xref: /linux/fs/ext4/super.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43 
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "mballoc.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ext4.h>
52 
53 struct proc_dir_entry *ext4_proc_root;
54 static struct kset *ext4_kset;
55 
56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
57 			     unsigned long journal_devnum);
58 static int ext4_commit_super(struct super_block *sb, int sync);
59 static void ext4_mark_recovery_complete(struct super_block *sb,
60 					struct ext4_super_block *es);
61 static void ext4_clear_journal_err(struct super_block *sb,
62 				   struct ext4_super_block *es);
63 static int ext4_sync_fs(struct super_block *sb, int wait);
64 static const char *ext4_decode_error(struct super_block *sb, int errno,
65 				     char nbuf[16]);
66 static int ext4_remount(struct super_block *sb, int *flags, char *data);
67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
68 static int ext4_unfreeze(struct super_block *sb);
69 static void ext4_write_super(struct super_block *sb);
70 static int ext4_freeze(struct super_block *sb);
71 
72 
73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
74 			       struct ext4_group_desc *bg)
75 {
76 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
77 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
78 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
79 }
80 
81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
82 			       struct ext4_group_desc *bg)
83 {
84 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
85 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
86 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
87 }
88 
89 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
90 			      struct ext4_group_desc *bg)
91 {
92 	return le32_to_cpu(bg->bg_inode_table_lo) |
93 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
94 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
95 }
96 
97 __u32 ext4_free_blks_count(struct super_block *sb,
98 			      struct ext4_group_desc *bg)
99 {
100 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
101 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
102 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
103 }
104 
105 __u32 ext4_free_inodes_count(struct super_block *sb,
106 			      struct ext4_group_desc *bg)
107 {
108 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
109 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
110 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
111 }
112 
113 __u32 ext4_used_dirs_count(struct super_block *sb,
114 			      struct ext4_group_desc *bg)
115 {
116 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
117 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
119 }
120 
121 __u32 ext4_itable_unused_count(struct super_block *sb,
122 			      struct ext4_group_desc *bg)
123 {
124 	return le16_to_cpu(bg->bg_itable_unused_lo) |
125 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
127 }
128 
129 void ext4_block_bitmap_set(struct super_block *sb,
130 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
131 {
132 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
133 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
134 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
135 }
136 
137 void ext4_inode_bitmap_set(struct super_block *sb,
138 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
139 {
140 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
141 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
142 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
143 }
144 
145 void ext4_inode_table_set(struct super_block *sb,
146 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
147 {
148 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
149 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
150 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
151 }
152 
153 void ext4_free_blks_set(struct super_block *sb,
154 			  struct ext4_group_desc *bg, __u32 count)
155 {
156 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
157 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
158 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
159 }
160 
161 void ext4_free_inodes_set(struct super_block *sb,
162 			  struct ext4_group_desc *bg, __u32 count)
163 {
164 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
165 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
166 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
167 }
168 
169 void ext4_used_dirs_set(struct super_block *sb,
170 			  struct ext4_group_desc *bg, __u32 count)
171 {
172 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
173 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
175 }
176 
177 void ext4_itable_unused_set(struct super_block *sb,
178 			  struct ext4_group_desc *bg, __u32 count)
179 {
180 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
181 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
183 }
184 
185 
186 /* Just increment the non-pointer handle value */
187 static handle_t *ext4_get_nojournal(void)
188 {
189 	handle_t *handle = current->journal_info;
190 	unsigned long ref_cnt = (unsigned long)handle;
191 
192 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
193 
194 	ref_cnt++;
195 	handle = (handle_t *)ref_cnt;
196 
197 	current->journal_info = handle;
198 	return handle;
199 }
200 
201 
202 /* Decrement the non-pointer handle value */
203 static void ext4_put_nojournal(handle_t *handle)
204 {
205 	unsigned long ref_cnt = (unsigned long)handle;
206 
207 	BUG_ON(ref_cnt == 0);
208 
209 	ref_cnt--;
210 	handle = (handle_t *)ref_cnt;
211 
212 	current->journal_info = handle;
213 }
214 
215 /*
216  * Wrappers for jbd2_journal_start/end.
217  *
218  * The only special thing we need to do here is to make sure that all
219  * journal_end calls result in the superblock being marked dirty, so
220  * that sync() will call the filesystem's write_super callback if
221  * appropriate.
222  */
223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
224 {
225 	journal_t *journal;
226 
227 	if (sb->s_flags & MS_RDONLY)
228 		return ERR_PTR(-EROFS);
229 
230 	/* Special case here: if the journal has aborted behind our
231 	 * backs (eg. EIO in the commit thread), then we still need to
232 	 * take the FS itself readonly cleanly. */
233 	journal = EXT4_SB(sb)->s_journal;
234 	if (journal) {
235 		if (is_journal_aborted(journal)) {
236 			ext4_abort(sb, __func__, "Detected aborted journal");
237 			return ERR_PTR(-EROFS);
238 		}
239 		return jbd2_journal_start(journal, nblocks);
240 	}
241 	return ext4_get_nojournal();
242 }
243 
244 /*
245  * The only special thing we need to do here is to make sure that all
246  * jbd2_journal_stop calls result in the superblock being marked dirty, so
247  * that sync() will call the filesystem's write_super callback if
248  * appropriate.
249  */
250 int __ext4_journal_stop(const char *where, handle_t *handle)
251 {
252 	struct super_block *sb;
253 	int err;
254 	int rc;
255 
256 	if (!ext4_handle_valid(handle)) {
257 		ext4_put_nojournal(handle);
258 		return 0;
259 	}
260 	sb = handle->h_transaction->t_journal->j_private;
261 	err = handle->h_err;
262 	rc = jbd2_journal_stop(handle);
263 
264 	if (!err)
265 		err = rc;
266 	if (err)
267 		__ext4_std_error(sb, where, err);
268 	return err;
269 }
270 
271 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
272 		struct buffer_head *bh, handle_t *handle, int err)
273 {
274 	char nbuf[16];
275 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
276 
277 	BUG_ON(!ext4_handle_valid(handle));
278 
279 	if (bh)
280 		BUFFER_TRACE(bh, "abort");
281 
282 	if (!handle->h_err)
283 		handle->h_err = err;
284 
285 	if (is_handle_aborted(handle))
286 		return;
287 
288 	printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
289 	       caller, errstr, err_fn);
290 
291 	jbd2_journal_abort_handle(handle);
292 }
293 
294 /* Deal with the reporting of failure conditions on a filesystem such as
295  * inconsistencies detected or read IO failures.
296  *
297  * On ext2, we can store the error state of the filesystem in the
298  * superblock.  That is not possible on ext4, because we may have other
299  * write ordering constraints on the superblock which prevent us from
300  * writing it out straight away; and given that the journal is about to
301  * be aborted, we can't rely on the current, or future, transactions to
302  * write out the superblock safely.
303  *
304  * We'll just use the jbd2_journal_abort() error code to record an error in
305  * the journal instead.  On recovery, the journal will compain about
306  * that error until we've noted it down and cleared it.
307  */
308 
309 static void ext4_handle_error(struct super_block *sb)
310 {
311 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
312 
313 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
314 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
315 
316 	if (sb->s_flags & MS_RDONLY)
317 		return;
318 
319 	if (!test_opt(sb, ERRORS_CONT)) {
320 		journal_t *journal = EXT4_SB(sb)->s_journal;
321 
322 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
323 		if (journal)
324 			jbd2_journal_abort(journal, -EIO);
325 	}
326 	if (test_opt(sb, ERRORS_RO)) {
327 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
328 		sb->s_flags |= MS_RDONLY;
329 	}
330 	ext4_commit_super(sb, 1);
331 	if (test_opt(sb, ERRORS_PANIC))
332 		panic("EXT4-fs (device %s): panic forced after error\n",
333 			sb->s_id);
334 }
335 
336 void __ext4_error(struct super_block *sb, const char *function,
337 		const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	va_start(args, fmt);
342 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
343 	vprintk(fmt, args);
344 	printk("\n");
345 	va_end(args);
346 
347 	ext4_handle_error(sb);
348 }
349 
350 void ext4_error_inode(const char *function, struct inode *inode,
351 		      const char *fmt, ...)
352 {
353 	va_list args;
354 
355 	va_start(args, fmt);
356 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: inode #%lu: (comm %s) ",
357 	       inode->i_sb->s_id, function, inode->i_ino, current->comm);
358 	vprintk(fmt, args);
359 	printk("\n");
360 	va_end(args);
361 
362 	ext4_handle_error(inode->i_sb);
363 }
364 
365 void ext4_error_file(const char *function, struct file *file,
366 		     const char *fmt, ...)
367 {
368 	va_list args;
369 	struct inode *inode = file->f_dentry->d_inode;
370 	char pathname[80], *path;
371 
372 	va_start(args, fmt);
373 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
374 	if (!path)
375 		path = "(unknown)";
376 	printk(KERN_CRIT
377 	       "EXT4-fs error (device %s): %s: inode #%lu (comm %s path %s): ",
378 	       inode->i_sb->s_id, function, inode->i_ino, current->comm, path);
379 	vprintk(fmt, args);
380 	printk("\n");
381 	va_end(args);
382 
383 	ext4_handle_error(inode->i_sb);
384 }
385 
386 static const char *ext4_decode_error(struct super_block *sb, int errno,
387 				     char nbuf[16])
388 {
389 	char *errstr = NULL;
390 
391 	switch (errno) {
392 	case -EIO:
393 		errstr = "IO failure";
394 		break;
395 	case -ENOMEM:
396 		errstr = "Out of memory";
397 		break;
398 	case -EROFS:
399 		if (!sb || (EXT4_SB(sb)->s_journal &&
400 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
401 			errstr = "Journal has aborted";
402 		else
403 			errstr = "Readonly filesystem";
404 		break;
405 	default:
406 		/* If the caller passed in an extra buffer for unknown
407 		 * errors, textualise them now.  Else we just return
408 		 * NULL. */
409 		if (nbuf) {
410 			/* Check for truncated error codes... */
411 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
412 				errstr = nbuf;
413 		}
414 		break;
415 	}
416 
417 	return errstr;
418 }
419 
420 /* __ext4_std_error decodes expected errors from journaling functions
421  * automatically and invokes the appropriate error response.  */
422 
423 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
424 {
425 	char nbuf[16];
426 	const char *errstr;
427 
428 	/* Special case: if the error is EROFS, and we're not already
429 	 * inside a transaction, then there's really no point in logging
430 	 * an error. */
431 	if (errno == -EROFS && journal_current_handle() == NULL &&
432 	    (sb->s_flags & MS_RDONLY))
433 		return;
434 
435 	errstr = ext4_decode_error(sb, errno, nbuf);
436 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
437 	       sb->s_id, function, errstr);
438 
439 	ext4_handle_error(sb);
440 }
441 
442 /*
443  * ext4_abort is a much stronger failure handler than ext4_error.  The
444  * abort function may be used to deal with unrecoverable failures such
445  * as journal IO errors or ENOMEM at a critical moment in log management.
446  *
447  * We unconditionally force the filesystem into an ABORT|READONLY state,
448  * unless the error response on the fs has been set to panic in which
449  * case we take the easy way out and panic immediately.
450  */
451 
452 void ext4_abort(struct super_block *sb, const char *function,
453 		const char *fmt, ...)
454 {
455 	va_list args;
456 
457 	va_start(args, fmt);
458 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
459 	vprintk(fmt, args);
460 	printk("\n");
461 	va_end(args);
462 
463 	if (test_opt(sb, ERRORS_PANIC))
464 		panic("EXT4-fs panic from previous error\n");
465 
466 	if (sb->s_flags & MS_RDONLY)
467 		return;
468 
469 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
470 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
471 	sb->s_flags |= MS_RDONLY;
472 	EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
473 	if (EXT4_SB(sb)->s_journal)
474 		jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
475 }
476 
477 void ext4_msg (struct super_block * sb, const char *prefix,
478 		   const char *fmt, ...)
479 {
480 	va_list args;
481 
482 	va_start(args, fmt);
483 	printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
484 	vprintk(fmt, args);
485 	printk("\n");
486 	va_end(args);
487 }
488 
489 void __ext4_warning(struct super_block *sb, const char *function,
490 		  const char *fmt, ...)
491 {
492 	va_list args;
493 
494 	va_start(args, fmt);
495 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
496 	       sb->s_id, function);
497 	vprintk(fmt, args);
498 	printk("\n");
499 	va_end(args);
500 }
501 
502 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
503 			   const char *function, const char *fmt, ...)
504 __releases(bitlock)
505 __acquires(bitlock)
506 {
507 	va_list args;
508 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
509 
510 	va_start(args, fmt);
511 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
512 	vprintk(fmt, args);
513 	printk("\n");
514 	va_end(args);
515 
516 	if (test_opt(sb, ERRORS_CONT)) {
517 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
518 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
519 		ext4_commit_super(sb, 0);
520 		return;
521 	}
522 	ext4_unlock_group(sb, grp);
523 	ext4_handle_error(sb);
524 	/*
525 	 * We only get here in the ERRORS_RO case; relocking the group
526 	 * may be dangerous, but nothing bad will happen since the
527 	 * filesystem will have already been marked read/only and the
528 	 * journal has been aborted.  We return 1 as a hint to callers
529 	 * who might what to use the return value from
530 	 * ext4_grp_locked_error() to distinguish beween the
531 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
532 	 * aggressively from the ext4 function in question, with a
533 	 * more appropriate error code.
534 	 */
535 	ext4_lock_group(sb, grp);
536 	return;
537 }
538 
539 void ext4_update_dynamic_rev(struct super_block *sb)
540 {
541 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
542 
543 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
544 		return;
545 
546 	ext4_warning(sb,
547 		     "updating to rev %d because of new feature flag, "
548 		     "running e2fsck is recommended",
549 		     EXT4_DYNAMIC_REV);
550 
551 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
552 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
553 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
554 	/* leave es->s_feature_*compat flags alone */
555 	/* es->s_uuid will be set by e2fsck if empty */
556 
557 	/*
558 	 * The rest of the superblock fields should be zero, and if not it
559 	 * means they are likely already in use, so leave them alone.  We
560 	 * can leave it up to e2fsck to clean up any inconsistencies there.
561 	 */
562 }
563 
564 /*
565  * Open the external journal device
566  */
567 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
568 {
569 	struct block_device *bdev;
570 	char b[BDEVNAME_SIZE];
571 
572 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
573 	if (IS_ERR(bdev))
574 		goto fail;
575 	return bdev;
576 
577 fail:
578 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
579 			__bdevname(dev, b), PTR_ERR(bdev));
580 	return NULL;
581 }
582 
583 /*
584  * Release the journal device
585  */
586 static int ext4_blkdev_put(struct block_device *bdev)
587 {
588 	bd_release(bdev);
589 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
590 }
591 
592 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
593 {
594 	struct block_device *bdev;
595 	int ret = -ENODEV;
596 
597 	bdev = sbi->journal_bdev;
598 	if (bdev) {
599 		ret = ext4_blkdev_put(bdev);
600 		sbi->journal_bdev = NULL;
601 	}
602 	return ret;
603 }
604 
605 static inline struct inode *orphan_list_entry(struct list_head *l)
606 {
607 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
608 }
609 
610 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
611 {
612 	struct list_head *l;
613 
614 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
615 		 le32_to_cpu(sbi->s_es->s_last_orphan));
616 
617 	printk(KERN_ERR "sb_info orphan list:\n");
618 	list_for_each(l, &sbi->s_orphan) {
619 		struct inode *inode = orphan_list_entry(l);
620 		printk(KERN_ERR "  "
621 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
622 		       inode->i_sb->s_id, inode->i_ino, inode,
623 		       inode->i_mode, inode->i_nlink,
624 		       NEXT_ORPHAN(inode));
625 	}
626 }
627 
628 static void ext4_put_super(struct super_block *sb)
629 {
630 	struct ext4_sb_info *sbi = EXT4_SB(sb);
631 	struct ext4_super_block *es = sbi->s_es;
632 	int i, err;
633 
634 	flush_workqueue(sbi->dio_unwritten_wq);
635 	destroy_workqueue(sbi->dio_unwritten_wq);
636 
637 	lock_super(sb);
638 	lock_kernel();
639 	if (sb->s_dirt)
640 		ext4_commit_super(sb, 1);
641 
642 	if (sbi->s_journal) {
643 		err = jbd2_journal_destroy(sbi->s_journal);
644 		sbi->s_journal = NULL;
645 		if (err < 0)
646 			ext4_abort(sb, __func__,
647 				   "Couldn't clean up the journal");
648 	}
649 
650 	ext4_release_system_zone(sb);
651 	ext4_mb_release(sb);
652 	ext4_ext_release(sb);
653 	ext4_xattr_put_super(sb);
654 
655 	if (!(sb->s_flags & MS_RDONLY)) {
656 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
657 		es->s_state = cpu_to_le16(sbi->s_mount_state);
658 		ext4_commit_super(sb, 1);
659 	}
660 	if (sbi->s_proc) {
661 		remove_proc_entry(sb->s_id, ext4_proc_root);
662 	}
663 	kobject_del(&sbi->s_kobj);
664 
665 	for (i = 0; i < sbi->s_gdb_count; i++)
666 		brelse(sbi->s_group_desc[i]);
667 	kfree(sbi->s_group_desc);
668 	if (is_vmalloc_addr(sbi->s_flex_groups))
669 		vfree(sbi->s_flex_groups);
670 	else
671 		kfree(sbi->s_flex_groups);
672 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
673 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
674 	percpu_counter_destroy(&sbi->s_dirs_counter);
675 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
676 	brelse(sbi->s_sbh);
677 #ifdef CONFIG_QUOTA
678 	for (i = 0; i < MAXQUOTAS; i++)
679 		kfree(sbi->s_qf_names[i]);
680 #endif
681 
682 	/* Debugging code just in case the in-memory inode orphan list
683 	 * isn't empty.  The on-disk one can be non-empty if we've
684 	 * detected an error and taken the fs readonly, but the
685 	 * in-memory list had better be clean by this point. */
686 	if (!list_empty(&sbi->s_orphan))
687 		dump_orphan_list(sb, sbi);
688 	J_ASSERT(list_empty(&sbi->s_orphan));
689 
690 	invalidate_bdev(sb->s_bdev);
691 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
692 		/*
693 		 * Invalidate the journal device's buffers.  We don't want them
694 		 * floating about in memory - the physical journal device may
695 		 * hotswapped, and it breaks the `ro-after' testing code.
696 		 */
697 		sync_blockdev(sbi->journal_bdev);
698 		invalidate_bdev(sbi->journal_bdev);
699 		ext4_blkdev_remove(sbi);
700 	}
701 	sb->s_fs_info = NULL;
702 	/*
703 	 * Now that we are completely done shutting down the
704 	 * superblock, we need to actually destroy the kobject.
705 	 */
706 	unlock_kernel();
707 	unlock_super(sb);
708 	kobject_put(&sbi->s_kobj);
709 	wait_for_completion(&sbi->s_kobj_unregister);
710 	kfree(sbi->s_blockgroup_lock);
711 	kfree(sbi);
712 }
713 
714 static struct kmem_cache *ext4_inode_cachep;
715 
716 /*
717  * Called inside transaction, so use GFP_NOFS
718  */
719 static struct inode *ext4_alloc_inode(struct super_block *sb)
720 {
721 	struct ext4_inode_info *ei;
722 
723 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
724 	if (!ei)
725 		return NULL;
726 
727 	ei->vfs_inode.i_version = 1;
728 	ei->vfs_inode.i_data.writeback_index = 0;
729 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
730 	INIT_LIST_HEAD(&ei->i_prealloc_list);
731 	spin_lock_init(&ei->i_prealloc_lock);
732 	/*
733 	 * Note:  We can be called before EXT4_SB(sb)->s_journal is set,
734 	 * therefore it can be null here.  Don't check it, just initialize
735 	 * jinode.
736 	 */
737 	jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
738 	ei->i_reserved_data_blocks = 0;
739 	ei->i_reserved_meta_blocks = 0;
740 	ei->i_allocated_meta_blocks = 0;
741 	ei->i_da_metadata_calc_len = 0;
742 	ei->i_delalloc_reserved_flag = 0;
743 	spin_lock_init(&(ei->i_block_reservation_lock));
744 #ifdef CONFIG_QUOTA
745 	ei->i_reserved_quota = 0;
746 #endif
747 	INIT_LIST_HEAD(&ei->i_completed_io_list);
748 	spin_lock_init(&ei->i_completed_io_lock);
749 	ei->cur_aio_dio = NULL;
750 	ei->i_sync_tid = 0;
751 	ei->i_datasync_tid = 0;
752 
753 	return &ei->vfs_inode;
754 }
755 
756 static void ext4_destroy_inode(struct inode *inode)
757 {
758 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
759 		ext4_msg(inode->i_sb, KERN_ERR,
760 			 "Inode %lu (%p): orphan list check failed!",
761 			 inode->i_ino, EXT4_I(inode));
762 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
763 				EXT4_I(inode), sizeof(struct ext4_inode_info),
764 				true);
765 		dump_stack();
766 	}
767 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
768 }
769 
770 static void init_once(void *foo)
771 {
772 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
773 
774 	INIT_LIST_HEAD(&ei->i_orphan);
775 #ifdef CONFIG_EXT4_FS_XATTR
776 	init_rwsem(&ei->xattr_sem);
777 #endif
778 	init_rwsem(&ei->i_data_sem);
779 	inode_init_once(&ei->vfs_inode);
780 }
781 
782 static int init_inodecache(void)
783 {
784 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
785 					     sizeof(struct ext4_inode_info),
786 					     0, (SLAB_RECLAIM_ACCOUNT|
787 						SLAB_MEM_SPREAD),
788 					     init_once);
789 	if (ext4_inode_cachep == NULL)
790 		return -ENOMEM;
791 	return 0;
792 }
793 
794 static void destroy_inodecache(void)
795 {
796 	kmem_cache_destroy(ext4_inode_cachep);
797 }
798 
799 static void ext4_clear_inode(struct inode *inode)
800 {
801 	dquot_drop(inode);
802 	ext4_discard_preallocations(inode);
803 	if (EXT4_JOURNAL(inode))
804 		jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
805 				       &EXT4_I(inode)->jinode);
806 }
807 
808 static inline void ext4_show_quota_options(struct seq_file *seq,
809 					   struct super_block *sb)
810 {
811 #if defined(CONFIG_QUOTA)
812 	struct ext4_sb_info *sbi = EXT4_SB(sb);
813 
814 	if (sbi->s_jquota_fmt) {
815 		char *fmtname = "";
816 
817 		switch (sbi->s_jquota_fmt) {
818 		case QFMT_VFS_OLD:
819 			fmtname = "vfsold";
820 			break;
821 		case QFMT_VFS_V0:
822 			fmtname = "vfsv0";
823 			break;
824 		case QFMT_VFS_V1:
825 			fmtname = "vfsv1";
826 			break;
827 		}
828 		seq_printf(seq, ",jqfmt=%s", fmtname);
829 	}
830 
831 	if (sbi->s_qf_names[USRQUOTA])
832 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
833 
834 	if (sbi->s_qf_names[GRPQUOTA])
835 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
836 
837 	if (test_opt(sb, USRQUOTA))
838 		seq_puts(seq, ",usrquota");
839 
840 	if (test_opt(sb, GRPQUOTA))
841 		seq_puts(seq, ",grpquota");
842 #endif
843 }
844 
845 /*
846  * Show an option if
847  *  - it's set to a non-default value OR
848  *  - if the per-sb default is different from the global default
849  */
850 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
851 {
852 	int def_errors;
853 	unsigned long def_mount_opts;
854 	struct super_block *sb = vfs->mnt_sb;
855 	struct ext4_sb_info *sbi = EXT4_SB(sb);
856 	struct ext4_super_block *es = sbi->s_es;
857 
858 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
859 	def_errors     = le16_to_cpu(es->s_errors);
860 
861 	if (sbi->s_sb_block != 1)
862 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
863 	if (test_opt(sb, MINIX_DF))
864 		seq_puts(seq, ",minixdf");
865 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
866 		seq_puts(seq, ",grpid");
867 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
868 		seq_puts(seq, ",nogrpid");
869 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
870 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
871 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
872 	}
873 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
874 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
875 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
876 	}
877 	if (test_opt(sb, ERRORS_RO)) {
878 		if (def_errors == EXT4_ERRORS_PANIC ||
879 		    def_errors == EXT4_ERRORS_CONTINUE) {
880 			seq_puts(seq, ",errors=remount-ro");
881 		}
882 	}
883 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
884 		seq_puts(seq, ",errors=continue");
885 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
886 		seq_puts(seq, ",errors=panic");
887 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
888 		seq_puts(seq, ",nouid32");
889 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
890 		seq_puts(seq, ",debug");
891 	if (test_opt(sb, OLDALLOC))
892 		seq_puts(seq, ",oldalloc");
893 #ifdef CONFIG_EXT4_FS_XATTR
894 	if (test_opt(sb, XATTR_USER) &&
895 		!(def_mount_opts & EXT4_DEFM_XATTR_USER))
896 		seq_puts(seq, ",user_xattr");
897 	if (!test_opt(sb, XATTR_USER) &&
898 	    (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
899 		seq_puts(seq, ",nouser_xattr");
900 	}
901 #endif
902 #ifdef CONFIG_EXT4_FS_POSIX_ACL
903 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
904 		seq_puts(seq, ",acl");
905 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
906 		seq_puts(seq, ",noacl");
907 #endif
908 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
909 		seq_printf(seq, ",commit=%u",
910 			   (unsigned) (sbi->s_commit_interval / HZ));
911 	}
912 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
913 		seq_printf(seq, ",min_batch_time=%u",
914 			   (unsigned) sbi->s_min_batch_time);
915 	}
916 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
917 		seq_printf(seq, ",max_batch_time=%u",
918 			   (unsigned) sbi->s_min_batch_time);
919 	}
920 
921 	/*
922 	 * We're changing the default of barrier mount option, so
923 	 * let's always display its mount state so it's clear what its
924 	 * status is.
925 	 */
926 	seq_puts(seq, ",barrier=");
927 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
928 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
929 		seq_puts(seq, ",journal_async_commit");
930 	if (test_opt(sb, NOBH))
931 		seq_puts(seq, ",nobh");
932 	if (test_opt(sb, I_VERSION))
933 		seq_puts(seq, ",i_version");
934 	if (!test_opt(sb, DELALLOC))
935 		seq_puts(seq, ",nodelalloc");
936 
937 
938 	if (sbi->s_stripe)
939 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
940 	/*
941 	 * journal mode get enabled in different ways
942 	 * So just print the value even if we didn't specify it
943 	 */
944 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
945 		seq_puts(seq, ",data=journal");
946 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
947 		seq_puts(seq, ",data=ordered");
948 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
949 		seq_puts(seq, ",data=writeback");
950 
951 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
952 		seq_printf(seq, ",inode_readahead_blks=%u",
953 			   sbi->s_inode_readahead_blks);
954 
955 	if (test_opt(sb, DATA_ERR_ABORT))
956 		seq_puts(seq, ",data_err=abort");
957 
958 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
959 		seq_puts(seq, ",noauto_da_alloc");
960 
961 	if (test_opt(sb, DISCARD))
962 		seq_puts(seq, ",discard");
963 
964 	if (test_opt(sb, NOLOAD))
965 		seq_puts(seq, ",norecovery");
966 
967 	if (test_opt(sb, DIOREAD_NOLOCK))
968 		seq_puts(seq, ",dioread_nolock");
969 
970 	ext4_show_quota_options(seq, sb);
971 
972 	return 0;
973 }
974 
975 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
976 					u64 ino, u32 generation)
977 {
978 	struct inode *inode;
979 
980 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
981 		return ERR_PTR(-ESTALE);
982 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
983 		return ERR_PTR(-ESTALE);
984 
985 	/* iget isn't really right if the inode is currently unallocated!!
986 	 *
987 	 * ext4_read_inode will return a bad_inode if the inode had been
988 	 * deleted, so we should be safe.
989 	 *
990 	 * Currently we don't know the generation for parent directory, so
991 	 * a generation of 0 means "accept any"
992 	 */
993 	inode = ext4_iget(sb, ino);
994 	if (IS_ERR(inode))
995 		return ERR_CAST(inode);
996 	if (generation && inode->i_generation != generation) {
997 		iput(inode);
998 		return ERR_PTR(-ESTALE);
999 	}
1000 
1001 	return inode;
1002 }
1003 
1004 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1005 					int fh_len, int fh_type)
1006 {
1007 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1008 				    ext4_nfs_get_inode);
1009 }
1010 
1011 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1012 					int fh_len, int fh_type)
1013 {
1014 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1015 				    ext4_nfs_get_inode);
1016 }
1017 
1018 /*
1019  * Try to release metadata pages (indirect blocks, directories) which are
1020  * mapped via the block device.  Since these pages could have journal heads
1021  * which would prevent try_to_free_buffers() from freeing them, we must use
1022  * jbd2 layer's try_to_free_buffers() function to release them.
1023  */
1024 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1025 				 gfp_t wait)
1026 {
1027 	journal_t *journal = EXT4_SB(sb)->s_journal;
1028 
1029 	WARN_ON(PageChecked(page));
1030 	if (!page_has_buffers(page))
1031 		return 0;
1032 	if (journal)
1033 		return jbd2_journal_try_to_free_buffers(journal, page,
1034 							wait & ~__GFP_WAIT);
1035 	return try_to_free_buffers(page);
1036 }
1037 
1038 #ifdef CONFIG_QUOTA
1039 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1040 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1041 
1042 static int ext4_write_dquot(struct dquot *dquot);
1043 static int ext4_acquire_dquot(struct dquot *dquot);
1044 static int ext4_release_dquot(struct dquot *dquot);
1045 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1046 static int ext4_write_info(struct super_block *sb, int type);
1047 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1048 				char *path, int remount);
1049 static int ext4_quota_on_mount(struct super_block *sb, int type);
1050 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1051 			       size_t len, loff_t off);
1052 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1053 				const char *data, size_t len, loff_t off);
1054 
1055 static const struct dquot_operations ext4_quota_operations = {
1056 #ifdef CONFIG_QUOTA
1057 	.get_reserved_space = ext4_get_reserved_space,
1058 #endif
1059 	.write_dquot	= ext4_write_dquot,
1060 	.acquire_dquot	= ext4_acquire_dquot,
1061 	.release_dquot	= ext4_release_dquot,
1062 	.mark_dirty	= ext4_mark_dquot_dirty,
1063 	.write_info	= ext4_write_info,
1064 	.alloc_dquot	= dquot_alloc,
1065 	.destroy_dquot	= dquot_destroy,
1066 };
1067 
1068 static const struct quotactl_ops ext4_qctl_operations = {
1069 	.quota_on	= ext4_quota_on,
1070 	.quota_off	= vfs_quota_off,
1071 	.quota_sync	= vfs_quota_sync,
1072 	.get_info	= vfs_get_dqinfo,
1073 	.set_info	= vfs_set_dqinfo,
1074 	.get_dqblk	= vfs_get_dqblk,
1075 	.set_dqblk	= vfs_set_dqblk
1076 };
1077 #endif
1078 
1079 static const struct super_operations ext4_sops = {
1080 	.alloc_inode	= ext4_alloc_inode,
1081 	.destroy_inode	= ext4_destroy_inode,
1082 	.write_inode	= ext4_write_inode,
1083 	.dirty_inode	= ext4_dirty_inode,
1084 	.delete_inode	= ext4_delete_inode,
1085 	.put_super	= ext4_put_super,
1086 	.sync_fs	= ext4_sync_fs,
1087 	.freeze_fs	= ext4_freeze,
1088 	.unfreeze_fs	= ext4_unfreeze,
1089 	.statfs		= ext4_statfs,
1090 	.remount_fs	= ext4_remount,
1091 	.clear_inode	= ext4_clear_inode,
1092 	.show_options	= ext4_show_options,
1093 #ifdef CONFIG_QUOTA
1094 	.quota_read	= ext4_quota_read,
1095 	.quota_write	= ext4_quota_write,
1096 #endif
1097 	.bdev_try_to_free_page = bdev_try_to_free_page,
1098 };
1099 
1100 static const struct super_operations ext4_nojournal_sops = {
1101 	.alloc_inode	= ext4_alloc_inode,
1102 	.destroy_inode	= ext4_destroy_inode,
1103 	.write_inode	= ext4_write_inode,
1104 	.dirty_inode	= ext4_dirty_inode,
1105 	.delete_inode	= ext4_delete_inode,
1106 	.write_super	= ext4_write_super,
1107 	.put_super	= ext4_put_super,
1108 	.statfs		= ext4_statfs,
1109 	.remount_fs	= ext4_remount,
1110 	.clear_inode	= ext4_clear_inode,
1111 	.show_options	= ext4_show_options,
1112 #ifdef CONFIG_QUOTA
1113 	.quota_read	= ext4_quota_read,
1114 	.quota_write	= ext4_quota_write,
1115 #endif
1116 	.bdev_try_to_free_page = bdev_try_to_free_page,
1117 };
1118 
1119 static const struct export_operations ext4_export_ops = {
1120 	.fh_to_dentry = ext4_fh_to_dentry,
1121 	.fh_to_parent = ext4_fh_to_parent,
1122 	.get_parent = ext4_get_parent,
1123 };
1124 
1125 enum {
1126 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1127 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1128 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1129 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1130 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1131 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1132 	Opt_journal_update, Opt_journal_dev,
1133 	Opt_journal_checksum, Opt_journal_async_commit,
1134 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1135 	Opt_data_err_abort, Opt_data_err_ignore,
1136 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1137 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1138 	Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1139 	Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1140 	Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1141 	Opt_block_validity, Opt_noblock_validity,
1142 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1143 	Opt_dioread_nolock, Opt_dioread_lock,
1144 	Opt_discard, Opt_nodiscard,
1145 };
1146 
1147 static const match_table_t tokens = {
1148 	{Opt_bsd_df, "bsddf"},
1149 	{Opt_minix_df, "minixdf"},
1150 	{Opt_grpid, "grpid"},
1151 	{Opt_grpid, "bsdgroups"},
1152 	{Opt_nogrpid, "nogrpid"},
1153 	{Opt_nogrpid, "sysvgroups"},
1154 	{Opt_resgid, "resgid=%u"},
1155 	{Opt_resuid, "resuid=%u"},
1156 	{Opt_sb, "sb=%u"},
1157 	{Opt_err_cont, "errors=continue"},
1158 	{Opt_err_panic, "errors=panic"},
1159 	{Opt_err_ro, "errors=remount-ro"},
1160 	{Opt_nouid32, "nouid32"},
1161 	{Opt_debug, "debug"},
1162 	{Opt_oldalloc, "oldalloc"},
1163 	{Opt_orlov, "orlov"},
1164 	{Opt_user_xattr, "user_xattr"},
1165 	{Opt_nouser_xattr, "nouser_xattr"},
1166 	{Opt_acl, "acl"},
1167 	{Opt_noacl, "noacl"},
1168 	{Opt_noload, "noload"},
1169 	{Opt_noload, "norecovery"},
1170 	{Opt_nobh, "nobh"},
1171 	{Opt_bh, "bh"},
1172 	{Opt_commit, "commit=%u"},
1173 	{Opt_min_batch_time, "min_batch_time=%u"},
1174 	{Opt_max_batch_time, "max_batch_time=%u"},
1175 	{Opt_journal_update, "journal=update"},
1176 	{Opt_journal_dev, "journal_dev=%u"},
1177 	{Opt_journal_checksum, "journal_checksum"},
1178 	{Opt_journal_async_commit, "journal_async_commit"},
1179 	{Opt_abort, "abort"},
1180 	{Opt_data_journal, "data=journal"},
1181 	{Opt_data_ordered, "data=ordered"},
1182 	{Opt_data_writeback, "data=writeback"},
1183 	{Opt_data_err_abort, "data_err=abort"},
1184 	{Opt_data_err_ignore, "data_err=ignore"},
1185 	{Opt_offusrjquota, "usrjquota="},
1186 	{Opt_usrjquota, "usrjquota=%s"},
1187 	{Opt_offgrpjquota, "grpjquota="},
1188 	{Opt_grpjquota, "grpjquota=%s"},
1189 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1190 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1191 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1192 	{Opt_grpquota, "grpquota"},
1193 	{Opt_noquota, "noquota"},
1194 	{Opt_quota, "quota"},
1195 	{Opt_usrquota, "usrquota"},
1196 	{Opt_barrier, "barrier=%u"},
1197 	{Opt_barrier, "barrier"},
1198 	{Opt_nobarrier, "nobarrier"},
1199 	{Opt_i_version, "i_version"},
1200 	{Opt_stripe, "stripe=%u"},
1201 	{Opt_resize, "resize"},
1202 	{Opt_delalloc, "delalloc"},
1203 	{Opt_nodelalloc, "nodelalloc"},
1204 	{Opt_block_validity, "block_validity"},
1205 	{Opt_noblock_validity, "noblock_validity"},
1206 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1207 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1208 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1209 	{Opt_auto_da_alloc, "auto_da_alloc"},
1210 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1211 	{Opt_dioread_nolock, "dioread_nolock"},
1212 	{Opt_dioread_lock, "dioread_lock"},
1213 	{Opt_discard, "discard"},
1214 	{Opt_nodiscard, "nodiscard"},
1215 	{Opt_err, NULL},
1216 };
1217 
1218 static ext4_fsblk_t get_sb_block(void **data)
1219 {
1220 	ext4_fsblk_t	sb_block;
1221 	char		*options = (char *) *data;
1222 
1223 	if (!options || strncmp(options, "sb=", 3) != 0)
1224 		return 1;	/* Default location */
1225 
1226 	options += 3;
1227 	/* TODO: use simple_strtoll with >32bit ext4 */
1228 	sb_block = simple_strtoul(options, &options, 0);
1229 	if (*options && *options != ',') {
1230 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1231 		       (char *) *data);
1232 		return 1;
1233 	}
1234 	if (*options == ',')
1235 		options++;
1236 	*data = (void *) options;
1237 
1238 	return sb_block;
1239 }
1240 
1241 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1242 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1243 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1244 
1245 #ifdef CONFIG_QUOTA
1246 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1247 {
1248 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1249 	char *qname;
1250 
1251 	if (sb_any_quota_loaded(sb) &&
1252 		!sbi->s_qf_names[qtype]) {
1253 		ext4_msg(sb, KERN_ERR,
1254 			"Cannot change journaled "
1255 			"quota options when quota turned on");
1256 		return 0;
1257 	}
1258 	qname = match_strdup(args);
1259 	if (!qname) {
1260 		ext4_msg(sb, KERN_ERR,
1261 			"Not enough memory for storing quotafile name");
1262 		return 0;
1263 	}
1264 	if (sbi->s_qf_names[qtype] &&
1265 		strcmp(sbi->s_qf_names[qtype], qname)) {
1266 		ext4_msg(sb, KERN_ERR,
1267 			"%s quota file already specified", QTYPE2NAME(qtype));
1268 		kfree(qname);
1269 		return 0;
1270 	}
1271 	sbi->s_qf_names[qtype] = qname;
1272 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1273 		ext4_msg(sb, KERN_ERR,
1274 			"quotafile must be on filesystem root");
1275 		kfree(sbi->s_qf_names[qtype]);
1276 		sbi->s_qf_names[qtype] = NULL;
1277 		return 0;
1278 	}
1279 	set_opt(sbi->s_mount_opt, QUOTA);
1280 	return 1;
1281 }
1282 
1283 static int clear_qf_name(struct super_block *sb, int qtype)
1284 {
1285 
1286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1287 
1288 	if (sb_any_quota_loaded(sb) &&
1289 		sbi->s_qf_names[qtype]) {
1290 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1291 			" when quota turned on");
1292 		return 0;
1293 	}
1294 	/*
1295 	 * The space will be released later when all options are confirmed
1296 	 * to be correct
1297 	 */
1298 	sbi->s_qf_names[qtype] = NULL;
1299 	return 1;
1300 }
1301 #endif
1302 
1303 static int parse_options(char *options, struct super_block *sb,
1304 			 unsigned long *journal_devnum,
1305 			 unsigned int *journal_ioprio,
1306 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1307 {
1308 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1309 	char *p;
1310 	substring_t args[MAX_OPT_ARGS];
1311 	int data_opt = 0;
1312 	int option;
1313 #ifdef CONFIG_QUOTA
1314 	int qfmt;
1315 #endif
1316 
1317 	if (!options)
1318 		return 1;
1319 
1320 	while ((p = strsep(&options, ",")) != NULL) {
1321 		int token;
1322 		if (!*p)
1323 			continue;
1324 
1325 		/*
1326 		 * Initialize args struct so we know whether arg was
1327 		 * found; some options take optional arguments.
1328 		 */
1329 		args[0].to = args[0].from = 0;
1330 		token = match_token(p, tokens, args);
1331 		switch (token) {
1332 		case Opt_bsd_df:
1333 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1334 			clear_opt(sbi->s_mount_opt, MINIX_DF);
1335 			break;
1336 		case Opt_minix_df:
1337 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1338 			set_opt(sbi->s_mount_opt, MINIX_DF);
1339 
1340 			break;
1341 		case Opt_grpid:
1342 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1343 			set_opt(sbi->s_mount_opt, GRPID);
1344 
1345 			break;
1346 		case Opt_nogrpid:
1347 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1348 			clear_opt(sbi->s_mount_opt, GRPID);
1349 
1350 			break;
1351 		case Opt_resuid:
1352 			if (match_int(&args[0], &option))
1353 				return 0;
1354 			sbi->s_resuid = option;
1355 			break;
1356 		case Opt_resgid:
1357 			if (match_int(&args[0], &option))
1358 				return 0;
1359 			sbi->s_resgid = option;
1360 			break;
1361 		case Opt_sb:
1362 			/* handled by get_sb_block() instead of here */
1363 			/* *sb_block = match_int(&args[0]); */
1364 			break;
1365 		case Opt_err_panic:
1366 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1367 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1368 			set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1369 			break;
1370 		case Opt_err_ro:
1371 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1372 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1373 			set_opt(sbi->s_mount_opt, ERRORS_RO);
1374 			break;
1375 		case Opt_err_cont:
1376 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1377 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1378 			set_opt(sbi->s_mount_opt, ERRORS_CONT);
1379 			break;
1380 		case Opt_nouid32:
1381 			set_opt(sbi->s_mount_opt, NO_UID32);
1382 			break;
1383 		case Opt_debug:
1384 			set_opt(sbi->s_mount_opt, DEBUG);
1385 			break;
1386 		case Opt_oldalloc:
1387 			set_opt(sbi->s_mount_opt, OLDALLOC);
1388 			break;
1389 		case Opt_orlov:
1390 			clear_opt(sbi->s_mount_opt, OLDALLOC);
1391 			break;
1392 #ifdef CONFIG_EXT4_FS_XATTR
1393 		case Opt_user_xattr:
1394 			set_opt(sbi->s_mount_opt, XATTR_USER);
1395 			break;
1396 		case Opt_nouser_xattr:
1397 			clear_opt(sbi->s_mount_opt, XATTR_USER);
1398 			break;
1399 #else
1400 		case Opt_user_xattr:
1401 		case Opt_nouser_xattr:
1402 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1403 			break;
1404 #endif
1405 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1406 		case Opt_acl:
1407 			set_opt(sbi->s_mount_opt, POSIX_ACL);
1408 			break;
1409 		case Opt_noacl:
1410 			clear_opt(sbi->s_mount_opt, POSIX_ACL);
1411 			break;
1412 #else
1413 		case Opt_acl:
1414 		case Opt_noacl:
1415 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1416 			break;
1417 #endif
1418 		case Opt_journal_update:
1419 			/* @@@ FIXME */
1420 			/* Eventually we will want to be able to create
1421 			   a journal file here.  For now, only allow the
1422 			   user to specify an existing inode to be the
1423 			   journal file. */
1424 			if (is_remount) {
1425 				ext4_msg(sb, KERN_ERR,
1426 					 "Cannot specify journal on remount");
1427 				return 0;
1428 			}
1429 			set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1430 			break;
1431 		case Opt_journal_dev:
1432 			if (is_remount) {
1433 				ext4_msg(sb, KERN_ERR,
1434 					"Cannot specify journal on remount");
1435 				return 0;
1436 			}
1437 			if (match_int(&args[0], &option))
1438 				return 0;
1439 			*journal_devnum = option;
1440 			break;
1441 		case Opt_journal_checksum:
1442 			set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1443 			break;
1444 		case Opt_journal_async_commit:
1445 			set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1446 			set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1447 			break;
1448 		case Opt_noload:
1449 			set_opt(sbi->s_mount_opt, NOLOAD);
1450 			break;
1451 		case Opt_commit:
1452 			if (match_int(&args[0], &option))
1453 				return 0;
1454 			if (option < 0)
1455 				return 0;
1456 			if (option == 0)
1457 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1458 			sbi->s_commit_interval = HZ * option;
1459 			break;
1460 		case Opt_max_batch_time:
1461 			if (match_int(&args[0], &option))
1462 				return 0;
1463 			if (option < 0)
1464 				return 0;
1465 			if (option == 0)
1466 				option = EXT4_DEF_MAX_BATCH_TIME;
1467 			sbi->s_max_batch_time = option;
1468 			break;
1469 		case Opt_min_batch_time:
1470 			if (match_int(&args[0], &option))
1471 				return 0;
1472 			if (option < 0)
1473 				return 0;
1474 			sbi->s_min_batch_time = option;
1475 			break;
1476 		case Opt_data_journal:
1477 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1478 			goto datacheck;
1479 		case Opt_data_ordered:
1480 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1481 			goto datacheck;
1482 		case Opt_data_writeback:
1483 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1484 		datacheck:
1485 			if (is_remount) {
1486 				if (test_opt(sb, DATA_FLAGS) != data_opt) {
1487 					ext4_msg(sb, KERN_ERR,
1488 						"Cannot change data mode on remount");
1489 					return 0;
1490 				}
1491 			} else {
1492 				clear_opt(sbi->s_mount_opt, DATA_FLAGS);
1493 				sbi->s_mount_opt |= data_opt;
1494 			}
1495 			break;
1496 		case Opt_data_err_abort:
1497 			set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1498 			break;
1499 		case Opt_data_err_ignore:
1500 			clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1501 			break;
1502 #ifdef CONFIG_QUOTA
1503 		case Opt_usrjquota:
1504 			if (!set_qf_name(sb, USRQUOTA, &args[0]))
1505 				return 0;
1506 			break;
1507 		case Opt_grpjquota:
1508 			if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1509 				return 0;
1510 			break;
1511 		case Opt_offusrjquota:
1512 			if (!clear_qf_name(sb, USRQUOTA))
1513 				return 0;
1514 			break;
1515 		case Opt_offgrpjquota:
1516 			if (!clear_qf_name(sb, GRPQUOTA))
1517 				return 0;
1518 			break;
1519 
1520 		case Opt_jqfmt_vfsold:
1521 			qfmt = QFMT_VFS_OLD;
1522 			goto set_qf_format;
1523 		case Opt_jqfmt_vfsv0:
1524 			qfmt = QFMT_VFS_V0;
1525 			goto set_qf_format;
1526 		case Opt_jqfmt_vfsv1:
1527 			qfmt = QFMT_VFS_V1;
1528 set_qf_format:
1529 			if (sb_any_quota_loaded(sb) &&
1530 			    sbi->s_jquota_fmt != qfmt) {
1531 				ext4_msg(sb, KERN_ERR, "Cannot change "
1532 					"journaled quota options when "
1533 					"quota turned on");
1534 				return 0;
1535 			}
1536 			sbi->s_jquota_fmt = qfmt;
1537 			break;
1538 		case Opt_quota:
1539 		case Opt_usrquota:
1540 			set_opt(sbi->s_mount_opt, QUOTA);
1541 			set_opt(sbi->s_mount_opt, USRQUOTA);
1542 			break;
1543 		case Opt_grpquota:
1544 			set_opt(sbi->s_mount_opt, QUOTA);
1545 			set_opt(sbi->s_mount_opt, GRPQUOTA);
1546 			break;
1547 		case Opt_noquota:
1548 			if (sb_any_quota_loaded(sb)) {
1549 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1550 					"options when quota turned on");
1551 				return 0;
1552 			}
1553 			clear_opt(sbi->s_mount_opt, QUOTA);
1554 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1555 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1556 			break;
1557 #else
1558 		case Opt_quota:
1559 		case Opt_usrquota:
1560 		case Opt_grpquota:
1561 			ext4_msg(sb, KERN_ERR,
1562 				"quota options not supported");
1563 			break;
1564 		case Opt_usrjquota:
1565 		case Opt_grpjquota:
1566 		case Opt_offusrjquota:
1567 		case Opt_offgrpjquota:
1568 		case Opt_jqfmt_vfsold:
1569 		case Opt_jqfmt_vfsv0:
1570 		case Opt_jqfmt_vfsv1:
1571 			ext4_msg(sb, KERN_ERR,
1572 				"journaled quota options not supported");
1573 			break;
1574 		case Opt_noquota:
1575 			break;
1576 #endif
1577 		case Opt_abort:
1578 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1579 			break;
1580 		case Opt_nobarrier:
1581 			clear_opt(sbi->s_mount_opt, BARRIER);
1582 			break;
1583 		case Opt_barrier:
1584 			if (args[0].from) {
1585 				if (match_int(&args[0], &option))
1586 					return 0;
1587 			} else
1588 				option = 1;	/* No argument, default to 1 */
1589 			if (option)
1590 				set_opt(sbi->s_mount_opt, BARRIER);
1591 			else
1592 				clear_opt(sbi->s_mount_opt, BARRIER);
1593 			break;
1594 		case Opt_ignore:
1595 			break;
1596 		case Opt_resize:
1597 			if (!is_remount) {
1598 				ext4_msg(sb, KERN_ERR,
1599 					"resize option only available "
1600 					"for remount");
1601 				return 0;
1602 			}
1603 			if (match_int(&args[0], &option) != 0)
1604 				return 0;
1605 			*n_blocks_count = option;
1606 			break;
1607 		case Opt_nobh:
1608 			set_opt(sbi->s_mount_opt, NOBH);
1609 			break;
1610 		case Opt_bh:
1611 			clear_opt(sbi->s_mount_opt, NOBH);
1612 			break;
1613 		case Opt_i_version:
1614 			set_opt(sbi->s_mount_opt, I_VERSION);
1615 			sb->s_flags |= MS_I_VERSION;
1616 			break;
1617 		case Opt_nodelalloc:
1618 			clear_opt(sbi->s_mount_opt, DELALLOC);
1619 			break;
1620 		case Opt_stripe:
1621 			if (match_int(&args[0], &option))
1622 				return 0;
1623 			if (option < 0)
1624 				return 0;
1625 			sbi->s_stripe = option;
1626 			break;
1627 		case Opt_delalloc:
1628 			set_opt(sbi->s_mount_opt, DELALLOC);
1629 			break;
1630 		case Opt_block_validity:
1631 			set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1632 			break;
1633 		case Opt_noblock_validity:
1634 			clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1635 			break;
1636 		case Opt_inode_readahead_blks:
1637 			if (match_int(&args[0], &option))
1638 				return 0;
1639 			if (option < 0 || option > (1 << 30))
1640 				return 0;
1641 			if (!is_power_of_2(option)) {
1642 				ext4_msg(sb, KERN_ERR,
1643 					 "EXT4-fs: inode_readahead_blks"
1644 					 " must be a power of 2");
1645 				return 0;
1646 			}
1647 			sbi->s_inode_readahead_blks = option;
1648 			break;
1649 		case Opt_journal_ioprio:
1650 			if (match_int(&args[0], &option))
1651 				return 0;
1652 			if (option < 0 || option > 7)
1653 				break;
1654 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1655 							    option);
1656 			break;
1657 		case Opt_noauto_da_alloc:
1658 			set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1659 			break;
1660 		case Opt_auto_da_alloc:
1661 			if (args[0].from) {
1662 				if (match_int(&args[0], &option))
1663 					return 0;
1664 			} else
1665 				option = 1;	/* No argument, default to 1 */
1666 			if (option)
1667 				clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1668 			else
1669 				set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1670 			break;
1671 		case Opt_discard:
1672 			set_opt(sbi->s_mount_opt, DISCARD);
1673 			break;
1674 		case Opt_nodiscard:
1675 			clear_opt(sbi->s_mount_opt, DISCARD);
1676 			break;
1677 		case Opt_dioread_nolock:
1678 			set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1679 			break;
1680 		case Opt_dioread_lock:
1681 			clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1682 			break;
1683 		default:
1684 			ext4_msg(sb, KERN_ERR,
1685 			       "Unrecognized mount option \"%s\" "
1686 			       "or missing value", p);
1687 			return 0;
1688 		}
1689 	}
1690 #ifdef CONFIG_QUOTA
1691 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1692 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1693 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1694 
1695 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1696 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1697 
1698 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1699 			ext4_msg(sb, KERN_ERR, "old and new quota "
1700 					"format mixing");
1701 			return 0;
1702 		}
1703 
1704 		if (!sbi->s_jquota_fmt) {
1705 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1706 					"not specified");
1707 			return 0;
1708 		}
1709 	} else {
1710 		if (sbi->s_jquota_fmt) {
1711 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1712 					"specified with no journaling "
1713 					"enabled");
1714 			return 0;
1715 		}
1716 	}
1717 #endif
1718 	return 1;
1719 }
1720 
1721 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1722 			    int read_only)
1723 {
1724 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1725 	int res = 0;
1726 
1727 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1728 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1729 			 "forcing read-only mode");
1730 		res = MS_RDONLY;
1731 	}
1732 	if (read_only)
1733 		return res;
1734 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1735 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1736 			 "running e2fsck is recommended");
1737 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1738 		ext4_msg(sb, KERN_WARNING,
1739 			 "warning: mounting fs with errors, "
1740 			 "running e2fsck is recommended");
1741 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1742 		 le16_to_cpu(es->s_mnt_count) >=
1743 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1744 		ext4_msg(sb, KERN_WARNING,
1745 			 "warning: maximal mount count reached, "
1746 			 "running e2fsck is recommended");
1747 	else if (le32_to_cpu(es->s_checkinterval) &&
1748 		(le32_to_cpu(es->s_lastcheck) +
1749 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1750 		ext4_msg(sb, KERN_WARNING,
1751 			 "warning: checktime reached, "
1752 			 "running e2fsck is recommended");
1753 	if (!sbi->s_journal)
1754 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1755 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1756 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1757 	le16_add_cpu(&es->s_mnt_count, 1);
1758 	es->s_mtime = cpu_to_le32(get_seconds());
1759 	ext4_update_dynamic_rev(sb);
1760 	if (sbi->s_journal)
1761 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1762 
1763 	ext4_commit_super(sb, 1);
1764 	if (test_opt(sb, DEBUG))
1765 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1766 				"bpg=%lu, ipg=%lu, mo=%04x]\n",
1767 			sb->s_blocksize,
1768 			sbi->s_groups_count,
1769 			EXT4_BLOCKS_PER_GROUP(sb),
1770 			EXT4_INODES_PER_GROUP(sb),
1771 			sbi->s_mount_opt);
1772 
1773 	return res;
1774 }
1775 
1776 static int ext4_fill_flex_info(struct super_block *sb)
1777 {
1778 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1779 	struct ext4_group_desc *gdp = NULL;
1780 	ext4_group_t flex_group_count;
1781 	ext4_group_t flex_group;
1782 	int groups_per_flex = 0;
1783 	size_t size;
1784 	int i;
1785 
1786 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1787 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1788 
1789 	if (groups_per_flex < 2) {
1790 		sbi->s_log_groups_per_flex = 0;
1791 		return 1;
1792 	}
1793 
1794 	/* We allocate both existing and potentially added groups */
1795 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1796 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1797 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1798 	size = flex_group_count * sizeof(struct flex_groups);
1799 	sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1800 	if (sbi->s_flex_groups == NULL) {
1801 		sbi->s_flex_groups = vmalloc(size);
1802 		if (sbi->s_flex_groups)
1803 			memset(sbi->s_flex_groups, 0, size);
1804 	}
1805 	if (sbi->s_flex_groups == NULL) {
1806 		ext4_msg(sb, KERN_ERR, "not enough memory for "
1807 				"%u flex groups", flex_group_count);
1808 		goto failed;
1809 	}
1810 
1811 	for (i = 0; i < sbi->s_groups_count; i++) {
1812 		gdp = ext4_get_group_desc(sb, i, NULL);
1813 
1814 		flex_group = ext4_flex_group(sbi, i);
1815 		atomic_add(ext4_free_inodes_count(sb, gdp),
1816 			   &sbi->s_flex_groups[flex_group].free_inodes);
1817 		atomic_add(ext4_free_blks_count(sb, gdp),
1818 			   &sbi->s_flex_groups[flex_group].free_blocks);
1819 		atomic_add(ext4_used_dirs_count(sb, gdp),
1820 			   &sbi->s_flex_groups[flex_group].used_dirs);
1821 	}
1822 
1823 	return 1;
1824 failed:
1825 	return 0;
1826 }
1827 
1828 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1829 			    struct ext4_group_desc *gdp)
1830 {
1831 	__u16 crc = 0;
1832 
1833 	if (sbi->s_es->s_feature_ro_compat &
1834 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1835 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1836 		__le32 le_group = cpu_to_le32(block_group);
1837 
1838 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1839 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1840 		crc = crc16(crc, (__u8 *)gdp, offset);
1841 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
1842 		/* for checksum of struct ext4_group_desc do the rest...*/
1843 		if ((sbi->s_es->s_feature_incompat &
1844 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1845 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
1846 			crc = crc16(crc, (__u8 *)gdp + offset,
1847 				    le16_to_cpu(sbi->s_es->s_desc_size) -
1848 					offset);
1849 	}
1850 
1851 	return cpu_to_le16(crc);
1852 }
1853 
1854 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1855 				struct ext4_group_desc *gdp)
1856 {
1857 	if ((sbi->s_es->s_feature_ro_compat &
1858 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1859 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1860 		return 0;
1861 
1862 	return 1;
1863 }
1864 
1865 /* Called at mount-time, super-block is locked */
1866 static int ext4_check_descriptors(struct super_block *sb)
1867 {
1868 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1869 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1870 	ext4_fsblk_t last_block;
1871 	ext4_fsblk_t block_bitmap;
1872 	ext4_fsblk_t inode_bitmap;
1873 	ext4_fsblk_t inode_table;
1874 	int flexbg_flag = 0;
1875 	ext4_group_t i;
1876 
1877 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1878 		flexbg_flag = 1;
1879 
1880 	ext4_debug("Checking group descriptors");
1881 
1882 	for (i = 0; i < sbi->s_groups_count; i++) {
1883 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1884 
1885 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
1886 			last_block = ext4_blocks_count(sbi->s_es) - 1;
1887 		else
1888 			last_block = first_block +
1889 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
1890 
1891 		block_bitmap = ext4_block_bitmap(sb, gdp);
1892 		if (block_bitmap < first_block || block_bitmap > last_block) {
1893 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1894 			       "Block bitmap for group %u not in group "
1895 			       "(block %llu)!", i, block_bitmap);
1896 			return 0;
1897 		}
1898 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
1899 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
1900 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1901 			       "Inode bitmap for group %u not in group "
1902 			       "(block %llu)!", i, inode_bitmap);
1903 			return 0;
1904 		}
1905 		inode_table = ext4_inode_table(sb, gdp);
1906 		if (inode_table < first_block ||
1907 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
1908 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1909 			       "Inode table for group %u not in group "
1910 			       "(block %llu)!", i, inode_table);
1911 			return 0;
1912 		}
1913 		ext4_lock_group(sb, i);
1914 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1915 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1916 				 "Checksum for group %u failed (%u!=%u)",
1917 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1918 				     gdp)), le16_to_cpu(gdp->bg_checksum));
1919 			if (!(sb->s_flags & MS_RDONLY)) {
1920 				ext4_unlock_group(sb, i);
1921 				return 0;
1922 			}
1923 		}
1924 		ext4_unlock_group(sb, i);
1925 		if (!flexbg_flag)
1926 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
1927 	}
1928 
1929 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1930 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1931 	return 1;
1932 }
1933 
1934 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1935  * the superblock) which were deleted from all directories, but held open by
1936  * a process at the time of a crash.  We walk the list and try to delete these
1937  * inodes at recovery time (only with a read-write filesystem).
1938  *
1939  * In order to keep the orphan inode chain consistent during traversal (in
1940  * case of crash during recovery), we link each inode into the superblock
1941  * orphan list_head and handle it the same way as an inode deletion during
1942  * normal operation (which journals the operations for us).
1943  *
1944  * We only do an iget() and an iput() on each inode, which is very safe if we
1945  * accidentally point at an in-use or already deleted inode.  The worst that
1946  * can happen in this case is that we get a "bit already cleared" message from
1947  * ext4_free_inode().  The only reason we would point at a wrong inode is if
1948  * e2fsck was run on this filesystem, and it must have already done the orphan
1949  * inode cleanup for us, so we can safely abort without any further action.
1950  */
1951 static void ext4_orphan_cleanup(struct super_block *sb,
1952 				struct ext4_super_block *es)
1953 {
1954 	unsigned int s_flags = sb->s_flags;
1955 	int nr_orphans = 0, nr_truncates = 0;
1956 #ifdef CONFIG_QUOTA
1957 	int i;
1958 #endif
1959 	if (!es->s_last_orphan) {
1960 		jbd_debug(4, "no orphan inodes to clean up\n");
1961 		return;
1962 	}
1963 
1964 	if (bdev_read_only(sb->s_bdev)) {
1965 		ext4_msg(sb, KERN_ERR, "write access "
1966 			"unavailable, skipping orphan cleanup");
1967 		return;
1968 	}
1969 
1970 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1971 		if (es->s_last_orphan)
1972 			jbd_debug(1, "Errors on filesystem, "
1973 				  "clearing orphan list.\n");
1974 		es->s_last_orphan = 0;
1975 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1976 		return;
1977 	}
1978 
1979 	if (s_flags & MS_RDONLY) {
1980 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1981 		sb->s_flags &= ~MS_RDONLY;
1982 	}
1983 #ifdef CONFIG_QUOTA
1984 	/* Needed for iput() to work correctly and not trash data */
1985 	sb->s_flags |= MS_ACTIVE;
1986 	/* Turn on quotas so that they are updated correctly */
1987 	for (i = 0; i < MAXQUOTAS; i++) {
1988 		if (EXT4_SB(sb)->s_qf_names[i]) {
1989 			int ret = ext4_quota_on_mount(sb, i);
1990 			if (ret < 0)
1991 				ext4_msg(sb, KERN_ERR,
1992 					"Cannot turn on journaled "
1993 					"quota: error %d", ret);
1994 		}
1995 	}
1996 #endif
1997 
1998 	while (es->s_last_orphan) {
1999 		struct inode *inode;
2000 
2001 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2002 		if (IS_ERR(inode)) {
2003 			es->s_last_orphan = 0;
2004 			break;
2005 		}
2006 
2007 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2008 		dquot_initialize(inode);
2009 		if (inode->i_nlink) {
2010 			ext4_msg(sb, KERN_DEBUG,
2011 				"%s: truncating inode %lu to %lld bytes",
2012 				__func__, inode->i_ino, inode->i_size);
2013 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2014 				  inode->i_ino, inode->i_size);
2015 			ext4_truncate(inode);
2016 			nr_truncates++;
2017 		} else {
2018 			ext4_msg(sb, KERN_DEBUG,
2019 				"%s: deleting unreferenced inode %lu",
2020 				__func__, inode->i_ino);
2021 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2022 				  inode->i_ino);
2023 			nr_orphans++;
2024 		}
2025 		iput(inode);  /* The delete magic happens here! */
2026 	}
2027 
2028 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2029 
2030 	if (nr_orphans)
2031 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2032 		       PLURAL(nr_orphans));
2033 	if (nr_truncates)
2034 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2035 		       PLURAL(nr_truncates));
2036 #ifdef CONFIG_QUOTA
2037 	/* Turn quotas off */
2038 	for (i = 0; i < MAXQUOTAS; i++) {
2039 		if (sb_dqopt(sb)->files[i])
2040 			vfs_quota_off(sb, i, 0);
2041 	}
2042 #endif
2043 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2044 }
2045 
2046 /*
2047  * Maximal extent format file size.
2048  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2049  * extent format containers, within a sector_t, and within i_blocks
2050  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2051  * so that won't be a limiting factor.
2052  *
2053  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2054  */
2055 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2056 {
2057 	loff_t res;
2058 	loff_t upper_limit = MAX_LFS_FILESIZE;
2059 
2060 	/* small i_blocks in vfs inode? */
2061 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2062 		/*
2063 		 * CONFIG_LBDAF is not enabled implies the inode
2064 		 * i_block represent total blocks in 512 bytes
2065 		 * 32 == size of vfs inode i_blocks * 8
2066 		 */
2067 		upper_limit = (1LL << 32) - 1;
2068 
2069 		/* total blocks in file system block size */
2070 		upper_limit >>= (blkbits - 9);
2071 		upper_limit <<= blkbits;
2072 	}
2073 
2074 	/* 32-bit extent-start container, ee_block */
2075 	res = 1LL << 32;
2076 	res <<= blkbits;
2077 	res -= 1;
2078 
2079 	/* Sanity check against vm- & vfs- imposed limits */
2080 	if (res > upper_limit)
2081 		res = upper_limit;
2082 
2083 	return res;
2084 }
2085 
2086 /*
2087  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2088  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2089  * We need to be 1 filesystem block less than the 2^48 sector limit.
2090  */
2091 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2092 {
2093 	loff_t res = EXT4_NDIR_BLOCKS;
2094 	int meta_blocks;
2095 	loff_t upper_limit;
2096 	/* This is calculated to be the largest file size for a dense, block
2097 	 * mapped file such that the file's total number of 512-byte sectors,
2098 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2099 	 *
2100 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2101 	 * number of 512-byte sectors of the file.
2102 	 */
2103 
2104 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2105 		/*
2106 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2107 		 * the inode i_block field represents total file blocks in
2108 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2109 		 */
2110 		upper_limit = (1LL << 32) - 1;
2111 
2112 		/* total blocks in file system block size */
2113 		upper_limit >>= (bits - 9);
2114 
2115 	} else {
2116 		/*
2117 		 * We use 48 bit ext4_inode i_blocks
2118 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2119 		 * represent total number of blocks in
2120 		 * file system block size
2121 		 */
2122 		upper_limit = (1LL << 48) - 1;
2123 
2124 	}
2125 
2126 	/* indirect blocks */
2127 	meta_blocks = 1;
2128 	/* double indirect blocks */
2129 	meta_blocks += 1 + (1LL << (bits-2));
2130 	/* tripple indirect blocks */
2131 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2132 
2133 	upper_limit -= meta_blocks;
2134 	upper_limit <<= bits;
2135 
2136 	res += 1LL << (bits-2);
2137 	res += 1LL << (2*(bits-2));
2138 	res += 1LL << (3*(bits-2));
2139 	res <<= bits;
2140 	if (res > upper_limit)
2141 		res = upper_limit;
2142 
2143 	if (res > MAX_LFS_FILESIZE)
2144 		res = MAX_LFS_FILESIZE;
2145 
2146 	return res;
2147 }
2148 
2149 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2150 				   ext4_fsblk_t logical_sb_block, int nr)
2151 {
2152 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2153 	ext4_group_t bg, first_meta_bg;
2154 	int has_super = 0;
2155 
2156 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2157 
2158 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2159 	    nr < first_meta_bg)
2160 		return logical_sb_block + nr + 1;
2161 	bg = sbi->s_desc_per_block * nr;
2162 	if (ext4_bg_has_super(sb, bg))
2163 		has_super = 1;
2164 
2165 	return (has_super + ext4_group_first_block_no(sb, bg));
2166 }
2167 
2168 /**
2169  * ext4_get_stripe_size: Get the stripe size.
2170  * @sbi: In memory super block info
2171  *
2172  * If we have specified it via mount option, then
2173  * use the mount option value. If the value specified at mount time is
2174  * greater than the blocks per group use the super block value.
2175  * If the super block value is greater than blocks per group return 0.
2176  * Allocator needs it be less than blocks per group.
2177  *
2178  */
2179 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2180 {
2181 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2182 	unsigned long stripe_width =
2183 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2184 
2185 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2186 		return sbi->s_stripe;
2187 
2188 	if (stripe_width <= sbi->s_blocks_per_group)
2189 		return stripe_width;
2190 
2191 	if (stride <= sbi->s_blocks_per_group)
2192 		return stride;
2193 
2194 	return 0;
2195 }
2196 
2197 /* sysfs supprt */
2198 
2199 struct ext4_attr {
2200 	struct attribute attr;
2201 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2202 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2203 			 const char *, size_t);
2204 	int offset;
2205 };
2206 
2207 static int parse_strtoul(const char *buf,
2208 		unsigned long max, unsigned long *value)
2209 {
2210 	char *endp;
2211 
2212 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2213 	endp = skip_spaces(endp);
2214 	if (*endp || *value > max)
2215 		return -EINVAL;
2216 
2217 	return 0;
2218 }
2219 
2220 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2221 					      struct ext4_sb_info *sbi,
2222 					      char *buf)
2223 {
2224 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2225 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2226 }
2227 
2228 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2229 					 struct ext4_sb_info *sbi, char *buf)
2230 {
2231 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2232 
2233 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2234 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2235 			 sbi->s_sectors_written_start) >> 1);
2236 }
2237 
2238 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2239 					  struct ext4_sb_info *sbi, char *buf)
2240 {
2241 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2242 
2243 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2244 			(unsigned long long)(sbi->s_kbytes_written +
2245 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2246 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2247 }
2248 
2249 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2250 					  struct ext4_sb_info *sbi,
2251 					  const char *buf, size_t count)
2252 {
2253 	unsigned long t;
2254 
2255 	if (parse_strtoul(buf, 0x40000000, &t))
2256 		return -EINVAL;
2257 
2258 	if (!is_power_of_2(t))
2259 		return -EINVAL;
2260 
2261 	sbi->s_inode_readahead_blks = t;
2262 	return count;
2263 }
2264 
2265 static ssize_t sbi_ui_show(struct ext4_attr *a,
2266 			   struct ext4_sb_info *sbi, char *buf)
2267 {
2268 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2269 
2270 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2271 }
2272 
2273 static ssize_t sbi_ui_store(struct ext4_attr *a,
2274 			    struct ext4_sb_info *sbi,
2275 			    const char *buf, size_t count)
2276 {
2277 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2278 	unsigned long t;
2279 
2280 	if (parse_strtoul(buf, 0xffffffff, &t))
2281 		return -EINVAL;
2282 	*ui = t;
2283 	return count;
2284 }
2285 
2286 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2287 static struct ext4_attr ext4_attr_##_name = {			\
2288 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2289 	.show	= _show,					\
2290 	.store	= _store,					\
2291 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2292 }
2293 #define EXT4_ATTR(name, mode, show, store) \
2294 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2295 
2296 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2297 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2298 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2299 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2300 #define ATTR_LIST(name) &ext4_attr_##name.attr
2301 
2302 EXT4_RO_ATTR(delayed_allocation_blocks);
2303 EXT4_RO_ATTR(session_write_kbytes);
2304 EXT4_RO_ATTR(lifetime_write_kbytes);
2305 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2306 		 inode_readahead_blks_store, s_inode_readahead_blks);
2307 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2308 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2309 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2310 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2311 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2312 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2313 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2314 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2315 
2316 static struct attribute *ext4_attrs[] = {
2317 	ATTR_LIST(delayed_allocation_blocks),
2318 	ATTR_LIST(session_write_kbytes),
2319 	ATTR_LIST(lifetime_write_kbytes),
2320 	ATTR_LIST(inode_readahead_blks),
2321 	ATTR_LIST(inode_goal),
2322 	ATTR_LIST(mb_stats),
2323 	ATTR_LIST(mb_max_to_scan),
2324 	ATTR_LIST(mb_min_to_scan),
2325 	ATTR_LIST(mb_order2_req),
2326 	ATTR_LIST(mb_stream_req),
2327 	ATTR_LIST(mb_group_prealloc),
2328 	ATTR_LIST(max_writeback_mb_bump),
2329 	NULL,
2330 };
2331 
2332 static ssize_t ext4_attr_show(struct kobject *kobj,
2333 			      struct attribute *attr, char *buf)
2334 {
2335 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2336 						s_kobj);
2337 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2338 
2339 	return a->show ? a->show(a, sbi, buf) : 0;
2340 }
2341 
2342 static ssize_t ext4_attr_store(struct kobject *kobj,
2343 			       struct attribute *attr,
2344 			       const char *buf, size_t len)
2345 {
2346 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2347 						s_kobj);
2348 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2349 
2350 	return a->store ? a->store(a, sbi, buf, len) : 0;
2351 }
2352 
2353 static void ext4_sb_release(struct kobject *kobj)
2354 {
2355 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2356 						s_kobj);
2357 	complete(&sbi->s_kobj_unregister);
2358 }
2359 
2360 
2361 static struct sysfs_ops ext4_attr_ops = {
2362 	.show	= ext4_attr_show,
2363 	.store	= ext4_attr_store,
2364 };
2365 
2366 static struct kobj_type ext4_ktype = {
2367 	.default_attrs	= ext4_attrs,
2368 	.sysfs_ops	= &ext4_attr_ops,
2369 	.release	= ext4_sb_release,
2370 };
2371 
2372 /*
2373  * Check whether this filesystem can be mounted based on
2374  * the features present and the RDONLY/RDWR mount requested.
2375  * Returns 1 if this filesystem can be mounted as requested,
2376  * 0 if it cannot be.
2377  */
2378 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2379 {
2380 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2381 		ext4_msg(sb, KERN_ERR,
2382 			"Couldn't mount because of "
2383 			"unsupported optional features (%x)",
2384 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2385 			~EXT4_FEATURE_INCOMPAT_SUPP));
2386 		return 0;
2387 	}
2388 
2389 	if (readonly)
2390 		return 1;
2391 
2392 	/* Check that feature set is OK for a read-write mount */
2393 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2394 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2395 			 "unsupported optional features (%x)",
2396 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2397 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2398 		return 0;
2399 	}
2400 	/*
2401 	 * Large file size enabled file system can only be mounted
2402 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2403 	 */
2404 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2405 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2406 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2407 				 "cannot be mounted RDWR without "
2408 				 "CONFIG_LBDAF");
2409 			return 0;
2410 		}
2411 	}
2412 	return 1;
2413 }
2414 
2415 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2416 				__releases(kernel_lock)
2417 				__acquires(kernel_lock)
2418 {
2419 	struct buffer_head *bh;
2420 	struct ext4_super_block *es = NULL;
2421 	struct ext4_sb_info *sbi;
2422 	ext4_fsblk_t block;
2423 	ext4_fsblk_t sb_block = get_sb_block(&data);
2424 	ext4_fsblk_t logical_sb_block;
2425 	unsigned long offset = 0;
2426 	unsigned long journal_devnum = 0;
2427 	unsigned long def_mount_opts;
2428 	struct inode *root;
2429 	char *cp;
2430 	const char *descr;
2431 	int ret = -EINVAL;
2432 	int blocksize;
2433 	unsigned int db_count;
2434 	unsigned int i;
2435 	int needs_recovery, has_huge_files;
2436 	__u64 blocks_count;
2437 	int err;
2438 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2439 
2440 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2441 	if (!sbi)
2442 		return -ENOMEM;
2443 
2444 	sbi->s_blockgroup_lock =
2445 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2446 	if (!sbi->s_blockgroup_lock) {
2447 		kfree(sbi);
2448 		return -ENOMEM;
2449 	}
2450 	sb->s_fs_info = sbi;
2451 	sbi->s_mount_opt = 0;
2452 	sbi->s_resuid = EXT4_DEF_RESUID;
2453 	sbi->s_resgid = EXT4_DEF_RESGID;
2454 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2455 	sbi->s_sb_block = sb_block;
2456 	sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2457 						      sectors[1]);
2458 
2459 	unlock_kernel();
2460 
2461 	/* Cleanup superblock name */
2462 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2463 		*cp = '!';
2464 
2465 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2466 	if (!blocksize) {
2467 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2468 		goto out_fail;
2469 	}
2470 
2471 	/*
2472 	 * The ext4 superblock will not be buffer aligned for other than 1kB
2473 	 * block sizes.  We need to calculate the offset from buffer start.
2474 	 */
2475 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2476 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2477 		offset = do_div(logical_sb_block, blocksize);
2478 	} else {
2479 		logical_sb_block = sb_block;
2480 	}
2481 
2482 	if (!(bh = sb_bread(sb, logical_sb_block))) {
2483 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
2484 		goto out_fail;
2485 	}
2486 	/*
2487 	 * Note: s_es must be initialized as soon as possible because
2488 	 *       some ext4 macro-instructions depend on its value
2489 	 */
2490 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2491 	sbi->s_es = es;
2492 	sb->s_magic = le16_to_cpu(es->s_magic);
2493 	if (sb->s_magic != EXT4_SUPER_MAGIC)
2494 		goto cantfind_ext4;
2495 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2496 
2497 	/* Set defaults before we parse the mount options */
2498 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2499 	if (def_mount_opts & EXT4_DEFM_DEBUG)
2500 		set_opt(sbi->s_mount_opt, DEBUG);
2501 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
2502 		ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
2503 			"2.6.38");
2504 		set_opt(sbi->s_mount_opt, GRPID);
2505 	}
2506 	if (def_mount_opts & EXT4_DEFM_UID16)
2507 		set_opt(sbi->s_mount_opt, NO_UID32);
2508 #ifdef CONFIG_EXT4_FS_XATTR
2509 	if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2510 		set_opt(sbi->s_mount_opt, XATTR_USER);
2511 #endif
2512 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2513 	if (def_mount_opts & EXT4_DEFM_ACL)
2514 		set_opt(sbi->s_mount_opt, POSIX_ACL);
2515 #endif
2516 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2517 		set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2518 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2519 		set_opt(sbi->s_mount_opt, ORDERED_DATA);
2520 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2521 		set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2522 
2523 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2524 		set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2525 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2526 		set_opt(sbi->s_mount_opt, ERRORS_CONT);
2527 	else
2528 		set_opt(sbi->s_mount_opt, ERRORS_RO);
2529 
2530 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2531 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2532 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2533 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2534 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2535 
2536 	set_opt(sbi->s_mount_opt, BARRIER);
2537 
2538 	/*
2539 	 * enable delayed allocation by default
2540 	 * Use -o nodelalloc to turn it off
2541 	 */
2542 	set_opt(sbi->s_mount_opt, DELALLOC);
2543 
2544 	if (!parse_options((char *) data, sb, &journal_devnum,
2545 			   &journal_ioprio, NULL, 0))
2546 		goto failed_mount;
2547 
2548 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2549 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
2550 
2551 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2552 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2553 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2554 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2555 		ext4_msg(sb, KERN_WARNING,
2556 		       "feature flags set on rev 0 fs, "
2557 		       "running e2fsck is recommended");
2558 
2559 	/*
2560 	 * Check feature flags regardless of the revision level, since we
2561 	 * previously didn't change the revision level when setting the flags,
2562 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
2563 	 */
2564 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
2565 		goto failed_mount;
2566 
2567 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2568 
2569 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2570 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
2571 		ext4_msg(sb, KERN_ERR,
2572 		       "Unsupported filesystem blocksize %d", blocksize);
2573 		goto failed_mount;
2574 	}
2575 
2576 	if (sb->s_blocksize != blocksize) {
2577 		/* Validate the filesystem blocksize */
2578 		if (!sb_set_blocksize(sb, blocksize)) {
2579 			ext4_msg(sb, KERN_ERR, "bad block size %d",
2580 					blocksize);
2581 			goto failed_mount;
2582 		}
2583 
2584 		brelse(bh);
2585 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2586 		offset = do_div(logical_sb_block, blocksize);
2587 		bh = sb_bread(sb, logical_sb_block);
2588 		if (!bh) {
2589 			ext4_msg(sb, KERN_ERR,
2590 			       "Can't read superblock on 2nd try");
2591 			goto failed_mount;
2592 		}
2593 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2594 		sbi->s_es = es;
2595 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2596 			ext4_msg(sb, KERN_ERR,
2597 			       "Magic mismatch, very weird!");
2598 			goto failed_mount;
2599 		}
2600 	}
2601 
2602 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2603 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2604 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2605 						      has_huge_files);
2606 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2607 
2608 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2609 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2610 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2611 	} else {
2612 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2613 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2614 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2615 		    (!is_power_of_2(sbi->s_inode_size)) ||
2616 		    (sbi->s_inode_size > blocksize)) {
2617 			ext4_msg(sb, KERN_ERR,
2618 			       "unsupported inode size: %d",
2619 			       sbi->s_inode_size);
2620 			goto failed_mount;
2621 		}
2622 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2623 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2624 	}
2625 
2626 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2627 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2628 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2629 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2630 		    !is_power_of_2(sbi->s_desc_size)) {
2631 			ext4_msg(sb, KERN_ERR,
2632 			       "unsupported descriptor size %lu",
2633 			       sbi->s_desc_size);
2634 			goto failed_mount;
2635 		}
2636 	} else
2637 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2638 
2639 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2640 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2641 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2642 		goto cantfind_ext4;
2643 
2644 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2645 	if (sbi->s_inodes_per_block == 0)
2646 		goto cantfind_ext4;
2647 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
2648 					sbi->s_inodes_per_block;
2649 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2650 	sbi->s_sbh = bh;
2651 	sbi->s_mount_state = le16_to_cpu(es->s_state);
2652 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2653 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2654 
2655 	for (i = 0; i < 4; i++)
2656 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2657 	sbi->s_def_hash_version = es->s_def_hash_version;
2658 	i = le32_to_cpu(es->s_flags);
2659 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
2660 		sbi->s_hash_unsigned = 3;
2661 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2662 #ifdef __CHAR_UNSIGNED__
2663 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2664 		sbi->s_hash_unsigned = 3;
2665 #else
2666 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2667 #endif
2668 		sb->s_dirt = 1;
2669 	}
2670 
2671 	if (sbi->s_blocks_per_group > blocksize * 8) {
2672 		ext4_msg(sb, KERN_ERR,
2673 		       "#blocks per group too big: %lu",
2674 		       sbi->s_blocks_per_group);
2675 		goto failed_mount;
2676 	}
2677 	if (sbi->s_inodes_per_group > blocksize * 8) {
2678 		ext4_msg(sb, KERN_ERR,
2679 		       "#inodes per group too big: %lu",
2680 		       sbi->s_inodes_per_group);
2681 		goto failed_mount;
2682 	}
2683 
2684 	/*
2685 	 * Test whether we have more sectors than will fit in sector_t,
2686 	 * and whether the max offset is addressable by the page cache.
2687 	 */
2688 	if ((ext4_blocks_count(es) >
2689 	     (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
2690 	    (ext4_blocks_count(es) >
2691 	     (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
2692 		ext4_msg(sb, KERN_ERR, "filesystem"
2693 			 " too large to mount safely on this system");
2694 		if (sizeof(sector_t) < 8)
2695 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
2696 		ret = -EFBIG;
2697 		goto failed_mount;
2698 	}
2699 
2700 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2701 		goto cantfind_ext4;
2702 
2703 	/* check blocks count against device size */
2704 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2705 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2706 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2707 		       "exceeds size of device (%llu blocks)",
2708 		       ext4_blocks_count(es), blocks_count);
2709 		goto failed_mount;
2710 	}
2711 
2712 	/*
2713 	 * It makes no sense for the first data block to be beyond the end
2714 	 * of the filesystem.
2715 	 */
2716 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2717                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2718 			 "block %u is beyond end of filesystem (%llu)",
2719 			 le32_to_cpu(es->s_first_data_block),
2720 			 ext4_blocks_count(es));
2721 		goto failed_mount;
2722 	}
2723 	blocks_count = (ext4_blocks_count(es) -
2724 			le32_to_cpu(es->s_first_data_block) +
2725 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
2726 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2727 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2728 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2729 		       "(block count %llu, first data block %u, "
2730 		       "blocks per group %lu)", sbi->s_groups_count,
2731 		       ext4_blocks_count(es),
2732 		       le32_to_cpu(es->s_first_data_block),
2733 		       EXT4_BLOCKS_PER_GROUP(sb));
2734 		goto failed_mount;
2735 	}
2736 	sbi->s_groups_count = blocks_count;
2737 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
2738 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
2739 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2740 		   EXT4_DESC_PER_BLOCK(sb);
2741 	sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2742 				    GFP_KERNEL);
2743 	if (sbi->s_group_desc == NULL) {
2744 		ext4_msg(sb, KERN_ERR, "not enough memory");
2745 		goto failed_mount;
2746 	}
2747 
2748 #ifdef CONFIG_PROC_FS
2749 	if (ext4_proc_root)
2750 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2751 #endif
2752 
2753 	bgl_lock_init(sbi->s_blockgroup_lock);
2754 
2755 	for (i = 0; i < db_count; i++) {
2756 		block = descriptor_loc(sb, logical_sb_block, i);
2757 		sbi->s_group_desc[i] = sb_bread(sb, block);
2758 		if (!sbi->s_group_desc[i]) {
2759 			ext4_msg(sb, KERN_ERR,
2760 			       "can't read group descriptor %d", i);
2761 			db_count = i;
2762 			goto failed_mount2;
2763 		}
2764 	}
2765 	if (!ext4_check_descriptors(sb)) {
2766 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2767 		goto failed_mount2;
2768 	}
2769 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2770 		if (!ext4_fill_flex_info(sb)) {
2771 			ext4_msg(sb, KERN_ERR,
2772 			       "unable to initialize "
2773 			       "flex_bg meta info!");
2774 			goto failed_mount2;
2775 		}
2776 
2777 	sbi->s_gdb_count = db_count;
2778 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2779 	spin_lock_init(&sbi->s_next_gen_lock);
2780 
2781 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
2782 			ext4_count_free_blocks(sb));
2783 	if (!err) {
2784 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
2785 				ext4_count_free_inodes(sb));
2786 	}
2787 	if (!err) {
2788 		err = percpu_counter_init(&sbi->s_dirs_counter,
2789 				ext4_count_dirs(sb));
2790 	}
2791 	if (!err) {
2792 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2793 	}
2794 	if (err) {
2795 		ext4_msg(sb, KERN_ERR, "insufficient memory");
2796 		goto failed_mount3;
2797 	}
2798 
2799 	sbi->s_stripe = ext4_get_stripe_size(sbi);
2800 	sbi->s_max_writeback_mb_bump = 128;
2801 
2802 	/*
2803 	 * set up enough so that it can read an inode
2804 	 */
2805 	if (!test_opt(sb, NOLOAD) &&
2806 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2807 		sb->s_op = &ext4_sops;
2808 	else
2809 		sb->s_op = &ext4_nojournal_sops;
2810 	sb->s_export_op = &ext4_export_ops;
2811 	sb->s_xattr = ext4_xattr_handlers;
2812 #ifdef CONFIG_QUOTA
2813 	sb->s_qcop = &ext4_qctl_operations;
2814 	sb->dq_op = &ext4_quota_operations;
2815 #endif
2816 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2817 	mutex_init(&sbi->s_orphan_lock);
2818 	mutex_init(&sbi->s_resize_lock);
2819 
2820 	sb->s_root = NULL;
2821 
2822 	needs_recovery = (es->s_last_orphan != 0 ||
2823 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
2824 				    EXT4_FEATURE_INCOMPAT_RECOVER));
2825 
2826 	/*
2827 	 * The first inode we look at is the journal inode.  Don't try
2828 	 * root first: it may be modified in the journal!
2829 	 */
2830 	if (!test_opt(sb, NOLOAD) &&
2831 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2832 		if (ext4_load_journal(sb, es, journal_devnum))
2833 			goto failed_mount3;
2834 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2835 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2836 		ext4_msg(sb, KERN_ERR, "required journal recovery "
2837 		       "suppressed and not mounted read-only");
2838 		goto failed_mount_wq;
2839 	} else {
2840 		clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2841 		set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2842 		sbi->s_journal = NULL;
2843 		needs_recovery = 0;
2844 		goto no_journal;
2845 	}
2846 
2847 	if (ext4_blocks_count(es) > 0xffffffffULL &&
2848 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2849 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
2850 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2851 		goto failed_mount_wq;
2852 	}
2853 
2854 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2855 		jbd2_journal_set_features(sbi->s_journal,
2856 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2857 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2858 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2859 		jbd2_journal_set_features(sbi->s_journal,
2860 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2861 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2862 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2863 	} else {
2864 		jbd2_journal_clear_features(sbi->s_journal,
2865 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2866 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2867 	}
2868 
2869 	/* We have now updated the journal if required, so we can
2870 	 * validate the data journaling mode. */
2871 	switch (test_opt(sb, DATA_FLAGS)) {
2872 	case 0:
2873 		/* No mode set, assume a default based on the journal
2874 		 * capabilities: ORDERED_DATA if the journal can
2875 		 * cope, else JOURNAL_DATA
2876 		 */
2877 		if (jbd2_journal_check_available_features
2878 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2879 			set_opt(sbi->s_mount_opt, ORDERED_DATA);
2880 		else
2881 			set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2882 		break;
2883 
2884 	case EXT4_MOUNT_ORDERED_DATA:
2885 	case EXT4_MOUNT_WRITEBACK_DATA:
2886 		if (!jbd2_journal_check_available_features
2887 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2888 			ext4_msg(sb, KERN_ERR, "Journal does not support "
2889 			       "requested data journaling mode");
2890 			goto failed_mount_wq;
2891 		}
2892 	default:
2893 		break;
2894 	}
2895 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2896 
2897 no_journal:
2898 	if (test_opt(sb, NOBH)) {
2899 		if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2900 			ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2901 				"its supported only with writeback mode");
2902 			clear_opt(sbi->s_mount_opt, NOBH);
2903 		}
2904 		if (test_opt(sb, DIOREAD_NOLOCK)) {
2905 			ext4_msg(sb, KERN_WARNING, "dioread_nolock option is "
2906 				"not supported with nobh mode");
2907 			goto failed_mount_wq;
2908 		}
2909 	}
2910 	EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
2911 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
2912 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
2913 		goto failed_mount_wq;
2914 	}
2915 
2916 	/*
2917 	 * The jbd2_journal_load will have done any necessary log recovery,
2918 	 * so we can safely mount the rest of the filesystem now.
2919 	 */
2920 
2921 	root = ext4_iget(sb, EXT4_ROOT_INO);
2922 	if (IS_ERR(root)) {
2923 		ext4_msg(sb, KERN_ERR, "get root inode failed");
2924 		ret = PTR_ERR(root);
2925 		goto failed_mount4;
2926 	}
2927 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2928 		iput(root);
2929 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2930 		goto failed_mount4;
2931 	}
2932 	sb->s_root = d_alloc_root(root);
2933 	if (!sb->s_root) {
2934 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
2935 		iput(root);
2936 		ret = -ENOMEM;
2937 		goto failed_mount4;
2938 	}
2939 
2940 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2941 
2942 	/* determine the minimum size of new large inodes, if present */
2943 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2944 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2945 						     EXT4_GOOD_OLD_INODE_SIZE;
2946 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2947 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2948 			if (sbi->s_want_extra_isize <
2949 			    le16_to_cpu(es->s_want_extra_isize))
2950 				sbi->s_want_extra_isize =
2951 					le16_to_cpu(es->s_want_extra_isize);
2952 			if (sbi->s_want_extra_isize <
2953 			    le16_to_cpu(es->s_min_extra_isize))
2954 				sbi->s_want_extra_isize =
2955 					le16_to_cpu(es->s_min_extra_isize);
2956 		}
2957 	}
2958 	/* Check if enough inode space is available */
2959 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2960 							sbi->s_inode_size) {
2961 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2962 						       EXT4_GOOD_OLD_INODE_SIZE;
2963 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
2964 			 "available");
2965 	}
2966 
2967 	if (test_opt(sb, DELALLOC) &&
2968 	    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2969 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2970 			 "requested data journaling mode");
2971 		clear_opt(sbi->s_mount_opt, DELALLOC);
2972 	}
2973 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2974 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
2975 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
2976 				"option - requested data journaling mode");
2977 			clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
2978 		}
2979 		if (sb->s_blocksize < PAGE_SIZE) {
2980 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
2981 				"option - block size is too small");
2982 			clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
2983 		}
2984 	}
2985 
2986 	err = ext4_setup_system_zone(sb);
2987 	if (err) {
2988 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
2989 			 "zone (%d)\n", err);
2990 		goto failed_mount4;
2991 	}
2992 
2993 	ext4_ext_init(sb);
2994 	err = ext4_mb_init(sb, needs_recovery);
2995 	if (err) {
2996 		ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2997 			 err);
2998 		goto failed_mount4;
2999 	}
3000 
3001 	sbi->s_kobj.kset = ext4_kset;
3002 	init_completion(&sbi->s_kobj_unregister);
3003 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3004 				   "%s", sb->s_id);
3005 	if (err) {
3006 		ext4_mb_release(sb);
3007 		ext4_ext_release(sb);
3008 		goto failed_mount4;
3009 	};
3010 
3011 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3012 	ext4_orphan_cleanup(sb, es);
3013 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3014 	if (needs_recovery) {
3015 		ext4_msg(sb, KERN_INFO, "recovery complete");
3016 		ext4_mark_recovery_complete(sb, es);
3017 	}
3018 	if (EXT4_SB(sb)->s_journal) {
3019 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3020 			descr = " journalled data mode";
3021 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3022 			descr = " ordered data mode";
3023 		else
3024 			descr = " writeback data mode";
3025 	} else
3026 		descr = "out journal";
3027 
3028 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
3029 
3030 	lock_kernel();
3031 	return 0;
3032 
3033 cantfind_ext4:
3034 	if (!silent)
3035 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3036 	goto failed_mount;
3037 
3038 failed_mount4:
3039 	ext4_msg(sb, KERN_ERR, "mount failed");
3040 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3041 failed_mount_wq:
3042 	ext4_release_system_zone(sb);
3043 	if (sbi->s_journal) {
3044 		jbd2_journal_destroy(sbi->s_journal);
3045 		sbi->s_journal = NULL;
3046 	}
3047 failed_mount3:
3048 	if (sbi->s_flex_groups) {
3049 		if (is_vmalloc_addr(sbi->s_flex_groups))
3050 			vfree(sbi->s_flex_groups);
3051 		else
3052 			kfree(sbi->s_flex_groups);
3053 	}
3054 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
3055 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3056 	percpu_counter_destroy(&sbi->s_dirs_counter);
3057 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3058 failed_mount2:
3059 	for (i = 0; i < db_count; i++)
3060 		brelse(sbi->s_group_desc[i]);
3061 	kfree(sbi->s_group_desc);
3062 failed_mount:
3063 	if (sbi->s_proc) {
3064 		remove_proc_entry(sb->s_id, ext4_proc_root);
3065 	}
3066 #ifdef CONFIG_QUOTA
3067 	for (i = 0; i < MAXQUOTAS; i++)
3068 		kfree(sbi->s_qf_names[i]);
3069 #endif
3070 	ext4_blkdev_remove(sbi);
3071 	brelse(bh);
3072 out_fail:
3073 	sb->s_fs_info = NULL;
3074 	kfree(sbi->s_blockgroup_lock);
3075 	kfree(sbi);
3076 	lock_kernel();
3077 	return ret;
3078 }
3079 
3080 /*
3081  * Setup any per-fs journal parameters now.  We'll do this both on
3082  * initial mount, once the journal has been initialised but before we've
3083  * done any recovery; and again on any subsequent remount.
3084  */
3085 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3086 {
3087 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3088 
3089 	journal->j_commit_interval = sbi->s_commit_interval;
3090 	journal->j_min_batch_time = sbi->s_min_batch_time;
3091 	journal->j_max_batch_time = sbi->s_max_batch_time;
3092 
3093 	spin_lock(&journal->j_state_lock);
3094 	if (test_opt(sb, BARRIER))
3095 		journal->j_flags |= JBD2_BARRIER;
3096 	else
3097 		journal->j_flags &= ~JBD2_BARRIER;
3098 	if (test_opt(sb, DATA_ERR_ABORT))
3099 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3100 	else
3101 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3102 	spin_unlock(&journal->j_state_lock);
3103 }
3104 
3105 static journal_t *ext4_get_journal(struct super_block *sb,
3106 				   unsigned int journal_inum)
3107 {
3108 	struct inode *journal_inode;
3109 	journal_t *journal;
3110 
3111 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3112 
3113 	/* First, test for the existence of a valid inode on disk.  Bad
3114 	 * things happen if we iget() an unused inode, as the subsequent
3115 	 * iput() will try to delete it. */
3116 
3117 	journal_inode = ext4_iget(sb, journal_inum);
3118 	if (IS_ERR(journal_inode)) {
3119 		ext4_msg(sb, KERN_ERR, "no journal found");
3120 		return NULL;
3121 	}
3122 	if (!journal_inode->i_nlink) {
3123 		make_bad_inode(journal_inode);
3124 		iput(journal_inode);
3125 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3126 		return NULL;
3127 	}
3128 
3129 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3130 		  journal_inode, journal_inode->i_size);
3131 	if (!S_ISREG(journal_inode->i_mode)) {
3132 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3133 		iput(journal_inode);
3134 		return NULL;
3135 	}
3136 
3137 	journal = jbd2_journal_init_inode(journal_inode);
3138 	if (!journal) {
3139 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3140 		iput(journal_inode);
3141 		return NULL;
3142 	}
3143 	journal->j_private = sb;
3144 	ext4_init_journal_params(sb, journal);
3145 	return journal;
3146 }
3147 
3148 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3149 				       dev_t j_dev)
3150 {
3151 	struct buffer_head *bh;
3152 	journal_t *journal;
3153 	ext4_fsblk_t start;
3154 	ext4_fsblk_t len;
3155 	int hblock, blocksize;
3156 	ext4_fsblk_t sb_block;
3157 	unsigned long offset;
3158 	struct ext4_super_block *es;
3159 	struct block_device *bdev;
3160 
3161 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3162 
3163 	bdev = ext4_blkdev_get(j_dev, sb);
3164 	if (bdev == NULL)
3165 		return NULL;
3166 
3167 	if (bd_claim(bdev, sb)) {
3168 		ext4_msg(sb, KERN_ERR,
3169 			"failed to claim external journal device");
3170 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3171 		return NULL;
3172 	}
3173 
3174 	blocksize = sb->s_blocksize;
3175 	hblock = bdev_logical_block_size(bdev);
3176 	if (blocksize < hblock) {
3177 		ext4_msg(sb, KERN_ERR,
3178 			"blocksize too small for journal device");
3179 		goto out_bdev;
3180 	}
3181 
3182 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3183 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3184 	set_blocksize(bdev, blocksize);
3185 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3186 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3187 		       "external journal");
3188 		goto out_bdev;
3189 	}
3190 
3191 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3192 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3193 	    !(le32_to_cpu(es->s_feature_incompat) &
3194 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3195 		ext4_msg(sb, KERN_ERR, "external journal has "
3196 					"bad superblock");
3197 		brelse(bh);
3198 		goto out_bdev;
3199 	}
3200 
3201 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3202 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3203 		brelse(bh);
3204 		goto out_bdev;
3205 	}
3206 
3207 	len = ext4_blocks_count(es);
3208 	start = sb_block + 1;
3209 	brelse(bh);	/* we're done with the superblock */
3210 
3211 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3212 					start, len, blocksize);
3213 	if (!journal) {
3214 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3215 		goto out_bdev;
3216 	}
3217 	journal->j_private = sb;
3218 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3219 	wait_on_buffer(journal->j_sb_buffer);
3220 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3221 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3222 		goto out_journal;
3223 	}
3224 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3225 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3226 					"user (unsupported) - %d",
3227 			be32_to_cpu(journal->j_superblock->s_nr_users));
3228 		goto out_journal;
3229 	}
3230 	EXT4_SB(sb)->journal_bdev = bdev;
3231 	ext4_init_journal_params(sb, journal);
3232 	return journal;
3233 
3234 out_journal:
3235 	jbd2_journal_destroy(journal);
3236 out_bdev:
3237 	ext4_blkdev_put(bdev);
3238 	return NULL;
3239 }
3240 
3241 static int ext4_load_journal(struct super_block *sb,
3242 			     struct ext4_super_block *es,
3243 			     unsigned long journal_devnum)
3244 {
3245 	journal_t *journal;
3246 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3247 	dev_t journal_dev;
3248 	int err = 0;
3249 	int really_read_only;
3250 
3251 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3252 
3253 	if (journal_devnum &&
3254 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3255 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3256 			"numbers have changed");
3257 		journal_dev = new_decode_dev(journal_devnum);
3258 	} else
3259 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3260 
3261 	really_read_only = bdev_read_only(sb->s_bdev);
3262 
3263 	/*
3264 	 * Are we loading a blank journal or performing recovery after a
3265 	 * crash?  For recovery, we need to check in advance whether we
3266 	 * can get read-write access to the device.
3267 	 */
3268 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3269 		if (sb->s_flags & MS_RDONLY) {
3270 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3271 					"required on readonly filesystem");
3272 			if (really_read_only) {
3273 				ext4_msg(sb, KERN_ERR, "write access "
3274 					"unavailable, cannot proceed");
3275 				return -EROFS;
3276 			}
3277 			ext4_msg(sb, KERN_INFO, "write access will "
3278 			       "be enabled during recovery");
3279 		}
3280 	}
3281 
3282 	if (journal_inum && journal_dev) {
3283 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3284 		       "and inode journals!");
3285 		return -EINVAL;
3286 	}
3287 
3288 	if (journal_inum) {
3289 		if (!(journal = ext4_get_journal(sb, journal_inum)))
3290 			return -EINVAL;
3291 	} else {
3292 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3293 			return -EINVAL;
3294 	}
3295 
3296 	if (!(journal->j_flags & JBD2_BARRIER))
3297 		ext4_msg(sb, KERN_INFO, "barriers disabled");
3298 
3299 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3300 		err = jbd2_journal_update_format(journal);
3301 		if (err)  {
3302 			ext4_msg(sb, KERN_ERR, "error updating journal");
3303 			jbd2_journal_destroy(journal);
3304 			return err;
3305 		}
3306 	}
3307 
3308 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3309 		err = jbd2_journal_wipe(journal, !really_read_only);
3310 	if (!err)
3311 		err = jbd2_journal_load(journal);
3312 
3313 	if (err) {
3314 		ext4_msg(sb, KERN_ERR, "error loading journal");
3315 		jbd2_journal_destroy(journal);
3316 		return err;
3317 	}
3318 
3319 	EXT4_SB(sb)->s_journal = journal;
3320 	ext4_clear_journal_err(sb, es);
3321 
3322 	if (journal_devnum &&
3323 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3324 		es->s_journal_dev = cpu_to_le32(journal_devnum);
3325 
3326 		/* Make sure we flush the recovery flag to disk. */
3327 		ext4_commit_super(sb, 1);
3328 	}
3329 
3330 	return 0;
3331 }
3332 
3333 static int ext4_commit_super(struct super_block *sb, int sync)
3334 {
3335 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3336 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3337 	int error = 0;
3338 
3339 	if (!sbh)
3340 		return error;
3341 	if (buffer_write_io_error(sbh)) {
3342 		/*
3343 		 * Oh, dear.  A previous attempt to write the
3344 		 * superblock failed.  This could happen because the
3345 		 * USB device was yanked out.  Or it could happen to
3346 		 * be a transient write error and maybe the block will
3347 		 * be remapped.  Nothing we can do but to retry the
3348 		 * write and hope for the best.
3349 		 */
3350 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
3351 		       "superblock detected");
3352 		clear_buffer_write_io_error(sbh);
3353 		set_buffer_uptodate(sbh);
3354 	}
3355 	/*
3356 	 * If the file system is mounted read-only, don't update the
3357 	 * superblock write time.  This avoids updating the superblock
3358 	 * write time when we are mounting the root file system
3359 	 * read/only but we need to replay the journal; at that point,
3360 	 * for people who are east of GMT and who make their clock
3361 	 * tick in localtime for Windows bug-for-bug compatibility,
3362 	 * the clock is set in the future, and this will cause e2fsck
3363 	 * to complain and force a full file system check.
3364 	 */
3365 	if (!(sb->s_flags & MS_RDONLY))
3366 		es->s_wtime = cpu_to_le32(get_seconds());
3367 	es->s_kbytes_written =
3368 		cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3369 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3370 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
3371 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3372 					&EXT4_SB(sb)->s_freeblocks_counter));
3373 	es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3374 					&EXT4_SB(sb)->s_freeinodes_counter));
3375 	sb->s_dirt = 0;
3376 	BUFFER_TRACE(sbh, "marking dirty");
3377 	mark_buffer_dirty(sbh);
3378 	if (sync) {
3379 		error = sync_dirty_buffer(sbh);
3380 		if (error)
3381 			return error;
3382 
3383 		error = buffer_write_io_error(sbh);
3384 		if (error) {
3385 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
3386 			       "superblock");
3387 			clear_buffer_write_io_error(sbh);
3388 			set_buffer_uptodate(sbh);
3389 		}
3390 	}
3391 	return error;
3392 }
3393 
3394 /*
3395  * Have we just finished recovery?  If so, and if we are mounting (or
3396  * remounting) the filesystem readonly, then we will end up with a
3397  * consistent fs on disk.  Record that fact.
3398  */
3399 static void ext4_mark_recovery_complete(struct super_block *sb,
3400 					struct ext4_super_block *es)
3401 {
3402 	journal_t *journal = EXT4_SB(sb)->s_journal;
3403 
3404 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3405 		BUG_ON(journal != NULL);
3406 		return;
3407 	}
3408 	jbd2_journal_lock_updates(journal);
3409 	if (jbd2_journal_flush(journal) < 0)
3410 		goto out;
3411 
3412 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3413 	    sb->s_flags & MS_RDONLY) {
3414 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3415 		ext4_commit_super(sb, 1);
3416 	}
3417 
3418 out:
3419 	jbd2_journal_unlock_updates(journal);
3420 }
3421 
3422 /*
3423  * If we are mounting (or read-write remounting) a filesystem whose journal
3424  * has recorded an error from a previous lifetime, move that error to the
3425  * main filesystem now.
3426  */
3427 static void ext4_clear_journal_err(struct super_block *sb,
3428 				   struct ext4_super_block *es)
3429 {
3430 	journal_t *journal;
3431 	int j_errno;
3432 	const char *errstr;
3433 
3434 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3435 
3436 	journal = EXT4_SB(sb)->s_journal;
3437 
3438 	/*
3439 	 * Now check for any error status which may have been recorded in the
3440 	 * journal by a prior ext4_error() or ext4_abort()
3441 	 */
3442 
3443 	j_errno = jbd2_journal_errno(journal);
3444 	if (j_errno) {
3445 		char nbuf[16];
3446 
3447 		errstr = ext4_decode_error(sb, j_errno, nbuf);
3448 		ext4_warning(sb, "Filesystem error recorded "
3449 			     "from previous mount: %s", errstr);
3450 		ext4_warning(sb, "Marking fs in need of filesystem check.");
3451 
3452 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3453 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3454 		ext4_commit_super(sb, 1);
3455 
3456 		jbd2_journal_clear_err(journal);
3457 	}
3458 }
3459 
3460 /*
3461  * Force the running and committing transactions to commit,
3462  * and wait on the commit.
3463  */
3464 int ext4_force_commit(struct super_block *sb)
3465 {
3466 	journal_t *journal;
3467 	int ret = 0;
3468 
3469 	if (sb->s_flags & MS_RDONLY)
3470 		return 0;
3471 
3472 	journal = EXT4_SB(sb)->s_journal;
3473 	if (journal)
3474 		ret = ext4_journal_force_commit(journal);
3475 
3476 	return ret;
3477 }
3478 
3479 static void ext4_write_super(struct super_block *sb)
3480 {
3481 	lock_super(sb);
3482 	ext4_commit_super(sb, 1);
3483 	unlock_super(sb);
3484 }
3485 
3486 static int ext4_sync_fs(struct super_block *sb, int wait)
3487 {
3488 	int ret = 0;
3489 	tid_t target;
3490 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3491 
3492 	trace_ext4_sync_fs(sb, wait);
3493 	flush_workqueue(sbi->dio_unwritten_wq);
3494 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
3495 		if (wait)
3496 			jbd2_log_wait_commit(sbi->s_journal, target);
3497 	}
3498 	return ret;
3499 }
3500 
3501 /*
3502  * LVM calls this function before a (read-only) snapshot is created.  This
3503  * gives us a chance to flush the journal completely and mark the fs clean.
3504  */
3505 static int ext4_freeze(struct super_block *sb)
3506 {
3507 	int error = 0;
3508 	journal_t *journal;
3509 
3510 	if (sb->s_flags & MS_RDONLY)
3511 		return 0;
3512 
3513 	journal = EXT4_SB(sb)->s_journal;
3514 
3515 	/* Now we set up the journal barrier. */
3516 	jbd2_journal_lock_updates(journal);
3517 
3518 	/*
3519 	 * Don't clear the needs_recovery flag if we failed to flush
3520 	 * the journal.
3521 	 */
3522 	error = jbd2_journal_flush(journal);
3523 	if (error < 0) {
3524 	out:
3525 		jbd2_journal_unlock_updates(journal);
3526 		return error;
3527 	}
3528 
3529 	/* Journal blocked and flushed, clear needs_recovery flag. */
3530 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3531 	error = ext4_commit_super(sb, 1);
3532 	if (error)
3533 		goto out;
3534 	return 0;
3535 }
3536 
3537 /*
3538  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
3539  * flag here, even though the filesystem is not technically dirty yet.
3540  */
3541 static int ext4_unfreeze(struct super_block *sb)
3542 {
3543 	if (sb->s_flags & MS_RDONLY)
3544 		return 0;
3545 
3546 	lock_super(sb);
3547 	/* Reset the needs_recovery flag before the fs is unlocked. */
3548 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3549 	ext4_commit_super(sb, 1);
3550 	unlock_super(sb);
3551 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3552 	return 0;
3553 }
3554 
3555 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3556 {
3557 	struct ext4_super_block *es;
3558 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3559 	ext4_fsblk_t n_blocks_count = 0;
3560 	unsigned long old_sb_flags;
3561 	struct ext4_mount_options old_opts;
3562 	ext4_group_t g;
3563 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3564 	int err;
3565 #ifdef CONFIG_QUOTA
3566 	int i;
3567 #endif
3568 
3569 	lock_kernel();
3570 
3571 	/* Store the original options */
3572 	lock_super(sb);
3573 	old_sb_flags = sb->s_flags;
3574 	old_opts.s_mount_opt = sbi->s_mount_opt;
3575 	old_opts.s_resuid = sbi->s_resuid;
3576 	old_opts.s_resgid = sbi->s_resgid;
3577 	old_opts.s_commit_interval = sbi->s_commit_interval;
3578 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
3579 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
3580 #ifdef CONFIG_QUOTA
3581 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3582 	for (i = 0; i < MAXQUOTAS; i++)
3583 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3584 #endif
3585 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3586 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3587 
3588 	/*
3589 	 * Allow the "check" option to be passed as a remount option.
3590 	 */
3591 	if (!parse_options(data, sb, NULL, &journal_ioprio,
3592 			   &n_blocks_count, 1)) {
3593 		err = -EINVAL;
3594 		goto restore_opts;
3595 	}
3596 
3597 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
3598 		ext4_abort(sb, __func__, "Abort forced by user");
3599 
3600 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3601 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3602 
3603 	es = sbi->s_es;
3604 
3605 	if (sbi->s_journal) {
3606 		ext4_init_journal_params(sb, sbi->s_journal);
3607 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3608 	}
3609 
3610 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3611 		n_blocks_count > ext4_blocks_count(es)) {
3612 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
3613 			err = -EROFS;
3614 			goto restore_opts;
3615 		}
3616 
3617 		if (*flags & MS_RDONLY) {
3618 			/*
3619 			 * First of all, the unconditional stuff we have to do
3620 			 * to disable replay of the journal when we next remount
3621 			 */
3622 			sb->s_flags |= MS_RDONLY;
3623 
3624 			/*
3625 			 * OK, test if we are remounting a valid rw partition
3626 			 * readonly, and if so set the rdonly flag and then
3627 			 * mark the partition as valid again.
3628 			 */
3629 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3630 			    (sbi->s_mount_state & EXT4_VALID_FS))
3631 				es->s_state = cpu_to_le16(sbi->s_mount_state);
3632 
3633 			if (sbi->s_journal)
3634 				ext4_mark_recovery_complete(sb, es);
3635 		} else {
3636 			/* Make sure we can mount this feature set readwrite */
3637 			if (!ext4_feature_set_ok(sb, 0)) {
3638 				err = -EROFS;
3639 				goto restore_opts;
3640 			}
3641 			/*
3642 			 * Make sure the group descriptor checksums
3643 			 * are sane.  If they aren't, refuse to remount r/w.
3644 			 */
3645 			for (g = 0; g < sbi->s_groups_count; g++) {
3646 				struct ext4_group_desc *gdp =
3647 					ext4_get_group_desc(sb, g, NULL);
3648 
3649 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3650 					ext4_msg(sb, KERN_ERR,
3651 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
3652 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3653 					       le16_to_cpu(gdp->bg_checksum));
3654 					err = -EINVAL;
3655 					goto restore_opts;
3656 				}
3657 			}
3658 
3659 			/*
3660 			 * If we have an unprocessed orphan list hanging
3661 			 * around from a previously readonly bdev mount,
3662 			 * require a full umount/remount for now.
3663 			 */
3664 			if (es->s_last_orphan) {
3665 				ext4_msg(sb, KERN_WARNING, "Couldn't "
3666 				       "remount RDWR because of unprocessed "
3667 				       "orphan inode list.  Please "
3668 				       "umount/remount instead");
3669 				err = -EINVAL;
3670 				goto restore_opts;
3671 			}
3672 
3673 			/*
3674 			 * Mounting a RDONLY partition read-write, so reread
3675 			 * and store the current valid flag.  (It may have
3676 			 * been changed by e2fsck since we originally mounted
3677 			 * the partition.)
3678 			 */
3679 			if (sbi->s_journal)
3680 				ext4_clear_journal_err(sb, es);
3681 			sbi->s_mount_state = le16_to_cpu(es->s_state);
3682 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3683 				goto restore_opts;
3684 			if (!ext4_setup_super(sb, es, 0))
3685 				sb->s_flags &= ~MS_RDONLY;
3686 		}
3687 	}
3688 	ext4_setup_system_zone(sb);
3689 	if (sbi->s_journal == NULL)
3690 		ext4_commit_super(sb, 1);
3691 
3692 #ifdef CONFIG_QUOTA
3693 	/* Release old quota file names */
3694 	for (i = 0; i < MAXQUOTAS; i++)
3695 		if (old_opts.s_qf_names[i] &&
3696 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3697 			kfree(old_opts.s_qf_names[i]);
3698 #endif
3699 	unlock_super(sb);
3700 	unlock_kernel();
3701 	return 0;
3702 
3703 restore_opts:
3704 	sb->s_flags = old_sb_flags;
3705 	sbi->s_mount_opt = old_opts.s_mount_opt;
3706 	sbi->s_resuid = old_opts.s_resuid;
3707 	sbi->s_resgid = old_opts.s_resgid;
3708 	sbi->s_commit_interval = old_opts.s_commit_interval;
3709 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
3710 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
3711 #ifdef CONFIG_QUOTA
3712 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3713 	for (i = 0; i < MAXQUOTAS; i++) {
3714 		if (sbi->s_qf_names[i] &&
3715 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3716 			kfree(sbi->s_qf_names[i]);
3717 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3718 	}
3719 #endif
3720 	unlock_super(sb);
3721 	unlock_kernel();
3722 	return err;
3723 }
3724 
3725 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3726 {
3727 	struct super_block *sb = dentry->d_sb;
3728 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3729 	struct ext4_super_block *es = sbi->s_es;
3730 	u64 fsid;
3731 
3732 	if (test_opt(sb, MINIX_DF)) {
3733 		sbi->s_overhead_last = 0;
3734 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3735 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3736 		ext4_fsblk_t overhead = 0;
3737 
3738 		/*
3739 		 * Compute the overhead (FS structures).  This is constant
3740 		 * for a given filesystem unless the number of block groups
3741 		 * changes so we cache the previous value until it does.
3742 		 */
3743 
3744 		/*
3745 		 * All of the blocks before first_data_block are
3746 		 * overhead
3747 		 */
3748 		overhead = le32_to_cpu(es->s_first_data_block);
3749 
3750 		/*
3751 		 * Add the overhead attributed to the superblock and
3752 		 * block group descriptors.  If the sparse superblocks
3753 		 * feature is turned on, then not all groups have this.
3754 		 */
3755 		for (i = 0; i < ngroups; i++) {
3756 			overhead += ext4_bg_has_super(sb, i) +
3757 				ext4_bg_num_gdb(sb, i);
3758 			cond_resched();
3759 		}
3760 
3761 		/*
3762 		 * Every block group has an inode bitmap, a block
3763 		 * bitmap, and an inode table.
3764 		 */
3765 		overhead += ngroups * (2 + sbi->s_itb_per_group);
3766 		sbi->s_overhead_last = overhead;
3767 		smp_wmb();
3768 		sbi->s_blocks_last = ext4_blocks_count(es);
3769 	}
3770 
3771 	buf->f_type = EXT4_SUPER_MAGIC;
3772 	buf->f_bsize = sb->s_blocksize;
3773 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3774 	buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3775 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3776 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3777 	if (buf->f_bfree < ext4_r_blocks_count(es))
3778 		buf->f_bavail = 0;
3779 	buf->f_files = le32_to_cpu(es->s_inodes_count);
3780 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3781 	buf->f_namelen = EXT4_NAME_LEN;
3782 	fsid = le64_to_cpup((void *)es->s_uuid) ^
3783 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3784 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3785 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3786 
3787 	return 0;
3788 }
3789 
3790 /* Helper function for writing quotas on sync - we need to start transaction
3791  * before quota file is locked for write. Otherwise the are possible deadlocks:
3792  * Process 1                         Process 2
3793  * ext4_create()                     quota_sync()
3794  *   jbd2_journal_start()                  write_dquot()
3795  *   dquot_initialize()                         down(dqio_mutex)
3796  *     down(dqio_mutex)                    jbd2_journal_start()
3797  *
3798  */
3799 
3800 #ifdef CONFIG_QUOTA
3801 
3802 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3803 {
3804 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3805 }
3806 
3807 static int ext4_write_dquot(struct dquot *dquot)
3808 {
3809 	int ret, err;
3810 	handle_t *handle;
3811 	struct inode *inode;
3812 
3813 	inode = dquot_to_inode(dquot);
3814 	handle = ext4_journal_start(inode,
3815 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3816 	if (IS_ERR(handle))
3817 		return PTR_ERR(handle);
3818 	ret = dquot_commit(dquot);
3819 	err = ext4_journal_stop(handle);
3820 	if (!ret)
3821 		ret = err;
3822 	return ret;
3823 }
3824 
3825 static int ext4_acquire_dquot(struct dquot *dquot)
3826 {
3827 	int ret, err;
3828 	handle_t *handle;
3829 
3830 	handle = ext4_journal_start(dquot_to_inode(dquot),
3831 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3832 	if (IS_ERR(handle))
3833 		return PTR_ERR(handle);
3834 	ret = dquot_acquire(dquot);
3835 	err = ext4_journal_stop(handle);
3836 	if (!ret)
3837 		ret = err;
3838 	return ret;
3839 }
3840 
3841 static int ext4_release_dquot(struct dquot *dquot)
3842 {
3843 	int ret, err;
3844 	handle_t *handle;
3845 
3846 	handle = ext4_journal_start(dquot_to_inode(dquot),
3847 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3848 	if (IS_ERR(handle)) {
3849 		/* Release dquot anyway to avoid endless cycle in dqput() */
3850 		dquot_release(dquot);
3851 		return PTR_ERR(handle);
3852 	}
3853 	ret = dquot_release(dquot);
3854 	err = ext4_journal_stop(handle);
3855 	if (!ret)
3856 		ret = err;
3857 	return ret;
3858 }
3859 
3860 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3861 {
3862 	/* Are we journaling quotas? */
3863 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3864 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3865 		dquot_mark_dquot_dirty(dquot);
3866 		return ext4_write_dquot(dquot);
3867 	} else {
3868 		return dquot_mark_dquot_dirty(dquot);
3869 	}
3870 }
3871 
3872 static int ext4_write_info(struct super_block *sb, int type)
3873 {
3874 	int ret, err;
3875 	handle_t *handle;
3876 
3877 	/* Data block + inode block */
3878 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
3879 	if (IS_ERR(handle))
3880 		return PTR_ERR(handle);
3881 	ret = dquot_commit_info(sb, type);
3882 	err = ext4_journal_stop(handle);
3883 	if (!ret)
3884 		ret = err;
3885 	return ret;
3886 }
3887 
3888 /*
3889  * Turn on quotas during mount time - we need to find
3890  * the quota file and such...
3891  */
3892 static int ext4_quota_on_mount(struct super_block *sb, int type)
3893 {
3894 	return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3895 				  EXT4_SB(sb)->s_jquota_fmt, type);
3896 }
3897 
3898 /*
3899  * Standard function to be called on quota_on
3900  */
3901 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3902 			 char *name, int remount)
3903 {
3904 	int err;
3905 	struct path path;
3906 
3907 	if (!test_opt(sb, QUOTA))
3908 		return -EINVAL;
3909 	/* When remounting, no checks are needed and in fact, name is NULL */
3910 	if (remount)
3911 		return vfs_quota_on(sb, type, format_id, name, remount);
3912 
3913 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3914 	if (err)
3915 		return err;
3916 
3917 	/* Quotafile not on the same filesystem? */
3918 	if (path.mnt->mnt_sb != sb) {
3919 		path_put(&path);
3920 		return -EXDEV;
3921 	}
3922 	/* Journaling quota? */
3923 	if (EXT4_SB(sb)->s_qf_names[type]) {
3924 		/* Quotafile not in fs root? */
3925 		if (path.dentry->d_parent != sb->s_root)
3926 			ext4_msg(sb, KERN_WARNING,
3927 				"Quota file not on filesystem root. "
3928 				"Journaled quota will not work");
3929 	}
3930 
3931 	/*
3932 	 * When we journal data on quota file, we have to flush journal to see
3933 	 * all updates to the file when we bypass pagecache...
3934 	 */
3935 	if (EXT4_SB(sb)->s_journal &&
3936 	    ext4_should_journal_data(path.dentry->d_inode)) {
3937 		/*
3938 		 * We don't need to lock updates but journal_flush() could
3939 		 * otherwise be livelocked...
3940 		 */
3941 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3942 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3943 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3944 		if (err) {
3945 			path_put(&path);
3946 			return err;
3947 		}
3948 	}
3949 
3950 	err = vfs_quota_on_path(sb, type, format_id, &path);
3951 	path_put(&path);
3952 	return err;
3953 }
3954 
3955 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3956  * acquiring the locks... As quota files are never truncated and quota code
3957  * itself serializes the operations (and noone else should touch the files)
3958  * we don't have to be afraid of races */
3959 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3960 			       size_t len, loff_t off)
3961 {
3962 	struct inode *inode = sb_dqopt(sb)->files[type];
3963 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3964 	int err = 0;
3965 	int offset = off & (sb->s_blocksize - 1);
3966 	int tocopy;
3967 	size_t toread;
3968 	struct buffer_head *bh;
3969 	loff_t i_size = i_size_read(inode);
3970 
3971 	if (off > i_size)
3972 		return 0;
3973 	if (off+len > i_size)
3974 		len = i_size-off;
3975 	toread = len;
3976 	while (toread > 0) {
3977 		tocopy = sb->s_blocksize - offset < toread ?
3978 				sb->s_blocksize - offset : toread;
3979 		bh = ext4_bread(NULL, inode, blk, 0, &err);
3980 		if (err)
3981 			return err;
3982 		if (!bh)	/* A hole? */
3983 			memset(data, 0, tocopy);
3984 		else
3985 			memcpy(data, bh->b_data+offset, tocopy);
3986 		brelse(bh);
3987 		offset = 0;
3988 		toread -= tocopy;
3989 		data += tocopy;
3990 		blk++;
3991 	}
3992 	return len;
3993 }
3994 
3995 /* Write to quotafile (we know the transaction is already started and has
3996  * enough credits) */
3997 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3998 				const char *data, size_t len, loff_t off)
3999 {
4000 	struct inode *inode = sb_dqopt(sb)->files[type];
4001 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4002 	int err = 0;
4003 	int offset = off & (sb->s_blocksize - 1);
4004 	int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
4005 	struct buffer_head *bh;
4006 	handle_t *handle = journal_current_handle();
4007 
4008 	if (EXT4_SB(sb)->s_journal && !handle) {
4009 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4010 			" cancelled because transaction is not started",
4011 			(unsigned long long)off, (unsigned long long)len);
4012 		return -EIO;
4013 	}
4014 	/*
4015 	 * Since we account only one data block in transaction credits,
4016 	 * then it is impossible to cross a block boundary.
4017 	 */
4018 	if (sb->s_blocksize - offset < len) {
4019 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4020 			" cancelled because not block aligned",
4021 			(unsigned long long)off, (unsigned long long)len);
4022 		return -EIO;
4023 	}
4024 
4025 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4026 	bh = ext4_bread(handle, inode, blk, 1, &err);
4027 	if (!bh)
4028 		goto out;
4029 	if (journal_quota) {
4030 		err = ext4_journal_get_write_access(handle, bh);
4031 		if (err) {
4032 			brelse(bh);
4033 			goto out;
4034 		}
4035 	}
4036 	lock_buffer(bh);
4037 	memcpy(bh->b_data+offset, data, len);
4038 	flush_dcache_page(bh->b_page);
4039 	unlock_buffer(bh);
4040 	if (journal_quota)
4041 		err = ext4_handle_dirty_metadata(handle, NULL, bh);
4042 	else {
4043 		/* Always do at least ordered writes for quotas */
4044 		err = ext4_jbd2_file_inode(handle, inode);
4045 		mark_buffer_dirty(bh);
4046 	}
4047 	brelse(bh);
4048 out:
4049 	if (err) {
4050 		mutex_unlock(&inode->i_mutex);
4051 		return err;
4052 	}
4053 	if (inode->i_size < off + len) {
4054 		i_size_write(inode, off + len);
4055 		EXT4_I(inode)->i_disksize = inode->i_size;
4056 	}
4057 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4058 	ext4_mark_inode_dirty(handle, inode);
4059 	mutex_unlock(&inode->i_mutex);
4060 	return len;
4061 }
4062 
4063 #endif
4064 
4065 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
4066 		       const char *dev_name, void *data, struct vfsmount *mnt)
4067 {
4068 	return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
4069 }
4070 
4071 #if !defined(CONTIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4072 static struct file_system_type ext2_fs_type = {
4073 	.owner		= THIS_MODULE,
4074 	.name		= "ext2",
4075 	.get_sb		= ext4_get_sb,
4076 	.kill_sb	= kill_block_super,
4077 	.fs_flags	= FS_REQUIRES_DEV,
4078 };
4079 
4080 static inline void register_as_ext2(void)
4081 {
4082 	int err = register_filesystem(&ext2_fs_type);
4083 	if (err)
4084 		printk(KERN_WARNING
4085 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4086 }
4087 
4088 static inline void unregister_as_ext2(void)
4089 {
4090 	unregister_filesystem(&ext2_fs_type);
4091 }
4092 MODULE_ALIAS("ext2");
4093 #else
4094 static inline void register_as_ext2(void) { }
4095 static inline void unregister_as_ext2(void) { }
4096 #endif
4097 
4098 #if !defined(CONTIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4099 static struct file_system_type ext3_fs_type = {
4100 	.owner		= THIS_MODULE,
4101 	.name		= "ext3",
4102 	.get_sb		= ext4_get_sb,
4103 	.kill_sb	= kill_block_super,
4104 	.fs_flags	= FS_REQUIRES_DEV,
4105 };
4106 
4107 static inline void register_as_ext3(void)
4108 {
4109 	int err = register_filesystem(&ext3_fs_type);
4110 	if (err)
4111 		printk(KERN_WARNING
4112 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4113 }
4114 
4115 static inline void unregister_as_ext3(void)
4116 {
4117 	unregister_filesystem(&ext3_fs_type);
4118 }
4119 MODULE_ALIAS("ext3");
4120 #else
4121 static inline void register_as_ext3(void) { }
4122 static inline void unregister_as_ext3(void) { }
4123 #endif
4124 
4125 static struct file_system_type ext4_fs_type = {
4126 	.owner		= THIS_MODULE,
4127 	.name		= "ext4",
4128 	.get_sb		= ext4_get_sb,
4129 	.kill_sb	= kill_block_super,
4130 	.fs_flags	= FS_REQUIRES_DEV,
4131 };
4132 
4133 static int __init init_ext4_fs(void)
4134 {
4135 	int err;
4136 
4137 	err = init_ext4_system_zone();
4138 	if (err)
4139 		return err;
4140 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4141 	if (!ext4_kset)
4142 		goto out4;
4143 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4144 	err = init_ext4_mballoc();
4145 	if (err)
4146 		goto out3;
4147 
4148 	err = init_ext4_xattr();
4149 	if (err)
4150 		goto out2;
4151 	err = init_inodecache();
4152 	if (err)
4153 		goto out1;
4154 	register_as_ext2();
4155 	register_as_ext3();
4156 	err = register_filesystem(&ext4_fs_type);
4157 	if (err)
4158 		goto out;
4159 	return 0;
4160 out:
4161 	unregister_as_ext2();
4162 	unregister_as_ext3();
4163 	destroy_inodecache();
4164 out1:
4165 	exit_ext4_xattr();
4166 out2:
4167 	exit_ext4_mballoc();
4168 out3:
4169 	remove_proc_entry("fs/ext4", NULL);
4170 	kset_unregister(ext4_kset);
4171 out4:
4172 	exit_ext4_system_zone();
4173 	return err;
4174 }
4175 
4176 static void __exit exit_ext4_fs(void)
4177 {
4178 	unregister_as_ext2();
4179 	unregister_as_ext3();
4180 	unregister_filesystem(&ext4_fs_type);
4181 	destroy_inodecache();
4182 	exit_ext4_xattr();
4183 	exit_ext4_mballoc();
4184 	remove_proc_entry("fs/ext4", NULL);
4185 	kset_unregister(ext4_kset);
4186 	exit_ext4_system_zone();
4187 }
4188 
4189 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4190 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4191 MODULE_LICENSE("GPL");
4192 module_init(init_ext4_fs)
4193 module_exit(exit_ext4_fs)
4194