1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ | op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 207 { 208 lock_buffer(bh); 209 if (!wait) { 210 ext4_read_bh_nowait(bh, op_flags, NULL); 211 return 0; 212 } 213 return ext4_read_bh(bh, op_flags, NULL); 214 } 215 216 /* 217 * This works like __bread_gfp() except it uses ERR_PTR for error 218 * returns. Currently with sb_bread it's impossible to distinguish 219 * between ENOMEM and EIO situations (since both result in a NULL 220 * return. 221 */ 222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 223 sector_t block, 224 blk_opf_t op_flags, gfp_t gfp) 225 { 226 struct buffer_head *bh; 227 int ret; 228 229 bh = sb_getblk_gfp(sb, block, gfp); 230 if (bh == NULL) 231 return ERR_PTR(-ENOMEM); 232 if (ext4_buffer_uptodate(bh)) 233 return bh; 234 235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 236 if (ret) { 237 put_bh(bh); 238 return ERR_PTR(ret); 239 } 240 return bh; 241 } 242 243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 244 blk_opf_t op_flags) 245 { 246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 247 } 248 249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 250 sector_t block) 251 { 252 return __ext4_sb_bread_gfp(sb, block, 0, 0); 253 } 254 255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 256 { 257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 258 259 if (likely(bh)) { 260 if (trylock_buffer(bh)) 261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 262 brelse(bh); 263 } 264 } 265 266 static int ext4_verify_csum_type(struct super_block *sb, 267 struct ext4_super_block *es) 268 { 269 if (!ext4_has_feature_metadata_csum(sb)) 270 return 1; 271 272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 273 } 274 275 __le32 ext4_superblock_csum(struct super_block *sb, 276 struct ext4_super_block *es) 277 { 278 struct ext4_sb_info *sbi = EXT4_SB(sb); 279 int offset = offsetof(struct ext4_super_block, s_checksum); 280 __u32 csum; 281 282 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 283 284 return cpu_to_le32(csum); 285 } 286 287 static int ext4_superblock_csum_verify(struct super_block *sb, 288 struct ext4_super_block *es) 289 { 290 if (!ext4_has_metadata_csum(sb)) 291 return 1; 292 293 return es->s_checksum == ext4_superblock_csum(sb, es); 294 } 295 296 void ext4_superblock_csum_set(struct super_block *sb) 297 { 298 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 299 300 if (!ext4_has_metadata_csum(sb)) 301 return; 302 303 es->s_checksum = ext4_superblock_csum(sb, es); 304 } 305 306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 307 struct ext4_group_desc *bg) 308 { 309 return le32_to_cpu(bg->bg_block_bitmap_lo) | 310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 312 } 313 314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_table_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 328 } 329 330 __u32 ext4_free_group_clusters(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 336 } 337 338 __u32 ext4_free_inodes_count(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_used_dirs_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_itable_unused_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_itable_unused_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 360 } 361 362 void ext4_block_bitmap_set(struct super_block *sb, 363 struct ext4_group_desc *bg, ext4_fsblk_t blk) 364 { 365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 368 } 369 370 void ext4_inode_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_table_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_free_group_clusters_set(struct super_block *sb, 387 struct ext4_group_desc *bg, __u32 count) 388 { 389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 392 } 393 394 void ext4_free_inodes_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_used_dirs_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_itable_unused_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 416 } 417 418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 419 { 420 now = clamp_val(now, 0, (1ull << 40) - 1); 421 422 *lo = cpu_to_le32(lower_32_bits(now)); 423 *hi = upper_32_bits(now); 424 } 425 426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 427 { 428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 429 } 430 #define ext4_update_tstamp(es, tstamp) \ 431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 432 ktime_get_real_seconds()) 433 #define ext4_get_tstamp(es, tstamp) \ 434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 /* 476 * This writepage callback for write_cache_pages() 477 * takes care of a few cases after page cleaning. 478 * 479 * write_cache_pages() already checks for dirty pages 480 * and calls clear_page_dirty_for_io(), which we want, 481 * to write protect the pages. 482 * 483 * However, we may have to redirty a page (see below.) 484 */ 485 static int ext4_journalled_writepage_callback(struct folio *folio, 486 struct writeback_control *wbc, 487 void *data) 488 { 489 transaction_t *transaction = (transaction_t *) data; 490 struct buffer_head *bh, *head; 491 struct journal_head *jh; 492 493 bh = head = folio_buffers(folio); 494 do { 495 /* 496 * We have to redirty a page in these cases: 497 * 1) If buffer is dirty, it means the page was dirty because it 498 * contains a buffer that needs checkpointing. So the dirty bit 499 * needs to be preserved so that checkpointing writes the buffer 500 * properly. 501 * 2) If buffer is not part of the committing transaction 502 * (we may have just accidentally come across this buffer because 503 * inode range tracking is not exact) or if the currently running 504 * transaction already contains this buffer as well, dirty bit 505 * needs to be preserved so that the buffer gets writeprotected 506 * properly on running transaction's commit. 507 */ 508 jh = bh2jh(bh); 509 if (buffer_dirty(bh) || 510 (jh && (jh->b_transaction != transaction || 511 jh->b_next_transaction))) { 512 folio_redirty_for_writepage(wbc, folio); 513 goto out; 514 } 515 } while ((bh = bh->b_this_page) != head); 516 517 out: 518 return AOP_WRITEPAGE_ACTIVATE; 519 } 520 521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 522 { 523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 524 struct writeback_control wbc = { 525 .sync_mode = WB_SYNC_ALL, 526 .nr_to_write = LONG_MAX, 527 .range_start = jinode->i_dirty_start, 528 .range_end = jinode->i_dirty_end, 529 }; 530 531 return write_cache_pages(mapping, &wbc, 532 ext4_journalled_writepage_callback, 533 jinode->i_transaction); 534 } 535 536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 537 { 538 int ret; 539 540 if (ext4_should_journal_data(jinode->i_vfs_inode)) 541 ret = ext4_journalled_submit_inode_data_buffers(jinode); 542 else 543 ret = ext4_normal_submit_inode_data_buffers(jinode); 544 return ret; 545 } 546 547 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 548 { 549 int ret = 0; 550 551 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 552 ret = jbd2_journal_finish_inode_data_buffers(jinode); 553 554 return ret; 555 } 556 557 static bool system_going_down(void) 558 { 559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 560 || system_state == SYSTEM_RESTART; 561 } 562 563 struct ext4_err_translation { 564 int code; 565 int errno; 566 }; 567 568 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 569 570 static struct ext4_err_translation err_translation[] = { 571 EXT4_ERR_TRANSLATE(EIO), 572 EXT4_ERR_TRANSLATE(ENOMEM), 573 EXT4_ERR_TRANSLATE(EFSBADCRC), 574 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 575 EXT4_ERR_TRANSLATE(ENOSPC), 576 EXT4_ERR_TRANSLATE(ENOKEY), 577 EXT4_ERR_TRANSLATE(EROFS), 578 EXT4_ERR_TRANSLATE(EFBIG), 579 EXT4_ERR_TRANSLATE(EEXIST), 580 EXT4_ERR_TRANSLATE(ERANGE), 581 EXT4_ERR_TRANSLATE(EOVERFLOW), 582 EXT4_ERR_TRANSLATE(EBUSY), 583 EXT4_ERR_TRANSLATE(ENOTDIR), 584 EXT4_ERR_TRANSLATE(ENOTEMPTY), 585 EXT4_ERR_TRANSLATE(ESHUTDOWN), 586 EXT4_ERR_TRANSLATE(EFAULT), 587 }; 588 589 static int ext4_errno_to_code(int errno) 590 { 591 int i; 592 593 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 594 if (err_translation[i].errno == errno) 595 return err_translation[i].code; 596 return EXT4_ERR_UNKNOWN; 597 } 598 599 static void save_error_info(struct super_block *sb, int error, 600 __u32 ino, __u64 block, 601 const char *func, unsigned int line) 602 { 603 struct ext4_sb_info *sbi = EXT4_SB(sb); 604 605 /* We default to EFSCORRUPTED error... */ 606 if (error == 0) 607 error = EFSCORRUPTED; 608 609 spin_lock(&sbi->s_error_lock); 610 sbi->s_add_error_count++; 611 sbi->s_last_error_code = error; 612 sbi->s_last_error_line = line; 613 sbi->s_last_error_ino = ino; 614 sbi->s_last_error_block = block; 615 sbi->s_last_error_func = func; 616 sbi->s_last_error_time = ktime_get_real_seconds(); 617 if (!sbi->s_first_error_time) { 618 sbi->s_first_error_code = error; 619 sbi->s_first_error_line = line; 620 sbi->s_first_error_ino = ino; 621 sbi->s_first_error_block = block; 622 sbi->s_first_error_func = func; 623 sbi->s_first_error_time = sbi->s_last_error_time; 624 } 625 spin_unlock(&sbi->s_error_lock); 626 } 627 628 /* Deal with the reporting of failure conditions on a filesystem such as 629 * inconsistencies detected or read IO failures. 630 * 631 * On ext2, we can store the error state of the filesystem in the 632 * superblock. That is not possible on ext4, because we may have other 633 * write ordering constraints on the superblock which prevent us from 634 * writing it out straight away; and given that the journal is about to 635 * be aborted, we can't rely on the current, or future, transactions to 636 * write out the superblock safely. 637 * 638 * We'll just use the jbd2_journal_abort() error code to record an error in 639 * the journal instead. On recovery, the journal will complain about 640 * that error until we've noted it down and cleared it. 641 * 642 * If force_ro is set, we unconditionally force the filesystem into an 643 * ABORT|READONLY state, unless the error response on the fs has been set to 644 * panic in which case we take the easy way out and panic immediately. This is 645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 646 * at a critical moment in log management. 647 */ 648 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 649 __u32 ino, __u64 block, 650 const char *func, unsigned int line) 651 { 652 journal_t *journal = EXT4_SB(sb)->s_journal; 653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 654 655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 656 if (test_opt(sb, WARN_ON_ERROR)) 657 WARN_ON_ONCE(1); 658 659 if (!continue_fs && !sb_rdonly(sb)) { 660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 661 if (journal) 662 jbd2_journal_abort(journal, -EIO); 663 } 664 665 if (!bdev_read_only(sb->s_bdev)) { 666 save_error_info(sb, error, ino, block, func, line); 667 /* 668 * In case the fs should keep running, we need to writeout 669 * superblock through the journal. Due to lock ordering 670 * constraints, it may not be safe to do it right here so we 671 * defer superblock flushing to a workqueue. 672 */ 673 if (continue_fs && journal) 674 schedule_work(&EXT4_SB(sb)->s_error_work); 675 else 676 ext4_commit_super(sb); 677 } 678 679 /* 680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 681 * could panic during 'reboot -f' as the underlying device got already 682 * disabled. 683 */ 684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 685 panic("EXT4-fs (device %s): panic forced after error\n", 686 sb->s_id); 687 } 688 689 if (sb_rdonly(sb) || continue_fs) 690 return; 691 692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 693 /* 694 * Make sure updated value of ->s_mount_flags will be visible before 695 * ->s_flags update 696 */ 697 smp_wmb(); 698 sb->s_flags |= SB_RDONLY; 699 } 700 701 static void flush_stashed_error_work(struct work_struct *work) 702 { 703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 704 s_error_work); 705 journal_t *journal = sbi->s_journal; 706 handle_t *handle; 707 708 /* 709 * If the journal is still running, we have to write out superblock 710 * through the journal to avoid collisions of other journalled sb 711 * updates. 712 * 713 * We use directly jbd2 functions here to avoid recursing back into 714 * ext4 error handling code during handling of previous errors. 715 */ 716 if (!sb_rdonly(sbi->s_sb) && journal) { 717 struct buffer_head *sbh = sbi->s_sbh; 718 handle = jbd2_journal_start(journal, 1); 719 if (IS_ERR(handle)) 720 goto write_directly; 721 if (jbd2_journal_get_write_access(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 ext4_update_super(sbi->s_sb); 726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 728 "superblock detected"); 729 clear_buffer_write_io_error(sbh); 730 set_buffer_uptodate(sbh); 731 } 732 733 if (jbd2_journal_dirty_metadata(handle, sbh)) { 734 jbd2_journal_stop(handle); 735 goto write_directly; 736 } 737 jbd2_journal_stop(handle); 738 ext4_notify_error_sysfs(sbi); 739 return; 740 } 741 write_directly: 742 /* 743 * Write through journal failed. Write sb directly to get error info 744 * out and hope for the best. 745 */ 746 ext4_commit_super(sbi->s_sb); 747 ext4_notify_error_sysfs(sbi); 748 } 749 750 #define ext4_error_ratelimit(sb) \ 751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 752 "EXT4-fs error") 753 754 void __ext4_error(struct super_block *sb, const char *function, 755 unsigned int line, bool force_ro, int error, __u64 block, 756 const char *fmt, ...) 757 { 758 struct va_format vaf; 759 va_list args; 760 761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 762 return; 763 764 trace_ext4_error(sb, function, line); 765 if (ext4_error_ratelimit(sb)) { 766 va_start(args, fmt); 767 vaf.fmt = fmt; 768 vaf.va = &args; 769 printk(KERN_CRIT 770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 771 sb->s_id, function, line, current->comm, &vaf); 772 va_end(args); 773 } 774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 775 776 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 777 } 778 779 void __ext4_error_inode(struct inode *inode, const char *function, 780 unsigned int line, ext4_fsblk_t block, int error, 781 const char *fmt, ...) 782 { 783 va_list args; 784 struct va_format vaf; 785 786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 787 return; 788 789 trace_ext4_error(inode->i_sb, function, line); 790 if (ext4_error_ratelimit(inode->i_sb)) { 791 va_start(args, fmt); 792 vaf.fmt = fmt; 793 vaf.va = &args; 794 if (block) 795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 796 "inode #%lu: block %llu: comm %s: %pV\n", 797 inode->i_sb->s_id, function, line, inode->i_ino, 798 block, current->comm, &vaf); 799 else 800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 801 "inode #%lu: comm %s: %pV\n", 802 inode->i_sb->s_id, function, line, inode->i_ino, 803 current->comm, &vaf); 804 va_end(args); 805 } 806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 807 808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 809 function, line); 810 } 811 812 void __ext4_error_file(struct file *file, const char *function, 813 unsigned int line, ext4_fsblk_t block, 814 const char *fmt, ...) 815 { 816 va_list args; 817 struct va_format vaf; 818 struct inode *inode = file_inode(file); 819 char pathname[80], *path; 820 821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 822 return; 823 824 trace_ext4_error(inode->i_sb, function, line); 825 if (ext4_error_ratelimit(inode->i_sb)) { 826 path = file_path(file, pathname, sizeof(pathname)); 827 if (IS_ERR(path)) 828 path = "(unknown)"; 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 if (block) 833 printk(KERN_CRIT 834 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 835 "block %llu: comm %s: path %s: %pV\n", 836 inode->i_sb->s_id, function, line, inode->i_ino, 837 block, current->comm, path, &vaf); 838 else 839 printk(KERN_CRIT 840 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 841 "comm %s: path %s: %pV\n", 842 inode->i_sb->s_id, function, line, inode->i_ino, 843 current->comm, path, &vaf); 844 va_end(args); 845 } 846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 847 848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 849 function, line); 850 } 851 852 const char *ext4_decode_error(struct super_block *sb, int errno, 853 char nbuf[16]) 854 { 855 char *errstr = NULL; 856 857 switch (errno) { 858 case -EFSCORRUPTED: 859 errstr = "Corrupt filesystem"; 860 break; 861 case -EFSBADCRC: 862 errstr = "Filesystem failed CRC"; 863 break; 864 case -EIO: 865 errstr = "IO failure"; 866 break; 867 case -ENOMEM: 868 errstr = "Out of memory"; 869 break; 870 case -EROFS: 871 if (!sb || (EXT4_SB(sb)->s_journal && 872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 873 errstr = "Journal has aborted"; 874 else 875 errstr = "Readonly filesystem"; 876 break; 877 default: 878 /* If the caller passed in an extra buffer for unknown 879 * errors, textualise them now. Else we just return 880 * NULL. */ 881 if (nbuf) { 882 /* Check for truncated error codes... */ 883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 884 errstr = nbuf; 885 } 886 break; 887 } 888 889 return errstr; 890 } 891 892 /* __ext4_std_error decodes expected errors from journaling functions 893 * automatically and invokes the appropriate error response. */ 894 895 void __ext4_std_error(struct super_block *sb, const char *function, 896 unsigned int line, int errno) 897 { 898 char nbuf[16]; 899 const char *errstr; 900 901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 902 return; 903 904 /* Special case: if the error is EROFS, and we're not already 905 * inside a transaction, then there's really no point in logging 906 * an error. */ 907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 908 return; 909 910 if (ext4_error_ratelimit(sb)) { 911 errstr = ext4_decode_error(sb, errno, nbuf); 912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 913 sb->s_id, function, line, errstr); 914 } 915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 916 917 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 918 } 919 920 void __ext4_msg(struct super_block *sb, 921 const char *prefix, const char *fmt, ...) 922 { 923 struct va_format vaf; 924 va_list args; 925 926 if (sb) { 927 atomic_inc(&EXT4_SB(sb)->s_msg_count); 928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 929 "EXT4-fs")) 930 return; 931 } 932 933 va_start(args, fmt); 934 vaf.fmt = fmt; 935 vaf.va = &args; 936 if (sb) 937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 938 else 939 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 940 va_end(args); 941 } 942 943 static int ext4_warning_ratelimit(struct super_block *sb) 944 { 945 atomic_inc(&EXT4_SB(sb)->s_warning_count); 946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 947 "EXT4-fs warning"); 948 } 949 950 void __ext4_warning(struct super_block *sb, const char *function, 951 unsigned int line, const char *fmt, ...) 952 { 953 struct va_format vaf; 954 va_list args; 955 956 if (!ext4_warning_ratelimit(sb)) 957 return; 958 959 va_start(args, fmt); 960 vaf.fmt = fmt; 961 vaf.va = &args; 962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 963 sb->s_id, function, line, &vaf); 964 va_end(args); 965 } 966 967 void __ext4_warning_inode(const struct inode *inode, const char *function, 968 unsigned int line, const char *fmt, ...) 969 { 970 struct va_format vaf; 971 va_list args; 972 973 if (!ext4_warning_ratelimit(inode->i_sb)) 974 return; 975 976 va_start(args, fmt); 977 vaf.fmt = fmt; 978 vaf.va = &args; 979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 981 function, line, inode->i_ino, current->comm, &vaf); 982 va_end(args); 983 } 984 985 void __ext4_grp_locked_error(const char *function, unsigned int line, 986 struct super_block *sb, ext4_group_t grp, 987 unsigned long ino, ext4_fsblk_t block, 988 const char *fmt, ...) 989 __releases(bitlock) 990 __acquires(bitlock) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 996 return; 997 998 trace_ext4_error(sb, function, line); 999 if (ext4_error_ratelimit(sb)) { 1000 va_start(args, fmt); 1001 vaf.fmt = fmt; 1002 vaf.va = &args; 1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1004 sb->s_id, function, line, grp); 1005 if (ino) 1006 printk(KERN_CONT "inode %lu: ", ino); 1007 if (block) 1008 printk(KERN_CONT "block %llu:", 1009 (unsigned long long) block); 1010 printk(KERN_CONT "%pV\n", &vaf); 1011 va_end(args); 1012 } 1013 1014 if (test_opt(sb, ERRORS_CONT)) { 1015 if (test_opt(sb, WARN_ON_ERROR)) 1016 WARN_ON_ONCE(1); 1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1018 if (!bdev_read_only(sb->s_bdev)) { 1019 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1020 line); 1021 schedule_work(&EXT4_SB(sb)->s_error_work); 1022 } 1023 return; 1024 } 1025 ext4_unlock_group(sb, grp); 1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1027 /* 1028 * We only get here in the ERRORS_RO case; relocking the group 1029 * may be dangerous, but nothing bad will happen since the 1030 * filesystem will have already been marked read/only and the 1031 * journal has been aborted. We return 1 as a hint to callers 1032 * who might what to use the return value from 1033 * ext4_grp_locked_error() to distinguish between the 1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1035 * aggressively from the ext4 function in question, with a 1036 * more appropriate error code. 1037 */ 1038 ext4_lock_group(sb, grp); 1039 return; 1040 } 1041 1042 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1043 ext4_group_t group, 1044 unsigned int flags) 1045 { 1046 struct ext4_sb_info *sbi = EXT4_SB(sb); 1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1049 int ret; 1050 1051 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1052 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1053 &grp->bb_state); 1054 if (!ret) 1055 percpu_counter_sub(&sbi->s_freeclusters_counter, 1056 grp->bb_free); 1057 } 1058 1059 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1060 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1061 &grp->bb_state); 1062 if (!ret && gdp) { 1063 int count; 1064 1065 count = ext4_free_inodes_count(sb, gdp); 1066 percpu_counter_sub(&sbi->s_freeinodes_counter, 1067 count); 1068 } 1069 } 1070 } 1071 1072 void ext4_update_dynamic_rev(struct super_block *sb) 1073 { 1074 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1075 1076 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1077 return; 1078 1079 ext4_warning(sb, 1080 "updating to rev %d because of new feature flag, " 1081 "running e2fsck is recommended", 1082 EXT4_DYNAMIC_REV); 1083 1084 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1085 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1086 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1087 /* leave es->s_feature_*compat flags alone */ 1088 /* es->s_uuid will be set by e2fsck if empty */ 1089 1090 /* 1091 * The rest of the superblock fields should be zero, and if not it 1092 * means they are likely already in use, so leave them alone. We 1093 * can leave it up to e2fsck to clean up any inconsistencies there. 1094 */ 1095 } 1096 1097 /* 1098 * Open the external journal device 1099 */ 1100 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1101 { 1102 struct block_device *bdev; 1103 1104 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1105 if (IS_ERR(bdev)) 1106 goto fail; 1107 return bdev; 1108 1109 fail: 1110 ext4_msg(sb, KERN_ERR, 1111 "failed to open journal device unknown-block(%u,%u) %ld", 1112 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1113 return NULL; 1114 } 1115 1116 /* 1117 * Release the journal device 1118 */ 1119 static void ext4_blkdev_put(struct block_device *bdev) 1120 { 1121 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1122 } 1123 1124 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1125 { 1126 struct block_device *bdev; 1127 bdev = sbi->s_journal_bdev; 1128 if (bdev) { 1129 ext4_blkdev_put(bdev); 1130 sbi->s_journal_bdev = NULL; 1131 } 1132 } 1133 1134 static inline struct inode *orphan_list_entry(struct list_head *l) 1135 { 1136 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1137 } 1138 1139 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1140 { 1141 struct list_head *l; 1142 1143 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1144 le32_to_cpu(sbi->s_es->s_last_orphan)); 1145 1146 printk(KERN_ERR "sb_info orphan list:\n"); 1147 list_for_each(l, &sbi->s_orphan) { 1148 struct inode *inode = orphan_list_entry(l); 1149 printk(KERN_ERR " " 1150 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1151 inode->i_sb->s_id, inode->i_ino, inode, 1152 inode->i_mode, inode->i_nlink, 1153 NEXT_ORPHAN(inode)); 1154 } 1155 } 1156 1157 #ifdef CONFIG_QUOTA 1158 static int ext4_quota_off(struct super_block *sb, int type); 1159 1160 static inline void ext4_quota_off_umount(struct super_block *sb) 1161 { 1162 int type; 1163 1164 /* Use our quota_off function to clear inode flags etc. */ 1165 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1166 ext4_quota_off(sb, type); 1167 } 1168 1169 /* 1170 * This is a helper function which is used in the mount/remount 1171 * codepaths (which holds s_umount) to fetch the quota file name. 1172 */ 1173 static inline char *get_qf_name(struct super_block *sb, 1174 struct ext4_sb_info *sbi, 1175 int type) 1176 { 1177 return rcu_dereference_protected(sbi->s_qf_names[type], 1178 lockdep_is_held(&sb->s_umount)); 1179 } 1180 #else 1181 static inline void ext4_quota_off_umount(struct super_block *sb) 1182 { 1183 } 1184 #endif 1185 1186 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1187 { 1188 ext4_fsblk_t block; 1189 int err; 1190 1191 block = ext4_count_free_clusters(sbi->s_sb); 1192 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1193 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1194 GFP_KERNEL); 1195 if (!err) { 1196 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1197 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1198 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1199 GFP_KERNEL); 1200 } 1201 if (!err) 1202 err = percpu_counter_init(&sbi->s_dirs_counter, 1203 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1204 if (!err) 1205 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1206 GFP_KERNEL); 1207 if (!err) 1208 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1209 GFP_KERNEL); 1210 if (!err) 1211 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1212 1213 if (err) 1214 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1215 1216 return err; 1217 } 1218 1219 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1220 { 1221 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1222 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1223 percpu_counter_destroy(&sbi->s_dirs_counter); 1224 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1225 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1226 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1227 } 1228 1229 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1230 { 1231 struct buffer_head **group_desc; 1232 int i; 1233 1234 rcu_read_lock(); 1235 group_desc = rcu_dereference(sbi->s_group_desc); 1236 for (i = 0; i < sbi->s_gdb_count; i++) 1237 brelse(group_desc[i]); 1238 kvfree(group_desc); 1239 rcu_read_unlock(); 1240 } 1241 1242 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1243 { 1244 struct flex_groups **flex_groups; 1245 int i; 1246 1247 rcu_read_lock(); 1248 flex_groups = rcu_dereference(sbi->s_flex_groups); 1249 if (flex_groups) { 1250 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1251 kvfree(flex_groups[i]); 1252 kvfree(flex_groups); 1253 } 1254 rcu_read_unlock(); 1255 } 1256 1257 static void ext4_put_super(struct super_block *sb) 1258 { 1259 struct ext4_sb_info *sbi = EXT4_SB(sb); 1260 struct ext4_super_block *es = sbi->s_es; 1261 int aborted = 0; 1262 int i, err; 1263 1264 /* 1265 * Unregister sysfs before destroying jbd2 journal. 1266 * Since we could still access attr_journal_task attribute via sysfs 1267 * path which could have sbi->s_journal->j_task as NULL 1268 * Unregister sysfs before flush sbi->s_error_work. 1269 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1270 * read metadata verify failed then will queue error work. 1271 * flush_stashed_error_work will call start_this_handle may trigger 1272 * BUG_ON. 1273 */ 1274 ext4_unregister_sysfs(sb); 1275 1276 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1277 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1278 &sb->s_uuid); 1279 1280 ext4_unregister_li_request(sb); 1281 ext4_quota_off_umount(sb); 1282 1283 flush_work(&sbi->s_error_work); 1284 destroy_workqueue(sbi->rsv_conversion_wq); 1285 ext4_release_orphan_info(sb); 1286 1287 if (sbi->s_journal) { 1288 aborted = is_journal_aborted(sbi->s_journal); 1289 err = jbd2_journal_destroy(sbi->s_journal); 1290 sbi->s_journal = NULL; 1291 if ((err < 0) && !aborted) { 1292 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1293 } 1294 } 1295 1296 ext4_es_unregister_shrinker(sbi); 1297 timer_shutdown_sync(&sbi->s_err_report); 1298 ext4_release_system_zone(sb); 1299 ext4_mb_release(sb); 1300 ext4_ext_release(sb); 1301 1302 if (!sb_rdonly(sb) && !aborted) { 1303 ext4_clear_feature_journal_needs_recovery(sb); 1304 ext4_clear_feature_orphan_present(sb); 1305 es->s_state = cpu_to_le16(sbi->s_mount_state); 1306 } 1307 if (!sb_rdonly(sb)) 1308 ext4_commit_super(sb); 1309 1310 ext4_group_desc_free(sbi); 1311 ext4_flex_groups_free(sbi); 1312 ext4_percpu_param_destroy(sbi); 1313 #ifdef CONFIG_QUOTA 1314 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1315 kfree(get_qf_name(sb, sbi, i)); 1316 #endif 1317 1318 /* Debugging code just in case the in-memory inode orphan list 1319 * isn't empty. The on-disk one can be non-empty if we've 1320 * detected an error and taken the fs readonly, but the 1321 * in-memory list had better be clean by this point. */ 1322 if (!list_empty(&sbi->s_orphan)) 1323 dump_orphan_list(sb, sbi); 1324 ASSERT(list_empty(&sbi->s_orphan)); 1325 1326 sync_blockdev(sb->s_bdev); 1327 invalidate_bdev(sb->s_bdev); 1328 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1329 /* 1330 * Invalidate the journal device's buffers. We don't want them 1331 * floating about in memory - the physical journal device may 1332 * hotswapped, and it breaks the `ro-after' testing code. 1333 */ 1334 sync_blockdev(sbi->s_journal_bdev); 1335 invalidate_bdev(sbi->s_journal_bdev); 1336 ext4_blkdev_remove(sbi); 1337 } 1338 1339 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1340 sbi->s_ea_inode_cache = NULL; 1341 1342 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1343 sbi->s_ea_block_cache = NULL; 1344 1345 ext4_stop_mmpd(sbi); 1346 1347 brelse(sbi->s_sbh); 1348 sb->s_fs_info = NULL; 1349 /* 1350 * Now that we are completely done shutting down the 1351 * superblock, we need to actually destroy the kobject. 1352 */ 1353 kobject_put(&sbi->s_kobj); 1354 wait_for_completion(&sbi->s_kobj_unregister); 1355 if (sbi->s_chksum_driver) 1356 crypto_free_shash(sbi->s_chksum_driver); 1357 kfree(sbi->s_blockgroup_lock); 1358 fs_put_dax(sbi->s_daxdev, NULL); 1359 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1360 #if IS_ENABLED(CONFIG_UNICODE) 1361 utf8_unload(sb->s_encoding); 1362 #endif 1363 kfree(sbi); 1364 } 1365 1366 static struct kmem_cache *ext4_inode_cachep; 1367 1368 /* 1369 * Called inside transaction, so use GFP_NOFS 1370 */ 1371 static struct inode *ext4_alloc_inode(struct super_block *sb) 1372 { 1373 struct ext4_inode_info *ei; 1374 1375 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1376 if (!ei) 1377 return NULL; 1378 1379 inode_set_iversion(&ei->vfs_inode, 1); 1380 ei->i_flags = 0; 1381 spin_lock_init(&ei->i_raw_lock); 1382 ei->i_prealloc_node = RB_ROOT; 1383 atomic_set(&ei->i_prealloc_active, 0); 1384 rwlock_init(&ei->i_prealloc_lock); 1385 ext4_es_init_tree(&ei->i_es_tree); 1386 rwlock_init(&ei->i_es_lock); 1387 INIT_LIST_HEAD(&ei->i_es_list); 1388 ei->i_es_all_nr = 0; 1389 ei->i_es_shk_nr = 0; 1390 ei->i_es_shrink_lblk = 0; 1391 ei->i_reserved_data_blocks = 0; 1392 spin_lock_init(&(ei->i_block_reservation_lock)); 1393 ext4_init_pending_tree(&ei->i_pending_tree); 1394 #ifdef CONFIG_QUOTA 1395 ei->i_reserved_quota = 0; 1396 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1397 #endif 1398 ei->jinode = NULL; 1399 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1400 spin_lock_init(&ei->i_completed_io_lock); 1401 ei->i_sync_tid = 0; 1402 ei->i_datasync_tid = 0; 1403 atomic_set(&ei->i_unwritten, 0); 1404 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1405 ext4_fc_init_inode(&ei->vfs_inode); 1406 mutex_init(&ei->i_fc_lock); 1407 return &ei->vfs_inode; 1408 } 1409 1410 static int ext4_drop_inode(struct inode *inode) 1411 { 1412 int drop = generic_drop_inode(inode); 1413 1414 if (!drop) 1415 drop = fscrypt_drop_inode(inode); 1416 1417 trace_ext4_drop_inode(inode, drop); 1418 return drop; 1419 } 1420 1421 static void ext4_free_in_core_inode(struct inode *inode) 1422 { 1423 fscrypt_free_inode(inode); 1424 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1425 pr_warn("%s: inode %ld still in fc list", 1426 __func__, inode->i_ino); 1427 } 1428 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1429 } 1430 1431 static void ext4_destroy_inode(struct inode *inode) 1432 { 1433 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1434 ext4_msg(inode->i_sb, KERN_ERR, 1435 "Inode %lu (%p): orphan list check failed!", 1436 inode->i_ino, EXT4_I(inode)); 1437 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1438 EXT4_I(inode), sizeof(struct ext4_inode_info), 1439 true); 1440 dump_stack(); 1441 } 1442 1443 if (EXT4_I(inode)->i_reserved_data_blocks) 1444 ext4_msg(inode->i_sb, KERN_ERR, 1445 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1446 inode->i_ino, EXT4_I(inode), 1447 EXT4_I(inode)->i_reserved_data_blocks); 1448 } 1449 1450 static void init_once(void *foo) 1451 { 1452 struct ext4_inode_info *ei = foo; 1453 1454 INIT_LIST_HEAD(&ei->i_orphan); 1455 init_rwsem(&ei->xattr_sem); 1456 init_rwsem(&ei->i_data_sem); 1457 inode_init_once(&ei->vfs_inode); 1458 ext4_fc_init_inode(&ei->vfs_inode); 1459 } 1460 1461 static int __init init_inodecache(void) 1462 { 1463 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1464 sizeof(struct ext4_inode_info), 0, 1465 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1466 SLAB_ACCOUNT), 1467 offsetof(struct ext4_inode_info, i_data), 1468 sizeof_field(struct ext4_inode_info, i_data), 1469 init_once); 1470 if (ext4_inode_cachep == NULL) 1471 return -ENOMEM; 1472 return 0; 1473 } 1474 1475 static void destroy_inodecache(void) 1476 { 1477 /* 1478 * Make sure all delayed rcu free inodes are flushed before we 1479 * destroy cache. 1480 */ 1481 rcu_barrier(); 1482 kmem_cache_destroy(ext4_inode_cachep); 1483 } 1484 1485 void ext4_clear_inode(struct inode *inode) 1486 { 1487 ext4_fc_del(inode); 1488 invalidate_inode_buffers(inode); 1489 clear_inode(inode); 1490 ext4_discard_preallocations(inode, 0); 1491 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1492 dquot_drop(inode); 1493 if (EXT4_I(inode)->jinode) { 1494 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1495 EXT4_I(inode)->jinode); 1496 jbd2_free_inode(EXT4_I(inode)->jinode); 1497 EXT4_I(inode)->jinode = NULL; 1498 } 1499 fscrypt_put_encryption_info(inode); 1500 fsverity_cleanup_inode(inode); 1501 } 1502 1503 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1504 u64 ino, u32 generation) 1505 { 1506 struct inode *inode; 1507 1508 /* 1509 * Currently we don't know the generation for parent directory, so 1510 * a generation of 0 means "accept any" 1511 */ 1512 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1513 if (IS_ERR(inode)) 1514 return ERR_CAST(inode); 1515 if (generation && inode->i_generation != generation) { 1516 iput(inode); 1517 return ERR_PTR(-ESTALE); 1518 } 1519 1520 return inode; 1521 } 1522 1523 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1524 int fh_len, int fh_type) 1525 { 1526 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1527 ext4_nfs_get_inode); 1528 } 1529 1530 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1531 int fh_len, int fh_type) 1532 { 1533 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1534 ext4_nfs_get_inode); 1535 } 1536 1537 static int ext4_nfs_commit_metadata(struct inode *inode) 1538 { 1539 struct writeback_control wbc = { 1540 .sync_mode = WB_SYNC_ALL 1541 }; 1542 1543 trace_ext4_nfs_commit_metadata(inode); 1544 return ext4_write_inode(inode, &wbc); 1545 } 1546 1547 #ifdef CONFIG_QUOTA 1548 static const char * const quotatypes[] = INITQFNAMES; 1549 #define QTYPE2NAME(t) (quotatypes[t]) 1550 1551 static int ext4_write_dquot(struct dquot *dquot); 1552 static int ext4_acquire_dquot(struct dquot *dquot); 1553 static int ext4_release_dquot(struct dquot *dquot); 1554 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1555 static int ext4_write_info(struct super_block *sb, int type); 1556 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1557 const struct path *path); 1558 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1559 size_t len, loff_t off); 1560 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1561 const char *data, size_t len, loff_t off); 1562 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1563 unsigned int flags); 1564 1565 static struct dquot **ext4_get_dquots(struct inode *inode) 1566 { 1567 return EXT4_I(inode)->i_dquot; 1568 } 1569 1570 static const struct dquot_operations ext4_quota_operations = { 1571 .get_reserved_space = ext4_get_reserved_space, 1572 .write_dquot = ext4_write_dquot, 1573 .acquire_dquot = ext4_acquire_dquot, 1574 .release_dquot = ext4_release_dquot, 1575 .mark_dirty = ext4_mark_dquot_dirty, 1576 .write_info = ext4_write_info, 1577 .alloc_dquot = dquot_alloc, 1578 .destroy_dquot = dquot_destroy, 1579 .get_projid = ext4_get_projid, 1580 .get_inode_usage = ext4_get_inode_usage, 1581 .get_next_id = dquot_get_next_id, 1582 }; 1583 1584 static const struct quotactl_ops ext4_qctl_operations = { 1585 .quota_on = ext4_quota_on, 1586 .quota_off = ext4_quota_off, 1587 .quota_sync = dquot_quota_sync, 1588 .get_state = dquot_get_state, 1589 .set_info = dquot_set_dqinfo, 1590 .get_dqblk = dquot_get_dqblk, 1591 .set_dqblk = dquot_set_dqblk, 1592 .get_nextdqblk = dquot_get_next_dqblk, 1593 }; 1594 #endif 1595 1596 static const struct super_operations ext4_sops = { 1597 .alloc_inode = ext4_alloc_inode, 1598 .free_inode = ext4_free_in_core_inode, 1599 .destroy_inode = ext4_destroy_inode, 1600 .write_inode = ext4_write_inode, 1601 .dirty_inode = ext4_dirty_inode, 1602 .drop_inode = ext4_drop_inode, 1603 .evict_inode = ext4_evict_inode, 1604 .put_super = ext4_put_super, 1605 .sync_fs = ext4_sync_fs, 1606 .freeze_fs = ext4_freeze, 1607 .unfreeze_fs = ext4_unfreeze, 1608 .statfs = ext4_statfs, 1609 .show_options = ext4_show_options, 1610 #ifdef CONFIG_QUOTA 1611 .quota_read = ext4_quota_read, 1612 .quota_write = ext4_quota_write, 1613 .get_dquots = ext4_get_dquots, 1614 #endif 1615 }; 1616 1617 static const struct export_operations ext4_export_ops = { 1618 .fh_to_dentry = ext4_fh_to_dentry, 1619 .fh_to_parent = ext4_fh_to_parent, 1620 .get_parent = ext4_get_parent, 1621 .commit_metadata = ext4_nfs_commit_metadata, 1622 }; 1623 1624 enum { 1625 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1626 Opt_resgid, Opt_resuid, Opt_sb, 1627 Opt_nouid32, Opt_debug, Opt_removed, 1628 Opt_user_xattr, Opt_acl, 1629 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1630 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1631 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1632 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1633 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1634 Opt_inlinecrypt, 1635 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1636 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1637 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1638 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1639 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1640 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1641 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1642 Opt_inode_readahead_blks, Opt_journal_ioprio, 1643 Opt_dioread_nolock, Opt_dioread_lock, 1644 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1645 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1646 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1647 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1648 #ifdef CONFIG_EXT4_DEBUG 1649 Opt_fc_debug_max_replay, Opt_fc_debug_force 1650 #endif 1651 }; 1652 1653 static const struct constant_table ext4_param_errors[] = { 1654 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1655 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1656 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1657 {} 1658 }; 1659 1660 static const struct constant_table ext4_param_data[] = { 1661 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1662 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1663 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1664 {} 1665 }; 1666 1667 static const struct constant_table ext4_param_data_err[] = { 1668 {"abort", Opt_data_err_abort}, 1669 {"ignore", Opt_data_err_ignore}, 1670 {} 1671 }; 1672 1673 static const struct constant_table ext4_param_jqfmt[] = { 1674 {"vfsold", QFMT_VFS_OLD}, 1675 {"vfsv0", QFMT_VFS_V0}, 1676 {"vfsv1", QFMT_VFS_V1}, 1677 {} 1678 }; 1679 1680 static const struct constant_table ext4_param_dax[] = { 1681 {"always", Opt_dax_always}, 1682 {"inode", Opt_dax_inode}, 1683 {"never", Opt_dax_never}, 1684 {} 1685 }; 1686 1687 /* String parameter that allows empty argument */ 1688 #define fsparam_string_empty(NAME, OPT) \ 1689 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1690 1691 /* 1692 * Mount option specification 1693 * We don't use fsparam_flag_no because of the way we set the 1694 * options and the way we show them in _ext4_show_options(). To 1695 * keep the changes to a minimum, let's keep the negative options 1696 * separate for now. 1697 */ 1698 static const struct fs_parameter_spec ext4_param_specs[] = { 1699 fsparam_flag ("bsddf", Opt_bsd_df), 1700 fsparam_flag ("minixdf", Opt_minix_df), 1701 fsparam_flag ("grpid", Opt_grpid), 1702 fsparam_flag ("bsdgroups", Opt_grpid), 1703 fsparam_flag ("nogrpid", Opt_nogrpid), 1704 fsparam_flag ("sysvgroups", Opt_nogrpid), 1705 fsparam_u32 ("resgid", Opt_resgid), 1706 fsparam_u32 ("resuid", Opt_resuid), 1707 fsparam_u32 ("sb", Opt_sb), 1708 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1709 fsparam_flag ("nouid32", Opt_nouid32), 1710 fsparam_flag ("debug", Opt_debug), 1711 fsparam_flag ("oldalloc", Opt_removed), 1712 fsparam_flag ("orlov", Opt_removed), 1713 fsparam_flag ("user_xattr", Opt_user_xattr), 1714 fsparam_flag ("acl", Opt_acl), 1715 fsparam_flag ("norecovery", Opt_noload), 1716 fsparam_flag ("noload", Opt_noload), 1717 fsparam_flag ("bh", Opt_removed), 1718 fsparam_flag ("nobh", Opt_removed), 1719 fsparam_u32 ("commit", Opt_commit), 1720 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1721 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1722 fsparam_u32 ("journal_dev", Opt_journal_dev), 1723 fsparam_bdev ("journal_path", Opt_journal_path), 1724 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1725 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1726 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1727 fsparam_flag ("abort", Opt_abort), 1728 fsparam_enum ("data", Opt_data, ext4_param_data), 1729 fsparam_enum ("data_err", Opt_data_err, 1730 ext4_param_data_err), 1731 fsparam_string_empty 1732 ("usrjquota", Opt_usrjquota), 1733 fsparam_string_empty 1734 ("grpjquota", Opt_grpjquota), 1735 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1736 fsparam_flag ("grpquota", Opt_grpquota), 1737 fsparam_flag ("quota", Opt_quota), 1738 fsparam_flag ("noquota", Opt_noquota), 1739 fsparam_flag ("usrquota", Opt_usrquota), 1740 fsparam_flag ("prjquota", Opt_prjquota), 1741 fsparam_flag ("barrier", Opt_barrier), 1742 fsparam_u32 ("barrier", Opt_barrier), 1743 fsparam_flag ("nobarrier", Opt_nobarrier), 1744 fsparam_flag ("i_version", Opt_removed), 1745 fsparam_flag ("dax", Opt_dax), 1746 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1747 fsparam_u32 ("stripe", Opt_stripe), 1748 fsparam_flag ("delalloc", Opt_delalloc), 1749 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1750 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1751 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1752 fsparam_u32 ("debug_want_extra_isize", 1753 Opt_debug_want_extra_isize), 1754 fsparam_flag ("mblk_io_submit", Opt_removed), 1755 fsparam_flag ("nomblk_io_submit", Opt_removed), 1756 fsparam_flag ("block_validity", Opt_block_validity), 1757 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1758 fsparam_u32 ("inode_readahead_blks", 1759 Opt_inode_readahead_blks), 1760 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1761 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1762 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1763 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1764 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1765 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1766 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1767 fsparam_flag ("discard", Opt_discard), 1768 fsparam_flag ("nodiscard", Opt_nodiscard), 1769 fsparam_u32 ("init_itable", Opt_init_itable), 1770 fsparam_flag ("init_itable", Opt_init_itable), 1771 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1772 #ifdef CONFIG_EXT4_DEBUG 1773 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1774 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1775 #endif 1776 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1777 fsparam_flag ("test_dummy_encryption", 1778 Opt_test_dummy_encryption), 1779 fsparam_string ("test_dummy_encryption", 1780 Opt_test_dummy_encryption), 1781 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1782 fsparam_flag ("nombcache", Opt_nombcache), 1783 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1784 fsparam_flag ("prefetch_block_bitmaps", 1785 Opt_removed), 1786 fsparam_flag ("no_prefetch_block_bitmaps", 1787 Opt_no_prefetch_block_bitmaps), 1788 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1789 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1790 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1791 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1792 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1793 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1794 {} 1795 }; 1796 1797 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1798 1799 #define MOPT_SET 0x0001 1800 #define MOPT_CLEAR 0x0002 1801 #define MOPT_NOSUPPORT 0x0004 1802 #define MOPT_EXPLICIT 0x0008 1803 #ifdef CONFIG_QUOTA 1804 #define MOPT_Q 0 1805 #define MOPT_QFMT 0x0010 1806 #else 1807 #define MOPT_Q MOPT_NOSUPPORT 1808 #define MOPT_QFMT MOPT_NOSUPPORT 1809 #endif 1810 #define MOPT_NO_EXT2 0x0020 1811 #define MOPT_NO_EXT3 0x0040 1812 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1813 #define MOPT_SKIP 0x0080 1814 #define MOPT_2 0x0100 1815 1816 static const struct mount_opts { 1817 int token; 1818 int mount_opt; 1819 int flags; 1820 } ext4_mount_opts[] = { 1821 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1822 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1823 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1824 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1825 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1826 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1827 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1828 MOPT_EXT4_ONLY | MOPT_SET}, 1829 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1830 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1831 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1832 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1833 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1834 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1835 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1836 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1837 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1838 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1839 {Opt_commit, 0, MOPT_NO_EXT2}, 1840 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1841 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1842 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1843 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1844 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1845 EXT4_MOUNT_JOURNAL_CHECKSUM), 1846 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1847 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1848 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1849 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1850 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1851 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1852 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1853 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1854 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1855 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1856 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1857 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1858 {Opt_data, 0, MOPT_NO_EXT2}, 1859 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1860 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1861 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1862 #else 1863 {Opt_acl, 0, MOPT_NOSUPPORT}, 1864 #endif 1865 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1866 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1867 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1868 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1869 MOPT_SET | MOPT_Q}, 1870 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1871 MOPT_SET | MOPT_Q}, 1872 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1873 MOPT_SET | MOPT_Q}, 1874 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1875 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1876 MOPT_CLEAR | MOPT_Q}, 1877 {Opt_usrjquota, 0, MOPT_Q}, 1878 {Opt_grpjquota, 0, MOPT_Q}, 1879 {Opt_jqfmt, 0, MOPT_QFMT}, 1880 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1881 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1882 MOPT_SET}, 1883 #ifdef CONFIG_EXT4_DEBUG 1884 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1885 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1886 #endif 1887 {Opt_err, 0, 0} 1888 }; 1889 1890 #if IS_ENABLED(CONFIG_UNICODE) 1891 static const struct ext4_sb_encodings { 1892 __u16 magic; 1893 char *name; 1894 unsigned int version; 1895 } ext4_sb_encoding_map[] = { 1896 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1897 }; 1898 1899 static const struct ext4_sb_encodings * 1900 ext4_sb_read_encoding(const struct ext4_super_block *es) 1901 { 1902 __u16 magic = le16_to_cpu(es->s_encoding); 1903 int i; 1904 1905 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1906 if (magic == ext4_sb_encoding_map[i].magic) 1907 return &ext4_sb_encoding_map[i]; 1908 1909 return NULL; 1910 } 1911 #endif 1912 1913 #define EXT4_SPEC_JQUOTA (1 << 0) 1914 #define EXT4_SPEC_JQFMT (1 << 1) 1915 #define EXT4_SPEC_DATAJ (1 << 2) 1916 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1917 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1918 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1919 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1920 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1921 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1922 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1923 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1924 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1925 #define EXT4_SPEC_s_stripe (1 << 13) 1926 #define EXT4_SPEC_s_resuid (1 << 14) 1927 #define EXT4_SPEC_s_resgid (1 << 15) 1928 #define EXT4_SPEC_s_commit_interval (1 << 16) 1929 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1930 #define EXT4_SPEC_s_sb_block (1 << 18) 1931 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1932 1933 struct ext4_fs_context { 1934 char *s_qf_names[EXT4_MAXQUOTAS]; 1935 struct fscrypt_dummy_policy dummy_enc_policy; 1936 int s_jquota_fmt; /* Format of quota to use */ 1937 #ifdef CONFIG_EXT4_DEBUG 1938 int s_fc_debug_max_replay; 1939 #endif 1940 unsigned short qname_spec; 1941 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1942 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1943 unsigned long journal_devnum; 1944 unsigned long s_commit_interval; 1945 unsigned long s_stripe; 1946 unsigned int s_inode_readahead_blks; 1947 unsigned int s_want_extra_isize; 1948 unsigned int s_li_wait_mult; 1949 unsigned int s_max_dir_size_kb; 1950 unsigned int journal_ioprio; 1951 unsigned int vals_s_mount_opt; 1952 unsigned int mask_s_mount_opt; 1953 unsigned int vals_s_mount_opt2; 1954 unsigned int mask_s_mount_opt2; 1955 unsigned long vals_s_mount_flags; 1956 unsigned long mask_s_mount_flags; 1957 unsigned int opt_flags; /* MOPT flags */ 1958 unsigned int spec; 1959 u32 s_max_batch_time; 1960 u32 s_min_batch_time; 1961 kuid_t s_resuid; 1962 kgid_t s_resgid; 1963 ext4_fsblk_t s_sb_block; 1964 }; 1965 1966 static void ext4_fc_free(struct fs_context *fc) 1967 { 1968 struct ext4_fs_context *ctx = fc->fs_private; 1969 int i; 1970 1971 if (!ctx) 1972 return; 1973 1974 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1975 kfree(ctx->s_qf_names[i]); 1976 1977 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1978 kfree(ctx); 1979 } 1980 1981 int ext4_init_fs_context(struct fs_context *fc) 1982 { 1983 struct ext4_fs_context *ctx; 1984 1985 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1986 if (!ctx) 1987 return -ENOMEM; 1988 1989 fc->fs_private = ctx; 1990 fc->ops = &ext4_context_ops; 1991 1992 return 0; 1993 } 1994 1995 #ifdef CONFIG_QUOTA 1996 /* 1997 * Note the name of the specified quota file. 1998 */ 1999 static int note_qf_name(struct fs_context *fc, int qtype, 2000 struct fs_parameter *param) 2001 { 2002 struct ext4_fs_context *ctx = fc->fs_private; 2003 char *qname; 2004 2005 if (param->size < 1) { 2006 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2007 return -EINVAL; 2008 } 2009 if (strchr(param->string, '/')) { 2010 ext4_msg(NULL, KERN_ERR, 2011 "quotafile must be on filesystem root"); 2012 return -EINVAL; 2013 } 2014 if (ctx->s_qf_names[qtype]) { 2015 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2016 ext4_msg(NULL, KERN_ERR, 2017 "%s quota file already specified", 2018 QTYPE2NAME(qtype)); 2019 return -EINVAL; 2020 } 2021 return 0; 2022 } 2023 2024 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2025 if (!qname) { 2026 ext4_msg(NULL, KERN_ERR, 2027 "Not enough memory for storing quotafile name"); 2028 return -ENOMEM; 2029 } 2030 ctx->s_qf_names[qtype] = qname; 2031 ctx->qname_spec |= 1 << qtype; 2032 ctx->spec |= EXT4_SPEC_JQUOTA; 2033 return 0; 2034 } 2035 2036 /* 2037 * Clear the name of the specified quota file. 2038 */ 2039 static int unnote_qf_name(struct fs_context *fc, int qtype) 2040 { 2041 struct ext4_fs_context *ctx = fc->fs_private; 2042 2043 if (ctx->s_qf_names[qtype]) 2044 kfree(ctx->s_qf_names[qtype]); 2045 2046 ctx->s_qf_names[qtype] = NULL; 2047 ctx->qname_spec |= 1 << qtype; 2048 ctx->spec |= EXT4_SPEC_JQUOTA; 2049 return 0; 2050 } 2051 #endif 2052 2053 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2054 struct ext4_fs_context *ctx) 2055 { 2056 int err; 2057 2058 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2059 ext4_msg(NULL, KERN_WARNING, 2060 "test_dummy_encryption option not supported"); 2061 return -EINVAL; 2062 } 2063 err = fscrypt_parse_test_dummy_encryption(param, 2064 &ctx->dummy_enc_policy); 2065 if (err == -EINVAL) { 2066 ext4_msg(NULL, KERN_WARNING, 2067 "Value of option \"%s\" is unrecognized", param->key); 2068 } else if (err == -EEXIST) { 2069 ext4_msg(NULL, KERN_WARNING, 2070 "Conflicting test_dummy_encryption options"); 2071 return -EINVAL; 2072 } 2073 return err; 2074 } 2075 2076 #define EXT4_SET_CTX(name) \ 2077 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2078 unsigned long flag) \ 2079 { \ 2080 ctx->mask_s_##name |= flag; \ 2081 ctx->vals_s_##name |= flag; \ 2082 } 2083 2084 #define EXT4_CLEAR_CTX(name) \ 2085 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2086 unsigned long flag) \ 2087 { \ 2088 ctx->mask_s_##name |= flag; \ 2089 ctx->vals_s_##name &= ~flag; \ 2090 } 2091 2092 #define EXT4_TEST_CTX(name) \ 2093 static inline unsigned long \ 2094 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2095 { \ 2096 return (ctx->vals_s_##name & flag); \ 2097 } 2098 2099 EXT4_SET_CTX(flags); /* set only */ 2100 EXT4_SET_CTX(mount_opt); 2101 EXT4_CLEAR_CTX(mount_opt); 2102 EXT4_TEST_CTX(mount_opt); 2103 EXT4_SET_CTX(mount_opt2); 2104 EXT4_CLEAR_CTX(mount_opt2); 2105 EXT4_TEST_CTX(mount_opt2); 2106 2107 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2108 { 2109 set_bit(bit, &ctx->mask_s_mount_flags); 2110 set_bit(bit, &ctx->vals_s_mount_flags); 2111 } 2112 2113 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2114 { 2115 struct ext4_fs_context *ctx = fc->fs_private; 2116 struct fs_parse_result result; 2117 const struct mount_opts *m; 2118 int is_remount; 2119 kuid_t uid; 2120 kgid_t gid; 2121 int token; 2122 2123 token = fs_parse(fc, ext4_param_specs, param, &result); 2124 if (token < 0) 2125 return token; 2126 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2127 2128 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2129 if (token == m->token) 2130 break; 2131 2132 ctx->opt_flags |= m->flags; 2133 2134 if (m->flags & MOPT_EXPLICIT) { 2135 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2136 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2137 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2138 ctx_set_mount_opt2(ctx, 2139 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2140 } else 2141 return -EINVAL; 2142 } 2143 2144 if (m->flags & MOPT_NOSUPPORT) { 2145 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2146 param->key); 2147 return 0; 2148 } 2149 2150 switch (token) { 2151 #ifdef CONFIG_QUOTA 2152 case Opt_usrjquota: 2153 if (!*param->string) 2154 return unnote_qf_name(fc, USRQUOTA); 2155 else 2156 return note_qf_name(fc, USRQUOTA, param); 2157 case Opt_grpjquota: 2158 if (!*param->string) 2159 return unnote_qf_name(fc, GRPQUOTA); 2160 else 2161 return note_qf_name(fc, GRPQUOTA, param); 2162 #endif 2163 case Opt_sb: 2164 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2165 ext4_msg(NULL, KERN_WARNING, 2166 "Ignoring %s option on remount", param->key); 2167 } else { 2168 ctx->s_sb_block = result.uint_32; 2169 ctx->spec |= EXT4_SPEC_s_sb_block; 2170 } 2171 return 0; 2172 case Opt_removed: 2173 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2174 param->key); 2175 return 0; 2176 case Opt_abort: 2177 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2178 return 0; 2179 case Opt_inlinecrypt: 2180 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2181 ctx_set_flags(ctx, SB_INLINECRYPT); 2182 #else 2183 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2184 #endif 2185 return 0; 2186 case Opt_errors: 2187 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2188 ctx_set_mount_opt(ctx, result.uint_32); 2189 return 0; 2190 #ifdef CONFIG_QUOTA 2191 case Opt_jqfmt: 2192 ctx->s_jquota_fmt = result.uint_32; 2193 ctx->spec |= EXT4_SPEC_JQFMT; 2194 return 0; 2195 #endif 2196 case Opt_data: 2197 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2198 ctx_set_mount_opt(ctx, result.uint_32); 2199 ctx->spec |= EXT4_SPEC_DATAJ; 2200 return 0; 2201 case Opt_commit: 2202 if (result.uint_32 == 0) 2203 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2204 else if (result.uint_32 > INT_MAX / HZ) { 2205 ext4_msg(NULL, KERN_ERR, 2206 "Invalid commit interval %d, " 2207 "must be smaller than %d", 2208 result.uint_32, INT_MAX / HZ); 2209 return -EINVAL; 2210 } 2211 ctx->s_commit_interval = HZ * result.uint_32; 2212 ctx->spec |= EXT4_SPEC_s_commit_interval; 2213 return 0; 2214 case Opt_debug_want_extra_isize: 2215 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2216 ext4_msg(NULL, KERN_ERR, 2217 "Invalid want_extra_isize %d", result.uint_32); 2218 return -EINVAL; 2219 } 2220 ctx->s_want_extra_isize = result.uint_32; 2221 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2222 return 0; 2223 case Opt_max_batch_time: 2224 ctx->s_max_batch_time = result.uint_32; 2225 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2226 return 0; 2227 case Opt_min_batch_time: 2228 ctx->s_min_batch_time = result.uint_32; 2229 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2230 return 0; 2231 case Opt_inode_readahead_blks: 2232 if (result.uint_32 && 2233 (result.uint_32 > (1 << 30) || 2234 !is_power_of_2(result.uint_32))) { 2235 ext4_msg(NULL, KERN_ERR, 2236 "EXT4-fs: inode_readahead_blks must be " 2237 "0 or a power of 2 smaller than 2^31"); 2238 return -EINVAL; 2239 } 2240 ctx->s_inode_readahead_blks = result.uint_32; 2241 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2242 return 0; 2243 case Opt_init_itable: 2244 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2245 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2246 if (param->type == fs_value_is_string) 2247 ctx->s_li_wait_mult = result.uint_32; 2248 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2249 return 0; 2250 case Opt_max_dir_size_kb: 2251 ctx->s_max_dir_size_kb = result.uint_32; 2252 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2253 return 0; 2254 #ifdef CONFIG_EXT4_DEBUG 2255 case Opt_fc_debug_max_replay: 2256 ctx->s_fc_debug_max_replay = result.uint_32; 2257 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2258 return 0; 2259 #endif 2260 case Opt_stripe: 2261 ctx->s_stripe = result.uint_32; 2262 ctx->spec |= EXT4_SPEC_s_stripe; 2263 return 0; 2264 case Opt_resuid: 2265 uid = make_kuid(current_user_ns(), result.uint_32); 2266 if (!uid_valid(uid)) { 2267 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2268 result.uint_32); 2269 return -EINVAL; 2270 } 2271 ctx->s_resuid = uid; 2272 ctx->spec |= EXT4_SPEC_s_resuid; 2273 return 0; 2274 case Opt_resgid: 2275 gid = make_kgid(current_user_ns(), result.uint_32); 2276 if (!gid_valid(gid)) { 2277 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2278 result.uint_32); 2279 return -EINVAL; 2280 } 2281 ctx->s_resgid = gid; 2282 ctx->spec |= EXT4_SPEC_s_resgid; 2283 return 0; 2284 case Opt_journal_dev: 2285 if (is_remount) { 2286 ext4_msg(NULL, KERN_ERR, 2287 "Cannot specify journal on remount"); 2288 return -EINVAL; 2289 } 2290 ctx->journal_devnum = result.uint_32; 2291 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2292 return 0; 2293 case Opt_journal_path: 2294 { 2295 struct inode *journal_inode; 2296 struct path path; 2297 int error; 2298 2299 if (is_remount) { 2300 ext4_msg(NULL, KERN_ERR, 2301 "Cannot specify journal on remount"); 2302 return -EINVAL; 2303 } 2304 2305 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2306 if (error) { 2307 ext4_msg(NULL, KERN_ERR, "error: could not find " 2308 "journal device path"); 2309 return -EINVAL; 2310 } 2311 2312 journal_inode = d_inode(path.dentry); 2313 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2314 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2315 path_put(&path); 2316 return 0; 2317 } 2318 case Opt_journal_ioprio: 2319 if (result.uint_32 > 7) { 2320 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2321 " (must be 0-7)"); 2322 return -EINVAL; 2323 } 2324 ctx->journal_ioprio = 2325 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2326 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2327 return 0; 2328 case Opt_test_dummy_encryption: 2329 return ext4_parse_test_dummy_encryption(param, ctx); 2330 case Opt_dax: 2331 case Opt_dax_type: 2332 #ifdef CONFIG_FS_DAX 2333 { 2334 int type = (token == Opt_dax) ? 2335 Opt_dax : result.uint_32; 2336 2337 switch (type) { 2338 case Opt_dax: 2339 case Opt_dax_always: 2340 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2341 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2342 break; 2343 case Opt_dax_never: 2344 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2345 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2346 break; 2347 case Opt_dax_inode: 2348 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2349 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2350 /* Strictly for printing options */ 2351 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2352 break; 2353 } 2354 return 0; 2355 } 2356 #else 2357 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2358 return -EINVAL; 2359 #endif 2360 case Opt_data_err: 2361 if (result.uint_32 == Opt_data_err_abort) 2362 ctx_set_mount_opt(ctx, m->mount_opt); 2363 else if (result.uint_32 == Opt_data_err_ignore) 2364 ctx_clear_mount_opt(ctx, m->mount_opt); 2365 return 0; 2366 case Opt_mb_optimize_scan: 2367 if (result.int_32 == 1) { 2368 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2369 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2370 } else if (result.int_32 == 0) { 2371 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2372 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2373 } else { 2374 ext4_msg(NULL, KERN_WARNING, 2375 "mb_optimize_scan should be set to 0 or 1."); 2376 return -EINVAL; 2377 } 2378 return 0; 2379 } 2380 2381 /* 2382 * At this point we should only be getting options requiring MOPT_SET, 2383 * or MOPT_CLEAR. Anything else is a bug 2384 */ 2385 if (m->token == Opt_err) { 2386 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2387 param->key); 2388 WARN_ON(1); 2389 return -EINVAL; 2390 } 2391 2392 else { 2393 unsigned int set = 0; 2394 2395 if ((param->type == fs_value_is_flag) || 2396 result.uint_32 > 0) 2397 set = 1; 2398 2399 if (m->flags & MOPT_CLEAR) 2400 set = !set; 2401 else if (unlikely(!(m->flags & MOPT_SET))) { 2402 ext4_msg(NULL, KERN_WARNING, 2403 "buggy handling of option %s", 2404 param->key); 2405 WARN_ON(1); 2406 return -EINVAL; 2407 } 2408 if (m->flags & MOPT_2) { 2409 if (set != 0) 2410 ctx_set_mount_opt2(ctx, m->mount_opt); 2411 else 2412 ctx_clear_mount_opt2(ctx, m->mount_opt); 2413 } else { 2414 if (set != 0) 2415 ctx_set_mount_opt(ctx, m->mount_opt); 2416 else 2417 ctx_clear_mount_opt(ctx, m->mount_opt); 2418 } 2419 } 2420 2421 return 0; 2422 } 2423 2424 static int parse_options(struct fs_context *fc, char *options) 2425 { 2426 struct fs_parameter param; 2427 int ret; 2428 char *key; 2429 2430 if (!options) 2431 return 0; 2432 2433 while ((key = strsep(&options, ",")) != NULL) { 2434 if (*key) { 2435 size_t v_len = 0; 2436 char *value = strchr(key, '='); 2437 2438 param.type = fs_value_is_flag; 2439 param.string = NULL; 2440 2441 if (value) { 2442 if (value == key) 2443 continue; 2444 2445 *value++ = 0; 2446 v_len = strlen(value); 2447 param.string = kmemdup_nul(value, v_len, 2448 GFP_KERNEL); 2449 if (!param.string) 2450 return -ENOMEM; 2451 param.type = fs_value_is_string; 2452 } 2453 2454 param.key = key; 2455 param.size = v_len; 2456 2457 ret = ext4_parse_param(fc, ¶m); 2458 if (param.string) 2459 kfree(param.string); 2460 if (ret < 0) 2461 return ret; 2462 } 2463 } 2464 2465 ret = ext4_validate_options(fc); 2466 if (ret < 0) 2467 return ret; 2468 2469 return 0; 2470 } 2471 2472 static int parse_apply_sb_mount_options(struct super_block *sb, 2473 struct ext4_fs_context *m_ctx) 2474 { 2475 struct ext4_sb_info *sbi = EXT4_SB(sb); 2476 char *s_mount_opts = NULL; 2477 struct ext4_fs_context *s_ctx = NULL; 2478 struct fs_context *fc = NULL; 2479 int ret = -ENOMEM; 2480 2481 if (!sbi->s_es->s_mount_opts[0]) 2482 return 0; 2483 2484 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2485 sizeof(sbi->s_es->s_mount_opts), 2486 GFP_KERNEL); 2487 if (!s_mount_opts) 2488 return ret; 2489 2490 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2491 if (!fc) 2492 goto out_free; 2493 2494 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2495 if (!s_ctx) 2496 goto out_free; 2497 2498 fc->fs_private = s_ctx; 2499 fc->s_fs_info = sbi; 2500 2501 ret = parse_options(fc, s_mount_opts); 2502 if (ret < 0) 2503 goto parse_failed; 2504 2505 ret = ext4_check_opt_consistency(fc, sb); 2506 if (ret < 0) { 2507 parse_failed: 2508 ext4_msg(sb, KERN_WARNING, 2509 "failed to parse options in superblock: %s", 2510 s_mount_opts); 2511 ret = 0; 2512 goto out_free; 2513 } 2514 2515 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2516 m_ctx->journal_devnum = s_ctx->journal_devnum; 2517 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2518 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2519 2520 ext4_apply_options(fc, sb); 2521 ret = 0; 2522 2523 out_free: 2524 if (fc) { 2525 ext4_fc_free(fc); 2526 kfree(fc); 2527 } 2528 kfree(s_mount_opts); 2529 return ret; 2530 } 2531 2532 static void ext4_apply_quota_options(struct fs_context *fc, 2533 struct super_block *sb) 2534 { 2535 #ifdef CONFIG_QUOTA 2536 bool quota_feature = ext4_has_feature_quota(sb); 2537 struct ext4_fs_context *ctx = fc->fs_private; 2538 struct ext4_sb_info *sbi = EXT4_SB(sb); 2539 char *qname; 2540 int i; 2541 2542 if (quota_feature) 2543 return; 2544 2545 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2546 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2547 if (!(ctx->qname_spec & (1 << i))) 2548 continue; 2549 2550 qname = ctx->s_qf_names[i]; /* May be NULL */ 2551 if (qname) 2552 set_opt(sb, QUOTA); 2553 ctx->s_qf_names[i] = NULL; 2554 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2555 lockdep_is_held(&sb->s_umount)); 2556 if (qname) 2557 kfree_rcu_mightsleep(qname); 2558 } 2559 } 2560 2561 if (ctx->spec & EXT4_SPEC_JQFMT) 2562 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2563 #endif 2564 } 2565 2566 /* 2567 * Check quota settings consistency. 2568 */ 2569 static int ext4_check_quota_consistency(struct fs_context *fc, 2570 struct super_block *sb) 2571 { 2572 #ifdef CONFIG_QUOTA 2573 struct ext4_fs_context *ctx = fc->fs_private; 2574 struct ext4_sb_info *sbi = EXT4_SB(sb); 2575 bool quota_feature = ext4_has_feature_quota(sb); 2576 bool quota_loaded = sb_any_quota_loaded(sb); 2577 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2578 int quota_flags, i; 2579 2580 /* 2581 * We do the test below only for project quotas. 'usrquota' and 2582 * 'grpquota' mount options are allowed even without quota feature 2583 * to support legacy quotas in quota files. 2584 */ 2585 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2586 !ext4_has_feature_project(sb)) { 2587 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2588 "Cannot enable project quota enforcement."); 2589 return -EINVAL; 2590 } 2591 2592 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2593 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2594 if (quota_loaded && 2595 ctx->mask_s_mount_opt & quota_flags && 2596 !ctx_test_mount_opt(ctx, quota_flags)) 2597 goto err_quota_change; 2598 2599 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2600 2601 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2602 if (!(ctx->qname_spec & (1 << i))) 2603 continue; 2604 2605 if (quota_loaded && 2606 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2607 goto err_jquota_change; 2608 2609 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2610 strcmp(get_qf_name(sb, sbi, i), 2611 ctx->s_qf_names[i]) != 0) 2612 goto err_jquota_specified; 2613 } 2614 2615 if (quota_feature) { 2616 ext4_msg(NULL, KERN_INFO, 2617 "Journaled quota options ignored when " 2618 "QUOTA feature is enabled"); 2619 return 0; 2620 } 2621 } 2622 2623 if (ctx->spec & EXT4_SPEC_JQFMT) { 2624 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2625 goto err_jquota_change; 2626 if (quota_feature) { 2627 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2628 "ignored when QUOTA feature is enabled"); 2629 return 0; 2630 } 2631 } 2632 2633 /* Make sure we don't mix old and new quota format */ 2634 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2635 ctx->s_qf_names[USRQUOTA]); 2636 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2637 ctx->s_qf_names[GRPQUOTA]); 2638 2639 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2640 test_opt(sb, USRQUOTA)); 2641 2642 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2643 test_opt(sb, GRPQUOTA)); 2644 2645 if (usr_qf_name) { 2646 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2647 usrquota = false; 2648 } 2649 if (grp_qf_name) { 2650 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2651 grpquota = false; 2652 } 2653 2654 if (usr_qf_name || grp_qf_name) { 2655 if (usrquota || grpquota) { 2656 ext4_msg(NULL, KERN_ERR, "old and new quota " 2657 "format mixing"); 2658 return -EINVAL; 2659 } 2660 2661 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2662 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2663 "not specified"); 2664 return -EINVAL; 2665 } 2666 } 2667 2668 return 0; 2669 2670 err_quota_change: 2671 ext4_msg(NULL, KERN_ERR, 2672 "Cannot change quota options when quota turned on"); 2673 return -EINVAL; 2674 err_jquota_change: 2675 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2676 "options when quota turned on"); 2677 return -EINVAL; 2678 err_jquota_specified: 2679 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2680 QTYPE2NAME(i)); 2681 return -EINVAL; 2682 #else 2683 return 0; 2684 #endif 2685 } 2686 2687 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2688 struct super_block *sb) 2689 { 2690 const struct ext4_fs_context *ctx = fc->fs_private; 2691 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2692 2693 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2694 return 0; 2695 2696 if (!ext4_has_feature_encrypt(sb)) { 2697 ext4_msg(NULL, KERN_WARNING, 2698 "test_dummy_encryption requires encrypt feature"); 2699 return -EINVAL; 2700 } 2701 /* 2702 * This mount option is just for testing, and it's not worthwhile to 2703 * implement the extra complexity (e.g. RCU protection) that would be 2704 * needed to allow it to be set or changed during remount. We do allow 2705 * it to be specified during remount, but only if there is no change. 2706 */ 2707 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2708 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2709 &ctx->dummy_enc_policy)) 2710 return 0; 2711 ext4_msg(NULL, KERN_WARNING, 2712 "Can't set or change test_dummy_encryption on remount"); 2713 return -EINVAL; 2714 } 2715 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2716 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2717 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2718 &ctx->dummy_enc_policy)) 2719 return 0; 2720 ext4_msg(NULL, KERN_WARNING, 2721 "Conflicting test_dummy_encryption options"); 2722 return -EINVAL; 2723 } 2724 return 0; 2725 } 2726 2727 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2728 struct super_block *sb) 2729 { 2730 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2731 /* if already set, it was already verified to be the same */ 2732 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2733 return; 2734 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2735 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2736 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2737 } 2738 2739 static int ext4_check_opt_consistency(struct fs_context *fc, 2740 struct super_block *sb) 2741 { 2742 struct ext4_fs_context *ctx = fc->fs_private; 2743 struct ext4_sb_info *sbi = fc->s_fs_info; 2744 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2745 int err; 2746 2747 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2748 ext4_msg(NULL, KERN_ERR, 2749 "Mount option(s) incompatible with ext2"); 2750 return -EINVAL; 2751 } 2752 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2753 ext4_msg(NULL, KERN_ERR, 2754 "Mount option(s) incompatible with ext3"); 2755 return -EINVAL; 2756 } 2757 2758 if (ctx->s_want_extra_isize > 2759 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2760 ext4_msg(NULL, KERN_ERR, 2761 "Invalid want_extra_isize %d", 2762 ctx->s_want_extra_isize); 2763 return -EINVAL; 2764 } 2765 2766 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2767 int blocksize = 2768 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2769 if (blocksize < PAGE_SIZE) 2770 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2771 "experimental mount option 'dioread_nolock' " 2772 "for blocksize < PAGE_SIZE"); 2773 } 2774 2775 err = ext4_check_test_dummy_encryption(fc, sb); 2776 if (err) 2777 return err; 2778 2779 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2780 if (!sbi->s_journal) { 2781 ext4_msg(NULL, KERN_WARNING, 2782 "Remounting file system with no journal " 2783 "so ignoring journalled data option"); 2784 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2785 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2786 test_opt(sb, DATA_FLAGS)) { 2787 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2788 "on remount"); 2789 return -EINVAL; 2790 } 2791 } 2792 2793 if (is_remount) { 2794 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2795 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2796 ext4_msg(NULL, KERN_ERR, "can't mount with " 2797 "both data=journal and dax"); 2798 return -EINVAL; 2799 } 2800 2801 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2802 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2803 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2804 fail_dax_change_remount: 2805 ext4_msg(NULL, KERN_ERR, "can't change " 2806 "dax mount option while remounting"); 2807 return -EINVAL; 2808 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2809 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2810 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2811 goto fail_dax_change_remount; 2812 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2813 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2814 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2815 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2816 goto fail_dax_change_remount; 2817 } 2818 } 2819 2820 return ext4_check_quota_consistency(fc, sb); 2821 } 2822 2823 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2824 { 2825 struct ext4_fs_context *ctx = fc->fs_private; 2826 struct ext4_sb_info *sbi = fc->s_fs_info; 2827 2828 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2829 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2830 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2831 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2832 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2833 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2834 sb->s_flags &= ~ctx->mask_s_flags; 2835 sb->s_flags |= ctx->vals_s_flags; 2836 2837 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2838 APPLY(s_commit_interval); 2839 APPLY(s_stripe); 2840 APPLY(s_max_batch_time); 2841 APPLY(s_min_batch_time); 2842 APPLY(s_want_extra_isize); 2843 APPLY(s_inode_readahead_blks); 2844 APPLY(s_max_dir_size_kb); 2845 APPLY(s_li_wait_mult); 2846 APPLY(s_resgid); 2847 APPLY(s_resuid); 2848 2849 #ifdef CONFIG_EXT4_DEBUG 2850 APPLY(s_fc_debug_max_replay); 2851 #endif 2852 2853 ext4_apply_quota_options(fc, sb); 2854 ext4_apply_test_dummy_encryption(ctx, sb); 2855 } 2856 2857 2858 static int ext4_validate_options(struct fs_context *fc) 2859 { 2860 #ifdef CONFIG_QUOTA 2861 struct ext4_fs_context *ctx = fc->fs_private; 2862 char *usr_qf_name, *grp_qf_name; 2863 2864 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2865 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2866 2867 if (usr_qf_name || grp_qf_name) { 2868 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2869 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2870 2871 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2872 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2873 2874 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2875 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2876 ext4_msg(NULL, KERN_ERR, "old and new quota " 2877 "format mixing"); 2878 return -EINVAL; 2879 } 2880 } 2881 #endif 2882 return 1; 2883 } 2884 2885 static inline void ext4_show_quota_options(struct seq_file *seq, 2886 struct super_block *sb) 2887 { 2888 #if defined(CONFIG_QUOTA) 2889 struct ext4_sb_info *sbi = EXT4_SB(sb); 2890 char *usr_qf_name, *grp_qf_name; 2891 2892 if (sbi->s_jquota_fmt) { 2893 char *fmtname = ""; 2894 2895 switch (sbi->s_jquota_fmt) { 2896 case QFMT_VFS_OLD: 2897 fmtname = "vfsold"; 2898 break; 2899 case QFMT_VFS_V0: 2900 fmtname = "vfsv0"; 2901 break; 2902 case QFMT_VFS_V1: 2903 fmtname = "vfsv1"; 2904 break; 2905 } 2906 seq_printf(seq, ",jqfmt=%s", fmtname); 2907 } 2908 2909 rcu_read_lock(); 2910 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2911 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2912 if (usr_qf_name) 2913 seq_show_option(seq, "usrjquota", usr_qf_name); 2914 if (grp_qf_name) 2915 seq_show_option(seq, "grpjquota", grp_qf_name); 2916 rcu_read_unlock(); 2917 #endif 2918 } 2919 2920 static const char *token2str(int token) 2921 { 2922 const struct fs_parameter_spec *spec; 2923 2924 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2925 if (spec->opt == token && !spec->type) 2926 break; 2927 return spec->name; 2928 } 2929 2930 /* 2931 * Show an option if 2932 * - it's set to a non-default value OR 2933 * - if the per-sb default is different from the global default 2934 */ 2935 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2936 int nodefs) 2937 { 2938 struct ext4_sb_info *sbi = EXT4_SB(sb); 2939 struct ext4_super_block *es = sbi->s_es; 2940 int def_errors; 2941 const struct mount_opts *m; 2942 char sep = nodefs ? '\n' : ','; 2943 2944 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2945 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2946 2947 if (sbi->s_sb_block != 1) 2948 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2949 2950 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2951 int want_set = m->flags & MOPT_SET; 2952 int opt_2 = m->flags & MOPT_2; 2953 unsigned int mount_opt, def_mount_opt; 2954 2955 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2956 m->flags & MOPT_SKIP) 2957 continue; 2958 2959 if (opt_2) { 2960 mount_opt = sbi->s_mount_opt2; 2961 def_mount_opt = sbi->s_def_mount_opt2; 2962 } else { 2963 mount_opt = sbi->s_mount_opt; 2964 def_mount_opt = sbi->s_def_mount_opt; 2965 } 2966 /* skip if same as the default */ 2967 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2968 continue; 2969 /* select Opt_noFoo vs Opt_Foo */ 2970 if ((want_set && 2971 (mount_opt & m->mount_opt) != m->mount_opt) || 2972 (!want_set && (mount_opt & m->mount_opt))) 2973 continue; 2974 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2975 } 2976 2977 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2978 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2979 SEQ_OPTS_PRINT("resuid=%u", 2980 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2981 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2982 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2983 SEQ_OPTS_PRINT("resgid=%u", 2984 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2985 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2986 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2987 SEQ_OPTS_PUTS("errors=remount-ro"); 2988 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2989 SEQ_OPTS_PUTS("errors=continue"); 2990 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2991 SEQ_OPTS_PUTS("errors=panic"); 2992 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2993 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2994 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2995 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2996 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2997 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2998 if (nodefs || sbi->s_stripe) 2999 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3000 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3001 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3002 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3003 SEQ_OPTS_PUTS("data=journal"); 3004 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3005 SEQ_OPTS_PUTS("data=ordered"); 3006 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3007 SEQ_OPTS_PUTS("data=writeback"); 3008 } 3009 if (nodefs || 3010 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3011 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3012 sbi->s_inode_readahead_blks); 3013 3014 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3015 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3016 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3017 if (nodefs || sbi->s_max_dir_size_kb) 3018 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3019 if (test_opt(sb, DATA_ERR_ABORT)) 3020 SEQ_OPTS_PUTS("data_err=abort"); 3021 3022 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3023 3024 if (sb->s_flags & SB_INLINECRYPT) 3025 SEQ_OPTS_PUTS("inlinecrypt"); 3026 3027 if (test_opt(sb, DAX_ALWAYS)) { 3028 if (IS_EXT2_SB(sb)) 3029 SEQ_OPTS_PUTS("dax"); 3030 else 3031 SEQ_OPTS_PUTS("dax=always"); 3032 } else if (test_opt2(sb, DAX_NEVER)) { 3033 SEQ_OPTS_PUTS("dax=never"); 3034 } else if (test_opt2(sb, DAX_INODE)) { 3035 SEQ_OPTS_PUTS("dax=inode"); 3036 } 3037 3038 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3039 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3040 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3041 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3042 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3043 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3044 } 3045 3046 ext4_show_quota_options(seq, sb); 3047 return 0; 3048 } 3049 3050 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3051 { 3052 return _ext4_show_options(seq, root->d_sb, 0); 3053 } 3054 3055 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3056 { 3057 struct super_block *sb = seq->private; 3058 int rc; 3059 3060 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3061 rc = _ext4_show_options(seq, sb, 1); 3062 seq_puts(seq, "\n"); 3063 return rc; 3064 } 3065 3066 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3067 int read_only) 3068 { 3069 struct ext4_sb_info *sbi = EXT4_SB(sb); 3070 int err = 0; 3071 3072 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3073 ext4_msg(sb, KERN_ERR, "revision level too high, " 3074 "forcing read-only mode"); 3075 err = -EROFS; 3076 goto done; 3077 } 3078 if (read_only) 3079 goto done; 3080 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3081 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3082 "running e2fsck is recommended"); 3083 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3084 ext4_msg(sb, KERN_WARNING, 3085 "warning: mounting fs with errors, " 3086 "running e2fsck is recommended"); 3087 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3088 le16_to_cpu(es->s_mnt_count) >= 3089 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3090 ext4_msg(sb, KERN_WARNING, 3091 "warning: maximal mount count reached, " 3092 "running e2fsck is recommended"); 3093 else if (le32_to_cpu(es->s_checkinterval) && 3094 (ext4_get_tstamp(es, s_lastcheck) + 3095 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3096 ext4_msg(sb, KERN_WARNING, 3097 "warning: checktime reached, " 3098 "running e2fsck is recommended"); 3099 if (!sbi->s_journal) 3100 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3101 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3102 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3103 le16_add_cpu(&es->s_mnt_count, 1); 3104 ext4_update_tstamp(es, s_mtime); 3105 if (sbi->s_journal) { 3106 ext4_set_feature_journal_needs_recovery(sb); 3107 if (ext4_has_feature_orphan_file(sb)) 3108 ext4_set_feature_orphan_present(sb); 3109 } 3110 3111 err = ext4_commit_super(sb); 3112 done: 3113 if (test_opt(sb, DEBUG)) 3114 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3115 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3116 sb->s_blocksize, 3117 sbi->s_groups_count, 3118 EXT4_BLOCKS_PER_GROUP(sb), 3119 EXT4_INODES_PER_GROUP(sb), 3120 sbi->s_mount_opt, sbi->s_mount_opt2); 3121 return err; 3122 } 3123 3124 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3125 { 3126 struct ext4_sb_info *sbi = EXT4_SB(sb); 3127 struct flex_groups **old_groups, **new_groups; 3128 int size, i, j; 3129 3130 if (!sbi->s_log_groups_per_flex) 3131 return 0; 3132 3133 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3134 if (size <= sbi->s_flex_groups_allocated) 3135 return 0; 3136 3137 new_groups = kvzalloc(roundup_pow_of_two(size * 3138 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3139 if (!new_groups) { 3140 ext4_msg(sb, KERN_ERR, 3141 "not enough memory for %d flex group pointers", size); 3142 return -ENOMEM; 3143 } 3144 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3145 new_groups[i] = kvzalloc(roundup_pow_of_two( 3146 sizeof(struct flex_groups)), 3147 GFP_KERNEL); 3148 if (!new_groups[i]) { 3149 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3150 kvfree(new_groups[j]); 3151 kvfree(new_groups); 3152 ext4_msg(sb, KERN_ERR, 3153 "not enough memory for %d flex groups", size); 3154 return -ENOMEM; 3155 } 3156 } 3157 rcu_read_lock(); 3158 old_groups = rcu_dereference(sbi->s_flex_groups); 3159 if (old_groups) 3160 memcpy(new_groups, old_groups, 3161 (sbi->s_flex_groups_allocated * 3162 sizeof(struct flex_groups *))); 3163 rcu_read_unlock(); 3164 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3165 sbi->s_flex_groups_allocated = size; 3166 if (old_groups) 3167 ext4_kvfree_array_rcu(old_groups); 3168 return 0; 3169 } 3170 3171 static int ext4_fill_flex_info(struct super_block *sb) 3172 { 3173 struct ext4_sb_info *sbi = EXT4_SB(sb); 3174 struct ext4_group_desc *gdp = NULL; 3175 struct flex_groups *fg; 3176 ext4_group_t flex_group; 3177 int i, err; 3178 3179 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3180 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3181 sbi->s_log_groups_per_flex = 0; 3182 return 1; 3183 } 3184 3185 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3186 if (err) 3187 goto failed; 3188 3189 for (i = 0; i < sbi->s_groups_count; i++) { 3190 gdp = ext4_get_group_desc(sb, i, NULL); 3191 3192 flex_group = ext4_flex_group(sbi, i); 3193 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3194 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3195 atomic64_add(ext4_free_group_clusters(sb, gdp), 3196 &fg->free_clusters); 3197 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3198 } 3199 3200 return 1; 3201 failed: 3202 return 0; 3203 } 3204 3205 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3206 struct ext4_group_desc *gdp) 3207 { 3208 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3209 __u16 crc = 0; 3210 __le32 le_group = cpu_to_le32(block_group); 3211 struct ext4_sb_info *sbi = EXT4_SB(sb); 3212 3213 if (ext4_has_metadata_csum(sbi->s_sb)) { 3214 /* Use new metadata_csum algorithm */ 3215 __u32 csum32; 3216 __u16 dummy_csum = 0; 3217 3218 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3219 sizeof(le_group)); 3220 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3221 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3222 sizeof(dummy_csum)); 3223 offset += sizeof(dummy_csum); 3224 if (offset < sbi->s_desc_size) 3225 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3226 sbi->s_desc_size - offset); 3227 3228 crc = csum32 & 0xFFFF; 3229 goto out; 3230 } 3231 3232 /* old crc16 code */ 3233 if (!ext4_has_feature_gdt_csum(sb)) 3234 return 0; 3235 3236 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3237 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3238 crc = crc16(crc, (__u8 *)gdp, offset); 3239 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3240 /* for checksum of struct ext4_group_desc do the rest...*/ 3241 if (ext4_has_feature_64bit(sb) && 3242 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 3243 crc = crc16(crc, (__u8 *)gdp + offset, 3244 le16_to_cpu(sbi->s_es->s_desc_size) - 3245 offset); 3246 3247 out: 3248 return cpu_to_le16(crc); 3249 } 3250 3251 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3252 struct ext4_group_desc *gdp) 3253 { 3254 if (ext4_has_group_desc_csum(sb) && 3255 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3256 return 0; 3257 3258 return 1; 3259 } 3260 3261 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3262 struct ext4_group_desc *gdp) 3263 { 3264 if (!ext4_has_group_desc_csum(sb)) 3265 return; 3266 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3267 } 3268 3269 /* Called at mount-time, super-block is locked */ 3270 static int ext4_check_descriptors(struct super_block *sb, 3271 ext4_fsblk_t sb_block, 3272 ext4_group_t *first_not_zeroed) 3273 { 3274 struct ext4_sb_info *sbi = EXT4_SB(sb); 3275 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3276 ext4_fsblk_t last_block; 3277 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3278 ext4_fsblk_t block_bitmap; 3279 ext4_fsblk_t inode_bitmap; 3280 ext4_fsblk_t inode_table; 3281 int flexbg_flag = 0; 3282 ext4_group_t i, grp = sbi->s_groups_count; 3283 3284 if (ext4_has_feature_flex_bg(sb)) 3285 flexbg_flag = 1; 3286 3287 ext4_debug("Checking group descriptors"); 3288 3289 for (i = 0; i < sbi->s_groups_count; i++) { 3290 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3291 3292 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3293 last_block = ext4_blocks_count(sbi->s_es) - 1; 3294 else 3295 last_block = first_block + 3296 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3297 3298 if ((grp == sbi->s_groups_count) && 3299 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3300 grp = i; 3301 3302 block_bitmap = ext4_block_bitmap(sb, gdp); 3303 if (block_bitmap == sb_block) { 3304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3305 "Block bitmap for group %u overlaps " 3306 "superblock", i); 3307 if (!sb_rdonly(sb)) 3308 return 0; 3309 } 3310 if (block_bitmap >= sb_block + 1 && 3311 block_bitmap <= last_bg_block) { 3312 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3313 "Block bitmap for group %u overlaps " 3314 "block group descriptors", i); 3315 if (!sb_rdonly(sb)) 3316 return 0; 3317 } 3318 if (block_bitmap < first_block || block_bitmap > last_block) { 3319 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3320 "Block bitmap for group %u not in group " 3321 "(block %llu)!", i, block_bitmap); 3322 return 0; 3323 } 3324 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3325 if (inode_bitmap == sb_block) { 3326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3327 "Inode bitmap for group %u overlaps " 3328 "superblock", i); 3329 if (!sb_rdonly(sb)) 3330 return 0; 3331 } 3332 if (inode_bitmap >= sb_block + 1 && 3333 inode_bitmap <= last_bg_block) { 3334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3335 "Inode bitmap for group %u overlaps " 3336 "block group descriptors", i); 3337 if (!sb_rdonly(sb)) 3338 return 0; 3339 } 3340 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3342 "Inode bitmap for group %u not in group " 3343 "(block %llu)!", i, inode_bitmap); 3344 return 0; 3345 } 3346 inode_table = ext4_inode_table(sb, gdp); 3347 if (inode_table == sb_block) { 3348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3349 "Inode table for group %u overlaps " 3350 "superblock", i); 3351 if (!sb_rdonly(sb)) 3352 return 0; 3353 } 3354 if (inode_table >= sb_block + 1 && 3355 inode_table <= last_bg_block) { 3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3357 "Inode table for group %u overlaps " 3358 "block group descriptors", i); 3359 if (!sb_rdonly(sb)) 3360 return 0; 3361 } 3362 if (inode_table < first_block || 3363 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3365 "Inode table for group %u not in group " 3366 "(block %llu)!", i, inode_table); 3367 return 0; 3368 } 3369 ext4_lock_group(sb, i); 3370 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3371 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3372 "Checksum for group %u failed (%u!=%u)", 3373 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3374 gdp)), le16_to_cpu(gdp->bg_checksum)); 3375 if (!sb_rdonly(sb)) { 3376 ext4_unlock_group(sb, i); 3377 return 0; 3378 } 3379 } 3380 ext4_unlock_group(sb, i); 3381 if (!flexbg_flag) 3382 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3383 } 3384 if (NULL != first_not_zeroed) 3385 *first_not_zeroed = grp; 3386 return 1; 3387 } 3388 3389 /* 3390 * Maximal extent format file size. 3391 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3392 * extent format containers, within a sector_t, and within i_blocks 3393 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3394 * so that won't be a limiting factor. 3395 * 3396 * However there is other limiting factor. We do store extents in the form 3397 * of starting block and length, hence the resulting length of the extent 3398 * covering maximum file size must fit into on-disk format containers as 3399 * well. Given that length is always by 1 unit bigger than max unit (because 3400 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3401 * 3402 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3403 */ 3404 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3405 { 3406 loff_t res; 3407 loff_t upper_limit = MAX_LFS_FILESIZE; 3408 3409 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3410 3411 if (!has_huge_files) { 3412 upper_limit = (1LL << 32) - 1; 3413 3414 /* total blocks in file system block size */ 3415 upper_limit >>= (blkbits - 9); 3416 upper_limit <<= blkbits; 3417 } 3418 3419 /* 3420 * 32-bit extent-start container, ee_block. We lower the maxbytes 3421 * by one fs block, so ee_len can cover the extent of maximum file 3422 * size 3423 */ 3424 res = (1LL << 32) - 1; 3425 res <<= blkbits; 3426 3427 /* Sanity check against vm- & vfs- imposed limits */ 3428 if (res > upper_limit) 3429 res = upper_limit; 3430 3431 return res; 3432 } 3433 3434 /* 3435 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3436 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3437 * We need to be 1 filesystem block less than the 2^48 sector limit. 3438 */ 3439 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3440 { 3441 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3442 int meta_blocks; 3443 unsigned int ppb = 1 << (bits - 2); 3444 3445 /* 3446 * This is calculated to be the largest file size for a dense, block 3447 * mapped file such that the file's total number of 512-byte sectors, 3448 * including data and all indirect blocks, does not exceed (2^48 - 1). 3449 * 3450 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3451 * number of 512-byte sectors of the file. 3452 */ 3453 if (!has_huge_files) { 3454 /* 3455 * !has_huge_files or implies that the inode i_block field 3456 * represents total file blocks in 2^32 512-byte sectors == 3457 * size of vfs inode i_blocks * 8 3458 */ 3459 upper_limit = (1LL << 32) - 1; 3460 3461 /* total blocks in file system block size */ 3462 upper_limit >>= (bits - 9); 3463 3464 } else { 3465 /* 3466 * We use 48 bit ext4_inode i_blocks 3467 * With EXT4_HUGE_FILE_FL set the i_blocks 3468 * represent total number of blocks in 3469 * file system block size 3470 */ 3471 upper_limit = (1LL << 48) - 1; 3472 3473 } 3474 3475 /* Compute how many blocks we can address by block tree */ 3476 res += ppb; 3477 res += ppb * ppb; 3478 res += ((loff_t)ppb) * ppb * ppb; 3479 /* Compute how many metadata blocks are needed */ 3480 meta_blocks = 1; 3481 meta_blocks += 1 + ppb; 3482 meta_blocks += 1 + ppb + ppb * ppb; 3483 /* Does block tree limit file size? */ 3484 if (res + meta_blocks <= upper_limit) 3485 goto check_lfs; 3486 3487 res = upper_limit; 3488 /* How many metadata blocks are needed for addressing upper_limit? */ 3489 upper_limit -= EXT4_NDIR_BLOCKS; 3490 /* indirect blocks */ 3491 meta_blocks = 1; 3492 upper_limit -= ppb; 3493 /* double indirect blocks */ 3494 if (upper_limit < ppb * ppb) { 3495 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3496 res -= meta_blocks; 3497 goto check_lfs; 3498 } 3499 meta_blocks += 1 + ppb; 3500 upper_limit -= ppb * ppb; 3501 /* tripple indirect blocks for the rest */ 3502 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3503 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3504 res -= meta_blocks; 3505 check_lfs: 3506 res <<= bits; 3507 if (res > MAX_LFS_FILESIZE) 3508 res = MAX_LFS_FILESIZE; 3509 3510 return res; 3511 } 3512 3513 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3514 ext4_fsblk_t logical_sb_block, int nr) 3515 { 3516 struct ext4_sb_info *sbi = EXT4_SB(sb); 3517 ext4_group_t bg, first_meta_bg; 3518 int has_super = 0; 3519 3520 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3521 3522 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3523 return logical_sb_block + nr + 1; 3524 bg = sbi->s_desc_per_block * nr; 3525 if (ext4_bg_has_super(sb, bg)) 3526 has_super = 1; 3527 3528 /* 3529 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3530 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3531 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3532 * compensate. 3533 */ 3534 if (sb->s_blocksize == 1024 && nr == 0 && 3535 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3536 has_super++; 3537 3538 return (has_super + ext4_group_first_block_no(sb, bg)); 3539 } 3540 3541 /** 3542 * ext4_get_stripe_size: Get the stripe size. 3543 * @sbi: In memory super block info 3544 * 3545 * If we have specified it via mount option, then 3546 * use the mount option value. If the value specified at mount time is 3547 * greater than the blocks per group use the super block value. 3548 * If the super block value is greater than blocks per group return 0. 3549 * Allocator needs it be less than blocks per group. 3550 * 3551 */ 3552 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3553 { 3554 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3555 unsigned long stripe_width = 3556 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3557 int ret; 3558 3559 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3560 ret = sbi->s_stripe; 3561 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3562 ret = stripe_width; 3563 else if (stride && stride <= sbi->s_blocks_per_group) 3564 ret = stride; 3565 else 3566 ret = 0; 3567 3568 /* 3569 * If the stripe width is 1, this makes no sense and 3570 * we set it to 0 to turn off stripe handling code. 3571 */ 3572 if (ret <= 1) 3573 ret = 0; 3574 3575 return ret; 3576 } 3577 3578 /* 3579 * Check whether this filesystem can be mounted based on 3580 * the features present and the RDONLY/RDWR mount requested. 3581 * Returns 1 if this filesystem can be mounted as requested, 3582 * 0 if it cannot be. 3583 */ 3584 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3585 { 3586 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3587 ext4_msg(sb, KERN_ERR, 3588 "Couldn't mount because of " 3589 "unsupported optional features (%x)", 3590 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3591 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3592 return 0; 3593 } 3594 3595 #if !IS_ENABLED(CONFIG_UNICODE) 3596 if (ext4_has_feature_casefold(sb)) { 3597 ext4_msg(sb, KERN_ERR, 3598 "Filesystem with casefold feature cannot be " 3599 "mounted without CONFIG_UNICODE"); 3600 return 0; 3601 } 3602 #endif 3603 3604 if (readonly) 3605 return 1; 3606 3607 if (ext4_has_feature_readonly(sb)) { 3608 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3609 sb->s_flags |= SB_RDONLY; 3610 return 1; 3611 } 3612 3613 /* Check that feature set is OK for a read-write mount */ 3614 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3615 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3616 "unsupported optional features (%x)", 3617 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3618 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3619 return 0; 3620 } 3621 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3622 ext4_msg(sb, KERN_ERR, 3623 "Can't support bigalloc feature without " 3624 "extents feature\n"); 3625 return 0; 3626 } 3627 3628 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3629 if (!readonly && (ext4_has_feature_quota(sb) || 3630 ext4_has_feature_project(sb))) { 3631 ext4_msg(sb, KERN_ERR, 3632 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3633 return 0; 3634 } 3635 #endif /* CONFIG_QUOTA */ 3636 return 1; 3637 } 3638 3639 /* 3640 * This function is called once a day if we have errors logged 3641 * on the file system 3642 */ 3643 static void print_daily_error_info(struct timer_list *t) 3644 { 3645 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3646 struct super_block *sb = sbi->s_sb; 3647 struct ext4_super_block *es = sbi->s_es; 3648 3649 if (es->s_error_count) 3650 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3651 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3652 le32_to_cpu(es->s_error_count)); 3653 if (es->s_first_error_time) { 3654 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3655 sb->s_id, 3656 ext4_get_tstamp(es, s_first_error_time), 3657 (int) sizeof(es->s_first_error_func), 3658 es->s_first_error_func, 3659 le32_to_cpu(es->s_first_error_line)); 3660 if (es->s_first_error_ino) 3661 printk(KERN_CONT ": inode %u", 3662 le32_to_cpu(es->s_first_error_ino)); 3663 if (es->s_first_error_block) 3664 printk(KERN_CONT ": block %llu", (unsigned long long) 3665 le64_to_cpu(es->s_first_error_block)); 3666 printk(KERN_CONT "\n"); 3667 } 3668 if (es->s_last_error_time) { 3669 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3670 sb->s_id, 3671 ext4_get_tstamp(es, s_last_error_time), 3672 (int) sizeof(es->s_last_error_func), 3673 es->s_last_error_func, 3674 le32_to_cpu(es->s_last_error_line)); 3675 if (es->s_last_error_ino) 3676 printk(KERN_CONT ": inode %u", 3677 le32_to_cpu(es->s_last_error_ino)); 3678 if (es->s_last_error_block) 3679 printk(KERN_CONT ": block %llu", (unsigned long long) 3680 le64_to_cpu(es->s_last_error_block)); 3681 printk(KERN_CONT "\n"); 3682 } 3683 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3684 } 3685 3686 /* Find next suitable group and run ext4_init_inode_table */ 3687 static int ext4_run_li_request(struct ext4_li_request *elr) 3688 { 3689 struct ext4_group_desc *gdp = NULL; 3690 struct super_block *sb = elr->lr_super; 3691 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3692 ext4_group_t group = elr->lr_next_group; 3693 unsigned int prefetch_ios = 0; 3694 int ret = 0; 3695 u64 start_time; 3696 3697 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3698 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3699 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3700 if (prefetch_ios) 3701 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3702 prefetch_ios); 3703 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3704 prefetch_ios); 3705 if (group >= elr->lr_next_group) { 3706 ret = 1; 3707 if (elr->lr_first_not_zeroed != ngroups && 3708 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3709 elr->lr_next_group = elr->lr_first_not_zeroed; 3710 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3711 ret = 0; 3712 } 3713 } 3714 return ret; 3715 } 3716 3717 for (; group < ngroups; group++) { 3718 gdp = ext4_get_group_desc(sb, group, NULL); 3719 if (!gdp) { 3720 ret = 1; 3721 break; 3722 } 3723 3724 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3725 break; 3726 } 3727 3728 if (group >= ngroups) 3729 ret = 1; 3730 3731 if (!ret) { 3732 start_time = ktime_get_real_ns(); 3733 ret = ext4_init_inode_table(sb, group, 3734 elr->lr_timeout ? 0 : 1); 3735 trace_ext4_lazy_itable_init(sb, group); 3736 if (elr->lr_timeout == 0) { 3737 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3738 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3739 } 3740 elr->lr_next_sched = jiffies + elr->lr_timeout; 3741 elr->lr_next_group = group + 1; 3742 } 3743 return ret; 3744 } 3745 3746 /* 3747 * Remove lr_request from the list_request and free the 3748 * request structure. Should be called with li_list_mtx held 3749 */ 3750 static void ext4_remove_li_request(struct ext4_li_request *elr) 3751 { 3752 if (!elr) 3753 return; 3754 3755 list_del(&elr->lr_request); 3756 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3757 kfree(elr); 3758 } 3759 3760 static void ext4_unregister_li_request(struct super_block *sb) 3761 { 3762 mutex_lock(&ext4_li_mtx); 3763 if (!ext4_li_info) { 3764 mutex_unlock(&ext4_li_mtx); 3765 return; 3766 } 3767 3768 mutex_lock(&ext4_li_info->li_list_mtx); 3769 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3770 mutex_unlock(&ext4_li_info->li_list_mtx); 3771 mutex_unlock(&ext4_li_mtx); 3772 } 3773 3774 static struct task_struct *ext4_lazyinit_task; 3775 3776 /* 3777 * This is the function where ext4lazyinit thread lives. It walks 3778 * through the request list searching for next scheduled filesystem. 3779 * When such a fs is found, run the lazy initialization request 3780 * (ext4_rn_li_request) and keep track of the time spend in this 3781 * function. Based on that time we compute next schedule time of 3782 * the request. When walking through the list is complete, compute 3783 * next waking time and put itself into sleep. 3784 */ 3785 static int ext4_lazyinit_thread(void *arg) 3786 { 3787 struct ext4_lazy_init *eli = arg; 3788 struct list_head *pos, *n; 3789 struct ext4_li_request *elr; 3790 unsigned long next_wakeup, cur; 3791 3792 BUG_ON(NULL == eli); 3793 set_freezable(); 3794 3795 cont_thread: 3796 while (true) { 3797 next_wakeup = MAX_JIFFY_OFFSET; 3798 3799 mutex_lock(&eli->li_list_mtx); 3800 if (list_empty(&eli->li_request_list)) { 3801 mutex_unlock(&eli->li_list_mtx); 3802 goto exit_thread; 3803 } 3804 list_for_each_safe(pos, n, &eli->li_request_list) { 3805 int err = 0; 3806 int progress = 0; 3807 elr = list_entry(pos, struct ext4_li_request, 3808 lr_request); 3809 3810 if (time_before(jiffies, elr->lr_next_sched)) { 3811 if (time_before(elr->lr_next_sched, next_wakeup)) 3812 next_wakeup = elr->lr_next_sched; 3813 continue; 3814 } 3815 if (down_read_trylock(&elr->lr_super->s_umount)) { 3816 if (sb_start_write_trylock(elr->lr_super)) { 3817 progress = 1; 3818 /* 3819 * We hold sb->s_umount, sb can not 3820 * be removed from the list, it is 3821 * now safe to drop li_list_mtx 3822 */ 3823 mutex_unlock(&eli->li_list_mtx); 3824 err = ext4_run_li_request(elr); 3825 sb_end_write(elr->lr_super); 3826 mutex_lock(&eli->li_list_mtx); 3827 n = pos->next; 3828 } 3829 up_read((&elr->lr_super->s_umount)); 3830 } 3831 /* error, remove the lazy_init job */ 3832 if (err) { 3833 ext4_remove_li_request(elr); 3834 continue; 3835 } 3836 if (!progress) { 3837 elr->lr_next_sched = jiffies + 3838 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3839 } 3840 if (time_before(elr->lr_next_sched, next_wakeup)) 3841 next_wakeup = elr->lr_next_sched; 3842 } 3843 mutex_unlock(&eli->li_list_mtx); 3844 3845 try_to_freeze(); 3846 3847 cur = jiffies; 3848 if ((time_after_eq(cur, next_wakeup)) || 3849 (MAX_JIFFY_OFFSET == next_wakeup)) { 3850 cond_resched(); 3851 continue; 3852 } 3853 3854 schedule_timeout_interruptible(next_wakeup - cur); 3855 3856 if (kthread_should_stop()) { 3857 ext4_clear_request_list(); 3858 goto exit_thread; 3859 } 3860 } 3861 3862 exit_thread: 3863 /* 3864 * It looks like the request list is empty, but we need 3865 * to check it under the li_list_mtx lock, to prevent any 3866 * additions into it, and of course we should lock ext4_li_mtx 3867 * to atomically free the list and ext4_li_info, because at 3868 * this point another ext4 filesystem could be registering 3869 * new one. 3870 */ 3871 mutex_lock(&ext4_li_mtx); 3872 mutex_lock(&eli->li_list_mtx); 3873 if (!list_empty(&eli->li_request_list)) { 3874 mutex_unlock(&eli->li_list_mtx); 3875 mutex_unlock(&ext4_li_mtx); 3876 goto cont_thread; 3877 } 3878 mutex_unlock(&eli->li_list_mtx); 3879 kfree(ext4_li_info); 3880 ext4_li_info = NULL; 3881 mutex_unlock(&ext4_li_mtx); 3882 3883 return 0; 3884 } 3885 3886 static void ext4_clear_request_list(void) 3887 { 3888 struct list_head *pos, *n; 3889 struct ext4_li_request *elr; 3890 3891 mutex_lock(&ext4_li_info->li_list_mtx); 3892 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3893 elr = list_entry(pos, struct ext4_li_request, 3894 lr_request); 3895 ext4_remove_li_request(elr); 3896 } 3897 mutex_unlock(&ext4_li_info->li_list_mtx); 3898 } 3899 3900 static int ext4_run_lazyinit_thread(void) 3901 { 3902 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3903 ext4_li_info, "ext4lazyinit"); 3904 if (IS_ERR(ext4_lazyinit_task)) { 3905 int err = PTR_ERR(ext4_lazyinit_task); 3906 ext4_clear_request_list(); 3907 kfree(ext4_li_info); 3908 ext4_li_info = NULL; 3909 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3910 "initialization thread\n", 3911 err); 3912 return err; 3913 } 3914 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3915 return 0; 3916 } 3917 3918 /* 3919 * Check whether it make sense to run itable init. thread or not. 3920 * If there is at least one uninitialized inode table, return 3921 * corresponding group number, else the loop goes through all 3922 * groups and return total number of groups. 3923 */ 3924 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3925 { 3926 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3927 struct ext4_group_desc *gdp = NULL; 3928 3929 if (!ext4_has_group_desc_csum(sb)) 3930 return ngroups; 3931 3932 for (group = 0; group < ngroups; group++) { 3933 gdp = ext4_get_group_desc(sb, group, NULL); 3934 if (!gdp) 3935 continue; 3936 3937 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3938 break; 3939 } 3940 3941 return group; 3942 } 3943 3944 static int ext4_li_info_new(void) 3945 { 3946 struct ext4_lazy_init *eli = NULL; 3947 3948 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3949 if (!eli) 3950 return -ENOMEM; 3951 3952 INIT_LIST_HEAD(&eli->li_request_list); 3953 mutex_init(&eli->li_list_mtx); 3954 3955 eli->li_state |= EXT4_LAZYINIT_QUIT; 3956 3957 ext4_li_info = eli; 3958 3959 return 0; 3960 } 3961 3962 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3963 ext4_group_t start) 3964 { 3965 struct ext4_li_request *elr; 3966 3967 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3968 if (!elr) 3969 return NULL; 3970 3971 elr->lr_super = sb; 3972 elr->lr_first_not_zeroed = start; 3973 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3974 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3975 elr->lr_next_group = start; 3976 } else { 3977 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3978 } 3979 3980 /* 3981 * Randomize first schedule time of the request to 3982 * spread the inode table initialization requests 3983 * better. 3984 */ 3985 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3986 return elr; 3987 } 3988 3989 int ext4_register_li_request(struct super_block *sb, 3990 ext4_group_t first_not_zeroed) 3991 { 3992 struct ext4_sb_info *sbi = EXT4_SB(sb); 3993 struct ext4_li_request *elr = NULL; 3994 ext4_group_t ngroups = sbi->s_groups_count; 3995 int ret = 0; 3996 3997 mutex_lock(&ext4_li_mtx); 3998 if (sbi->s_li_request != NULL) { 3999 /* 4000 * Reset timeout so it can be computed again, because 4001 * s_li_wait_mult might have changed. 4002 */ 4003 sbi->s_li_request->lr_timeout = 0; 4004 goto out; 4005 } 4006 4007 if (sb_rdonly(sb) || 4008 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4009 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4010 goto out; 4011 4012 elr = ext4_li_request_new(sb, first_not_zeroed); 4013 if (!elr) { 4014 ret = -ENOMEM; 4015 goto out; 4016 } 4017 4018 if (NULL == ext4_li_info) { 4019 ret = ext4_li_info_new(); 4020 if (ret) 4021 goto out; 4022 } 4023 4024 mutex_lock(&ext4_li_info->li_list_mtx); 4025 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4026 mutex_unlock(&ext4_li_info->li_list_mtx); 4027 4028 sbi->s_li_request = elr; 4029 /* 4030 * set elr to NULL here since it has been inserted to 4031 * the request_list and the removal and free of it is 4032 * handled by ext4_clear_request_list from now on. 4033 */ 4034 elr = NULL; 4035 4036 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4037 ret = ext4_run_lazyinit_thread(); 4038 if (ret) 4039 goto out; 4040 } 4041 out: 4042 mutex_unlock(&ext4_li_mtx); 4043 if (ret) 4044 kfree(elr); 4045 return ret; 4046 } 4047 4048 /* 4049 * We do not need to lock anything since this is called on 4050 * module unload. 4051 */ 4052 static void ext4_destroy_lazyinit_thread(void) 4053 { 4054 /* 4055 * If thread exited earlier 4056 * there's nothing to be done. 4057 */ 4058 if (!ext4_li_info || !ext4_lazyinit_task) 4059 return; 4060 4061 kthread_stop(ext4_lazyinit_task); 4062 } 4063 4064 static int set_journal_csum_feature_set(struct super_block *sb) 4065 { 4066 int ret = 1; 4067 int compat, incompat; 4068 struct ext4_sb_info *sbi = EXT4_SB(sb); 4069 4070 if (ext4_has_metadata_csum(sb)) { 4071 /* journal checksum v3 */ 4072 compat = 0; 4073 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4074 } else { 4075 /* journal checksum v1 */ 4076 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4077 incompat = 0; 4078 } 4079 4080 jbd2_journal_clear_features(sbi->s_journal, 4081 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4082 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4083 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4084 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4085 ret = jbd2_journal_set_features(sbi->s_journal, 4086 compat, 0, 4087 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4088 incompat); 4089 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4090 ret = jbd2_journal_set_features(sbi->s_journal, 4091 compat, 0, 4092 incompat); 4093 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4094 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4095 } else { 4096 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4097 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4098 } 4099 4100 return ret; 4101 } 4102 4103 /* 4104 * Note: calculating the overhead so we can be compatible with 4105 * historical BSD practice is quite difficult in the face of 4106 * clusters/bigalloc. This is because multiple metadata blocks from 4107 * different block group can end up in the same allocation cluster. 4108 * Calculating the exact overhead in the face of clustered allocation 4109 * requires either O(all block bitmaps) in memory or O(number of block 4110 * groups**2) in time. We will still calculate the superblock for 4111 * older file systems --- and if we come across with a bigalloc file 4112 * system with zero in s_overhead_clusters the estimate will be close to 4113 * correct especially for very large cluster sizes --- but for newer 4114 * file systems, it's better to calculate this figure once at mkfs 4115 * time, and store it in the superblock. If the superblock value is 4116 * present (even for non-bigalloc file systems), we will use it. 4117 */ 4118 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4119 char *buf) 4120 { 4121 struct ext4_sb_info *sbi = EXT4_SB(sb); 4122 struct ext4_group_desc *gdp; 4123 ext4_fsblk_t first_block, last_block, b; 4124 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4125 int s, j, count = 0; 4126 int has_super = ext4_bg_has_super(sb, grp); 4127 4128 if (!ext4_has_feature_bigalloc(sb)) 4129 return (has_super + ext4_bg_num_gdb(sb, grp) + 4130 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4131 sbi->s_itb_per_group + 2); 4132 4133 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4134 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4135 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4136 for (i = 0; i < ngroups; i++) { 4137 gdp = ext4_get_group_desc(sb, i, NULL); 4138 b = ext4_block_bitmap(sb, gdp); 4139 if (b >= first_block && b <= last_block) { 4140 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4141 count++; 4142 } 4143 b = ext4_inode_bitmap(sb, gdp); 4144 if (b >= first_block && b <= last_block) { 4145 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4146 count++; 4147 } 4148 b = ext4_inode_table(sb, gdp); 4149 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4150 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4151 int c = EXT4_B2C(sbi, b - first_block); 4152 ext4_set_bit(c, buf); 4153 count++; 4154 } 4155 if (i != grp) 4156 continue; 4157 s = 0; 4158 if (ext4_bg_has_super(sb, grp)) { 4159 ext4_set_bit(s++, buf); 4160 count++; 4161 } 4162 j = ext4_bg_num_gdb(sb, grp); 4163 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4164 ext4_error(sb, "Invalid number of block group " 4165 "descriptor blocks: %d", j); 4166 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4167 } 4168 count += j; 4169 for (; j > 0; j--) 4170 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4171 } 4172 if (!count) 4173 return 0; 4174 return EXT4_CLUSTERS_PER_GROUP(sb) - 4175 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4176 } 4177 4178 /* 4179 * Compute the overhead and stash it in sbi->s_overhead 4180 */ 4181 int ext4_calculate_overhead(struct super_block *sb) 4182 { 4183 struct ext4_sb_info *sbi = EXT4_SB(sb); 4184 struct ext4_super_block *es = sbi->s_es; 4185 struct inode *j_inode; 4186 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4187 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4188 ext4_fsblk_t overhead = 0; 4189 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4190 4191 if (!buf) 4192 return -ENOMEM; 4193 4194 /* 4195 * Compute the overhead (FS structures). This is constant 4196 * for a given filesystem unless the number of block groups 4197 * changes so we cache the previous value until it does. 4198 */ 4199 4200 /* 4201 * All of the blocks before first_data_block are overhead 4202 */ 4203 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4204 4205 /* 4206 * Add the overhead found in each block group 4207 */ 4208 for (i = 0; i < ngroups; i++) { 4209 int blks; 4210 4211 blks = count_overhead(sb, i, buf); 4212 overhead += blks; 4213 if (blks) 4214 memset(buf, 0, PAGE_SIZE); 4215 cond_resched(); 4216 } 4217 4218 /* 4219 * Add the internal journal blocks whether the journal has been 4220 * loaded or not 4221 */ 4222 if (sbi->s_journal && !sbi->s_journal_bdev) 4223 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4224 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4225 /* j_inum for internal journal is non-zero */ 4226 j_inode = ext4_get_journal_inode(sb, j_inum); 4227 if (j_inode) { 4228 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4229 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4230 iput(j_inode); 4231 } else { 4232 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4233 } 4234 } 4235 sbi->s_overhead = overhead; 4236 smp_wmb(); 4237 free_page((unsigned long) buf); 4238 return 0; 4239 } 4240 4241 static void ext4_set_resv_clusters(struct super_block *sb) 4242 { 4243 ext4_fsblk_t resv_clusters; 4244 struct ext4_sb_info *sbi = EXT4_SB(sb); 4245 4246 /* 4247 * There's no need to reserve anything when we aren't using extents. 4248 * The space estimates are exact, there are no unwritten extents, 4249 * hole punching doesn't need new metadata... This is needed especially 4250 * to keep ext2/3 backward compatibility. 4251 */ 4252 if (!ext4_has_feature_extents(sb)) 4253 return; 4254 /* 4255 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4256 * This should cover the situations where we can not afford to run 4257 * out of space like for example punch hole, or converting 4258 * unwritten extents in delalloc path. In most cases such 4259 * allocation would require 1, or 2 blocks, higher numbers are 4260 * very rare. 4261 */ 4262 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4263 sbi->s_cluster_bits); 4264 4265 do_div(resv_clusters, 50); 4266 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4267 4268 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4269 } 4270 4271 static const char *ext4_quota_mode(struct super_block *sb) 4272 { 4273 #ifdef CONFIG_QUOTA 4274 if (!ext4_quota_capable(sb)) 4275 return "none"; 4276 4277 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4278 return "journalled"; 4279 else 4280 return "writeback"; 4281 #else 4282 return "disabled"; 4283 #endif 4284 } 4285 4286 static void ext4_setup_csum_trigger(struct super_block *sb, 4287 enum ext4_journal_trigger_type type, 4288 void (*trigger)( 4289 struct jbd2_buffer_trigger_type *type, 4290 struct buffer_head *bh, 4291 void *mapped_data, 4292 size_t size)) 4293 { 4294 struct ext4_sb_info *sbi = EXT4_SB(sb); 4295 4296 sbi->s_journal_triggers[type].sb = sb; 4297 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4298 } 4299 4300 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4301 { 4302 if (!sbi) 4303 return; 4304 4305 kfree(sbi->s_blockgroup_lock); 4306 fs_put_dax(sbi->s_daxdev, NULL); 4307 kfree(sbi); 4308 } 4309 4310 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4311 { 4312 struct ext4_sb_info *sbi; 4313 4314 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4315 if (!sbi) 4316 return NULL; 4317 4318 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4319 NULL, NULL); 4320 4321 sbi->s_blockgroup_lock = 4322 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4323 4324 if (!sbi->s_blockgroup_lock) 4325 goto err_out; 4326 4327 sb->s_fs_info = sbi; 4328 sbi->s_sb = sb; 4329 return sbi; 4330 err_out: 4331 fs_put_dax(sbi->s_daxdev, NULL); 4332 kfree(sbi); 4333 return NULL; 4334 } 4335 4336 static void ext4_set_def_opts(struct super_block *sb, 4337 struct ext4_super_block *es) 4338 { 4339 unsigned long def_mount_opts; 4340 4341 /* Set defaults before we parse the mount options */ 4342 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4343 set_opt(sb, INIT_INODE_TABLE); 4344 if (def_mount_opts & EXT4_DEFM_DEBUG) 4345 set_opt(sb, DEBUG); 4346 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4347 set_opt(sb, GRPID); 4348 if (def_mount_opts & EXT4_DEFM_UID16) 4349 set_opt(sb, NO_UID32); 4350 /* xattr user namespace & acls are now defaulted on */ 4351 set_opt(sb, XATTR_USER); 4352 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4353 set_opt(sb, POSIX_ACL); 4354 #endif 4355 if (ext4_has_feature_fast_commit(sb)) 4356 set_opt2(sb, JOURNAL_FAST_COMMIT); 4357 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4358 if (ext4_has_metadata_csum(sb)) 4359 set_opt(sb, JOURNAL_CHECKSUM); 4360 4361 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4362 set_opt(sb, JOURNAL_DATA); 4363 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4364 set_opt(sb, ORDERED_DATA); 4365 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4366 set_opt(sb, WRITEBACK_DATA); 4367 4368 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4369 set_opt(sb, ERRORS_PANIC); 4370 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4371 set_opt(sb, ERRORS_CONT); 4372 else 4373 set_opt(sb, ERRORS_RO); 4374 /* block_validity enabled by default; disable with noblock_validity */ 4375 set_opt(sb, BLOCK_VALIDITY); 4376 if (def_mount_opts & EXT4_DEFM_DISCARD) 4377 set_opt(sb, DISCARD); 4378 4379 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4380 set_opt(sb, BARRIER); 4381 4382 /* 4383 * enable delayed allocation by default 4384 * Use -o nodelalloc to turn it off 4385 */ 4386 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4387 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4388 set_opt(sb, DELALLOC); 4389 4390 if (sb->s_blocksize == PAGE_SIZE) 4391 set_opt(sb, DIOREAD_NOLOCK); 4392 } 4393 4394 static int ext4_handle_clustersize(struct super_block *sb) 4395 { 4396 struct ext4_sb_info *sbi = EXT4_SB(sb); 4397 struct ext4_super_block *es = sbi->s_es; 4398 int clustersize; 4399 4400 /* Handle clustersize */ 4401 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4402 if (ext4_has_feature_bigalloc(sb)) { 4403 if (clustersize < sb->s_blocksize) { 4404 ext4_msg(sb, KERN_ERR, 4405 "cluster size (%d) smaller than " 4406 "block size (%lu)", clustersize, sb->s_blocksize); 4407 return -EINVAL; 4408 } 4409 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4410 le32_to_cpu(es->s_log_block_size); 4411 sbi->s_clusters_per_group = 4412 le32_to_cpu(es->s_clusters_per_group); 4413 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4414 ext4_msg(sb, KERN_ERR, 4415 "#clusters per group too big: %lu", 4416 sbi->s_clusters_per_group); 4417 return -EINVAL; 4418 } 4419 if (sbi->s_blocks_per_group != 4420 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4421 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4422 "clusters per group (%lu) inconsistent", 4423 sbi->s_blocks_per_group, 4424 sbi->s_clusters_per_group); 4425 return -EINVAL; 4426 } 4427 } else { 4428 if (clustersize != sb->s_blocksize) { 4429 ext4_msg(sb, KERN_ERR, 4430 "fragment/cluster size (%d) != " 4431 "block size (%lu)", clustersize, sb->s_blocksize); 4432 return -EINVAL; 4433 } 4434 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4435 ext4_msg(sb, KERN_ERR, 4436 "#blocks per group too big: %lu", 4437 sbi->s_blocks_per_group); 4438 return -EINVAL; 4439 } 4440 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4441 sbi->s_cluster_bits = 0; 4442 } 4443 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4444 4445 /* Do we have standard group size of clustersize * 8 blocks ? */ 4446 if (sbi->s_blocks_per_group == clustersize << 3) 4447 set_opt2(sb, STD_GROUP_SIZE); 4448 4449 return 0; 4450 } 4451 4452 static void ext4_fast_commit_init(struct super_block *sb) 4453 { 4454 struct ext4_sb_info *sbi = EXT4_SB(sb); 4455 4456 /* Initialize fast commit stuff */ 4457 atomic_set(&sbi->s_fc_subtid, 0); 4458 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4459 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4460 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4461 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4462 sbi->s_fc_bytes = 0; 4463 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4464 sbi->s_fc_ineligible_tid = 0; 4465 spin_lock_init(&sbi->s_fc_lock); 4466 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4467 sbi->s_fc_replay_state.fc_regions = NULL; 4468 sbi->s_fc_replay_state.fc_regions_size = 0; 4469 sbi->s_fc_replay_state.fc_regions_used = 0; 4470 sbi->s_fc_replay_state.fc_regions_valid = 0; 4471 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4472 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4473 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4474 } 4475 4476 static int ext4_inode_info_init(struct super_block *sb, 4477 struct ext4_super_block *es) 4478 { 4479 struct ext4_sb_info *sbi = EXT4_SB(sb); 4480 4481 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4482 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4483 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4484 } else { 4485 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4486 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4487 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4488 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4489 sbi->s_first_ino); 4490 return -EINVAL; 4491 } 4492 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4493 (!is_power_of_2(sbi->s_inode_size)) || 4494 (sbi->s_inode_size > sb->s_blocksize)) { 4495 ext4_msg(sb, KERN_ERR, 4496 "unsupported inode size: %d", 4497 sbi->s_inode_size); 4498 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4499 return -EINVAL; 4500 } 4501 /* 4502 * i_atime_extra is the last extra field available for 4503 * [acm]times in struct ext4_inode. Checking for that 4504 * field should suffice to ensure we have extra space 4505 * for all three. 4506 */ 4507 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4508 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4509 sb->s_time_gran = 1; 4510 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4511 } else { 4512 sb->s_time_gran = NSEC_PER_SEC; 4513 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4514 } 4515 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4516 } 4517 4518 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4519 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4520 EXT4_GOOD_OLD_INODE_SIZE; 4521 if (ext4_has_feature_extra_isize(sb)) { 4522 unsigned v, max = (sbi->s_inode_size - 4523 EXT4_GOOD_OLD_INODE_SIZE); 4524 4525 v = le16_to_cpu(es->s_want_extra_isize); 4526 if (v > max) { 4527 ext4_msg(sb, KERN_ERR, 4528 "bad s_want_extra_isize: %d", v); 4529 return -EINVAL; 4530 } 4531 if (sbi->s_want_extra_isize < v) 4532 sbi->s_want_extra_isize = v; 4533 4534 v = le16_to_cpu(es->s_min_extra_isize); 4535 if (v > max) { 4536 ext4_msg(sb, KERN_ERR, 4537 "bad s_min_extra_isize: %d", v); 4538 return -EINVAL; 4539 } 4540 if (sbi->s_want_extra_isize < v) 4541 sbi->s_want_extra_isize = v; 4542 } 4543 } 4544 4545 return 0; 4546 } 4547 4548 #if IS_ENABLED(CONFIG_UNICODE) 4549 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4550 { 4551 const struct ext4_sb_encodings *encoding_info; 4552 struct unicode_map *encoding; 4553 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4554 4555 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4556 return 0; 4557 4558 encoding_info = ext4_sb_read_encoding(es); 4559 if (!encoding_info) { 4560 ext4_msg(sb, KERN_ERR, 4561 "Encoding requested by superblock is unknown"); 4562 return -EINVAL; 4563 } 4564 4565 encoding = utf8_load(encoding_info->version); 4566 if (IS_ERR(encoding)) { 4567 ext4_msg(sb, KERN_ERR, 4568 "can't mount with superblock charset: %s-%u.%u.%u " 4569 "not supported by the kernel. flags: 0x%x.", 4570 encoding_info->name, 4571 unicode_major(encoding_info->version), 4572 unicode_minor(encoding_info->version), 4573 unicode_rev(encoding_info->version), 4574 encoding_flags); 4575 return -EINVAL; 4576 } 4577 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4578 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4579 unicode_major(encoding_info->version), 4580 unicode_minor(encoding_info->version), 4581 unicode_rev(encoding_info->version), 4582 encoding_flags); 4583 4584 sb->s_encoding = encoding; 4585 sb->s_encoding_flags = encoding_flags; 4586 4587 return 0; 4588 } 4589 #else 4590 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4591 { 4592 return 0; 4593 } 4594 #endif 4595 4596 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4597 { 4598 struct ext4_sb_info *sbi = EXT4_SB(sb); 4599 4600 /* Warn if metadata_csum and gdt_csum are both set. */ 4601 if (ext4_has_feature_metadata_csum(sb) && 4602 ext4_has_feature_gdt_csum(sb)) 4603 ext4_warning(sb, "metadata_csum and uninit_bg are " 4604 "redundant flags; please run fsck."); 4605 4606 /* Check for a known checksum algorithm */ 4607 if (!ext4_verify_csum_type(sb, es)) { 4608 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4609 "unknown checksum algorithm."); 4610 return -EINVAL; 4611 } 4612 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4613 ext4_orphan_file_block_trigger); 4614 4615 /* Load the checksum driver */ 4616 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4617 if (IS_ERR(sbi->s_chksum_driver)) { 4618 int ret = PTR_ERR(sbi->s_chksum_driver); 4619 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4620 sbi->s_chksum_driver = NULL; 4621 return ret; 4622 } 4623 4624 /* Check superblock checksum */ 4625 if (!ext4_superblock_csum_verify(sb, es)) { 4626 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4627 "invalid superblock checksum. Run e2fsck?"); 4628 return -EFSBADCRC; 4629 } 4630 4631 /* Precompute checksum seed for all metadata */ 4632 if (ext4_has_feature_csum_seed(sb)) 4633 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4634 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4635 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4636 sizeof(es->s_uuid)); 4637 return 0; 4638 } 4639 4640 static int ext4_check_feature_compatibility(struct super_block *sb, 4641 struct ext4_super_block *es, 4642 int silent) 4643 { 4644 struct ext4_sb_info *sbi = EXT4_SB(sb); 4645 4646 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4647 (ext4_has_compat_features(sb) || 4648 ext4_has_ro_compat_features(sb) || 4649 ext4_has_incompat_features(sb))) 4650 ext4_msg(sb, KERN_WARNING, 4651 "feature flags set on rev 0 fs, " 4652 "running e2fsck is recommended"); 4653 4654 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4655 set_opt2(sb, HURD_COMPAT); 4656 if (ext4_has_feature_64bit(sb)) { 4657 ext4_msg(sb, KERN_ERR, 4658 "The Hurd can't support 64-bit file systems"); 4659 return -EINVAL; 4660 } 4661 4662 /* 4663 * ea_inode feature uses l_i_version field which is not 4664 * available in HURD_COMPAT mode. 4665 */ 4666 if (ext4_has_feature_ea_inode(sb)) { 4667 ext4_msg(sb, KERN_ERR, 4668 "ea_inode feature is not supported for Hurd"); 4669 return -EINVAL; 4670 } 4671 } 4672 4673 if (IS_EXT2_SB(sb)) { 4674 if (ext2_feature_set_ok(sb)) 4675 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4676 "using the ext4 subsystem"); 4677 else { 4678 /* 4679 * If we're probing be silent, if this looks like 4680 * it's actually an ext[34] filesystem. 4681 */ 4682 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4683 return -EINVAL; 4684 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4685 "to feature incompatibilities"); 4686 return -EINVAL; 4687 } 4688 } 4689 4690 if (IS_EXT3_SB(sb)) { 4691 if (ext3_feature_set_ok(sb)) 4692 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4693 "using the ext4 subsystem"); 4694 else { 4695 /* 4696 * If we're probing be silent, if this looks like 4697 * it's actually an ext4 filesystem. 4698 */ 4699 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4700 return -EINVAL; 4701 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4702 "to feature incompatibilities"); 4703 return -EINVAL; 4704 } 4705 } 4706 4707 /* 4708 * Check feature flags regardless of the revision level, since we 4709 * previously didn't change the revision level when setting the flags, 4710 * so there is a chance incompat flags are set on a rev 0 filesystem. 4711 */ 4712 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4713 return -EINVAL; 4714 4715 if (sbi->s_daxdev) { 4716 if (sb->s_blocksize == PAGE_SIZE) 4717 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4718 else 4719 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4720 } 4721 4722 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4723 if (ext4_has_feature_inline_data(sb)) { 4724 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4725 " that may contain inline data"); 4726 return -EINVAL; 4727 } 4728 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4729 ext4_msg(sb, KERN_ERR, 4730 "DAX unsupported by block device."); 4731 return -EINVAL; 4732 } 4733 } 4734 4735 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4736 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4737 es->s_encryption_level); 4738 return -EINVAL; 4739 } 4740 4741 return 0; 4742 } 4743 4744 static int ext4_check_geometry(struct super_block *sb, 4745 struct ext4_super_block *es) 4746 { 4747 struct ext4_sb_info *sbi = EXT4_SB(sb); 4748 __u64 blocks_count; 4749 int err; 4750 4751 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4752 ext4_msg(sb, KERN_ERR, 4753 "Number of reserved GDT blocks insanely large: %d", 4754 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4755 return -EINVAL; 4756 } 4757 /* 4758 * Test whether we have more sectors than will fit in sector_t, 4759 * and whether the max offset is addressable by the page cache. 4760 */ 4761 err = generic_check_addressable(sb->s_blocksize_bits, 4762 ext4_blocks_count(es)); 4763 if (err) { 4764 ext4_msg(sb, KERN_ERR, "filesystem" 4765 " too large to mount safely on this system"); 4766 return err; 4767 } 4768 4769 /* check blocks count against device size */ 4770 blocks_count = sb_bdev_nr_blocks(sb); 4771 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4772 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4773 "exceeds size of device (%llu blocks)", 4774 ext4_blocks_count(es), blocks_count); 4775 return -EINVAL; 4776 } 4777 4778 /* 4779 * It makes no sense for the first data block to be beyond the end 4780 * of the filesystem. 4781 */ 4782 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4783 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4784 "block %u is beyond end of filesystem (%llu)", 4785 le32_to_cpu(es->s_first_data_block), 4786 ext4_blocks_count(es)); 4787 return -EINVAL; 4788 } 4789 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4790 (sbi->s_cluster_ratio == 1)) { 4791 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4792 "block is 0 with a 1k block and cluster size"); 4793 return -EINVAL; 4794 } 4795 4796 blocks_count = (ext4_blocks_count(es) - 4797 le32_to_cpu(es->s_first_data_block) + 4798 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4799 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4800 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4801 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4802 "(block count %llu, first data block %u, " 4803 "blocks per group %lu)", blocks_count, 4804 ext4_blocks_count(es), 4805 le32_to_cpu(es->s_first_data_block), 4806 EXT4_BLOCKS_PER_GROUP(sb)); 4807 return -EINVAL; 4808 } 4809 sbi->s_groups_count = blocks_count; 4810 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4811 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4812 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4813 le32_to_cpu(es->s_inodes_count)) { 4814 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4815 le32_to_cpu(es->s_inodes_count), 4816 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4817 return -EINVAL; 4818 } 4819 4820 return 0; 4821 } 4822 4823 static int ext4_group_desc_init(struct super_block *sb, 4824 struct ext4_super_block *es, 4825 ext4_fsblk_t logical_sb_block, 4826 ext4_group_t *first_not_zeroed) 4827 { 4828 struct ext4_sb_info *sbi = EXT4_SB(sb); 4829 unsigned int db_count; 4830 ext4_fsblk_t block; 4831 int i; 4832 4833 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4834 EXT4_DESC_PER_BLOCK(sb); 4835 if (ext4_has_feature_meta_bg(sb)) { 4836 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4837 ext4_msg(sb, KERN_WARNING, 4838 "first meta block group too large: %u " 4839 "(group descriptor block count %u)", 4840 le32_to_cpu(es->s_first_meta_bg), db_count); 4841 return -EINVAL; 4842 } 4843 } 4844 rcu_assign_pointer(sbi->s_group_desc, 4845 kvmalloc_array(db_count, 4846 sizeof(struct buffer_head *), 4847 GFP_KERNEL)); 4848 if (sbi->s_group_desc == NULL) { 4849 ext4_msg(sb, KERN_ERR, "not enough memory"); 4850 return -ENOMEM; 4851 } 4852 4853 bgl_lock_init(sbi->s_blockgroup_lock); 4854 4855 /* Pre-read the descriptors into the buffer cache */ 4856 for (i = 0; i < db_count; i++) { 4857 block = descriptor_loc(sb, logical_sb_block, i); 4858 ext4_sb_breadahead_unmovable(sb, block); 4859 } 4860 4861 for (i = 0; i < db_count; i++) { 4862 struct buffer_head *bh; 4863 4864 block = descriptor_loc(sb, logical_sb_block, i); 4865 bh = ext4_sb_bread_unmovable(sb, block); 4866 if (IS_ERR(bh)) { 4867 ext4_msg(sb, KERN_ERR, 4868 "can't read group descriptor %d", i); 4869 sbi->s_gdb_count = i; 4870 return PTR_ERR(bh); 4871 } 4872 rcu_read_lock(); 4873 rcu_dereference(sbi->s_group_desc)[i] = bh; 4874 rcu_read_unlock(); 4875 } 4876 sbi->s_gdb_count = db_count; 4877 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4878 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4879 return -EFSCORRUPTED; 4880 } 4881 4882 return 0; 4883 } 4884 4885 static int ext4_load_and_init_journal(struct super_block *sb, 4886 struct ext4_super_block *es, 4887 struct ext4_fs_context *ctx) 4888 { 4889 struct ext4_sb_info *sbi = EXT4_SB(sb); 4890 int err; 4891 4892 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4893 if (err) 4894 return err; 4895 4896 if (ext4_has_feature_64bit(sb) && 4897 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4898 JBD2_FEATURE_INCOMPAT_64BIT)) { 4899 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4900 goto out; 4901 } 4902 4903 if (!set_journal_csum_feature_set(sb)) { 4904 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4905 "feature set"); 4906 goto out; 4907 } 4908 4909 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4910 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4911 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4912 ext4_msg(sb, KERN_ERR, 4913 "Failed to set fast commit journal feature"); 4914 goto out; 4915 } 4916 4917 /* We have now updated the journal if required, so we can 4918 * validate the data journaling mode. */ 4919 switch (test_opt(sb, DATA_FLAGS)) { 4920 case 0: 4921 /* No mode set, assume a default based on the journal 4922 * capabilities: ORDERED_DATA if the journal can 4923 * cope, else JOURNAL_DATA 4924 */ 4925 if (jbd2_journal_check_available_features 4926 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4927 set_opt(sb, ORDERED_DATA); 4928 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4929 } else { 4930 set_opt(sb, JOURNAL_DATA); 4931 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4932 } 4933 break; 4934 4935 case EXT4_MOUNT_ORDERED_DATA: 4936 case EXT4_MOUNT_WRITEBACK_DATA: 4937 if (!jbd2_journal_check_available_features 4938 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4939 ext4_msg(sb, KERN_ERR, "Journal does not support " 4940 "requested data journaling mode"); 4941 goto out; 4942 } 4943 break; 4944 default: 4945 break; 4946 } 4947 4948 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4949 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4950 ext4_msg(sb, KERN_ERR, "can't mount with " 4951 "journal_async_commit in data=ordered mode"); 4952 goto out; 4953 } 4954 4955 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4956 4957 sbi->s_journal->j_submit_inode_data_buffers = 4958 ext4_journal_submit_inode_data_buffers; 4959 sbi->s_journal->j_finish_inode_data_buffers = 4960 ext4_journal_finish_inode_data_buffers; 4961 4962 return 0; 4963 4964 out: 4965 /* flush s_error_work before journal destroy. */ 4966 flush_work(&sbi->s_error_work); 4967 jbd2_journal_destroy(sbi->s_journal); 4968 sbi->s_journal = NULL; 4969 return -EINVAL; 4970 } 4971 4972 static int ext4_check_journal_data_mode(struct super_block *sb) 4973 { 4974 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4975 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4976 "data=journal disables delayed allocation, " 4977 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4978 /* can't mount with both data=journal and dioread_nolock. */ 4979 clear_opt(sb, DIOREAD_NOLOCK); 4980 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4981 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4982 ext4_msg(sb, KERN_ERR, "can't mount with " 4983 "both data=journal and delalloc"); 4984 return -EINVAL; 4985 } 4986 if (test_opt(sb, DAX_ALWAYS)) { 4987 ext4_msg(sb, KERN_ERR, "can't mount with " 4988 "both data=journal and dax"); 4989 return -EINVAL; 4990 } 4991 if (ext4_has_feature_encrypt(sb)) { 4992 ext4_msg(sb, KERN_WARNING, 4993 "encrypted files will use data=ordered " 4994 "instead of data journaling mode"); 4995 } 4996 if (test_opt(sb, DELALLOC)) 4997 clear_opt(sb, DELALLOC); 4998 } else { 4999 sb->s_iflags |= SB_I_CGROUPWB; 5000 } 5001 5002 return 0; 5003 } 5004 5005 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5006 int silent) 5007 { 5008 struct ext4_sb_info *sbi = EXT4_SB(sb); 5009 struct ext4_super_block *es; 5010 ext4_fsblk_t logical_sb_block; 5011 unsigned long offset = 0; 5012 struct buffer_head *bh; 5013 int ret = -EINVAL; 5014 int blocksize; 5015 5016 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5017 if (!blocksize) { 5018 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5019 return -EINVAL; 5020 } 5021 5022 /* 5023 * The ext4 superblock will not be buffer aligned for other than 1kB 5024 * block sizes. We need to calculate the offset from buffer start. 5025 */ 5026 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5027 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5028 offset = do_div(logical_sb_block, blocksize); 5029 } else { 5030 logical_sb_block = sbi->s_sb_block; 5031 } 5032 5033 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5034 if (IS_ERR(bh)) { 5035 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5036 return PTR_ERR(bh); 5037 } 5038 /* 5039 * Note: s_es must be initialized as soon as possible because 5040 * some ext4 macro-instructions depend on its value 5041 */ 5042 es = (struct ext4_super_block *) (bh->b_data + offset); 5043 sbi->s_es = es; 5044 sb->s_magic = le16_to_cpu(es->s_magic); 5045 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5046 if (!silent) 5047 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5048 goto out; 5049 } 5050 5051 if (le32_to_cpu(es->s_log_block_size) > 5052 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5053 ext4_msg(sb, KERN_ERR, 5054 "Invalid log block size: %u", 5055 le32_to_cpu(es->s_log_block_size)); 5056 goto out; 5057 } 5058 if (le32_to_cpu(es->s_log_cluster_size) > 5059 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5060 ext4_msg(sb, KERN_ERR, 5061 "Invalid log cluster size: %u", 5062 le32_to_cpu(es->s_log_cluster_size)); 5063 goto out; 5064 } 5065 5066 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5067 5068 /* 5069 * If the default block size is not the same as the real block size, 5070 * we need to reload it. 5071 */ 5072 if (sb->s_blocksize == blocksize) { 5073 *lsb = logical_sb_block; 5074 sbi->s_sbh = bh; 5075 return 0; 5076 } 5077 5078 /* 5079 * bh must be released before kill_bdev(), otherwise 5080 * it won't be freed and its page also. kill_bdev() 5081 * is called by sb_set_blocksize(). 5082 */ 5083 brelse(bh); 5084 /* Validate the filesystem blocksize */ 5085 if (!sb_set_blocksize(sb, blocksize)) { 5086 ext4_msg(sb, KERN_ERR, "bad block size %d", 5087 blocksize); 5088 bh = NULL; 5089 goto out; 5090 } 5091 5092 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5093 offset = do_div(logical_sb_block, blocksize); 5094 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5095 if (IS_ERR(bh)) { 5096 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5097 ret = PTR_ERR(bh); 5098 bh = NULL; 5099 goto out; 5100 } 5101 es = (struct ext4_super_block *)(bh->b_data + offset); 5102 sbi->s_es = es; 5103 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5104 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5105 goto out; 5106 } 5107 *lsb = logical_sb_block; 5108 sbi->s_sbh = bh; 5109 return 0; 5110 out: 5111 brelse(bh); 5112 return ret; 5113 } 5114 5115 static void ext4_hash_info_init(struct super_block *sb) 5116 { 5117 struct ext4_sb_info *sbi = EXT4_SB(sb); 5118 struct ext4_super_block *es = sbi->s_es; 5119 unsigned int i; 5120 5121 for (i = 0; i < 4; i++) 5122 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5123 5124 sbi->s_def_hash_version = es->s_def_hash_version; 5125 if (ext4_has_feature_dir_index(sb)) { 5126 i = le32_to_cpu(es->s_flags); 5127 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5128 sbi->s_hash_unsigned = 3; 5129 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5130 #ifdef __CHAR_UNSIGNED__ 5131 if (!sb_rdonly(sb)) 5132 es->s_flags |= 5133 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5134 sbi->s_hash_unsigned = 3; 5135 #else 5136 if (!sb_rdonly(sb)) 5137 es->s_flags |= 5138 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5139 #endif 5140 } 5141 } 5142 } 5143 5144 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5145 { 5146 struct ext4_sb_info *sbi = EXT4_SB(sb); 5147 struct ext4_super_block *es = sbi->s_es; 5148 int has_huge_files; 5149 5150 has_huge_files = ext4_has_feature_huge_file(sb); 5151 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5152 has_huge_files); 5153 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5154 5155 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5156 if (ext4_has_feature_64bit(sb)) { 5157 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5158 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5159 !is_power_of_2(sbi->s_desc_size)) { 5160 ext4_msg(sb, KERN_ERR, 5161 "unsupported descriptor size %lu", 5162 sbi->s_desc_size); 5163 return -EINVAL; 5164 } 5165 } else 5166 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5167 5168 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5169 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5170 5171 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5172 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5173 if (!silent) 5174 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5175 return -EINVAL; 5176 } 5177 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5178 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5179 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5180 sbi->s_inodes_per_group); 5181 return -EINVAL; 5182 } 5183 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5184 sbi->s_inodes_per_block; 5185 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5186 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5187 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5188 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5189 5190 return 0; 5191 } 5192 5193 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5194 { 5195 struct ext4_super_block *es = NULL; 5196 struct ext4_sb_info *sbi = EXT4_SB(sb); 5197 ext4_fsblk_t logical_sb_block; 5198 struct inode *root; 5199 int ret = -ENOMEM; 5200 unsigned int i; 5201 int needs_recovery; 5202 int err = 0; 5203 ext4_group_t first_not_zeroed; 5204 struct ext4_fs_context *ctx = fc->fs_private; 5205 int silent = fc->sb_flags & SB_SILENT; 5206 5207 /* Set defaults for the variables that will be set during parsing */ 5208 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5209 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5210 5211 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5212 sbi->s_sectors_written_start = 5213 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5214 5215 /* -EINVAL is default */ 5216 ret = -EINVAL; 5217 err = ext4_load_super(sb, &logical_sb_block, silent); 5218 if (err) 5219 goto out_fail; 5220 5221 es = sbi->s_es; 5222 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5223 5224 err = ext4_init_metadata_csum(sb, es); 5225 if (err) 5226 goto failed_mount; 5227 5228 ext4_set_def_opts(sb, es); 5229 5230 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5231 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5232 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5233 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5234 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5235 5236 /* 5237 * set default s_li_wait_mult for lazyinit, for the case there is 5238 * no mount option specified. 5239 */ 5240 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5241 5242 if (ext4_inode_info_init(sb, es)) 5243 goto failed_mount; 5244 5245 err = parse_apply_sb_mount_options(sb, ctx); 5246 if (err < 0) 5247 goto failed_mount; 5248 5249 sbi->s_def_mount_opt = sbi->s_mount_opt; 5250 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5251 5252 err = ext4_check_opt_consistency(fc, sb); 5253 if (err < 0) 5254 goto failed_mount; 5255 5256 ext4_apply_options(fc, sb); 5257 5258 if (ext4_encoding_init(sb, es)) 5259 goto failed_mount; 5260 5261 if (ext4_check_journal_data_mode(sb)) 5262 goto failed_mount; 5263 5264 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5265 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5266 5267 /* i_version is always enabled now */ 5268 sb->s_flags |= SB_I_VERSION; 5269 5270 if (ext4_check_feature_compatibility(sb, es, silent)) 5271 goto failed_mount; 5272 5273 if (ext4_block_group_meta_init(sb, silent)) 5274 goto failed_mount; 5275 5276 ext4_hash_info_init(sb); 5277 5278 if (ext4_handle_clustersize(sb)) 5279 goto failed_mount; 5280 5281 if (ext4_check_geometry(sb, es)) 5282 goto failed_mount; 5283 5284 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5285 spin_lock_init(&sbi->s_error_lock); 5286 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5287 5288 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5289 if (err) 5290 goto failed_mount3; 5291 5292 /* Register extent status tree shrinker */ 5293 if (ext4_es_register_shrinker(sbi)) 5294 goto failed_mount3; 5295 5296 sbi->s_stripe = ext4_get_stripe_size(sbi); 5297 sbi->s_extent_max_zeroout_kb = 32; 5298 5299 /* 5300 * set up enough so that it can read an inode 5301 */ 5302 sb->s_op = &ext4_sops; 5303 sb->s_export_op = &ext4_export_ops; 5304 sb->s_xattr = ext4_xattr_handlers; 5305 #ifdef CONFIG_FS_ENCRYPTION 5306 sb->s_cop = &ext4_cryptops; 5307 #endif 5308 #ifdef CONFIG_FS_VERITY 5309 sb->s_vop = &ext4_verityops; 5310 #endif 5311 #ifdef CONFIG_QUOTA 5312 sb->dq_op = &ext4_quota_operations; 5313 if (ext4_has_feature_quota(sb)) 5314 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5315 else 5316 sb->s_qcop = &ext4_qctl_operations; 5317 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5318 #endif 5319 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5320 5321 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5322 mutex_init(&sbi->s_orphan_lock); 5323 5324 ext4_fast_commit_init(sb); 5325 5326 sb->s_root = NULL; 5327 5328 needs_recovery = (es->s_last_orphan != 0 || 5329 ext4_has_feature_orphan_present(sb) || 5330 ext4_has_feature_journal_needs_recovery(sb)); 5331 5332 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 5333 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 5334 goto failed_mount3a; 5335 5336 /* 5337 * The first inode we look at is the journal inode. Don't try 5338 * root first: it may be modified in the journal! 5339 */ 5340 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5341 err = ext4_load_and_init_journal(sb, es, ctx); 5342 if (err) 5343 goto failed_mount3a; 5344 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5345 ext4_has_feature_journal_needs_recovery(sb)) { 5346 ext4_msg(sb, KERN_ERR, "required journal recovery " 5347 "suppressed and not mounted read-only"); 5348 goto failed_mount3a; 5349 } else { 5350 /* Nojournal mode, all journal mount options are illegal */ 5351 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5352 ext4_msg(sb, KERN_ERR, "can't mount with " 5353 "journal_async_commit, fs mounted w/o journal"); 5354 goto failed_mount3a; 5355 } 5356 5357 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5358 ext4_msg(sb, KERN_ERR, "can't mount with " 5359 "journal_checksum, fs mounted w/o journal"); 5360 goto failed_mount3a; 5361 } 5362 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5363 ext4_msg(sb, KERN_ERR, "can't mount with " 5364 "commit=%lu, fs mounted w/o journal", 5365 sbi->s_commit_interval / HZ); 5366 goto failed_mount3a; 5367 } 5368 if (EXT4_MOUNT_DATA_FLAGS & 5369 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5370 ext4_msg(sb, KERN_ERR, "can't mount with " 5371 "data=, fs mounted w/o journal"); 5372 goto failed_mount3a; 5373 } 5374 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5375 clear_opt(sb, JOURNAL_CHECKSUM); 5376 clear_opt(sb, DATA_FLAGS); 5377 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5378 sbi->s_journal = NULL; 5379 needs_recovery = 0; 5380 } 5381 5382 if (!test_opt(sb, NO_MBCACHE)) { 5383 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5384 if (!sbi->s_ea_block_cache) { 5385 ext4_msg(sb, KERN_ERR, 5386 "Failed to create ea_block_cache"); 5387 goto failed_mount_wq; 5388 } 5389 5390 if (ext4_has_feature_ea_inode(sb)) { 5391 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5392 if (!sbi->s_ea_inode_cache) { 5393 ext4_msg(sb, KERN_ERR, 5394 "Failed to create ea_inode_cache"); 5395 goto failed_mount_wq; 5396 } 5397 } 5398 } 5399 5400 /* 5401 * Get the # of file system overhead blocks from the 5402 * superblock if present. 5403 */ 5404 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5405 /* ignore the precalculated value if it is ridiculous */ 5406 if (sbi->s_overhead > ext4_blocks_count(es)) 5407 sbi->s_overhead = 0; 5408 /* 5409 * If the bigalloc feature is not enabled recalculating the 5410 * overhead doesn't take long, so we might as well just redo 5411 * it to make sure we are using the correct value. 5412 */ 5413 if (!ext4_has_feature_bigalloc(sb)) 5414 sbi->s_overhead = 0; 5415 if (sbi->s_overhead == 0) { 5416 err = ext4_calculate_overhead(sb); 5417 if (err) 5418 goto failed_mount_wq; 5419 } 5420 5421 /* 5422 * The maximum number of concurrent works can be high and 5423 * concurrency isn't really necessary. Limit it to 1. 5424 */ 5425 EXT4_SB(sb)->rsv_conversion_wq = 5426 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5427 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5428 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5429 ret = -ENOMEM; 5430 goto failed_mount4; 5431 } 5432 5433 /* 5434 * The jbd2_journal_load will have done any necessary log recovery, 5435 * so we can safely mount the rest of the filesystem now. 5436 */ 5437 5438 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5439 if (IS_ERR(root)) { 5440 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5441 ret = PTR_ERR(root); 5442 root = NULL; 5443 goto failed_mount4; 5444 } 5445 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5446 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5447 iput(root); 5448 goto failed_mount4; 5449 } 5450 5451 sb->s_root = d_make_root(root); 5452 if (!sb->s_root) { 5453 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5454 ret = -ENOMEM; 5455 goto failed_mount4; 5456 } 5457 5458 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 5459 if (ret == -EROFS) { 5460 sb->s_flags |= SB_RDONLY; 5461 ret = 0; 5462 } else if (ret) 5463 goto failed_mount4a; 5464 5465 ext4_set_resv_clusters(sb); 5466 5467 if (test_opt(sb, BLOCK_VALIDITY)) { 5468 err = ext4_setup_system_zone(sb); 5469 if (err) { 5470 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5471 "zone (%d)", err); 5472 goto failed_mount4a; 5473 } 5474 } 5475 ext4_fc_replay_cleanup(sb); 5476 5477 ext4_ext_init(sb); 5478 5479 /* 5480 * Enable optimize_scan if number of groups is > threshold. This can be 5481 * turned off by passing "mb_optimize_scan=0". This can also be 5482 * turned on forcefully by passing "mb_optimize_scan=1". 5483 */ 5484 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5485 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5486 set_opt2(sb, MB_OPTIMIZE_SCAN); 5487 else 5488 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5489 } 5490 5491 err = ext4_mb_init(sb); 5492 if (err) { 5493 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5494 err); 5495 goto failed_mount5; 5496 } 5497 5498 /* 5499 * We can only set up the journal commit callback once 5500 * mballoc is initialized 5501 */ 5502 if (sbi->s_journal) 5503 sbi->s_journal->j_commit_callback = 5504 ext4_journal_commit_callback; 5505 5506 if (ext4_percpu_param_init(sbi)) 5507 goto failed_mount6; 5508 5509 if (ext4_has_feature_flex_bg(sb)) 5510 if (!ext4_fill_flex_info(sb)) { 5511 ext4_msg(sb, KERN_ERR, 5512 "unable to initialize " 5513 "flex_bg meta info!"); 5514 ret = -ENOMEM; 5515 goto failed_mount6; 5516 } 5517 5518 err = ext4_register_li_request(sb, first_not_zeroed); 5519 if (err) 5520 goto failed_mount6; 5521 5522 err = ext4_register_sysfs(sb); 5523 if (err) 5524 goto failed_mount7; 5525 5526 err = ext4_init_orphan_info(sb); 5527 if (err) 5528 goto failed_mount8; 5529 #ifdef CONFIG_QUOTA 5530 /* Enable quota usage during mount. */ 5531 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5532 err = ext4_enable_quotas(sb); 5533 if (err) 5534 goto failed_mount9; 5535 } 5536 #endif /* CONFIG_QUOTA */ 5537 5538 /* 5539 * Save the original bdev mapping's wb_err value which could be 5540 * used to detect the metadata async write error. 5541 */ 5542 spin_lock_init(&sbi->s_bdev_wb_lock); 5543 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5544 &sbi->s_bdev_wb_err); 5545 sb->s_bdev->bd_super = sb; 5546 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5547 ext4_orphan_cleanup(sb, es); 5548 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5549 /* 5550 * Update the checksum after updating free space/inode counters and 5551 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5552 * checksum in the buffer cache until it is written out and 5553 * e2fsprogs programs trying to open a file system immediately 5554 * after it is mounted can fail. 5555 */ 5556 ext4_superblock_csum_set(sb); 5557 if (needs_recovery) { 5558 ext4_msg(sb, KERN_INFO, "recovery complete"); 5559 err = ext4_mark_recovery_complete(sb, es); 5560 if (err) 5561 goto failed_mount9; 5562 } 5563 5564 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5565 ext4_msg(sb, KERN_WARNING, 5566 "mounting with \"discard\" option, but the device does not support discard"); 5567 5568 if (es->s_error_count) 5569 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5570 5571 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5572 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5573 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5574 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5575 atomic_set(&sbi->s_warning_count, 0); 5576 atomic_set(&sbi->s_msg_count, 0); 5577 5578 return 0; 5579 5580 failed_mount9: 5581 ext4_release_orphan_info(sb); 5582 failed_mount8: 5583 ext4_unregister_sysfs(sb); 5584 kobject_put(&sbi->s_kobj); 5585 failed_mount7: 5586 ext4_unregister_li_request(sb); 5587 failed_mount6: 5588 ext4_mb_release(sb); 5589 ext4_flex_groups_free(sbi); 5590 ext4_percpu_param_destroy(sbi); 5591 failed_mount5: 5592 ext4_ext_release(sb); 5593 ext4_release_system_zone(sb); 5594 failed_mount4a: 5595 dput(sb->s_root); 5596 sb->s_root = NULL; 5597 failed_mount4: 5598 ext4_msg(sb, KERN_ERR, "mount failed"); 5599 if (EXT4_SB(sb)->rsv_conversion_wq) 5600 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5601 failed_mount_wq: 5602 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5603 sbi->s_ea_inode_cache = NULL; 5604 5605 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5606 sbi->s_ea_block_cache = NULL; 5607 5608 if (sbi->s_journal) { 5609 /* flush s_error_work before journal destroy. */ 5610 flush_work(&sbi->s_error_work); 5611 jbd2_journal_destroy(sbi->s_journal); 5612 sbi->s_journal = NULL; 5613 } 5614 failed_mount3a: 5615 ext4_es_unregister_shrinker(sbi); 5616 failed_mount3: 5617 /* flush s_error_work before sbi destroy */ 5618 flush_work(&sbi->s_error_work); 5619 del_timer_sync(&sbi->s_err_report); 5620 ext4_stop_mmpd(sbi); 5621 ext4_group_desc_free(sbi); 5622 failed_mount: 5623 if (sbi->s_chksum_driver) 5624 crypto_free_shash(sbi->s_chksum_driver); 5625 5626 #if IS_ENABLED(CONFIG_UNICODE) 5627 utf8_unload(sb->s_encoding); 5628 #endif 5629 5630 #ifdef CONFIG_QUOTA 5631 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5632 kfree(get_qf_name(sb, sbi, i)); 5633 #endif 5634 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5635 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5636 brelse(sbi->s_sbh); 5637 ext4_blkdev_remove(sbi); 5638 out_fail: 5639 sb->s_fs_info = NULL; 5640 return err ? err : ret; 5641 } 5642 5643 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5644 { 5645 struct ext4_fs_context *ctx = fc->fs_private; 5646 struct ext4_sb_info *sbi; 5647 const char *descr; 5648 int ret; 5649 5650 sbi = ext4_alloc_sbi(sb); 5651 if (!sbi) 5652 return -ENOMEM; 5653 5654 fc->s_fs_info = sbi; 5655 5656 /* Cleanup superblock name */ 5657 strreplace(sb->s_id, '/', '!'); 5658 5659 sbi->s_sb_block = 1; /* Default super block location */ 5660 if (ctx->spec & EXT4_SPEC_s_sb_block) 5661 sbi->s_sb_block = ctx->s_sb_block; 5662 5663 ret = __ext4_fill_super(fc, sb); 5664 if (ret < 0) 5665 goto free_sbi; 5666 5667 if (sbi->s_journal) { 5668 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5669 descr = " journalled data mode"; 5670 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5671 descr = " ordered data mode"; 5672 else 5673 descr = " writeback data mode"; 5674 } else 5675 descr = "out journal"; 5676 5677 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5678 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. " 5679 "Quota mode: %s.", &sb->s_uuid, descr, 5680 ext4_quota_mode(sb)); 5681 5682 /* Update the s_overhead_clusters if necessary */ 5683 ext4_update_overhead(sb, false); 5684 return 0; 5685 5686 free_sbi: 5687 ext4_free_sbi(sbi); 5688 fc->s_fs_info = NULL; 5689 return ret; 5690 } 5691 5692 static int ext4_get_tree(struct fs_context *fc) 5693 { 5694 return get_tree_bdev(fc, ext4_fill_super); 5695 } 5696 5697 /* 5698 * Setup any per-fs journal parameters now. We'll do this both on 5699 * initial mount, once the journal has been initialised but before we've 5700 * done any recovery; and again on any subsequent remount. 5701 */ 5702 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5703 { 5704 struct ext4_sb_info *sbi = EXT4_SB(sb); 5705 5706 journal->j_commit_interval = sbi->s_commit_interval; 5707 journal->j_min_batch_time = sbi->s_min_batch_time; 5708 journal->j_max_batch_time = sbi->s_max_batch_time; 5709 ext4_fc_init(sb, journal); 5710 5711 write_lock(&journal->j_state_lock); 5712 if (test_opt(sb, BARRIER)) 5713 journal->j_flags |= JBD2_BARRIER; 5714 else 5715 journal->j_flags &= ~JBD2_BARRIER; 5716 if (test_opt(sb, DATA_ERR_ABORT)) 5717 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5718 else 5719 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5720 write_unlock(&journal->j_state_lock); 5721 } 5722 5723 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5724 unsigned int journal_inum) 5725 { 5726 struct inode *journal_inode; 5727 5728 /* 5729 * Test for the existence of a valid inode on disk. Bad things 5730 * happen if we iget() an unused inode, as the subsequent iput() 5731 * will try to delete it. 5732 */ 5733 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5734 if (IS_ERR(journal_inode)) { 5735 ext4_msg(sb, KERN_ERR, "no journal found"); 5736 return NULL; 5737 } 5738 if (!journal_inode->i_nlink) { 5739 make_bad_inode(journal_inode); 5740 iput(journal_inode); 5741 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5742 return NULL; 5743 } 5744 5745 ext4_debug("Journal inode found at %p: %lld bytes\n", 5746 journal_inode, journal_inode->i_size); 5747 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5748 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5749 iput(journal_inode); 5750 return NULL; 5751 } 5752 return journal_inode; 5753 } 5754 5755 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5756 { 5757 struct ext4_map_blocks map; 5758 int ret; 5759 5760 if (journal->j_inode == NULL) 5761 return 0; 5762 5763 map.m_lblk = *block; 5764 map.m_len = 1; 5765 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5766 if (ret <= 0) { 5767 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5768 "journal bmap failed: block %llu ret %d\n", 5769 *block, ret); 5770 jbd2_journal_abort(journal, ret ? ret : -EIO); 5771 return ret; 5772 } 5773 *block = map.m_pblk; 5774 return 0; 5775 } 5776 5777 static journal_t *ext4_get_journal(struct super_block *sb, 5778 unsigned int journal_inum) 5779 { 5780 struct inode *journal_inode; 5781 journal_t *journal; 5782 5783 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5784 return NULL; 5785 5786 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5787 if (!journal_inode) 5788 return NULL; 5789 5790 journal = jbd2_journal_init_inode(journal_inode); 5791 if (!journal) { 5792 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5793 iput(journal_inode); 5794 return NULL; 5795 } 5796 journal->j_private = sb; 5797 journal->j_bmap = ext4_journal_bmap; 5798 ext4_init_journal_params(sb, journal); 5799 return journal; 5800 } 5801 5802 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5803 dev_t j_dev) 5804 { 5805 struct buffer_head *bh; 5806 journal_t *journal; 5807 ext4_fsblk_t start; 5808 ext4_fsblk_t len; 5809 int hblock, blocksize; 5810 ext4_fsblk_t sb_block; 5811 unsigned long offset; 5812 struct ext4_super_block *es; 5813 struct block_device *bdev; 5814 5815 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5816 return NULL; 5817 5818 bdev = ext4_blkdev_get(j_dev, sb); 5819 if (bdev == NULL) 5820 return NULL; 5821 5822 blocksize = sb->s_blocksize; 5823 hblock = bdev_logical_block_size(bdev); 5824 if (blocksize < hblock) { 5825 ext4_msg(sb, KERN_ERR, 5826 "blocksize too small for journal device"); 5827 goto out_bdev; 5828 } 5829 5830 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5831 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5832 set_blocksize(bdev, blocksize); 5833 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5834 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5835 "external journal"); 5836 goto out_bdev; 5837 } 5838 5839 es = (struct ext4_super_block *) (bh->b_data + offset); 5840 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5841 !(le32_to_cpu(es->s_feature_incompat) & 5842 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5843 ext4_msg(sb, KERN_ERR, "external journal has " 5844 "bad superblock"); 5845 brelse(bh); 5846 goto out_bdev; 5847 } 5848 5849 if ((le32_to_cpu(es->s_feature_ro_compat) & 5850 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5851 es->s_checksum != ext4_superblock_csum(sb, es)) { 5852 ext4_msg(sb, KERN_ERR, "external journal has " 5853 "corrupt superblock"); 5854 brelse(bh); 5855 goto out_bdev; 5856 } 5857 5858 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5859 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5860 brelse(bh); 5861 goto out_bdev; 5862 } 5863 5864 len = ext4_blocks_count(es); 5865 start = sb_block + 1; 5866 brelse(bh); /* we're done with the superblock */ 5867 5868 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5869 start, len, blocksize); 5870 if (!journal) { 5871 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5872 goto out_bdev; 5873 } 5874 journal->j_private = sb; 5875 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5876 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5877 goto out_journal; 5878 } 5879 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5880 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5881 "user (unsupported) - %d", 5882 be32_to_cpu(journal->j_superblock->s_nr_users)); 5883 goto out_journal; 5884 } 5885 EXT4_SB(sb)->s_journal_bdev = bdev; 5886 ext4_init_journal_params(sb, journal); 5887 return journal; 5888 5889 out_journal: 5890 jbd2_journal_destroy(journal); 5891 out_bdev: 5892 ext4_blkdev_put(bdev); 5893 return NULL; 5894 } 5895 5896 static int ext4_load_journal(struct super_block *sb, 5897 struct ext4_super_block *es, 5898 unsigned long journal_devnum) 5899 { 5900 journal_t *journal; 5901 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5902 dev_t journal_dev; 5903 int err = 0; 5904 int really_read_only; 5905 int journal_dev_ro; 5906 5907 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5908 return -EFSCORRUPTED; 5909 5910 if (journal_devnum && 5911 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5912 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5913 "numbers have changed"); 5914 journal_dev = new_decode_dev(journal_devnum); 5915 } else 5916 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5917 5918 if (journal_inum && journal_dev) { 5919 ext4_msg(sb, KERN_ERR, 5920 "filesystem has both journal inode and journal device!"); 5921 return -EINVAL; 5922 } 5923 5924 if (journal_inum) { 5925 journal = ext4_get_journal(sb, journal_inum); 5926 if (!journal) 5927 return -EINVAL; 5928 } else { 5929 journal = ext4_get_dev_journal(sb, journal_dev); 5930 if (!journal) 5931 return -EINVAL; 5932 } 5933 5934 journal_dev_ro = bdev_read_only(journal->j_dev); 5935 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5936 5937 if (journal_dev_ro && !sb_rdonly(sb)) { 5938 ext4_msg(sb, KERN_ERR, 5939 "journal device read-only, try mounting with '-o ro'"); 5940 err = -EROFS; 5941 goto err_out; 5942 } 5943 5944 /* 5945 * Are we loading a blank journal or performing recovery after a 5946 * crash? For recovery, we need to check in advance whether we 5947 * can get read-write access to the device. 5948 */ 5949 if (ext4_has_feature_journal_needs_recovery(sb)) { 5950 if (sb_rdonly(sb)) { 5951 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5952 "required on readonly filesystem"); 5953 if (really_read_only) { 5954 ext4_msg(sb, KERN_ERR, "write access " 5955 "unavailable, cannot proceed " 5956 "(try mounting with noload)"); 5957 err = -EROFS; 5958 goto err_out; 5959 } 5960 ext4_msg(sb, KERN_INFO, "write access will " 5961 "be enabled during recovery"); 5962 } 5963 } 5964 5965 if (!(journal->j_flags & JBD2_BARRIER)) 5966 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5967 5968 if (!ext4_has_feature_journal_needs_recovery(sb)) 5969 err = jbd2_journal_wipe(journal, !really_read_only); 5970 if (!err) { 5971 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5972 5973 if (save) 5974 memcpy(save, ((char *) es) + 5975 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5976 err = jbd2_journal_load(journal); 5977 if (save) 5978 memcpy(((char *) es) + EXT4_S_ERR_START, 5979 save, EXT4_S_ERR_LEN); 5980 kfree(save); 5981 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 5982 EXT4_ERROR_FS); 5983 /* Write out restored error information to the superblock */ 5984 if (!bdev_read_only(sb->s_bdev)) { 5985 int err2; 5986 err2 = ext4_commit_super(sb); 5987 err = err ? : err2; 5988 } 5989 } 5990 5991 if (err) { 5992 ext4_msg(sb, KERN_ERR, "error loading journal"); 5993 goto err_out; 5994 } 5995 5996 EXT4_SB(sb)->s_journal = journal; 5997 err = ext4_clear_journal_err(sb, es); 5998 if (err) { 5999 EXT4_SB(sb)->s_journal = NULL; 6000 jbd2_journal_destroy(journal); 6001 return err; 6002 } 6003 6004 if (!really_read_only && journal_devnum && 6005 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6006 es->s_journal_dev = cpu_to_le32(journal_devnum); 6007 ext4_commit_super(sb); 6008 } 6009 if (!really_read_only && journal_inum && 6010 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6011 es->s_journal_inum = cpu_to_le32(journal_inum); 6012 ext4_commit_super(sb); 6013 } 6014 6015 return 0; 6016 6017 err_out: 6018 jbd2_journal_destroy(journal); 6019 return err; 6020 } 6021 6022 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6023 static void ext4_update_super(struct super_block *sb) 6024 { 6025 struct ext4_sb_info *sbi = EXT4_SB(sb); 6026 struct ext4_super_block *es = sbi->s_es; 6027 struct buffer_head *sbh = sbi->s_sbh; 6028 6029 lock_buffer(sbh); 6030 /* 6031 * If the file system is mounted read-only, don't update the 6032 * superblock write time. This avoids updating the superblock 6033 * write time when we are mounting the root file system 6034 * read/only but we need to replay the journal; at that point, 6035 * for people who are east of GMT and who make their clock 6036 * tick in localtime for Windows bug-for-bug compatibility, 6037 * the clock is set in the future, and this will cause e2fsck 6038 * to complain and force a full file system check. 6039 */ 6040 if (!(sb->s_flags & SB_RDONLY)) 6041 ext4_update_tstamp(es, s_wtime); 6042 es->s_kbytes_written = 6043 cpu_to_le64(sbi->s_kbytes_written + 6044 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6045 sbi->s_sectors_written_start) >> 1)); 6046 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6047 ext4_free_blocks_count_set(es, 6048 EXT4_C2B(sbi, percpu_counter_sum_positive( 6049 &sbi->s_freeclusters_counter))); 6050 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6051 es->s_free_inodes_count = 6052 cpu_to_le32(percpu_counter_sum_positive( 6053 &sbi->s_freeinodes_counter)); 6054 /* Copy error information to the on-disk superblock */ 6055 spin_lock(&sbi->s_error_lock); 6056 if (sbi->s_add_error_count > 0) { 6057 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6058 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6059 __ext4_update_tstamp(&es->s_first_error_time, 6060 &es->s_first_error_time_hi, 6061 sbi->s_first_error_time); 6062 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6063 sizeof(es->s_first_error_func)); 6064 es->s_first_error_line = 6065 cpu_to_le32(sbi->s_first_error_line); 6066 es->s_first_error_ino = 6067 cpu_to_le32(sbi->s_first_error_ino); 6068 es->s_first_error_block = 6069 cpu_to_le64(sbi->s_first_error_block); 6070 es->s_first_error_errcode = 6071 ext4_errno_to_code(sbi->s_first_error_code); 6072 } 6073 __ext4_update_tstamp(&es->s_last_error_time, 6074 &es->s_last_error_time_hi, 6075 sbi->s_last_error_time); 6076 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6077 sizeof(es->s_last_error_func)); 6078 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6079 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6080 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6081 es->s_last_error_errcode = 6082 ext4_errno_to_code(sbi->s_last_error_code); 6083 /* 6084 * Start the daily error reporting function if it hasn't been 6085 * started already 6086 */ 6087 if (!es->s_error_count) 6088 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6089 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6090 sbi->s_add_error_count = 0; 6091 } 6092 spin_unlock(&sbi->s_error_lock); 6093 6094 ext4_superblock_csum_set(sb); 6095 unlock_buffer(sbh); 6096 } 6097 6098 static int ext4_commit_super(struct super_block *sb) 6099 { 6100 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6101 6102 if (!sbh) 6103 return -EINVAL; 6104 if (block_device_ejected(sb)) 6105 return -ENODEV; 6106 6107 ext4_update_super(sb); 6108 6109 lock_buffer(sbh); 6110 /* Buffer got discarded which means block device got invalidated */ 6111 if (!buffer_mapped(sbh)) { 6112 unlock_buffer(sbh); 6113 return -EIO; 6114 } 6115 6116 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6117 /* 6118 * Oh, dear. A previous attempt to write the 6119 * superblock failed. This could happen because the 6120 * USB device was yanked out. Or it could happen to 6121 * be a transient write error and maybe the block will 6122 * be remapped. Nothing we can do but to retry the 6123 * write and hope for the best. 6124 */ 6125 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6126 "superblock detected"); 6127 clear_buffer_write_io_error(sbh); 6128 set_buffer_uptodate(sbh); 6129 } 6130 get_bh(sbh); 6131 /* Clear potential dirty bit if it was journalled update */ 6132 clear_buffer_dirty(sbh); 6133 sbh->b_end_io = end_buffer_write_sync; 6134 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6135 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6136 wait_on_buffer(sbh); 6137 if (buffer_write_io_error(sbh)) { 6138 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6139 "superblock"); 6140 clear_buffer_write_io_error(sbh); 6141 set_buffer_uptodate(sbh); 6142 return -EIO; 6143 } 6144 return 0; 6145 } 6146 6147 /* 6148 * Have we just finished recovery? If so, and if we are mounting (or 6149 * remounting) the filesystem readonly, then we will end up with a 6150 * consistent fs on disk. Record that fact. 6151 */ 6152 static int ext4_mark_recovery_complete(struct super_block *sb, 6153 struct ext4_super_block *es) 6154 { 6155 int err; 6156 journal_t *journal = EXT4_SB(sb)->s_journal; 6157 6158 if (!ext4_has_feature_journal(sb)) { 6159 if (journal != NULL) { 6160 ext4_error(sb, "Journal got removed while the fs was " 6161 "mounted!"); 6162 return -EFSCORRUPTED; 6163 } 6164 return 0; 6165 } 6166 jbd2_journal_lock_updates(journal); 6167 err = jbd2_journal_flush(journal, 0); 6168 if (err < 0) 6169 goto out; 6170 6171 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6172 ext4_has_feature_orphan_present(sb))) { 6173 if (!ext4_orphan_file_empty(sb)) { 6174 ext4_error(sb, "Orphan file not empty on read-only fs."); 6175 err = -EFSCORRUPTED; 6176 goto out; 6177 } 6178 ext4_clear_feature_journal_needs_recovery(sb); 6179 ext4_clear_feature_orphan_present(sb); 6180 ext4_commit_super(sb); 6181 } 6182 out: 6183 jbd2_journal_unlock_updates(journal); 6184 return err; 6185 } 6186 6187 /* 6188 * If we are mounting (or read-write remounting) a filesystem whose journal 6189 * has recorded an error from a previous lifetime, move that error to the 6190 * main filesystem now. 6191 */ 6192 static int ext4_clear_journal_err(struct super_block *sb, 6193 struct ext4_super_block *es) 6194 { 6195 journal_t *journal; 6196 int j_errno; 6197 const char *errstr; 6198 6199 if (!ext4_has_feature_journal(sb)) { 6200 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6201 return -EFSCORRUPTED; 6202 } 6203 6204 journal = EXT4_SB(sb)->s_journal; 6205 6206 /* 6207 * Now check for any error status which may have been recorded in the 6208 * journal by a prior ext4_error() or ext4_abort() 6209 */ 6210 6211 j_errno = jbd2_journal_errno(journal); 6212 if (j_errno) { 6213 char nbuf[16]; 6214 6215 errstr = ext4_decode_error(sb, j_errno, nbuf); 6216 ext4_warning(sb, "Filesystem error recorded " 6217 "from previous mount: %s", errstr); 6218 6219 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6220 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6221 j_errno = ext4_commit_super(sb); 6222 if (j_errno) 6223 return j_errno; 6224 ext4_warning(sb, "Marked fs in need of filesystem check."); 6225 6226 jbd2_journal_clear_err(journal); 6227 jbd2_journal_update_sb_errno(journal); 6228 } 6229 return 0; 6230 } 6231 6232 /* 6233 * Force the running and committing transactions to commit, 6234 * and wait on the commit. 6235 */ 6236 int ext4_force_commit(struct super_block *sb) 6237 { 6238 journal_t *journal; 6239 6240 if (sb_rdonly(sb)) 6241 return 0; 6242 6243 journal = EXT4_SB(sb)->s_journal; 6244 return ext4_journal_force_commit(journal); 6245 } 6246 6247 static int ext4_sync_fs(struct super_block *sb, int wait) 6248 { 6249 int ret = 0; 6250 tid_t target; 6251 bool needs_barrier = false; 6252 struct ext4_sb_info *sbi = EXT4_SB(sb); 6253 6254 if (unlikely(ext4_forced_shutdown(sbi))) 6255 return 0; 6256 6257 trace_ext4_sync_fs(sb, wait); 6258 flush_workqueue(sbi->rsv_conversion_wq); 6259 /* 6260 * Writeback quota in non-journalled quota case - journalled quota has 6261 * no dirty dquots 6262 */ 6263 dquot_writeback_dquots(sb, -1); 6264 /* 6265 * Data writeback is possible w/o journal transaction, so barrier must 6266 * being sent at the end of the function. But we can skip it if 6267 * transaction_commit will do it for us. 6268 */ 6269 if (sbi->s_journal) { 6270 target = jbd2_get_latest_transaction(sbi->s_journal); 6271 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6272 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6273 needs_barrier = true; 6274 6275 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6276 if (wait) 6277 ret = jbd2_log_wait_commit(sbi->s_journal, 6278 target); 6279 } 6280 } else if (wait && test_opt(sb, BARRIER)) 6281 needs_barrier = true; 6282 if (needs_barrier) { 6283 int err; 6284 err = blkdev_issue_flush(sb->s_bdev); 6285 if (!ret) 6286 ret = err; 6287 } 6288 6289 return ret; 6290 } 6291 6292 /* 6293 * LVM calls this function before a (read-only) snapshot is created. This 6294 * gives us a chance to flush the journal completely and mark the fs clean. 6295 * 6296 * Note that only this function cannot bring a filesystem to be in a clean 6297 * state independently. It relies on upper layer to stop all data & metadata 6298 * modifications. 6299 */ 6300 static int ext4_freeze(struct super_block *sb) 6301 { 6302 int error = 0; 6303 journal_t *journal; 6304 6305 if (sb_rdonly(sb)) 6306 return 0; 6307 6308 journal = EXT4_SB(sb)->s_journal; 6309 6310 if (journal) { 6311 /* Now we set up the journal barrier. */ 6312 jbd2_journal_lock_updates(journal); 6313 6314 /* 6315 * Don't clear the needs_recovery flag if we failed to 6316 * flush the journal. 6317 */ 6318 error = jbd2_journal_flush(journal, 0); 6319 if (error < 0) 6320 goto out; 6321 6322 /* Journal blocked and flushed, clear needs_recovery flag. */ 6323 ext4_clear_feature_journal_needs_recovery(sb); 6324 if (ext4_orphan_file_empty(sb)) 6325 ext4_clear_feature_orphan_present(sb); 6326 } 6327 6328 error = ext4_commit_super(sb); 6329 out: 6330 if (journal) 6331 /* we rely on upper layer to stop further updates */ 6332 jbd2_journal_unlock_updates(journal); 6333 return error; 6334 } 6335 6336 /* 6337 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6338 * flag here, even though the filesystem is not technically dirty yet. 6339 */ 6340 static int ext4_unfreeze(struct super_block *sb) 6341 { 6342 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6343 return 0; 6344 6345 if (EXT4_SB(sb)->s_journal) { 6346 /* Reset the needs_recovery flag before the fs is unlocked. */ 6347 ext4_set_feature_journal_needs_recovery(sb); 6348 if (ext4_has_feature_orphan_file(sb)) 6349 ext4_set_feature_orphan_present(sb); 6350 } 6351 6352 ext4_commit_super(sb); 6353 return 0; 6354 } 6355 6356 /* 6357 * Structure to save mount options for ext4_remount's benefit 6358 */ 6359 struct ext4_mount_options { 6360 unsigned long s_mount_opt; 6361 unsigned long s_mount_opt2; 6362 kuid_t s_resuid; 6363 kgid_t s_resgid; 6364 unsigned long s_commit_interval; 6365 u32 s_min_batch_time, s_max_batch_time; 6366 #ifdef CONFIG_QUOTA 6367 int s_jquota_fmt; 6368 char *s_qf_names[EXT4_MAXQUOTAS]; 6369 #endif 6370 }; 6371 6372 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6373 { 6374 struct ext4_fs_context *ctx = fc->fs_private; 6375 struct ext4_super_block *es; 6376 struct ext4_sb_info *sbi = EXT4_SB(sb); 6377 unsigned long old_sb_flags; 6378 struct ext4_mount_options old_opts; 6379 ext4_group_t g; 6380 int err = 0; 6381 #ifdef CONFIG_QUOTA 6382 int enable_quota = 0; 6383 int i, j; 6384 char *to_free[EXT4_MAXQUOTAS]; 6385 #endif 6386 6387 6388 /* Store the original options */ 6389 old_sb_flags = sb->s_flags; 6390 old_opts.s_mount_opt = sbi->s_mount_opt; 6391 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6392 old_opts.s_resuid = sbi->s_resuid; 6393 old_opts.s_resgid = sbi->s_resgid; 6394 old_opts.s_commit_interval = sbi->s_commit_interval; 6395 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6396 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6397 #ifdef CONFIG_QUOTA 6398 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6399 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6400 if (sbi->s_qf_names[i]) { 6401 char *qf_name = get_qf_name(sb, sbi, i); 6402 6403 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6404 if (!old_opts.s_qf_names[i]) { 6405 for (j = 0; j < i; j++) 6406 kfree(old_opts.s_qf_names[j]); 6407 return -ENOMEM; 6408 } 6409 } else 6410 old_opts.s_qf_names[i] = NULL; 6411 #endif 6412 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6413 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6414 ctx->journal_ioprio = 6415 sbi->s_journal->j_task->io_context->ioprio; 6416 else 6417 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6418 6419 } 6420 6421 ext4_apply_options(fc, sb); 6422 6423 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6424 test_opt(sb, JOURNAL_CHECKSUM)) { 6425 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6426 "during remount not supported; ignoring"); 6427 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6428 } 6429 6430 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6431 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6432 ext4_msg(sb, KERN_ERR, "can't mount with " 6433 "both data=journal and delalloc"); 6434 err = -EINVAL; 6435 goto restore_opts; 6436 } 6437 if (test_opt(sb, DIOREAD_NOLOCK)) { 6438 ext4_msg(sb, KERN_ERR, "can't mount with " 6439 "both data=journal and dioread_nolock"); 6440 err = -EINVAL; 6441 goto restore_opts; 6442 } 6443 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6444 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6445 ext4_msg(sb, KERN_ERR, "can't mount with " 6446 "journal_async_commit in data=ordered mode"); 6447 err = -EINVAL; 6448 goto restore_opts; 6449 } 6450 } 6451 6452 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6453 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6454 err = -EINVAL; 6455 goto restore_opts; 6456 } 6457 6458 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6459 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6460 6461 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6462 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6463 6464 es = sbi->s_es; 6465 6466 if (sbi->s_journal) { 6467 ext4_init_journal_params(sb, sbi->s_journal); 6468 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6469 } 6470 6471 /* Flush outstanding errors before changing fs state */ 6472 flush_work(&sbi->s_error_work); 6473 6474 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6475 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6476 err = -EROFS; 6477 goto restore_opts; 6478 } 6479 6480 if (fc->sb_flags & SB_RDONLY) { 6481 err = sync_filesystem(sb); 6482 if (err < 0) 6483 goto restore_opts; 6484 err = dquot_suspend(sb, -1); 6485 if (err < 0) 6486 goto restore_opts; 6487 6488 /* 6489 * First of all, the unconditional stuff we have to do 6490 * to disable replay of the journal when we next remount 6491 */ 6492 sb->s_flags |= SB_RDONLY; 6493 6494 /* 6495 * OK, test if we are remounting a valid rw partition 6496 * readonly, and if so set the rdonly flag and then 6497 * mark the partition as valid again. 6498 */ 6499 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6500 (sbi->s_mount_state & EXT4_VALID_FS)) 6501 es->s_state = cpu_to_le16(sbi->s_mount_state); 6502 6503 if (sbi->s_journal) { 6504 /* 6505 * We let remount-ro finish even if marking fs 6506 * as clean failed... 6507 */ 6508 ext4_mark_recovery_complete(sb, es); 6509 } 6510 } else { 6511 /* Make sure we can mount this feature set readwrite */ 6512 if (ext4_has_feature_readonly(sb) || 6513 !ext4_feature_set_ok(sb, 0)) { 6514 err = -EROFS; 6515 goto restore_opts; 6516 } 6517 /* 6518 * Make sure the group descriptor checksums 6519 * are sane. If they aren't, refuse to remount r/w. 6520 */ 6521 for (g = 0; g < sbi->s_groups_count; g++) { 6522 struct ext4_group_desc *gdp = 6523 ext4_get_group_desc(sb, g, NULL); 6524 6525 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6526 ext4_msg(sb, KERN_ERR, 6527 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6528 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6529 le16_to_cpu(gdp->bg_checksum)); 6530 err = -EFSBADCRC; 6531 goto restore_opts; 6532 } 6533 } 6534 6535 /* 6536 * If we have an unprocessed orphan list hanging 6537 * around from a previously readonly bdev mount, 6538 * require a full umount/remount for now. 6539 */ 6540 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6541 ext4_msg(sb, KERN_WARNING, "Couldn't " 6542 "remount RDWR because of unprocessed " 6543 "orphan inode list. Please " 6544 "umount/remount instead"); 6545 err = -EINVAL; 6546 goto restore_opts; 6547 } 6548 6549 /* 6550 * Mounting a RDONLY partition read-write, so reread 6551 * and store the current valid flag. (It may have 6552 * been changed by e2fsck since we originally mounted 6553 * the partition.) 6554 */ 6555 if (sbi->s_journal) { 6556 err = ext4_clear_journal_err(sb, es); 6557 if (err) 6558 goto restore_opts; 6559 } 6560 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6561 ~EXT4_FC_REPLAY); 6562 6563 err = ext4_setup_super(sb, es, 0); 6564 if (err) 6565 goto restore_opts; 6566 6567 sb->s_flags &= ~SB_RDONLY; 6568 if (ext4_has_feature_mmp(sb)) 6569 if (ext4_multi_mount_protect(sb, 6570 le64_to_cpu(es->s_mmp_block))) { 6571 err = -EROFS; 6572 goto restore_opts; 6573 } 6574 #ifdef CONFIG_QUOTA 6575 enable_quota = 1; 6576 #endif 6577 } 6578 } 6579 6580 /* 6581 * Reinitialize lazy itable initialization thread based on 6582 * current settings 6583 */ 6584 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6585 ext4_unregister_li_request(sb); 6586 else { 6587 ext4_group_t first_not_zeroed; 6588 first_not_zeroed = ext4_has_uninit_itable(sb); 6589 ext4_register_li_request(sb, first_not_zeroed); 6590 } 6591 6592 /* 6593 * Handle creation of system zone data early because it can fail. 6594 * Releasing of existing data is done when we are sure remount will 6595 * succeed. 6596 */ 6597 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6598 err = ext4_setup_system_zone(sb); 6599 if (err) 6600 goto restore_opts; 6601 } 6602 6603 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6604 err = ext4_commit_super(sb); 6605 if (err) 6606 goto restore_opts; 6607 } 6608 6609 #ifdef CONFIG_QUOTA 6610 /* Release old quota file names */ 6611 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6612 kfree(old_opts.s_qf_names[i]); 6613 if (enable_quota) { 6614 if (sb_any_quota_suspended(sb)) 6615 dquot_resume(sb, -1); 6616 else if (ext4_has_feature_quota(sb)) { 6617 err = ext4_enable_quotas(sb); 6618 if (err) 6619 goto restore_opts; 6620 } 6621 } 6622 #endif 6623 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6624 ext4_release_system_zone(sb); 6625 6626 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6627 ext4_stop_mmpd(sbi); 6628 6629 return 0; 6630 6631 restore_opts: 6632 sb->s_flags = old_sb_flags; 6633 sbi->s_mount_opt = old_opts.s_mount_opt; 6634 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6635 sbi->s_resuid = old_opts.s_resuid; 6636 sbi->s_resgid = old_opts.s_resgid; 6637 sbi->s_commit_interval = old_opts.s_commit_interval; 6638 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6639 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6640 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6641 ext4_release_system_zone(sb); 6642 #ifdef CONFIG_QUOTA 6643 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6644 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6645 to_free[i] = get_qf_name(sb, sbi, i); 6646 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6647 } 6648 synchronize_rcu(); 6649 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6650 kfree(to_free[i]); 6651 #endif 6652 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6653 ext4_stop_mmpd(sbi); 6654 return err; 6655 } 6656 6657 static int ext4_reconfigure(struct fs_context *fc) 6658 { 6659 struct super_block *sb = fc->root->d_sb; 6660 int ret; 6661 6662 fc->s_fs_info = EXT4_SB(sb); 6663 6664 ret = ext4_check_opt_consistency(fc, sb); 6665 if (ret < 0) 6666 return ret; 6667 6668 ret = __ext4_remount(fc, sb); 6669 if (ret < 0) 6670 return ret; 6671 6672 ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.", 6673 &sb->s_uuid, ext4_quota_mode(sb)); 6674 6675 return 0; 6676 } 6677 6678 #ifdef CONFIG_QUOTA 6679 static int ext4_statfs_project(struct super_block *sb, 6680 kprojid_t projid, struct kstatfs *buf) 6681 { 6682 struct kqid qid; 6683 struct dquot *dquot; 6684 u64 limit; 6685 u64 curblock; 6686 6687 qid = make_kqid_projid(projid); 6688 dquot = dqget(sb, qid); 6689 if (IS_ERR(dquot)) 6690 return PTR_ERR(dquot); 6691 spin_lock(&dquot->dq_dqb_lock); 6692 6693 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6694 dquot->dq_dqb.dqb_bhardlimit); 6695 limit >>= sb->s_blocksize_bits; 6696 6697 if (limit && buf->f_blocks > limit) { 6698 curblock = (dquot->dq_dqb.dqb_curspace + 6699 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6700 buf->f_blocks = limit; 6701 buf->f_bfree = buf->f_bavail = 6702 (buf->f_blocks > curblock) ? 6703 (buf->f_blocks - curblock) : 0; 6704 } 6705 6706 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6707 dquot->dq_dqb.dqb_ihardlimit); 6708 if (limit && buf->f_files > limit) { 6709 buf->f_files = limit; 6710 buf->f_ffree = 6711 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6712 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6713 } 6714 6715 spin_unlock(&dquot->dq_dqb_lock); 6716 dqput(dquot); 6717 return 0; 6718 } 6719 #endif 6720 6721 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6722 { 6723 struct super_block *sb = dentry->d_sb; 6724 struct ext4_sb_info *sbi = EXT4_SB(sb); 6725 struct ext4_super_block *es = sbi->s_es; 6726 ext4_fsblk_t overhead = 0, resv_blocks; 6727 s64 bfree; 6728 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6729 6730 if (!test_opt(sb, MINIX_DF)) 6731 overhead = sbi->s_overhead; 6732 6733 buf->f_type = EXT4_SUPER_MAGIC; 6734 buf->f_bsize = sb->s_blocksize; 6735 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6736 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6737 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6738 /* prevent underflow in case that few free space is available */ 6739 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6740 buf->f_bavail = buf->f_bfree - 6741 (ext4_r_blocks_count(es) + resv_blocks); 6742 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6743 buf->f_bavail = 0; 6744 buf->f_files = le32_to_cpu(es->s_inodes_count); 6745 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6746 buf->f_namelen = EXT4_NAME_LEN; 6747 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6748 6749 #ifdef CONFIG_QUOTA 6750 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6751 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6752 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6753 #endif 6754 return 0; 6755 } 6756 6757 6758 #ifdef CONFIG_QUOTA 6759 6760 /* 6761 * Helper functions so that transaction is started before we acquire dqio_sem 6762 * to keep correct lock ordering of transaction > dqio_sem 6763 */ 6764 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6765 { 6766 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6767 } 6768 6769 static int ext4_write_dquot(struct dquot *dquot) 6770 { 6771 int ret, err; 6772 handle_t *handle; 6773 struct inode *inode; 6774 6775 inode = dquot_to_inode(dquot); 6776 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6777 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6778 if (IS_ERR(handle)) 6779 return PTR_ERR(handle); 6780 ret = dquot_commit(dquot); 6781 err = ext4_journal_stop(handle); 6782 if (!ret) 6783 ret = err; 6784 return ret; 6785 } 6786 6787 static int ext4_acquire_dquot(struct dquot *dquot) 6788 { 6789 int ret, err; 6790 handle_t *handle; 6791 6792 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6793 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6794 if (IS_ERR(handle)) 6795 return PTR_ERR(handle); 6796 ret = dquot_acquire(dquot); 6797 err = ext4_journal_stop(handle); 6798 if (!ret) 6799 ret = err; 6800 return ret; 6801 } 6802 6803 static int ext4_release_dquot(struct dquot *dquot) 6804 { 6805 int ret, err; 6806 handle_t *handle; 6807 6808 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6809 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6810 if (IS_ERR(handle)) { 6811 /* Release dquot anyway to avoid endless cycle in dqput() */ 6812 dquot_release(dquot); 6813 return PTR_ERR(handle); 6814 } 6815 ret = dquot_release(dquot); 6816 err = ext4_journal_stop(handle); 6817 if (!ret) 6818 ret = err; 6819 return ret; 6820 } 6821 6822 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6823 { 6824 struct super_block *sb = dquot->dq_sb; 6825 6826 if (ext4_is_quota_journalled(sb)) { 6827 dquot_mark_dquot_dirty(dquot); 6828 return ext4_write_dquot(dquot); 6829 } else { 6830 return dquot_mark_dquot_dirty(dquot); 6831 } 6832 } 6833 6834 static int ext4_write_info(struct super_block *sb, int type) 6835 { 6836 int ret, err; 6837 handle_t *handle; 6838 6839 /* Data block + inode block */ 6840 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6841 if (IS_ERR(handle)) 6842 return PTR_ERR(handle); 6843 ret = dquot_commit_info(sb, type); 6844 err = ext4_journal_stop(handle); 6845 if (!ret) 6846 ret = err; 6847 return ret; 6848 } 6849 6850 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6851 { 6852 struct ext4_inode_info *ei = EXT4_I(inode); 6853 6854 /* The first argument of lockdep_set_subclass has to be 6855 * *exactly* the same as the argument to init_rwsem() --- in 6856 * this case, in init_once() --- or lockdep gets unhappy 6857 * because the name of the lock is set using the 6858 * stringification of the argument to init_rwsem(). 6859 */ 6860 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6861 lockdep_set_subclass(&ei->i_data_sem, subclass); 6862 } 6863 6864 /* 6865 * Standard function to be called on quota_on 6866 */ 6867 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6868 const struct path *path) 6869 { 6870 int err; 6871 6872 if (!test_opt(sb, QUOTA)) 6873 return -EINVAL; 6874 6875 /* Quotafile not on the same filesystem? */ 6876 if (path->dentry->d_sb != sb) 6877 return -EXDEV; 6878 6879 /* Quota already enabled for this file? */ 6880 if (IS_NOQUOTA(d_inode(path->dentry))) 6881 return -EBUSY; 6882 6883 /* Journaling quota? */ 6884 if (EXT4_SB(sb)->s_qf_names[type]) { 6885 /* Quotafile not in fs root? */ 6886 if (path->dentry->d_parent != sb->s_root) 6887 ext4_msg(sb, KERN_WARNING, 6888 "Quota file not on filesystem root. " 6889 "Journaled quota will not work"); 6890 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6891 } else { 6892 /* 6893 * Clear the flag just in case mount options changed since 6894 * last time. 6895 */ 6896 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6897 } 6898 6899 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6900 err = dquot_quota_on(sb, type, format_id, path); 6901 if (!err) { 6902 struct inode *inode = d_inode(path->dentry); 6903 handle_t *handle; 6904 6905 /* 6906 * Set inode flags to prevent userspace from messing with quota 6907 * files. If this fails, we return success anyway since quotas 6908 * are already enabled and this is not a hard failure. 6909 */ 6910 inode_lock(inode); 6911 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6912 if (IS_ERR(handle)) 6913 goto unlock_inode; 6914 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6915 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6916 S_NOATIME | S_IMMUTABLE); 6917 err = ext4_mark_inode_dirty(handle, inode); 6918 ext4_journal_stop(handle); 6919 unlock_inode: 6920 inode_unlock(inode); 6921 if (err) 6922 dquot_quota_off(sb, type); 6923 } 6924 if (err) 6925 lockdep_set_quota_inode(path->dentry->d_inode, 6926 I_DATA_SEM_NORMAL); 6927 return err; 6928 } 6929 6930 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 6931 { 6932 switch (type) { 6933 case USRQUOTA: 6934 return qf_inum == EXT4_USR_QUOTA_INO; 6935 case GRPQUOTA: 6936 return qf_inum == EXT4_GRP_QUOTA_INO; 6937 case PRJQUOTA: 6938 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 6939 default: 6940 BUG(); 6941 } 6942 } 6943 6944 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6945 unsigned int flags) 6946 { 6947 int err; 6948 struct inode *qf_inode; 6949 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6950 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6951 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6952 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6953 }; 6954 6955 BUG_ON(!ext4_has_feature_quota(sb)); 6956 6957 if (!qf_inums[type]) 6958 return -EPERM; 6959 6960 if (!ext4_check_quota_inum(type, qf_inums[type])) { 6961 ext4_error(sb, "Bad quota inum: %lu, type: %d", 6962 qf_inums[type], type); 6963 return -EUCLEAN; 6964 } 6965 6966 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6967 if (IS_ERR(qf_inode)) { 6968 ext4_error(sb, "Bad quota inode: %lu, type: %d", 6969 qf_inums[type], type); 6970 return PTR_ERR(qf_inode); 6971 } 6972 6973 /* Don't account quota for quota files to avoid recursion */ 6974 qf_inode->i_flags |= S_NOQUOTA; 6975 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6976 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6977 if (err) 6978 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6979 iput(qf_inode); 6980 6981 return err; 6982 } 6983 6984 /* Enable usage tracking for all quota types. */ 6985 int ext4_enable_quotas(struct super_block *sb) 6986 { 6987 int type, err = 0; 6988 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6989 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6990 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6991 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6992 }; 6993 bool quota_mopt[EXT4_MAXQUOTAS] = { 6994 test_opt(sb, USRQUOTA), 6995 test_opt(sb, GRPQUOTA), 6996 test_opt(sb, PRJQUOTA), 6997 }; 6998 6999 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7000 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7001 if (qf_inums[type]) { 7002 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7003 DQUOT_USAGE_ENABLED | 7004 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7005 if (err) { 7006 ext4_warning(sb, 7007 "Failed to enable quota tracking " 7008 "(type=%d, err=%d, ino=%lu). " 7009 "Please run e2fsck to fix.", type, 7010 err, qf_inums[type]); 7011 for (type--; type >= 0; type--) { 7012 struct inode *inode; 7013 7014 inode = sb_dqopt(sb)->files[type]; 7015 if (inode) 7016 inode = igrab(inode); 7017 dquot_quota_off(sb, type); 7018 if (inode) { 7019 lockdep_set_quota_inode(inode, 7020 I_DATA_SEM_NORMAL); 7021 iput(inode); 7022 } 7023 } 7024 7025 return err; 7026 } 7027 } 7028 } 7029 return 0; 7030 } 7031 7032 static int ext4_quota_off(struct super_block *sb, int type) 7033 { 7034 struct inode *inode = sb_dqopt(sb)->files[type]; 7035 handle_t *handle; 7036 int err; 7037 7038 /* Force all delayed allocation blocks to be allocated. 7039 * Caller already holds s_umount sem */ 7040 if (test_opt(sb, DELALLOC)) 7041 sync_filesystem(sb); 7042 7043 if (!inode || !igrab(inode)) 7044 goto out; 7045 7046 err = dquot_quota_off(sb, type); 7047 if (err || ext4_has_feature_quota(sb)) 7048 goto out_put; 7049 7050 inode_lock(inode); 7051 /* 7052 * Update modification times of quota files when userspace can 7053 * start looking at them. If we fail, we return success anyway since 7054 * this is not a hard failure and quotas are already disabled. 7055 */ 7056 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7057 if (IS_ERR(handle)) { 7058 err = PTR_ERR(handle); 7059 goto out_unlock; 7060 } 7061 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7062 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7063 inode->i_mtime = inode->i_ctime = current_time(inode); 7064 err = ext4_mark_inode_dirty(handle, inode); 7065 ext4_journal_stop(handle); 7066 out_unlock: 7067 inode_unlock(inode); 7068 out_put: 7069 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7070 iput(inode); 7071 return err; 7072 out: 7073 return dquot_quota_off(sb, type); 7074 } 7075 7076 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7077 * acquiring the locks... As quota files are never truncated and quota code 7078 * itself serializes the operations (and no one else should touch the files) 7079 * we don't have to be afraid of races */ 7080 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7081 size_t len, loff_t off) 7082 { 7083 struct inode *inode = sb_dqopt(sb)->files[type]; 7084 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7085 int offset = off & (sb->s_blocksize - 1); 7086 int tocopy; 7087 size_t toread; 7088 struct buffer_head *bh; 7089 loff_t i_size = i_size_read(inode); 7090 7091 if (off > i_size) 7092 return 0; 7093 if (off+len > i_size) 7094 len = i_size-off; 7095 toread = len; 7096 while (toread > 0) { 7097 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7098 bh = ext4_bread(NULL, inode, blk, 0); 7099 if (IS_ERR(bh)) 7100 return PTR_ERR(bh); 7101 if (!bh) /* A hole? */ 7102 memset(data, 0, tocopy); 7103 else 7104 memcpy(data, bh->b_data+offset, tocopy); 7105 brelse(bh); 7106 offset = 0; 7107 toread -= tocopy; 7108 data += tocopy; 7109 blk++; 7110 } 7111 return len; 7112 } 7113 7114 /* Write to quotafile (we know the transaction is already started and has 7115 * enough credits) */ 7116 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7117 const char *data, size_t len, loff_t off) 7118 { 7119 struct inode *inode = sb_dqopt(sb)->files[type]; 7120 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7121 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7122 int retries = 0; 7123 struct buffer_head *bh; 7124 handle_t *handle = journal_current_handle(); 7125 7126 if (!handle) { 7127 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7128 " cancelled because transaction is not started", 7129 (unsigned long long)off, (unsigned long long)len); 7130 return -EIO; 7131 } 7132 /* 7133 * Since we account only one data block in transaction credits, 7134 * then it is impossible to cross a block boundary. 7135 */ 7136 if (sb->s_blocksize - offset < len) { 7137 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7138 " cancelled because not block aligned", 7139 (unsigned long long)off, (unsigned long long)len); 7140 return -EIO; 7141 } 7142 7143 do { 7144 bh = ext4_bread(handle, inode, blk, 7145 EXT4_GET_BLOCKS_CREATE | 7146 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7147 } while (PTR_ERR(bh) == -ENOSPC && 7148 ext4_should_retry_alloc(inode->i_sb, &retries)); 7149 if (IS_ERR(bh)) 7150 return PTR_ERR(bh); 7151 if (!bh) 7152 goto out; 7153 BUFFER_TRACE(bh, "get write access"); 7154 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7155 if (err) { 7156 brelse(bh); 7157 return err; 7158 } 7159 lock_buffer(bh); 7160 memcpy(bh->b_data+offset, data, len); 7161 flush_dcache_page(bh->b_page); 7162 unlock_buffer(bh); 7163 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7164 brelse(bh); 7165 out: 7166 if (inode->i_size < off + len) { 7167 i_size_write(inode, off + len); 7168 EXT4_I(inode)->i_disksize = inode->i_size; 7169 err2 = ext4_mark_inode_dirty(handle, inode); 7170 if (unlikely(err2 && !err)) 7171 err = err2; 7172 } 7173 return err ? err : len; 7174 } 7175 #endif 7176 7177 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7178 static inline void register_as_ext2(void) 7179 { 7180 int err = register_filesystem(&ext2_fs_type); 7181 if (err) 7182 printk(KERN_WARNING 7183 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7184 } 7185 7186 static inline void unregister_as_ext2(void) 7187 { 7188 unregister_filesystem(&ext2_fs_type); 7189 } 7190 7191 static inline int ext2_feature_set_ok(struct super_block *sb) 7192 { 7193 if (ext4_has_unknown_ext2_incompat_features(sb)) 7194 return 0; 7195 if (sb_rdonly(sb)) 7196 return 1; 7197 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7198 return 0; 7199 return 1; 7200 } 7201 #else 7202 static inline void register_as_ext2(void) { } 7203 static inline void unregister_as_ext2(void) { } 7204 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7205 #endif 7206 7207 static inline void register_as_ext3(void) 7208 { 7209 int err = register_filesystem(&ext3_fs_type); 7210 if (err) 7211 printk(KERN_WARNING 7212 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7213 } 7214 7215 static inline void unregister_as_ext3(void) 7216 { 7217 unregister_filesystem(&ext3_fs_type); 7218 } 7219 7220 static inline int ext3_feature_set_ok(struct super_block *sb) 7221 { 7222 if (ext4_has_unknown_ext3_incompat_features(sb)) 7223 return 0; 7224 if (!ext4_has_feature_journal(sb)) 7225 return 0; 7226 if (sb_rdonly(sb)) 7227 return 1; 7228 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7229 return 0; 7230 return 1; 7231 } 7232 7233 static struct file_system_type ext4_fs_type = { 7234 .owner = THIS_MODULE, 7235 .name = "ext4", 7236 .init_fs_context = ext4_init_fs_context, 7237 .parameters = ext4_param_specs, 7238 .kill_sb = kill_block_super, 7239 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7240 }; 7241 MODULE_ALIAS_FS("ext4"); 7242 7243 /* Shared across all ext4 file systems */ 7244 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7245 7246 static int __init ext4_init_fs(void) 7247 { 7248 int i, err; 7249 7250 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7251 ext4_li_info = NULL; 7252 7253 /* Build-time check for flags consistency */ 7254 ext4_check_flag_values(); 7255 7256 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7257 init_waitqueue_head(&ext4__ioend_wq[i]); 7258 7259 err = ext4_init_es(); 7260 if (err) 7261 return err; 7262 7263 err = ext4_init_pending(); 7264 if (err) 7265 goto out7; 7266 7267 err = ext4_init_post_read_processing(); 7268 if (err) 7269 goto out6; 7270 7271 err = ext4_init_pageio(); 7272 if (err) 7273 goto out5; 7274 7275 err = ext4_init_system_zone(); 7276 if (err) 7277 goto out4; 7278 7279 err = ext4_init_sysfs(); 7280 if (err) 7281 goto out3; 7282 7283 err = ext4_init_mballoc(); 7284 if (err) 7285 goto out2; 7286 err = init_inodecache(); 7287 if (err) 7288 goto out1; 7289 7290 err = ext4_fc_init_dentry_cache(); 7291 if (err) 7292 goto out05; 7293 7294 register_as_ext3(); 7295 register_as_ext2(); 7296 err = register_filesystem(&ext4_fs_type); 7297 if (err) 7298 goto out; 7299 7300 return 0; 7301 out: 7302 unregister_as_ext2(); 7303 unregister_as_ext3(); 7304 ext4_fc_destroy_dentry_cache(); 7305 out05: 7306 destroy_inodecache(); 7307 out1: 7308 ext4_exit_mballoc(); 7309 out2: 7310 ext4_exit_sysfs(); 7311 out3: 7312 ext4_exit_system_zone(); 7313 out4: 7314 ext4_exit_pageio(); 7315 out5: 7316 ext4_exit_post_read_processing(); 7317 out6: 7318 ext4_exit_pending(); 7319 out7: 7320 ext4_exit_es(); 7321 7322 return err; 7323 } 7324 7325 static void __exit ext4_exit_fs(void) 7326 { 7327 ext4_destroy_lazyinit_thread(); 7328 unregister_as_ext2(); 7329 unregister_as_ext3(); 7330 unregister_filesystem(&ext4_fs_type); 7331 ext4_fc_destroy_dentry_cache(); 7332 destroy_inodecache(); 7333 ext4_exit_mballoc(); 7334 ext4_exit_sysfs(); 7335 ext4_exit_system_zone(); 7336 ext4_exit_pageio(); 7337 ext4_exit_post_read_processing(); 7338 ext4_exit_es(); 7339 ext4_exit_pending(); 7340 } 7341 7342 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7343 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7344 MODULE_LICENSE("GPL"); 7345 MODULE_SOFTDEP("pre: crc32c"); 7346 module_init(ext4_init_fs) 7347 module_exit(ext4_exit_fs) 7348