1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io) 165 { 166 /* 167 * buffer's verified bit is no longer valid after reading from 168 * disk again due to write out error, clear it to make sure we 169 * recheck the buffer contents. 170 */ 171 clear_buffer_verified(bh); 172 173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 174 get_bh(bh); 175 submit_bh(REQ_OP_READ | op_flags, bh); 176 } 177 178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 179 bh_end_io_t *end_io) 180 { 181 BUG_ON(!buffer_locked(bh)); 182 183 if (ext4_buffer_uptodate(bh)) { 184 unlock_buffer(bh); 185 return; 186 } 187 __ext4_read_bh(bh, op_flags, end_io); 188 } 189 190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 191 { 192 BUG_ON(!buffer_locked(bh)); 193 194 if (ext4_buffer_uptodate(bh)) { 195 unlock_buffer(bh); 196 return 0; 197 } 198 199 __ext4_read_bh(bh, op_flags, end_io); 200 201 wait_on_buffer(bh); 202 if (buffer_uptodate(bh)) 203 return 0; 204 return -EIO; 205 } 206 207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 208 { 209 lock_buffer(bh); 210 if (!wait) { 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 return ext4_read_bh(bh, op_flags, NULL); 215 } 216 217 /* 218 * This works like __bread_gfp() except it uses ERR_PTR for error 219 * returns. Currently with sb_bread it's impossible to distinguish 220 * between ENOMEM and EIO situations (since both result in a NULL 221 * return. 222 */ 223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 224 sector_t block, 225 blk_opf_t op_flags, gfp_t gfp) 226 { 227 struct buffer_head *bh; 228 int ret; 229 230 bh = sb_getblk_gfp(sb, block, gfp); 231 if (bh == NULL) 232 return ERR_PTR(-ENOMEM); 233 if (ext4_buffer_uptodate(bh)) 234 return bh; 235 236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 237 if (ret) { 238 put_bh(bh); 239 return ERR_PTR(ret); 240 } 241 return bh; 242 } 243 244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 245 blk_opf_t op_flags) 246 { 247 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 248 ~__GFP_FS) | __GFP_MOVABLE; 249 250 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 251 } 252 253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 254 sector_t block) 255 { 256 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 257 ~__GFP_FS); 258 259 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 265 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 266 267 if (likely(bh)) { 268 if (trylock_buffer(bh)) 269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 270 brelse(bh); 271 } 272 } 273 274 static int ext4_verify_csum_type(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_feature_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 281 } 282 283 __le32 ext4_superblock_csum(struct super_block *sb, 284 struct ext4_super_block *es) 285 { 286 struct ext4_sb_info *sbi = EXT4_SB(sb); 287 int offset = offsetof(struct ext4_super_block, s_checksum); 288 __u32 csum; 289 290 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 291 292 return cpu_to_le32(csum); 293 } 294 295 static int ext4_superblock_csum_verify(struct super_block *sb, 296 struct ext4_super_block *es) 297 { 298 if (!ext4_has_metadata_csum(sb)) 299 return 1; 300 301 return es->s_checksum == ext4_superblock_csum(sb, es); 302 } 303 304 void ext4_superblock_csum_set(struct super_block *sb) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 if (!ext4_has_metadata_csum(sb)) 309 return; 310 311 es->s_checksum = ext4_superblock_csum(sb, es); 312 } 313 314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_block_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 328 } 329 330 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le32_to_cpu(bg->bg_inode_table_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 336 } 337 338 __u32 ext4_free_group_clusters(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_free_inodes_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_used_dirs_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 360 } 361 362 __u32 ext4_itable_unused_count(struct super_block *sb, 363 struct ext4_group_desc *bg) 364 { 365 return le16_to_cpu(bg->bg_itable_unused_lo) | 366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 368 } 369 370 void ext4_block_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_bitmap_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_inode_table_set(struct super_block *sb, 387 struct ext4_group_desc *bg, ext4_fsblk_t blk) 388 { 389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 392 } 393 394 void ext4_free_group_clusters_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_free_inodes_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_used_dirs_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 416 } 417 418 void ext4_itable_unused_set(struct super_block *sb, 419 struct ext4_group_desc *bg, __u32 count) 420 { 421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 424 } 425 426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 427 { 428 now = clamp_val(now, 0, (1ull << 40) - 1); 429 430 *lo = cpu_to_le32(lower_32_bits(now)); 431 *hi = upper_32_bits(now); 432 } 433 434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 435 { 436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 437 } 438 #define ext4_update_tstamp(es, tstamp) \ 439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 440 ktime_get_real_seconds()) 441 #define ext4_get_tstamp(es, tstamp) \ 442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 443 444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 446 447 /* 448 * The ext4_maybe_update_superblock() function checks and updates the 449 * superblock if needed. 450 * 451 * This function is designed to update the on-disk superblock only under 452 * certain conditions to prevent excessive disk writes and unnecessary 453 * waking of the disk from sleep. The superblock will be updated if: 454 * 1. More than an hour has passed since the last superblock update, and 455 * 2. More than 16MB have been written since the last superblock update. 456 * 457 * @sb: The superblock 458 */ 459 static void ext4_maybe_update_superblock(struct super_block *sb) 460 { 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 struct ext4_super_block *es = sbi->s_es; 463 journal_t *journal = sbi->s_journal; 464 time64_t now; 465 __u64 last_update; 466 __u64 lifetime_write_kbytes; 467 __u64 diff_size; 468 469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 470 !journal || (journal->j_flags & JBD2_UNMOUNT)) 471 return; 472 473 now = ktime_get_real_seconds(); 474 last_update = ext4_get_tstamp(es, s_wtime); 475 476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 477 return; 478 479 lifetime_write_kbytes = sbi->s_kbytes_written + 480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 481 sbi->s_sectors_written_start) >> 1); 482 483 /* Get the number of kilobytes not written to disk to account 484 * for statistics and compare with a multiple of 16 MB. This 485 * is used to determine when the next superblock commit should 486 * occur (i.e. not more often than once per 16MB if there was 487 * less written in an hour). 488 */ 489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 490 491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 493 } 494 495 /* 496 * The del_gendisk() function uninitializes the disk-specific data 497 * structures, including the bdi structure, without telling anyone 498 * else. Once this happens, any attempt to call mark_buffer_dirty() 499 * (for example, by ext4_commit_super), will cause a kernel OOPS. 500 * This is a kludge to prevent these oops until we can put in a proper 501 * hook in del_gendisk() to inform the VFS and file system layers. 502 */ 503 static int block_device_ejected(struct super_block *sb) 504 { 505 struct inode *bd_inode = sb->s_bdev->bd_inode; 506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 507 508 return bdi->dev == NULL; 509 } 510 511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 512 { 513 struct super_block *sb = journal->j_private; 514 struct ext4_sb_info *sbi = EXT4_SB(sb); 515 int error = is_journal_aborted(journal); 516 struct ext4_journal_cb_entry *jce; 517 518 BUG_ON(txn->t_state == T_FINISHED); 519 520 ext4_process_freed_data(sb, txn->t_tid); 521 ext4_maybe_update_superblock(sb); 522 523 spin_lock(&sbi->s_md_lock); 524 while (!list_empty(&txn->t_private_list)) { 525 jce = list_entry(txn->t_private_list.next, 526 struct ext4_journal_cb_entry, jce_list); 527 list_del_init(&jce->jce_list); 528 spin_unlock(&sbi->s_md_lock); 529 jce->jce_func(sb, jce, error); 530 spin_lock(&sbi->s_md_lock); 531 } 532 spin_unlock(&sbi->s_md_lock); 533 } 534 535 /* 536 * This writepage callback for write_cache_pages() 537 * takes care of a few cases after page cleaning. 538 * 539 * write_cache_pages() already checks for dirty pages 540 * and calls clear_page_dirty_for_io(), which we want, 541 * to write protect the pages. 542 * 543 * However, we may have to redirty a page (see below.) 544 */ 545 static int ext4_journalled_writepage_callback(struct folio *folio, 546 struct writeback_control *wbc, 547 void *data) 548 { 549 transaction_t *transaction = (transaction_t *) data; 550 struct buffer_head *bh, *head; 551 struct journal_head *jh; 552 553 bh = head = folio_buffers(folio); 554 do { 555 /* 556 * We have to redirty a page in these cases: 557 * 1) If buffer is dirty, it means the page was dirty because it 558 * contains a buffer that needs checkpointing. So the dirty bit 559 * needs to be preserved so that checkpointing writes the buffer 560 * properly. 561 * 2) If buffer is not part of the committing transaction 562 * (we may have just accidentally come across this buffer because 563 * inode range tracking is not exact) or if the currently running 564 * transaction already contains this buffer as well, dirty bit 565 * needs to be preserved so that the buffer gets writeprotected 566 * properly on running transaction's commit. 567 */ 568 jh = bh2jh(bh); 569 if (buffer_dirty(bh) || 570 (jh && (jh->b_transaction != transaction || 571 jh->b_next_transaction))) { 572 folio_redirty_for_writepage(wbc, folio); 573 goto out; 574 } 575 } while ((bh = bh->b_this_page) != head); 576 577 out: 578 return AOP_WRITEPAGE_ACTIVATE; 579 } 580 581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 582 { 583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 584 struct writeback_control wbc = { 585 .sync_mode = WB_SYNC_ALL, 586 .nr_to_write = LONG_MAX, 587 .range_start = jinode->i_dirty_start, 588 .range_end = jinode->i_dirty_end, 589 }; 590 591 return write_cache_pages(mapping, &wbc, 592 ext4_journalled_writepage_callback, 593 jinode->i_transaction); 594 } 595 596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 597 { 598 int ret; 599 600 if (ext4_should_journal_data(jinode->i_vfs_inode)) 601 ret = ext4_journalled_submit_inode_data_buffers(jinode); 602 else 603 ret = ext4_normal_submit_inode_data_buffers(jinode); 604 return ret; 605 } 606 607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 608 { 609 int ret = 0; 610 611 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 612 ret = jbd2_journal_finish_inode_data_buffers(jinode); 613 614 return ret; 615 } 616 617 static bool system_going_down(void) 618 { 619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 620 || system_state == SYSTEM_RESTART; 621 } 622 623 struct ext4_err_translation { 624 int code; 625 int errno; 626 }; 627 628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 629 630 static struct ext4_err_translation err_translation[] = { 631 EXT4_ERR_TRANSLATE(EIO), 632 EXT4_ERR_TRANSLATE(ENOMEM), 633 EXT4_ERR_TRANSLATE(EFSBADCRC), 634 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 635 EXT4_ERR_TRANSLATE(ENOSPC), 636 EXT4_ERR_TRANSLATE(ENOKEY), 637 EXT4_ERR_TRANSLATE(EROFS), 638 EXT4_ERR_TRANSLATE(EFBIG), 639 EXT4_ERR_TRANSLATE(EEXIST), 640 EXT4_ERR_TRANSLATE(ERANGE), 641 EXT4_ERR_TRANSLATE(EOVERFLOW), 642 EXT4_ERR_TRANSLATE(EBUSY), 643 EXT4_ERR_TRANSLATE(ENOTDIR), 644 EXT4_ERR_TRANSLATE(ENOTEMPTY), 645 EXT4_ERR_TRANSLATE(ESHUTDOWN), 646 EXT4_ERR_TRANSLATE(EFAULT), 647 }; 648 649 static int ext4_errno_to_code(int errno) 650 { 651 int i; 652 653 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 654 if (err_translation[i].errno == errno) 655 return err_translation[i].code; 656 return EXT4_ERR_UNKNOWN; 657 } 658 659 static void save_error_info(struct super_block *sb, int error, 660 __u32 ino, __u64 block, 661 const char *func, unsigned int line) 662 { 663 struct ext4_sb_info *sbi = EXT4_SB(sb); 664 665 /* We default to EFSCORRUPTED error... */ 666 if (error == 0) 667 error = EFSCORRUPTED; 668 669 spin_lock(&sbi->s_error_lock); 670 sbi->s_add_error_count++; 671 sbi->s_last_error_code = error; 672 sbi->s_last_error_line = line; 673 sbi->s_last_error_ino = ino; 674 sbi->s_last_error_block = block; 675 sbi->s_last_error_func = func; 676 sbi->s_last_error_time = ktime_get_real_seconds(); 677 if (!sbi->s_first_error_time) { 678 sbi->s_first_error_code = error; 679 sbi->s_first_error_line = line; 680 sbi->s_first_error_ino = ino; 681 sbi->s_first_error_block = block; 682 sbi->s_first_error_func = func; 683 sbi->s_first_error_time = sbi->s_last_error_time; 684 } 685 spin_unlock(&sbi->s_error_lock); 686 } 687 688 /* Deal with the reporting of failure conditions on a filesystem such as 689 * inconsistencies detected or read IO failures. 690 * 691 * On ext2, we can store the error state of the filesystem in the 692 * superblock. That is not possible on ext4, because we may have other 693 * write ordering constraints on the superblock which prevent us from 694 * writing it out straight away; and given that the journal is about to 695 * be aborted, we can't rely on the current, or future, transactions to 696 * write out the superblock safely. 697 * 698 * We'll just use the jbd2_journal_abort() error code to record an error in 699 * the journal instead. On recovery, the journal will complain about 700 * that error until we've noted it down and cleared it. 701 * 702 * If force_ro is set, we unconditionally force the filesystem into an 703 * ABORT|READONLY state, unless the error response on the fs has been set to 704 * panic in which case we take the easy way out and panic immediately. This is 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 706 * at a critical moment in log management. 707 */ 708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 709 __u32 ino, __u64 block, 710 const char *func, unsigned int line) 711 { 712 journal_t *journal = EXT4_SB(sb)->s_journal; 713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 714 715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 716 if (test_opt(sb, WARN_ON_ERROR)) 717 WARN_ON_ONCE(1); 718 719 if (!continue_fs && !sb_rdonly(sb)) { 720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 721 if (journal) 722 jbd2_journal_abort(journal, -EIO); 723 } 724 725 if (!bdev_read_only(sb->s_bdev)) { 726 save_error_info(sb, error, ino, block, func, line); 727 /* 728 * In case the fs should keep running, we need to writeout 729 * superblock through the journal. Due to lock ordering 730 * constraints, it may not be safe to do it right here so we 731 * defer superblock flushing to a workqueue. 732 */ 733 if (continue_fs && journal) 734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 735 else 736 ext4_commit_super(sb); 737 } 738 739 /* 740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 741 * could panic during 'reboot -f' as the underlying device got already 742 * disabled. 743 */ 744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 745 panic("EXT4-fs (device %s): panic forced after error\n", 746 sb->s_id); 747 } 748 749 if (sb_rdonly(sb) || continue_fs) 750 return; 751 752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 753 /* 754 * Make sure updated value of ->s_mount_flags will be visible before 755 * ->s_flags update 756 */ 757 smp_wmb(); 758 sb->s_flags |= SB_RDONLY; 759 } 760 761 static void update_super_work(struct work_struct *work) 762 { 763 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 764 s_sb_upd_work); 765 journal_t *journal = sbi->s_journal; 766 handle_t *handle; 767 768 /* 769 * If the journal is still running, we have to write out superblock 770 * through the journal to avoid collisions of other journalled sb 771 * updates. 772 * 773 * We use directly jbd2 functions here to avoid recursing back into 774 * ext4 error handling code during handling of previous errors. 775 */ 776 if (!sb_rdonly(sbi->s_sb) && journal) { 777 struct buffer_head *sbh = sbi->s_sbh; 778 bool call_notify_err = false; 779 780 handle = jbd2_journal_start(journal, 1); 781 if (IS_ERR(handle)) 782 goto write_directly; 783 if (jbd2_journal_get_write_access(handle, sbh)) { 784 jbd2_journal_stop(handle); 785 goto write_directly; 786 } 787 788 if (sbi->s_add_error_count > 0) 789 call_notify_err = true; 790 791 ext4_update_super(sbi->s_sb); 792 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 793 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 794 "superblock detected"); 795 clear_buffer_write_io_error(sbh); 796 set_buffer_uptodate(sbh); 797 } 798 799 if (jbd2_journal_dirty_metadata(handle, sbh)) { 800 jbd2_journal_stop(handle); 801 goto write_directly; 802 } 803 jbd2_journal_stop(handle); 804 805 if (call_notify_err) 806 ext4_notify_error_sysfs(sbi); 807 808 return; 809 } 810 write_directly: 811 /* 812 * Write through journal failed. Write sb directly to get error info 813 * out and hope for the best. 814 */ 815 ext4_commit_super(sbi->s_sb); 816 ext4_notify_error_sysfs(sbi); 817 } 818 819 #define ext4_error_ratelimit(sb) \ 820 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 821 "EXT4-fs error") 822 823 void __ext4_error(struct super_block *sb, const char *function, 824 unsigned int line, bool force_ro, int error, __u64 block, 825 const char *fmt, ...) 826 { 827 struct va_format vaf; 828 va_list args; 829 830 if (unlikely(ext4_forced_shutdown(sb))) 831 return; 832 833 trace_ext4_error(sb, function, line); 834 if (ext4_error_ratelimit(sb)) { 835 va_start(args, fmt); 836 vaf.fmt = fmt; 837 vaf.va = &args; 838 printk(KERN_CRIT 839 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 840 sb->s_id, function, line, current->comm, &vaf); 841 va_end(args); 842 } 843 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 844 845 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 846 } 847 848 void __ext4_error_inode(struct inode *inode, const char *function, 849 unsigned int line, ext4_fsblk_t block, int error, 850 const char *fmt, ...) 851 { 852 va_list args; 853 struct va_format vaf; 854 855 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 856 return; 857 858 trace_ext4_error(inode->i_sb, function, line); 859 if (ext4_error_ratelimit(inode->i_sb)) { 860 va_start(args, fmt); 861 vaf.fmt = fmt; 862 vaf.va = &args; 863 if (block) 864 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 865 "inode #%lu: block %llu: comm %s: %pV\n", 866 inode->i_sb->s_id, function, line, inode->i_ino, 867 block, current->comm, &vaf); 868 else 869 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 870 "inode #%lu: comm %s: %pV\n", 871 inode->i_sb->s_id, function, line, inode->i_ino, 872 current->comm, &vaf); 873 va_end(args); 874 } 875 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 876 877 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 878 function, line); 879 } 880 881 void __ext4_error_file(struct file *file, const char *function, 882 unsigned int line, ext4_fsblk_t block, 883 const char *fmt, ...) 884 { 885 va_list args; 886 struct va_format vaf; 887 struct inode *inode = file_inode(file); 888 char pathname[80], *path; 889 890 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 891 return; 892 893 trace_ext4_error(inode->i_sb, function, line); 894 if (ext4_error_ratelimit(inode->i_sb)) { 895 path = file_path(file, pathname, sizeof(pathname)); 896 if (IS_ERR(path)) 897 path = "(unknown)"; 898 va_start(args, fmt); 899 vaf.fmt = fmt; 900 vaf.va = &args; 901 if (block) 902 printk(KERN_CRIT 903 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 904 "block %llu: comm %s: path %s: %pV\n", 905 inode->i_sb->s_id, function, line, inode->i_ino, 906 block, current->comm, path, &vaf); 907 else 908 printk(KERN_CRIT 909 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 910 "comm %s: path %s: %pV\n", 911 inode->i_sb->s_id, function, line, inode->i_ino, 912 current->comm, path, &vaf); 913 va_end(args); 914 } 915 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 916 917 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 918 function, line); 919 } 920 921 const char *ext4_decode_error(struct super_block *sb, int errno, 922 char nbuf[16]) 923 { 924 char *errstr = NULL; 925 926 switch (errno) { 927 case -EFSCORRUPTED: 928 errstr = "Corrupt filesystem"; 929 break; 930 case -EFSBADCRC: 931 errstr = "Filesystem failed CRC"; 932 break; 933 case -EIO: 934 errstr = "IO failure"; 935 break; 936 case -ENOMEM: 937 errstr = "Out of memory"; 938 break; 939 case -EROFS: 940 if (!sb || (EXT4_SB(sb)->s_journal && 941 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 942 errstr = "Journal has aborted"; 943 else 944 errstr = "Readonly filesystem"; 945 break; 946 default: 947 /* If the caller passed in an extra buffer for unknown 948 * errors, textualise them now. Else we just return 949 * NULL. */ 950 if (nbuf) { 951 /* Check for truncated error codes... */ 952 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 953 errstr = nbuf; 954 } 955 break; 956 } 957 958 return errstr; 959 } 960 961 /* __ext4_std_error decodes expected errors from journaling functions 962 * automatically and invokes the appropriate error response. */ 963 964 void __ext4_std_error(struct super_block *sb, const char *function, 965 unsigned int line, int errno) 966 { 967 char nbuf[16]; 968 const char *errstr; 969 970 if (unlikely(ext4_forced_shutdown(sb))) 971 return; 972 973 /* Special case: if the error is EROFS, and we're not already 974 * inside a transaction, then there's really no point in logging 975 * an error. */ 976 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 977 return; 978 979 if (ext4_error_ratelimit(sb)) { 980 errstr = ext4_decode_error(sb, errno, nbuf); 981 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 982 sb->s_id, function, line, errstr); 983 } 984 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 985 986 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 987 } 988 989 void __ext4_msg(struct super_block *sb, 990 const char *prefix, const char *fmt, ...) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (sb) { 996 atomic_inc(&EXT4_SB(sb)->s_msg_count); 997 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 998 "EXT4-fs")) 999 return; 1000 } 1001 1002 va_start(args, fmt); 1003 vaf.fmt = fmt; 1004 vaf.va = &args; 1005 if (sb) 1006 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 1007 else 1008 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 1009 va_end(args); 1010 } 1011 1012 static int ext4_warning_ratelimit(struct super_block *sb) 1013 { 1014 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1015 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1016 "EXT4-fs warning"); 1017 } 1018 1019 void __ext4_warning(struct super_block *sb, const char *function, 1020 unsigned int line, const char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 if (!ext4_warning_ratelimit(sb)) 1026 return; 1027 1028 va_start(args, fmt); 1029 vaf.fmt = fmt; 1030 vaf.va = &args; 1031 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1032 sb->s_id, function, line, &vaf); 1033 va_end(args); 1034 } 1035 1036 void __ext4_warning_inode(const struct inode *inode, const char *function, 1037 unsigned int line, const char *fmt, ...) 1038 { 1039 struct va_format vaf; 1040 va_list args; 1041 1042 if (!ext4_warning_ratelimit(inode->i_sb)) 1043 return; 1044 1045 va_start(args, fmt); 1046 vaf.fmt = fmt; 1047 vaf.va = &args; 1048 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1049 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1050 function, line, inode->i_ino, current->comm, &vaf); 1051 va_end(args); 1052 } 1053 1054 void __ext4_grp_locked_error(const char *function, unsigned int line, 1055 struct super_block *sb, ext4_group_t grp, 1056 unsigned long ino, ext4_fsblk_t block, 1057 const char *fmt, ...) 1058 __releases(bitlock) 1059 __acquires(bitlock) 1060 { 1061 struct va_format vaf; 1062 va_list args; 1063 1064 if (unlikely(ext4_forced_shutdown(sb))) 1065 return; 1066 1067 trace_ext4_error(sb, function, line); 1068 if (ext4_error_ratelimit(sb)) { 1069 va_start(args, fmt); 1070 vaf.fmt = fmt; 1071 vaf.va = &args; 1072 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1073 sb->s_id, function, line, grp); 1074 if (ino) 1075 printk(KERN_CONT "inode %lu: ", ino); 1076 if (block) 1077 printk(KERN_CONT "block %llu:", 1078 (unsigned long long) block); 1079 printk(KERN_CONT "%pV\n", &vaf); 1080 va_end(args); 1081 } 1082 1083 if (test_opt(sb, ERRORS_CONT)) { 1084 if (test_opt(sb, WARN_ON_ERROR)) 1085 WARN_ON_ONCE(1); 1086 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1087 if (!bdev_read_only(sb->s_bdev)) { 1088 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1089 line); 1090 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1091 } 1092 return; 1093 } 1094 ext4_unlock_group(sb, grp); 1095 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1096 /* 1097 * We only get here in the ERRORS_RO case; relocking the group 1098 * may be dangerous, but nothing bad will happen since the 1099 * filesystem will have already been marked read/only and the 1100 * journal has been aborted. We return 1 as a hint to callers 1101 * who might what to use the return value from 1102 * ext4_grp_locked_error() to distinguish between the 1103 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1104 * aggressively from the ext4 function in question, with a 1105 * more appropriate error code. 1106 */ 1107 ext4_lock_group(sb, grp); 1108 return; 1109 } 1110 1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1112 ext4_group_t group, 1113 unsigned int flags) 1114 { 1115 struct ext4_sb_info *sbi = EXT4_SB(sb); 1116 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1117 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1118 int ret; 1119 1120 if (!grp || !gdp) 1121 return; 1122 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1124 &grp->bb_state); 1125 if (!ret) 1126 percpu_counter_sub(&sbi->s_freeclusters_counter, 1127 grp->bb_free); 1128 } 1129 1130 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1131 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1132 &grp->bb_state); 1133 if (!ret && gdp) { 1134 int count; 1135 1136 count = ext4_free_inodes_count(sb, gdp); 1137 percpu_counter_sub(&sbi->s_freeinodes_counter, 1138 count); 1139 } 1140 } 1141 } 1142 1143 void ext4_update_dynamic_rev(struct super_block *sb) 1144 { 1145 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1146 1147 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1148 return; 1149 1150 ext4_warning(sb, 1151 "updating to rev %d because of new feature flag, " 1152 "running e2fsck is recommended", 1153 EXT4_DYNAMIC_REV); 1154 1155 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1156 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1157 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1158 /* leave es->s_feature_*compat flags alone */ 1159 /* es->s_uuid will be set by e2fsck if empty */ 1160 1161 /* 1162 * The rest of the superblock fields should be zero, and if not it 1163 * means they are likely already in use, so leave them alone. We 1164 * can leave it up to e2fsck to clean up any inconsistencies there. 1165 */ 1166 } 1167 1168 static inline struct inode *orphan_list_entry(struct list_head *l) 1169 { 1170 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1171 } 1172 1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1174 { 1175 struct list_head *l; 1176 1177 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1178 le32_to_cpu(sbi->s_es->s_last_orphan)); 1179 1180 printk(KERN_ERR "sb_info orphan list:\n"); 1181 list_for_each(l, &sbi->s_orphan) { 1182 struct inode *inode = orphan_list_entry(l); 1183 printk(KERN_ERR " " 1184 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1185 inode->i_sb->s_id, inode->i_ino, inode, 1186 inode->i_mode, inode->i_nlink, 1187 NEXT_ORPHAN(inode)); 1188 } 1189 } 1190 1191 #ifdef CONFIG_QUOTA 1192 static int ext4_quota_off(struct super_block *sb, int type); 1193 1194 static inline void ext4_quotas_off(struct super_block *sb, int type) 1195 { 1196 BUG_ON(type > EXT4_MAXQUOTAS); 1197 1198 /* Use our quota_off function to clear inode flags etc. */ 1199 for (type--; type >= 0; type--) 1200 ext4_quota_off(sb, type); 1201 } 1202 1203 /* 1204 * This is a helper function which is used in the mount/remount 1205 * codepaths (which holds s_umount) to fetch the quota file name. 1206 */ 1207 static inline char *get_qf_name(struct super_block *sb, 1208 struct ext4_sb_info *sbi, 1209 int type) 1210 { 1211 return rcu_dereference_protected(sbi->s_qf_names[type], 1212 lockdep_is_held(&sb->s_umount)); 1213 } 1214 #else 1215 static inline void ext4_quotas_off(struct super_block *sb, int type) 1216 { 1217 } 1218 #endif 1219 1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1221 { 1222 ext4_fsblk_t block; 1223 int err; 1224 1225 block = ext4_count_free_clusters(sbi->s_sb); 1226 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1227 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1228 GFP_KERNEL); 1229 if (!err) { 1230 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1231 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1232 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1233 GFP_KERNEL); 1234 } 1235 if (!err) 1236 err = percpu_counter_init(&sbi->s_dirs_counter, 1237 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1238 if (!err) 1239 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1240 GFP_KERNEL); 1241 if (!err) 1242 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1243 GFP_KERNEL); 1244 if (!err) 1245 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1246 1247 if (err) 1248 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1249 1250 return err; 1251 } 1252 1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1254 { 1255 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1256 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1257 percpu_counter_destroy(&sbi->s_dirs_counter); 1258 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1259 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1260 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1261 } 1262 1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1264 { 1265 struct buffer_head **group_desc; 1266 int i; 1267 1268 rcu_read_lock(); 1269 group_desc = rcu_dereference(sbi->s_group_desc); 1270 for (i = 0; i < sbi->s_gdb_count; i++) 1271 brelse(group_desc[i]); 1272 kvfree(group_desc); 1273 rcu_read_unlock(); 1274 } 1275 1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1277 { 1278 struct flex_groups **flex_groups; 1279 int i; 1280 1281 rcu_read_lock(); 1282 flex_groups = rcu_dereference(sbi->s_flex_groups); 1283 if (flex_groups) { 1284 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1285 kvfree(flex_groups[i]); 1286 kvfree(flex_groups); 1287 } 1288 rcu_read_unlock(); 1289 } 1290 1291 static void ext4_put_super(struct super_block *sb) 1292 { 1293 struct ext4_sb_info *sbi = EXT4_SB(sb); 1294 struct ext4_super_block *es = sbi->s_es; 1295 int aborted = 0; 1296 int err; 1297 1298 /* 1299 * Unregister sysfs before destroying jbd2 journal. 1300 * Since we could still access attr_journal_task attribute via sysfs 1301 * path which could have sbi->s_journal->j_task as NULL 1302 * Unregister sysfs before flush sbi->s_sb_upd_work. 1303 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1304 * read metadata verify failed then will queue error work. 1305 * update_super_work will call start_this_handle may trigger 1306 * BUG_ON. 1307 */ 1308 ext4_unregister_sysfs(sb); 1309 1310 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1311 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1312 &sb->s_uuid); 1313 1314 ext4_unregister_li_request(sb); 1315 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1316 1317 flush_work(&sbi->s_sb_upd_work); 1318 destroy_workqueue(sbi->rsv_conversion_wq); 1319 ext4_release_orphan_info(sb); 1320 1321 if (sbi->s_journal) { 1322 aborted = is_journal_aborted(sbi->s_journal); 1323 err = jbd2_journal_destroy(sbi->s_journal); 1324 sbi->s_journal = NULL; 1325 if ((err < 0) && !aborted) { 1326 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1327 } 1328 } 1329 1330 ext4_es_unregister_shrinker(sbi); 1331 timer_shutdown_sync(&sbi->s_err_report); 1332 ext4_release_system_zone(sb); 1333 ext4_mb_release(sb); 1334 ext4_ext_release(sb); 1335 1336 if (!sb_rdonly(sb) && !aborted) { 1337 ext4_clear_feature_journal_needs_recovery(sb); 1338 ext4_clear_feature_orphan_present(sb); 1339 es->s_state = cpu_to_le16(sbi->s_mount_state); 1340 } 1341 if (!sb_rdonly(sb)) 1342 ext4_commit_super(sb); 1343 1344 ext4_group_desc_free(sbi); 1345 ext4_flex_groups_free(sbi); 1346 ext4_percpu_param_destroy(sbi); 1347 #ifdef CONFIG_QUOTA 1348 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1349 kfree(get_qf_name(sb, sbi, i)); 1350 #endif 1351 1352 /* Debugging code just in case the in-memory inode orphan list 1353 * isn't empty. The on-disk one can be non-empty if we've 1354 * detected an error and taken the fs readonly, but the 1355 * in-memory list had better be clean by this point. */ 1356 if (!list_empty(&sbi->s_orphan)) 1357 dump_orphan_list(sb, sbi); 1358 ASSERT(list_empty(&sbi->s_orphan)); 1359 1360 sync_blockdev(sb->s_bdev); 1361 invalidate_bdev(sb->s_bdev); 1362 if (sbi->s_journal_bdev_file) { 1363 /* 1364 * Invalidate the journal device's buffers. We don't want them 1365 * floating about in memory - the physical journal device may 1366 * hotswapped, and it breaks the `ro-after' testing code. 1367 */ 1368 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1369 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1370 } 1371 1372 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1373 sbi->s_ea_inode_cache = NULL; 1374 1375 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1376 sbi->s_ea_block_cache = NULL; 1377 1378 ext4_stop_mmpd(sbi); 1379 1380 brelse(sbi->s_sbh); 1381 sb->s_fs_info = NULL; 1382 /* 1383 * Now that we are completely done shutting down the 1384 * superblock, we need to actually destroy the kobject. 1385 */ 1386 kobject_put(&sbi->s_kobj); 1387 wait_for_completion(&sbi->s_kobj_unregister); 1388 if (sbi->s_chksum_driver) 1389 crypto_free_shash(sbi->s_chksum_driver); 1390 kfree(sbi->s_blockgroup_lock); 1391 fs_put_dax(sbi->s_daxdev, NULL); 1392 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1393 #if IS_ENABLED(CONFIG_UNICODE) 1394 utf8_unload(sb->s_encoding); 1395 #endif 1396 kfree(sbi); 1397 } 1398 1399 static struct kmem_cache *ext4_inode_cachep; 1400 1401 /* 1402 * Called inside transaction, so use GFP_NOFS 1403 */ 1404 static struct inode *ext4_alloc_inode(struct super_block *sb) 1405 { 1406 struct ext4_inode_info *ei; 1407 1408 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1409 if (!ei) 1410 return NULL; 1411 1412 inode_set_iversion(&ei->vfs_inode, 1); 1413 ei->i_flags = 0; 1414 spin_lock_init(&ei->i_raw_lock); 1415 ei->i_prealloc_node = RB_ROOT; 1416 atomic_set(&ei->i_prealloc_active, 0); 1417 rwlock_init(&ei->i_prealloc_lock); 1418 ext4_es_init_tree(&ei->i_es_tree); 1419 rwlock_init(&ei->i_es_lock); 1420 INIT_LIST_HEAD(&ei->i_es_list); 1421 ei->i_es_all_nr = 0; 1422 ei->i_es_shk_nr = 0; 1423 ei->i_es_shrink_lblk = 0; 1424 ei->i_reserved_data_blocks = 0; 1425 spin_lock_init(&(ei->i_block_reservation_lock)); 1426 ext4_init_pending_tree(&ei->i_pending_tree); 1427 #ifdef CONFIG_QUOTA 1428 ei->i_reserved_quota = 0; 1429 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1430 #endif 1431 ei->jinode = NULL; 1432 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1433 spin_lock_init(&ei->i_completed_io_lock); 1434 ei->i_sync_tid = 0; 1435 ei->i_datasync_tid = 0; 1436 atomic_set(&ei->i_unwritten, 0); 1437 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1438 ext4_fc_init_inode(&ei->vfs_inode); 1439 mutex_init(&ei->i_fc_lock); 1440 return &ei->vfs_inode; 1441 } 1442 1443 static int ext4_drop_inode(struct inode *inode) 1444 { 1445 int drop = generic_drop_inode(inode); 1446 1447 if (!drop) 1448 drop = fscrypt_drop_inode(inode); 1449 1450 trace_ext4_drop_inode(inode, drop); 1451 return drop; 1452 } 1453 1454 static void ext4_free_in_core_inode(struct inode *inode) 1455 { 1456 fscrypt_free_inode(inode); 1457 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1458 pr_warn("%s: inode %ld still in fc list", 1459 __func__, inode->i_ino); 1460 } 1461 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1462 } 1463 1464 static void ext4_destroy_inode(struct inode *inode) 1465 { 1466 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1467 ext4_msg(inode->i_sb, KERN_ERR, 1468 "Inode %lu (%p): orphan list check failed!", 1469 inode->i_ino, EXT4_I(inode)); 1470 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1471 EXT4_I(inode), sizeof(struct ext4_inode_info), 1472 true); 1473 dump_stack(); 1474 } 1475 1476 if (EXT4_I(inode)->i_reserved_data_blocks) 1477 ext4_msg(inode->i_sb, KERN_ERR, 1478 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1479 inode->i_ino, EXT4_I(inode), 1480 EXT4_I(inode)->i_reserved_data_blocks); 1481 } 1482 1483 static void ext4_shutdown(struct super_block *sb) 1484 { 1485 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1486 } 1487 1488 static void init_once(void *foo) 1489 { 1490 struct ext4_inode_info *ei = foo; 1491 1492 INIT_LIST_HEAD(&ei->i_orphan); 1493 init_rwsem(&ei->xattr_sem); 1494 init_rwsem(&ei->i_data_sem); 1495 inode_init_once(&ei->vfs_inode); 1496 ext4_fc_init_inode(&ei->vfs_inode); 1497 } 1498 1499 static int __init init_inodecache(void) 1500 { 1501 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1502 sizeof(struct ext4_inode_info), 0, 1503 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1504 offsetof(struct ext4_inode_info, i_data), 1505 sizeof_field(struct ext4_inode_info, i_data), 1506 init_once); 1507 if (ext4_inode_cachep == NULL) 1508 return -ENOMEM; 1509 return 0; 1510 } 1511 1512 static void destroy_inodecache(void) 1513 { 1514 /* 1515 * Make sure all delayed rcu free inodes are flushed before we 1516 * destroy cache. 1517 */ 1518 rcu_barrier(); 1519 kmem_cache_destroy(ext4_inode_cachep); 1520 } 1521 1522 void ext4_clear_inode(struct inode *inode) 1523 { 1524 ext4_fc_del(inode); 1525 invalidate_inode_buffers(inode); 1526 clear_inode(inode); 1527 ext4_discard_preallocations(inode); 1528 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1529 dquot_drop(inode); 1530 if (EXT4_I(inode)->jinode) { 1531 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1532 EXT4_I(inode)->jinode); 1533 jbd2_free_inode(EXT4_I(inode)->jinode); 1534 EXT4_I(inode)->jinode = NULL; 1535 } 1536 fscrypt_put_encryption_info(inode); 1537 fsverity_cleanup_inode(inode); 1538 } 1539 1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1541 u64 ino, u32 generation) 1542 { 1543 struct inode *inode; 1544 1545 /* 1546 * Currently we don't know the generation for parent directory, so 1547 * a generation of 0 means "accept any" 1548 */ 1549 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1550 if (IS_ERR(inode)) 1551 return ERR_CAST(inode); 1552 if (generation && inode->i_generation != generation) { 1553 iput(inode); 1554 return ERR_PTR(-ESTALE); 1555 } 1556 1557 return inode; 1558 } 1559 1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1561 int fh_len, int fh_type) 1562 { 1563 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1564 ext4_nfs_get_inode); 1565 } 1566 1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1568 int fh_len, int fh_type) 1569 { 1570 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1571 ext4_nfs_get_inode); 1572 } 1573 1574 static int ext4_nfs_commit_metadata(struct inode *inode) 1575 { 1576 struct writeback_control wbc = { 1577 .sync_mode = WB_SYNC_ALL 1578 }; 1579 1580 trace_ext4_nfs_commit_metadata(inode); 1581 return ext4_write_inode(inode, &wbc); 1582 } 1583 1584 #ifdef CONFIG_QUOTA 1585 static const char * const quotatypes[] = INITQFNAMES; 1586 #define QTYPE2NAME(t) (quotatypes[t]) 1587 1588 static int ext4_write_dquot(struct dquot *dquot); 1589 static int ext4_acquire_dquot(struct dquot *dquot); 1590 static int ext4_release_dquot(struct dquot *dquot); 1591 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1592 static int ext4_write_info(struct super_block *sb, int type); 1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1594 const struct path *path); 1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1596 size_t len, loff_t off); 1597 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1598 const char *data, size_t len, loff_t off); 1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1600 unsigned int flags); 1601 1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1603 { 1604 return EXT4_I(inode)->i_dquot; 1605 } 1606 1607 static const struct dquot_operations ext4_quota_operations = { 1608 .get_reserved_space = ext4_get_reserved_space, 1609 .write_dquot = ext4_write_dquot, 1610 .acquire_dquot = ext4_acquire_dquot, 1611 .release_dquot = ext4_release_dquot, 1612 .mark_dirty = ext4_mark_dquot_dirty, 1613 .write_info = ext4_write_info, 1614 .alloc_dquot = dquot_alloc, 1615 .destroy_dquot = dquot_destroy, 1616 .get_projid = ext4_get_projid, 1617 .get_inode_usage = ext4_get_inode_usage, 1618 .get_next_id = dquot_get_next_id, 1619 }; 1620 1621 static const struct quotactl_ops ext4_qctl_operations = { 1622 .quota_on = ext4_quota_on, 1623 .quota_off = ext4_quota_off, 1624 .quota_sync = dquot_quota_sync, 1625 .get_state = dquot_get_state, 1626 .set_info = dquot_set_dqinfo, 1627 .get_dqblk = dquot_get_dqblk, 1628 .set_dqblk = dquot_set_dqblk, 1629 .get_nextdqblk = dquot_get_next_dqblk, 1630 }; 1631 #endif 1632 1633 static const struct super_operations ext4_sops = { 1634 .alloc_inode = ext4_alloc_inode, 1635 .free_inode = ext4_free_in_core_inode, 1636 .destroy_inode = ext4_destroy_inode, 1637 .write_inode = ext4_write_inode, 1638 .dirty_inode = ext4_dirty_inode, 1639 .drop_inode = ext4_drop_inode, 1640 .evict_inode = ext4_evict_inode, 1641 .put_super = ext4_put_super, 1642 .sync_fs = ext4_sync_fs, 1643 .freeze_fs = ext4_freeze, 1644 .unfreeze_fs = ext4_unfreeze, 1645 .statfs = ext4_statfs, 1646 .show_options = ext4_show_options, 1647 .shutdown = ext4_shutdown, 1648 #ifdef CONFIG_QUOTA 1649 .quota_read = ext4_quota_read, 1650 .quota_write = ext4_quota_write, 1651 .get_dquots = ext4_get_dquots, 1652 #endif 1653 }; 1654 1655 static const struct export_operations ext4_export_ops = { 1656 .encode_fh = generic_encode_ino32_fh, 1657 .fh_to_dentry = ext4_fh_to_dentry, 1658 .fh_to_parent = ext4_fh_to_parent, 1659 .get_parent = ext4_get_parent, 1660 .commit_metadata = ext4_nfs_commit_metadata, 1661 }; 1662 1663 enum { 1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1665 Opt_resgid, Opt_resuid, Opt_sb, 1666 Opt_nouid32, Opt_debug, Opt_removed, 1667 Opt_user_xattr, Opt_acl, 1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1673 Opt_inlinecrypt, 1674 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1675 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1676 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1677 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1678 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1679 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1680 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1681 Opt_inode_readahead_blks, Opt_journal_ioprio, 1682 Opt_dioread_nolock, Opt_dioread_lock, 1683 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1684 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1685 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1686 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1687 #ifdef CONFIG_EXT4_DEBUG 1688 Opt_fc_debug_max_replay, Opt_fc_debug_force 1689 #endif 1690 }; 1691 1692 static const struct constant_table ext4_param_errors[] = { 1693 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1694 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1695 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1696 {} 1697 }; 1698 1699 static const struct constant_table ext4_param_data[] = { 1700 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1701 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1702 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1703 {} 1704 }; 1705 1706 static const struct constant_table ext4_param_data_err[] = { 1707 {"abort", Opt_data_err_abort}, 1708 {"ignore", Opt_data_err_ignore}, 1709 {} 1710 }; 1711 1712 static const struct constant_table ext4_param_jqfmt[] = { 1713 {"vfsold", QFMT_VFS_OLD}, 1714 {"vfsv0", QFMT_VFS_V0}, 1715 {"vfsv1", QFMT_VFS_V1}, 1716 {} 1717 }; 1718 1719 static const struct constant_table ext4_param_dax[] = { 1720 {"always", Opt_dax_always}, 1721 {"inode", Opt_dax_inode}, 1722 {"never", Opt_dax_never}, 1723 {} 1724 }; 1725 1726 /* 1727 * Mount option specification 1728 * We don't use fsparam_flag_no because of the way we set the 1729 * options and the way we show them in _ext4_show_options(). To 1730 * keep the changes to a minimum, let's keep the negative options 1731 * separate for now. 1732 */ 1733 static const struct fs_parameter_spec ext4_param_specs[] = { 1734 fsparam_flag ("bsddf", Opt_bsd_df), 1735 fsparam_flag ("minixdf", Opt_minix_df), 1736 fsparam_flag ("grpid", Opt_grpid), 1737 fsparam_flag ("bsdgroups", Opt_grpid), 1738 fsparam_flag ("nogrpid", Opt_nogrpid), 1739 fsparam_flag ("sysvgroups", Opt_nogrpid), 1740 fsparam_u32 ("resgid", Opt_resgid), 1741 fsparam_u32 ("resuid", Opt_resuid), 1742 fsparam_u32 ("sb", Opt_sb), 1743 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1744 fsparam_flag ("nouid32", Opt_nouid32), 1745 fsparam_flag ("debug", Opt_debug), 1746 fsparam_flag ("oldalloc", Opt_removed), 1747 fsparam_flag ("orlov", Opt_removed), 1748 fsparam_flag ("user_xattr", Opt_user_xattr), 1749 fsparam_flag ("acl", Opt_acl), 1750 fsparam_flag ("norecovery", Opt_noload), 1751 fsparam_flag ("noload", Opt_noload), 1752 fsparam_flag ("bh", Opt_removed), 1753 fsparam_flag ("nobh", Opt_removed), 1754 fsparam_u32 ("commit", Opt_commit), 1755 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1756 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1757 fsparam_u32 ("journal_dev", Opt_journal_dev), 1758 fsparam_bdev ("journal_path", Opt_journal_path), 1759 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1760 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1761 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1762 fsparam_flag ("abort", Opt_abort), 1763 fsparam_enum ("data", Opt_data, ext4_param_data), 1764 fsparam_enum ("data_err", Opt_data_err, 1765 ext4_param_data_err), 1766 fsparam_string_empty 1767 ("usrjquota", Opt_usrjquota), 1768 fsparam_string_empty 1769 ("grpjquota", Opt_grpjquota), 1770 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1771 fsparam_flag ("grpquota", Opt_grpquota), 1772 fsparam_flag ("quota", Opt_quota), 1773 fsparam_flag ("noquota", Opt_noquota), 1774 fsparam_flag ("usrquota", Opt_usrquota), 1775 fsparam_flag ("prjquota", Opt_prjquota), 1776 fsparam_flag ("barrier", Opt_barrier), 1777 fsparam_u32 ("barrier", Opt_barrier), 1778 fsparam_flag ("nobarrier", Opt_nobarrier), 1779 fsparam_flag ("i_version", Opt_removed), 1780 fsparam_flag ("dax", Opt_dax), 1781 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1782 fsparam_u32 ("stripe", Opt_stripe), 1783 fsparam_flag ("delalloc", Opt_delalloc), 1784 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1785 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1786 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1787 fsparam_u32 ("debug_want_extra_isize", 1788 Opt_debug_want_extra_isize), 1789 fsparam_flag ("mblk_io_submit", Opt_removed), 1790 fsparam_flag ("nomblk_io_submit", Opt_removed), 1791 fsparam_flag ("block_validity", Opt_block_validity), 1792 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1793 fsparam_u32 ("inode_readahead_blks", 1794 Opt_inode_readahead_blks), 1795 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1796 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1797 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1798 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1799 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1800 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1801 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1802 fsparam_flag ("discard", Opt_discard), 1803 fsparam_flag ("nodiscard", Opt_nodiscard), 1804 fsparam_u32 ("init_itable", Opt_init_itable), 1805 fsparam_flag ("init_itable", Opt_init_itable), 1806 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1807 #ifdef CONFIG_EXT4_DEBUG 1808 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1809 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1810 #endif 1811 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1812 fsparam_flag ("test_dummy_encryption", 1813 Opt_test_dummy_encryption), 1814 fsparam_string ("test_dummy_encryption", 1815 Opt_test_dummy_encryption), 1816 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1817 fsparam_flag ("nombcache", Opt_nombcache), 1818 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1819 fsparam_flag ("prefetch_block_bitmaps", 1820 Opt_removed), 1821 fsparam_flag ("no_prefetch_block_bitmaps", 1822 Opt_no_prefetch_block_bitmaps), 1823 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1824 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1825 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1826 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1827 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1828 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1829 {} 1830 }; 1831 1832 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1833 1834 #define MOPT_SET 0x0001 1835 #define MOPT_CLEAR 0x0002 1836 #define MOPT_NOSUPPORT 0x0004 1837 #define MOPT_EXPLICIT 0x0008 1838 #ifdef CONFIG_QUOTA 1839 #define MOPT_Q 0 1840 #define MOPT_QFMT 0x0010 1841 #else 1842 #define MOPT_Q MOPT_NOSUPPORT 1843 #define MOPT_QFMT MOPT_NOSUPPORT 1844 #endif 1845 #define MOPT_NO_EXT2 0x0020 1846 #define MOPT_NO_EXT3 0x0040 1847 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1848 #define MOPT_SKIP 0x0080 1849 #define MOPT_2 0x0100 1850 1851 static const struct mount_opts { 1852 int token; 1853 int mount_opt; 1854 int flags; 1855 } ext4_mount_opts[] = { 1856 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1857 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1858 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1859 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1860 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1861 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1862 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1863 MOPT_EXT4_ONLY | MOPT_SET}, 1864 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1865 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1866 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1867 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1868 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1869 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1870 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1871 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1872 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1873 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1874 {Opt_commit, 0, MOPT_NO_EXT2}, 1875 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1876 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1877 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1878 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1879 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1880 EXT4_MOUNT_JOURNAL_CHECKSUM), 1881 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1882 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1883 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1884 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1885 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1886 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1887 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1888 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1889 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1890 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1891 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1892 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1893 {Opt_data, 0, MOPT_NO_EXT2}, 1894 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1895 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1896 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1897 #else 1898 {Opt_acl, 0, MOPT_NOSUPPORT}, 1899 #endif 1900 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1901 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1902 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1903 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1904 MOPT_SET | MOPT_Q}, 1905 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1906 MOPT_SET | MOPT_Q}, 1907 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1908 MOPT_SET | MOPT_Q}, 1909 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1910 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1911 MOPT_CLEAR | MOPT_Q}, 1912 {Opt_usrjquota, 0, MOPT_Q}, 1913 {Opt_grpjquota, 0, MOPT_Q}, 1914 {Opt_jqfmt, 0, MOPT_QFMT}, 1915 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1916 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1917 MOPT_SET}, 1918 #ifdef CONFIG_EXT4_DEBUG 1919 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1920 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1921 #endif 1922 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1923 {Opt_err, 0, 0} 1924 }; 1925 1926 #if IS_ENABLED(CONFIG_UNICODE) 1927 static const struct ext4_sb_encodings { 1928 __u16 magic; 1929 char *name; 1930 unsigned int version; 1931 } ext4_sb_encoding_map[] = { 1932 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1933 }; 1934 1935 static const struct ext4_sb_encodings * 1936 ext4_sb_read_encoding(const struct ext4_super_block *es) 1937 { 1938 __u16 magic = le16_to_cpu(es->s_encoding); 1939 int i; 1940 1941 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1942 if (magic == ext4_sb_encoding_map[i].magic) 1943 return &ext4_sb_encoding_map[i]; 1944 1945 return NULL; 1946 } 1947 #endif 1948 1949 #define EXT4_SPEC_JQUOTA (1 << 0) 1950 #define EXT4_SPEC_JQFMT (1 << 1) 1951 #define EXT4_SPEC_DATAJ (1 << 2) 1952 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1953 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1954 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1955 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1956 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1957 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1958 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1959 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1960 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1961 #define EXT4_SPEC_s_stripe (1 << 13) 1962 #define EXT4_SPEC_s_resuid (1 << 14) 1963 #define EXT4_SPEC_s_resgid (1 << 15) 1964 #define EXT4_SPEC_s_commit_interval (1 << 16) 1965 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1966 #define EXT4_SPEC_s_sb_block (1 << 18) 1967 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1968 1969 struct ext4_fs_context { 1970 char *s_qf_names[EXT4_MAXQUOTAS]; 1971 struct fscrypt_dummy_policy dummy_enc_policy; 1972 int s_jquota_fmt; /* Format of quota to use */ 1973 #ifdef CONFIG_EXT4_DEBUG 1974 int s_fc_debug_max_replay; 1975 #endif 1976 unsigned short qname_spec; 1977 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1978 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1979 unsigned long journal_devnum; 1980 unsigned long s_commit_interval; 1981 unsigned long s_stripe; 1982 unsigned int s_inode_readahead_blks; 1983 unsigned int s_want_extra_isize; 1984 unsigned int s_li_wait_mult; 1985 unsigned int s_max_dir_size_kb; 1986 unsigned int journal_ioprio; 1987 unsigned int vals_s_mount_opt; 1988 unsigned int mask_s_mount_opt; 1989 unsigned int vals_s_mount_opt2; 1990 unsigned int mask_s_mount_opt2; 1991 unsigned int opt_flags; /* MOPT flags */ 1992 unsigned int spec; 1993 u32 s_max_batch_time; 1994 u32 s_min_batch_time; 1995 kuid_t s_resuid; 1996 kgid_t s_resgid; 1997 ext4_fsblk_t s_sb_block; 1998 }; 1999 2000 static void ext4_fc_free(struct fs_context *fc) 2001 { 2002 struct ext4_fs_context *ctx = fc->fs_private; 2003 int i; 2004 2005 if (!ctx) 2006 return; 2007 2008 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2009 kfree(ctx->s_qf_names[i]); 2010 2011 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2012 kfree(ctx); 2013 } 2014 2015 int ext4_init_fs_context(struct fs_context *fc) 2016 { 2017 struct ext4_fs_context *ctx; 2018 2019 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2020 if (!ctx) 2021 return -ENOMEM; 2022 2023 fc->fs_private = ctx; 2024 fc->ops = &ext4_context_ops; 2025 2026 return 0; 2027 } 2028 2029 #ifdef CONFIG_QUOTA 2030 /* 2031 * Note the name of the specified quota file. 2032 */ 2033 static int note_qf_name(struct fs_context *fc, int qtype, 2034 struct fs_parameter *param) 2035 { 2036 struct ext4_fs_context *ctx = fc->fs_private; 2037 char *qname; 2038 2039 if (param->size < 1) { 2040 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2041 return -EINVAL; 2042 } 2043 if (strchr(param->string, '/')) { 2044 ext4_msg(NULL, KERN_ERR, 2045 "quotafile must be on filesystem root"); 2046 return -EINVAL; 2047 } 2048 if (ctx->s_qf_names[qtype]) { 2049 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2050 ext4_msg(NULL, KERN_ERR, 2051 "%s quota file already specified", 2052 QTYPE2NAME(qtype)); 2053 return -EINVAL; 2054 } 2055 return 0; 2056 } 2057 2058 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2059 if (!qname) { 2060 ext4_msg(NULL, KERN_ERR, 2061 "Not enough memory for storing quotafile name"); 2062 return -ENOMEM; 2063 } 2064 ctx->s_qf_names[qtype] = qname; 2065 ctx->qname_spec |= 1 << qtype; 2066 ctx->spec |= EXT4_SPEC_JQUOTA; 2067 return 0; 2068 } 2069 2070 /* 2071 * Clear the name of the specified quota file. 2072 */ 2073 static int unnote_qf_name(struct fs_context *fc, int qtype) 2074 { 2075 struct ext4_fs_context *ctx = fc->fs_private; 2076 2077 if (ctx->s_qf_names[qtype]) 2078 kfree(ctx->s_qf_names[qtype]); 2079 2080 ctx->s_qf_names[qtype] = NULL; 2081 ctx->qname_spec |= 1 << qtype; 2082 ctx->spec |= EXT4_SPEC_JQUOTA; 2083 return 0; 2084 } 2085 #endif 2086 2087 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2088 struct ext4_fs_context *ctx) 2089 { 2090 int err; 2091 2092 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2093 ext4_msg(NULL, KERN_WARNING, 2094 "test_dummy_encryption option not supported"); 2095 return -EINVAL; 2096 } 2097 err = fscrypt_parse_test_dummy_encryption(param, 2098 &ctx->dummy_enc_policy); 2099 if (err == -EINVAL) { 2100 ext4_msg(NULL, KERN_WARNING, 2101 "Value of option \"%s\" is unrecognized", param->key); 2102 } else if (err == -EEXIST) { 2103 ext4_msg(NULL, KERN_WARNING, 2104 "Conflicting test_dummy_encryption options"); 2105 return -EINVAL; 2106 } 2107 return err; 2108 } 2109 2110 #define EXT4_SET_CTX(name) \ 2111 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2112 unsigned long flag) \ 2113 { \ 2114 ctx->mask_s_##name |= flag; \ 2115 ctx->vals_s_##name |= flag; \ 2116 } 2117 2118 #define EXT4_CLEAR_CTX(name) \ 2119 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2120 unsigned long flag) \ 2121 { \ 2122 ctx->mask_s_##name |= flag; \ 2123 ctx->vals_s_##name &= ~flag; \ 2124 } 2125 2126 #define EXT4_TEST_CTX(name) \ 2127 static inline unsigned long \ 2128 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2129 { \ 2130 return (ctx->vals_s_##name & flag); \ 2131 } 2132 2133 EXT4_SET_CTX(flags); /* set only */ 2134 EXT4_SET_CTX(mount_opt); 2135 EXT4_CLEAR_CTX(mount_opt); 2136 EXT4_TEST_CTX(mount_opt); 2137 EXT4_SET_CTX(mount_opt2); 2138 EXT4_CLEAR_CTX(mount_opt2); 2139 EXT4_TEST_CTX(mount_opt2); 2140 2141 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2142 { 2143 struct ext4_fs_context *ctx = fc->fs_private; 2144 struct fs_parse_result result; 2145 const struct mount_opts *m; 2146 int is_remount; 2147 kuid_t uid; 2148 kgid_t gid; 2149 int token; 2150 2151 token = fs_parse(fc, ext4_param_specs, param, &result); 2152 if (token < 0) 2153 return token; 2154 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2155 2156 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2157 if (token == m->token) 2158 break; 2159 2160 ctx->opt_flags |= m->flags; 2161 2162 if (m->flags & MOPT_EXPLICIT) { 2163 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2164 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2165 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2166 ctx_set_mount_opt2(ctx, 2167 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2168 } else 2169 return -EINVAL; 2170 } 2171 2172 if (m->flags & MOPT_NOSUPPORT) { 2173 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2174 param->key); 2175 return 0; 2176 } 2177 2178 switch (token) { 2179 #ifdef CONFIG_QUOTA 2180 case Opt_usrjquota: 2181 if (!*param->string) 2182 return unnote_qf_name(fc, USRQUOTA); 2183 else 2184 return note_qf_name(fc, USRQUOTA, param); 2185 case Opt_grpjquota: 2186 if (!*param->string) 2187 return unnote_qf_name(fc, GRPQUOTA); 2188 else 2189 return note_qf_name(fc, GRPQUOTA, param); 2190 #endif 2191 case Opt_sb: 2192 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2193 ext4_msg(NULL, KERN_WARNING, 2194 "Ignoring %s option on remount", param->key); 2195 } else { 2196 ctx->s_sb_block = result.uint_32; 2197 ctx->spec |= EXT4_SPEC_s_sb_block; 2198 } 2199 return 0; 2200 case Opt_removed: 2201 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2202 param->key); 2203 return 0; 2204 case Opt_inlinecrypt: 2205 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2206 ctx_set_flags(ctx, SB_INLINECRYPT); 2207 #else 2208 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2209 #endif 2210 return 0; 2211 case Opt_errors: 2212 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2213 ctx_set_mount_opt(ctx, result.uint_32); 2214 return 0; 2215 #ifdef CONFIG_QUOTA 2216 case Opt_jqfmt: 2217 ctx->s_jquota_fmt = result.uint_32; 2218 ctx->spec |= EXT4_SPEC_JQFMT; 2219 return 0; 2220 #endif 2221 case Opt_data: 2222 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2223 ctx_set_mount_opt(ctx, result.uint_32); 2224 ctx->spec |= EXT4_SPEC_DATAJ; 2225 return 0; 2226 case Opt_commit: 2227 if (result.uint_32 == 0) 2228 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2229 else if (result.uint_32 > INT_MAX / HZ) { 2230 ext4_msg(NULL, KERN_ERR, 2231 "Invalid commit interval %d, " 2232 "must be smaller than %d", 2233 result.uint_32, INT_MAX / HZ); 2234 return -EINVAL; 2235 } 2236 ctx->s_commit_interval = HZ * result.uint_32; 2237 ctx->spec |= EXT4_SPEC_s_commit_interval; 2238 return 0; 2239 case Opt_debug_want_extra_isize: 2240 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2241 ext4_msg(NULL, KERN_ERR, 2242 "Invalid want_extra_isize %d", result.uint_32); 2243 return -EINVAL; 2244 } 2245 ctx->s_want_extra_isize = result.uint_32; 2246 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2247 return 0; 2248 case Opt_max_batch_time: 2249 ctx->s_max_batch_time = result.uint_32; 2250 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2251 return 0; 2252 case Opt_min_batch_time: 2253 ctx->s_min_batch_time = result.uint_32; 2254 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2255 return 0; 2256 case Opt_inode_readahead_blks: 2257 if (result.uint_32 && 2258 (result.uint_32 > (1 << 30) || 2259 !is_power_of_2(result.uint_32))) { 2260 ext4_msg(NULL, KERN_ERR, 2261 "EXT4-fs: inode_readahead_blks must be " 2262 "0 or a power of 2 smaller than 2^31"); 2263 return -EINVAL; 2264 } 2265 ctx->s_inode_readahead_blks = result.uint_32; 2266 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2267 return 0; 2268 case Opt_init_itable: 2269 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2270 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2271 if (param->type == fs_value_is_string) 2272 ctx->s_li_wait_mult = result.uint_32; 2273 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2274 return 0; 2275 case Opt_max_dir_size_kb: 2276 ctx->s_max_dir_size_kb = result.uint_32; 2277 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2278 return 0; 2279 #ifdef CONFIG_EXT4_DEBUG 2280 case Opt_fc_debug_max_replay: 2281 ctx->s_fc_debug_max_replay = result.uint_32; 2282 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2283 return 0; 2284 #endif 2285 case Opt_stripe: 2286 ctx->s_stripe = result.uint_32; 2287 ctx->spec |= EXT4_SPEC_s_stripe; 2288 return 0; 2289 case Opt_resuid: 2290 uid = make_kuid(current_user_ns(), result.uint_32); 2291 if (!uid_valid(uid)) { 2292 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2293 result.uint_32); 2294 return -EINVAL; 2295 } 2296 ctx->s_resuid = uid; 2297 ctx->spec |= EXT4_SPEC_s_resuid; 2298 return 0; 2299 case Opt_resgid: 2300 gid = make_kgid(current_user_ns(), result.uint_32); 2301 if (!gid_valid(gid)) { 2302 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2303 result.uint_32); 2304 return -EINVAL; 2305 } 2306 ctx->s_resgid = gid; 2307 ctx->spec |= EXT4_SPEC_s_resgid; 2308 return 0; 2309 case Opt_journal_dev: 2310 if (is_remount) { 2311 ext4_msg(NULL, KERN_ERR, 2312 "Cannot specify journal on remount"); 2313 return -EINVAL; 2314 } 2315 ctx->journal_devnum = result.uint_32; 2316 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2317 return 0; 2318 case Opt_journal_path: 2319 { 2320 struct inode *journal_inode; 2321 struct path path; 2322 int error; 2323 2324 if (is_remount) { 2325 ext4_msg(NULL, KERN_ERR, 2326 "Cannot specify journal on remount"); 2327 return -EINVAL; 2328 } 2329 2330 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2331 if (error) { 2332 ext4_msg(NULL, KERN_ERR, "error: could not find " 2333 "journal device path"); 2334 return -EINVAL; 2335 } 2336 2337 journal_inode = d_inode(path.dentry); 2338 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2339 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2340 path_put(&path); 2341 return 0; 2342 } 2343 case Opt_journal_ioprio: 2344 if (result.uint_32 > 7) { 2345 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2346 " (must be 0-7)"); 2347 return -EINVAL; 2348 } 2349 ctx->journal_ioprio = 2350 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2351 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2352 return 0; 2353 case Opt_test_dummy_encryption: 2354 return ext4_parse_test_dummy_encryption(param, ctx); 2355 case Opt_dax: 2356 case Opt_dax_type: 2357 #ifdef CONFIG_FS_DAX 2358 { 2359 int type = (token == Opt_dax) ? 2360 Opt_dax : result.uint_32; 2361 2362 switch (type) { 2363 case Opt_dax: 2364 case Opt_dax_always: 2365 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2366 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2367 break; 2368 case Opt_dax_never: 2369 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2370 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2371 break; 2372 case Opt_dax_inode: 2373 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2374 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2375 /* Strictly for printing options */ 2376 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2377 break; 2378 } 2379 return 0; 2380 } 2381 #else 2382 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2383 return -EINVAL; 2384 #endif 2385 case Opt_data_err: 2386 if (result.uint_32 == Opt_data_err_abort) 2387 ctx_set_mount_opt(ctx, m->mount_opt); 2388 else if (result.uint_32 == Opt_data_err_ignore) 2389 ctx_clear_mount_opt(ctx, m->mount_opt); 2390 return 0; 2391 case Opt_mb_optimize_scan: 2392 if (result.int_32 == 1) { 2393 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2394 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2395 } else if (result.int_32 == 0) { 2396 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2397 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2398 } else { 2399 ext4_msg(NULL, KERN_WARNING, 2400 "mb_optimize_scan should be set to 0 or 1."); 2401 return -EINVAL; 2402 } 2403 return 0; 2404 } 2405 2406 /* 2407 * At this point we should only be getting options requiring MOPT_SET, 2408 * or MOPT_CLEAR. Anything else is a bug 2409 */ 2410 if (m->token == Opt_err) { 2411 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2412 param->key); 2413 WARN_ON(1); 2414 return -EINVAL; 2415 } 2416 2417 else { 2418 unsigned int set = 0; 2419 2420 if ((param->type == fs_value_is_flag) || 2421 result.uint_32 > 0) 2422 set = 1; 2423 2424 if (m->flags & MOPT_CLEAR) 2425 set = !set; 2426 else if (unlikely(!(m->flags & MOPT_SET))) { 2427 ext4_msg(NULL, KERN_WARNING, 2428 "buggy handling of option %s", 2429 param->key); 2430 WARN_ON(1); 2431 return -EINVAL; 2432 } 2433 if (m->flags & MOPT_2) { 2434 if (set != 0) 2435 ctx_set_mount_opt2(ctx, m->mount_opt); 2436 else 2437 ctx_clear_mount_opt2(ctx, m->mount_opt); 2438 } else { 2439 if (set != 0) 2440 ctx_set_mount_opt(ctx, m->mount_opt); 2441 else 2442 ctx_clear_mount_opt(ctx, m->mount_opt); 2443 } 2444 } 2445 2446 return 0; 2447 } 2448 2449 static int parse_options(struct fs_context *fc, char *options) 2450 { 2451 struct fs_parameter param; 2452 int ret; 2453 char *key; 2454 2455 if (!options) 2456 return 0; 2457 2458 while ((key = strsep(&options, ",")) != NULL) { 2459 if (*key) { 2460 size_t v_len = 0; 2461 char *value = strchr(key, '='); 2462 2463 param.type = fs_value_is_flag; 2464 param.string = NULL; 2465 2466 if (value) { 2467 if (value == key) 2468 continue; 2469 2470 *value++ = 0; 2471 v_len = strlen(value); 2472 param.string = kmemdup_nul(value, v_len, 2473 GFP_KERNEL); 2474 if (!param.string) 2475 return -ENOMEM; 2476 param.type = fs_value_is_string; 2477 } 2478 2479 param.key = key; 2480 param.size = v_len; 2481 2482 ret = ext4_parse_param(fc, ¶m); 2483 if (param.string) 2484 kfree(param.string); 2485 if (ret < 0) 2486 return ret; 2487 } 2488 } 2489 2490 ret = ext4_validate_options(fc); 2491 if (ret < 0) 2492 return ret; 2493 2494 return 0; 2495 } 2496 2497 static int parse_apply_sb_mount_options(struct super_block *sb, 2498 struct ext4_fs_context *m_ctx) 2499 { 2500 struct ext4_sb_info *sbi = EXT4_SB(sb); 2501 char *s_mount_opts = NULL; 2502 struct ext4_fs_context *s_ctx = NULL; 2503 struct fs_context *fc = NULL; 2504 int ret = -ENOMEM; 2505 2506 if (!sbi->s_es->s_mount_opts[0]) 2507 return 0; 2508 2509 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2510 sizeof(sbi->s_es->s_mount_opts), 2511 GFP_KERNEL); 2512 if (!s_mount_opts) 2513 return ret; 2514 2515 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2516 if (!fc) 2517 goto out_free; 2518 2519 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2520 if (!s_ctx) 2521 goto out_free; 2522 2523 fc->fs_private = s_ctx; 2524 fc->s_fs_info = sbi; 2525 2526 ret = parse_options(fc, s_mount_opts); 2527 if (ret < 0) 2528 goto parse_failed; 2529 2530 ret = ext4_check_opt_consistency(fc, sb); 2531 if (ret < 0) { 2532 parse_failed: 2533 ext4_msg(sb, KERN_WARNING, 2534 "failed to parse options in superblock: %s", 2535 s_mount_opts); 2536 ret = 0; 2537 goto out_free; 2538 } 2539 2540 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2541 m_ctx->journal_devnum = s_ctx->journal_devnum; 2542 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2543 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2544 2545 ext4_apply_options(fc, sb); 2546 ret = 0; 2547 2548 out_free: 2549 if (fc) { 2550 ext4_fc_free(fc); 2551 kfree(fc); 2552 } 2553 kfree(s_mount_opts); 2554 return ret; 2555 } 2556 2557 static void ext4_apply_quota_options(struct fs_context *fc, 2558 struct super_block *sb) 2559 { 2560 #ifdef CONFIG_QUOTA 2561 bool quota_feature = ext4_has_feature_quota(sb); 2562 struct ext4_fs_context *ctx = fc->fs_private; 2563 struct ext4_sb_info *sbi = EXT4_SB(sb); 2564 char *qname; 2565 int i; 2566 2567 if (quota_feature) 2568 return; 2569 2570 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2571 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2572 if (!(ctx->qname_spec & (1 << i))) 2573 continue; 2574 2575 qname = ctx->s_qf_names[i]; /* May be NULL */ 2576 if (qname) 2577 set_opt(sb, QUOTA); 2578 ctx->s_qf_names[i] = NULL; 2579 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2580 lockdep_is_held(&sb->s_umount)); 2581 if (qname) 2582 kfree_rcu_mightsleep(qname); 2583 } 2584 } 2585 2586 if (ctx->spec & EXT4_SPEC_JQFMT) 2587 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2588 #endif 2589 } 2590 2591 /* 2592 * Check quota settings consistency. 2593 */ 2594 static int ext4_check_quota_consistency(struct fs_context *fc, 2595 struct super_block *sb) 2596 { 2597 #ifdef CONFIG_QUOTA 2598 struct ext4_fs_context *ctx = fc->fs_private; 2599 struct ext4_sb_info *sbi = EXT4_SB(sb); 2600 bool quota_feature = ext4_has_feature_quota(sb); 2601 bool quota_loaded = sb_any_quota_loaded(sb); 2602 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2603 int quota_flags, i; 2604 2605 /* 2606 * We do the test below only for project quotas. 'usrquota' and 2607 * 'grpquota' mount options are allowed even without quota feature 2608 * to support legacy quotas in quota files. 2609 */ 2610 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2611 !ext4_has_feature_project(sb)) { 2612 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2613 "Cannot enable project quota enforcement."); 2614 return -EINVAL; 2615 } 2616 2617 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2618 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2619 if (quota_loaded && 2620 ctx->mask_s_mount_opt & quota_flags && 2621 !ctx_test_mount_opt(ctx, quota_flags)) 2622 goto err_quota_change; 2623 2624 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2625 2626 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2627 if (!(ctx->qname_spec & (1 << i))) 2628 continue; 2629 2630 if (quota_loaded && 2631 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2632 goto err_jquota_change; 2633 2634 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2635 strcmp(get_qf_name(sb, sbi, i), 2636 ctx->s_qf_names[i]) != 0) 2637 goto err_jquota_specified; 2638 } 2639 2640 if (quota_feature) { 2641 ext4_msg(NULL, KERN_INFO, 2642 "Journaled quota options ignored when " 2643 "QUOTA feature is enabled"); 2644 return 0; 2645 } 2646 } 2647 2648 if (ctx->spec & EXT4_SPEC_JQFMT) { 2649 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2650 goto err_jquota_change; 2651 if (quota_feature) { 2652 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2653 "ignored when QUOTA feature is enabled"); 2654 return 0; 2655 } 2656 } 2657 2658 /* Make sure we don't mix old and new quota format */ 2659 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2660 ctx->s_qf_names[USRQUOTA]); 2661 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2662 ctx->s_qf_names[GRPQUOTA]); 2663 2664 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2665 test_opt(sb, USRQUOTA)); 2666 2667 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2668 test_opt(sb, GRPQUOTA)); 2669 2670 if (usr_qf_name) { 2671 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2672 usrquota = false; 2673 } 2674 if (grp_qf_name) { 2675 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2676 grpquota = false; 2677 } 2678 2679 if (usr_qf_name || grp_qf_name) { 2680 if (usrquota || grpquota) { 2681 ext4_msg(NULL, KERN_ERR, "old and new quota " 2682 "format mixing"); 2683 return -EINVAL; 2684 } 2685 2686 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2687 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2688 "not specified"); 2689 return -EINVAL; 2690 } 2691 } 2692 2693 return 0; 2694 2695 err_quota_change: 2696 ext4_msg(NULL, KERN_ERR, 2697 "Cannot change quota options when quota turned on"); 2698 return -EINVAL; 2699 err_jquota_change: 2700 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2701 "options when quota turned on"); 2702 return -EINVAL; 2703 err_jquota_specified: 2704 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2705 QTYPE2NAME(i)); 2706 return -EINVAL; 2707 #else 2708 return 0; 2709 #endif 2710 } 2711 2712 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2713 struct super_block *sb) 2714 { 2715 const struct ext4_fs_context *ctx = fc->fs_private; 2716 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2717 2718 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2719 return 0; 2720 2721 if (!ext4_has_feature_encrypt(sb)) { 2722 ext4_msg(NULL, KERN_WARNING, 2723 "test_dummy_encryption requires encrypt feature"); 2724 return -EINVAL; 2725 } 2726 /* 2727 * This mount option is just for testing, and it's not worthwhile to 2728 * implement the extra complexity (e.g. RCU protection) that would be 2729 * needed to allow it to be set or changed during remount. We do allow 2730 * it to be specified during remount, but only if there is no change. 2731 */ 2732 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2733 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2734 &ctx->dummy_enc_policy)) 2735 return 0; 2736 ext4_msg(NULL, KERN_WARNING, 2737 "Can't set or change test_dummy_encryption on remount"); 2738 return -EINVAL; 2739 } 2740 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2741 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2742 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2743 &ctx->dummy_enc_policy)) 2744 return 0; 2745 ext4_msg(NULL, KERN_WARNING, 2746 "Conflicting test_dummy_encryption options"); 2747 return -EINVAL; 2748 } 2749 return 0; 2750 } 2751 2752 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2753 struct super_block *sb) 2754 { 2755 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2756 /* if already set, it was already verified to be the same */ 2757 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2758 return; 2759 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2760 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2761 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2762 } 2763 2764 static int ext4_check_opt_consistency(struct fs_context *fc, 2765 struct super_block *sb) 2766 { 2767 struct ext4_fs_context *ctx = fc->fs_private; 2768 struct ext4_sb_info *sbi = fc->s_fs_info; 2769 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2770 int err; 2771 2772 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2773 ext4_msg(NULL, KERN_ERR, 2774 "Mount option(s) incompatible with ext2"); 2775 return -EINVAL; 2776 } 2777 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2778 ext4_msg(NULL, KERN_ERR, 2779 "Mount option(s) incompatible with ext3"); 2780 return -EINVAL; 2781 } 2782 2783 if (ctx->s_want_extra_isize > 2784 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2785 ext4_msg(NULL, KERN_ERR, 2786 "Invalid want_extra_isize %d", 2787 ctx->s_want_extra_isize); 2788 return -EINVAL; 2789 } 2790 2791 err = ext4_check_test_dummy_encryption(fc, sb); 2792 if (err) 2793 return err; 2794 2795 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2796 if (!sbi->s_journal) { 2797 ext4_msg(NULL, KERN_WARNING, 2798 "Remounting file system with no journal " 2799 "so ignoring journalled data option"); 2800 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2801 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2802 test_opt(sb, DATA_FLAGS)) { 2803 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2804 "on remount"); 2805 return -EINVAL; 2806 } 2807 } 2808 2809 if (is_remount) { 2810 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2811 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2812 ext4_msg(NULL, KERN_ERR, "can't mount with " 2813 "both data=journal and dax"); 2814 return -EINVAL; 2815 } 2816 2817 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2818 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2819 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2820 fail_dax_change_remount: 2821 ext4_msg(NULL, KERN_ERR, "can't change " 2822 "dax mount option while remounting"); 2823 return -EINVAL; 2824 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2825 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2826 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2827 goto fail_dax_change_remount; 2828 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2829 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2830 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2831 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2832 goto fail_dax_change_remount; 2833 } 2834 } 2835 2836 return ext4_check_quota_consistency(fc, sb); 2837 } 2838 2839 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2840 { 2841 struct ext4_fs_context *ctx = fc->fs_private; 2842 struct ext4_sb_info *sbi = fc->s_fs_info; 2843 2844 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2845 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2846 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2847 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2848 sb->s_flags &= ~ctx->mask_s_flags; 2849 sb->s_flags |= ctx->vals_s_flags; 2850 2851 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2852 APPLY(s_commit_interval); 2853 APPLY(s_stripe); 2854 APPLY(s_max_batch_time); 2855 APPLY(s_min_batch_time); 2856 APPLY(s_want_extra_isize); 2857 APPLY(s_inode_readahead_blks); 2858 APPLY(s_max_dir_size_kb); 2859 APPLY(s_li_wait_mult); 2860 APPLY(s_resgid); 2861 APPLY(s_resuid); 2862 2863 #ifdef CONFIG_EXT4_DEBUG 2864 APPLY(s_fc_debug_max_replay); 2865 #endif 2866 2867 ext4_apply_quota_options(fc, sb); 2868 ext4_apply_test_dummy_encryption(ctx, sb); 2869 } 2870 2871 2872 static int ext4_validate_options(struct fs_context *fc) 2873 { 2874 #ifdef CONFIG_QUOTA 2875 struct ext4_fs_context *ctx = fc->fs_private; 2876 char *usr_qf_name, *grp_qf_name; 2877 2878 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2879 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2880 2881 if (usr_qf_name || grp_qf_name) { 2882 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2883 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2884 2885 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2886 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2887 2888 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2889 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2890 ext4_msg(NULL, KERN_ERR, "old and new quota " 2891 "format mixing"); 2892 return -EINVAL; 2893 } 2894 } 2895 #endif 2896 return 1; 2897 } 2898 2899 static inline void ext4_show_quota_options(struct seq_file *seq, 2900 struct super_block *sb) 2901 { 2902 #if defined(CONFIG_QUOTA) 2903 struct ext4_sb_info *sbi = EXT4_SB(sb); 2904 char *usr_qf_name, *grp_qf_name; 2905 2906 if (sbi->s_jquota_fmt) { 2907 char *fmtname = ""; 2908 2909 switch (sbi->s_jquota_fmt) { 2910 case QFMT_VFS_OLD: 2911 fmtname = "vfsold"; 2912 break; 2913 case QFMT_VFS_V0: 2914 fmtname = "vfsv0"; 2915 break; 2916 case QFMT_VFS_V1: 2917 fmtname = "vfsv1"; 2918 break; 2919 } 2920 seq_printf(seq, ",jqfmt=%s", fmtname); 2921 } 2922 2923 rcu_read_lock(); 2924 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2925 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2926 if (usr_qf_name) 2927 seq_show_option(seq, "usrjquota", usr_qf_name); 2928 if (grp_qf_name) 2929 seq_show_option(seq, "grpjquota", grp_qf_name); 2930 rcu_read_unlock(); 2931 #endif 2932 } 2933 2934 static const char *token2str(int token) 2935 { 2936 const struct fs_parameter_spec *spec; 2937 2938 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2939 if (spec->opt == token && !spec->type) 2940 break; 2941 return spec->name; 2942 } 2943 2944 /* 2945 * Show an option if 2946 * - it's set to a non-default value OR 2947 * - if the per-sb default is different from the global default 2948 */ 2949 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2950 int nodefs) 2951 { 2952 struct ext4_sb_info *sbi = EXT4_SB(sb); 2953 struct ext4_super_block *es = sbi->s_es; 2954 int def_errors; 2955 const struct mount_opts *m; 2956 char sep = nodefs ? '\n' : ','; 2957 2958 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2959 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2960 2961 if (sbi->s_sb_block != 1) 2962 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2963 2964 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2965 int want_set = m->flags & MOPT_SET; 2966 int opt_2 = m->flags & MOPT_2; 2967 unsigned int mount_opt, def_mount_opt; 2968 2969 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2970 m->flags & MOPT_SKIP) 2971 continue; 2972 2973 if (opt_2) { 2974 mount_opt = sbi->s_mount_opt2; 2975 def_mount_opt = sbi->s_def_mount_opt2; 2976 } else { 2977 mount_opt = sbi->s_mount_opt; 2978 def_mount_opt = sbi->s_def_mount_opt; 2979 } 2980 /* skip if same as the default */ 2981 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2982 continue; 2983 /* select Opt_noFoo vs Opt_Foo */ 2984 if ((want_set && 2985 (mount_opt & m->mount_opt) != m->mount_opt) || 2986 (!want_set && (mount_opt & m->mount_opt))) 2987 continue; 2988 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2989 } 2990 2991 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2992 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2993 SEQ_OPTS_PRINT("resuid=%u", 2994 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2995 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2996 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2997 SEQ_OPTS_PRINT("resgid=%u", 2998 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2999 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 3000 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3001 SEQ_OPTS_PUTS("errors=remount-ro"); 3002 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3003 SEQ_OPTS_PUTS("errors=continue"); 3004 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3005 SEQ_OPTS_PUTS("errors=panic"); 3006 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3007 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3008 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3009 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3010 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3011 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3012 if (nodefs || sbi->s_stripe) 3013 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3014 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3015 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3016 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3017 SEQ_OPTS_PUTS("data=journal"); 3018 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3019 SEQ_OPTS_PUTS("data=ordered"); 3020 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3021 SEQ_OPTS_PUTS("data=writeback"); 3022 } 3023 if (nodefs || 3024 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3025 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3026 sbi->s_inode_readahead_blks); 3027 3028 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3029 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3030 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3031 if (nodefs || sbi->s_max_dir_size_kb) 3032 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3033 if (test_opt(sb, DATA_ERR_ABORT)) 3034 SEQ_OPTS_PUTS("data_err=abort"); 3035 3036 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3037 3038 if (sb->s_flags & SB_INLINECRYPT) 3039 SEQ_OPTS_PUTS("inlinecrypt"); 3040 3041 if (test_opt(sb, DAX_ALWAYS)) { 3042 if (IS_EXT2_SB(sb)) 3043 SEQ_OPTS_PUTS("dax"); 3044 else 3045 SEQ_OPTS_PUTS("dax=always"); 3046 } else if (test_opt2(sb, DAX_NEVER)) { 3047 SEQ_OPTS_PUTS("dax=never"); 3048 } else if (test_opt2(sb, DAX_INODE)) { 3049 SEQ_OPTS_PUTS("dax=inode"); 3050 } 3051 3052 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3053 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3054 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3055 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3056 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3057 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3058 } 3059 3060 ext4_show_quota_options(seq, sb); 3061 return 0; 3062 } 3063 3064 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3065 { 3066 return _ext4_show_options(seq, root->d_sb, 0); 3067 } 3068 3069 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3070 { 3071 struct super_block *sb = seq->private; 3072 int rc; 3073 3074 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3075 rc = _ext4_show_options(seq, sb, 1); 3076 seq_puts(seq, "\n"); 3077 return rc; 3078 } 3079 3080 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3081 int read_only) 3082 { 3083 struct ext4_sb_info *sbi = EXT4_SB(sb); 3084 int err = 0; 3085 3086 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3087 ext4_msg(sb, KERN_ERR, "revision level too high, " 3088 "forcing read-only mode"); 3089 err = -EROFS; 3090 goto done; 3091 } 3092 if (read_only) 3093 goto done; 3094 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3095 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3096 "running e2fsck is recommended"); 3097 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3098 ext4_msg(sb, KERN_WARNING, 3099 "warning: mounting fs with errors, " 3100 "running e2fsck is recommended"); 3101 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3102 le16_to_cpu(es->s_mnt_count) >= 3103 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3104 ext4_msg(sb, KERN_WARNING, 3105 "warning: maximal mount count reached, " 3106 "running e2fsck is recommended"); 3107 else if (le32_to_cpu(es->s_checkinterval) && 3108 (ext4_get_tstamp(es, s_lastcheck) + 3109 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3110 ext4_msg(sb, KERN_WARNING, 3111 "warning: checktime reached, " 3112 "running e2fsck is recommended"); 3113 if (!sbi->s_journal) 3114 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3115 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3116 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3117 le16_add_cpu(&es->s_mnt_count, 1); 3118 ext4_update_tstamp(es, s_mtime); 3119 if (sbi->s_journal) { 3120 ext4_set_feature_journal_needs_recovery(sb); 3121 if (ext4_has_feature_orphan_file(sb)) 3122 ext4_set_feature_orphan_present(sb); 3123 } 3124 3125 err = ext4_commit_super(sb); 3126 done: 3127 if (test_opt(sb, DEBUG)) 3128 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3129 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3130 sb->s_blocksize, 3131 sbi->s_groups_count, 3132 EXT4_BLOCKS_PER_GROUP(sb), 3133 EXT4_INODES_PER_GROUP(sb), 3134 sbi->s_mount_opt, sbi->s_mount_opt2); 3135 return err; 3136 } 3137 3138 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3139 { 3140 struct ext4_sb_info *sbi = EXT4_SB(sb); 3141 struct flex_groups **old_groups, **new_groups; 3142 int size, i, j; 3143 3144 if (!sbi->s_log_groups_per_flex) 3145 return 0; 3146 3147 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3148 if (size <= sbi->s_flex_groups_allocated) 3149 return 0; 3150 3151 new_groups = kvzalloc(roundup_pow_of_two(size * 3152 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3153 if (!new_groups) { 3154 ext4_msg(sb, KERN_ERR, 3155 "not enough memory for %d flex group pointers", size); 3156 return -ENOMEM; 3157 } 3158 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3159 new_groups[i] = kvzalloc(roundup_pow_of_two( 3160 sizeof(struct flex_groups)), 3161 GFP_KERNEL); 3162 if (!new_groups[i]) { 3163 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3164 kvfree(new_groups[j]); 3165 kvfree(new_groups); 3166 ext4_msg(sb, KERN_ERR, 3167 "not enough memory for %d flex groups", size); 3168 return -ENOMEM; 3169 } 3170 } 3171 rcu_read_lock(); 3172 old_groups = rcu_dereference(sbi->s_flex_groups); 3173 if (old_groups) 3174 memcpy(new_groups, old_groups, 3175 (sbi->s_flex_groups_allocated * 3176 sizeof(struct flex_groups *))); 3177 rcu_read_unlock(); 3178 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3179 sbi->s_flex_groups_allocated = size; 3180 if (old_groups) 3181 ext4_kvfree_array_rcu(old_groups); 3182 return 0; 3183 } 3184 3185 static int ext4_fill_flex_info(struct super_block *sb) 3186 { 3187 struct ext4_sb_info *sbi = EXT4_SB(sb); 3188 struct ext4_group_desc *gdp = NULL; 3189 struct flex_groups *fg; 3190 ext4_group_t flex_group; 3191 int i, err; 3192 3193 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3194 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3195 sbi->s_log_groups_per_flex = 0; 3196 return 1; 3197 } 3198 3199 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3200 if (err) 3201 goto failed; 3202 3203 for (i = 0; i < sbi->s_groups_count; i++) { 3204 gdp = ext4_get_group_desc(sb, i, NULL); 3205 3206 flex_group = ext4_flex_group(sbi, i); 3207 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3208 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3209 atomic64_add(ext4_free_group_clusters(sb, gdp), 3210 &fg->free_clusters); 3211 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3212 } 3213 3214 return 1; 3215 failed: 3216 return 0; 3217 } 3218 3219 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3220 struct ext4_group_desc *gdp) 3221 { 3222 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3223 __u16 crc = 0; 3224 __le32 le_group = cpu_to_le32(block_group); 3225 struct ext4_sb_info *sbi = EXT4_SB(sb); 3226 3227 if (ext4_has_metadata_csum(sbi->s_sb)) { 3228 /* Use new metadata_csum algorithm */ 3229 __u32 csum32; 3230 __u16 dummy_csum = 0; 3231 3232 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3233 sizeof(le_group)); 3234 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3235 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3236 sizeof(dummy_csum)); 3237 offset += sizeof(dummy_csum); 3238 if (offset < sbi->s_desc_size) 3239 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3240 sbi->s_desc_size - offset); 3241 3242 crc = csum32 & 0xFFFF; 3243 goto out; 3244 } 3245 3246 /* old crc16 code */ 3247 if (!ext4_has_feature_gdt_csum(sb)) 3248 return 0; 3249 3250 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3251 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3252 crc = crc16(crc, (__u8 *)gdp, offset); 3253 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3254 /* for checksum of struct ext4_group_desc do the rest...*/ 3255 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3256 crc = crc16(crc, (__u8 *)gdp + offset, 3257 sbi->s_desc_size - offset); 3258 3259 out: 3260 return cpu_to_le16(crc); 3261 } 3262 3263 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3264 struct ext4_group_desc *gdp) 3265 { 3266 if (ext4_has_group_desc_csum(sb) && 3267 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3268 return 0; 3269 3270 return 1; 3271 } 3272 3273 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3274 struct ext4_group_desc *gdp) 3275 { 3276 if (!ext4_has_group_desc_csum(sb)) 3277 return; 3278 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3279 } 3280 3281 /* Called at mount-time, super-block is locked */ 3282 static int ext4_check_descriptors(struct super_block *sb, 3283 ext4_fsblk_t sb_block, 3284 ext4_group_t *first_not_zeroed) 3285 { 3286 struct ext4_sb_info *sbi = EXT4_SB(sb); 3287 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3288 ext4_fsblk_t last_block; 3289 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3290 ext4_fsblk_t block_bitmap; 3291 ext4_fsblk_t inode_bitmap; 3292 ext4_fsblk_t inode_table; 3293 int flexbg_flag = 0; 3294 ext4_group_t i, grp = sbi->s_groups_count; 3295 3296 if (ext4_has_feature_flex_bg(sb)) 3297 flexbg_flag = 1; 3298 3299 ext4_debug("Checking group descriptors"); 3300 3301 for (i = 0; i < sbi->s_groups_count; i++) { 3302 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3303 3304 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3305 last_block = ext4_blocks_count(sbi->s_es) - 1; 3306 else 3307 last_block = first_block + 3308 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3309 3310 if ((grp == sbi->s_groups_count) && 3311 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3312 grp = i; 3313 3314 block_bitmap = ext4_block_bitmap(sb, gdp); 3315 if (block_bitmap == sb_block) { 3316 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3317 "Block bitmap for group %u overlaps " 3318 "superblock", i); 3319 if (!sb_rdonly(sb)) 3320 return 0; 3321 } 3322 if (block_bitmap >= sb_block + 1 && 3323 block_bitmap <= last_bg_block) { 3324 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3325 "Block bitmap for group %u overlaps " 3326 "block group descriptors", i); 3327 if (!sb_rdonly(sb)) 3328 return 0; 3329 } 3330 if (block_bitmap < first_block || block_bitmap > last_block) { 3331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3332 "Block bitmap for group %u not in group " 3333 "(block %llu)!", i, block_bitmap); 3334 return 0; 3335 } 3336 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3337 if (inode_bitmap == sb_block) { 3338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3339 "Inode bitmap for group %u overlaps " 3340 "superblock", i); 3341 if (!sb_rdonly(sb)) 3342 return 0; 3343 } 3344 if (inode_bitmap >= sb_block + 1 && 3345 inode_bitmap <= last_bg_block) { 3346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3347 "Inode bitmap for group %u overlaps " 3348 "block group descriptors", i); 3349 if (!sb_rdonly(sb)) 3350 return 0; 3351 } 3352 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3353 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3354 "Inode bitmap for group %u not in group " 3355 "(block %llu)!", i, inode_bitmap); 3356 return 0; 3357 } 3358 inode_table = ext4_inode_table(sb, gdp); 3359 if (inode_table == sb_block) { 3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3361 "Inode table for group %u overlaps " 3362 "superblock", i); 3363 if (!sb_rdonly(sb)) 3364 return 0; 3365 } 3366 if (inode_table >= sb_block + 1 && 3367 inode_table <= last_bg_block) { 3368 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3369 "Inode table for group %u overlaps " 3370 "block group descriptors", i); 3371 if (!sb_rdonly(sb)) 3372 return 0; 3373 } 3374 if (inode_table < first_block || 3375 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3376 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3377 "Inode table for group %u not in group " 3378 "(block %llu)!", i, inode_table); 3379 return 0; 3380 } 3381 ext4_lock_group(sb, i); 3382 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3383 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3384 "Checksum for group %u failed (%u!=%u)", 3385 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3386 gdp)), le16_to_cpu(gdp->bg_checksum)); 3387 if (!sb_rdonly(sb)) { 3388 ext4_unlock_group(sb, i); 3389 return 0; 3390 } 3391 } 3392 ext4_unlock_group(sb, i); 3393 if (!flexbg_flag) 3394 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3395 } 3396 if (NULL != first_not_zeroed) 3397 *first_not_zeroed = grp; 3398 return 1; 3399 } 3400 3401 /* 3402 * Maximal extent format file size. 3403 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3404 * extent format containers, within a sector_t, and within i_blocks 3405 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3406 * so that won't be a limiting factor. 3407 * 3408 * However there is other limiting factor. We do store extents in the form 3409 * of starting block and length, hence the resulting length of the extent 3410 * covering maximum file size must fit into on-disk format containers as 3411 * well. Given that length is always by 1 unit bigger than max unit (because 3412 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3413 * 3414 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3415 */ 3416 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3417 { 3418 loff_t res; 3419 loff_t upper_limit = MAX_LFS_FILESIZE; 3420 3421 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3422 3423 if (!has_huge_files) { 3424 upper_limit = (1LL << 32) - 1; 3425 3426 /* total blocks in file system block size */ 3427 upper_limit >>= (blkbits - 9); 3428 upper_limit <<= blkbits; 3429 } 3430 3431 /* 3432 * 32-bit extent-start container, ee_block. We lower the maxbytes 3433 * by one fs block, so ee_len can cover the extent of maximum file 3434 * size 3435 */ 3436 res = (1LL << 32) - 1; 3437 res <<= blkbits; 3438 3439 /* Sanity check against vm- & vfs- imposed limits */ 3440 if (res > upper_limit) 3441 res = upper_limit; 3442 3443 return res; 3444 } 3445 3446 /* 3447 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3448 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3449 * We need to be 1 filesystem block less than the 2^48 sector limit. 3450 */ 3451 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3452 { 3453 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3454 int meta_blocks; 3455 unsigned int ppb = 1 << (bits - 2); 3456 3457 /* 3458 * This is calculated to be the largest file size for a dense, block 3459 * mapped file such that the file's total number of 512-byte sectors, 3460 * including data and all indirect blocks, does not exceed (2^48 - 1). 3461 * 3462 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3463 * number of 512-byte sectors of the file. 3464 */ 3465 if (!has_huge_files) { 3466 /* 3467 * !has_huge_files or implies that the inode i_block field 3468 * represents total file blocks in 2^32 512-byte sectors == 3469 * size of vfs inode i_blocks * 8 3470 */ 3471 upper_limit = (1LL << 32) - 1; 3472 3473 /* total blocks in file system block size */ 3474 upper_limit >>= (bits - 9); 3475 3476 } else { 3477 /* 3478 * We use 48 bit ext4_inode i_blocks 3479 * With EXT4_HUGE_FILE_FL set the i_blocks 3480 * represent total number of blocks in 3481 * file system block size 3482 */ 3483 upper_limit = (1LL << 48) - 1; 3484 3485 } 3486 3487 /* Compute how many blocks we can address by block tree */ 3488 res += ppb; 3489 res += ppb * ppb; 3490 res += ((loff_t)ppb) * ppb * ppb; 3491 /* Compute how many metadata blocks are needed */ 3492 meta_blocks = 1; 3493 meta_blocks += 1 + ppb; 3494 meta_blocks += 1 + ppb + ppb * ppb; 3495 /* Does block tree limit file size? */ 3496 if (res + meta_blocks <= upper_limit) 3497 goto check_lfs; 3498 3499 res = upper_limit; 3500 /* How many metadata blocks are needed for addressing upper_limit? */ 3501 upper_limit -= EXT4_NDIR_BLOCKS; 3502 /* indirect blocks */ 3503 meta_blocks = 1; 3504 upper_limit -= ppb; 3505 /* double indirect blocks */ 3506 if (upper_limit < ppb * ppb) { 3507 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3508 res -= meta_blocks; 3509 goto check_lfs; 3510 } 3511 meta_blocks += 1 + ppb; 3512 upper_limit -= ppb * ppb; 3513 /* tripple indirect blocks for the rest */ 3514 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3515 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3516 res -= meta_blocks; 3517 check_lfs: 3518 res <<= bits; 3519 if (res > MAX_LFS_FILESIZE) 3520 res = MAX_LFS_FILESIZE; 3521 3522 return res; 3523 } 3524 3525 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3526 ext4_fsblk_t logical_sb_block, int nr) 3527 { 3528 struct ext4_sb_info *sbi = EXT4_SB(sb); 3529 ext4_group_t bg, first_meta_bg; 3530 int has_super = 0; 3531 3532 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3533 3534 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3535 return logical_sb_block + nr + 1; 3536 bg = sbi->s_desc_per_block * nr; 3537 if (ext4_bg_has_super(sb, bg)) 3538 has_super = 1; 3539 3540 /* 3541 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3542 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3543 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3544 * compensate. 3545 */ 3546 if (sb->s_blocksize == 1024 && nr == 0 && 3547 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3548 has_super++; 3549 3550 return (has_super + ext4_group_first_block_no(sb, bg)); 3551 } 3552 3553 /** 3554 * ext4_get_stripe_size: Get the stripe size. 3555 * @sbi: In memory super block info 3556 * 3557 * If we have specified it via mount option, then 3558 * use the mount option value. If the value specified at mount time is 3559 * greater than the blocks per group use the super block value. 3560 * If the super block value is greater than blocks per group return 0. 3561 * Allocator needs it be less than blocks per group. 3562 * 3563 */ 3564 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3565 { 3566 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3567 unsigned long stripe_width = 3568 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3569 int ret; 3570 3571 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3572 ret = sbi->s_stripe; 3573 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3574 ret = stripe_width; 3575 else if (stride && stride <= sbi->s_blocks_per_group) 3576 ret = stride; 3577 else 3578 ret = 0; 3579 3580 /* 3581 * If the stripe width is 1, this makes no sense and 3582 * we set it to 0 to turn off stripe handling code. 3583 */ 3584 if (ret <= 1) 3585 ret = 0; 3586 3587 return ret; 3588 } 3589 3590 /* 3591 * Check whether this filesystem can be mounted based on 3592 * the features present and the RDONLY/RDWR mount requested. 3593 * Returns 1 if this filesystem can be mounted as requested, 3594 * 0 if it cannot be. 3595 */ 3596 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3597 { 3598 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3599 ext4_msg(sb, KERN_ERR, 3600 "Couldn't mount because of " 3601 "unsupported optional features (%x)", 3602 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3603 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3604 return 0; 3605 } 3606 3607 #if !IS_ENABLED(CONFIG_UNICODE) 3608 if (ext4_has_feature_casefold(sb)) { 3609 ext4_msg(sb, KERN_ERR, 3610 "Filesystem with casefold feature cannot be " 3611 "mounted without CONFIG_UNICODE"); 3612 return 0; 3613 } 3614 #endif 3615 3616 if (readonly) 3617 return 1; 3618 3619 if (ext4_has_feature_readonly(sb)) { 3620 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3621 sb->s_flags |= SB_RDONLY; 3622 return 1; 3623 } 3624 3625 /* Check that feature set is OK for a read-write mount */ 3626 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3627 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3628 "unsupported optional features (%x)", 3629 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3630 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3631 return 0; 3632 } 3633 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3634 ext4_msg(sb, KERN_ERR, 3635 "Can't support bigalloc feature without " 3636 "extents feature\n"); 3637 return 0; 3638 } 3639 3640 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3641 if (!readonly && (ext4_has_feature_quota(sb) || 3642 ext4_has_feature_project(sb))) { 3643 ext4_msg(sb, KERN_ERR, 3644 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3645 return 0; 3646 } 3647 #endif /* CONFIG_QUOTA */ 3648 return 1; 3649 } 3650 3651 /* 3652 * This function is called once a day if we have errors logged 3653 * on the file system 3654 */ 3655 static void print_daily_error_info(struct timer_list *t) 3656 { 3657 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3658 struct super_block *sb = sbi->s_sb; 3659 struct ext4_super_block *es = sbi->s_es; 3660 3661 if (es->s_error_count) 3662 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3663 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3664 le32_to_cpu(es->s_error_count)); 3665 if (es->s_first_error_time) { 3666 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3667 sb->s_id, 3668 ext4_get_tstamp(es, s_first_error_time), 3669 (int) sizeof(es->s_first_error_func), 3670 es->s_first_error_func, 3671 le32_to_cpu(es->s_first_error_line)); 3672 if (es->s_first_error_ino) 3673 printk(KERN_CONT ": inode %u", 3674 le32_to_cpu(es->s_first_error_ino)); 3675 if (es->s_first_error_block) 3676 printk(KERN_CONT ": block %llu", (unsigned long long) 3677 le64_to_cpu(es->s_first_error_block)); 3678 printk(KERN_CONT "\n"); 3679 } 3680 if (es->s_last_error_time) { 3681 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3682 sb->s_id, 3683 ext4_get_tstamp(es, s_last_error_time), 3684 (int) sizeof(es->s_last_error_func), 3685 es->s_last_error_func, 3686 le32_to_cpu(es->s_last_error_line)); 3687 if (es->s_last_error_ino) 3688 printk(KERN_CONT ": inode %u", 3689 le32_to_cpu(es->s_last_error_ino)); 3690 if (es->s_last_error_block) 3691 printk(KERN_CONT ": block %llu", (unsigned long long) 3692 le64_to_cpu(es->s_last_error_block)); 3693 printk(KERN_CONT "\n"); 3694 } 3695 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3696 } 3697 3698 /* Find next suitable group and run ext4_init_inode_table */ 3699 static int ext4_run_li_request(struct ext4_li_request *elr) 3700 { 3701 struct ext4_group_desc *gdp = NULL; 3702 struct super_block *sb = elr->lr_super; 3703 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3704 ext4_group_t group = elr->lr_next_group; 3705 unsigned int prefetch_ios = 0; 3706 int ret = 0; 3707 int nr = EXT4_SB(sb)->s_mb_prefetch; 3708 u64 start_time; 3709 3710 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3711 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3712 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3713 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3714 if (group >= elr->lr_next_group) { 3715 ret = 1; 3716 if (elr->lr_first_not_zeroed != ngroups && 3717 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3718 elr->lr_next_group = elr->lr_first_not_zeroed; 3719 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3720 ret = 0; 3721 } 3722 } 3723 return ret; 3724 } 3725 3726 for (; group < ngroups; group++) { 3727 gdp = ext4_get_group_desc(sb, group, NULL); 3728 if (!gdp) { 3729 ret = 1; 3730 break; 3731 } 3732 3733 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3734 break; 3735 } 3736 3737 if (group >= ngroups) 3738 ret = 1; 3739 3740 if (!ret) { 3741 start_time = ktime_get_real_ns(); 3742 ret = ext4_init_inode_table(sb, group, 3743 elr->lr_timeout ? 0 : 1); 3744 trace_ext4_lazy_itable_init(sb, group); 3745 if (elr->lr_timeout == 0) { 3746 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3747 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3748 } 3749 elr->lr_next_sched = jiffies + elr->lr_timeout; 3750 elr->lr_next_group = group + 1; 3751 } 3752 return ret; 3753 } 3754 3755 /* 3756 * Remove lr_request from the list_request and free the 3757 * request structure. Should be called with li_list_mtx held 3758 */ 3759 static void ext4_remove_li_request(struct ext4_li_request *elr) 3760 { 3761 if (!elr) 3762 return; 3763 3764 list_del(&elr->lr_request); 3765 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3766 kfree(elr); 3767 } 3768 3769 static void ext4_unregister_li_request(struct super_block *sb) 3770 { 3771 mutex_lock(&ext4_li_mtx); 3772 if (!ext4_li_info) { 3773 mutex_unlock(&ext4_li_mtx); 3774 return; 3775 } 3776 3777 mutex_lock(&ext4_li_info->li_list_mtx); 3778 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3779 mutex_unlock(&ext4_li_info->li_list_mtx); 3780 mutex_unlock(&ext4_li_mtx); 3781 } 3782 3783 static struct task_struct *ext4_lazyinit_task; 3784 3785 /* 3786 * This is the function where ext4lazyinit thread lives. It walks 3787 * through the request list searching for next scheduled filesystem. 3788 * When such a fs is found, run the lazy initialization request 3789 * (ext4_rn_li_request) and keep track of the time spend in this 3790 * function. Based on that time we compute next schedule time of 3791 * the request. When walking through the list is complete, compute 3792 * next waking time and put itself into sleep. 3793 */ 3794 static int ext4_lazyinit_thread(void *arg) 3795 { 3796 struct ext4_lazy_init *eli = arg; 3797 struct list_head *pos, *n; 3798 struct ext4_li_request *elr; 3799 unsigned long next_wakeup, cur; 3800 3801 BUG_ON(NULL == eli); 3802 set_freezable(); 3803 3804 cont_thread: 3805 while (true) { 3806 next_wakeup = MAX_JIFFY_OFFSET; 3807 3808 mutex_lock(&eli->li_list_mtx); 3809 if (list_empty(&eli->li_request_list)) { 3810 mutex_unlock(&eli->li_list_mtx); 3811 goto exit_thread; 3812 } 3813 list_for_each_safe(pos, n, &eli->li_request_list) { 3814 int err = 0; 3815 int progress = 0; 3816 elr = list_entry(pos, struct ext4_li_request, 3817 lr_request); 3818 3819 if (time_before(jiffies, elr->lr_next_sched)) { 3820 if (time_before(elr->lr_next_sched, next_wakeup)) 3821 next_wakeup = elr->lr_next_sched; 3822 continue; 3823 } 3824 if (down_read_trylock(&elr->lr_super->s_umount)) { 3825 if (sb_start_write_trylock(elr->lr_super)) { 3826 progress = 1; 3827 /* 3828 * We hold sb->s_umount, sb can not 3829 * be removed from the list, it is 3830 * now safe to drop li_list_mtx 3831 */ 3832 mutex_unlock(&eli->li_list_mtx); 3833 err = ext4_run_li_request(elr); 3834 sb_end_write(elr->lr_super); 3835 mutex_lock(&eli->li_list_mtx); 3836 n = pos->next; 3837 } 3838 up_read((&elr->lr_super->s_umount)); 3839 } 3840 /* error, remove the lazy_init job */ 3841 if (err) { 3842 ext4_remove_li_request(elr); 3843 continue; 3844 } 3845 if (!progress) { 3846 elr->lr_next_sched = jiffies + 3847 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3848 } 3849 if (time_before(elr->lr_next_sched, next_wakeup)) 3850 next_wakeup = elr->lr_next_sched; 3851 } 3852 mutex_unlock(&eli->li_list_mtx); 3853 3854 try_to_freeze(); 3855 3856 cur = jiffies; 3857 if ((time_after_eq(cur, next_wakeup)) || 3858 (MAX_JIFFY_OFFSET == next_wakeup)) { 3859 cond_resched(); 3860 continue; 3861 } 3862 3863 schedule_timeout_interruptible(next_wakeup - cur); 3864 3865 if (kthread_should_stop()) { 3866 ext4_clear_request_list(); 3867 goto exit_thread; 3868 } 3869 } 3870 3871 exit_thread: 3872 /* 3873 * It looks like the request list is empty, but we need 3874 * to check it under the li_list_mtx lock, to prevent any 3875 * additions into it, and of course we should lock ext4_li_mtx 3876 * to atomically free the list and ext4_li_info, because at 3877 * this point another ext4 filesystem could be registering 3878 * new one. 3879 */ 3880 mutex_lock(&ext4_li_mtx); 3881 mutex_lock(&eli->li_list_mtx); 3882 if (!list_empty(&eli->li_request_list)) { 3883 mutex_unlock(&eli->li_list_mtx); 3884 mutex_unlock(&ext4_li_mtx); 3885 goto cont_thread; 3886 } 3887 mutex_unlock(&eli->li_list_mtx); 3888 kfree(ext4_li_info); 3889 ext4_li_info = NULL; 3890 mutex_unlock(&ext4_li_mtx); 3891 3892 return 0; 3893 } 3894 3895 static void ext4_clear_request_list(void) 3896 { 3897 struct list_head *pos, *n; 3898 struct ext4_li_request *elr; 3899 3900 mutex_lock(&ext4_li_info->li_list_mtx); 3901 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3902 elr = list_entry(pos, struct ext4_li_request, 3903 lr_request); 3904 ext4_remove_li_request(elr); 3905 } 3906 mutex_unlock(&ext4_li_info->li_list_mtx); 3907 } 3908 3909 static int ext4_run_lazyinit_thread(void) 3910 { 3911 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3912 ext4_li_info, "ext4lazyinit"); 3913 if (IS_ERR(ext4_lazyinit_task)) { 3914 int err = PTR_ERR(ext4_lazyinit_task); 3915 ext4_clear_request_list(); 3916 kfree(ext4_li_info); 3917 ext4_li_info = NULL; 3918 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3919 "initialization thread\n", 3920 err); 3921 return err; 3922 } 3923 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3924 return 0; 3925 } 3926 3927 /* 3928 * Check whether it make sense to run itable init. thread or not. 3929 * If there is at least one uninitialized inode table, return 3930 * corresponding group number, else the loop goes through all 3931 * groups and return total number of groups. 3932 */ 3933 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3934 { 3935 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3936 struct ext4_group_desc *gdp = NULL; 3937 3938 if (!ext4_has_group_desc_csum(sb)) 3939 return ngroups; 3940 3941 for (group = 0; group < ngroups; group++) { 3942 gdp = ext4_get_group_desc(sb, group, NULL); 3943 if (!gdp) 3944 continue; 3945 3946 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3947 break; 3948 } 3949 3950 return group; 3951 } 3952 3953 static int ext4_li_info_new(void) 3954 { 3955 struct ext4_lazy_init *eli = NULL; 3956 3957 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3958 if (!eli) 3959 return -ENOMEM; 3960 3961 INIT_LIST_HEAD(&eli->li_request_list); 3962 mutex_init(&eli->li_list_mtx); 3963 3964 eli->li_state |= EXT4_LAZYINIT_QUIT; 3965 3966 ext4_li_info = eli; 3967 3968 return 0; 3969 } 3970 3971 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3972 ext4_group_t start) 3973 { 3974 struct ext4_li_request *elr; 3975 3976 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3977 if (!elr) 3978 return NULL; 3979 3980 elr->lr_super = sb; 3981 elr->lr_first_not_zeroed = start; 3982 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3983 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3984 elr->lr_next_group = start; 3985 } else { 3986 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3987 } 3988 3989 /* 3990 * Randomize first schedule time of the request to 3991 * spread the inode table initialization requests 3992 * better. 3993 */ 3994 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3995 return elr; 3996 } 3997 3998 int ext4_register_li_request(struct super_block *sb, 3999 ext4_group_t first_not_zeroed) 4000 { 4001 struct ext4_sb_info *sbi = EXT4_SB(sb); 4002 struct ext4_li_request *elr = NULL; 4003 ext4_group_t ngroups = sbi->s_groups_count; 4004 int ret = 0; 4005 4006 mutex_lock(&ext4_li_mtx); 4007 if (sbi->s_li_request != NULL) { 4008 /* 4009 * Reset timeout so it can be computed again, because 4010 * s_li_wait_mult might have changed. 4011 */ 4012 sbi->s_li_request->lr_timeout = 0; 4013 goto out; 4014 } 4015 4016 if (sb_rdonly(sb) || 4017 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4018 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4019 goto out; 4020 4021 elr = ext4_li_request_new(sb, first_not_zeroed); 4022 if (!elr) { 4023 ret = -ENOMEM; 4024 goto out; 4025 } 4026 4027 if (NULL == ext4_li_info) { 4028 ret = ext4_li_info_new(); 4029 if (ret) 4030 goto out; 4031 } 4032 4033 mutex_lock(&ext4_li_info->li_list_mtx); 4034 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4035 mutex_unlock(&ext4_li_info->li_list_mtx); 4036 4037 sbi->s_li_request = elr; 4038 /* 4039 * set elr to NULL here since it has been inserted to 4040 * the request_list and the removal and free of it is 4041 * handled by ext4_clear_request_list from now on. 4042 */ 4043 elr = NULL; 4044 4045 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4046 ret = ext4_run_lazyinit_thread(); 4047 if (ret) 4048 goto out; 4049 } 4050 out: 4051 mutex_unlock(&ext4_li_mtx); 4052 if (ret) 4053 kfree(elr); 4054 return ret; 4055 } 4056 4057 /* 4058 * We do not need to lock anything since this is called on 4059 * module unload. 4060 */ 4061 static void ext4_destroy_lazyinit_thread(void) 4062 { 4063 /* 4064 * If thread exited earlier 4065 * there's nothing to be done. 4066 */ 4067 if (!ext4_li_info || !ext4_lazyinit_task) 4068 return; 4069 4070 kthread_stop(ext4_lazyinit_task); 4071 } 4072 4073 static int set_journal_csum_feature_set(struct super_block *sb) 4074 { 4075 int ret = 1; 4076 int compat, incompat; 4077 struct ext4_sb_info *sbi = EXT4_SB(sb); 4078 4079 if (ext4_has_metadata_csum(sb)) { 4080 /* journal checksum v3 */ 4081 compat = 0; 4082 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4083 } else { 4084 /* journal checksum v1 */ 4085 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4086 incompat = 0; 4087 } 4088 4089 jbd2_journal_clear_features(sbi->s_journal, 4090 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4091 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4092 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4093 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4094 ret = jbd2_journal_set_features(sbi->s_journal, 4095 compat, 0, 4096 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4097 incompat); 4098 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4099 ret = jbd2_journal_set_features(sbi->s_journal, 4100 compat, 0, 4101 incompat); 4102 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4103 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4104 } else { 4105 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4106 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4107 } 4108 4109 return ret; 4110 } 4111 4112 /* 4113 * Note: calculating the overhead so we can be compatible with 4114 * historical BSD practice is quite difficult in the face of 4115 * clusters/bigalloc. This is because multiple metadata blocks from 4116 * different block group can end up in the same allocation cluster. 4117 * Calculating the exact overhead in the face of clustered allocation 4118 * requires either O(all block bitmaps) in memory or O(number of block 4119 * groups**2) in time. We will still calculate the superblock for 4120 * older file systems --- and if we come across with a bigalloc file 4121 * system with zero in s_overhead_clusters the estimate will be close to 4122 * correct especially for very large cluster sizes --- but for newer 4123 * file systems, it's better to calculate this figure once at mkfs 4124 * time, and store it in the superblock. If the superblock value is 4125 * present (even for non-bigalloc file systems), we will use it. 4126 */ 4127 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4128 char *buf) 4129 { 4130 struct ext4_sb_info *sbi = EXT4_SB(sb); 4131 struct ext4_group_desc *gdp; 4132 ext4_fsblk_t first_block, last_block, b; 4133 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4134 int s, j, count = 0; 4135 int has_super = ext4_bg_has_super(sb, grp); 4136 4137 if (!ext4_has_feature_bigalloc(sb)) 4138 return (has_super + ext4_bg_num_gdb(sb, grp) + 4139 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4140 sbi->s_itb_per_group + 2); 4141 4142 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4143 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4144 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4145 for (i = 0; i < ngroups; i++) { 4146 gdp = ext4_get_group_desc(sb, i, NULL); 4147 b = ext4_block_bitmap(sb, gdp); 4148 if (b >= first_block && b <= last_block) { 4149 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4150 count++; 4151 } 4152 b = ext4_inode_bitmap(sb, gdp); 4153 if (b >= first_block && b <= last_block) { 4154 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4155 count++; 4156 } 4157 b = ext4_inode_table(sb, gdp); 4158 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4159 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4160 int c = EXT4_B2C(sbi, b - first_block); 4161 ext4_set_bit(c, buf); 4162 count++; 4163 } 4164 if (i != grp) 4165 continue; 4166 s = 0; 4167 if (ext4_bg_has_super(sb, grp)) { 4168 ext4_set_bit(s++, buf); 4169 count++; 4170 } 4171 j = ext4_bg_num_gdb(sb, grp); 4172 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4173 ext4_error(sb, "Invalid number of block group " 4174 "descriptor blocks: %d", j); 4175 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4176 } 4177 count += j; 4178 for (; j > 0; j--) 4179 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4180 } 4181 if (!count) 4182 return 0; 4183 return EXT4_CLUSTERS_PER_GROUP(sb) - 4184 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4185 } 4186 4187 /* 4188 * Compute the overhead and stash it in sbi->s_overhead 4189 */ 4190 int ext4_calculate_overhead(struct super_block *sb) 4191 { 4192 struct ext4_sb_info *sbi = EXT4_SB(sb); 4193 struct ext4_super_block *es = sbi->s_es; 4194 struct inode *j_inode; 4195 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4196 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4197 ext4_fsblk_t overhead = 0; 4198 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4199 4200 if (!buf) 4201 return -ENOMEM; 4202 4203 /* 4204 * Compute the overhead (FS structures). This is constant 4205 * for a given filesystem unless the number of block groups 4206 * changes so we cache the previous value until it does. 4207 */ 4208 4209 /* 4210 * All of the blocks before first_data_block are overhead 4211 */ 4212 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4213 4214 /* 4215 * Add the overhead found in each block group 4216 */ 4217 for (i = 0; i < ngroups; i++) { 4218 int blks; 4219 4220 blks = count_overhead(sb, i, buf); 4221 overhead += blks; 4222 if (blks) 4223 memset(buf, 0, PAGE_SIZE); 4224 cond_resched(); 4225 } 4226 4227 /* 4228 * Add the internal journal blocks whether the journal has been 4229 * loaded or not 4230 */ 4231 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4232 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4233 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4234 /* j_inum for internal journal is non-zero */ 4235 j_inode = ext4_get_journal_inode(sb, j_inum); 4236 if (!IS_ERR(j_inode)) { 4237 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4238 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4239 iput(j_inode); 4240 } else { 4241 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4242 } 4243 } 4244 sbi->s_overhead = overhead; 4245 smp_wmb(); 4246 free_page((unsigned long) buf); 4247 return 0; 4248 } 4249 4250 static void ext4_set_resv_clusters(struct super_block *sb) 4251 { 4252 ext4_fsblk_t resv_clusters; 4253 struct ext4_sb_info *sbi = EXT4_SB(sb); 4254 4255 /* 4256 * There's no need to reserve anything when we aren't using extents. 4257 * The space estimates are exact, there are no unwritten extents, 4258 * hole punching doesn't need new metadata... This is needed especially 4259 * to keep ext2/3 backward compatibility. 4260 */ 4261 if (!ext4_has_feature_extents(sb)) 4262 return; 4263 /* 4264 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4265 * This should cover the situations where we can not afford to run 4266 * out of space like for example punch hole, or converting 4267 * unwritten extents in delalloc path. In most cases such 4268 * allocation would require 1, or 2 blocks, higher numbers are 4269 * very rare. 4270 */ 4271 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4272 sbi->s_cluster_bits); 4273 4274 do_div(resv_clusters, 50); 4275 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4276 4277 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4278 } 4279 4280 static const char *ext4_quota_mode(struct super_block *sb) 4281 { 4282 #ifdef CONFIG_QUOTA 4283 if (!ext4_quota_capable(sb)) 4284 return "none"; 4285 4286 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4287 return "journalled"; 4288 else 4289 return "writeback"; 4290 #else 4291 return "disabled"; 4292 #endif 4293 } 4294 4295 static void ext4_setup_csum_trigger(struct super_block *sb, 4296 enum ext4_journal_trigger_type type, 4297 void (*trigger)( 4298 struct jbd2_buffer_trigger_type *type, 4299 struct buffer_head *bh, 4300 void *mapped_data, 4301 size_t size)) 4302 { 4303 struct ext4_sb_info *sbi = EXT4_SB(sb); 4304 4305 sbi->s_journal_triggers[type].sb = sb; 4306 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4307 } 4308 4309 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4310 { 4311 if (!sbi) 4312 return; 4313 4314 kfree(sbi->s_blockgroup_lock); 4315 fs_put_dax(sbi->s_daxdev, NULL); 4316 kfree(sbi); 4317 } 4318 4319 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4320 { 4321 struct ext4_sb_info *sbi; 4322 4323 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4324 if (!sbi) 4325 return NULL; 4326 4327 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4328 NULL, NULL); 4329 4330 sbi->s_blockgroup_lock = 4331 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4332 4333 if (!sbi->s_blockgroup_lock) 4334 goto err_out; 4335 4336 sb->s_fs_info = sbi; 4337 sbi->s_sb = sb; 4338 return sbi; 4339 err_out: 4340 fs_put_dax(sbi->s_daxdev, NULL); 4341 kfree(sbi); 4342 return NULL; 4343 } 4344 4345 static void ext4_set_def_opts(struct super_block *sb, 4346 struct ext4_super_block *es) 4347 { 4348 unsigned long def_mount_opts; 4349 4350 /* Set defaults before we parse the mount options */ 4351 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4352 set_opt(sb, INIT_INODE_TABLE); 4353 if (def_mount_opts & EXT4_DEFM_DEBUG) 4354 set_opt(sb, DEBUG); 4355 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4356 set_opt(sb, GRPID); 4357 if (def_mount_opts & EXT4_DEFM_UID16) 4358 set_opt(sb, NO_UID32); 4359 /* xattr user namespace & acls are now defaulted on */ 4360 set_opt(sb, XATTR_USER); 4361 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4362 set_opt(sb, POSIX_ACL); 4363 #endif 4364 if (ext4_has_feature_fast_commit(sb)) 4365 set_opt2(sb, JOURNAL_FAST_COMMIT); 4366 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4367 if (ext4_has_metadata_csum(sb)) 4368 set_opt(sb, JOURNAL_CHECKSUM); 4369 4370 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4371 set_opt(sb, JOURNAL_DATA); 4372 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4373 set_opt(sb, ORDERED_DATA); 4374 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4375 set_opt(sb, WRITEBACK_DATA); 4376 4377 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4378 set_opt(sb, ERRORS_PANIC); 4379 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4380 set_opt(sb, ERRORS_CONT); 4381 else 4382 set_opt(sb, ERRORS_RO); 4383 /* block_validity enabled by default; disable with noblock_validity */ 4384 set_opt(sb, BLOCK_VALIDITY); 4385 if (def_mount_opts & EXT4_DEFM_DISCARD) 4386 set_opt(sb, DISCARD); 4387 4388 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4389 set_opt(sb, BARRIER); 4390 4391 /* 4392 * enable delayed allocation by default 4393 * Use -o nodelalloc to turn it off 4394 */ 4395 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4396 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4397 set_opt(sb, DELALLOC); 4398 4399 if (sb->s_blocksize <= PAGE_SIZE) 4400 set_opt(sb, DIOREAD_NOLOCK); 4401 } 4402 4403 static int ext4_handle_clustersize(struct super_block *sb) 4404 { 4405 struct ext4_sb_info *sbi = EXT4_SB(sb); 4406 struct ext4_super_block *es = sbi->s_es; 4407 int clustersize; 4408 4409 /* Handle clustersize */ 4410 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4411 if (ext4_has_feature_bigalloc(sb)) { 4412 if (clustersize < sb->s_blocksize) { 4413 ext4_msg(sb, KERN_ERR, 4414 "cluster size (%d) smaller than " 4415 "block size (%lu)", clustersize, sb->s_blocksize); 4416 return -EINVAL; 4417 } 4418 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4419 le32_to_cpu(es->s_log_block_size); 4420 } else { 4421 if (clustersize != sb->s_blocksize) { 4422 ext4_msg(sb, KERN_ERR, 4423 "fragment/cluster size (%d) != " 4424 "block size (%lu)", clustersize, sb->s_blocksize); 4425 return -EINVAL; 4426 } 4427 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4428 ext4_msg(sb, KERN_ERR, 4429 "#blocks per group too big: %lu", 4430 sbi->s_blocks_per_group); 4431 return -EINVAL; 4432 } 4433 sbi->s_cluster_bits = 0; 4434 } 4435 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4436 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4437 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4438 sbi->s_clusters_per_group); 4439 return -EINVAL; 4440 } 4441 if (sbi->s_blocks_per_group != 4442 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4443 ext4_msg(sb, KERN_ERR, 4444 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4445 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4446 return -EINVAL; 4447 } 4448 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4449 4450 /* Do we have standard group size of clustersize * 8 blocks ? */ 4451 if (sbi->s_blocks_per_group == clustersize << 3) 4452 set_opt2(sb, STD_GROUP_SIZE); 4453 4454 return 0; 4455 } 4456 4457 static void ext4_fast_commit_init(struct super_block *sb) 4458 { 4459 struct ext4_sb_info *sbi = EXT4_SB(sb); 4460 4461 /* Initialize fast commit stuff */ 4462 atomic_set(&sbi->s_fc_subtid, 0); 4463 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4464 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4465 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4466 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4467 sbi->s_fc_bytes = 0; 4468 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4469 sbi->s_fc_ineligible_tid = 0; 4470 spin_lock_init(&sbi->s_fc_lock); 4471 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4472 sbi->s_fc_replay_state.fc_regions = NULL; 4473 sbi->s_fc_replay_state.fc_regions_size = 0; 4474 sbi->s_fc_replay_state.fc_regions_used = 0; 4475 sbi->s_fc_replay_state.fc_regions_valid = 0; 4476 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4477 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4478 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4479 } 4480 4481 static int ext4_inode_info_init(struct super_block *sb, 4482 struct ext4_super_block *es) 4483 { 4484 struct ext4_sb_info *sbi = EXT4_SB(sb); 4485 4486 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4487 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4488 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4489 } else { 4490 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4491 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4492 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4493 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4494 sbi->s_first_ino); 4495 return -EINVAL; 4496 } 4497 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4498 (!is_power_of_2(sbi->s_inode_size)) || 4499 (sbi->s_inode_size > sb->s_blocksize)) { 4500 ext4_msg(sb, KERN_ERR, 4501 "unsupported inode size: %d", 4502 sbi->s_inode_size); 4503 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4504 return -EINVAL; 4505 } 4506 /* 4507 * i_atime_extra is the last extra field available for 4508 * [acm]times in struct ext4_inode. Checking for that 4509 * field should suffice to ensure we have extra space 4510 * for all three. 4511 */ 4512 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4513 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4514 sb->s_time_gran = 1; 4515 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4516 } else { 4517 sb->s_time_gran = NSEC_PER_SEC; 4518 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4519 } 4520 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4521 } 4522 4523 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4524 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4525 EXT4_GOOD_OLD_INODE_SIZE; 4526 if (ext4_has_feature_extra_isize(sb)) { 4527 unsigned v, max = (sbi->s_inode_size - 4528 EXT4_GOOD_OLD_INODE_SIZE); 4529 4530 v = le16_to_cpu(es->s_want_extra_isize); 4531 if (v > max) { 4532 ext4_msg(sb, KERN_ERR, 4533 "bad s_want_extra_isize: %d", v); 4534 return -EINVAL; 4535 } 4536 if (sbi->s_want_extra_isize < v) 4537 sbi->s_want_extra_isize = v; 4538 4539 v = le16_to_cpu(es->s_min_extra_isize); 4540 if (v > max) { 4541 ext4_msg(sb, KERN_ERR, 4542 "bad s_min_extra_isize: %d", v); 4543 return -EINVAL; 4544 } 4545 if (sbi->s_want_extra_isize < v) 4546 sbi->s_want_extra_isize = v; 4547 } 4548 } 4549 4550 return 0; 4551 } 4552 4553 #if IS_ENABLED(CONFIG_UNICODE) 4554 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4555 { 4556 const struct ext4_sb_encodings *encoding_info; 4557 struct unicode_map *encoding; 4558 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4559 4560 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4561 return 0; 4562 4563 encoding_info = ext4_sb_read_encoding(es); 4564 if (!encoding_info) { 4565 ext4_msg(sb, KERN_ERR, 4566 "Encoding requested by superblock is unknown"); 4567 return -EINVAL; 4568 } 4569 4570 encoding = utf8_load(encoding_info->version); 4571 if (IS_ERR(encoding)) { 4572 ext4_msg(sb, KERN_ERR, 4573 "can't mount with superblock charset: %s-%u.%u.%u " 4574 "not supported by the kernel. flags: 0x%x.", 4575 encoding_info->name, 4576 unicode_major(encoding_info->version), 4577 unicode_minor(encoding_info->version), 4578 unicode_rev(encoding_info->version), 4579 encoding_flags); 4580 return -EINVAL; 4581 } 4582 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4583 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4584 unicode_major(encoding_info->version), 4585 unicode_minor(encoding_info->version), 4586 unicode_rev(encoding_info->version), 4587 encoding_flags); 4588 4589 sb->s_encoding = encoding; 4590 sb->s_encoding_flags = encoding_flags; 4591 4592 return 0; 4593 } 4594 #else 4595 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4596 { 4597 return 0; 4598 } 4599 #endif 4600 4601 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4602 { 4603 struct ext4_sb_info *sbi = EXT4_SB(sb); 4604 4605 /* Warn if metadata_csum and gdt_csum are both set. */ 4606 if (ext4_has_feature_metadata_csum(sb) && 4607 ext4_has_feature_gdt_csum(sb)) 4608 ext4_warning(sb, "metadata_csum and uninit_bg are " 4609 "redundant flags; please run fsck."); 4610 4611 /* Check for a known checksum algorithm */ 4612 if (!ext4_verify_csum_type(sb, es)) { 4613 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4614 "unknown checksum algorithm."); 4615 return -EINVAL; 4616 } 4617 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4618 ext4_orphan_file_block_trigger); 4619 4620 /* Load the checksum driver */ 4621 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4622 if (IS_ERR(sbi->s_chksum_driver)) { 4623 int ret = PTR_ERR(sbi->s_chksum_driver); 4624 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4625 sbi->s_chksum_driver = NULL; 4626 return ret; 4627 } 4628 4629 /* Check superblock checksum */ 4630 if (!ext4_superblock_csum_verify(sb, es)) { 4631 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4632 "invalid superblock checksum. Run e2fsck?"); 4633 return -EFSBADCRC; 4634 } 4635 4636 /* Precompute checksum seed for all metadata */ 4637 if (ext4_has_feature_csum_seed(sb)) 4638 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4639 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4640 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4641 sizeof(es->s_uuid)); 4642 return 0; 4643 } 4644 4645 static int ext4_check_feature_compatibility(struct super_block *sb, 4646 struct ext4_super_block *es, 4647 int silent) 4648 { 4649 struct ext4_sb_info *sbi = EXT4_SB(sb); 4650 4651 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4652 (ext4_has_compat_features(sb) || 4653 ext4_has_ro_compat_features(sb) || 4654 ext4_has_incompat_features(sb))) 4655 ext4_msg(sb, KERN_WARNING, 4656 "feature flags set on rev 0 fs, " 4657 "running e2fsck is recommended"); 4658 4659 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4660 set_opt2(sb, HURD_COMPAT); 4661 if (ext4_has_feature_64bit(sb)) { 4662 ext4_msg(sb, KERN_ERR, 4663 "The Hurd can't support 64-bit file systems"); 4664 return -EINVAL; 4665 } 4666 4667 /* 4668 * ea_inode feature uses l_i_version field which is not 4669 * available in HURD_COMPAT mode. 4670 */ 4671 if (ext4_has_feature_ea_inode(sb)) { 4672 ext4_msg(sb, KERN_ERR, 4673 "ea_inode feature is not supported for Hurd"); 4674 return -EINVAL; 4675 } 4676 } 4677 4678 if (IS_EXT2_SB(sb)) { 4679 if (ext2_feature_set_ok(sb)) 4680 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4681 "using the ext4 subsystem"); 4682 else { 4683 /* 4684 * If we're probing be silent, if this looks like 4685 * it's actually an ext[34] filesystem. 4686 */ 4687 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4688 return -EINVAL; 4689 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4690 "to feature incompatibilities"); 4691 return -EINVAL; 4692 } 4693 } 4694 4695 if (IS_EXT3_SB(sb)) { 4696 if (ext3_feature_set_ok(sb)) 4697 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4698 "using the ext4 subsystem"); 4699 else { 4700 /* 4701 * If we're probing be silent, if this looks like 4702 * it's actually an ext4 filesystem. 4703 */ 4704 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4705 return -EINVAL; 4706 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4707 "to feature incompatibilities"); 4708 return -EINVAL; 4709 } 4710 } 4711 4712 /* 4713 * Check feature flags regardless of the revision level, since we 4714 * previously didn't change the revision level when setting the flags, 4715 * so there is a chance incompat flags are set on a rev 0 filesystem. 4716 */ 4717 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4718 return -EINVAL; 4719 4720 if (sbi->s_daxdev) { 4721 if (sb->s_blocksize == PAGE_SIZE) 4722 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4723 else 4724 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4725 } 4726 4727 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4728 if (ext4_has_feature_inline_data(sb)) { 4729 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4730 " that may contain inline data"); 4731 return -EINVAL; 4732 } 4733 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4734 ext4_msg(sb, KERN_ERR, 4735 "DAX unsupported by block device."); 4736 return -EINVAL; 4737 } 4738 } 4739 4740 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4741 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4742 es->s_encryption_level); 4743 return -EINVAL; 4744 } 4745 4746 return 0; 4747 } 4748 4749 static int ext4_check_geometry(struct super_block *sb, 4750 struct ext4_super_block *es) 4751 { 4752 struct ext4_sb_info *sbi = EXT4_SB(sb); 4753 __u64 blocks_count; 4754 int err; 4755 4756 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4757 ext4_msg(sb, KERN_ERR, 4758 "Number of reserved GDT blocks insanely large: %d", 4759 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4760 return -EINVAL; 4761 } 4762 /* 4763 * Test whether we have more sectors than will fit in sector_t, 4764 * and whether the max offset is addressable by the page cache. 4765 */ 4766 err = generic_check_addressable(sb->s_blocksize_bits, 4767 ext4_blocks_count(es)); 4768 if (err) { 4769 ext4_msg(sb, KERN_ERR, "filesystem" 4770 " too large to mount safely on this system"); 4771 return err; 4772 } 4773 4774 /* check blocks count against device size */ 4775 blocks_count = sb_bdev_nr_blocks(sb); 4776 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4777 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4778 "exceeds size of device (%llu blocks)", 4779 ext4_blocks_count(es), blocks_count); 4780 return -EINVAL; 4781 } 4782 4783 /* 4784 * It makes no sense for the first data block to be beyond the end 4785 * of the filesystem. 4786 */ 4787 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4788 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4789 "block %u is beyond end of filesystem (%llu)", 4790 le32_to_cpu(es->s_first_data_block), 4791 ext4_blocks_count(es)); 4792 return -EINVAL; 4793 } 4794 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4795 (sbi->s_cluster_ratio == 1)) { 4796 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4797 "block is 0 with a 1k block and cluster size"); 4798 return -EINVAL; 4799 } 4800 4801 blocks_count = (ext4_blocks_count(es) - 4802 le32_to_cpu(es->s_first_data_block) + 4803 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4804 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4805 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4806 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4807 "(block count %llu, first data block %u, " 4808 "blocks per group %lu)", blocks_count, 4809 ext4_blocks_count(es), 4810 le32_to_cpu(es->s_first_data_block), 4811 EXT4_BLOCKS_PER_GROUP(sb)); 4812 return -EINVAL; 4813 } 4814 sbi->s_groups_count = blocks_count; 4815 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4816 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4817 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4818 le32_to_cpu(es->s_inodes_count)) { 4819 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4820 le32_to_cpu(es->s_inodes_count), 4821 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4822 return -EINVAL; 4823 } 4824 4825 return 0; 4826 } 4827 4828 static int ext4_group_desc_init(struct super_block *sb, 4829 struct ext4_super_block *es, 4830 ext4_fsblk_t logical_sb_block, 4831 ext4_group_t *first_not_zeroed) 4832 { 4833 struct ext4_sb_info *sbi = EXT4_SB(sb); 4834 unsigned int db_count; 4835 ext4_fsblk_t block; 4836 int i; 4837 4838 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4839 EXT4_DESC_PER_BLOCK(sb); 4840 if (ext4_has_feature_meta_bg(sb)) { 4841 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4842 ext4_msg(sb, KERN_WARNING, 4843 "first meta block group too large: %u " 4844 "(group descriptor block count %u)", 4845 le32_to_cpu(es->s_first_meta_bg), db_count); 4846 return -EINVAL; 4847 } 4848 } 4849 rcu_assign_pointer(sbi->s_group_desc, 4850 kvmalloc_array(db_count, 4851 sizeof(struct buffer_head *), 4852 GFP_KERNEL)); 4853 if (sbi->s_group_desc == NULL) { 4854 ext4_msg(sb, KERN_ERR, "not enough memory"); 4855 return -ENOMEM; 4856 } 4857 4858 bgl_lock_init(sbi->s_blockgroup_lock); 4859 4860 /* Pre-read the descriptors into the buffer cache */ 4861 for (i = 0; i < db_count; i++) { 4862 block = descriptor_loc(sb, logical_sb_block, i); 4863 ext4_sb_breadahead_unmovable(sb, block); 4864 } 4865 4866 for (i = 0; i < db_count; i++) { 4867 struct buffer_head *bh; 4868 4869 block = descriptor_loc(sb, logical_sb_block, i); 4870 bh = ext4_sb_bread_unmovable(sb, block); 4871 if (IS_ERR(bh)) { 4872 ext4_msg(sb, KERN_ERR, 4873 "can't read group descriptor %d", i); 4874 sbi->s_gdb_count = i; 4875 return PTR_ERR(bh); 4876 } 4877 rcu_read_lock(); 4878 rcu_dereference(sbi->s_group_desc)[i] = bh; 4879 rcu_read_unlock(); 4880 } 4881 sbi->s_gdb_count = db_count; 4882 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4883 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4884 return -EFSCORRUPTED; 4885 } 4886 4887 return 0; 4888 } 4889 4890 static int ext4_load_and_init_journal(struct super_block *sb, 4891 struct ext4_super_block *es, 4892 struct ext4_fs_context *ctx) 4893 { 4894 struct ext4_sb_info *sbi = EXT4_SB(sb); 4895 int err; 4896 4897 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4898 if (err) 4899 return err; 4900 4901 if (ext4_has_feature_64bit(sb) && 4902 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4903 JBD2_FEATURE_INCOMPAT_64BIT)) { 4904 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4905 goto out; 4906 } 4907 4908 if (!set_journal_csum_feature_set(sb)) { 4909 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4910 "feature set"); 4911 goto out; 4912 } 4913 4914 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4915 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4916 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4917 ext4_msg(sb, KERN_ERR, 4918 "Failed to set fast commit journal feature"); 4919 goto out; 4920 } 4921 4922 /* We have now updated the journal if required, so we can 4923 * validate the data journaling mode. */ 4924 switch (test_opt(sb, DATA_FLAGS)) { 4925 case 0: 4926 /* No mode set, assume a default based on the journal 4927 * capabilities: ORDERED_DATA if the journal can 4928 * cope, else JOURNAL_DATA 4929 */ 4930 if (jbd2_journal_check_available_features 4931 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4932 set_opt(sb, ORDERED_DATA); 4933 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4934 } else { 4935 set_opt(sb, JOURNAL_DATA); 4936 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4937 } 4938 break; 4939 4940 case EXT4_MOUNT_ORDERED_DATA: 4941 case EXT4_MOUNT_WRITEBACK_DATA: 4942 if (!jbd2_journal_check_available_features 4943 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4944 ext4_msg(sb, KERN_ERR, "Journal does not support " 4945 "requested data journaling mode"); 4946 goto out; 4947 } 4948 break; 4949 default: 4950 break; 4951 } 4952 4953 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4954 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4955 ext4_msg(sb, KERN_ERR, "can't mount with " 4956 "journal_async_commit in data=ordered mode"); 4957 goto out; 4958 } 4959 4960 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4961 4962 sbi->s_journal->j_submit_inode_data_buffers = 4963 ext4_journal_submit_inode_data_buffers; 4964 sbi->s_journal->j_finish_inode_data_buffers = 4965 ext4_journal_finish_inode_data_buffers; 4966 4967 return 0; 4968 4969 out: 4970 /* flush s_sb_upd_work before destroying the journal. */ 4971 flush_work(&sbi->s_sb_upd_work); 4972 jbd2_journal_destroy(sbi->s_journal); 4973 sbi->s_journal = NULL; 4974 return -EINVAL; 4975 } 4976 4977 static int ext4_check_journal_data_mode(struct super_block *sb) 4978 { 4979 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4980 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4981 "data=journal disables delayed allocation, " 4982 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4983 /* can't mount with both data=journal and dioread_nolock. */ 4984 clear_opt(sb, DIOREAD_NOLOCK); 4985 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4986 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4987 ext4_msg(sb, KERN_ERR, "can't mount with " 4988 "both data=journal and delalloc"); 4989 return -EINVAL; 4990 } 4991 if (test_opt(sb, DAX_ALWAYS)) { 4992 ext4_msg(sb, KERN_ERR, "can't mount with " 4993 "both data=journal and dax"); 4994 return -EINVAL; 4995 } 4996 if (ext4_has_feature_encrypt(sb)) { 4997 ext4_msg(sb, KERN_WARNING, 4998 "encrypted files will use data=ordered " 4999 "instead of data journaling mode"); 5000 } 5001 if (test_opt(sb, DELALLOC)) 5002 clear_opt(sb, DELALLOC); 5003 } else { 5004 sb->s_iflags |= SB_I_CGROUPWB; 5005 } 5006 5007 return 0; 5008 } 5009 5010 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5011 int silent) 5012 { 5013 struct ext4_sb_info *sbi = EXT4_SB(sb); 5014 struct ext4_super_block *es; 5015 ext4_fsblk_t logical_sb_block; 5016 unsigned long offset = 0; 5017 struct buffer_head *bh; 5018 int ret = -EINVAL; 5019 int blocksize; 5020 5021 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5022 if (!blocksize) { 5023 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5024 return -EINVAL; 5025 } 5026 5027 /* 5028 * The ext4 superblock will not be buffer aligned for other than 1kB 5029 * block sizes. We need to calculate the offset from buffer start. 5030 */ 5031 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5032 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5033 offset = do_div(logical_sb_block, blocksize); 5034 } else { 5035 logical_sb_block = sbi->s_sb_block; 5036 } 5037 5038 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5039 if (IS_ERR(bh)) { 5040 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5041 return PTR_ERR(bh); 5042 } 5043 /* 5044 * Note: s_es must be initialized as soon as possible because 5045 * some ext4 macro-instructions depend on its value 5046 */ 5047 es = (struct ext4_super_block *) (bh->b_data + offset); 5048 sbi->s_es = es; 5049 sb->s_magic = le16_to_cpu(es->s_magic); 5050 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5051 if (!silent) 5052 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5053 goto out; 5054 } 5055 5056 if (le32_to_cpu(es->s_log_block_size) > 5057 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5058 ext4_msg(sb, KERN_ERR, 5059 "Invalid log block size: %u", 5060 le32_to_cpu(es->s_log_block_size)); 5061 goto out; 5062 } 5063 if (le32_to_cpu(es->s_log_cluster_size) > 5064 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5065 ext4_msg(sb, KERN_ERR, 5066 "Invalid log cluster size: %u", 5067 le32_to_cpu(es->s_log_cluster_size)); 5068 goto out; 5069 } 5070 5071 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5072 5073 /* 5074 * If the default block size is not the same as the real block size, 5075 * we need to reload it. 5076 */ 5077 if (sb->s_blocksize == blocksize) { 5078 *lsb = logical_sb_block; 5079 sbi->s_sbh = bh; 5080 return 0; 5081 } 5082 5083 /* 5084 * bh must be released before kill_bdev(), otherwise 5085 * it won't be freed and its page also. kill_bdev() 5086 * is called by sb_set_blocksize(). 5087 */ 5088 brelse(bh); 5089 /* Validate the filesystem blocksize */ 5090 if (!sb_set_blocksize(sb, blocksize)) { 5091 ext4_msg(sb, KERN_ERR, "bad block size %d", 5092 blocksize); 5093 bh = NULL; 5094 goto out; 5095 } 5096 5097 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5098 offset = do_div(logical_sb_block, blocksize); 5099 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5100 if (IS_ERR(bh)) { 5101 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5102 ret = PTR_ERR(bh); 5103 bh = NULL; 5104 goto out; 5105 } 5106 es = (struct ext4_super_block *)(bh->b_data + offset); 5107 sbi->s_es = es; 5108 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5109 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5110 goto out; 5111 } 5112 *lsb = logical_sb_block; 5113 sbi->s_sbh = bh; 5114 return 0; 5115 out: 5116 brelse(bh); 5117 return ret; 5118 } 5119 5120 static void ext4_hash_info_init(struct super_block *sb) 5121 { 5122 struct ext4_sb_info *sbi = EXT4_SB(sb); 5123 struct ext4_super_block *es = sbi->s_es; 5124 unsigned int i; 5125 5126 for (i = 0; i < 4; i++) 5127 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5128 5129 sbi->s_def_hash_version = es->s_def_hash_version; 5130 if (ext4_has_feature_dir_index(sb)) { 5131 i = le32_to_cpu(es->s_flags); 5132 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5133 sbi->s_hash_unsigned = 3; 5134 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5135 #ifdef __CHAR_UNSIGNED__ 5136 if (!sb_rdonly(sb)) 5137 es->s_flags |= 5138 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5139 sbi->s_hash_unsigned = 3; 5140 #else 5141 if (!sb_rdonly(sb)) 5142 es->s_flags |= 5143 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5144 #endif 5145 } 5146 } 5147 } 5148 5149 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5150 { 5151 struct ext4_sb_info *sbi = EXT4_SB(sb); 5152 struct ext4_super_block *es = sbi->s_es; 5153 int has_huge_files; 5154 5155 has_huge_files = ext4_has_feature_huge_file(sb); 5156 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5157 has_huge_files); 5158 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5159 5160 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5161 if (ext4_has_feature_64bit(sb)) { 5162 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5163 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5164 !is_power_of_2(sbi->s_desc_size)) { 5165 ext4_msg(sb, KERN_ERR, 5166 "unsupported descriptor size %lu", 5167 sbi->s_desc_size); 5168 return -EINVAL; 5169 } 5170 } else 5171 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5172 5173 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5174 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5175 5176 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5177 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5178 if (!silent) 5179 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5180 return -EINVAL; 5181 } 5182 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5183 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5184 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5185 sbi->s_inodes_per_group); 5186 return -EINVAL; 5187 } 5188 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5189 sbi->s_inodes_per_block; 5190 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5191 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5192 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5193 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5194 5195 return 0; 5196 } 5197 5198 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5199 { 5200 struct ext4_super_block *es = NULL; 5201 struct ext4_sb_info *sbi = EXT4_SB(sb); 5202 ext4_fsblk_t logical_sb_block; 5203 struct inode *root; 5204 int needs_recovery; 5205 int err; 5206 ext4_group_t first_not_zeroed; 5207 struct ext4_fs_context *ctx = fc->fs_private; 5208 int silent = fc->sb_flags & SB_SILENT; 5209 5210 /* Set defaults for the variables that will be set during parsing */ 5211 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5212 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5213 5214 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5215 sbi->s_sectors_written_start = 5216 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5217 5218 err = ext4_load_super(sb, &logical_sb_block, silent); 5219 if (err) 5220 goto out_fail; 5221 5222 es = sbi->s_es; 5223 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5224 5225 err = ext4_init_metadata_csum(sb, es); 5226 if (err) 5227 goto failed_mount; 5228 5229 ext4_set_def_opts(sb, es); 5230 5231 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5232 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5233 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5234 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5235 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5236 5237 /* 5238 * set default s_li_wait_mult for lazyinit, for the case there is 5239 * no mount option specified. 5240 */ 5241 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5242 5243 err = ext4_inode_info_init(sb, es); 5244 if (err) 5245 goto failed_mount; 5246 5247 err = parse_apply_sb_mount_options(sb, ctx); 5248 if (err < 0) 5249 goto failed_mount; 5250 5251 sbi->s_def_mount_opt = sbi->s_mount_opt; 5252 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5253 5254 err = ext4_check_opt_consistency(fc, sb); 5255 if (err < 0) 5256 goto failed_mount; 5257 5258 ext4_apply_options(fc, sb); 5259 5260 err = ext4_encoding_init(sb, es); 5261 if (err) 5262 goto failed_mount; 5263 5264 err = ext4_check_journal_data_mode(sb); 5265 if (err) 5266 goto failed_mount; 5267 5268 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5269 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5270 5271 /* i_version is always enabled now */ 5272 sb->s_flags |= SB_I_VERSION; 5273 5274 err = ext4_check_feature_compatibility(sb, es, silent); 5275 if (err) 5276 goto failed_mount; 5277 5278 err = ext4_block_group_meta_init(sb, silent); 5279 if (err) 5280 goto failed_mount; 5281 5282 ext4_hash_info_init(sb); 5283 5284 err = ext4_handle_clustersize(sb); 5285 if (err) 5286 goto failed_mount; 5287 5288 err = ext4_check_geometry(sb, es); 5289 if (err) 5290 goto failed_mount; 5291 5292 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5293 spin_lock_init(&sbi->s_error_lock); 5294 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5295 5296 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5297 if (err) 5298 goto failed_mount3; 5299 5300 err = ext4_es_register_shrinker(sbi); 5301 if (err) 5302 goto failed_mount3; 5303 5304 sbi->s_stripe = ext4_get_stripe_size(sbi); 5305 /* 5306 * It's hard to get stripe aligned blocks if stripe is not aligned with 5307 * cluster, just disable stripe and alert user to simpfy code and avoid 5308 * stripe aligned allocation which will rarely successes. 5309 */ 5310 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 && 5311 sbi->s_stripe % sbi->s_cluster_ratio != 0) { 5312 ext4_msg(sb, KERN_WARNING, 5313 "stripe (%lu) is not aligned with cluster size (%u), " 5314 "stripe is disabled", 5315 sbi->s_stripe, sbi->s_cluster_ratio); 5316 sbi->s_stripe = 0; 5317 } 5318 sbi->s_extent_max_zeroout_kb = 32; 5319 5320 /* 5321 * set up enough so that it can read an inode 5322 */ 5323 sb->s_op = &ext4_sops; 5324 sb->s_export_op = &ext4_export_ops; 5325 sb->s_xattr = ext4_xattr_handlers; 5326 #ifdef CONFIG_FS_ENCRYPTION 5327 sb->s_cop = &ext4_cryptops; 5328 #endif 5329 #ifdef CONFIG_FS_VERITY 5330 sb->s_vop = &ext4_verityops; 5331 #endif 5332 #ifdef CONFIG_QUOTA 5333 sb->dq_op = &ext4_quota_operations; 5334 if (ext4_has_feature_quota(sb)) 5335 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5336 else 5337 sb->s_qcop = &ext4_qctl_operations; 5338 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5339 #endif 5340 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5341 5342 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5343 mutex_init(&sbi->s_orphan_lock); 5344 5345 ext4_fast_commit_init(sb); 5346 5347 sb->s_root = NULL; 5348 5349 needs_recovery = (es->s_last_orphan != 0 || 5350 ext4_has_feature_orphan_present(sb) || 5351 ext4_has_feature_journal_needs_recovery(sb)); 5352 5353 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5354 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5355 if (err) 5356 goto failed_mount3a; 5357 } 5358 5359 err = -EINVAL; 5360 /* 5361 * The first inode we look at is the journal inode. Don't try 5362 * root first: it may be modified in the journal! 5363 */ 5364 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5365 err = ext4_load_and_init_journal(sb, es, ctx); 5366 if (err) 5367 goto failed_mount3a; 5368 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5369 ext4_has_feature_journal_needs_recovery(sb)) { 5370 ext4_msg(sb, KERN_ERR, "required journal recovery " 5371 "suppressed and not mounted read-only"); 5372 goto failed_mount3a; 5373 } else { 5374 /* Nojournal mode, all journal mount options are illegal */ 5375 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5376 ext4_msg(sb, KERN_ERR, "can't mount with " 5377 "journal_async_commit, fs mounted w/o journal"); 5378 goto failed_mount3a; 5379 } 5380 5381 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5382 ext4_msg(sb, KERN_ERR, "can't mount with " 5383 "journal_checksum, fs mounted w/o journal"); 5384 goto failed_mount3a; 5385 } 5386 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5387 ext4_msg(sb, KERN_ERR, "can't mount with " 5388 "commit=%lu, fs mounted w/o journal", 5389 sbi->s_commit_interval / HZ); 5390 goto failed_mount3a; 5391 } 5392 if (EXT4_MOUNT_DATA_FLAGS & 5393 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5394 ext4_msg(sb, KERN_ERR, "can't mount with " 5395 "data=, fs mounted w/o journal"); 5396 goto failed_mount3a; 5397 } 5398 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5399 clear_opt(sb, JOURNAL_CHECKSUM); 5400 clear_opt(sb, DATA_FLAGS); 5401 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5402 sbi->s_journal = NULL; 5403 needs_recovery = 0; 5404 } 5405 5406 if (!test_opt(sb, NO_MBCACHE)) { 5407 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5408 if (!sbi->s_ea_block_cache) { 5409 ext4_msg(sb, KERN_ERR, 5410 "Failed to create ea_block_cache"); 5411 err = -EINVAL; 5412 goto failed_mount_wq; 5413 } 5414 5415 if (ext4_has_feature_ea_inode(sb)) { 5416 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5417 if (!sbi->s_ea_inode_cache) { 5418 ext4_msg(sb, KERN_ERR, 5419 "Failed to create ea_inode_cache"); 5420 err = -EINVAL; 5421 goto failed_mount_wq; 5422 } 5423 } 5424 } 5425 5426 /* 5427 * Get the # of file system overhead blocks from the 5428 * superblock if present. 5429 */ 5430 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5431 /* ignore the precalculated value if it is ridiculous */ 5432 if (sbi->s_overhead > ext4_blocks_count(es)) 5433 sbi->s_overhead = 0; 5434 /* 5435 * If the bigalloc feature is not enabled recalculating the 5436 * overhead doesn't take long, so we might as well just redo 5437 * it to make sure we are using the correct value. 5438 */ 5439 if (!ext4_has_feature_bigalloc(sb)) 5440 sbi->s_overhead = 0; 5441 if (sbi->s_overhead == 0) { 5442 err = ext4_calculate_overhead(sb); 5443 if (err) 5444 goto failed_mount_wq; 5445 } 5446 5447 /* 5448 * The maximum number of concurrent works can be high and 5449 * concurrency isn't really necessary. Limit it to 1. 5450 */ 5451 EXT4_SB(sb)->rsv_conversion_wq = 5452 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5453 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5454 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5455 err = -ENOMEM; 5456 goto failed_mount4; 5457 } 5458 5459 /* 5460 * The jbd2_journal_load will have done any necessary log recovery, 5461 * so we can safely mount the rest of the filesystem now. 5462 */ 5463 5464 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5465 if (IS_ERR(root)) { 5466 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5467 err = PTR_ERR(root); 5468 root = NULL; 5469 goto failed_mount4; 5470 } 5471 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5472 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5473 iput(root); 5474 err = -EFSCORRUPTED; 5475 goto failed_mount4; 5476 } 5477 5478 generic_set_sb_d_ops(sb); 5479 sb->s_root = d_make_root(root); 5480 if (!sb->s_root) { 5481 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5482 err = -ENOMEM; 5483 goto failed_mount4; 5484 } 5485 5486 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5487 if (err == -EROFS) { 5488 sb->s_flags |= SB_RDONLY; 5489 } else if (err) 5490 goto failed_mount4a; 5491 5492 ext4_set_resv_clusters(sb); 5493 5494 if (test_opt(sb, BLOCK_VALIDITY)) { 5495 err = ext4_setup_system_zone(sb); 5496 if (err) { 5497 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5498 "zone (%d)", err); 5499 goto failed_mount4a; 5500 } 5501 } 5502 ext4_fc_replay_cleanup(sb); 5503 5504 ext4_ext_init(sb); 5505 5506 /* 5507 * Enable optimize_scan if number of groups is > threshold. This can be 5508 * turned off by passing "mb_optimize_scan=0". This can also be 5509 * turned on forcefully by passing "mb_optimize_scan=1". 5510 */ 5511 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5512 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5513 set_opt2(sb, MB_OPTIMIZE_SCAN); 5514 else 5515 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5516 } 5517 5518 err = ext4_mb_init(sb); 5519 if (err) { 5520 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5521 err); 5522 goto failed_mount5; 5523 } 5524 5525 /* 5526 * We can only set up the journal commit callback once 5527 * mballoc is initialized 5528 */ 5529 if (sbi->s_journal) 5530 sbi->s_journal->j_commit_callback = 5531 ext4_journal_commit_callback; 5532 5533 err = ext4_percpu_param_init(sbi); 5534 if (err) 5535 goto failed_mount6; 5536 5537 if (ext4_has_feature_flex_bg(sb)) 5538 if (!ext4_fill_flex_info(sb)) { 5539 ext4_msg(sb, KERN_ERR, 5540 "unable to initialize " 5541 "flex_bg meta info!"); 5542 err = -ENOMEM; 5543 goto failed_mount6; 5544 } 5545 5546 err = ext4_register_li_request(sb, first_not_zeroed); 5547 if (err) 5548 goto failed_mount6; 5549 5550 err = ext4_register_sysfs(sb); 5551 if (err) 5552 goto failed_mount7; 5553 5554 err = ext4_init_orphan_info(sb); 5555 if (err) 5556 goto failed_mount8; 5557 #ifdef CONFIG_QUOTA 5558 /* Enable quota usage during mount. */ 5559 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5560 err = ext4_enable_quotas(sb); 5561 if (err) 5562 goto failed_mount9; 5563 } 5564 #endif /* CONFIG_QUOTA */ 5565 5566 /* 5567 * Save the original bdev mapping's wb_err value which could be 5568 * used to detect the metadata async write error. 5569 */ 5570 spin_lock_init(&sbi->s_bdev_wb_lock); 5571 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5572 &sbi->s_bdev_wb_err); 5573 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5574 ext4_orphan_cleanup(sb, es); 5575 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5576 /* 5577 * Update the checksum after updating free space/inode counters and 5578 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5579 * checksum in the buffer cache until it is written out and 5580 * e2fsprogs programs trying to open a file system immediately 5581 * after it is mounted can fail. 5582 */ 5583 ext4_superblock_csum_set(sb); 5584 if (needs_recovery) { 5585 ext4_msg(sb, KERN_INFO, "recovery complete"); 5586 err = ext4_mark_recovery_complete(sb, es); 5587 if (err) 5588 goto failed_mount10; 5589 } 5590 5591 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5592 ext4_msg(sb, KERN_WARNING, 5593 "mounting with \"discard\" option, but the device does not support discard"); 5594 5595 if (es->s_error_count) 5596 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5597 5598 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5599 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5600 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5601 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5602 atomic_set(&sbi->s_warning_count, 0); 5603 atomic_set(&sbi->s_msg_count, 0); 5604 5605 return 0; 5606 5607 failed_mount10: 5608 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5609 failed_mount9: __maybe_unused 5610 ext4_release_orphan_info(sb); 5611 failed_mount8: 5612 ext4_unregister_sysfs(sb); 5613 kobject_put(&sbi->s_kobj); 5614 failed_mount7: 5615 ext4_unregister_li_request(sb); 5616 failed_mount6: 5617 ext4_mb_release(sb); 5618 ext4_flex_groups_free(sbi); 5619 ext4_percpu_param_destroy(sbi); 5620 failed_mount5: 5621 ext4_ext_release(sb); 5622 ext4_release_system_zone(sb); 5623 failed_mount4a: 5624 dput(sb->s_root); 5625 sb->s_root = NULL; 5626 failed_mount4: 5627 ext4_msg(sb, KERN_ERR, "mount failed"); 5628 if (EXT4_SB(sb)->rsv_conversion_wq) 5629 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5630 failed_mount_wq: 5631 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5632 sbi->s_ea_inode_cache = NULL; 5633 5634 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5635 sbi->s_ea_block_cache = NULL; 5636 5637 if (sbi->s_journal) { 5638 /* flush s_sb_upd_work before journal destroy. */ 5639 flush_work(&sbi->s_sb_upd_work); 5640 jbd2_journal_destroy(sbi->s_journal); 5641 sbi->s_journal = NULL; 5642 } 5643 failed_mount3a: 5644 ext4_es_unregister_shrinker(sbi); 5645 failed_mount3: 5646 /* flush s_sb_upd_work before sbi destroy */ 5647 flush_work(&sbi->s_sb_upd_work); 5648 del_timer_sync(&sbi->s_err_report); 5649 ext4_stop_mmpd(sbi); 5650 ext4_group_desc_free(sbi); 5651 failed_mount: 5652 if (sbi->s_chksum_driver) 5653 crypto_free_shash(sbi->s_chksum_driver); 5654 5655 #if IS_ENABLED(CONFIG_UNICODE) 5656 utf8_unload(sb->s_encoding); 5657 #endif 5658 5659 #ifdef CONFIG_QUOTA 5660 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5661 kfree(get_qf_name(sb, sbi, i)); 5662 #endif 5663 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5664 brelse(sbi->s_sbh); 5665 if (sbi->s_journal_bdev_file) { 5666 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5667 bdev_fput(sbi->s_journal_bdev_file); 5668 } 5669 out_fail: 5670 invalidate_bdev(sb->s_bdev); 5671 sb->s_fs_info = NULL; 5672 return err; 5673 } 5674 5675 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5676 { 5677 struct ext4_fs_context *ctx = fc->fs_private; 5678 struct ext4_sb_info *sbi; 5679 const char *descr; 5680 int ret; 5681 5682 sbi = ext4_alloc_sbi(sb); 5683 if (!sbi) 5684 return -ENOMEM; 5685 5686 fc->s_fs_info = sbi; 5687 5688 /* Cleanup superblock name */ 5689 strreplace(sb->s_id, '/', '!'); 5690 5691 sbi->s_sb_block = 1; /* Default super block location */ 5692 if (ctx->spec & EXT4_SPEC_s_sb_block) 5693 sbi->s_sb_block = ctx->s_sb_block; 5694 5695 ret = __ext4_fill_super(fc, sb); 5696 if (ret < 0) 5697 goto free_sbi; 5698 5699 if (sbi->s_journal) { 5700 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5701 descr = " journalled data mode"; 5702 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5703 descr = " ordered data mode"; 5704 else 5705 descr = " writeback data mode"; 5706 } else 5707 descr = "out journal"; 5708 5709 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5710 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5711 "Quota mode: %s.", &sb->s_uuid, 5712 sb_rdonly(sb) ? "ro" : "r/w", descr, 5713 ext4_quota_mode(sb)); 5714 5715 /* Update the s_overhead_clusters if necessary */ 5716 ext4_update_overhead(sb, false); 5717 return 0; 5718 5719 free_sbi: 5720 ext4_free_sbi(sbi); 5721 fc->s_fs_info = NULL; 5722 return ret; 5723 } 5724 5725 static int ext4_get_tree(struct fs_context *fc) 5726 { 5727 return get_tree_bdev(fc, ext4_fill_super); 5728 } 5729 5730 /* 5731 * Setup any per-fs journal parameters now. We'll do this both on 5732 * initial mount, once the journal has been initialised but before we've 5733 * done any recovery; and again on any subsequent remount. 5734 */ 5735 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5736 { 5737 struct ext4_sb_info *sbi = EXT4_SB(sb); 5738 5739 journal->j_commit_interval = sbi->s_commit_interval; 5740 journal->j_min_batch_time = sbi->s_min_batch_time; 5741 journal->j_max_batch_time = sbi->s_max_batch_time; 5742 ext4_fc_init(sb, journal); 5743 5744 write_lock(&journal->j_state_lock); 5745 if (test_opt(sb, BARRIER)) 5746 journal->j_flags |= JBD2_BARRIER; 5747 else 5748 journal->j_flags &= ~JBD2_BARRIER; 5749 if (test_opt(sb, DATA_ERR_ABORT)) 5750 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5751 else 5752 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5753 /* 5754 * Always enable journal cycle record option, letting the journal 5755 * records log transactions continuously between each mount. 5756 */ 5757 journal->j_flags |= JBD2_CYCLE_RECORD; 5758 write_unlock(&journal->j_state_lock); 5759 } 5760 5761 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5762 unsigned int journal_inum) 5763 { 5764 struct inode *journal_inode; 5765 5766 /* 5767 * Test for the existence of a valid inode on disk. Bad things 5768 * happen if we iget() an unused inode, as the subsequent iput() 5769 * will try to delete it. 5770 */ 5771 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5772 if (IS_ERR(journal_inode)) { 5773 ext4_msg(sb, KERN_ERR, "no journal found"); 5774 return ERR_CAST(journal_inode); 5775 } 5776 if (!journal_inode->i_nlink) { 5777 make_bad_inode(journal_inode); 5778 iput(journal_inode); 5779 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5780 return ERR_PTR(-EFSCORRUPTED); 5781 } 5782 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5783 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5784 iput(journal_inode); 5785 return ERR_PTR(-EFSCORRUPTED); 5786 } 5787 5788 ext4_debug("Journal inode found at %p: %lld bytes\n", 5789 journal_inode, journal_inode->i_size); 5790 return journal_inode; 5791 } 5792 5793 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5794 { 5795 struct ext4_map_blocks map; 5796 int ret; 5797 5798 if (journal->j_inode == NULL) 5799 return 0; 5800 5801 map.m_lblk = *block; 5802 map.m_len = 1; 5803 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5804 if (ret <= 0) { 5805 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5806 "journal bmap failed: block %llu ret %d\n", 5807 *block, ret); 5808 jbd2_journal_abort(journal, ret ? ret : -EIO); 5809 return ret; 5810 } 5811 *block = map.m_pblk; 5812 return 0; 5813 } 5814 5815 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5816 unsigned int journal_inum) 5817 { 5818 struct inode *journal_inode; 5819 journal_t *journal; 5820 5821 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5822 if (IS_ERR(journal_inode)) 5823 return ERR_CAST(journal_inode); 5824 5825 journal = jbd2_journal_init_inode(journal_inode); 5826 if (IS_ERR(journal)) { 5827 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5828 iput(journal_inode); 5829 return ERR_CAST(journal); 5830 } 5831 journal->j_private = sb; 5832 journal->j_bmap = ext4_journal_bmap; 5833 ext4_init_journal_params(sb, journal); 5834 return journal; 5835 } 5836 5837 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5838 dev_t j_dev, ext4_fsblk_t *j_start, 5839 ext4_fsblk_t *j_len) 5840 { 5841 struct buffer_head *bh; 5842 struct block_device *bdev; 5843 struct file *bdev_file; 5844 int hblock, blocksize; 5845 ext4_fsblk_t sb_block; 5846 unsigned long offset; 5847 struct ext4_super_block *es; 5848 int errno; 5849 5850 bdev_file = bdev_file_open_by_dev(j_dev, 5851 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5852 sb, &fs_holder_ops); 5853 if (IS_ERR(bdev_file)) { 5854 ext4_msg(sb, KERN_ERR, 5855 "failed to open journal device unknown-block(%u,%u) %ld", 5856 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5857 return bdev_file; 5858 } 5859 5860 bdev = file_bdev(bdev_file); 5861 blocksize = sb->s_blocksize; 5862 hblock = bdev_logical_block_size(bdev); 5863 if (blocksize < hblock) { 5864 ext4_msg(sb, KERN_ERR, 5865 "blocksize too small for journal device"); 5866 errno = -EINVAL; 5867 goto out_bdev; 5868 } 5869 5870 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5871 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5872 set_blocksize(bdev, blocksize); 5873 bh = __bread(bdev, sb_block, blocksize); 5874 if (!bh) { 5875 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5876 "external journal"); 5877 errno = -EINVAL; 5878 goto out_bdev; 5879 } 5880 5881 es = (struct ext4_super_block *) (bh->b_data + offset); 5882 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5883 !(le32_to_cpu(es->s_feature_incompat) & 5884 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5885 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5886 errno = -EFSCORRUPTED; 5887 goto out_bh; 5888 } 5889 5890 if ((le32_to_cpu(es->s_feature_ro_compat) & 5891 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5892 es->s_checksum != ext4_superblock_csum(sb, es)) { 5893 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5894 errno = -EFSCORRUPTED; 5895 goto out_bh; 5896 } 5897 5898 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5899 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5900 errno = -EFSCORRUPTED; 5901 goto out_bh; 5902 } 5903 5904 *j_start = sb_block + 1; 5905 *j_len = ext4_blocks_count(es); 5906 brelse(bh); 5907 return bdev_file; 5908 5909 out_bh: 5910 brelse(bh); 5911 out_bdev: 5912 bdev_fput(bdev_file); 5913 return ERR_PTR(errno); 5914 } 5915 5916 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5917 dev_t j_dev) 5918 { 5919 journal_t *journal; 5920 ext4_fsblk_t j_start; 5921 ext4_fsblk_t j_len; 5922 struct file *bdev_file; 5923 int errno = 0; 5924 5925 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5926 if (IS_ERR(bdev_file)) 5927 return ERR_CAST(bdev_file); 5928 5929 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5930 j_len, sb->s_blocksize); 5931 if (IS_ERR(journal)) { 5932 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5933 errno = PTR_ERR(journal); 5934 goto out_bdev; 5935 } 5936 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5937 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5938 "user (unsupported) - %d", 5939 be32_to_cpu(journal->j_superblock->s_nr_users)); 5940 errno = -EINVAL; 5941 goto out_journal; 5942 } 5943 journal->j_private = sb; 5944 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5945 ext4_init_journal_params(sb, journal); 5946 return journal; 5947 5948 out_journal: 5949 jbd2_journal_destroy(journal); 5950 out_bdev: 5951 bdev_fput(bdev_file); 5952 return ERR_PTR(errno); 5953 } 5954 5955 static int ext4_load_journal(struct super_block *sb, 5956 struct ext4_super_block *es, 5957 unsigned long journal_devnum) 5958 { 5959 journal_t *journal; 5960 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5961 dev_t journal_dev; 5962 int err = 0; 5963 int really_read_only; 5964 int journal_dev_ro; 5965 5966 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5967 return -EFSCORRUPTED; 5968 5969 if (journal_devnum && 5970 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5971 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5972 "numbers have changed"); 5973 journal_dev = new_decode_dev(journal_devnum); 5974 } else 5975 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5976 5977 if (journal_inum && journal_dev) { 5978 ext4_msg(sb, KERN_ERR, 5979 "filesystem has both journal inode and journal device!"); 5980 return -EINVAL; 5981 } 5982 5983 if (journal_inum) { 5984 journal = ext4_open_inode_journal(sb, journal_inum); 5985 if (IS_ERR(journal)) 5986 return PTR_ERR(journal); 5987 } else { 5988 journal = ext4_open_dev_journal(sb, journal_dev); 5989 if (IS_ERR(journal)) 5990 return PTR_ERR(journal); 5991 } 5992 5993 journal_dev_ro = bdev_read_only(journal->j_dev); 5994 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5995 5996 if (journal_dev_ro && !sb_rdonly(sb)) { 5997 ext4_msg(sb, KERN_ERR, 5998 "journal device read-only, try mounting with '-o ro'"); 5999 err = -EROFS; 6000 goto err_out; 6001 } 6002 6003 /* 6004 * Are we loading a blank journal or performing recovery after a 6005 * crash? For recovery, we need to check in advance whether we 6006 * can get read-write access to the device. 6007 */ 6008 if (ext4_has_feature_journal_needs_recovery(sb)) { 6009 if (sb_rdonly(sb)) { 6010 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6011 "required on readonly filesystem"); 6012 if (really_read_only) { 6013 ext4_msg(sb, KERN_ERR, "write access " 6014 "unavailable, cannot proceed " 6015 "(try mounting with noload)"); 6016 err = -EROFS; 6017 goto err_out; 6018 } 6019 ext4_msg(sb, KERN_INFO, "write access will " 6020 "be enabled during recovery"); 6021 } 6022 } 6023 6024 if (!(journal->j_flags & JBD2_BARRIER)) 6025 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6026 6027 if (!ext4_has_feature_journal_needs_recovery(sb)) 6028 err = jbd2_journal_wipe(journal, !really_read_only); 6029 if (!err) { 6030 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6031 __le16 orig_state; 6032 bool changed = false; 6033 6034 if (save) 6035 memcpy(save, ((char *) es) + 6036 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6037 err = jbd2_journal_load(journal); 6038 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6039 save, EXT4_S_ERR_LEN)) { 6040 memcpy(((char *) es) + EXT4_S_ERR_START, 6041 save, EXT4_S_ERR_LEN); 6042 changed = true; 6043 } 6044 kfree(save); 6045 orig_state = es->s_state; 6046 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6047 EXT4_ERROR_FS); 6048 if (orig_state != es->s_state) 6049 changed = true; 6050 /* Write out restored error information to the superblock */ 6051 if (changed && !really_read_only) { 6052 int err2; 6053 err2 = ext4_commit_super(sb); 6054 err = err ? : err2; 6055 } 6056 } 6057 6058 if (err) { 6059 ext4_msg(sb, KERN_ERR, "error loading journal"); 6060 goto err_out; 6061 } 6062 6063 EXT4_SB(sb)->s_journal = journal; 6064 err = ext4_clear_journal_err(sb, es); 6065 if (err) { 6066 EXT4_SB(sb)->s_journal = NULL; 6067 jbd2_journal_destroy(journal); 6068 return err; 6069 } 6070 6071 if (!really_read_only && journal_devnum && 6072 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6073 es->s_journal_dev = cpu_to_le32(journal_devnum); 6074 ext4_commit_super(sb); 6075 } 6076 if (!really_read_only && journal_inum && 6077 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6078 es->s_journal_inum = cpu_to_le32(journal_inum); 6079 ext4_commit_super(sb); 6080 } 6081 6082 return 0; 6083 6084 err_out: 6085 jbd2_journal_destroy(journal); 6086 return err; 6087 } 6088 6089 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6090 static void ext4_update_super(struct super_block *sb) 6091 { 6092 struct ext4_sb_info *sbi = EXT4_SB(sb); 6093 struct ext4_super_block *es = sbi->s_es; 6094 struct buffer_head *sbh = sbi->s_sbh; 6095 6096 lock_buffer(sbh); 6097 /* 6098 * If the file system is mounted read-only, don't update the 6099 * superblock write time. This avoids updating the superblock 6100 * write time when we are mounting the root file system 6101 * read/only but we need to replay the journal; at that point, 6102 * for people who are east of GMT and who make their clock 6103 * tick in localtime for Windows bug-for-bug compatibility, 6104 * the clock is set in the future, and this will cause e2fsck 6105 * to complain and force a full file system check. 6106 */ 6107 if (!sb_rdonly(sb)) 6108 ext4_update_tstamp(es, s_wtime); 6109 es->s_kbytes_written = 6110 cpu_to_le64(sbi->s_kbytes_written + 6111 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6112 sbi->s_sectors_written_start) >> 1)); 6113 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6114 ext4_free_blocks_count_set(es, 6115 EXT4_C2B(sbi, percpu_counter_sum_positive( 6116 &sbi->s_freeclusters_counter))); 6117 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6118 es->s_free_inodes_count = 6119 cpu_to_le32(percpu_counter_sum_positive( 6120 &sbi->s_freeinodes_counter)); 6121 /* Copy error information to the on-disk superblock */ 6122 spin_lock(&sbi->s_error_lock); 6123 if (sbi->s_add_error_count > 0) { 6124 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6125 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6126 __ext4_update_tstamp(&es->s_first_error_time, 6127 &es->s_first_error_time_hi, 6128 sbi->s_first_error_time); 6129 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6130 sizeof(es->s_first_error_func)); 6131 es->s_first_error_line = 6132 cpu_to_le32(sbi->s_first_error_line); 6133 es->s_first_error_ino = 6134 cpu_to_le32(sbi->s_first_error_ino); 6135 es->s_first_error_block = 6136 cpu_to_le64(sbi->s_first_error_block); 6137 es->s_first_error_errcode = 6138 ext4_errno_to_code(sbi->s_first_error_code); 6139 } 6140 __ext4_update_tstamp(&es->s_last_error_time, 6141 &es->s_last_error_time_hi, 6142 sbi->s_last_error_time); 6143 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6144 sizeof(es->s_last_error_func)); 6145 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6146 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6147 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6148 es->s_last_error_errcode = 6149 ext4_errno_to_code(sbi->s_last_error_code); 6150 /* 6151 * Start the daily error reporting function if it hasn't been 6152 * started already 6153 */ 6154 if (!es->s_error_count) 6155 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6156 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6157 sbi->s_add_error_count = 0; 6158 } 6159 spin_unlock(&sbi->s_error_lock); 6160 6161 ext4_superblock_csum_set(sb); 6162 unlock_buffer(sbh); 6163 } 6164 6165 static int ext4_commit_super(struct super_block *sb) 6166 { 6167 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6168 6169 if (!sbh) 6170 return -EINVAL; 6171 if (block_device_ejected(sb)) 6172 return -ENODEV; 6173 6174 ext4_update_super(sb); 6175 6176 lock_buffer(sbh); 6177 /* Buffer got discarded which means block device got invalidated */ 6178 if (!buffer_mapped(sbh)) { 6179 unlock_buffer(sbh); 6180 return -EIO; 6181 } 6182 6183 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6184 /* 6185 * Oh, dear. A previous attempt to write the 6186 * superblock failed. This could happen because the 6187 * USB device was yanked out. Or it could happen to 6188 * be a transient write error and maybe the block will 6189 * be remapped. Nothing we can do but to retry the 6190 * write and hope for the best. 6191 */ 6192 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6193 "superblock detected"); 6194 clear_buffer_write_io_error(sbh); 6195 set_buffer_uptodate(sbh); 6196 } 6197 get_bh(sbh); 6198 /* Clear potential dirty bit if it was journalled update */ 6199 clear_buffer_dirty(sbh); 6200 sbh->b_end_io = end_buffer_write_sync; 6201 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6202 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6203 wait_on_buffer(sbh); 6204 if (buffer_write_io_error(sbh)) { 6205 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6206 "superblock"); 6207 clear_buffer_write_io_error(sbh); 6208 set_buffer_uptodate(sbh); 6209 return -EIO; 6210 } 6211 return 0; 6212 } 6213 6214 /* 6215 * Have we just finished recovery? If so, and if we are mounting (or 6216 * remounting) the filesystem readonly, then we will end up with a 6217 * consistent fs on disk. Record that fact. 6218 */ 6219 static int ext4_mark_recovery_complete(struct super_block *sb, 6220 struct ext4_super_block *es) 6221 { 6222 int err; 6223 journal_t *journal = EXT4_SB(sb)->s_journal; 6224 6225 if (!ext4_has_feature_journal(sb)) { 6226 if (journal != NULL) { 6227 ext4_error(sb, "Journal got removed while the fs was " 6228 "mounted!"); 6229 return -EFSCORRUPTED; 6230 } 6231 return 0; 6232 } 6233 jbd2_journal_lock_updates(journal); 6234 err = jbd2_journal_flush(journal, 0); 6235 if (err < 0) 6236 goto out; 6237 6238 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6239 ext4_has_feature_orphan_present(sb))) { 6240 if (!ext4_orphan_file_empty(sb)) { 6241 ext4_error(sb, "Orphan file not empty on read-only fs."); 6242 err = -EFSCORRUPTED; 6243 goto out; 6244 } 6245 ext4_clear_feature_journal_needs_recovery(sb); 6246 ext4_clear_feature_orphan_present(sb); 6247 ext4_commit_super(sb); 6248 } 6249 out: 6250 jbd2_journal_unlock_updates(journal); 6251 return err; 6252 } 6253 6254 /* 6255 * If we are mounting (or read-write remounting) a filesystem whose journal 6256 * has recorded an error from a previous lifetime, move that error to the 6257 * main filesystem now. 6258 */ 6259 static int ext4_clear_journal_err(struct super_block *sb, 6260 struct ext4_super_block *es) 6261 { 6262 journal_t *journal; 6263 int j_errno; 6264 const char *errstr; 6265 6266 if (!ext4_has_feature_journal(sb)) { 6267 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6268 return -EFSCORRUPTED; 6269 } 6270 6271 journal = EXT4_SB(sb)->s_journal; 6272 6273 /* 6274 * Now check for any error status which may have been recorded in the 6275 * journal by a prior ext4_error() or ext4_abort() 6276 */ 6277 6278 j_errno = jbd2_journal_errno(journal); 6279 if (j_errno) { 6280 char nbuf[16]; 6281 6282 errstr = ext4_decode_error(sb, j_errno, nbuf); 6283 ext4_warning(sb, "Filesystem error recorded " 6284 "from previous mount: %s", errstr); 6285 6286 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6287 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6288 j_errno = ext4_commit_super(sb); 6289 if (j_errno) 6290 return j_errno; 6291 ext4_warning(sb, "Marked fs in need of filesystem check."); 6292 6293 jbd2_journal_clear_err(journal); 6294 jbd2_journal_update_sb_errno(journal); 6295 } 6296 return 0; 6297 } 6298 6299 /* 6300 * Force the running and committing transactions to commit, 6301 * and wait on the commit. 6302 */ 6303 int ext4_force_commit(struct super_block *sb) 6304 { 6305 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6306 } 6307 6308 static int ext4_sync_fs(struct super_block *sb, int wait) 6309 { 6310 int ret = 0; 6311 tid_t target; 6312 bool needs_barrier = false; 6313 struct ext4_sb_info *sbi = EXT4_SB(sb); 6314 6315 if (unlikely(ext4_forced_shutdown(sb))) 6316 return 0; 6317 6318 trace_ext4_sync_fs(sb, wait); 6319 flush_workqueue(sbi->rsv_conversion_wq); 6320 /* 6321 * Writeback quota in non-journalled quota case - journalled quota has 6322 * no dirty dquots 6323 */ 6324 dquot_writeback_dquots(sb, -1); 6325 /* 6326 * Data writeback is possible w/o journal transaction, so barrier must 6327 * being sent at the end of the function. But we can skip it if 6328 * transaction_commit will do it for us. 6329 */ 6330 if (sbi->s_journal) { 6331 target = jbd2_get_latest_transaction(sbi->s_journal); 6332 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6333 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6334 needs_barrier = true; 6335 6336 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6337 if (wait) 6338 ret = jbd2_log_wait_commit(sbi->s_journal, 6339 target); 6340 } 6341 } else if (wait && test_opt(sb, BARRIER)) 6342 needs_barrier = true; 6343 if (needs_barrier) { 6344 int err; 6345 err = blkdev_issue_flush(sb->s_bdev); 6346 if (!ret) 6347 ret = err; 6348 } 6349 6350 return ret; 6351 } 6352 6353 /* 6354 * LVM calls this function before a (read-only) snapshot is created. This 6355 * gives us a chance to flush the journal completely and mark the fs clean. 6356 * 6357 * Note that only this function cannot bring a filesystem to be in a clean 6358 * state independently. It relies on upper layer to stop all data & metadata 6359 * modifications. 6360 */ 6361 static int ext4_freeze(struct super_block *sb) 6362 { 6363 int error = 0; 6364 journal_t *journal = EXT4_SB(sb)->s_journal; 6365 6366 if (journal) { 6367 /* Now we set up the journal barrier. */ 6368 jbd2_journal_lock_updates(journal); 6369 6370 /* 6371 * Don't clear the needs_recovery flag if we failed to 6372 * flush the journal. 6373 */ 6374 error = jbd2_journal_flush(journal, 0); 6375 if (error < 0) 6376 goto out; 6377 6378 /* Journal blocked and flushed, clear needs_recovery flag. */ 6379 ext4_clear_feature_journal_needs_recovery(sb); 6380 if (ext4_orphan_file_empty(sb)) 6381 ext4_clear_feature_orphan_present(sb); 6382 } 6383 6384 error = ext4_commit_super(sb); 6385 out: 6386 if (journal) 6387 /* we rely on upper layer to stop further updates */ 6388 jbd2_journal_unlock_updates(journal); 6389 return error; 6390 } 6391 6392 /* 6393 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6394 * flag here, even though the filesystem is not technically dirty yet. 6395 */ 6396 static int ext4_unfreeze(struct super_block *sb) 6397 { 6398 if (ext4_forced_shutdown(sb)) 6399 return 0; 6400 6401 if (EXT4_SB(sb)->s_journal) { 6402 /* Reset the needs_recovery flag before the fs is unlocked. */ 6403 ext4_set_feature_journal_needs_recovery(sb); 6404 if (ext4_has_feature_orphan_file(sb)) 6405 ext4_set_feature_orphan_present(sb); 6406 } 6407 6408 ext4_commit_super(sb); 6409 return 0; 6410 } 6411 6412 /* 6413 * Structure to save mount options for ext4_remount's benefit 6414 */ 6415 struct ext4_mount_options { 6416 unsigned long s_mount_opt; 6417 unsigned long s_mount_opt2; 6418 kuid_t s_resuid; 6419 kgid_t s_resgid; 6420 unsigned long s_commit_interval; 6421 u32 s_min_batch_time, s_max_batch_time; 6422 #ifdef CONFIG_QUOTA 6423 int s_jquota_fmt; 6424 char *s_qf_names[EXT4_MAXQUOTAS]; 6425 #endif 6426 }; 6427 6428 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6429 { 6430 struct ext4_fs_context *ctx = fc->fs_private; 6431 struct ext4_super_block *es; 6432 struct ext4_sb_info *sbi = EXT4_SB(sb); 6433 unsigned long old_sb_flags; 6434 struct ext4_mount_options old_opts; 6435 ext4_group_t g; 6436 int err = 0; 6437 int alloc_ctx; 6438 #ifdef CONFIG_QUOTA 6439 int enable_quota = 0; 6440 int i, j; 6441 char *to_free[EXT4_MAXQUOTAS]; 6442 #endif 6443 6444 6445 /* Store the original options */ 6446 old_sb_flags = sb->s_flags; 6447 old_opts.s_mount_opt = sbi->s_mount_opt; 6448 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6449 old_opts.s_resuid = sbi->s_resuid; 6450 old_opts.s_resgid = sbi->s_resgid; 6451 old_opts.s_commit_interval = sbi->s_commit_interval; 6452 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6453 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6454 #ifdef CONFIG_QUOTA 6455 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6456 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6457 if (sbi->s_qf_names[i]) { 6458 char *qf_name = get_qf_name(sb, sbi, i); 6459 6460 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6461 if (!old_opts.s_qf_names[i]) { 6462 for (j = 0; j < i; j++) 6463 kfree(old_opts.s_qf_names[j]); 6464 return -ENOMEM; 6465 } 6466 } else 6467 old_opts.s_qf_names[i] = NULL; 6468 #endif 6469 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6470 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6471 ctx->journal_ioprio = 6472 sbi->s_journal->j_task->io_context->ioprio; 6473 else 6474 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6475 6476 } 6477 6478 /* 6479 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6480 * two calls to ext4_should_dioread_nolock() to return inconsistent 6481 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6482 * here s_writepages_rwsem to avoid race between writepages ops and 6483 * remount. 6484 */ 6485 alloc_ctx = ext4_writepages_down_write(sb); 6486 ext4_apply_options(fc, sb); 6487 ext4_writepages_up_write(sb, alloc_ctx); 6488 6489 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6490 test_opt(sb, JOURNAL_CHECKSUM)) { 6491 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6492 "during remount not supported; ignoring"); 6493 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6494 } 6495 6496 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6497 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6498 ext4_msg(sb, KERN_ERR, "can't mount with " 6499 "both data=journal and delalloc"); 6500 err = -EINVAL; 6501 goto restore_opts; 6502 } 6503 if (test_opt(sb, DIOREAD_NOLOCK)) { 6504 ext4_msg(sb, KERN_ERR, "can't mount with " 6505 "both data=journal and dioread_nolock"); 6506 err = -EINVAL; 6507 goto restore_opts; 6508 } 6509 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6510 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6511 ext4_msg(sb, KERN_ERR, "can't mount with " 6512 "journal_async_commit in data=ordered mode"); 6513 err = -EINVAL; 6514 goto restore_opts; 6515 } 6516 } 6517 6518 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6519 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6520 err = -EINVAL; 6521 goto restore_opts; 6522 } 6523 6524 if (test_opt2(sb, ABORT)) 6525 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6526 6527 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6528 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6529 6530 es = sbi->s_es; 6531 6532 if (sbi->s_journal) { 6533 ext4_init_journal_params(sb, sbi->s_journal); 6534 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6535 } 6536 6537 /* Flush outstanding errors before changing fs state */ 6538 flush_work(&sbi->s_sb_upd_work); 6539 6540 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6541 if (ext4_forced_shutdown(sb)) { 6542 err = -EROFS; 6543 goto restore_opts; 6544 } 6545 6546 if (fc->sb_flags & SB_RDONLY) { 6547 err = sync_filesystem(sb); 6548 if (err < 0) 6549 goto restore_opts; 6550 err = dquot_suspend(sb, -1); 6551 if (err < 0) 6552 goto restore_opts; 6553 6554 /* 6555 * First of all, the unconditional stuff we have to do 6556 * to disable replay of the journal when we next remount 6557 */ 6558 sb->s_flags |= SB_RDONLY; 6559 6560 /* 6561 * OK, test if we are remounting a valid rw partition 6562 * readonly, and if so set the rdonly flag and then 6563 * mark the partition as valid again. 6564 */ 6565 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6566 (sbi->s_mount_state & EXT4_VALID_FS)) 6567 es->s_state = cpu_to_le16(sbi->s_mount_state); 6568 6569 if (sbi->s_journal) { 6570 /* 6571 * We let remount-ro finish even if marking fs 6572 * as clean failed... 6573 */ 6574 ext4_mark_recovery_complete(sb, es); 6575 } 6576 } else { 6577 /* Make sure we can mount this feature set readwrite */ 6578 if (ext4_has_feature_readonly(sb) || 6579 !ext4_feature_set_ok(sb, 0)) { 6580 err = -EROFS; 6581 goto restore_opts; 6582 } 6583 /* 6584 * Make sure the group descriptor checksums 6585 * are sane. If they aren't, refuse to remount r/w. 6586 */ 6587 for (g = 0; g < sbi->s_groups_count; g++) { 6588 struct ext4_group_desc *gdp = 6589 ext4_get_group_desc(sb, g, NULL); 6590 6591 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6592 ext4_msg(sb, KERN_ERR, 6593 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6594 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6595 le16_to_cpu(gdp->bg_checksum)); 6596 err = -EFSBADCRC; 6597 goto restore_opts; 6598 } 6599 } 6600 6601 /* 6602 * If we have an unprocessed orphan list hanging 6603 * around from a previously readonly bdev mount, 6604 * require a full umount/remount for now. 6605 */ 6606 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6607 ext4_msg(sb, KERN_WARNING, "Couldn't " 6608 "remount RDWR because of unprocessed " 6609 "orphan inode list. Please " 6610 "umount/remount instead"); 6611 err = -EINVAL; 6612 goto restore_opts; 6613 } 6614 6615 /* 6616 * Mounting a RDONLY partition read-write, so reread 6617 * and store the current valid flag. (It may have 6618 * been changed by e2fsck since we originally mounted 6619 * the partition.) 6620 */ 6621 if (sbi->s_journal) { 6622 err = ext4_clear_journal_err(sb, es); 6623 if (err) 6624 goto restore_opts; 6625 } 6626 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6627 ~EXT4_FC_REPLAY); 6628 6629 err = ext4_setup_super(sb, es, 0); 6630 if (err) 6631 goto restore_opts; 6632 6633 sb->s_flags &= ~SB_RDONLY; 6634 if (ext4_has_feature_mmp(sb)) { 6635 err = ext4_multi_mount_protect(sb, 6636 le64_to_cpu(es->s_mmp_block)); 6637 if (err) 6638 goto restore_opts; 6639 } 6640 #ifdef CONFIG_QUOTA 6641 enable_quota = 1; 6642 #endif 6643 } 6644 } 6645 6646 /* 6647 * Handle creation of system zone data early because it can fail. 6648 * Releasing of existing data is done when we are sure remount will 6649 * succeed. 6650 */ 6651 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6652 err = ext4_setup_system_zone(sb); 6653 if (err) 6654 goto restore_opts; 6655 } 6656 6657 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6658 err = ext4_commit_super(sb); 6659 if (err) 6660 goto restore_opts; 6661 } 6662 6663 #ifdef CONFIG_QUOTA 6664 if (enable_quota) { 6665 if (sb_any_quota_suspended(sb)) 6666 dquot_resume(sb, -1); 6667 else if (ext4_has_feature_quota(sb)) { 6668 err = ext4_enable_quotas(sb); 6669 if (err) 6670 goto restore_opts; 6671 } 6672 } 6673 /* Release old quota file names */ 6674 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6675 kfree(old_opts.s_qf_names[i]); 6676 #endif 6677 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6678 ext4_release_system_zone(sb); 6679 6680 /* 6681 * Reinitialize lazy itable initialization thread based on 6682 * current settings 6683 */ 6684 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6685 ext4_unregister_li_request(sb); 6686 else { 6687 ext4_group_t first_not_zeroed; 6688 first_not_zeroed = ext4_has_uninit_itable(sb); 6689 ext4_register_li_request(sb, first_not_zeroed); 6690 } 6691 6692 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6693 ext4_stop_mmpd(sbi); 6694 6695 return 0; 6696 6697 restore_opts: 6698 /* 6699 * If there was a failing r/w to ro transition, we may need to 6700 * re-enable quota 6701 */ 6702 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6703 sb_any_quota_suspended(sb)) 6704 dquot_resume(sb, -1); 6705 6706 alloc_ctx = ext4_writepages_down_write(sb); 6707 sb->s_flags = old_sb_flags; 6708 sbi->s_mount_opt = old_opts.s_mount_opt; 6709 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6710 sbi->s_resuid = old_opts.s_resuid; 6711 sbi->s_resgid = old_opts.s_resgid; 6712 sbi->s_commit_interval = old_opts.s_commit_interval; 6713 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6714 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6715 ext4_writepages_up_write(sb, alloc_ctx); 6716 6717 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6718 ext4_release_system_zone(sb); 6719 #ifdef CONFIG_QUOTA 6720 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6721 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6722 to_free[i] = get_qf_name(sb, sbi, i); 6723 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6724 } 6725 synchronize_rcu(); 6726 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6727 kfree(to_free[i]); 6728 #endif 6729 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6730 ext4_stop_mmpd(sbi); 6731 return err; 6732 } 6733 6734 static int ext4_reconfigure(struct fs_context *fc) 6735 { 6736 struct super_block *sb = fc->root->d_sb; 6737 int ret; 6738 6739 fc->s_fs_info = EXT4_SB(sb); 6740 6741 ret = ext4_check_opt_consistency(fc, sb); 6742 if (ret < 0) 6743 return ret; 6744 6745 ret = __ext4_remount(fc, sb); 6746 if (ret < 0) 6747 return ret; 6748 6749 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6750 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6751 ext4_quota_mode(sb)); 6752 6753 return 0; 6754 } 6755 6756 #ifdef CONFIG_QUOTA 6757 static int ext4_statfs_project(struct super_block *sb, 6758 kprojid_t projid, struct kstatfs *buf) 6759 { 6760 struct kqid qid; 6761 struct dquot *dquot; 6762 u64 limit; 6763 u64 curblock; 6764 6765 qid = make_kqid_projid(projid); 6766 dquot = dqget(sb, qid); 6767 if (IS_ERR(dquot)) 6768 return PTR_ERR(dquot); 6769 spin_lock(&dquot->dq_dqb_lock); 6770 6771 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6772 dquot->dq_dqb.dqb_bhardlimit); 6773 limit >>= sb->s_blocksize_bits; 6774 6775 if (limit && buf->f_blocks > limit) { 6776 curblock = (dquot->dq_dqb.dqb_curspace + 6777 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6778 buf->f_blocks = limit; 6779 buf->f_bfree = buf->f_bavail = 6780 (buf->f_blocks > curblock) ? 6781 (buf->f_blocks - curblock) : 0; 6782 } 6783 6784 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6785 dquot->dq_dqb.dqb_ihardlimit); 6786 if (limit && buf->f_files > limit) { 6787 buf->f_files = limit; 6788 buf->f_ffree = 6789 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6790 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6791 } 6792 6793 spin_unlock(&dquot->dq_dqb_lock); 6794 dqput(dquot); 6795 return 0; 6796 } 6797 #endif 6798 6799 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6800 { 6801 struct super_block *sb = dentry->d_sb; 6802 struct ext4_sb_info *sbi = EXT4_SB(sb); 6803 struct ext4_super_block *es = sbi->s_es; 6804 ext4_fsblk_t overhead = 0, resv_blocks; 6805 s64 bfree; 6806 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6807 6808 if (!test_opt(sb, MINIX_DF)) 6809 overhead = sbi->s_overhead; 6810 6811 buf->f_type = EXT4_SUPER_MAGIC; 6812 buf->f_bsize = sb->s_blocksize; 6813 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6814 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6815 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6816 /* prevent underflow in case that few free space is available */ 6817 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6818 buf->f_bavail = buf->f_bfree - 6819 (ext4_r_blocks_count(es) + resv_blocks); 6820 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6821 buf->f_bavail = 0; 6822 buf->f_files = le32_to_cpu(es->s_inodes_count); 6823 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6824 buf->f_namelen = EXT4_NAME_LEN; 6825 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6826 6827 #ifdef CONFIG_QUOTA 6828 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6829 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6830 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6831 #endif 6832 return 0; 6833 } 6834 6835 6836 #ifdef CONFIG_QUOTA 6837 6838 /* 6839 * Helper functions so that transaction is started before we acquire dqio_sem 6840 * to keep correct lock ordering of transaction > dqio_sem 6841 */ 6842 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6843 { 6844 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6845 } 6846 6847 static int ext4_write_dquot(struct dquot *dquot) 6848 { 6849 int ret, err; 6850 handle_t *handle; 6851 struct inode *inode; 6852 6853 inode = dquot_to_inode(dquot); 6854 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6855 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6856 if (IS_ERR(handle)) 6857 return PTR_ERR(handle); 6858 ret = dquot_commit(dquot); 6859 if (ret < 0) 6860 ext4_error_err(dquot->dq_sb, -ret, 6861 "Failed to commit dquot type %d", 6862 dquot->dq_id.type); 6863 err = ext4_journal_stop(handle); 6864 if (!ret) 6865 ret = err; 6866 return ret; 6867 } 6868 6869 static int ext4_acquire_dquot(struct dquot *dquot) 6870 { 6871 int ret, err; 6872 handle_t *handle; 6873 6874 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6875 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6876 if (IS_ERR(handle)) 6877 return PTR_ERR(handle); 6878 ret = dquot_acquire(dquot); 6879 if (ret < 0) 6880 ext4_error_err(dquot->dq_sb, -ret, 6881 "Failed to acquire dquot type %d", 6882 dquot->dq_id.type); 6883 err = ext4_journal_stop(handle); 6884 if (!ret) 6885 ret = err; 6886 return ret; 6887 } 6888 6889 static int ext4_release_dquot(struct dquot *dquot) 6890 { 6891 int ret, err; 6892 handle_t *handle; 6893 6894 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6895 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6896 if (IS_ERR(handle)) { 6897 /* Release dquot anyway to avoid endless cycle in dqput() */ 6898 dquot_release(dquot); 6899 return PTR_ERR(handle); 6900 } 6901 ret = dquot_release(dquot); 6902 if (ret < 0) 6903 ext4_error_err(dquot->dq_sb, -ret, 6904 "Failed to release dquot type %d", 6905 dquot->dq_id.type); 6906 err = ext4_journal_stop(handle); 6907 if (!ret) 6908 ret = err; 6909 return ret; 6910 } 6911 6912 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6913 { 6914 struct super_block *sb = dquot->dq_sb; 6915 6916 if (ext4_is_quota_journalled(sb)) { 6917 dquot_mark_dquot_dirty(dquot); 6918 return ext4_write_dquot(dquot); 6919 } else { 6920 return dquot_mark_dquot_dirty(dquot); 6921 } 6922 } 6923 6924 static int ext4_write_info(struct super_block *sb, int type) 6925 { 6926 int ret, err; 6927 handle_t *handle; 6928 6929 /* Data block + inode block */ 6930 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6931 if (IS_ERR(handle)) 6932 return PTR_ERR(handle); 6933 ret = dquot_commit_info(sb, type); 6934 err = ext4_journal_stop(handle); 6935 if (!ret) 6936 ret = err; 6937 return ret; 6938 } 6939 6940 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6941 { 6942 struct ext4_inode_info *ei = EXT4_I(inode); 6943 6944 /* The first argument of lockdep_set_subclass has to be 6945 * *exactly* the same as the argument to init_rwsem() --- in 6946 * this case, in init_once() --- or lockdep gets unhappy 6947 * because the name of the lock is set using the 6948 * stringification of the argument to init_rwsem(). 6949 */ 6950 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6951 lockdep_set_subclass(&ei->i_data_sem, subclass); 6952 } 6953 6954 /* 6955 * Standard function to be called on quota_on 6956 */ 6957 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6958 const struct path *path) 6959 { 6960 int err; 6961 6962 if (!test_opt(sb, QUOTA)) 6963 return -EINVAL; 6964 6965 /* Quotafile not on the same filesystem? */ 6966 if (path->dentry->d_sb != sb) 6967 return -EXDEV; 6968 6969 /* Quota already enabled for this file? */ 6970 if (IS_NOQUOTA(d_inode(path->dentry))) 6971 return -EBUSY; 6972 6973 /* Journaling quota? */ 6974 if (EXT4_SB(sb)->s_qf_names[type]) { 6975 /* Quotafile not in fs root? */ 6976 if (path->dentry->d_parent != sb->s_root) 6977 ext4_msg(sb, KERN_WARNING, 6978 "Quota file not on filesystem root. " 6979 "Journaled quota will not work"); 6980 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6981 } else { 6982 /* 6983 * Clear the flag just in case mount options changed since 6984 * last time. 6985 */ 6986 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6987 } 6988 6989 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6990 err = dquot_quota_on(sb, type, format_id, path); 6991 if (!err) { 6992 struct inode *inode = d_inode(path->dentry); 6993 handle_t *handle; 6994 6995 /* 6996 * Set inode flags to prevent userspace from messing with quota 6997 * files. If this fails, we return success anyway since quotas 6998 * are already enabled and this is not a hard failure. 6999 */ 7000 inode_lock(inode); 7001 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7002 if (IS_ERR(handle)) 7003 goto unlock_inode; 7004 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7005 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7006 S_NOATIME | S_IMMUTABLE); 7007 err = ext4_mark_inode_dirty(handle, inode); 7008 ext4_journal_stop(handle); 7009 unlock_inode: 7010 inode_unlock(inode); 7011 if (err) 7012 dquot_quota_off(sb, type); 7013 } 7014 if (err) 7015 lockdep_set_quota_inode(path->dentry->d_inode, 7016 I_DATA_SEM_NORMAL); 7017 return err; 7018 } 7019 7020 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7021 { 7022 switch (type) { 7023 case USRQUOTA: 7024 return qf_inum == EXT4_USR_QUOTA_INO; 7025 case GRPQUOTA: 7026 return qf_inum == EXT4_GRP_QUOTA_INO; 7027 case PRJQUOTA: 7028 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7029 default: 7030 BUG(); 7031 } 7032 } 7033 7034 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7035 unsigned int flags) 7036 { 7037 int err; 7038 struct inode *qf_inode; 7039 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7040 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7041 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7042 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7043 }; 7044 7045 BUG_ON(!ext4_has_feature_quota(sb)); 7046 7047 if (!qf_inums[type]) 7048 return -EPERM; 7049 7050 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7051 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7052 qf_inums[type], type); 7053 return -EUCLEAN; 7054 } 7055 7056 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7057 if (IS_ERR(qf_inode)) { 7058 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7059 qf_inums[type], type); 7060 return PTR_ERR(qf_inode); 7061 } 7062 7063 /* Don't account quota for quota files to avoid recursion */ 7064 qf_inode->i_flags |= S_NOQUOTA; 7065 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7066 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7067 if (err) 7068 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7069 iput(qf_inode); 7070 7071 return err; 7072 } 7073 7074 /* Enable usage tracking for all quota types. */ 7075 int ext4_enable_quotas(struct super_block *sb) 7076 { 7077 int type, err = 0; 7078 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7079 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7080 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7081 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7082 }; 7083 bool quota_mopt[EXT4_MAXQUOTAS] = { 7084 test_opt(sb, USRQUOTA), 7085 test_opt(sb, GRPQUOTA), 7086 test_opt(sb, PRJQUOTA), 7087 }; 7088 7089 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7090 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7091 if (qf_inums[type]) { 7092 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7093 DQUOT_USAGE_ENABLED | 7094 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7095 if (err) { 7096 ext4_warning(sb, 7097 "Failed to enable quota tracking " 7098 "(type=%d, err=%d, ino=%lu). " 7099 "Please run e2fsck to fix.", type, 7100 err, qf_inums[type]); 7101 7102 ext4_quotas_off(sb, type); 7103 return err; 7104 } 7105 } 7106 } 7107 return 0; 7108 } 7109 7110 static int ext4_quota_off(struct super_block *sb, int type) 7111 { 7112 struct inode *inode = sb_dqopt(sb)->files[type]; 7113 handle_t *handle; 7114 int err; 7115 7116 /* Force all delayed allocation blocks to be allocated. 7117 * Caller already holds s_umount sem */ 7118 if (test_opt(sb, DELALLOC)) 7119 sync_filesystem(sb); 7120 7121 if (!inode || !igrab(inode)) 7122 goto out; 7123 7124 err = dquot_quota_off(sb, type); 7125 if (err || ext4_has_feature_quota(sb)) 7126 goto out_put; 7127 /* 7128 * When the filesystem was remounted read-only first, we cannot cleanup 7129 * inode flags here. Bad luck but people should be using QUOTA feature 7130 * these days anyway. 7131 */ 7132 if (sb_rdonly(sb)) 7133 goto out_put; 7134 7135 inode_lock(inode); 7136 /* 7137 * Update modification times of quota files when userspace can 7138 * start looking at them. If we fail, we return success anyway since 7139 * this is not a hard failure and quotas are already disabled. 7140 */ 7141 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7142 if (IS_ERR(handle)) { 7143 err = PTR_ERR(handle); 7144 goto out_unlock; 7145 } 7146 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7147 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7148 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7149 err = ext4_mark_inode_dirty(handle, inode); 7150 ext4_journal_stop(handle); 7151 out_unlock: 7152 inode_unlock(inode); 7153 out_put: 7154 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7155 iput(inode); 7156 return err; 7157 out: 7158 return dquot_quota_off(sb, type); 7159 } 7160 7161 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7162 * acquiring the locks... As quota files are never truncated and quota code 7163 * itself serializes the operations (and no one else should touch the files) 7164 * we don't have to be afraid of races */ 7165 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7166 size_t len, loff_t off) 7167 { 7168 struct inode *inode = sb_dqopt(sb)->files[type]; 7169 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7170 int offset = off & (sb->s_blocksize - 1); 7171 int tocopy; 7172 size_t toread; 7173 struct buffer_head *bh; 7174 loff_t i_size = i_size_read(inode); 7175 7176 if (off > i_size) 7177 return 0; 7178 if (off+len > i_size) 7179 len = i_size-off; 7180 toread = len; 7181 while (toread > 0) { 7182 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7183 bh = ext4_bread(NULL, inode, blk, 0); 7184 if (IS_ERR(bh)) 7185 return PTR_ERR(bh); 7186 if (!bh) /* A hole? */ 7187 memset(data, 0, tocopy); 7188 else 7189 memcpy(data, bh->b_data+offset, tocopy); 7190 brelse(bh); 7191 offset = 0; 7192 toread -= tocopy; 7193 data += tocopy; 7194 blk++; 7195 } 7196 return len; 7197 } 7198 7199 /* Write to quotafile (we know the transaction is already started and has 7200 * enough credits) */ 7201 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7202 const char *data, size_t len, loff_t off) 7203 { 7204 struct inode *inode = sb_dqopt(sb)->files[type]; 7205 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7206 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7207 int retries = 0; 7208 struct buffer_head *bh; 7209 handle_t *handle = journal_current_handle(); 7210 7211 if (!handle) { 7212 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7213 " cancelled because transaction is not started", 7214 (unsigned long long)off, (unsigned long long)len); 7215 return -EIO; 7216 } 7217 /* 7218 * Since we account only one data block in transaction credits, 7219 * then it is impossible to cross a block boundary. 7220 */ 7221 if (sb->s_blocksize - offset < len) { 7222 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7223 " cancelled because not block aligned", 7224 (unsigned long long)off, (unsigned long long)len); 7225 return -EIO; 7226 } 7227 7228 do { 7229 bh = ext4_bread(handle, inode, blk, 7230 EXT4_GET_BLOCKS_CREATE | 7231 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7232 } while (PTR_ERR(bh) == -ENOSPC && 7233 ext4_should_retry_alloc(inode->i_sb, &retries)); 7234 if (IS_ERR(bh)) 7235 return PTR_ERR(bh); 7236 if (!bh) 7237 goto out; 7238 BUFFER_TRACE(bh, "get write access"); 7239 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7240 if (err) { 7241 brelse(bh); 7242 return err; 7243 } 7244 lock_buffer(bh); 7245 memcpy(bh->b_data+offset, data, len); 7246 flush_dcache_page(bh->b_page); 7247 unlock_buffer(bh); 7248 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7249 brelse(bh); 7250 out: 7251 if (inode->i_size < off + len) { 7252 i_size_write(inode, off + len); 7253 EXT4_I(inode)->i_disksize = inode->i_size; 7254 err2 = ext4_mark_inode_dirty(handle, inode); 7255 if (unlikely(err2 && !err)) 7256 err = err2; 7257 } 7258 return err ? err : len; 7259 } 7260 #endif 7261 7262 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7263 static inline void register_as_ext2(void) 7264 { 7265 int err = register_filesystem(&ext2_fs_type); 7266 if (err) 7267 printk(KERN_WARNING 7268 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7269 } 7270 7271 static inline void unregister_as_ext2(void) 7272 { 7273 unregister_filesystem(&ext2_fs_type); 7274 } 7275 7276 static inline int ext2_feature_set_ok(struct super_block *sb) 7277 { 7278 if (ext4_has_unknown_ext2_incompat_features(sb)) 7279 return 0; 7280 if (sb_rdonly(sb)) 7281 return 1; 7282 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7283 return 0; 7284 return 1; 7285 } 7286 #else 7287 static inline void register_as_ext2(void) { } 7288 static inline void unregister_as_ext2(void) { } 7289 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7290 #endif 7291 7292 static inline void register_as_ext3(void) 7293 { 7294 int err = register_filesystem(&ext3_fs_type); 7295 if (err) 7296 printk(KERN_WARNING 7297 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7298 } 7299 7300 static inline void unregister_as_ext3(void) 7301 { 7302 unregister_filesystem(&ext3_fs_type); 7303 } 7304 7305 static inline int ext3_feature_set_ok(struct super_block *sb) 7306 { 7307 if (ext4_has_unknown_ext3_incompat_features(sb)) 7308 return 0; 7309 if (!ext4_has_feature_journal(sb)) 7310 return 0; 7311 if (sb_rdonly(sb)) 7312 return 1; 7313 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7314 return 0; 7315 return 1; 7316 } 7317 7318 static void ext4_kill_sb(struct super_block *sb) 7319 { 7320 struct ext4_sb_info *sbi = EXT4_SB(sb); 7321 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7322 7323 kill_block_super(sb); 7324 7325 if (bdev_file) 7326 bdev_fput(bdev_file); 7327 } 7328 7329 static struct file_system_type ext4_fs_type = { 7330 .owner = THIS_MODULE, 7331 .name = "ext4", 7332 .init_fs_context = ext4_init_fs_context, 7333 .parameters = ext4_param_specs, 7334 .kill_sb = ext4_kill_sb, 7335 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7336 }; 7337 MODULE_ALIAS_FS("ext4"); 7338 7339 /* Shared across all ext4 file systems */ 7340 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7341 7342 static int __init ext4_init_fs(void) 7343 { 7344 int i, err; 7345 7346 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7347 ext4_li_info = NULL; 7348 7349 /* Build-time check for flags consistency */ 7350 ext4_check_flag_values(); 7351 7352 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7353 init_waitqueue_head(&ext4__ioend_wq[i]); 7354 7355 err = ext4_init_es(); 7356 if (err) 7357 return err; 7358 7359 err = ext4_init_pending(); 7360 if (err) 7361 goto out7; 7362 7363 err = ext4_init_post_read_processing(); 7364 if (err) 7365 goto out6; 7366 7367 err = ext4_init_pageio(); 7368 if (err) 7369 goto out5; 7370 7371 err = ext4_init_system_zone(); 7372 if (err) 7373 goto out4; 7374 7375 err = ext4_init_sysfs(); 7376 if (err) 7377 goto out3; 7378 7379 err = ext4_init_mballoc(); 7380 if (err) 7381 goto out2; 7382 err = init_inodecache(); 7383 if (err) 7384 goto out1; 7385 7386 err = ext4_fc_init_dentry_cache(); 7387 if (err) 7388 goto out05; 7389 7390 register_as_ext3(); 7391 register_as_ext2(); 7392 err = register_filesystem(&ext4_fs_type); 7393 if (err) 7394 goto out; 7395 7396 return 0; 7397 out: 7398 unregister_as_ext2(); 7399 unregister_as_ext3(); 7400 ext4_fc_destroy_dentry_cache(); 7401 out05: 7402 destroy_inodecache(); 7403 out1: 7404 ext4_exit_mballoc(); 7405 out2: 7406 ext4_exit_sysfs(); 7407 out3: 7408 ext4_exit_system_zone(); 7409 out4: 7410 ext4_exit_pageio(); 7411 out5: 7412 ext4_exit_post_read_processing(); 7413 out6: 7414 ext4_exit_pending(); 7415 out7: 7416 ext4_exit_es(); 7417 7418 return err; 7419 } 7420 7421 static void __exit ext4_exit_fs(void) 7422 { 7423 ext4_destroy_lazyinit_thread(); 7424 unregister_as_ext2(); 7425 unregister_as_ext3(); 7426 unregister_filesystem(&ext4_fs_type); 7427 ext4_fc_destroy_dentry_cache(); 7428 destroy_inodecache(); 7429 ext4_exit_mballoc(); 7430 ext4_exit_sysfs(); 7431 ext4_exit_system_zone(); 7432 ext4_exit_pageio(); 7433 ext4_exit_post_read_processing(); 7434 ext4_exit_es(); 7435 ext4_exit_pending(); 7436 } 7437 7438 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7439 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7440 MODULE_LICENSE("GPL"); 7441 MODULE_SOFTDEP("pre: crc32c"); 7442 module_init(ext4_init_fs) 7443 module_exit(ext4_exit_fs) 7444