1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static void ext4_write_super(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 89 static struct file_system_type ext2_fs_type = { 90 .owner = THIS_MODULE, 91 .name = "ext2", 92 .mount = ext4_mount, 93 .kill_sb = kill_block_super, 94 .fs_flags = FS_REQUIRES_DEV, 95 }; 96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97 #else 98 #define IS_EXT2_SB(sb) (0) 99 #endif 100 101 102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103 static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109 }; 110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 111 #else 112 #define IS_EXT3_SB(sb) (0) 113 #endif 114 115 void *ext4_kvmalloc(size_t size, gfp_t flags) 116 { 117 void *ret; 118 119 ret = kmalloc(size, flags); 120 if (!ret) 121 ret = __vmalloc(size, flags, PAGE_KERNEL); 122 return ret; 123 } 124 125 void *ext4_kvzalloc(size_t size, gfp_t flags) 126 { 127 void *ret; 128 129 ret = kzalloc(size, flags); 130 if (!ret) 131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 132 return ret; 133 } 134 135 void ext4_kvfree(void *ptr) 136 { 137 if (is_vmalloc_addr(ptr)) 138 vfree(ptr); 139 else 140 kfree(ptr); 141 142 } 143 144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 145 struct ext4_group_desc *bg) 146 { 147 return le32_to_cpu(bg->bg_block_bitmap_lo) | 148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 150 } 151 152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 153 struct ext4_group_desc *bg) 154 { 155 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 158 } 159 160 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 161 struct ext4_group_desc *bg) 162 { 163 return le32_to_cpu(bg->bg_inode_table_lo) | 164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 166 } 167 168 __u32 ext4_free_group_clusters(struct super_block *sb, 169 struct ext4_group_desc *bg) 170 { 171 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 174 } 175 176 __u32 ext4_free_inodes_count(struct super_block *sb, 177 struct ext4_group_desc *bg) 178 { 179 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 182 } 183 184 __u32 ext4_used_dirs_count(struct super_block *sb, 185 struct ext4_group_desc *bg) 186 { 187 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 190 } 191 192 __u32 ext4_itable_unused_count(struct super_block *sb, 193 struct ext4_group_desc *bg) 194 { 195 return le16_to_cpu(bg->bg_itable_unused_lo) | 196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 198 } 199 200 void ext4_block_bitmap_set(struct super_block *sb, 201 struct ext4_group_desc *bg, ext4_fsblk_t blk) 202 { 203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 206 } 207 208 void ext4_inode_bitmap_set(struct super_block *sb, 209 struct ext4_group_desc *bg, ext4_fsblk_t blk) 210 { 211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 214 } 215 216 void ext4_inode_table_set(struct super_block *sb, 217 struct ext4_group_desc *bg, ext4_fsblk_t blk) 218 { 219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 222 } 223 224 void ext4_free_group_clusters_set(struct super_block *sb, 225 struct ext4_group_desc *bg, __u32 count) 226 { 227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 230 } 231 232 void ext4_free_inodes_set(struct super_block *sb, 233 struct ext4_group_desc *bg, __u32 count) 234 { 235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 238 } 239 240 void ext4_used_dirs_set(struct super_block *sb, 241 struct ext4_group_desc *bg, __u32 count) 242 { 243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 246 } 247 248 void ext4_itable_unused_set(struct super_block *sb, 249 struct ext4_group_desc *bg, __u32 count) 250 { 251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 254 } 255 256 257 /* Just increment the non-pointer handle value */ 258 static handle_t *ext4_get_nojournal(void) 259 { 260 handle_t *handle = current->journal_info; 261 unsigned long ref_cnt = (unsigned long)handle; 262 263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 264 265 ref_cnt++; 266 handle = (handle_t *)ref_cnt; 267 268 current->journal_info = handle; 269 return handle; 270 } 271 272 273 /* Decrement the non-pointer handle value */ 274 static void ext4_put_nojournal(handle_t *handle) 275 { 276 unsigned long ref_cnt = (unsigned long)handle; 277 278 BUG_ON(ref_cnt == 0); 279 280 ref_cnt--; 281 handle = (handle_t *)ref_cnt; 282 283 current->journal_info = handle; 284 } 285 286 /* 287 * Wrappers for jbd2_journal_start/end. 288 * 289 * The only special thing we need to do here is to make sure that all 290 * journal_end calls result in the superblock being marked dirty, so 291 * that sync() will call the filesystem's write_super callback if 292 * appropriate. 293 * 294 * To avoid j_barrier hold in userspace when a user calls freeze(), 295 * ext4 prevents a new handle from being started by s_frozen, which 296 * is in an upper layer. 297 */ 298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 299 { 300 journal_t *journal; 301 handle_t *handle; 302 303 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 304 if (sb->s_flags & MS_RDONLY) 305 return ERR_PTR(-EROFS); 306 307 journal = EXT4_SB(sb)->s_journal; 308 handle = ext4_journal_current_handle(); 309 310 /* 311 * If a handle has been started, it should be allowed to 312 * finish, otherwise deadlock could happen between freeze 313 * and others(e.g. truncate) due to the restart of the 314 * journal handle if the filesystem is forzen and active 315 * handles are not stopped. 316 */ 317 if (!handle) 318 vfs_check_frozen(sb, SB_FREEZE_TRANS); 319 320 if (!journal) 321 return ext4_get_nojournal(); 322 /* 323 * Special case here: if the journal has aborted behind our 324 * backs (eg. EIO in the commit thread), then we still need to 325 * take the FS itself readonly cleanly. 326 */ 327 if (is_journal_aborted(journal)) { 328 ext4_abort(sb, "Detected aborted journal"); 329 return ERR_PTR(-EROFS); 330 } 331 return jbd2_journal_start(journal, nblocks); 332 } 333 334 /* 335 * The only special thing we need to do here is to make sure that all 336 * jbd2_journal_stop calls result in the superblock being marked dirty, so 337 * that sync() will call the filesystem's write_super callback if 338 * appropriate. 339 */ 340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 341 { 342 struct super_block *sb; 343 int err; 344 int rc; 345 346 if (!ext4_handle_valid(handle)) { 347 ext4_put_nojournal(handle); 348 return 0; 349 } 350 sb = handle->h_transaction->t_journal->j_private; 351 err = handle->h_err; 352 rc = jbd2_journal_stop(handle); 353 354 if (!err) 355 err = rc; 356 if (err) 357 __ext4_std_error(sb, where, line, err); 358 return err; 359 } 360 361 void ext4_journal_abort_handle(const char *caller, unsigned int line, 362 const char *err_fn, struct buffer_head *bh, 363 handle_t *handle, int err) 364 { 365 char nbuf[16]; 366 const char *errstr = ext4_decode_error(NULL, err, nbuf); 367 368 BUG_ON(!ext4_handle_valid(handle)); 369 370 if (bh) 371 BUFFER_TRACE(bh, "abort"); 372 373 if (!handle->h_err) 374 handle->h_err = err; 375 376 if (is_handle_aborted(handle)) 377 return; 378 379 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 380 caller, line, errstr, err_fn); 381 382 jbd2_journal_abort_handle(handle); 383 } 384 385 static void __save_error_info(struct super_block *sb, const char *func, 386 unsigned int line) 387 { 388 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 389 390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 392 es->s_last_error_time = cpu_to_le32(get_seconds()); 393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 394 es->s_last_error_line = cpu_to_le32(line); 395 if (!es->s_first_error_time) { 396 es->s_first_error_time = es->s_last_error_time; 397 strncpy(es->s_first_error_func, func, 398 sizeof(es->s_first_error_func)); 399 es->s_first_error_line = cpu_to_le32(line); 400 es->s_first_error_ino = es->s_last_error_ino; 401 es->s_first_error_block = es->s_last_error_block; 402 } 403 /* 404 * Start the daily error reporting function if it hasn't been 405 * started already 406 */ 407 if (!es->s_error_count) 408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 410 } 411 412 static void save_error_info(struct super_block *sb, const char *func, 413 unsigned int line) 414 { 415 __save_error_info(sb, func, line); 416 ext4_commit_super(sb, 1); 417 } 418 419 /* 420 * The del_gendisk() function uninitializes the disk-specific data 421 * structures, including the bdi structure, without telling anyone 422 * else. Once this happens, any attempt to call mark_buffer_dirty() 423 * (for example, by ext4_commit_super), will cause a kernel OOPS. 424 * This is a kludge to prevent these oops until we can put in a proper 425 * hook in del_gendisk() to inform the VFS and file system layers. 426 */ 427 static int block_device_ejected(struct super_block *sb) 428 { 429 struct inode *bd_inode = sb->s_bdev->bd_inode; 430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 431 432 return bdi->dev == NULL; 433 } 434 435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 436 { 437 struct super_block *sb = journal->j_private; 438 struct ext4_sb_info *sbi = EXT4_SB(sb); 439 int error = is_journal_aborted(journal); 440 struct ext4_journal_cb_entry *jce, *tmp; 441 442 spin_lock(&sbi->s_md_lock); 443 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 444 list_del_init(&jce->jce_list); 445 spin_unlock(&sbi->s_md_lock); 446 jce->jce_func(sb, jce, error); 447 spin_lock(&sbi->s_md_lock); 448 } 449 spin_unlock(&sbi->s_md_lock); 450 } 451 452 /* Deal with the reporting of failure conditions on a filesystem such as 453 * inconsistencies detected or read IO failures. 454 * 455 * On ext2, we can store the error state of the filesystem in the 456 * superblock. That is not possible on ext4, because we may have other 457 * write ordering constraints on the superblock which prevent us from 458 * writing it out straight away; and given that the journal is about to 459 * be aborted, we can't rely on the current, or future, transactions to 460 * write out the superblock safely. 461 * 462 * We'll just use the jbd2_journal_abort() error code to record an error in 463 * the journal instead. On recovery, the journal will complain about 464 * that error until we've noted it down and cleared it. 465 */ 466 467 static void ext4_handle_error(struct super_block *sb) 468 { 469 if (sb->s_flags & MS_RDONLY) 470 return; 471 472 if (!test_opt(sb, ERRORS_CONT)) { 473 journal_t *journal = EXT4_SB(sb)->s_journal; 474 475 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 476 if (journal) 477 jbd2_journal_abort(journal, -EIO); 478 } 479 if (test_opt(sb, ERRORS_RO)) { 480 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 481 sb->s_flags |= MS_RDONLY; 482 } 483 if (test_opt(sb, ERRORS_PANIC)) 484 panic("EXT4-fs (device %s): panic forced after error\n", 485 sb->s_id); 486 } 487 488 void __ext4_error(struct super_block *sb, const char *function, 489 unsigned int line, const char *fmt, ...) 490 { 491 struct va_format vaf; 492 va_list args; 493 494 va_start(args, fmt); 495 vaf.fmt = fmt; 496 vaf.va = &args; 497 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 498 sb->s_id, function, line, current->comm, &vaf); 499 va_end(args); 500 501 ext4_handle_error(sb); 502 } 503 504 void ext4_error_inode(struct inode *inode, const char *function, 505 unsigned int line, ext4_fsblk_t block, 506 const char *fmt, ...) 507 { 508 va_list args; 509 struct va_format vaf; 510 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 511 512 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 513 es->s_last_error_block = cpu_to_le64(block); 514 save_error_info(inode->i_sb, function, line); 515 va_start(args, fmt); 516 vaf.fmt = fmt; 517 vaf.va = &args; 518 if (block) 519 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 520 "inode #%lu: block %llu: comm %s: %pV\n", 521 inode->i_sb->s_id, function, line, inode->i_ino, 522 block, current->comm, &vaf); 523 else 524 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 525 "inode #%lu: comm %s: %pV\n", 526 inode->i_sb->s_id, function, line, inode->i_ino, 527 current->comm, &vaf); 528 va_end(args); 529 530 ext4_handle_error(inode->i_sb); 531 } 532 533 void ext4_error_file(struct file *file, const char *function, 534 unsigned int line, ext4_fsblk_t block, 535 const char *fmt, ...) 536 { 537 va_list args; 538 struct va_format vaf; 539 struct ext4_super_block *es; 540 struct inode *inode = file->f_dentry->d_inode; 541 char pathname[80], *path; 542 543 es = EXT4_SB(inode->i_sb)->s_es; 544 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 545 save_error_info(inode->i_sb, function, line); 546 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 547 if (IS_ERR(path)) 548 path = "(unknown)"; 549 va_start(args, fmt); 550 vaf.fmt = fmt; 551 vaf.va = &args; 552 if (block) 553 printk(KERN_CRIT 554 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 555 "block %llu: comm %s: path %s: %pV\n", 556 inode->i_sb->s_id, function, line, inode->i_ino, 557 block, current->comm, path, &vaf); 558 else 559 printk(KERN_CRIT 560 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 561 "comm %s: path %s: %pV\n", 562 inode->i_sb->s_id, function, line, inode->i_ino, 563 current->comm, path, &vaf); 564 va_end(args); 565 566 ext4_handle_error(inode->i_sb); 567 } 568 569 static const char *ext4_decode_error(struct super_block *sb, int errno, 570 char nbuf[16]) 571 { 572 char *errstr = NULL; 573 574 switch (errno) { 575 case -EIO: 576 errstr = "IO failure"; 577 break; 578 case -ENOMEM: 579 errstr = "Out of memory"; 580 break; 581 case -EROFS: 582 if (!sb || (EXT4_SB(sb)->s_journal && 583 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 584 errstr = "Journal has aborted"; 585 else 586 errstr = "Readonly filesystem"; 587 break; 588 default: 589 /* If the caller passed in an extra buffer for unknown 590 * errors, textualise them now. Else we just return 591 * NULL. */ 592 if (nbuf) { 593 /* Check for truncated error codes... */ 594 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 595 errstr = nbuf; 596 } 597 break; 598 } 599 600 return errstr; 601 } 602 603 /* __ext4_std_error decodes expected errors from journaling functions 604 * automatically and invokes the appropriate error response. */ 605 606 void __ext4_std_error(struct super_block *sb, const char *function, 607 unsigned int line, int errno) 608 { 609 char nbuf[16]; 610 const char *errstr; 611 612 /* Special case: if the error is EROFS, and we're not already 613 * inside a transaction, then there's really no point in logging 614 * an error. */ 615 if (errno == -EROFS && journal_current_handle() == NULL && 616 (sb->s_flags & MS_RDONLY)) 617 return; 618 619 errstr = ext4_decode_error(sb, errno, nbuf); 620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 621 sb->s_id, function, line, errstr); 622 save_error_info(sb, function, line); 623 624 ext4_handle_error(sb); 625 } 626 627 /* 628 * ext4_abort is a much stronger failure handler than ext4_error. The 629 * abort function may be used to deal with unrecoverable failures such 630 * as journal IO errors or ENOMEM at a critical moment in log management. 631 * 632 * We unconditionally force the filesystem into an ABORT|READONLY state, 633 * unless the error response on the fs has been set to panic in which 634 * case we take the easy way out and panic immediately. 635 */ 636 637 void __ext4_abort(struct super_block *sb, const char *function, 638 unsigned int line, const char *fmt, ...) 639 { 640 va_list args; 641 642 save_error_info(sb, function, line); 643 va_start(args, fmt); 644 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 645 function, line); 646 vprintk(fmt, args); 647 printk("\n"); 648 va_end(args); 649 650 if ((sb->s_flags & MS_RDONLY) == 0) { 651 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 652 sb->s_flags |= MS_RDONLY; 653 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 654 if (EXT4_SB(sb)->s_journal) 655 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 656 save_error_info(sb, function, line); 657 } 658 if (test_opt(sb, ERRORS_PANIC)) 659 panic("EXT4-fs panic from previous error\n"); 660 } 661 662 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 663 { 664 struct va_format vaf; 665 va_list args; 666 667 va_start(args, fmt); 668 vaf.fmt = fmt; 669 vaf.va = &args; 670 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 671 va_end(args); 672 } 673 674 void __ext4_warning(struct super_block *sb, const char *function, 675 unsigned int line, const char *fmt, ...) 676 { 677 struct va_format vaf; 678 va_list args; 679 680 va_start(args, fmt); 681 vaf.fmt = fmt; 682 vaf.va = &args; 683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 684 sb->s_id, function, line, &vaf); 685 va_end(args); 686 } 687 688 void __ext4_grp_locked_error(const char *function, unsigned int line, 689 struct super_block *sb, ext4_group_t grp, 690 unsigned long ino, ext4_fsblk_t block, 691 const char *fmt, ...) 692 __releases(bitlock) 693 __acquires(bitlock) 694 { 695 struct va_format vaf; 696 va_list args; 697 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 698 699 es->s_last_error_ino = cpu_to_le32(ino); 700 es->s_last_error_block = cpu_to_le64(block); 701 __save_error_info(sb, function, line); 702 703 va_start(args, fmt); 704 705 vaf.fmt = fmt; 706 vaf.va = &args; 707 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 708 sb->s_id, function, line, grp); 709 if (ino) 710 printk(KERN_CONT "inode %lu: ", ino); 711 if (block) 712 printk(KERN_CONT "block %llu:", (unsigned long long) block); 713 printk(KERN_CONT "%pV\n", &vaf); 714 va_end(args); 715 716 if (test_opt(sb, ERRORS_CONT)) { 717 ext4_commit_super(sb, 0); 718 return; 719 } 720 721 ext4_unlock_group(sb, grp); 722 ext4_handle_error(sb); 723 /* 724 * We only get here in the ERRORS_RO case; relocking the group 725 * may be dangerous, but nothing bad will happen since the 726 * filesystem will have already been marked read/only and the 727 * journal has been aborted. We return 1 as a hint to callers 728 * who might what to use the return value from 729 * ext4_grp_locked_error() to distinguish between the 730 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 731 * aggressively from the ext4 function in question, with a 732 * more appropriate error code. 733 */ 734 ext4_lock_group(sb, grp); 735 return; 736 } 737 738 void ext4_update_dynamic_rev(struct super_block *sb) 739 { 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 743 return; 744 745 ext4_warning(sb, 746 "updating to rev %d because of new feature flag, " 747 "running e2fsck is recommended", 748 EXT4_DYNAMIC_REV); 749 750 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 751 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 752 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 753 /* leave es->s_feature_*compat flags alone */ 754 /* es->s_uuid will be set by e2fsck if empty */ 755 756 /* 757 * The rest of the superblock fields should be zero, and if not it 758 * means they are likely already in use, so leave them alone. We 759 * can leave it up to e2fsck to clean up any inconsistencies there. 760 */ 761 } 762 763 /* 764 * Open the external journal device 765 */ 766 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 767 { 768 struct block_device *bdev; 769 char b[BDEVNAME_SIZE]; 770 771 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 772 if (IS_ERR(bdev)) 773 goto fail; 774 return bdev; 775 776 fail: 777 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 778 __bdevname(dev, b), PTR_ERR(bdev)); 779 return NULL; 780 } 781 782 /* 783 * Release the journal device 784 */ 785 static int ext4_blkdev_put(struct block_device *bdev) 786 { 787 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 788 } 789 790 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 791 { 792 struct block_device *bdev; 793 int ret = -ENODEV; 794 795 bdev = sbi->journal_bdev; 796 if (bdev) { 797 ret = ext4_blkdev_put(bdev); 798 sbi->journal_bdev = NULL; 799 } 800 return ret; 801 } 802 803 static inline struct inode *orphan_list_entry(struct list_head *l) 804 { 805 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 806 } 807 808 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 809 { 810 struct list_head *l; 811 812 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 813 le32_to_cpu(sbi->s_es->s_last_orphan)); 814 815 printk(KERN_ERR "sb_info orphan list:\n"); 816 list_for_each(l, &sbi->s_orphan) { 817 struct inode *inode = orphan_list_entry(l); 818 printk(KERN_ERR " " 819 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 820 inode->i_sb->s_id, inode->i_ino, inode, 821 inode->i_mode, inode->i_nlink, 822 NEXT_ORPHAN(inode)); 823 } 824 } 825 826 static void ext4_put_super(struct super_block *sb) 827 { 828 struct ext4_sb_info *sbi = EXT4_SB(sb); 829 struct ext4_super_block *es = sbi->s_es; 830 int i, err; 831 832 ext4_unregister_li_request(sb); 833 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 834 835 flush_workqueue(sbi->dio_unwritten_wq); 836 destroy_workqueue(sbi->dio_unwritten_wq); 837 838 lock_super(sb); 839 if (sbi->s_journal) { 840 err = jbd2_journal_destroy(sbi->s_journal); 841 sbi->s_journal = NULL; 842 if (err < 0) 843 ext4_abort(sb, "Couldn't clean up the journal"); 844 } 845 846 del_timer(&sbi->s_err_report); 847 ext4_release_system_zone(sb); 848 ext4_mb_release(sb); 849 ext4_ext_release(sb); 850 ext4_xattr_put_super(sb); 851 852 if (!(sb->s_flags & MS_RDONLY)) { 853 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 854 es->s_state = cpu_to_le16(sbi->s_mount_state); 855 } 856 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY)) 857 ext4_commit_super(sb, 1); 858 859 if (sbi->s_proc) { 860 remove_proc_entry("options", sbi->s_proc); 861 remove_proc_entry(sb->s_id, ext4_proc_root); 862 } 863 kobject_del(&sbi->s_kobj); 864 865 for (i = 0; i < sbi->s_gdb_count; i++) 866 brelse(sbi->s_group_desc[i]); 867 ext4_kvfree(sbi->s_group_desc); 868 ext4_kvfree(sbi->s_flex_groups); 869 percpu_counter_destroy(&sbi->s_freeclusters_counter); 870 percpu_counter_destroy(&sbi->s_freeinodes_counter); 871 percpu_counter_destroy(&sbi->s_dirs_counter); 872 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 873 brelse(sbi->s_sbh); 874 #ifdef CONFIG_QUOTA 875 for (i = 0; i < MAXQUOTAS; i++) 876 kfree(sbi->s_qf_names[i]); 877 #endif 878 879 /* Debugging code just in case the in-memory inode orphan list 880 * isn't empty. The on-disk one can be non-empty if we've 881 * detected an error and taken the fs readonly, but the 882 * in-memory list had better be clean by this point. */ 883 if (!list_empty(&sbi->s_orphan)) 884 dump_orphan_list(sb, sbi); 885 J_ASSERT(list_empty(&sbi->s_orphan)); 886 887 invalidate_bdev(sb->s_bdev); 888 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 889 /* 890 * Invalidate the journal device's buffers. We don't want them 891 * floating about in memory - the physical journal device may 892 * hotswapped, and it breaks the `ro-after' testing code. 893 */ 894 sync_blockdev(sbi->journal_bdev); 895 invalidate_bdev(sbi->journal_bdev); 896 ext4_blkdev_remove(sbi); 897 } 898 if (sbi->s_mmp_tsk) 899 kthread_stop(sbi->s_mmp_tsk); 900 sb->s_fs_info = NULL; 901 /* 902 * Now that we are completely done shutting down the 903 * superblock, we need to actually destroy the kobject. 904 */ 905 unlock_super(sb); 906 kobject_put(&sbi->s_kobj); 907 wait_for_completion(&sbi->s_kobj_unregister); 908 kfree(sbi->s_blockgroup_lock); 909 kfree(sbi); 910 } 911 912 static struct kmem_cache *ext4_inode_cachep; 913 914 /* 915 * Called inside transaction, so use GFP_NOFS 916 */ 917 static struct inode *ext4_alloc_inode(struct super_block *sb) 918 { 919 struct ext4_inode_info *ei; 920 921 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 922 if (!ei) 923 return NULL; 924 925 ei->vfs_inode.i_version = 1; 926 ei->vfs_inode.i_data.writeback_index = 0; 927 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 928 INIT_LIST_HEAD(&ei->i_prealloc_list); 929 spin_lock_init(&ei->i_prealloc_lock); 930 ei->i_reserved_data_blocks = 0; 931 ei->i_reserved_meta_blocks = 0; 932 ei->i_allocated_meta_blocks = 0; 933 ei->i_da_metadata_calc_len = 0; 934 spin_lock_init(&(ei->i_block_reservation_lock)); 935 #ifdef CONFIG_QUOTA 936 ei->i_reserved_quota = 0; 937 #endif 938 ei->jinode = NULL; 939 INIT_LIST_HEAD(&ei->i_completed_io_list); 940 spin_lock_init(&ei->i_completed_io_lock); 941 ei->cur_aio_dio = NULL; 942 ei->i_sync_tid = 0; 943 ei->i_datasync_tid = 0; 944 atomic_set(&ei->i_ioend_count, 0); 945 atomic_set(&ei->i_aiodio_unwritten, 0); 946 947 return &ei->vfs_inode; 948 } 949 950 static int ext4_drop_inode(struct inode *inode) 951 { 952 int drop = generic_drop_inode(inode); 953 954 trace_ext4_drop_inode(inode, drop); 955 return drop; 956 } 957 958 static void ext4_i_callback(struct rcu_head *head) 959 { 960 struct inode *inode = container_of(head, struct inode, i_rcu); 961 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 962 } 963 964 static void ext4_destroy_inode(struct inode *inode) 965 { 966 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 967 ext4_msg(inode->i_sb, KERN_ERR, 968 "Inode %lu (%p): orphan list check failed!", 969 inode->i_ino, EXT4_I(inode)); 970 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 971 EXT4_I(inode), sizeof(struct ext4_inode_info), 972 true); 973 dump_stack(); 974 } 975 call_rcu(&inode->i_rcu, ext4_i_callback); 976 } 977 978 static void init_once(void *foo) 979 { 980 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 981 982 INIT_LIST_HEAD(&ei->i_orphan); 983 #ifdef CONFIG_EXT4_FS_XATTR 984 init_rwsem(&ei->xattr_sem); 985 #endif 986 init_rwsem(&ei->i_data_sem); 987 inode_init_once(&ei->vfs_inode); 988 } 989 990 static int init_inodecache(void) 991 { 992 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 993 sizeof(struct ext4_inode_info), 994 0, (SLAB_RECLAIM_ACCOUNT| 995 SLAB_MEM_SPREAD), 996 init_once); 997 if (ext4_inode_cachep == NULL) 998 return -ENOMEM; 999 return 0; 1000 } 1001 1002 static void destroy_inodecache(void) 1003 { 1004 kmem_cache_destroy(ext4_inode_cachep); 1005 } 1006 1007 void ext4_clear_inode(struct inode *inode) 1008 { 1009 invalidate_inode_buffers(inode); 1010 end_writeback(inode); 1011 dquot_drop(inode); 1012 ext4_discard_preallocations(inode); 1013 if (EXT4_I(inode)->jinode) { 1014 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1015 EXT4_I(inode)->jinode); 1016 jbd2_free_inode(EXT4_I(inode)->jinode); 1017 EXT4_I(inode)->jinode = NULL; 1018 } 1019 } 1020 1021 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1022 u64 ino, u32 generation) 1023 { 1024 struct inode *inode; 1025 1026 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1027 return ERR_PTR(-ESTALE); 1028 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1029 return ERR_PTR(-ESTALE); 1030 1031 /* iget isn't really right if the inode is currently unallocated!! 1032 * 1033 * ext4_read_inode will return a bad_inode if the inode had been 1034 * deleted, so we should be safe. 1035 * 1036 * Currently we don't know the generation for parent directory, so 1037 * a generation of 0 means "accept any" 1038 */ 1039 inode = ext4_iget(sb, ino); 1040 if (IS_ERR(inode)) 1041 return ERR_CAST(inode); 1042 if (generation && inode->i_generation != generation) { 1043 iput(inode); 1044 return ERR_PTR(-ESTALE); 1045 } 1046 1047 return inode; 1048 } 1049 1050 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1051 int fh_len, int fh_type) 1052 { 1053 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1054 ext4_nfs_get_inode); 1055 } 1056 1057 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1058 int fh_len, int fh_type) 1059 { 1060 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1061 ext4_nfs_get_inode); 1062 } 1063 1064 /* 1065 * Try to release metadata pages (indirect blocks, directories) which are 1066 * mapped via the block device. Since these pages could have journal heads 1067 * which would prevent try_to_free_buffers() from freeing them, we must use 1068 * jbd2 layer's try_to_free_buffers() function to release them. 1069 */ 1070 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1071 gfp_t wait) 1072 { 1073 journal_t *journal = EXT4_SB(sb)->s_journal; 1074 1075 WARN_ON(PageChecked(page)); 1076 if (!page_has_buffers(page)) 1077 return 0; 1078 if (journal) 1079 return jbd2_journal_try_to_free_buffers(journal, page, 1080 wait & ~__GFP_WAIT); 1081 return try_to_free_buffers(page); 1082 } 1083 1084 #ifdef CONFIG_QUOTA 1085 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1086 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1087 1088 static int ext4_write_dquot(struct dquot *dquot); 1089 static int ext4_acquire_dquot(struct dquot *dquot); 1090 static int ext4_release_dquot(struct dquot *dquot); 1091 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1092 static int ext4_write_info(struct super_block *sb, int type); 1093 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1094 struct path *path); 1095 static int ext4_quota_off(struct super_block *sb, int type); 1096 static int ext4_quota_on_mount(struct super_block *sb, int type); 1097 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1098 size_t len, loff_t off); 1099 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1100 const char *data, size_t len, loff_t off); 1101 1102 static const struct dquot_operations ext4_quota_operations = { 1103 .get_reserved_space = ext4_get_reserved_space, 1104 .write_dquot = ext4_write_dquot, 1105 .acquire_dquot = ext4_acquire_dquot, 1106 .release_dquot = ext4_release_dquot, 1107 .mark_dirty = ext4_mark_dquot_dirty, 1108 .write_info = ext4_write_info, 1109 .alloc_dquot = dquot_alloc, 1110 .destroy_dquot = dquot_destroy, 1111 }; 1112 1113 static const struct quotactl_ops ext4_qctl_operations = { 1114 .quota_on = ext4_quota_on, 1115 .quota_off = ext4_quota_off, 1116 .quota_sync = dquot_quota_sync, 1117 .get_info = dquot_get_dqinfo, 1118 .set_info = dquot_set_dqinfo, 1119 .get_dqblk = dquot_get_dqblk, 1120 .set_dqblk = dquot_set_dqblk 1121 }; 1122 #endif 1123 1124 static const struct super_operations ext4_sops = { 1125 .alloc_inode = ext4_alloc_inode, 1126 .destroy_inode = ext4_destroy_inode, 1127 .write_inode = ext4_write_inode, 1128 .dirty_inode = ext4_dirty_inode, 1129 .drop_inode = ext4_drop_inode, 1130 .evict_inode = ext4_evict_inode, 1131 .put_super = ext4_put_super, 1132 .sync_fs = ext4_sync_fs, 1133 .freeze_fs = ext4_freeze, 1134 .unfreeze_fs = ext4_unfreeze, 1135 .statfs = ext4_statfs, 1136 .remount_fs = ext4_remount, 1137 .show_options = ext4_show_options, 1138 #ifdef CONFIG_QUOTA 1139 .quota_read = ext4_quota_read, 1140 .quota_write = ext4_quota_write, 1141 #endif 1142 .bdev_try_to_free_page = bdev_try_to_free_page, 1143 }; 1144 1145 static const struct super_operations ext4_nojournal_sops = { 1146 .alloc_inode = ext4_alloc_inode, 1147 .destroy_inode = ext4_destroy_inode, 1148 .write_inode = ext4_write_inode, 1149 .dirty_inode = ext4_dirty_inode, 1150 .drop_inode = ext4_drop_inode, 1151 .evict_inode = ext4_evict_inode, 1152 .write_super = ext4_write_super, 1153 .put_super = ext4_put_super, 1154 .statfs = ext4_statfs, 1155 .remount_fs = ext4_remount, 1156 .show_options = ext4_show_options, 1157 #ifdef CONFIG_QUOTA 1158 .quota_read = ext4_quota_read, 1159 .quota_write = ext4_quota_write, 1160 #endif 1161 .bdev_try_to_free_page = bdev_try_to_free_page, 1162 }; 1163 1164 static const struct export_operations ext4_export_ops = { 1165 .fh_to_dentry = ext4_fh_to_dentry, 1166 .fh_to_parent = ext4_fh_to_parent, 1167 .get_parent = ext4_get_parent, 1168 }; 1169 1170 enum { 1171 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1172 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1173 Opt_nouid32, Opt_debug, Opt_removed, 1174 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1175 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1176 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1177 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1178 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1179 Opt_data_err_abort, Opt_data_err_ignore, 1180 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1181 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1182 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1183 Opt_usrquota, Opt_grpquota, Opt_i_version, 1184 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1185 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1186 Opt_inode_readahead_blks, Opt_journal_ioprio, 1187 Opt_dioread_nolock, Opt_dioread_lock, 1188 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1189 }; 1190 1191 static const match_table_t tokens = { 1192 {Opt_bsd_df, "bsddf"}, 1193 {Opt_minix_df, "minixdf"}, 1194 {Opt_grpid, "grpid"}, 1195 {Opt_grpid, "bsdgroups"}, 1196 {Opt_nogrpid, "nogrpid"}, 1197 {Opt_nogrpid, "sysvgroups"}, 1198 {Opt_resgid, "resgid=%u"}, 1199 {Opt_resuid, "resuid=%u"}, 1200 {Opt_sb, "sb=%u"}, 1201 {Opt_err_cont, "errors=continue"}, 1202 {Opt_err_panic, "errors=panic"}, 1203 {Opt_err_ro, "errors=remount-ro"}, 1204 {Opt_nouid32, "nouid32"}, 1205 {Opt_debug, "debug"}, 1206 {Opt_removed, "oldalloc"}, 1207 {Opt_removed, "orlov"}, 1208 {Opt_user_xattr, "user_xattr"}, 1209 {Opt_nouser_xattr, "nouser_xattr"}, 1210 {Opt_acl, "acl"}, 1211 {Opt_noacl, "noacl"}, 1212 {Opt_noload, "norecovery"}, 1213 {Opt_noload, "noload"}, 1214 {Opt_removed, "nobh"}, 1215 {Opt_removed, "bh"}, 1216 {Opt_commit, "commit=%u"}, 1217 {Opt_min_batch_time, "min_batch_time=%u"}, 1218 {Opt_max_batch_time, "max_batch_time=%u"}, 1219 {Opt_journal_dev, "journal_dev=%u"}, 1220 {Opt_journal_checksum, "journal_checksum"}, 1221 {Opt_journal_async_commit, "journal_async_commit"}, 1222 {Opt_abort, "abort"}, 1223 {Opt_data_journal, "data=journal"}, 1224 {Opt_data_ordered, "data=ordered"}, 1225 {Opt_data_writeback, "data=writeback"}, 1226 {Opt_data_err_abort, "data_err=abort"}, 1227 {Opt_data_err_ignore, "data_err=ignore"}, 1228 {Opt_offusrjquota, "usrjquota="}, 1229 {Opt_usrjquota, "usrjquota=%s"}, 1230 {Opt_offgrpjquota, "grpjquota="}, 1231 {Opt_grpjquota, "grpjquota=%s"}, 1232 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1233 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1234 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1235 {Opt_grpquota, "grpquota"}, 1236 {Opt_noquota, "noquota"}, 1237 {Opt_quota, "quota"}, 1238 {Opt_usrquota, "usrquota"}, 1239 {Opt_barrier, "barrier=%u"}, 1240 {Opt_barrier, "barrier"}, 1241 {Opt_nobarrier, "nobarrier"}, 1242 {Opt_i_version, "i_version"}, 1243 {Opt_stripe, "stripe=%u"}, 1244 {Opt_delalloc, "delalloc"}, 1245 {Opt_nodelalloc, "nodelalloc"}, 1246 {Opt_mblk_io_submit, "mblk_io_submit"}, 1247 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1248 {Opt_block_validity, "block_validity"}, 1249 {Opt_noblock_validity, "noblock_validity"}, 1250 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1251 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1252 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1253 {Opt_auto_da_alloc, "auto_da_alloc"}, 1254 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1255 {Opt_dioread_nolock, "dioread_nolock"}, 1256 {Opt_dioread_lock, "dioread_lock"}, 1257 {Opt_discard, "discard"}, 1258 {Opt_nodiscard, "nodiscard"}, 1259 {Opt_init_itable, "init_itable=%u"}, 1260 {Opt_init_itable, "init_itable"}, 1261 {Opt_noinit_itable, "noinit_itable"}, 1262 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1263 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1264 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1265 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1266 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1267 {Opt_err, NULL}, 1268 }; 1269 1270 static ext4_fsblk_t get_sb_block(void **data) 1271 { 1272 ext4_fsblk_t sb_block; 1273 char *options = (char *) *data; 1274 1275 if (!options || strncmp(options, "sb=", 3) != 0) 1276 return 1; /* Default location */ 1277 1278 options += 3; 1279 /* TODO: use simple_strtoll with >32bit ext4 */ 1280 sb_block = simple_strtoul(options, &options, 0); 1281 if (*options && *options != ',') { 1282 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1283 (char *) *data); 1284 return 1; 1285 } 1286 if (*options == ',') 1287 options++; 1288 *data = (void *) options; 1289 1290 return sb_block; 1291 } 1292 1293 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1294 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1295 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1296 1297 #ifdef CONFIG_QUOTA 1298 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1299 { 1300 struct ext4_sb_info *sbi = EXT4_SB(sb); 1301 char *qname; 1302 1303 if (sb_any_quota_loaded(sb) && 1304 !sbi->s_qf_names[qtype]) { 1305 ext4_msg(sb, KERN_ERR, 1306 "Cannot change journaled " 1307 "quota options when quota turned on"); 1308 return 0; 1309 } 1310 qname = match_strdup(args); 1311 if (!qname) { 1312 ext4_msg(sb, KERN_ERR, 1313 "Not enough memory for storing quotafile name"); 1314 return 0; 1315 } 1316 if (sbi->s_qf_names[qtype] && 1317 strcmp(sbi->s_qf_names[qtype], qname)) { 1318 ext4_msg(sb, KERN_ERR, 1319 "%s quota file already specified", QTYPE2NAME(qtype)); 1320 kfree(qname); 1321 return 0; 1322 } 1323 sbi->s_qf_names[qtype] = qname; 1324 if (strchr(sbi->s_qf_names[qtype], '/')) { 1325 ext4_msg(sb, KERN_ERR, 1326 "quotafile must be on filesystem root"); 1327 kfree(sbi->s_qf_names[qtype]); 1328 sbi->s_qf_names[qtype] = NULL; 1329 return 0; 1330 } 1331 set_opt(sb, QUOTA); 1332 return 1; 1333 } 1334 1335 static int clear_qf_name(struct super_block *sb, int qtype) 1336 { 1337 1338 struct ext4_sb_info *sbi = EXT4_SB(sb); 1339 1340 if (sb_any_quota_loaded(sb) && 1341 sbi->s_qf_names[qtype]) { 1342 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1343 " when quota turned on"); 1344 return 0; 1345 } 1346 /* 1347 * The space will be released later when all options are confirmed 1348 * to be correct 1349 */ 1350 sbi->s_qf_names[qtype] = NULL; 1351 return 1; 1352 } 1353 #endif 1354 1355 #define MOPT_SET 0x0001 1356 #define MOPT_CLEAR 0x0002 1357 #define MOPT_NOSUPPORT 0x0004 1358 #define MOPT_EXPLICIT 0x0008 1359 #define MOPT_CLEAR_ERR 0x0010 1360 #define MOPT_GTE0 0x0020 1361 #ifdef CONFIG_QUOTA 1362 #define MOPT_Q 0 1363 #define MOPT_QFMT 0x0040 1364 #else 1365 #define MOPT_Q MOPT_NOSUPPORT 1366 #define MOPT_QFMT MOPT_NOSUPPORT 1367 #endif 1368 #define MOPT_DATAJ 0x0080 1369 1370 static const struct mount_opts { 1371 int token; 1372 int mount_opt; 1373 int flags; 1374 } ext4_mount_opts[] = { 1375 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1376 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1377 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1378 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1379 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1380 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1381 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1382 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1383 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1384 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1385 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1386 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1387 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1388 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1389 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1390 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1391 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1392 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1393 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1394 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1395 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1396 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1398 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1399 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1400 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1401 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1402 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1403 {Opt_commit, 0, MOPT_GTE0}, 1404 {Opt_max_batch_time, 0, MOPT_GTE0}, 1405 {Opt_min_batch_time, 0, MOPT_GTE0}, 1406 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1407 {Opt_init_itable, 0, MOPT_GTE0}, 1408 {Opt_stripe, 0, MOPT_GTE0}, 1409 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1410 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1411 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1412 #ifdef CONFIG_EXT4_FS_XATTR 1413 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1414 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1415 #else 1416 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1417 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1418 #endif 1419 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1420 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1421 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1422 #else 1423 {Opt_acl, 0, MOPT_NOSUPPORT}, 1424 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1425 #endif 1426 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1427 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1428 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1429 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1430 MOPT_SET | MOPT_Q}, 1431 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1432 MOPT_SET | MOPT_Q}, 1433 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1434 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1435 {Opt_usrjquota, 0, MOPT_Q}, 1436 {Opt_grpjquota, 0, MOPT_Q}, 1437 {Opt_offusrjquota, 0, MOPT_Q}, 1438 {Opt_offgrpjquota, 0, MOPT_Q}, 1439 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1440 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1441 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1442 {Opt_err, 0, 0} 1443 }; 1444 1445 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1446 substring_t *args, unsigned long *journal_devnum, 1447 unsigned int *journal_ioprio, int is_remount) 1448 { 1449 struct ext4_sb_info *sbi = EXT4_SB(sb); 1450 const struct mount_opts *m; 1451 int arg = 0; 1452 1453 if (args->from && match_int(args, &arg)) 1454 return -1; 1455 switch (token) { 1456 case Opt_noacl: 1457 case Opt_nouser_xattr: 1458 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1459 break; 1460 case Opt_sb: 1461 return 1; /* handled by get_sb_block() */ 1462 case Opt_removed: 1463 ext4_msg(sb, KERN_WARNING, 1464 "Ignoring removed %s option", opt); 1465 return 1; 1466 case Opt_resuid: 1467 sbi->s_resuid = arg; 1468 return 1; 1469 case Opt_resgid: 1470 sbi->s_resgid = arg; 1471 return 1; 1472 case Opt_abort: 1473 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1474 return 1; 1475 case Opt_i_version: 1476 sb->s_flags |= MS_I_VERSION; 1477 return 1; 1478 case Opt_journal_dev: 1479 if (is_remount) { 1480 ext4_msg(sb, KERN_ERR, 1481 "Cannot specify journal on remount"); 1482 return -1; 1483 } 1484 *journal_devnum = arg; 1485 return 1; 1486 case Opt_journal_ioprio: 1487 if (arg < 0 || arg > 7) 1488 return -1; 1489 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1490 return 1; 1491 } 1492 1493 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1494 if (token != m->token) 1495 continue; 1496 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1497 return -1; 1498 if (m->flags & MOPT_EXPLICIT) 1499 set_opt2(sb, EXPLICIT_DELALLOC); 1500 if (m->flags & MOPT_CLEAR_ERR) 1501 clear_opt(sb, ERRORS_MASK); 1502 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1503 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1504 "options when quota turned on"); 1505 return -1; 1506 } 1507 1508 if (m->flags & MOPT_NOSUPPORT) { 1509 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1510 } else if (token == Opt_commit) { 1511 if (arg == 0) 1512 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1513 sbi->s_commit_interval = HZ * arg; 1514 } else if (token == Opt_max_batch_time) { 1515 if (arg == 0) 1516 arg = EXT4_DEF_MAX_BATCH_TIME; 1517 sbi->s_max_batch_time = arg; 1518 } else if (token == Opt_min_batch_time) { 1519 sbi->s_min_batch_time = arg; 1520 } else if (token == Opt_inode_readahead_blks) { 1521 if (arg > (1 << 30)) 1522 return -1; 1523 if (arg && !is_power_of_2(arg)) { 1524 ext4_msg(sb, KERN_ERR, 1525 "EXT4-fs: inode_readahead_blks" 1526 " must be a power of 2"); 1527 return -1; 1528 } 1529 sbi->s_inode_readahead_blks = arg; 1530 } else if (token == Opt_init_itable) { 1531 set_opt(sb, INIT_INODE_TABLE); 1532 if (!args->from) 1533 arg = EXT4_DEF_LI_WAIT_MULT; 1534 sbi->s_li_wait_mult = arg; 1535 } else if (token == Opt_stripe) { 1536 sbi->s_stripe = arg; 1537 } else if (m->flags & MOPT_DATAJ) { 1538 if (is_remount) { 1539 if (!sbi->s_journal) 1540 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1541 else if (test_opt(sb, DATA_FLAGS) != 1542 m->mount_opt) { 1543 ext4_msg(sb, KERN_ERR, 1544 "Cannot change data mode on remount"); 1545 return -1; 1546 } 1547 } else { 1548 clear_opt(sb, DATA_FLAGS); 1549 sbi->s_mount_opt |= m->mount_opt; 1550 } 1551 #ifdef CONFIG_QUOTA 1552 } else if (token == Opt_usrjquota) { 1553 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1554 return -1; 1555 } else if (token == Opt_grpjquota) { 1556 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1557 return -1; 1558 } else if (token == Opt_offusrjquota) { 1559 if (!clear_qf_name(sb, USRQUOTA)) 1560 return -1; 1561 } else if (token == Opt_offgrpjquota) { 1562 if (!clear_qf_name(sb, GRPQUOTA)) 1563 return -1; 1564 } else if (m->flags & MOPT_QFMT) { 1565 if (sb_any_quota_loaded(sb) && 1566 sbi->s_jquota_fmt != m->mount_opt) { 1567 ext4_msg(sb, KERN_ERR, "Cannot " 1568 "change journaled quota options " 1569 "when quota turned on"); 1570 return -1; 1571 } 1572 sbi->s_jquota_fmt = m->mount_opt; 1573 #endif 1574 } else { 1575 if (!args->from) 1576 arg = 1; 1577 if (m->flags & MOPT_CLEAR) 1578 arg = !arg; 1579 else if (unlikely(!(m->flags & MOPT_SET))) { 1580 ext4_msg(sb, KERN_WARNING, 1581 "buggy handling of option %s", opt); 1582 WARN_ON(1); 1583 return -1; 1584 } 1585 if (arg != 0) 1586 sbi->s_mount_opt |= m->mount_opt; 1587 else 1588 sbi->s_mount_opt &= ~m->mount_opt; 1589 } 1590 return 1; 1591 } 1592 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1593 "or missing value", opt); 1594 return -1; 1595 } 1596 1597 static int parse_options(char *options, struct super_block *sb, 1598 unsigned long *journal_devnum, 1599 unsigned int *journal_ioprio, 1600 int is_remount) 1601 { 1602 struct ext4_sb_info *sbi = EXT4_SB(sb); 1603 char *p; 1604 substring_t args[MAX_OPT_ARGS]; 1605 int token; 1606 1607 if (!options) 1608 return 1; 1609 1610 while ((p = strsep(&options, ",")) != NULL) { 1611 if (!*p) 1612 continue; 1613 /* 1614 * Initialize args struct so we know whether arg was 1615 * found; some options take optional arguments. 1616 */ 1617 args[0].to = args[0].from = 0; 1618 token = match_token(p, tokens, args); 1619 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1620 journal_ioprio, is_remount) < 0) 1621 return 0; 1622 } 1623 #ifdef CONFIG_QUOTA 1624 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1625 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1626 clear_opt(sb, USRQUOTA); 1627 1628 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1629 clear_opt(sb, GRPQUOTA); 1630 1631 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1632 ext4_msg(sb, KERN_ERR, "old and new quota " 1633 "format mixing"); 1634 return 0; 1635 } 1636 1637 if (!sbi->s_jquota_fmt) { 1638 ext4_msg(sb, KERN_ERR, "journaled quota format " 1639 "not specified"); 1640 return 0; 1641 } 1642 } else { 1643 if (sbi->s_jquota_fmt) { 1644 ext4_msg(sb, KERN_ERR, "journaled quota format " 1645 "specified with no journaling " 1646 "enabled"); 1647 return 0; 1648 } 1649 } 1650 #endif 1651 return 1; 1652 } 1653 1654 static inline void ext4_show_quota_options(struct seq_file *seq, 1655 struct super_block *sb) 1656 { 1657 #if defined(CONFIG_QUOTA) 1658 struct ext4_sb_info *sbi = EXT4_SB(sb); 1659 1660 if (sbi->s_jquota_fmt) { 1661 char *fmtname = ""; 1662 1663 switch (sbi->s_jquota_fmt) { 1664 case QFMT_VFS_OLD: 1665 fmtname = "vfsold"; 1666 break; 1667 case QFMT_VFS_V0: 1668 fmtname = "vfsv0"; 1669 break; 1670 case QFMT_VFS_V1: 1671 fmtname = "vfsv1"; 1672 break; 1673 } 1674 seq_printf(seq, ",jqfmt=%s", fmtname); 1675 } 1676 1677 if (sbi->s_qf_names[USRQUOTA]) 1678 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1679 1680 if (sbi->s_qf_names[GRPQUOTA]) 1681 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1682 1683 if (test_opt(sb, USRQUOTA)) 1684 seq_puts(seq, ",usrquota"); 1685 1686 if (test_opt(sb, GRPQUOTA)) 1687 seq_puts(seq, ",grpquota"); 1688 #endif 1689 } 1690 1691 static const char *token2str(int token) 1692 { 1693 static const struct match_token *t; 1694 1695 for (t = tokens; t->token != Opt_err; t++) 1696 if (t->token == token && !strchr(t->pattern, '=')) 1697 break; 1698 return t->pattern; 1699 } 1700 1701 /* 1702 * Show an option if 1703 * - it's set to a non-default value OR 1704 * - if the per-sb default is different from the global default 1705 */ 1706 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1707 int nodefs) 1708 { 1709 struct ext4_sb_info *sbi = EXT4_SB(sb); 1710 struct ext4_super_block *es = sbi->s_es; 1711 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1712 const struct mount_opts *m; 1713 char sep = nodefs ? '\n' : ','; 1714 1715 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1716 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1717 1718 if (sbi->s_sb_block != 1) 1719 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1720 1721 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1722 int want_set = m->flags & MOPT_SET; 1723 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1724 (m->flags & MOPT_CLEAR_ERR)) 1725 continue; 1726 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1727 continue; /* skip if same as the default */ 1728 if ((want_set && 1729 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1730 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1731 continue; /* select Opt_noFoo vs Opt_Foo */ 1732 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1733 } 1734 1735 if (nodefs || sbi->s_resuid != EXT4_DEF_RESUID || 1736 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1737 SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid); 1738 if (nodefs || sbi->s_resgid != EXT4_DEF_RESGID || 1739 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1740 SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid); 1741 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1742 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1743 SEQ_OPTS_PUTS("errors=remount-ro"); 1744 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1745 SEQ_OPTS_PUTS("errors=continue"); 1746 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1747 SEQ_OPTS_PUTS("errors=panic"); 1748 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1749 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1750 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1751 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1752 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1753 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1754 if (sb->s_flags & MS_I_VERSION) 1755 SEQ_OPTS_PUTS("i_version"); 1756 if (nodefs || sbi->s_stripe) 1757 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1758 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1759 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1760 SEQ_OPTS_PUTS("data=journal"); 1761 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1762 SEQ_OPTS_PUTS("data=ordered"); 1763 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1764 SEQ_OPTS_PUTS("data=writeback"); 1765 } 1766 if (nodefs || 1767 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1768 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1769 sbi->s_inode_readahead_blks); 1770 1771 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1772 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1773 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1774 1775 ext4_show_quota_options(seq, sb); 1776 return 0; 1777 } 1778 1779 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1780 { 1781 return _ext4_show_options(seq, root->d_sb, 0); 1782 } 1783 1784 static int options_seq_show(struct seq_file *seq, void *offset) 1785 { 1786 struct super_block *sb = seq->private; 1787 int rc; 1788 1789 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1790 rc = _ext4_show_options(seq, sb, 1); 1791 seq_puts(seq, "\n"); 1792 return rc; 1793 } 1794 1795 static int options_open_fs(struct inode *inode, struct file *file) 1796 { 1797 return single_open(file, options_seq_show, PDE(inode)->data); 1798 } 1799 1800 static const struct file_operations ext4_seq_options_fops = { 1801 .owner = THIS_MODULE, 1802 .open = options_open_fs, 1803 .read = seq_read, 1804 .llseek = seq_lseek, 1805 .release = single_release, 1806 }; 1807 1808 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1809 int read_only) 1810 { 1811 struct ext4_sb_info *sbi = EXT4_SB(sb); 1812 int res = 0; 1813 1814 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1815 ext4_msg(sb, KERN_ERR, "revision level too high, " 1816 "forcing read-only mode"); 1817 res = MS_RDONLY; 1818 } 1819 if (read_only) 1820 goto done; 1821 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1822 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1823 "running e2fsck is recommended"); 1824 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1825 ext4_msg(sb, KERN_WARNING, 1826 "warning: mounting fs with errors, " 1827 "running e2fsck is recommended"); 1828 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1829 le16_to_cpu(es->s_mnt_count) >= 1830 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1831 ext4_msg(sb, KERN_WARNING, 1832 "warning: maximal mount count reached, " 1833 "running e2fsck is recommended"); 1834 else if (le32_to_cpu(es->s_checkinterval) && 1835 (le32_to_cpu(es->s_lastcheck) + 1836 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1837 ext4_msg(sb, KERN_WARNING, 1838 "warning: checktime reached, " 1839 "running e2fsck is recommended"); 1840 if (!sbi->s_journal) 1841 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1842 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1843 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1844 le16_add_cpu(&es->s_mnt_count, 1); 1845 es->s_mtime = cpu_to_le32(get_seconds()); 1846 ext4_update_dynamic_rev(sb); 1847 if (sbi->s_journal) 1848 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1849 1850 ext4_commit_super(sb, 1); 1851 done: 1852 if (test_opt(sb, DEBUG)) 1853 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1854 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1855 sb->s_blocksize, 1856 sbi->s_groups_count, 1857 EXT4_BLOCKS_PER_GROUP(sb), 1858 EXT4_INODES_PER_GROUP(sb), 1859 sbi->s_mount_opt, sbi->s_mount_opt2); 1860 1861 cleancache_init_fs(sb); 1862 return res; 1863 } 1864 1865 static int ext4_fill_flex_info(struct super_block *sb) 1866 { 1867 struct ext4_sb_info *sbi = EXT4_SB(sb); 1868 struct ext4_group_desc *gdp = NULL; 1869 ext4_group_t flex_group_count; 1870 ext4_group_t flex_group; 1871 unsigned int groups_per_flex = 0; 1872 size_t size; 1873 int i; 1874 1875 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1876 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1877 sbi->s_log_groups_per_flex = 0; 1878 return 1; 1879 } 1880 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1881 1882 /* We allocate both existing and potentially added groups */ 1883 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1884 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1885 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1886 size = flex_group_count * sizeof(struct flex_groups); 1887 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 1888 if (sbi->s_flex_groups == NULL) { 1889 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 1890 flex_group_count); 1891 goto failed; 1892 } 1893 1894 for (i = 0; i < sbi->s_groups_count; i++) { 1895 gdp = ext4_get_group_desc(sb, i, NULL); 1896 1897 flex_group = ext4_flex_group(sbi, i); 1898 atomic_add(ext4_free_inodes_count(sb, gdp), 1899 &sbi->s_flex_groups[flex_group].free_inodes); 1900 atomic_add(ext4_free_group_clusters(sb, gdp), 1901 &sbi->s_flex_groups[flex_group].free_clusters); 1902 atomic_add(ext4_used_dirs_count(sb, gdp), 1903 &sbi->s_flex_groups[flex_group].used_dirs); 1904 } 1905 1906 return 1; 1907 failed: 1908 return 0; 1909 } 1910 1911 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1912 struct ext4_group_desc *gdp) 1913 { 1914 __u16 crc = 0; 1915 1916 if (sbi->s_es->s_feature_ro_compat & 1917 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1918 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1919 __le32 le_group = cpu_to_le32(block_group); 1920 1921 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1922 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1923 crc = crc16(crc, (__u8 *)gdp, offset); 1924 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1925 /* for checksum of struct ext4_group_desc do the rest...*/ 1926 if ((sbi->s_es->s_feature_incompat & 1927 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1928 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1929 crc = crc16(crc, (__u8 *)gdp + offset, 1930 le16_to_cpu(sbi->s_es->s_desc_size) - 1931 offset); 1932 } 1933 1934 return cpu_to_le16(crc); 1935 } 1936 1937 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1938 struct ext4_group_desc *gdp) 1939 { 1940 if ((sbi->s_es->s_feature_ro_compat & 1941 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1942 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1943 return 0; 1944 1945 return 1; 1946 } 1947 1948 /* Called at mount-time, super-block is locked */ 1949 static int ext4_check_descriptors(struct super_block *sb, 1950 ext4_group_t *first_not_zeroed) 1951 { 1952 struct ext4_sb_info *sbi = EXT4_SB(sb); 1953 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1954 ext4_fsblk_t last_block; 1955 ext4_fsblk_t block_bitmap; 1956 ext4_fsblk_t inode_bitmap; 1957 ext4_fsblk_t inode_table; 1958 int flexbg_flag = 0; 1959 ext4_group_t i, grp = sbi->s_groups_count; 1960 1961 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1962 flexbg_flag = 1; 1963 1964 ext4_debug("Checking group descriptors"); 1965 1966 for (i = 0; i < sbi->s_groups_count; i++) { 1967 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1968 1969 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1970 last_block = ext4_blocks_count(sbi->s_es) - 1; 1971 else 1972 last_block = first_block + 1973 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1974 1975 if ((grp == sbi->s_groups_count) && 1976 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 1977 grp = i; 1978 1979 block_bitmap = ext4_block_bitmap(sb, gdp); 1980 if (block_bitmap < first_block || block_bitmap > last_block) { 1981 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1982 "Block bitmap for group %u not in group " 1983 "(block %llu)!", i, block_bitmap); 1984 return 0; 1985 } 1986 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1987 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1988 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1989 "Inode bitmap for group %u not in group " 1990 "(block %llu)!", i, inode_bitmap); 1991 return 0; 1992 } 1993 inode_table = ext4_inode_table(sb, gdp); 1994 if (inode_table < first_block || 1995 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1996 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1997 "Inode table for group %u not in group " 1998 "(block %llu)!", i, inode_table); 1999 return 0; 2000 } 2001 ext4_lock_group(sb, i); 2002 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2003 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2004 "Checksum for group %u failed (%u!=%u)", 2005 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2006 gdp)), le16_to_cpu(gdp->bg_checksum)); 2007 if (!(sb->s_flags & MS_RDONLY)) { 2008 ext4_unlock_group(sb, i); 2009 return 0; 2010 } 2011 } 2012 ext4_unlock_group(sb, i); 2013 if (!flexbg_flag) 2014 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2015 } 2016 if (NULL != first_not_zeroed) 2017 *first_not_zeroed = grp; 2018 2019 ext4_free_blocks_count_set(sbi->s_es, 2020 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2021 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2022 return 1; 2023 } 2024 2025 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2026 * the superblock) which were deleted from all directories, but held open by 2027 * a process at the time of a crash. We walk the list and try to delete these 2028 * inodes at recovery time (only with a read-write filesystem). 2029 * 2030 * In order to keep the orphan inode chain consistent during traversal (in 2031 * case of crash during recovery), we link each inode into the superblock 2032 * orphan list_head and handle it the same way as an inode deletion during 2033 * normal operation (which journals the operations for us). 2034 * 2035 * We only do an iget() and an iput() on each inode, which is very safe if we 2036 * accidentally point at an in-use or already deleted inode. The worst that 2037 * can happen in this case is that we get a "bit already cleared" message from 2038 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2039 * e2fsck was run on this filesystem, and it must have already done the orphan 2040 * inode cleanup for us, so we can safely abort without any further action. 2041 */ 2042 static void ext4_orphan_cleanup(struct super_block *sb, 2043 struct ext4_super_block *es) 2044 { 2045 unsigned int s_flags = sb->s_flags; 2046 int nr_orphans = 0, nr_truncates = 0; 2047 #ifdef CONFIG_QUOTA 2048 int i; 2049 #endif 2050 if (!es->s_last_orphan) { 2051 jbd_debug(4, "no orphan inodes to clean up\n"); 2052 return; 2053 } 2054 2055 if (bdev_read_only(sb->s_bdev)) { 2056 ext4_msg(sb, KERN_ERR, "write access " 2057 "unavailable, skipping orphan cleanup"); 2058 return; 2059 } 2060 2061 /* Check if feature set would not allow a r/w mount */ 2062 if (!ext4_feature_set_ok(sb, 0)) { 2063 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2064 "unknown ROCOMPAT features"); 2065 return; 2066 } 2067 2068 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2069 if (es->s_last_orphan) 2070 jbd_debug(1, "Errors on filesystem, " 2071 "clearing orphan list.\n"); 2072 es->s_last_orphan = 0; 2073 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2074 return; 2075 } 2076 2077 if (s_flags & MS_RDONLY) { 2078 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2079 sb->s_flags &= ~MS_RDONLY; 2080 } 2081 #ifdef CONFIG_QUOTA 2082 /* Needed for iput() to work correctly and not trash data */ 2083 sb->s_flags |= MS_ACTIVE; 2084 /* Turn on quotas so that they are updated correctly */ 2085 for (i = 0; i < MAXQUOTAS; i++) { 2086 if (EXT4_SB(sb)->s_qf_names[i]) { 2087 int ret = ext4_quota_on_mount(sb, i); 2088 if (ret < 0) 2089 ext4_msg(sb, KERN_ERR, 2090 "Cannot turn on journaled " 2091 "quota: error %d", ret); 2092 } 2093 } 2094 #endif 2095 2096 while (es->s_last_orphan) { 2097 struct inode *inode; 2098 2099 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2100 if (IS_ERR(inode)) { 2101 es->s_last_orphan = 0; 2102 break; 2103 } 2104 2105 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2106 dquot_initialize(inode); 2107 if (inode->i_nlink) { 2108 ext4_msg(sb, KERN_DEBUG, 2109 "%s: truncating inode %lu to %lld bytes", 2110 __func__, inode->i_ino, inode->i_size); 2111 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2112 inode->i_ino, inode->i_size); 2113 ext4_truncate(inode); 2114 nr_truncates++; 2115 } else { 2116 ext4_msg(sb, KERN_DEBUG, 2117 "%s: deleting unreferenced inode %lu", 2118 __func__, inode->i_ino); 2119 jbd_debug(2, "deleting unreferenced inode %lu\n", 2120 inode->i_ino); 2121 nr_orphans++; 2122 } 2123 iput(inode); /* The delete magic happens here! */ 2124 } 2125 2126 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2127 2128 if (nr_orphans) 2129 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2130 PLURAL(nr_orphans)); 2131 if (nr_truncates) 2132 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2133 PLURAL(nr_truncates)); 2134 #ifdef CONFIG_QUOTA 2135 /* Turn quotas off */ 2136 for (i = 0; i < MAXQUOTAS; i++) { 2137 if (sb_dqopt(sb)->files[i]) 2138 dquot_quota_off(sb, i); 2139 } 2140 #endif 2141 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2142 } 2143 2144 /* 2145 * Maximal extent format file size. 2146 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2147 * extent format containers, within a sector_t, and within i_blocks 2148 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2149 * so that won't be a limiting factor. 2150 * 2151 * However there is other limiting factor. We do store extents in the form 2152 * of starting block and length, hence the resulting length of the extent 2153 * covering maximum file size must fit into on-disk format containers as 2154 * well. Given that length is always by 1 unit bigger than max unit (because 2155 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2156 * 2157 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2158 */ 2159 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2160 { 2161 loff_t res; 2162 loff_t upper_limit = MAX_LFS_FILESIZE; 2163 2164 /* small i_blocks in vfs inode? */ 2165 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2166 /* 2167 * CONFIG_LBDAF is not enabled implies the inode 2168 * i_block represent total blocks in 512 bytes 2169 * 32 == size of vfs inode i_blocks * 8 2170 */ 2171 upper_limit = (1LL << 32) - 1; 2172 2173 /* total blocks in file system block size */ 2174 upper_limit >>= (blkbits - 9); 2175 upper_limit <<= blkbits; 2176 } 2177 2178 /* 2179 * 32-bit extent-start container, ee_block. We lower the maxbytes 2180 * by one fs block, so ee_len can cover the extent of maximum file 2181 * size 2182 */ 2183 res = (1LL << 32) - 1; 2184 res <<= blkbits; 2185 2186 /* Sanity check against vm- & vfs- imposed limits */ 2187 if (res > upper_limit) 2188 res = upper_limit; 2189 2190 return res; 2191 } 2192 2193 /* 2194 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2195 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2196 * We need to be 1 filesystem block less than the 2^48 sector limit. 2197 */ 2198 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2199 { 2200 loff_t res = EXT4_NDIR_BLOCKS; 2201 int meta_blocks; 2202 loff_t upper_limit; 2203 /* This is calculated to be the largest file size for a dense, block 2204 * mapped file such that the file's total number of 512-byte sectors, 2205 * including data and all indirect blocks, does not exceed (2^48 - 1). 2206 * 2207 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2208 * number of 512-byte sectors of the file. 2209 */ 2210 2211 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2212 /* 2213 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2214 * the inode i_block field represents total file blocks in 2215 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2216 */ 2217 upper_limit = (1LL << 32) - 1; 2218 2219 /* total blocks in file system block size */ 2220 upper_limit >>= (bits - 9); 2221 2222 } else { 2223 /* 2224 * We use 48 bit ext4_inode i_blocks 2225 * With EXT4_HUGE_FILE_FL set the i_blocks 2226 * represent total number of blocks in 2227 * file system block size 2228 */ 2229 upper_limit = (1LL << 48) - 1; 2230 2231 } 2232 2233 /* indirect blocks */ 2234 meta_blocks = 1; 2235 /* double indirect blocks */ 2236 meta_blocks += 1 + (1LL << (bits-2)); 2237 /* tripple indirect blocks */ 2238 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2239 2240 upper_limit -= meta_blocks; 2241 upper_limit <<= bits; 2242 2243 res += 1LL << (bits-2); 2244 res += 1LL << (2*(bits-2)); 2245 res += 1LL << (3*(bits-2)); 2246 res <<= bits; 2247 if (res > upper_limit) 2248 res = upper_limit; 2249 2250 if (res > MAX_LFS_FILESIZE) 2251 res = MAX_LFS_FILESIZE; 2252 2253 return res; 2254 } 2255 2256 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2257 ext4_fsblk_t logical_sb_block, int nr) 2258 { 2259 struct ext4_sb_info *sbi = EXT4_SB(sb); 2260 ext4_group_t bg, first_meta_bg; 2261 int has_super = 0; 2262 2263 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2264 2265 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2266 nr < first_meta_bg) 2267 return logical_sb_block + nr + 1; 2268 bg = sbi->s_desc_per_block * nr; 2269 if (ext4_bg_has_super(sb, bg)) 2270 has_super = 1; 2271 2272 return (has_super + ext4_group_first_block_no(sb, bg)); 2273 } 2274 2275 /** 2276 * ext4_get_stripe_size: Get the stripe size. 2277 * @sbi: In memory super block info 2278 * 2279 * If we have specified it via mount option, then 2280 * use the mount option value. If the value specified at mount time is 2281 * greater than the blocks per group use the super block value. 2282 * If the super block value is greater than blocks per group return 0. 2283 * Allocator needs it be less than blocks per group. 2284 * 2285 */ 2286 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2287 { 2288 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2289 unsigned long stripe_width = 2290 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2291 int ret; 2292 2293 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2294 ret = sbi->s_stripe; 2295 else if (stripe_width <= sbi->s_blocks_per_group) 2296 ret = stripe_width; 2297 else if (stride <= sbi->s_blocks_per_group) 2298 ret = stride; 2299 else 2300 ret = 0; 2301 2302 /* 2303 * If the stripe width is 1, this makes no sense and 2304 * we set it to 0 to turn off stripe handling code. 2305 */ 2306 if (ret <= 1) 2307 ret = 0; 2308 2309 return ret; 2310 } 2311 2312 /* sysfs supprt */ 2313 2314 struct ext4_attr { 2315 struct attribute attr; 2316 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2317 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2318 const char *, size_t); 2319 int offset; 2320 }; 2321 2322 static int parse_strtoul(const char *buf, 2323 unsigned long max, unsigned long *value) 2324 { 2325 char *endp; 2326 2327 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2328 endp = skip_spaces(endp); 2329 if (*endp || *value > max) 2330 return -EINVAL; 2331 2332 return 0; 2333 } 2334 2335 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2336 struct ext4_sb_info *sbi, 2337 char *buf) 2338 { 2339 return snprintf(buf, PAGE_SIZE, "%llu\n", 2340 (s64) EXT4_C2B(sbi, 2341 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2342 } 2343 2344 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2345 struct ext4_sb_info *sbi, char *buf) 2346 { 2347 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2348 2349 if (!sb->s_bdev->bd_part) 2350 return snprintf(buf, PAGE_SIZE, "0\n"); 2351 return snprintf(buf, PAGE_SIZE, "%lu\n", 2352 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2353 sbi->s_sectors_written_start) >> 1); 2354 } 2355 2356 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2357 struct ext4_sb_info *sbi, char *buf) 2358 { 2359 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2360 2361 if (!sb->s_bdev->bd_part) 2362 return snprintf(buf, PAGE_SIZE, "0\n"); 2363 return snprintf(buf, PAGE_SIZE, "%llu\n", 2364 (unsigned long long)(sbi->s_kbytes_written + 2365 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2366 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2367 } 2368 2369 static ssize_t extent_cache_hits_show(struct ext4_attr *a, 2370 struct ext4_sb_info *sbi, char *buf) 2371 { 2372 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits); 2373 } 2374 2375 static ssize_t extent_cache_misses_show(struct ext4_attr *a, 2376 struct ext4_sb_info *sbi, char *buf) 2377 { 2378 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses); 2379 } 2380 2381 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2382 struct ext4_sb_info *sbi, 2383 const char *buf, size_t count) 2384 { 2385 unsigned long t; 2386 2387 if (parse_strtoul(buf, 0x40000000, &t)) 2388 return -EINVAL; 2389 2390 if (t && !is_power_of_2(t)) 2391 return -EINVAL; 2392 2393 sbi->s_inode_readahead_blks = t; 2394 return count; 2395 } 2396 2397 static ssize_t sbi_ui_show(struct ext4_attr *a, 2398 struct ext4_sb_info *sbi, char *buf) 2399 { 2400 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2401 2402 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2403 } 2404 2405 static ssize_t sbi_ui_store(struct ext4_attr *a, 2406 struct ext4_sb_info *sbi, 2407 const char *buf, size_t count) 2408 { 2409 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2410 unsigned long t; 2411 2412 if (parse_strtoul(buf, 0xffffffff, &t)) 2413 return -EINVAL; 2414 *ui = t; 2415 return count; 2416 } 2417 2418 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2419 static struct ext4_attr ext4_attr_##_name = { \ 2420 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2421 .show = _show, \ 2422 .store = _store, \ 2423 .offset = offsetof(struct ext4_sb_info, _elname), \ 2424 } 2425 #define EXT4_ATTR(name, mode, show, store) \ 2426 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2427 2428 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2429 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2430 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2431 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2432 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2433 #define ATTR_LIST(name) &ext4_attr_##name.attr 2434 2435 EXT4_RO_ATTR(delayed_allocation_blocks); 2436 EXT4_RO_ATTR(session_write_kbytes); 2437 EXT4_RO_ATTR(lifetime_write_kbytes); 2438 EXT4_RO_ATTR(extent_cache_hits); 2439 EXT4_RO_ATTR(extent_cache_misses); 2440 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2441 inode_readahead_blks_store, s_inode_readahead_blks); 2442 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2443 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2444 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2445 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2446 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2447 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2448 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2449 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2450 2451 static struct attribute *ext4_attrs[] = { 2452 ATTR_LIST(delayed_allocation_blocks), 2453 ATTR_LIST(session_write_kbytes), 2454 ATTR_LIST(lifetime_write_kbytes), 2455 ATTR_LIST(extent_cache_hits), 2456 ATTR_LIST(extent_cache_misses), 2457 ATTR_LIST(inode_readahead_blks), 2458 ATTR_LIST(inode_goal), 2459 ATTR_LIST(mb_stats), 2460 ATTR_LIST(mb_max_to_scan), 2461 ATTR_LIST(mb_min_to_scan), 2462 ATTR_LIST(mb_order2_req), 2463 ATTR_LIST(mb_stream_req), 2464 ATTR_LIST(mb_group_prealloc), 2465 ATTR_LIST(max_writeback_mb_bump), 2466 NULL, 2467 }; 2468 2469 /* Features this copy of ext4 supports */ 2470 EXT4_INFO_ATTR(lazy_itable_init); 2471 EXT4_INFO_ATTR(batched_discard); 2472 2473 static struct attribute *ext4_feat_attrs[] = { 2474 ATTR_LIST(lazy_itable_init), 2475 ATTR_LIST(batched_discard), 2476 NULL, 2477 }; 2478 2479 static ssize_t ext4_attr_show(struct kobject *kobj, 2480 struct attribute *attr, char *buf) 2481 { 2482 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2483 s_kobj); 2484 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2485 2486 return a->show ? a->show(a, sbi, buf) : 0; 2487 } 2488 2489 static ssize_t ext4_attr_store(struct kobject *kobj, 2490 struct attribute *attr, 2491 const char *buf, size_t len) 2492 { 2493 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2494 s_kobj); 2495 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2496 2497 return a->store ? a->store(a, sbi, buf, len) : 0; 2498 } 2499 2500 static void ext4_sb_release(struct kobject *kobj) 2501 { 2502 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2503 s_kobj); 2504 complete(&sbi->s_kobj_unregister); 2505 } 2506 2507 static const struct sysfs_ops ext4_attr_ops = { 2508 .show = ext4_attr_show, 2509 .store = ext4_attr_store, 2510 }; 2511 2512 static struct kobj_type ext4_ktype = { 2513 .default_attrs = ext4_attrs, 2514 .sysfs_ops = &ext4_attr_ops, 2515 .release = ext4_sb_release, 2516 }; 2517 2518 static void ext4_feat_release(struct kobject *kobj) 2519 { 2520 complete(&ext4_feat->f_kobj_unregister); 2521 } 2522 2523 static struct kobj_type ext4_feat_ktype = { 2524 .default_attrs = ext4_feat_attrs, 2525 .sysfs_ops = &ext4_attr_ops, 2526 .release = ext4_feat_release, 2527 }; 2528 2529 /* 2530 * Check whether this filesystem can be mounted based on 2531 * the features present and the RDONLY/RDWR mount requested. 2532 * Returns 1 if this filesystem can be mounted as requested, 2533 * 0 if it cannot be. 2534 */ 2535 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2536 { 2537 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2538 ext4_msg(sb, KERN_ERR, 2539 "Couldn't mount because of " 2540 "unsupported optional features (%x)", 2541 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2542 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2543 return 0; 2544 } 2545 2546 if (readonly) 2547 return 1; 2548 2549 /* Check that feature set is OK for a read-write mount */ 2550 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2551 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2552 "unsupported optional features (%x)", 2553 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2554 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2555 return 0; 2556 } 2557 /* 2558 * Large file size enabled file system can only be mounted 2559 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2560 */ 2561 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2562 if (sizeof(blkcnt_t) < sizeof(u64)) { 2563 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2564 "cannot be mounted RDWR without " 2565 "CONFIG_LBDAF"); 2566 return 0; 2567 } 2568 } 2569 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2570 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2571 ext4_msg(sb, KERN_ERR, 2572 "Can't support bigalloc feature without " 2573 "extents feature\n"); 2574 return 0; 2575 } 2576 return 1; 2577 } 2578 2579 /* 2580 * This function is called once a day if we have errors logged 2581 * on the file system 2582 */ 2583 static void print_daily_error_info(unsigned long arg) 2584 { 2585 struct super_block *sb = (struct super_block *) arg; 2586 struct ext4_sb_info *sbi; 2587 struct ext4_super_block *es; 2588 2589 sbi = EXT4_SB(sb); 2590 es = sbi->s_es; 2591 2592 if (es->s_error_count) 2593 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2594 le32_to_cpu(es->s_error_count)); 2595 if (es->s_first_error_time) { 2596 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2597 sb->s_id, le32_to_cpu(es->s_first_error_time), 2598 (int) sizeof(es->s_first_error_func), 2599 es->s_first_error_func, 2600 le32_to_cpu(es->s_first_error_line)); 2601 if (es->s_first_error_ino) 2602 printk(": inode %u", 2603 le32_to_cpu(es->s_first_error_ino)); 2604 if (es->s_first_error_block) 2605 printk(": block %llu", (unsigned long long) 2606 le64_to_cpu(es->s_first_error_block)); 2607 printk("\n"); 2608 } 2609 if (es->s_last_error_time) { 2610 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2611 sb->s_id, le32_to_cpu(es->s_last_error_time), 2612 (int) sizeof(es->s_last_error_func), 2613 es->s_last_error_func, 2614 le32_to_cpu(es->s_last_error_line)); 2615 if (es->s_last_error_ino) 2616 printk(": inode %u", 2617 le32_to_cpu(es->s_last_error_ino)); 2618 if (es->s_last_error_block) 2619 printk(": block %llu", (unsigned long long) 2620 le64_to_cpu(es->s_last_error_block)); 2621 printk("\n"); 2622 } 2623 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2624 } 2625 2626 /* Find next suitable group and run ext4_init_inode_table */ 2627 static int ext4_run_li_request(struct ext4_li_request *elr) 2628 { 2629 struct ext4_group_desc *gdp = NULL; 2630 ext4_group_t group, ngroups; 2631 struct super_block *sb; 2632 unsigned long timeout = 0; 2633 int ret = 0; 2634 2635 sb = elr->lr_super; 2636 ngroups = EXT4_SB(sb)->s_groups_count; 2637 2638 for (group = elr->lr_next_group; group < ngroups; group++) { 2639 gdp = ext4_get_group_desc(sb, group, NULL); 2640 if (!gdp) { 2641 ret = 1; 2642 break; 2643 } 2644 2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2646 break; 2647 } 2648 2649 if (group == ngroups) 2650 ret = 1; 2651 2652 if (!ret) { 2653 timeout = jiffies; 2654 ret = ext4_init_inode_table(sb, group, 2655 elr->lr_timeout ? 0 : 1); 2656 if (elr->lr_timeout == 0) { 2657 timeout = (jiffies - timeout) * 2658 elr->lr_sbi->s_li_wait_mult; 2659 elr->lr_timeout = timeout; 2660 } 2661 elr->lr_next_sched = jiffies + elr->lr_timeout; 2662 elr->lr_next_group = group + 1; 2663 } 2664 2665 return ret; 2666 } 2667 2668 /* 2669 * Remove lr_request from the list_request and free the 2670 * request structure. Should be called with li_list_mtx held 2671 */ 2672 static void ext4_remove_li_request(struct ext4_li_request *elr) 2673 { 2674 struct ext4_sb_info *sbi; 2675 2676 if (!elr) 2677 return; 2678 2679 sbi = elr->lr_sbi; 2680 2681 list_del(&elr->lr_request); 2682 sbi->s_li_request = NULL; 2683 kfree(elr); 2684 } 2685 2686 static void ext4_unregister_li_request(struct super_block *sb) 2687 { 2688 mutex_lock(&ext4_li_mtx); 2689 if (!ext4_li_info) { 2690 mutex_unlock(&ext4_li_mtx); 2691 return; 2692 } 2693 2694 mutex_lock(&ext4_li_info->li_list_mtx); 2695 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2696 mutex_unlock(&ext4_li_info->li_list_mtx); 2697 mutex_unlock(&ext4_li_mtx); 2698 } 2699 2700 static struct task_struct *ext4_lazyinit_task; 2701 2702 /* 2703 * This is the function where ext4lazyinit thread lives. It walks 2704 * through the request list searching for next scheduled filesystem. 2705 * When such a fs is found, run the lazy initialization request 2706 * (ext4_rn_li_request) and keep track of the time spend in this 2707 * function. Based on that time we compute next schedule time of 2708 * the request. When walking through the list is complete, compute 2709 * next waking time and put itself into sleep. 2710 */ 2711 static int ext4_lazyinit_thread(void *arg) 2712 { 2713 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2714 struct list_head *pos, *n; 2715 struct ext4_li_request *elr; 2716 unsigned long next_wakeup, cur; 2717 2718 BUG_ON(NULL == eli); 2719 2720 cont_thread: 2721 while (true) { 2722 next_wakeup = MAX_JIFFY_OFFSET; 2723 2724 mutex_lock(&eli->li_list_mtx); 2725 if (list_empty(&eli->li_request_list)) { 2726 mutex_unlock(&eli->li_list_mtx); 2727 goto exit_thread; 2728 } 2729 2730 list_for_each_safe(pos, n, &eli->li_request_list) { 2731 elr = list_entry(pos, struct ext4_li_request, 2732 lr_request); 2733 2734 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2735 if (ext4_run_li_request(elr) != 0) { 2736 /* error, remove the lazy_init job */ 2737 ext4_remove_li_request(elr); 2738 continue; 2739 } 2740 } 2741 2742 if (time_before(elr->lr_next_sched, next_wakeup)) 2743 next_wakeup = elr->lr_next_sched; 2744 } 2745 mutex_unlock(&eli->li_list_mtx); 2746 2747 try_to_freeze(); 2748 2749 cur = jiffies; 2750 if ((time_after_eq(cur, next_wakeup)) || 2751 (MAX_JIFFY_OFFSET == next_wakeup)) { 2752 cond_resched(); 2753 continue; 2754 } 2755 2756 schedule_timeout_interruptible(next_wakeup - cur); 2757 2758 if (kthread_should_stop()) { 2759 ext4_clear_request_list(); 2760 goto exit_thread; 2761 } 2762 } 2763 2764 exit_thread: 2765 /* 2766 * It looks like the request list is empty, but we need 2767 * to check it under the li_list_mtx lock, to prevent any 2768 * additions into it, and of course we should lock ext4_li_mtx 2769 * to atomically free the list and ext4_li_info, because at 2770 * this point another ext4 filesystem could be registering 2771 * new one. 2772 */ 2773 mutex_lock(&ext4_li_mtx); 2774 mutex_lock(&eli->li_list_mtx); 2775 if (!list_empty(&eli->li_request_list)) { 2776 mutex_unlock(&eli->li_list_mtx); 2777 mutex_unlock(&ext4_li_mtx); 2778 goto cont_thread; 2779 } 2780 mutex_unlock(&eli->li_list_mtx); 2781 kfree(ext4_li_info); 2782 ext4_li_info = NULL; 2783 mutex_unlock(&ext4_li_mtx); 2784 2785 return 0; 2786 } 2787 2788 static void ext4_clear_request_list(void) 2789 { 2790 struct list_head *pos, *n; 2791 struct ext4_li_request *elr; 2792 2793 mutex_lock(&ext4_li_info->li_list_mtx); 2794 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2795 elr = list_entry(pos, struct ext4_li_request, 2796 lr_request); 2797 ext4_remove_li_request(elr); 2798 } 2799 mutex_unlock(&ext4_li_info->li_list_mtx); 2800 } 2801 2802 static int ext4_run_lazyinit_thread(void) 2803 { 2804 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2805 ext4_li_info, "ext4lazyinit"); 2806 if (IS_ERR(ext4_lazyinit_task)) { 2807 int err = PTR_ERR(ext4_lazyinit_task); 2808 ext4_clear_request_list(); 2809 kfree(ext4_li_info); 2810 ext4_li_info = NULL; 2811 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2812 "initialization thread\n", 2813 err); 2814 return err; 2815 } 2816 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2817 return 0; 2818 } 2819 2820 /* 2821 * Check whether it make sense to run itable init. thread or not. 2822 * If there is at least one uninitialized inode table, return 2823 * corresponding group number, else the loop goes through all 2824 * groups and return total number of groups. 2825 */ 2826 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2827 { 2828 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2829 struct ext4_group_desc *gdp = NULL; 2830 2831 for (group = 0; group < ngroups; group++) { 2832 gdp = ext4_get_group_desc(sb, group, NULL); 2833 if (!gdp) 2834 continue; 2835 2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2837 break; 2838 } 2839 2840 return group; 2841 } 2842 2843 static int ext4_li_info_new(void) 2844 { 2845 struct ext4_lazy_init *eli = NULL; 2846 2847 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2848 if (!eli) 2849 return -ENOMEM; 2850 2851 INIT_LIST_HEAD(&eli->li_request_list); 2852 mutex_init(&eli->li_list_mtx); 2853 2854 eli->li_state |= EXT4_LAZYINIT_QUIT; 2855 2856 ext4_li_info = eli; 2857 2858 return 0; 2859 } 2860 2861 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2862 ext4_group_t start) 2863 { 2864 struct ext4_sb_info *sbi = EXT4_SB(sb); 2865 struct ext4_li_request *elr; 2866 unsigned long rnd; 2867 2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2869 if (!elr) 2870 return NULL; 2871 2872 elr->lr_super = sb; 2873 elr->lr_sbi = sbi; 2874 elr->lr_next_group = start; 2875 2876 /* 2877 * Randomize first schedule time of the request to 2878 * spread the inode table initialization requests 2879 * better. 2880 */ 2881 get_random_bytes(&rnd, sizeof(rnd)); 2882 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2883 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2884 2885 return elr; 2886 } 2887 2888 static int ext4_register_li_request(struct super_block *sb, 2889 ext4_group_t first_not_zeroed) 2890 { 2891 struct ext4_sb_info *sbi = EXT4_SB(sb); 2892 struct ext4_li_request *elr; 2893 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2894 int ret = 0; 2895 2896 if (sbi->s_li_request != NULL) { 2897 /* 2898 * Reset timeout so it can be computed again, because 2899 * s_li_wait_mult might have changed. 2900 */ 2901 sbi->s_li_request->lr_timeout = 0; 2902 return 0; 2903 } 2904 2905 if (first_not_zeroed == ngroups || 2906 (sb->s_flags & MS_RDONLY) || 2907 !test_opt(sb, INIT_INODE_TABLE)) 2908 return 0; 2909 2910 elr = ext4_li_request_new(sb, first_not_zeroed); 2911 if (!elr) 2912 return -ENOMEM; 2913 2914 mutex_lock(&ext4_li_mtx); 2915 2916 if (NULL == ext4_li_info) { 2917 ret = ext4_li_info_new(); 2918 if (ret) 2919 goto out; 2920 } 2921 2922 mutex_lock(&ext4_li_info->li_list_mtx); 2923 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2924 mutex_unlock(&ext4_li_info->li_list_mtx); 2925 2926 sbi->s_li_request = elr; 2927 /* 2928 * set elr to NULL here since it has been inserted to 2929 * the request_list and the removal and free of it is 2930 * handled by ext4_clear_request_list from now on. 2931 */ 2932 elr = NULL; 2933 2934 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2935 ret = ext4_run_lazyinit_thread(); 2936 if (ret) 2937 goto out; 2938 } 2939 out: 2940 mutex_unlock(&ext4_li_mtx); 2941 if (ret) 2942 kfree(elr); 2943 return ret; 2944 } 2945 2946 /* 2947 * We do not need to lock anything since this is called on 2948 * module unload. 2949 */ 2950 static void ext4_destroy_lazyinit_thread(void) 2951 { 2952 /* 2953 * If thread exited earlier 2954 * there's nothing to be done. 2955 */ 2956 if (!ext4_li_info || !ext4_lazyinit_task) 2957 return; 2958 2959 kthread_stop(ext4_lazyinit_task); 2960 } 2961 2962 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2963 { 2964 char *orig_data = kstrdup(data, GFP_KERNEL); 2965 struct buffer_head *bh; 2966 struct ext4_super_block *es = NULL; 2967 struct ext4_sb_info *sbi; 2968 ext4_fsblk_t block; 2969 ext4_fsblk_t sb_block = get_sb_block(&data); 2970 ext4_fsblk_t logical_sb_block; 2971 unsigned long offset = 0; 2972 unsigned long journal_devnum = 0; 2973 unsigned long def_mount_opts; 2974 struct inode *root; 2975 char *cp; 2976 const char *descr; 2977 int ret = -ENOMEM; 2978 int blocksize, clustersize; 2979 unsigned int db_count; 2980 unsigned int i; 2981 int needs_recovery, has_huge_files, has_bigalloc; 2982 __u64 blocks_count; 2983 int err; 2984 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2985 ext4_group_t first_not_zeroed; 2986 2987 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2988 if (!sbi) 2989 goto out_free_orig; 2990 2991 sbi->s_blockgroup_lock = 2992 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2993 if (!sbi->s_blockgroup_lock) { 2994 kfree(sbi); 2995 goto out_free_orig; 2996 } 2997 sb->s_fs_info = sbi; 2998 sbi->s_mount_opt = 0; 2999 sbi->s_resuid = EXT4_DEF_RESUID; 3000 sbi->s_resgid = EXT4_DEF_RESGID; 3001 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3002 sbi->s_sb_block = sb_block; 3003 if (sb->s_bdev->bd_part) 3004 sbi->s_sectors_written_start = 3005 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3006 3007 /* Cleanup superblock name */ 3008 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3009 *cp = '!'; 3010 3011 ret = -EINVAL; 3012 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3013 if (!blocksize) { 3014 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3015 goto out_fail; 3016 } 3017 3018 /* 3019 * The ext4 superblock will not be buffer aligned for other than 1kB 3020 * block sizes. We need to calculate the offset from buffer start. 3021 */ 3022 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3023 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3024 offset = do_div(logical_sb_block, blocksize); 3025 } else { 3026 logical_sb_block = sb_block; 3027 } 3028 3029 if (!(bh = sb_bread(sb, logical_sb_block))) { 3030 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3031 goto out_fail; 3032 } 3033 /* 3034 * Note: s_es must be initialized as soon as possible because 3035 * some ext4 macro-instructions depend on its value 3036 */ 3037 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3038 sbi->s_es = es; 3039 sb->s_magic = le16_to_cpu(es->s_magic); 3040 if (sb->s_magic != EXT4_SUPER_MAGIC) 3041 goto cantfind_ext4; 3042 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3043 3044 /* Set defaults before we parse the mount options */ 3045 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3046 set_opt(sb, INIT_INODE_TABLE); 3047 if (def_mount_opts & EXT4_DEFM_DEBUG) 3048 set_opt(sb, DEBUG); 3049 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3050 set_opt(sb, GRPID); 3051 if (def_mount_opts & EXT4_DEFM_UID16) 3052 set_opt(sb, NO_UID32); 3053 /* xattr user namespace & acls are now defaulted on */ 3054 #ifdef CONFIG_EXT4_FS_XATTR 3055 set_opt(sb, XATTR_USER); 3056 #endif 3057 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3058 set_opt(sb, POSIX_ACL); 3059 #endif 3060 set_opt(sb, MBLK_IO_SUBMIT); 3061 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3062 set_opt(sb, JOURNAL_DATA); 3063 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3064 set_opt(sb, ORDERED_DATA); 3065 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3066 set_opt(sb, WRITEBACK_DATA); 3067 3068 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3069 set_opt(sb, ERRORS_PANIC); 3070 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3071 set_opt(sb, ERRORS_CONT); 3072 else 3073 set_opt(sb, ERRORS_RO); 3074 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3075 set_opt(sb, BLOCK_VALIDITY); 3076 if (def_mount_opts & EXT4_DEFM_DISCARD) 3077 set_opt(sb, DISCARD); 3078 3079 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3080 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3081 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3082 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3083 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3084 3085 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3086 set_opt(sb, BARRIER); 3087 3088 /* 3089 * enable delayed allocation by default 3090 * Use -o nodelalloc to turn it off 3091 */ 3092 if (!IS_EXT3_SB(sb) && 3093 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3094 set_opt(sb, DELALLOC); 3095 3096 /* 3097 * set default s_li_wait_mult for lazyinit, for the case there is 3098 * no mount option specified. 3099 */ 3100 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3101 3102 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3103 &journal_devnum, &journal_ioprio, 0)) { 3104 ext4_msg(sb, KERN_WARNING, 3105 "failed to parse options in superblock: %s", 3106 sbi->s_es->s_mount_opts); 3107 } 3108 sbi->s_def_mount_opt = sbi->s_mount_opt; 3109 if (!parse_options((char *) data, sb, &journal_devnum, 3110 &journal_ioprio, 0)) 3111 goto failed_mount; 3112 3113 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3114 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3115 "with data=journal disables delayed " 3116 "allocation and O_DIRECT support!\n"); 3117 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3118 ext4_msg(sb, KERN_ERR, "can't mount with " 3119 "both data=journal and delalloc"); 3120 goto failed_mount; 3121 } 3122 if (test_opt(sb, DIOREAD_NOLOCK)) { 3123 ext4_msg(sb, KERN_ERR, "can't mount with " 3124 "both data=journal and delalloc"); 3125 goto failed_mount; 3126 } 3127 if (test_opt(sb, DELALLOC)) 3128 clear_opt(sb, DELALLOC); 3129 } 3130 3131 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3132 if (test_opt(sb, DIOREAD_NOLOCK)) { 3133 if (blocksize < PAGE_SIZE) { 3134 ext4_msg(sb, KERN_ERR, "can't mount with " 3135 "dioread_nolock if block size != PAGE_SIZE"); 3136 goto failed_mount; 3137 } 3138 } 3139 3140 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3141 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3142 3143 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3144 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3145 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3146 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3147 ext4_msg(sb, KERN_WARNING, 3148 "feature flags set on rev 0 fs, " 3149 "running e2fsck is recommended"); 3150 3151 if (IS_EXT2_SB(sb)) { 3152 if (ext2_feature_set_ok(sb)) 3153 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3154 "using the ext4 subsystem"); 3155 else { 3156 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3157 "to feature incompatibilities"); 3158 goto failed_mount; 3159 } 3160 } 3161 3162 if (IS_EXT3_SB(sb)) { 3163 if (ext3_feature_set_ok(sb)) 3164 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3165 "using the ext4 subsystem"); 3166 else { 3167 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3168 "to feature incompatibilities"); 3169 goto failed_mount; 3170 } 3171 } 3172 3173 /* 3174 * Check feature flags regardless of the revision level, since we 3175 * previously didn't change the revision level when setting the flags, 3176 * so there is a chance incompat flags are set on a rev 0 filesystem. 3177 */ 3178 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3179 goto failed_mount; 3180 3181 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3182 blocksize > EXT4_MAX_BLOCK_SIZE) { 3183 ext4_msg(sb, KERN_ERR, 3184 "Unsupported filesystem blocksize %d", blocksize); 3185 goto failed_mount; 3186 } 3187 3188 if (sb->s_blocksize != blocksize) { 3189 /* Validate the filesystem blocksize */ 3190 if (!sb_set_blocksize(sb, blocksize)) { 3191 ext4_msg(sb, KERN_ERR, "bad block size %d", 3192 blocksize); 3193 goto failed_mount; 3194 } 3195 3196 brelse(bh); 3197 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3198 offset = do_div(logical_sb_block, blocksize); 3199 bh = sb_bread(sb, logical_sb_block); 3200 if (!bh) { 3201 ext4_msg(sb, KERN_ERR, 3202 "Can't read superblock on 2nd try"); 3203 goto failed_mount; 3204 } 3205 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3206 sbi->s_es = es; 3207 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3208 ext4_msg(sb, KERN_ERR, 3209 "Magic mismatch, very weird!"); 3210 goto failed_mount; 3211 } 3212 } 3213 3214 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3215 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3216 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3217 has_huge_files); 3218 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3219 3220 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3221 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3222 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3223 } else { 3224 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3225 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3226 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3227 (!is_power_of_2(sbi->s_inode_size)) || 3228 (sbi->s_inode_size > blocksize)) { 3229 ext4_msg(sb, KERN_ERR, 3230 "unsupported inode size: %d", 3231 sbi->s_inode_size); 3232 goto failed_mount; 3233 } 3234 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3235 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3236 } 3237 3238 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3239 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3240 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3241 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3242 !is_power_of_2(sbi->s_desc_size)) { 3243 ext4_msg(sb, KERN_ERR, 3244 "unsupported descriptor size %lu", 3245 sbi->s_desc_size); 3246 goto failed_mount; 3247 } 3248 } else 3249 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3250 3251 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3252 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3253 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3254 goto cantfind_ext4; 3255 3256 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3257 if (sbi->s_inodes_per_block == 0) 3258 goto cantfind_ext4; 3259 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3260 sbi->s_inodes_per_block; 3261 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3262 sbi->s_sbh = bh; 3263 sbi->s_mount_state = le16_to_cpu(es->s_state); 3264 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3265 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3266 3267 for (i = 0; i < 4; i++) 3268 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3269 sbi->s_def_hash_version = es->s_def_hash_version; 3270 i = le32_to_cpu(es->s_flags); 3271 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3272 sbi->s_hash_unsigned = 3; 3273 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3274 #ifdef __CHAR_UNSIGNED__ 3275 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3276 sbi->s_hash_unsigned = 3; 3277 #else 3278 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3279 #endif 3280 } 3281 3282 /* Handle clustersize */ 3283 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3284 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3285 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3286 if (has_bigalloc) { 3287 if (clustersize < blocksize) { 3288 ext4_msg(sb, KERN_ERR, 3289 "cluster size (%d) smaller than " 3290 "block size (%d)", clustersize, blocksize); 3291 goto failed_mount; 3292 } 3293 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3294 le32_to_cpu(es->s_log_block_size); 3295 sbi->s_clusters_per_group = 3296 le32_to_cpu(es->s_clusters_per_group); 3297 if (sbi->s_clusters_per_group > blocksize * 8) { 3298 ext4_msg(sb, KERN_ERR, 3299 "#clusters per group too big: %lu", 3300 sbi->s_clusters_per_group); 3301 goto failed_mount; 3302 } 3303 if (sbi->s_blocks_per_group != 3304 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3305 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3306 "clusters per group (%lu) inconsistent", 3307 sbi->s_blocks_per_group, 3308 sbi->s_clusters_per_group); 3309 goto failed_mount; 3310 } 3311 } else { 3312 if (clustersize != blocksize) { 3313 ext4_warning(sb, "fragment/cluster size (%d) != " 3314 "block size (%d)", clustersize, 3315 blocksize); 3316 clustersize = blocksize; 3317 } 3318 if (sbi->s_blocks_per_group > blocksize * 8) { 3319 ext4_msg(sb, KERN_ERR, 3320 "#blocks per group too big: %lu", 3321 sbi->s_blocks_per_group); 3322 goto failed_mount; 3323 } 3324 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3325 sbi->s_cluster_bits = 0; 3326 } 3327 sbi->s_cluster_ratio = clustersize / blocksize; 3328 3329 if (sbi->s_inodes_per_group > blocksize * 8) { 3330 ext4_msg(sb, KERN_ERR, 3331 "#inodes per group too big: %lu", 3332 sbi->s_inodes_per_group); 3333 goto failed_mount; 3334 } 3335 3336 /* 3337 * Test whether we have more sectors than will fit in sector_t, 3338 * and whether the max offset is addressable by the page cache. 3339 */ 3340 err = generic_check_addressable(sb->s_blocksize_bits, 3341 ext4_blocks_count(es)); 3342 if (err) { 3343 ext4_msg(sb, KERN_ERR, "filesystem" 3344 " too large to mount safely on this system"); 3345 if (sizeof(sector_t) < 8) 3346 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3347 ret = err; 3348 goto failed_mount; 3349 } 3350 3351 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3352 goto cantfind_ext4; 3353 3354 /* check blocks count against device size */ 3355 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3356 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3357 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3358 "exceeds size of device (%llu blocks)", 3359 ext4_blocks_count(es), blocks_count); 3360 goto failed_mount; 3361 } 3362 3363 /* 3364 * It makes no sense for the first data block to be beyond the end 3365 * of the filesystem. 3366 */ 3367 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3368 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3369 "block %u is beyond end of filesystem (%llu)", 3370 le32_to_cpu(es->s_first_data_block), 3371 ext4_blocks_count(es)); 3372 goto failed_mount; 3373 } 3374 blocks_count = (ext4_blocks_count(es) - 3375 le32_to_cpu(es->s_first_data_block) + 3376 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3377 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3378 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3379 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3380 "(block count %llu, first data block %u, " 3381 "blocks per group %lu)", sbi->s_groups_count, 3382 ext4_blocks_count(es), 3383 le32_to_cpu(es->s_first_data_block), 3384 EXT4_BLOCKS_PER_GROUP(sb)); 3385 goto failed_mount; 3386 } 3387 sbi->s_groups_count = blocks_count; 3388 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3389 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3390 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3391 EXT4_DESC_PER_BLOCK(sb); 3392 sbi->s_group_desc = ext4_kvmalloc(db_count * 3393 sizeof(struct buffer_head *), 3394 GFP_KERNEL); 3395 if (sbi->s_group_desc == NULL) { 3396 ext4_msg(sb, KERN_ERR, "not enough memory"); 3397 goto failed_mount; 3398 } 3399 3400 if (ext4_proc_root) 3401 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3402 3403 if (sbi->s_proc) 3404 proc_create_data("options", S_IRUGO, sbi->s_proc, 3405 &ext4_seq_options_fops, sb); 3406 3407 bgl_lock_init(sbi->s_blockgroup_lock); 3408 3409 for (i = 0; i < db_count; i++) { 3410 block = descriptor_loc(sb, logical_sb_block, i); 3411 sbi->s_group_desc[i] = sb_bread(sb, block); 3412 if (!sbi->s_group_desc[i]) { 3413 ext4_msg(sb, KERN_ERR, 3414 "can't read group descriptor %d", i); 3415 db_count = i; 3416 goto failed_mount2; 3417 } 3418 } 3419 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3420 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3421 goto failed_mount2; 3422 } 3423 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3424 if (!ext4_fill_flex_info(sb)) { 3425 ext4_msg(sb, KERN_ERR, 3426 "unable to initialize " 3427 "flex_bg meta info!"); 3428 goto failed_mount2; 3429 } 3430 3431 sbi->s_gdb_count = db_count; 3432 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3433 spin_lock_init(&sbi->s_next_gen_lock); 3434 3435 init_timer(&sbi->s_err_report); 3436 sbi->s_err_report.function = print_daily_error_info; 3437 sbi->s_err_report.data = (unsigned long) sb; 3438 3439 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3440 ext4_count_free_clusters(sb)); 3441 if (!err) { 3442 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3443 ext4_count_free_inodes(sb)); 3444 } 3445 if (!err) { 3446 err = percpu_counter_init(&sbi->s_dirs_counter, 3447 ext4_count_dirs(sb)); 3448 } 3449 if (!err) { 3450 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3451 } 3452 if (err) { 3453 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3454 goto failed_mount3; 3455 } 3456 3457 sbi->s_stripe = ext4_get_stripe_size(sbi); 3458 sbi->s_max_writeback_mb_bump = 128; 3459 3460 /* 3461 * set up enough so that it can read an inode 3462 */ 3463 if (!test_opt(sb, NOLOAD) && 3464 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3465 sb->s_op = &ext4_sops; 3466 else 3467 sb->s_op = &ext4_nojournal_sops; 3468 sb->s_export_op = &ext4_export_ops; 3469 sb->s_xattr = ext4_xattr_handlers; 3470 #ifdef CONFIG_QUOTA 3471 sb->s_qcop = &ext4_qctl_operations; 3472 sb->dq_op = &ext4_quota_operations; 3473 #endif 3474 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3475 3476 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3477 mutex_init(&sbi->s_orphan_lock); 3478 sbi->s_resize_flags = 0; 3479 3480 sb->s_root = NULL; 3481 3482 needs_recovery = (es->s_last_orphan != 0 || 3483 EXT4_HAS_INCOMPAT_FEATURE(sb, 3484 EXT4_FEATURE_INCOMPAT_RECOVER)); 3485 3486 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3487 !(sb->s_flags & MS_RDONLY)) 3488 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3489 goto failed_mount3; 3490 3491 /* 3492 * The first inode we look at is the journal inode. Don't try 3493 * root first: it may be modified in the journal! 3494 */ 3495 if (!test_opt(sb, NOLOAD) && 3496 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3497 if (ext4_load_journal(sb, es, journal_devnum)) 3498 goto failed_mount3; 3499 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3500 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3501 ext4_msg(sb, KERN_ERR, "required journal recovery " 3502 "suppressed and not mounted read-only"); 3503 goto failed_mount_wq; 3504 } else { 3505 clear_opt(sb, DATA_FLAGS); 3506 sbi->s_journal = NULL; 3507 needs_recovery = 0; 3508 goto no_journal; 3509 } 3510 3511 if (ext4_blocks_count(es) > 0xffffffffULL && 3512 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3513 JBD2_FEATURE_INCOMPAT_64BIT)) { 3514 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3515 goto failed_mount_wq; 3516 } 3517 3518 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3519 jbd2_journal_set_features(sbi->s_journal, 3520 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3521 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3522 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3523 jbd2_journal_set_features(sbi->s_journal, 3524 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3525 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3526 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3527 } else { 3528 jbd2_journal_clear_features(sbi->s_journal, 3529 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3530 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3531 } 3532 3533 /* We have now updated the journal if required, so we can 3534 * validate the data journaling mode. */ 3535 switch (test_opt(sb, DATA_FLAGS)) { 3536 case 0: 3537 /* No mode set, assume a default based on the journal 3538 * capabilities: ORDERED_DATA if the journal can 3539 * cope, else JOURNAL_DATA 3540 */ 3541 if (jbd2_journal_check_available_features 3542 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3543 set_opt(sb, ORDERED_DATA); 3544 else 3545 set_opt(sb, JOURNAL_DATA); 3546 break; 3547 3548 case EXT4_MOUNT_ORDERED_DATA: 3549 case EXT4_MOUNT_WRITEBACK_DATA: 3550 if (!jbd2_journal_check_available_features 3551 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3552 ext4_msg(sb, KERN_ERR, "Journal does not support " 3553 "requested data journaling mode"); 3554 goto failed_mount_wq; 3555 } 3556 default: 3557 break; 3558 } 3559 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3560 3561 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3562 3563 /* 3564 * The journal may have updated the bg summary counts, so we 3565 * need to update the global counters. 3566 */ 3567 percpu_counter_set(&sbi->s_freeclusters_counter, 3568 ext4_count_free_clusters(sb)); 3569 percpu_counter_set(&sbi->s_freeinodes_counter, 3570 ext4_count_free_inodes(sb)); 3571 percpu_counter_set(&sbi->s_dirs_counter, 3572 ext4_count_dirs(sb)); 3573 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3574 3575 no_journal: 3576 /* 3577 * The maximum number of concurrent works can be high and 3578 * concurrency isn't really necessary. Limit it to 1. 3579 */ 3580 EXT4_SB(sb)->dio_unwritten_wq = 3581 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3582 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3583 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3584 goto failed_mount_wq; 3585 } 3586 3587 /* 3588 * The jbd2_journal_load will have done any necessary log recovery, 3589 * so we can safely mount the rest of the filesystem now. 3590 */ 3591 3592 root = ext4_iget(sb, EXT4_ROOT_INO); 3593 if (IS_ERR(root)) { 3594 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3595 ret = PTR_ERR(root); 3596 root = NULL; 3597 goto failed_mount4; 3598 } 3599 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3600 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3601 iput(root); 3602 goto failed_mount4; 3603 } 3604 sb->s_root = d_make_root(root); 3605 if (!sb->s_root) { 3606 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3607 ret = -ENOMEM; 3608 goto failed_mount4; 3609 } 3610 3611 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3612 3613 /* determine the minimum size of new large inodes, if present */ 3614 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3615 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3616 EXT4_GOOD_OLD_INODE_SIZE; 3617 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3618 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3619 if (sbi->s_want_extra_isize < 3620 le16_to_cpu(es->s_want_extra_isize)) 3621 sbi->s_want_extra_isize = 3622 le16_to_cpu(es->s_want_extra_isize); 3623 if (sbi->s_want_extra_isize < 3624 le16_to_cpu(es->s_min_extra_isize)) 3625 sbi->s_want_extra_isize = 3626 le16_to_cpu(es->s_min_extra_isize); 3627 } 3628 } 3629 /* Check if enough inode space is available */ 3630 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3631 sbi->s_inode_size) { 3632 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3633 EXT4_GOOD_OLD_INODE_SIZE; 3634 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3635 "available"); 3636 } 3637 3638 err = ext4_setup_system_zone(sb); 3639 if (err) { 3640 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3641 "zone (%d)", err); 3642 goto failed_mount4a; 3643 } 3644 3645 ext4_ext_init(sb); 3646 err = ext4_mb_init(sb, needs_recovery); 3647 if (err) { 3648 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3649 err); 3650 goto failed_mount5; 3651 } 3652 3653 err = ext4_register_li_request(sb, first_not_zeroed); 3654 if (err) 3655 goto failed_mount6; 3656 3657 sbi->s_kobj.kset = ext4_kset; 3658 init_completion(&sbi->s_kobj_unregister); 3659 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3660 "%s", sb->s_id); 3661 if (err) 3662 goto failed_mount7; 3663 3664 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3665 ext4_orphan_cleanup(sb, es); 3666 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3667 if (needs_recovery) { 3668 ext4_msg(sb, KERN_INFO, "recovery complete"); 3669 ext4_mark_recovery_complete(sb, es); 3670 } 3671 if (EXT4_SB(sb)->s_journal) { 3672 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3673 descr = " journalled data mode"; 3674 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3675 descr = " ordered data mode"; 3676 else 3677 descr = " writeback data mode"; 3678 } else 3679 descr = "out journal"; 3680 3681 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3682 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3683 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3684 3685 if (es->s_error_count) 3686 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3687 3688 kfree(orig_data); 3689 return 0; 3690 3691 cantfind_ext4: 3692 if (!silent) 3693 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3694 goto failed_mount; 3695 3696 failed_mount7: 3697 ext4_unregister_li_request(sb); 3698 failed_mount6: 3699 ext4_mb_release(sb); 3700 failed_mount5: 3701 ext4_ext_release(sb); 3702 ext4_release_system_zone(sb); 3703 failed_mount4a: 3704 dput(sb->s_root); 3705 sb->s_root = NULL; 3706 failed_mount4: 3707 ext4_msg(sb, KERN_ERR, "mount failed"); 3708 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3709 failed_mount_wq: 3710 if (sbi->s_journal) { 3711 jbd2_journal_destroy(sbi->s_journal); 3712 sbi->s_journal = NULL; 3713 } 3714 failed_mount3: 3715 del_timer(&sbi->s_err_report); 3716 if (sbi->s_flex_groups) 3717 ext4_kvfree(sbi->s_flex_groups); 3718 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3719 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3720 percpu_counter_destroy(&sbi->s_dirs_counter); 3721 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3722 if (sbi->s_mmp_tsk) 3723 kthread_stop(sbi->s_mmp_tsk); 3724 failed_mount2: 3725 for (i = 0; i < db_count; i++) 3726 brelse(sbi->s_group_desc[i]); 3727 ext4_kvfree(sbi->s_group_desc); 3728 failed_mount: 3729 if (sbi->s_proc) { 3730 remove_proc_entry("options", sbi->s_proc); 3731 remove_proc_entry(sb->s_id, ext4_proc_root); 3732 } 3733 #ifdef CONFIG_QUOTA 3734 for (i = 0; i < MAXQUOTAS; i++) 3735 kfree(sbi->s_qf_names[i]); 3736 #endif 3737 ext4_blkdev_remove(sbi); 3738 brelse(bh); 3739 out_fail: 3740 sb->s_fs_info = NULL; 3741 kfree(sbi->s_blockgroup_lock); 3742 kfree(sbi); 3743 out_free_orig: 3744 kfree(orig_data); 3745 return ret; 3746 } 3747 3748 /* 3749 * Setup any per-fs journal parameters now. We'll do this both on 3750 * initial mount, once the journal has been initialised but before we've 3751 * done any recovery; and again on any subsequent remount. 3752 */ 3753 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3754 { 3755 struct ext4_sb_info *sbi = EXT4_SB(sb); 3756 3757 journal->j_commit_interval = sbi->s_commit_interval; 3758 journal->j_min_batch_time = sbi->s_min_batch_time; 3759 journal->j_max_batch_time = sbi->s_max_batch_time; 3760 3761 write_lock(&journal->j_state_lock); 3762 if (test_opt(sb, BARRIER)) 3763 journal->j_flags |= JBD2_BARRIER; 3764 else 3765 journal->j_flags &= ~JBD2_BARRIER; 3766 if (test_opt(sb, DATA_ERR_ABORT)) 3767 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3768 else 3769 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3770 write_unlock(&journal->j_state_lock); 3771 } 3772 3773 static journal_t *ext4_get_journal(struct super_block *sb, 3774 unsigned int journal_inum) 3775 { 3776 struct inode *journal_inode; 3777 journal_t *journal; 3778 3779 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3780 3781 /* First, test for the existence of a valid inode on disk. Bad 3782 * things happen if we iget() an unused inode, as the subsequent 3783 * iput() will try to delete it. */ 3784 3785 journal_inode = ext4_iget(sb, journal_inum); 3786 if (IS_ERR(journal_inode)) { 3787 ext4_msg(sb, KERN_ERR, "no journal found"); 3788 return NULL; 3789 } 3790 if (!journal_inode->i_nlink) { 3791 make_bad_inode(journal_inode); 3792 iput(journal_inode); 3793 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3794 return NULL; 3795 } 3796 3797 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3798 journal_inode, journal_inode->i_size); 3799 if (!S_ISREG(journal_inode->i_mode)) { 3800 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3801 iput(journal_inode); 3802 return NULL; 3803 } 3804 3805 journal = jbd2_journal_init_inode(journal_inode); 3806 if (!journal) { 3807 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3808 iput(journal_inode); 3809 return NULL; 3810 } 3811 journal->j_private = sb; 3812 ext4_init_journal_params(sb, journal); 3813 return journal; 3814 } 3815 3816 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3817 dev_t j_dev) 3818 { 3819 struct buffer_head *bh; 3820 journal_t *journal; 3821 ext4_fsblk_t start; 3822 ext4_fsblk_t len; 3823 int hblock, blocksize; 3824 ext4_fsblk_t sb_block; 3825 unsigned long offset; 3826 struct ext4_super_block *es; 3827 struct block_device *bdev; 3828 3829 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3830 3831 bdev = ext4_blkdev_get(j_dev, sb); 3832 if (bdev == NULL) 3833 return NULL; 3834 3835 blocksize = sb->s_blocksize; 3836 hblock = bdev_logical_block_size(bdev); 3837 if (blocksize < hblock) { 3838 ext4_msg(sb, KERN_ERR, 3839 "blocksize too small for journal device"); 3840 goto out_bdev; 3841 } 3842 3843 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3844 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3845 set_blocksize(bdev, blocksize); 3846 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3847 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3848 "external journal"); 3849 goto out_bdev; 3850 } 3851 3852 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3853 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3854 !(le32_to_cpu(es->s_feature_incompat) & 3855 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3856 ext4_msg(sb, KERN_ERR, "external journal has " 3857 "bad superblock"); 3858 brelse(bh); 3859 goto out_bdev; 3860 } 3861 3862 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3863 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3864 brelse(bh); 3865 goto out_bdev; 3866 } 3867 3868 len = ext4_blocks_count(es); 3869 start = sb_block + 1; 3870 brelse(bh); /* we're done with the superblock */ 3871 3872 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3873 start, len, blocksize); 3874 if (!journal) { 3875 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3876 goto out_bdev; 3877 } 3878 journal->j_private = sb; 3879 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3880 wait_on_buffer(journal->j_sb_buffer); 3881 if (!buffer_uptodate(journal->j_sb_buffer)) { 3882 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3883 goto out_journal; 3884 } 3885 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3886 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3887 "user (unsupported) - %d", 3888 be32_to_cpu(journal->j_superblock->s_nr_users)); 3889 goto out_journal; 3890 } 3891 EXT4_SB(sb)->journal_bdev = bdev; 3892 ext4_init_journal_params(sb, journal); 3893 return journal; 3894 3895 out_journal: 3896 jbd2_journal_destroy(journal); 3897 out_bdev: 3898 ext4_blkdev_put(bdev); 3899 return NULL; 3900 } 3901 3902 static int ext4_load_journal(struct super_block *sb, 3903 struct ext4_super_block *es, 3904 unsigned long journal_devnum) 3905 { 3906 journal_t *journal; 3907 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3908 dev_t journal_dev; 3909 int err = 0; 3910 int really_read_only; 3911 3912 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3913 3914 if (journal_devnum && 3915 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3916 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3917 "numbers have changed"); 3918 journal_dev = new_decode_dev(journal_devnum); 3919 } else 3920 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3921 3922 really_read_only = bdev_read_only(sb->s_bdev); 3923 3924 /* 3925 * Are we loading a blank journal or performing recovery after a 3926 * crash? For recovery, we need to check in advance whether we 3927 * can get read-write access to the device. 3928 */ 3929 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3930 if (sb->s_flags & MS_RDONLY) { 3931 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3932 "required on readonly filesystem"); 3933 if (really_read_only) { 3934 ext4_msg(sb, KERN_ERR, "write access " 3935 "unavailable, cannot proceed"); 3936 return -EROFS; 3937 } 3938 ext4_msg(sb, KERN_INFO, "write access will " 3939 "be enabled during recovery"); 3940 } 3941 } 3942 3943 if (journal_inum && journal_dev) { 3944 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3945 "and inode journals!"); 3946 return -EINVAL; 3947 } 3948 3949 if (journal_inum) { 3950 if (!(journal = ext4_get_journal(sb, journal_inum))) 3951 return -EINVAL; 3952 } else { 3953 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3954 return -EINVAL; 3955 } 3956 3957 if (!(journal->j_flags & JBD2_BARRIER)) 3958 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3959 3960 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3961 err = jbd2_journal_wipe(journal, !really_read_only); 3962 if (!err) { 3963 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 3964 if (save) 3965 memcpy(save, ((char *) es) + 3966 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 3967 err = jbd2_journal_load(journal); 3968 if (save) 3969 memcpy(((char *) es) + EXT4_S_ERR_START, 3970 save, EXT4_S_ERR_LEN); 3971 kfree(save); 3972 } 3973 3974 if (err) { 3975 ext4_msg(sb, KERN_ERR, "error loading journal"); 3976 jbd2_journal_destroy(journal); 3977 return err; 3978 } 3979 3980 EXT4_SB(sb)->s_journal = journal; 3981 ext4_clear_journal_err(sb, es); 3982 3983 if (!really_read_only && journal_devnum && 3984 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3985 es->s_journal_dev = cpu_to_le32(journal_devnum); 3986 3987 /* Make sure we flush the recovery flag to disk. */ 3988 ext4_commit_super(sb, 1); 3989 } 3990 3991 return 0; 3992 } 3993 3994 static int ext4_commit_super(struct super_block *sb, int sync) 3995 { 3996 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3997 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3998 int error = 0; 3999 4000 if (!sbh || block_device_ejected(sb)) 4001 return error; 4002 if (buffer_write_io_error(sbh)) { 4003 /* 4004 * Oh, dear. A previous attempt to write the 4005 * superblock failed. This could happen because the 4006 * USB device was yanked out. Or it could happen to 4007 * be a transient write error and maybe the block will 4008 * be remapped. Nothing we can do but to retry the 4009 * write and hope for the best. 4010 */ 4011 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4012 "superblock detected"); 4013 clear_buffer_write_io_error(sbh); 4014 set_buffer_uptodate(sbh); 4015 } 4016 /* 4017 * If the file system is mounted read-only, don't update the 4018 * superblock write time. This avoids updating the superblock 4019 * write time when we are mounting the root file system 4020 * read/only but we need to replay the journal; at that point, 4021 * for people who are east of GMT and who make their clock 4022 * tick in localtime for Windows bug-for-bug compatibility, 4023 * the clock is set in the future, and this will cause e2fsck 4024 * to complain and force a full file system check. 4025 */ 4026 if (!(sb->s_flags & MS_RDONLY)) 4027 es->s_wtime = cpu_to_le32(get_seconds()); 4028 if (sb->s_bdev->bd_part) 4029 es->s_kbytes_written = 4030 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4031 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4032 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4033 else 4034 es->s_kbytes_written = 4035 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4036 ext4_free_blocks_count_set(es, 4037 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4038 &EXT4_SB(sb)->s_freeclusters_counter))); 4039 es->s_free_inodes_count = 4040 cpu_to_le32(percpu_counter_sum_positive( 4041 &EXT4_SB(sb)->s_freeinodes_counter)); 4042 sb->s_dirt = 0; 4043 BUFFER_TRACE(sbh, "marking dirty"); 4044 mark_buffer_dirty(sbh); 4045 if (sync) { 4046 error = sync_dirty_buffer(sbh); 4047 if (error) 4048 return error; 4049 4050 error = buffer_write_io_error(sbh); 4051 if (error) { 4052 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4053 "superblock"); 4054 clear_buffer_write_io_error(sbh); 4055 set_buffer_uptodate(sbh); 4056 } 4057 } 4058 return error; 4059 } 4060 4061 /* 4062 * Have we just finished recovery? If so, and if we are mounting (or 4063 * remounting) the filesystem readonly, then we will end up with a 4064 * consistent fs on disk. Record that fact. 4065 */ 4066 static void ext4_mark_recovery_complete(struct super_block *sb, 4067 struct ext4_super_block *es) 4068 { 4069 journal_t *journal = EXT4_SB(sb)->s_journal; 4070 4071 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4072 BUG_ON(journal != NULL); 4073 return; 4074 } 4075 jbd2_journal_lock_updates(journal); 4076 if (jbd2_journal_flush(journal) < 0) 4077 goto out; 4078 4079 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4080 sb->s_flags & MS_RDONLY) { 4081 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4082 ext4_commit_super(sb, 1); 4083 } 4084 4085 out: 4086 jbd2_journal_unlock_updates(journal); 4087 } 4088 4089 /* 4090 * If we are mounting (or read-write remounting) a filesystem whose journal 4091 * has recorded an error from a previous lifetime, move that error to the 4092 * main filesystem now. 4093 */ 4094 static void ext4_clear_journal_err(struct super_block *sb, 4095 struct ext4_super_block *es) 4096 { 4097 journal_t *journal; 4098 int j_errno; 4099 const char *errstr; 4100 4101 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4102 4103 journal = EXT4_SB(sb)->s_journal; 4104 4105 /* 4106 * Now check for any error status which may have been recorded in the 4107 * journal by a prior ext4_error() or ext4_abort() 4108 */ 4109 4110 j_errno = jbd2_journal_errno(journal); 4111 if (j_errno) { 4112 char nbuf[16]; 4113 4114 errstr = ext4_decode_error(sb, j_errno, nbuf); 4115 ext4_warning(sb, "Filesystem error recorded " 4116 "from previous mount: %s", errstr); 4117 ext4_warning(sb, "Marking fs in need of filesystem check."); 4118 4119 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4120 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4121 ext4_commit_super(sb, 1); 4122 4123 jbd2_journal_clear_err(journal); 4124 } 4125 } 4126 4127 /* 4128 * Force the running and committing transactions to commit, 4129 * and wait on the commit. 4130 */ 4131 int ext4_force_commit(struct super_block *sb) 4132 { 4133 journal_t *journal; 4134 int ret = 0; 4135 4136 if (sb->s_flags & MS_RDONLY) 4137 return 0; 4138 4139 journal = EXT4_SB(sb)->s_journal; 4140 if (journal) { 4141 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4142 ret = ext4_journal_force_commit(journal); 4143 } 4144 4145 return ret; 4146 } 4147 4148 static void ext4_write_super(struct super_block *sb) 4149 { 4150 lock_super(sb); 4151 ext4_commit_super(sb, 1); 4152 unlock_super(sb); 4153 } 4154 4155 static int ext4_sync_fs(struct super_block *sb, int wait) 4156 { 4157 int ret = 0; 4158 tid_t target; 4159 struct ext4_sb_info *sbi = EXT4_SB(sb); 4160 4161 trace_ext4_sync_fs(sb, wait); 4162 flush_workqueue(sbi->dio_unwritten_wq); 4163 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4164 if (wait) 4165 jbd2_log_wait_commit(sbi->s_journal, target); 4166 } 4167 return ret; 4168 } 4169 4170 /* 4171 * LVM calls this function before a (read-only) snapshot is created. This 4172 * gives us a chance to flush the journal completely and mark the fs clean. 4173 * 4174 * Note that only this function cannot bring a filesystem to be in a clean 4175 * state independently, because ext4 prevents a new handle from being started 4176 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4177 * the upper layer. 4178 */ 4179 static int ext4_freeze(struct super_block *sb) 4180 { 4181 int error = 0; 4182 journal_t *journal; 4183 4184 if (sb->s_flags & MS_RDONLY) 4185 return 0; 4186 4187 journal = EXT4_SB(sb)->s_journal; 4188 4189 /* Now we set up the journal barrier. */ 4190 jbd2_journal_lock_updates(journal); 4191 4192 /* 4193 * Don't clear the needs_recovery flag if we failed to flush 4194 * the journal. 4195 */ 4196 error = jbd2_journal_flush(journal); 4197 if (error < 0) 4198 goto out; 4199 4200 /* Journal blocked and flushed, clear needs_recovery flag. */ 4201 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4202 error = ext4_commit_super(sb, 1); 4203 out: 4204 /* we rely on s_frozen to stop further updates */ 4205 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4206 return error; 4207 } 4208 4209 /* 4210 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4211 * flag here, even though the filesystem is not technically dirty yet. 4212 */ 4213 static int ext4_unfreeze(struct super_block *sb) 4214 { 4215 if (sb->s_flags & MS_RDONLY) 4216 return 0; 4217 4218 lock_super(sb); 4219 /* Reset the needs_recovery flag before the fs is unlocked. */ 4220 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4221 ext4_commit_super(sb, 1); 4222 unlock_super(sb); 4223 return 0; 4224 } 4225 4226 /* 4227 * Structure to save mount options for ext4_remount's benefit 4228 */ 4229 struct ext4_mount_options { 4230 unsigned long s_mount_opt; 4231 unsigned long s_mount_opt2; 4232 uid_t s_resuid; 4233 gid_t s_resgid; 4234 unsigned long s_commit_interval; 4235 u32 s_min_batch_time, s_max_batch_time; 4236 #ifdef CONFIG_QUOTA 4237 int s_jquota_fmt; 4238 char *s_qf_names[MAXQUOTAS]; 4239 #endif 4240 }; 4241 4242 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4243 { 4244 struct ext4_super_block *es; 4245 struct ext4_sb_info *sbi = EXT4_SB(sb); 4246 unsigned long old_sb_flags; 4247 struct ext4_mount_options old_opts; 4248 int enable_quota = 0; 4249 ext4_group_t g; 4250 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4251 int err = 0; 4252 #ifdef CONFIG_QUOTA 4253 int i; 4254 #endif 4255 char *orig_data = kstrdup(data, GFP_KERNEL); 4256 4257 /* Store the original options */ 4258 lock_super(sb); 4259 old_sb_flags = sb->s_flags; 4260 old_opts.s_mount_opt = sbi->s_mount_opt; 4261 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4262 old_opts.s_resuid = sbi->s_resuid; 4263 old_opts.s_resgid = sbi->s_resgid; 4264 old_opts.s_commit_interval = sbi->s_commit_interval; 4265 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4266 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4267 #ifdef CONFIG_QUOTA 4268 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4269 for (i = 0; i < MAXQUOTAS; i++) 4270 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4271 #endif 4272 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4273 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4274 4275 /* 4276 * Allow the "check" option to be passed as a remount option. 4277 */ 4278 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4279 err = -EINVAL; 4280 goto restore_opts; 4281 } 4282 4283 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4284 ext4_abort(sb, "Abort forced by user"); 4285 4286 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4287 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4288 4289 es = sbi->s_es; 4290 4291 if (sbi->s_journal) { 4292 ext4_init_journal_params(sb, sbi->s_journal); 4293 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4294 } 4295 4296 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4297 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4298 err = -EROFS; 4299 goto restore_opts; 4300 } 4301 4302 if (*flags & MS_RDONLY) { 4303 err = dquot_suspend(sb, -1); 4304 if (err < 0) 4305 goto restore_opts; 4306 4307 /* 4308 * First of all, the unconditional stuff we have to do 4309 * to disable replay of the journal when we next remount 4310 */ 4311 sb->s_flags |= MS_RDONLY; 4312 4313 /* 4314 * OK, test if we are remounting a valid rw partition 4315 * readonly, and if so set the rdonly flag and then 4316 * mark the partition as valid again. 4317 */ 4318 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4319 (sbi->s_mount_state & EXT4_VALID_FS)) 4320 es->s_state = cpu_to_le16(sbi->s_mount_state); 4321 4322 if (sbi->s_journal) 4323 ext4_mark_recovery_complete(sb, es); 4324 } else { 4325 /* Make sure we can mount this feature set readwrite */ 4326 if (!ext4_feature_set_ok(sb, 0)) { 4327 err = -EROFS; 4328 goto restore_opts; 4329 } 4330 /* 4331 * Make sure the group descriptor checksums 4332 * are sane. If they aren't, refuse to remount r/w. 4333 */ 4334 for (g = 0; g < sbi->s_groups_count; g++) { 4335 struct ext4_group_desc *gdp = 4336 ext4_get_group_desc(sb, g, NULL); 4337 4338 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4339 ext4_msg(sb, KERN_ERR, 4340 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4341 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4342 le16_to_cpu(gdp->bg_checksum)); 4343 err = -EINVAL; 4344 goto restore_opts; 4345 } 4346 } 4347 4348 /* 4349 * If we have an unprocessed orphan list hanging 4350 * around from a previously readonly bdev mount, 4351 * require a full umount/remount for now. 4352 */ 4353 if (es->s_last_orphan) { 4354 ext4_msg(sb, KERN_WARNING, "Couldn't " 4355 "remount RDWR because of unprocessed " 4356 "orphan inode list. Please " 4357 "umount/remount instead"); 4358 err = -EINVAL; 4359 goto restore_opts; 4360 } 4361 4362 /* 4363 * Mounting a RDONLY partition read-write, so reread 4364 * and store the current valid flag. (It may have 4365 * been changed by e2fsck since we originally mounted 4366 * the partition.) 4367 */ 4368 if (sbi->s_journal) 4369 ext4_clear_journal_err(sb, es); 4370 sbi->s_mount_state = le16_to_cpu(es->s_state); 4371 if (!ext4_setup_super(sb, es, 0)) 4372 sb->s_flags &= ~MS_RDONLY; 4373 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4374 EXT4_FEATURE_INCOMPAT_MMP)) 4375 if (ext4_multi_mount_protect(sb, 4376 le64_to_cpu(es->s_mmp_block))) { 4377 err = -EROFS; 4378 goto restore_opts; 4379 } 4380 enable_quota = 1; 4381 } 4382 } 4383 4384 /* 4385 * Reinitialize lazy itable initialization thread based on 4386 * current settings 4387 */ 4388 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4389 ext4_unregister_li_request(sb); 4390 else { 4391 ext4_group_t first_not_zeroed; 4392 first_not_zeroed = ext4_has_uninit_itable(sb); 4393 ext4_register_li_request(sb, first_not_zeroed); 4394 } 4395 4396 ext4_setup_system_zone(sb); 4397 if (sbi->s_journal == NULL) 4398 ext4_commit_super(sb, 1); 4399 4400 #ifdef CONFIG_QUOTA 4401 /* Release old quota file names */ 4402 for (i = 0; i < MAXQUOTAS; i++) 4403 if (old_opts.s_qf_names[i] && 4404 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4405 kfree(old_opts.s_qf_names[i]); 4406 #endif 4407 unlock_super(sb); 4408 if (enable_quota) 4409 dquot_resume(sb, -1); 4410 4411 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4412 kfree(orig_data); 4413 return 0; 4414 4415 restore_opts: 4416 sb->s_flags = old_sb_flags; 4417 sbi->s_mount_opt = old_opts.s_mount_opt; 4418 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4419 sbi->s_resuid = old_opts.s_resuid; 4420 sbi->s_resgid = old_opts.s_resgid; 4421 sbi->s_commit_interval = old_opts.s_commit_interval; 4422 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4423 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4424 #ifdef CONFIG_QUOTA 4425 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4426 for (i = 0; i < MAXQUOTAS; i++) { 4427 if (sbi->s_qf_names[i] && 4428 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4429 kfree(sbi->s_qf_names[i]); 4430 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4431 } 4432 #endif 4433 unlock_super(sb); 4434 kfree(orig_data); 4435 return err; 4436 } 4437 4438 /* 4439 * Note: calculating the overhead so we can be compatible with 4440 * historical BSD practice is quite difficult in the face of 4441 * clusters/bigalloc. This is because multiple metadata blocks from 4442 * different block group can end up in the same allocation cluster. 4443 * Calculating the exact overhead in the face of clustered allocation 4444 * requires either O(all block bitmaps) in memory or O(number of block 4445 * groups**2) in time. We will still calculate the superblock for 4446 * older file systems --- and if we come across with a bigalloc file 4447 * system with zero in s_overhead_clusters the estimate will be close to 4448 * correct especially for very large cluster sizes --- but for newer 4449 * file systems, it's better to calculate this figure once at mkfs 4450 * time, and store it in the superblock. If the superblock value is 4451 * present (even for non-bigalloc file systems), we will use it. 4452 */ 4453 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4454 { 4455 struct super_block *sb = dentry->d_sb; 4456 struct ext4_sb_info *sbi = EXT4_SB(sb); 4457 struct ext4_super_block *es = sbi->s_es; 4458 struct ext4_group_desc *gdp; 4459 u64 fsid; 4460 s64 bfree; 4461 4462 if (test_opt(sb, MINIX_DF)) { 4463 sbi->s_overhead_last = 0; 4464 } else if (es->s_overhead_clusters) { 4465 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters); 4466 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4467 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4468 ext4_fsblk_t overhead = 0; 4469 4470 /* 4471 * Compute the overhead (FS structures). This is constant 4472 * for a given filesystem unless the number of block groups 4473 * changes so we cache the previous value until it does. 4474 */ 4475 4476 /* 4477 * All of the blocks before first_data_block are 4478 * overhead 4479 */ 4480 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4481 4482 /* 4483 * Add the overhead found in each block group 4484 */ 4485 for (i = 0; i < ngroups; i++) { 4486 gdp = ext4_get_group_desc(sb, i, NULL); 4487 overhead += ext4_num_overhead_clusters(sb, i, gdp); 4488 cond_resched(); 4489 } 4490 sbi->s_overhead_last = overhead; 4491 smp_wmb(); 4492 sbi->s_blocks_last = ext4_blocks_count(es); 4493 } 4494 4495 buf->f_type = EXT4_SUPER_MAGIC; 4496 buf->f_bsize = sb->s_blocksize; 4497 buf->f_blocks = (ext4_blocks_count(es) - 4498 EXT4_C2B(sbi, sbi->s_overhead_last)); 4499 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4500 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4501 /* prevent underflow in case that few free space is available */ 4502 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4503 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4504 if (buf->f_bfree < ext4_r_blocks_count(es)) 4505 buf->f_bavail = 0; 4506 buf->f_files = le32_to_cpu(es->s_inodes_count); 4507 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4508 buf->f_namelen = EXT4_NAME_LEN; 4509 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4510 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4511 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4512 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4513 4514 return 0; 4515 } 4516 4517 /* Helper function for writing quotas on sync - we need to start transaction 4518 * before quota file is locked for write. Otherwise the are possible deadlocks: 4519 * Process 1 Process 2 4520 * ext4_create() quota_sync() 4521 * jbd2_journal_start() write_dquot() 4522 * dquot_initialize() down(dqio_mutex) 4523 * down(dqio_mutex) jbd2_journal_start() 4524 * 4525 */ 4526 4527 #ifdef CONFIG_QUOTA 4528 4529 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4530 { 4531 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4532 } 4533 4534 static int ext4_write_dquot(struct dquot *dquot) 4535 { 4536 int ret, err; 4537 handle_t *handle; 4538 struct inode *inode; 4539 4540 inode = dquot_to_inode(dquot); 4541 handle = ext4_journal_start(inode, 4542 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4543 if (IS_ERR(handle)) 4544 return PTR_ERR(handle); 4545 ret = dquot_commit(dquot); 4546 err = ext4_journal_stop(handle); 4547 if (!ret) 4548 ret = err; 4549 return ret; 4550 } 4551 4552 static int ext4_acquire_dquot(struct dquot *dquot) 4553 { 4554 int ret, err; 4555 handle_t *handle; 4556 4557 handle = ext4_journal_start(dquot_to_inode(dquot), 4558 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4559 if (IS_ERR(handle)) 4560 return PTR_ERR(handle); 4561 ret = dquot_acquire(dquot); 4562 err = ext4_journal_stop(handle); 4563 if (!ret) 4564 ret = err; 4565 return ret; 4566 } 4567 4568 static int ext4_release_dquot(struct dquot *dquot) 4569 { 4570 int ret, err; 4571 handle_t *handle; 4572 4573 handle = ext4_journal_start(dquot_to_inode(dquot), 4574 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4575 if (IS_ERR(handle)) { 4576 /* Release dquot anyway to avoid endless cycle in dqput() */ 4577 dquot_release(dquot); 4578 return PTR_ERR(handle); 4579 } 4580 ret = dquot_release(dquot); 4581 err = ext4_journal_stop(handle); 4582 if (!ret) 4583 ret = err; 4584 return ret; 4585 } 4586 4587 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4588 { 4589 /* Are we journaling quotas? */ 4590 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4591 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4592 dquot_mark_dquot_dirty(dquot); 4593 return ext4_write_dquot(dquot); 4594 } else { 4595 return dquot_mark_dquot_dirty(dquot); 4596 } 4597 } 4598 4599 static int ext4_write_info(struct super_block *sb, int type) 4600 { 4601 int ret, err; 4602 handle_t *handle; 4603 4604 /* Data block + inode block */ 4605 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4606 if (IS_ERR(handle)) 4607 return PTR_ERR(handle); 4608 ret = dquot_commit_info(sb, type); 4609 err = ext4_journal_stop(handle); 4610 if (!ret) 4611 ret = err; 4612 return ret; 4613 } 4614 4615 /* 4616 * Turn on quotas during mount time - we need to find 4617 * the quota file and such... 4618 */ 4619 static int ext4_quota_on_mount(struct super_block *sb, int type) 4620 { 4621 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4622 EXT4_SB(sb)->s_jquota_fmt, type); 4623 } 4624 4625 /* 4626 * Standard function to be called on quota_on 4627 */ 4628 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4629 struct path *path) 4630 { 4631 int err; 4632 4633 if (!test_opt(sb, QUOTA)) 4634 return -EINVAL; 4635 4636 /* Quotafile not on the same filesystem? */ 4637 if (path->dentry->d_sb != sb) 4638 return -EXDEV; 4639 /* Journaling quota? */ 4640 if (EXT4_SB(sb)->s_qf_names[type]) { 4641 /* Quotafile not in fs root? */ 4642 if (path->dentry->d_parent != sb->s_root) 4643 ext4_msg(sb, KERN_WARNING, 4644 "Quota file not on filesystem root. " 4645 "Journaled quota will not work"); 4646 } 4647 4648 /* 4649 * When we journal data on quota file, we have to flush journal to see 4650 * all updates to the file when we bypass pagecache... 4651 */ 4652 if (EXT4_SB(sb)->s_journal && 4653 ext4_should_journal_data(path->dentry->d_inode)) { 4654 /* 4655 * We don't need to lock updates but journal_flush() could 4656 * otherwise be livelocked... 4657 */ 4658 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4659 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4660 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4661 if (err) 4662 return err; 4663 } 4664 4665 return dquot_quota_on(sb, type, format_id, path); 4666 } 4667 4668 static int ext4_quota_off(struct super_block *sb, int type) 4669 { 4670 struct inode *inode = sb_dqopt(sb)->files[type]; 4671 handle_t *handle; 4672 4673 /* Force all delayed allocation blocks to be allocated. 4674 * Caller already holds s_umount sem */ 4675 if (test_opt(sb, DELALLOC)) 4676 sync_filesystem(sb); 4677 4678 if (!inode) 4679 goto out; 4680 4681 /* Update modification times of quota files when userspace can 4682 * start looking at them */ 4683 handle = ext4_journal_start(inode, 1); 4684 if (IS_ERR(handle)) 4685 goto out; 4686 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4687 ext4_mark_inode_dirty(handle, inode); 4688 ext4_journal_stop(handle); 4689 4690 out: 4691 return dquot_quota_off(sb, type); 4692 } 4693 4694 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4695 * acquiring the locks... As quota files are never truncated and quota code 4696 * itself serializes the operations (and no one else should touch the files) 4697 * we don't have to be afraid of races */ 4698 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4699 size_t len, loff_t off) 4700 { 4701 struct inode *inode = sb_dqopt(sb)->files[type]; 4702 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4703 int err = 0; 4704 int offset = off & (sb->s_blocksize - 1); 4705 int tocopy; 4706 size_t toread; 4707 struct buffer_head *bh; 4708 loff_t i_size = i_size_read(inode); 4709 4710 if (off > i_size) 4711 return 0; 4712 if (off+len > i_size) 4713 len = i_size-off; 4714 toread = len; 4715 while (toread > 0) { 4716 tocopy = sb->s_blocksize - offset < toread ? 4717 sb->s_blocksize - offset : toread; 4718 bh = ext4_bread(NULL, inode, blk, 0, &err); 4719 if (err) 4720 return err; 4721 if (!bh) /* A hole? */ 4722 memset(data, 0, tocopy); 4723 else 4724 memcpy(data, bh->b_data+offset, tocopy); 4725 brelse(bh); 4726 offset = 0; 4727 toread -= tocopy; 4728 data += tocopy; 4729 blk++; 4730 } 4731 return len; 4732 } 4733 4734 /* Write to quotafile (we know the transaction is already started and has 4735 * enough credits) */ 4736 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4737 const char *data, size_t len, loff_t off) 4738 { 4739 struct inode *inode = sb_dqopt(sb)->files[type]; 4740 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4741 int err = 0; 4742 int offset = off & (sb->s_blocksize - 1); 4743 struct buffer_head *bh; 4744 handle_t *handle = journal_current_handle(); 4745 4746 if (EXT4_SB(sb)->s_journal && !handle) { 4747 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4748 " cancelled because transaction is not started", 4749 (unsigned long long)off, (unsigned long long)len); 4750 return -EIO; 4751 } 4752 /* 4753 * Since we account only one data block in transaction credits, 4754 * then it is impossible to cross a block boundary. 4755 */ 4756 if (sb->s_blocksize - offset < len) { 4757 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4758 " cancelled because not block aligned", 4759 (unsigned long long)off, (unsigned long long)len); 4760 return -EIO; 4761 } 4762 4763 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4764 bh = ext4_bread(handle, inode, blk, 1, &err); 4765 if (!bh) 4766 goto out; 4767 err = ext4_journal_get_write_access(handle, bh); 4768 if (err) { 4769 brelse(bh); 4770 goto out; 4771 } 4772 lock_buffer(bh); 4773 memcpy(bh->b_data+offset, data, len); 4774 flush_dcache_page(bh->b_page); 4775 unlock_buffer(bh); 4776 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4777 brelse(bh); 4778 out: 4779 if (err) { 4780 mutex_unlock(&inode->i_mutex); 4781 return err; 4782 } 4783 if (inode->i_size < off + len) { 4784 i_size_write(inode, off + len); 4785 EXT4_I(inode)->i_disksize = inode->i_size; 4786 ext4_mark_inode_dirty(handle, inode); 4787 } 4788 mutex_unlock(&inode->i_mutex); 4789 return len; 4790 } 4791 4792 #endif 4793 4794 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4795 const char *dev_name, void *data) 4796 { 4797 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4798 } 4799 4800 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4801 static inline void register_as_ext2(void) 4802 { 4803 int err = register_filesystem(&ext2_fs_type); 4804 if (err) 4805 printk(KERN_WARNING 4806 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4807 } 4808 4809 static inline void unregister_as_ext2(void) 4810 { 4811 unregister_filesystem(&ext2_fs_type); 4812 } 4813 4814 static inline int ext2_feature_set_ok(struct super_block *sb) 4815 { 4816 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 4817 return 0; 4818 if (sb->s_flags & MS_RDONLY) 4819 return 1; 4820 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 4821 return 0; 4822 return 1; 4823 } 4824 MODULE_ALIAS("ext2"); 4825 #else 4826 static inline void register_as_ext2(void) { } 4827 static inline void unregister_as_ext2(void) { } 4828 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 4829 #endif 4830 4831 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4832 static inline void register_as_ext3(void) 4833 { 4834 int err = register_filesystem(&ext3_fs_type); 4835 if (err) 4836 printk(KERN_WARNING 4837 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4838 } 4839 4840 static inline void unregister_as_ext3(void) 4841 { 4842 unregister_filesystem(&ext3_fs_type); 4843 } 4844 4845 static inline int ext3_feature_set_ok(struct super_block *sb) 4846 { 4847 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 4848 return 0; 4849 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 4850 return 0; 4851 if (sb->s_flags & MS_RDONLY) 4852 return 1; 4853 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 4854 return 0; 4855 return 1; 4856 } 4857 MODULE_ALIAS("ext3"); 4858 #else 4859 static inline void register_as_ext3(void) { } 4860 static inline void unregister_as_ext3(void) { } 4861 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 4862 #endif 4863 4864 static struct file_system_type ext4_fs_type = { 4865 .owner = THIS_MODULE, 4866 .name = "ext4", 4867 .mount = ext4_mount, 4868 .kill_sb = kill_block_super, 4869 .fs_flags = FS_REQUIRES_DEV, 4870 }; 4871 4872 static int __init ext4_init_feat_adverts(void) 4873 { 4874 struct ext4_features *ef; 4875 int ret = -ENOMEM; 4876 4877 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4878 if (!ef) 4879 goto out; 4880 4881 ef->f_kobj.kset = ext4_kset; 4882 init_completion(&ef->f_kobj_unregister); 4883 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4884 "features"); 4885 if (ret) { 4886 kfree(ef); 4887 goto out; 4888 } 4889 4890 ext4_feat = ef; 4891 ret = 0; 4892 out: 4893 return ret; 4894 } 4895 4896 static void ext4_exit_feat_adverts(void) 4897 { 4898 kobject_put(&ext4_feat->f_kobj); 4899 wait_for_completion(&ext4_feat->f_kobj_unregister); 4900 kfree(ext4_feat); 4901 } 4902 4903 /* Shared across all ext4 file systems */ 4904 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 4905 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 4906 4907 static int __init ext4_init_fs(void) 4908 { 4909 int i, err; 4910 4911 ext4_li_info = NULL; 4912 mutex_init(&ext4_li_mtx); 4913 4914 ext4_check_flag_values(); 4915 4916 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 4917 mutex_init(&ext4__aio_mutex[i]); 4918 init_waitqueue_head(&ext4__ioend_wq[i]); 4919 } 4920 4921 err = ext4_init_pageio(); 4922 if (err) 4923 return err; 4924 err = ext4_init_system_zone(); 4925 if (err) 4926 goto out6; 4927 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4928 if (!ext4_kset) 4929 goto out5; 4930 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4931 4932 err = ext4_init_feat_adverts(); 4933 if (err) 4934 goto out4; 4935 4936 err = ext4_init_mballoc(); 4937 if (err) 4938 goto out3; 4939 4940 err = ext4_init_xattr(); 4941 if (err) 4942 goto out2; 4943 err = init_inodecache(); 4944 if (err) 4945 goto out1; 4946 register_as_ext3(); 4947 register_as_ext2(); 4948 err = register_filesystem(&ext4_fs_type); 4949 if (err) 4950 goto out; 4951 4952 return 0; 4953 out: 4954 unregister_as_ext2(); 4955 unregister_as_ext3(); 4956 destroy_inodecache(); 4957 out1: 4958 ext4_exit_xattr(); 4959 out2: 4960 ext4_exit_mballoc(); 4961 out3: 4962 ext4_exit_feat_adverts(); 4963 out4: 4964 if (ext4_proc_root) 4965 remove_proc_entry("fs/ext4", NULL); 4966 kset_unregister(ext4_kset); 4967 out5: 4968 ext4_exit_system_zone(); 4969 out6: 4970 ext4_exit_pageio(); 4971 return err; 4972 } 4973 4974 static void __exit ext4_exit_fs(void) 4975 { 4976 ext4_destroy_lazyinit_thread(); 4977 unregister_as_ext2(); 4978 unregister_as_ext3(); 4979 unregister_filesystem(&ext4_fs_type); 4980 destroy_inodecache(); 4981 ext4_exit_xattr(); 4982 ext4_exit_mballoc(); 4983 ext4_exit_feat_adverts(); 4984 remove_proc_entry("fs/ext4", NULL); 4985 kset_unregister(ext4_kset); 4986 ext4_exit_system_zone(); 4987 ext4_exit_pageio(); 4988 } 4989 4990 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4991 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4992 MODULE_LICENSE("GPL"); 4993 module_init(ext4_init_fs) 4994 module_exit(ext4_exit_fs) 4995