xref: /linux/fs/ext4/super.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io)
165 {
166 	/*
167 	 * buffer's verified bit is no longer valid after reading from
168 	 * disk again due to write out error, clear it to make sure we
169 	 * recheck the buffer contents.
170 	 */
171 	clear_buffer_verified(bh);
172 
173 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 	get_bh(bh);
175 	submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 			 bh_end_io_t *end_io)
180 {
181 	BUG_ON(!buffer_locked(bh));
182 
183 	if (ext4_buffer_uptodate(bh)) {
184 		unlock_buffer(bh);
185 		return;
186 	}
187 	__ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 	BUG_ON(!buffer_locked(bh));
193 
194 	if (ext4_buffer_uptodate(bh)) {
195 		unlock_buffer(bh);
196 		return 0;
197 	}
198 
199 	__ext4_read_bh(bh, op_flags, end_io);
200 
201 	wait_on_buffer(bh);
202 	if (buffer_uptodate(bh))
203 		return 0;
204 	return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 	lock_buffer(bh);
210 	if (!wait) {
211 		ext4_read_bh_nowait(bh, op_flags, NULL);
212 		return 0;
213 	}
214 	return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 					       sector_t block,
225 					       blk_opf_t op_flags, gfp_t gfp)
226 {
227 	struct buffer_head *bh;
228 	int ret;
229 
230 	bh = sb_getblk_gfp(sb, block, gfp);
231 	if (bh == NULL)
232 		return ERR_PTR(-ENOMEM);
233 	if (ext4_buffer_uptodate(bh))
234 		return bh;
235 
236 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 	if (ret) {
238 		put_bh(bh);
239 		return ERR_PTR(ret);
240 	}
241 	return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 				   blk_opf_t op_flags)
246 {
247 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
248 			~__GFP_FS) | __GFP_MOVABLE;
249 
250 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
251 }
252 
253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
254 					    sector_t block)
255 {
256 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
257 			~__GFP_FS);
258 
259 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
260 }
261 
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
263 {
264 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
265 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
266 
267 	if (likely(bh)) {
268 		if (trylock_buffer(bh))
269 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
270 		brelse(bh);
271 	}
272 }
273 
274 static int ext4_verify_csum_type(struct super_block *sb,
275 				 struct ext4_super_block *es)
276 {
277 	if (!ext4_has_feature_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282 
283 __le32 ext4_superblock_csum(struct super_block *sb,
284 			    struct ext4_super_block *es)
285 {
286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
287 	int offset = offsetof(struct ext4_super_block, s_checksum);
288 	__u32 csum;
289 
290 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291 
292 	return cpu_to_le32(csum);
293 }
294 
295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 				       struct ext4_super_block *es)
297 {
298 	if (!ext4_has_metadata_csum(sb))
299 		return 1;
300 
301 	return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303 
304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307 
308 	if (!ext4_has_metadata_csum(sb))
309 		return;
310 
311 	es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313 
314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321 
322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 			       struct ext4_group_desc *bg)
324 {
325 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329 
330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le32_to_cpu(bg->bg_inode_table_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337 
338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 			       struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345 
346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 			      struct ext4_group_desc *bg)
348 {
349 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
350 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 }
353 
354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 			      struct ext4_group_desc *bg)
356 {
357 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361 
362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 			      struct ext4_group_desc *bg)
364 {
365 	return le16_to_cpu(bg->bg_itable_unused_lo) |
366 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369 
370 void ext4_block_bitmap_set(struct super_block *sb,
371 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
378 void ext4_inode_bitmap_set(struct super_block *sb,
379 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385 
386 void ext4_inode_table_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393 
394 void ext4_free_group_clusters_set(struct super_block *sb,
395 				  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401 
402 void ext4_free_inodes_set(struct super_block *sb,
403 			  struct ext4_group_desc *bg, __u32 count)
404 {
405 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
406 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 }
409 
410 void ext4_used_dirs_set(struct super_block *sb,
411 			  struct ext4_group_desc *bg, __u32 count)
412 {
413 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417 
418 void ext4_itable_unused_set(struct super_block *sb,
419 			  struct ext4_group_desc *bg, __u32 count)
420 {
421 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425 
426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 	now = clamp_val(now, 0, (1ull << 40) - 1);
429 
430 	*lo = cpu_to_le32(lower_32_bits(now));
431 	*hi = upper_32_bits(now);
432 }
433 
434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 			     ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446 
447 /*
448  * The ext4_maybe_update_superblock() function checks and updates the
449  * superblock if needed.
450  *
451  * This function is designed to update the on-disk superblock only under
452  * certain conditions to prevent excessive disk writes and unnecessary
453  * waking of the disk from sleep. The superblock will be updated if:
454  * 1. More than an hour has passed since the last superblock update, and
455  * 2. More than 16MB have been written since the last superblock update.
456  *
457  * @sb: The superblock
458  */
459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 	struct ext4_sb_info *sbi = EXT4_SB(sb);
462 	struct ext4_super_block *es = sbi->s_es;
463 	journal_t *journal = sbi->s_journal;
464 	time64_t now;
465 	__u64 last_update;
466 	__u64 lifetime_write_kbytes;
467 	__u64 diff_size;
468 
469 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
471 		return;
472 
473 	now = ktime_get_real_seconds();
474 	last_update = ext4_get_tstamp(es, s_wtime);
475 
476 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 		return;
478 
479 	lifetime_write_kbytes = sbi->s_kbytes_written +
480 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 		  sbi->s_sectors_written_start) >> 1);
482 
483 	/* Get the number of kilobytes not written to disk to account
484 	 * for statistics and compare with a multiple of 16 MB. This
485 	 * is used to determine when the next superblock commit should
486 	 * occur (i.e. not more often than once per 16MB if there was
487 	 * less written in an hour).
488 	 */
489 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490 
491 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494 
495 /*
496  * The del_gendisk() function uninitializes the disk-specific data
497  * structures, including the bdi structure, without telling anyone
498  * else.  Once this happens, any attempt to call mark_buffer_dirty()
499  * (for example, by ext4_commit_super), will cause a kernel OOPS.
500  * This is a kludge to prevent these oops until we can put in a proper
501  * hook in del_gendisk() to inform the VFS and file system layers.
502  */
503 static int block_device_ejected(struct super_block *sb)
504 {
505 	struct inode *bd_inode = sb->s_bdev->bd_inode;
506 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507 
508 	return bdi->dev == NULL;
509 }
510 
511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 	struct super_block		*sb = journal->j_private;
514 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
515 	int				error = is_journal_aborted(journal);
516 	struct ext4_journal_cb_entry	*jce;
517 
518 	BUG_ON(txn->t_state == T_FINISHED);
519 
520 	ext4_process_freed_data(sb, txn->t_tid);
521 	ext4_maybe_update_superblock(sb);
522 
523 	spin_lock(&sbi->s_md_lock);
524 	while (!list_empty(&txn->t_private_list)) {
525 		jce = list_entry(txn->t_private_list.next,
526 				 struct ext4_journal_cb_entry, jce_list);
527 		list_del_init(&jce->jce_list);
528 		spin_unlock(&sbi->s_md_lock);
529 		jce->jce_func(sb, jce, error);
530 		spin_lock(&sbi->s_md_lock);
531 	}
532 	spin_unlock(&sbi->s_md_lock);
533 }
534 
535 /*
536  * This writepage callback for write_cache_pages()
537  * takes care of a few cases after page cleaning.
538  *
539  * write_cache_pages() already checks for dirty pages
540  * and calls clear_page_dirty_for_io(), which we want,
541  * to write protect the pages.
542  *
543  * However, we may have to redirty a page (see below.)
544  */
545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 					      struct writeback_control *wbc,
547 					      void *data)
548 {
549 	transaction_t *transaction = (transaction_t *) data;
550 	struct buffer_head *bh, *head;
551 	struct journal_head *jh;
552 
553 	bh = head = folio_buffers(folio);
554 	do {
555 		/*
556 		 * We have to redirty a page in these cases:
557 		 * 1) If buffer is dirty, it means the page was dirty because it
558 		 * contains a buffer that needs checkpointing. So the dirty bit
559 		 * needs to be preserved so that checkpointing writes the buffer
560 		 * properly.
561 		 * 2) If buffer is not part of the committing transaction
562 		 * (we may have just accidentally come across this buffer because
563 		 * inode range tracking is not exact) or if the currently running
564 		 * transaction already contains this buffer as well, dirty bit
565 		 * needs to be preserved so that the buffer gets writeprotected
566 		 * properly on running transaction's commit.
567 		 */
568 		jh = bh2jh(bh);
569 		if (buffer_dirty(bh) ||
570 		    (jh && (jh->b_transaction != transaction ||
571 			    jh->b_next_transaction))) {
572 			folio_redirty_for_writepage(wbc, folio);
573 			goto out;
574 		}
575 	} while ((bh = bh->b_this_page) != head);
576 
577 out:
578 	return AOP_WRITEPAGE_ACTIVATE;
579 }
580 
581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 	struct writeback_control wbc = {
585 		.sync_mode =  WB_SYNC_ALL,
586 		.nr_to_write = LONG_MAX,
587 		.range_start = jinode->i_dirty_start,
588 		.range_end = jinode->i_dirty_end,
589         };
590 
591 	return write_cache_pages(mapping, &wbc,
592 				 ext4_journalled_writepage_callback,
593 				 jinode->i_transaction);
594 }
595 
596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 	int ret;
599 
600 	if (ext4_should_journal_data(jinode->i_vfs_inode))
601 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 	else
603 		ret = ext4_normal_submit_inode_data_buffers(jinode);
604 	return ret;
605 }
606 
607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 	int ret = 0;
610 
611 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
613 
614 	return ret;
615 }
616 
617 static bool system_going_down(void)
618 {
619 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 		|| system_state == SYSTEM_RESTART;
621 }
622 
623 struct ext4_err_translation {
624 	int code;
625 	int errno;
626 };
627 
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629 
630 static struct ext4_err_translation err_translation[] = {
631 	EXT4_ERR_TRANSLATE(EIO),
632 	EXT4_ERR_TRANSLATE(ENOMEM),
633 	EXT4_ERR_TRANSLATE(EFSBADCRC),
634 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 	EXT4_ERR_TRANSLATE(ENOSPC),
636 	EXT4_ERR_TRANSLATE(ENOKEY),
637 	EXT4_ERR_TRANSLATE(EROFS),
638 	EXT4_ERR_TRANSLATE(EFBIG),
639 	EXT4_ERR_TRANSLATE(EEXIST),
640 	EXT4_ERR_TRANSLATE(ERANGE),
641 	EXT4_ERR_TRANSLATE(EOVERFLOW),
642 	EXT4_ERR_TRANSLATE(EBUSY),
643 	EXT4_ERR_TRANSLATE(ENOTDIR),
644 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 	EXT4_ERR_TRANSLATE(EFAULT),
647 };
648 
649 static int ext4_errno_to_code(int errno)
650 {
651 	int i;
652 
653 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 		if (err_translation[i].errno == errno)
655 			return err_translation[i].code;
656 	return EXT4_ERR_UNKNOWN;
657 }
658 
659 static void save_error_info(struct super_block *sb, int error,
660 			    __u32 ino, __u64 block,
661 			    const char *func, unsigned int line)
662 {
663 	struct ext4_sb_info *sbi = EXT4_SB(sb);
664 
665 	/* We default to EFSCORRUPTED error... */
666 	if (error == 0)
667 		error = EFSCORRUPTED;
668 
669 	spin_lock(&sbi->s_error_lock);
670 	sbi->s_add_error_count++;
671 	sbi->s_last_error_code = error;
672 	sbi->s_last_error_line = line;
673 	sbi->s_last_error_ino = ino;
674 	sbi->s_last_error_block = block;
675 	sbi->s_last_error_func = func;
676 	sbi->s_last_error_time = ktime_get_real_seconds();
677 	if (!sbi->s_first_error_time) {
678 		sbi->s_first_error_code = error;
679 		sbi->s_first_error_line = line;
680 		sbi->s_first_error_ino = ino;
681 		sbi->s_first_error_block = block;
682 		sbi->s_first_error_func = func;
683 		sbi->s_first_error_time = sbi->s_last_error_time;
684 	}
685 	spin_unlock(&sbi->s_error_lock);
686 }
687 
688 /* Deal with the reporting of failure conditions on a filesystem such as
689  * inconsistencies detected or read IO failures.
690  *
691  * On ext2, we can store the error state of the filesystem in the
692  * superblock.  That is not possible on ext4, because we may have other
693  * write ordering constraints on the superblock which prevent us from
694  * writing it out straight away; and given that the journal is about to
695  * be aborted, we can't rely on the current, or future, transactions to
696  * write out the superblock safely.
697  *
698  * We'll just use the jbd2_journal_abort() error code to record an error in
699  * the journal instead.  On recovery, the journal will complain about
700  * that error until we've noted it down and cleared it.
701  *
702  * If force_ro is set, we unconditionally force the filesystem into an
703  * ABORT|READONLY state, unless the error response on the fs has been set to
704  * panic in which case we take the easy way out and panic immediately. This is
705  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706  * at a critical moment in log management.
707  */
708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 			      __u32 ino, __u64 block,
710 			      const char *func, unsigned int line)
711 {
712 	journal_t *journal = EXT4_SB(sb)->s_journal;
713 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714 
715 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 	if (test_opt(sb, WARN_ON_ERROR))
717 		WARN_ON_ONCE(1);
718 
719 	if (!continue_fs && !sb_rdonly(sb)) {
720 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 		if (journal)
722 			jbd2_journal_abort(journal, -EIO);
723 	}
724 
725 	if (!bdev_read_only(sb->s_bdev)) {
726 		save_error_info(sb, error, ino, block, func, line);
727 		/*
728 		 * In case the fs should keep running, we need to writeout
729 		 * superblock through the journal. Due to lock ordering
730 		 * constraints, it may not be safe to do it right here so we
731 		 * defer superblock flushing to a workqueue.
732 		 */
733 		if (continue_fs && journal)
734 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
735 		else
736 			ext4_commit_super(sb);
737 	}
738 
739 	/*
740 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 	 * could panic during 'reboot -f' as the underlying device got already
742 	 * disabled.
743 	 */
744 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 		panic("EXT4-fs (device %s): panic forced after error\n",
746 			sb->s_id);
747 	}
748 
749 	if (sb_rdonly(sb) || continue_fs)
750 		return;
751 
752 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
753 	/*
754 	 * Make sure updated value of ->s_mount_flags will be visible before
755 	 * ->s_flags update
756 	 */
757 	smp_wmb();
758 	sb->s_flags |= SB_RDONLY;
759 }
760 
761 static void update_super_work(struct work_struct *work)
762 {
763 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
764 						s_sb_upd_work);
765 	journal_t *journal = sbi->s_journal;
766 	handle_t *handle;
767 
768 	/*
769 	 * If the journal is still running, we have to write out superblock
770 	 * through the journal to avoid collisions of other journalled sb
771 	 * updates.
772 	 *
773 	 * We use directly jbd2 functions here to avoid recursing back into
774 	 * ext4 error handling code during handling of previous errors.
775 	 */
776 	if (!sb_rdonly(sbi->s_sb) && journal) {
777 		struct buffer_head *sbh = sbi->s_sbh;
778 		bool call_notify_err = false;
779 
780 		handle = jbd2_journal_start(journal, 1);
781 		if (IS_ERR(handle))
782 			goto write_directly;
783 		if (jbd2_journal_get_write_access(handle, sbh)) {
784 			jbd2_journal_stop(handle);
785 			goto write_directly;
786 		}
787 
788 		if (sbi->s_add_error_count > 0)
789 			call_notify_err = true;
790 
791 		ext4_update_super(sbi->s_sb);
792 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
793 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
794 				 "superblock detected");
795 			clear_buffer_write_io_error(sbh);
796 			set_buffer_uptodate(sbh);
797 		}
798 
799 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
800 			jbd2_journal_stop(handle);
801 			goto write_directly;
802 		}
803 		jbd2_journal_stop(handle);
804 
805 		if (call_notify_err)
806 			ext4_notify_error_sysfs(sbi);
807 
808 		return;
809 	}
810 write_directly:
811 	/*
812 	 * Write through journal failed. Write sb directly to get error info
813 	 * out and hope for the best.
814 	 */
815 	ext4_commit_super(sbi->s_sb);
816 	ext4_notify_error_sysfs(sbi);
817 }
818 
819 #define ext4_error_ratelimit(sb)					\
820 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
821 			     "EXT4-fs error")
822 
823 void __ext4_error(struct super_block *sb, const char *function,
824 		  unsigned int line, bool force_ro, int error, __u64 block,
825 		  const char *fmt, ...)
826 {
827 	struct va_format vaf;
828 	va_list args;
829 
830 	if (unlikely(ext4_forced_shutdown(sb)))
831 		return;
832 
833 	trace_ext4_error(sb, function, line);
834 	if (ext4_error_ratelimit(sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		printk(KERN_CRIT
839 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
840 		       sb->s_id, function, line, current->comm, &vaf);
841 		va_end(args);
842 	}
843 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
844 
845 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
846 }
847 
848 void __ext4_error_inode(struct inode *inode, const char *function,
849 			unsigned int line, ext4_fsblk_t block, int error,
850 			const char *fmt, ...)
851 {
852 	va_list args;
853 	struct va_format vaf;
854 
855 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
856 		return;
857 
858 	trace_ext4_error(inode->i_sb, function, line);
859 	if (ext4_error_ratelimit(inode->i_sb)) {
860 		va_start(args, fmt);
861 		vaf.fmt = fmt;
862 		vaf.va = &args;
863 		if (block)
864 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
865 			       "inode #%lu: block %llu: comm %s: %pV\n",
866 			       inode->i_sb->s_id, function, line, inode->i_ino,
867 			       block, current->comm, &vaf);
868 		else
869 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
870 			       "inode #%lu: comm %s: %pV\n",
871 			       inode->i_sb->s_id, function, line, inode->i_ino,
872 			       current->comm, &vaf);
873 		va_end(args);
874 	}
875 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
876 
877 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
878 			  function, line);
879 }
880 
881 void __ext4_error_file(struct file *file, const char *function,
882 		       unsigned int line, ext4_fsblk_t block,
883 		       const char *fmt, ...)
884 {
885 	va_list args;
886 	struct va_format vaf;
887 	struct inode *inode = file_inode(file);
888 	char pathname[80], *path;
889 
890 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
891 		return;
892 
893 	trace_ext4_error(inode->i_sb, function, line);
894 	if (ext4_error_ratelimit(inode->i_sb)) {
895 		path = file_path(file, pathname, sizeof(pathname));
896 		if (IS_ERR(path))
897 			path = "(unknown)";
898 		va_start(args, fmt);
899 		vaf.fmt = fmt;
900 		vaf.va = &args;
901 		if (block)
902 			printk(KERN_CRIT
903 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
904 			       "block %llu: comm %s: path %s: %pV\n",
905 			       inode->i_sb->s_id, function, line, inode->i_ino,
906 			       block, current->comm, path, &vaf);
907 		else
908 			printk(KERN_CRIT
909 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
910 			       "comm %s: path %s: %pV\n",
911 			       inode->i_sb->s_id, function, line, inode->i_ino,
912 			       current->comm, path, &vaf);
913 		va_end(args);
914 	}
915 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
916 
917 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
918 			  function, line);
919 }
920 
921 const char *ext4_decode_error(struct super_block *sb, int errno,
922 			      char nbuf[16])
923 {
924 	char *errstr = NULL;
925 
926 	switch (errno) {
927 	case -EFSCORRUPTED:
928 		errstr = "Corrupt filesystem";
929 		break;
930 	case -EFSBADCRC:
931 		errstr = "Filesystem failed CRC";
932 		break;
933 	case -EIO:
934 		errstr = "IO failure";
935 		break;
936 	case -ENOMEM:
937 		errstr = "Out of memory";
938 		break;
939 	case -EROFS:
940 		if (!sb || (EXT4_SB(sb)->s_journal &&
941 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
942 			errstr = "Journal has aborted";
943 		else
944 			errstr = "Readonly filesystem";
945 		break;
946 	default:
947 		/* If the caller passed in an extra buffer for unknown
948 		 * errors, textualise them now.  Else we just return
949 		 * NULL. */
950 		if (nbuf) {
951 			/* Check for truncated error codes... */
952 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
953 				errstr = nbuf;
954 		}
955 		break;
956 	}
957 
958 	return errstr;
959 }
960 
961 /* __ext4_std_error decodes expected errors from journaling functions
962  * automatically and invokes the appropriate error response.  */
963 
964 void __ext4_std_error(struct super_block *sb, const char *function,
965 		      unsigned int line, int errno)
966 {
967 	char nbuf[16];
968 	const char *errstr;
969 
970 	if (unlikely(ext4_forced_shutdown(sb)))
971 		return;
972 
973 	/* Special case: if the error is EROFS, and we're not already
974 	 * inside a transaction, then there's really no point in logging
975 	 * an error. */
976 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
977 		return;
978 
979 	if (ext4_error_ratelimit(sb)) {
980 		errstr = ext4_decode_error(sb, errno, nbuf);
981 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
982 		       sb->s_id, function, line, errstr);
983 	}
984 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
985 
986 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
987 }
988 
989 void __ext4_msg(struct super_block *sb,
990 		const char *prefix, const char *fmt, ...)
991 {
992 	struct va_format vaf;
993 	va_list args;
994 
995 	if (sb) {
996 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
997 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
998 				  "EXT4-fs"))
999 			return;
1000 	}
1001 
1002 	va_start(args, fmt);
1003 	vaf.fmt = fmt;
1004 	vaf.va = &args;
1005 	if (sb)
1006 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007 	else
1008 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009 	va_end(args);
1010 }
1011 
1012 static int ext4_warning_ratelimit(struct super_block *sb)
1013 {
1014 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016 			    "EXT4-fs warning");
1017 }
1018 
1019 void __ext4_warning(struct super_block *sb, const char *function,
1020 		    unsigned int line, const char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	if (!ext4_warning_ratelimit(sb))
1026 		return;
1027 
1028 	va_start(args, fmt);
1029 	vaf.fmt = fmt;
1030 	vaf.va = &args;
1031 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032 	       sb->s_id, function, line, &vaf);
1033 	va_end(args);
1034 }
1035 
1036 void __ext4_warning_inode(const struct inode *inode, const char *function,
1037 			  unsigned int line, const char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	if (!ext4_warning_ratelimit(inode->i_sb))
1043 		return;
1044 
1045 	va_start(args, fmt);
1046 	vaf.fmt = fmt;
1047 	vaf.va = &args;
1048 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050 	       function, line, inode->i_ino, current->comm, &vaf);
1051 	va_end(args);
1052 }
1053 
1054 void __ext4_grp_locked_error(const char *function, unsigned int line,
1055 			     struct super_block *sb, ext4_group_t grp,
1056 			     unsigned long ino, ext4_fsblk_t block,
1057 			     const char *fmt, ...)
1058 __releases(bitlock)
1059 __acquires(bitlock)
1060 {
1061 	struct va_format vaf;
1062 	va_list args;
1063 
1064 	if (unlikely(ext4_forced_shutdown(sb)))
1065 		return;
1066 
1067 	trace_ext4_error(sb, function, line);
1068 	if (ext4_error_ratelimit(sb)) {
1069 		va_start(args, fmt);
1070 		vaf.fmt = fmt;
1071 		vaf.va = &args;
1072 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073 		       sb->s_id, function, line, grp);
1074 		if (ino)
1075 			printk(KERN_CONT "inode %lu: ", ino);
1076 		if (block)
1077 			printk(KERN_CONT "block %llu:",
1078 			       (unsigned long long) block);
1079 		printk(KERN_CONT "%pV\n", &vaf);
1080 		va_end(args);
1081 	}
1082 
1083 	if (test_opt(sb, ERRORS_CONT)) {
1084 		if (test_opt(sb, WARN_ON_ERROR))
1085 			WARN_ON_ONCE(1);
1086 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087 		if (!bdev_read_only(sb->s_bdev)) {
1088 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089 					line);
1090 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091 		}
1092 		return;
1093 	}
1094 	ext4_unlock_group(sb, grp);
1095 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096 	/*
1097 	 * We only get here in the ERRORS_RO case; relocking the group
1098 	 * may be dangerous, but nothing bad will happen since the
1099 	 * filesystem will have already been marked read/only and the
1100 	 * journal has been aborted.  We return 1 as a hint to callers
1101 	 * who might what to use the return value from
1102 	 * ext4_grp_locked_error() to distinguish between the
1103 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104 	 * aggressively from the ext4 function in question, with a
1105 	 * more appropriate error code.
1106 	 */
1107 	ext4_lock_group(sb, grp);
1108 	return;
1109 }
1110 
1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112 				     ext4_group_t group,
1113 				     unsigned int flags)
1114 {
1115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118 	int ret;
1119 
1120 	if (!grp || !gdp)
1121 		return;
1122 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124 					    &grp->bb_state);
1125 		if (!ret)
1126 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127 					   grp->bb_free);
1128 	}
1129 
1130 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132 					    &grp->bb_state);
1133 		if (!ret && gdp) {
1134 			int count;
1135 
1136 			count = ext4_free_inodes_count(sb, gdp);
1137 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138 					   count);
1139 		}
1140 	}
1141 }
1142 
1143 void ext4_update_dynamic_rev(struct super_block *sb)
1144 {
1145 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146 
1147 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148 		return;
1149 
1150 	ext4_warning(sb,
1151 		     "updating to rev %d because of new feature flag, "
1152 		     "running e2fsck is recommended",
1153 		     EXT4_DYNAMIC_REV);
1154 
1155 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158 	/* leave es->s_feature_*compat flags alone */
1159 	/* es->s_uuid will be set by e2fsck if empty */
1160 
1161 	/*
1162 	 * The rest of the superblock fields should be zero, and if not it
1163 	 * means they are likely already in use, so leave them alone.  We
1164 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165 	 */
1166 }
1167 
1168 static inline struct inode *orphan_list_entry(struct list_head *l)
1169 {
1170 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171 }
1172 
1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174 {
1175 	struct list_head *l;
1176 
1177 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179 
1180 	printk(KERN_ERR "sb_info orphan list:\n");
1181 	list_for_each(l, &sbi->s_orphan) {
1182 		struct inode *inode = orphan_list_entry(l);
1183 		printk(KERN_ERR "  "
1184 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185 		       inode->i_sb->s_id, inode->i_ino, inode,
1186 		       inode->i_mode, inode->i_nlink,
1187 		       NEXT_ORPHAN(inode));
1188 	}
1189 }
1190 
1191 #ifdef CONFIG_QUOTA
1192 static int ext4_quota_off(struct super_block *sb, int type);
1193 
1194 static inline void ext4_quotas_off(struct super_block *sb, int type)
1195 {
1196 	BUG_ON(type > EXT4_MAXQUOTAS);
1197 
1198 	/* Use our quota_off function to clear inode flags etc. */
1199 	for (type--; type >= 0; type--)
1200 		ext4_quota_off(sb, type);
1201 }
1202 
1203 /*
1204  * This is a helper function which is used in the mount/remount
1205  * codepaths (which holds s_umount) to fetch the quota file name.
1206  */
1207 static inline char *get_qf_name(struct super_block *sb,
1208 				struct ext4_sb_info *sbi,
1209 				int type)
1210 {
1211 	return rcu_dereference_protected(sbi->s_qf_names[type],
1212 					 lockdep_is_held(&sb->s_umount));
1213 }
1214 #else
1215 static inline void ext4_quotas_off(struct super_block *sb, int type)
1216 {
1217 }
1218 #endif
1219 
1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221 {
1222 	ext4_fsblk_t block;
1223 	int err;
1224 
1225 	block = ext4_count_free_clusters(sbi->s_sb);
1226 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228 				  GFP_KERNEL);
1229 	if (!err) {
1230 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233 					  GFP_KERNEL);
1234 	}
1235 	if (!err)
1236 		err = percpu_counter_init(&sbi->s_dirs_counter,
1237 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238 	if (!err)
1239 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240 					  GFP_KERNEL);
1241 	if (!err)
1242 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243 					  GFP_KERNEL);
1244 	if (!err)
1245 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246 
1247 	if (err)
1248 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249 
1250 	return err;
1251 }
1252 
1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254 {
1255 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257 	percpu_counter_destroy(&sbi->s_dirs_counter);
1258 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261 }
1262 
1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264 {
1265 	struct buffer_head **group_desc;
1266 	int i;
1267 
1268 	rcu_read_lock();
1269 	group_desc = rcu_dereference(sbi->s_group_desc);
1270 	for (i = 0; i < sbi->s_gdb_count; i++)
1271 		brelse(group_desc[i]);
1272 	kvfree(group_desc);
1273 	rcu_read_unlock();
1274 }
1275 
1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277 {
1278 	struct flex_groups **flex_groups;
1279 	int i;
1280 
1281 	rcu_read_lock();
1282 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283 	if (flex_groups) {
1284 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285 			kvfree(flex_groups[i]);
1286 		kvfree(flex_groups);
1287 	}
1288 	rcu_read_unlock();
1289 }
1290 
1291 static void ext4_put_super(struct super_block *sb)
1292 {
1293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294 	struct ext4_super_block *es = sbi->s_es;
1295 	int aborted = 0;
1296 	int err;
1297 
1298 	/*
1299 	 * Unregister sysfs before destroying jbd2 journal.
1300 	 * Since we could still access attr_journal_task attribute via sysfs
1301 	 * path which could have sbi->s_journal->j_task as NULL
1302 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304 	 * read metadata verify failed then will queue error work.
1305 	 * update_super_work will call start_this_handle may trigger
1306 	 * BUG_ON.
1307 	 */
1308 	ext4_unregister_sysfs(sb);
1309 
1310 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312 			 &sb->s_uuid);
1313 
1314 	ext4_unregister_li_request(sb);
1315 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316 
1317 	flush_work(&sbi->s_sb_upd_work);
1318 	destroy_workqueue(sbi->rsv_conversion_wq);
1319 	ext4_release_orphan_info(sb);
1320 
1321 	if (sbi->s_journal) {
1322 		aborted = is_journal_aborted(sbi->s_journal);
1323 		err = jbd2_journal_destroy(sbi->s_journal);
1324 		sbi->s_journal = NULL;
1325 		if ((err < 0) && !aborted) {
1326 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327 		}
1328 	}
1329 
1330 	ext4_es_unregister_shrinker(sbi);
1331 	timer_shutdown_sync(&sbi->s_err_report);
1332 	ext4_release_system_zone(sb);
1333 	ext4_mb_release(sb);
1334 	ext4_ext_release(sb);
1335 
1336 	if (!sb_rdonly(sb) && !aborted) {
1337 		ext4_clear_feature_journal_needs_recovery(sb);
1338 		ext4_clear_feature_orphan_present(sb);
1339 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340 	}
1341 	if (!sb_rdonly(sb))
1342 		ext4_commit_super(sb);
1343 
1344 	ext4_group_desc_free(sbi);
1345 	ext4_flex_groups_free(sbi);
1346 	ext4_percpu_param_destroy(sbi);
1347 #ifdef CONFIG_QUOTA
1348 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349 		kfree(get_qf_name(sb, sbi, i));
1350 #endif
1351 
1352 	/* Debugging code just in case the in-memory inode orphan list
1353 	 * isn't empty.  The on-disk one can be non-empty if we've
1354 	 * detected an error and taken the fs readonly, but the
1355 	 * in-memory list had better be clean by this point. */
1356 	if (!list_empty(&sbi->s_orphan))
1357 		dump_orphan_list(sb, sbi);
1358 	ASSERT(list_empty(&sbi->s_orphan));
1359 
1360 	sync_blockdev(sb->s_bdev);
1361 	invalidate_bdev(sb->s_bdev);
1362 	if (sbi->s_journal_bdev_file) {
1363 		/*
1364 		 * Invalidate the journal device's buffers.  We don't want them
1365 		 * floating about in memory - the physical journal device may
1366 		 * hotswapped, and it breaks the `ro-after' testing code.
1367 		 */
1368 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1369 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1370 	}
1371 
1372 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373 	sbi->s_ea_inode_cache = NULL;
1374 
1375 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376 	sbi->s_ea_block_cache = NULL;
1377 
1378 	ext4_stop_mmpd(sbi);
1379 
1380 	brelse(sbi->s_sbh);
1381 	sb->s_fs_info = NULL;
1382 	/*
1383 	 * Now that we are completely done shutting down the
1384 	 * superblock, we need to actually destroy the kobject.
1385 	 */
1386 	kobject_put(&sbi->s_kobj);
1387 	wait_for_completion(&sbi->s_kobj_unregister);
1388 	if (sbi->s_chksum_driver)
1389 		crypto_free_shash(sbi->s_chksum_driver);
1390 	kfree(sbi->s_blockgroup_lock);
1391 	fs_put_dax(sbi->s_daxdev, NULL);
1392 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393 #if IS_ENABLED(CONFIG_UNICODE)
1394 	utf8_unload(sb->s_encoding);
1395 #endif
1396 	kfree(sbi);
1397 }
1398 
1399 static struct kmem_cache *ext4_inode_cachep;
1400 
1401 /*
1402  * Called inside transaction, so use GFP_NOFS
1403  */
1404 static struct inode *ext4_alloc_inode(struct super_block *sb)
1405 {
1406 	struct ext4_inode_info *ei;
1407 
1408 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409 	if (!ei)
1410 		return NULL;
1411 
1412 	inode_set_iversion(&ei->vfs_inode, 1);
1413 	ei->i_flags = 0;
1414 	spin_lock_init(&ei->i_raw_lock);
1415 	ei->i_prealloc_node = RB_ROOT;
1416 	atomic_set(&ei->i_prealloc_active, 0);
1417 	rwlock_init(&ei->i_prealloc_lock);
1418 	ext4_es_init_tree(&ei->i_es_tree);
1419 	rwlock_init(&ei->i_es_lock);
1420 	INIT_LIST_HEAD(&ei->i_es_list);
1421 	ei->i_es_all_nr = 0;
1422 	ei->i_es_shk_nr = 0;
1423 	ei->i_es_shrink_lblk = 0;
1424 	ei->i_reserved_data_blocks = 0;
1425 	spin_lock_init(&(ei->i_block_reservation_lock));
1426 	ext4_init_pending_tree(&ei->i_pending_tree);
1427 #ifdef CONFIG_QUOTA
1428 	ei->i_reserved_quota = 0;
1429 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430 #endif
1431 	ei->jinode = NULL;
1432 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433 	spin_lock_init(&ei->i_completed_io_lock);
1434 	ei->i_sync_tid = 0;
1435 	ei->i_datasync_tid = 0;
1436 	atomic_set(&ei->i_unwritten, 0);
1437 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438 	ext4_fc_init_inode(&ei->vfs_inode);
1439 	mutex_init(&ei->i_fc_lock);
1440 	return &ei->vfs_inode;
1441 }
1442 
1443 static int ext4_drop_inode(struct inode *inode)
1444 {
1445 	int drop = generic_drop_inode(inode);
1446 
1447 	if (!drop)
1448 		drop = fscrypt_drop_inode(inode);
1449 
1450 	trace_ext4_drop_inode(inode, drop);
1451 	return drop;
1452 }
1453 
1454 static void ext4_free_in_core_inode(struct inode *inode)
1455 {
1456 	fscrypt_free_inode(inode);
1457 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458 		pr_warn("%s: inode %ld still in fc list",
1459 			__func__, inode->i_ino);
1460 	}
1461 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462 }
1463 
1464 static void ext4_destroy_inode(struct inode *inode)
1465 {
1466 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467 		ext4_msg(inode->i_sb, KERN_ERR,
1468 			 "Inode %lu (%p): orphan list check failed!",
1469 			 inode->i_ino, EXT4_I(inode));
1470 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472 				true);
1473 		dump_stack();
1474 	}
1475 
1476 	if (EXT4_I(inode)->i_reserved_data_blocks)
1477 		ext4_msg(inode->i_sb, KERN_ERR,
1478 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479 			 inode->i_ino, EXT4_I(inode),
1480 			 EXT4_I(inode)->i_reserved_data_blocks);
1481 }
1482 
1483 static void ext4_shutdown(struct super_block *sb)
1484 {
1485        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486 }
1487 
1488 static void init_once(void *foo)
1489 {
1490 	struct ext4_inode_info *ei = foo;
1491 
1492 	INIT_LIST_HEAD(&ei->i_orphan);
1493 	init_rwsem(&ei->xattr_sem);
1494 	init_rwsem(&ei->i_data_sem);
1495 	inode_init_once(&ei->vfs_inode);
1496 	ext4_fc_init_inode(&ei->vfs_inode);
1497 }
1498 
1499 static int __init init_inodecache(void)
1500 {
1501 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502 				sizeof(struct ext4_inode_info), 0,
1503 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1504 				offsetof(struct ext4_inode_info, i_data),
1505 				sizeof_field(struct ext4_inode_info, i_data),
1506 				init_once);
1507 	if (ext4_inode_cachep == NULL)
1508 		return -ENOMEM;
1509 	return 0;
1510 }
1511 
1512 static void destroy_inodecache(void)
1513 {
1514 	/*
1515 	 * Make sure all delayed rcu free inodes are flushed before we
1516 	 * destroy cache.
1517 	 */
1518 	rcu_barrier();
1519 	kmem_cache_destroy(ext4_inode_cachep);
1520 }
1521 
1522 void ext4_clear_inode(struct inode *inode)
1523 {
1524 	ext4_fc_del(inode);
1525 	invalidate_inode_buffers(inode);
1526 	clear_inode(inode);
1527 	ext4_discard_preallocations(inode);
1528 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1529 	dquot_drop(inode);
1530 	if (EXT4_I(inode)->jinode) {
1531 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532 					       EXT4_I(inode)->jinode);
1533 		jbd2_free_inode(EXT4_I(inode)->jinode);
1534 		EXT4_I(inode)->jinode = NULL;
1535 	}
1536 	fscrypt_put_encryption_info(inode);
1537 	fsverity_cleanup_inode(inode);
1538 }
1539 
1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541 					u64 ino, u32 generation)
1542 {
1543 	struct inode *inode;
1544 
1545 	/*
1546 	 * Currently we don't know the generation for parent directory, so
1547 	 * a generation of 0 means "accept any"
1548 	 */
1549 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1550 	if (IS_ERR(inode))
1551 		return ERR_CAST(inode);
1552 	if (generation && inode->i_generation != generation) {
1553 		iput(inode);
1554 		return ERR_PTR(-ESTALE);
1555 	}
1556 
1557 	return inode;
1558 }
1559 
1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561 					int fh_len, int fh_type)
1562 {
1563 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564 				    ext4_nfs_get_inode);
1565 }
1566 
1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568 					int fh_len, int fh_type)
1569 {
1570 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571 				    ext4_nfs_get_inode);
1572 }
1573 
1574 static int ext4_nfs_commit_metadata(struct inode *inode)
1575 {
1576 	struct writeback_control wbc = {
1577 		.sync_mode = WB_SYNC_ALL
1578 	};
1579 
1580 	trace_ext4_nfs_commit_metadata(inode);
1581 	return ext4_write_inode(inode, &wbc);
1582 }
1583 
1584 #ifdef CONFIG_QUOTA
1585 static const char * const quotatypes[] = INITQFNAMES;
1586 #define QTYPE2NAME(t) (quotatypes[t])
1587 
1588 static int ext4_write_dquot(struct dquot *dquot);
1589 static int ext4_acquire_dquot(struct dquot *dquot);
1590 static int ext4_release_dquot(struct dquot *dquot);
1591 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592 static int ext4_write_info(struct super_block *sb, int type);
1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594 			 const struct path *path);
1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 			       size_t len, loff_t off);
1597 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 				const char *data, size_t len, loff_t off);
1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 			     unsigned int flags);
1601 
1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1603 {
1604 	return EXT4_I(inode)->i_dquot;
1605 }
1606 
1607 static const struct dquot_operations ext4_quota_operations = {
1608 	.get_reserved_space	= ext4_get_reserved_space,
1609 	.write_dquot		= ext4_write_dquot,
1610 	.acquire_dquot		= ext4_acquire_dquot,
1611 	.release_dquot		= ext4_release_dquot,
1612 	.mark_dirty		= ext4_mark_dquot_dirty,
1613 	.write_info		= ext4_write_info,
1614 	.alloc_dquot		= dquot_alloc,
1615 	.destroy_dquot		= dquot_destroy,
1616 	.get_projid		= ext4_get_projid,
1617 	.get_inode_usage	= ext4_get_inode_usage,
1618 	.get_next_id		= dquot_get_next_id,
1619 };
1620 
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 	.quota_on	= ext4_quota_on,
1623 	.quota_off	= ext4_quota_off,
1624 	.quota_sync	= dquot_quota_sync,
1625 	.get_state	= dquot_get_state,
1626 	.set_info	= dquot_set_dqinfo,
1627 	.get_dqblk	= dquot_get_dqblk,
1628 	.set_dqblk	= dquot_set_dqblk,
1629 	.get_nextdqblk	= dquot_get_next_dqblk,
1630 };
1631 #endif
1632 
1633 static const struct super_operations ext4_sops = {
1634 	.alloc_inode	= ext4_alloc_inode,
1635 	.free_inode	= ext4_free_in_core_inode,
1636 	.destroy_inode	= ext4_destroy_inode,
1637 	.write_inode	= ext4_write_inode,
1638 	.dirty_inode	= ext4_dirty_inode,
1639 	.drop_inode	= ext4_drop_inode,
1640 	.evict_inode	= ext4_evict_inode,
1641 	.put_super	= ext4_put_super,
1642 	.sync_fs	= ext4_sync_fs,
1643 	.freeze_fs	= ext4_freeze,
1644 	.unfreeze_fs	= ext4_unfreeze,
1645 	.statfs		= ext4_statfs,
1646 	.show_options	= ext4_show_options,
1647 	.shutdown	= ext4_shutdown,
1648 #ifdef CONFIG_QUOTA
1649 	.quota_read	= ext4_quota_read,
1650 	.quota_write	= ext4_quota_write,
1651 	.get_dquots	= ext4_get_dquots,
1652 #endif
1653 };
1654 
1655 static const struct export_operations ext4_export_ops = {
1656 	.encode_fh = generic_encode_ino32_fh,
1657 	.fh_to_dentry = ext4_fh_to_dentry,
1658 	.fh_to_parent = ext4_fh_to_parent,
1659 	.get_parent = ext4_get_parent,
1660 	.commit_metadata = ext4_nfs_commit_metadata,
1661 };
1662 
1663 enum {
1664 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 	Opt_resgid, Opt_resuid, Opt_sb,
1666 	Opt_nouid32, Opt_debug, Opt_removed,
1667 	Opt_user_xattr, Opt_acl,
1668 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 	Opt_inlinecrypt,
1674 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1675 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1680 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 	Opt_dioread_nolock, Opt_dioread_lock,
1683 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691 
1692 static const struct constant_table ext4_param_errors[] = {
1693 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1694 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1695 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1696 	{}
1697 };
1698 
1699 static const struct constant_table ext4_param_data[] = {
1700 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1701 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1702 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1703 	{}
1704 };
1705 
1706 static const struct constant_table ext4_param_data_err[] = {
1707 	{"abort",	Opt_data_err_abort},
1708 	{"ignore",	Opt_data_err_ignore},
1709 	{}
1710 };
1711 
1712 static const struct constant_table ext4_param_jqfmt[] = {
1713 	{"vfsold",	QFMT_VFS_OLD},
1714 	{"vfsv0",	QFMT_VFS_V0},
1715 	{"vfsv1",	QFMT_VFS_V1},
1716 	{}
1717 };
1718 
1719 static const struct constant_table ext4_param_dax[] = {
1720 	{"always",	Opt_dax_always},
1721 	{"inode",	Opt_dax_inode},
1722 	{"never",	Opt_dax_never},
1723 	{}
1724 };
1725 
1726 /*
1727  * Mount option specification
1728  * We don't use fsparam_flag_no because of the way we set the
1729  * options and the way we show them in _ext4_show_options(). To
1730  * keep the changes to a minimum, let's keep the negative options
1731  * separate for now.
1732  */
1733 static const struct fs_parameter_spec ext4_param_specs[] = {
1734 	fsparam_flag	("bsddf",		Opt_bsd_df),
1735 	fsparam_flag	("minixdf",		Opt_minix_df),
1736 	fsparam_flag	("grpid",		Opt_grpid),
1737 	fsparam_flag	("bsdgroups",		Opt_grpid),
1738 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1739 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1740 	fsparam_u32	("resgid",		Opt_resgid),
1741 	fsparam_u32	("resuid",		Opt_resuid),
1742 	fsparam_u32	("sb",			Opt_sb),
1743 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1744 	fsparam_flag	("nouid32",		Opt_nouid32),
1745 	fsparam_flag	("debug",		Opt_debug),
1746 	fsparam_flag	("oldalloc",		Opt_removed),
1747 	fsparam_flag	("orlov",		Opt_removed),
1748 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1749 	fsparam_flag	("acl",			Opt_acl),
1750 	fsparam_flag	("norecovery",		Opt_noload),
1751 	fsparam_flag	("noload",		Opt_noload),
1752 	fsparam_flag	("bh",			Opt_removed),
1753 	fsparam_flag	("nobh",		Opt_removed),
1754 	fsparam_u32	("commit",		Opt_commit),
1755 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1756 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1757 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1758 	fsparam_bdev	("journal_path",	Opt_journal_path),
1759 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1760 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1761 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1762 	fsparam_flag	("abort",		Opt_abort),
1763 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1764 	fsparam_enum	("data_err",		Opt_data_err,
1765 						ext4_param_data_err),
1766 	fsparam_string_empty
1767 			("usrjquota",		Opt_usrjquota),
1768 	fsparam_string_empty
1769 			("grpjquota",		Opt_grpjquota),
1770 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1771 	fsparam_flag	("grpquota",		Opt_grpquota),
1772 	fsparam_flag	("quota",		Opt_quota),
1773 	fsparam_flag	("noquota",		Opt_noquota),
1774 	fsparam_flag	("usrquota",		Opt_usrquota),
1775 	fsparam_flag	("prjquota",		Opt_prjquota),
1776 	fsparam_flag	("barrier",		Opt_barrier),
1777 	fsparam_u32	("barrier",		Opt_barrier),
1778 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1779 	fsparam_flag	("i_version",		Opt_removed),
1780 	fsparam_flag	("dax",			Opt_dax),
1781 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1782 	fsparam_u32	("stripe",		Opt_stripe),
1783 	fsparam_flag	("delalloc",		Opt_delalloc),
1784 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1785 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1786 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1787 	fsparam_u32	("debug_want_extra_isize",
1788 						Opt_debug_want_extra_isize),
1789 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1790 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1791 	fsparam_flag	("block_validity",	Opt_block_validity),
1792 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1793 	fsparam_u32	("inode_readahead_blks",
1794 						Opt_inode_readahead_blks),
1795 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1796 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1797 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1798 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1799 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1800 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1801 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1802 	fsparam_flag	("discard",		Opt_discard),
1803 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1804 	fsparam_u32	("init_itable",		Opt_init_itable),
1805 	fsparam_flag	("init_itable",		Opt_init_itable),
1806 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1807 #ifdef CONFIG_EXT4_DEBUG
1808 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1809 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1810 #endif
1811 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1812 	fsparam_flag	("test_dummy_encryption",
1813 						Opt_test_dummy_encryption),
1814 	fsparam_string	("test_dummy_encryption",
1815 						Opt_test_dummy_encryption),
1816 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1817 	fsparam_flag	("nombcache",		Opt_nombcache),
1818 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1819 	fsparam_flag	("prefetch_block_bitmaps",
1820 						Opt_removed),
1821 	fsparam_flag	("no_prefetch_block_bitmaps",
1822 						Opt_no_prefetch_block_bitmaps),
1823 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1824 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1825 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1826 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1827 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1828 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1829 	{}
1830 };
1831 
1832 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1833 
1834 #define MOPT_SET	0x0001
1835 #define MOPT_CLEAR	0x0002
1836 #define MOPT_NOSUPPORT	0x0004
1837 #define MOPT_EXPLICIT	0x0008
1838 #ifdef CONFIG_QUOTA
1839 #define MOPT_Q		0
1840 #define MOPT_QFMT	0x0010
1841 #else
1842 #define MOPT_Q		MOPT_NOSUPPORT
1843 #define MOPT_QFMT	MOPT_NOSUPPORT
1844 #endif
1845 #define MOPT_NO_EXT2	0x0020
1846 #define MOPT_NO_EXT3	0x0040
1847 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1848 #define MOPT_SKIP	0x0080
1849 #define	MOPT_2		0x0100
1850 
1851 static const struct mount_opts {
1852 	int	token;
1853 	int	mount_opt;
1854 	int	flags;
1855 } ext4_mount_opts[] = {
1856 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1857 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1858 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1859 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1860 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1861 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1862 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1863 	 MOPT_EXT4_ONLY | MOPT_SET},
1864 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1865 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1866 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1867 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1868 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1869 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1870 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1871 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1872 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1873 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1874 	{Opt_commit, 0, MOPT_NO_EXT2},
1875 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1876 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1878 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1879 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1880 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1881 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1882 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1883 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1884 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1885 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1886 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1887 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1888 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1889 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1890 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1891 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1892 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1893 	{Opt_data, 0, MOPT_NO_EXT2},
1894 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1895 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1896 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1897 #else
1898 	{Opt_acl, 0, MOPT_NOSUPPORT},
1899 #endif
1900 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1901 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1902 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1903 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1904 							MOPT_SET | MOPT_Q},
1905 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1906 							MOPT_SET | MOPT_Q},
1907 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1908 							MOPT_SET | MOPT_Q},
1909 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1910 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1911 							MOPT_CLEAR | MOPT_Q},
1912 	{Opt_usrjquota, 0, MOPT_Q},
1913 	{Opt_grpjquota, 0, MOPT_Q},
1914 	{Opt_jqfmt, 0, MOPT_QFMT},
1915 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1916 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1917 	 MOPT_SET},
1918 #ifdef CONFIG_EXT4_DEBUG
1919 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1920 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1921 #endif
1922 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1923 	{Opt_err, 0, 0}
1924 };
1925 
1926 #if IS_ENABLED(CONFIG_UNICODE)
1927 static const struct ext4_sb_encodings {
1928 	__u16 magic;
1929 	char *name;
1930 	unsigned int version;
1931 } ext4_sb_encoding_map[] = {
1932 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1933 };
1934 
1935 static const struct ext4_sb_encodings *
1936 ext4_sb_read_encoding(const struct ext4_super_block *es)
1937 {
1938 	__u16 magic = le16_to_cpu(es->s_encoding);
1939 	int i;
1940 
1941 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1942 		if (magic == ext4_sb_encoding_map[i].magic)
1943 			return &ext4_sb_encoding_map[i];
1944 
1945 	return NULL;
1946 }
1947 #endif
1948 
1949 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1950 #define EXT4_SPEC_JQFMT				(1 <<  1)
1951 #define EXT4_SPEC_DATAJ				(1 <<  2)
1952 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1953 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1954 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1955 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1956 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1957 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1958 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1959 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1960 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1961 #define EXT4_SPEC_s_stripe			(1 << 13)
1962 #define EXT4_SPEC_s_resuid			(1 << 14)
1963 #define EXT4_SPEC_s_resgid			(1 << 15)
1964 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1965 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1966 #define EXT4_SPEC_s_sb_block			(1 << 18)
1967 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1968 
1969 struct ext4_fs_context {
1970 	char		*s_qf_names[EXT4_MAXQUOTAS];
1971 	struct fscrypt_dummy_policy dummy_enc_policy;
1972 	int		s_jquota_fmt;	/* Format of quota to use */
1973 #ifdef CONFIG_EXT4_DEBUG
1974 	int s_fc_debug_max_replay;
1975 #endif
1976 	unsigned short	qname_spec;
1977 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1978 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1979 	unsigned long	journal_devnum;
1980 	unsigned long	s_commit_interval;
1981 	unsigned long	s_stripe;
1982 	unsigned int	s_inode_readahead_blks;
1983 	unsigned int	s_want_extra_isize;
1984 	unsigned int	s_li_wait_mult;
1985 	unsigned int	s_max_dir_size_kb;
1986 	unsigned int	journal_ioprio;
1987 	unsigned int	vals_s_mount_opt;
1988 	unsigned int	mask_s_mount_opt;
1989 	unsigned int	vals_s_mount_opt2;
1990 	unsigned int	mask_s_mount_opt2;
1991 	unsigned int	opt_flags;	/* MOPT flags */
1992 	unsigned int	spec;
1993 	u32		s_max_batch_time;
1994 	u32		s_min_batch_time;
1995 	kuid_t		s_resuid;
1996 	kgid_t		s_resgid;
1997 	ext4_fsblk_t	s_sb_block;
1998 };
1999 
2000 static void ext4_fc_free(struct fs_context *fc)
2001 {
2002 	struct ext4_fs_context *ctx = fc->fs_private;
2003 	int i;
2004 
2005 	if (!ctx)
2006 		return;
2007 
2008 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2009 		kfree(ctx->s_qf_names[i]);
2010 
2011 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2012 	kfree(ctx);
2013 }
2014 
2015 int ext4_init_fs_context(struct fs_context *fc)
2016 {
2017 	struct ext4_fs_context *ctx;
2018 
2019 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2020 	if (!ctx)
2021 		return -ENOMEM;
2022 
2023 	fc->fs_private = ctx;
2024 	fc->ops = &ext4_context_ops;
2025 
2026 	return 0;
2027 }
2028 
2029 #ifdef CONFIG_QUOTA
2030 /*
2031  * Note the name of the specified quota file.
2032  */
2033 static int note_qf_name(struct fs_context *fc, int qtype,
2034 		       struct fs_parameter *param)
2035 {
2036 	struct ext4_fs_context *ctx = fc->fs_private;
2037 	char *qname;
2038 
2039 	if (param->size < 1) {
2040 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2041 		return -EINVAL;
2042 	}
2043 	if (strchr(param->string, '/')) {
2044 		ext4_msg(NULL, KERN_ERR,
2045 			 "quotafile must be on filesystem root");
2046 		return -EINVAL;
2047 	}
2048 	if (ctx->s_qf_names[qtype]) {
2049 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2050 			ext4_msg(NULL, KERN_ERR,
2051 				 "%s quota file already specified",
2052 				 QTYPE2NAME(qtype));
2053 			return -EINVAL;
2054 		}
2055 		return 0;
2056 	}
2057 
2058 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2059 	if (!qname) {
2060 		ext4_msg(NULL, KERN_ERR,
2061 			 "Not enough memory for storing quotafile name");
2062 		return -ENOMEM;
2063 	}
2064 	ctx->s_qf_names[qtype] = qname;
2065 	ctx->qname_spec |= 1 << qtype;
2066 	ctx->spec |= EXT4_SPEC_JQUOTA;
2067 	return 0;
2068 }
2069 
2070 /*
2071  * Clear the name of the specified quota file.
2072  */
2073 static int unnote_qf_name(struct fs_context *fc, int qtype)
2074 {
2075 	struct ext4_fs_context *ctx = fc->fs_private;
2076 
2077 	if (ctx->s_qf_names[qtype])
2078 		kfree(ctx->s_qf_names[qtype]);
2079 
2080 	ctx->s_qf_names[qtype] = NULL;
2081 	ctx->qname_spec |= 1 << qtype;
2082 	ctx->spec |= EXT4_SPEC_JQUOTA;
2083 	return 0;
2084 }
2085 #endif
2086 
2087 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2088 					    struct ext4_fs_context *ctx)
2089 {
2090 	int err;
2091 
2092 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2093 		ext4_msg(NULL, KERN_WARNING,
2094 			 "test_dummy_encryption option not supported");
2095 		return -EINVAL;
2096 	}
2097 	err = fscrypt_parse_test_dummy_encryption(param,
2098 						  &ctx->dummy_enc_policy);
2099 	if (err == -EINVAL) {
2100 		ext4_msg(NULL, KERN_WARNING,
2101 			 "Value of option \"%s\" is unrecognized", param->key);
2102 	} else if (err == -EEXIST) {
2103 		ext4_msg(NULL, KERN_WARNING,
2104 			 "Conflicting test_dummy_encryption options");
2105 		return -EINVAL;
2106 	}
2107 	return err;
2108 }
2109 
2110 #define EXT4_SET_CTX(name)						\
2111 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2112 				  unsigned long flag)			\
2113 {									\
2114 	ctx->mask_s_##name |= flag;					\
2115 	ctx->vals_s_##name |= flag;					\
2116 }
2117 
2118 #define EXT4_CLEAR_CTX(name)						\
2119 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2120 				    unsigned long flag)			\
2121 {									\
2122 	ctx->mask_s_##name |= flag;					\
2123 	ctx->vals_s_##name &= ~flag;					\
2124 }
2125 
2126 #define EXT4_TEST_CTX(name)						\
2127 static inline unsigned long						\
2128 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2129 {									\
2130 	return (ctx->vals_s_##name & flag);				\
2131 }
2132 
2133 EXT4_SET_CTX(flags); /* set only */
2134 EXT4_SET_CTX(mount_opt);
2135 EXT4_CLEAR_CTX(mount_opt);
2136 EXT4_TEST_CTX(mount_opt);
2137 EXT4_SET_CTX(mount_opt2);
2138 EXT4_CLEAR_CTX(mount_opt2);
2139 EXT4_TEST_CTX(mount_opt2);
2140 
2141 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2142 {
2143 	struct ext4_fs_context *ctx = fc->fs_private;
2144 	struct fs_parse_result result;
2145 	const struct mount_opts *m;
2146 	int is_remount;
2147 	kuid_t uid;
2148 	kgid_t gid;
2149 	int token;
2150 
2151 	token = fs_parse(fc, ext4_param_specs, param, &result);
2152 	if (token < 0)
2153 		return token;
2154 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2155 
2156 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2157 		if (token == m->token)
2158 			break;
2159 
2160 	ctx->opt_flags |= m->flags;
2161 
2162 	if (m->flags & MOPT_EXPLICIT) {
2163 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2164 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2165 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2166 			ctx_set_mount_opt2(ctx,
2167 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2168 		} else
2169 			return -EINVAL;
2170 	}
2171 
2172 	if (m->flags & MOPT_NOSUPPORT) {
2173 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2174 			 param->key);
2175 		return 0;
2176 	}
2177 
2178 	switch (token) {
2179 #ifdef CONFIG_QUOTA
2180 	case Opt_usrjquota:
2181 		if (!*param->string)
2182 			return unnote_qf_name(fc, USRQUOTA);
2183 		else
2184 			return note_qf_name(fc, USRQUOTA, param);
2185 	case Opt_grpjquota:
2186 		if (!*param->string)
2187 			return unnote_qf_name(fc, GRPQUOTA);
2188 		else
2189 			return note_qf_name(fc, GRPQUOTA, param);
2190 #endif
2191 	case Opt_sb:
2192 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2193 			ext4_msg(NULL, KERN_WARNING,
2194 				 "Ignoring %s option on remount", param->key);
2195 		} else {
2196 			ctx->s_sb_block = result.uint_32;
2197 			ctx->spec |= EXT4_SPEC_s_sb_block;
2198 		}
2199 		return 0;
2200 	case Opt_removed:
2201 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2202 			 param->key);
2203 		return 0;
2204 	case Opt_inlinecrypt:
2205 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2206 		ctx_set_flags(ctx, SB_INLINECRYPT);
2207 #else
2208 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2209 #endif
2210 		return 0;
2211 	case Opt_errors:
2212 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2213 		ctx_set_mount_opt(ctx, result.uint_32);
2214 		return 0;
2215 #ifdef CONFIG_QUOTA
2216 	case Opt_jqfmt:
2217 		ctx->s_jquota_fmt = result.uint_32;
2218 		ctx->spec |= EXT4_SPEC_JQFMT;
2219 		return 0;
2220 #endif
2221 	case Opt_data:
2222 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2223 		ctx_set_mount_opt(ctx, result.uint_32);
2224 		ctx->spec |= EXT4_SPEC_DATAJ;
2225 		return 0;
2226 	case Opt_commit:
2227 		if (result.uint_32 == 0)
2228 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2229 		else if (result.uint_32 > INT_MAX / HZ) {
2230 			ext4_msg(NULL, KERN_ERR,
2231 				 "Invalid commit interval %d, "
2232 				 "must be smaller than %d",
2233 				 result.uint_32, INT_MAX / HZ);
2234 			return -EINVAL;
2235 		}
2236 		ctx->s_commit_interval = HZ * result.uint_32;
2237 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2238 		return 0;
2239 	case Opt_debug_want_extra_isize:
2240 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2241 			ext4_msg(NULL, KERN_ERR,
2242 				 "Invalid want_extra_isize %d", result.uint_32);
2243 			return -EINVAL;
2244 		}
2245 		ctx->s_want_extra_isize = result.uint_32;
2246 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2247 		return 0;
2248 	case Opt_max_batch_time:
2249 		ctx->s_max_batch_time = result.uint_32;
2250 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2251 		return 0;
2252 	case Opt_min_batch_time:
2253 		ctx->s_min_batch_time = result.uint_32;
2254 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2255 		return 0;
2256 	case Opt_inode_readahead_blks:
2257 		if (result.uint_32 &&
2258 		    (result.uint_32 > (1 << 30) ||
2259 		     !is_power_of_2(result.uint_32))) {
2260 			ext4_msg(NULL, KERN_ERR,
2261 				 "EXT4-fs: inode_readahead_blks must be "
2262 				 "0 or a power of 2 smaller than 2^31");
2263 			return -EINVAL;
2264 		}
2265 		ctx->s_inode_readahead_blks = result.uint_32;
2266 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2267 		return 0;
2268 	case Opt_init_itable:
2269 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2270 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2271 		if (param->type == fs_value_is_string)
2272 			ctx->s_li_wait_mult = result.uint_32;
2273 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2274 		return 0;
2275 	case Opt_max_dir_size_kb:
2276 		ctx->s_max_dir_size_kb = result.uint_32;
2277 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2278 		return 0;
2279 #ifdef CONFIG_EXT4_DEBUG
2280 	case Opt_fc_debug_max_replay:
2281 		ctx->s_fc_debug_max_replay = result.uint_32;
2282 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2283 		return 0;
2284 #endif
2285 	case Opt_stripe:
2286 		ctx->s_stripe = result.uint_32;
2287 		ctx->spec |= EXT4_SPEC_s_stripe;
2288 		return 0;
2289 	case Opt_resuid:
2290 		uid = make_kuid(current_user_ns(), result.uint_32);
2291 		if (!uid_valid(uid)) {
2292 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2293 				 result.uint_32);
2294 			return -EINVAL;
2295 		}
2296 		ctx->s_resuid = uid;
2297 		ctx->spec |= EXT4_SPEC_s_resuid;
2298 		return 0;
2299 	case Opt_resgid:
2300 		gid = make_kgid(current_user_ns(), result.uint_32);
2301 		if (!gid_valid(gid)) {
2302 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2303 				 result.uint_32);
2304 			return -EINVAL;
2305 		}
2306 		ctx->s_resgid = gid;
2307 		ctx->spec |= EXT4_SPEC_s_resgid;
2308 		return 0;
2309 	case Opt_journal_dev:
2310 		if (is_remount) {
2311 			ext4_msg(NULL, KERN_ERR,
2312 				 "Cannot specify journal on remount");
2313 			return -EINVAL;
2314 		}
2315 		ctx->journal_devnum = result.uint_32;
2316 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2317 		return 0;
2318 	case Opt_journal_path:
2319 	{
2320 		struct inode *journal_inode;
2321 		struct path path;
2322 		int error;
2323 
2324 		if (is_remount) {
2325 			ext4_msg(NULL, KERN_ERR,
2326 				 "Cannot specify journal on remount");
2327 			return -EINVAL;
2328 		}
2329 
2330 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2331 		if (error) {
2332 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2333 				 "journal device path");
2334 			return -EINVAL;
2335 		}
2336 
2337 		journal_inode = d_inode(path.dentry);
2338 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2339 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2340 		path_put(&path);
2341 		return 0;
2342 	}
2343 	case Opt_journal_ioprio:
2344 		if (result.uint_32 > 7) {
2345 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2346 				 " (must be 0-7)");
2347 			return -EINVAL;
2348 		}
2349 		ctx->journal_ioprio =
2350 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2351 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2352 		return 0;
2353 	case Opt_test_dummy_encryption:
2354 		return ext4_parse_test_dummy_encryption(param, ctx);
2355 	case Opt_dax:
2356 	case Opt_dax_type:
2357 #ifdef CONFIG_FS_DAX
2358 	{
2359 		int type = (token == Opt_dax) ?
2360 			   Opt_dax : result.uint_32;
2361 
2362 		switch (type) {
2363 		case Opt_dax:
2364 		case Opt_dax_always:
2365 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2366 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2367 			break;
2368 		case Opt_dax_never:
2369 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2370 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371 			break;
2372 		case Opt_dax_inode:
2373 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2374 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375 			/* Strictly for printing options */
2376 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2377 			break;
2378 		}
2379 		return 0;
2380 	}
2381 #else
2382 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2383 		return -EINVAL;
2384 #endif
2385 	case Opt_data_err:
2386 		if (result.uint_32 == Opt_data_err_abort)
2387 			ctx_set_mount_opt(ctx, m->mount_opt);
2388 		else if (result.uint_32 == Opt_data_err_ignore)
2389 			ctx_clear_mount_opt(ctx, m->mount_opt);
2390 		return 0;
2391 	case Opt_mb_optimize_scan:
2392 		if (result.int_32 == 1) {
2393 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2394 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2395 		} else if (result.int_32 == 0) {
2396 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2397 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2398 		} else {
2399 			ext4_msg(NULL, KERN_WARNING,
2400 				 "mb_optimize_scan should be set to 0 or 1.");
2401 			return -EINVAL;
2402 		}
2403 		return 0;
2404 	}
2405 
2406 	/*
2407 	 * At this point we should only be getting options requiring MOPT_SET,
2408 	 * or MOPT_CLEAR. Anything else is a bug
2409 	 */
2410 	if (m->token == Opt_err) {
2411 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2412 			 param->key);
2413 		WARN_ON(1);
2414 		return -EINVAL;
2415 	}
2416 
2417 	else {
2418 		unsigned int set = 0;
2419 
2420 		if ((param->type == fs_value_is_flag) ||
2421 		    result.uint_32 > 0)
2422 			set = 1;
2423 
2424 		if (m->flags & MOPT_CLEAR)
2425 			set = !set;
2426 		else if (unlikely(!(m->flags & MOPT_SET))) {
2427 			ext4_msg(NULL, KERN_WARNING,
2428 				 "buggy handling of option %s",
2429 				 param->key);
2430 			WARN_ON(1);
2431 			return -EINVAL;
2432 		}
2433 		if (m->flags & MOPT_2) {
2434 			if (set != 0)
2435 				ctx_set_mount_opt2(ctx, m->mount_opt);
2436 			else
2437 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2438 		} else {
2439 			if (set != 0)
2440 				ctx_set_mount_opt(ctx, m->mount_opt);
2441 			else
2442 				ctx_clear_mount_opt(ctx, m->mount_opt);
2443 		}
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 static int parse_options(struct fs_context *fc, char *options)
2450 {
2451 	struct fs_parameter param;
2452 	int ret;
2453 	char *key;
2454 
2455 	if (!options)
2456 		return 0;
2457 
2458 	while ((key = strsep(&options, ",")) != NULL) {
2459 		if (*key) {
2460 			size_t v_len = 0;
2461 			char *value = strchr(key, '=');
2462 
2463 			param.type = fs_value_is_flag;
2464 			param.string = NULL;
2465 
2466 			if (value) {
2467 				if (value == key)
2468 					continue;
2469 
2470 				*value++ = 0;
2471 				v_len = strlen(value);
2472 				param.string = kmemdup_nul(value, v_len,
2473 							   GFP_KERNEL);
2474 				if (!param.string)
2475 					return -ENOMEM;
2476 				param.type = fs_value_is_string;
2477 			}
2478 
2479 			param.key = key;
2480 			param.size = v_len;
2481 
2482 			ret = ext4_parse_param(fc, &param);
2483 			if (param.string)
2484 				kfree(param.string);
2485 			if (ret < 0)
2486 				return ret;
2487 		}
2488 	}
2489 
2490 	ret = ext4_validate_options(fc);
2491 	if (ret < 0)
2492 		return ret;
2493 
2494 	return 0;
2495 }
2496 
2497 static int parse_apply_sb_mount_options(struct super_block *sb,
2498 					struct ext4_fs_context *m_ctx)
2499 {
2500 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2501 	char *s_mount_opts = NULL;
2502 	struct ext4_fs_context *s_ctx = NULL;
2503 	struct fs_context *fc = NULL;
2504 	int ret = -ENOMEM;
2505 
2506 	if (!sbi->s_es->s_mount_opts[0])
2507 		return 0;
2508 
2509 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2510 				sizeof(sbi->s_es->s_mount_opts),
2511 				GFP_KERNEL);
2512 	if (!s_mount_opts)
2513 		return ret;
2514 
2515 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2516 	if (!fc)
2517 		goto out_free;
2518 
2519 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2520 	if (!s_ctx)
2521 		goto out_free;
2522 
2523 	fc->fs_private = s_ctx;
2524 	fc->s_fs_info = sbi;
2525 
2526 	ret = parse_options(fc, s_mount_opts);
2527 	if (ret < 0)
2528 		goto parse_failed;
2529 
2530 	ret = ext4_check_opt_consistency(fc, sb);
2531 	if (ret < 0) {
2532 parse_failed:
2533 		ext4_msg(sb, KERN_WARNING,
2534 			 "failed to parse options in superblock: %s",
2535 			 s_mount_opts);
2536 		ret = 0;
2537 		goto out_free;
2538 	}
2539 
2540 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2541 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2542 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2543 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2544 
2545 	ext4_apply_options(fc, sb);
2546 	ret = 0;
2547 
2548 out_free:
2549 	if (fc) {
2550 		ext4_fc_free(fc);
2551 		kfree(fc);
2552 	}
2553 	kfree(s_mount_opts);
2554 	return ret;
2555 }
2556 
2557 static void ext4_apply_quota_options(struct fs_context *fc,
2558 				     struct super_block *sb)
2559 {
2560 #ifdef CONFIG_QUOTA
2561 	bool quota_feature = ext4_has_feature_quota(sb);
2562 	struct ext4_fs_context *ctx = fc->fs_private;
2563 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2564 	char *qname;
2565 	int i;
2566 
2567 	if (quota_feature)
2568 		return;
2569 
2570 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2571 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2572 			if (!(ctx->qname_spec & (1 << i)))
2573 				continue;
2574 
2575 			qname = ctx->s_qf_names[i]; /* May be NULL */
2576 			if (qname)
2577 				set_opt(sb, QUOTA);
2578 			ctx->s_qf_names[i] = NULL;
2579 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2580 						lockdep_is_held(&sb->s_umount));
2581 			if (qname)
2582 				kfree_rcu_mightsleep(qname);
2583 		}
2584 	}
2585 
2586 	if (ctx->spec & EXT4_SPEC_JQFMT)
2587 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2588 #endif
2589 }
2590 
2591 /*
2592  * Check quota settings consistency.
2593  */
2594 static int ext4_check_quota_consistency(struct fs_context *fc,
2595 					struct super_block *sb)
2596 {
2597 #ifdef CONFIG_QUOTA
2598 	struct ext4_fs_context *ctx = fc->fs_private;
2599 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2600 	bool quota_feature = ext4_has_feature_quota(sb);
2601 	bool quota_loaded = sb_any_quota_loaded(sb);
2602 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2603 	int quota_flags, i;
2604 
2605 	/*
2606 	 * We do the test below only for project quotas. 'usrquota' and
2607 	 * 'grpquota' mount options are allowed even without quota feature
2608 	 * to support legacy quotas in quota files.
2609 	 */
2610 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2611 	    !ext4_has_feature_project(sb)) {
2612 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2613 			 "Cannot enable project quota enforcement.");
2614 		return -EINVAL;
2615 	}
2616 
2617 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2618 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2619 	if (quota_loaded &&
2620 	    ctx->mask_s_mount_opt & quota_flags &&
2621 	    !ctx_test_mount_opt(ctx, quota_flags))
2622 		goto err_quota_change;
2623 
2624 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2625 
2626 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2627 			if (!(ctx->qname_spec & (1 << i)))
2628 				continue;
2629 
2630 			if (quota_loaded &&
2631 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2632 				goto err_jquota_change;
2633 
2634 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2635 			    strcmp(get_qf_name(sb, sbi, i),
2636 				   ctx->s_qf_names[i]) != 0)
2637 				goto err_jquota_specified;
2638 		}
2639 
2640 		if (quota_feature) {
2641 			ext4_msg(NULL, KERN_INFO,
2642 				 "Journaled quota options ignored when "
2643 				 "QUOTA feature is enabled");
2644 			return 0;
2645 		}
2646 	}
2647 
2648 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2649 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2650 			goto err_jquota_change;
2651 		if (quota_feature) {
2652 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2653 				 "ignored when QUOTA feature is enabled");
2654 			return 0;
2655 		}
2656 	}
2657 
2658 	/* Make sure we don't mix old and new quota format */
2659 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2660 		       ctx->s_qf_names[USRQUOTA]);
2661 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2662 		       ctx->s_qf_names[GRPQUOTA]);
2663 
2664 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2665 		    test_opt(sb, USRQUOTA));
2666 
2667 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2668 		    test_opt(sb, GRPQUOTA));
2669 
2670 	if (usr_qf_name) {
2671 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2672 		usrquota = false;
2673 	}
2674 	if (grp_qf_name) {
2675 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2676 		grpquota = false;
2677 	}
2678 
2679 	if (usr_qf_name || grp_qf_name) {
2680 		if (usrquota || grpquota) {
2681 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2682 				 "format mixing");
2683 			return -EINVAL;
2684 		}
2685 
2686 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2687 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2688 				 "not specified");
2689 			return -EINVAL;
2690 		}
2691 	}
2692 
2693 	return 0;
2694 
2695 err_quota_change:
2696 	ext4_msg(NULL, KERN_ERR,
2697 		 "Cannot change quota options when quota turned on");
2698 	return -EINVAL;
2699 err_jquota_change:
2700 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2701 		 "options when quota turned on");
2702 	return -EINVAL;
2703 err_jquota_specified:
2704 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2705 		 QTYPE2NAME(i));
2706 	return -EINVAL;
2707 #else
2708 	return 0;
2709 #endif
2710 }
2711 
2712 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2713 					    struct super_block *sb)
2714 {
2715 	const struct ext4_fs_context *ctx = fc->fs_private;
2716 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2717 
2718 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2719 		return 0;
2720 
2721 	if (!ext4_has_feature_encrypt(sb)) {
2722 		ext4_msg(NULL, KERN_WARNING,
2723 			 "test_dummy_encryption requires encrypt feature");
2724 		return -EINVAL;
2725 	}
2726 	/*
2727 	 * This mount option is just for testing, and it's not worthwhile to
2728 	 * implement the extra complexity (e.g. RCU protection) that would be
2729 	 * needed to allow it to be set or changed during remount.  We do allow
2730 	 * it to be specified during remount, but only if there is no change.
2731 	 */
2732 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2733 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2734 						 &ctx->dummy_enc_policy))
2735 			return 0;
2736 		ext4_msg(NULL, KERN_WARNING,
2737 			 "Can't set or change test_dummy_encryption on remount");
2738 		return -EINVAL;
2739 	}
2740 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2741 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2742 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2743 						 &ctx->dummy_enc_policy))
2744 			return 0;
2745 		ext4_msg(NULL, KERN_WARNING,
2746 			 "Conflicting test_dummy_encryption options");
2747 		return -EINVAL;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2753 					     struct super_block *sb)
2754 {
2755 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2756 	    /* if already set, it was already verified to be the same */
2757 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2758 		return;
2759 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2760 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2761 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2762 }
2763 
2764 static int ext4_check_opt_consistency(struct fs_context *fc,
2765 				      struct super_block *sb)
2766 {
2767 	struct ext4_fs_context *ctx = fc->fs_private;
2768 	struct ext4_sb_info *sbi = fc->s_fs_info;
2769 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2770 	int err;
2771 
2772 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2773 		ext4_msg(NULL, KERN_ERR,
2774 			 "Mount option(s) incompatible with ext2");
2775 		return -EINVAL;
2776 	}
2777 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2778 		ext4_msg(NULL, KERN_ERR,
2779 			 "Mount option(s) incompatible with ext3");
2780 		return -EINVAL;
2781 	}
2782 
2783 	if (ctx->s_want_extra_isize >
2784 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2785 		ext4_msg(NULL, KERN_ERR,
2786 			 "Invalid want_extra_isize %d",
2787 			 ctx->s_want_extra_isize);
2788 		return -EINVAL;
2789 	}
2790 
2791 	err = ext4_check_test_dummy_encryption(fc, sb);
2792 	if (err)
2793 		return err;
2794 
2795 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2796 		if (!sbi->s_journal) {
2797 			ext4_msg(NULL, KERN_WARNING,
2798 				 "Remounting file system with no journal "
2799 				 "so ignoring journalled data option");
2800 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2801 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2802 			   test_opt(sb, DATA_FLAGS)) {
2803 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2804 				 "on remount");
2805 			return -EINVAL;
2806 		}
2807 	}
2808 
2809 	if (is_remount) {
2810 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2811 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2812 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2813 				 "both data=journal and dax");
2814 			return -EINVAL;
2815 		}
2816 
2817 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2818 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2819 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2820 fail_dax_change_remount:
2821 			ext4_msg(NULL, KERN_ERR, "can't change "
2822 				 "dax mount option while remounting");
2823 			return -EINVAL;
2824 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2825 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2826 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2827 			goto fail_dax_change_remount;
2828 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2829 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2830 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2831 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2832 			goto fail_dax_change_remount;
2833 		}
2834 	}
2835 
2836 	return ext4_check_quota_consistency(fc, sb);
2837 }
2838 
2839 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2840 {
2841 	struct ext4_fs_context *ctx = fc->fs_private;
2842 	struct ext4_sb_info *sbi = fc->s_fs_info;
2843 
2844 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2845 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2846 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2847 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2848 	sb->s_flags &= ~ctx->mask_s_flags;
2849 	sb->s_flags |= ctx->vals_s_flags;
2850 
2851 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2852 	APPLY(s_commit_interval);
2853 	APPLY(s_stripe);
2854 	APPLY(s_max_batch_time);
2855 	APPLY(s_min_batch_time);
2856 	APPLY(s_want_extra_isize);
2857 	APPLY(s_inode_readahead_blks);
2858 	APPLY(s_max_dir_size_kb);
2859 	APPLY(s_li_wait_mult);
2860 	APPLY(s_resgid);
2861 	APPLY(s_resuid);
2862 
2863 #ifdef CONFIG_EXT4_DEBUG
2864 	APPLY(s_fc_debug_max_replay);
2865 #endif
2866 
2867 	ext4_apply_quota_options(fc, sb);
2868 	ext4_apply_test_dummy_encryption(ctx, sb);
2869 }
2870 
2871 
2872 static int ext4_validate_options(struct fs_context *fc)
2873 {
2874 #ifdef CONFIG_QUOTA
2875 	struct ext4_fs_context *ctx = fc->fs_private;
2876 	char *usr_qf_name, *grp_qf_name;
2877 
2878 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2879 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2880 
2881 	if (usr_qf_name || grp_qf_name) {
2882 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2883 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2884 
2885 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2886 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2887 
2888 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2889 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2890 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2891 				 "format mixing");
2892 			return -EINVAL;
2893 		}
2894 	}
2895 #endif
2896 	return 1;
2897 }
2898 
2899 static inline void ext4_show_quota_options(struct seq_file *seq,
2900 					   struct super_block *sb)
2901 {
2902 #if defined(CONFIG_QUOTA)
2903 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2904 	char *usr_qf_name, *grp_qf_name;
2905 
2906 	if (sbi->s_jquota_fmt) {
2907 		char *fmtname = "";
2908 
2909 		switch (sbi->s_jquota_fmt) {
2910 		case QFMT_VFS_OLD:
2911 			fmtname = "vfsold";
2912 			break;
2913 		case QFMT_VFS_V0:
2914 			fmtname = "vfsv0";
2915 			break;
2916 		case QFMT_VFS_V1:
2917 			fmtname = "vfsv1";
2918 			break;
2919 		}
2920 		seq_printf(seq, ",jqfmt=%s", fmtname);
2921 	}
2922 
2923 	rcu_read_lock();
2924 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2925 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2926 	if (usr_qf_name)
2927 		seq_show_option(seq, "usrjquota", usr_qf_name);
2928 	if (grp_qf_name)
2929 		seq_show_option(seq, "grpjquota", grp_qf_name);
2930 	rcu_read_unlock();
2931 #endif
2932 }
2933 
2934 static const char *token2str(int token)
2935 {
2936 	const struct fs_parameter_spec *spec;
2937 
2938 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2939 		if (spec->opt == token && !spec->type)
2940 			break;
2941 	return spec->name;
2942 }
2943 
2944 /*
2945  * Show an option if
2946  *  - it's set to a non-default value OR
2947  *  - if the per-sb default is different from the global default
2948  */
2949 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2950 			      int nodefs)
2951 {
2952 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2953 	struct ext4_super_block *es = sbi->s_es;
2954 	int def_errors;
2955 	const struct mount_opts *m;
2956 	char sep = nodefs ? '\n' : ',';
2957 
2958 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2959 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2960 
2961 	if (sbi->s_sb_block != 1)
2962 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2963 
2964 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2965 		int want_set = m->flags & MOPT_SET;
2966 		int opt_2 = m->flags & MOPT_2;
2967 		unsigned int mount_opt, def_mount_opt;
2968 
2969 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2970 		    m->flags & MOPT_SKIP)
2971 			continue;
2972 
2973 		if (opt_2) {
2974 			mount_opt = sbi->s_mount_opt2;
2975 			def_mount_opt = sbi->s_def_mount_opt2;
2976 		} else {
2977 			mount_opt = sbi->s_mount_opt;
2978 			def_mount_opt = sbi->s_def_mount_opt;
2979 		}
2980 		/* skip if same as the default */
2981 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2982 			continue;
2983 		/* select Opt_noFoo vs Opt_Foo */
2984 		if ((want_set &&
2985 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2986 		    (!want_set && (mount_opt & m->mount_opt)))
2987 			continue;
2988 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2989 	}
2990 
2991 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2992 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2993 		SEQ_OPTS_PRINT("resuid=%u",
2994 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2995 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2996 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2997 		SEQ_OPTS_PRINT("resgid=%u",
2998 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2999 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3000 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3001 		SEQ_OPTS_PUTS("errors=remount-ro");
3002 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3003 		SEQ_OPTS_PUTS("errors=continue");
3004 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3005 		SEQ_OPTS_PUTS("errors=panic");
3006 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3007 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3008 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3009 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3010 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3011 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3012 	if (nodefs || sbi->s_stripe)
3013 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3014 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3015 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3016 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3017 			SEQ_OPTS_PUTS("data=journal");
3018 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3019 			SEQ_OPTS_PUTS("data=ordered");
3020 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3021 			SEQ_OPTS_PUTS("data=writeback");
3022 	}
3023 	if (nodefs ||
3024 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3025 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3026 			       sbi->s_inode_readahead_blks);
3027 
3028 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3029 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3030 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3031 	if (nodefs || sbi->s_max_dir_size_kb)
3032 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3033 	if (test_opt(sb, DATA_ERR_ABORT))
3034 		SEQ_OPTS_PUTS("data_err=abort");
3035 
3036 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3037 
3038 	if (sb->s_flags & SB_INLINECRYPT)
3039 		SEQ_OPTS_PUTS("inlinecrypt");
3040 
3041 	if (test_opt(sb, DAX_ALWAYS)) {
3042 		if (IS_EXT2_SB(sb))
3043 			SEQ_OPTS_PUTS("dax");
3044 		else
3045 			SEQ_OPTS_PUTS("dax=always");
3046 	} else if (test_opt2(sb, DAX_NEVER)) {
3047 		SEQ_OPTS_PUTS("dax=never");
3048 	} else if (test_opt2(sb, DAX_INODE)) {
3049 		SEQ_OPTS_PUTS("dax=inode");
3050 	}
3051 
3052 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3053 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3054 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3055 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3056 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3057 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3058 	}
3059 
3060 	ext4_show_quota_options(seq, sb);
3061 	return 0;
3062 }
3063 
3064 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3065 {
3066 	return _ext4_show_options(seq, root->d_sb, 0);
3067 }
3068 
3069 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3070 {
3071 	struct super_block *sb = seq->private;
3072 	int rc;
3073 
3074 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3075 	rc = _ext4_show_options(seq, sb, 1);
3076 	seq_puts(seq, "\n");
3077 	return rc;
3078 }
3079 
3080 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3081 			    int read_only)
3082 {
3083 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3084 	int err = 0;
3085 
3086 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3087 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3088 			 "forcing read-only mode");
3089 		err = -EROFS;
3090 		goto done;
3091 	}
3092 	if (read_only)
3093 		goto done;
3094 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3095 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3096 			 "running e2fsck is recommended");
3097 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3098 		ext4_msg(sb, KERN_WARNING,
3099 			 "warning: mounting fs with errors, "
3100 			 "running e2fsck is recommended");
3101 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3102 		 le16_to_cpu(es->s_mnt_count) >=
3103 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3104 		ext4_msg(sb, KERN_WARNING,
3105 			 "warning: maximal mount count reached, "
3106 			 "running e2fsck is recommended");
3107 	else if (le32_to_cpu(es->s_checkinterval) &&
3108 		 (ext4_get_tstamp(es, s_lastcheck) +
3109 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3110 		ext4_msg(sb, KERN_WARNING,
3111 			 "warning: checktime reached, "
3112 			 "running e2fsck is recommended");
3113 	if (!sbi->s_journal)
3114 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3115 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3116 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3117 	le16_add_cpu(&es->s_mnt_count, 1);
3118 	ext4_update_tstamp(es, s_mtime);
3119 	if (sbi->s_journal) {
3120 		ext4_set_feature_journal_needs_recovery(sb);
3121 		if (ext4_has_feature_orphan_file(sb))
3122 			ext4_set_feature_orphan_present(sb);
3123 	}
3124 
3125 	err = ext4_commit_super(sb);
3126 done:
3127 	if (test_opt(sb, DEBUG))
3128 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3129 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3130 			sb->s_blocksize,
3131 			sbi->s_groups_count,
3132 			EXT4_BLOCKS_PER_GROUP(sb),
3133 			EXT4_INODES_PER_GROUP(sb),
3134 			sbi->s_mount_opt, sbi->s_mount_opt2);
3135 	return err;
3136 }
3137 
3138 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3139 {
3140 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3141 	struct flex_groups **old_groups, **new_groups;
3142 	int size, i, j;
3143 
3144 	if (!sbi->s_log_groups_per_flex)
3145 		return 0;
3146 
3147 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3148 	if (size <= sbi->s_flex_groups_allocated)
3149 		return 0;
3150 
3151 	new_groups = kvzalloc(roundup_pow_of_two(size *
3152 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3153 	if (!new_groups) {
3154 		ext4_msg(sb, KERN_ERR,
3155 			 "not enough memory for %d flex group pointers", size);
3156 		return -ENOMEM;
3157 	}
3158 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3159 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3160 					 sizeof(struct flex_groups)),
3161 					 GFP_KERNEL);
3162 		if (!new_groups[i]) {
3163 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3164 				kvfree(new_groups[j]);
3165 			kvfree(new_groups);
3166 			ext4_msg(sb, KERN_ERR,
3167 				 "not enough memory for %d flex groups", size);
3168 			return -ENOMEM;
3169 		}
3170 	}
3171 	rcu_read_lock();
3172 	old_groups = rcu_dereference(sbi->s_flex_groups);
3173 	if (old_groups)
3174 		memcpy(new_groups, old_groups,
3175 		       (sbi->s_flex_groups_allocated *
3176 			sizeof(struct flex_groups *)));
3177 	rcu_read_unlock();
3178 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3179 	sbi->s_flex_groups_allocated = size;
3180 	if (old_groups)
3181 		ext4_kvfree_array_rcu(old_groups);
3182 	return 0;
3183 }
3184 
3185 static int ext4_fill_flex_info(struct super_block *sb)
3186 {
3187 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3188 	struct ext4_group_desc *gdp = NULL;
3189 	struct flex_groups *fg;
3190 	ext4_group_t flex_group;
3191 	int i, err;
3192 
3193 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3194 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3195 		sbi->s_log_groups_per_flex = 0;
3196 		return 1;
3197 	}
3198 
3199 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3200 	if (err)
3201 		goto failed;
3202 
3203 	for (i = 0; i < sbi->s_groups_count; i++) {
3204 		gdp = ext4_get_group_desc(sb, i, NULL);
3205 
3206 		flex_group = ext4_flex_group(sbi, i);
3207 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3208 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3209 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3210 			     &fg->free_clusters);
3211 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3212 	}
3213 
3214 	return 1;
3215 failed:
3216 	return 0;
3217 }
3218 
3219 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3220 				   struct ext4_group_desc *gdp)
3221 {
3222 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3223 	__u16 crc = 0;
3224 	__le32 le_group = cpu_to_le32(block_group);
3225 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3226 
3227 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3228 		/* Use new metadata_csum algorithm */
3229 		__u32 csum32;
3230 		__u16 dummy_csum = 0;
3231 
3232 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3233 				     sizeof(le_group));
3234 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3235 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3236 				     sizeof(dummy_csum));
3237 		offset += sizeof(dummy_csum);
3238 		if (offset < sbi->s_desc_size)
3239 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3240 					     sbi->s_desc_size - offset);
3241 
3242 		crc = csum32 & 0xFFFF;
3243 		goto out;
3244 	}
3245 
3246 	/* old crc16 code */
3247 	if (!ext4_has_feature_gdt_csum(sb))
3248 		return 0;
3249 
3250 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3251 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3252 	crc = crc16(crc, (__u8 *)gdp, offset);
3253 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3254 	/* for checksum of struct ext4_group_desc do the rest...*/
3255 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3256 		crc = crc16(crc, (__u8 *)gdp + offset,
3257 			    sbi->s_desc_size - offset);
3258 
3259 out:
3260 	return cpu_to_le16(crc);
3261 }
3262 
3263 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3264 				struct ext4_group_desc *gdp)
3265 {
3266 	if (ext4_has_group_desc_csum(sb) &&
3267 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3268 		return 0;
3269 
3270 	return 1;
3271 }
3272 
3273 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3274 			      struct ext4_group_desc *gdp)
3275 {
3276 	if (!ext4_has_group_desc_csum(sb))
3277 		return;
3278 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3279 }
3280 
3281 /* Called at mount-time, super-block is locked */
3282 static int ext4_check_descriptors(struct super_block *sb,
3283 				  ext4_fsblk_t sb_block,
3284 				  ext4_group_t *first_not_zeroed)
3285 {
3286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3287 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3288 	ext4_fsblk_t last_block;
3289 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3290 	ext4_fsblk_t block_bitmap;
3291 	ext4_fsblk_t inode_bitmap;
3292 	ext4_fsblk_t inode_table;
3293 	int flexbg_flag = 0;
3294 	ext4_group_t i, grp = sbi->s_groups_count;
3295 
3296 	if (ext4_has_feature_flex_bg(sb))
3297 		flexbg_flag = 1;
3298 
3299 	ext4_debug("Checking group descriptors");
3300 
3301 	for (i = 0; i < sbi->s_groups_count; i++) {
3302 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3303 
3304 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3305 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3306 		else
3307 			last_block = first_block +
3308 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3309 
3310 		if ((grp == sbi->s_groups_count) &&
3311 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3312 			grp = i;
3313 
3314 		block_bitmap = ext4_block_bitmap(sb, gdp);
3315 		if (block_bitmap == sb_block) {
3316 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3317 				 "Block bitmap for group %u overlaps "
3318 				 "superblock", i);
3319 			if (!sb_rdonly(sb))
3320 				return 0;
3321 		}
3322 		if (block_bitmap >= sb_block + 1 &&
3323 		    block_bitmap <= last_bg_block) {
3324 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3325 				 "Block bitmap for group %u overlaps "
3326 				 "block group descriptors", i);
3327 			if (!sb_rdonly(sb))
3328 				return 0;
3329 		}
3330 		if (block_bitmap < first_block || block_bitmap > last_block) {
3331 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3332 			       "Block bitmap for group %u not in group "
3333 			       "(block %llu)!", i, block_bitmap);
3334 			return 0;
3335 		}
3336 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3337 		if (inode_bitmap == sb_block) {
3338 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3339 				 "Inode bitmap for group %u overlaps "
3340 				 "superblock", i);
3341 			if (!sb_rdonly(sb))
3342 				return 0;
3343 		}
3344 		if (inode_bitmap >= sb_block + 1 &&
3345 		    inode_bitmap <= last_bg_block) {
3346 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3347 				 "Inode bitmap for group %u overlaps "
3348 				 "block group descriptors", i);
3349 			if (!sb_rdonly(sb))
3350 				return 0;
3351 		}
3352 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3353 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3354 			       "Inode bitmap for group %u not in group "
3355 			       "(block %llu)!", i, inode_bitmap);
3356 			return 0;
3357 		}
3358 		inode_table = ext4_inode_table(sb, gdp);
3359 		if (inode_table == sb_block) {
3360 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 				 "Inode table for group %u overlaps "
3362 				 "superblock", i);
3363 			if (!sb_rdonly(sb))
3364 				return 0;
3365 		}
3366 		if (inode_table >= sb_block + 1 &&
3367 		    inode_table <= last_bg_block) {
3368 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3369 				 "Inode table for group %u overlaps "
3370 				 "block group descriptors", i);
3371 			if (!sb_rdonly(sb))
3372 				return 0;
3373 		}
3374 		if (inode_table < first_block ||
3375 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3376 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3377 			       "Inode table for group %u not in group "
3378 			       "(block %llu)!", i, inode_table);
3379 			return 0;
3380 		}
3381 		ext4_lock_group(sb, i);
3382 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3383 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3384 				 "Checksum for group %u failed (%u!=%u)",
3385 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3386 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3387 			if (!sb_rdonly(sb)) {
3388 				ext4_unlock_group(sb, i);
3389 				return 0;
3390 			}
3391 		}
3392 		ext4_unlock_group(sb, i);
3393 		if (!flexbg_flag)
3394 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3395 	}
3396 	if (NULL != first_not_zeroed)
3397 		*first_not_zeroed = grp;
3398 	return 1;
3399 }
3400 
3401 /*
3402  * Maximal extent format file size.
3403  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3404  * extent format containers, within a sector_t, and within i_blocks
3405  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3406  * so that won't be a limiting factor.
3407  *
3408  * However there is other limiting factor. We do store extents in the form
3409  * of starting block and length, hence the resulting length of the extent
3410  * covering maximum file size must fit into on-disk format containers as
3411  * well. Given that length is always by 1 unit bigger than max unit (because
3412  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3413  *
3414  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3415  */
3416 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3417 {
3418 	loff_t res;
3419 	loff_t upper_limit = MAX_LFS_FILESIZE;
3420 
3421 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3422 
3423 	if (!has_huge_files) {
3424 		upper_limit = (1LL << 32) - 1;
3425 
3426 		/* total blocks in file system block size */
3427 		upper_limit >>= (blkbits - 9);
3428 		upper_limit <<= blkbits;
3429 	}
3430 
3431 	/*
3432 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3433 	 * by one fs block, so ee_len can cover the extent of maximum file
3434 	 * size
3435 	 */
3436 	res = (1LL << 32) - 1;
3437 	res <<= blkbits;
3438 
3439 	/* Sanity check against vm- & vfs- imposed limits */
3440 	if (res > upper_limit)
3441 		res = upper_limit;
3442 
3443 	return res;
3444 }
3445 
3446 /*
3447  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3448  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3449  * We need to be 1 filesystem block less than the 2^48 sector limit.
3450  */
3451 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3452 {
3453 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3454 	int meta_blocks;
3455 	unsigned int ppb = 1 << (bits - 2);
3456 
3457 	/*
3458 	 * This is calculated to be the largest file size for a dense, block
3459 	 * mapped file such that the file's total number of 512-byte sectors,
3460 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3461 	 *
3462 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3463 	 * number of 512-byte sectors of the file.
3464 	 */
3465 	if (!has_huge_files) {
3466 		/*
3467 		 * !has_huge_files or implies that the inode i_block field
3468 		 * represents total file blocks in 2^32 512-byte sectors ==
3469 		 * size of vfs inode i_blocks * 8
3470 		 */
3471 		upper_limit = (1LL << 32) - 1;
3472 
3473 		/* total blocks in file system block size */
3474 		upper_limit >>= (bits - 9);
3475 
3476 	} else {
3477 		/*
3478 		 * We use 48 bit ext4_inode i_blocks
3479 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3480 		 * represent total number of blocks in
3481 		 * file system block size
3482 		 */
3483 		upper_limit = (1LL << 48) - 1;
3484 
3485 	}
3486 
3487 	/* Compute how many blocks we can address by block tree */
3488 	res += ppb;
3489 	res += ppb * ppb;
3490 	res += ((loff_t)ppb) * ppb * ppb;
3491 	/* Compute how many metadata blocks are needed */
3492 	meta_blocks = 1;
3493 	meta_blocks += 1 + ppb;
3494 	meta_blocks += 1 + ppb + ppb * ppb;
3495 	/* Does block tree limit file size? */
3496 	if (res + meta_blocks <= upper_limit)
3497 		goto check_lfs;
3498 
3499 	res = upper_limit;
3500 	/* How many metadata blocks are needed for addressing upper_limit? */
3501 	upper_limit -= EXT4_NDIR_BLOCKS;
3502 	/* indirect blocks */
3503 	meta_blocks = 1;
3504 	upper_limit -= ppb;
3505 	/* double indirect blocks */
3506 	if (upper_limit < ppb * ppb) {
3507 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3508 		res -= meta_blocks;
3509 		goto check_lfs;
3510 	}
3511 	meta_blocks += 1 + ppb;
3512 	upper_limit -= ppb * ppb;
3513 	/* tripple indirect blocks for the rest */
3514 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3515 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3516 	res -= meta_blocks;
3517 check_lfs:
3518 	res <<= bits;
3519 	if (res > MAX_LFS_FILESIZE)
3520 		res = MAX_LFS_FILESIZE;
3521 
3522 	return res;
3523 }
3524 
3525 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3526 				   ext4_fsblk_t logical_sb_block, int nr)
3527 {
3528 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3529 	ext4_group_t bg, first_meta_bg;
3530 	int has_super = 0;
3531 
3532 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3533 
3534 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3535 		return logical_sb_block + nr + 1;
3536 	bg = sbi->s_desc_per_block * nr;
3537 	if (ext4_bg_has_super(sb, bg))
3538 		has_super = 1;
3539 
3540 	/*
3541 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3542 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3543 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3544 	 * compensate.
3545 	 */
3546 	if (sb->s_blocksize == 1024 && nr == 0 &&
3547 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3548 		has_super++;
3549 
3550 	return (has_super + ext4_group_first_block_no(sb, bg));
3551 }
3552 
3553 /**
3554  * ext4_get_stripe_size: Get the stripe size.
3555  * @sbi: In memory super block info
3556  *
3557  * If we have specified it via mount option, then
3558  * use the mount option value. If the value specified at mount time is
3559  * greater than the blocks per group use the super block value.
3560  * If the super block value is greater than blocks per group return 0.
3561  * Allocator needs it be less than blocks per group.
3562  *
3563  */
3564 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3565 {
3566 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3567 	unsigned long stripe_width =
3568 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3569 	int ret;
3570 
3571 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3572 		ret = sbi->s_stripe;
3573 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3574 		ret = stripe_width;
3575 	else if (stride && stride <= sbi->s_blocks_per_group)
3576 		ret = stride;
3577 	else
3578 		ret = 0;
3579 
3580 	/*
3581 	 * If the stripe width is 1, this makes no sense and
3582 	 * we set it to 0 to turn off stripe handling code.
3583 	 */
3584 	if (ret <= 1)
3585 		ret = 0;
3586 
3587 	return ret;
3588 }
3589 
3590 /*
3591  * Check whether this filesystem can be mounted based on
3592  * the features present and the RDONLY/RDWR mount requested.
3593  * Returns 1 if this filesystem can be mounted as requested,
3594  * 0 if it cannot be.
3595  */
3596 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3597 {
3598 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3599 		ext4_msg(sb, KERN_ERR,
3600 			"Couldn't mount because of "
3601 			"unsupported optional features (%x)",
3602 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3603 			~EXT4_FEATURE_INCOMPAT_SUPP));
3604 		return 0;
3605 	}
3606 
3607 #if !IS_ENABLED(CONFIG_UNICODE)
3608 	if (ext4_has_feature_casefold(sb)) {
3609 		ext4_msg(sb, KERN_ERR,
3610 			 "Filesystem with casefold feature cannot be "
3611 			 "mounted without CONFIG_UNICODE");
3612 		return 0;
3613 	}
3614 #endif
3615 
3616 	if (readonly)
3617 		return 1;
3618 
3619 	if (ext4_has_feature_readonly(sb)) {
3620 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3621 		sb->s_flags |= SB_RDONLY;
3622 		return 1;
3623 	}
3624 
3625 	/* Check that feature set is OK for a read-write mount */
3626 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3627 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3628 			 "unsupported optional features (%x)",
3629 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3630 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3631 		return 0;
3632 	}
3633 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3634 		ext4_msg(sb, KERN_ERR,
3635 			 "Can't support bigalloc feature without "
3636 			 "extents feature\n");
3637 		return 0;
3638 	}
3639 
3640 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3641 	if (!readonly && (ext4_has_feature_quota(sb) ||
3642 			  ext4_has_feature_project(sb))) {
3643 		ext4_msg(sb, KERN_ERR,
3644 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3645 		return 0;
3646 	}
3647 #endif  /* CONFIG_QUOTA */
3648 	return 1;
3649 }
3650 
3651 /*
3652  * This function is called once a day if we have errors logged
3653  * on the file system
3654  */
3655 static void print_daily_error_info(struct timer_list *t)
3656 {
3657 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3658 	struct super_block *sb = sbi->s_sb;
3659 	struct ext4_super_block *es = sbi->s_es;
3660 
3661 	if (es->s_error_count)
3662 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3663 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3664 			 le32_to_cpu(es->s_error_count));
3665 	if (es->s_first_error_time) {
3666 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3667 		       sb->s_id,
3668 		       ext4_get_tstamp(es, s_first_error_time),
3669 		       (int) sizeof(es->s_first_error_func),
3670 		       es->s_first_error_func,
3671 		       le32_to_cpu(es->s_first_error_line));
3672 		if (es->s_first_error_ino)
3673 			printk(KERN_CONT ": inode %u",
3674 			       le32_to_cpu(es->s_first_error_ino));
3675 		if (es->s_first_error_block)
3676 			printk(KERN_CONT ": block %llu", (unsigned long long)
3677 			       le64_to_cpu(es->s_first_error_block));
3678 		printk(KERN_CONT "\n");
3679 	}
3680 	if (es->s_last_error_time) {
3681 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3682 		       sb->s_id,
3683 		       ext4_get_tstamp(es, s_last_error_time),
3684 		       (int) sizeof(es->s_last_error_func),
3685 		       es->s_last_error_func,
3686 		       le32_to_cpu(es->s_last_error_line));
3687 		if (es->s_last_error_ino)
3688 			printk(KERN_CONT ": inode %u",
3689 			       le32_to_cpu(es->s_last_error_ino));
3690 		if (es->s_last_error_block)
3691 			printk(KERN_CONT ": block %llu", (unsigned long long)
3692 			       le64_to_cpu(es->s_last_error_block));
3693 		printk(KERN_CONT "\n");
3694 	}
3695 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3696 }
3697 
3698 /* Find next suitable group and run ext4_init_inode_table */
3699 static int ext4_run_li_request(struct ext4_li_request *elr)
3700 {
3701 	struct ext4_group_desc *gdp = NULL;
3702 	struct super_block *sb = elr->lr_super;
3703 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3704 	ext4_group_t group = elr->lr_next_group;
3705 	unsigned int prefetch_ios = 0;
3706 	int ret = 0;
3707 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3708 	u64 start_time;
3709 
3710 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3711 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3712 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3713 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3714 		if (group >= elr->lr_next_group) {
3715 			ret = 1;
3716 			if (elr->lr_first_not_zeroed != ngroups &&
3717 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3718 				elr->lr_next_group = elr->lr_first_not_zeroed;
3719 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3720 				ret = 0;
3721 			}
3722 		}
3723 		return ret;
3724 	}
3725 
3726 	for (; group < ngroups; group++) {
3727 		gdp = ext4_get_group_desc(sb, group, NULL);
3728 		if (!gdp) {
3729 			ret = 1;
3730 			break;
3731 		}
3732 
3733 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3734 			break;
3735 	}
3736 
3737 	if (group >= ngroups)
3738 		ret = 1;
3739 
3740 	if (!ret) {
3741 		start_time = ktime_get_real_ns();
3742 		ret = ext4_init_inode_table(sb, group,
3743 					    elr->lr_timeout ? 0 : 1);
3744 		trace_ext4_lazy_itable_init(sb, group);
3745 		if (elr->lr_timeout == 0) {
3746 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3747 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3748 		}
3749 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3750 		elr->lr_next_group = group + 1;
3751 	}
3752 	return ret;
3753 }
3754 
3755 /*
3756  * Remove lr_request from the list_request and free the
3757  * request structure. Should be called with li_list_mtx held
3758  */
3759 static void ext4_remove_li_request(struct ext4_li_request *elr)
3760 {
3761 	if (!elr)
3762 		return;
3763 
3764 	list_del(&elr->lr_request);
3765 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3766 	kfree(elr);
3767 }
3768 
3769 static void ext4_unregister_li_request(struct super_block *sb)
3770 {
3771 	mutex_lock(&ext4_li_mtx);
3772 	if (!ext4_li_info) {
3773 		mutex_unlock(&ext4_li_mtx);
3774 		return;
3775 	}
3776 
3777 	mutex_lock(&ext4_li_info->li_list_mtx);
3778 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3779 	mutex_unlock(&ext4_li_info->li_list_mtx);
3780 	mutex_unlock(&ext4_li_mtx);
3781 }
3782 
3783 static struct task_struct *ext4_lazyinit_task;
3784 
3785 /*
3786  * This is the function where ext4lazyinit thread lives. It walks
3787  * through the request list searching for next scheduled filesystem.
3788  * When such a fs is found, run the lazy initialization request
3789  * (ext4_rn_li_request) and keep track of the time spend in this
3790  * function. Based on that time we compute next schedule time of
3791  * the request. When walking through the list is complete, compute
3792  * next waking time and put itself into sleep.
3793  */
3794 static int ext4_lazyinit_thread(void *arg)
3795 {
3796 	struct ext4_lazy_init *eli = arg;
3797 	struct list_head *pos, *n;
3798 	struct ext4_li_request *elr;
3799 	unsigned long next_wakeup, cur;
3800 
3801 	BUG_ON(NULL == eli);
3802 	set_freezable();
3803 
3804 cont_thread:
3805 	while (true) {
3806 		next_wakeup = MAX_JIFFY_OFFSET;
3807 
3808 		mutex_lock(&eli->li_list_mtx);
3809 		if (list_empty(&eli->li_request_list)) {
3810 			mutex_unlock(&eli->li_list_mtx);
3811 			goto exit_thread;
3812 		}
3813 		list_for_each_safe(pos, n, &eli->li_request_list) {
3814 			int err = 0;
3815 			int progress = 0;
3816 			elr = list_entry(pos, struct ext4_li_request,
3817 					 lr_request);
3818 
3819 			if (time_before(jiffies, elr->lr_next_sched)) {
3820 				if (time_before(elr->lr_next_sched, next_wakeup))
3821 					next_wakeup = elr->lr_next_sched;
3822 				continue;
3823 			}
3824 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3825 				if (sb_start_write_trylock(elr->lr_super)) {
3826 					progress = 1;
3827 					/*
3828 					 * We hold sb->s_umount, sb can not
3829 					 * be removed from the list, it is
3830 					 * now safe to drop li_list_mtx
3831 					 */
3832 					mutex_unlock(&eli->li_list_mtx);
3833 					err = ext4_run_li_request(elr);
3834 					sb_end_write(elr->lr_super);
3835 					mutex_lock(&eli->li_list_mtx);
3836 					n = pos->next;
3837 				}
3838 				up_read((&elr->lr_super->s_umount));
3839 			}
3840 			/* error, remove the lazy_init job */
3841 			if (err) {
3842 				ext4_remove_li_request(elr);
3843 				continue;
3844 			}
3845 			if (!progress) {
3846 				elr->lr_next_sched = jiffies +
3847 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3848 			}
3849 			if (time_before(elr->lr_next_sched, next_wakeup))
3850 				next_wakeup = elr->lr_next_sched;
3851 		}
3852 		mutex_unlock(&eli->li_list_mtx);
3853 
3854 		try_to_freeze();
3855 
3856 		cur = jiffies;
3857 		if ((time_after_eq(cur, next_wakeup)) ||
3858 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3859 			cond_resched();
3860 			continue;
3861 		}
3862 
3863 		schedule_timeout_interruptible(next_wakeup - cur);
3864 
3865 		if (kthread_should_stop()) {
3866 			ext4_clear_request_list();
3867 			goto exit_thread;
3868 		}
3869 	}
3870 
3871 exit_thread:
3872 	/*
3873 	 * It looks like the request list is empty, but we need
3874 	 * to check it under the li_list_mtx lock, to prevent any
3875 	 * additions into it, and of course we should lock ext4_li_mtx
3876 	 * to atomically free the list and ext4_li_info, because at
3877 	 * this point another ext4 filesystem could be registering
3878 	 * new one.
3879 	 */
3880 	mutex_lock(&ext4_li_mtx);
3881 	mutex_lock(&eli->li_list_mtx);
3882 	if (!list_empty(&eli->li_request_list)) {
3883 		mutex_unlock(&eli->li_list_mtx);
3884 		mutex_unlock(&ext4_li_mtx);
3885 		goto cont_thread;
3886 	}
3887 	mutex_unlock(&eli->li_list_mtx);
3888 	kfree(ext4_li_info);
3889 	ext4_li_info = NULL;
3890 	mutex_unlock(&ext4_li_mtx);
3891 
3892 	return 0;
3893 }
3894 
3895 static void ext4_clear_request_list(void)
3896 {
3897 	struct list_head *pos, *n;
3898 	struct ext4_li_request *elr;
3899 
3900 	mutex_lock(&ext4_li_info->li_list_mtx);
3901 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3902 		elr = list_entry(pos, struct ext4_li_request,
3903 				 lr_request);
3904 		ext4_remove_li_request(elr);
3905 	}
3906 	mutex_unlock(&ext4_li_info->li_list_mtx);
3907 }
3908 
3909 static int ext4_run_lazyinit_thread(void)
3910 {
3911 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3912 					 ext4_li_info, "ext4lazyinit");
3913 	if (IS_ERR(ext4_lazyinit_task)) {
3914 		int err = PTR_ERR(ext4_lazyinit_task);
3915 		ext4_clear_request_list();
3916 		kfree(ext4_li_info);
3917 		ext4_li_info = NULL;
3918 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3919 				 "initialization thread\n",
3920 				 err);
3921 		return err;
3922 	}
3923 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3924 	return 0;
3925 }
3926 
3927 /*
3928  * Check whether it make sense to run itable init. thread or not.
3929  * If there is at least one uninitialized inode table, return
3930  * corresponding group number, else the loop goes through all
3931  * groups and return total number of groups.
3932  */
3933 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3934 {
3935 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3936 	struct ext4_group_desc *gdp = NULL;
3937 
3938 	if (!ext4_has_group_desc_csum(sb))
3939 		return ngroups;
3940 
3941 	for (group = 0; group < ngroups; group++) {
3942 		gdp = ext4_get_group_desc(sb, group, NULL);
3943 		if (!gdp)
3944 			continue;
3945 
3946 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3947 			break;
3948 	}
3949 
3950 	return group;
3951 }
3952 
3953 static int ext4_li_info_new(void)
3954 {
3955 	struct ext4_lazy_init *eli = NULL;
3956 
3957 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3958 	if (!eli)
3959 		return -ENOMEM;
3960 
3961 	INIT_LIST_HEAD(&eli->li_request_list);
3962 	mutex_init(&eli->li_list_mtx);
3963 
3964 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3965 
3966 	ext4_li_info = eli;
3967 
3968 	return 0;
3969 }
3970 
3971 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3972 					    ext4_group_t start)
3973 {
3974 	struct ext4_li_request *elr;
3975 
3976 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3977 	if (!elr)
3978 		return NULL;
3979 
3980 	elr->lr_super = sb;
3981 	elr->lr_first_not_zeroed = start;
3982 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3983 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3984 		elr->lr_next_group = start;
3985 	} else {
3986 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3987 	}
3988 
3989 	/*
3990 	 * Randomize first schedule time of the request to
3991 	 * spread the inode table initialization requests
3992 	 * better.
3993 	 */
3994 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3995 	return elr;
3996 }
3997 
3998 int ext4_register_li_request(struct super_block *sb,
3999 			     ext4_group_t first_not_zeroed)
4000 {
4001 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4002 	struct ext4_li_request *elr = NULL;
4003 	ext4_group_t ngroups = sbi->s_groups_count;
4004 	int ret = 0;
4005 
4006 	mutex_lock(&ext4_li_mtx);
4007 	if (sbi->s_li_request != NULL) {
4008 		/*
4009 		 * Reset timeout so it can be computed again, because
4010 		 * s_li_wait_mult might have changed.
4011 		 */
4012 		sbi->s_li_request->lr_timeout = 0;
4013 		goto out;
4014 	}
4015 
4016 	if (sb_rdonly(sb) ||
4017 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4018 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4019 		goto out;
4020 
4021 	elr = ext4_li_request_new(sb, first_not_zeroed);
4022 	if (!elr) {
4023 		ret = -ENOMEM;
4024 		goto out;
4025 	}
4026 
4027 	if (NULL == ext4_li_info) {
4028 		ret = ext4_li_info_new();
4029 		if (ret)
4030 			goto out;
4031 	}
4032 
4033 	mutex_lock(&ext4_li_info->li_list_mtx);
4034 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4035 	mutex_unlock(&ext4_li_info->li_list_mtx);
4036 
4037 	sbi->s_li_request = elr;
4038 	/*
4039 	 * set elr to NULL here since it has been inserted to
4040 	 * the request_list and the removal and free of it is
4041 	 * handled by ext4_clear_request_list from now on.
4042 	 */
4043 	elr = NULL;
4044 
4045 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4046 		ret = ext4_run_lazyinit_thread();
4047 		if (ret)
4048 			goto out;
4049 	}
4050 out:
4051 	mutex_unlock(&ext4_li_mtx);
4052 	if (ret)
4053 		kfree(elr);
4054 	return ret;
4055 }
4056 
4057 /*
4058  * We do not need to lock anything since this is called on
4059  * module unload.
4060  */
4061 static void ext4_destroy_lazyinit_thread(void)
4062 {
4063 	/*
4064 	 * If thread exited earlier
4065 	 * there's nothing to be done.
4066 	 */
4067 	if (!ext4_li_info || !ext4_lazyinit_task)
4068 		return;
4069 
4070 	kthread_stop(ext4_lazyinit_task);
4071 }
4072 
4073 static int set_journal_csum_feature_set(struct super_block *sb)
4074 {
4075 	int ret = 1;
4076 	int compat, incompat;
4077 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4078 
4079 	if (ext4_has_metadata_csum(sb)) {
4080 		/* journal checksum v3 */
4081 		compat = 0;
4082 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4083 	} else {
4084 		/* journal checksum v1 */
4085 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4086 		incompat = 0;
4087 	}
4088 
4089 	jbd2_journal_clear_features(sbi->s_journal,
4090 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4091 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4092 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4093 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4094 		ret = jbd2_journal_set_features(sbi->s_journal,
4095 				compat, 0,
4096 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4097 				incompat);
4098 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4099 		ret = jbd2_journal_set_features(sbi->s_journal,
4100 				compat, 0,
4101 				incompat);
4102 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4103 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4104 	} else {
4105 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4106 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4107 	}
4108 
4109 	return ret;
4110 }
4111 
4112 /*
4113  * Note: calculating the overhead so we can be compatible with
4114  * historical BSD practice is quite difficult in the face of
4115  * clusters/bigalloc.  This is because multiple metadata blocks from
4116  * different block group can end up in the same allocation cluster.
4117  * Calculating the exact overhead in the face of clustered allocation
4118  * requires either O(all block bitmaps) in memory or O(number of block
4119  * groups**2) in time.  We will still calculate the superblock for
4120  * older file systems --- and if we come across with a bigalloc file
4121  * system with zero in s_overhead_clusters the estimate will be close to
4122  * correct especially for very large cluster sizes --- but for newer
4123  * file systems, it's better to calculate this figure once at mkfs
4124  * time, and store it in the superblock.  If the superblock value is
4125  * present (even for non-bigalloc file systems), we will use it.
4126  */
4127 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4128 			  char *buf)
4129 {
4130 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4131 	struct ext4_group_desc	*gdp;
4132 	ext4_fsblk_t		first_block, last_block, b;
4133 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4134 	int			s, j, count = 0;
4135 	int			has_super = ext4_bg_has_super(sb, grp);
4136 
4137 	if (!ext4_has_feature_bigalloc(sb))
4138 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4139 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4140 			sbi->s_itb_per_group + 2);
4141 
4142 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4143 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4144 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4145 	for (i = 0; i < ngroups; i++) {
4146 		gdp = ext4_get_group_desc(sb, i, NULL);
4147 		b = ext4_block_bitmap(sb, gdp);
4148 		if (b >= first_block && b <= last_block) {
4149 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4150 			count++;
4151 		}
4152 		b = ext4_inode_bitmap(sb, gdp);
4153 		if (b >= first_block && b <= last_block) {
4154 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4155 			count++;
4156 		}
4157 		b = ext4_inode_table(sb, gdp);
4158 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4159 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4160 				int c = EXT4_B2C(sbi, b - first_block);
4161 				ext4_set_bit(c, buf);
4162 				count++;
4163 			}
4164 		if (i != grp)
4165 			continue;
4166 		s = 0;
4167 		if (ext4_bg_has_super(sb, grp)) {
4168 			ext4_set_bit(s++, buf);
4169 			count++;
4170 		}
4171 		j = ext4_bg_num_gdb(sb, grp);
4172 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4173 			ext4_error(sb, "Invalid number of block group "
4174 				   "descriptor blocks: %d", j);
4175 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4176 		}
4177 		count += j;
4178 		for (; j > 0; j--)
4179 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4180 	}
4181 	if (!count)
4182 		return 0;
4183 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4184 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4185 }
4186 
4187 /*
4188  * Compute the overhead and stash it in sbi->s_overhead
4189  */
4190 int ext4_calculate_overhead(struct super_block *sb)
4191 {
4192 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4193 	struct ext4_super_block *es = sbi->s_es;
4194 	struct inode *j_inode;
4195 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4196 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4197 	ext4_fsblk_t overhead = 0;
4198 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4199 
4200 	if (!buf)
4201 		return -ENOMEM;
4202 
4203 	/*
4204 	 * Compute the overhead (FS structures).  This is constant
4205 	 * for a given filesystem unless the number of block groups
4206 	 * changes so we cache the previous value until it does.
4207 	 */
4208 
4209 	/*
4210 	 * All of the blocks before first_data_block are overhead
4211 	 */
4212 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4213 
4214 	/*
4215 	 * Add the overhead found in each block group
4216 	 */
4217 	for (i = 0; i < ngroups; i++) {
4218 		int blks;
4219 
4220 		blks = count_overhead(sb, i, buf);
4221 		overhead += blks;
4222 		if (blks)
4223 			memset(buf, 0, PAGE_SIZE);
4224 		cond_resched();
4225 	}
4226 
4227 	/*
4228 	 * Add the internal journal blocks whether the journal has been
4229 	 * loaded or not
4230 	 */
4231 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4232 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4233 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4234 		/* j_inum for internal journal is non-zero */
4235 		j_inode = ext4_get_journal_inode(sb, j_inum);
4236 		if (!IS_ERR(j_inode)) {
4237 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4238 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4239 			iput(j_inode);
4240 		} else {
4241 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4242 		}
4243 	}
4244 	sbi->s_overhead = overhead;
4245 	smp_wmb();
4246 	free_page((unsigned long) buf);
4247 	return 0;
4248 }
4249 
4250 static void ext4_set_resv_clusters(struct super_block *sb)
4251 {
4252 	ext4_fsblk_t resv_clusters;
4253 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4254 
4255 	/*
4256 	 * There's no need to reserve anything when we aren't using extents.
4257 	 * The space estimates are exact, there are no unwritten extents,
4258 	 * hole punching doesn't need new metadata... This is needed especially
4259 	 * to keep ext2/3 backward compatibility.
4260 	 */
4261 	if (!ext4_has_feature_extents(sb))
4262 		return;
4263 	/*
4264 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4265 	 * This should cover the situations where we can not afford to run
4266 	 * out of space like for example punch hole, or converting
4267 	 * unwritten extents in delalloc path. In most cases such
4268 	 * allocation would require 1, or 2 blocks, higher numbers are
4269 	 * very rare.
4270 	 */
4271 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4272 			 sbi->s_cluster_bits);
4273 
4274 	do_div(resv_clusters, 50);
4275 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4276 
4277 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4278 }
4279 
4280 static const char *ext4_quota_mode(struct super_block *sb)
4281 {
4282 #ifdef CONFIG_QUOTA
4283 	if (!ext4_quota_capable(sb))
4284 		return "none";
4285 
4286 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4287 		return "journalled";
4288 	else
4289 		return "writeback";
4290 #else
4291 	return "disabled";
4292 #endif
4293 }
4294 
4295 static void ext4_setup_csum_trigger(struct super_block *sb,
4296 				    enum ext4_journal_trigger_type type,
4297 				    void (*trigger)(
4298 					struct jbd2_buffer_trigger_type *type,
4299 					struct buffer_head *bh,
4300 					void *mapped_data,
4301 					size_t size))
4302 {
4303 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4304 
4305 	sbi->s_journal_triggers[type].sb = sb;
4306 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4307 }
4308 
4309 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4310 {
4311 	if (!sbi)
4312 		return;
4313 
4314 	kfree(sbi->s_blockgroup_lock);
4315 	fs_put_dax(sbi->s_daxdev, NULL);
4316 	kfree(sbi);
4317 }
4318 
4319 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4320 {
4321 	struct ext4_sb_info *sbi;
4322 
4323 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4324 	if (!sbi)
4325 		return NULL;
4326 
4327 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4328 					   NULL, NULL);
4329 
4330 	sbi->s_blockgroup_lock =
4331 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4332 
4333 	if (!sbi->s_blockgroup_lock)
4334 		goto err_out;
4335 
4336 	sb->s_fs_info = sbi;
4337 	sbi->s_sb = sb;
4338 	return sbi;
4339 err_out:
4340 	fs_put_dax(sbi->s_daxdev, NULL);
4341 	kfree(sbi);
4342 	return NULL;
4343 }
4344 
4345 static void ext4_set_def_opts(struct super_block *sb,
4346 			      struct ext4_super_block *es)
4347 {
4348 	unsigned long def_mount_opts;
4349 
4350 	/* Set defaults before we parse the mount options */
4351 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4352 	set_opt(sb, INIT_INODE_TABLE);
4353 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4354 		set_opt(sb, DEBUG);
4355 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4356 		set_opt(sb, GRPID);
4357 	if (def_mount_opts & EXT4_DEFM_UID16)
4358 		set_opt(sb, NO_UID32);
4359 	/* xattr user namespace & acls are now defaulted on */
4360 	set_opt(sb, XATTR_USER);
4361 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4362 	set_opt(sb, POSIX_ACL);
4363 #endif
4364 	if (ext4_has_feature_fast_commit(sb))
4365 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4366 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4367 	if (ext4_has_metadata_csum(sb))
4368 		set_opt(sb, JOURNAL_CHECKSUM);
4369 
4370 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4371 		set_opt(sb, JOURNAL_DATA);
4372 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4373 		set_opt(sb, ORDERED_DATA);
4374 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4375 		set_opt(sb, WRITEBACK_DATA);
4376 
4377 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4378 		set_opt(sb, ERRORS_PANIC);
4379 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4380 		set_opt(sb, ERRORS_CONT);
4381 	else
4382 		set_opt(sb, ERRORS_RO);
4383 	/* block_validity enabled by default; disable with noblock_validity */
4384 	set_opt(sb, BLOCK_VALIDITY);
4385 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4386 		set_opt(sb, DISCARD);
4387 
4388 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4389 		set_opt(sb, BARRIER);
4390 
4391 	/*
4392 	 * enable delayed allocation by default
4393 	 * Use -o nodelalloc to turn it off
4394 	 */
4395 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4396 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4397 		set_opt(sb, DELALLOC);
4398 
4399 	if (sb->s_blocksize <= PAGE_SIZE)
4400 		set_opt(sb, DIOREAD_NOLOCK);
4401 }
4402 
4403 static int ext4_handle_clustersize(struct super_block *sb)
4404 {
4405 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4406 	struct ext4_super_block *es = sbi->s_es;
4407 	int clustersize;
4408 
4409 	/* Handle clustersize */
4410 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4411 	if (ext4_has_feature_bigalloc(sb)) {
4412 		if (clustersize < sb->s_blocksize) {
4413 			ext4_msg(sb, KERN_ERR,
4414 				 "cluster size (%d) smaller than "
4415 				 "block size (%lu)", clustersize, sb->s_blocksize);
4416 			return -EINVAL;
4417 		}
4418 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4419 			le32_to_cpu(es->s_log_block_size);
4420 	} else {
4421 		if (clustersize != sb->s_blocksize) {
4422 			ext4_msg(sb, KERN_ERR,
4423 				 "fragment/cluster size (%d) != "
4424 				 "block size (%lu)", clustersize, sb->s_blocksize);
4425 			return -EINVAL;
4426 		}
4427 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4428 			ext4_msg(sb, KERN_ERR,
4429 				 "#blocks per group too big: %lu",
4430 				 sbi->s_blocks_per_group);
4431 			return -EINVAL;
4432 		}
4433 		sbi->s_cluster_bits = 0;
4434 	}
4435 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4436 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4437 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4438 			 sbi->s_clusters_per_group);
4439 		return -EINVAL;
4440 	}
4441 	if (sbi->s_blocks_per_group !=
4442 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4443 		ext4_msg(sb, KERN_ERR,
4444 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4445 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4446 		return -EINVAL;
4447 	}
4448 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4449 
4450 	/* Do we have standard group size of clustersize * 8 blocks ? */
4451 	if (sbi->s_blocks_per_group == clustersize << 3)
4452 		set_opt2(sb, STD_GROUP_SIZE);
4453 
4454 	return 0;
4455 }
4456 
4457 static void ext4_fast_commit_init(struct super_block *sb)
4458 {
4459 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4460 
4461 	/* Initialize fast commit stuff */
4462 	atomic_set(&sbi->s_fc_subtid, 0);
4463 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4464 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4465 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4466 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4467 	sbi->s_fc_bytes = 0;
4468 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4469 	sbi->s_fc_ineligible_tid = 0;
4470 	spin_lock_init(&sbi->s_fc_lock);
4471 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4472 	sbi->s_fc_replay_state.fc_regions = NULL;
4473 	sbi->s_fc_replay_state.fc_regions_size = 0;
4474 	sbi->s_fc_replay_state.fc_regions_used = 0;
4475 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4476 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4477 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4478 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4479 }
4480 
4481 static int ext4_inode_info_init(struct super_block *sb,
4482 				struct ext4_super_block *es)
4483 {
4484 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4485 
4486 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4487 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4488 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4489 	} else {
4490 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4491 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4492 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4493 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4494 				 sbi->s_first_ino);
4495 			return -EINVAL;
4496 		}
4497 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4498 		    (!is_power_of_2(sbi->s_inode_size)) ||
4499 		    (sbi->s_inode_size > sb->s_blocksize)) {
4500 			ext4_msg(sb, KERN_ERR,
4501 			       "unsupported inode size: %d",
4502 			       sbi->s_inode_size);
4503 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4504 			return -EINVAL;
4505 		}
4506 		/*
4507 		 * i_atime_extra is the last extra field available for
4508 		 * [acm]times in struct ext4_inode. Checking for that
4509 		 * field should suffice to ensure we have extra space
4510 		 * for all three.
4511 		 */
4512 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4513 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4514 			sb->s_time_gran = 1;
4515 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4516 		} else {
4517 			sb->s_time_gran = NSEC_PER_SEC;
4518 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4519 		}
4520 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4521 	}
4522 
4523 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4524 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4525 			EXT4_GOOD_OLD_INODE_SIZE;
4526 		if (ext4_has_feature_extra_isize(sb)) {
4527 			unsigned v, max = (sbi->s_inode_size -
4528 					   EXT4_GOOD_OLD_INODE_SIZE);
4529 
4530 			v = le16_to_cpu(es->s_want_extra_isize);
4531 			if (v > max) {
4532 				ext4_msg(sb, KERN_ERR,
4533 					 "bad s_want_extra_isize: %d", v);
4534 				return -EINVAL;
4535 			}
4536 			if (sbi->s_want_extra_isize < v)
4537 				sbi->s_want_extra_isize = v;
4538 
4539 			v = le16_to_cpu(es->s_min_extra_isize);
4540 			if (v > max) {
4541 				ext4_msg(sb, KERN_ERR,
4542 					 "bad s_min_extra_isize: %d", v);
4543 				return -EINVAL;
4544 			}
4545 			if (sbi->s_want_extra_isize < v)
4546 				sbi->s_want_extra_isize = v;
4547 		}
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 #if IS_ENABLED(CONFIG_UNICODE)
4554 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4555 {
4556 	const struct ext4_sb_encodings *encoding_info;
4557 	struct unicode_map *encoding;
4558 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4559 
4560 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4561 		return 0;
4562 
4563 	encoding_info = ext4_sb_read_encoding(es);
4564 	if (!encoding_info) {
4565 		ext4_msg(sb, KERN_ERR,
4566 			"Encoding requested by superblock is unknown");
4567 		return -EINVAL;
4568 	}
4569 
4570 	encoding = utf8_load(encoding_info->version);
4571 	if (IS_ERR(encoding)) {
4572 		ext4_msg(sb, KERN_ERR,
4573 			"can't mount with superblock charset: %s-%u.%u.%u "
4574 			"not supported by the kernel. flags: 0x%x.",
4575 			encoding_info->name,
4576 			unicode_major(encoding_info->version),
4577 			unicode_minor(encoding_info->version),
4578 			unicode_rev(encoding_info->version),
4579 			encoding_flags);
4580 		return -EINVAL;
4581 	}
4582 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4583 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4584 		unicode_major(encoding_info->version),
4585 		unicode_minor(encoding_info->version),
4586 		unicode_rev(encoding_info->version),
4587 		encoding_flags);
4588 
4589 	sb->s_encoding = encoding;
4590 	sb->s_encoding_flags = encoding_flags;
4591 
4592 	return 0;
4593 }
4594 #else
4595 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4596 {
4597 	return 0;
4598 }
4599 #endif
4600 
4601 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4602 {
4603 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4604 
4605 	/* Warn if metadata_csum and gdt_csum are both set. */
4606 	if (ext4_has_feature_metadata_csum(sb) &&
4607 	    ext4_has_feature_gdt_csum(sb))
4608 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4609 			     "redundant flags; please run fsck.");
4610 
4611 	/* Check for a known checksum algorithm */
4612 	if (!ext4_verify_csum_type(sb, es)) {
4613 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4614 			 "unknown checksum algorithm.");
4615 		return -EINVAL;
4616 	}
4617 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4618 				ext4_orphan_file_block_trigger);
4619 
4620 	/* Load the checksum driver */
4621 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4622 	if (IS_ERR(sbi->s_chksum_driver)) {
4623 		int ret = PTR_ERR(sbi->s_chksum_driver);
4624 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4625 		sbi->s_chksum_driver = NULL;
4626 		return ret;
4627 	}
4628 
4629 	/* Check superblock checksum */
4630 	if (!ext4_superblock_csum_verify(sb, es)) {
4631 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4632 			 "invalid superblock checksum.  Run e2fsck?");
4633 		return -EFSBADCRC;
4634 	}
4635 
4636 	/* Precompute checksum seed for all metadata */
4637 	if (ext4_has_feature_csum_seed(sb))
4638 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4639 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4640 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4641 					       sizeof(es->s_uuid));
4642 	return 0;
4643 }
4644 
4645 static int ext4_check_feature_compatibility(struct super_block *sb,
4646 					    struct ext4_super_block *es,
4647 					    int silent)
4648 {
4649 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4650 
4651 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4652 	    (ext4_has_compat_features(sb) ||
4653 	     ext4_has_ro_compat_features(sb) ||
4654 	     ext4_has_incompat_features(sb)))
4655 		ext4_msg(sb, KERN_WARNING,
4656 		       "feature flags set on rev 0 fs, "
4657 		       "running e2fsck is recommended");
4658 
4659 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4660 		set_opt2(sb, HURD_COMPAT);
4661 		if (ext4_has_feature_64bit(sb)) {
4662 			ext4_msg(sb, KERN_ERR,
4663 				 "The Hurd can't support 64-bit file systems");
4664 			return -EINVAL;
4665 		}
4666 
4667 		/*
4668 		 * ea_inode feature uses l_i_version field which is not
4669 		 * available in HURD_COMPAT mode.
4670 		 */
4671 		if (ext4_has_feature_ea_inode(sb)) {
4672 			ext4_msg(sb, KERN_ERR,
4673 				 "ea_inode feature is not supported for Hurd");
4674 			return -EINVAL;
4675 		}
4676 	}
4677 
4678 	if (IS_EXT2_SB(sb)) {
4679 		if (ext2_feature_set_ok(sb))
4680 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4681 				 "using the ext4 subsystem");
4682 		else {
4683 			/*
4684 			 * If we're probing be silent, if this looks like
4685 			 * it's actually an ext[34] filesystem.
4686 			 */
4687 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4688 				return -EINVAL;
4689 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4690 				 "to feature incompatibilities");
4691 			return -EINVAL;
4692 		}
4693 	}
4694 
4695 	if (IS_EXT3_SB(sb)) {
4696 		if (ext3_feature_set_ok(sb))
4697 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4698 				 "using the ext4 subsystem");
4699 		else {
4700 			/*
4701 			 * If we're probing be silent, if this looks like
4702 			 * it's actually an ext4 filesystem.
4703 			 */
4704 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4705 				return -EINVAL;
4706 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4707 				 "to feature incompatibilities");
4708 			return -EINVAL;
4709 		}
4710 	}
4711 
4712 	/*
4713 	 * Check feature flags regardless of the revision level, since we
4714 	 * previously didn't change the revision level when setting the flags,
4715 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4716 	 */
4717 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4718 		return -EINVAL;
4719 
4720 	if (sbi->s_daxdev) {
4721 		if (sb->s_blocksize == PAGE_SIZE)
4722 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4723 		else
4724 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4725 	}
4726 
4727 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4728 		if (ext4_has_feature_inline_data(sb)) {
4729 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4730 					" that may contain inline data");
4731 			return -EINVAL;
4732 		}
4733 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4734 			ext4_msg(sb, KERN_ERR,
4735 				"DAX unsupported by block device.");
4736 			return -EINVAL;
4737 		}
4738 	}
4739 
4740 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4741 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4742 			 es->s_encryption_level);
4743 		return -EINVAL;
4744 	}
4745 
4746 	return 0;
4747 }
4748 
4749 static int ext4_check_geometry(struct super_block *sb,
4750 			       struct ext4_super_block *es)
4751 {
4752 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4753 	__u64 blocks_count;
4754 	int err;
4755 
4756 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4757 		ext4_msg(sb, KERN_ERR,
4758 			 "Number of reserved GDT blocks insanely large: %d",
4759 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4760 		return -EINVAL;
4761 	}
4762 	/*
4763 	 * Test whether we have more sectors than will fit in sector_t,
4764 	 * and whether the max offset is addressable by the page cache.
4765 	 */
4766 	err = generic_check_addressable(sb->s_blocksize_bits,
4767 					ext4_blocks_count(es));
4768 	if (err) {
4769 		ext4_msg(sb, KERN_ERR, "filesystem"
4770 			 " too large to mount safely on this system");
4771 		return err;
4772 	}
4773 
4774 	/* check blocks count against device size */
4775 	blocks_count = sb_bdev_nr_blocks(sb);
4776 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4777 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4778 		       "exceeds size of device (%llu blocks)",
4779 		       ext4_blocks_count(es), blocks_count);
4780 		return -EINVAL;
4781 	}
4782 
4783 	/*
4784 	 * It makes no sense for the first data block to be beyond the end
4785 	 * of the filesystem.
4786 	 */
4787 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4788 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4789 			 "block %u is beyond end of filesystem (%llu)",
4790 			 le32_to_cpu(es->s_first_data_block),
4791 			 ext4_blocks_count(es));
4792 		return -EINVAL;
4793 	}
4794 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4795 	    (sbi->s_cluster_ratio == 1)) {
4796 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4797 			 "block is 0 with a 1k block and cluster size");
4798 		return -EINVAL;
4799 	}
4800 
4801 	blocks_count = (ext4_blocks_count(es) -
4802 			le32_to_cpu(es->s_first_data_block) +
4803 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4804 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4805 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4806 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4807 		       "(block count %llu, first data block %u, "
4808 		       "blocks per group %lu)", blocks_count,
4809 		       ext4_blocks_count(es),
4810 		       le32_to_cpu(es->s_first_data_block),
4811 		       EXT4_BLOCKS_PER_GROUP(sb));
4812 		return -EINVAL;
4813 	}
4814 	sbi->s_groups_count = blocks_count;
4815 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4816 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4817 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4818 	    le32_to_cpu(es->s_inodes_count)) {
4819 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4820 			 le32_to_cpu(es->s_inodes_count),
4821 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4822 		return -EINVAL;
4823 	}
4824 
4825 	return 0;
4826 }
4827 
4828 static int ext4_group_desc_init(struct super_block *sb,
4829 				struct ext4_super_block *es,
4830 				ext4_fsblk_t logical_sb_block,
4831 				ext4_group_t *first_not_zeroed)
4832 {
4833 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4834 	unsigned int db_count;
4835 	ext4_fsblk_t block;
4836 	int i;
4837 
4838 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4839 		   EXT4_DESC_PER_BLOCK(sb);
4840 	if (ext4_has_feature_meta_bg(sb)) {
4841 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4842 			ext4_msg(sb, KERN_WARNING,
4843 				 "first meta block group too large: %u "
4844 				 "(group descriptor block count %u)",
4845 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4846 			return -EINVAL;
4847 		}
4848 	}
4849 	rcu_assign_pointer(sbi->s_group_desc,
4850 			   kvmalloc_array(db_count,
4851 					  sizeof(struct buffer_head *),
4852 					  GFP_KERNEL));
4853 	if (sbi->s_group_desc == NULL) {
4854 		ext4_msg(sb, KERN_ERR, "not enough memory");
4855 		return -ENOMEM;
4856 	}
4857 
4858 	bgl_lock_init(sbi->s_blockgroup_lock);
4859 
4860 	/* Pre-read the descriptors into the buffer cache */
4861 	for (i = 0; i < db_count; i++) {
4862 		block = descriptor_loc(sb, logical_sb_block, i);
4863 		ext4_sb_breadahead_unmovable(sb, block);
4864 	}
4865 
4866 	for (i = 0; i < db_count; i++) {
4867 		struct buffer_head *bh;
4868 
4869 		block = descriptor_loc(sb, logical_sb_block, i);
4870 		bh = ext4_sb_bread_unmovable(sb, block);
4871 		if (IS_ERR(bh)) {
4872 			ext4_msg(sb, KERN_ERR,
4873 			       "can't read group descriptor %d", i);
4874 			sbi->s_gdb_count = i;
4875 			return PTR_ERR(bh);
4876 		}
4877 		rcu_read_lock();
4878 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4879 		rcu_read_unlock();
4880 	}
4881 	sbi->s_gdb_count = db_count;
4882 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4883 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4884 		return -EFSCORRUPTED;
4885 	}
4886 
4887 	return 0;
4888 }
4889 
4890 static int ext4_load_and_init_journal(struct super_block *sb,
4891 				      struct ext4_super_block *es,
4892 				      struct ext4_fs_context *ctx)
4893 {
4894 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4895 	int err;
4896 
4897 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4898 	if (err)
4899 		return err;
4900 
4901 	if (ext4_has_feature_64bit(sb) &&
4902 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4903 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4904 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4905 		goto out;
4906 	}
4907 
4908 	if (!set_journal_csum_feature_set(sb)) {
4909 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4910 			 "feature set");
4911 		goto out;
4912 	}
4913 
4914 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4915 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4916 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4917 		ext4_msg(sb, KERN_ERR,
4918 			"Failed to set fast commit journal feature");
4919 		goto out;
4920 	}
4921 
4922 	/* We have now updated the journal if required, so we can
4923 	 * validate the data journaling mode. */
4924 	switch (test_opt(sb, DATA_FLAGS)) {
4925 	case 0:
4926 		/* No mode set, assume a default based on the journal
4927 		 * capabilities: ORDERED_DATA if the journal can
4928 		 * cope, else JOURNAL_DATA
4929 		 */
4930 		if (jbd2_journal_check_available_features
4931 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4932 			set_opt(sb, ORDERED_DATA);
4933 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4934 		} else {
4935 			set_opt(sb, JOURNAL_DATA);
4936 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4937 		}
4938 		break;
4939 
4940 	case EXT4_MOUNT_ORDERED_DATA:
4941 	case EXT4_MOUNT_WRITEBACK_DATA:
4942 		if (!jbd2_journal_check_available_features
4943 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4944 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4945 			       "requested data journaling mode");
4946 			goto out;
4947 		}
4948 		break;
4949 	default:
4950 		break;
4951 	}
4952 
4953 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4954 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4955 		ext4_msg(sb, KERN_ERR, "can't mount with "
4956 			"journal_async_commit in data=ordered mode");
4957 		goto out;
4958 	}
4959 
4960 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4961 
4962 	sbi->s_journal->j_submit_inode_data_buffers =
4963 		ext4_journal_submit_inode_data_buffers;
4964 	sbi->s_journal->j_finish_inode_data_buffers =
4965 		ext4_journal_finish_inode_data_buffers;
4966 
4967 	return 0;
4968 
4969 out:
4970 	/* flush s_sb_upd_work before destroying the journal. */
4971 	flush_work(&sbi->s_sb_upd_work);
4972 	jbd2_journal_destroy(sbi->s_journal);
4973 	sbi->s_journal = NULL;
4974 	return -EINVAL;
4975 }
4976 
4977 static int ext4_check_journal_data_mode(struct super_block *sb)
4978 {
4979 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4980 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4981 			    "data=journal disables delayed allocation, "
4982 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4983 		/* can't mount with both data=journal and dioread_nolock. */
4984 		clear_opt(sb, DIOREAD_NOLOCK);
4985 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4986 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4987 			ext4_msg(sb, KERN_ERR, "can't mount with "
4988 				 "both data=journal and delalloc");
4989 			return -EINVAL;
4990 		}
4991 		if (test_opt(sb, DAX_ALWAYS)) {
4992 			ext4_msg(sb, KERN_ERR, "can't mount with "
4993 				 "both data=journal and dax");
4994 			return -EINVAL;
4995 		}
4996 		if (ext4_has_feature_encrypt(sb)) {
4997 			ext4_msg(sb, KERN_WARNING,
4998 				 "encrypted files will use data=ordered "
4999 				 "instead of data journaling mode");
5000 		}
5001 		if (test_opt(sb, DELALLOC))
5002 			clear_opt(sb, DELALLOC);
5003 	} else {
5004 		sb->s_iflags |= SB_I_CGROUPWB;
5005 	}
5006 
5007 	return 0;
5008 }
5009 
5010 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5011 			   int silent)
5012 {
5013 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5014 	struct ext4_super_block *es;
5015 	ext4_fsblk_t logical_sb_block;
5016 	unsigned long offset = 0;
5017 	struct buffer_head *bh;
5018 	int ret = -EINVAL;
5019 	int blocksize;
5020 
5021 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5022 	if (!blocksize) {
5023 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5024 		return -EINVAL;
5025 	}
5026 
5027 	/*
5028 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5029 	 * block sizes.  We need to calculate the offset from buffer start.
5030 	 */
5031 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5032 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5033 		offset = do_div(logical_sb_block, blocksize);
5034 	} else {
5035 		logical_sb_block = sbi->s_sb_block;
5036 	}
5037 
5038 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5039 	if (IS_ERR(bh)) {
5040 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5041 		return PTR_ERR(bh);
5042 	}
5043 	/*
5044 	 * Note: s_es must be initialized as soon as possible because
5045 	 *       some ext4 macro-instructions depend on its value
5046 	 */
5047 	es = (struct ext4_super_block *) (bh->b_data + offset);
5048 	sbi->s_es = es;
5049 	sb->s_magic = le16_to_cpu(es->s_magic);
5050 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5051 		if (!silent)
5052 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5053 		goto out;
5054 	}
5055 
5056 	if (le32_to_cpu(es->s_log_block_size) >
5057 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5058 		ext4_msg(sb, KERN_ERR,
5059 			 "Invalid log block size: %u",
5060 			 le32_to_cpu(es->s_log_block_size));
5061 		goto out;
5062 	}
5063 	if (le32_to_cpu(es->s_log_cluster_size) >
5064 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5065 		ext4_msg(sb, KERN_ERR,
5066 			 "Invalid log cluster size: %u",
5067 			 le32_to_cpu(es->s_log_cluster_size));
5068 		goto out;
5069 	}
5070 
5071 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5072 
5073 	/*
5074 	 * If the default block size is not the same as the real block size,
5075 	 * we need to reload it.
5076 	 */
5077 	if (sb->s_blocksize == blocksize) {
5078 		*lsb = logical_sb_block;
5079 		sbi->s_sbh = bh;
5080 		return 0;
5081 	}
5082 
5083 	/*
5084 	 * bh must be released before kill_bdev(), otherwise
5085 	 * it won't be freed and its page also. kill_bdev()
5086 	 * is called by sb_set_blocksize().
5087 	 */
5088 	brelse(bh);
5089 	/* Validate the filesystem blocksize */
5090 	if (!sb_set_blocksize(sb, blocksize)) {
5091 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5092 				blocksize);
5093 		bh = NULL;
5094 		goto out;
5095 	}
5096 
5097 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5098 	offset = do_div(logical_sb_block, blocksize);
5099 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5100 	if (IS_ERR(bh)) {
5101 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5102 		ret = PTR_ERR(bh);
5103 		bh = NULL;
5104 		goto out;
5105 	}
5106 	es = (struct ext4_super_block *)(bh->b_data + offset);
5107 	sbi->s_es = es;
5108 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5109 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5110 		goto out;
5111 	}
5112 	*lsb = logical_sb_block;
5113 	sbi->s_sbh = bh;
5114 	return 0;
5115 out:
5116 	brelse(bh);
5117 	return ret;
5118 }
5119 
5120 static void ext4_hash_info_init(struct super_block *sb)
5121 {
5122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5123 	struct ext4_super_block *es = sbi->s_es;
5124 	unsigned int i;
5125 
5126 	for (i = 0; i < 4; i++)
5127 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5128 
5129 	sbi->s_def_hash_version = es->s_def_hash_version;
5130 	if (ext4_has_feature_dir_index(sb)) {
5131 		i = le32_to_cpu(es->s_flags);
5132 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5133 			sbi->s_hash_unsigned = 3;
5134 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5135 #ifdef __CHAR_UNSIGNED__
5136 			if (!sb_rdonly(sb))
5137 				es->s_flags |=
5138 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5139 			sbi->s_hash_unsigned = 3;
5140 #else
5141 			if (!sb_rdonly(sb))
5142 				es->s_flags |=
5143 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5144 #endif
5145 		}
5146 	}
5147 }
5148 
5149 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5150 {
5151 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5152 	struct ext4_super_block *es = sbi->s_es;
5153 	int has_huge_files;
5154 
5155 	has_huge_files = ext4_has_feature_huge_file(sb);
5156 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5157 						      has_huge_files);
5158 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5159 
5160 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5161 	if (ext4_has_feature_64bit(sb)) {
5162 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5163 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5164 		    !is_power_of_2(sbi->s_desc_size)) {
5165 			ext4_msg(sb, KERN_ERR,
5166 			       "unsupported descriptor size %lu",
5167 			       sbi->s_desc_size);
5168 			return -EINVAL;
5169 		}
5170 	} else
5171 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5172 
5173 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5174 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5175 
5176 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5177 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5178 		if (!silent)
5179 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5180 		return -EINVAL;
5181 	}
5182 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5183 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5184 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5185 			 sbi->s_inodes_per_group);
5186 		return -EINVAL;
5187 	}
5188 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5189 					sbi->s_inodes_per_block;
5190 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5191 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5192 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5193 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5194 
5195 	return 0;
5196 }
5197 
5198 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5199 {
5200 	struct ext4_super_block *es = NULL;
5201 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5202 	ext4_fsblk_t logical_sb_block;
5203 	struct inode *root;
5204 	int needs_recovery;
5205 	int err;
5206 	ext4_group_t first_not_zeroed;
5207 	struct ext4_fs_context *ctx = fc->fs_private;
5208 	int silent = fc->sb_flags & SB_SILENT;
5209 
5210 	/* Set defaults for the variables that will be set during parsing */
5211 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5212 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5213 
5214 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5215 	sbi->s_sectors_written_start =
5216 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5217 
5218 	err = ext4_load_super(sb, &logical_sb_block, silent);
5219 	if (err)
5220 		goto out_fail;
5221 
5222 	es = sbi->s_es;
5223 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5224 
5225 	err = ext4_init_metadata_csum(sb, es);
5226 	if (err)
5227 		goto failed_mount;
5228 
5229 	ext4_set_def_opts(sb, es);
5230 
5231 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5232 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5233 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5234 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5235 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5236 
5237 	/*
5238 	 * set default s_li_wait_mult for lazyinit, for the case there is
5239 	 * no mount option specified.
5240 	 */
5241 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5242 
5243 	err = ext4_inode_info_init(sb, es);
5244 	if (err)
5245 		goto failed_mount;
5246 
5247 	err = parse_apply_sb_mount_options(sb, ctx);
5248 	if (err < 0)
5249 		goto failed_mount;
5250 
5251 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5252 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5253 
5254 	err = ext4_check_opt_consistency(fc, sb);
5255 	if (err < 0)
5256 		goto failed_mount;
5257 
5258 	ext4_apply_options(fc, sb);
5259 
5260 	err = ext4_encoding_init(sb, es);
5261 	if (err)
5262 		goto failed_mount;
5263 
5264 	err = ext4_check_journal_data_mode(sb);
5265 	if (err)
5266 		goto failed_mount;
5267 
5268 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5269 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5270 
5271 	/* i_version is always enabled now */
5272 	sb->s_flags |= SB_I_VERSION;
5273 
5274 	err = ext4_check_feature_compatibility(sb, es, silent);
5275 	if (err)
5276 		goto failed_mount;
5277 
5278 	err = ext4_block_group_meta_init(sb, silent);
5279 	if (err)
5280 		goto failed_mount;
5281 
5282 	ext4_hash_info_init(sb);
5283 
5284 	err = ext4_handle_clustersize(sb);
5285 	if (err)
5286 		goto failed_mount;
5287 
5288 	err = ext4_check_geometry(sb, es);
5289 	if (err)
5290 		goto failed_mount;
5291 
5292 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5293 	spin_lock_init(&sbi->s_error_lock);
5294 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5295 
5296 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5297 	if (err)
5298 		goto failed_mount3;
5299 
5300 	err = ext4_es_register_shrinker(sbi);
5301 	if (err)
5302 		goto failed_mount3;
5303 
5304 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5305 	/*
5306 	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5307 	 * cluster, just disable stripe and alert user to simpfy code and avoid
5308 	 * stripe aligned allocation which will rarely successes.
5309 	 */
5310 	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5311 	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5312 		ext4_msg(sb, KERN_WARNING,
5313 			 "stripe (%lu) is not aligned with cluster size (%u), "
5314 			 "stripe is disabled",
5315 			 sbi->s_stripe, sbi->s_cluster_ratio);
5316 		sbi->s_stripe = 0;
5317 	}
5318 	sbi->s_extent_max_zeroout_kb = 32;
5319 
5320 	/*
5321 	 * set up enough so that it can read an inode
5322 	 */
5323 	sb->s_op = &ext4_sops;
5324 	sb->s_export_op = &ext4_export_ops;
5325 	sb->s_xattr = ext4_xattr_handlers;
5326 #ifdef CONFIG_FS_ENCRYPTION
5327 	sb->s_cop = &ext4_cryptops;
5328 #endif
5329 #ifdef CONFIG_FS_VERITY
5330 	sb->s_vop = &ext4_verityops;
5331 #endif
5332 #ifdef CONFIG_QUOTA
5333 	sb->dq_op = &ext4_quota_operations;
5334 	if (ext4_has_feature_quota(sb))
5335 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5336 	else
5337 		sb->s_qcop = &ext4_qctl_operations;
5338 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5339 #endif
5340 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5341 
5342 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5343 	mutex_init(&sbi->s_orphan_lock);
5344 
5345 	ext4_fast_commit_init(sb);
5346 
5347 	sb->s_root = NULL;
5348 
5349 	needs_recovery = (es->s_last_orphan != 0 ||
5350 			  ext4_has_feature_orphan_present(sb) ||
5351 			  ext4_has_feature_journal_needs_recovery(sb));
5352 
5353 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5354 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5355 		if (err)
5356 			goto failed_mount3a;
5357 	}
5358 
5359 	err = -EINVAL;
5360 	/*
5361 	 * The first inode we look at is the journal inode.  Don't try
5362 	 * root first: it may be modified in the journal!
5363 	 */
5364 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5365 		err = ext4_load_and_init_journal(sb, es, ctx);
5366 		if (err)
5367 			goto failed_mount3a;
5368 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5369 		   ext4_has_feature_journal_needs_recovery(sb)) {
5370 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5371 		       "suppressed and not mounted read-only");
5372 		goto failed_mount3a;
5373 	} else {
5374 		/* Nojournal mode, all journal mount options are illegal */
5375 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5376 			ext4_msg(sb, KERN_ERR, "can't mount with "
5377 				 "journal_async_commit, fs mounted w/o journal");
5378 			goto failed_mount3a;
5379 		}
5380 
5381 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5382 			ext4_msg(sb, KERN_ERR, "can't mount with "
5383 				 "journal_checksum, fs mounted w/o journal");
5384 			goto failed_mount3a;
5385 		}
5386 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5387 			ext4_msg(sb, KERN_ERR, "can't mount with "
5388 				 "commit=%lu, fs mounted w/o journal",
5389 				 sbi->s_commit_interval / HZ);
5390 			goto failed_mount3a;
5391 		}
5392 		if (EXT4_MOUNT_DATA_FLAGS &
5393 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5394 			ext4_msg(sb, KERN_ERR, "can't mount with "
5395 				 "data=, fs mounted w/o journal");
5396 			goto failed_mount3a;
5397 		}
5398 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5399 		clear_opt(sb, JOURNAL_CHECKSUM);
5400 		clear_opt(sb, DATA_FLAGS);
5401 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5402 		sbi->s_journal = NULL;
5403 		needs_recovery = 0;
5404 	}
5405 
5406 	if (!test_opt(sb, NO_MBCACHE)) {
5407 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5408 		if (!sbi->s_ea_block_cache) {
5409 			ext4_msg(sb, KERN_ERR,
5410 				 "Failed to create ea_block_cache");
5411 			err = -EINVAL;
5412 			goto failed_mount_wq;
5413 		}
5414 
5415 		if (ext4_has_feature_ea_inode(sb)) {
5416 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5417 			if (!sbi->s_ea_inode_cache) {
5418 				ext4_msg(sb, KERN_ERR,
5419 					 "Failed to create ea_inode_cache");
5420 				err = -EINVAL;
5421 				goto failed_mount_wq;
5422 			}
5423 		}
5424 	}
5425 
5426 	/*
5427 	 * Get the # of file system overhead blocks from the
5428 	 * superblock if present.
5429 	 */
5430 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5431 	/* ignore the precalculated value if it is ridiculous */
5432 	if (sbi->s_overhead > ext4_blocks_count(es))
5433 		sbi->s_overhead = 0;
5434 	/*
5435 	 * If the bigalloc feature is not enabled recalculating the
5436 	 * overhead doesn't take long, so we might as well just redo
5437 	 * it to make sure we are using the correct value.
5438 	 */
5439 	if (!ext4_has_feature_bigalloc(sb))
5440 		sbi->s_overhead = 0;
5441 	if (sbi->s_overhead == 0) {
5442 		err = ext4_calculate_overhead(sb);
5443 		if (err)
5444 			goto failed_mount_wq;
5445 	}
5446 
5447 	/*
5448 	 * The maximum number of concurrent works can be high and
5449 	 * concurrency isn't really necessary.  Limit it to 1.
5450 	 */
5451 	EXT4_SB(sb)->rsv_conversion_wq =
5452 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5453 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5454 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5455 		err = -ENOMEM;
5456 		goto failed_mount4;
5457 	}
5458 
5459 	/*
5460 	 * The jbd2_journal_load will have done any necessary log recovery,
5461 	 * so we can safely mount the rest of the filesystem now.
5462 	 */
5463 
5464 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5465 	if (IS_ERR(root)) {
5466 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5467 		err = PTR_ERR(root);
5468 		root = NULL;
5469 		goto failed_mount4;
5470 	}
5471 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5472 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5473 		iput(root);
5474 		err = -EFSCORRUPTED;
5475 		goto failed_mount4;
5476 	}
5477 
5478 	generic_set_sb_d_ops(sb);
5479 	sb->s_root = d_make_root(root);
5480 	if (!sb->s_root) {
5481 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5482 		err = -ENOMEM;
5483 		goto failed_mount4;
5484 	}
5485 
5486 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5487 	if (err == -EROFS) {
5488 		sb->s_flags |= SB_RDONLY;
5489 	} else if (err)
5490 		goto failed_mount4a;
5491 
5492 	ext4_set_resv_clusters(sb);
5493 
5494 	if (test_opt(sb, BLOCK_VALIDITY)) {
5495 		err = ext4_setup_system_zone(sb);
5496 		if (err) {
5497 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5498 				 "zone (%d)", err);
5499 			goto failed_mount4a;
5500 		}
5501 	}
5502 	ext4_fc_replay_cleanup(sb);
5503 
5504 	ext4_ext_init(sb);
5505 
5506 	/*
5507 	 * Enable optimize_scan if number of groups is > threshold. This can be
5508 	 * turned off by passing "mb_optimize_scan=0". This can also be
5509 	 * turned on forcefully by passing "mb_optimize_scan=1".
5510 	 */
5511 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5512 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5513 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5514 		else
5515 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5516 	}
5517 
5518 	err = ext4_mb_init(sb);
5519 	if (err) {
5520 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5521 			 err);
5522 		goto failed_mount5;
5523 	}
5524 
5525 	/*
5526 	 * We can only set up the journal commit callback once
5527 	 * mballoc is initialized
5528 	 */
5529 	if (sbi->s_journal)
5530 		sbi->s_journal->j_commit_callback =
5531 			ext4_journal_commit_callback;
5532 
5533 	err = ext4_percpu_param_init(sbi);
5534 	if (err)
5535 		goto failed_mount6;
5536 
5537 	if (ext4_has_feature_flex_bg(sb))
5538 		if (!ext4_fill_flex_info(sb)) {
5539 			ext4_msg(sb, KERN_ERR,
5540 			       "unable to initialize "
5541 			       "flex_bg meta info!");
5542 			err = -ENOMEM;
5543 			goto failed_mount6;
5544 		}
5545 
5546 	err = ext4_register_li_request(sb, first_not_zeroed);
5547 	if (err)
5548 		goto failed_mount6;
5549 
5550 	err = ext4_register_sysfs(sb);
5551 	if (err)
5552 		goto failed_mount7;
5553 
5554 	err = ext4_init_orphan_info(sb);
5555 	if (err)
5556 		goto failed_mount8;
5557 #ifdef CONFIG_QUOTA
5558 	/* Enable quota usage during mount. */
5559 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5560 		err = ext4_enable_quotas(sb);
5561 		if (err)
5562 			goto failed_mount9;
5563 	}
5564 #endif  /* CONFIG_QUOTA */
5565 
5566 	/*
5567 	 * Save the original bdev mapping's wb_err value which could be
5568 	 * used to detect the metadata async write error.
5569 	 */
5570 	spin_lock_init(&sbi->s_bdev_wb_lock);
5571 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5572 				 &sbi->s_bdev_wb_err);
5573 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5574 	ext4_orphan_cleanup(sb, es);
5575 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5576 	/*
5577 	 * Update the checksum after updating free space/inode counters and
5578 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5579 	 * checksum in the buffer cache until it is written out and
5580 	 * e2fsprogs programs trying to open a file system immediately
5581 	 * after it is mounted can fail.
5582 	 */
5583 	ext4_superblock_csum_set(sb);
5584 	if (needs_recovery) {
5585 		ext4_msg(sb, KERN_INFO, "recovery complete");
5586 		err = ext4_mark_recovery_complete(sb, es);
5587 		if (err)
5588 			goto failed_mount10;
5589 	}
5590 
5591 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5592 		ext4_msg(sb, KERN_WARNING,
5593 			 "mounting with \"discard\" option, but the device does not support discard");
5594 
5595 	if (es->s_error_count)
5596 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5597 
5598 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5599 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5600 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5601 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5602 	atomic_set(&sbi->s_warning_count, 0);
5603 	atomic_set(&sbi->s_msg_count, 0);
5604 
5605 	return 0;
5606 
5607 failed_mount10:
5608 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5609 failed_mount9: __maybe_unused
5610 	ext4_release_orphan_info(sb);
5611 failed_mount8:
5612 	ext4_unregister_sysfs(sb);
5613 	kobject_put(&sbi->s_kobj);
5614 failed_mount7:
5615 	ext4_unregister_li_request(sb);
5616 failed_mount6:
5617 	ext4_mb_release(sb);
5618 	ext4_flex_groups_free(sbi);
5619 	ext4_percpu_param_destroy(sbi);
5620 failed_mount5:
5621 	ext4_ext_release(sb);
5622 	ext4_release_system_zone(sb);
5623 failed_mount4a:
5624 	dput(sb->s_root);
5625 	sb->s_root = NULL;
5626 failed_mount4:
5627 	ext4_msg(sb, KERN_ERR, "mount failed");
5628 	if (EXT4_SB(sb)->rsv_conversion_wq)
5629 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5630 failed_mount_wq:
5631 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5632 	sbi->s_ea_inode_cache = NULL;
5633 
5634 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5635 	sbi->s_ea_block_cache = NULL;
5636 
5637 	if (sbi->s_journal) {
5638 		/* flush s_sb_upd_work before journal destroy. */
5639 		flush_work(&sbi->s_sb_upd_work);
5640 		jbd2_journal_destroy(sbi->s_journal);
5641 		sbi->s_journal = NULL;
5642 	}
5643 failed_mount3a:
5644 	ext4_es_unregister_shrinker(sbi);
5645 failed_mount3:
5646 	/* flush s_sb_upd_work before sbi destroy */
5647 	flush_work(&sbi->s_sb_upd_work);
5648 	del_timer_sync(&sbi->s_err_report);
5649 	ext4_stop_mmpd(sbi);
5650 	ext4_group_desc_free(sbi);
5651 failed_mount:
5652 	if (sbi->s_chksum_driver)
5653 		crypto_free_shash(sbi->s_chksum_driver);
5654 
5655 #if IS_ENABLED(CONFIG_UNICODE)
5656 	utf8_unload(sb->s_encoding);
5657 #endif
5658 
5659 #ifdef CONFIG_QUOTA
5660 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5661 		kfree(get_qf_name(sb, sbi, i));
5662 #endif
5663 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5664 	brelse(sbi->s_sbh);
5665 	if (sbi->s_journal_bdev_file) {
5666 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5667 		bdev_fput(sbi->s_journal_bdev_file);
5668 	}
5669 out_fail:
5670 	invalidate_bdev(sb->s_bdev);
5671 	sb->s_fs_info = NULL;
5672 	return err;
5673 }
5674 
5675 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5676 {
5677 	struct ext4_fs_context *ctx = fc->fs_private;
5678 	struct ext4_sb_info *sbi;
5679 	const char *descr;
5680 	int ret;
5681 
5682 	sbi = ext4_alloc_sbi(sb);
5683 	if (!sbi)
5684 		return -ENOMEM;
5685 
5686 	fc->s_fs_info = sbi;
5687 
5688 	/* Cleanup superblock name */
5689 	strreplace(sb->s_id, '/', '!');
5690 
5691 	sbi->s_sb_block = 1;	/* Default super block location */
5692 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5693 		sbi->s_sb_block = ctx->s_sb_block;
5694 
5695 	ret = __ext4_fill_super(fc, sb);
5696 	if (ret < 0)
5697 		goto free_sbi;
5698 
5699 	if (sbi->s_journal) {
5700 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5701 			descr = " journalled data mode";
5702 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5703 			descr = " ordered data mode";
5704 		else
5705 			descr = " writeback data mode";
5706 	} else
5707 		descr = "out journal";
5708 
5709 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5710 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5711 			 "Quota mode: %s.", &sb->s_uuid,
5712 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5713 			 ext4_quota_mode(sb));
5714 
5715 	/* Update the s_overhead_clusters if necessary */
5716 	ext4_update_overhead(sb, false);
5717 	return 0;
5718 
5719 free_sbi:
5720 	ext4_free_sbi(sbi);
5721 	fc->s_fs_info = NULL;
5722 	return ret;
5723 }
5724 
5725 static int ext4_get_tree(struct fs_context *fc)
5726 {
5727 	return get_tree_bdev(fc, ext4_fill_super);
5728 }
5729 
5730 /*
5731  * Setup any per-fs journal parameters now.  We'll do this both on
5732  * initial mount, once the journal has been initialised but before we've
5733  * done any recovery; and again on any subsequent remount.
5734  */
5735 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5736 {
5737 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5738 
5739 	journal->j_commit_interval = sbi->s_commit_interval;
5740 	journal->j_min_batch_time = sbi->s_min_batch_time;
5741 	journal->j_max_batch_time = sbi->s_max_batch_time;
5742 	ext4_fc_init(sb, journal);
5743 
5744 	write_lock(&journal->j_state_lock);
5745 	if (test_opt(sb, BARRIER))
5746 		journal->j_flags |= JBD2_BARRIER;
5747 	else
5748 		journal->j_flags &= ~JBD2_BARRIER;
5749 	if (test_opt(sb, DATA_ERR_ABORT))
5750 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5751 	else
5752 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5753 	/*
5754 	 * Always enable journal cycle record option, letting the journal
5755 	 * records log transactions continuously between each mount.
5756 	 */
5757 	journal->j_flags |= JBD2_CYCLE_RECORD;
5758 	write_unlock(&journal->j_state_lock);
5759 }
5760 
5761 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5762 					     unsigned int journal_inum)
5763 {
5764 	struct inode *journal_inode;
5765 
5766 	/*
5767 	 * Test for the existence of a valid inode on disk.  Bad things
5768 	 * happen if we iget() an unused inode, as the subsequent iput()
5769 	 * will try to delete it.
5770 	 */
5771 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5772 	if (IS_ERR(journal_inode)) {
5773 		ext4_msg(sb, KERN_ERR, "no journal found");
5774 		return ERR_CAST(journal_inode);
5775 	}
5776 	if (!journal_inode->i_nlink) {
5777 		make_bad_inode(journal_inode);
5778 		iput(journal_inode);
5779 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5780 		return ERR_PTR(-EFSCORRUPTED);
5781 	}
5782 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5783 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5784 		iput(journal_inode);
5785 		return ERR_PTR(-EFSCORRUPTED);
5786 	}
5787 
5788 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5789 		  journal_inode, journal_inode->i_size);
5790 	return journal_inode;
5791 }
5792 
5793 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5794 {
5795 	struct ext4_map_blocks map;
5796 	int ret;
5797 
5798 	if (journal->j_inode == NULL)
5799 		return 0;
5800 
5801 	map.m_lblk = *block;
5802 	map.m_len = 1;
5803 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5804 	if (ret <= 0) {
5805 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5806 			 "journal bmap failed: block %llu ret %d\n",
5807 			 *block, ret);
5808 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5809 		return ret;
5810 	}
5811 	*block = map.m_pblk;
5812 	return 0;
5813 }
5814 
5815 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5816 					  unsigned int journal_inum)
5817 {
5818 	struct inode *journal_inode;
5819 	journal_t *journal;
5820 
5821 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5822 	if (IS_ERR(journal_inode))
5823 		return ERR_CAST(journal_inode);
5824 
5825 	journal = jbd2_journal_init_inode(journal_inode);
5826 	if (IS_ERR(journal)) {
5827 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5828 		iput(journal_inode);
5829 		return ERR_CAST(journal);
5830 	}
5831 	journal->j_private = sb;
5832 	journal->j_bmap = ext4_journal_bmap;
5833 	ext4_init_journal_params(sb, journal);
5834 	return journal;
5835 }
5836 
5837 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5838 					dev_t j_dev, ext4_fsblk_t *j_start,
5839 					ext4_fsblk_t *j_len)
5840 {
5841 	struct buffer_head *bh;
5842 	struct block_device *bdev;
5843 	struct file *bdev_file;
5844 	int hblock, blocksize;
5845 	ext4_fsblk_t sb_block;
5846 	unsigned long offset;
5847 	struct ext4_super_block *es;
5848 	int errno;
5849 
5850 	bdev_file = bdev_file_open_by_dev(j_dev,
5851 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5852 		sb, &fs_holder_ops);
5853 	if (IS_ERR(bdev_file)) {
5854 		ext4_msg(sb, KERN_ERR,
5855 			 "failed to open journal device unknown-block(%u,%u) %ld",
5856 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5857 		return bdev_file;
5858 	}
5859 
5860 	bdev = file_bdev(bdev_file);
5861 	blocksize = sb->s_blocksize;
5862 	hblock = bdev_logical_block_size(bdev);
5863 	if (blocksize < hblock) {
5864 		ext4_msg(sb, KERN_ERR,
5865 			"blocksize too small for journal device");
5866 		errno = -EINVAL;
5867 		goto out_bdev;
5868 	}
5869 
5870 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5871 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5872 	set_blocksize(bdev, blocksize);
5873 	bh = __bread(bdev, sb_block, blocksize);
5874 	if (!bh) {
5875 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5876 		       "external journal");
5877 		errno = -EINVAL;
5878 		goto out_bdev;
5879 	}
5880 
5881 	es = (struct ext4_super_block *) (bh->b_data + offset);
5882 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5883 	    !(le32_to_cpu(es->s_feature_incompat) &
5884 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5885 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5886 		errno = -EFSCORRUPTED;
5887 		goto out_bh;
5888 	}
5889 
5890 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5891 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5892 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5893 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5894 		errno = -EFSCORRUPTED;
5895 		goto out_bh;
5896 	}
5897 
5898 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5899 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5900 		errno = -EFSCORRUPTED;
5901 		goto out_bh;
5902 	}
5903 
5904 	*j_start = sb_block + 1;
5905 	*j_len = ext4_blocks_count(es);
5906 	brelse(bh);
5907 	return bdev_file;
5908 
5909 out_bh:
5910 	brelse(bh);
5911 out_bdev:
5912 	bdev_fput(bdev_file);
5913 	return ERR_PTR(errno);
5914 }
5915 
5916 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5917 					dev_t j_dev)
5918 {
5919 	journal_t *journal;
5920 	ext4_fsblk_t j_start;
5921 	ext4_fsblk_t j_len;
5922 	struct file *bdev_file;
5923 	int errno = 0;
5924 
5925 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5926 	if (IS_ERR(bdev_file))
5927 		return ERR_CAST(bdev_file);
5928 
5929 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5930 					j_len, sb->s_blocksize);
5931 	if (IS_ERR(journal)) {
5932 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5933 		errno = PTR_ERR(journal);
5934 		goto out_bdev;
5935 	}
5936 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5937 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5938 					"user (unsupported) - %d",
5939 			be32_to_cpu(journal->j_superblock->s_nr_users));
5940 		errno = -EINVAL;
5941 		goto out_journal;
5942 	}
5943 	journal->j_private = sb;
5944 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5945 	ext4_init_journal_params(sb, journal);
5946 	return journal;
5947 
5948 out_journal:
5949 	jbd2_journal_destroy(journal);
5950 out_bdev:
5951 	bdev_fput(bdev_file);
5952 	return ERR_PTR(errno);
5953 }
5954 
5955 static int ext4_load_journal(struct super_block *sb,
5956 			     struct ext4_super_block *es,
5957 			     unsigned long journal_devnum)
5958 {
5959 	journal_t *journal;
5960 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5961 	dev_t journal_dev;
5962 	int err = 0;
5963 	int really_read_only;
5964 	int journal_dev_ro;
5965 
5966 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5967 		return -EFSCORRUPTED;
5968 
5969 	if (journal_devnum &&
5970 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5971 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5972 			"numbers have changed");
5973 		journal_dev = new_decode_dev(journal_devnum);
5974 	} else
5975 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5976 
5977 	if (journal_inum && journal_dev) {
5978 		ext4_msg(sb, KERN_ERR,
5979 			 "filesystem has both journal inode and journal device!");
5980 		return -EINVAL;
5981 	}
5982 
5983 	if (journal_inum) {
5984 		journal = ext4_open_inode_journal(sb, journal_inum);
5985 		if (IS_ERR(journal))
5986 			return PTR_ERR(journal);
5987 	} else {
5988 		journal = ext4_open_dev_journal(sb, journal_dev);
5989 		if (IS_ERR(journal))
5990 			return PTR_ERR(journal);
5991 	}
5992 
5993 	journal_dev_ro = bdev_read_only(journal->j_dev);
5994 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5995 
5996 	if (journal_dev_ro && !sb_rdonly(sb)) {
5997 		ext4_msg(sb, KERN_ERR,
5998 			 "journal device read-only, try mounting with '-o ro'");
5999 		err = -EROFS;
6000 		goto err_out;
6001 	}
6002 
6003 	/*
6004 	 * Are we loading a blank journal or performing recovery after a
6005 	 * crash?  For recovery, we need to check in advance whether we
6006 	 * can get read-write access to the device.
6007 	 */
6008 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6009 		if (sb_rdonly(sb)) {
6010 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6011 					"required on readonly filesystem");
6012 			if (really_read_only) {
6013 				ext4_msg(sb, KERN_ERR, "write access "
6014 					"unavailable, cannot proceed "
6015 					"(try mounting with noload)");
6016 				err = -EROFS;
6017 				goto err_out;
6018 			}
6019 			ext4_msg(sb, KERN_INFO, "write access will "
6020 			       "be enabled during recovery");
6021 		}
6022 	}
6023 
6024 	if (!(journal->j_flags & JBD2_BARRIER))
6025 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6026 
6027 	if (!ext4_has_feature_journal_needs_recovery(sb))
6028 		err = jbd2_journal_wipe(journal, !really_read_only);
6029 	if (!err) {
6030 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6031 		__le16 orig_state;
6032 		bool changed = false;
6033 
6034 		if (save)
6035 			memcpy(save, ((char *) es) +
6036 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6037 		err = jbd2_journal_load(journal);
6038 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6039 				   save, EXT4_S_ERR_LEN)) {
6040 			memcpy(((char *) es) + EXT4_S_ERR_START,
6041 			       save, EXT4_S_ERR_LEN);
6042 			changed = true;
6043 		}
6044 		kfree(save);
6045 		orig_state = es->s_state;
6046 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6047 					   EXT4_ERROR_FS);
6048 		if (orig_state != es->s_state)
6049 			changed = true;
6050 		/* Write out restored error information to the superblock */
6051 		if (changed && !really_read_only) {
6052 			int err2;
6053 			err2 = ext4_commit_super(sb);
6054 			err = err ? : err2;
6055 		}
6056 	}
6057 
6058 	if (err) {
6059 		ext4_msg(sb, KERN_ERR, "error loading journal");
6060 		goto err_out;
6061 	}
6062 
6063 	EXT4_SB(sb)->s_journal = journal;
6064 	err = ext4_clear_journal_err(sb, es);
6065 	if (err) {
6066 		EXT4_SB(sb)->s_journal = NULL;
6067 		jbd2_journal_destroy(journal);
6068 		return err;
6069 	}
6070 
6071 	if (!really_read_only && journal_devnum &&
6072 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6073 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6074 		ext4_commit_super(sb);
6075 	}
6076 	if (!really_read_only && journal_inum &&
6077 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6078 		es->s_journal_inum = cpu_to_le32(journal_inum);
6079 		ext4_commit_super(sb);
6080 	}
6081 
6082 	return 0;
6083 
6084 err_out:
6085 	jbd2_journal_destroy(journal);
6086 	return err;
6087 }
6088 
6089 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6090 static void ext4_update_super(struct super_block *sb)
6091 {
6092 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6093 	struct ext4_super_block *es = sbi->s_es;
6094 	struct buffer_head *sbh = sbi->s_sbh;
6095 
6096 	lock_buffer(sbh);
6097 	/*
6098 	 * If the file system is mounted read-only, don't update the
6099 	 * superblock write time.  This avoids updating the superblock
6100 	 * write time when we are mounting the root file system
6101 	 * read/only but we need to replay the journal; at that point,
6102 	 * for people who are east of GMT and who make their clock
6103 	 * tick in localtime for Windows bug-for-bug compatibility,
6104 	 * the clock is set in the future, and this will cause e2fsck
6105 	 * to complain and force a full file system check.
6106 	 */
6107 	if (!sb_rdonly(sb))
6108 		ext4_update_tstamp(es, s_wtime);
6109 	es->s_kbytes_written =
6110 		cpu_to_le64(sbi->s_kbytes_written +
6111 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6112 		      sbi->s_sectors_written_start) >> 1));
6113 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6114 		ext4_free_blocks_count_set(es,
6115 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6116 				&sbi->s_freeclusters_counter)));
6117 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6118 		es->s_free_inodes_count =
6119 			cpu_to_le32(percpu_counter_sum_positive(
6120 				&sbi->s_freeinodes_counter));
6121 	/* Copy error information to the on-disk superblock */
6122 	spin_lock(&sbi->s_error_lock);
6123 	if (sbi->s_add_error_count > 0) {
6124 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6125 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6126 			__ext4_update_tstamp(&es->s_first_error_time,
6127 					     &es->s_first_error_time_hi,
6128 					     sbi->s_first_error_time);
6129 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6130 				sizeof(es->s_first_error_func));
6131 			es->s_first_error_line =
6132 				cpu_to_le32(sbi->s_first_error_line);
6133 			es->s_first_error_ino =
6134 				cpu_to_le32(sbi->s_first_error_ino);
6135 			es->s_first_error_block =
6136 				cpu_to_le64(sbi->s_first_error_block);
6137 			es->s_first_error_errcode =
6138 				ext4_errno_to_code(sbi->s_first_error_code);
6139 		}
6140 		__ext4_update_tstamp(&es->s_last_error_time,
6141 				     &es->s_last_error_time_hi,
6142 				     sbi->s_last_error_time);
6143 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6144 			sizeof(es->s_last_error_func));
6145 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6146 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6147 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6148 		es->s_last_error_errcode =
6149 				ext4_errno_to_code(sbi->s_last_error_code);
6150 		/*
6151 		 * Start the daily error reporting function if it hasn't been
6152 		 * started already
6153 		 */
6154 		if (!es->s_error_count)
6155 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6156 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6157 		sbi->s_add_error_count = 0;
6158 	}
6159 	spin_unlock(&sbi->s_error_lock);
6160 
6161 	ext4_superblock_csum_set(sb);
6162 	unlock_buffer(sbh);
6163 }
6164 
6165 static int ext4_commit_super(struct super_block *sb)
6166 {
6167 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6168 
6169 	if (!sbh)
6170 		return -EINVAL;
6171 	if (block_device_ejected(sb))
6172 		return -ENODEV;
6173 
6174 	ext4_update_super(sb);
6175 
6176 	lock_buffer(sbh);
6177 	/* Buffer got discarded which means block device got invalidated */
6178 	if (!buffer_mapped(sbh)) {
6179 		unlock_buffer(sbh);
6180 		return -EIO;
6181 	}
6182 
6183 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6184 		/*
6185 		 * Oh, dear.  A previous attempt to write the
6186 		 * superblock failed.  This could happen because the
6187 		 * USB device was yanked out.  Or it could happen to
6188 		 * be a transient write error and maybe the block will
6189 		 * be remapped.  Nothing we can do but to retry the
6190 		 * write and hope for the best.
6191 		 */
6192 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6193 		       "superblock detected");
6194 		clear_buffer_write_io_error(sbh);
6195 		set_buffer_uptodate(sbh);
6196 	}
6197 	get_bh(sbh);
6198 	/* Clear potential dirty bit if it was journalled update */
6199 	clear_buffer_dirty(sbh);
6200 	sbh->b_end_io = end_buffer_write_sync;
6201 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6202 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6203 	wait_on_buffer(sbh);
6204 	if (buffer_write_io_error(sbh)) {
6205 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6206 		       "superblock");
6207 		clear_buffer_write_io_error(sbh);
6208 		set_buffer_uptodate(sbh);
6209 		return -EIO;
6210 	}
6211 	return 0;
6212 }
6213 
6214 /*
6215  * Have we just finished recovery?  If so, and if we are mounting (or
6216  * remounting) the filesystem readonly, then we will end up with a
6217  * consistent fs on disk.  Record that fact.
6218  */
6219 static int ext4_mark_recovery_complete(struct super_block *sb,
6220 				       struct ext4_super_block *es)
6221 {
6222 	int err;
6223 	journal_t *journal = EXT4_SB(sb)->s_journal;
6224 
6225 	if (!ext4_has_feature_journal(sb)) {
6226 		if (journal != NULL) {
6227 			ext4_error(sb, "Journal got removed while the fs was "
6228 				   "mounted!");
6229 			return -EFSCORRUPTED;
6230 		}
6231 		return 0;
6232 	}
6233 	jbd2_journal_lock_updates(journal);
6234 	err = jbd2_journal_flush(journal, 0);
6235 	if (err < 0)
6236 		goto out;
6237 
6238 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6239 	    ext4_has_feature_orphan_present(sb))) {
6240 		if (!ext4_orphan_file_empty(sb)) {
6241 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6242 			err = -EFSCORRUPTED;
6243 			goto out;
6244 		}
6245 		ext4_clear_feature_journal_needs_recovery(sb);
6246 		ext4_clear_feature_orphan_present(sb);
6247 		ext4_commit_super(sb);
6248 	}
6249 out:
6250 	jbd2_journal_unlock_updates(journal);
6251 	return err;
6252 }
6253 
6254 /*
6255  * If we are mounting (or read-write remounting) a filesystem whose journal
6256  * has recorded an error from a previous lifetime, move that error to the
6257  * main filesystem now.
6258  */
6259 static int ext4_clear_journal_err(struct super_block *sb,
6260 				   struct ext4_super_block *es)
6261 {
6262 	journal_t *journal;
6263 	int j_errno;
6264 	const char *errstr;
6265 
6266 	if (!ext4_has_feature_journal(sb)) {
6267 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6268 		return -EFSCORRUPTED;
6269 	}
6270 
6271 	journal = EXT4_SB(sb)->s_journal;
6272 
6273 	/*
6274 	 * Now check for any error status which may have been recorded in the
6275 	 * journal by a prior ext4_error() or ext4_abort()
6276 	 */
6277 
6278 	j_errno = jbd2_journal_errno(journal);
6279 	if (j_errno) {
6280 		char nbuf[16];
6281 
6282 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6283 		ext4_warning(sb, "Filesystem error recorded "
6284 			     "from previous mount: %s", errstr);
6285 
6286 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6287 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6288 		j_errno = ext4_commit_super(sb);
6289 		if (j_errno)
6290 			return j_errno;
6291 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6292 
6293 		jbd2_journal_clear_err(journal);
6294 		jbd2_journal_update_sb_errno(journal);
6295 	}
6296 	return 0;
6297 }
6298 
6299 /*
6300  * Force the running and committing transactions to commit,
6301  * and wait on the commit.
6302  */
6303 int ext4_force_commit(struct super_block *sb)
6304 {
6305 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6306 }
6307 
6308 static int ext4_sync_fs(struct super_block *sb, int wait)
6309 {
6310 	int ret = 0;
6311 	tid_t target;
6312 	bool needs_barrier = false;
6313 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6314 
6315 	if (unlikely(ext4_forced_shutdown(sb)))
6316 		return 0;
6317 
6318 	trace_ext4_sync_fs(sb, wait);
6319 	flush_workqueue(sbi->rsv_conversion_wq);
6320 	/*
6321 	 * Writeback quota in non-journalled quota case - journalled quota has
6322 	 * no dirty dquots
6323 	 */
6324 	dquot_writeback_dquots(sb, -1);
6325 	/*
6326 	 * Data writeback is possible w/o journal transaction, so barrier must
6327 	 * being sent at the end of the function. But we can skip it if
6328 	 * transaction_commit will do it for us.
6329 	 */
6330 	if (sbi->s_journal) {
6331 		target = jbd2_get_latest_transaction(sbi->s_journal);
6332 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6333 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6334 			needs_barrier = true;
6335 
6336 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6337 			if (wait)
6338 				ret = jbd2_log_wait_commit(sbi->s_journal,
6339 							   target);
6340 		}
6341 	} else if (wait && test_opt(sb, BARRIER))
6342 		needs_barrier = true;
6343 	if (needs_barrier) {
6344 		int err;
6345 		err = blkdev_issue_flush(sb->s_bdev);
6346 		if (!ret)
6347 			ret = err;
6348 	}
6349 
6350 	return ret;
6351 }
6352 
6353 /*
6354  * LVM calls this function before a (read-only) snapshot is created.  This
6355  * gives us a chance to flush the journal completely and mark the fs clean.
6356  *
6357  * Note that only this function cannot bring a filesystem to be in a clean
6358  * state independently. It relies on upper layer to stop all data & metadata
6359  * modifications.
6360  */
6361 static int ext4_freeze(struct super_block *sb)
6362 {
6363 	int error = 0;
6364 	journal_t *journal = EXT4_SB(sb)->s_journal;
6365 
6366 	if (journal) {
6367 		/* Now we set up the journal barrier. */
6368 		jbd2_journal_lock_updates(journal);
6369 
6370 		/*
6371 		 * Don't clear the needs_recovery flag if we failed to
6372 		 * flush the journal.
6373 		 */
6374 		error = jbd2_journal_flush(journal, 0);
6375 		if (error < 0)
6376 			goto out;
6377 
6378 		/* Journal blocked and flushed, clear needs_recovery flag. */
6379 		ext4_clear_feature_journal_needs_recovery(sb);
6380 		if (ext4_orphan_file_empty(sb))
6381 			ext4_clear_feature_orphan_present(sb);
6382 	}
6383 
6384 	error = ext4_commit_super(sb);
6385 out:
6386 	if (journal)
6387 		/* we rely on upper layer to stop further updates */
6388 		jbd2_journal_unlock_updates(journal);
6389 	return error;
6390 }
6391 
6392 /*
6393  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6394  * flag here, even though the filesystem is not technically dirty yet.
6395  */
6396 static int ext4_unfreeze(struct super_block *sb)
6397 {
6398 	if (ext4_forced_shutdown(sb))
6399 		return 0;
6400 
6401 	if (EXT4_SB(sb)->s_journal) {
6402 		/* Reset the needs_recovery flag before the fs is unlocked. */
6403 		ext4_set_feature_journal_needs_recovery(sb);
6404 		if (ext4_has_feature_orphan_file(sb))
6405 			ext4_set_feature_orphan_present(sb);
6406 	}
6407 
6408 	ext4_commit_super(sb);
6409 	return 0;
6410 }
6411 
6412 /*
6413  * Structure to save mount options for ext4_remount's benefit
6414  */
6415 struct ext4_mount_options {
6416 	unsigned long s_mount_opt;
6417 	unsigned long s_mount_opt2;
6418 	kuid_t s_resuid;
6419 	kgid_t s_resgid;
6420 	unsigned long s_commit_interval;
6421 	u32 s_min_batch_time, s_max_batch_time;
6422 #ifdef CONFIG_QUOTA
6423 	int s_jquota_fmt;
6424 	char *s_qf_names[EXT4_MAXQUOTAS];
6425 #endif
6426 };
6427 
6428 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6429 {
6430 	struct ext4_fs_context *ctx = fc->fs_private;
6431 	struct ext4_super_block *es;
6432 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6433 	unsigned long old_sb_flags;
6434 	struct ext4_mount_options old_opts;
6435 	ext4_group_t g;
6436 	int err = 0;
6437 	int alloc_ctx;
6438 #ifdef CONFIG_QUOTA
6439 	int enable_quota = 0;
6440 	int i, j;
6441 	char *to_free[EXT4_MAXQUOTAS];
6442 #endif
6443 
6444 
6445 	/* Store the original options */
6446 	old_sb_flags = sb->s_flags;
6447 	old_opts.s_mount_opt = sbi->s_mount_opt;
6448 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6449 	old_opts.s_resuid = sbi->s_resuid;
6450 	old_opts.s_resgid = sbi->s_resgid;
6451 	old_opts.s_commit_interval = sbi->s_commit_interval;
6452 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6453 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6454 #ifdef CONFIG_QUOTA
6455 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6456 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6457 		if (sbi->s_qf_names[i]) {
6458 			char *qf_name = get_qf_name(sb, sbi, i);
6459 
6460 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6461 			if (!old_opts.s_qf_names[i]) {
6462 				for (j = 0; j < i; j++)
6463 					kfree(old_opts.s_qf_names[j]);
6464 				return -ENOMEM;
6465 			}
6466 		} else
6467 			old_opts.s_qf_names[i] = NULL;
6468 #endif
6469 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6470 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6471 			ctx->journal_ioprio =
6472 				sbi->s_journal->j_task->io_context->ioprio;
6473 		else
6474 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6475 
6476 	}
6477 
6478 	/*
6479 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6480 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6481 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6482 	 * here s_writepages_rwsem to avoid race between writepages ops and
6483 	 * remount.
6484 	 */
6485 	alloc_ctx = ext4_writepages_down_write(sb);
6486 	ext4_apply_options(fc, sb);
6487 	ext4_writepages_up_write(sb, alloc_ctx);
6488 
6489 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6490 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6491 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6492 			 "during remount not supported; ignoring");
6493 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6494 	}
6495 
6496 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6497 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6498 			ext4_msg(sb, KERN_ERR, "can't mount with "
6499 				 "both data=journal and delalloc");
6500 			err = -EINVAL;
6501 			goto restore_opts;
6502 		}
6503 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6504 			ext4_msg(sb, KERN_ERR, "can't mount with "
6505 				 "both data=journal and dioread_nolock");
6506 			err = -EINVAL;
6507 			goto restore_opts;
6508 		}
6509 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6510 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6511 			ext4_msg(sb, KERN_ERR, "can't mount with "
6512 				"journal_async_commit in data=ordered mode");
6513 			err = -EINVAL;
6514 			goto restore_opts;
6515 		}
6516 	}
6517 
6518 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6519 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6520 		err = -EINVAL;
6521 		goto restore_opts;
6522 	}
6523 
6524 	if (test_opt2(sb, ABORT))
6525 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6526 
6527 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6528 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6529 
6530 	es = sbi->s_es;
6531 
6532 	if (sbi->s_journal) {
6533 		ext4_init_journal_params(sb, sbi->s_journal);
6534 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6535 	}
6536 
6537 	/* Flush outstanding errors before changing fs state */
6538 	flush_work(&sbi->s_sb_upd_work);
6539 
6540 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6541 		if (ext4_forced_shutdown(sb)) {
6542 			err = -EROFS;
6543 			goto restore_opts;
6544 		}
6545 
6546 		if (fc->sb_flags & SB_RDONLY) {
6547 			err = sync_filesystem(sb);
6548 			if (err < 0)
6549 				goto restore_opts;
6550 			err = dquot_suspend(sb, -1);
6551 			if (err < 0)
6552 				goto restore_opts;
6553 
6554 			/*
6555 			 * First of all, the unconditional stuff we have to do
6556 			 * to disable replay of the journal when we next remount
6557 			 */
6558 			sb->s_flags |= SB_RDONLY;
6559 
6560 			/*
6561 			 * OK, test if we are remounting a valid rw partition
6562 			 * readonly, and if so set the rdonly flag and then
6563 			 * mark the partition as valid again.
6564 			 */
6565 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6566 			    (sbi->s_mount_state & EXT4_VALID_FS))
6567 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6568 
6569 			if (sbi->s_journal) {
6570 				/*
6571 				 * We let remount-ro finish even if marking fs
6572 				 * as clean failed...
6573 				 */
6574 				ext4_mark_recovery_complete(sb, es);
6575 			}
6576 		} else {
6577 			/* Make sure we can mount this feature set readwrite */
6578 			if (ext4_has_feature_readonly(sb) ||
6579 			    !ext4_feature_set_ok(sb, 0)) {
6580 				err = -EROFS;
6581 				goto restore_opts;
6582 			}
6583 			/*
6584 			 * Make sure the group descriptor checksums
6585 			 * are sane.  If they aren't, refuse to remount r/w.
6586 			 */
6587 			for (g = 0; g < sbi->s_groups_count; g++) {
6588 				struct ext4_group_desc *gdp =
6589 					ext4_get_group_desc(sb, g, NULL);
6590 
6591 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6592 					ext4_msg(sb, KERN_ERR,
6593 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6594 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6595 					       le16_to_cpu(gdp->bg_checksum));
6596 					err = -EFSBADCRC;
6597 					goto restore_opts;
6598 				}
6599 			}
6600 
6601 			/*
6602 			 * If we have an unprocessed orphan list hanging
6603 			 * around from a previously readonly bdev mount,
6604 			 * require a full umount/remount for now.
6605 			 */
6606 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6607 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6608 				       "remount RDWR because of unprocessed "
6609 				       "orphan inode list.  Please "
6610 				       "umount/remount instead");
6611 				err = -EINVAL;
6612 				goto restore_opts;
6613 			}
6614 
6615 			/*
6616 			 * Mounting a RDONLY partition read-write, so reread
6617 			 * and store the current valid flag.  (It may have
6618 			 * been changed by e2fsck since we originally mounted
6619 			 * the partition.)
6620 			 */
6621 			if (sbi->s_journal) {
6622 				err = ext4_clear_journal_err(sb, es);
6623 				if (err)
6624 					goto restore_opts;
6625 			}
6626 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6627 					      ~EXT4_FC_REPLAY);
6628 
6629 			err = ext4_setup_super(sb, es, 0);
6630 			if (err)
6631 				goto restore_opts;
6632 
6633 			sb->s_flags &= ~SB_RDONLY;
6634 			if (ext4_has_feature_mmp(sb)) {
6635 				err = ext4_multi_mount_protect(sb,
6636 						le64_to_cpu(es->s_mmp_block));
6637 				if (err)
6638 					goto restore_opts;
6639 			}
6640 #ifdef CONFIG_QUOTA
6641 			enable_quota = 1;
6642 #endif
6643 		}
6644 	}
6645 
6646 	/*
6647 	 * Handle creation of system zone data early because it can fail.
6648 	 * Releasing of existing data is done when we are sure remount will
6649 	 * succeed.
6650 	 */
6651 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6652 		err = ext4_setup_system_zone(sb);
6653 		if (err)
6654 			goto restore_opts;
6655 	}
6656 
6657 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6658 		err = ext4_commit_super(sb);
6659 		if (err)
6660 			goto restore_opts;
6661 	}
6662 
6663 #ifdef CONFIG_QUOTA
6664 	if (enable_quota) {
6665 		if (sb_any_quota_suspended(sb))
6666 			dquot_resume(sb, -1);
6667 		else if (ext4_has_feature_quota(sb)) {
6668 			err = ext4_enable_quotas(sb);
6669 			if (err)
6670 				goto restore_opts;
6671 		}
6672 	}
6673 	/* Release old quota file names */
6674 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6675 		kfree(old_opts.s_qf_names[i]);
6676 #endif
6677 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6678 		ext4_release_system_zone(sb);
6679 
6680 	/*
6681 	 * Reinitialize lazy itable initialization thread based on
6682 	 * current settings
6683 	 */
6684 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6685 		ext4_unregister_li_request(sb);
6686 	else {
6687 		ext4_group_t first_not_zeroed;
6688 		first_not_zeroed = ext4_has_uninit_itable(sb);
6689 		ext4_register_li_request(sb, first_not_zeroed);
6690 	}
6691 
6692 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6693 		ext4_stop_mmpd(sbi);
6694 
6695 	return 0;
6696 
6697 restore_opts:
6698 	/*
6699 	 * If there was a failing r/w to ro transition, we may need to
6700 	 * re-enable quota
6701 	 */
6702 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6703 	    sb_any_quota_suspended(sb))
6704 		dquot_resume(sb, -1);
6705 
6706 	alloc_ctx = ext4_writepages_down_write(sb);
6707 	sb->s_flags = old_sb_flags;
6708 	sbi->s_mount_opt = old_opts.s_mount_opt;
6709 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6710 	sbi->s_resuid = old_opts.s_resuid;
6711 	sbi->s_resgid = old_opts.s_resgid;
6712 	sbi->s_commit_interval = old_opts.s_commit_interval;
6713 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6714 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6715 	ext4_writepages_up_write(sb, alloc_ctx);
6716 
6717 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6718 		ext4_release_system_zone(sb);
6719 #ifdef CONFIG_QUOTA
6720 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6721 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6722 		to_free[i] = get_qf_name(sb, sbi, i);
6723 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6724 	}
6725 	synchronize_rcu();
6726 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6727 		kfree(to_free[i]);
6728 #endif
6729 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6730 		ext4_stop_mmpd(sbi);
6731 	return err;
6732 }
6733 
6734 static int ext4_reconfigure(struct fs_context *fc)
6735 {
6736 	struct super_block *sb = fc->root->d_sb;
6737 	int ret;
6738 
6739 	fc->s_fs_info = EXT4_SB(sb);
6740 
6741 	ret = ext4_check_opt_consistency(fc, sb);
6742 	if (ret < 0)
6743 		return ret;
6744 
6745 	ret = __ext4_remount(fc, sb);
6746 	if (ret < 0)
6747 		return ret;
6748 
6749 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6750 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6751 		 ext4_quota_mode(sb));
6752 
6753 	return 0;
6754 }
6755 
6756 #ifdef CONFIG_QUOTA
6757 static int ext4_statfs_project(struct super_block *sb,
6758 			       kprojid_t projid, struct kstatfs *buf)
6759 {
6760 	struct kqid qid;
6761 	struct dquot *dquot;
6762 	u64 limit;
6763 	u64 curblock;
6764 
6765 	qid = make_kqid_projid(projid);
6766 	dquot = dqget(sb, qid);
6767 	if (IS_ERR(dquot))
6768 		return PTR_ERR(dquot);
6769 	spin_lock(&dquot->dq_dqb_lock);
6770 
6771 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6772 			     dquot->dq_dqb.dqb_bhardlimit);
6773 	limit >>= sb->s_blocksize_bits;
6774 
6775 	if (limit && buf->f_blocks > limit) {
6776 		curblock = (dquot->dq_dqb.dqb_curspace +
6777 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6778 		buf->f_blocks = limit;
6779 		buf->f_bfree = buf->f_bavail =
6780 			(buf->f_blocks > curblock) ?
6781 			 (buf->f_blocks - curblock) : 0;
6782 	}
6783 
6784 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6785 			     dquot->dq_dqb.dqb_ihardlimit);
6786 	if (limit && buf->f_files > limit) {
6787 		buf->f_files = limit;
6788 		buf->f_ffree =
6789 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6790 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6791 	}
6792 
6793 	spin_unlock(&dquot->dq_dqb_lock);
6794 	dqput(dquot);
6795 	return 0;
6796 }
6797 #endif
6798 
6799 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6800 {
6801 	struct super_block *sb = dentry->d_sb;
6802 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6803 	struct ext4_super_block *es = sbi->s_es;
6804 	ext4_fsblk_t overhead = 0, resv_blocks;
6805 	s64 bfree;
6806 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6807 
6808 	if (!test_opt(sb, MINIX_DF))
6809 		overhead = sbi->s_overhead;
6810 
6811 	buf->f_type = EXT4_SUPER_MAGIC;
6812 	buf->f_bsize = sb->s_blocksize;
6813 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6814 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6815 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6816 	/* prevent underflow in case that few free space is available */
6817 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6818 	buf->f_bavail = buf->f_bfree -
6819 			(ext4_r_blocks_count(es) + resv_blocks);
6820 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6821 		buf->f_bavail = 0;
6822 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6823 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6824 	buf->f_namelen = EXT4_NAME_LEN;
6825 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6826 
6827 #ifdef CONFIG_QUOTA
6828 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6829 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6830 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6831 #endif
6832 	return 0;
6833 }
6834 
6835 
6836 #ifdef CONFIG_QUOTA
6837 
6838 /*
6839  * Helper functions so that transaction is started before we acquire dqio_sem
6840  * to keep correct lock ordering of transaction > dqio_sem
6841  */
6842 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6843 {
6844 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6845 }
6846 
6847 static int ext4_write_dquot(struct dquot *dquot)
6848 {
6849 	int ret, err;
6850 	handle_t *handle;
6851 	struct inode *inode;
6852 
6853 	inode = dquot_to_inode(dquot);
6854 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6855 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6856 	if (IS_ERR(handle))
6857 		return PTR_ERR(handle);
6858 	ret = dquot_commit(dquot);
6859 	if (ret < 0)
6860 		ext4_error_err(dquot->dq_sb, -ret,
6861 			       "Failed to commit dquot type %d",
6862 			       dquot->dq_id.type);
6863 	err = ext4_journal_stop(handle);
6864 	if (!ret)
6865 		ret = err;
6866 	return ret;
6867 }
6868 
6869 static int ext4_acquire_dquot(struct dquot *dquot)
6870 {
6871 	int ret, err;
6872 	handle_t *handle;
6873 
6874 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6875 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6876 	if (IS_ERR(handle))
6877 		return PTR_ERR(handle);
6878 	ret = dquot_acquire(dquot);
6879 	if (ret < 0)
6880 		ext4_error_err(dquot->dq_sb, -ret,
6881 			      "Failed to acquire dquot type %d",
6882 			      dquot->dq_id.type);
6883 	err = ext4_journal_stop(handle);
6884 	if (!ret)
6885 		ret = err;
6886 	return ret;
6887 }
6888 
6889 static int ext4_release_dquot(struct dquot *dquot)
6890 {
6891 	int ret, err;
6892 	handle_t *handle;
6893 
6894 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6895 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6896 	if (IS_ERR(handle)) {
6897 		/* Release dquot anyway to avoid endless cycle in dqput() */
6898 		dquot_release(dquot);
6899 		return PTR_ERR(handle);
6900 	}
6901 	ret = dquot_release(dquot);
6902 	if (ret < 0)
6903 		ext4_error_err(dquot->dq_sb, -ret,
6904 			       "Failed to release dquot type %d",
6905 			       dquot->dq_id.type);
6906 	err = ext4_journal_stop(handle);
6907 	if (!ret)
6908 		ret = err;
6909 	return ret;
6910 }
6911 
6912 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6913 {
6914 	struct super_block *sb = dquot->dq_sb;
6915 
6916 	if (ext4_is_quota_journalled(sb)) {
6917 		dquot_mark_dquot_dirty(dquot);
6918 		return ext4_write_dquot(dquot);
6919 	} else {
6920 		return dquot_mark_dquot_dirty(dquot);
6921 	}
6922 }
6923 
6924 static int ext4_write_info(struct super_block *sb, int type)
6925 {
6926 	int ret, err;
6927 	handle_t *handle;
6928 
6929 	/* Data block + inode block */
6930 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6931 	if (IS_ERR(handle))
6932 		return PTR_ERR(handle);
6933 	ret = dquot_commit_info(sb, type);
6934 	err = ext4_journal_stop(handle);
6935 	if (!ret)
6936 		ret = err;
6937 	return ret;
6938 }
6939 
6940 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6941 {
6942 	struct ext4_inode_info *ei = EXT4_I(inode);
6943 
6944 	/* The first argument of lockdep_set_subclass has to be
6945 	 * *exactly* the same as the argument to init_rwsem() --- in
6946 	 * this case, in init_once() --- or lockdep gets unhappy
6947 	 * because the name of the lock is set using the
6948 	 * stringification of the argument to init_rwsem().
6949 	 */
6950 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6951 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6952 }
6953 
6954 /*
6955  * Standard function to be called on quota_on
6956  */
6957 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6958 			 const struct path *path)
6959 {
6960 	int err;
6961 
6962 	if (!test_opt(sb, QUOTA))
6963 		return -EINVAL;
6964 
6965 	/* Quotafile not on the same filesystem? */
6966 	if (path->dentry->d_sb != sb)
6967 		return -EXDEV;
6968 
6969 	/* Quota already enabled for this file? */
6970 	if (IS_NOQUOTA(d_inode(path->dentry)))
6971 		return -EBUSY;
6972 
6973 	/* Journaling quota? */
6974 	if (EXT4_SB(sb)->s_qf_names[type]) {
6975 		/* Quotafile not in fs root? */
6976 		if (path->dentry->d_parent != sb->s_root)
6977 			ext4_msg(sb, KERN_WARNING,
6978 				"Quota file not on filesystem root. "
6979 				"Journaled quota will not work");
6980 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6981 	} else {
6982 		/*
6983 		 * Clear the flag just in case mount options changed since
6984 		 * last time.
6985 		 */
6986 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6987 	}
6988 
6989 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6990 	err = dquot_quota_on(sb, type, format_id, path);
6991 	if (!err) {
6992 		struct inode *inode = d_inode(path->dentry);
6993 		handle_t *handle;
6994 
6995 		/*
6996 		 * Set inode flags to prevent userspace from messing with quota
6997 		 * files. If this fails, we return success anyway since quotas
6998 		 * are already enabled and this is not a hard failure.
6999 		 */
7000 		inode_lock(inode);
7001 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7002 		if (IS_ERR(handle))
7003 			goto unlock_inode;
7004 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7005 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7006 				S_NOATIME | S_IMMUTABLE);
7007 		err = ext4_mark_inode_dirty(handle, inode);
7008 		ext4_journal_stop(handle);
7009 	unlock_inode:
7010 		inode_unlock(inode);
7011 		if (err)
7012 			dquot_quota_off(sb, type);
7013 	}
7014 	if (err)
7015 		lockdep_set_quota_inode(path->dentry->d_inode,
7016 					     I_DATA_SEM_NORMAL);
7017 	return err;
7018 }
7019 
7020 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7021 {
7022 	switch (type) {
7023 	case USRQUOTA:
7024 		return qf_inum == EXT4_USR_QUOTA_INO;
7025 	case GRPQUOTA:
7026 		return qf_inum == EXT4_GRP_QUOTA_INO;
7027 	case PRJQUOTA:
7028 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7029 	default:
7030 		BUG();
7031 	}
7032 }
7033 
7034 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7035 			     unsigned int flags)
7036 {
7037 	int err;
7038 	struct inode *qf_inode;
7039 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7040 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7041 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7042 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7043 	};
7044 
7045 	BUG_ON(!ext4_has_feature_quota(sb));
7046 
7047 	if (!qf_inums[type])
7048 		return -EPERM;
7049 
7050 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7051 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7052 				qf_inums[type], type);
7053 		return -EUCLEAN;
7054 	}
7055 
7056 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7057 	if (IS_ERR(qf_inode)) {
7058 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7059 				qf_inums[type], type);
7060 		return PTR_ERR(qf_inode);
7061 	}
7062 
7063 	/* Don't account quota for quota files to avoid recursion */
7064 	qf_inode->i_flags |= S_NOQUOTA;
7065 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7066 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7067 	if (err)
7068 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7069 	iput(qf_inode);
7070 
7071 	return err;
7072 }
7073 
7074 /* Enable usage tracking for all quota types. */
7075 int ext4_enable_quotas(struct super_block *sb)
7076 {
7077 	int type, err = 0;
7078 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7079 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7080 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7081 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7082 	};
7083 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7084 		test_opt(sb, USRQUOTA),
7085 		test_opt(sb, GRPQUOTA),
7086 		test_opt(sb, PRJQUOTA),
7087 	};
7088 
7089 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7090 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7091 		if (qf_inums[type]) {
7092 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7093 				DQUOT_USAGE_ENABLED |
7094 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7095 			if (err) {
7096 				ext4_warning(sb,
7097 					"Failed to enable quota tracking "
7098 					"(type=%d, err=%d, ino=%lu). "
7099 					"Please run e2fsck to fix.", type,
7100 					err, qf_inums[type]);
7101 
7102 				ext4_quotas_off(sb, type);
7103 				return err;
7104 			}
7105 		}
7106 	}
7107 	return 0;
7108 }
7109 
7110 static int ext4_quota_off(struct super_block *sb, int type)
7111 {
7112 	struct inode *inode = sb_dqopt(sb)->files[type];
7113 	handle_t *handle;
7114 	int err;
7115 
7116 	/* Force all delayed allocation blocks to be allocated.
7117 	 * Caller already holds s_umount sem */
7118 	if (test_opt(sb, DELALLOC))
7119 		sync_filesystem(sb);
7120 
7121 	if (!inode || !igrab(inode))
7122 		goto out;
7123 
7124 	err = dquot_quota_off(sb, type);
7125 	if (err || ext4_has_feature_quota(sb))
7126 		goto out_put;
7127 	/*
7128 	 * When the filesystem was remounted read-only first, we cannot cleanup
7129 	 * inode flags here. Bad luck but people should be using QUOTA feature
7130 	 * these days anyway.
7131 	 */
7132 	if (sb_rdonly(sb))
7133 		goto out_put;
7134 
7135 	inode_lock(inode);
7136 	/*
7137 	 * Update modification times of quota files when userspace can
7138 	 * start looking at them. If we fail, we return success anyway since
7139 	 * this is not a hard failure and quotas are already disabled.
7140 	 */
7141 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7142 	if (IS_ERR(handle)) {
7143 		err = PTR_ERR(handle);
7144 		goto out_unlock;
7145 	}
7146 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7147 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7148 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7149 	err = ext4_mark_inode_dirty(handle, inode);
7150 	ext4_journal_stop(handle);
7151 out_unlock:
7152 	inode_unlock(inode);
7153 out_put:
7154 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7155 	iput(inode);
7156 	return err;
7157 out:
7158 	return dquot_quota_off(sb, type);
7159 }
7160 
7161 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7162  * acquiring the locks... As quota files are never truncated and quota code
7163  * itself serializes the operations (and no one else should touch the files)
7164  * we don't have to be afraid of races */
7165 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7166 			       size_t len, loff_t off)
7167 {
7168 	struct inode *inode = sb_dqopt(sb)->files[type];
7169 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7170 	int offset = off & (sb->s_blocksize - 1);
7171 	int tocopy;
7172 	size_t toread;
7173 	struct buffer_head *bh;
7174 	loff_t i_size = i_size_read(inode);
7175 
7176 	if (off > i_size)
7177 		return 0;
7178 	if (off+len > i_size)
7179 		len = i_size-off;
7180 	toread = len;
7181 	while (toread > 0) {
7182 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7183 		bh = ext4_bread(NULL, inode, blk, 0);
7184 		if (IS_ERR(bh))
7185 			return PTR_ERR(bh);
7186 		if (!bh)	/* A hole? */
7187 			memset(data, 0, tocopy);
7188 		else
7189 			memcpy(data, bh->b_data+offset, tocopy);
7190 		brelse(bh);
7191 		offset = 0;
7192 		toread -= tocopy;
7193 		data += tocopy;
7194 		blk++;
7195 	}
7196 	return len;
7197 }
7198 
7199 /* Write to quotafile (we know the transaction is already started and has
7200  * enough credits) */
7201 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7202 				const char *data, size_t len, loff_t off)
7203 {
7204 	struct inode *inode = sb_dqopt(sb)->files[type];
7205 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7206 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7207 	int retries = 0;
7208 	struct buffer_head *bh;
7209 	handle_t *handle = journal_current_handle();
7210 
7211 	if (!handle) {
7212 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7213 			" cancelled because transaction is not started",
7214 			(unsigned long long)off, (unsigned long long)len);
7215 		return -EIO;
7216 	}
7217 	/*
7218 	 * Since we account only one data block in transaction credits,
7219 	 * then it is impossible to cross a block boundary.
7220 	 */
7221 	if (sb->s_blocksize - offset < len) {
7222 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7223 			" cancelled because not block aligned",
7224 			(unsigned long long)off, (unsigned long long)len);
7225 		return -EIO;
7226 	}
7227 
7228 	do {
7229 		bh = ext4_bread(handle, inode, blk,
7230 				EXT4_GET_BLOCKS_CREATE |
7231 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7232 	} while (PTR_ERR(bh) == -ENOSPC &&
7233 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7234 	if (IS_ERR(bh))
7235 		return PTR_ERR(bh);
7236 	if (!bh)
7237 		goto out;
7238 	BUFFER_TRACE(bh, "get write access");
7239 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7240 	if (err) {
7241 		brelse(bh);
7242 		return err;
7243 	}
7244 	lock_buffer(bh);
7245 	memcpy(bh->b_data+offset, data, len);
7246 	flush_dcache_page(bh->b_page);
7247 	unlock_buffer(bh);
7248 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7249 	brelse(bh);
7250 out:
7251 	if (inode->i_size < off + len) {
7252 		i_size_write(inode, off + len);
7253 		EXT4_I(inode)->i_disksize = inode->i_size;
7254 		err2 = ext4_mark_inode_dirty(handle, inode);
7255 		if (unlikely(err2 && !err))
7256 			err = err2;
7257 	}
7258 	return err ? err : len;
7259 }
7260 #endif
7261 
7262 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7263 static inline void register_as_ext2(void)
7264 {
7265 	int err = register_filesystem(&ext2_fs_type);
7266 	if (err)
7267 		printk(KERN_WARNING
7268 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7269 }
7270 
7271 static inline void unregister_as_ext2(void)
7272 {
7273 	unregister_filesystem(&ext2_fs_type);
7274 }
7275 
7276 static inline int ext2_feature_set_ok(struct super_block *sb)
7277 {
7278 	if (ext4_has_unknown_ext2_incompat_features(sb))
7279 		return 0;
7280 	if (sb_rdonly(sb))
7281 		return 1;
7282 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7283 		return 0;
7284 	return 1;
7285 }
7286 #else
7287 static inline void register_as_ext2(void) { }
7288 static inline void unregister_as_ext2(void) { }
7289 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7290 #endif
7291 
7292 static inline void register_as_ext3(void)
7293 {
7294 	int err = register_filesystem(&ext3_fs_type);
7295 	if (err)
7296 		printk(KERN_WARNING
7297 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7298 }
7299 
7300 static inline void unregister_as_ext3(void)
7301 {
7302 	unregister_filesystem(&ext3_fs_type);
7303 }
7304 
7305 static inline int ext3_feature_set_ok(struct super_block *sb)
7306 {
7307 	if (ext4_has_unknown_ext3_incompat_features(sb))
7308 		return 0;
7309 	if (!ext4_has_feature_journal(sb))
7310 		return 0;
7311 	if (sb_rdonly(sb))
7312 		return 1;
7313 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7314 		return 0;
7315 	return 1;
7316 }
7317 
7318 static void ext4_kill_sb(struct super_block *sb)
7319 {
7320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7321 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7322 
7323 	kill_block_super(sb);
7324 
7325 	if (bdev_file)
7326 		bdev_fput(bdev_file);
7327 }
7328 
7329 static struct file_system_type ext4_fs_type = {
7330 	.owner			= THIS_MODULE,
7331 	.name			= "ext4",
7332 	.init_fs_context	= ext4_init_fs_context,
7333 	.parameters		= ext4_param_specs,
7334 	.kill_sb		= ext4_kill_sb,
7335 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7336 };
7337 MODULE_ALIAS_FS("ext4");
7338 
7339 /* Shared across all ext4 file systems */
7340 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7341 
7342 static int __init ext4_init_fs(void)
7343 {
7344 	int i, err;
7345 
7346 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7347 	ext4_li_info = NULL;
7348 
7349 	/* Build-time check for flags consistency */
7350 	ext4_check_flag_values();
7351 
7352 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7353 		init_waitqueue_head(&ext4__ioend_wq[i]);
7354 
7355 	err = ext4_init_es();
7356 	if (err)
7357 		return err;
7358 
7359 	err = ext4_init_pending();
7360 	if (err)
7361 		goto out7;
7362 
7363 	err = ext4_init_post_read_processing();
7364 	if (err)
7365 		goto out6;
7366 
7367 	err = ext4_init_pageio();
7368 	if (err)
7369 		goto out5;
7370 
7371 	err = ext4_init_system_zone();
7372 	if (err)
7373 		goto out4;
7374 
7375 	err = ext4_init_sysfs();
7376 	if (err)
7377 		goto out3;
7378 
7379 	err = ext4_init_mballoc();
7380 	if (err)
7381 		goto out2;
7382 	err = init_inodecache();
7383 	if (err)
7384 		goto out1;
7385 
7386 	err = ext4_fc_init_dentry_cache();
7387 	if (err)
7388 		goto out05;
7389 
7390 	register_as_ext3();
7391 	register_as_ext2();
7392 	err = register_filesystem(&ext4_fs_type);
7393 	if (err)
7394 		goto out;
7395 
7396 	return 0;
7397 out:
7398 	unregister_as_ext2();
7399 	unregister_as_ext3();
7400 	ext4_fc_destroy_dentry_cache();
7401 out05:
7402 	destroy_inodecache();
7403 out1:
7404 	ext4_exit_mballoc();
7405 out2:
7406 	ext4_exit_sysfs();
7407 out3:
7408 	ext4_exit_system_zone();
7409 out4:
7410 	ext4_exit_pageio();
7411 out5:
7412 	ext4_exit_post_read_processing();
7413 out6:
7414 	ext4_exit_pending();
7415 out7:
7416 	ext4_exit_es();
7417 
7418 	return err;
7419 }
7420 
7421 static void __exit ext4_exit_fs(void)
7422 {
7423 	ext4_destroy_lazyinit_thread();
7424 	unregister_as_ext2();
7425 	unregister_as_ext3();
7426 	unregister_filesystem(&ext4_fs_type);
7427 	ext4_fc_destroy_dentry_cache();
7428 	destroy_inodecache();
7429 	ext4_exit_mballoc();
7430 	ext4_exit_sysfs();
7431 	ext4_exit_system_zone();
7432 	ext4_exit_pageio();
7433 	ext4_exit_post_read_processing();
7434 	ext4_exit_es();
7435 	ext4_exit_pending();
7436 }
7437 
7438 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7439 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7440 MODULE_LICENSE("GPL");
7441 MODULE_SOFTDEP("pre: crc32c");
7442 module_init(ext4_init_fs)
7443 module_exit(ext4_exit_fs)
7444