1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116 { 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122 } 123 124 static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126 { 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134 } 135 136 int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138 { 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb, 147 struct ext4_super_block *es) 148 { 149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 150 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 151 return; 152 153 es->s_checksum = ext4_superblock_csum(sb, es); 154 } 155 156 void *ext4_kvmalloc(size_t size, gfp_t flags) 157 { 158 void *ret; 159 160 ret = kmalloc(size, flags); 161 if (!ret) 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 return ret; 164 } 165 166 void *ext4_kvzalloc(size_t size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = kzalloc(size, flags); 171 if (!ret) 172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 173 return ret; 174 } 175 176 void ext4_kvfree(void *ptr) 177 { 178 if (is_vmalloc_addr(ptr)) 179 vfree(ptr); 180 else 181 kfree(ptr); 182 183 } 184 185 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 186 struct ext4_group_desc *bg) 187 { 188 return le32_to_cpu(bg->bg_block_bitmap_lo) | 189 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 190 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 191 } 192 193 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 194 struct ext4_group_desc *bg) 195 { 196 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 197 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 198 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 199 } 200 201 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_inode_table_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 207 } 208 209 __u32 ext4_free_group_clusters(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 215 } 216 217 __u32 ext4_free_inodes_count(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 223 } 224 225 __u32 ext4_used_dirs_count(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_itable_unused_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_itable_unused_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 239 } 240 241 void ext4_block_bitmap_set(struct super_block *sb, 242 struct ext4_group_desc *bg, ext4_fsblk_t blk) 243 { 244 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 245 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 246 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 247 } 248 249 void ext4_inode_bitmap_set(struct super_block *sb, 250 struct ext4_group_desc *bg, ext4_fsblk_t blk) 251 { 252 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 253 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 254 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 255 } 256 257 void ext4_inode_table_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_free_group_clusters_set(struct super_block *sb, 266 struct ext4_group_desc *bg, __u32 count) 267 { 268 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 271 } 272 273 void ext4_free_inodes_set(struct super_block *sb, 274 struct ext4_group_desc *bg, __u32 count) 275 { 276 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 279 } 280 281 void ext4_used_dirs_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_itable_unused_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 295 } 296 297 298 /* Just increment the non-pointer handle value */ 299 static handle_t *ext4_get_nojournal(void) 300 { 301 handle_t *handle = current->journal_info; 302 unsigned long ref_cnt = (unsigned long)handle; 303 304 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 305 306 ref_cnt++; 307 handle = (handle_t *)ref_cnt; 308 309 current->journal_info = handle; 310 return handle; 311 } 312 313 314 /* Decrement the non-pointer handle value */ 315 static void ext4_put_nojournal(handle_t *handle) 316 { 317 unsigned long ref_cnt = (unsigned long)handle; 318 319 BUG_ON(ref_cnt == 0); 320 321 ref_cnt--; 322 handle = (handle_t *)ref_cnt; 323 324 current->journal_info = handle; 325 } 326 327 /* 328 * Wrappers for jbd2_journal_start/end. 329 */ 330 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 331 { 332 journal_t *journal; 333 334 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 335 if (sb->s_flags & MS_RDONLY) 336 return ERR_PTR(-EROFS); 337 338 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE); 339 journal = EXT4_SB(sb)->s_journal; 340 if (!journal) 341 return ext4_get_nojournal(); 342 /* 343 * Special case here: if the journal has aborted behind our 344 * backs (eg. EIO in the commit thread), then we still need to 345 * take the FS itself readonly cleanly. 346 */ 347 if (is_journal_aborted(journal)) { 348 ext4_abort(sb, "Detected aborted journal"); 349 return ERR_PTR(-EROFS); 350 } 351 return jbd2_journal_start(journal, nblocks); 352 } 353 354 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 355 { 356 struct super_block *sb; 357 int err; 358 int rc; 359 360 if (!ext4_handle_valid(handle)) { 361 ext4_put_nojournal(handle); 362 return 0; 363 } 364 sb = handle->h_transaction->t_journal->j_private; 365 err = handle->h_err; 366 rc = jbd2_journal_stop(handle); 367 368 if (!err) 369 err = rc; 370 if (err) 371 __ext4_std_error(sb, where, line, err); 372 return err; 373 } 374 375 void ext4_journal_abort_handle(const char *caller, unsigned int line, 376 const char *err_fn, struct buffer_head *bh, 377 handle_t *handle, int err) 378 { 379 char nbuf[16]; 380 const char *errstr = ext4_decode_error(NULL, err, nbuf); 381 382 BUG_ON(!ext4_handle_valid(handle)); 383 384 if (bh) 385 BUFFER_TRACE(bh, "abort"); 386 387 if (!handle->h_err) 388 handle->h_err = err; 389 390 if (is_handle_aborted(handle)) 391 return; 392 393 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 394 caller, line, errstr, err_fn); 395 396 jbd2_journal_abort_handle(handle); 397 } 398 399 static void __save_error_info(struct super_block *sb, const char *func, 400 unsigned int line) 401 { 402 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 403 404 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 405 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 406 es->s_last_error_time = cpu_to_le32(get_seconds()); 407 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 408 es->s_last_error_line = cpu_to_le32(line); 409 if (!es->s_first_error_time) { 410 es->s_first_error_time = es->s_last_error_time; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 } 417 /* 418 * Start the daily error reporting function if it hasn't been 419 * started already 420 */ 421 if (!es->s_error_count) 422 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 423 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 424 } 425 426 static void save_error_info(struct super_block *sb, const char *func, 427 unsigned int line) 428 { 429 __save_error_info(sb, func, line); 430 ext4_commit_super(sb, 1); 431 } 432 433 /* 434 * The del_gendisk() function uninitializes the disk-specific data 435 * structures, including the bdi structure, without telling anyone 436 * else. Once this happens, any attempt to call mark_buffer_dirty() 437 * (for example, by ext4_commit_super), will cause a kernel OOPS. 438 * This is a kludge to prevent these oops until we can put in a proper 439 * hook in del_gendisk() to inform the VFS and file system layers. 440 */ 441 static int block_device_ejected(struct super_block *sb) 442 { 443 struct inode *bd_inode = sb->s_bdev->bd_inode; 444 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 445 446 return bdi->dev == NULL; 447 } 448 449 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 450 { 451 struct super_block *sb = journal->j_private; 452 struct ext4_sb_info *sbi = EXT4_SB(sb); 453 int error = is_journal_aborted(journal); 454 struct ext4_journal_cb_entry *jce, *tmp; 455 456 spin_lock(&sbi->s_md_lock); 457 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 458 list_del_init(&jce->jce_list); 459 spin_unlock(&sbi->s_md_lock); 460 jce->jce_func(sb, jce, error); 461 spin_lock(&sbi->s_md_lock); 462 } 463 spin_unlock(&sbi->s_md_lock); 464 } 465 466 /* Deal with the reporting of failure conditions on a filesystem such as 467 * inconsistencies detected or read IO failures. 468 * 469 * On ext2, we can store the error state of the filesystem in the 470 * superblock. That is not possible on ext4, because we may have other 471 * write ordering constraints on the superblock which prevent us from 472 * writing it out straight away; and given that the journal is about to 473 * be aborted, we can't rely on the current, or future, transactions to 474 * write out the superblock safely. 475 * 476 * We'll just use the jbd2_journal_abort() error code to record an error in 477 * the journal instead. On recovery, the journal will complain about 478 * that error until we've noted it down and cleared it. 479 */ 480 481 static void ext4_handle_error(struct super_block *sb) 482 { 483 if (sb->s_flags & MS_RDONLY) 484 return; 485 486 if (!test_opt(sb, ERRORS_CONT)) { 487 journal_t *journal = EXT4_SB(sb)->s_journal; 488 489 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 490 if (journal) 491 jbd2_journal_abort(journal, -EIO); 492 } 493 if (test_opt(sb, ERRORS_RO)) { 494 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 495 sb->s_flags |= MS_RDONLY; 496 } 497 if (test_opt(sb, ERRORS_PANIC)) 498 panic("EXT4-fs (device %s): panic forced after error\n", 499 sb->s_id); 500 } 501 502 void __ext4_error(struct super_block *sb, const char *function, 503 unsigned int line, const char *fmt, ...) 504 { 505 struct va_format vaf; 506 va_list args; 507 508 va_start(args, fmt); 509 vaf.fmt = fmt; 510 vaf.va = &args; 511 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 512 sb->s_id, function, line, current->comm, &vaf); 513 va_end(args); 514 save_error_info(sb, function, line); 515 516 ext4_handle_error(sb); 517 } 518 519 void ext4_error_inode(struct inode *inode, const char *function, 520 unsigned int line, ext4_fsblk_t block, 521 const char *fmt, ...) 522 { 523 va_list args; 524 struct va_format vaf; 525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 526 527 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 528 es->s_last_error_block = cpu_to_le64(block); 529 save_error_info(inode->i_sb, function, line); 530 va_start(args, fmt); 531 vaf.fmt = fmt; 532 vaf.va = &args; 533 if (block) 534 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 535 "inode #%lu: block %llu: comm %s: %pV\n", 536 inode->i_sb->s_id, function, line, inode->i_ino, 537 block, current->comm, &vaf); 538 else 539 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 540 "inode #%lu: comm %s: %pV\n", 541 inode->i_sb->s_id, function, line, inode->i_ino, 542 current->comm, &vaf); 543 va_end(args); 544 545 ext4_handle_error(inode->i_sb); 546 } 547 548 void ext4_error_file(struct file *file, const char *function, 549 unsigned int line, ext4_fsblk_t block, 550 const char *fmt, ...) 551 { 552 va_list args; 553 struct va_format vaf; 554 struct ext4_super_block *es; 555 struct inode *inode = file->f_dentry->d_inode; 556 char pathname[80], *path; 557 558 es = EXT4_SB(inode->i_sb)->s_es; 559 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 560 save_error_info(inode->i_sb, function, line); 561 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 562 if (IS_ERR(path)) 563 path = "(unknown)"; 564 va_start(args, fmt); 565 vaf.fmt = fmt; 566 vaf.va = &args; 567 if (block) 568 printk(KERN_CRIT 569 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 570 "block %llu: comm %s: path %s: %pV\n", 571 inode->i_sb->s_id, function, line, inode->i_ino, 572 block, current->comm, path, &vaf); 573 else 574 printk(KERN_CRIT 575 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 576 "comm %s: path %s: %pV\n", 577 inode->i_sb->s_id, function, line, inode->i_ino, 578 current->comm, path, &vaf); 579 va_end(args); 580 581 ext4_handle_error(inode->i_sb); 582 } 583 584 static const char *ext4_decode_error(struct super_block *sb, int errno, 585 char nbuf[16]) 586 { 587 char *errstr = NULL; 588 589 switch (errno) { 590 case -EIO: 591 errstr = "IO failure"; 592 break; 593 case -ENOMEM: 594 errstr = "Out of memory"; 595 break; 596 case -EROFS: 597 if (!sb || (EXT4_SB(sb)->s_journal && 598 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 599 errstr = "Journal has aborted"; 600 else 601 errstr = "Readonly filesystem"; 602 break; 603 default: 604 /* If the caller passed in an extra buffer for unknown 605 * errors, textualise them now. Else we just return 606 * NULL. */ 607 if (nbuf) { 608 /* Check for truncated error codes... */ 609 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 610 errstr = nbuf; 611 } 612 break; 613 } 614 615 return errstr; 616 } 617 618 /* __ext4_std_error decodes expected errors from journaling functions 619 * automatically and invokes the appropriate error response. */ 620 621 void __ext4_std_error(struct super_block *sb, const char *function, 622 unsigned int line, int errno) 623 { 624 char nbuf[16]; 625 const char *errstr; 626 627 /* Special case: if the error is EROFS, and we're not already 628 * inside a transaction, then there's really no point in logging 629 * an error. */ 630 if (errno == -EROFS && journal_current_handle() == NULL && 631 (sb->s_flags & MS_RDONLY)) 632 return; 633 634 errstr = ext4_decode_error(sb, errno, nbuf); 635 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 636 sb->s_id, function, line, errstr); 637 save_error_info(sb, function, line); 638 639 ext4_handle_error(sb); 640 } 641 642 /* 643 * ext4_abort is a much stronger failure handler than ext4_error. The 644 * abort function may be used to deal with unrecoverable failures such 645 * as journal IO errors or ENOMEM at a critical moment in log management. 646 * 647 * We unconditionally force the filesystem into an ABORT|READONLY state, 648 * unless the error response on the fs has been set to panic in which 649 * case we take the easy way out and panic immediately. 650 */ 651 652 void __ext4_abort(struct super_block *sb, const char *function, 653 unsigned int line, const char *fmt, ...) 654 { 655 va_list args; 656 657 save_error_info(sb, function, line); 658 va_start(args, fmt); 659 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 660 function, line); 661 vprintk(fmt, args); 662 printk("\n"); 663 va_end(args); 664 665 if ((sb->s_flags & MS_RDONLY) == 0) { 666 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 667 sb->s_flags |= MS_RDONLY; 668 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 669 if (EXT4_SB(sb)->s_journal) 670 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 671 save_error_info(sb, function, line); 672 } 673 if (test_opt(sb, ERRORS_PANIC)) 674 panic("EXT4-fs panic from previous error\n"); 675 } 676 677 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 678 { 679 struct va_format vaf; 680 va_list args; 681 682 va_start(args, fmt); 683 vaf.fmt = fmt; 684 vaf.va = &args; 685 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 686 va_end(args); 687 } 688 689 void __ext4_warning(struct super_block *sb, const char *function, 690 unsigned int line, const char *fmt, ...) 691 { 692 struct va_format vaf; 693 va_list args; 694 695 va_start(args, fmt); 696 vaf.fmt = fmt; 697 vaf.va = &args; 698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 699 sb->s_id, function, line, &vaf); 700 va_end(args); 701 } 702 703 void __ext4_grp_locked_error(const char *function, unsigned int line, 704 struct super_block *sb, ext4_group_t grp, 705 unsigned long ino, ext4_fsblk_t block, 706 const char *fmt, ...) 707 __releases(bitlock) 708 __acquires(bitlock) 709 { 710 struct va_format vaf; 711 va_list args; 712 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 713 714 es->s_last_error_ino = cpu_to_le32(ino); 715 es->s_last_error_block = cpu_to_le64(block); 716 __save_error_info(sb, function, line); 717 718 va_start(args, fmt); 719 720 vaf.fmt = fmt; 721 vaf.va = &args; 722 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 723 sb->s_id, function, line, grp); 724 if (ino) 725 printk(KERN_CONT "inode %lu: ", ino); 726 if (block) 727 printk(KERN_CONT "block %llu:", (unsigned long long) block); 728 printk(KERN_CONT "%pV\n", &vaf); 729 va_end(args); 730 731 if (test_opt(sb, ERRORS_CONT)) { 732 ext4_commit_super(sb, 0); 733 return; 734 } 735 736 ext4_unlock_group(sb, grp); 737 ext4_handle_error(sb); 738 /* 739 * We only get here in the ERRORS_RO case; relocking the group 740 * may be dangerous, but nothing bad will happen since the 741 * filesystem will have already been marked read/only and the 742 * journal has been aborted. We return 1 as a hint to callers 743 * who might what to use the return value from 744 * ext4_grp_locked_error() to distinguish between the 745 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 746 * aggressively from the ext4 function in question, with a 747 * more appropriate error code. 748 */ 749 ext4_lock_group(sb, grp); 750 return; 751 } 752 753 void ext4_update_dynamic_rev(struct super_block *sb) 754 { 755 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 756 757 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 758 return; 759 760 ext4_warning(sb, 761 "updating to rev %d because of new feature flag, " 762 "running e2fsck is recommended", 763 EXT4_DYNAMIC_REV); 764 765 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 766 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 767 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 768 /* leave es->s_feature_*compat flags alone */ 769 /* es->s_uuid will be set by e2fsck if empty */ 770 771 /* 772 * The rest of the superblock fields should be zero, and if not it 773 * means they are likely already in use, so leave them alone. We 774 * can leave it up to e2fsck to clean up any inconsistencies there. 775 */ 776 } 777 778 /* 779 * Open the external journal device 780 */ 781 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 782 { 783 struct block_device *bdev; 784 char b[BDEVNAME_SIZE]; 785 786 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 787 if (IS_ERR(bdev)) 788 goto fail; 789 return bdev; 790 791 fail: 792 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 793 __bdevname(dev, b), PTR_ERR(bdev)); 794 return NULL; 795 } 796 797 /* 798 * Release the journal device 799 */ 800 static int ext4_blkdev_put(struct block_device *bdev) 801 { 802 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 803 } 804 805 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 806 { 807 struct block_device *bdev; 808 int ret = -ENODEV; 809 810 bdev = sbi->journal_bdev; 811 if (bdev) { 812 ret = ext4_blkdev_put(bdev); 813 sbi->journal_bdev = NULL; 814 } 815 return ret; 816 } 817 818 static inline struct inode *orphan_list_entry(struct list_head *l) 819 { 820 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 821 } 822 823 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 824 { 825 struct list_head *l; 826 827 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 828 le32_to_cpu(sbi->s_es->s_last_orphan)); 829 830 printk(KERN_ERR "sb_info orphan list:\n"); 831 list_for_each(l, &sbi->s_orphan) { 832 struct inode *inode = orphan_list_entry(l); 833 printk(KERN_ERR " " 834 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 835 inode->i_sb->s_id, inode->i_ino, inode, 836 inode->i_mode, inode->i_nlink, 837 NEXT_ORPHAN(inode)); 838 } 839 } 840 841 static void ext4_put_super(struct super_block *sb) 842 { 843 struct ext4_sb_info *sbi = EXT4_SB(sb); 844 struct ext4_super_block *es = sbi->s_es; 845 int i, err; 846 847 ext4_unregister_li_request(sb); 848 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 849 850 flush_workqueue(sbi->dio_unwritten_wq); 851 destroy_workqueue(sbi->dio_unwritten_wq); 852 853 lock_super(sb); 854 if (sbi->s_journal) { 855 err = jbd2_journal_destroy(sbi->s_journal); 856 sbi->s_journal = NULL; 857 if (err < 0) 858 ext4_abort(sb, "Couldn't clean up the journal"); 859 } 860 861 del_timer(&sbi->s_err_report); 862 ext4_release_system_zone(sb); 863 ext4_mb_release(sb); 864 ext4_ext_release(sb); 865 ext4_xattr_put_super(sb); 866 867 if (!(sb->s_flags & MS_RDONLY)) { 868 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 869 es->s_state = cpu_to_le16(sbi->s_mount_state); 870 } 871 if (!(sb->s_flags & MS_RDONLY)) 872 ext4_commit_super(sb, 1); 873 874 if (sbi->s_proc) { 875 remove_proc_entry("options", sbi->s_proc); 876 remove_proc_entry(sb->s_id, ext4_proc_root); 877 } 878 kobject_del(&sbi->s_kobj); 879 880 for (i = 0; i < sbi->s_gdb_count; i++) 881 brelse(sbi->s_group_desc[i]); 882 ext4_kvfree(sbi->s_group_desc); 883 ext4_kvfree(sbi->s_flex_groups); 884 percpu_counter_destroy(&sbi->s_freeclusters_counter); 885 percpu_counter_destroy(&sbi->s_freeinodes_counter); 886 percpu_counter_destroy(&sbi->s_dirs_counter); 887 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 888 brelse(sbi->s_sbh); 889 #ifdef CONFIG_QUOTA 890 for (i = 0; i < MAXQUOTAS; i++) 891 kfree(sbi->s_qf_names[i]); 892 #endif 893 894 /* Debugging code just in case the in-memory inode orphan list 895 * isn't empty. The on-disk one can be non-empty if we've 896 * detected an error and taken the fs readonly, but the 897 * in-memory list had better be clean by this point. */ 898 if (!list_empty(&sbi->s_orphan)) 899 dump_orphan_list(sb, sbi); 900 J_ASSERT(list_empty(&sbi->s_orphan)); 901 902 invalidate_bdev(sb->s_bdev); 903 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 904 /* 905 * Invalidate the journal device's buffers. We don't want them 906 * floating about in memory - the physical journal device may 907 * hotswapped, and it breaks the `ro-after' testing code. 908 */ 909 sync_blockdev(sbi->journal_bdev); 910 invalidate_bdev(sbi->journal_bdev); 911 ext4_blkdev_remove(sbi); 912 } 913 if (sbi->s_mmp_tsk) 914 kthread_stop(sbi->s_mmp_tsk); 915 sb->s_fs_info = NULL; 916 /* 917 * Now that we are completely done shutting down the 918 * superblock, we need to actually destroy the kobject. 919 */ 920 unlock_super(sb); 921 kobject_put(&sbi->s_kobj); 922 wait_for_completion(&sbi->s_kobj_unregister); 923 if (sbi->s_chksum_driver) 924 crypto_free_shash(sbi->s_chksum_driver); 925 kfree(sbi->s_blockgroup_lock); 926 kfree(sbi); 927 } 928 929 static struct kmem_cache *ext4_inode_cachep; 930 931 /* 932 * Called inside transaction, so use GFP_NOFS 933 */ 934 static struct inode *ext4_alloc_inode(struct super_block *sb) 935 { 936 struct ext4_inode_info *ei; 937 938 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 939 if (!ei) 940 return NULL; 941 942 ei->vfs_inode.i_version = 1; 943 ei->vfs_inode.i_data.writeback_index = 0; 944 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 945 INIT_LIST_HEAD(&ei->i_prealloc_list); 946 spin_lock_init(&ei->i_prealloc_lock); 947 ei->i_reserved_data_blocks = 0; 948 ei->i_reserved_meta_blocks = 0; 949 ei->i_allocated_meta_blocks = 0; 950 ei->i_da_metadata_calc_len = 0; 951 ei->i_da_metadata_calc_last_lblock = 0; 952 spin_lock_init(&(ei->i_block_reservation_lock)); 953 #ifdef CONFIG_QUOTA 954 ei->i_reserved_quota = 0; 955 #endif 956 ei->jinode = NULL; 957 INIT_LIST_HEAD(&ei->i_completed_io_list); 958 spin_lock_init(&ei->i_completed_io_lock); 959 ei->cur_aio_dio = NULL; 960 ei->i_sync_tid = 0; 961 ei->i_datasync_tid = 0; 962 atomic_set(&ei->i_ioend_count, 0); 963 atomic_set(&ei->i_aiodio_unwritten, 0); 964 965 return &ei->vfs_inode; 966 } 967 968 static int ext4_drop_inode(struct inode *inode) 969 { 970 int drop = generic_drop_inode(inode); 971 972 trace_ext4_drop_inode(inode, drop); 973 return drop; 974 } 975 976 static void ext4_i_callback(struct rcu_head *head) 977 { 978 struct inode *inode = container_of(head, struct inode, i_rcu); 979 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 980 } 981 982 static void ext4_destroy_inode(struct inode *inode) 983 { 984 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 985 ext4_msg(inode->i_sb, KERN_ERR, 986 "Inode %lu (%p): orphan list check failed!", 987 inode->i_ino, EXT4_I(inode)); 988 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 989 EXT4_I(inode), sizeof(struct ext4_inode_info), 990 true); 991 dump_stack(); 992 } 993 call_rcu(&inode->i_rcu, ext4_i_callback); 994 } 995 996 static void init_once(void *foo) 997 { 998 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 999 1000 INIT_LIST_HEAD(&ei->i_orphan); 1001 #ifdef CONFIG_EXT4_FS_XATTR 1002 init_rwsem(&ei->xattr_sem); 1003 #endif 1004 init_rwsem(&ei->i_data_sem); 1005 inode_init_once(&ei->vfs_inode); 1006 } 1007 1008 static int init_inodecache(void) 1009 { 1010 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1011 sizeof(struct ext4_inode_info), 1012 0, (SLAB_RECLAIM_ACCOUNT| 1013 SLAB_MEM_SPREAD), 1014 init_once); 1015 if (ext4_inode_cachep == NULL) 1016 return -ENOMEM; 1017 return 0; 1018 } 1019 1020 static void destroy_inodecache(void) 1021 { 1022 kmem_cache_destroy(ext4_inode_cachep); 1023 } 1024 1025 void ext4_clear_inode(struct inode *inode) 1026 { 1027 invalidate_inode_buffers(inode); 1028 clear_inode(inode); 1029 dquot_drop(inode); 1030 ext4_discard_preallocations(inode); 1031 if (EXT4_I(inode)->jinode) { 1032 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1033 EXT4_I(inode)->jinode); 1034 jbd2_free_inode(EXT4_I(inode)->jinode); 1035 EXT4_I(inode)->jinode = NULL; 1036 } 1037 } 1038 1039 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1040 u64 ino, u32 generation) 1041 { 1042 struct inode *inode; 1043 1044 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1045 return ERR_PTR(-ESTALE); 1046 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1047 return ERR_PTR(-ESTALE); 1048 1049 /* iget isn't really right if the inode is currently unallocated!! 1050 * 1051 * ext4_read_inode will return a bad_inode if the inode had been 1052 * deleted, so we should be safe. 1053 * 1054 * Currently we don't know the generation for parent directory, so 1055 * a generation of 0 means "accept any" 1056 */ 1057 inode = ext4_iget(sb, ino); 1058 if (IS_ERR(inode)) 1059 return ERR_CAST(inode); 1060 if (generation && inode->i_generation != generation) { 1061 iput(inode); 1062 return ERR_PTR(-ESTALE); 1063 } 1064 1065 return inode; 1066 } 1067 1068 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1069 int fh_len, int fh_type) 1070 { 1071 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1072 ext4_nfs_get_inode); 1073 } 1074 1075 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1076 int fh_len, int fh_type) 1077 { 1078 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1079 ext4_nfs_get_inode); 1080 } 1081 1082 /* 1083 * Try to release metadata pages (indirect blocks, directories) which are 1084 * mapped via the block device. Since these pages could have journal heads 1085 * which would prevent try_to_free_buffers() from freeing them, we must use 1086 * jbd2 layer's try_to_free_buffers() function to release them. 1087 */ 1088 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1089 gfp_t wait) 1090 { 1091 journal_t *journal = EXT4_SB(sb)->s_journal; 1092 1093 WARN_ON(PageChecked(page)); 1094 if (!page_has_buffers(page)) 1095 return 0; 1096 if (journal) 1097 return jbd2_journal_try_to_free_buffers(journal, page, 1098 wait & ~__GFP_WAIT); 1099 return try_to_free_buffers(page); 1100 } 1101 1102 #ifdef CONFIG_QUOTA 1103 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1104 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1105 1106 static int ext4_write_dquot(struct dquot *dquot); 1107 static int ext4_acquire_dquot(struct dquot *dquot); 1108 static int ext4_release_dquot(struct dquot *dquot); 1109 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1110 static int ext4_write_info(struct super_block *sb, int type); 1111 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1112 struct path *path); 1113 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1114 int format_id); 1115 static int ext4_quota_off(struct super_block *sb, int type); 1116 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1117 static int ext4_quota_on_mount(struct super_block *sb, int type); 1118 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1119 size_t len, loff_t off); 1120 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1121 const char *data, size_t len, loff_t off); 1122 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1123 unsigned int flags); 1124 static int ext4_enable_quotas(struct super_block *sb); 1125 1126 static const struct dquot_operations ext4_quota_operations = { 1127 .get_reserved_space = ext4_get_reserved_space, 1128 .write_dquot = ext4_write_dquot, 1129 .acquire_dquot = ext4_acquire_dquot, 1130 .release_dquot = ext4_release_dquot, 1131 .mark_dirty = ext4_mark_dquot_dirty, 1132 .write_info = ext4_write_info, 1133 .alloc_dquot = dquot_alloc, 1134 .destroy_dquot = dquot_destroy, 1135 }; 1136 1137 static const struct quotactl_ops ext4_qctl_operations = { 1138 .quota_on = ext4_quota_on, 1139 .quota_off = ext4_quota_off, 1140 .quota_sync = dquot_quota_sync, 1141 .get_info = dquot_get_dqinfo, 1142 .set_info = dquot_set_dqinfo, 1143 .get_dqblk = dquot_get_dqblk, 1144 .set_dqblk = dquot_set_dqblk 1145 }; 1146 1147 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1148 .quota_on_meta = ext4_quota_on_sysfile, 1149 .quota_off = ext4_quota_off_sysfile, 1150 .quota_sync = dquot_quota_sync, 1151 .get_info = dquot_get_dqinfo, 1152 .set_info = dquot_set_dqinfo, 1153 .get_dqblk = dquot_get_dqblk, 1154 .set_dqblk = dquot_set_dqblk 1155 }; 1156 #endif 1157 1158 static const struct super_operations ext4_sops = { 1159 .alloc_inode = ext4_alloc_inode, 1160 .destroy_inode = ext4_destroy_inode, 1161 .write_inode = ext4_write_inode, 1162 .dirty_inode = ext4_dirty_inode, 1163 .drop_inode = ext4_drop_inode, 1164 .evict_inode = ext4_evict_inode, 1165 .put_super = ext4_put_super, 1166 .sync_fs = ext4_sync_fs, 1167 .freeze_fs = ext4_freeze, 1168 .unfreeze_fs = ext4_unfreeze, 1169 .statfs = ext4_statfs, 1170 .remount_fs = ext4_remount, 1171 .show_options = ext4_show_options, 1172 #ifdef CONFIG_QUOTA 1173 .quota_read = ext4_quota_read, 1174 .quota_write = ext4_quota_write, 1175 #endif 1176 .bdev_try_to_free_page = bdev_try_to_free_page, 1177 }; 1178 1179 static const struct super_operations ext4_nojournal_sops = { 1180 .alloc_inode = ext4_alloc_inode, 1181 .destroy_inode = ext4_destroy_inode, 1182 .write_inode = ext4_write_inode, 1183 .dirty_inode = ext4_dirty_inode, 1184 .drop_inode = ext4_drop_inode, 1185 .evict_inode = ext4_evict_inode, 1186 .put_super = ext4_put_super, 1187 .statfs = ext4_statfs, 1188 .remount_fs = ext4_remount, 1189 .show_options = ext4_show_options, 1190 #ifdef CONFIG_QUOTA 1191 .quota_read = ext4_quota_read, 1192 .quota_write = ext4_quota_write, 1193 #endif 1194 .bdev_try_to_free_page = bdev_try_to_free_page, 1195 }; 1196 1197 static const struct export_operations ext4_export_ops = { 1198 .fh_to_dentry = ext4_fh_to_dentry, 1199 .fh_to_parent = ext4_fh_to_parent, 1200 .get_parent = ext4_get_parent, 1201 }; 1202 1203 enum { 1204 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1205 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1206 Opt_nouid32, Opt_debug, Opt_removed, 1207 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1208 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1209 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1210 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1211 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1212 Opt_data_err_abort, Opt_data_err_ignore, 1213 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1214 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1215 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1216 Opt_usrquota, Opt_grpquota, Opt_i_version, 1217 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1218 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1219 Opt_inode_readahead_blks, Opt_journal_ioprio, 1220 Opt_dioread_nolock, Opt_dioread_lock, 1221 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1222 }; 1223 1224 static const match_table_t tokens = { 1225 {Opt_bsd_df, "bsddf"}, 1226 {Opt_minix_df, "minixdf"}, 1227 {Opt_grpid, "grpid"}, 1228 {Opt_grpid, "bsdgroups"}, 1229 {Opt_nogrpid, "nogrpid"}, 1230 {Opt_nogrpid, "sysvgroups"}, 1231 {Opt_resgid, "resgid=%u"}, 1232 {Opt_resuid, "resuid=%u"}, 1233 {Opt_sb, "sb=%u"}, 1234 {Opt_err_cont, "errors=continue"}, 1235 {Opt_err_panic, "errors=panic"}, 1236 {Opt_err_ro, "errors=remount-ro"}, 1237 {Opt_nouid32, "nouid32"}, 1238 {Opt_debug, "debug"}, 1239 {Opt_removed, "oldalloc"}, 1240 {Opt_removed, "orlov"}, 1241 {Opt_user_xattr, "user_xattr"}, 1242 {Opt_nouser_xattr, "nouser_xattr"}, 1243 {Opt_acl, "acl"}, 1244 {Opt_noacl, "noacl"}, 1245 {Opt_noload, "norecovery"}, 1246 {Opt_noload, "noload"}, 1247 {Opt_removed, "nobh"}, 1248 {Opt_removed, "bh"}, 1249 {Opt_commit, "commit=%u"}, 1250 {Opt_min_batch_time, "min_batch_time=%u"}, 1251 {Opt_max_batch_time, "max_batch_time=%u"}, 1252 {Opt_journal_dev, "journal_dev=%u"}, 1253 {Opt_journal_checksum, "journal_checksum"}, 1254 {Opt_journal_async_commit, "journal_async_commit"}, 1255 {Opt_abort, "abort"}, 1256 {Opt_data_journal, "data=journal"}, 1257 {Opt_data_ordered, "data=ordered"}, 1258 {Opt_data_writeback, "data=writeback"}, 1259 {Opt_data_err_abort, "data_err=abort"}, 1260 {Opt_data_err_ignore, "data_err=ignore"}, 1261 {Opt_offusrjquota, "usrjquota="}, 1262 {Opt_usrjquota, "usrjquota=%s"}, 1263 {Opt_offgrpjquota, "grpjquota="}, 1264 {Opt_grpjquota, "grpjquota=%s"}, 1265 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1266 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1267 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1268 {Opt_grpquota, "grpquota"}, 1269 {Opt_noquota, "noquota"}, 1270 {Opt_quota, "quota"}, 1271 {Opt_usrquota, "usrquota"}, 1272 {Opt_barrier, "barrier=%u"}, 1273 {Opt_barrier, "barrier"}, 1274 {Opt_nobarrier, "nobarrier"}, 1275 {Opt_i_version, "i_version"}, 1276 {Opt_stripe, "stripe=%u"}, 1277 {Opt_delalloc, "delalloc"}, 1278 {Opt_nodelalloc, "nodelalloc"}, 1279 {Opt_mblk_io_submit, "mblk_io_submit"}, 1280 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1281 {Opt_block_validity, "block_validity"}, 1282 {Opt_noblock_validity, "noblock_validity"}, 1283 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1284 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1285 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1286 {Opt_auto_da_alloc, "auto_da_alloc"}, 1287 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1288 {Opt_dioread_nolock, "dioread_nolock"}, 1289 {Opt_dioread_lock, "dioread_lock"}, 1290 {Opt_discard, "discard"}, 1291 {Opt_nodiscard, "nodiscard"}, 1292 {Opt_init_itable, "init_itable=%u"}, 1293 {Opt_init_itable, "init_itable"}, 1294 {Opt_noinit_itable, "noinit_itable"}, 1295 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1296 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1297 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1298 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1299 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1300 {Opt_err, NULL}, 1301 }; 1302 1303 static ext4_fsblk_t get_sb_block(void **data) 1304 { 1305 ext4_fsblk_t sb_block; 1306 char *options = (char *) *data; 1307 1308 if (!options || strncmp(options, "sb=", 3) != 0) 1309 return 1; /* Default location */ 1310 1311 options += 3; 1312 /* TODO: use simple_strtoll with >32bit ext4 */ 1313 sb_block = simple_strtoul(options, &options, 0); 1314 if (*options && *options != ',') { 1315 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1316 (char *) *data); 1317 return 1; 1318 } 1319 if (*options == ',') 1320 options++; 1321 *data = (void *) options; 1322 1323 return sb_block; 1324 } 1325 1326 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1327 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1328 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1329 1330 #ifdef CONFIG_QUOTA 1331 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1332 { 1333 struct ext4_sb_info *sbi = EXT4_SB(sb); 1334 char *qname; 1335 1336 if (sb_any_quota_loaded(sb) && 1337 !sbi->s_qf_names[qtype]) { 1338 ext4_msg(sb, KERN_ERR, 1339 "Cannot change journaled " 1340 "quota options when quota turned on"); 1341 return -1; 1342 } 1343 qname = match_strdup(args); 1344 if (!qname) { 1345 ext4_msg(sb, KERN_ERR, 1346 "Not enough memory for storing quotafile name"); 1347 return -1; 1348 } 1349 if (sbi->s_qf_names[qtype] && 1350 strcmp(sbi->s_qf_names[qtype], qname)) { 1351 ext4_msg(sb, KERN_ERR, 1352 "%s quota file already specified", QTYPE2NAME(qtype)); 1353 kfree(qname); 1354 return -1; 1355 } 1356 sbi->s_qf_names[qtype] = qname; 1357 if (strchr(sbi->s_qf_names[qtype], '/')) { 1358 ext4_msg(sb, KERN_ERR, 1359 "quotafile must be on filesystem root"); 1360 kfree(sbi->s_qf_names[qtype]); 1361 sbi->s_qf_names[qtype] = NULL; 1362 return -1; 1363 } 1364 set_opt(sb, QUOTA); 1365 return 1; 1366 } 1367 1368 static int clear_qf_name(struct super_block *sb, int qtype) 1369 { 1370 1371 struct ext4_sb_info *sbi = EXT4_SB(sb); 1372 1373 if (sb_any_quota_loaded(sb) && 1374 sbi->s_qf_names[qtype]) { 1375 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1376 " when quota turned on"); 1377 return -1; 1378 } 1379 /* 1380 * The space will be released later when all options are confirmed 1381 * to be correct 1382 */ 1383 sbi->s_qf_names[qtype] = NULL; 1384 return 1; 1385 } 1386 #endif 1387 1388 #define MOPT_SET 0x0001 1389 #define MOPT_CLEAR 0x0002 1390 #define MOPT_NOSUPPORT 0x0004 1391 #define MOPT_EXPLICIT 0x0008 1392 #define MOPT_CLEAR_ERR 0x0010 1393 #define MOPT_GTE0 0x0020 1394 #ifdef CONFIG_QUOTA 1395 #define MOPT_Q 0 1396 #define MOPT_QFMT 0x0040 1397 #else 1398 #define MOPT_Q MOPT_NOSUPPORT 1399 #define MOPT_QFMT MOPT_NOSUPPORT 1400 #endif 1401 #define MOPT_DATAJ 0x0080 1402 1403 static const struct mount_opts { 1404 int token; 1405 int mount_opt; 1406 int flags; 1407 } ext4_mount_opts[] = { 1408 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1409 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1410 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1411 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1412 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1413 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1414 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1415 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1416 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1417 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1418 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1419 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1420 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1421 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1422 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1423 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1424 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1425 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1426 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1427 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1428 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1429 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1430 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1436 {Opt_commit, 0, MOPT_GTE0}, 1437 {Opt_max_batch_time, 0, MOPT_GTE0}, 1438 {Opt_min_batch_time, 0, MOPT_GTE0}, 1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1440 {Opt_init_itable, 0, MOPT_GTE0}, 1441 {Opt_stripe, 0, MOPT_GTE0}, 1442 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1443 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1444 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1445 #ifdef CONFIG_EXT4_FS_XATTR 1446 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1447 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1448 #else 1449 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1450 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1451 #endif 1452 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1453 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1454 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1455 #else 1456 {Opt_acl, 0, MOPT_NOSUPPORT}, 1457 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1458 #endif 1459 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1460 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1461 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1462 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1463 MOPT_SET | MOPT_Q}, 1464 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1465 MOPT_SET | MOPT_Q}, 1466 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1467 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1468 {Opt_usrjquota, 0, MOPT_Q}, 1469 {Opt_grpjquota, 0, MOPT_Q}, 1470 {Opt_offusrjquota, 0, MOPT_Q}, 1471 {Opt_offgrpjquota, 0, MOPT_Q}, 1472 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1473 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1474 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1475 {Opt_err, 0, 0} 1476 }; 1477 1478 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1479 substring_t *args, unsigned long *journal_devnum, 1480 unsigned int *journal_ioprio, int is_remount) 1481 { 1482 struct ext4_sb_info *sbi = EXT4_SB(sb); 1483 const struct mount_opts *m; 1484 kuid_t uid; 1485 kgid_t gid; 1486 int arg = 0; 1487 1488 #ifdef CONFIG_QUOTA 1489 if (token == Opt_usrjquota) 1490 return set_qf_name(sb, USRQUOTA, &args[0]); 1491 else if (token == Opt_grpjquota) 1492 return set_qf_name(sb, GRPQUOTA, &args[0]); 1493 else if (token == Opt_offusrjquota) 1494 return clear_qf_name(sb, USRQUOTA); 1495 else if (token == Opt_offgrpjquota) 1496 return clear_qf_name(sb, GRPQUOTA); 1497 #endif 1498 if (args->from && match_int(args, &arg)) 1499 return -1; 1500 switch (token) { 1501 case Opt_noacl: 1502 case Opt_nouser_xattr: 1503 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1504 break; 1505 case Opt_sb: 1506 return 1; /* handled by get_sb_block() */ 1507 case Opt_removed: 1508 ext4_msg(sb, KERN_WARNING, 1509 "Ignoring removed %s option", opt); 1510 return 1; 1511 case Opt_resuid: 1512 uid = make_kuid(current_user_ns(), arg); 1513 if (!uid_valid(uid)) { 1514 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1515 return -1; 1516 } 1517 sbi->s_resuid = uid; 1518 return 1; 1519 case Opt_resgid: 1520 gid = make_kgid(current_user_ns(), arg); 1521 if (!gid_valid(gid)) { 1522 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1523 return -1; 1524 } 1525 sbi->s_resgid = gid; 1526 return 1; 1527 case Opt_abort: 1528 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1529 return 1; 1530 case Opt_i_version: 1531 sb->s_flags |= MS_I_VERSION; 1532 return 1; 1533 case Opt_journal_dev: 1534 if (is_remount) { 1535 ext4_msg(sb, KERN_ERR, 1536 "Cannot specify journal on remount"); 1537 return -1; 1538 } 1539 *journal_devnum = arg; 1540 return 1; 1541 case Opt_journal_ioprio: 1542 if (arg < 0 || arg > 7) 1543 return -1; 1544 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1545 return 1; 1546 } 1547 1548 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1549 if (token != m->token) 1550 continue; 1551 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1552 return -1; 1553 if (m->flags & MOPT_EXPLICIT) 1554 set_opt2(sb, EXPLICIT_DELALLOC); 1555 if (m->flags & MOPT_CLEAR_ERR) 1556 clear_opt(sb, ERRORS_MASK); 1557 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1558 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1559 "options when quota turned on"); 1560 return -1; 1561 } 1562 1563 if (m->flags & MOPT_NOSUPPORT) { 1564 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1565 } else if (token == Opt_commit) { 1566 if (arg == 0) 1567 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1568 sbi->s_commit_interval = HZ * arg; 1569 } else if (token == Opt_max_batch_time) { 1570 if (arg == 0) 1571 arg = EXT4_DEF_MAX_BATCH_TIME; 1572 sbi->s_max_batch_time = arg; 1573 } else if (token == Opt_min_batch_time) { 1574 sbi->s_min_batch_time = arg; 1575 } else if (token == Opt_inode_readahead_blks) { 1576 if (arg > (1 << 30)) 1577 return -1; 1578 if (arg && !is_power_of_2(arg)) { 1579 ext4_msg(sb, KERN_ERR, 1580 "EXT4-fs: inode_readahead_blks" 1581 " must be a power of 2"); 1582 return -1; 1583 } 1584 sbi->s_inode_readahead_blks = arg; 1585 } else if (token == Opt_init_itable) { 1586 set_opt(sb, INIT_INODE_TABLE); 1587 if (!args->from) 1588 arg = EXT4_DEF_LI_WAIT_MULT; 1589 sbi->s_li_wait_mult = arg; 1590 } else if (token == Opt_stripe) { 1591 sbi->s_stripe = arg; 1592 } else if (m->flags & MOPT_DATAJ) { 1593 if (is_remount) { 1594 if (!sbi->s_journal) 1595 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1596 else if (test_opt(sb, DATA_FLAGS) != 1597 m->mount_opt) { 1598 ext4_msg(sb, KERN_ERR, 1599 "Cannot change data mode on remount"); 1600 return -1; 1601 } 1602 } else { 1603 clear_opt(sb, DATA_FLAGS); 1604 sbi->s_mount_opt |= m->mount_opt; 1605 } 1606 #ifdef CONFIG_QUOTA 1607 } else if (m->flags & MOPT_QFMT) { 1608 if (sb_any_quota_loaded(sb) && 1609 sbi->s_jquota_fmt != m->mount_opt) { 1610 ext4_msg(sb, KERN_ERR, "Cannot " 1611 "change journaled quota options " 1612 "when quota turned on"); 1613 return -1; 1614 } 1615 sbi->s_jquota_fmt = m->mount_opt; 1616 #endif 1617 } else { 1618 if (!args->from) 1619 arg = 1; 1620 if (m->flags & MOPT_CLEAR) 1621 arg = !arg; 1622 else if (unlikely(!(m->flags & MOPT_SET))) { 1623 ext4_msg(sb, KERN_WARNING, 1624 "buggy handling of option %s", opt); 1625 WARN_ON(1); 1626 return -1; 1627 } 1628 if (arg != 0) 1629 sbi->s_mount_opt |= m->mount_opt; 1630 else 1631 sbi->s_mount_opt &= ~m->mount_opt; 1632 } 1633 return 1; 1634 } 1635 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1636 "or missing value", opt); 1637 return -1; 1638 } 1639 1640 static int parse_options(char *options, struct super_block *sb, 1641 unsigned long *journal_devnum, 1642 unsigned int *journal_ioprio, 1643 int is_remount) 1644 { 1645 #ifdef CONFIG_QUOTA 1646 struct ext4_sb_info *sbi = EXT4_SB(sb); 1647 #endif 1648 char *p; 1649 substring_t args[MAX_OPT_ARGS]; 1650 int token; 1651 1652 if (!options) 1653 return 1; 1654 1655 while ((p = strsep(&options, ",")) != NULL) { 1656 if (!*p) 1657 continue; 1658 /* 1659 * Initialize args struct so we know whether arg was 1660 * found; some options take optional arguments. 1661 */ 1662 args[0].to = args[0].from = 0; 1663 token = match_token(p, tokens, args); 1664 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1665 journal_ioprio, is_remount) < 0) 1666 return 0; 1667 } 1668 #ifdef CONFIG_QUOTA 1669 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1670 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1671 clear_opt(sb, USRQUOTA); 1672 1673 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1674 clear_opt(sb, GRPQUOTA); 1675 1676 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1677 ext4_msg(sb, KERN_ERR, "old and new quota " 1678 "format mixing"); 1679 return 0; 1680 } 1681 1682 if (!sbi->s_jquota_fmt) { 1683 ext4_msg(sb, KERN_ERR, "journaled quota format " 1684 "not specified"); 1685 return 0; 1686 } 1687 } else { 1688 if (sbi->s_jquota_fmt) { 1689 ext4_msg(sb, KERN_ERR, "journaled quota format " 1690 "specified with no journaling " 1691 "enabled"); 1692 return 0; 1693 } 1694 } 1695 #endif 1696 return 1; 1697 } 1698 1699 static inline void ext4_show_quota_options(struct seq_file *seq, 1700 struct super_block *sb) 1701 { 1702 #if defined(CONFIG_QUOTA) 1703 struct ext4_sb_info *sbi = EXT4_SB(sb); 1704 1705 if (sbi->s_jquota_fmt) { 1706 char *fmtname = ""; 1707 1708 switch (sbi->s_jquota_fmt) { 1709 case QFMT_VFS_OLD: 1710 fmtname = "vfsold"; 1711 break; 1712 case QFMT_VFS_V0: 1713 fmtname = "vfsv0"; 1714 break; 1715 case QFMT_VFS_V1: 1716 fmtname = "vfsv1"; 1717 break; 1718 } 1719 seq_printf(seq, ",jqfmt=%s", fmtname); 1720 } 1721 1722 if (sbi->s_qf_names[USRQUOTA]) 1723 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1724 1725 if (sbi->s_qf_names[GRPQUOTA]) 1726 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1727 1728 if (test_opt(sb, USRQUOTA)) 1729 seq_puts(seq, ",usrquota"); 1730 1731 if (test_opt(sb, GRPQUOTA)) 1732 seq_puts(seq, ",grpquota"); 1733 #endif 1734 } 1735 1736 static const char *token2str(int token) 1737 { 1738 static const struct match_token *t; 1739 1740 for (t = tokens; t->token != Opt_err; t++) 1741 if (t->token == token && !strchr(t->pattern, '=')) 1742 break; 1743 return t->pattern; 1744 } 1745 1746 /* 1747 * Show an option if 1748 * - it's set to a non-default value OR 1749 * - if the per-sb default is different from the global default 1750 */ 1751 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1752 int nodefs) 1753 { 1754 struct ext4_sb_info *sbi = EXT4_SB(sb); 1755 struct ext4_super_block *es = sbi->s_es; 1756 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1757 const struct mount_opts *m; 1758 char sep = nodefs ? '\n' : ','; 1759 1760 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1761 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1762 1763 if (sbi->s_sb_block != 1) 1764 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1765 1766 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1767 int want_set = m->flags & MOPT_SET; 1768 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1769 (m->flags & MOPT_CLEAR_ERR)) 1770 continue; 1771 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1772 continue; /* skip if same as the default */ 1773 if ((want_set && 1774 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1775 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1776 continue; /* select Opt_noFoo vs Opt_Foo */ 1777 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1778 } 1779 1780 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1781 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1782 SEQ_OPTS_PRINT("resuid=%u", 1783 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1784 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1785 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1786 SEQ_OPTS_PRINT("resgid=%u", 1787 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1788 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1789 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1790 SEQ_OPTS_PUTS("errors=remount-ro"); 1791 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1792 SEQ_OPTS_PUTS("errors=continue"); 1793 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1794 SEQ_OPTS_PUTS("errors=panic"); 1795 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1796 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1797 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1798 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1799 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1800 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1801 if (sb->s_flags & MS_I_VERSION) 1802 SEQ_OPTS_PUTS("i_version"); 1803 if (nodefs || sbi->s_stripe) 1804 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1805 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1806 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1807 SEQ_OPTS_PUTS("data=journal"); 1808 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1809 SEQ_OPTS_PUTS("data=ordered"); 1810 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1811 SEQ_OPTS_PUTS("data=writeback"); 1812 } 1813 if (nodefs || 1814 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1815 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1816 sbi->s_inode_readahead_blks); 1817 1818 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1819 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1820 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1821 1822 ext4_show_quota_options(seq, sb); 1823 return 0; 1824 } 1825 1826 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1827 { 1828 return _ext4_show_options(seq, root->d_sb, 0); 1829 } 1830 1831 static int options_seq_show(struct seq_file *seq, void *offset) 1832 { 1833 struct super_block *sb = seq->private; 1834 int rc; 1835 1836 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1837 rc = _ext4_show_options(seq, sb, 1); 1838 seq_puts(seq, "\n"); 1839 return rc; 1840 } 1841 1842 static int options_open_fs(struct inode *inode, struct file *file) 1843 { 1844 return single_open(file, options_seq_show, PDE(inode)->data); 1845 } 1846 1847 static const struct file_operations ext4_seq_options_fops = { 1848 .owner = THIS_MODULE, 1849 .open = options_open_fs, 1850 .read = seq_read, 1851 .llseek = seq_lseek, 1852 .release = single_release, 1853 }; 1854 1855 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1856 int read_only) 1857 { 1858 struct ext4_sb_info *sbi = EXT4_SB(sb); 1859 int res = 0; 1860 1861 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1862 ext4_msg(sb, KERN_ERR, "revision level too high, " 1863 "forcing read-only mode"); 1864 res = MS_RDONLY; 1865 } 1866 if (read_only) 1867 goto done; 1868 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1869 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1870 "running e2fsck is recommended"); 1871 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1872 ext4_msg(sb, KERN_WARNING, 1873 "warning: mounting fs with errors, " 1874 "running e2fsck is recommended"); 1875 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1876 le16_to_cpu(es->s_mnt_count) >= 1877 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1878 ext4_msg(sb, KERN_WARNING, 1879 "warning: maximal mount count reached, " 1880 "running e2fsck is recommended"); 1881 else if (le32_to_cpu(es->s_checkinterval) && 1882 (le32_to_cpu(es->s_lastcheck) + 1883 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1884 ext4_msg(sb, KERN_WARNING, 1885 "warning: checktime reached, " 1886 "running e2fsck is recommended"); 1887 if (!sbi->s_journal) 1888 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1889 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1890 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1891 le16_add_cpu(&es->s_mnt_count, 1); 1892 es->s_mtime = cpu_to_le32(get_seconds()); 1893 ext4_update_dynamic_rev(sb); 1894 if (sbi->s_journal) 1895 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1896 1897 ext4_commit_super(sb, 1); 1898 done: 1899 if (test_opt(sb, DEBUG)) 1900 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1901 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1902 sb->s_blocksize, 1903 sbi->s_groups_count, 1904 EXT4_BLOCKS_PER_GROUP(sb), 1905 EXT4_INODES_PER_GROUP(sb), 1906 sbi->s_mount_opt, sbi->s_mount_opt2); 1907 1908 cleancache_init_fs(sb); 1909 return res; 1910 } 1911 1912 static int ext4_fill_flex_info(struct super_block *sb) 1913 { 1914 struct ext4_sb_info *sbi = EXT4_SB(sb); 1915 struct ext4_group_desc *gdp = NULL; 1916 ext4_group_t flex_group_count; 1917 ext4_group_t flex_group; 1918 unsigned int groups_per_flex = 0; 1919 size_t size; 1920 int i; 1921 1922 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1923 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1924 sbi->s_log_groups_per_flex = 0; 1925 return 1; 1926 } 1927 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1928 1929 /* We allocate both existing and potentially added groups */ 1930 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1931 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1932 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1933 size = flex_group_count * sizeof(struct flex_groups); 1934 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 1935 if (sbi->s_flex_groups == NULL) { 1936 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 1937 flex_group_count); 1938 goto failed; 1939 } 1940 1941 for (i = 0; i < sbi->s_groups_count; i++) { 1942 gdp = ext4_get_group_desc(sb, i, NULL); 1943 1944 flex_group = ext4_flex_group(sbi, i); 1945 atomic_add(ext4_free_inodes_count(sb, gdp), 1946 &sbi->s_flex_groups[flex_group].free_inodes); 1947 atomic_add(ext4_free_group_clusters(sb, gdp), 1948 &sbi->s_flex_groups[flex_group].free_clusters); 1949 atomic_add(ext4_used_dirs_count(sb, gdp), 1950 &sbi->s_flex_groups[flex_group].used_dirs); 1951 } 1952 1953 return 1; 1954 failed: 1955 return 0; 1956 } 1957 1958 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1959 struct ext4_group_desc *gdp) 1960 { 1961 int offset; 1962 __u16 crc = 0; 1963 __le32 le_group = cpu_to_le32(block_group); 1964 1965 if ((sbi->s_es->s_feature_ro_compat & 1966 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1967 /* Use new metadata_csum algorithm */ 1968 __u16 old_csum; 1969 __u32 csum32; 1970 1971 old_csum = gdp->bg_checksum; 1972 gdp->bg_checksum = 0; 1973 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1974 sizeof(le_group)); 1975 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1976 sbi->s_desc_size); 1977 gdp->bg_checksum = old_csum; 1978 1979 crc = csum32 & 0xFFFF; 1980 goto out; 1981 } 1982 1983 /* old crc16 code */ 1984 offset = offsetof(struct ext4_group_desc, bg_checksum); 1985 1986 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1987 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1988 crc = crc16(crc, (__u8 *)gdp, offset); 1989 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1990 /* for checksum of struct ext4_group_desc do the rest...*/ 1991 if ((sbi->s_es->s_feature_incompat & 1992 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1993 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1994 crc = crc16(crc, (__u8 *)gdp + offset, 1995 le16_to_cpu(sbi->s_es->s_desc_size) - 1996 offset); 1997 1998 out: 1999 return cpu_to_le16(crc); 2000 } 2001 2002 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2003 struct ext4_group_desc *gdp) 2004 { 2005 if (ext4_has_group_desc_csum(sb) && 2006 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2007 block_group, gdp))) 2008 return 0; 2009 2010 return 1; 2011 } 2012 2013 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2014 struct ext4_group_desc *gdp) 2015 { 2016 if (!ext4_has_group_desc_csum(sb)) 2017 return; 2018 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2019 } 2020 2021 /* Called at mount-time, super-block is locked */ 2022 static int ext4_check_descriptors(struct super_block *sb, 2023 ext4_group_t *first_not_zeroed) 2024 { 2025 struct ext4_sb_info *sbi = EXT4_SB(sb); 2026 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2027 ext4_fsblk_t last_block; 2028 ext4_fsblk_t block_bitmap; 2029 ext4_fsblk_t inode_bitmap; 2030 ext4_fsblk_t inode_table; 2031 int flexbg_flag = 0; 2032 ext4_group_t i, grp = sbi->s_groups_count; 2033 2034 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2035 flexbg_flag = 1; 2036 2037 ext4_debug("Checking group descriptors"); 2038 2039 for (i = 0; i < sbi->s_groups_count; i++) { 2040 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2041 2042 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2043 last_block = ext4_blocks_count(sbi->s_es) - 1; 2044 else 2045 last_block = first_block + 2046 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2047 2048 if ((grp == sbi->s_groups_count) && 2049 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2050 grp = i; 2051 2052 block_bitmap = ext4_block_bitmap(sb, gdp); 2053 if (block_bitmap < first_block || block_bitmap > last_block) { 2054 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2055 "Block bitmap for group %u not in group " 2056 "(block %llu)!", i, block_bitmap); 2057 return 0; 2058 } 2059 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2060 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2061 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2062 "Inode bitmap for group %u not in group " 2063 "(block %llu)!", i, inode_bitmap); 2064 return 0; 2065 } 2066 inode_table = ext4_inode_table(sb, gdp); 2067 if (inode_table < first_block || 2068 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2069 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2070 "Inode table for group %u not in group " 2071 "(block %llu)!", i, inode_table); 2072 return 0; 2073 } 2074 ext4_lock_group(sb, i); 2075 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2076 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2077 "Checksum for group %u failed (%u!=%u)", 2078 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2079 gdp)), le16_to_cpu(gdp->bg_checksum)); 2080 if (!(sb->s_flags & MS_RDONLY)) { 2081 ext4_unlock_group(sb, i); 2082 return 0; 2083 } 2084 } 2085 ext4_unlock_group(sb, i); 2086 if (!flexbg_flag) 2087 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2088 } 2089 if (NULL != first_not_zeroed) 2090 *first_not_zeroed = grp; 2091 2092 ext4_free_blocks_count_set(sbi->s_es, 2093 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2094 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2095 return 1; 2096 } 2097 2098 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2099 * the superblock) which were deleted from all directories, but held open by 2100 * a process at the time of a crash. We walk the list and try to delete these 2101 * inodes at recovery time (only with a read-write filesystem). 2102 * 2103 * In order to keep the orphan inode chain consistent during traversal (in 2104 * case of crash during recovery), we link each inode into the superblock 2105 * orphan list_head and handle it the same way as an inode deletion during 2106 * normal operation (which journals the operations for us). 2107 * 2108 * We only do an iget() and an iput() on each inode, which is very safe if we 2109 * accidentally point at an in-use or already deleted inode. The worst that 2110 * can happen in this case is that we get a "bit already cleared" message from 2111 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2112 * e2fsck was run on this filesystem, and it must have already done the orphan 2113 * inode cleanup for us, so we can safely abort without any further action. 2114 */ 2115 static void ext4_orphan_cleanup(struct super_block *sb, 2116 struct ext4_super_block *es) 2117 { 2118 unsigned int s_flags = sb->s_flags; 2119 int nr_orphans = 0, nr_truncates = 0; 2120 #ifdef CONFIG_QUOTA 2121 int i; 2122 #endif 2123 if (!es->s_last_orphan) { 2124 jbd_debug(4, "no orphan inodes to clean up\n"); 2125 return; 2126 } 2127 2128 if (bdev_read_only(sb->s_bdev)) { 2129 ext4_msg(sb, KERN_ERR, "write access " 2130 "unavailable, skipping orphan cleanup"); 2131 return; 2132 } 2133 2134 /* Check if feature set would not allow a r/w mount */ 2135 if (!ext4_feature_set_ok(sb, 0)) { 2136 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2137 "unknown ROCOMPAT features"); 2138 return; 2139 } 2140 2141 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2142 if (es->s_last_orphan) 2143 jbd_debug(1, "Errors on filesystem, " 2144 "clearing orphan list.\n"); 2145 es->s_last_orphan = 0; 2146 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2147 return; 2148 } 2149 2150 if (s_flags & MS_RDONLY) { 2151 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2152 sb->s_flags &= ~MS_RDONLY; 2153 } 2154 #ifdef CONFIG_QUOTA 2155 /* Needed for iput() to work correctly and not trash data */ 2156 sb->s_flags |= MS_ACTIVE; 2157 /* Turn on quotas so that they are updated correctly */ 2158 for (i = 0; i < MAXQUOTAS; i++) { 2159 if (EXT4_SB(sb)->s_qf_names[i]) { 2160 int ret = ext4_quota_on_mount(sb, i); 2161 if (ret < 0) 2162 ext4_msg(sb, KERN_ERR, 2163 "Cannot turn on journaled " 2164 "quota: error %d", ret); 2165 } 2166 } 2167 #endif 2168 2169 while (es->s_last_orphan) { 2170 struct inode *inode; 2171 2172 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2173 if (IS_ERR(inode)) { 2174 es->s_last_orphan = 0; 2175 break; 2176 } 2177 2178 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2179 dquot_initialize(inode); 2180 if (inode->i_nlink) { 2181 ext4_msg(sb, KERN_DEBUG, 2182 "%s: truncating inode %lu to %lld bytes", 2183 __func__, inode->i_ino, inode->i_size); 2184 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2185 inode->i_ino, inode->i_size); 2186 ext4_truncate(inode); 2187 nr_truncates++; 2188 } else { 2189 ext4_msg(sb, KERN_DEBUG, 2190 "%s: deleting unreferenced inode %lu", 2191 __func__, inode->i_ino); 2192 jbd_debug(2, "deleting unreferenced inode %lu\n", 2193 inode->i_ino); 2194 nr_orphans++; 2195 } 2196 iput(inode); /* The delete magic happens here! */ 2197 } 2198 2199 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2200 2201 if (nr_orphans) 2202 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2203 PLURAL(nr_orphans)); 2204 if (nr_truncates) 2205 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2206 PLURAL(nr_truncates)); 2207 #ifdef CONFIG_QUOTA 2208 /* Turn quotas off */ 2209 for (i = 0; i < MAXQUOTAS; i++) { 2210 if (sb_dqopt(sb)->files[i]) 2211 dquot_quota_off(sb, i); 2212 } 2213 #endif 2214 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2215 } 2216 2217 /* 2218 * Maximal extent format file size. 2219 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2220 * extent format containers, within a sector_t, and within i_blocks 2221 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2222 * so that won't be a limiting factor. 2223 * 2224 * However there is other limiting factor. We do store extents in the form 2225 * of starting block and length, hence the resulting length of the extent 2226 * covering maximum file size must fit into on-disk format containers as 2227 * well. Given that length is always by 1 unit bigger than max unit (because 2228 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2229 * 2230 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2231 */ 2232 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2233 { 2234 loff_t res; 2235 loff_t upper_limit = MAX_LFS_FILESIZE; 2236 2237 /* small i_blocks in vfs inode? */ 2238 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2239 /* 2240 * CONFIG_LBDAF is not enabled implies the inode 2241 * i_block represent total blocks in 512 bytes 2242 * 32 == size of vfs inode i_blocks * 8 2243 */ 2244 upper_limit = (1LL << 32) - 1; 2245 2246 /* total blocks in file system block size */ 2247 upper_limit >>= (blkbits - 9); 2248 upper_limit <<= blkbits; 2249 } 2250 2251 /* 2252 * 32-bit extent-start container, ee_block. We lower the maxbytes 2253 * by one fs block, so ee_len can cover the extent of maximum file 2254 * size 2255 */ 2256 res = (1LL << 32) - 1; 2257 res <<= blkbits; 2258 2259 /* Sanity check against vm- & vfs- imposed limits */ 2260 if (res > upper_limit) 2261 res = upper_limit; 2262 2263 return res; 2264 } 2265 2266 /* 2267 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2268 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2269 * We need to be 1 filesystem block less than the 2^48 sector limit. 2270 */ 2271 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2272 { 2273 loff_t res = EXT4_NDIR_BLOCKS; 2274 int meta_blocks; 2275 loff_t upper_limit; 2276 /* This is calculated to be the largest file size for a dense, block 2277 * mapped file such that the file's total number of 512-byte sectors, 2278 * including data and all indirect blocks, does not exceed (2^48 - 1). 2279 * 2280 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2281 * number of 512-byte sectors of the file. 2282 */ 2283 2284 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2285 /* 2286 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2287 * the inode i_block field represents total file blocks in 2288 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2289 */ 2290 upper_limit = (1LL << 32) - 1; 2291 2292 /* total blocks in file system block size */ 2293 upper_limit >>= (bits - 9); 2294 2295 } else { 2296 /* 2297 * We use 48 bit ext4_inode i_blocks 2298 * With EXT4_HUGE_FILE_FL set the i_blocks 2299 * represent total number of blocks in 2300 * file system block size 2301 */ 2302 upper_limit = (1LL << 48) - 1; 2303 2304 } 2305 2306 /* indirect blocks */ 2307 meta_blocks = 1; 2308 /* double indirect blocks */ 2309 meta_blocks += 1 + (1LL << (bits-2)); 2310 /* tripple indirect blocks */ 2311 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2312 2313 upper_limit -= meta_blocks; 2314 upper_limit <<= bits; 2315 2316 res += 1LL << (bits-2); 2317 res += 1LL << (2*(bits-2)); 2318 res += 1LL << (3*(bits-2)); 2319 res <<= bits; 2320 if (res > upper_limit) 2321 res = upper_limit; 2322 2323 if (res > MAX_LFS_FILESIZE) 2324 res = MAX_LFS_FILESIZE; 2325 2326 return res; 2327 } 2328 2329 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2330 ext4_fsblk_t logical_sb_block, int nr) 2331 { 2332 struct ext4_sb_info *sbi = EXT4_SB(sb); 2333 ext4_group_t bg, first_meta_bg; 2334 int has_super = 0; 2335 2336 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2337 2338 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2339 nr < first_meta_bg) 2340 return logical_sb_block + nr + 1; 2341 bg = sbi->s_desc_per_block * nr; 2342 if (ext4_bg_has_super(sb, bg)) 2343 has_super = 1; 2344 2345 return (has_super + ext4_group_first_block_no(sb, bg)); 2346 } 2347 2348 /** 2349 * ext4_get_stripe_size: Get the stripe size. 2350 * @sbi: In memory super block info 2351 * 2352 * If we have specified it via mount option, then 2353 * use the mount option value. If the value specified at mount time is 2354 * greater than the blocks per group use the super block value. 2355 * If the super block value is greater than blocks per group return 0. 2356 * Allocator needs it be less than blocks per group. 2357 * 2358 */ 2359 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2360 { 2361 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2362 unsigned long stripe_width = 2363 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2364 int ret; 2365 2366 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2367 ret = sbi->s_stripe; 2368 else if (stripe_width <= sbi->s_blocks_per_group) 2369 ret = stripe_width; 2370 else if (stride <= sbi->s_blocks_per_group) 2371 ret = stride; 2372 else 2373 ret = 0; 2374 2375 /* 2376 * If the stripe width is 1, this makes no sense and 2377 * we set it to 0 to turn off stripe handling code. 2378 */ 2379 if (ret <= 1) 2380 ret = 0; 2381 2382 return ret; 2383 } 2384 2385 /* sysfs supprt */ 2386 2387 struct ext4_attr { 2388 struct attribute attr; 2389 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2390 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2391 const char *, size_t); 2392 int offset; 2393 }; 2394 2395 static int parse_strtoul(const char *buf, 2396 unsigned long max, unsigned long *value) 2397 { 2398 char *endp; 2399 2400 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2401 endp = skip_spaces(endp); 2402 if (*endp || *value > max) 2403 return -EINVAL; 2404 2405 return 0; 2406 } 2407 2408 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2409 struct ext4_sb_info *sbi, 2410 char *buf) 2411 { 2412 return snprintf(buf, PAGE_SIZE, "%llu\n", 2413 (s64) EXT4_C2B(sbi, 2414 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2415 } 2416 2417 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2418 struct ext4_sb_info *sbi, char *buf) 2419 { 2420 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2421 2422 if (!sb->s_bdev->bd_part) 2423 return snprintf(buf, PAGE_SIZE, "0\n"); 2424 return snprintf(buf, PAGE_SIZE, "%lu\n", 2425 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2426 sbi->s_sectors_written_start) >> 1); 2427 } 2428 2429 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2430 struct ext4_sb_info *sbi, char *buf) 2431 { 2432 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2433 2434 if (!sb->s_bdev->bd_part) 2435 return snprintf(buf, PAGE_SIZE, "0\n"); 2436 return snprintf(buf, PAGE_SIZE, "%llu\n", 2437 (unsigned long long)(sbi->s_kbytes_written + 2438 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2439 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2440 } 2441 2442 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2443 struct ext4_sb_info *sbi, 2444 const char *buf, size_t count) 2445 { 2446 unsigned long t; 2447 2448 if (parse_strtoul(buf, 0x40000000, &t)) 2449 return -EINVAL; 2450 2451 if (t && !is_power_of_2(t)) 2452 return -EINVAL; 2453 2454 sbi->s_inode_readahead_blks = t; 2455 return count; 2456 } 2457 2458 static ssize_t sbi_ui_show(struct ext4_attr *a, 2459 struct ext4_sb_info *sbi, char *buf) 2460 { 2461 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2462 2463 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2464 } 2465 2466 static ssize_t sbi_ui_store(struct ext4_attr *a, 2467 struct ext4_sb_info *sbi, 2468 const char *buf, size_t count) 2469 { 2470 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2471 unsigned long t; 2472 2473 if (parse_strtoul(buf, 0xffffffff, &t)) 2474 return -EINVAL; 2475 *ui = t; 2476 return count; 2477 } 2478 2479 static ssize_t trigger_test_error(struct ext4_attr *a, 2480 struct ext4_sb_info *sbi, 2481 const char *buf, size_t count) 2482 { 2483 int len = count; 2484 2485 if (!capable(CAP_SYS_ADMIN)) 2486 return -EPERM; 2487 2488 if (len && buf[len-1] == '\n') 2489 len--; 2490 2491 if (len) 2492 ext4_error(sbi->s_sb, "%.*s", len, buf); 2493 return count; 2494 } 2495 2496 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2497 static struct ext4_attr ext4_attr_##_name = { \ 2498 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2499 .show = _show, \ 2500 .store = _store, \ 2501 .offset = offsetof(struct ext4_sb_info, _elname), \ 2502 } 2503 #define EXT4_ATTR(name, mode, show, store) \ 2504 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2505 2506 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2507 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2508 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2509 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2510 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2511 #define ATTR_LIST(name) &ext4_attr_##name.attr 2512 2513 EXT4_RO_ATTR(delayed_allocation_blocks); 2514 EXT4_RO_ATTR(session_write_kbytes); 2515 EXT4_RO_ATTR(lifetime_write_kbytes); 2516 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2517 inode_readahead_blks_store, s_inode_readahead_blks); 2518 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2519 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2520 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2521 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2522 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2523 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2524 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2525 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2526 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2527 2528 static struct attribute *ext4_attrs[] = { 2529 ATTR_LIST(delayed_allocation_blocks), 2530 ATTR_LIST(session_write_kbytes), 2531 ATTR_LIST(lifetime_write_kbytes), 2532 ATTR_LIST(inode_readahead_blks), 2533 ATTR_LIST(inode_goal), 2534 ATTR_LIST(mb_stats), 2535 ATTR_LIST(mb_max_to_scan), 2536 ATTR_LIST(mb_min_to_scan), 2537 ATTR_LIST(mb_order2_req), 2538 ATTR_LIST(mb_stream_req), 2539 ATTR_LIST(mb_group_prealloc), 2540 ATTR_LIST(max_writeback_mb_bump), 2541 ATTR_LIST(trigger_fs_error), 2542 NULL, 2543 }; 2544 2545 /* Features this copy of ext4 supports */ 2546 EXT4_INFO_ATTR(lazy_itable_init); 2547 EXT4_INFO_ATTR(batched_discard); 2548 2549 static struct attribute *ext4_feat_attrs[] = { 2550 ATTR_LIST(lazy_itable_init), 2551 ATTR_LIST(batched_discard), 2552 NULL, 2553 }; 2554 2555 static ssize_t ext4_attr_show(struct kobject *kobj, 2556 struct attribute *attr, char *buf) 2557 { 2558 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2559 s_kobj); 2560 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2561 2562 return a->show ? a->show(a, sbi, buf) : 0; 2563 } 2564 2565 static ssize_t ext4_attr_store(struct kobject *kobj, 2566 struct attribute *attr, 2567 const char *buf, size_t len) 2568 { 2569 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2570 s_kobj); 2571 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2572 2573 return a->store ? a->store(a, sbi, buf, len) : 0; 2574 } 2575 2576 static void ext4_sb_release(struct kobject *kobj) 2577 { 2578 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2579 s_kobj); 2580 complete(&sbi->s_kobj_unregister); 2581 } 2582 2583 static const struct sysfs_ops ext4_attr_ops = { 2584 .show = ext4_attr_show, 2585 .store = ext4_attr_store, 2586 }; 2587 2588 static struct kobj_type ext4_ktype = { 2589 .default_attrs = ext4_attrs, 2590 .sysfs_ops = &ext4_attr_ops, 2591 .release = ext4_sb_release, 2592 }; 2593 2594 static void ext4_feat_release(struct kobject *kobj) 2595 { 2596 complete(&ext4_feat->f_kobj_unregister); 2597 } 2598 2599 static struct kobj_type ext4_feat_ktype = { 2600 .default_attrs = ext4_feat_attrs, 2601 .sysfs_ops = &ext4_attr_ops, 2602 .release = ext4_feat_release, 2603 }; 2604 2605 /* 2606 * Check whether this filesystem can be mounted based on 2607 * the features present and the RDONLY/RDWR mount requested. 2608 * Returns 1 if this filesystem can be mounted as requested, 2609 * 0 if it cannot be. 2610 */ 2611 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2612 { 2613 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2614 ext4_msg(sb, KERN_ERR, 2615 "Couldn't mount because of " 2616 "unsupported optional features (%x)", 2617 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2618 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2619 return 0; 2620 } 2621 2622 if (readonly) 2623 return 1; 2624 2625 /* Check that feature set is OK for a read-write mount */ 2626 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2627 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2628 "unsupported optional features (%x)", 2629 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2630 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2631 return 0; 2632 } 2633 /* 2634 * Large file size enabled file system can only be mounted 2635 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2636 */ 2637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2638 if (sizeof(blkcnt_t) < sizeof(u64)) { 2639 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2640 "cannot be mounted RDWR without " 2641 "CONFIG_LBDAF"); 2642 return 0; 2643 } 2644 } 2645 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2646 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2647 ext4_msg(sb, KERN_ERR, 2648 "Can't support bigalloc feature without " 2649 "extents feature\n"); 2650 return 0; 2651 } 2652 2653 #ifndef CONFIG_QUOTA 2654 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2655 !readonly) { 2656 ext4_msg(sb, KERN_ERR, 2657 "Filesystem with quota feature cannot be mounted RDWR " 2658 "without CONFIG_QUOTA"); 2659 return 0; 2660 } 2661 #endif /* CONFIG_QUOTA */ 2662 return 1; 2663 } 2664 2665 /* 2666 * This function is called once a day if we have errors logged 2667 * on the file system 2668 */ 2669 static void print_daily_error_info(unsigned long arg) 2670 { 2671 struct super_block *sb = (struct super_block *) arg; 2672 struct ext4_sb_info *sbi; 2673 struct ext4_super_block *es; 2674 2675 sbi = EXT4_SB(sb); 2676 es = sbi->s_es; 2677 2678 if (es->s_error_count) 2679 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2680 le32_to_cpu(es->s_error_count)); 2681 if (es->s_first_error_time) { 2682 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2683 sb->s_id, le32_to_cpu(es->s_first_error_time), 2684 (int) sizeof(es->s_first_error_func), 2685 es->s_first_error_func, 2686 le32_to_cpu(es->s_first_error_line)); 2687 if (es->s_first_error_ino) 2688 printk(": inode %u", 2689 le32_to_cpu(es->s_first_error_ino)); 2690 if (es->s_first_error_block) 2691 printk(": block %llu", (unsigned long long) 2692 le64_to_cpu(es->s_first_error_block)); 2693 printk("\n"); 2694 } 2695 if (es->s_last_error_time) { 2696 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2697 sb->s_id, le32_to_cpu(es->s_last_error_time), 2698 (int) sizeof(es->s_last_error_func), 2699 es->s_last_error_func, 2700 le32_to_cpu(es->s_last_error_line)); 2701 if (es->s_last_error_ino) 2702 printk(": inode %u", 2703 le32_to_cpu(es->s_last_error_ino)); 2704 if (es->s_last_error_block) 2705 printk(": block %llu", (unsigned long long) 2706 le64_to_cpu(es->s_last_error_block)); 2707 printk("\n"); 2708 } 2709 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2710 } 2711 2712 /* Find next suitable group and run ext4_init_inode_table */ 2713 static int ext4_run_li_request(struct ext4_li_request *elr) 2714 { 2715 struct ext4_group_desc *gdp = NULL; 2716 ext4_group_t group, ngroups; 2717 struct super_block *sb; 2718 unsigned long timeout = 0; 2719 int ret = 0; 2720 2721 sb = elr->lr_super; 2722 ngroups = EXT4_SB(sb)->s_groups_count; 2723 2724 sb_start_write(sb); 2725 for (group = elr->lr_next_group; group < ngroups; group++) { 2726 gdp = ext4_get_group_desc(sb, group, NULL); 2727 if (!gdp) { 2728 ret = 1; 2729 break; 2730 } 2731 2732 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2733 break; 2734 } 2735 2736 if (group == ngroups) 2737 ret = 1; 2738 2739 if (!ret) { 2740 timeout = jiffies; 2741 ret = ext4_init_inode_table(sb, group, 2742 elr->lr_timeout ? 0 : 1); 2743 if (elr->lr_timeout == 0) { 2744 timeout = (jiffies - timeout) * 2745 elr->lr_sbi->s_li_wait_mult; 2746 elr->lr_timeout = timeout; 2747 } 2748 elr->lr_next_sched = jiffies + elr->lr_timeout; 2749 elr->lr_next_group = group + 1; 2750 } 2751 sb_end_write(sb); 2752 2753 return ret; 2754 } 2755 2756 /* 2757 * Remove lr_request from the list_request and free the 2758 * request structure. Should be called with li_list_mtx held 2759 */ 2760 static void ext4_remove_li_request(struct ext4_li_request *elr) 2761 { 2762 struct ext4_sb_info *sbi; 2763 2764 if (!elr) 2765 return; 2766 2767 sbi = elr->lr_sbi; 2768 2769 list_del(&elr->lr_request); 2770 sbi->s_li_request = NULL; 2771 kfree(elr); 2772 } 2773 2774 static void ext4_unregister_li_request(struct super_block *sb) 2775 { 2776 mutex_lock(&ext4_li_mtx); 2777 if (!ext4_li_info) { 2778 mutex_unlock(&ext4_li_mtx); 2779 return; 2780 } 2781 2782 mutex_lock(&ext4_li_info->li_list_mtx); 2783 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2784 mutex_unlock(&ext4_li_info->li_list_mtx); 2785 mutex_unlock(&ext4_li_mtx); 2786 } 2787 2788 static struct task_struct *ext4_lazyinit_task; 2789 2790 /* 2791 * This is the function where ext4lazyinit thread lives. It walks 2792 * through the request list searching for next scheduled filesystem. 2793 * When such a fs is found, run the lazy initialization request 2794 * (ext4_rn_li_request) and keep track of the time spend in this 2795 * function. Based on that time we compute next schedule time of 2796 * the request. When walking through the list is complete, compute 2797 * next waking time and put itself into sleep. 2798 */ 2799 static int ext4_lazyinit_thread(void *arg) 2800 { 2801 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2802 struct list_head *pos, *n; 2803 struct ext4_li_request *elr; 2804 unsigned long next_wakeup, cur; 2805 2806 BUG_ON(NULL == eli); 2807 2808 cont_thread: 2809 while (true) { 2810 next_wakeup = MAX_JIFFY_OFFSET; 2811 2812 mutex_lock(&eli->li_list_mtx); 2813 if (list_empty(&eli->li_request_list)) { 2814 mutex_unlock(&eli->li_list_mtx); 2815 goto exit_thread; 2816 } 2817 2818 list_for_each_safe(pos, n, &eli->li_request_list) { 2819 elr = list_entry(pos, struct ext4_li_request, 2820 lr_request); 2821 2822 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2823 if (ext4_run_li_request(elr) != 0) { 2824 /* error, remove the lazy_init job */ 2825 ext4_remove_li_request(elr); 2826 continue; 2827 } 2828 } 2829 2830 if (time_before(elr->lr_next_sched, next_wakeup)) 2831 next_wakeup = elr->lr_next_sched; 2832 } 2833 mutex_unlock(&eli->li_list_mtx); 2834 2835 try_to_freeze(); 2836 2837 cur = jiffies; 2838 if ((time_after_eq(cur, next_wakeup)) || 2839 (MAX_JIFFY_OFFSET == next_wakeup)) { 2840 cond_resched(); 2841 continue; 2842 } 2843 2844 schedule_timeout_interruptible(next_wakeup - cur); 2845 2846 if (kthread_should_stop()) { 2847 ext4_clear_request_list(); 2848 goto exit_thread; 2849 } 2850 } 2851 2852 exit_thread: 2853 /* 2854 * It looks like the request list is empty, but we need 2855 * to check it under the li_list_mtx lock, to prevent any 2856 * additions into it, and of course we should lock ext4_li_mtx 2857 * to atomically free the list and ext4_li_info, because at 2858 * this point another ext4 filesystem could be registering 2859 * new one. 2860 */ 2861 mutex_lock(&ext4_li_mtx); 2862 mutex_lock(&eli->li_list_mtx); 2863 if (!list_empty(&eli->li_request_list)) { 2864 mutex_unlock(&eli->li_list_mtx); 2865 mutex_unlock(&ext4_li_mtx); 2866 goto cont_thread; 2867 } 2868 mutex_unlock(&eli->li_list_mtx); 2869 kfree(ext4_li_info); 2870 ext4_li_info = NULL; 2871 mutex_unlock(&ext4_li_mtx); 2872 2873 return 0; 2874 } 2875 2876 static void ext4_clear_request_list(void) 2877 { 2878 struct list_head *pos, *n; 2879 struct ext4_li_request *elr; 2880 2881 mutex_lock(&ext4_li_info->li_list_mtx); 2882 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2883 elr = list_entry(pos, struct ext4_li_request, 2884 lr_request); 2885 ext4_remove_li_request(elr); 2886 } 2887 mutex_unlock(&ext4_li_info->li_list_mtx); 2888 } 2889 2890 static int ext4_run_lazyinit_thread(void) 2891 { 2892 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2893 ext4_li_info, "ext4lazyinit"); 2894 if (IS_ERR(ext4_lazyinit_task)) { 2895 int err = PTR_ERR(ext4_lazyinit_task); 2896 ext4_clear_request_list(); 2897 kfree(ext4_li_info); 2898 ext4_li_info = NULL; 2899 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2900 "initialization thread\n", 2901 err); 2902 return err; 2903 } 2904 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2905 return 0; 2906 } 2907 2908 /* 2909 * Check whether it make sense to run itable init. thread or not. 2910 * If there is at least one uninitialized inode table, return 2911 * corresponding group number, else the loop goes through all 2912 * groups and return total number of groups. 2913 */ 2914 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2915 { 2916 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2917 struct ext4_group_desc *gdp = NULL; 2918 2919 for (group = 0; group < ngroups; group++) { 2920 gdp = ext4_get_group_desc(sb, group, NULL); 2921 if (!gdp) 2922 continue; 2923 2924 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2925 break; 2926 } 2927 2928 return group; 2929 } 2930 2931 static int ext4_li_info_new(void) 2932 { 2933 struct ext4_lazy_init *eli = NULL; 2934 2935 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2936 if (!eli) 2937 return -ENOMEM; 2938 2939 INIT_LIST_HEAD(&eli->li_request_list); 2940 mutex_init(&eli->li_list_mtx); 2941 2942 eli->li_state |= EXT4_LAZYINIT_QUIT; 2943 2944 ext4_li_info = eli; 2945 2946 return 0; 2947 } 2948 2949 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2950 ext4_group_t start) 2951 { 2952 struct ext4_sb_info *sbi = EXT4_SB(sb); 2953 struct ext4_li_request *elr; 2954 unsigned long rnd; 2955 2956 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2957 if (!elr) 2958 return NULL; 2959 2960 elr->lr_super = sb; 2961 elr->lr_sbi = sbi; 2962 elr->lr_next_group = start; 2963 2964 /* 2965 * Randomize first schedule time of the request to 2966 * spread the inode table initialization requests 2967 * better. 2968 */ 2969 get_random_bytes(&rnd, sizeof(rnd)); 2970 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2971 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2972 2973 return elr; 2974 } 2975 2976 static int ext4_register_li_request(struct super_block *sb, 2977 ext4_group_t first_not_zeroed) 2978 { 2979 struct ext4_sb_info *sbi = EXT4_SB(sb); 2980 struct ext4_li_request *elr; 2981 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2982 int ret = 0; 2983 2984 if (sbi->s_li_request != NULL) { 2985 /* 2986 * Reset timeout so it can be computed again, because 2987 * s_li_wait_mult might have changed. 2988 */ 2989 sbi->s_li_request->lr_timeout = 0; 2990 return 0; 2991 } 2992 2993 if (first_not_zeroed == ngroups || 2994 (sb->s_flags & MS_RDONLY) || 2995 !test_opt(sb, INIT_INODE_TABLE)) 2996 return 0; 2997 2998 elr = ext4_li_request_new(sb, first_not_zeroed); 2999 if (!elr) 3000 return -ENOMEM; 3001 3002 mutex_lock(&ext4_li_mtx); 3003 3004 if (NULL == ext4_li_info) { 3005 ret = ext4_li_info_new(); 3006 if (ret) 3007 goto out; 3008 } 3009 3010 mutex_lock(&ext4_li_info->li_list_mtx); 3011 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3012 mutex_unlock(&ext4_li_info->li_list_mtx); 3013 3014 sbi->s_li_request = elr; 3015 /* 3016 * set elr to NULL here since it has been inserted to 3017 * the request_list and the removal and free of it is 3018 * handled by ext4_clear_request_list from now on. 3019 */ 3020 elr = NULL; 3021 3022 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3023 ret = ext4_run_lazyinit_thread(); 3024 if (ret) 3025 goto out; 3026 } 3027 out: 3028 mutex_unlock(&ext4_li_mtx); 3029 if (ret) 3030 kfree(elr); 3031 return ret; 3032 } 3033 3034 /* 3035 * We do not need to lock anything since this is called on 3036 * module unload. 3037 */ 3038 static void ext4_destroy_lazyinit_thread(void) 3039 { 3040 /* 3041 * If thread exited earlier 3042 * there's nothing to be done. 3043 */ 3044 if (!ext4_li_info || !ext4_lazyinit_task) 3045 return; 3046 3047 kthread_stop(ext4_lazyinit_task); 3048 } 3049 3050 static int set_journal_csum_feature_set(struct super_block *sb) 3051 { 3052 int ret = 1; 3053 int compat, incompat; 3054 struct ext4_sb_info *sbi = EXT4_SB(sb); 3055 3056 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3057 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3058 /* journal checksum v2 */ 3059 compat = 0; 3060 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3061 } else { 3062 /* journal checksum v1 */ 3063 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3064 incompat = 0; 3065 } 3066 3067 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3068 ret = jbd2_journal_set_features(sbi->s_journal, 3069 compat, 0, 3070 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3071 incompat); 3072 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3073 ret = jbd2_journal_set_features(sbi->s_journal, 3074 compat, 0, 3075 incompat); 3076 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3077 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3078 } else { 3079 jbd2_journal_clear_features(sbi->s_journal, 3080 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3081 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3082 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3083 } 3084 3085 return ret; 3086 } 3087 3088 /* 3089 * Note: calculating the overhead so we can be compatible with 3090 * historical BSD practice is quite difficult in the face of 3091 * clusters/bigalloc. This is because multiple metadata blocks from 3092 * different block group can end up in the same allocation cluster. 3093 * Calculating the exact overhead in the face of clustered allocation 3094 * requires either O(all block bitmaps) in memory or O(number of block 3095 * groups**2) in time. We will still calculate the superblock for 3096 * older file systems --- and if we come across with a bigalloc file 3097 * system with zero in s_overhead_clusters the estimate will be close to 3098 * correct especially for very large cluster sizes --- but for newer 3099 * file systems, it's better to calculate this figure once at mkfs 3100 * time, and store it in the superblock. If the superblock value is 3101 * present (even for non-bigalloc file systems), we will use it. 3102 */ 3103 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3104 char *buf) 3105 { 3106 struct ext4_sb_info *sbi = EXT4_SB(sb); 3107 struct ext4_group_desc *gdp; 3108 ext4_fsblk_t first_block, last_block, b; 3109 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3110 int s, j, count = 0; 3111 3112 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3113 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3114 sbi->s_itb_per_group + 2); 3115 3116 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3117 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3118 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3119 for (i = 0; i < ngroups; i++) { 3120 gdp = ext4_get_group_desc(sb, i, NULL); 3121 b = ext4_block_bitmap(sb, gdp); 3122 if (b >= first_block && b <= last_block) { 3123 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3124 count++; 3125 } 3126 b = ext4_inode_bitmap(sb, gdp); 3127 if (b >= first_block && b <= last_block) { 3128 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3129 count++; 3130 } 3131 b = ext4_inode_table(sb, gdp); 3132 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3133 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3134 int c = EXT4_B2C(sbi, b - first_block); 3135 ext4_set_bit(c, buf); 3136 count++; 3137 } 3138 if (i != grp) 3139 continue; 3140 s = 0; 3141 if (ext4_bg_has_super(sb, grp)) { 3142 ext4_set_bit(s++, buf); 3143 count++; 3144 } 3145 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3146 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3147 count++; 3148 } 3149 } 3150 if (!count) 3151 return 0; 3152 return EXT4_CLUSTERS_PER_GROUP(sb) - 3153 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3154 } 3155 3156 /* 3157 * Compute the overhead and stash it in sbi->s_overhead 3158 */ 3159 int ext4_calculate_overhead(struct super_block *sb) 3160 { 3161 struct ext4_sb_info *sbi = EXT4_SB(sb); 3162 struct ext4_super_block *es = sbi->s_es; 3163 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3164 ext4_fsblk_t overhead = 0; 3165 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3166 3167 memset(buf, 0, PAGE_SIZE); 3168 if (!buf) 3169 return -ENOMEM; 3170 3171 /* 3172 * Compute the overhead (FS structures). This is constant 3173 * for a given filesystem unless the number of block groups 3174 * changes so we cache the previous value until it does. 3175 */ 3176 3177 /* 3178 * All of the blocks before first_data_block are overhead 3179 */ 3180 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3181 3182 /* 3183 * Add the overhead found in each block group 3184 */ 3185 for (i = 0; i < ngroups; i++) { 3186 int blks; 3187 3188 blks = count_overhead(sb, i, buf); 3189 overhead += blks; 3190 if (blks) 3191 memset(buf, 0, PAGE_SIZE); 3192 cond_resched(); 3193 } 3194 sbi->s_overhead = overhead; 3195 smp_wmb(); 3196 free_page((unsigned long) buf); 3197 return 0; 3198 } 3199 3200 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3201 { 3202 char *orig_data = kstrdup(data, GFP_KERNEL); 3203 struct buffer_head *bh; 3204 struct ext4_super_block *es = NULL; 3205 struct ext4_sb_info *sbi; 3206 ext4_fsblk_t block; 3207 ext4_fsblk_t sb_block = get_sb_block(&data); 3208 ext4_fsblk_t logical_sb_block; 3209 unsigned long offset = 0; 3210 unsigned long journal_devnum = 0; 3211 unsigned long def_mount_opts; 3212 struct inode *root; 3213 char *cp; 3214 const char *descr; 3215 int ret = -ENOMEM; 3216 int blocksize, clustersize; 3217 unsigned int db_count; 3218 unsigned int i; 3219 int needs_recovery, has_huge_files, has_bigalloc; 3220 __u64 blocks_count; 3221 int err; 3222 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3223 ext4_group_t first_not_zeroed; 3224 3225 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3226 if (!sbi) 3227 goto out_free_orig; 3228 3229 sbi->s_blockgroup_lock = 3230 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3231 if (!sbi->s_blockgroup_lock) { 3232 kfree(sbi); 3233 goto out_free_orig; 3234 } 3235 sb->s_fs_info = sbi; 3236 sbi->s_sb = sb; 3237 sbi->s_mount_opt = 0; 3238 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 3239 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 3240 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3241 sbi->s_sb_block = sb_block; 3242 if (sb->s_bdev->bd_part) 3243 sbi->s_sectors_written_start = 3244 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3245 3246 /* Cleanup superblock name */ 3247 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3248 *cp = '!'; 3249 3250 ret = -EINVAL; 3251 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3252 if (!blocksize) { 3253 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3254 goto out_fail; 3255 } 3256 3257 /* 3258 * The ext4 superblock will not be buffer aligned for other than 1kB 3259 * block sizes. We need to calculate the offset from buffer start. 3260 */ 3261 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3262 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3263 offset = do_div(logical_sb_block, blocksize); 3264 } else { 3265 logical_sb_block = sb_block; 3266 } 3267 3268 if (!(bh = sb_bread(sb, logical_sb_block))) { 3269 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3270 goto out_fail; 3271 } 3272 /* 3273 * Note: s_es must be initialized as soon as possible because 3274 * some ext4 macro-instructions depend on its value 3275 */ 3276 es = (struct ext4_super_block *) (bh->b_data + offset); 3277 sbi->s_es = es; 3278 sb->s_magic = le16_to_cpu(es->s_magic); 3279 if (sb->s_magic != EXT4_SUPER_MAGIC) 3280 goto cantfind_ext4; 3281 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3282 3283 /* Warn if metadata_csum and gdt_csum are both set. */ 3284 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3285 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3286 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3287 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3288 "redundant flags; please run fsck."); 3289 3290 /* Check for a known checksum algorithm */ 3291 if (!ext4_verify_csum_type(sb, es)) { 3292 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3293 "unknown checksum algorithm."); 3294 silent = 1; 3295 goto cantfind_ext4; 3296 } 3297 3298 /* Load the checksum driver */ 3299 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3300 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3301 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3302 if (IS_ERR(sbi->s_chksum_driver)) { 3303 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3304 ret = PTR_ERR(sbi->s_chksum_driver); 3305 sbi->s_chksum_driver = NULL; 3306 goto failed_mount; 3307 } 3308 } 3309 3310 /* Check superblock checksum */ 3311 if (!ext4_superblock_csum_verify(sb, es)) { 3312 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3313 "invalid superblock checksum. Run e2fsck?"); 3314 silent = 1; 3315 goto cantfind_ext4; 3316 } 3317 3318 /* Precompute checksum seed for all metadata */ 3319 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3320 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3321 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3322 sizeof(es->s_uuid)); 3323 3324 /* Set defaults before we parse the mount options */ 3325 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3326 set_opt(sb, INIT_INODE_TABLE); 3327 if (def_mount_opts & EXT4_DEFM_DEBUG) 3328 set_opt(sb, DEBUG); 3329 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3330 set_opt(sb, GRPID); 3331 if (def_mount_opts & EXT4_DEFM_UID16) 3332 set_opt(sb, NO_UID32); 3333 /* xattr user namespace & acls are now defaulted on */ 3334 #ifdef CONFIG_EXT4_FS_XATTR 3335 set_opt(sb, XATTR_USER); 3336 #endif 3337 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3338 set_opt(sb, POSIX_ACL); 3339 #endif 3340 set_opt(sb, MBLK_IO_SUBMIT); 3341 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3342 set_opt(sb, JOURNAL_DATA); 3343 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3344 set_opt(sb, ORDERED_DATA); 3345 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3346 set_opt(sb, WRITEBACK_DATA); 3347 3348 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3349 set_opt(sb, ERRORS_PANIC); 3350 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3351 set_opt(sb, ERRORS_CONT); 3352 else 3353 set_opt(sb, ERRORS_RO); 3354 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3355 set_opt(sb, BLOCK_VALIDITY); 3356 if (def_mount_opts & EXT4_DEFM_DISCARD) 3357 set_opt(sb, DISCARD); 3358 3359 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3360 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3361 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3362 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3363 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3364 3365 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3366 set_opt(sb, BARRIER); 3367 3368 /* 3369 * enable delayed allocation by default 3370 * Use -o nodelalloc to turn it off 3371 */ 3372 if (!IS_EXT3_SB(sb) && 3373 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3374 set_opt(sb, DELALLOC); 3375 3376 /* 3377 * set default s_li_wait_mult for lazyinit, for the case there is 3378 * no mount option specified. 3379 */ 3380 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3381 3382 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3383 &journal_devnum, &journal_ioprio, 0)) { 3384 ext4_msg(sb, KERN_WARNING, 3385 "failed to parse options in superblock: %s", 3386 sbi->s_es->s_mount_opts); 3387 } 3388 sbi->s_def_mount_opt = sbi->s_mount_opt; 3389 if (!parse_options((char *) data, sb, &journal_devnum, 3390 &journal_ioprio, 0)) 3391 goto failed_mount; 3392 3393 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3394 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3395 "with data=journal disables delayed " 3396 "allocation and O_DIRECT support!\n"); 3397 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3398 ext4_msg(sb, KERN_ERR, "can't mount with " 3399 "both data=journal and delalloc"); 3400 goto failed_mount; 3401 } 3402 if (test_opt(sb, DIOREAD_NOLOCK)) { 3403 ext4_msg(sb, KERN_ERR, "can't mount with " 3404 "both data=journal and delalloc"); 3405 goto failed_mount; 3406 } 3407 if (test_opt(sb, DELALLOC)) 3408 clear_opt(sb, DELALLOC); 3409 } 3410 3411 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3412 if (test_opt(sb, DIOREAD_NOLOCK)) { 3413 if (blocksize < PAGE_SIZE) { 3414 ext4_msg(sb, KERN_ERR, "can't mount with " 3415 "dioread_nolock if block size != PAGE_SIZE"); 3416 goto failed_mount; 3417 } 3418 } 3419 3420 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3421 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3422 3423 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3424 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3425 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3426 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3427 ext4_msg(sb, KERN_WARNING, 3428 "feature flags set on rev 0 fs, " 3429 "running e2fsck is recommended"); 3430 3431 if (IS_EXT2_SB(sb)) { 3432 if (ext2_feature_set_ok(sb)) 3433 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3434 "using the ext4 subsystem"); 3435 else { 3436 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3437 "to feature incompatibilities"); 3438 goto failed_mount; 3439 } 3440 } 3441 3442 if (IS_EXT3_SB(sb)) { 3443 if (ext3_feature_set_ok(sb)) 3444 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3445 "using the ext4 subsystem"); 3446 else { 3447 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3448 "to feature incompatibilities"); 3449 goto failed_mount; 3450 } 3451 } 3452 3453 /* 3454 * Check feature flags regardless of the revision level, since we 3455 * previously didn't change the revision level when setting the flags, 3456 * so there is a chance incompat flags are set on a rev 0 filesystem. 3457 */ 3458 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3459 goto failed_mount; 3460 3461 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3462 blocksize > EXT4_MAX_BLOCK_SIZE) { 3463 ext4_msg(sb, KERN_ERR, 3464 "Unsupported filesystem blocksize %d", blocksize); 3465 goto failed_mount; 3466 } 3467 3468 if (sb->s_blocksize != blocksize) { 3469 /* Validate the filesystem blocksize */ 3470 if (!sb_set_blocksize(sb, blocksize)) { 3471 ext4_msg(sb, KERN_ERR, "bad block size %d", 3472 blocksize); 3473 goto failed_mount; 3474 } 3475 3476 brelse(bh); 3477 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3478 offset = do_div(logical_sb_block, blocksize); 3479 bh = sb_bread(sb, logical_sb_block); 3480 if (!bh) { 3481 ext4_msg(sb, KERN_ERR, 3482 "Can't read superblock on 2nd try"); 3483 goto failed_mount; 3484 } 3485 es = (struct ext4_super_block *)(bh->b_data + offset); 3486 sbi->s_es = es; 3487 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3488 ext4_msg(sb, KERN_ERR, 3489 "Magic mismatch, very weird!"); 3490 goto failed_mount; 3491 } 3492 } 3493 3494 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3495 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3496 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3497 has_huge_files); 3498 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3499 3500 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3501 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3502 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3503 } else { 3504 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3505 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3506 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3507 (!is_power_of_2(sbi->s_inode_size)) || 3508 (sbi->s_inode_size > blocksize)) { 3509 ext4_msg(sb, KERN_ERR, 3510 "unsupported inode size: %d", 3511 sbi->s_inode_size); 3512 goto failed_mount; 3513 } 3514 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3515 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3516 } 3517 3518 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3519 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3520 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3521 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3522 !is_power_of_2(sbi->s_desc_size)) { 3523 ext4_msg(sb, KERN_ERR, 3524 "unsupported descriptor size %lu", 3525 sbi->s_desc_size); 3526 goto failed_mount; 3527 } 3528 } else 3529 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3530 3531 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3532 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3533 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3534 goto cantfind_ext4; 3535 3536 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3537 if (sbi->s_inodes_per_block == 0) 3538 goto cantfind_ext4; 3539 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3540 sbi->s_inodes_per_block; 3541 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3542 sbi->s_sbh = bh; 3543 sbi->s_mount_state = le16_to_cpu(es->s_state); 3544 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3545 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3546 3547 for (i = 0; i < 4; i++) 3548 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3549 sbi->s_def_hash_version = es->s_def_hash_version; 3550 i = le32_to_cpu(es->s_flags); 3551 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3552 sbi->s_hash_unsigned = 3; 3553 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3554 #ifdef __CHAR_UNSIGNED__ 3555 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3556 sbi->s_hash_unsigned = 3; 3557 #else 3558 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3559 #endif 3560 } 3561 3562 /* Handle clustersize */ 3563 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3564 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3565 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3566 if (has_bigalloc) { 3567 if (clustersize < blocksize) { 3568 ext4_msg(sb, KERN_ERR, 3569 "cluster size (%d) smaller than " 3570 "block size (%d)", clustersize, blocksize); 3571 goto failed_mount; 3572 } 3573 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3574 le32_to_cpu(es->s_log_block_size); 3575 sbi->s_clusters_per_group = 3576 le32_to_cpu(es->s_clusters_per_group); 3577 if (sbi->s_clusters_per_group > blocksize * 8) { 3578 ext4_msg(sb, KERN_ERR, 3579 "#clusters per group too big: %lu", 3580 sbi->s_clusters_per_group); 3581 goto failed_mount; 3582 } 3583 if (sbi->s_blocks_per_group != 3584 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3585 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3586 "clusters per group (%lu) inconsistent", 3587 sbi->s_blocks_per_group, 3588 sbi->s_clusters_per_group); 3589 goto failed_mount; 3590 } 3591 } else { 3592 if (clustersize != blocksize) { 3593 ext4_warning(sb, "fragment/cluster size (%d) != " 3594 "block size (%d)", clustersize, 3595 blocksize); 3596 clustersize = blocksize; 3597 } 3598 if (sbi->s_blocks_per_group > blocksize * 8) { 3599 ext4_msg(sb, KERN_ERR, 3600 "#blocks per group too big: %lu", 3601 sbi->s_blocks_per_group); 3602 goto failed_mount; 3603 } 3604 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3605 sbi->s_cluster_bits = 0; 3606 } 3607 sbi->s_cluster_ratio = clustersize / blocksize; 3608 3609 if (sbi->s_inodes_per_group > blocksize * 8) { 3610 ext4_msg(sb, KERN_ERR, 3611 "#inodes per group too big: %lu", 3612 sbi->s_inodes_per_group); 3613 goto failed_mount; 3614 } 3615 3616 /* 3617 * Test whether we have more sectors than will fit in sector_t, 3618 * and whether the max offset is addressable by the page cache. 3619 */ 3620 err = generic_check_addressable(sb->s_blocksize_bits, 3621 ext4_blocks_count(es)); 3622 if (err) { 3623 ext4_msg(sb, KERN_ERR, "filesystem" 3624 " too large to mount safely on this system"); 3625 if (sizeof(sector_t) < 8) 3626 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3627 ret = err; 3628 goto failed_mount; 3629 } 3630 3631 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3632 goto cantfind_ext4; 3633 3634 /* check blocks count against device size */ 3635 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3636 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3637 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3638 "exceeds size of device (%llu blocks)", 3639 ext4_blocks_count(es), blocks_count); 3640 goto failed_mount; 3641 } 3642 3643 /* 3644 * It makes no sense for the first data block to be beyond the end 3645 * of the filesystem. 3646 */ 3647 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3648 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3649 "block %u is beyond end of filesystem (%llu)", 3650 le32_to_cpu(es->s_first_data_block), 3651 ext4_blocks_count(es)); 3652 goto failed_mount; 3653 } 3654 blocks_count = (ext4_blocks_count(es) - 3655 le32_to_cpu(es->s_first_data_block) + 3656 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3657 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3658 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3659 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3660 "(block count %llu, first data block %u, " 3661 "blocks per group %lu)", sbi->s_groups_count, 3662 ext4_blocks_count(es), 3663 le32_to_cpu(es->s_first_data_block), 3664 EXT4_BLOCKS_PER_GROUP(sb)); 3665 goto failed_mount; 3666 } 3667 sbi->s_groups_count = blocks_count; 3668 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3669 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3670 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3671 EXT4_DESC_PER_BLOCK(sb); 3672 sbi->s_group_desc = ext4_kvmalloc(db_count * 3673 sizeof(struct buffer_head *), 3674 GFP_KERNEL); 3675 if (sbi->s_group_desc == NULL) { 3676 ext4_msg(sb, KERN_ERR, "not enough memory"); 3677 ret = -ENOMEM; 3678 goto failed_mount; 3679 } 3680 3681 if (ext4_proc_root) 3682 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3683 3684 if (sbi->s_proc) 3685 proc_create_data("options", S_IRUGO, sbi->s_proc, 3686 &ext4_seq_options_fops, sb); 3687 3688 bgl_lock_init(sbi->s_blockgroup_lock); 3689 3690 for (i = 0; i < db_count; i++) { 3691 block = descriptor_loc(sb, logical_sb_block, i); 3692 sbi->s_group_desc[i] = sb_bread(sb, block); 3693 if (!sbi->s_group_desc[i]) { 3694 ext4_msg(sb, KERN_ERR, 3695 "can't read group descriptor %d", i); 3696 db_count = i; 3697 goto failed_mount2; 3698 } 3699 } 3700 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3701 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3702 goto failed_mount2; 3703 } 3704 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3705 if (!ext4_fill_flex_info(sb)) { 3706 ext4_msg(sb, KERN_ERR, 3707 "unable to initialize " 3708 "flex_bg meta info!"); 3709 goto failed_mount2; 3710 } 3711 3712 sbi->s_gdb_count = db_count; 3713 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3714 spin_lock_init(&sbi->s_next_gen_lock); 3715 3716 init_timer(&sbi->s_err_report); 3717 sbi->s_err_report.function = print_daily_error_info; 3718 sbi->s_err_report.data = (unsigned long) sb; 3719 3720 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3721 ext4_count_free_clusters(sb)); 3722 if (!err) { 3723 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3724 ext4_count_free_inodes(sb)); 3725 } 3726 if (!err) { 3727 err = percpu_counter_init(&sbi->s_dirs_counter, 3728 ext4_count_dirs(sb)); 3729 } 3730 if (!err) { 3731 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3732 } 3733 if (err) { 3734 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3735 ret = err; 3736 goto failed_mount3; 3737 } 3738 3739 sbi->s_stripe = ext4_get_stripe_size(sbi); 3740 sbi->s_max_writeback_mb_bump = 128; 3741 3742 /* 3743 * set up enough so that it can read an inode 3744 */ 3745 if (!test_opt(sb, NOLOAD) && 3746 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3747 sb->s_op = &ext4_sops; 3748 else 3749 sb->s_op = &ext4_nojournal_sops; 3750 sb->s_export_op = &ext4_export_ops; 3751 sb->s_xattr = ext4_xattr_handlers; 3752 #ifdef CONFIG_QUOTA 3753 sb->s_qcop = &ext4_qctl_operations; 3754 sb->dq_op = &ext4_quota_operations; 3755 3756 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 3757 /* Use qctl operations for hidden quota files. */ 3758 sb->s_qcop = &ext4_qctl_sysfile_operations; 3759 } 3760 #endif 3761 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3762 3763 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3764 mutex_init(&sbi->s_orphan_lock); 3765 sbi->s_resize_flags = 0; 3766 3767 sb->s_root = NULL; 3768 3769 needs_recovery = (es->s_last_orphan != 0 || 3770 EXT4_HAS_INCOMPAT_FEATURE(sb, 3771 EXT4_FEATURE_INCOMPAT_RECOVER)); 3772 3773 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3774 !(sb->s_flags & MS_RDONLY)) 3775 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3776 goto failed_mount3; 3777 3778 /* 3779 * The first inode we look at is the journal inode. Don't try 3780 * root first: it may be modified in the journal! 3781 */ 3782 if (!test_opt(sb, NOLOAD) && 3783 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3784 if (ext4_load_journal(sb, es, journal_devnum)) 3785 goto failed_mount3; 3786 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3787 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3788 ext4_msg(sb, KERN_ERR, "required journal recovery " 3789 "suppressed and not mounted read-only"); 3790 goto failed_mount_wq; 3791 } else { 3792 clear_opt(sb, DATA_FLAGS); 3793 sbi->s_journal = NULL; 3794 needs_recovery = 0; 3795 goto no_journal; 3796 } 3797 3798 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3799 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3800 JBD2_FEATURE_INCOMPAT_64BIT)) { 3801 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3802 goto failed_mount_wq; 3803 } 3804 3805 if (!set_journal_csum_feature_set(sb)) { 3806 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3807 "feature set"); 3808 goto failed_mount_wq; 3809 } 3810 3811 /* We have now updated the journal if required, so we can 3812 * validate the data journaling mode. */ 3813 switch (test_opt(sb, DATA_FLAGS)) { 3814 case 0: 3815 /* No mode set, assume a default based on the journal 3816 * capabilities: ORDERED_DATA if the journal can 3817 * cope, else JOURNAL_DATA 3818 */ 3819 if (jbd2_journal_check_available_features 3820 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3821 set_opt(sb, ORDERED_DATA); 3822 else 3823 set_opt(sb, JOURNAL_DATA); 3824 break; 3825 3826 case EXT4_MOUNT_ORDERED_DATA: 3827 case EXT4_MOUNT_WRITEBACK_DATA: 3828 if (!jbd2_journal_check_available_features 3829 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3830 ext4_msg(sb, KERN_ERR, "Journal does not support " 3831 "requested data journaling mode"); 3832 goto failed_mount_wq; 3833 } 3834 default: 3835 break; 3836 } 3837 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3838 3839 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3840 3841 /* 3842 * The journal may have updated the bg summary counts, so we 3843 * need to update the global counters. 3844 */ 3845 percpu_counter_set(&sbi->s_freeclusters_counter, 3846 ext4_count_free_clusters(sb)); 3847 percpu_counter_set(&sbi->s_freeinodes_counter, 3848 ext4_count_free_inodes(sb)); 3849 percpu_counter_set(&sbi->s_dirs_counter, 3850 ext4_count_dirs(sb)); 3851 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3852 3853 no_journal: 3854 /* 3855 * Get the # of file system overhead blocks from the 3856 * superblock if present. 3857 */ 3858 if (es->s_overhead_clusters) 3859 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3860 else { 3861 ret = ext4_calculate_overhead(sb); 3862 if (ret) 3863 goto failed_mount_wq; 3864 } 3865 3866 /* 3867 * The maximum number of concurrent works can be high and 3868 * concurrency isn't really necessary. Limit it to 1. 3869 */ 3870 EXT4_SB(sb)->dio_unwritten_wq = 3871 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3872 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3873 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3874 goto failed_mount_wq; 3875 } 3876 3877 /* 3878 * The jbd2_journal_load will have done any necessary log recovery, 3879 * so we can safely mount the rest of the filesystem now. 3880 */ 3881 3882 root = ext4_iget(sb, EXT4_ROOT_INO); 3883 if (IS_ERR(root)) { 3884 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3885 ret = PTR_ERR(root); 3886 root = NULL; 3887 goto failed_mount4; 3888 } 3889 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3890 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3891 iput(root); 3892 goto failed_mount4; 3893 } 3894 sb->s_root = d_make_root(root); 3895 if (!sb->s_root) { 3896 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3897 ret = -ENOMEM; 3898 goto failed_mount4; 3899 } 3900 3901 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3902 sb->s_flags |= MS_RDONLY; 3903 3904 /* determine the minimum size of new large inodes, if present */ 3905 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3906 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3907 EXT4_GOOD_OLD_INODE_SIZE; 3908 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3909 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3910 if (sbi->s_want_extra_isize < 3911 le16_to_cpu(es->s_want_extra_isize)) 3912 sbi->s_want_extra_isize = 3913 le16_to_cpu(es->s_want_extra_isize); 3914 if (sbi->s_want_extra_isize < 3915 le16_to_cpu(es->s_min_extra_isize)) 3916 sbi->s_want_extra_isize = 3917 le16_to_cpu(es->s_min_extra_isize); 3918 } 3919 } 3920 /* Check if enough inode space is available */ 3921 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3922 sbi->s_inode_size) { 3923 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3924 EXT4_GOOD_OLD_INODE_SIZE; 3925 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3926 "available"); 3927 } 3928 3929 err = ext4_setup_system_zone(sb); 3930 if (err) { 3931 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3932 "zone (%d)", err); 3933 goto failed_mount4a; 3934 } 3935 3936 ext4_ext_init(sb); 3937 err = ext4_mb_init(sb); 3938 if (err) { 3939 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3940 err); 3941 goto failed_mount5; 3942 } 3943 3944 err = ext4_register_li_request(sb, first_not_zeroed); 3945 if (err) 3946 goto failed_mount6; 3947 3948 sbi->s_kobj.kset = ext4_kset; 3949 init_completion(&sbi->s_kobj_unregister); 3950 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3951 "%s", sb->s_id); 3952 if (err) 3953 goto failed_mount7; 3954 3955 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3956 ext4_orphan_cleanup(sb, es); 3957 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3958 if (needs_recovery) { 3959 ext4_msg(sb, KERN_INFO, "recovery complete"); 3960 ext4_mark_recovery_complete(sb, es); 3961 } 3962 if (EXT4_SB(sb)->s_journal) { 3963 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3964 descr = " journalled data mode"; 3965 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3966 descr = " ordered data mode"; 3967 else 3968 descr = " writeback data mode"; 3969 } else 3970 descr = "out journal"; 3971 3972 #ifdef CONFIG_QUOTA 3973 /* Enable quota usage during mount. */ 3974 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 3975 !(sb->s_flags & MS_RDONLY)) { 3976 ret = ext4_enable_quotas(sb); 3977 if (ret) 3978 goto failed_mount7; 3979 } 3980 #endif /* CONFIG_QUOTA */ 3981 3982 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3983 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3984 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3985 3986 if (es->s_error_count) 3987 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3988 3989 kfree(orig_data); 3990 return 0; 3991 3992 cantfind_ext4: 3993 if (!silent) 3994 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3995 goto failed_mount; 3996 3997 failed_mount7: 3998 ext4_unregister_li_request(sb); 3999 failed_mount6: 4000 ext4_mb_release(sb); 4001 failed_mount5: 4002 ext4_ext_release(sb); 4003 ext4_release_system_zone(sb); 4004 failed_mount4a: 4005 dput(sb->s_root); 4006 sb->s_root = NULL; 4007 failed_mount4: 4008 ext4_msg(sb, KERN_ERR, "mount failed"); 4009 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4010 failed_mount_wq: 4011 if (sbi->s_journal) { 4012 jbd2_journal_destroy(sbi->s_journal); 4013 sbi->s_journal = NULL; 4014 } 4015 failed_mount3: 4016 del_timer(&sbi->s_err_report); 4017 if (sbi->s_flex_groups) 4018 ext4_kvfree(sbi->s_flex_groups); 4019 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4020 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4021 percpu_counter_destroy(&sbi->s_dirs_counter); 4022 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4023 if (sbi->s_mmp_tsk) 4024 kthread_stop(sbi->s_mmp_tsk); 4025 failed_mount2: 4026 for (i = 0; i < db_count; i++) 4027 brelse(sbi->s_group_desc[i]); 4028 ext4_kvfree(sbi->s_group_desc); 4029 failed_mount: 4030 if (sbi->s_chksum_driver) 4031 crypto_free_shash(sbi->s_chksum_driver); 4032 if (sbi->s_proc) { 4033 remove_proc_entry("options", sbi->s_proc); 4034 remove_proc_entry(sb->s_id, ext4_proc_root); 4035 } 4036 #ifdef CONFIG_QUOTA 4037 for (i = 0; i < MAXQUOTAS; i++) 4038 kfree(sbi->s_qf_names[i]); 4039 #endif 4040 ext4_blkdev_remove(sbi); 4041 brelse(bh); 4042 out_fail: 4043 sb->s_fs_info = NULL; 4044 kfree(sbi->s_blockgroup_lock); 4045 kfree(sbi); 4046 out_free_orig: 4047 kfree(orig_data); 4048 return ret; 4049 } 4050 4051 /* 4052 * Setup any per-fs journal parameters now. We'll do this both on 4053 * initial mount, once the journal has been initialised but before we've 4054 * done any recovery; and again on any subsequent remount. 4055 */ 4056 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4057 { 4058 struct ext4_sb_info *sbi = EXT4_SB(sb); 4059 4060 journal->j_commit_interval = sbi->s_commit_interval; 4061 journal->j_min_batch_time = sbi->s_min_batch_time; 4062 journal->j_max_batch_time = sbi->s_max_batch_time; 4063 4064 write_lock(&journal->j_state_lock); 4065 if (test_opt(sb, BARRIER)) 4066 journal->j_flags |= JBD2_BARRIER; 4067 else 4068 journal->j_flags &= ~JBD2_BARRIER; 4069 if (test_opt(sb, DATA_ERR_ABORT)) 4070 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4071 else 4072 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4073 write_unlock(&journal->j_state_lock); 4074 } 4075 4076 static journal_t *ext4_get_journal(struct super_block *sb, 4077 unsigned int journal_inum) 4078 { 4079 struct inode *journal_inode; 4080 journal_t *journal; 4081 4082 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4083 4084 /* First, test for the existence of a valid inode on disk. Bad 4085 * things happen if we iget() an unused inode, as the subsequent 4086 * iput() will try to delete it. */ 4087 4088 journal_inode = ext4_iget(sb, journal_inum); 4089 if (IS_ERR(journal_inode)) { 4090 ext4_msg(sb, KERN_ERR, "no journal found"); 4091 return NULL; 4092 } 4093 if (!journal_inode->i_nlink) { 4094 make_bad_inode(journal_inode); 4095 iput(journal_inode); 4096 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4097 return NULL; 4098 } 4099 4100 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4101 journal_inode, journal_inode->i_size); 4102 if (!S_ISREG(journal_inode->i_mode)) { 4103 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4104 iput(journal_inode); 4105 return NULL; 4106 } 4107 4108 journal = jbd2_journal_init_inode(journal_inode); 4109 if (!journal) { 4110 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4111 iput(journal_inode); 4112 return NULL; 4113 } 4114 journal->j_private = sb; 4115 ext4_init_journal_params(sb, journal); 4116 return journal; 4117 } 4118 4119 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4120 dev_t j_dev) 4121 { 4122 struct buffer_head *bh; 4123 journal_t *journal; 4124 ext4_fsblk_t start; 4125 ext4_fsblk_t len; 4126 int hblock, blocksize; 4127 ext4_fsblk_t sb_block; 4128 unsigned long offset; 4129 struct ext4_super_block *es; 4130 struct block_device *bdev; 4131 4132 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4133 4134 bdev = ext4_blkdev_get(j_dev, sb); 4135 if (bdev == NULL) 4136 return NULL; 4137 4138 blocksize = sb->s_blocksize; 4139 hblock = bdev_logical_block_size(bdev); 4140 if (blocksize < hblock) { 4141 ext4_msg(sb, KERN_ERR, 4142 "blocksize too small for journal device"); 4143 goto out_bdev; 4144 } 4145 4146 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4147 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4148 set_blocksize(bdev, blocksize); 4149 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4150 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4151 "external journal"); 4152 goto out_bdev; 4153 } 4154 4155 es = (struct ext4_super_block *) (bh->b_data + offset); 4156 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4157 !(le32_to_cpu(es->s_feature_incompat) & 4158 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4159 ext4_msg(sb, KERN_ERR, "external journal has " 4160 "bad superblock"); 4161 brelse(bh); 4162 goto out_bdev; 4163 } 4164 4165 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4166 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4167 brelse(bh); 4168 goto out_bdev; 4169 } 4170 4171 len = ext4_blocks_count(es); 4172 start = sb_block + 1; 4173 brelse(bh); /* we're done with the superblock */ 4174 4175 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4176 start, len, blocksize); 4177 if (!journal) { 4178 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4179 goto out_bdev; 4180 } 4181 journal->j_private = sb; 4182 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4183 wait_on_buffer(journal->j_sb_buffer); 4184 if (!buffer_uptodate(journal->j_sb_buffer)) { 4185 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4186 goto out_journal; 4187 } 4188 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4189 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4190 "user (unsupported) - %d", 4191 be32_to_cpu(journal->j_superblock->s_nr_users)); 4192 goto out_journal; 4193 } 4194 EXT4_SB(sb)->journal_bdev = bdev; 4195 ext4_init_journal_params(sb, journal); 4196 return journal; 4197 4198 out_journal: 4199 jbd2_journal_destroy(journal); 4200 out_bdev: 4201 ext4_blkdev_put(bdev); 4202 return NULL; 4203 } 4204 4205 static int ext4_load_journal(struct super_block *sb, 4206 struct ext4_super_block *es, 4207 unsigned long journal_devnum) 4208 { 4209 journal_t *journal; 4210 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4211 dev_t journal_dev; 4212 int err = 0; 4213 int really_read_only; 4214 4215 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4216 4217 if (journal_devnum && 4218 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4219 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4220 "numbers have changed"); 4221 journal_dev = new_decode_dev(journal_devnum); 4222 } else 4223 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4224 4225 really_read_only = bdev_read_only(sb->s_bdev); 4226 4227 /* 4228 * Are we loading a blank journal or performing recovery after a 4229 * crash? For recovery, we need to check in advance whether we 4230 * can get read-write access to the device. 4231 */ 4232 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4233 if (sb->s_flags & MS_RDONLY) { 4234 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4235 "required on readonly filesystem"); 4236 if (really_read_only) { 4237 ext4_msg(sb, KERN_ERR, "write access " 4238 "unavailable, cannot proceed"); 4239 return -EROFS; 4240 } 4241 ext4_msg(sb, KERN_INFO, "write access will " 4242 "be enabled during recovery"); 4243 } 4244 } 4245 4246 if (journal_inum && journal_dev) { 4247 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4248 "and inode journals!"); 4249 return -EINVAL; 4250 } 4251 4252 if (journal_inum) { 4253 if (!(journal = ext4_get_journal(sb, journal_inum))) 4254 return -EINVAL; 4255 } else { 4256 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4257 return -EINVAL; 4258 } 4259 4260 if (!(journal->j_flags & JBD2_BARRIER)) 4261 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4262 4263 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4264 err = jbd2_journal_wipe(journal, !really_read_only); 4265 if (!err) { 4266 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4267 if (save) 4268 memcpy(save, ((char *) es) + 4269 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4270 err = jbd2_journal_load(journal); 4271 if (save) 4272 memcpy(((char *) es) + EXT4_S_ERR_START, 4273 save, EXT4_S_ERR_LEN); 4274 kfree(save); 4275 } 4276 4277 if (err) { 4278 ext4_msg(sb, KERN_ERR, "error loading journal"); 4279 jbd2_journal_destroy(journal); 4280 return err; 4281 } 4282 4283 EXT4_SB(sb)->s_journal = journal; 4284 ext4_clear_journal_err(sb, es); 4285 4286 if (!really_read_only && journal_devnum && 4287 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4288 es->s_journal_dev = cpu_to_le32(journal_devnum); 4289 4290 /* Make sure we flush the recovery flag to disk. */ 4291 ext4_commit_super(sb, 1); 4292 } 4293 4294 return 0; 4295 } 4296 4297 static int ext4_commit_super(struct super_block *sb, int sync) 4298 { 4299 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4300 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4301 int error = 0; 4302 4303 if (!sbh || block_device_ejected(sb)) 4304 return error; 4305 if (buffer_write_io_error(sbh)) { 4306 /* 4307 * Oh, dear. A previous attempt to write the 4308 * superblock failed. This could happen because the 4309 * USB device was yanked out. Or it could happen to 4310 * be a transient write error and maybe the block will 4311 * be remapped. Nothing we can do but to retry the 4312 * write and hope for the best. 4313 */ 4314 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4315 "superblock detected"); 4316 clear_buffer_write_io_error(sbh); 4317 set_buffer_uptodate(sbh); 4318 } 4319 /* 4320 * If the file system is mounted read-only, don't update the 4321 * superblock write time. This avoids updating the superblock 4322 * write time when we are mounting the root file system 4323 * read/only but we need to replay the journal; at that point, 4324 * for people who are east of GMT and who make their clock 4325 * tick in localtime for Windows bug-for-bug compatibility, 4326 * the clock is set in the future, and this will cause e2fsck 4327 * to complain and force a full file system check. 4328 */ 4329 if (!(sb->s_flags & MS_RDONLY)) 4330 es->s_wtime = cpu_to_le32(get_seconds()); 4331 if (sb->s_bdev->bd_part) 4332 es->s_kbytes_written = 4333 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4334 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4335 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4336 else 4337 es->s_kbytes_written = 4338 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4339 ext4_free_blocks_count_set(es, 4340 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4341 &EXT4_SB(sb)->s_freeclusters_counter))); 4342 es->s_free_inodes_count = 4343 cpu_to_le32(percpu_counter_sum_positive( 4344 &EXT4_SB(sb)->s_freeinodes_counter)); 4345 BUFFER_TRACE(sbh, "marking dirty"); 4346 ext4_superblock_csum_set(sb, es); 4347 mark_buffer_dirty(sbh); 4348 if (sync) { 4349 error = sync_dirty_buffer(sbh); 4350 if (error) 4351 return error; 4352 4353 error = buffer_write_io_error(sbh); 4354 if (error) { 4355 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4356 "superblock"); 4357 clear_buffer_write_io_error(sbh); 4358 set_buffer_uptodate(sbh); 4359 } 4360 } 4361 return error; 4362 } 4363 4364 /* 4365 * Have we just finished recovery? If so, and if we are mounting (or 4366 * remounting) the filesystem readonly, then we will end up with a 4367 * consistent fs on disk. Record that fact. 4368 */ 4369 static void ext4_mark_recovery_complete(struct super_block *sb, 4370 struct ext4_super_block *es) 4371 { 4372 journal_t *journal = EXT4_SB(sb)->s_journal; 4373 4374 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4375 BUG_ON(journal != NULL); 4376 return; 4377 } 4378 jbd2_journal_lock_updates(journal); 4379 if (jbd2_journal_flush(journal) < 0) 4380 goto out; 4381 4382 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4383 sb->s_flags & MS_RDONLY) { 4384 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4385 ext4_commit_super(sb, 1); 4386 } 4387 4388 out: 4389 jbd2_journal_unlock_updates(journal); 4390 } 4391 4392 /* 4393 * If we are mounting (or read-write remounting) a filesystem whose journal 4394 * has recorded an error from a previous lifetime, move that error to the 4395 * main filesystem now. 4396 */ 4397 static void ext4_clear_journal_err(struct super_block *sb, 4398 struct ext4_super_block *es) 4399 { 4400 journal_t *journal; 4401 int j_errno; 4402 const char *errstr; 4403 4404 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4405 4406 journal = EXT4_SB(sb)->s_journal; 4407 4408 /* 4409 * Now check for any error status which may have been recorded in the 4410 * journal by a prior ext4_error() or ext4_abort() 4411 */ 4412 4413 j_errno = jbd2_journal_errno(journal); 4414 if (j_errno) { 4415 char nbuf[16]; 4416 4417 errstr = ext4_decode_error(sb, j_errno, nbuf); 4418 ext4_warning(sb, "Filesystem error recorded " 4419 "from previous mount: %s", errstr); 4420 ext4_warning(sb, "Marking fs in need of filesystem check."); 4421 4422 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4423 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4424 ext4_commit_super(sb, 1); 4425 4426 jbd2_journal_clear_err(journal); 4427 jbd2_journal_update_sb_errno(journal); 4428 } 4429 } 4430 4431 /* 4432 * Force the running and committing transactions to commit, 4433 * and wait on the commit. 4434 */ 4435 int ext4_force_commit(struct super_block *sb) 4436 { 4437 journal_t *journal; 4438 int ret = 0; 4439 4440 if (sb->s_flags & MS_RDONLY) 4441 return 0; 4442 4443 journal = EXT4_SB(sb)->s_journal; 4444 if (journal) 4445 ret = ext4_journal_force_commit(journal); 4446 4447 return ret; 4448 } 4449 4450 static int ext4_sync_fs(struct super_block *sb, int wait) 4451 { 4452 int ret = 0; 4453 tid_t target; 4454 struct ext4_sb_info *sbi = EXT4_SB(sb); 4455 4456 trace_ext4_sync_fs(sb, wait); 4457 flush_workqueue(sbi->dio_unwritten_wq); 4458 /* 4459 * Writeback quota in non-journalled quota case - journalled quota has 4460 * no dirty dquots 4461 */ 4462 dquot_writeback_dquots(sb, -1); 4463 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4464 if (wait) 4465 jbd2_log_wait_commit(sbi->s_journal, target); 4466 } 4467 return ret; 4468 } 4469 4470 /* 4471 * LVM calls this function before a (read-only) snapshot is created. This 4472 * gives us a chance to flush the journal completely and mark the fs clean. 4473 * 4474 * Note that only this function cannot bring a filesystem to be in a clean 4475 * state independently. It relies on upper layer to stop all data & metadata 4476 * modifications. 4477 */ 4478 static int ext4_freeze(struct super_block *sb) 4479 { 4480 int error = 0; 4481 journal_t *journal; 4482 4483 if (sb->s_flags & MS_RDONLY) 4484 return 0; 4485 4486 journal = EXT4_SB(sb)->s_journal; 4487 4488 /* Now we set up the journal barrier. */ 4489 jbd2_journal_lock_updates(journal); 4490 4491 /* 4492 * Don't clear the needs_recovery flag if we failed to flush 4493 * the journal. 4494 */ 4495 error = jbd2_journal_flush(journal); 4496 if (error < 0) 4497 goto out; 4498 4499 /* Journal blocked and flushed, clear needs_recovery flag. */ 4500 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4501 error = ext4_commit_super(sb, 1); 4502 out: 4503 /* we rely on upper layer to stop further updates */ 4504 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4505 return error; 4506 } 4507 4508 /* 4509 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4510 * flag here, even though the filesystem is not technically dirty yet. 4511 */ 4512 static int ext4_unfreeze(struct super_block *sb) 4513 { 4514 if (sb->s_flags & MS_RDONLY) 4515 return 0; 4516 4517 lock_super(sb); 4518 /* Reset the needs_recovery flag before the fs is unlocked. */ 4519 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4520 ext4_commit_super(sb, 1); 4521 unlock_super(sb); 4522 return 0; 4523 } 4524 4525 /* 4526 * Structure to save mount options for ext4_remount's benefit 4527 */ 4528 struct ext4_mount_options { 4529 unsigned long s_mount_opt; 4530 unsigned long s_mount_opt2; 4531 kuid_t s_resuid; 4532 kgid_t s_resgid; 4533 unsigned long s_commit_interval; 4534 u32 s_min_batch_time, s_max_batch_time; 4535 #ifdef CONFIG_QUOTA 4536 int s_jquota_fmt; 4537 char *s_qf_names[MAXQUOTAS]; 4538 #endif 4539 }; 4540 4541 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4542 { 4543 struct ext4_super_block *es; 4544 struct ext4_sb_info *sbi = EXT4_SB(sb); 4545 unsigned long old_sb_flags; 4546 struct ext4_mount_options old_opts; 4547 int enable_quota = 0; 4548 ext4_group_t g; 4549 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4550 int err = 0; 4551 #ifdef CONFIG_QUOTA 4552 int i; 4553 #endif 4554 char *orig_data = kstrdup(data, GFP_KERNEL); 4555 4556 /* Store the original options */ 4557 lock_super(sb); 4558 old_sb_flags = sb->s_flags; 4559 old_opts.s_mount_opt = sbi->s_mount_opt; 4560 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4561 old_opts.s_resuid = sbi->s_resuid; 4562 old_opts.s_resgid = sbi->s_resgid; 4563 old_opts.s_commit_interval = sbi->s_commit_interval; 4564 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4565 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4566 #ifdef CONFIG_QUOTA 4567 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4568 for (i = 0; i < MAXQUOTAS; i++) 4569 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4570 #endif 4571 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4572 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4573 4574 /* 4575 * Allow the "check" option to be passed as a remount option. 4576 */ 4577 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4578 err = -EINVAL; 4579 goto restore_opts; 4580 } 4581 4582 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4583 ext4_abort(sb, "Abort forced by user"); 4584 4585 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4586 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4587 4588 es = sbi->s_es; 4589 4590 if (sbi->s_journal) { 4591 ext4_init_journal_params(sb, sbi->s_journal); 4592 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4593 } 4594 4595 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4596 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4597 err = -EROFS; 4598 goto restore_opts; 4599 } 4600 4601 if (*flags & MS_RDONLY) { 4602 err = dquot_suspend(sb, -1); 4603 if (err < 0) 4604 goto restore_opts; 4605 4606 /* 4607 * First of all, the unconditional stuff we have to do 4608 * to disable replay of the journal when we next remount 4609 */ 4610 sb->s_flags |= MS_RDONLY; 4611 4612 /* 4613 * OK, test if we are remounting a valid rw partition 4614 * readonly, and if so set the rdonly flag and then 4615 * mark the partition as valid again. 4616 */ 4617 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4618 (sbi->s_mount_state & EXT4_VALID_FS)) 4619 es->s_state = cpu_to_le16(sbi->s_mount_state); 4620 4621 if (sbi->s_journal) 4622 ext4_mark_recovery_complete(sb, es); 4623 } else { 4624 /* Make sure we can mount this feature set readwrite */ 4625 if (!ext4_feature_set_ok(sb, 0)) { 4626 err = -EROFS; 4627 goto restore_opts; 4628 } 4629 /* 4630 * Make sure the group descriptor checksums 4631 * are sane. If they aren't, refuse to remount r/w. 4632 */ 4633 for (g = 0; g < sbi->s_groups_count; g++) { 4634 struct ext4_group_desc *gdp = 4635 ext4_get_group_desc(sb, g, NULL); 4636 4637 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4638 ext4_msg(sb, KERN_ERR, 4639 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4640 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4641 le16_to_cpu(gdp->bg_checksum)); 4642 err = -EINVAL; 4643 goto restore_opts; 4644 } 4645 } 4646 4647 /* 4648 * If we have an unprocessed orphan list hanging 4649 * around from a previously readonly bdev mount, 4650 * require a full umount/remount for now. 4651 */ 4652 if (es->s_last_orphan) { 4653 ext4_msg(sb, KERN_WARNING, "Couldn't " 4654 "remount RDWR because of unprocessed " 4655 "orphan inode list. Please " 4656 "umount/remount instead"); 4657 err = -EINVAL; 4658 goto restore_opts; 4659 } 4660 4661 /* 4662 * Mounting a RDONLY partition read-write, so reread 4663 * and store the current valid flag. (It may have 4664 * been changed by e2fsck since we originally mounted 4665 * the partition.) 4666 */ 4667 if (sbi->s_journal) 4668 ext4_clear_journal_err(sb, es); 4669 sbi->s_mount_state = le16_to_cpu(es->s_state); 4670 if (!ext4_setup_super(sb, es, 0)) 4671 sb->s_flags &= ~MS_RDONLY; 4672 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4673 EXT4_FEATURE_INCOMPAT_MMP)) 4674 if (ext4_multi_mount_protect(sb, 4675 le64_to_cpu(es->s_mmp_block))) { 4676 err = -EROFS; 4677 goto restore_opts; 4678 } 4679 enable_quota = 1; 4680 } 4681 } 4682 4683 /* 4684 * Reinitialize lazy itable initialization thread based on 4685 * current settings 4686 */ 4687 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4688 ext4_unregister_li_request(sb); 4689 else { 4690 ext4_group_t first_not_zeroed; 4691 first_not_zeroed = ext4_has_uninit_itable(sb); 4692 ext4_register_li_request(sb, first_not_zeroed); 4693 } 4694 4695 ext4_setup_system_zone(sb); 4696 if (sbi->s_journal == NULL) 4697 ext4_commit_super(sb, 1); 4698 4699 unlock_super(sb); 4700 #ifdef CONFIG_QUOTA 4701 /* Release old quota file names */ 4702 for (i = 0; i < MAXQUOTAS; i++) 4703 if (old_opts.s_qf_names[i] && 4704 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4705 kfree(old_opts.s_qf_names[i]); 4706 if (enable_quota) { 4707 if (sb_any_quota_suspended(sb)) 4708 dquot_resume(sb, -1); 4709 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4710 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4711 err = ext4_enable_quotas(sb); 4712 if (err) { 4713 lock_super(sb); 4714 goto restore_opts; 4715 } 4716 } 4717 } 4718 #endif 4719 4720 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4721 kfree(orig_data); 4722 return 0; 4723 4724 restore_opts: 4725 sb->s_flags = old_sb_flags; 4726 sbi->s_mount_opt = old_opts.s_mount_opt; 4727 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4728 sbi->s_resuid = old_opts.s_resuid; 4729 sbi->s_resgid = old_opts.s_resgid; 4730 sbi->s_commit_interval = old_opts.s_commit_interval; 4731 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4732 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4733 #ifdef CONFIG_QUOTA 4734 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4735 for (i = 0; i < MAXQUOTAS; i++) { 4736 if (sbi->s_qf_names[i] && 4737 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4738 kfree(sbi->s_qf_names[i]); 4739 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4740 } 4741 #endif 4742 unlock_super(sb); 4743 kfree(orig_data); 4744 return err; 4745 } 4746 4747 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4748 { 4749 struct super_block *sb = dentry->d_sb; 4750 struct ext4_sb_info *sbi = EXT4_SB(sb); 4751 struct ext4_super_block *es = sbi->s_es; 4752 ext4_fsblk_t overhead = 0; 4753 u64 fsid; 4754 s64 bfree; 4755 4756 if (!test_opt(sb, MINIX_DF)) 4757 overhead = sbi->s_overhead; 4758 4759 buf->f_type = EXT4_SUPER_MAGIC; 4760 buf->f_bsize = sb->s_blocksize; 4761 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead); 4762 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4763 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4764 /* prevent underflow in case that few free space is available */ 4765 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4766 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4767 if (buf->f_bfree < ext4_r_blocks_count(es)) 4768 buf->f_bavail = 0; 4769 buf->f_files = le32_to_cpu(es->s_inodes_count); 4770 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4771 buf->f_namelen = EXT4_NAME_LEN; 4772 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4773 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4774 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4775 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4776 4777 return 0; 4778 } 4779 4780 /* Helper function for writing quotas on sync - we need to start transaction 4781 * before quota file is locked for write. Otherwise the are possible deadlocks: 4782 * Process 1 Process 2 4783 * ext4_create() quota_sync() 4784 * jbd2_journal_start() write_dquot() 4785 * dquot_initialize() down(dqio_mutex) 4786 * down(dqio_mutex) jbd2_journal_start() 4787 * 4788 */ 4789 4790 #ifdef CONFIG_QUOTA 4791 4792 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4793 { 4794 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4795 } 4796 4797 static int ext4_write_dquot(struct dquot *dquot) 4798 { 4799 int ret, err; 4800 handle_t *handle; 4801 struct inode *inode; 4802 4803 inode = dquot_to_inode(dquot); 4804 handle = ext4_journal_start(inode, 4805 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4806 if (IS_ERR(handle)) 4807 return PTR_ERR(handle); 4808 ret = dquot_commit(dquot); 4809 err = ext4_journal_stop(handle); 4810 if (!ret) 4811 ret = err; 4812 return ret; 4813 } 4814 4815 static int ext4_acquire_dquot(struct dquot *dquot) 4816 { 4817 int ret, err; 4818 handle_t *handle; 4819 4820 handle = ext4_journal_start(dquot_to_inode(dquot), 4821 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4822 if (IS_ERR(handle)) 4823 return PTR_ERR(handle); 4824 ret = dquot_acquire(dquot); 4825 err = ext4_journal_stop(handle); 4826 if (!ret) 4827 ret = err; 4828 return ret; 4829 } 4830 4831 static int ext4_release_dquot(struct dquot *dquot) 4832 { 4833 int ret, err; 4834 handle_t *handle; 4835 4836 handle = ext4_journal_start(dquot_to_inode(dquot), 4837 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4838 if (IS_ERR(handle)) { 4839 /* Release dquot anyway to avoid endless cycle in dqput() */ 4840 dquot_release(dquot); 4841 return PTR_ERR(handle); 4842 } 4843 ret = dquot_release(dquot); 4844 err = ext4_journal_stop(handle); 4845 if (!ret) 4846 ret = err; 4847 return ret; 4848 } 4849 4850 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4851 { 4852 /* Are we journaling quotas? */ 4853 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4854 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4855 dquot_mark_dquot_dirty(dquot); 4856 return ext4_write_dquot(dquot); 4857 } else { 4858 return dquot_mark_dquot_dirty(dquot); 4859 } 4860 } 4861 4862 static int ext4_write_info(struct super_block *sb, int type) 4863 { 4864 int ret, err; 4865 handle_t *handle; 4866 4867 /* Data block + inode block */ 4868 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4869 if (IS_ERR(handle)) 4870 return PTR_ERR(handle); 4871 ret = dquot_commit_info(sb, type); 4872 err = ext4_journal_stop(handle); 4873 if (!ret) 4874 ret = err; 4875 return ret; 4876 } 4877 4878 /* 4879 * Turn on quotas during mount time - we need to find 4880 * the quota file and such... 4881 */ 4882 static int ext4_quota_on_mount(struct super_block *sb, int type) 4883 { 4884 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4885 EXT4_SB(sb)->s_jquota_fmt, type); 4886 } 4887 4888 /* 4889 * Standard function to be called on quota_on 4890 */ 4891 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4892 struct path *path) 4893 { 4894 int err; 4895 4896 if (!test_opt(sb, QUOTA)) 4897 return -EINVAL; 4898 4899 /* Quotafile not on the same filesystem? */ 4900 if (path->dentry->d_sb != sb) 4901 return -EXDEV; 4902 /* Journaling quota? */ 4903 if (EXT4_SB(sb)->s_qf_names[type]) { 4904 /* Quotafile not in fs root? */ 4905 if (path->dentry->d_parent != sb->s_root) 4906 ext4_msg(sb, KERN_WARNING, 4907 "Quota file not on filesystem root. " 4908 "Journaled quota will not work"); 4909 } 4910 4911 /* 4912 * When we journal data on quota file, we have to flush journal to see 4913 * all updates to the file when we bypass pagecache... 4914 */ 4915 if (EXT4_SB(sb)->s_journal && 4916 ext4_should_journal_data(path->dentry->d_inode)) { 4917 /* 4918 * We don't need to lock updates but journal_flush() could 4919 * otherwise be livelocked... 4920 */ 4921 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4922 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4923 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4924 if (err) 4925 return err; 4926 } 4927 4928 return dquot_quota_on(sb, type, format_id, path); 4929 } 4930 4931 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4932 unsigned int flags) 4933 { 4934 int err; 4935 struct inode *qf_inode; 4936 unsigned long qf_inums[MAXQUOTAS] = { 4937 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4938 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4939 }; 4940 4941 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4942 4943 if (!qf_inums[type]) 4944 return -EPERM; 4945 4946 qf_inode = ext4_iget(sb, qf_inums[type]); 4947 if (IS_ERR(qf_inode)) { 4948 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4949 return PTR_ERR(qf_inode); 4950 } 4951 4952 err = dquot_enable(qf_inode, type, format_id, flags); 4953 iput(qf_inode); 4954 4955 return err; 4956 } 4957 4958 /* Enable usage tracking for all quota types. */ 4959 static int ext4_enable_quotas(struct super_block *sb) 4960 { 4961 int type, err = 0; 4962 unsigned long qf_inums[MAXQUOTAS] = { 4963 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4964 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4965 }; 4966 4967 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4968 for (type = 0; type < MAXQUOTAS; type++) { 4969 if (qf_inums[type]) { 4970 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4971 DQUOT_USAGE_ENABLED); 4972 if (err) { 4973 ext4_warning(sb, 4974 "Failed to enable quota (type=%d) " 4975 "tracking. Please run e2fsck to fix.", 4976 type); 4977 return err; 4978 } 4979 } 4980 } 4981 return 0; 4982 } 4983 4984 /* 4985 * quota_on function that is used when QUOTA feature is set. 4986 */ 4987 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 4988 int format_id) 4989 { 4990 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 4991 return -EINVAL; 4992 4993 /* 4994 * USAGE was enabled at mount time. Only need to enable LIMITS now. 4995 */ 4996 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 4997 } 4998 4999 static int ext4_quota_off(struct super_block *sb, int type) 5000 { 5001 struct inode *inode = sb_dqopt(sb)->files[type]; 5002 handle_t *handle; 5003 5004 /* Force all delayed allocation blocks to be allocated. 5005 * Caller already holds s_umount sem */ 5006 if (test_opt(sb, DELALLOC)) 5007 sync_filesystem(sb); 5008 5009 if (!inode) 5010 goto out; 5011 5012 /* Update modification times of quota files when userspace can 5013 * start looking at them */ 5014 handle = ext4_journal_start(inode, 1); 5015 if (IS_ERR(handle)) 5016 goto out; 5017 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5018 ext4_mark_inode_dirty(handle, inode); 5019 ext4_journal_stop(handle); 5020 5021 out: 5022 return dquot_quota_off(sb, type); 5023 } 5024 5025 /* 5026 * quota_off function that is used when QUOTA feature is set. 5027 */ 5028 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5029 { 5030 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5031 return -EINVAL; 5032 5033 /* Disable only the limits. */ 5034 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5035 } 5036 5037 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5038 * acquiring the locks... As quota files are never truncated and quota code 5039 * itself serializes the operations (and no one else should touch the files) 5040 * we don't have to be afraid of races */ 5041 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5042 size_t len, loff_t off) 5043 { 5044 struct inode *inode = sb_dqopt(sb)->files[type]; 5045 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5046 int err = 0; 5047 int offset = off & (sb->s_blocksize - 1); 5048 int tocopy; 5049 size_t toread; 5050 struct buffer_head *bh; 5051 loff_t i_size = i_size_read(inode); 5052 5053 if (off > i_size) 5054 return 0; 5055 if (off+len > i_size) 5056 len = i_size-off; 5057 toread = len; 5058 while (toread > 0) { 5059 tocopy = sb->s_blocksize - offset < toread ? 5060 sb->s_blocksize - offset : toread; 5061 bh = ext4_bread(NULL, inode, blk, 0, &err); 5062 if (err) 5063 return err; 5064 if (!bh) /* A hole? */ 5065 memset(data, 0, tocopy); 5066 else 5067 memcpy(data, bh->b_data+offset, tocopy); 5068 brelse(bh); 5069 offset = 0; 5070 toread -= tocopy; 5071 data += tocopy; 5072 blk++; 5073 } 5074 return len; 5075 } 5076 5077 /* Write to quotafile (we know the transaction is already started and has 5078 * enough credits) */ 5079 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5080 const char *data, size_t len, loff_t off) 5081 { 5082 struct inode *inode = sb_dqopt(sb)->files[type]; 5083 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5084 int err = 0; 5085 int offset = off & (sb->s_blocksize - 1); 5086 struct buffer_head *bh; 5087 handle_t *handle = journal_current_handle(); 5088 5089 if (EXT4_SB(sb)->s_journal && !handle) { 5090 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5091 " cancelled because transaction is not started", 5092 (unsigned long long)off, (unsigned long long)len); 5093 return -EIO; 5094 } 5095 /* 5096 * Since we account only one data block in transaction credits, 5097 * then it is impossible to cross a block boundary. 5098 */ 5099 if (sb->s_blocksize - offset < len) { 5100 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5101 " cancelled because not block aligned", 5102 (unsigned long long)off, (unsigned long long)len); 5103 return -EIO; 5104 } 5105 5106 bh = ext4_bread(handle, inode, blk, 1, &err); 5107 if (!bh) 5108 goto out; 5109 err = ext4_journal_get_write_access(handle, bh); 5110 if (err) { 5111 brelse(bh); 5112 goto out; 5113 } 5114 lock_buffer(bh); 5115 memcpy(bh->b_data+offset, data, len); 5116 flush_dcache_page(bh->b_page); 5117 unlock_buffer(bh); 5118 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5119 brelse(bh); 5120 out: 5121 if (err) 5122 return err; 5123 if (inode->i_size < off + len) { 5124 i_size_write(inode, off + len); 5125 EXT4_I(inode)->i_disksize = inode->i_size; 5126 ext4_mark_inode_dirty(handle, inode); 5127 } 5128 return len; 5129 } 5130 5131 #endif 5132 5133 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5134 const char *dev_name, void *data) 5135 { 5136 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5137 } 5138 5139 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5140 static inline void register_as_ext2(void) 5141 { 5142 int err = register_filesystem(&ext2_fs_type); 5143 if (err) 5144 printk(KERN_WARNING 5145 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5146 } 5147 5148 static inline void unregister_as_ext2(void) 5149 { 5150 unregister_filesystem(&ext2_fs_type); 5151 } 5152 5153 static inline int ext2_feature_set_ok(struct super_block *sb) 5154 { 5155 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5156 return 0; 5157 if (sb->s_flags & MS_RDONLY) 5158 return 1; 5159 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5160 return 0; 5161 return 1; 5162 } 5163 MODULE_ALIAS("ext2"); 5164 #else 5165 static inline void register_as_ext2(void) { } 5166 static inline void unregister_as_ext2(void) { } 5167 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5168 #endif 5169 5170 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5171 static inline void register_as_ext3(void) 5172 { 5173 int err = register_filesystem(&ext3_fs_type); 5174 if (err) 5175 printk(KERN_WARNING 5176 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5177 } 5178 5179 static inline void unregister_as_ext3(void) 5180 { 5181 unregister_filesystem(&ext3_fs_type); 5182 } 5183 5184 static inline int ext3_feature_set_ok(struct super_block *sb) 5185 { 5186 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5187 return 0; 5188 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5189 return 0; 5190 if (sb->s_flags & MS_RDONLY) 5191 return 1; 5192 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5193 return 0; 5194 return 1; 5195 } 5196 MODULE_ALIAS("ext3"); 5197 #else 5198 static inline void register_as_ext3(void) { } 5199 static inline void unregister_as_ext3(void) { } 5200 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5201 #endif 5202 5203 static struct file_system_type ext4_fs_type = { 5204 .owner = THIS_MODULE, 5205 .name = "ext4", 5206 .mount = ext4_mount, 5207 .kill_sb = kill_block_super, 5208 .fs_flags = FS_REQUIRES_DEV, 5209 }; 5210 5211 static int __init ext4_init_feat_adverts(void) 5212 { 5213 struct ext4_features *ef; 5214 int ret = -ENOMEM; 5215 5216 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5217 if (!ef) 5218 goto out; 5219 5220 ef->f_kobj.kset = ext4_kset; 5221 init_completion(&ef->f_kobj_unregister); 5222 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5223 "features"); 5224 if (ret) { 5225 kfree(ef); 5226 goto out; 5227 } 5228 5229 ext4_feat = ef; 5230 ret = 0; 5231 out: 5232 return ret; 5233 } 5234 5235 static void ext4_exit_feat_adverts(void) 5236 { 5237 kobject_put(&ext4_feat->f_kobj); 5238 wait_for_completion(&ext4_feat->f_kobj_unregister); 5239 kfree(ext4_feat); 5240 } 5241 5242 /* Shared across all ext4 file systems */ 5243 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5244 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5245 5246 static int __init ext4_init_fs(void) 5247 { 5248 int i, err; 5249 5250 ext4_li_info = NULL; 5251 mutex_init(&ext4_li_mtx); 5252 5253 ext4_check_flag_values(); 5254 5255 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5256 mutex_init(&ext4__aio_mutex[i]); 5257 init_waitqueue_head(&ext4__ioend_wq[i]); 5258 } 5259 5260 err = ext4_init_pageio(); 5261 if (err) 5262 return err; 5263 err = ext4_init_system_zone(); 5264 if (err) 5265 goto out6; 5266 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5267 if (!ext4_kset) 5268 goto out5; 5269 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5270 5271 err = ext4_init_feat_adverts(); 5272 if (err) 5273 goto out4; 5274 5275 err = ext4_init_mballoc(); 5276 if (err) 5277 goto out3; 5278 5279 err = ext4_init_xattr(); 5280 if (err) 5281 goto out2; 5282 err = init_inodecache(); 5283 if (err) 5284 goto out1; 5285 register_as_ext3(); 5286 register_as_ext2(); 5287 err = register_filesystem(&ext4_fs_type); 5288 if (err) 5289 goto out; 5290 5291 return 0; 5292 out: 5293 unregister_as_ext2(); 5294 unregister_as_ext3(); 5295 destroy_inodecache(); 5296 out1: 5297 ext4_exit_xattr(); 5298 out2: 5299 ext4_exit_mballoc(); 5300 out3: 5301 ext4_exit_feat_adverts(); 5302 out4: 5303 if (ext4_proc_root) 5304 remove_proc_entry("fs/ext4", NULL); 5305 kset_unregister(ext4_kset); 5306 out5: 5307 ext4_exit_system_zone(); 5308 out6: 5309 ext4_exit_pageio(); 5310 return err; 5311 } 5312 5313 static void __exit ext4_exit_fs(void) 5314 { 5315 ext4_destroy_lazyinit_thread(); 5316 unregister_as_ext2(); 5317 unregister_as_ext3(); 5318 unregister_filesystem(&ext4_fs_type); 5319 destroy_inodecache(); 5320 ext4_exit_xattr(); 5321 ext4_exit_mballoc(); 5322 ext4_exit_feat_adverts(); 5323 remove_proc_entry("fs/ext4", NULL); 5324 kset_unregister(ext4_kset); 5325 ext4_exit_system_zone(); 5326 ext4_exit_pageio(); 5327 } 5328 5329 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5330 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5331 MODULE_LICENSE("GPL"); 5332 module_init(ext4_init_fs) 5333 module_exit(ext4_exit_fs) 5334