXT4_DEF_LI_WAIT_MULT; 1761 sbi->s_li_wait_mult = arg; 1762 } else if (token == Opt_max_dir_size_kb) { 1763 sbi->s_max_dir_size_kb = arg; 1764 } else if (token == Opt_stripe) { 1765 sbi->s_stripe = arg; 1766 } else if (token == Opt_resuid) { 1767 uid = make_kuid(current_user_ns(), arg); 1768 if (!uid_valid(uid)) { 1769 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1770 return -1; 1771 } 1772 sbi->s_resuid = uid; 1773 } else if (token == Opt_resgid) { 1774 gid = make_kgid(current_user_ns(), arg); 1775 if (!gid_valid(gid)) { 1776 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1777 return -1; 1778 } 1779 sbi->s_resgid = gid; 1780 } else if (token == Opt_journal_dev) { 1781 if (is_remount) { 1782 ext4_msg(sb, KERN_ERR, 1783 "Cannot specify journal on remount"); 1784 return -1; 1785 } 1786 *journal_devnum = arg; 1787 } else if (token == Opt_journal_path) { 1788 char *journal_path; 1789 struct inode *journal_inode; 1790 struct path path; 1791 int error; 1792 1793 if (is_remount) { 1794 ext4_msg(sb, KERN_ERR, 1795 "Cannot specify journal on remount"); 1796 return -1; 1797 } 1798 journal_path = match_strdup(&args[0]); 1799 if (!journal_path) { 1800 ext4_msg(sb, KERN_ERR, "error: could not dup " 1801 "journal device string"); 1802 return -1; 1803 } 1804 1805 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1806 if (error) { 1807 ext4_msg(sb, KERN_ERR, "error: could not find " 1808 "journal device path: error %d", error); 1809 kfree(journal_path); 1810 return -1; 1811 } 1812 1813 journal_inode = d_inode(path.dentry); 1814 if (!S_ISBLK(journal_inode->i_mode)) { 1815 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1816 "is not a block device", journal_path); 1817 path_put(&path); 1818 kfree(journal_path); 1819 return -1; 1820 } 1821 1822 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1823 path_put(&path); 1824 kfree(journal_path); 1825 } else if (token == Opt_journal_ioprio) { 1826 if (arg > 7) { 1827 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1828 " (must be 0-7)"); 1829 return -1; 1830 } 1831 *journal_ioprio = 1832 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1833 } else if (token == Opt_test_dummy_encryption) { 1834 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1835 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1836 ext4_msg(sb, KERN_WARNING, 1837 "Test dummy encryption mode enabled"); 1838 #else 1839 ext4_msg(sb, KERN_WARNING, 1840 "Test dummy encryption mount option ignored"); 1841 #endif 1842 } else if (m->flags & MOPT_DATAJ) { 1843 if (is_remount) { 1844 if (!sbi->s_journal) 1845 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1846 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1847 ext4_msg(sb, KERN_ERR, 1848 "Cannot change data mode on remount"); 1849 return -1; 1850 } 1851 } else { 1852 clear_opt(sb, DATA_FLAGS); 1853 sbi->s_mount_opt |= m->mount_opt; 1854 } 1855 #ifdef CONFIG_QUOTA 1856 } else if (m->flags & MOPT_QFMT) { 1857 if (sb_any_quota_loaded(sb) && 1858 sbi->s_jquota_fmt != m->mount_opt) { 1859 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1860 "quota options when quota turned on"); 1861 return -1; 1862 } 1863 if (ext4_has_feature_quota(sb)) { 1864 ext4_msg(sb, KERN_INFO, 1865 "Quota format mount options ignored " 1866 "when QUOTA feature is enabled"); 1867 return 1; 1868 } 1869 sbi->s_jquota_fmt = m->mount_opt; 1870 #endif 1871 } else if (token == Opt_dax) { 1872 #ifdef CONFIG_FS_DAX 1873 ext4_msg(sb, KERN_WARNING, 1874 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1875 sbi->s_mount_opt |= m->mount_opt; 1876 #else 1877 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1878 return -1; 1879 #endif 1880 } else if (token == Opt_data_err_abort) { 1881 sbi->s_mount_opt |= m->mount_opt; 1882 } else if (token == Opt_data_err_ignore) { 1883 sbi->s_mount_opt &= ~m->mount_opt; 1884 } else { 1885 if (!args->from) 1886 arg = 1; 1887 if (m->flags & MOPT_CLEAR) 1888 arg = !arg; 1889 else if (unlikely(!(m->flags & MOPT_SET))) { 1890 ext4_msg(sb, KERN_WARNING, 1891 "buggy handling of option %s", opt); 1892 WARN_ON(1); 1893 return -1; 1894 } 1895 if (arg != 0) 1896 sbi->s_mount_opt |= m->mount_opt; 1897 else 1898 sbi->s_mount_opt &= ~m->mount_opt; 1899 } 1900 return 1; 1901 } 1902 1903 static int parse_options(char *options, struct super_block *sb, 1904 unsigned long *journal_devnum, 1905 unsigned int *journal_ioprio, 1906 int is_remount) 1907 { 1908 struct ext4_sb_info *sbi = EXT4_SB(sb); 1909 char *p; 1910 substring_t args[MAX_OPT_ARGS]; 1911 int token; 1912 1913 if (!options) 1914 return 1; 1915 1916 while ((p = strsep(&options, ",")) != NULL) { 1917 if (!*p) 1918 continue; 1919 /* 1920 * Initialize args struct so we know whether arg was 1921 * found; some options take optional arguments. 1922 */ 1923 args[0].to = args[0].from = NULL; 1924 token = match_token(p, tokens, args); 1925 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1926 journal_ioprio, is_remount) < 0) 1927 return 0; 1928 } 1929 #ifdef CONFIG_QUOTA 1930 /* 1931 * We do the test below only for project quotas. 'usrquota' and 1932 * 'grpquota' mount options are allowed even without quota feature 1933 * to support legacy quotas in quota files. 1934 */ 1935 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1936 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1937 "Cannot enable project quota enforcement."); 1938 return 0; 1939 } 1940 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1941 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1942 clear_opt(sb, USRQUOTA); 1943 1944 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1945 clear_opt(sb, GRPQUOTA); 1946 1947 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1948 ext4_msg(sb, KERN_ERR, "old and new quota " 1949 "format mixing"); 1950 return 0; 1951 } 1952 1953 if (!sbi->s_jquota_fmt) { 1954 ext4_msg(sb, KERN_ERR, "journaled quota format " 1955 "not specified"); 1956 return 0; 1957 } 1958 } 1959 #endif 1960 if (test_opt(sb, DIOREAD_NOLOCK)) { 1961 int blocksize = 1962 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1963 1964 if (blocksize < PAGE_SIZE) { 1965 ext4_msg(sb, KERN_ERR, "can't mount with " 1966 "dioread_nolock if block size != PAGE_SIZE"); 1967 return 0; 1968 } 1969 } 1970 return 1; 1971 } 1972 1973 static inline void ext4_show_quota_options(struct seq_file *seq, 1974 struct super_block *sb) 1975 { 1976 #if defined(CONFIG_QUOTA) 1977 struct ext4_sb_info *sbi = EXT4_SB(sb); 1978 1979 if (sbi->s_jquota_fmt) { 1980 char *fmtname = ""; 1981 1982 switch (sbi->s_jquota_fmt) { 1983 case QFMT_VFS_OLD: 1984 fmtname = "vfsold"; 1985 break; 1986 case QFMT_VFS_V0: 1987 fmtname = "vfsv0"; 1988 break; 1989 case QFMT_VFS_V1: 1990 fmtname = "vfsv1"; 1991 break; 1992 } 1993 seq_printf(seq, ",jqfmt=%s", fmtname); 1994 } 1995 1996 if (sbi->s_qf_names[USRQUOTA]) 1997 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1998 1999 if (sbi->s_qf_names[GRPQUOTA]) 2000 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 2001 #endif 2002 } 2003 2004 static const char *token2str(int token) 2005 { 2006 const struct match_token *t; 2007 2008 for (t = tokens; t->token != Opt_err; t++) 2009 if (t->token == token && !strchr(t->pattern, '=')) 2010 break; 2011 return t->pattern; 2012 } 2013 2014 /* 2015 * Show an option if 2016 * - it's set to a non-default value OR 2017 * - if the per-sb default is different from the global default 2018 */ 2019 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2020 int nodefs) 2021 { 2022 struct ext4_sb_info *sbi = EXT4_SB(sb); 2023 struct ext4_super_block *es = sbi->s_es; 2024 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2025 const struct mount_opts *m; 2026 char sep = nodefs ? '\n' : ','; 2027 2028 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2029 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2030 2031 if (sbi->s_sb_block != 1) 2032 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2033 2034 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2035 int want_set = m->flags & MOPT_SET; 2036 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2037 (m->flags & MOPT_CLEAR_ERR)) 2038 continue; 2039 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2040 continue; /* skip if same as the default */ 2041 if ((want_set && 2042 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2043 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2044 continue; /* select Opt_noFoo vs Opt_Foo */ 2045 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2046 } 2047 2048 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2049 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2050 SEQ_OPTS_PRINT("resuid=%u", 2051 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2052 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2053 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2054 SEQ_OPTS_PRINT("resgid=%u", 2055 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2056 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2057 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2058 SEQ_OPTS_PUTS("errors=remount-ro"); 2059 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2060 SEQ_OPTS_PUTS("errors=continue"); 2061 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2062 SEQ_OPTS_PUTS("errors=panic"); 2063 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2064 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2065 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2066 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2067 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2068 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2069 if (sb->s_flags & SB_I_VERSION) 2070 SEQ_OPTS_PUTS("i_version"); 2071 if (nodefs || sbi->s_stripe) 2072 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2073 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2074 (sbi->s_mount_opt ^ def_mount_opt)) { 2075 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2076 SEQ_OPTS_PUTS("data=journal"); 2077 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2078 SEQ_OPTS_PUTS("data=ordered"); 2079 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2080 SEQ_OPTS_PUTS("data=writeback"); 2081 } 2082 if (nodefs || 2083 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2084 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2085 sbi->s_inode_readahead_blks); 2086 2087 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2088 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2089 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2090 if (nodefs || sbi->s_max_dir_size_kb) 2091 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2092 if (test_opt(sb, DATA_ERR_ABORT)) 2093 SEQ_OPTS_PUTS("data_err=abort"); 2094 2095 ext4_show_quota_options(seq, sb); 2096 return 0; 2097 } 2098 2099 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2100 { 2101 return _ext4_show_options(seq, root->d_sb, 0); 2102 } 2103 2104 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2105 { 2106 struct super_block *sb = seq->private; 2107 int rc; 2108 2109 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2110 rc = _ext4_show_options(seq, sb, 1); 2111 seq_puts(seq, "\n"); 2112 return rc; 2113 } 2114 2115 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2116 int read_only) 2117 { 2118 struct ext4_sb_info *sbi = EXT4_SB(sb); 2119 int res = 0; 2120 2121 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2122 ext4_msg(sb, KERN_ERR, "revision level too high, " 2123 "forcing read-only mode"); 2124 res = SB_RDONLY; 2125 } 2126 if (read_only) 2127 goto done; 2128 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2129 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2130 "running e2fsck is recommended"); 2131 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2132 ext4_msg(sb, KERN_WARNING, 2133 "warning: mounting fs with errors, " 2134 "running e2fsck is recommended"); 2135 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2136 le16_to_cpu(es->s_mnt_count) >= 2137 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2138 ext4_msg(sb, KERN_WARNING, 2139 "warning: maximal mount count reached, " 2140 "running e2fsck is recommended"); 2141 else if (le32_to_cpu(es->s_checkinterval) && 2142 (le32_to_cpu(es->s_lastcheck) + 2143 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2144 ext4_msg(sb, KERN_WARNING, 2145 "warning: checktime reached, " 2146 "running e2fsck is recommended"); 2147 if (!sbi->s_journal) 2148 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2149 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2150 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2151 le16_add_cpu(&es->s_mnt_count, 1); 2152 es->s_mtime = cpu_to_le32(get_seconds()); 2153 ext4_update_dynamic_rev(sb); 2154 if (sbi->s_journal) 2155 ext4_set_feature_journal_needs_recovery(sb); 2156 2157 ext4_commit_super(sb, 1); 2158 done: 2159 if (test_opt(sb, DEBUG)) 2160 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2161 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2162 sb->s_blocksize, 2163 sbi->s_groups_count, 2164 EXT4_BLOCKS_PER_GROUP(sb), 2165 EXT4_INODES_PER_GROUP(sb), 2166 sbi->s_mount_opt, sbi->s_mount_opt2); 2167 2168 cleancache_init_fs(sb); 2169 return res; 2170 } 2171 2172 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2173 { 2174 struct ext4_sb_info *sbi = EXT4_SB(sb); 2175 struct flex_groups *new_groups; 2176 int size; 2177 2178 if (!sbi->s_log_groups_per_flex) 2179 return 0; 2180 2181 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2182 if (size <= sbi->s_flex_groups_allocated) 2183 return 0; 2184 2185 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2186 new_groups = kvzalloc(size, GFP_KERNEL); 2187 if (!new_groups) { 2188 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2189 size / (int) sizeof(struct flex_groups)); 2190 return -ENOMEM; 2191 } 2192 2193 if (sbi->s_flex_groups) { 2194 memcpy(new_groups, sbi->s_flex_groups, 2195 (sbi->s_flex_groups_allocated * 2196 sizeof(struct flex_groups))); 2197 kvfree(sbi->s_flex_groups); 2198 } 2199 sbi->s_flex_groups = new_groups; 2200 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2201 return 0; 2202 } 2203 2204 static int ext4_fill_flex_info(struct super_block *sb) 2205 { 2206 struct ext4_sb_info *sbi = EXT4_SB(sb); 2207 struct ext4_group_desc *gdp = NULL; 2208 ext4_group_t flex_group; 2209 int i, err; 2210 2211 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2212 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2213 sbi->s_log_groups_per_flex = 0; 2214 return 1; 2215 } 2216 2217 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2218 if (err) 2219 goto failed; 2220 2221 for (i = 0; i < sbi->s_groups_count; i++) { 2222 gdp = ext4_get_group_desc(sb, i, NULL); 2223 2224 flex_group = ext4_flex_group(sbi, i); 2225 atomic_add(ext4_free_inodes_count(sb, gdp), 2226 &sbi->s_flex_groups[flex_group].free_inodes); 2227 atomic64_add(ext4_free_group_clusters(sb, gdp), 2228 &sbi->s_flex_groups[flex_group].free_clusters); 2229 atomic_add(ext4_used_dirs_count(sb, gdp), 2230 &sbi->s_flex_groups[flex_group].used_dirs); 2231 } 2232 2233 return 1; 2234 failed: 2235 return 0; 2236 } 2237 2238 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2239 struct ext4_group_desc *gdp) 2240 { 2241 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2242 __u16 crc = 0; 2243 __le32 le_group = cpu_to_le32(block_group); 2244 struct ext4_sb_info *sbi = EXT4_SB(sb); 2245 2246 if (ext4_has_metadata_csum(sbi->s_sb)) { 2247 /* Use new metadata_csum algorithm */ 2248 __u32 csum32; 2249 __u16 dummy_csum = 0; 2250 2251 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2252 sizeof(le_group)); 2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2254 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2255 sizeof(dummy_csum)); 2256 offset += sizeof(dummy_csum); 2257 if (offset < sbi->s_desc_size) 2258 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2259 sbi->s_desc_size - offset); 2260 2261 crc = csum32 & 0xFFFF; 2262 goto out; 2263 } 2264 2265 /* old crc16 code */ 2266 if (!ext4_has_feature_gdt_csum(sb)) 2267 return 0; 2268 2269 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2270 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2271 crc = crc16(crc, (__u8 *)gdp, offset); 2272 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2273 /* for checksum of struct ext4_group_desc do the rest...*/ 2274 if (ext4_has_feature_64bit(sb) && 2275 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2276 crc = crc16(crc, (__u8 *)gdp + offset, 2277 le16_to_cpu(sbi->s_es->s_desc_size) - 2278 offset); 2279 2280 out: 2281 return cpu_to_le16(crc); 2282 } 2283 2284 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2285 struct ext4_group_desc *gdp) 2286 { 2287 if (ext4_has_group_desc_csum(sb) && 2288 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2289 return 0; 2290 2291 return 1; 2292 } 2293 2294 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2295 struct ext4_group_desc *gdp) 2296 { 2297 if (!ext4_has_group_desc_csum(sb)) 2298 return; 2299 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2300 } 2301 2302 /* Called at mount-time, super-block is locked */ 2303 static int ext4_check_descriptors(struct super_block *sb, 2304 ext4_fsblk_t sb_block, 2305 ext4_group_t *first_not_zeroed) 2306 { 2307 struct ext4_sb_info *sbi = EXT4_SB(sb); 2308 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2309 ext4_fsblk_t last_block; 2310 ext4_fsblk_t block_bitmap; 2311 ext4_fsblk_t inode_bitmap; 2312 ext4_fsblk_t inode_table; 2313 int flexbg_flag = 0; 2314 ext4_group_t i, grp = sbi->s_groups_count; 2315 2316 if (ext4_has_feature_flex_bg(sb)) 2317 flexbg_flag = 1; 2318 2319 ext4_debug("Checking group descriptors"); 2320 2321 for (i = 0; i < sbi->s_groups_count; i++) { 2322 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2323 2324 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2325 last_block = ext4_blocks_count(sbi->s_es) - 1; 2326 else 2327 last_block = first_block + 2328 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2329 2330 if ((grp == sbi->s_groups_count) && 2331 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2332 grp = i; 2333 2334 block_bitmap = ext4_block_bitmap(sb, gdp); 2335 if (block_bitmap == sb_block) { 2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2337 "Block bitmap for group %u overlaps " 2338 "superblock", i); 2339 if (!sb_rdonly(sb)) 2340 return 0; 2341 } 2342 if (block_bitmap < first_block || block_bitmap > last_block) { 2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2344 "Block bitmap for group %u not in group " 2345 "(block %llu)!", i, block_bitmap); 2346 return 0; 2347 } 2348 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2349 if (inode_bitmap == sb_block) { 2350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2351 "Inode bitmap for group %u overlaps " 2352 "superblock", i); 2353 if (!sb_rdonly(sb)) 2354 return 0; 2355 } 2356 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2358 "Inode bitmap for group %u not in group " 2359 "(block %llu)!", i, inode_bitmap); 2360 return 0; 2361 } 2362 inode_table = ext4_inode_table(sb, gdp); 2363 if (inode_table == sb_block) { 2364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2365 "Inode table for group %u overlaps " 2366 "superblock", i); 2367 if (!sb_rdonly(sb)) 2368 return 0; 2369 } 2370 if (inode_table < first_block || 2371 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2373 "Inode table for group %u not in group " 2374 "(block %llu)!", i, inode_table); 2375 return 0; 2376 } 2377 ext4_lock_group(sb, i); 2378 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2379 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2380 "Checksum for group %u failed (%u!=%u)", 2381 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2382 gdp)), le16_to_cpu(gdp->bg_checksum)); 2383 if (!sb_rdonly(sb)) { 2384 ext4_unlock_group(sb, i); 2385 return 0; 2386 } 2387 } 2388 ext4_unlock_group(sb, i); 2389 if (!flexbg_flag) 2390 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2391 } 2392 if (NULL != first_not_zeroed) 2393 *first_not_zeroed = grp; 2394 return 1; 2395 } 2396 2397 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2398 * the superblock) which were deleted from all directories, but held open by 2399 * a process at the time of a crash. We walk the list and try to delete these 2400 * inodes at recovery time (only with a read-write filesystem). 2401 * 2402 * In order to keep the orphan inode chain consistent during traversal (in 2403 * case of crash during recovery), we link each inode into the superblock 2404 * orphan list_head and handle it the same way as an inode deletion during 2405 * normal operation (which journals the operations for us). 2406 * 2407 * We only do an iget() and an iput() on each inode, which is very safe if we 2408 * accidentally point at an in-use or already deleted inode. The worst that 2409 * can happen in this case is that we get a "bit already cleared" message from 2410 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2411 * e2fsck was run on this filesystem, and it must have already done the orphan 2412 * inode cleanup for us, so we can safely abort without any further action. 2413 */ 2414 static void ext4_orphan_cleanup(struct super_block *sb, 2415 struct ext4_super_block *es) 2416 { 2417 unsigned int s_flags = sb->s_flags; 2418 int ret, nr_orphans = 0, nr_truncates = 0; 2419 #ifdef CONFIG_QUOTA 2420 int quota_update = 0; 2421 int i; 2422 #endif 2423 if (!es->s_last_orphan) { 2424 jbd_debug(4, "no orphan inodes to clean up\n"); 2425 return; 2426 } 2427 2428 if (bdev_read_only(sb->s_bdev)) { 2429 ext4_msg(sb, KERN_ERR, "write access " 2430 "unavailable, skipping orphan cleanup"); 2431 return; 2432 } 2433 2434 /* Check if feature set would not allow a r/w mount */ 2435 if (!ext4_feature_set_ok(sb, 0)) { 2436 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2437 "unknown ROCOMPAT features"); 2438 return; 2439 } 2440 2441 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2442 /* don't clear list on RO mount w/ errors */ 2443 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2444 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2445 "clearing orphan list.\n"); 2446 es->s_last_orphan = 0; 2447 } 2448 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2449 return; 2450 } 2451 2452 if (s_flags & SB_RDONLY) { 2453 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2454 sb->s_flags &= ~SB_RDONLY; 2455 } 2456 #ifdef CONFIG_QUOTA 2457 /* Needed for iput() to work correctly and not trash data */ 2458 sb->s_flags |= SB_ACTIVE; 2459 2460 /* 2461 * Turn on quotas which were not enabled for read-only mounts if 2462 * filesystem has quota feature, so that they are updated correctly. 2463 */ 2464 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2465 int ret = ext4_enable_quotas(sb); 2466 2467 if (!ret) 2468 quota_update = 1; 2469 else 2470 ext4_msg(sb, KERN_ERR, 2471 "Cannot turn on quotas: error %d", ret); 2472 } 2473 2474 /* Turn on journaled quotas used for old sytle */ 2475 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2476 if (EXT4_SB(sb)->s_qf_names[i]) { 2477 int ret = ext4_quota_on_mount(sb, i); 2478 2479 if (!ret) 2480 quota_update = 1; 2481 else 2482 ext4_msg(sb, KERN_ERR, 2483 "Cannot turn on journaled " 2484 "quota: type %d: error %d", i, ret); 2485 } 2486 } 2487 #endif 2488 2489 while (es->s_last_orphan) { 2490 struct inode *inode; 2491 2492 /* 2493 * We may have encountered an error during cleanup; if 2494 * so, skip the rest. 2495 */ 2496 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2497 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2498 es->s_last_orphan = 0; 2499 break; 2500 } 2501 2502 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2503 if (IS_ERR(inode)) { 2504 es->s_last_orphan = 0; 2505 break; 2506 } 2507 2508 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2509 dquot_initialize(inode); 2510 if (inode->i_nlink) { 2511 if (test_opt(sb, DEBUG)) 2512 ext4_msg(sb, KERN_DEBUG, 2513 "%s: truncating inode %lu to %lld bytes", 2514 __func__, inode->i_ino, inode->i_size); 2515 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2516 inode->i_ino, inode->i_size); 2517 inode_lock(inode); 2518 truncate_inode_pages(inode->i_mapping, inode->i_size); 2519 ret = ext4_truncate(inode); 2520 if (ret) 2521 ext4_std_error(inode->i_sb, ret); 2522 inode_unlock(inode); 2523 nr_truncates++; 2524 } else { 2525 if (test_opt(sb, DEBUG)) 2526 ext4_msg(sb, KERN_DEBUG, 2527 "%s: deleting unreferenced inode %lu", 2528 __func__, inode->i_ino); 2529 jbd_debug(2, "deleting unreferenced inode %lu\n", 2530 inode->i_ino); 2531 nr_orphans++; 2532 } 2533 iput(inode); /* The delete magic happens here! */ 2534 } 2535 2536 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2537 2538 if (nr_orphans) 2539 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2540 PLURAL(nr_orphans)); 2541 if (nr_truncates) 2542 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2543 PLURAL(nr_truncates)); 2544 #ifdef CONFIG_QUOTA 2545 /* Turn off quotas if they were enabled for orphan cleanup */ 2546 if (quota_update) { 2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2548 if (sb_dqopt(sb)->files[i]) 2549 dquot_quota_off(sb, i); 2550 } 2551 } 2552 #endif 2553 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2554 } 2555 2556 /* 2557 * Maximal extent format file size. 2558 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2559 * extent format containers, within a sector_t, and within i_blocks 2560 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2561 * so that won't be a limiting factor. 2562 * 2563 * However there is other limiting factor. We do store extents in the form 2564 * of starting block and length, hence the resulting length of the extent 2565 * covering maximum file size must fit into on-disk format containers as 2566 * well. Given that length is always by 1 unit bigger than max unit (because 2567 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2568 * 2569 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2570 */ 2571 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2572 { 2573 loff_t res; 2574 loff_t upper_limit = MAX_LFS_FILESIZE; 2575 2576 /* small i_blocks in vfs inode? */ 2577 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2578 /* 2579 * CONFIG_LBDAF is not enabled implies the inode 2580 * i_block represent total blocks in 512 bytes 2581 * 32 == size of vfs inode i_blocks * 8 2582 */ 2583 upper_limit = (1LL << 32) - 1; 2584 2585 /* total blocks in file system block size */ 2586 upper_limit >>= (blkbits - 9); 2587 upper_limit <<= blkbits; 2588 } 2589 2590 /* 2591 * 32-bit extent-start container, ee_block. We lower the maxbytes 2592 * by one fs block, so ee_len can cover the extent of maximum file 2593 * size 2594 */ 2595 res = (1LL << 32) - 1; 2596 res <<= blkbits; 2597 2598 /* Sanity check against vm- & vfs- imposed limits */ 2599 if (res > upper_limit) 2600 res = upper_limit; 2601 2602 return res; 2603 } 2604 2605 /* 2606 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2607 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2608 * We need to be 1 filesystem block less than the 2^48 sector limit. 2609 */ 2610 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2611 { 2612 loff_t res = EXT4_NDIR_BLOCKS; 2613 int meta_blocks; 2614 loff_t upper_limit; 2615 /* This is calculated to be the largest file size for a dense, block 2616 * mapped file such that the file's total number of 512-byte sectors, 2617 * including data and all indirect blocks, does not exceed (2^48 - 1). 2618 * 2619 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2620 * number of 512-byte sectors of the file. 2621 */ 2622 2623 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2624 /* 2625 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2626 * the inode i_block field represents total file blocks in 2627 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2628 */ 2629 upper_limit = (1LL << 32) - 1; 2630 2631 /* total blocks in file system block size */ 2632 upper_limit >>= (bits - 9); 2633 2634 } else { 2635 /* 2636 * We use 48 bit ext4_inode i_blocks 2637 * With EXT4_HUGE_FILE_FL set the i_blocks 2638 * represent total number of blocks in 2639 * file system block size 2640 */ 2641 upper_limit = (1LL << 48) - 1; 2642 2643 } 2644 2645 /* indirect blocks */ 2646 meta_blocks = 1; 2647 /* double indirect blocks */ 2648 meta_blocks += 1 + (1LL << (bits-2)); 2649 /* tripple indirect blocks */ 2650 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2651 2652 upper_limit -= meta_blocks; 2653 upper_limit <<= bits; 2654 2655 res += 1LL << (bits-2); 2656 res += 1LL << (2*(bits-2)); 2657 res += 1LL << (3*(bits-2)); 2658 res <<= bits; 2659 if (res > upper_limit) 2660 res = upper_limit; 2661 2662 if (res > MAX_LFS_FILESIZE) 2663 res = MAX_LFS_FILESIZE; 2664 2665 return res; 2666 } 2667 2668 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2669 ext4_fsblk_t logical_sb_block, int nr) 2670 { 2671 struct ext4_sb_info *sbi = EXT4_SB(sb); 2672 ext4_group_t bg, first_meta_bg; 2673 int has_super = 0; 2674 2675 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2676 2677 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2678 return logical_sb_block + nr + 1; 2679 bg = sbi->s_desc_per_block * nr; 2680 if (ext4_bg_has_super(sb, bg)) 2681 has_super = 1; 2682 2683 /* 2684 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2685 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2686 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2687 * compensate. 2688 */ 2689 if (sb->s_blocksize == 1024 && nr == 0 && 2690 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2691 has_super++; 2692 2693 return (has_super + ext4_group_first_block_no(sb, bg)); 2694 } 2695 2696 /** 2697 * ext4_get_stripe_size: Get the stripe size. 2698 * @sbi: In memory super block info 2699 * 2700 * If we have specified it via mount option, then 2701 * use the mount option value. If the value specified at mount time is 2702 * greater than the blocks per group use the super block value. 2703 * If the super block value is greater than blocks per group return 0. 2704 * Allocator needs it be less than blocks per group. 2705 * 2706 */ 2707 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2708 { 2709 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2710 unsigned long stripe_width = 2711 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2712 int ret; 2713 2714 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2715 ret = sbi->s_stripe; 2716 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2717 ret = stripe_width; 2718 else if (stride && stride <= sbi->s_blocks_per_group) 2719 ret = stride; 2720 else 2721 ret = 0; 2722 2723 /* 2724 * If the stripe width is 1, this makes no sense and 2725 * we set it to 0 to turn off stripe handling code. 2726 */ 2727 if (ret <= 1) 2728 ret = 0; 2729 2730 return ret; 2731 } 2732 2733 /* 2734 * Check whether this filesystem can be mounted based on 2735 * the features present and the RDONLY/RDWR mount requested. 2736 * Returns 1 if this filesystem can be mounted as requested, 2737 * 0 if it cannot be. 2738 */ 2739 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2740 { 2741 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2742 ext4_msg(sb, KERN_ERR, 2743 "Couldn't mount because of " 2744 "unsupported optional features (%x)", 2745 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2746 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2747 return 0; 2748 } 2749 2750 if (readonly) 2751 return 1; 2752 2753 if (ext4_has_feature_readonly(sb)) { 2754 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2755 sb->s_flags |= SB_RDONLY; 2756 return 1; 2757 } 2758 2759 /* Check that feature set is OK for a read-write mount */ 2760 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2761 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2762 "unsupported optional features (%x)", 2763 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2764 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2765 return 0; 2766 } 2767 /* 2768 * Large file size enabled file system can only be mounted 2769 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2770 */ 2771 if (ext4_has_feature_huge_file(sb)) { 2772 if (sizeof(blkcnt_t) < sizeof(u64)) { 2773 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2774 "cannot be mounted RDWR without " 2775 "CONFIG_LBDAF"); 2776 return 0; 2777 } 2778 } 2779 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2780 ext4_msg(sb, KERN_ERR, 2781 "Can't support bigalloc feature without " 2782 "extents feature\n"); 2783 return 0; 2784 } 2785 2786 #ifndef CONFIG_QUOTA 2787 if (ext4_has_feature_quota(sb) && !readonly) { 2788 ext4_msg(sb, KERN_ERR, 2789 "Filesystem with quota feature cannot be mounted RDWR " 2790 "without CONFIG_QUOTA"); 2791 return 0; 2792 } 2793 if (ext4_has_feature_project(sb) && !readonly) { 2794 ext4_msg(sb, KERN_ERR, 2795 "Filesystem with project quota feature cannot be mounted RDWR " 2796 "without CONFIG_QUOTA"); 2797 return 0; 2798 } 2799 #endif /* CONFIG_QUOTA */ 2800 return 1; 2801 } 2802 2803 /* 2804 * This function is called once a day if we have errors logged 2805 * on the file system 2806 */ 2807 static void print_daily_error_info(struct timer_list *t) 2808 { 2809 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2810 struct super_block *sb = sbi->s_sb; 2811 struct ext4_super_block *es = sbi->s_es; 2812 2813 if (es->s_error_count) 2814 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2815 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2816 le32_to_cpu(es->s_error_count)); 2817 if (es->s_first_error_time) { 2818 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2819 sb->s_id, le32_to_cpu(es->s_first_error_time), 2820 (int) sizeof(es->s_first_error_func), 2821 es->s_first_error_func, 2822 le32_to_cpu(es->s_first_error_line)); 2823 if (es->s_first_error_ino) 2824 printk(KERN_CONT ": inode %u", 2825 le32_to_cpu(es->s_first_error_ino)); 2826 if (es->s_first_error_block) 2827 printk(KERN_CONT ": block %llu", (unsigned long long) 2828 le64_to_cpu(es->s_first_error_block)); 2829 printk(KERN_CONT "\n"); 2830 } 2831 if (es->s_last_error_time) { 2832 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2833 sb->s_id, le32_to_cpu(es->s_last_error_time), 2834 (int) sizeof(es->s_last_error_func), 2835 es->s_last_error_func, 2836 le32_to_cpu(es->s_last_error_line)); 2837 if (es->s_last_error_ino) 2838 printk(KERN_CONT ": inode %u", 2839 le32_to_cpu(es->s_last_error_ino)); 2840 if (es->s_last_error_block) 2841 printk(KERN_CONT ": block %llu", (unsigned long long) 2842 le64_to_cpu(es->s_last_error_block)); 2843 printk(KERN_CONT "\n"); 2844 } 2845 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2846 } 2847 2848 /* Find next suitable group and run ext4_init_inode_table */ 2849 static int ext4_run_li_request(struct ext4_li_request *elr) 2850 { 2851 struct ext4_group_desc *gdp = NULL; 2852 ext4_group_t group, ngroups; 2853 struct super_block *sb; 2854 unsigned long timeout = 0; 2855 int ret = 0; 2856 2857 sb = elr->lr_super; 2858 ngroups = EXT4_SB(sb)->s_groups_count; 2859 2860 for (group = elr->lr_next_group; group < ngroups; group++) { 2861 gdp = ext4_get_group_desc(sb, group, NULL); 2862 if (!gdp) { 2863 ret = 1; 2864 break; 2865 } 2866 2867 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2868 break; 2869 } 2870 2871 if (group >= ngroups) 2872 ret = 1; 2873 2874 if (!ret) { 2875 timeout = jiffies; 2876 ret = ext4_init_inode_table(sb, group, 2877 elr->lr_timeout ? 0 : 1); 2878 if (elr->lr_timeout == 0) { 2879 timeout = (jiffies - timeout) * 2880 elr->lr_sbi->s_li_wait_mult; 2881 elr->lr_timeout = timeout; 2882 } 2883 elr->lr_next_sched = jiffies + elr->lr_timeout; 2884 elr->lr_next_group = group + 1; 2885 } 2886 return ret; 2887 } 2888 2889 /* 2890 * Remove lr_request from the list_request and free the 2891 * request structure. Should be called with li_list_mtx held 2892 */ 2893 static void ext4_remove_li_request(struct ext4_li_request *elr) 2894 { 2895 struct ext4_sb_info *sbi; 2896 2897 if (!elr) 2898 return; 2899 2900 sbi = elr->lr_sbi; 2901 2902 list_del(&elr->lr_request); 2903 sbi->s_li_request = NULL; 2904 kfree(elr); 2905 } 2906 2907 static void ext4_unregister_li_request(struct super_block *sb) 2908 { 2909 mutex_lock(&ext4_li_mtx); 2910 if (!ext4_li_info) { 2911 mutex_unlock(&ext4_li_mtx); 2912 return; 2913 } 2914 2915 mutex_lock(&ext4_li_info->li_list_mtx); 2916 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2917 mutex_unlock(&ext4_li_info->li_list_mtx); 2918 mutex_unlock(&ext4_li_mtx); 2919 } 2920 2921 static struct task_struct *ext4_lazyinit_task; 2922 2923 /* 2924 * This is the function where ext4lazyinit thread lives. It walks 2925 * through the request list searching for next scheduled filesystem. 2926 * When such a fs is found, run the lazy initialization request 2927 * (ext4_rn_li_request) and keep track of the time spend in this 2928 * function. Based on that time we compute next schedule time of 2929 * the request. When walking through the list is complete, compute 2930 * next waking time and put itself into sleep. 2931 */ 2932 static int ext4_lazyinit_thread(void *arg) 2933 { 2934 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2935 struct list_head *pos, *n; 2936 struct ext4_li_request *elr; 2937 unsigned long next_wakeup, cur; 2938 2939 BUG_ON(NULL == eli); 2940 2941 cont_thread: 2942 while (true) { 2943 next_wakeup = MAX_JIFFY_OFFSET; 2944 2945 mutex_lock(&eli->li_list_mtx); 2946 if (list_empty(&eli->li_request_list)) { 2947 mutex_unlock(&eli->li_list_mtx); 2948 goto exit_thread; 2949 } 2950 list_for_each_safe(pos, n, &eli->li_request_list) { 2951 int err = 0; 2952 int progress = 0; 2953 elr = list_entry(pos, struct ext4_li_request, 2954 lr_request); 2955 2956 if (time_before(jiffies, elr->lr_next_sched)) { 2957 if (time_before(elr->lr_next_sched, next_wakeup)) 2958 next_wakeup = elr->lr_next_sched; 2959 continue; 2960 } 2961 if (down_read_trylock(&elr->lr_super->s_umount)) { 2962 if (sb_start_write_trylock(elr->lr_super)) { 2963 progress = 1; 2964 /* 2965 * We hold sb->s_umount, sb can not 2966 * be removed from the list, it is 2967 * now safe to drop li_list_mtx 2968 */ 2969 mutex_unlock(&eli->li_list_mtx); 2970 err = ext4_run_li_request(elr); 2971 sb_end_write(elr->lr_super); 2972 mutex_lock(&eli->li_list_mtx); 2973 n = pos->next; 2974 } 2975 up_read((&elr->lr_super->s_umount)); 2976 } 2977 /* error, remove the lazy_init job */ 2978 if (err) { 2979 ext4_remove_li_request(elr); 2980 continue; 2981 } 2982 if (!progress) { 2983 elr->lr_next_sched = jiffies + 2984 (prandom_u32() 2985 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2986 } 2987 if (time_before(elr->lr_next_sched, next_wakeup)) 2988 next_wakeup = elr->lr_next_sched; 2989 } 2990 mutex_unlock(&eli->li_list_mtx); 2991 2992 try_to_freeze(); 2993 2994 cur = jiffies; 2995 if ((time_after_eq(cur, next_wakeup)) || 2996 (MAX_JIFFY_OFFSET == next_wakeup)) { 2997 cond_resched(); 2998 continue; 2999 } 3000 3001 schedule_timeout_interruptible(next_wakeup - cur); 3002 3003 if (kthread_should_stop()) { 3004 ext4_clear_request_list(); 3005 goto exit_thread; 3006 } 3007 } 3008 3009 exit_thread: 3010 /* 3011 * It looks like the request list is empty, but we need 3012 * to check it under the li_list_mtx lock, to prevent any 3013 * additions into it, and of course we should lock ext4_li_mtx 3014 * to atomically free the list and ext4_li_info, because at 3015 * this point another ext4 filesystem could be registering 3016 * new one. 3017 */ 3018 mutex_lock(&ext4_li_mtx); 3019 mutex_lock(&eli->li_list_mtx); 3020 if (!list_empty(&eli->li_request_list)) { 3021 mutex_unlock(&eli->li_list_mtx); 3022 mutex_unlock(&ext4_li_mtx); 3023 goto cont_thread; 3024 } 3025 mutex_unlock(&eli->li_list_mtx); 3026 kfree(ext4_li_info); 3027 ext4_li_info = NULL; 3028 mutex_unlock(&ext4_li_mtx); 3029 3030 return 0; 3031 } 3032 3033 static void ext4_clear_request_list(void) 3034 { 3035 struct list_head *pos, *n; 3036 struct ext4_li_request *elr; 3037 3038 mutex_lock(&ext4_li_info->li_list_mtx); 3039 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3040 elr = list_entry(pos, struct ext4_li_request, 3041 lr_request); 3042 ext4_remove_li_request(elr); 3043 } 3044 mutex_unlock(&ext4_li_info->li_list_mtx); 3045 } 3046 3047 static int ext4_run_lazyinit_thread(void) 3048 { 3049 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3050 ext4_li_info, "ext4lazyinit"); 3051 if (IS_ERR(ext4_lazyinit_task)) { 3052 int err = PTR_ERR(ext4_lazyinit_task); 3053 ext4_clear_request_list(); 3054 kfree(ext4_li_info); 3055 ext4_li_info = NULL; 3056 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3057 "initialization thread\n", 3058 err); 3059 return err; 3060 } 3061 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3062 return 0; 3063 } 3064 3065 /* 3066 * Check whether it make sense to run itable init. thread or not. 3067 * If there is at least one uninitialized inode table, return 3068 * corresponding group number, else the loop goes through all 3069 * groups and return total number of groups. 3070 */ 3071 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3072 { 3073 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3074 struct ext4_group_desc *gdp = NULL; 3075 3076 for (group = 0; group < ngroups; group++) { 3077 gdp = ext4_get_group_desc(sb, group, NULL); 3078 if (!gdp) 3079 continue; 3080 3081 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3082 break; 3083 } 3084 3085 return group; 3086 } 3087 3088 static int ext4_li_info_new(void) 3089 { 3090 struct ext4_lazy_init *eli = NULL; 3091 3092 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3093 if (!eli) 3094 return -ENOMEM; 3095 3096 INIT_LIST_HEAD(&eli->li_request_list); 3097 mutex_init(&eli->li_list_mtx); 3098 3099 eli->li_state |= EXT4_LAZYINIT_QUIT; 3100 3101 ext4_li_info = eli; 3102 3103 return 0; 3104 } 3105 3106 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3107 ext4_group_t start) 3108 { 3109 struct ext4_sb_info *sbi = EXT4_SB(sb); 3110 struct ext4_li_request *elr; 3111 3112 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3113 if (!elr) 3114 return NULL; 3115 3116 elr->lr_super = sb; 3117 elr->lr_sbi = sbi; 3118 elr->lr_next_group = start; 3119 3120 /* 3121 * Randomize first schedule time of the request to 3122 * spread the inode table initialization requests 3123 * better. 3124 */ 3125 elr->lr_next_sched = jiffies + (prandom_u32() % 3126 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3127 return elr; 3128 } 3129 3130 int ext4_register_li_request(struct super_block *sb, 3131 ext4_group_t first_not_zeroed) 3132 { 3133 struct ext4_sb_info *sbi = EXT4_SB(sb); 3134 struct ext4_li_request *elr = NULL; 3135 ext4_group_t ngroups = sbi->s_groups_count; 3136 int ret = 0; 3137 3138 mutex_lock(&ext4_li_mtx); 3139 if (sbi->s_li_request != NULL) { 3140 /* 3141 * Reset timeout so it can be computed again, because 3142 * s_li_wait_mult might have changed. 3143 */ 3144 sbi->s_li_request->lr_timeout = 0; 3145 goto out; 3146 } 3147 3148 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3149 !test_opt(sb, INIT_INODE_TABLE)) 3150 goto out; 3151 3152 elr = ext4_li_request_new(sb, first_not_zeroed); 3153 if (!elr) { 3154 ret = -ENOMEM; 3155 goto out; 3156 } 3157 3158 if (NULL == ext4_li_info) { 3159 ret = ext4_li_info_new(); 3160 if (ret) 3161 goto out; 3162 } 3163 3164 mutex_lock(&ext4_li_info->li_list_mtx); 3165 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3166 mutex_unlock(&ext4_li_info->li_list_mtx); 3167 3168 sbi->s_li_request = elr; 3169 /* 3170 * set elr to NULL here since it has been inserted to 3171 * the request_list and the removal and free of it is 3172 * handled by ext4_clear_request_list from now on. 3173 */ 3174 elr = NULL; 3175 3176 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3177 ret = ext4_run_lazyinit_thread(); 3178 if (ret) 3179 goto out; 3180 } 3181 out: 3182 mutex_unlock(&ext4_li_mtx); 3183 if (ret) 3184 kfree(elr); 3185 return ret; 3186 } 3187 3188 /* 3189 * We do not need to lock anything since this is called on 3190 * module unload. 3191 */ 3192 static void ext4_destroy_lazyinit_thread(void) 3193 { 3194 /* 3195 * If thread exited earlier 3196 * there's nothing to be done. 3197 */ 3198 if (!ext4_li_info || !ext4_lazyinit_task) 3199 return; 3200 3201 kthread_stop(ext4_lazyinit_task); 3202 } 3203 3204 static int set_journal_csum_feature_set(struct super_block *sb) 3205 { 3206 int ret = 1; 3207 int compat, incompat; 3208 struct ext4_sb_info *sbi = EXT4_SB(sb); 3209 3210 if (ext4_has_metadata_csum(sb)) { 3211 /* journal checksum v3 */ 3212 compat = 0; 3213 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3214 } else { 3215 /* journal checksum v1 */ 3216 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3217 incompat = 0; 3218 } 3219 3220 jbd2_journal_clear_features(sbi->s_journal, 3221 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3222 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3223 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3225 ret = jbd2_journal_set_features(sbi->s_journal, 3226 compat, 0, 3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3228 incompat); 3229 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3230 ret = jbd2_journal_set_features(sbi->s_journal, 3231 compat, 0, 3232 incompat); 3233 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3235 } else { 3236 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3237 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3238 } 3239 3240 return ret; 3241 } 3242 3243 /* 3244 * Note: calculating the overhead so we can be compatible with 3245 * historical BSD practice is quite difficult in the face of 3246 * clusters/bigalloc. This is because multiple metadata blocks from 3247 * different block group can end up in the same allocation cluster. 3248 * Calculating the exact overhead in the face of clustered allocation 3249 * requires either O(all block bitmaps) in memory or O(number of block 3250 * groups**2) in time. We will still calculate the superblock for 3251 * older file systems --- and if we come across with a bigalloc file 3252 * system with zero in s_overhead_clusters the estimate will be close to 3253 * correct especially for very large cluster sizes --- but for newer 3254 * file systems, it's better to calculate this figure once at mkfs 3255 * time, and store it in the superblock. If the superblock value is 3256 * present (even for non-bigalloc file systems), we will use it. 3257 */ 3258 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3259 char *buf) 3260 { 3261 struct ext4_sb_info *sbi = EXT4_SB(sb); 3262 struct ext4_group_desc *gdp; 3263 ext4_fsblk_t first_block, last_block, b; 3264 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3265 int s, j, count = 0; 3266 3267 if (!ext4_has_feature_bigalloc(sb)) 3268 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3269 sbi->s_itb_per_group + 2); 3270 3271 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3272 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3273 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3274 for (i = 0; i < ngroups; i++) { 3275 gdp = ext4_get_group_desc(sb, i, NULL); 3276 b = ext4_block_bitmap(sb, gdp); 3277 if (b >= first_block && b <= last_block) { 3278 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3279 count++; 3280 } 3281 b = ext4_inode_bitmap(sb, gdp); 3282 if (b >= first_block && b <= last_block) { 3283 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3284 count++; 3285 } 3286 b = ext4_inode_table(sb, gdp); 3287 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3288 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3289 int c = EXT4_B2C(sbi, b - first_block); 3290 ext4_set_bit(c, buf); 3291 count++; 3292 } 3293 if (i != grp) 3294 continue; 3295 s = 0; 3296 if (ext4_bg_has_super(sb, grp)) { 3297 ext4_set_bit(s++, buf); 3298 count++; 3299 } 3300 j = ext4_bg_num_gdb(sb, grp); 3301 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3302 ext4_error(sb, "Invalid number of block group " 3303 "descriptor blocks: %d", j); 3304 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3305 } 3306 count += j; 3307 for (; j > 0; j--) 3308 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3309 } 3310 if (!count) 3311 return 0; 3312 return EXT4_CLUSTERS_PER_GROUP(sb) - 3313 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3314 } 3315 3316 /* 3317 * Compute the overhead and stash it in sbi->s_overhead 3318 */ 3319 int ext4_calculate_overhead(struct super_block *sb) 3320 { 3321 struct ext4_sb_info *sbi = EXT4_SB(sb); 3322 struct ext4_super_block *es = sbi->s_es; 3323 struct inode *j_inode; 3324 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3325 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3326 ext4_fsblk_t overhead = 0; 3327 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3328 3329 if (!buf) 3330 return -ENOMEM; 3331 3332 /* 3333 * Compute the overhead (FS structures). This is constant 3334 * for a given filesystem unless the number of block groups 3335 * changes so we cache the previous value until it does. 3336 */ 3337 3338 /* 3339 * All of the blocks before first_data_block are overhead 3340 */ 3341 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3342 3343 /* 3344 * Add the overhead found in each block group 3345 */ 3346 for (i = 0; i < ngroups; i++) { 3347 int blks; 3348 3349 blks = count_overhead(sb, i, buf); 3350 overhead += blks; 3351 if (blks) 3352 memset(buf, 0, PAGE_SIZE); 3353 cond_resched(); 3354 } 3355 3356 /* 3357 * Add the internal journal blocks whether the journal has been 3358 * loaded or not 3359 */ 3360 if (sbi->s_journal && !sbi->journal_bdev) 3361 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3362 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3363 j_inode = ext4_get_journal_inode(sb, j_inum); 3364 if (j_inode) { 3365 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3366 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3367 iput(j_inode); 3368 } else { 3369 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3370 } 3371 } 3372 sbi->s_overhead = overhead; 3373 smp_wmb(); 3374 free_page((unsigned long) buf); 3375 return 0; 3376 } 3377 3378 static void ext4_set_resv_clusters(struct super_block *sb) 3379 { 3380 ext4_fsblk_t resv_clusters; 3381 struct ext4_sb_info *sbi = EXT4_SB(sb); 3382 3383 /* 3384 * There's no need to reserve anything when we aren't using extents. 3385 * The space estimates are exact, there are no unwritten extents, 3386 * hole punching doesn't need new metadata... This is needed especially 3387 * to keep ext2/3 backward compatibility. 3388 */ 3389 if (!ext4_has_feature_extents(sb)) 3390 return; 3391 /* 3392 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3393 * This should cover the situations where we can not afford to run 3394 * out of space like for example punch hole, or converting 3395 * unwritten extents in delalloc path. In most cases such 3396 * allocation would require 1, or 2 blocks, higher numbers are 3397 * very rare. 3398 */ 3399 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3400 sbi->s_cluster_bits); 3401 3402 do_div(resv_clusters, 50); 3403 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3404 3405 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3406 } 3407 3408 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3409 { 3410 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3411 char *orig_data = kstrdup(data, GFP_KERNEL); 3412 struct buffer_head *bh; 3413 struct ext4_super_block *es = NULL; 3414 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3415 ext4_fsblk_t block; 3416 ext4_fsblk_t sb_block = get_sb_block(&data); 3417 ext4_fsblk_t logical_sb_block; 3418 unsigned long offset = 0; 3419 unsigned long journal_devnum = 0; 3420 unsigned long def_mount_opts; 3421 struct inode *root; 3422 const char *descr; 3423 int ret = -ENOMEM; 3424 int blocksize, clustersize; 3425 unsigned int db_count; 3426 unsigned int i; 3427 int needs_recovery, has_huge_files, has_bigalloc; 3428 __u64 blocks_count; 3429 int err = 0; 3430 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3431 ext4_group_t first_not_zeroed; 3432 3433 if ((data && !orig_data) || !sbi) 3434 goto out_free_base; 3435 3436 sbi->s_daxdev = dax_dev; 3437 sbi->s_blockgroup_lock = 3438 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3439 if (!sbi->s_blockgroup_lock) 3440 goto out_free_base; 3441 3442 sb->s_fs_info = sbi; 3443 sbi->s_sb = sb; 3444 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3445 sbi->s_sb_block = sb_block; 3446 if (sb->s_bdev->bd_part) 3447 sbi->s_sectors_written_start = 3448 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3449 3450 /* Cleanup superblock name */ 3451 strreplace(sb->s_id, '/', '!'); 3452 3453 /* -EINVAL is default */ 3454 ret = -EINVAL; 3455 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3456 if (!blocksize) { 3457 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3458 goto out_fail; 3459 } 3460 3461 /* 3462 * The ext4 superblock will not be buffer aligned for other than 1kB 3463 * block sizes. We need to calculate the offset from buffer start. 3464 */ 3465 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3466 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3467 offset = do_div(logical_sb_block, blocksize); 3468 } else { 3469 logical_sb_block = sb_block; 3470 } 3471 3472 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3473 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3474 goto out_fail; 3475 } 3476 /* 3477 * Note: s_es must be initialized as soon as possible because 3478 * some ext4 macro-instructions depend on its value 3479 */ 3480 es = (struct ext4_super_block *) (bh->b_data + offset); 3481 sbi->s_es = es; 3482 sb->s_magic = le16_to_cpu(es->s_magic); 3483 if (sb->s_magic != EXT4_SUPER_MAGIC) 3484 goto cantfind_ext4; 3485 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3486 3487 /* Warn if metadata_csum and gdt_csum are both set. */ 3488 if (ext4_has_feature_metadata_csum(sb) && 3489 ext4_has_feature_gdt_csum(sb)) 3490 ext4_warning(sb, "metadata_csum and uninit_bg are " 3491 "redundant flags; please run fsck."); 3492 3493 /* Check for a known checksum algorithm */ 3494 if (!ext4_verify_csum_type(sb, es)) { 3495 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3496 "unknown checksum algorithm."); 3497 silent = 1; 3498 goto cantfind_ext4; 3499 } 3500 3501 /* Load the checksum driver */ 3502 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3503 if (IS_ERR(sbi->s_chksum_driver)) { 3504 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3505 ret = PTR_ERR(sbi->s_chksum_driver); 3506 sbi->s_chksum_driver = NULL; 3507 goto failed_mount; 3508 } 3509 3510 /* Check superblock checksum */ 3511 if (!ext4_superblock_csum_verify(sb, es)) { 3512 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3513 "invalid superblock checksum. Run e2fsck?"); 3514 silent = 1; 3515 ret = -EFSBADCRC; 3516 goto cantfind_ext4; 3517 } 3518 3519 /* Precompute checksum seed for all metadata */ 3520 if (ext4_has_feature_csum_seed(sb)) 3521 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3522 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3523 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3524 sizeof(es->s_uuid)); 3525 3526 /* Set defaults before we parse the mount options */ 3527 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3528 set_opt(sb, INIT_INODE_TABLE); 3529 if (def_mount_opts & EXT4_DEFM_DEBUG) 3530 set_opt(sb, DEBUG); 3531 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3532 set_opt(sb, GRPID); 3533 if (def_mount_opts & EXT4_DEFM_UID16) 3534 set_opt(sb, NO_UID32); 3535 /* xattr user namespace & acls are now defaulted on */ 3536 set_opt(sb, XATTR_USER); 3537 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3538 set_opt(sb, POSIX_ACL); 3539 #endif 3540 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3541 if (ext4_has_metadata_csum(sb)) 3542 set_opt(sb, JOURNAL_CHECKSUM); 3543 3544 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3545 set_opt(sb, JOURNAL_DATA); 3546 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3547 set_opt(sb, ORDERED_DATA); 3548 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3549 set_opt(sb, WRITEBACK_DATA); 3550 3551 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3552 set_opt(sb, ERRORS_PANIC); 3553 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3554 set_opt(sb, ERRORS_CONT); 3555 else 3556 set_opt(sb, ERRORS_RO); 3557 /* block_validity enabled by default; disable with noblock_validity */ 3558 set_opt(sb, BLOCK_VALIDITY); 3559 if (def_mount_opts & EXT4_DEFM_DISCARD) 3560 set_opt(sb, DISCARD); 3561 3562 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3563 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3564 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3565 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3566 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3567 3568 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3569 set_opt(sb, BARRIER); 3570 3571 /* 3572 * enable delayed allocation by default 3573 * Use -o nodelalloc to turn it off 3574 */ 3575 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3576 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3577 set_opt(sb, DELALLOC); 3578 3579 /* 3580 * set default s_li_wait_mult for lazyinit, for the case there is 3581 * no mount option specified. 3582 */ 3583 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3584 3585 if (sbi->s_es->s_mount_opts[0]) { 3586 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3587 sizeof(sbi->s_es->s_mount_opts), 3588 GFP_KERNEL); 3589 if (!s_mount_opts) 3590 goto failed_mount; 3591 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3592 &journal_ioprio, 0)) { 3593 ext4_msg(sb, KERN_WARNING, 3594 "failed to parse options in superblock: %s", 3595 s_mount_opts); 3596 } 3597 kfree(s_mount_opts); 3598 } 3599 sbi->s_def_mount_opt = sbi->s_mount_opt; 3600 if (!parse_options((char *) data, sb, &journal_devnum, 3601 &journal_ioprio, 0)) 3602 goto failed_mount; 3603 3604 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3605 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3606 "with data=journal disables delayed " 3607 "allocation and O_DIRECT support!\n"); 3608 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3609 ext4_msg(sb, KERN_ERR, "can't mount with " 3610 "both data=journal and delalloc"); 3611 goto failed_mount; 3612 } 3613 if (test_opt(sb, DIOREAD_NOLOCK)) { 3614 ext4_msg(sb, KERN_ERR, "can't mount with " 3615 "both data=journal and dioread_nolock"); 3616 goto failed_mount; 3617 } 3618 if (test_opt(sb, DAX)) { 3619 ext4_msg(sb, KERN_ERR, "can't mount with " 3620 "both data=journal and dax"); 3621 goto failed_mount; 3622 } 3623 if (ext4_has_feature_encrypt(sb)) { 3624 ext4_msg(sb, KERN_WARNING, 3625 "encrypted files will use data=ordered " 3626 "instead of data journaling mode"); 3627 } 3628 if (test_opt(sb, DELALLOC)) 3629 clear_opt(sb, DELALLOC); 3630 } else { 3631 sb->s_iflags |= SB_I_CGROUPWB; 3632 } 3633 3634 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3635 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3636 3637 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3638 (ext4_has_compat_features(sb) || 3639 ext4_has_ro_compat_features(sb) || 3640 ext4_has_incompat_features(sb))) 3641 ext4_msg(sb, KERN_WARNING, 3642 "feature flags set on rev 0 fs, " 3643 "running e2fsck is recommended"); 3644 3645 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3646 set_opt2(sb, HURD_COMPAT); 3647 if (ext4_has_feature_64bit(sb)) { 3648 ext4_msg(sb, KERN_ERR, 3649 "The Hurd can't support 64-bit file systems"); 3650 goto failed_mount; 3651 } 3652 3653 /* 3654 * ea_inode feature uses l_i_version field which is not 3655 * available in HURD_COMPAT mode. 3656 */ 3657 if (ext4_has_feature_ea_inode(sb)) { 3658 ext4_msg(sb, KERN_ERR, 3659 "ea_inode feature is not supported for Hurd"); 3660 goto failed_mount; 3661 } 3662 } 3663 3664 if (IS_EXT2_SB(sb)) { 3665 if (ext2_feature_set_ok(sb)) 3666 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3667 "using the ext4 subsystem"); 3668 else { 3669 /* 3670 * If we're probing be silent, if this looks like 3671 * it's actually an ext[34] filesystem. 3672 */ 3673 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3674 goto failed_mount; 3675 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3676 "to feature incompatibilities"); 3677 goto failed_mount; 3678 } 3679 } 3680 3681 if (IS_EXT3_SB(sb)) { 3682 if (ext3_feature_set_ok(sb)) 3683 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3684 "using the ext4 subsystem"); 3685 else { 3686 /* 3687 * If we're probing be silent, if this looks like 3688 * it's actually an ext4 filesystem. 3689 */ 3690 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3691 goto failed_mount; 3692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3693 "to feature incompatibilities"); 3694 goto failed_mount; 3695 } 3696 } 3697 3698 /* 3699 * Check feature flags regardless of the revision level, since we 3700 * previously didn't change the revision level when setting the flags, 3701 * so there is a chance incompat flags are set on a rev 0 filesystem. 3702 */ 3703 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3704 goto failed_mount; 3705 3706 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3707 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3708 blocksize > EXT4_MAX_BLOCK_SIZE) { 3709 ext4_msg(sb, KERN_ERR, 3710 "Unsupported filesystem blocksize %d (%d log_block_size)", 3711 blocksize, le32_to_cpu(es->s_log_block_size)); 3712 goto failed_mount; 3713 } 3714 if (le32_to_cpu(es->s_log_block_size) > 3715 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3716 ext4_msg(sb, KERN_ERR, 3717 "Invalid log block size: %u", 3718 le32_to_cpu(es->s_log_block_size)); 3719 goto failed_mount; 3720 } 3721 3722 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3723 ext4_msg(sb, KERN_ERR, 3724 "Number of reserved GDT blocks insanely large: %d", 3725 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3726 goto failed_mount; 3727 } 3728 3729 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3730 if (ext4_has_feature_inline_data(sb)) { 3731 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3732 " that may contain inline data"); 3733 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3734 } 3735 err = bdev_dax_supported(sb, blocksize); 3736 if (err) { 3737 ext4_msg(sb, KERN_ERR, 3738 "DAX unsupported by block device. Turning off DAX."); 3739 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3740 } 3741 } 3742 3743 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3744 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3745 es->s_encryption_level); 3746 goto failed_mount; 3747 } 3748 3749 if (sb->s_blocksize != blocksize) { 3750 /* Validate the filesystem blocksize */ 3751 if (!sb_set_blocksize(sb, blocksize)) { 3752 ext4_msg(sb, KERN_ERR, "bad block size %d", 3753 blocksize); 3754 goto failed_mount; 3755 } 3756 3757 brelse(bh); 3758 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3759 offset = do_div(logical_sb_block, blocksize); 3760 bh = sb_bread_unmovable(sb, logical_sb_block); 3761 if (!bh) { 3762 ext4_msg(sb, KERN_ERR, 3763 "Can't read superblock on 2nd try"); 3764 goto failed_mount; 3765 } 3766 es = (struct ext4_super_block *)(bh->b_data + offset); 3767 sbi->s_es = es; 3768 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3769 ext4_msg(sb, KERN_ERR, 3770 "Magic mismatch, very weird!"); 3771 goto failed_mount; 3772 } 3773 } 3774 3775 has_huge_files = ext4_has_feature_huge_file(sb); 3776 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3777 has_huge_files); 3778 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3779 3780 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3781 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3782 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3783 } else { 3784 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3785 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3786 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3787 (!is_power_of_2(sbi->s_inode_size)) || 3788 (sbi->s_inode_size > blocksize)) { 3789 ext4_msg(sb, KERN_ERR, 3790 "unsupported inode size: %d", 3791 sbi->s_inode_size); 3792 goto failed_mount; 3793 } 3794 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3795 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3796 } 3797 3798 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3799 if (ext4_has_feature_64bit(sb)) { 3800 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3801 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3802 !is_power_of_2(sbi->s_desc_size)) { 3803 ext4_msg(sb, KERN_ERR, 3804 "unsupported descriptor size %lu", 3805 sbi->s_desc_size); 3806 goto failed_mount; 3807 } 3808 } else 3809 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3810 3811 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3812 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3813 3814 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3815 if (sbi->s_inodes_per_block == 0) 3816 goto cantfind_ext4; 3817 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3818 sbi->s_inodes_per_group > blocksize * 8) { 3819 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3820 sbi->s_blocks_per_group); 3821 goto failed_mount; 3822 } 3823 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3824 sbi->s_inodes_per_block; 3825 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3826 sbi->s_sbh = bh; 3827 sbi->s_mount_state = le16_to_cpu(es->s_state); 3828 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3829 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3830 3831 for (i = 0; i < 4; i++) 3832 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3833 sbi->s_def_hash_version = es->s_def_hash_version; 3834 if (ext4_has_feature_dir_index(sb)) { 3835 i = le32_to_cpu(es->s_flags); 3836 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3837 sbi->s_hash_unsigned = 3; 3838 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3839 #ifdef __CHAR_UNSIGNED__ 3840 if (!sb_rdonly(sb)) 3841 es->s_flags |= 3842 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3843 sbi->s_hash_unsigned = 3; 3844 #else 3845 if (!sb_rdonly(sb)) 3846 es->s_flags |= 3847 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3848 #endif 3849 } 3850 } 3851 3852 /* Handle clustersize */ 3853 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3854 has_bigalloc = ext4_has_feature_bigalloc(sb); 3855 if (has_bigalloc) { 3856 if (clustersize < blocksize) { 3857 ext4_msg(sb, KERN_ERR, 3858 "cluster size (%d) smaller than " 3859 "block size (%d)", clustersize, blocksize); 3860 goto failed_mount; 3861 } 3862 if (le32_to_cpu(es->s_log_cluster_size) > 3863 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3864 ext4_msg(sb, KERN_ERR, 3865 "Invalid log cluster size: %u", 3866 le32_to_cpu(es->s_log_cluster_size)); 3867 goto failed_mount; 3868 } 3869 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3870 le32_to_cpu(es->s_log_block_size); 3871 sbi->s_clusters_per_group = 3872 le32_to_cpu(es->s_clusters_per_group); 3873 if (sbi->s_clusters_per_group > blocksize * 8) { 3874 ext4_msg(sb, KERN_ERR, 3875 "#clusters per group too big: %lu", 3876 sbi->s_clusters_per_group); 3877 goto failed_mount; 3878 } 3879 if (sbi->s_blocks_per_group != 3880 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3881 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3882 "clusters per group (%lu) inconsistent", 3883 sbi->s_blocks_per_group, 3884 sbi->s_clusters_per_group); 3885 goto failed_mount; 3886 } 3887 } else { 3888 if (clustersize != blocksize) { 3889 ext4_warning(sb, "fragment/cluster size (%d) != " 3890 "block size (%d)", clustersize, 3891 blocksize); 3892 clustersize = blocksize; 3893 } 3894 if (sbi->s_blocks_per_group > blocksize * 8) { 3895 ext4_msg(sb, KERN_ERR, 3896 "#blocks per group too big: %lu", 3897 sbi->s_blocks_per_group); 3898 goto failed_mount; 3899 } 3900 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3901 sbi->s_cluster_bits = 0; 3902 } 3903 sbi->s_cluster_ratio = clustersize / blocksize; 3904 3905 /* Do we have standard group size of clustersize * 8 blocks ? */ 3906 if (sbi->s_blocks_per_group == clustersize << 3) 3907 set_opt2(sb, STD_GROUP_SIZE); 3908 3909 /* 3910 * Test whether we have more sectors than will fit in sector_t, 3911 * and whether the max offset is addressable by the page cache. 3912 */ 3913 err = generic_check_addressable(sb->s_blocksize_bits, 3914 ext4_blocks_count(es)); 3915 if (err) { 3916 ext4_msg(sb, KERN_ERR, "filesystem" 3917 " too large to mount safely on this system"); 3918 if (sizeof(sector_t) < 8) 3919 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3920 goto failed_mount; 3921 } 3922 3923 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3924 goto cantfind_ext4; 3925 3926 /* check blocks count against device size */ 3927 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3928 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3929 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3930 "exceeds size of device (%llu blocks)", 3931 ext4_blocks_count(es), blocks_count); 3932 goto failed_mount; 3933 } 3934 3935 /* 3936 * It makes no sense for the first data block to be beyond the end 3937 * of the filesystem. 3938 */ 3939 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3940 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3941 "block %u is beyond end of filesystem (%llu)", 3942 le32_to_cpu(es->s_first_data_block), 3943 ext4_blocks_count(es)); 3944 goto failed_mount; 3945 } 3946 blocks_count = (ext4_blocks_count(es) - 3947 le32_to_cpu(es->s_first_data_block) + 3948 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3949 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3950 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3951 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3952 "(block count %llu, first data block %u, " 3953 "blocks per group %lu)", sbi->s_groups_count, 3954 ext4_blocks_count(es), 3955 le32_to_cpu(es->s_first_data_block), 3956 EXT4_BLOCKS_PER_GROUP(sb)); 3957 goto failed_mount; 3958 } 3959 sbi->s_groups_count = blocks_count; 3960 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3961 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3962 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3963 EXT4_DESC_PER_BLOCK(sb); 3964 if (ext4_has_feature_meta_bg(sb)) { 3965 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3966 ext4_msg(sb, KERN_WARNING, 3967 "first meta block group too large: %u " 3968 "(group descriptor block count %u)", 3969 le32_to_cpu(es->s_first_meta_bg), db_count); 3970 goto failed_mount; 3971 } 3972 } 3973 sbi->s_group_desc = kvmalloc(db_count * 3974 sizeof(struct buffer_head *), 3975 GFP_KERNEL); 3976 if (sbi->s_group_desc == NULL) { 3977 ext4_msg(sb, KERN_ERR, "not enough memory"); 3978 ret = -ENOMEM; 3979 goto failed_mount; 3980 } 3981 3982 bgl_lock_init(sbi->s_blockgroup_lock); 3983 3984 /* Pre-read the descriptors into the buffer cache */ 3985 for (i = 0; i < db_count; i++) { 3986 block = descriptor_loc(sb, logical_sb_block, i); 3987 sb_breadahead(sb, block); 3988 } 3989 3990 for (i = 0; i < db_count; i++) { 3991 block = descriptor_loc(sb, logical_sb_block, i); 3992 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3993 if (!sbi->s_group_desc[i]) { 3994 ext4_msg(sb, KERN_ERR, 3995 "can't read group descriptor %d", i); 3996 db_count = i; 3997 goto failed_mount2; 3998 } 3999 } 4000 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4001 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4002 ret = -EFSCORRUPTED; 4003 goto failed_mount2; 4004 } 4005 4006 sbi->s_gdb_count = db_count; 4007 4008 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4009 4010 /* Register extent status tree shrinker */ 4011 if (ext4_es_register_shrinker(sbi)) 4012 goto failed_mount3; 4013 4014 sbi->s_stripe = ext4_get_stripe_size(sbi); 4015 sbi->s_extent_max_zeroout_kb = 32; 4016 4017 /* 4018 * set up enough so that it can read an inode 4019 */ 4020 sb->s_op = &ext4_sops; 4021 sb->s_export_op = &ext4_export_ops; 4022 sb->s_xattr = ext4_xattr_handlers; 4023 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4024 sb->s_cop = &ext4_cryptops; 4025 #endif 4026 #ifdef CONFIG_QUOTA 4027 sb->dq_op = &ext4_quota_operations; 4028 if (ext4_has_feature_quota(sb)) 4029 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4030 else 4031 sb->s_qcop = &ext4_qctl_operations; 4032 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4033 #endif 4034 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4035 4036 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4037 mutex_init(&sbi->s_orphan_lock); 4038 4039 sb->s_root = NULL; 4040 4041 needs_recovery = (es->s_last_orphan != 0 || 4042 ext4_has_feature_journal_needs_recovery(sb)); 4043 4044 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4045 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4046 goto failed_mount3a; 4047 4048 /* 4049 * The first inode we look at is the journal inode. Don't try 4050 * root first: it may be modified in the journal! 4051 */ 4052 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4053 err = ext4_load_journal(sb, es, journal_devnum); 4054 if (err) 4055 goto failed_mount3a; 4056 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4057 ext4_has_feature_journal_needs_recovery(sb)) { 4058 ext4_msg(sb, KERN_ERR, "required journal recovery " 4059 "suppressed and not mounted read-only"); 4060 goto failed_mount_wq; 4061 } else { 4062 /* Nojournal mode, all journal mount options are illegal */ 4063 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4064 ext4_msg(sb, KERN_ERR, "can't mount with " 4065 "journal_checksum, fs mounted w/o journal"); 4066 goto failed_mount_wq; 4067 } 4068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4069 ext4_msg(sb, KERN_ERR, "can't mount with " 4070 "journal_async_commit, fs mounted w/o journal"); 4071 goto failed_mount_wq; 4072 } 4073 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4074 ext4_msg(sb, KERN_ERR, "can't mount with " 4075 "commit=%lu, fs mounted w/o journal", 4076 sbi->s_commit_interval / HZ); 4077 goto failed_mount_wq; 4078 } 4079 if (EXT4_MOUNT_DATA_FLAGS & 4080 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4081 ext4_msg(sb, KERN_ERR, "can't mount with " 4082 "data=, fs mounted w/o journal"); 4083 goto failed_mount_wq; 4084 } 4085 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4086 clear_opt(sb, JOURNAL_CHECKSUM); 4087 clear_opt(sb, DATA_FLAGS); 4088 sbi->s_journal = NULL; 4089 needs_recovery = 0; 4090 goto no_journal; 4091 } 4092 4093 if (ext4_has_feature_64bit(sb) && 4094 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4095 JBD2_FEATURE_INCOMPAT_64BIT)) { 4096 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4097 goto failed_mount_wq; 4098 } 4099 4100 if (!set_journal_csum_feature_set(sb)) { 4101 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4102 "feature set"); 4103 goto failed_mount_wq; 4104 } 4105 4106 /* We have now updated the journal if required, so we can 4107 * validate the data journaling mode. */ 4108 switch (test_opt(sb, DATA_FLAGS)) { 4109 case 0: 4110 /* No mode set, assume a default based on the journal 4111 * capabilities: ORDERED_DATA if the journal can 4112 * cope, else JOURNAL_DATA 4113 */ 4114 if (jbd2_journal_check_available_features 4115 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4116 set_opt(sb, ORDERED_DATA); 4117 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4118 } else { 4119 set_opt(sb, JOURNAL_DATA); 4120 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4121 } 4122 break; 4123 4124 case EXT4_MOUNT_ORDERED_DATA: 4125 case EXT4_MOUNT_WRITEBACK_DATA: 4126 if (!jbd2_journal_check_available_features 4127 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4128 ext4_msg(sb, KERN_ERR, "Journal does not support " 4129 "requested data journaling mode"); 4130 goto failed_mount_wq; 4131 } 4132 default: 4133 break; 4134 } 4135 4136 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4137 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4138 ext4_msg(sb, KERN_ERR, "can't mount with " 4139 "journal_async_commit in data=ordered mode"); 4140 goto failed_mount_wq; 4141 } 4142 4143 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4144 4145 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4146 4147 no_journal: 4148 if (!test_opt(sb, NO_MBCACHE)) { 4149 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4150 if (!sbi->s_ea_block_cache) { 4151 ext4_msg(sb, KERN_ERR, 4152 "Failed to create ea_block_cache"); 4153 goto failed_mount_wq; 4154 } 4155 4156 if (ext4_has_feature_ea_inode(sb)) { 4157 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4158 if (!sbi->s_ea_inode_cache) { 4159 ext4_msg(sb, KERN_ERR, 4160 "Failed to create ea_inode_cache"); 4161 goto failed_mount_wq; 4162 } 4163 } 4164 } 4165 4166 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4167 (blocksize != PAGE_SIZE)) { 4168 ext4_msg(sb, KERN_ERR, 4169 "Unsupported blocksize for fs encryption"); 4170 goto failed_mount_wq; 4171 } 4172 4173 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4174 !ext4_has_feature_encrypt(sb)) { 4175 ext4_set_feature_encrypt(sb); 4176 ext4_commit_super(sb, 1); 4177 } 4178 4179 /* 4180 * Get the # of file system overhead blocks from the 4181 * superblock if present. 4182 */ 4183 if (es->s_overhead_clusters) 4184 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4185 else { 4186 err = ext4_calculate_overhead(sb); 4187 if (err) 4188 goto failed_mount_wq; 4189 } 4190 4191 /* 4192 * The maximum number of concurrent works can be high and 4193 * concurrency isn't really necessary. Limit it to 1. 4194 */ 4195 EXT4_SB(sb)->rsv_conversion_wq = 4196 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4197 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4198 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4199 ret = -ENOMEM; 4200 goto failed_mount4; 4201 } 4202 4203 /* 4204 * The jbd2_journal_load will have done any necessary log recovery, 4205 * so we can safely mount the rest of the filesystem now. 4206 */ 4207 4208 root = ext4_iget(sb, EXT4_ROOT_INO); 4209 if (IS_ERR(root)) { 4210 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4211 ret = PTR_ERR(root); 4212 root = NULL; 4213 goto failed_mount4; 4214 } 4215 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4216 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4217 iput(root); 4218 goto failed_mount4; 4219 } 4220 sb->s_root = d_make_root(root); 4221 if (!sb->s_root) { 4222 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4223 ret = -ENOMEM; 4224 goto failed_mount4; 4225 } 4226 4227 if (ext4_setup_super(sb, es, sb_rdonly(sb))) 4228 sb->s_flags |= SB_RDONLY; 4229 4230 /* determine the minimum size of new large inodes, if present */ 4231 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4232 sbi->s_want_extra_isize == 0) { 4233 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4234 EXT4_GOOD_OLD_INODE_SIZE; 4235 if (ext4_has_feature_extra_isize(sb)) { 4236 if (sbi->s_want_extra_isize < 4237 le16_to_cpu(es->s_want_extra_isize)) 4238 sbi->s_want_extra_isize = 4239 le16_to_cpu(es->s_want_extra_isize); 4240 if (sbi->s_want_extra_isize < 4241 le16_to_cpu(es->s_min_extra_isize)) 4242 sbi->s_want_extra_isize = 4243 le16_to_cpu(es->s_min_extra_isize); 4244 } 4245 } 4246 /* Check if enough inode space is available */ 4247 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4248 sbi->s_inode_size) { 4249 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4250 EXT4_GOOD_OLD_INODE_SIZE; 4251 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4252 "available"); 4253 } 4254 4255 ext4_set_resv_clusters(sb); 4256 4257 err = ext4_setup_system_zone(sb); 4258 if (err) { 4259 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4260 "zone (%d)", err); 4261 goto failed_mount4a; 4262 } 4263 4264 ext4_ext_init(sb); 4265 err = ext4_mb_init(sb); 4266 if (err) { 4267 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4268 err); 4269 goto failed_mount5; 4270 } 4271 4272 block = ext4_count_free_clusters(sb); 4273 ext4_free_blocks_count_set(sbi->s_es, 4274 EXT4_C2B(sbi, block)); 4275 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4276 GFP_KERNEL); 4277 if (!err) { 4278 unsigned long freei = ext4_count_free_inodes(sb); 4279 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4280 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4281 GFP_KERNEL); 4282 } 4283 if (!err) 4284 err = percpu_counter_init(&sbi->s_dirs_counter, 4285 ext4_count_dirs(sb), GFP_KERNEL); 4286 if (!err) 4287 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4288 GFP_KERNEL); 4289 if (!err) 4290 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4291 4292 if (err) { 4293 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4294 goto failed_mount6; 4295 } 4296 4297 if (ext4_has_feature_flex_bg(sb)) 4298 if (!ext4_fill_flex_info(sb)) { 4299 ext4_msg(sb, KERN_ERR, 4300 "unable to initialize " 4301 "flex_bg meta info!"); 4302 goto failed_mount6; 4303 } 4304 4305 err = ext4_register_li_request(sb, first_not_zeroed); 4306 if (err) 4307 goto failed_mount6; 4308 4309 err = ext4_register_sysfs(sb); 4310 if (err) 4311 goto failed_mount7; 4312 4313 #ifdef CONFIG_QUOTA 4314 /* Enable quota usage during mount. */ 4315 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4316 err = ext4_enable_quotas(sb); 4317 if (err) 4318 goto failed_mount8; 4319 } 4320 #endif /* CONFIG_QUOTA */ 4321 4322 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4323 ext4_orphan_cleanup(sb, es); 4324 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4325 if (needs_recovery) { 4326 ext4_msg(sb, KERN_INFO, "recovery complete"); 4327 ext4_mark_recovery_complete(sb, es); 4328 } 4329 if (EXT4_SB(sb)->s_journal) { 4330 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4331 descr = " journalled data mode"; 4332 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4333 descr = " ordered data mode"; 4334 else 4335 descr = " writeback data mode"; 4336 } else 4337 descr = "out journal"; 4338 4339 if (test_opt(sb, DISCARD)) { 4340 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4341 if (!blk_queue_discard(q)) 4342 ext4_msg(sb, KERN_WARNING, 4343 "mounting with \"discard\" option, but " 4344 "the device does not support discard"); 4345 } 4346 4347 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4348 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4349 "Opts: %.*s%s%s", descr, 4350 (int) sizeof(sbi->s_es->s_mount_opts), 4351 sbi->s_es->s_mount_opts, 4352 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4353 4354 if (es->s_error_count) 4355 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4356 4357 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4358 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4359 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4360 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4361 4362 kfree(orig_data); 4363 return 0; 4364 4365 cantfind_ext4: 4366 if (!silent) 4367 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4368 goto failed_mount; 4369 4370 #ifdef CONFIG_QUOTA 4371 failed_mount8: 4372 ext4_unregister_sysfs(sb); 4373 #endif 4374 failed_mount7: 4375 ext4_unregister_li_request(sb); 4376 failed_mount6: 4377 ext4_mb_release(sb); 4378 if (sbi->s_flex_groups) 4379 kvfree(sbi->s_flex_groups); 4380 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4381 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4382 percpu_counter_destroy(&sbi->s_dirs_counter); 4383 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4384 failed_mount5: 4385 ext4_ext_release(sb); 4386 ext4_release_system_zone(sb); 4387 failed_mount4a: 4388 dput(sb->s_root); 4389 sb->s_root = NULL; 4390 failed_mount4: 4391 ext4_msg(sb, KERN_ERR, "mount failed"); 4392 if (EXT4_SB(sb)->rsv_conversion_wq) 4393 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4394 failed_mount_wq: 4395 if (sbi->s_ea_inode_cache) { 4396 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4397 sbi->s_ea_inode_cache = NULL; 4398 } 4399 if (sbi->s_ea_block_cache) { 4400 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4401 sbi->s_ea_block_cache = NULL; 4402 } 4403 if (sbi->s_journal) { 4404 jbd2_journal_destroy(sbi->s_journal); 4405 sbi->s_journal = NULL; 4406 } 4407 failed_mount3a: 4408 ext4_es_unregister_shrinker(sbi); 4409 failed_mount3: 4410 del_timer_sync(&sbi->s_err_report); 4411 if (sbi->s_mmp_tsk) 4412 kthread_stop(sbi->s_mmp_tsk); 4413 failed_mount2: 4414 for (i = 0; i < db_count; i++) 4415 brelse(sbi->s_group_desc[i]); 4416 kvfree(sbi->s_group_desc); 4417 failed_mount: 4418 if (sbi->s_chksum_driver) 4419 crypto_free_shash(sbi->s_chksum_driver); 4420 #ifdef CONFIG_QUOTA 4421 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4422 kfree(sbi->s_qf_names[i]); 4423 #endif 4424 ext4_blkdev_remove(sbi); 4425 brelse(bh); 4426 out_fail: 4427 sb->s_fs_info = NULL; 4428 kfree(sbi->s_blockgroup_lock); 4429 out_free_base: 4430 kfree(sbi); 4431 kfree(orig_data); 4432 fs_put_dax(dax_dev); 4433 return err ? err : ret; 4434 } 4435 4436 /* 4437 * Setup any per-fs journal parameters now. We'll do this both on 4438 * initial mount, once the journal has been initialised but before we've 4439 * done any recovery; and again on any subsequent remount. 4440 */ 4441 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4442 { 4443 struct ext4_sb_info *sbi = EXT4_SB(sb); 4444 4445 journal->j_commit_interval = sbi->s_commit_interval; 4446 journal->j_min_batch_time = sbi->s_min_batch_time; 4447 journal->j_max_batch_time = sbi->s_max_batch_time; 4448 4449 write_lock(&journal->j_state_lock); 4450 if (test_opt(sb, BARRIER)) 4451 journal->j_flags |= JBD2_BARRIER; 4452 else 4453 journal->j_flags &= ~JBD2_BARRIER; 4454 if (test_opt(sb, DATA_ERR_ABORT)) 4455 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4456 else 4457 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4458 write_unlock(&journal->j_state_lock); 4459 } 4460 4461 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4462 unsigned int journal_inum) 4463 { 4464 struct inode *journal_inode; 4465 4466 /* 4467 * Test for the existence of a valid inode on disk. Bad things 4468 * happen if we iget() an unused inode, as the subsequent iput() 4469 * will try to delete it. 4470 */ 4471 journal_inode = ext4_iget(sb, journal_inum); 4472 if (IS_ERR(journal_inode)) { 4473 ext4_msg(sb, KERN_ERR, "no journal found"); 4474 return NULL; 4475 } 4476 if (!journal_inode->i_nlink) { 4477 make_bad_inode(journal_inode); 4478 iput(journal_inode); 4479 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4480 return NULL; 4481 } 4482 4483 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4484 journal_inode, journal_inode->i_size); 4485 if (!S_ISREG(journal_inode->i_mode)) { 4486 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4487 iput(journal_inode); 4488 return NULL; 4489 } 4490 return journal_inode; 4491 } 4492 4493 static journal_t *ext4_get_journal(struct super_block *sb, 4494 unsigned int journal_inum) 4495 { 4496 struct inode *journal_inode; 4497 journal_t *journal; 4498 4499 BUG_ON(!ext4_has_feature_journal(sb)); 4500 4501 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4502 if (!journal_inode) 4503 return NULL; 4504 4505 journal = jbd2_journal_init_inode(journal_inode); 4506 if (!journal) { 4507 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4508 iput(journal_inode); 4509 return NULL; 4510 } 4511 journal->j_private = sb; 4512 ext4_init_journal_params(sb, journal); 4513 return journal; 4514 } 4515 4516 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4517 dev_t j_dev) 4518 { 4519 struct buffer_head *bh; 4520 journal_t *journal; 4521 ext4_fsblk_t start; 4522 ext4_fsblk_t len; 4523 int hblock, blocksize; 4524 ext4_fsblk_t sb_block; 4525 unsigned long offset; 4526 struct ext4_super_block *es; 4527 struct block_device *bdev; 4528 4529 BUG_ON(!ext4_has_feature_journal(sb)); 4530 4531 bdev = ext4_blkdev_get(j_dev, sb); 4532 if (bdev == NULL) 4533 return NULL; 4534 4535 blocksize = sb->s_blocksize; 4536 hblock = bdev_logical_block_size(bdev); 4537 if (blocksize < hblock) { 4538 ext4_msg(sb, KERN_ERR, 4539 "blocksize too small for journal device"); 4540 goto out_bdev; 4541 } 4542 4543 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4544 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4545 set_blocksize(bdev, blocksize); 4546 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4547 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4548 "external journal"); 4549 goto out_bdev; 4550 } 4551 4552 es = (struct ext4_super_block *) (bh->b_data + offset); 4553 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4554 !(le32_to_cpu(es->s_feature_incompat) & 4555 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4556 ext4_msg(sb, KERN_ERR, "external journal has " 4557 "bad superblock"); 4558 brelse(bh); 4559 goto out_bdev; 4560 } 4561 4562 if ((le32_to_cpu(es->s_feature_ro_compat) & 4563 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4564 es->s_checksum != ext4_superblock_csum(sb, es)) { 4565 ext4_msg(sb, KERN_ERR, "external journal has " 4566 "corrupt superblock"); 4567 brelse(bh); 4568 goto out_bdev; 4569 } 4570 4571 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4572 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4573 brelse(bh); 4574 goto out_bdev; 4575 } 4576 4577 len = ext4_blocks_count(es); 4578 start = sb_block + 1; 4579 brelse(bh); /* we're done with the superblock */ 4580 4581 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4582 start, len, blocksize); 4583 if (!journal) { 4584 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4585 goto out_bdev; 4586 } 4587 journal->j_private = sb; 4588 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4589 wait_on_buffer(journal->j_sb_buffer); 4590 if (!buffer_uptodate(journal->j_sb_buffer)) { 4591 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4592 goto out_journal; 4593 } 4594 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4595 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4596 "user (unsupported) - %d", 4597 be32_to_cpu(journal->j_superblock->s_nr_users)); 4598 goto out_journal; 4599 } 4600 EXT4_SB(sb)->journal_bdev = bdev; 4601 ext4_init_journal_params(sb, journal); 4602 return journal; 4603 4604 out_journal: 4605 jbd2_journal_destroy(journal); 4606 out_bdev: 4607 ext4_blkdev_put(bdev); 4608 return NULL; 4609 } 4610 4611 static int ext4_load_journal(struct super_block *sb, 4612 struct ext4_super_block *es, 4613 unsigned long journal_devnum) 4614 { 4615 journal_t *journal; 4616 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4617 dev_t journal_dev; 4618 int err = 0; 4619 int really_read_only; 4620 4621 BUG_ON(!ext4_has_feature_journal(sb)); 4622 4623 if (journal_devnum && 4624 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4625 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4626 "numbers have changed"); 4627 journal_dev = new_decode_dev(journal_devnum); 4628 } else 4629 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4630 4631 really_read_only = bdev_read_only(sb->s_bdev); 4632 4633 /* 4634 * Are we loading a blank journal or performing recovery after a 4635 * crash? For recovery, we need to check in advance whether we 4636 * can get read-write access to the device. 4637 */ 4638 if (ext4_has_feature_journal_needs_recovery(sb)) { 4639 if (sb_rdonly(sb)) { 4640 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4641 "required on readonly filesystem"); 4642 if (really_read_only) { 4643 ext4_msg(sb, KERN_ERR, "write access " 4644 "unavailable, cannot proceed " 4645 "(try mounting with noload)"); 4646 return -EROFS; 4647 } 4648 ext4_msg(sb, KERN_INFO, "write access will " 4649 "be enabled during recovery"); 4650 } 4651 } 4652 4653 if (journal_inum && journal_dev) { 4654 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4655 "and inode journals!"); 4656 return -EINVAL; 4657 } 4658 4659 if (journal_inum) { 4660 if (!(journal = ext4_get_journal(sb, journal_inum))) 4661 return -EINVAL; 4662 } else { 4663 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4664 return -EINVAL; 4665 } 4666 4667 if (!(journal->j_flags & JBD2_BARRIER)) 4668 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4669 4670 if (!ext4_has_feature_journal_needs_recovery(sb)) 4671 err = jbd2_journal_wipe(journal, !really_read_only); 4672 if (!err) { 4673 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4674 if (save) 4675 memcpy(save, ((char *) es) + 4676 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4677 err = jbd2_journal_load(journal); 4678 if (save) 4679 memcpy(((char *) es) + EXT4_S_ERR_START, 4680 save, EXT4_S_ERR_LEN); 4681 kfree(save); 4682 } 4683 4684 if (err) { 4685 ext4_msg(sb, KERN_ERR, "error loading journal"); 4686 jbd2_journal_destroy(journal); 4687 return err; 4688 } 4689 4690 EXT4_SB(sb)->s_journal = journal; 4691 ext4_clear_journal_err(sb, es); 4692 4693 if (!really_read_only && journal_devnum && 4694 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4695 es->s_journal_dev = cpu_to_le32(journal_devnum); 4696 4697 /* Make sure we flush the recovery flag to disk. */ 4698 ext4_commit_super(sb, 1); 4699 } 4700 4701 return 0; 4702 } 4703 4704 static int ext4_commit_super(struct super_block *sb, int sync) 4705 { 4706 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4707 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4708 int error = 0; 4709 4710 if (!sbh || block_device_ejected(sb)) 4711 return error; 4712 /* 4713 * If the file system is mounted read-only, don't update the 4714 * superblock write time. This avoids updating the superblock 4715 * write time when we are mounting the root file system 4716 * read/only but we need to replay the journal; at that point, 4717 * for people who are east of GMT and who make their clock 4718 * tick in localtime for Windows bug-for-bug compatibility, 4719 * the clock is set in the future, and this will cause e2fsck 4720 * to complain and force a full file system check. 4721 */ 4722 if (!(sb->s_flags & SB_RDONLY)) 4723 es->s_wtime = cpu_to_le32(get_seconds()); 4724 if (sb->s_bdev->bd_part) 4725 es->s_kbytes_written = 4726 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4727 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4728 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4729 else 4730 es->s_kbytes_written = 4731 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4732 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4733 ext4_free_blocks_count_set(es, 4734 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4735 &EXT4_SB(sb)->s_freeclusters_counter))); 4736 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4737 es->s_free_inodes_count = 4738 cpu_to_le32(percpu_counter_sum_positive( 4739 &EXT4_SB(sb)->s_freeinodes_counter)); 4740 BUFFER_TRACE(sbh, "marking dirty"); 4741 ext4_superblock_csum_set(sb); 4742 if (sync) 4743 lock_buffer(sbh); 4744 if (buffer_write_io_error(sbh)) { 4745 /* 4746 * Oh, dear. A previous attempt to write the 4747 * superblock failed. This could happen because the 4748 * USB device was yanked out. Or it could happen to 4749 * be a transient write error and maybe the block will 4750 * be remapped. Nothing we can do but to retry the 4751 * write and hope for the best. 4752 */ 4753 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4754 "superblock detected"); 4755 clear_buffer_write_io_error(sbh); 4756 set_buffer_uptodate(sbh); 4757 } 4758 mark_buffer_dirty(sbh); 4759 if (sync) { 4760 unlock_buffer(sbh); 4761 error = __sync_dirty_buffer(sbh, 4762 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4763 if (error) 4764 return error; 4765 4766 error = buffer_write_io_error(sbh); 4767 if (error) { 4768 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4769 "superblock"); 4770 clear_buffer_write_io_error(sbh); 4771 set_buffer_uptodate(sbh); 4772 } 4773 } 4774 return error; 4775 } 4776 4777 /* 4778 * Have we just finished recovery? If so, and if we are mounting (or 4779 * remounting) the filesystem readonly, then we will end up with a 4780 * consistent fs on disk. Record that fact. 4781 */ 4782 static void ext4_mark_recovery_complete(struct super_block *sb, 4783 struct ext4_super_block *es) 4784 { 4785 journal_t *journal = EXT4_SB(sb)->s_journal; 4786 4787 if (!ext4_has_feature_journal(sb)) { 4788 BUG_ON(journal != NULL); 4789 return; 4790 } 4791 jbd2_journal_lock_updates(journal); 4792 if (jbd2_journal_flush(journal) < 0) 4793 goto out; 4794 4795 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4796 ext4_clear_feature_journal_needs_recovery(sb); 4797 ext4_commit_super(sb, 1); 4798 } 4799 4800 out: 4801 jbd2_journal_unlock_updates(journal); 4802 } 4803 4804 /* 4805 * If we are mounting (or read-write remounting) a filesystem whose journal 4806 * has recorded an error from a previous lifetime, move that error to the 4807 * main filesystem now. 4808 */ 4809 static void ext4_clear_journal_err(struct super_block *sb, 4810 struct ext4_super_block *es) 4811 { 4812 journal_t *journal; 4813 int j_errno; 4814 const char *errstr; 4815 4816 BUG_ON(!ext4_has_feature_journal(sb)); 4817 4818 journal = EXT4_SB(sb)->s_journal; 4819 4820 /* 4821 * Now check for any error status which may have been recorded in the 4822 * journal by a prior ext4_error() or ext4_abort() 4823 */ 4824 4825 j_errno = jbd2_journal_errno(journal); 4826 if (j_errno) { 4827 char nbuf[16]; 4828 4829 errstr = ext4_decode_error(sb, j_errno, nbuf); 4830 ext4_warning(sb, "Filesystem error recorded " 4831 "from previous mount: %s", errstr); 4832 ext4_warning(sb, "Marking fs in need of filesystem check."); 4833 4834 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4835 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4836 ext4_commit_super(sb, 1); 4837 4838 jbd2_journal_clear_err(journal); 4839 jbd2_journal_update_sb_errno(journal); 4840 } 4841 } 4842 4843 /* 4844 * Force the running and committing transactions to commit, 4845 * and wait on the commit. 4846 */ 4847 int ext4_force_commit(struct super_block *sb) 4848 { 4849 journal_t *journal; 4850 4851 if (sb_rdonly(sb)) 4852 return 0; 4853 4854 journal = EXT4_SB(sb)->s_journal; 4855 return ext4_journal_force_commit(journal); 4856 } 4857 4858 static int ext4_sync_fs(struct super_block *sb, int wait) 4859 { 4860 int ret = 0; 4861 tid_t target; 4862 bool needs_barrier = false; 4863 struct ext4_sb_info *sbi = EXT4_SB(sb); 4864 4865 if (unlikely(ext4_forced_shutdown(sbi))) 4866 return 0; 4867 4868 trace_ext4_sync_fs(sb, wait); 4869 flush_workqueue(sbi->rsv_conversion_wq); 4870 /* 4871 * Writeback quota in non-journalled quota case - journalled quota has 4872 * no dirty dquots 4873 */ 4874 dquot_writeback_dquots(sb, -1); 4875 /* 4876 * Data writeback is possible w/o journal transaction, so barrier must 4877 * being sent at the end of the function. But we can skip it if 4878 * transaction_commit will do it for us. 4879 */ 4880 if (sbi->s_journal) { 4881 target = jbd2_get_latest_transaction(sbi->s_journal); 4882 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4883 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4884 needs_barrier = true; 4885 4886 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4887 if (wait) 4888 ret = jbd2_log_wait_commit(sbi->s_journal, 4889 target); 4890 } 4891 } else if (wait && test_opt(sb, BARRIER)) 4892 needs_barrier = true; 4893 if (needs_barrier) { 4894 int err; 4895 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4896 if (!ret) 4897 ret = err; 4898 } 4899 4900 return ret; 4901 } 4902 4903 /* 4904 * LVM calls this function before a (read-only) snapshot is created. This 4905 * gives us a chance to flush the journal completely and mark the fs clean. 4906 * 4907 * Note that only this function cannot bring a filesystem to be in a clean 4908 * state independently. It relies on upper layer to stop all data & metadata 4909 * modifications. 4910 */ 4911 static int ext4_freeze(struct super_block *sb) 4912 { 4913 int error = 0; 4914 journal_t *journal; 4915 4916 if (sb_rdonly(sb)) 4917 return 0; 4918 4919 journal = EXT4_SB(sb)->s_journal; 4920 4921 if (journal) { 4922 /* Now we set up the journal barrier. */ 4923 jbd2_journal_lock_updates(journal); 4924 4925 /* 4926 * Don't clear the needs_recovery flag if we failed to 4927 * flush the journal. 4928 */ 4929 error = jbd2_journal_flush(journal); 4930 if (error < 0) 4931 goto out; 4932 4933 /* Journal blocked and flushed, clear needs_recovery flag. */ 4934 ext4_clear_feature_journal_needs_recovery(sb); 4935 } 4936 4937 error = ext4_commit_super(sb, 1); 4938 out: 4939 if (journal) 4940 /* we rely on upper layer to stop further updates */ 4941 jbd2_journal_unlock_updates(journal); 4942 return error; 4943 } 4944 4945 /* 4946 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4947 * flag here, even though the filesystem is not technically dirty yet. 4948 */ 4949 static int ext4_unfreeze(struct super_block *sb) 4950 { 4951 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 4952 return 0; 4953 4954 if (EXT4_SB(sb)->s_journal) { 4955 /* Reset the needs_recovery flag before the fs is unlocked. */ 4956 ext4_set_feature_journal_needs_recovery(sb); 4957 } 4958 4959 ext4_commit_super(sb, 1); 4960 return 0; 4961 } 4962 4963 /* 4964 * Structure to save mount options for ext4_remount's benefit 4965 */ 4966 struct ext4_mount_options { 4967 unsigned long s_mount_opt; 4968 unsigned long s_mount_opt2; 4969 kuid_t s_resuid; 4970 kgid_t s_resgid; 4971 unsigned long s_commit_interval; 4972 u32 s_min_batch_time, s_max_batch_time; 4973 #ifdef CONFIG_QUOTA 4974 int s_jquota_fmt; 4975 char *s_qf_names[EXT4_MAXQUOTAS]; 4976 #endif 4977 }; 4978 4979 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4980 { 4981 struct ext4_super_block *es; 4982 struct ext4_sb_info *sbi = EXT4_SB(sb); 4983 unsigned long old_sb_flags; 4984 struct ext4_mount_options old_opts; 4985 int enable_quota = 0; 4986 ext4_group_t g; 4987 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4988 int err = 0; 4989 #ifdef CONFIG_QUOTA 4990 int i, j; 4991 #endif 4992 char *orig_data = kstrdup(data, GFP_KERNEL); 4993 4994 /* Store the original options */ 4995 old_sb_flags = sb->s_flags; 4996 old_opts.s_mount_opt = sbi->s_mount_opt; 4997 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4998 old_opts.s_resuid = sbi->s_resuid; 4999 old_opts.s_resgid = sbi->s_resgid; 5000 old_opts.s_commit_interval = sbi->s_commit_interval; 5001 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5002 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5003 #ifdef CONFIG_QUOTA 5004 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5005 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5006 if (sbi->s_qf_names[i]) { 5007 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 5008 GFP_KERNEL); 5009 if (!old_opts.s_qf_names[i]) { 5010 for (j = 0; j < i; j++) 5011 kfree(old_opts.s_qf_names[j]); 5012 kfree(orig_data); 5013 return -ENOMEM; 5014 } 5015 } else 5016 old_opts.s_qf_names[i] = NULL; 5017 #endif 5018 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5019 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5020 5021 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5022 err = -EINVAL; 5023 goto restore_opts; 5024 } 5025 5026 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5027 test_opt(sb, JOURNAL_CHECKSUM)) { 5028 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5029 "during remount not supported; ignoring"); 5030 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5031 } 5032 5033 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5034 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5035 ext4_msg(sb, KERN_ERR, "can't mount with " 5036 "both data=journal and delalloc"); 5037 err = -EINVAL; 5038 goto restore_opts; 5039 } 5040 if (test_opt(sb, DIOREAD_NOLOCK)) { 5041 ext4_msg(sb, KERN_ERR, "can't mount with " 5042 "both data=journal and dioread_nolock"); 5043 err = -EINVAL; 5044 goto restore_opts; 5045 } 5046 if (test_opt(sb, DAX)) { 5047 ext4_msg(sb, KERN_ERR, "can't mount with " 5048 "both data=journal and dax"); 5049 err = -EINVAL; 5050 goto restore_opts; 5051 } 5052 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5053 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5054 ext4_msg(sb, KERN_ERR, "can't mount with " 5055 "journal_async_commit in data=ordered mode"); 5056 err = -EINVAL; 5057 goto restore_opts; 5058 } 5059 } 5060 5061 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5062 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5063 err = -EINVAL; 5064 goto restore_opts; 5065 } 5066 5067 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5068 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5069 "dax flag with busy inodes while remounting"); 5070 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5071 } 5072 5073 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5074 ext4_abort(sb, "Abort forced by user"); 5075 5076 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5077 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5078 5079 es = sbi->s_es; 5080 5081 if (sbi->s_journal) { 5082 ext4_init_journal_params(sb, sbi->s_journal); 5083 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5084 } 5085 5086 if (*flags & SB_LAZYTIME) 5087 sb->s_flags |= SB_LAZYTIME; 5088 5089 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5090 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5091 err = -EROFS; 5092 goto restore_opts; 5093 } 5094 5095 if (*flags & SB_RDONLY) { 5096 err = sync_filesystem(sb); 5097 if (err < 0) 5098 goto restore_opts; 5099 err = dquot_suspend(sb, -1); 5100 if (err < 0) 5101 goto restore_opts; 5102 5103 /* 5104 * First of all, the unconditional stuff we have to do 5105 * to disable replay of the journal when we next remount 5106 */ 5107 sb->s_flags |= SB_RDONLY; 5108 5109 /* 5110 * OK, test if we are remounting a valid rw partition 5111 * readonly, and if so set the rdonly flag and then 5112 * mark the partition as valid again. 5113 */ 5114 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5115 (sbi->s_mount_state & EXT4_VALID_FS)) 5116 es->s_state = cpu_to_le16(sbi->s_mount_state); 5117 5118 if (sbi->s_journal) 5119 ext4_mark_recovery_complete(sb, es); 5120 } else { 5121 /* Make sure we can mount this feature set readwrite */ 5122 if (ext4_has_feature_readonly(sb) || 5123 !ext4_feature_set_ok(sb, 0)) { 5124 err = -EROFS; 5125 goto restore_opts; 5126 } 5127 /* 5128 * Make sure the group descriptor checksums 5129 * are sane. If they aren't, refuse to remount r/w. 5130 */ 5131 for (g = 0; g < sbi->s_groups_count; g++) { 5132 struct ext4_group_desc *gdp = 5133 ext4_get_group_desc(sb, g, NULL); 5134 5135 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5136 ext4_msg(sb, KERN_ERR, 5137 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5138 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5139 le16_to_cpu(gdp->bg_checksum)); 5140 err = -EFSBADCRC; 5141 goto restore_opts; 5142 } 5143 } 5144 5145 /* 5146 * If we have an unprocessed orphan list hanging 5147 * around from a previously readonly bdev mount, 5148 * require a full umount/remount for now. 5149 */ 5150 if (es->s_last_orphan) { 5151 ext4_msg(sb, KERN_WARNING, "Couldn't " 5152 "remount RDWR because of unprocessed " 5153 "orphan inode list. Please " 5154 "umount/remount instead"); 5155 err = -EINVAL; 5156 goto restore_opts; 5157 } 5158 5159 /* 5160 * Mounting a RDONLY partition read-write, so reread 5161 * and store the current valid flag. (It may have 5162 * been changed by e2fsck since we originally mounted 5163 * the partition.) 5164 */ 5165 if (sbi->s_journal) 5166 ext4_clear_journal_err(sb, es); 5167 sbi->s_mount_state = le16_to_cpu(es->s_state); 5168 if (!ext4_setup_super(sb, es, 0)) 5169 sb->s_flags &= ~SB_RDONLY; 5170 if (ext4_has_feature_mmp(sb)) 5171 if (ext4_multi_mount_protect(sb, 5172 le64_to_cpu(es->s_mmp_block))) { 5173 err = -EROFS; 5174 goto restore_opts; 5175 } 5176 enable_quota = 1; 5177 } 5178 } 5179 5180 /* 5181 * Reinitialize lazy itable initialization thread based on 5182 * current settings 5183 */ 5184 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5185 ext4_unregister_li_request(sb); 5186 else { 5187 ext4_group_t first_not_zeroed; 5188 first_not_zeroed = ext4_has_uninit_itable(sb); 5189 ext4_register_li_request(sb, first_not_zeroed); 5190 } 5191 5192 ext4_setup_system_zone(sb); 5193 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) 5194 ext4_commit_super(sb, 1); 5195 5196 #ifdef CONFIG_QUOTA 5197 /* Release old quota file names */ 5198 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5199 kfree(old_opts.s_qf_names[i]); 5200 if (enable_quota) { 5201 if (sb_any_quota_suspended(sb)) 5202 dquot_resume(sb, -1); 5203 else if (ext4_has_feature_quota(sb)) { 5204 err = ext4_enable_quotas(sb); 5205 if (err) 5206 goto restore_opts; 5207 } 5208 } 5209 #endif 5210 5211 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5212 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5213 kfree(orig_data); 5214 return 0; 5215 5216 restore_opts: 5217 sb->s_flags = old_sb_flags; 5218 sbi->s_mount_opt = old_opts.s_mount_opt; 5219 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5220 sbi->s_resuid = old_opts.s_resuid; 5221 sbi->s_resgid = old_opts.s_resgid; 5222 sbi->s_commit_interval = old_opts.s_commit_interval; 5223 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5224 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5225 #ifdef CONFIG_QUOTA 5226 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5227 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5228 kfree(sbi->s_qf_names[i]); 5229 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5230 } 5231 #endif 5232 kfree(orig_data); 5233 return err; 5234 } 5235 5236 #ifdef CONFIG_QUOTA 5237 static int ext4_statfs_project(struct super_block *sb, 5238 kprojid_t projid, struct kstatfs *buf) 5239 { 5240 struct kqid qid; 5241 struct dquot *dquot; 5242 u64 limit; 5243 u64 curblock; 5244 5245 qid = make_kqid_projid(projid); 5246 dquot = dqget(sb, qid); 5247 if (IS_ERR(dquot)) 5248 return PTR_ERR(dquot); 5249 spin_lock(&dquot->dq_dqb_lock); 5250 5251 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5252 dquot->dq_dqb.dqb_bsoftlimit : 5253 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5254 if (limit && buf->f_blocks > limit) { 5255 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5256 buf->f_blocks = limit; 5257 buf->f_bfree = buf->f_bavail = 5258 (buf->f_blocks > curblock) ? 5259 (buf->f_blocks - curblock) : 0; 5260 } 5261 5262 limit = dquot->dq_dqb.dqb_isoftlimit ? 5263 dquot->dq_dqb.dqb_isoftlimit : 5264 dquot->dq_dqb.dqb_ihardlimit; 5265 if (limit && buf->f_files > limit) { 5266 buf->f_files = limit; 5267 buf->f_ffree = 5268 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5269 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5270 } 5271 5272 spin_unlock(&dquot->dq_dqb_lock); 5273 dqput(dquot); 5274 return 0; 5275 } 5276 #endif 5277 5278 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5279 { 5280 struct super_block *sb = dentry->d_sb; 5281 struct ext4_sb_info *sbi = EXT4_SB(sb); 5282 struct ext4_super_block *es = sbi->s_es; 5283 ext4_fsblk_t overhead = 0, resv_blocks; 5284 u64 fsid; 5285 s64 bfree; 5286 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5287 5288 if (!test_opt(sb, MINIX_DF)) 5289 overhead = sbi->s_overhead; 5290 5291 buf->f_type = EXT4_SUPER_MAGIC; 5292 buf->f_bsize = sb->s_blocksize; 5293 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5294 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5295 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5296 /* prevent underflow in case that few free space is available */ 5297 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5298 buf->f_bavail = buf->f_bfree - 5299 (ext4_r_blocks_count(es) + resv_blocks); 5300 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5301 buf->f_bavail = 0; 5302 buf->f_files = le32_to_cpu(es->s_inodes_count); 5303 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5304 buf->f_namelen = EXT4_NAME_LEN; 5305 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5306 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5307 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5308 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5309 5310 #ifdef CONFIG_QUOTA 5311 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5312 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5313 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5314 #endif 5315 return 0; 5316 } 5317 5318 5319 #ifdef CONFIG_QUOTA 5320 5321 /* 5322 * Helper functions so that transaction is started before we acquire dqio_sem 5323 * to keep correct lock ordering of transaction > dqio_sem 5324 */ 5325 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5326 { 5327 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5328 } 5329 5330 static int ext4_write_dquot(struct dquot *dquot) 5331 { 5332 int ret, err; 5333 handle_t *handle; 5334 struct inode *inode; 5335 5336 inode = dquot_to_inode(dquot); 5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5338 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5339 if (IS_ERR(handle)) 5340 return PTR_ERR(handle); 5341 ret = dquot_commit(dquot); 5342 err = ext4_journal_stop(handle); 5343 if (!ret) 5344 ret = err; 5345 return ret; 5346 } 5347 5348 static int ext4_acquire_dquot(struct dquot *dquot) 5349 { 5350 int ret, err; 5351 handle_t *handle; 5352 5353 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5354 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5355 if (IS_ERR(handle)) 5356 return PTR_ERR(handle); 5357 ret = dquot_acquire(dquot); 5358 err = ext4_journal_stop(handle); 5359 if (!ret) 5360 ret = err; 5361 return ret; 5362 } 5363 5364 static int ext4_release_dquot(struct dquot *dquot) 5365 { 5366 int ret, err; 5367 handle_t *handle; 5368 5369 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5370 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5371 if (IS_ERR(handle)) { 5372 /* Release dquot anyway to avoid endless cycle in dqput() */ 5373 dquot_release(dquot); 5374 return PTR_ERR(handle); 5375 } 5376 ret = dquot_release(dquot); 5377 err = ext4_journal_stop(handle); 5378 if (!ret) 5379 ret = err; 5380 return ret; 5381 } 5382 5383 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5384 { 5385 struct super_block *sb = dquot->dq_sb; 5386 struct ext4_sb_info *sbi = EXT4_SB(sb); 5387 5388 /* Are we journaling quotas? */ 5389 if (ext4_has_feature_quota(sb) || 5390 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5391 dquot_mark_dquot_dirty(dquot); 5392 return ext4_write_dquot(dquot); 5393 } else { 5394 return dquot_mark_dquot_dirty(dquot); 5395 } 5396 } 5397 5398 static int ext4_write_info(struct super_block *sb, int type) 5399 { 5400 int ret, err; 5401 handle_t *handle; 5402 5403 /* Data block + inode block */ 5404 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5405 if (IS_ERR(handle)) 5406 return PTR_ERR(handle); 5407 ret = dquot_commit_info(sb, type); 5408 err = ext4_journal_stop(handle); 5409 if (!ret) 5410 ret = err; 5411 return ret; 5412 } 5413 5414 /* 5415 * Turn on quotas during mount time - we need to find 5416 * the quota file and such... 5417 */ 5418 static int ext4_quota_on_mount(struct super_block *sb, int type) 5419 { 5420 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5421 EXT4_SB(sb)->s_jquota_fmt, type); 5422 } 5423 5424 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5425 { 5426 struct ext4_inode_info *ei = EXT4_I(inode); 5427 5428 /* The first argument of lockdep_set_subclass has to be 5429 * *exactly* the same as the argument to init_rwsem() --- in 5430 * this case, in init_once() --- or lockdep gets unhappy 5431 * because the name of the lock is set using the 5432 * stringification of the argument to init_rwsem(). 5433 */ 5434 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5435 lockdep_set_subclass(&ei->i_data_sem, subclass); 5436 } 5437 5438 /* 5439 * Standard function to be called on quota_on 5440 */ 5441 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5442 const struct path *path) 5443 { 5444 int err; 5445 5446 if (!test_opt(sb, QUOTA)) 5447 return -EINVAL; 5448 5449 /* Quotafile not on the same filesystem? */ 5450 if (path->dentry->d_sb != sb) 5451 return -EXDEV; 5452 /* Journaling quota? */ 5453 if (EXT4_SB(sb)->s_qf_names[type]) { 5454 /* Quotafile not in fs root? */ 5455 if (path->dentry->d_parent != sb->s_root) 5456 ext4_msg(sb, KERN_WARNING, 5457 "Quota file not on filesystem root. " 5458 "Journaled quota will not work"); 5459 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5460 } else { 5461 /* 5462 * Clear the flag just in case mount options changed since 5463 * last time. 5464 */ 5465 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5466 } 5467 5468 /* 5469 * When we journal data on quota file, we have to flush journal to see 5470 * all updates to the file when we bypass pagecache... 5471 */ 5472 if (EXT4_SB(sb)->s_journal && 5473 ext4_should_journal_data(d_inode(path->dentry))) { 5474 /* 5475 * We don't need to lock updates but journal_flush() could 5476 * otherwise be livelocked... 5477 */ 5478 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5479 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5480 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5481 if (err) 5482 return err; 5483 } 5484 5485 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5486 err = dquot_quota_on(sb, type, format_id, path); 5487 if (err) { 5488 lockdep_set_quota_inode(path->dentry->d_inode, 5489 I_DATA_SEM_NORMAL); 5490 } else { 5491 struct inode *inode = d_inode(path->dentry); 5492 handle_t *handle; 5493 5494 /* 5495 * Set inode flags to prevent userspace from messing with quota 5496 * files. If this fails, we return success anyway since quotas 5497 * are already enabled and this is not a hard failure. 5498 */ 5499 inode_lock(inode); 5500 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5501 if (IS_ERR(handle)) 5502 goto unlock_inode; 5503 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5504 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5505 S_NOATIME | S_IMMUTABLE); 5506 ext4_mark_inode_dirty(handle, inode); 5507 ext4_journal_stop(handle); 5508 unlock_inode: 5509 inode_unlock(inode); 5510 } 5511 return err; 5512 } 5513 5514 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5515 unsigned int flags) 5516 { 5517 int err; 5518 struct inode *qf_inode; 5519 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5520 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5521 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5522 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5523 }; 5524 5525 BUG_ON(!ext4_has_feature_quota(sb)); 5526 5527 if (!qf_inums[type]) 5528 return -EPERM; 5529 5530 qf_inode = ext4_iget(sb, qf_inums[type]); 5531 if (IS_ERR(qf_inode)) { 5532 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5533 return PTR_ERR(qf_inode); 5534 } 5535 5536 /* Don't account quota for quota files to avoid recursion */ 5537 qf_inode->i_flags |= S_NOQUOTA; 5538 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5539 err = dquot_enable(qf_inode, type, format_id, flags); 5540 iput(qf_inode); 5541 if (err) 5542 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5543 5544 return err; 5545 } 5546 5547 /* Enable usage tracking for all quota types. */ 5548 static int ext4_enable_quotas(struct super_block *sb) 5549 { 5550 int type, err = 0; 5551 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5552 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5553 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5554 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5555 }; 5556 bool quota_mopt[EXT4_MAXQUOTAS] = { 5557 test_opt(sb, USRQUOTA), 5558 test_opt(sb, GRPQUOTA), 5559 test_opt(sb, PRJQUOTA), 5560 }; 5561 5562 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5563 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5564 if (qf_inums[type]) { 5565 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5566 DQUOT_USAGE_ENABLED | 5567 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5568 if (err) { 5569 for (type--; type >= 0; type--) 5570 dquot_quota_off(sb, type); 5571 5572 ext4_warning(sb, 5573 "Failed to enable quota tracking " 5574 "(type=%d, err=%d). Please run " 5575 "e2fsck to fix.", type, err); 5576 return err; 5577 } 5578 } 5579 } 5580 return 0; 5581 } 5582 5583 static int ext4_quota_off(struct super_block *sb, int type) 5584 { 5585 struct inode *inode = sb_dqopt(sb)->files[type]; 5586 handle_t *handle; 5587 int err; 5588 5589 /* Force all delayed allocation blocks to be allocated. 5590 * Caller already holds s_umount sem */ 5591 if (test_opt(sb, DELALLOC)) 5592 sync_filesystem(sb); 5593 5594 if (!inode || !igrab(inode)) 5595 goto out; 5596 5597 err = dquot_quota_off(sb, type); 5598 if (err || ext4_has_feature_quota(sb)) 5599 goto out_put; 5600 5601 inode_lock(inode); 5602 /* 5603 * Update modification times of quota files when userspace can 5604 * start looking at them. If we fail, we return success anyway since 5605 * this is not a hard failure and quotas are already disabled. 5606 */ 5607 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5608 if (IS_ERR(handle)) 5609 goto out_unlock; 5610 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5611 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5612 inode->i_mtime = inode->i_ctime = current_time(inode); 5613 ext4_mark_inode_dirty(handle, inode); 5614 ext4_journal_stop(handle); 5615 out_unlock: 5616 inode_unlock(inode); 5617 out_put: 5618 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5619 iput(inode); 5620 return err; 5621 out: 5622 return dquot_quota_off(sb, type); 5623 } 5624 5625 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5626 * acquiring the locks... As quota files are never truncated and quota code 5627 * itself serializes the operations (and no one else should touch the files) 5628 * we don't have to be afraid of races */ 5629 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5630 size_t len, loff_t off) 5631 { 5632 struct inode *inode = sb_dqopt(sb)->files[type]; 5633 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5634 int offset = off & (sb->s_blocksize - 1); 5635 int tocopy; 5636 size_t toread; 5637 struct buffer_head *bh; 5638 loff_t i_size = i_size_read(inode); 5639 5640 if (off > i_size) 5641 return 0; 5642 if (off+len > i_size) 5643 len = i_size-off; 5644 toread = len; 5645 while (toread > 0) { 5646 tocopy = sb->s_blocksize - offset < toread ? 5647 sb->s_blocksize - offset : toread; 5648 bh = ext4_bread(NULL, inode, blk, 0); 5649 if (IS_ERR(bh)) 5650 return PTR_ERR(bh); 5651 if (!bh) /* A hole? */ 5652 memset(data, 0, tocopy); 5653 else 5654 memcpy(data, bh->b_data+offset, tocopy); 5655 brelse(bh); 5656 offset = 0; 5657 toread -= tocopy; 5658 data += tocopy; 5659 blk++; 5660 } 5661 return len; 5662 } 5663 5664 /* Write to quotafile (we know the transaction is already started and has 5665 * enough credits) */ 5666 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5667 const char *data, size_t len, loff_t off) 5668 { 5669 struct inode *inode = sb_dqopt(sb)->files[type]; 5670 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5671 int err, offset = off & (sb->s_blocksize - 1); 5672 int retries = 0; 5673 struct buffer_head *bh; 5674 handle_t *handle = journal_current_handle(); 5675 5676 if (EXT4_SB(sb)->s_journal && !handle) { 5677 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5678 " cancelled because transaction is not started", 5679 (unsigned long long)off, (unsigned long long)len); 5680 return -EIO; 5681 } 5682 /* 5683 * Since we account only one data block in transaction credits, 5684 * then it is impossible to cross a block boundary. 5685 */ 5686 if (sb->s_blocksize - offset < len) { 5687 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5688 " cancelled because not block aligned", 5689 (unsigned long long)off, (unsigned long long)len); 5690 return -EIO; 5691 } 5692 5693 do { 5694 bh = ext4_bread(handle, inode, blk, 5695 EXT4_GET_BLOCKS_CREATE | 5696 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5697 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5698 ext4_should_retry_alloc(inode->i_sb, &retries)); 5699 if (IS_ERR(bh)) 5700 return PTR_ERR(bh); 5701 if (!bh) 5702 goto out; 5703 BUFFER_TRACE(bh, "get write access"); 5704 err = ext4_journal_get_write_access(handle, bh); 5705 if (err) { 5706 brelse(bh); 5707 return err; 5708 } 5709 lock_buffer(bh); 5710 memcpy(bh->b_data+offset, data, len); 5711 flush_dcache_page(bh->b_page); 5712 unlock_buffer(bh); 5713 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5714 brelse(bh); 5715 out: 5716 if (inode->i_size < off + len) { 5717 i_size_write(inode, off + len); 5718 EXT4_I(inode)->i_disksize = inode->i_size; 5719 ext4_mark_inode_dirty(handle, inode); 5720 } 5721 return len; 5722 } 5723 5724 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5725 { 5726 const struct quota_format_ops *ops; 5727 5728 if (!sb_has_quota_loaded(sb, qid->type)) 5729 return -ESRCH; 5730 ops = sb_dqopt(sb)->ops[qid->type]; 5731 if (!ops || !ops->get_next_id) 5732 return -ENOSYS; 5733 return dquot_get_next_id(sb, qid); 5734 } 5735 #endif 5736 5737 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5738 const char *dev_name, void *data) 5739 { 5740 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5741 } 5742 5743 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5744 static inline void register_as_ext2(void) 5745 { 5746 int err = register_filesystem(&ext2_fs_type); 5747 if (err) 5748 printk(KERN_WARNING 5749 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5750 } 5751 5752 static inline void unregister_as_ext2(void) 5753 { 5754 unregister_filesystem(&ext2_fs_type); 5755 } 5756 5757 static inline int ext2_feature_set_ok(struct super_block *sb) 5758 { 5759 if (ext4_has_unknown_ext2_incompat_features(sb)) 5760 return 0; 5761 if (sb_rdonly(sb)) 5762 return 1; 5763 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5764 return 0; 5765 return 1; 5766 } 5767 #else 5768 static inline void register_as_ext2(void) { } 5769 static inline void unregister_as_ext2(void) { } 5770 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5771 #endif 5772 5773 static inline void register_as_ext3(void) 5774 { 5775 int err = register_filesystem(&ext3_fs_type); 5776 if (err) 5777 printk(KERN_WARNING 5778 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5779 } 5780 5781 static inline void unregister_as_ext3(void) 5782 { 5783 unregister_filesystem(&ext3_fs_type); 5784 } 5785 5786 static inline int ext3_feature_set_ok(struct super_block *sb) 5787 { 5788 if (ext4_has_unknown_ext3_incompat_features(sb)) 5789 return 0; 5790 if (!ext4_has_feature_journal(sb)) 5791 return 0; 5792 if (sb_rdonly(sb)) 5793 return 1; 5794 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5795 return 0; 5796 return 1; 5797 } 5798 5799 static struct file_system_type ext4_fs_type = { 5800 .owner = THIS_MODULE, 5801 .name = "ext4", 5802 .mount = ext4_mount, 5803 .kill_sb = kill_block_super, 5804 .fs_flags = FS_REQUIRES_DEV, 5805 }; 5806 MODULE_ALIAS_FS("ext4"); 5807 5808 /* Shared across all ext4 file systems */ 5809 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5810 5811 static int __init ext4_init_fs(void) 5812 { 5813 int i, err; 5814 5815 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5816 ext4_li_info = NULL; 5817 mutex_init(&ext4_li_mtx); 5818 5819 /* Build-time check for flags consistency */ 5820 ext4_check_flag_values(); 5821 5822 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5823 init_waitqueue_head(&ext4__ioend_wq[i]); 5824 5825 err = ext4_init_es(); 5826 if (err) 5827 return err; 5828 5829 err = ext4_init_pageio(); 5830 if (err) 5831 goto out5; 5832 5833 err = ext4_init_system_zone(); 5834 if (err) 5835 goto out4; 5836 5837 err = ext4_init_sysfs(); 5838 if (err) 5839 goto out3; 5840 5841 err = ext4_init_mballoc(); 5842 if (err) 5843 goto out2; 5844 err = init_inodecache(); 5845 if (err) 5846 goto out1; 5847 register_as_ext3(); 5848 register_as_ext2(); 5849 err = register_filesystem(&ext4_fs_type); 5850 if (err) 5851 goto out; 5852 5853 return 0; 5854 out: 5855 unregister_as_ext2(); 5856 unregister_as_ext3(); 5857 destroy_inodecache(); 5858 out1: 5859 ext4_exit_mballoc(); 5860 out2: 5861 ext4_exit_sysfs(); 5862 out3: 5863 ext4_exit_system_zone(); 5864 out4: 5865 ext4_exit_pageio(); 5866 out5: 5867 ext4_exit_es(); 5868 5869 return err; 5870 } 5871 5872 static void __exit ext4_exit_fs(void) 5873 { 5874 ext4_destroy_lazyinit_thread(); 5875 unregister_as_ext2(); 5876 unregister_as_ext3(); 5877 unregister_filesystem(&ext4_fs_type); 5878 destroy_inodecache(); 5879 ext4_exit_mballoc(); 5880 ext4_exit_sysfs(); 5881 ext4_exit_system_zone(); 5882 ext4_exit_pageio(); 5883 ext4_exit_es(); 5884 } 5885 5886 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5887 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5888 MODULE_LICENSE("GPL"); 5889 module_init(ext4_init_fs) 5890 module_exit(ext4_exit_fs) 5891