1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 45 #include <linux/kthread.h> 46 #include <linux/freezer.h> 47 48 #include "ext4.h" 49 #include "ext4_extents.h" /* Needed for trace points definition */ 50 #include "ext4_jbd2.h" 51 #include "xattr.h" 52 #include "acl.h" 53 #include "mballoc.h" 54 #include "fsmap.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/ext4.h> 58 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ratelimit_state ext4_mount_msg_ratelimit; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static inline int ext2_feature_set_ok(struct super_block *sb); 79 static inline int ext3_feature_set_ok(struct super_block *sb); 80 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81 static void ext4_destroy_lazyinit_thread(void); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 static struct inode *ext4_get_journal_inode(struct super_block *sb, 85 unsigned int journal_inum); 86 87 /* 88 * Lock ordering 89 * 90 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 91 * i_mmap_rwsem (inode->i_mmap_rwsem)! 92 * 93 * page fault path: 94 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 95 * page lock -> i_data_sem (rw) 96 * 97 * buffered write path: 98 * sb_start_write -> i_mutex -> mmap_sem 99 * sb_start_write -> i_mutex -> transaction start -> page lock -> 100 * i_data_sem (rw) 101 * 102 * truncate: 103 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 104 * i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 106 * transaction start -> i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 110 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 111 * transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 static int ext4_verify_csum_type(struct super_block *sb, 145 struct ext4_super_block *es) 146 { 147 if (!ext4_has_feature_metadata_csum(sb)) 148 return 1; 149 150 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 151 } 152 153 static __le32 ext4_superblock_csum(struct super_block *sb, 154 struct ext4_super_block *es) 155 { 156 struct ext4_sb_info *sbi = EXT4_SB(sb); 157 int offset = offsetof(struct ext4_super_block, s_checksum); 158 __u32 csum; 159 160 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 161 162 return cpu_to_le32(csum); 163 } 164 165 static int ext4_superblock_csum_verify(struct super_block *sb, 166 struct ext4_super_block *es) 167 { 168 if (!ext4_has_metadata_csum(sb)) 169 return 1; 170 171 return es->s_checksum == ext4_superblock_csum(sb, es); 172 } 173 174 void ext4_superblock_csum_set(struct super_block *sb) 175 { 176 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 177 178 if (!ext4_has_metadata_csum(sb)) 179 return; 180 181 es->s_checksum = ext4_superblock_csum(sb, es); 182 } 183 184 void *ext4_kvmalloc(size_t size, gfp_t flags) 185 { 186 void *ret; 187 188 ret = kmalloc(size, flags | __GFP_NOWARN); 189 if (!ret) 190 ret = __vmalloc(size, flags, PAGE_KERNEL); 191 return ret; 192 } 193 194 void *ext4_kvzalloc(size_t size, gfp_t flags) 195 { 196 void *ret; 197 198 ret = kzalloc(size, flags | __GFP_NOWARN); 199 if (!ret) 200 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 201 return ret; 202 } 203 204 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 205 struct ext4_group_desc *bg) 206 { 207 return le32_to_cpu(bg->bg_block_bitmap_lo) | 208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 209 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 210 } 211 212 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 213 struct ext4_group_desc *bg) 214 { 215 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 217 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 218 } 219 220 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 221 struct ext4_group_desc *bg) 222 { 223 return le32_to_cpu(bg->bg_inode_table_lo) | 224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 225 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 226 } 227 228 __u32 ext4_free_group_clusters(struct super_block *sb, 229 struct ext4_group_desc *bg) 230 { 231 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 233 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 234 } 235 236 __u32 ext4_free_inodes_count(struct super_block *sb, 237 struct ext4_group_desc *bg) 238 { 239 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 241 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 242 } 243 244 __u32 ext4_used_dirs_count(struct super_block *sb, 245 struct ext4_group_desc *bg) 246 { 247 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 248 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 249 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 250 } 251 252 __u32 ext4_itable_unused_count(struct super_block *sb, 253 struct ext4_group_desc *bg) 254 { 255 return le16_to_cpu(bg->bg_itable_unused_lo) | 256 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 257 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 258 } 259 260 void ext4_block_bitmap_set(struct super_block *sb, 261 struct ext4_group_desc *bg, ext4_fsblk_t blk) 262 { 263 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 265 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 266 } 267 268 void ext4_inode_bitmap_set(struct super_block *sb, 269 struct ext4_group_desc *bg, ext4_fsblk_t blk) 270 { 271 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 273 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 274 } 275 276 void ext4_inode_table_set(struct super_block *sb, 277 struct ext4_group_desc *bg, ext4_fsblk_t blk) 278 { 279 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 281 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 282 } 283 284 void ext4_free_group_clusters_set(struct super_block *sb, 285 struct ext4_group_desc *bg, __u32 count) 286 { 287 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 289 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 290 } 291 292 void ext4_free_inodes_set(struct super_block *sb, 293 struct ext4_group_desc *bg, __u32 count) 294 { 295 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 297 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 298 } 299 300 void ext4_used_dirs_set(struct super_block *sb, 301 struct ext4_group_desc *bg, __u32 count) 302 { 303 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 304 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 305 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 306 } 307 308 void ext4_itable_unused_set(struct super_block *sb, 309 struct ext4_group_desc *bg, __u32 count) 310 { 311 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 312 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 313 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 314 } 315 316 317 static void __save_error_info(struct super_block *sb, const char *func, 318 unsigned int line) 319 { 320 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 321 322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 323 if (bdev_read_only(sb->s_bdev)) 324 return; 325 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 326 es->s_last_error_time = cpu_to_le32(get_seconds()); 327 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 328 es->s_last_error_line = cpu_to_le32(line); 329 if (!es->s_first_error_time) { 330 es->s_first_error_time = es->s_last_error_time; 331 strncpy(es->s_first_error_func, func, 332 sizeof(es->s_first_error_func)); 333 es->s_first_error_line = cpu_to_le32(line); 334 es->s_first_error_ino = es->s_last_error_ino; 335 es->s_first_error_block = es->s_last_error_block; 336 } 337 /* 338 * Start the daily error reporting function if it hasn't been 339 * started already 340 */ 341 if (!es->s_error_count) 342 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 343 le32_add_cpu(&es->s_error_count, 1); 344 } 345 346 static void save_error_info(struct super_block *sb, const char *func, 347 unsigned int line) 348 { 349 __save_error_info(sb, func, line); 350 ext4_commit_super(sb, 1); 351 } 352 353 /* 354 * The del_gendisk() function uninitializes the disk-specific data 355 * structures, including the bdi structure, without telling anyone 356 * else. Once this happens, any attempt to call mark_buffer_dirty() 357 * (for example, by ext4_commit_super), will cause a kernel OOPS. 358 * This is a kludge to prevent these oops until we can put in a proper 359 * hook in del_gendisk() to inform the VFS and file system layers. 360 */ 361 static int block_device_ejected(struct super_block *sb) 362 { 363 struct inode *bd_inode = sb->s_bdev->bd_inode; 364 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 365 366 return bdi->dev == NULL; 367 } 368 369 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 370 { 371 struct super_block *sb = journal->j_private; 372 struct ext4_sb_info *sbi = EXT4_SB(sb); 373 int error = is_journal_aborted(journal); 374 struct ext4_journal_cb_entry *jce; 375 376 BUG_ON(txn->t_state == T_FINISHED); 377 378 ext4_process_freed_data(sb, txn->t_tid); 379 380 spin_lock(&sbi->s_md_lock); 381 while (!list_empty(&txn->t_private_list)) { 382 jce = list_entry(txn->t_private_list.next, 383 struct ext4_journal_cb_entry, jce_list); 384 list_del_init(&jce->jce_list); 385 spin_unlock(&sbi->s_md_lock); 386 jce->jce_func(sb, jce, error); 387 spin_lock(&sbi->s_md_lock); 388 } 389 spin_unlock(&sbi->s_md_lock); 390 } 391 392 /* Deal with the reporting of failure conditions on a filesystem such as 393 * inconsistencies detected or read IO failures. 394 * 395 * On ext2, we can store the error state of the filesystem in the 396 * superblock. That is not possible on ext4, because we may have other 397 * write ordering constraints on the superblock which prevent us from 398 * writing it out straight away; and given that the journal is about to 399 * be aborted, we can't rely on the current, or future, transactions to 400 * write out the superblock safely. 401 * 402 * We'll just use the jbd2_journal_abort() error code to record an error in 403 * the journal instead. On recovery, the journal will complain about 404 * that error until we've noted it down and cleared it. 405 */ 406 407 static void ext4_handle_error(struct super_block *sb) 408 { 409 if (sb_rdonly(sb)) 410 return; 411 412 if (!test_opt(sb, ERRORS_CONT)) { 413 journal_t *journal = EXT4_SB(sb)->s_journal; 414 415 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 416 if (journal) 417 jbd2_journal_abort(journal, -EIO); 418 } 419 if (test_opt(sb, ERRORS_RO)) { 420 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 421 /* 422 * Make sure updated value of ->s_mount_flags will be visible 423 * before ->s_flags update 424 */ 425 smp_wmb(); 426 sb->s_flags |= SB_RDONLY; 427 } 428 if (test_opt(sb, ERRORS_PANIC)) { 429 if (EXT4_SB(sb)->s_journal && 430 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 431 return; 432 panic("EXT4-fs (device %s): panic forced after error\n", 433 sb->s_id); 434 } 435 } 436 437 #define ext4_error_ratelimit(sb) \ 438 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 439 "EXT4-fs error") 440 441 void __ext4_error(struct super_block *sb, const char *function, 442 unsigned int line, const char *fmt, ...) 443 { 444 struct va_format vaf; 445 va_list args; 446 447 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 448 return; 449 450 if (ext4_error_ratelimit(sb)) { 451 va_start(args, fmt); 452 vaf.fmt = fmt; 453 vaf.va = &args; 454 printk(KERN_CRIT 455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 456 sb->s_id, function, line, current->comm, &vaf); 457 va_end(args); 458 } 459 save_error_info(sb, function, line); 460 ext4_handle_error(sb); 461 } 462 463 void __ext4_error_inode(struct inode *inode, const char *function, 464 unsigned int line, ext4_fsblk_t block, 465 const char *fmt, ...) 466 { 467 va_list args; 468 struct va_format vaf; 469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 470 471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 472 return; 473 474 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 475 es->s_last_error_block = cpu_to_le64(block); 476 if (ext4_error_ratelimit(inode->i_sb)) { 477 va_start(args, fmt); 478 vaf.fmt = fmt; 479 vaf.va = &args; 480 if (block) 481 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 482 "inode #%lu: block %llu: comm %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 block, current->comm, &vaf); 485 else 486 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 487 "inode #%lu: comm %s: %pV\n", 488 inode->i_sb->s_id, function, line, inode->i_ino, 489 current->comm, &vaf); 490 va_end(args); 491 } 492 save_error_info(inode->i_sb, function, line); 493 ext4_handle_error(inode->i_sb); 494 } 495 496 void __ext4_error_file(struct file *file, const char *function, 497 unsigned int line, ext4_fsblk_t block, 498 const char *fmt, ...) 499 { 500 va_list args; 501 struct va_format vaf; 502 struct ext4_super_block *es; 503 struct inode *inode = file_inode(file); 504 char pathname[80], *path; 505 506 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 507 return; 508 509 es = EXT4_SB(inode->i_sb)->s_es; 510 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 511 if (ext4_error_ratelimit(inode->i_sb)) { 512 path = file_path(file, pathname, sizeof(pathname)); 513 if (IS_ERR(path)) 514 path = "(unknown)"; 515 va_start(args, fmt); 516 vaf.fmt = fmt; 517 vaf.va = &args; 518 if (block) 519 printk(KERN_CRIT 520 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 521 "block %llu: comm %s: path %s: %pV\n", 522 inode->i_sb->s_id, function, line, inode->i_ino, 523 block, current->comm, path, &vaf); 524 else 525 printk(KERN_CRIT 526 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 527 "comm %s: path %s: %pV\n", 528 inode->i_sb->s_id, function, line, inode->i_ino, 529 current->comm, path, &vaf); 530 va_end(args); 531 } 532 save_error_info(inode->i_sb, function, line); 533 ext4_handle_error(inode->i_sb); 534 } 535 536 const char *ext4_decode_error(struct super_block *sb, int errno, 537 char nbuf[16]) 538 { 539 char *errstr = NULL; 540 541 switch (errno) { 542 case -EFSCORRUPTED: 543 errstr = "Corrupt filesystem"; 544 break; 545 case -EFSBADCRC: 546 errstr = "Filesystem failed CRC"; 547 break; 548 case -EIO: 549 errstr = "IO failure"; 550 break; 551 case -ENOMEM: 552 errstr = "Out of memory"; 553 break; 554 case -EROFS: 555 if (!sb || (EXT4_SB(sb)->s_journal && 556 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 557 errstr = "Journal has aborted"; 558 else 559 errstr = "Readonly filesystem"; 560 break; 561 default: 562 /* If the caller passed in an extra buffer for unknown 563 * errors, textualise them now. Else we just return 564 * NULL. */ 565 if (nbuf) { 566 /* Check for truncated error codes... */ 567 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 568 errstr = nbuf; 569 } 570 break; 571 } 572 573 return errstr; 574 } 575 576 /* __ext4_std_error decodes expected errors from journaling functions 577 * automatically and invokes the appropriate error response. */ 578 579 void __ext4_std_error(struct super_block *sb, const char *function, 580 unsigned int line, int errno) 581 { 582 char nbuf[16]; 583 const char *errstr; 584 585 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 586 return; 587 588 /* Special case: if the error is EROFS, and we're not already 589 * inside a transaction, then there's really no point in logging 590 * an error. */ 591 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 592 return; 593 594 if (ext4_error_ratelimit(sb)) { 595 errstr = ext4_decode_error(sb, errno, nbuf); 596 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 597 sb->s_id, function, line, errstr); 598 } 599 600 save_error_info(sb, function, line); 601 ext4_handle_error(sb); 602 } 603 604 /* 605 * ext4_abort is a much stronger failure handler than ext4_error. The 606 * abort function may be used to deal with unrecoverable failures such 607 * as journal IO errors or ENOMEM at a critical moment in log management. 608 * 609 * We unconditionally force the filesystem into an ABORT|READONLY state, 610 * unless the error response on the fs has been set to panic in which 611 * case we take the easy way out and panic immediately. 612 */ 613 614 void __ext4_abort(struct super_block *sb, const char *function, 615 unsigned int line, const char *fmt, ...) 616 { 617 struct va_format vaf; 618 va_list args; 619 620 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 621 return; 622 623 save_error_info(sb, function, line); 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 628 sb->s_id, function, line, &vaf); 629 va_end(args); 630 631 if (sb_rdonly(sb) == 0) { 632 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 633 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 634 /* 635 * Make sure updated value of ->s_mount_flags will be visible 636 * before ->s_flags update 637 */ 638 smp_wmb(); 639 sb->s_flags |= SB_RDONLY; 640 if (EXT4_SB(sb)->s_journal) 641 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 642 save_error_info(sb, function, line); 643 } 644 if (test_opt(sb, ERRORS_PANIC)) { 645 if (EXT4_SB(sb)->s_journal && 646 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 647 return; 648 panic("EXT4-fs panic from previous error\n"); 649 } 650 } 651 652 void __ext4_msg(struct super_block *sb, 653 const char *prefix, const char *fmt, ...) 654 { 655 struct va_format vaf; 656 va_list args; 657 658 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 659 return; 660 661 va_start(args, fmt); 662 vaf.fmt = fmt; 663 vaf.va = &args; 664 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 665 va_end(args); 666 } 667 668 #define ext4_warning_ratelimit(sb) \ 669 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 670 "EXT4-fs warning") 671 672 void __ext4_warning(struct super_block *sb, const char *function, 673 unsigned int line, const char *fmt, ...) 674 { 675 struct va_format vaf; 676 va_list args; 677 678 if (!ext4_warning_ratelimit(sb)) 679 return; 680 681 va_start(args, fmt); 682 vaf.fmt = fmt; 683 vaf.va = &args; 684 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 685 sb->s_id, function, line, &vaf); 686 va_end(args); 687 } 688 689 void __ext4_warning_inode(const struct inode *inode, const char *function, 690 unsigned int line, const char *fmt, ...) 691 { 692 struct va_format vaf; 693 va_list args; 694 695 if (!ext4_warning_ratelimit(inode->i_sb)) 696 return; 697 698 va_start(args, fmt); 699 vaf.fmt = fmt; 700 vaf.va = &args; 701 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 702 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 703 function, line, inode->i_ino, current->comm, &vaf); 704 va_end(args); 705 } 706 707 void __ext4_grp_locked_error(const char *function, unsigned int line, 708 struct super_block *sb, ext4_group_t grp, 709 unsigned long ino, ext4_fsblk_t block, 710 const char *fmt, ...) 711 __releases(bitlock) 712 __acquires(bitlock) 713 { 714 struct va_format vaf; 715 va_list args; 716 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 717 718 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 719 return; 720 721 es->s_last_error_ino = cpu_to_le32(ino); 722 es->s_last_error_block = cpu_to_le64(block); 723 __save_error_info(sb, function, line); 724 725 if (ext4_error_ratelimit(sb)) { 726 va_start(args, fmt); 727 vaf.fmt = fmt; 728 vaf.va = &args; 729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 730 sb->s_id, function, line, grp); 731 if (ino) 732 printk(KERN_CONT "inode %lu: ", ino); 733 if (block) 734 printk(KERN_CONT "block %llu:", 735 (unsigned long long) block); 736 printk(KERN_CONT "%pV\n", &vaf); 737 va_end(args); 738 } 739 740 if (test_opt(sb, ERRORS_CONT)) { 741 ext4_commit_super(sb, 0); 742 return; 743 } 744 745 ext4_unlock_group(sb, grp); 746 ext4_handle_error(sb); 747 /* 748 * We only get here in the ERRORS_RO case; relocking the group 749 * may be dangerous, but nothing bad will happen since the 750 * filesystem will have already been marked read/only and the 751 * journal has been aborted. We return 1 as a hint to callers 752 * who might what to use the return value from 753 * ext4_grp_locked_error() to distinguish between the 754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 755 * aggressively from the ext4 function in question, with a 756 * more appropriate error code. 757 */ 758 ext4_lock_group(sb, grp); 759 return; 760 } 761 762 void ext4_update_dynamic_rev(struct super_block *sb) 763 { 764 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 765 766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 767 return; 768 769 ext4_warning(sb, 770 "updating to rev %d because of new feature flag, " 771 "running e2fsck is recommended", 772 EXT4_DYNAMIC_REV); 773 774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 777 /* leave es->s_feature_*compat flags alone */ 778 /* es->s_uuid will be set by e2fsck if empty */ 779 780 /* 781 * The rest of the superblock fields should be zero, and if not it 782 * means they are likely already in use, so leave them alone. We 783 * can leave it up to e2fsck to clean up any inconsistencies there. 784 */ 785 } 786 787 /* 788 * Open the external journal device 789 */ 790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 791 { 792 struct block_device *bdev; 793 char b[BDEVNAME_SIZE]; 794 795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 796 if (IS_ERR(bdev)) 797 goto fail; 798 return bdev; 799 800 fail: 801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 802 __bdevname(dev, b), PTR_ERR(bdev)); 803 return NULL; 804 } 805 806 /* 807 * Release the journal device 808 */ 809 static void ext4_blkdev_put(struct block_device *bdev) 810 { 811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 812 } 813 814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 815 { 816 struct block_device *bdev; 817 bdev = sbi->journal_bdev; 818 if (bdev) { 819 ext4_blkdev_put(bdev); 820 sbi->journal_bdev = NULL; 821 } 822 } 823 824 static inline struct inode *orphan_list_entry(struct list_head *l) 825 { 826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 827 } 828 829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 830 { 831 struct list_head *l; 832 833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 834 le32_to_cpu(sbi->s_es->s_last_orphan)); 835 836 printk(KERN_ERR "sb_info orphan list:\n"); 837 list_for_each(l, &sbi->s_orphan) { 838 struct inode *inode = orphan_list_entry(l); 839 printk(KERN_ERR " " 840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 841 inode->i_sb->s_id, inode->i_ino, inode, 842 inode->i_mode, inode->i_nlink, 843 NEXT_ORPHAN(inode)); 844 } 845 } 846 847 #ifdef CONFIG_QUOTA 848 static int ext4_quota_off(struct super_block *sb, int type); 849 850 static inline void ext4_quota_off_umount(struct super_block *sb) 851 { 852 int type; 853 854 /* Use our quota_off function to clear inode flags etc. */ 855 for (type = 0; type < EXT4_MAXQUOTAS; type++) 856 ext4_quota_off(sb, type); 857 } 858 #else 859 static inline void ext4_quota_off_umount(struct super_block *sb) 860 { 861 } 862 #endif 863 864 static void ext4_put_super(struct super_block *sb) 865 { 866 struct ext4_sb_info *sbi = EXT4_SB(sb); 867 struct ext4_super_block *es = sbi->s_es; 868 int aborted = 0; 869 int i, err; 870 871 ext4_unregister_li_request(sb); 872 ext4_quota_off_umount(sb); 873 874 flush_workqueue(sbi->rsv_conversion_wq); 875 destroy_workqueue(sbi->rsv_conversion_wq); 876 877 if (sbi->s_journal) { 878 aborted = is_journal_aborted(sbi->s_journal); 879 err = jbd2_journal_destroy(sbi->s_journal); 880 sbi->s_journal = NULL; 881 if ((err < 0) && !aborted) 882 ext4_abort(sb, "Couldn't clean up the journal"); 883 } 884 885 ext4_unregister_sysfs(sb); 886 ext4_es_unregister_shrinker(sbi); 887 del_timer_sync(&sbi->s_err_report); 888 ext4_release_system_zone(sb); 889 ext4_mb_release(sb); 890 ext4_ext_release(sb); 891 892 if (!sb_rdonly(sb) && !aborted) { 893 ext4_clear_feature_journal_needs_recovery(sb); 894 es->s_state = cpu_to_le16(sbi->s_mount_state); 895 } 896 if (!sb_rdonly(sb)) 897 ext4_commit_super(sb, 1); 898 899 for (i = 0; i < sbi->s_gdb_count; i++) 900 brelse(sbi->s_group_desc[i]); 901 kvfree(sbi->s_group_desc); 902 kvfree(sbi->s_flex_groups); 903 percpu_counter_destroy(&sbi->s_freeclusters_counter); 904 percpu_counter_destroy(&sbi->s_freeinodes_counter); 905 percpu_counter_destroy(&sbi->s_dirs_counter); 906 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 907 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 908 #ifdef CONFIG_QUOTA 909 for (i = 0; i < EXT4_MAXQUOTAS; i++) 910 kfree(sbi->s_qf_names[i]); 911 #endif 912 913 /* Debugging code just in case the in-memory inode orphan list 914 * isn't empty. The on-disk one can be non-empty if we've 915 * detected an error and taken the fs readonly, but the 916 * in-memory list had better be clean by this point. */ 917 if (!list_empty(&sbi->s_orphan)) 918 dump_orphan_list(sb, sbi); 919 J_ASSERT(list_empty(&sbi->s_orphan)); 920 921 sync_blockdev(sb->s_bdev); 922 invalidate_bdev(sb->s_bdev); 923 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 924 /* 925 * Invalidate the journal device's buffers. We don't want them 926 * floating about in memory - the physical journal device may 927 * hotswapped, and it breaks the `ro-after' testing code. 928 */ 929 sync_blockdev(sbi->journal_bdev); 930 invalidate_bdev(sbi->journal_bdev); 931 ext4_blkdev_remove(sbi); 932 } 933 if (sbi->s_ea_inode_cache) { 934 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 935 sbi->s_ea_inode_cache = NULL; 936 } 937 if (sbi->s_ea_block_cache) { 938 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 939 sbi->s_ea_block_cache = NULL; 940 } 941 if (sbi->s_mmp_tsk) 942 kthread_stop(sbi->s_mmp_tsk); 943 brelse(sbi->s_sbh); 944 sb->s_fs_info = NULL; 945 /* 946 * Now that we are completely done shutting down the 947 * superblock, we need to actually destroy the kobject. 948 */ 949 kobject_put(&sbi->s_kobj); 950 wait_for_completion(&sbi->s_kobj_unregister); 951 if (sbi->s_chksum_driver) 952 crypto_free_shash(sbi->s_chksum_driver); 953 kfree(sbi->s_blockgroup_lock); 954 fs_put_dax(sbi->s_daxdev); 955 kfree(sbi); 956 } 957 958 static struct kmem_cache *ext4_inode_cachep; 959 960 /* 961 * Called inside transaction, so use GFP_NOFS 962 */ 963 static struct inode *ext4_alloc_inode(struct super_block *sb) 964 { 965 struct ext4_inode_info *ei; 966 967 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 968 if (!ei) 969 return NULL; 970 971 inode_set_iversion(&ei->vfs_inode, 1); 972 spin_lock_init(&ei->i_raw_lock); 973 INIT_LIST_HEAD(&ei->i_prealloc_list); 974 spin_lock_init(&ei->i_prealloc_lock); 975 ext4_es_init_tree(&ei->i_es_tree); 976 rwlock_init(&ei->i_es_lock); 977 INIT_LIST_HEAD(&ei->i_es_list); 978 ei->i_es_all_nr = 0; 979 ei->i_es_shk_nr = 0; 980 ei->i_es_shrink_lblk = 0; 981 ei->i_reserved_data_blocks = 0; 982 ei->i_da_metadata_calc_len = 0; 983 ei->i_da_metadata_calc_last_lblock = 0; 984 spin_lock_init(&(ei->i_block_reservation_lock)); 985 #ifdef CONFIG_QUOTA 986 ei->i_reserved_quota = 0; 987 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 988 #endif 989 ei->jinode = NULL; 990 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 991 spin_lock_init(&ei->i_completed_io_lock); 992 ei->i_sync_tid = 0; 993 ei->i_datasync_tid = 0; 994 atomic_set(&ei->i_unwritten, 0); 995 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 996 return &ei->vfs_inode; 997 } 998 999 static int ext4_drop_inode(struct inode *inode) 1000 { 1001 int drop = generic_drop_inode(inode); 1002 1003 trace_ext4_drop_inode(inode, drop); 1004 return drop; 1005 } 1006 1007 static void ext4_i_callback(struct rcu_head *head) 1008 { 1009 struct inode *inode = container_of(head, struct inode, i_rcu); 1010 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1011 } 1012 1013 static void ext4_destroy_inode(struct inode *inode) 1014 { 1015 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1016 ext4_msg(inode->i_sb, KERN_ERR, 1017 "Inode %lu (%p): orphan list check failed!", 1018 inode->i_ino, EXT4_I(inode)); 1019 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1020 EXT4_I(inode), sizeof(struct ext4_inode_info), 1021 true); 1022 dump_stack(); 1023 } 1024 call_rcu(&inode->i_rcu, ext4_i_callback); 1025 } 1026 1027 static void init_once(void *foo) 1028 { 1029 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1030 1031 INIT_LIST_HEAD(&ei->i_orphan); 1032 init_rwsem(&ei->xattr_sem); 1033 init_rwsem(&ei->i_data_sem); 1034 init_rwsem(&ei->i_mmap_sem); 1035 inode_init_once(&ei->vfs_inode); 1036 } 1037 1038 static int __init init_inodecache(void) 1039 { 1040 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1041 sizeof(struct ext4_inode_info), 1042 0, (SLAB_RECLAIM_ACCOUNT| 1043 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1044 init_once); 1045 if (ext4_inode_cachep == NULL) 1046 return -ENOMEM; 1047 return 0; 1048 } 1049 1050 static void destroy_inodecache(void) 1051 { 1052 /* 1053 * Make sure all delayed rcu free inodes are flushed before we 1054 * destroy cache. 1055 */ 1056 rcu_barrier(); 1057 kmem_cache_destroy(ext4_inode_cachep); 1058 } 1059 1060 void ext4_clear_inode(struct inode *inode) 1061 { 1062 invalidate_inode_buffers(inode); 1063 clear_inode(inode); 1064 dquot_drop(inode); 1065 ext4_discard_preallocations(inode); 1066 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1067 if (EXT4_I(inode)->jinode) { 1068 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1069 EXT4_I(inode)->jinode); 1070 jbd2_free_inode(EXT4_I(inode)->jinode); 1071 EXT4_I(inode)->jinode = NULL; 1072 } 1073 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1074 fscrypt_put_encryption_info(inode, NULL); 1075 #endif 1076 } 1077 1078 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1079 u64 ino, u32 generation) 1080 { 1081 struct inode *inode; 1082 1083 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1084 return ERR_PTR(-ESTALE); 1085 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1086 return ERR_PTR(-ESTALE); 1087 1088 /* iget isn't really right if the inode is currently unallocated!! 1089 * 1090 * ext4_read_inode will return a bad_inode if the inode had been 1091 * deleted, so we should be safe. 1092 * 1093 * Currently we don't know the generation for parent directory, so 1094 * a generation of 0 means "accept any" 1095 */ 1096 inode = ext4_iget_normal(sb, ino); 1097 if (IS_ERR(inode)) 1098 return ERR_CAST(inode); 1099 if (generation && inode->i_generation != generation) { 1100 iput(inode); 1101 return ERR_PTR(-ESTALE); 1102 } 1103 1104 return inode; 1105 } 1106 1107 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1108 int fh_len, int fh_type) 1109 { 1110 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1111 ext4_nfs_get_inode); 1112 } 1113 1114 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1115 int fh_len, int fh_type) 1116 { 1117 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1118 ext4_nfs_get_inode); 1119 } 1120 1121 /* 1122 * Try to release metadata pages (indirect blocks, directories) which are 1123 * mapped via the block device. Since these pages could have journal heads 1124 * which would prevent try_to_free_buffers() from freeing them, we must use 1125 * jbd2 layer's try_to_free_buffers() function to release them. 1126 */ 1127 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1128 gfp_t wait) 1129 { 1130 journal_t *journal = EXT4_SB(sb)->s_journal; 1131 1132 WARN_ON(PageChecked(page)); 1133 if (!page_has_buffers(page)) 1134 return 0; 1135 if (journal) 1136 return jbd2_journal_try_to_free_buffers(journal, page, 1137 wait & ~__GFP_DIRECT_RECLAIM); 1138 return try_to_free_buffers(page); 1139 } 1140 1141 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1142 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1143 { 1144 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1145 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1146 } 1147 1148 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1149 void *fs_data) 1150 { 1151 handle_t *handle = fs_data; 1152 int res, res2, credits, retries = 0; 1153 1154 /* 1155 * Encrypting the root directory is not allowed because e2fsck expects 1156 * lost+found to exist and be unencrypted, and encrypting the root 1157 * directory would imply encrypting the lost+found directory as well as 1158 * the filename "lost+found" itself. 1159 */ 1160 if (inode->i_ino == EXT4_ROOT_INO) 1161 return -EPERM; 1162 1163 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1164 return -EINVAL; 1165 1166 res = ext4_convert_inline_data(inode); 1167 if (res) 1168 return res; 1169 1170 /* 1171 * If a journal handle was specified, then the encryption context is 1172 * being set on a new inode via inheritance and is part of a larger 1173 * transaction to create the inode. Otherwise the encryption context is 1174 * being set on an existing inode in its own transaction. Only in the 1175 * latter case should the "retry on ENOSPC" logic be used. 1176 */ 1177 1178 if (handle) { 1179 res = ext4_xattr_set_handle(handle, inode, 1180 EXT4_XATTR_INDEX_ENCRYPTION, 1181 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1182 ctx, len, 0); 1183 if (!res) { 1184 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1185 ext4_clear_inode_state(inode, 1186 EXT4_STATE_MAY_INLINE_DATA); 1187 /* 1188 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1189 * S_DAX may be disabled 1190 */ 1191 ext4_set_inode_flags(inode); 1192 } 1193 return res; 1194 } 1195 1196 res = dquot_initialize(inode); 1197 if (res) 1198 return res; 1199 retry: 1200 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1201 &credits); 1202 if (res) 1203 return res; 1204 1205 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1206 if (IS_ERR(handle)) 1207 return PTR_ERR(handle); 1208 1209 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1210 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1211 ctx, len, 0); 1212 if (!res) { 1213 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1214 /* 1215 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1216 * S_DAX may be disabled 1217 */ 1218 ext4_set_inode_flags(inode); 1219 res = ext4_mark_inode_dirty(handle, inode); 1220 if (res) 1221 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1222 } 1223 res2 = ext4_journal_stop(handle); 1224 1225 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1226 goto retry; 1227 if (!res) 1228 res = res2; 1229 return res; 1230 } 1231 1232 static bool ext4_dummy_context(struct inode *inode) 1233 { 1234 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1235 } 1236 1237 static unsigned ext4_max_namelen(struct inode *inode) 1238 { 1239 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1240 EXT4_NAME_LEN; 1241 } 1242 1243 static const struct fscrypt_operations ext4_cryptops = { 1244 .key_prefix = "ext4:", 1245 .get_context = ext4_get_context, 1246 .set_context = ext4_set_context, 1247 .dummy_context = ext4_dummy_context, 1248 .empty_dir = ext4_empty_dir, 1249 .max_namelen = ext4_max_namelen, 1250 }; 1251 #endif 1252 1253 #ifdef CONFIG_QUOTA 1254 static const char * const quotatypes[] = INITQFNAMES; 1255 #define QTYPE2NAME(t) (quotatypes[t]) 1256 1257 static int ext4_write_dquot(struct dquot *dquot); 1258 static int ext4_acquire_dquot(struct dquot *dquot); 1259 static int ext4_release_dquot(struct dquot *dquot); 1260 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1261 static int ext4_write_info(struct super_block *sb, int type); 1262 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1263 const struct path *path); 1264 static int ext4_quota_on_mount(struct super_block *sb, int type); 1265 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1266 size_t len, loff_t off); 1267 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1268 const char *data, size_t len, loff_t off); 1269 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1270 unsigned int flags); 1271 static int ext4_enable_quotas(struct super_block *sb); 1272 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1273 1274 static struct dquot **ext4_get_dquots(struct inode *inode) 1275 { 1276 return EXT4_I(inode)->i_dquot; 1277 } 1278 1279 static const struct dquot_operations ext4_quota_operations = { 1280 .get_reserved_space = ext4_get_reserved_space, 1281 .write_dquot = ext4_write_dquot, 1282 .acquire_dquot = ext4_acquire_dquot, 1283 .release_dquot = ext4_release_dquot, 1284 .mark_dirty = ext4_mark_dquot_dirty, 1285 .write_info = ext4_write_info, 1286 .alloc_dquot = dquot_alloc, 1287 .destroy_dquot = dquot_destroy, 1288 .get_projid = ext4_get_projid, 1289 .get_inode_usage = ext4_get_inode_usage, 1290 .get_next_id = ext4_get_next_id, 1291 }; 1292 1293 static const struct quotactl_ops ext4_qctl_operations = { 1294 .quota_on = ext4_quota_on, 1295 .quota_off = ext4_quota_off, 1296 .quota_sync = dquot_quota_sync, 1297 .get_state = dquot_get_state, 1298 .set_info = dquot_set_dqinfo, 1299 .get_dqblk = dquot_get_dqblk, 1300 .set_dqblk = dquot_set_dqblk, 1301 .get_nextdqblk = dquot_get_next_dqblk, 1302 }; 1303 #endif 1304 1305 static const struct super_operations ext4_sops = { 1306 .alloc_inode = ext4_alloc_inode, 1307 .destroy_inode = ext4_destroy_inode, 1308 .write_inode = ext4_write_inode, 1309 .dirty_inode = ext4_dirty_inode, 1310 .drop_inode = ext4_drop_inode, 1311 .evict_inode = ext4_evict_inode, 1312 .put_super = ext4_put_super, 1313 .sync_fs = ext4_sync_fs, 1314 .freeze_fs = ext4_freeze, 1315 .unfreeze_fs = ext4_unfreeze, 1316 .statfs = ext4_statfs, 1317 .remount_fs = ext4_remount, 1318 .show_options = ext4_show_options, 1319 #ifdef CONFIG_QUOTA 1320 .quota_read = ext4_quota_read, 1321 .quota_write = ext4_quota_write, 1322 .get_dquots = ext4_get_dquots, 1323 #endif 1324 .bdev_try_to_free_page = bdev_try_to_free_page, 1325 }; 1326 1327 static const struct export_operations ext4_export_ops = { 1328 .fh_to_dentry = ext4_fh_to_dentry, 1329 .fh_to_parent = ext4_fh_to_parent, 1330 .get_parent = ext4_get_parent, 1331 }; 1332 1333 enum { 1334 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1335 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1336 Opt_nouid32, Opt_debug, Opt_removed, 1337 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1338 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1339 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1340 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1341 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1342 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1343 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1344 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1345 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1346 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1347 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1348 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1349 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1350 Opt_inode_readahead_blks, Opt_journal_ioprio, 1351 Opt_dioread_nolock, Opt_dioread_lock, 1352 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1353 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1354 }; 1355 1356 static const match_table_t tokens = { 1357 {Opt_bsd_df, "bsddf"}, 1358 {Opt_minix_df, "minixdf"}, 1359 {Opt_grpid, "grpid"}, 1360 {Opt_grpid, "bsdgroups"}, 1361 {Opt_nogrpid, "nogrpid"}, 1362 {Opt_nogrpid, "sysvgroups"}, 1363 {Opt_resgid, "resgid=%u"}, 1364 {Opt_resuid, "resuid=%u"}, 1365 {Opt_sb, "sb=%u"}, 1366 {Opt_err_cont, "errors=continue"}, 1367 {Opt_err_panic, "errors=panic"}, 1368 {Opt_err_ro, "errors=remount-ro"}, 1369 {Opt_nouid32, "nouid32"}, 1370 {Opt_debug, "debug"}, 1371 {Opt_removed, "oldalloc"}, 1372 {Opt_removed, "orlov"}, 1373 {Opt_user_xattr, "user_xattr"}, 1374 {Opt_nouser_xattr, "nouser_xattr"}, 1375 {Opt_acl, "acl"}, 1376 {Opt_noacl, "noacl"}, 1377 {Opt_noload, "norecovery"}, 1378 {Opt_noload, "noload"}, 1379 {Opt_removed, "nobh"}, 1380 {Opt_removed, "bh"}, 1381 {Opt_commit, "commit=%u"}, 1382 {Opt_min_batch_time, "min_batch_time=%u"}, 1383 {Opt_max_batch_time, "max_batch_time=%u"}, 1384 {Opt_journal_dev, "journal_dev=%u"}, 1385 {Opt_journal_path, "journal_path=%s"}, 1386 {Opt_journal_checksum, "journal_checksum"}, 1387 {Opt_nojournal_checksum, "nojournal_checksum"}, 1388 {Opt_journal_async_commit, "journal_async_commit"}, 1389 {Opt_abort, "abort"}, 1390 {Opt_data_journal, "data=journal"}, 1391 {Opt_data_ordered, "data=ordered"}, 1392 {Opt_data_writeback, "data=writeback"}, 1393 {Opt_data_err_abort, "data_err=abort"}, 1394 {Opt_data_err_ignore, "data_err=ignore"}, 1395 {Opt_offusrjquota, "usrjquota="}, 1396 {Opt_usrjquota, "usrjquota=%s"}, 1397 {Opt_offgrpjquota, "grpjquota="}, 1398 {Opt_grpjquota, "grpjquota=%s"}, 1399 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1400 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1401 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1402 {Opt_grpquota, "grpquota"}, 1403 {Opt_noquota, "noquota"}, 1404 {Opt_quota, "quota"}, 1405 {Opt_usrquota, "usrquota"}, 1406 {Opt_prjquota, "prjquota"}, 1407 {Opt_barrier, "barrier=%u"}, 1408 {Opt_barrier, "barrier"}, 1409 {Opt_nobarrier, "nobarrier"}, 1410 {Opt_i_version, "i_version"}, 1411 {Opt_dax, "dax"}, 1412 {Opt_stripe, "stripe=%u"}, 1413 {Opt_delalloc, "delalloc"}, 1414 {Opt_lazytime, "lazytime"}, 1415 {Opt_nolazytime, "nolazytime"}, 1416 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1417 {Opt_nodelalloc, "nodelalloc"}, 1418 {Opt_removed, "mblk_io_submit"}, 1419 {Opt_removed, "nomblk_io_submit"}, 1420 {Opt_block_validity, "block_validity"}, 1421 {Opt_noblock_validity, "noblock_validity"}, 1422 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1423 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1424 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1425 {Opt_auto_da_alloc, "auto_da_alloc"}, 1426 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1427 {Opt_dioread_nolock, "dioread_nolock"}, 1428 {Opt_dioread_lock, "dioread_lock"}, 1429 {Opt_discard, "discard"}, 1430 {Opt_nodiscard, "nodiscard"}, 1431 {Opt_init_itable, "init_itable=%u"}, 1432 {Opt_init_itable, "init_itable"}, 1433 {Opt_noinit_itable, "noinit_itable"}, 1434 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1435 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1436 {Opt_nombcache, "nombcache"}, 1437 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1438 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1439 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1440 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1441 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1442 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1443 {Opt_err, NULL}, 1444 }; 1445 1446 static ext4_fsblk_t get_sb_block(void **data) 1447 { 1448 ext4_fsblk_t sb_block; 1449 char *options = (char *) *data; 1450 1451 if (!options || strncmp(options, "sb=", 3) != 0) 1452 return 1; /* Default location */ 1453 1454 options += 3; 1455 /* TODO: use simple_strtoll with >32bit ext4 */ 1456 sb_block = simple_strtoul(options, &options, 0); 1457 if (*options && *options != ',') { 1458 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1459 (char *) *data); 1460 return 1; 1461 } 1462 if (*options == ',') 1463 options++; 1464 *data = (void *) options; 1465 1466 return sb_block; 1467 } 1468 1469 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1470 static const char deprecated_msg[] = 1471 "Mount option \"%s\" will be removed by %s\n" 1472 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1473 1474 #ifdef CONFIG_QUOTA 1475 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1476 { 1477 struct ext4_sb_info *sbi = EXT4_SB(sb); 1478 char *qname; 1479 int ret = -1; 1480 1481 if (sb_any_quota_loaded(sb) && 1482 !sbi->s_qf_names[qtype]) { 1483 ext4_msg(sb, KERN_ERR, 1484 "Cannot change journaled " 1485 "quota options when quota turned on"); 1486 return -1; 1487 } 1488 if (ext4_has_feature_quota(sb)) { 1489 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1490 "ignored when QUOTA feature is enabled"); 1491 return 1; 1492 } 1493 qname = match_strdup(args); 1494 if (!qname) { 1495 ext4_msg(sb, KERN_ERR, 1496 "Not enough memory for storing quotafile name"); 1497 return -1; 1498 } 1499 if (sbi->s_qf_names[qtype]) { 1500 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1501 ret = 1; 1502 else 1503 ext4_msg(sb, KERN_ERR, 1504 "%s quota file already specified", 1505 QTYPE2NAME(qtype)); 1506 goto errout; 1507 } 1508 if (strchr(qname, '/')) { 1509 ext4_msg(sb, KERN_ERR, 1510 "quotafile must be on filesystem root"); 1511 goto errout; 1512 } 1513 sbi->s_qf_names[qtype] = qname; 1514 set_opt(sb, QUOTA); 1515 return 1; 1516 errout: 1517 kfree(qname); 1518 return ret; 1519 } 1520 1521 static int clear_qf_name(struct super_block *sb, int qtype) 1522 { 1523 1524 struct ext4_sb_info *sbi = EXT4_SB(sb); 1525 1526 if (sb_any_quota_loaded(sb) && 1527 sbi->s_qf_names[qtype]) { 1528 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1529 " when quota turned on"); 1530 return -1; 1531 } 1532 kfree(sbi->s_qf_names[qtype]); 1533 sbi->s_qf_names[qtype] = NULL; 1534 return 1; 1535 } 1536 #endif 1537 1538 #define MOPT_SET 0x0001 1539 #define MOPT_CLEAR 0x0002 1540 #define MOPT_NOSUPPORT 0x0004 1541 #define MOPT_EXPLICIT 0x0008 1542 #define MOPT_CLEAR_ERR 0x0010 1543 #define MOPT_GTE0 0x0020 1544 #ifdef CONFIG_QUOTA 1545 #define MOPT_Q 0 1546 #define MOPT_QFMT 0x0040 1547 #else 1548 #define MOPT_Q MOPT_NOSUPPORT 1549 #define MOPT_QFMT MOPT_NOSUPPORT 1550 #endif 1551 #define MOPT_DATAJ 0x0080 1552 #define MOPT_NO_EXT2 0x0100 1553 #define MOPT_NO_EXT3 0x0200 1554 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1555 #define MOPT_STRING 0x0400 1556 1557 static const struct mount_opts { 1558 int token; 1559 int mount_opt; 1560 int flags; 1561 } ext4_mount_opts[] = { 1562 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1563 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1564 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1565 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1566 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1567 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1568 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1569 MOPT_EXT4_ONLY | MOPT_SET}, 1570 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1571 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1572 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1573 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1574 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1575 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1576 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1577 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1578 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1579 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1580 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1581 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1582 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1583 EXT4_MOUNT_JOURNAL_CHECKSUM), 1584 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1585 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1586 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1587 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1588 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1589 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1590 MOPT_NO_EXT2}, 1591 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1592 MOPT_NO_EXT2}, 1593 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1594 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1595 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1596 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1597 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1598 {Opt_commit, 0, MOPT_GTE0}, 1599 {Opt_max_batch_time, 0, MOPT_GTE0}, 1600 {Opt_min_batch_time, 0, MOPT_GTE0}, 1601 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1602 {Opt_init_itable, 0, MOPT_GTE0}, 1603 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1604 {Opt_stripe, 0, MOPT_GTE0}, 1605 {Opt_resuid, 0, MOPT_GTE0}, 1606 {Opt_resgid, 0, MOPT_GTE0}, 1607 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1608 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1609 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1610 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1611 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1612 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1613 MOPT_NO_EXT2 | MOPT_DATAJ}, 1614 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1615 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1616 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1617 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1618 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1619 #else 1620 {Opt_acl, 0, MOPT_NOSUPPORT}, 1621 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1622 #endif 1623 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1624 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1625 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1626 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1627 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1628 MOPT_SET | MOPT_Q}, 1629 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1630 MOPT_SET | MOPT_Q}, 1631 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1632 MOPT_SET | MOPT_Q}, 1633 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1634 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1635 MOPT_CLEAR | MOPT_Q}, 1636 {Opt_usrjquota, 0, MOPT_Q}, 1637 {Opt_grpjquota, 0, MOPT_Q}, 1638 {Opt_offusrjquota, 0, MOPT_Q}, 1639 {Opt_offgrpjquota, 0, MOPT_Q}, 1640 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1641 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1642 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1643 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1644 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1645 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1646 {Opt_err, 0, 0} 1647 }; 1648 1649 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1650 substring_t *args, unsigned long *journal_devnum, 1651 unsigned int *journal_ioprio, int is_remount) 1652 { 1653 struct ext4_sb_info *sbi = EXT4_SB(sb); 1654 const struct mount_opts *m; 1655 kuid_t uid; 1656 kgid_t gid; 1657 int arg = 0; 1658 1659 #ifdef CONFIG_QUOTA 1660 if (token == Opt_usrjquota) 1661 return set_qf_name(sb, USRQUOTA, &args[0]); 1662 else if (token == Opt_grpjquota) 1663 return set_qf_name(sb, GRPQUOTA, &args[0]); 1664 else if (token == Opt_offusrjquota) 1665 return clear_qf_name(sb, USRQUOTA); 1666 else if (token == Opt_offgrpjquota) 1667 return clear_qf_name(sb, GRPQUOTA); 1668 #endif 1669 switch (token) { 1670 case Opt_noacl: 1671 case Opt_nouser_xattr: 1672 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1673 break; 1674 case Opt_sb: 1675 return 1; /* handled by get_sb_block() */ 1676 case Opt_removed: 1677 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1678 return 1; 1679 case Opt_abort: 1680 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1681 return 1; 1682 case Opt_i_version: 1683 sb->s_flags |= SB_I_VERSION; 1684 return 1; 1685 case Opt_lazytime: 1686 sb->s_flags |= SB_LAZYTIME; 1687 return 1; 1688 case Opt_nolazytime: 1689 sb->s_flags &= ~SB_LAZYTIME; 1690 return 1; 1691 } 1692 1693 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1694 if (token == m->token) 1695 break; 1696 1697 if (m->token == Opt_err) { 1698 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1699 "or missing value", opt); 1700 return -1; 1701 } 1702 1703 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1704 ext4_msg(sb, KERN_ERR, 1705 "Mount option \"%s\" incompatible with ext2", opt); 1706 return -1; 1707 } 1708 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1709 ext4_msg(sb, KERN_ERR, 1710 "Mount option \"%s\" incompatible with ext3", opt); 1711 return -1; 1712 } 1713 1714 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1715 return -1; 1716 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1717 return -1; 1718 if (m->flags & MOPT_EXPLICIT) { 1719 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1720 set_opt2(sb, EXPLICIT_DELALLOC); 1721 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1722 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1723 } else 1724 return -1; 1725 } 1726 if (m->flags & MOPT_CLEAR_ERR) 1727 clear_opt(sb, ERRORS_MASK); 1728 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1729 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1730 "options when quota turned on"); 1731 return -1; 1732 } 1733 1734 if (m->flags & MOPT_NOSUPPORT) { 1735 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1736 } else if (token == Opt_commit) { 1737 if (arg == 0) 1738 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1739 sbi->s_commit_interval = HZ * arg; 1740 } else if (token == Opt_debug_want_extra_isize) { 1741 sbi->s_want_extra_isize = arg; 1742 } else if (token == Opt_max_batch_time) { 1743 sbi->s_max_batch_time = arg; 1744 } else if (token == Opt_min_batch_time) { 1745 sbi->s_min_batch_time = arg; 1746 } else if (token == Opt_inode_readahead_blks) { 1747 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1748 ext4_msg(sb, KERN_ERR, 1749 "EXT4-fs: inode_readahead_blks must be " 1750 "0 or a power of 2 smaller than 2^31"); 1751 return -1; 1752 } 1753 sbi->s_inode_readahead_blks = arg; 1754 } else if (token == Opt_init_itable) { 1755 set_opt(sb, INIT_INODE_TABLE); 1756 if (!args->from) 1757 arg = EXT4_DEF_LI_WAIT_MULT; 1758 sbi->s_li_wait_mult = arg; 1759 } else if (token == Opt_max_dir_size_kb) { 1760 sbi->s_max_dir_size_kb = arg; 1761 } else if (token == Opt_stripe) { 1762 sbi->s_stripe = arg; 1763 } else if (token == Opt_resuid) { 1764 uid = make_kuid(current_user_ns(), arg); 1765 if (!uid_valid(uid)) { 1766 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1767 return -1; 1768 } 1769 sbi->s_resuid = uid; 1770 } else if (token == Opt_resgid) { 1771 gid = make_kgid(current_user_ns(), arg); 1772 if (!gid_valid(gid)) { 1773 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1774 return -1; 1775 } 1776 sbi->s_resgid = gid; 1777 } else if (token == Opt_journal_dev) { 1778 if (is_remount) { 1779 ext4_msg(sb, KERN_ERR, 1780 "Cannot specify journal on remount"); 1781 return -1; 1782 } 1783 *journal_devnum = arg; 1784 } else if (token == Opt_journal_path) { 1785 char *journal_path; 1786 struct inode *journal_inode; 1787 struct path path; 1788 int error; 1789 1790 if (is_remount) { 1791 ext4_msg(sb, KERN_ERR, 1792 "Cannot specify journal on remount"); 1793 return -1; 1794 } 1795 journal_path = match_strdup(&args[0]); 1796 if (!journal_path) { 1797 ext4_msg(sb, KERN_ERR, "error: could not dup " 1798 "journal device string"); 1799 return -1; 1800 } 1801 1802 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1803 if (error) { 1804 ext4_msg(sb, KERN_ERR, "error: could not find " 1805 "journal device path: error %d", error); 1806 kfree(journal_path); 1807 return -1; 1808 } 1809 1810 journal_inode = d_inode(path.dentry); 1811 if (!S_ISBLK(journal_inode->i_mode)) { 1812 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1813 "is not a block device", journal_path); 1814 path_put(&path); 1815 kfree(journal_path); 1816 return -1; 1817 } 1818 1819 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1820 path_put(&path); 1821 kfree(journal_path); 1822 } else if (token == Opt_journal_ioprio) { 1823 if (arg > 7) { 1824 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1825 " (must be 0-7)"); 1826 return -1; 1827 } 1828 *journal_ioprio = 1829 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1830 } else if (token == Opt_test_dummy_encryption) { 1831 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1832 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1833 ext4_msg(sb, KERN_WARNING, 1834 "Test dummy encryption mode enabled"); 1835 #else 1836 ext4_msg(sb, KERN_WARNING, 1837 "Test dummy encryption mount option ignored"); 1838 #endif 1839 } else if (m->flags & MOPT_DATAJ) { 1840 if (is_remount) { 1841 if (!sbi->s_journal) 1842 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1843 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1844 ext4_msg(sb, KERN_ERR, 1845 "Cannot change data mode on remount"); 1846 return -1; 1847 } 1848 } else { 1849 clear_opt(sb, DATA_FLAGS); 1850 sbi->s_mount_opt |= m->mount_opt; 1851 } 1852 #ifdef CONFIG_QUOTA 1853 } else if (m->flags & MOPT_QFMT) { 1854 if (sb_any_quota_loaded(sb) && 1855 sbi->s_jquota_fmt != m->mount_opt) { 1856 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1857 "quota options when quota turned on"); 1858 return -1; 1859 } 1860 if (ext4_has_feature_quota(sb)) { 1861 ext4_msg(sb, KERN_INFO, 1862 "Quota format mount options ignored " 1863 "when QUOTA feature is enabled"); 1864 return 1; 1865 } 1866 sbi->s_jquota_fmt = m->mount_opt; 1867 #endif 1868 } else if (token == Opt_dax) { 1869 #ifdef CONFIG_FS_DAX 1870 ext4_msg(sb, KERN_WARNING, 1871 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1872 sbi->s_mount_opt |= m->mount_opt; 1873 #else 1874 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1875 return -1; 1876 #endif 1877 } else if (token == Opt_data_err_abort) { 1878 sbi->s_mount_opt |= m->mount_opt; 1879 } else if (token == Opt_data_err_ignore) { 1880 sbi->s_mount_opt &= ~m->mount_opt; 1881 } else { 1882 if (!args->from) 1883 arg = 1; 1884 if (m->flags & MOPT_CLEAR) 1885 arg = !arg; 1886 else if (unlikely(!(m->flags & MOPT_SET))) { 1887 ext4_msg(sb, KERN_WARNING, 1888 "buggy handling of option %s", opt); 1889 WARN_ON(1); 1890 return -1; 1891 } 1892 if (arg != 0) 1893 sbi->s_mount_opt |= m->mount_opt; 1894 else 1895 sbi->s_mount_opt &= ~m->mount_opt; 1896 } 1897 return 1; 1898 } 1899 1900 static int parse_options(char *options, struct super_block *sb, 1901 unsigned long *journal_devnum, 1902 unsigned int *journal_ioprio, 1903 int is_remount) 1904 { 1905 struct ext4_sb_info *sbi = EXT4_SB(sb); 1906 char *p; 1907 substring_t args[MAX_OPT_ARGS]; 1908 int token; 1909 1910 if (!options) 1911 return 1; 1912 1913 while ((p = strsep(&options, ",")) != NULL) { 1914 if (!*p) 1915 continue; 1916 /* 1917 * Initialize args struct so we know whether arg was 1918 * found; some options take optional arguments. 1919 */ 1920 args[0].to = args[0].from = NULL; 1921 token = match_token(p, tokens, args); 1922 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1923 journal_ioprio, is_remount) < 0) 1924 return 0; 1925 } 1926 #ifdef CONFIG_QUOTA 1927 /* 1928 * We do the test below only for project quotas. 'usrquota' and 1929 * 'grpquota' mount options are allowed even without quota feature 1930 * to support legacy quotas in quota files. 1931 */ 1932 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1933 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1934 "Cannot enable project quota enforcement."); 1935 return 0; 1936 } 1937 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1938 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1939 clear_opt(sb, USRQUOTA); 1940 1941 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1942 clear_opt(sb, GRPQUOTA); 1943 1944 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1945 ext4_msg(sb, KERN_ERR, "old and new quota " 1946 "format mixing"); 1947 return 0; 1948 } 1949 1950 if (!sbi->s_jquota_fmt) { 1951 ext4_msg(sb, KERN_ERR, "journaled quota format " 1952 "not specified"); 1953 return 0; 1954 } 1955 } 1956 #endif 1957 if (test_opt(sb, DIOREAD_NOLOCK)) { 1958 int blocksize = 1959 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1960 1961 if (blocksize < PAGE_SIZE) { 1962 ext4_msg(sb, KERN_ERR, "can't mount with " 1963 "dioread_nolock if block size != PAGE_SIZE"); 1964 return 0; 1965 } 1966 } 1967 return 1; 1968 } 1969 1970 static inline void ext4_show_quota_options(struct seq_file *seq, 1971 struct super_block *sb) 1972 { 1973 #if defined(CONFIG_QUOTA) 1974 struct ext4_sb_info *sbi = EXT4_SB(sb); 1975 1976 if (sbi->s_jquota_fmt) { 1977 char *fmtname = ""; 1978 1979 switch (sbi->s_jquota_fmt) { 1980 case QFMT_VFS_OLD: 1981 fmtname = "vfsold"; 1982 break; 1983 case QFMT_VFS_V0: 1984 fmtname = "vfsv0"; 1985 break; 1986 case QFMT_VFS_V1: 1987 fmtname = "vfsv1"; 1988 break; 1989 } 1990 seq_printf(seq, ",jqfmt=%s", fmtname); 1991 } 1992 1993 if (sbi->s_qf_names[USRQUOTA]) 1994 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1995 1996 if (sbi->s_qf_names[GRPQUOTA]) 1997 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1998 #endif 1999 } 2000 2001 static const char *token2str(int token) 2002 { 2003 const struct match_token *t; 2004 2005 for (t = tokens; t->token != Opt_err; t++) 2006 if (t->token == token && !strchr(t->pattern, '=')) 2007 break; 2008 return t->pattern; 2009 } 2010 2011 /* 2012 * Show an option if 2013 * - it's set to a non-default value OR 2014 * - if the per-sb default is different from the global default 2015 */ 2016 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2017 int nodefs) 2018 { 2019 struct ext4_sb_info *sbi = EXT4_SB(sb); 2020 struct ext4_super_block *es = sbi->s_es; 2021 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 2022 const struct mount_opts *m; 2023 char sep = nodefs ? '\n' : ','; 2024 2025 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2026 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2027 2028 if (sbi->s_sb_block != 1) 2029 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2030 2031 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2032 int want_set = m->flags & MOPT_SET; 2033 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2034 (m->flags & MOPT_CLEAR_ERR)) 2035 continue; 2036 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2037 continue; /* skip if same as the default */ 2038 if ((want_set && 2039 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2040 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2041 continue; /* select Opt_noFoo vs Opt_Foo */ 2042 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2043 } 2044 2045 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2046 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2047 SEQ_OPTS_PRINT("resuid=%u", 2048 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2049 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2050 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2051 SEQ_OPTS_PRINT("resgid=%u", 2052 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2053 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2054 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2055 SEQ_OPTS_PUTS("errors=remount-ro"); 2056 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2057 SEQ_OPTS_PUTS("errors=continue"); 2058 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2059 SEQ_OPTS_PUTS("errors=panic"); 2060 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2061 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2062 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2063 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2064 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2065 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2066 if (sb->s_flags & SB_I_VERSION) 2067 SEQ_OPTS_PUTS("i_version"); 2068 if (nodefs || sbi->s_stripe) 2069 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2070 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2071 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2072 SEQ_OPTS_PUTS("data=journal"); 2073 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2074 SEQ_OPTS_PUTS("data=ordered"); 2075 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2076 SEQ_OPTS_PUTS("data=writeback"); 2077 } 2078 if (nodefs || 2079 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2080 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2081 sbi->s_inode_readahead_blks); 2082 2083 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2084 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2085 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2086 if (nodefs || sbi->s_max_dir_size_kb) 2087 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2088 if (test_opt(sb, DATA_ERR_ABORT)) 2089 SEQ_OPTS_PUTS("data_err=abort"); 2090 2091 ext4_show_quota_options(seq, sb); 2092 return 0; 2093 } 2094 2095 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2096 { 2097 return _ext4_show_options(seq, root->d_sb, 0); 2098 } 2099 2100 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2101 { 2102 struct super_block *sb = seq->private; 2103 int rc; 2104 2105 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2106 rc = _ext4_show_options(seq, sb, 1); 2107 seq_puts(seq, "\n"); 2108 return rc; 2109 } 2110 2111 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2112 int read_only) 2113 { 2114 struct ext4_sb_info *sbi = EXT4_SB(sb); 2115 int res = 0; 2116 2117 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2118 ext4_msg(sb, KERN_ERR, "revision level too high, " 2119 "forcing read-only mode"); 2120 res = SB_RDONLY; 2121 } 2122 if (read_only) 2123 goto done; 2124 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2125 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2126 "running e2fsck is recommended"); 2127 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2128 ext4_msg(sb, KERN_WARNING, 2129 "warning: mounting fs with errors, " 2130 "running e2fsck is recommended"); 2131 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2132 le16_to_cpu(es->s_mnt_count) >= 2133 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2134 ext4_msg(sb, KERN_WARNING, 2135 "warning: maximal mount count reached, " 2136 "running e2fsck is recommended"); 2137 else if (le32_to_cpu(es->s_checkinterval) && 2138 (le32_to_cpu(es->s_lastcheck) + 2139 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2140 ext4_msg(sb, KERN_WARNING, 2141 "warning: checktime reached, " 2142 "running e2fsck is recommended"); 2143 if (!sbi->s_journal) 2144 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2145 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2146 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2147 le16_add_cpu(&es->s_mnt_count, 1); 2148 es->s_mtime = cpu_to_le32(get_seconds()); 2149 ext4_update_dynamic_rev(sb); 2150 if (sbi->s_journal) 2151 ext4_set_feature_journal_needs_recovery(sb); 2152 2153 ext4_commit_super(sb, 1); 2154 done: 2155 if (test_opt(sb, DEBUG)) 2156 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2157 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2158 sb->s_blocksize, 2159 sbi->s_groups_count, 2160 EXT4_BLOCKS_PER_GROUP(sb), 2161 EXT4_INODES_PER_GROUP(sb), 2162 sbi->s_mount_opt, sbi->s_mount_opt2); 2163 2164 cleancache_init_fs(sb); 2165 return res; 2166 } 2167 2168 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2169 { 2170 struct ext4_sb_info *sbi = EXT4_SB(sb); 2171 struct flex_groups *new_groups; 2172 int size; 2173 2174 if (!sbi->s_log_groups_per_flex) 2175 return 0; 2176 2177 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2178 if (size <= sbi->s_flex_groups_allocated) 2179 return 0; 2180 2181 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2182 new_groups = kvzalloc(size, GFP_KERNEL); 2183 if (!new_groups) { 2184 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2185 size / (int) sizeof(struct flex_groups)); 2186 return -ENOMEM; 2187 } 2188 2189 if (sbi->s_flex_groups) { 2190 memcpy(new_groups, sbi->s_flex_groups, 2191 (sbi->s_flex_groups_allocated * 2192 sizeof(struct flex_groups))); 2193 kvfree(sbi->s_flex_groups); 2194 } 2195 sbi->s_flex_groups = new_groups; 2196 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2197 return 0; 2198 } 2199 2200 static int ext4_fill_flex_info(struct super_block *sb) 2201 { 2202 struct ext4_sb_info *sbi = EXT4_SB(sb); 2203 struct ext4_group_desc *gdp = NULL; 2204 ext4_group_t flex_group; 2205 int i, err; 2206 2207 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2208 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2209 sbi->s_log_groups_per_flex = 0; 2210 return 1; 2211 } 2212 2213 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2214 if (err) 2215 goto failed; 2216 2217 for (i = 0; i < sbi->s_groups_count; i++) { 2218 gdp = ext4_get_group_desc(sb, i, NULL); 2219 2220 flex_group = ext4_flex_group(sbi, i); 2221 atomic_add(ext4_free_inodes_count(sb, gdp), 2222 &sbi->s_flex_groups[flex_group].free_inodes); 2223 atomic64_add(ext4_free_group_clusters(sb, gdp), 2224 &sbi->s_flex_groups[flex_group].free_clusters); 2225 atomic_add(ext4_used_dirs_count(sb, gdp), 2226 &sbi->s_flex_groups[flex_group].used_dirs); 2227 } 2228 2229 return 1; 2230 failed: 2231 return 0; 2232 } 2233 2234 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2235 struct ext4_group_desc *gdp) 2236 { 2237 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2238 __u16 crc = 0; 2239 __le32 le_group = cpu_to_le32(block_group); 2240 struct ext4_sb_info *sbi = EXT4_SB(sb); 2241 2242 if (ext4_has_metadata_csum(sbi->s_sb)) { 2243 /* Use new metadata_csum algorithm */ 2244 __u32 csum32; 2245 __u16 dummy_csum = 0; 2246 2247 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2248 sizeof(le_group)); 2249 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2250 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2251 sizeof(dummy_csum)); 2252 offset += sizeof(dummy_csum); 2253 if (offset < sbi->s_desc_size) 2254 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2255 sbi->s_desc_size - offset); 2256 2257 crc = csum32 & 0xFFFF; 2258 goto out; 2259 } 2260 2261 /* old crc16 code */ 2262 if (!ext4_has_feature_gdt_csum(sb)) 2263 return 0; 2264 2265 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2266 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2267 crc = crc16(crc, (__u8 *)gdp, offset); 2268 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2269 /* for checksum of struct ext4_group_desc do the rest...*/ 2270 if (ext4_has_feature_64bit(sb) && 2271 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2272 crc = crc16(crc, (__u8 *)gdp + offset, 2273 le16_to_cpu(sbi->s_es->s_desc_size) - 2274 offset); 2275 2276 out: 2277 return cpu_to_le16(crc); 2278 } 2279 2280 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2281 struct ext4_group_desc *gdp) 2282 { 2283 if (ext4_has_group_desc_csum(sb) && 2284 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2285 return 0; 2286 2287 return 1; 2288 } 2289 2290 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2291 struct ext4_group_desc *gdp) 2292 { 2293 if (!ext4_has_group_desc_csum(sb)) 2294 return; 2295 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2296 } 2297 2298 /* Called at mount-time, super-block is locked */ 2299 static int ext4_check_descriptors(struct super_block *sb, 2300 ext4_fsblk_t sb_block, 2301 ext4_group_t *first_not_zeroed) 2302 { 2303 struct ext4_sb_info *sbi = EXT4_SB(sb); 2304 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2305 ext4_fsblk_t last_block; 2306 ext4_fsblk_t block_bitmap; 2307 ext4_fsblk_t inode_bitmap; 2308 ext4_fsblk_t inode_table; 2309 int flexbg_flag = 0; 2310 ext4_group_t i, grp = sbi->s_groups_count; 2311 2312 if (ext4_has_feature_flex_bg(sb)) 2313 flexbg_flag = 1; 2314 2315 ext4_debug("Checking group descriptors"); 2316 2317 for (i = 0; i < sbi->s_groups_count; i++) { 2318 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2319 2320 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2321 last_block = ext4_blocks_count(sbi->s_es) - 1; 2322 else 2323 last_block = first_block + 2324 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2325 2326 if ((grp == sbi->s_groups_count) && 2327 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2328 grp = i; 2329 2330 block_bitmap = ext4_block_bitmap(sb, gdp); 2331 if (block_bitmap == sb_block) { 2332 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2333 "Block bitmap for group %u overlaps " 2334 "superblock", i); 2335 } 2336 if (block_bitmap < first_block || block_bitmap > last_block) { 2337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2338 "Block bitmap for group %u not in group " 2339 "(block %llu)!", i, block_bitmap); 2340 return 0; 2341 } 2342 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2343 if (inode_bitmap == sb_block) { 2344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2345 "Inode bitmap for group %u overlaps " 2346 "superblock", i); 2347 } 2348 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2349 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2350 "Inode bitmap for group %u not in group " 2351 "(block %llu)!", i, inode_bitmap); 2352 return 0; 2353 } 2354 inode_table = ext4_inode_table(sb, gdp); 2355 if (inode_table == sb_block) { 2356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2357 "Inode table for group %u overlaps " 2358 "superblock", i); 2359 } 2360 if (inode_table < first_block || 2361 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2362 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2363 "Inode table for group %u not in group " 2364 "(block %llu)!", i, inode_table); 2365 return 0; 2366 } 2367 ext4_lock_group(sb, i); 2368 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2369 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2370 "Checksum for group %u failed (%u!=%u)", 2371 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2372 gdp)), le16_to_cpu(gdp->bg_checksum)); 2373 if (!sb_rdonly(sb)) { 2374 ext4_unlock_group(sb, i); 2375 return 0; 2376 } 2377 } 2378 ext4_unlock_group(sb, i); 2379 if (!flexbg_flag) 2380 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2381 } 2382 if (NULL != first_not_zeroed) 2383 *first_not_zeroed = grp; 2384 return 1; 2385 } 2386 2387 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2388 * the superblock) which were deleted from all directories, but held open by 2389 * a process at the time of a crash. We walk the list and try to delete these 2390 * inodes at recovery time (only with a read-write filesystem). 2391 * 2392 * In order to keep the orphan inode chain consistent during traversal (in 2393 * case of crash during recovery), we link each inode into the superblock 2394 * orphan list_head and handle it the same way as an inode deletion during 2395 * normal operation (which journals the operations for us). 2396 * 2397 * We only do an iget() and an iput() on each inode, which is very safe if we 2398 * accidentally point at an in-use or already deleted inode. The worst that 2399 * can happen in this case is that we get a "bit already cleared" message from 2400 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2401 * e2fsck was run on this filesystem, and it must have already done the orphan 2402 * inode cleanup for us, so we can safely abort without any further action. 2403 */ 2404 static void ext4_orphan_cleanup(struct super_block *sb, 2405 struct ext4_super_block *es) 2406 { 2407 unsigned int s_flags = sb->s_flags; 2408 int ret, nr_orphans = 0, nr_truncates = 0; 2409 #ifdef CONFIG_QUOTA 2410 int quota_update = 0; 2411 int i; 2412 #endif 2413 if (!es->s_last_orphan) { 2414 jbd_debug(4, "no orphan inodes to clean up\n"); 2415 return; 2416 } 2417 2418 if (bdev_read_only(sb->s_bdev)) { 2419 ext4_msg(sb, KERN_ERR, "write access " 2420 "unavailable, skipping orphan cleanup"); 2421 return; 2422 } 2423 2424 /* Check if feature set would not allow a r/w mount */ 2425 if (!ext4_feature_set_ok(sb, 0)) { 2426 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2427 "unknown ROCOMPAT features"); 2428 return; 2429 } 2430 2431 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2432 /* don't clear list on RO mount w/ errors */ 2433 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2434 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2435 "clearing orphan list.\n"); 2436 es->s_last_orphan = 0; 2437 } 2438 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2439 return; 2440 } 2441 2442 if (s_flags & SB_RDONLY) { 2443 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2444 sb->s_flags &= ~SB_RDONLY; 2445 } 2446 #ifdef CONFIG_QUOTA 2447 /* Needed for iput() to work correctly and not trash data */ 2448 sb->s_flags |= SB_ACTIVE; 2449 2450 /* 2451 * Turn on quotas which were not enabled for read-only mounts if 2452 * filesystem has quota feature, so that they are updated correctly. 2453 */ 2454 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2455 int ret = ext4_enable_quotas(sb); 2456 2457 if (!ret) 2458 quota_update = 1; 2459 else 2460 ext4_msg(sb, KERN_ERR, 2461 "Cannot turn on quotas: error %d", ret); 2462 } 2463 2464 /* Turn on journaled quotas used for old sytle */ 2465 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2466 if (EXT4_SB(sb)->s_qf_names[i]) { 2467 int ret = ext4_quota_on_mount(sb, i); 2468 2469 if (!ret) 2470 quota_update = 1; 2471 else 2472 ext4_msg(sb, KERN_ERR, 2473 "Cannot turn on journaled " 2474 "quota: type %d: error %d", i, ret); 2475 } 2476 } 2477 #endif 2478 2479 while (es->s_last_orphan) { 2480 struct inode *inode; 2481 2482 /* 2483 * We may have encountered an error during cleanup; if 2484 * so, skip the rest. 2485 */ 2486 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2487 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2488 es->s_last_orphan = 0; 2489 break; 2490 } 2491 2492 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2493 if (IS_ERR(inode)) { 2494 es->s_last_orphan = 0; 2495 break; 2496 } 2497 2498 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2499 dquot_initialize(inode); 2500 if (inode->i_nlink) { 2501 if (test_opt(sb, DEBUG)) 2502 ext4_msg(sb, KERN_DEBUG, 2503 "%s: truncating inode %lu to %lld bytes", 2504 __func__, inode->i_ino, inode->i_size); 2505 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2506 inode->i_ino, inode->i_size); 2507 inode_lock(inode); 2508 truncate_inode_pages(inode->i_mapping, inode->i_size); 2509 ret = ext4_truncate(inode); 2510 if (ret) 2511 ext4_std_error(inode->i_sb, ret); 2512 inode_unlock(inode); 2513 nr_truncates++; 2514 } else { 2515 if (test_opt(sb, DEBUG)) 2516 ext4_msg(sb, KERN_DEBUG, 2517 "%s: deleting unreferenced inode %lu", 2518 __func__, inode->i_ino); 2519 jbd_debug(2, "deleting unreferenced inode %lu\n", 2520 inode->i_ino); 2521 nr_orphans++; 2522 } 2523 iput(inode); /* The delete magic happens here! */ 2524 } 2525 2526 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2527 2528 if (nr_orphans) 2529 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2530 PLURAL(nr_orphans)); 2531 if (nr_truncates) 2532 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2533 PLURAL(nr_truncates)); 2534 #ifdef CONFIG_QUOTA 2535 /* Turn off quotas if they were enabled for orphan cleanup */ 2536 if (quota_update) { 2537 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2538 if (sb_dqopt(sb)->files[i]) 2539 dquot_quota_off(sb, i); 2540 } 2541 } 2542 #endif 2543 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2544 } 2545 2546 /* 2547 * Maximal extent format file size. 2548 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2549 * extent format containers, within a sector_t, and within i_blocks 2550 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2551 * so that won't be a limiting factor. 2552 * 2553 * However there is other limiting factor. We do store extents in the form 2554 * of starting block and length, hence the resulting length of the extent 2555 * covering maximum file size must fit into on-disk format containers as 2556 * well. Given that length is always by 1 unit bigger than max unit (because 2557 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2558 * 2559 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2560 */ 2561 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2562 { 2563 loff_t res; 2564 loff_t upper_limit = MAX_LFS_FILESIZE; 2565 2566 /* small i_blocks in vfs inode? */ 2567 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2568 /* 2569 * CONFIG_LBDAF is not enabled implies the inode 2570 * i_block represent total blocks in 512 bytes 2571 * 32 == size of vfs inode i_blocks * 8 2572 */ 2573 upper_limit = (1LL << 32) - 1; 2574 2575 /* total blocks in file system block size */ 2576 upper_limit >>= (blkbits - 9); 2577 upper_limit <<= blkbits; 2578 } 2579 2580 /* 2581 * 32-bit extent-start container, ee_block. We lower the maxbytes 2582 * by one fs block, so ee_len can cover the extent of maximum file 2583 * size 2584 */ 2585 res = (1LL << 32) - 1; 2586 res <<= blkbits; 2587 2588 /* Sanity check against vm- & vfs- imposed limits */ 2589 if (res > upper_limit) 2590 res = upper_limit; 2591 2592 return res; 2593 } 2594 2595 /* 2596 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2597 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2598 * We need to be 1 filesystem block less than the 2^48 sector limit. 2599 */ 2600 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2601 { 2602 loff_t res = EXT4_NDIR_BLOCKS; 2603 int meta_blocks; 2604 loff_t upper_limit; 2605 /* This is calculated to be the largest file size for a dense, block 2606 * mapped file such that the file's total number of 512-byte sectors, 2607 * including data and all indirect blocks, does not exceed (2^48 - 1). 2608 * 2609 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2610 * number of 512-byte sectors of the file. 2611 */ 2612 2613 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2614 /* 2615 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2616 * the inode i_block field represents total file blocks in 2617 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2618 */ 2619 upper_limit = (1LL << 32) - 1; 2620 2621 /* total blocks in file system block size */ 2622 upper_limit >>= (bits - 9); 2623 2624 } else { 2625 /* 2626 * We use 48 bit ext4_inode i_blocks 2627 * With EXT4_HUGE_FILE_FL set the i_blocks 2628 * represent total number of blocks in 2629 * file system block size 2630 */ 2631 upper_limit = (1LL << 48) - 1; 2632 2633 } 2634 2635 /* indirect blocks */ 2636 meta_blocks = 1; 2637 /* double indirect blocks */ 2638 meta_blocks += 1 + (1LL << (bits-2)); 2639 /* tripple indirect blocks */ 2640 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2641 2642 upper_limit -= meta_blocks; 2643 upper_limit <<= bits; 2644 2645 res += 1LL << (bits-2); 2646 res += 1LL << (2*(bits-2)); 2647 res += 1LL << (3*(bits-2)); 2648 res <<= bits; 2649 if (res > upper_limit) 2650 res = upper_limit; 2651 2652 if (res > MAX_LFS_FILESIZE) 2653 res = MAX_LFS_FILESIZE; 2654 2655 return res; 2656 } 2657 2658 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2659 ext4_fsblk_t logical_sb_block, int nr) 2660 { 2661 struct ext4_sb_info *sbi = EXT4_SB(sb); 2662 ext4_group_t bg, first_meta_bg; 2663 int has_super = 0; 2664 2665 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2666 2667 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2668 return logical_sb_block + nr + 1; 2669 bg = sbi->s_desc_per_block * nr; 2670 if (ext4_bg_has_super(sb, bg)) 2671 has_super = 1; 2672 2673 /* 2674 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2675 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2676 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2677 * compensate. 2678 */ 2679 if (sb->s_blocksize == 1024 && nr == 0 && 2680 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2681 has_super++; 2682 2683 return (has_super + ext4_group_first_block_no(sb, bg)); 2684 } 2685 2686 /** 2687 * ext4_get_stripe_size: Get the stripe size. 2688 * @sbi: In memory super block info 2689 * 2690 * If we have specified it via mount option, then 2691 * use the mount option value. If the value specified at mount time is 2692 * greater than the blocks per group use the super block value. 2693 * If the super block value is greater than blocks per group return 0. 2694 * Allocator needs it be less than blocks per group. 2695 * 2696 */ 2697 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2698 { 2699 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2700 unsigned long stripe_width = 2701 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2702 int ret; 2703 2704 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2705 ret = sbi->s_stripe; 2706 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2707 ret = stripe_width; 2708 else if (stride && stride <= sbi->s_blocks_per_group) 2709 ret = stride; 2710 else 2711 ret = 0; 2712 2713 /* 2714 * If the stripe width is 1, this makes no sense and 2715 * we set it to 0 to turn off stripe handling code. 2716 */ 2717 if (ret <= 1) 2718 ret = 0; 2719 2720 return ret; 2721 } 2722 2723 /* 2724 * Check whether this filesystem can be mounted based on 2725 * the features present and the RDONLY/RDWR mount requested. 2726 * Returns 1 if this filesystem can be mounted as requested, 2727 * 0 if it cannot be. 2728 */ 2729 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2730 { 2731 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2732 ext4_msg(sb, KERN_ERR, 2733 "Couldn't mount because of " 2734 "unsupported optional features (%x)", 2735 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2736 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2737 return 0; 2738 } 2739 2740 if (readonly) 2741 return 1; 2742 2743 if (ext4_has_feature_readonly(sb)) { 2744 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2745 sb->s_flags |= SB_RDONLY; 2746 return 1; 2747 } 2748 2749 /* Check that feature set is OK for a read-write mount */ 2750 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2751 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2752 "unsupported optional features (%x)", 2753 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2754 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2755 return 0; 2756 } 2757 /* 2758 * Large file size enabled file system can only be mounted 2759 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2760 */ 2761 if (ext4_has_feature_huge_file(sb)) { 2762 if (sizeof(blkcnt_t) < sizeof(u64)) { 2763 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2764 "cannot be mounted RDWR without " 2765 "CONFIG_LBDAF"); 2766 return 0; 2767 } 2768 } 2769 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2770 ext4_msg(sb, KERN_ERR, 2771 "Can't support bigalloc feature without " 2772 "extents feature\n"); 2773 return 0; 2774 } 2775 2776 #ifndef CONFIG_QUOTA 2777 if (ext4_has_feature_quota(sb) && !readonly) { 2778 ext4_msg(sb, KERN_ERR, 2779 "Filesystem with quota feature cannot be mounted RDWR " 2780 "without CONFIG_QUOTA"); 2781 return 0; 2782 } 2783 if (ext4_has_feature_project(sb) && !readonly) { 2784 ext4_msg(sb, KERN_ERR, 2785 "Filesystem with project quota feature cannot be mounted RDWR " 2786 "without CONFIG_QUOTA"); 2787 return 0; 2788 } 2789 #endif /* CONFIG_QUOTA */ 2790 return 1; 2791 } 2792 2793 /* 2794 * This function is called once a day if we have errors logged 2795 * on the file system 2796 */ 2797 static void print_daily_error_info(struct timer_list *t) 2798 { 2799 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2800 struct super_block *sb = sbi->s_sb; 2801 struct ext4_super_block *es = sbi->s_es; 2802 2803 if (es->s_error_count) 2804 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2805 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2806 le32_to_cpu(es->s_error_count)); 2807 if (es->s_first_error_time) { 2808 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2809 sb->s_id, le32_to_cpu(es->s_first_error_time), 2810 (int) sizeof(es->s_first_error_func), 2811 es->s_first_error_func, 2812 le32_to_cpu(es->s_first_error_line)); 2813 if (es->s_first_error_ino) 2814 printk(KERN_CONT ": inode %u", 2815 le32_to_cpu(es->s_first_error_ino)); 2816 if (es->s_first_error_block) 2817 printk(KERN_CONT ": block %llu", (unsigned long long) 2818 le64_to_cpu(es->s_first_error_block)); 2819 printk(KERN_CONT "\n"); 2820 } 2821 if (es->s_last_error_time) { 2822 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2823 sb->s_id, le32_to_cpu(es->s_last_error_time), 2824 (int) sizeof(es->s_last_error_func), 2825 es->s_last_error_func, 2826 le32_to_cpu(es->s_last_error_line)); 2827 if (es->s_last_error_ino) 2828 printk(KERN_CONT ": inode %u", 2829 le32_to_cpu(es->s_last_error_ino)); 2830 if (es->s_last_error_block) 2831 printk(KERN_CONT ": block %llu", (unsigned long long) 2832 le64_to_cpu(es->s_last_error_block)); 2833 printk(KERN_CONT "\n"); 2834 } 2835 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2836 } 2837 2838 /* Find next suitable group and run ext4_init_inode_table */ 2839 static int ext4_run_li_request(struct ext4_li_request *elr) 2840 { 2841 struct ext4_group_desc *gdp = NULL; 2842 ext4_group_t group, ngroups; 2843 struct super_block *sb; 2844 unsigned long timeout = 0; 2845 int ret = 0; 2846 2847 sb = elr->lr_super; 2848 ngroups = EXT4_SB(sb)->s_groups_count; 2849 2850 for (group = elr->lr_next_group; group < ngroups; group++) { 2851 gdp = ext4_get_group_desc(sb, group, NULL); 2852 if (!gdp) { 2853 ret = 1; 2854 break; 2855 } 2856 2857 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2858 break; 2859 } 2860 2861 if (group >= ngroups) 2862 ret = 1; 2863 2864 if (!ret) { 2865 timeout = jiffies; 2866 ret = ext4_init_inode_table(sb, group, 2867 elr->lr_timeout ? 0 : 1); 2868 if (elr->lr_timeout == 0) { 2869 timeout = (jiffies - timeout) * 2870 elr->lr_sbi->s_li_wait_mult; 2871 elr->lr_timeout = timeout; 2872 } 2873 elr->lr_next_sched = jiffies + elr->lr_timeout; 2874 elr->lr_next_group = group + 1; 2875 } 2876 return ret; 2877 } 2878 2879 /* 2880 * Remove lr_request from the list_request and free the 2881 * request structure. Should be called with li_list_mtx held 2882 */ 2883 static void ext4_remove_li_request(struct ext4_li_request *elr) 2884 { 2885 struct ext4_sb_info *sbi; 2886 2887 if (!elr) 2888 return; 2889 2890 sbi = elr->lr_sbi; 2891 2892 list_del(&elr->lr_request); 2893 sbi->s_li_request = NULL; 2894 kfree(elr); 2895 } 2896 2897 static void ext4_unregister_li_request(struct super_block *sb) 2898 { 2899 mutex_lock(&ext4_li_mtx); 2900 if (!ext4_li_info) { 2901 mutex_unlock(&ext4_li_mtx); 2902 return; 2903 } 2904 2905 mutex_lock(&ext4_li_info->li_list_mtx); 2906 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2907 mutex_unlock(&ext4_li_info->li_list_mtx); 2908 mutex_unlock(&ext4_li_mtx); 2909 } 2910 2911 static struct task_struct *ext4_lazyinit_task; 2912 2913 /* 2914 * This is the function where ext4lazyinit thread lives. It walks 2915 * through the request list searching for next scheduled filesystem. 2916 * When such a fs is found, run the lazy initialization request 2917 * (ext4_rn_li_request) and keep track of the time spend in this 2918 * function. Based on that time we compute next schedule time of 2919 * the request. When walking through the list is complete, compute 2920 * next waking time and put itself into sleep. 2921 */ 2922 static int ext4_lazyinit_thread(void *arg) 2923 { 2924 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2925 struct list_head *pos, *n; 2926 struct ext4_li_request *elr; 2927 unsigned long next_wakeup, cur; 2928 2929 BUG_ON(NULL == eli); 2930 2931 cont_thread: 2932 while (true) { 2933 next_wakeup = MAX_JIFFY_OFFSET; 2934 2935 mutex_lock(&eli->li_list_mtx); 2936 if (list_empty(&eli->li_request_list)) { 2937 mutex_unlock(&eli->li_list_mtx); 2938 goto exit_thread; 2939 } 2940 list_for_each_safe(pos, n, &eli->li_request_list) { 2941 int err = 0; 2942 int progress = 0; 2943 elr = list_entry(pos, struct ext4_li_request, 2944 lr_request); 2945 2946 if (time_before(jiffies, elr->lr_next_sched)) { 2947 if (time_before(elr->lr_next_sched, next_wakeup)) 2948 next_wakeup = elr->lr_next_sched; 2949 continue; 2950 } 2951 if (down_read_trylock(&elr->lr_super->s_umount)) { 2952 if (sb_start_write_trylock(elr->lr_super)) { 2953 progress = 1; 2954 /* 2955 * We hold sb->s_umount, sb can not 2956 * be removed from the list, it is 2957 * now safe to drop li_list_mtx 2958 */ 2959 mutex_unlock(&eli->li_list_mtx); 2960 err = ext4_run_li_request(elr); 2961 sb_end_write(elr->lr_super); 2962 mutex_lock(&eli->li_list_mtx); 2963 n = pos->next; 2964 } 2965 up_read((&elr->lr_super->s_umount)); 2966 } 2967 /* error, remove the lazy_init job */ 2968 if (err) { 2969 ext4_remove_li_request(elr); 2970 continue; 2971 } 2972 if (!progress) { 2973 elr->lr_next_sched = jiffies + 2974 (prandom_u32() 2975 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2976 } 2977 if (time_before(elr->lr_next_sched, next_wakeup)) 2978 next_wakeup = elr->lr_next_sched; 2979 } 2980 mutex_unlock(&eli->li_list_mtx); 2981 2982 try_to_freeze(); 2983 2984 cur = jiffies; 2985 if ((time_after_eq(cur, next_wakeup)) || 2986 (MAX_JIFFY_OFFSET == next_wakeup)) { 2987 cond_resched(); 2988 continue; 2989 } 2990 2991 schedule_timeout_interruptible(next_wakeup - cur); 2992 2993 if (kthread_should_stop()) { 2994 ext4_clear_request_list(); 2995 goto exit_thread; 2996 } 2997 } 2998 2999 exit_thread: 3000 /* 3001 * It looks like the request list is empty, but we need 3002 * to check it under the li_list_mtx lock, to prevent any 3003 * additions into it, and of course we should lock ext4_li_mtx 3004 * to atomically free the list and ext4_li_info, because at 3005 * this point another ext4 filesystem could be registering 3006 * new one. 3007 */ 3008 mutex_lock(&ext4_li_mtx); 3009 mutex_lock(&eli->li_list_mtx); 3010 if (!list_empty(&eli->li_request_list)) { 3011 mutex_unlock(&eli->li_list_mtx); 3012 mutex_unlock(&ext4_li_mtx); 3013 goto cont_thread; 3014 } 3015 mutex_unlock(&eli->li_list_mtx); 3016 kfree(ext4_li_info); 3017 ext4_li_info = NULL; 3018 mutex_unlock(&ext4_li_mtx); 3019 3020 return 0; 3021 } 3022 3023 static void ext4_clear_request_list(void) 3024 { 3025 struct list_head *pos, *n; 3026 struct ext4_li_request *elr; 3027 3028 mutex_lock(&ext4_li_info->li_list_mtx); 3029 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3030 elr = list_entry(pos, struct ext4_li_request, 3031 lr_request); 3032 ext4_remove_li_request(elr); 3033 } 3034 mutex_unlock(&ext4_li_info->li_list_mtx); 3035 } 3036 3037 static int ext4_run_lazyinit_thread(void) 3038 { 3039 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3040 ext4_li_info, "ext4lazyinit"); 3041 if (IS_ERR(ext4_lazyinit_task)) { 3042 int err = PTR_ERR(ext4_lazyinit_task); 3043 ext4_clear_request_list(); 3044 kfree(ext4_li_info); 3045 ext4_li_info = NULL; 3046 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3047 "initialization thread\n", 3048 err); 3049 return err; 3050 } 3051 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3052 return 0; 3053 } 3054 3055 /* 3056 * Check whether it make sense to run itable init. thread or not. 3057 * If there is at least one uninitialized inode table, return 3058 * corresponding group number, else the loop goes through all 3059 * groups and return total number of groups. 3060 */ 3061 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3062 { 3063 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3064 struct ext4_group_desc *gdp = NULL; 3065 3066 for (group = 0; group < ngroups; group++) { 3067 gdp = ext4_get_group_desc(sb, group, NULL); 3068 if (!gdp) 3069 continue; 3070 3071 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3072 break; 3073 } 3074 3075 return group; 3076 } 3077 3078 static int ext4_li_info_new(void) 3079 { 3080 struct ext4_lazy_init *eli = NULL; 3081 3082 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3083 if (!eli) 3084 return -ENOMEM; 3085 3086 INIT_LIST_HEAD(&eli->li_request_list); 3087 mutex_init(&eli->li_list_mtx); 3088 3089 eli->li_state |= EXT4_LAZYINIT_QUIT; 3090 3091 ext4_li_info = eli; 3092 3093 return 0; 3094 } 3095 3096 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3097 ext4_group_t start) 3098 { 3099 struct ext4_sb_info *sbi = EXT4_SB(sb); 3100 struct ext4_li_request *elr; 3101 3102 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3103 if (!elr) 3104 return NULL; 3105 3106 elr->lr_super = sb; 3107 elr->lr_sbi = sbi; 3108 elr->lr_next_group = start; 3109 3110 /* 3111 * Randomize first schedule time of the request to 3112 * spread the inode table initialization requests 3113 * better. 3114 */ 3115 elr->lr_next_sched = jiffies + (prandom_u32() % 3116 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3117 return elr; 3118 } 3119 3120 int ext4_register_li_request(struct super_block *sb, 3121 ext4_group_t first_not_zeroed) 3122 { 3123 struct ext4_sb_info *sbi = EXT4_SB(sb); 3124 struct ext4_li_request *elr = NULL; 3125 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3126 int ret = 0; 3127 3128 mutex_lock(&ext4_li_mtx); 3129 if (sbi->s_li_request != NULL) { 3130 /* 3131 * Reset timeout so it can be computed again, because 3132 * s_li_wait_mult might have changed. 3133 */ 3134 sbi->s_li_request->lr_timeout = 0; 3135 goto out; 3136 } 3137 3138 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3139 !test_opt(sb, INIT_INODE_TABLE)) 3140 goto out; 3141 3142 elr = ext4_li_request_new(sb, first_not_zeroed); 3143 if (!elr) { 3144 ret = -ENOMEM; 3145 goto out; 3146 } 3147 3148 if (NULL == ext4_li_info) { 3149 ret = ext4_li_info_new(); 3150 if (ret) 3151 goto out; 3152 } 3153 3154 mutex_lock(&ext4_li_info->li_list_mtx); 3155 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3156 mutex_unlock(&ext4_li_info->li_list_mtx); 3157 3158 sbi->s_li_request = elr; 3159 /* 3160 * set elr to NULL here since it has been inserted to 3161 * the request_list and the removal and free of it is 3162 * handled by ext4_clear_request_list from now on. 3163 */ 3164 elr = NULL; 3165 3166 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3167 ret = ext4_run_lazyinit_thread(); 3168 if (ret) 3169 goto out; 3170 } 3171 out: 3172 mutex_unlock(&ext4_li_mtx); 3173 if (ret) 3174 kfree(elr); 3175 return ret; 3176 } 3177 3178 /* 3179 * We do not need to lock anything since this is called on 3180 * module unload. 3181 */ 3182 static void ext4_destroy_lazyinit_thread(void) 3183 { 3184 /* 3185 * If thread exited earlier 3186 * there's nothing to be done. 3187 */ 3188 if (!ext4_li_info || !ext4_lazyinit_task) 3189 return; 3190 3191 kthread_stop(ext4_lazyinit_task); 3192 } 3193 3194 static int set_journal_csum_feature_set(struct super_block *sb) 3195 { 3196 int ret = 1; 3197 int compat, incompat; 3198 struct ext4_sb_info *sbi = EXT4_SB(sb); 3199 3200 if (ext4_has_metadata_csum(sb)) { 3201 /* journal checksum v3 */ 3202 compat = 0; 3203 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3204 } else { 3205 /* journal checksum v1 */ 3206 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3207 incompat = 0; 3208 } 3209 3210 jbd2_journal_clear_features(sbi->s_journal, 3211 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3212 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3213 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3214 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3215 ret = jbd2_journal_set_features(sbi->s_journal, 3216 compat, 0, 3217 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3218 incompat); 3219 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3220 ret = jbd2_journal_set_features(sbi->s_journal, 3221 compat, 0, 3222 incompat); 3223 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3224 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3225 } else { 3226 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3228 } 3229 3230 return ret; 3231 } 3232 3233 /* 3234 * Note: calculating the overhead so we can be compatible with 3235 * historical BSD practice is quite difficult in the face of 3236 * clusters/bigalloc. This is because multiple metadata blocks from 3237 * different block group can end up in the same allocation cluster. 3238 * Calculating the exact overhead in the face of clustered allocation 3239 * requires either O(all block bitmaps) in memory or O(number of block 3240 * groups**2) in time. We will still calculate the superblock for 3241 * older file systems --- and if we come across with a bigalloc file 3242 * system with zero in s_overhead_clusters the estimate will be close to 3243 * correct especially for very large cluster sizes --- but for newer 3244 * file systems, it's better to calculate this figure once at mkfs 3245 * time, and store it in the superblock. If the superblock value is 3246 * present (even for non-bigalloc file systems), we will use it. 3247 */ 3248 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3249 char *buf) 3250 { 3251 struct ext4_sb_info *sbi = EXT4_SB(sb); 3252 struct ext4_group_desc *gdp; 3253 ext4_fsblk_t first_block, last_block, b; 3254 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3255 int s, j, count = 0; 3256 3257 if (!ext4_has_feature_bigalloc(sb)) 3258 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3259 sbi->s_itb_per_group + 2); 3260 3261 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3262 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3263 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3264 for (i = 0; i < ngroups; i++) { 3265 gdp = ext4_get_group_desc(sb, i, NULL); 3266 b = ext4_block_bitmap(sb, gdp); 3267 if (b >= first_block && b <= last_block) { 3268 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3269 count++; 3270 } 3271 b = ext4_inode_bitmap(sb, gdp); 3272 if (b >= first_block && b <= last_block) { 3273 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3274 count++; 3275 } 3276 b = ext4_inode_table(sb, gdp); 3277 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3278 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3279 int c = EXT4_B2C(sbi, b - first_block); 3280 ext4_set_bit(c, buf); 3281 count++; 3282 } 3283 if (i != grp) 3284 continue; 3285 s = 0; 3286 if (ext4_bg_has_super(sb, grp)) { 3287 ext4_set_bit(s++, buf); 3288 count++; 3289 } 3290 j = ext4_bg_num_gdb(sb, grp); 3291 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3292 ext4_error(sb, "Invalid number of block group " 3293 "descriptor blocks: %d", j); 3294 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3295 } 3296 count += j; 3297 for (; j > 0; j--) 3298 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3299 } 3300 if (!count) 3301 return 0; 3302 return EXT4_CLUSTERS_PER_GROUP(sb) - 3303 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3304 } 3305 3306 /* 3307 * Compute the overhead and stash it in sbi->s_overhead 3308 */ 3309 int ext4_calculate_overhead(struct super_block *sb) 3310 { 3311 struct ext4_sb_info *sbi = EXT4_SB(sb); 3312 struct ext4_super_block *es = sbi->s_es; 3313 struct inode *j_inode; 3314 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3315 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3316 ext4_fsblk_t overhead = 0; 3317 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3318 3319 if (!buf) 3320 return -ENOMEM; 3321 3322 /* 3323 * Compute the overhead (FS structures). This is constant 3324 * for a given filesystem unless the number of block groups 3325 * changes so we cache the previous value until it does. 3326 */ 3327 3328 /* 3329 * All of the blocks before first_data_block are overhead 3330 */ 3331 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3332 3333 /* 3334 * Add the overhead found in each block group 3335 */ 3336 for (i = 0; i < ngroups; i++) { 3337 int blks; 3338 3339 blks = count_overhead(sb, i, buf); 3340 overhead += blks; 3341 if (blks) 3342 memset(buf, 0, PAGE_SIZE); 3343 cond_resched(); 3344 } 3345 3346 /* 3347 * Add the internal journal blocks whether the journal has been 3348 * loaded or not 3349 */ 3350 if (sbi->s_journal && !sbi->journal_bdev) 3351 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3352 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3353 j_inode = ext4_get_journal_inode(sb, j_inum); 3354 if (j_inode) { 3355 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3356 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3357 iput(j_inode); 3358 } else { 3359 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3360 } 3361 } 3362 sbi->s_overhead = overhead; 3363 smp_wmb(); 3364 free_page((unsigned long) buf); 3365 return 0; 3366 } 3367 3368 static void ext4_set_resv_clusters(struct super_block *sb) 3369 { 3370 ext4_fsblk_t resv_clusters; 3371 struct ext4_sb_info *sbi = EXT4_SB(sb); 3372 3373 /* 3374 * There's no need to reserve anything when we aren't using extents. 3375 * The space estimates are exact, there are no unwritten extents, 3376 * hole punching doesn't need new metadata... This is needed especially 3377 * to keep ext2/3 backward compatibility. 3378 */ 3379 if (!ext4_has_feature_extents(sb)) 3380 return; 3381 /* 3382 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3383 * This should cover the situations where we can not afford to run 3384 * out of space like for example punch hole, or converting 3385 * unwritten extents in delalloc path. In most cases such 3386 * allocation would require 1, or 2 blocks, higher numbers are 3387 * very rare. 3388 */ 3389 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3390 sbi->s_cluster_bits); 3391 3392 do_div(resv_clusters, 50); 3393 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3394 3395 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3396 } 3397 3398 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3399 { 3400 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3401 char *orig_data = kstrdup(data, GFP_KERNEL); 3402 struct buffer_head *bh; 3403 struct ext4_super_block *es = NULL; 3404 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3405 ext4_fsblk_t block; 3406 ext4_fsblk_t sb_block = get_sb_block(&data); 3407 ext4_fsblk_t logical_sb_block; 3408 unsigned long offset = 0; 3409 unsigned long journal_devnum = 0; 3410 unsigned long def_mount_opts; 3411 struct inode *root; 3412 const char *descr; 3413 int ret = -ENOMEM; 3414 int blocksize, clustersize; 3415 unsigned int db_count; 3416 unsigned int i; 3417 int needs_recovery, has_huge_files, has_bigalloc; 3418 __u64 blocks_count; 3419 int err = 0; 3420 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3421 ext4_group_t first_not_zeroed; 3422 3423 if ((data && !orig_data) || !sbi) 3424 goto out_free_base; 3425 3426 sbi->s_daxdev = dax_dev; 3427 sbi->s_blockgroup_lock = 3428 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3429 if (!sbi->s_blockgroup_lock) 3430 goto out_free_base; 3431 3432 sb->s_fs_info = sbi; 3433 sbi->s_sb = sb; 3434 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3435 sbi->s_sb_block = sb_block; 3436 if (sb->s_bdev->bd_part) 3437 sbi->s_sectors_written_start = 3438 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3439 3440 /* Cleanup superblock name */ 3441 strreplace(sb->s_id, '/', '!'); 3442 3443 /* -EINVAL is default */ 3444 ret = -EINVAL; 3445 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3446 if (!blocksize) { 3447 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3448 goto out_fail; 3449 } 3450 3451 /* 3452 * The ext4 superblock will not be buffer aligned for other than 1kB 3453 * block sizes. We need to calculate the offset from buffer start. 3454 */ 3455 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3456 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3457 offset = do_div(logical_sb_block, blocksize); 3458 } else { 3459 logical_sb_block = sb_block; 3460 } 3461 3462 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3463 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3464 goto out_fail; 3465 } 3466 /* 3467 * Note: s_es must be initialized as soon as possible because 3468 * some ext4 macro-instructions depend on its value 3469 */ 3470 es = (struct ext4_super_block *) (bh->b_data + offset); 3471 sbi->s_es = es; 3472 sb->s_magic = le16_to_cpu(es->s_magic); 3473 if (sb->s_magic != EXT4_SUPER_MAGIC) 3474 goto cantfind_ext4; 3475 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3476 3477 /* Warn if metadata_csum and gdt_csum are both set. */ 3478 if (ext4_has_feature_metadata_csum(sb) && 3479 ext4_has_feature_gdt_csum(sb)) 3480 ext4_warning(sb, "metadata_csum and uninit_bg are " 3481 "redundant flags; please run fsck."); 3482 3483 /* Check for a known checksum algorithm */ 3484 if (!ext4_verify_csum_type(sb, es)) { 3485 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3486 "unknown checksum algorithm."); 3487 silent = 1; 3488 goto cantfind_ext4; 3489 } 3490 3491 /* Load the checksum driver */ 3492 if (ext4_has_feature_metadata_csum(sb) || 3493 ext4_has_feature_ea_inode(sb)) { 3494 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3495 if (IS_ERR(sbi->s_chksum_driver)) { 3496 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3497 ret = PTR_ERR(sbi->s_chksum_driver); 3498 sbi->s_chksum_driver = NULL; 3499 goto failed_mount; 3500 } 3501 } 3502 3503 /* Check superblock checksum */ 3504 if (!ext4_superblock_csum_verify(sb, es)) { 3505 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3506 "invalid superblock checksum. Run e2fsck?"); 3507 silent = 1; 3508 ret = -EFSBADCRC; 3509 goto cantfind_ext4; 3510 } 3511 3512 /* Precompute checksum seed for all metadata */ 3513 if (ext4_has_feature_csum_seed(sb)) 3514 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3515 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3516 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3517 sizeof(es->s_uuid)); 3518 3519 /* Set defaults before we parse the mount options */ 3520 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3521 set_opt(sb, INIT_INODE_TABLE); 3522 if (def_mount_opts & EXT4_DEFM_DEBUG) 3523 set_opt(sb, DEBUG); 3524 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3525 set_opt(sb, GRPID); 3526 if (def_mount_opts & EXT4_DEFM_UID16) 3527 set_opt(sb, NO_UID32); 3528 /* xattr user namespace & acls are now defaulted on */ 3529 set_opt(sb, XATTR_USER); 3530 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3531 set_opt(sb, POSIX_ACL); 3532 #endif 3533 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3534 if (ext4_has_metadata_csum(sb)) 3535 set_opt(sb, JOURNAL_CHECKSUM); 3536 3537 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3538 set_opt(sb, JOURNAL_DATA); 3539 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3540 set_opt(sb, ORDERED_DATA); 3541 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3542 set_opt(sb, WRITEBACK_DATA); 3543 3544 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3545 set_opt(sb, ERRORS_PANIC); 3546 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3547 set_opt(sb, ERRORS_CONT); 3548 else 3549 set_opt(sb, ERRORS_RO); 3550 /* block_validity enabled by default; disable with noblock_validity */ 3551 set_opt(sb, BLOCK_VALIDITY); 3552 if (def_mount_opts & EXT4_DEFM_DISCARD) 3553 set_opt(sb, DISCARD); 3554 3555 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3556 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3557 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3558 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3559 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3560 3561 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3562 set_opt(sb, BARRIER); 3563 3564 /* 3565 * enable delayed allocation by default 3566 * Use -o nodelalloc to turn it off 3567 */ 3568 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3569 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3570 set_opt(sb, DELALLOC); 3571 3572 /* 3573 * set default s_li_wait_mult for lazyinit, for the case there is 3574 * no mount option specified. 3575 */ 3576 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3577 3578 if (sbi->s_es->s_mount_opts[0]) { 3579 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3580 sizeof(sbi->s_es->s_mount_opts), 3581 GFP_KERNEL); 3582 if (!s_mount_opts) 3583 goto failed_mount; 3584 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3585 &journal_ioprio, 0)) { 3586 ext4_msg(sb, KERN_WARNING, 3587 "failed to parse options in superblock: %s", 3588 s_mount_opts); 3589 } 3590 kfree(s_mount_opts); 3591 } 3592 sbi->s_def_mount_opt = sbi->s_mount_opt; 3593 if (!parse_options((char *) data, sb, &journal_devnum, 3594 &journal_ioprio, 0)) 3595 goto failed_mount; 3596 3597 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3598 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3599 "with data=journal disables delayed " 3600 "allocation and O_DIRECT support!\n"); 3601 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3602 ext4_msg(sb, KERN_ERR, "can't mount with " 3603 "both data=journal and delalloc"); 3604 goto failed_mount; 3605 } 3606 if (test_opt(sb, DIOREAD_NOLOCK)) { 3607 ext4_msg(sb, KERN_ERR, "can't mount with " 3608 "both data=journal and dioread_nolock"); 3609 goto failed_mount; 3610 } 3611 if (test_opt(sb, DAX)) { 3612 ext4_msg(sb, KERN_ERR, "can't mount with " 3613 "both data=journal and dax"); 3614 goto failed_mount; 3615 } 3616 if (ext4_has_feature_encrypt(sb)) { 3617 ext4_msg(sb, KERN_WARNING, 3618 "encrypted files will use data=ordered " 3619 "instead of data journaling mode"); 3620 } 3621 if (test_opt(sb, DELALLOC)) 3622 clear_opt(sb, DELALLOC); 3623 } else { 3624 sb->s_iflags |= SB_I_CGROUPWB; 3625 } 3626 3627 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3628 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3629 3630 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3631 (ext4_has_compat_features(sb) || 3632 ext4_has_ro_compat_features(sb) || 3633 ext4_has_incompat_features(sb))) 3634 ext4_msg(sb, KERN_WARNING, 3635 "feature flags set on rev 0 fs, " 3636 "running e2fsck is recommended"); 3637 3638 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3639 set_opt2(sb, HURD_COMPAT); 3640 if (ext4_has_feature_64bit(sb)) { 3641 ext4_msg(sb, KERN_ERR, 3642 "The Hurd can't support 64-bit file systems"); 3643 goto failed_mount; 3644 } 3645 3646 /* 3647 * ea_inode feature uses l_i_version field which is not 3648 * available in HURD_COMPAT mode. 3649 */ 3650 if (ext4_has_feature_ea_inode(sb)) { 3651 ext4_msg(sb, KERN_ERR, 3652 "ea_inode feature is not supported for Hurd"); 3653 goto failed_mount; 3654 } 3655 } 3656 3657 if (IS_EXT2_SB(sb)) { 3658 if (ext2_feature_set_ok(sb)) 3659 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3660 "using the ext4 subsystem"); 3661 else { 3662 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3663 "to feature incompatibilities"); 3664 goto failed_mount; 3665 } 3666 } 3667 3668 if (IS_EXT3_SB(sb)) { 3669 if (ext3_feature_set_ok(sb)) 3670 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3671 "using the ext4 subsystem"); 3672 else { 3673 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3674 "to feature incompatibilities"); 3675 goto failed_mount; 3676 } 3677 } 3678 3679 /* 3680 * Check feature flags regardless of the revision level, since we 3681 * previously didn't change the revision level when setting the flags, 3682 * so there is a chance incompat flags are set on a rev 0 filesystem. 3683 */ 3684 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3685 goto failed_mount; 3686 3687 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3688 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3689 blocksize > EXT4_MAX_BLOCK_SIZE) { 3690 ext4_msg(sb, KERN_ERR, 3691 "Unsupported filesystem blocksize %d (%d log_block_size)", 3692 blocksize, le32_to_cpu(es->s_log_block_size)); 3693 goto failed_mount; 3694 } 3695 if (le32_to_cpu(es->s_log_block_size) > 3696 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3697 ext4_msg(sb, KERN_ERR, 3698 "Invalid log block size: %u", 3699 le32_to_cpu(es->s_log_block_size)); 3700 goto failed_mount; 3701 } 3702 3703 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3704 ext4_msg(sb, KERN_ERR, 3705 "Number of reserved GDT blocks insanely large: %d", 3706 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3707 goto failed_mount; 3708 } 3709 3710 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3711 if (ext4_has_feature_inline_data(sb)) { 3712 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3713 " that may contain inline data"); 3714 goto failed_mount; 3715 } 3716 err = bdev_dax_supported(sb, blocksize); 3717 if (err) 3718 goto failed_mount; 3719 } 3720 3721 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3722 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3723 es->s_encryption_level); 3724 goto failed_mount; 3725 } 3726 3727 if (sb->s_blocksize != blocksize) { 3728 /* Validate the filesystem blocksize */ 3729 if (!sb_set_blocksize(sb, blocksize)) { 3730 ext4_msg(sb, KERN_ERR, "bad block size %d", 3731 blocksize); 3732 goto failed_mount; 3733 } 3734 3735 brelse(bh); 3736 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3737 offset = do_div(logical_sb_block, blocksize); 3738 bh = sb_bread_unmovable(sb, logical_sb_block); 3739 if (!bh) { 3740 ext4_msg(sb, KERN_ERR, 3741 "Can't read superblock on 2nd try"); 3742 goto failed_mount; 3743 } 3744 es = (struct ext4_super_block *)(bh->b_data + offset); 3745 sbi->s_es = es; 3746 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3747 ext4_msg(sb, KERN_ERR, 3748 "Magic mismatch, very weird!"); 3749 goto failed_mount; 3750 } 3751 } 3752 3753 has_huge_files = ext4_has_feature_huge_file(sb); 3754 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3755 has_huge_files); 3756 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3757 3758 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3759 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3760 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3761 } else { 3762 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3763 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3764 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3765 (!is_power_of_2(sbi->s_inode_size)) || 3766 (sbi->s_inode_size > blocksize)) { 3767 ext4_msg(sb, KERN_ERR, 3768 "unsupported inode size: %d", 3769 sbi->s_inode_size); 3770 goto failed_mount; 3771 } 3772 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3773 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3774 } 3775 3776 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3777 if (ext4_has_feature_64bit(sb)) { 3778 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3779 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3780 !is_power_of_2(sbi->s_desc_size)) { 3781 ext4_msg(sb, KERN_ERR, 3782 "unsupported descriptor size %lu", 3783 sbi->s_desc_size); 3784 goto failed_mount; 3785 } 3786 } else 3787 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3788 3789 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3790 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3791 3792 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3793 if (sbi->s_inodes_per_block == 0) 3794 goto cantfind_ext4; 3795 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3796 sbi->s_inodes_per_group > blocksize * 8) { 3797 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3798 sbi->s_blocks_per_group); 3799 goto failed_mount; 3800 } 3801 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3802 sbi->s_inodes_per_block; 3803 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3804 sbi->s_sbh = bh; 3805 sbi->s_mount_state = le16_to_cpu(es->s_state); 3806 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3807 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3808 3809 for (i = 0; i < 4; i++) 3810 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3811 sbi->s_def_hash_version = es->s_def_hash_version; 3812 if (ext4_has_feature_dir_index(sb)) { 3813 i = le32_to_cpu(es->s_flags); 3814 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3815 sbi->s_hash_unsigned = 3; 3816 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3817 #ifdef __CHAR_UNSIGNED__ 3818 if (!sb_rdonly(sb)) 3819 es->s_flags |= 3820 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3821 sbi->s_hash_unsigned = 3; 3822 #else 3823 if (!sb_rdonly(sb)) 3824 es->s_flags |= 3825 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3826 #endif 3827 } 3828 } 3829 3830 /* Handle clustersize */ 3831 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3832 has_bigalloc = ext4_has_feature_bigalloc(sb); 3833 if (has_bigalloc) { 3834 if (clustersize < blocksize) { 3835 ext4_msg(sb, KERN_ERR, 3836 "cluster size (%d) smaller than " 3837 "block size (%d)", clustersize, blocksize); 3838 goto failed_mount; 3839 } 3840 if (le32_to_cpu(es->s_log_cluster_size) > 3841 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3842 ext4_msg(sb, KERN_ERR, 3843 "Invalid log cluster size: %u", 3844 le32_to_cpu(es->s_log_cluster_size)); 3845 goto failed_mount; 3846 } 3847 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3848 le32_to_cpu(es->s_log_block_size); 3849 sbi->s_clusters_per_group = 3850 le32_to_cpu(es->s_clusters_per_group); 3851 if (sbi->s_clusters_per_group > blocksize * 8) { 3852 ext4_msg(sb, KERN_ERR, 3853 "#clusters per group too big: %lu", 3854 sbi->s_clusters_per_group); 3855 goto failed_mount; 3856 } 3857 if (sbi->s_blocks_per_group != 3858 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3859 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3860 "clusters per group (%lu) inconsistent", 3861 sbi->s_blocks_per_group, 3862 sbi->s_clusters_per_group); 3863 goto failed_mount; 3864 } 3865 } else { 3866 if (clustersize != blocksize) { 3867 ext4_warning(sb, "fragment/cluster size (%d) != " 3868 "block size (%d)", clustersize, 3869 blocksize); 3870 clustersize = blocksize; 3871 } 3872 if (sbi->s_blocks_per_group > blocksize * 8) { 3873 ext4_msg(sb, KERN_ERR, 3874 "#blocks per group too big: %lu", 3875 sbi->s_blocks_per_group); 3876 goto failed_mount; 3877 } 3878 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3879 sbi->s_cluster_bits = 0; 3880 } 3881 sbi->s_cluster_ratio = clustersize / blocksize; 3882 3883 /* Do we have standard group size of clustersize * 8 blocks ? */ 3884 if (sbi->s_blocks_per_group == clustersize << 3) 3885 set_opt2(sb, STD_GROUP_SIZE); 3886 3887 /* 3888 * Test whether we have more sectors than will fit in sector_t, 3889 * and whether the max offset is addressable by the page cache. 3890 */ 3891 err = generic_check_addressable(sb->s_blocksize_bits, 3892 ext4_blocks_count(es)); 3893 if (err) { 3894 ext4_msg(sb, KERN_ERR, "filesystem" 3895 " too large to mount safely on this system"); 3896 if (sizeof(sector_t) < 8) 3897 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3898 goto failed_mount; 3899 } 3900 3901 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3902 goto cantfind_ext4; 3903 3904 /* check blocks count against device size */ 3905 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3906 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3907 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3908 "exceeds size of device (%llu blocks)", 3909 ext4_blocks_count(es), blocks_count); 3910 goto failed_mount; 3911 } 3912 3913 /* 3914 * It makes no sense for the first data block to be beyond the end 3915 * of the filesystem. 3916 */ 3917 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3918 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3919 "block %u is beyond end of filesystem (%llu)", 3920 le32_to_cpu(es->s_first_data_block), 3921 ext4_blocks_count(es)); 3922 goto failed_mount; 3923 } 3924 blocks_count = (ext4_blocks_count(es) - 3925 le32_to_cpu(es->s_first_data_block) + 3926 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3927 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3928 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3929 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3930 "(block count %llu, first data block %u, " 3931 "blocks per group %lu)", sbi->s_groups_count, 3932 ext4_blocks_count(es), 3933 le32_to_cpu(es->s_first_data_block), 3934 EXT4_BLOCKS_PER_GROUP(sb)); 3935 goto failed_mount; 3936 } 3937 sbi->s_groups_count = blocks_count; 3938 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3939 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3940 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3941 EXT4_DESC_PER_BLOCK(sb); 3942 if (ext4_has_feature_meta_bg(sb)) { 3943 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3944 ext4_msg(sb, KERN_WARNING, 3945 "first meta block group too large: %u " 3946 "(group descriptor block count %u)", 3947 le32_to_cpu(es->s_first_meta_bg), db_count); 3948 goto failed_mount; 3949 } 3950 } 3951 sbi->s_group_desc = kvmalloc(db_count * 3952 sizeof(struct buffer_head *), 3953 GFP_KERNEL); 3954 if (sbi->s_group_desc == NULL) { 3955 ext4_msg(sb, KERN_ERR, "not enough memory"); 3956 ret = -ENOMEM; 3957 goto failed_mount; 3958 } 3959 3960 bgl_lock_init(sbi->s_blockgroup_lock); 3961 3962 /* Pre-read the descriptors into the buffer cache */ 3963 for (i = 0; i < db_count; i++) { 3964 block = descriptor_loc(sb, logical_sb_block, i); 3965 sb_breadahead(sb, block); 3966 } 3967 3968 for (i = 0; i < db_count; i++) { 3969 block = descriptor_loc(sb, logical_sb_block, i); 3970 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3971 if (!sbi->s_group_desc[i]) { 3972 ext4_msg(sb, KERN_ERR, 3973 "can't read group descriptor %d", i); 3974 db_count = i; 3975 goto failed_mount2; 3976 } 3977 } 3978 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3979 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3980 ret = -EFSCORRUPTED; 3981 goto failed_mount2; 3982 } 3983 3984 sbi->s_gdb_count = db_count; 3985 3986 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 3987 3988 /* Register extent status tree shrinker */ 3989 if (ext4_es_register_shrinker(sbi)) 3990 goto failed_mount3; 3991 3992 sbi->s_stripe = ext4_get_stripe_size(sbi); 3993 sbi->s_extent_max_zeroout_kb = 32; 3994 3995 /* 3996 * set up enough so that it can read an inode 3997 */ 3998 sb->s_op = &ext4_sops; 3999 sb->s_export_op = &ext4_export_ops; 4000 sb->s_xattr = ext4_xattr_handlers; 4001 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4002 sb->s_cop = &ext4_cryptops; 4003 #endif 4004 #ifdef CONFIG_QUOTA 4005 sb->dq_op = &ext4_quota_operations; 4006 if (ext4_has_feature_quota(sb)) 4007 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4008 else 4009 sb->s_qcop = &ext4_qctl_operations; 4010 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4011 #endif 4012 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4013 4014 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4015 mutex_init(&sbi->s_orphan_lock); 4016 4017 sb->s_root = NULL; 4018 4019 needs_recovery = (es->s_last_orphan != 0 || 4020 ext4_has_feature_journal_needs_recovery(sb)); 4021 4022 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4023 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4024 goto failed_mount3a; 4025 4026 /* 4027 * The first inode we look at is the journal inode. Don't try 4028 * root first: it may be modified in the journal! 4029 */ 4030 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4031 err = ext4_load_journal(sb, es, journal_devnum); 4032 if (err) 4033 goto failed_mount3a; 4034 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4035 ext4_has_feature_journal_needs_recovery(sb)) { 4036 ext4_msg(sb, KERN_ERR, "required journal recovery " 4037 "suppressed and not mounted read-only"); 4038 goto failed_mount_wq; 4039 } else { 4040 /* Nojournal mode, all journal mount options are illegal */ 4041 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4042 ext4_msg(sb, KERN_ERR, "can't mount with " 4043 "journal_checksum, fs mounted w/o journal"); 4044 goto failed_mount_wq; 4045 } 4046 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4047 ext4_msg(sb, KERN_ERR, "can't mount with " 4048 "journal_async_commit, fs mounted w/o journal"); 4049 goto failed_mount_wq; 4050 } 4051 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4052 ext4_msg(sb, KERN_ERR, "can't mount with " 4053 "commit=%lu, fs mounted w/o journal", 4054 sbi->s_commit_interval / HZ); 4055 goto failed_mount_wq; 4056 } 4057 if (EXT4_MOUNT_DATA_FLAGS & 4058 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4059 ext4_msg(sb, KERN_ERR, "can't mount with " 4060 "data=, fs mounted w/o journal"); 4061 goto failed_mount_wq; 4062 } 4063 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4064 clear_opt(sb, JOURNAL_CHECKSUM); 4065 clear_opt(sb, DATA_FLAGS); 4066 sbi->s_journal = NULL; 4067 needs_recovery = 0; 4068 goto no_journal; 4069 } 4070 4071 if (ext4_has_feature_64bit(sb) && 4072 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4073 JBD2_FEATURE_INCOMPAT_64BIT)) { 4074 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4075 goto failed_mount_wq; 4076 } 4077 4078 if (!set_journal_csum_feature_set(sb)) { 4079 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4080 "feature set"); 4081 goto failed_mount_wq; 4082 } 4083 4084 /* We have now updated the journal if required, so we can 4085 * validate the data journaling mode. */ 4086 switch (test_opt(sb, DATA_FLAGS)) { 4087 case 0: 4088 /* No mode set, assume a default based on the journal 4089 * capabilities: ORDERED_DATA if the journal can 4090 * cope, else JOURNAL_DATA 4091 */ 4092 if (jbd2_journal_check_available_features 4093 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4094 set_opt(sb, ORDERED_DATA); 4095 else 4096 set_opt(sb, JOURNAL_DATA); 4097 break; 4098 4099 case EXT4_MOUNT_ORDERED_DATA: 4100 case EXT4_MOUNT_WRITEBACK_DATA: 4101 if (!jbd2_journal_check_available_features 4102 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4103 ext4_msg(sb, KERN_ERR, "Journal does not support " 4104 "requested data journaling mode"); 4105 goto failed_mount_wq; 4106 } 4107 default: 4108 break; 4109 } 4110 4111 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4112 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4113 ext4_msg(sb, KERN_ERR, "can't mount with " 4114 "journal_async_commit in data=ordered mode"); 4115 goto failed_mount_wq; 4116 } 4117 4118 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4119 4120 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4121 4122 no_journal: 4123 if (!test_opt(sb, NO_MBCACHE)) { 4124 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4125 if (!sbi->s_ea_block_cache) { 4126 ext4_msg(sb, KERN_ERR, 4127 "Failed to create ea_block_cache"); 4128 goto failed_mount_wq; 4129 } 4130 4131 if (ext4_has_feature_ea_inode(sb)) { 4132 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4133 if (!sbi->s_ea_inode_cache) { 4134 ext4_msg(sb, KERN_ERR, 4135 "Failed to create ea_inode_cache"); 4136 goto failed_mount_wq; 4137 } 4138 } 4139 } 4140 4141 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4142 (blocksize != PAGE_SIZE)) { 4143 ext4_msg(sb, KERN_ERR, 4144 "Unsupported blocksize for fs encryption"); 4145 goto failed_mount_wq; 4146 } 4147 4148 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4149 !ext4_has_feature_encrypt(sb)) { 4150 ext4_set_feature_encrypt(sb); 4151 ext4_commit_super(sb, 1); 4152 } 4153 4154 /* 4155 * Get the # of file system overhead blocks from the 4156 * superblock if present. 4157 */ 4158 if (es->s_overhead_clusters) 4159 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4160 else { 4161 err = ext4_calculate_overhead(sb); 4162 if (err) 4163 goto failed_mount_wq; 4164 } 4165 4166 /* 4167 * The maximum number of concurrent works can be high and 4168 * concurrency isn't really necessary. Limit it to 1. 4169 */ 4170 EXT4_SB(sb)->rsv_conversion_wq = 4171 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4172 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4173 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4174 ret = -ENOMEM; 4175 goto failed_mount4; 4176 } 4177 4178 /* 4179 * The jbd2_journal_load will have done any necessary log recovery, 4180 * so we can safely mount the rest of the filesystem now. 4181 */ 4182 4183 root = ext4_iget(sb, EXT4_ROOT_INO); 4184 if (IS_ERR(root)) { 4185 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4186 ret = PTR_ERR(root); 4187 root = NULL; 4188 goto failed_mount4; 4189 } 4190 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4191 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4192 iput(root); 4193 goto failed_mount4; 4194 } 4195 sb->s_root = d_make_root(root); 4196 if (!sb->s_root) { 4197 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4198 ret = -ENOMEM; 4199 goto failed_mount4; 4200 } 4201 4202 if (ext4_setup_super(sb, es, sb_rdonly(sb))) 4203 sb->s_flags |= SB_RDONLY; 4204 4205 /* determine the minimum size of new large inodes, if present */ 4206 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4207 sbi->s_want_extra_isize == 0) { 4208 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4209 EXT4_GOOD_OLD_INODE_SIZE; 4210 if (ext4_has_feature_extra_isize(sb)) { 4211 if (sbi->s_want_extra_isize < 4212 le16_to_cpu(es->s_want_extra_isize)) 4213 sbi->s_want_extra_isize = 4214 le16_to_cpu(es->s_want_extra_isize); 4215 if (sbi->s_want_extra_isize < 4216 le16_to_cpu(es->s_min_extra_isize)) 4217 sbi->s_want_extra_isize = 4218 le16_to_cpu(es->s_min_extra_isize); 4219 } 4220 } 4221 /* Check if enough inode space is available */ 4222 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4223 sbi->s_inode_size) { 4224 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4225 EXT4_GOOD_OLD_INODE_SIZE; 4226 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4227 "available"); 4228 } 4229 4230 ext4_set_resv_clusters(sb); 4231 4232 err = ext4_setup_system_zone(sb); 4233 if (err) { 4234 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4235 "zone (%d)", err); 4236 goto failed_mount4a; 4237 } 4238 4239 ext4_ext_init(sb); 4240 err = ext4_mb_init(sb); 4241 if (err) { 4242 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4243 err); 4244 goto failed_mount5; 4245 } 4246 4247 block = ext4_count_free_clusters(sb); 4248 ext4_free_blocks_count_set(sbi->s_es, 4249 EXT4_C2B(sbi, block)); 4250 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4251 GFP_KERNEL); 4252 if (!err) { 4253 unsigned long freei = ext4_count_free_inodes(sb); 4254 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4255 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4256 GFP_KERNEL); 4257 } 4258 if (!err) 4259 err = percpu_counter_init(&sbi->s_dirs_counter, 4260 ext4_count_dirs(sb), GFP_KERNEL); 4261 if (!err) 4262 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4263 GFP_KERNEL); 4264 if (!err) 4265 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4266 4267 if (err) { 4268 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4269 goto failed_mount6; 4270 } 4271 4272 if (ext4_has_feature_flex_bg(sb)) 4273 if (!ext4_fill_flex_info(sb)) { 4274 ext4_msg(sb, KERN_ERR, 4275 "unable to initialize " 4276 "flex_bg meta info!"); 4277 goto failed_mount6; 4278 } 4279 4280 err = ext4_register_li_request(sb, first_not_zeroed); 4281 if (err) 4282 goto failed_mount6; 4283 4284 err = ext4_register_sysfs(sb); 4285 if (err) 4286 goto failed_mount7; 4287 4288 #ifdef CONFIG_QUOTA 4289 /* Enable quota usage during mount. */ 4290 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4291 err = ext4_enable_quotas(sb); 4292 if (err) 4293 goto failed_mount8; 4294 } 4295 #endif /* CONFIG_QUOTA */ 4296 4297 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4298 ext4_orphan_cleanup(sb, es); 4299 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4300 if (needs_recovery) { 4301 ext4_msg(sb, KERN_INFO, "recovery complete"); 4302 ext4_mark_recovery_complete(sb, es); 4303 } 4304 if (EXT4_SB(sb)->s_journal) { 4305 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4306 descr = " journalled data mode"; 4307 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4308 descr = " ordered data mode"; 4309 else 4310 descr = " writeback data mode"; 4311 } else 4312 descr = "out journal"; 4313 4314 if (test_opt(sb, DISCARD)) { 4315 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4316 if (!blk_queue_discard(q)) 4317 ext4_msg(sb, KERN_WARNING, 4318 "mounting with \"discard\" option, but " 4319 "the device does not support discard"); 4320 } 4321 4322 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4323 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4324 "Opts: %.*s%s%s", descr, 4325 (int) sizeof(sbi->s_es->s_mount_opts), 4326 sbi->s_es->s_mount_opts, 4327 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4328 4329 if (es->s_error_count) 4330 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4331 4332 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4333 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4334 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4335 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4336 4337 kfree(orig_data); 4338 return 0; 4339 4340 cantfind_ext4: 4341 if (!silent) 4342 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4343 goto failed_mount; 4344 4345 #ifdef CONFIG_QUOTA 4346 failed_mount8: 4347 ext4_unregister_sysfs(sb); 4348 #endif 4349 failed_mount7: 4350 ext4_unregister_li_request(sb); 4351 failed_mount6: 4352 ext4_mb_release(sb); 4353 if (sbi->s_flex_groups) 4354 kvfree(sbi->s_flex_groups); 4355 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4356 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4357 percpu_counter_destroy(&sbi->s_dirs_counter); 4358 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4359 failed_mount5: 4360 ext4_ext_release(sb); 4361 ext4_release_system_zone(sb); 4362 failed_mount4a: 4363 dput(sb->s_root); 4364 sb->s_root = NULL; 4365 failed_mount4: 4366 ext4_msg(sb, KERN_ERR, "mount failed"); 4367 if (EXT4_SB(sb)->rsv_conversion_wq) 4368 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4369 failed_mount_wq: 4370 if (sbi->s_ea_inode_cache) { 4371 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4372 sbi->s_ea_inode_cache = NULL; 4373 } 4374 if (sbi->s_ea_block_cache) { 4375 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4376 sbi->s_ea_block_cache = NULL; 4377 } 4378 if (sbi->s_journal) { 4379 jbd2_journal_destroy(sbi->s_journal); 4380 sbi->s_journal = NULL; 4381 } 4382 failed_mount3a: 4383 ext4_es_unregister_shrinker(sbi); 4384 failed_mount3: 4385 del_timer_sync(&sbi->s_err_report); 4386 if (sbi->s_mmp_tsk) 4387 kthread_stop(sbi->s_mmp_tsk); 4388 failed_mount2: 4389 for (i = 0; i < db_count; i++) 4390 brelse(sbi->s_group_desc[i]); 4391 kvfree(sbi->s_group_desc); 4392 failed_mount: 4393 if (sbi->s_chksum_driver) 4394 crypto_free_shash(sbi->s_chksum_driver); 4395 #ifdef CONFIG_QUOTA 4396 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4397 kfree(sbi->s_qf_names[i]); 4398 #endif 4399 ext4_blkdev_remove(sbi); 4400 brelse(bh); 4401 out_fail: 4402 sb->s_fs_info = NULL; 4403 kfree(sbi->s_blockgroup_lock); 4404 out_free_base: 4405 kfree(sbi); 4406 kfree(orig_data); 4407 fs_put_dax(dax_dev); 4408 return err ? err : ret; 4409 } 4410 4411 /* 4412 * Setup any per-fs journal parameters now. We'll do this both on 4413 * initial mount, once the journal has been initialised but before we've 4414 * done any recovery; and again on any subsequent remount. 4415 */ 4416 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4417 { 4418 struct ext4_sb_info *sbi = EXT4_SB(sb); 4419 4420 journal->j_commit_interval = sbi->s_commit_interval; 4421 journal->j_min_batch_time = sbi->s_min_batch_time; 4422 journal->j_max_batch_time = sbi->s_max_batch_time; 4423 4424 write_lock(&journal->j_state_lock); 4425 if (test_opt(sb, BARRIER)) 4426 journal->j_flags |= JBD2_BARRIER; 4427 else 4428 journal->j_flags &= ~JBD2_BARRIER; 4429 if (test_opt(sb, DATA_ERR_ABORT)) 4430 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4431 else 4432 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4433 write_unlock(&journal->j_state_lock); 4434 } 4435 4436 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4437 unsigned int journal_inum) 4438 { 4439 struct inode *journal_inode; 4440 4441 /* 4442 * Test for the existence of a valid inode on disk. Bad things 4443 * happen if we iget() an unused inode, as the subsequent iput() 4444 * will try to delete it. 4445 */ 4446 journal_inode = ext4_iget(sb, journal_inum); 4447 if (IS_ERR(journal_inode)) { 4448 ext4_msg(sb, KERN_ERR, "no journal found"); 4449 return NULL; 4450 } 4451 if (!journal_inode->i_nlink) { 4452 make_bad_inode(journal_inode); 4453 iput(journal_inode); 4454 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4455 return NULL; 4456 } 4457 4458 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4459 journal_inode, journal_inode->i_size); 4460 if (!S_ISREG(journal_inode->i_mode)) { 4461 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4462 iput(journal_inode); 4463 return NULL; 4464 } 4465 return journal_inode; 4466 } 4467 4468 static journal_t *ext4_get_journal(struct super_block *sb, 4469 unsigned int journal_inum) 4470 { 4471 struct inode *journal_inode; 4472 journal_t *journal; 4473 4474 BUG_ON(!ext4_has_feature_journal(sb)); 4475 4476 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4477 if (!journal_inode) 4478 return NULL; 4479 4480 journal = jbd2_journal_init_inode(journal_inode); 4481 if (!journal) { 4482 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4483 iput(journal_inode); 4484 return NULL; 4485 } 4486 journal->j_private = sb; 4487 ext4_init_journal_params(sb, journal); 4488 return journal; 4489 } 4490 4491 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4492 dev_t j_dev) 4493 { 4494 struct buffer_head *bh; 4495 journal_t *journal; 4496 ext4_fsblk_t start; 4497 ext4_fsblk_t len; 4498 int hblock, blocksize; 4499 ext4_fsblk_t sb_block; 4500 unsigned long offset; 4501 struct ext4_super_block *es; 4502 struct block_device *bdev; 4503 4504 BUG_ON(!ext4_has_feature_journal(sb)); 4505 4506 bdev = ext4_blkdev_get(j_dev, sb); 4507 if (bdev == NULL) 4508 return NULL; 4509 4510 blocksize = sb->s_blocksize; 4511 hblock = bdev_logical_block_size(bdev); 4512 if (blocksize < hblock) { 4513 ext4_msg(sb, KERN_ERR, 4514 "blocksize too small for journal device"); 4515 goto out_bdev; 4516 } 4517 4518 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4519 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4520 set_blocksize(bdev, blocksize); 4521 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4522 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4523 "external journal"); 4524 goto out_bdev; 4525 } 4526 4527 es = (struct ext4_super_block *) (bh->b_data + offset); 4528 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4529 !(le32_to_cpu(es->s_feature_incompat) & 4530 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4531 ext4_msg(sb, KERN_ERR, "external journal has " 4532 "bad superblock"); 4533 brelse(bh); 4534 goto out_bdev; 4535 } 4536 4537 if ((le32_to_cpu(es->s_feature_ro_compat) & 4538 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4539 es->s_checksum != ext4_superblock_csum(sb, es)) { 4540 ext4_msg(sb, KERN_ERR, "external journal has " 4541 "corrupt superblock"); 4542 brelse(bh); 4543 goto out_bdev; 4544 } 4545 4546 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4547 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4548 brelse(bh); 4549 goto out_bdev; 4550 } 4551 4552 len = ext4_blocks_count(es); 4553 start = sb_block + 1; 4554 brelse(bh); /* we're done with the superblock */ 4555 4556 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4557 start, len, blocksize); 4558 if (!journal) { 4559 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4560 goto out_bdev; 4561 } 4562 journal->j_private = sb; 4563 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4564 wait_on_buffer(journal->j_sb_buffer); 4565 if (!buffer_uptodate(journal->j_sb_buffer)) { 4566 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4567 goto out_journal; 4568 } 4569 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4570 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4571 "user (unsupported) - %d", 4572 be32_to_cpu(journal->j_superblock->s_nr_users)); 4573 goto out_journal; 4574 } 4575 EXT4_SB(sb)->journal_bdev = bdev; 4576 ext4_init_journal_params(sb, journal); 4577 return journal; 4578 4579 out_journal: 4580 jbd2_journal_destroy(journal); 4581 out_bdev: 4582 ext4_blkdev_put(bdev); 4583 return NULL; 4584 } 4585 4586 static int ext4_load_journal(struct super_block *sb, 4587 struct ext4_super_block *es, 4588 unsigned long journal_devnum) 4589 { 4590 journal_t *journal; 4591 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4592 dev_t journal_dev; 4593 int err = 0; 4594 int really_read_only; 4595 4596 BUG_ON(!ext4_has_feature_journal(sb)); 4597 4598 if (journal_devnum && 4599 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4600 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4601 "numbers have changed"); 4602 journal_dev = new_decode_dev(journal_devnum); 4603 } else 4604 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4605 4606 really_read_only = bdev_read_only(sb->s_bdev); 4607 4608 /* 4609 * Are we loading a blank journal or performing recovery after a 4610 * crash? For recovery, we need to check in advance whether we 4611 * can get read-write access to the device. 4612 */ 4613 if (ext4_has_feature_journal_needs_recovery(sb)) { 4614 if (sb_rdonly(sb)) { 4615 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4616 "required on readonly filesystem"); 4617 if (really_read_only) { 4618 ext4_msg(sb, KERN_ERR, "write access " 4619 "unavailable, cannot proceed " 4620 "(try mounting with noload)"); 4621 return -EROFS; 4622 } 4623 ext4_msg(sb, KERN_INFO, "write access will " 4624 "be enabled during recovery"); 4625 } 4626 } 4627 4628 if (journal_inum && journal_dev) { 4629 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4630 "and inode journals!"); 4631 return -EINVAL; 4632 } 4633 4634 if (journal_inum) { 4635 if (!(journal = ext4_get_journal(sb, journal_inum))) 4636 return -EINVAL; 4637 } else { 4638 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4639 return -EINVAL; 4640 } 4641 4642 if (!(journal->j_flags & JBD2_BARRIER)) 4643 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4644 4645 if (!ext4_has_feature_journal_needs_recovery(sb)) 4646 err = jbd2_journal_wipe(journal, !really_read_only); 4647 if (!err) { 4648 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4649 if (save) 4650 memcpy(save, ((char *) es) + 4651 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4652 err = jbd2_journal_load(journal); 4653 if (save) 4654 memcpy(((char *) es) + EXT4_S_ERR_START, 4655 save, EXT4_S_ERR_LEN); 4656 kfree(save); 4657 } 4658 4659 if (err) { 4660 ext4_msg(sb, KERN_ERR, "error loading journal"); 4661 jbd2_journal_destroy(journal); 4662 return err; 4663 } 4664 4665 EXT4_SB(sb)->s_journal = journal; 4666 ext4_clear_journal_err(sb, es); 4667 4668 if (!really_read_only && journal_devnum && 4669 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4670 es->s_journal_dev = cpu_to_le32(journal_devnum); 4671 4672 /* Make sure we flush the recovery flag to disk. */ 4673 ext4_commit_super(sb, 1); 4674 } 4675 4676 return 0; 4677 } 4678 4679 static int ext4_commit_super(struct super_block *sb, int sync) 4680 { 4681 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4682 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4683 int error = 0; 4684 4685 if (!sbh || block_device_ejected(sb)) 4686 return error; 4687 /* 4688 * If the file system is mounted read-only, don't update the 4689 * superblock write time. This avoids updating the superblock 4690 * write time when we are mounting the root file system 4691 * read/only but we need to replay the journal; at that point, 4692 * for people who are east of GMT and who make their clock 4693 * tick in localtime for Windows bug-for-bug compatibility, 4694 * the clock is set in the future, and this will cause e2fsck 4695 * to complain and force a full file system check. 4696 */ 4697 if (!(sb->s_flags & SB_RDONLY)) 4698 es->s_wtime = cpu_to_le32(get_seconds()); 4699 if (sb->s_bdev->bd_part) 4700 es->s_kbytes_written = 4701 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4702 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4703 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4704 else 4705 es->s_kbytes_written = 4706 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4707 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4708 ext4_free_blocks_count_set(es, 4709 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4710 &EXT4_SB(sb)->s_freeclusters_counter))); 4711 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4712 es->s_free_inodes_count = 4713 cpu_to_le32(percpu_counter_sum_positive( 4714 &EXT4_SB(sb)->s_freeinodes_counter)); 4715 BUFFER_TRACE(sbh, "marking dirty"); 4716 ext4_superblock_csum_set(sb); 4717 if (sync) 4718 lock_buffer(sbh); 4719 if (buffer_write_io_error(sbh)) { 4720 /* 4721 * Oh, dear. A previous attempt to write the 4722 * superblock failed. This could happen because the 4723 * USB device was yanked out. Or it could happen to 4724 * be a transient write error and maybe the block will 4725 * be remapped. Nothing we can do but to retry the 4726 * write and hope for the best. 4727 */ 4728 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4729 "superblock detected"); 4730 clear_buffer_write_io_error(sbh); 4731 set_buffer_uptodate(sbh); 4732 } 4733 mark_buffer_dirty(sbh); 4734 if (sync) { 4735 unlock_buffer(sbh); 4736 error = __sync_dirty_buffer(sbh, 4737 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4738 if (error) 4739 return error; 4740 4741 error = buffer_write_io_error(sbh); 4742 if (error) { 4743 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4744 "superblock"); 4745 clear_buffer_write_io_error(sbh); 4746 set_buffer_uptodate(sbh); 4747 } 4748 } 4749 return error; 4750 } 4751 4752 /* 4753 * Have we just finished recovery? If so, and if we are mounting (or 4754 * remounting) the filesystem readonly, then we will end up with a 4755 * consistent fs on disk. Record that fact. 4756 */ 4757 static void ext4_mark_recovery_complete(struct super_block *sb, 4758 struct ext4_super_block *es) 4759 { 4760 journal_t *journal = EXT4_SB(sb)->s_journal; 4761 4762 if (!ext4_has_feature_journal(sb)) { 4763 BUG_ON(journal != NULL); 4764 return; 4765 } 4766 jbd2_journal_lock_updates(journal); 4767 if (jbd2_journal_flush(journal) < 0) 4768 goto out; 4769 4770 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4771 ext4_clear_feature_journal_needs_recovery(sb); 4772 ext4_commit_super(sb, 1); 4773 } 4774 4775 out: 4776 jbd2_journal_unlock_updates(journal); 4777 } 4778 4779 /* 4780 * If we are mounting (or read-write remounting) a filesystem whose journal 4781 * has recorded an error from a previous lifetime, move that error to the 4782 * main filesystem now. 4783 */ 4784 static void ext4_clear_journal_err(struct super_block *sb, 4785 struct ext4_super_block *es) 4786 { 4787 journal_t *journal; 4788 int j_errno; 4789 const char *errstr; 4790 4791 BUG_ON(!ext4_has_feature_journal(sb)); 4792 4793 journal = EXT4_SB(sb)->s_journal; 4794 4795 /* 4796 * Now check for any error status which may have been recorded in the 4797 * journal by a prior ext4_error() or ext4_abort() 4798 */ 4799 4800 j_errno = jbd2_journal_errno(journal); 4801 if (j_errno) { 4802 char nbuf[16]; 4803 4804 errstr = ext4_decode_error(sb, j_errno, nbuf); 4805 ext4_warning(sb, "Filesystem error recorded " 4806 "from previous mount: %s", errstr); 4807 ext4_warning(sb, "Marking fs in need of filesystem check."); 4808 4809 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4810 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4811 ext4_commit_super(sb, 1); 4812 4813 jbd2_journal_clear_err(journal); 4814 jbd2_journal_update_sb_errno(journal); 4815 } 4816 } 4817 4818 /* 4819 * Force the running and committing transactions to commit, 4820 * and wait on the commit. 4821 */ 4822 int ext4_force_commit(struct super_block *sb) 4823 { 4824 journal_t *journal; 4825 4826 if (sb_rdonly(sb)) 4827 return 0; 4828 4829 journal = EXT4_SB(sb)->s_journal; 4830 return ext4_journal_force_commit(journal); 4831 } 4832 4833 static int ext4_sync_fs(struct super_block *sb, int wait) 4834 { 4835 int ret = 0; 4836 tid_t target; 4837 bool needs_barrier = false; 4838 struct ext4_sb_info *sbi = EXT4_SB(sb); 4839 4840 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4841 return 0; 4842 4843 trace_ext4_sync_fs(sb, wait); 4844 flush_workqueue(sbi->rsv_conversion_wq); 4845 /* 4846 * Writeback quota in non-journalled quota case - journalled quota has 4847 * no dirty dquots 4848 */ 4849 dquot_writeback_dquots(sb, -1); 4850 /* 4851 * Data writeback is possible w/o journal transaction, so barrier must 4852 * being sent at the end of the function. But we can skip it if 4853 * transaction_commit will do it for us. 4854 */ 4855 if (sbi->s_journal) { 4856 target = jbd2_get_latest_transaction(sbi->s_journal); 4857 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4858 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4859 needs_barrier = true; 4860 4861 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4862 if (wait) 4863 ret = jbd2_log_wait_commit(sbi->s_journal, 4864 target); 4865 } 4866 } else if (wait && test_opt(sb, BARRIER)) 4867 needs_barrier = true; 4868 if (needs_barrier) { 4869 int err; 4870 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4871 if (!ret) 4872 ret = err; 4873 } 4874 4875 return ret; 4876 } 4877 4878 /* 4879 * LVM calls this function before a (read-only) snapshot is created. This 4880 * gives us a chance to flush the journal completely and mark the fs clean. 4881 * 4882 * Note that only this function cannot bring a filesystem to be in a clean 4883 * state independently. It relies on upper layer to stop all data & metadata 4884 * modifications. 4885 */ 4886 static int ext4_freeze(struct super_block *sb) 4887 { 4888 int error = 0; 4889 journal_t *journal; 4890 4891 if (sb_rdonly(sb)) 4892 return 0; 4893 4894 journal = EXT4_SB(sb)->s_journal; 4895 4896 if (journal) { 4897 /* Now we set up the journal barrier. */ 4898 jbd2_journal_lock_updates(journal); 4899 4900 /* 4901 * Don't clear the needs_recovery flag if we failed to 4902 * flush the journal. 4903 */ 4904 error = jbd2_journal_flush(journal); 4905 if (error < 0) 4906 goto out; 4907 4908 /* Journal blocked and flushed, clear needs_recovery flag. */ 4909 ext4_clear_feature_journal_needs_recovery(sb); 4910 } 4911 4912 error = ext4_commit_super(sb, 1); 4913 out: 4914 if (journal) 4915 /* we rely on upper layer to stop further updates */ 4916 jbd2_journal_unlock_updates(journal); 4917 return error; 4918 } 4919 4920 /* 4921 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4922 * flag here, even though the filesystem is not technically dirty yet. 4923 */ 4924 static int ext4_unfreeze(struct super_block *sb) 4925 { 4926 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 4927 return 0; 4928 4929 if (EXT4_SB(sb)->s_journal) { 4930 /* Reset the needs_recovery flag before the fs is unlocked. */ 4931 ext4_set_feature_journal_needs_recovery(sb); 4932 } 4933 4934 ext4_commit_super(sb, 1); 4935 return 0; 4936 } 4937 4938 /* 4939 * Structure to save mount options for ext4_remount's benefit 4940 */ 4941 struct ext4_mount_options { 4942 unsigned long s_mount_opt; 4943 unsigned long s_mount_opt2; 4944 kuid_t s_resuid; 4945 kgid_t s_resgid; 4946 unsigned long s_commit_interval; 4947 u32 s_min_batch_time, s_max_batch_time; 4948 #ifdef CONFIG_QUOTA 4949 int s_jquota_fmt; 4950 char *s_qf_names[EXT4_MAXQUOTAS]; 4951 #endif 4952 }; 4953 4954 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4955 { 4956 struct ext4_super_block *es; 4957 struct ext4_sb_info *sbi = EXT4_SB(sb); 4958 unsigned long old_sb_flags; 4959 struct ext4_mount_options old_opts; 4960 int enable_quota = 0; 4961 ext4_group_t g; 4962 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4963 int err = 0; 4964 #ifdef CONFIG_QUOTA 4965 int i, j; 4966 #endif 4967 char *orig_data = kstrdup(data, GFP_KERNEL); 4968 4969 /* Store the original options */ 4970 old_sb_flags = sb->s_flags; 4971 old_opts.s_mount_opt = sbi->s_mount_opt; 4972 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4973 old_opts.s_resuid = sbi->s_resuid; 4974 old_opts.s_resgid = sbi->s_resgid; 4975 old_opts.s_commit_interval = sbi->s_commit_interval; 4976 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4977 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4978 #ifdef CONFIG_QUOTA 4979 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4980 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4981 if (sbi->s_qf_names[i]) { 4982 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4983 GFP_KERNEL); 4984 if (!old_opts.s_qf_names[i]) { 4985 for (j = 0; j < i; j++) 4986 kfree(old_opts.s_qf_names[j]); 4987 kfree(orig_data); 4988 return -ENOMEM; 4989 } 4990 } else 4991 old_opts.s_qf_names[i] = NULL; 4992 #endif 4993 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4994 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4995 4996 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4997 err = -EINVAL; 4998 goto restore_opts; 4999 } 5000 5001 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5002 test_opt(sb, JOURNAL_CHECKSUM)) { 5003 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5004 "during remount not supported; ignoring"); 5005 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5006 } 5007 5008 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5009 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5010 ext4_msg(sb, KERN_ERR, "can't mount with " 5011 "both data=journal and delalloc"); 5012 err = -EINVAL; 5013 goto restore_opts; 5014 } 5015 if (test_opt(sb, DIOREAD_NOLOCK)) { 5016 ext4_msg(sb, KERN_ERR, "can't mount with " 5017 "both data=journal and dioread_nolock"); 5018 err = -EINVAL; 5019 goto restore_opts; 5020 } 5021 if (test_opt(sb, DAX)) { 5022 ext4_msg(sb, KERN_ERR, "can't mount with " 5023 "both data=journal and dax"); 5024 err = -EINVAL; 5025 goto restore_opts; 5026 } 5027 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5028 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5029 ext4_msg(sb, KERN_ERR, "can't mount with " 5030 "journal_async_commit in data=ordered mode"); 5031 err = -EINVAL; 5032 goto restore_opts; 5033 } 5034 } 5035 5036 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5037 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5038 err = -EINVAL; 5039 goto restore_opts; 5040 } 5041 5042 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5043 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5044 "dax flag with busy inodes while remounting"); 5045 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5046 } 5047 5048 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5049 ext4_abort(sb, "Abort forced by user"); 5050 5051 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5052 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5053 5054 es = sbi->s_es; 5055 5056 if (sbi->s_journal) { 5057 ext4_init_journal_params(sb, sbi->s_journal); 5058 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5059 } 5060 5061 if (*flags & SB_LAZYTIME) 5062 sb->s_flags |= SB_LAZYTIME; 5063 5064 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5065 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5066 err = -EROFS; 5067 goto restore_opts; 5068 } 5069 5070 if (*flags & SB_RDONLY) { 5071 err = sync_filesystem(sb); 5072 if (err < 0) 5073 goto restore_opts; 5074 err = dquot_suspend(sb, -1); 5075 if (err < 0) 5076 goto restore_opts; 5077 5078 /* 5079 * First of all, the unconditional stuff we have to do 5080 * to disable replay of the journal when we next remount 5081 */ 5082 sb->s_flags |= SB_RDONLY; 5083 5084 /* 5085 * OK, test if we are remounting a valid rw partition 5086 * readonly, and if so set the rdonly flag and then 5087 * mark the partition as valid again. 5088 */ 5089 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5090 (sbi->s_mount_state & EXT4_VALID_FS)) 5091 es->s_state = cpu_to_le16(sbi->s_mount_state); 5092 5093 if (sbi->s_journal) 5094 ext4_mark_recovery_complete(sb, es); 5095 } else { 5096 /* Make sure we can mount this feature set readwrite */ 5097 if (ext4_has_feature_readonly(sb) || 5098 !ext4_feature_set_ok(sb, 0)) { 5099 err = -EROFS; 5100 goto restore_opts; 5101 } 5102 /* 5103 * Make sure the group descriptor checksums 5104 * are sane. If they aren't, refuse to remount r/w. 5105 */ 5106 for (g = 0; g < sbi->s_groups_count; g++) { 5107 struct ext4_group_desc *gdp = 5108 ext4_get_group_desc(sb, g, NULL); 5109 5110 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5111 ext4_msg(sb, KERN_ERR, 5112 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5113 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5114 le16_to_cpu(gdp->bg_checksum)); 5115 err = -EFSBADCRC; 5116 goto restore_opts; 5117 } 5118 } 5119 5120 /* 5121 * If we have an unprocessed orphan list hanging 5122 * around from a previously readonly bdev mount, 5123 * require a full umount/remount for now. 5124 */ 5125 if (es->s_last_orphan) { 5126 ext4_msg(sb, KERN_WARNING, "Couldn't " 5127 "remount RDWR because of unprocessed " 5128 "orphan inode list. Please " 5129 "umount/remount instead"); 5130 err = -EINVAL; 5131 goto restore_opts; 5132 } 5133 5134 /* 5135 * Mounting a RDONLY partition read-write, so reread 5136 * and store the current valid flag. (It may have 5137 * been changed by e2fsck since we originally mounted 5138 * the partition.) 5139 */ 5140 if (sbi->s_journal) 5141 ext4_clear_journal_err(sb, es); 5142 sbi->s_mount_state = le16_to_cpu(es->s_state); 5143 if (!ext4_setup_super(sb, es, 0)) 5144 sb->s_flags &= ~SB_RDONLY; 5145 if (ext4_has_feature_mmp(sb)) 5146 if (ext4_multi_mount_protect(sb, 5147 le64_to_cpu(es->s_mmp_block))) { 5148 err = -EROFS; 5149 goto restore_opts; 5150 } 5151 enable_quota = 1; 5152 } 5153 } 5154 5155 /* 5156 * Reinitialize lazy itable initialization thread based on 5157 * current settings 5158 */ 5159 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5160 ext4_unregister_li_request(sb); 5161 else { 5162 ext4_group_t first_not_zeroed; 5163 first_not_zeroed = ext4_has_uninit_itable(sb); 5164 ext4_register_li_request(sb, first_not_zeroed); 5165 } 5166 5167 ext4_setup_system_zone(sb); 5168 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) 5169 ext4_commit_super(sb, 1); 5170 5171 #ifdef CONFIG_QUOTA 5172 /* Release old quota file names */ 5173 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5174 kfree(old_opts.s_qf_names[i]); 5175 if (enable_quota) { 5176 if (sb_any_quota_suspended(sb)) 5177 dquot_resume(sb, -1); 5178 else if (ext4_has_feature_quota(sb)) { 5179 err = ext4_enable_quotas(sb); 5180 if (err) 5181 goto restore_opts; 5182 } 5183 } 5184 #endif 5185 5186 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5187 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5188 kfree(orig_data); 5189 return 0; 5190 5191 restore_opts: 5192 sb->s_flags = old_sb_flags; 5193 sbi->s_mount_opt = old_opts.s_mount_opt; 5194 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5195 sbi->s_resuid = old_opts.s_resuid; 5196 sbi->s_resgid = old_opts.s_resgid; 5197 sbi->s_commit_interval = old_opts.s_commit_interval; 5198 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5199 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5200 #ifdef CONFIG_QUOTA 5201 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5202 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5203 kfree(sbi->s_qf_names[i]); 5204 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5205 } 5206 #endif 5207 kfree(orig_data); 5208 return err; 5209 } 5210 5211 #ifdef CONFIG_QUOTA 5212 static int ext4_statfs_project(struct super_block *sb, 5213 kprojid_t projid, struct kstatfs *buf) 5214 { 5215 struct kqid qid; 5216 struct dquot *dquot; 5217 u64 limit; 5218 u64 curblock; 5219 5220 qid = make_kqid_projid(projid); 5221 dquot = dqget(sb, qid); 5222 if (IS_ERR(dquot)) 5223 return PTR_ERR(dquot); 5224 spin_lock(&dquot->dq_dqb_lock); 5225 5226 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5227 dquot->dq_dqb.dqb_bsoftlimit : 5228 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5229 if (limit && buf->f_blocks > limit) { 5230 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5231 buf->f_blocks = limit; 5232 buf->f_bfree = buf->f_bavail = 5233 (buf->f_blocks > curblock) ? 5234 (buf->f_blocks - curblock) : 0; 5235 } 5236 5237 limit = dquot->dq_dqb.dqb_isoftlimit ? 5238 dquot->dq_dqb.dqb_isoftlimit : 5239 dquot->dq_dqb.dqb_ihardlimit; 5240 if (limit && buf->f_files > limit) { 5241 buf->f_files = limit; 5242 buf->f_ffree = 5243 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5244 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5245 } 5246 5247 spin_unlock(&dquot->dq_dqb_lock); 5248 dqput(dquot); 5249 return 0; 5250 } 5251 #endif 5252 5253 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5254 { 5255 struct super_block *sb = dentry->d_sb; 5256 struct ext4_sb_info *sbi = EXT4_SB(sb); 5257 struct ext4_super_block *es = sbi->s_es; 5258 ext4_fsblk_t overhead = 0, resv_blocks; 5259 u64 fsid; 5260 s64 bfree; 5261 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5262 5263 if (!test_opt(sb, MINIX_DF)) 5264 overhead = sbi->s_overhead; 5265 5266 buf->f_type = EXT4_SUPER_MAGIC; 5267 buf->f_bsize = sb->s_blocksize; 5268 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5269 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5270 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5271 /* prevent underflow in case that few free space is available */ 5272 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5273 buf->f_bavail = buf->f_bfree - 5274 (ext4_r_blocks_count(es) + resv_blocks); 5275 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5276 buf->f_bavail = 0; 5277 buf->f_files = le32_to_cpu(es->s_inodes_count); 5278 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5279 buf->f_namelen = EXT4_NAME_LEN; 5280 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5281 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5282 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5283 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5284 5285 #ifdef CONFIG_QUOTA 5286 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5287 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5288 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5289 #endif 5290 return 0; 5291 } 5292 5293 5294 #ifdef CONFIG_QUOTA 5295 5296 /* 5297 * Helper functions so that transaction is started before we acquire dqio_sem 5298 * to keep correct lock ordering of transaction > dqio_sem 5299 */ 5300 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5301 { 5302 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5303 } 5304 5305 static int ext4_write_dquot(struct dquot *dquot) 5306 { 5307 int ret, err; 5308 handle_t *handle; 5309 struct inode *inode; 5310 5311 inode = dquot_to_inode(dquot); 5312 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5313 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5314 if (IS_ERR(handle)) 5315 return PTR_ERR(handle); 5316 ret = dquot_commit(dquot); 5317 err = ext4_journal_stop(handle); 5318 if (!ret) 5319 ret = err; 5320 return ret; 5321 } 5322 5323 static int ext4_acquire_dquot(struct dquot *dquot) 5324 { 5325 int ret, err; 5326 handle_t *handle; 5327 5328 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5329 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5330 if (IS_ERR(handle)) 5331 return PTR_ERR(handle); 5332 ret = dquot_acquire(dquot); 5333 err = ext4_journal_stop(handle); 5334 if (!ret) 5335 ret = err; 5336 return ret; 5337 } 5338 5339 static int ext4_release_dquot(struct dquot *dquot) 5340 { 5341 int ret, err; 5342 handle_t *handle; 5343 5344 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5345 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5346 if (IS_ERR(handle)) { 5347 /* Release dquot anyway to avoid endless cycle in dqput() */ 5348 dquot_release(dquot); 5349 return PTR_ERR(handle); 5350 } 5351 ret = dquot_release(dquot); 5352 err = ext4_journal_stop(handle); 5353 if (!ret) 5354 ret = err; 5355 return ret; 5356 } 5357 5358 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5359 { 5360 struct super_block *sb = dquot->dq_sb; 5361 struct ext4_sb_info *sbi = EXT4_SB(sb); 5362 5363 /* Are we journaling quotas? */ 5364 if (ext4_has_feature_quota(sb) || 5365 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5366 dquot_mark_dquot_dirty(dquot); 5367 return ext4_write_dquot(dquot); 5368 } else { 5369 return dquot_mark_dquot_dirty(dquot); 5370 } 5371 } 5372 5373 static int ext4_write_info(struct super_block *sb, int type) 5374 { 5375 int ret, err; 5376 handle_t *handle; 5377 5378 /* Data block + inode block */ 5379 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5380 if (IS_ERR(handle)) 5381 return PTR_ERR(handle); 5382 ret = dquot_commit_info(sb, type); 5383 err = ext4_journal_stop(handle); 5384 if (!ret) 5385 ret = err; 5386 return ret; 5387 } 5388 5389 /* 5390 * Turn on quotas during mount time - we need to find 5391 * the quota file and such... 5392 */ 5393 static int ext4_quota_on_mount(struct super_block *sb, int type) 5394 { 5395 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5396 EXT4_SB(sb)->s_jquota_fmt, type); 5397 } 5398 5399 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5400 { 5401 struct ext4_inode_info *ei = EXT4_I(inode); 5402 5403 /* The first argument of lockdep_set_subclass has to be 5404 * *exactly* the same as the argument to init_rwsem() --- in 5405 * this case, in init_once() --- or lockdep gets unhappy 5406 * because the name of the lock is set using the 5407 * stringification of the argument to init_rwsem(). 5408 */ 5409 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5410 lockdep_set_subclass(&ei->i_data_sem, subclass); 5411 } 5412 5413 /* 5414 * Standard function to be called on quota_on 5415 */ 5416 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5417 const struct path *path) 5418 { 5419 int err; 5420 5421 if (!test_opt(sb, QUOTA)) 5422 return -EINVAL; 5423 5424 /* Quotafile not on the same filesystem? */ 5425 if (path->dentry->d_sb != sb) 5426 return -EXDEV; 5427 /* Journaling quota? */ 5428 if (EXT4_SB(sb)->s_qf_names[type]) { 5429 /* Quotafile not in fs root? */ 5430 if (path->dentry->d_parent != sb->s_root) 5431 ext4_msg(sb, KERN_WARNING, 5432 "Quota file not on filesystem root. " 5433 "Journaled quota will not work"); 5434 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5435 } else { 5436 /* 5437 * Clear the flag just in case mount options changed since 5438 * last time. 5439 */ 5440 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5441 } 5442 5443 /* 5444 * When we journal data on quota file, we have to flush journal to see 5445 * all updates to the file when we bypass pagecache... 5446 */ 5447 if (EXT4_SB(sb)->s_journal && 5448 ext4_should_journal_data(d_inode(path->dentry))) { 5449 /* 5450 * We don't need to lock updates but journal_flush() could 5451 * otherwise be livelocked... 5452 */ 5453 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5454 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5455 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5456 if (err) 5457 return err; 5458 } 5459 5460 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5461 err = dquot_quota_on(sb, type, format_id, path); 5462 if (err) { 5463 lockdep_set_quota_inode(path->dentry->d_inode, 5464 I_DATA_SEM_NORMAL); 5465 } else { 5466 struct inode *inode = d_inode(path->dentry); 5467 handle_t *handle; 5468 5469 /* 5470 * Set inode flags to prevent userspace from messing with quota 5471 * files. If this fails, we return success anyway since quotas 5472 * are already enabled and this is not a hard failure. 5473 */ 5474 inode_lock(inode); 5475 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5476 if (IS_ERR(handle)) 5477 goto unlock_inode; 5478 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5479 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5480 S_NOATIME | S_IMMUTABLE); 5481 ext4_mark_inode_dirty(handle, inode); 5482 ext4_journal_stop(handle); 5483 unlock_inode: 5484 inode_unlock(inode); 5485 } 5486 return err; 5487 } 5488 5489 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5490 unsigned int flags) 5491 { 5492 int err; 5493 struct inode *qf_inode; 5494 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5495 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5496 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5497 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5498 }; 5499 5500 BUG_ON(!ext4_has_feature_quota(sb)); 5501 5502 if (!qf_inums[type]) 5503 return -EPERM; 5504 5505 qf_inode = ext4_iget(sb, qf_inums[type]); 5506 if (IS_ERR(qf_inode)) { 5507 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5508 return PTR_ERR(qf_inode); 5509 } 5510 5511 /* Don't account quota for quota files to avoid recursion */ 5512 qf_inode->i_flags |= S_NOQUOTA; 5513 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5514 err = dquot_enable(qf_inode, type, format_id, flags); 5515 iput(qf_inode); 5516 if (err) 5517 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5518 5519 return err; 5520 } 5521 5522 /* Enable usage tracking for all quota types. */ 5523 static int ext4_enable_quotas(struct super_block *sb) 5524 { 5525 int type, err = 0; 5526 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5527 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5528 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5529 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5530 }; 5531 bool quota_mopt[EXT4_MAXQUOTAS] = { 5532 test_opt(sb, USRQUOTA), 5533 test_opt(sb, GRPQUOTA), 5534 test_opt(sb, PRJQUOTA), 5535 }; 5536 5537 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5538 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5539 if (qf_inums[type]) { 5540 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5541 DQUOT_USAGE_ENABLED | 5542 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5543 if (err) { 5544 for (type--; type >= 0; type--) 5545 dquot_quota_off(sb, type); 5546 5547 ext4_warning(sb, 5548 "Failed to enable quota tracking " 5549 "(type=%d, err=%d). Please run " 5550 "e2fsck to fix.", type, err); 5551 return err; 5552 } 5553 } 5554 } 5555 return 0; 5556 } 5557 5558 static int ext4_quota_off(struct super_block *sb, int type) 5559 { 5560 struct inode *inode = sb_dqopt(sb)->files[type]; 5561 handle_t *handle; 5562 int err; 5563 5564 /* Force all delayed allocation blocks to be allocated. 5565 * Caller already holds s_umount sem */ 5566 if (test_opt(sb, DELALLOC)) 5567 sync_filesystem(sb); 5568 5569 if (!inode || !igrab(inode)) 5570 goto out; 5571 5572 err = dquot_quota_off(sb, type); 5573 if (err || ext4_has_feature_quota(sb)) 5574 goto out_put; 5575 5576 inode_lock(inode); 5577 /* 5578 * Update modification times of quota files when userspace can 5579 * start looking at them. If we fail, we return success anyway since 5580 * this is not a hard failure and quotas are already disabled. 5581 */ 5582 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5583 if (IS_ERR(handle)) 5584 goto out_unlock; 5585 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5586 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5587 inode->i_mtime = inode->i_ctime = current_time(inode); 5588 ext4_mark_inode_dirty(handle, inode); 5589 ext4_journal_stop(handle); 5590 out_unlock: 5591 inode_unlock(inode); 5592 out_put: 5593 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5594 iput(inode); 5595 return err; 5596 out: 5597 return dquot_quota_off(sb, type); 5598 } 5599 5600 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5601 * acquiring the locks... As quota files are never truncated and quota code 5602 * itself serializes the operations (and no one else should touch the files) 5603 * we don't have to be afraid of races */ 5604 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5605 size_t len, loff_t off) 5606 { 5607 struct inode *inode = sb_dqopt(sb)->files[type]; 5608 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5609 int offset = off & (sb->s_blocksize - 1); 5610 int tocopy; 5611 size_t toread; 5612 struct buffer_head *bh; 5613 loff_t i_size = i_size_read(inode); 5614 5615 if (off > i_size) 5616 return 0; 5617 if (off+len > i_size) 5618 len = i_size-off; 5619 toread = len; 5620 while (toread > 0) { 5621 tocopy = sb->s_blocksize - offset < toread ? 5622 sb->s_blocksize - offset : toread; 5623 bh = ext4_bread(NULL, inode, blk, 0); 5624 if (IS_ERR(bh)) 5625 return PTR_ERR(bh); 5626 if (!bh) /* A hole? */ 5627 memset(data, 0, tocopy); 5628 else 5629 memcpy(data, bh->b_data+offset, tocopy); 5630 brelse(bh); 5631 offset = 0; 5632 toread -= tocopy; 5633 data += tocopy; 5634 blk++; 5635 } 5636 return len; 5637 } 5638 5639 /* Write to quotafile (we know the transaction is already started and has 5640 * enough credits) */ 5641 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5642 const char *data, size_t len, loff_t off) 5643 { 5644 struct inode *inode = sb_dqopt(sb)->files[type]; 5645 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5646 int err, offset = off & (sb->s_blocksize - 1); 5647 int retries = 0; 5648 struct buffer_head *bh; 5649 handle_t *handle = journal_current_handle(); 5650 5651 if (EXT4_SB(sb)->s_journal && !handle) { 5652 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5653 " cancelled because transaction is not started", 5654 (unsigned long long)off, (unsigned long long)len); 5655 return -EIO; 5656 } 5657 /* 5658 * Since we account only one data block in transaction credits, 5659 * then it is impossible to cross a block boundary. 5660 */ 5661 if (sb->s_blocksize - offset < len) { 5662 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5663 " cancelled because not block aligned", 5664 (unsigned long long)off, (unsigned long long)len); 5665 return -EIO; 5666 } 5667 5668 do { 5669 bh = ext4_bread(handle, inode, blk, 5670 EXT4_GET_BLOCKS_CREATE | 5671 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5672 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5673 ext4_should_retry_alloc(inode->i_sb, &retries)); 5674 if (IS_ERR(bh)) 5675 return PTR_ERR(bh); 5676 if (!bh) 5677 goto out; 5678 BUFFER_TRACE(bh, "get write access"); 5679 err = ext4_journal_get_write_access(handle, bh); 5680 if (err) { 5681 brelse(bh); 5682 return err; 5683 } 5684 lock_buffer(bh); 5685 memcpy(bh->b_data+offset, data, len); 5686 flush_dcache_page(bh->b_page); 5687 unlock_buffer(bh); 5688 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5689 brelse(bh); 5690 out: 5691 if (inode->i_size < off + len) { 5692 i_size_write(inode, off + len); 5693 EXT4_I(inode)->i_disksize = inode->i_size; 5694 ext4_mark_inode_dirty(handle, inode); 5695 } 5696 return len; 5697 } 5698 5699 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5700 { 5701 const struct quota_format_ops *ops; 5702 5703 if (!sb_has_quota_loaded(sb, qid->type)) 5704 return -ESRCH; 5705 ops = sb_dqopt(sb)->ops[qid->type]; 5706 if (!ops || !ops->get_next_id) 5707 return -ENOSYS; 5708 return dquot_get_next_id(sb, qid); 5709 } 5710 #endif 5711 5712 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5713 const char *dev_name, void *data) 5714 { 5715 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5716 } 5717 5718 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5719 static inline void register_as_ext2(void) 5720 { 5721 int err = register_filesystem(&ext2_fs_type); 5722 if (err) 5723 printk(KERN_WARNING 5724 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5725 } 5726 5727 static inline void unregister_as_ext2(void) 5728 { 5729 unregister_filesystem(&ext2_fs_type); 5730 } 5731 5732 static inline int ext2_feature_set_ok(struct super_block *sb) 5733 { 5734 if (ext4_has_unknown_ext2_incompat_features(sb)) 5735 return 0; 5736 if (sb_rdonly(sb)) 5737 return 1; 5738 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5739 return 0; 5740 return 1; 5741 } 5742 #else 5743 static inline void register_as_ext2(void) { } 5744 static inline void unregister_as_ext2(void) { } 5745 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5746 #endif 5747 5748 static inline void register_as_ext3(void) 5749 { 5750 int err = register_filesystem(&ext3_fs_type); 5751 if (err) 5752 printk(KERN_WARNING 5753 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5754 } 5755 5756 static inline void unregister_as_ext3(void) 5757 { 5758 unregister_filesystem(&ext3_fs_type); 5759 } 5760 5761 static inline int ext3_feature_set_ok(struct super_block *sb) 5762 { 5763 if (ext4_has_unknown_ext3_incompat_features(sb)) 5764 return 0; 5765 if (!ext4_has_feature_journal(sb)) 5766 return 0; 5767 if (sb_rdonly(sb)) 5768 return 1; 5769 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5770 return 0; 5771 return 1; 5772 } 5773 5774 static struct file_system_type ext4_fs_type = { 5775 .owner = THIS_MODULE, 5776 .name = "ext4", 5777 .mount = ext4_mount, 5778 .kill_sb = kill_block_super, 5779 .fs_flags = FS_REQUIRES_DEV, 5780 }; 5781 MODULE_ALIAS_FS("ext4"); 5782 5783 /* Shared across all ext4 file systems */ 5784 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5785 5786 static int __init ext4_init_fs(void) 5787 { 5788 int i, err; 5789 5790 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5791 ext4_li_info = NULL; 5792 mutex_init(&ext4_li_mtx); 5793 5794 /* Build-time check for flags consistency */ 5795 ext4_check_flag_values(); 5796 5797 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5798 init_waitqueue_head(&ext4__ioend_wq[i]); 5799 5800 err = ext4_init_es(); 5801 if (err) 5802 return err; 5803 5804 err = ext4_init_pageio(); 5805 if (err) 5806 goto out5; 5807 5808 err = ext4_init_system_zone(); 5809 if (err) 5810 goto out4; 5811 5812 err = ext4_init_sysfs(); 5813 if (err) 5814 goto out3; 5815 5816 err = ext4_init_mballoc(); 5817 if (err) 5818 goto out2; 5819 err = init_inodecache(); 5820 if (err) 5821 goto out1; 5822 register_as_ext3(); 5823 register_as_ext2(); 5824 err = register_filesystem(&ext4_fs_type); 5825 if (err) 5826 goto out; 5827 5828 return 0; 5829 out: 5830 unregister_as_ext2(); 5831 unregister_as_ext3(); 5832 destroy_inodecache(); 5833 out1: 5834 ext4_exit_mballoc(); 5835 out2: 5836 ext4_exit_sysfs(); 5837 out3: 5838 ext4_exit_system_zone(); 5839 out4: 5840 ext4_exit_pageio(); 5841 out5: 5842 ext4_exit_es(); 5843 5844 return err; 5845 } 5846 5847 static void __exit ext4_exit_fs(void) 5848 { 5849 ext4_destroy_lazyinit_thread(); 5850 unregister_as_ext2(); 5851 unregister_as_ext3(); 5852 unregister_filesystem(&ext4_fs_type); 5853 destroy_inodecache(); 5854 ext4_exit_mballoc(); 5855 ext4_exit_sysfs(); 5856 ext4_exit_system_zone(); 5857 ext4_exit_pageio(); 5858 ext4_exit_es(); 5859 } 5860 5861 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5862 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5863 MODULE_LICENSE("GPL"); 5864 module_init(ext4_init_fs) 5865 module_exit(ext4_exit_fs) 5866