1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io, bool simu_fail) 165 { 166 if (simu_fail) { 167 clear_buffer_uptodate(bh); 168 unlock_buffer(bh); 169 return; 170 } 171 172 /* 173 * buffer's verified bit is no longer valid after reading from 174 * disk again due to write out error, clear it to make sure we 175 * recheck the buffer contents. 176 */ 177 clear_buffer_verified(bh); 178 179 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 180 get_bh(bh); 181 submit_bh(REQ_OP_READ | op_flags, bh); 182 } 183 184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 185 bh_end_io_t *end_io, bool simu_fail) 186 { 187 BUG_ON(!buffer_locked(bh)); 188 189 if (ext4_buffer_uptodate(bh)) { 190 unlock_buffer(bh); 191 return; 192 } 193 __ext4_read_bh(bh, op_flags, end_io, simu_fail); 194 } 195 196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 197 bh_end_io_t *end_io, bool simu_fail) 198 { 199 BUG_ON(!buffer_locked(bh)); 200 201 if (ext4_buffer_uptodate(bh)) { 202 unlock_buffer(bh); 203 return 0; 204 } 205 206 __ext4_read_bh(bh, op_flags, end_io, simu_fail); 207 208 wait_on_buffer(bh); 209 if (buffer_uptodate(bh)) 210 return 0; 211 return -EIO; 212 } 213 214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 215 { 216 lock_buffer(bh); 217 if (!wait) { 218 ext4_read_bh_nowait(bh, op_flags, NULL, false); 219 return 0; 220 } 221 return ext4_read_bh(bh, op_flags, NULL, false); 222 } 223 224 /* 225 * This works like __bread_gfp() except it uses ERR_PTR for error 226 * returns. Currently with sb_bread it's impossible to distinguish 227 * between ENOMEM and EIO situations (since both result in a NULL 228 * return. 229 */ 230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 231 sector_t block, 232 blk_opf_t op_flags, gfp_t gfp) 233 { 234 struct buffer_head *bh; 235 int ret; 236 237 bh = sb_getblk_gfp(sb, block, gfp); 238 if (bh == NULL) 239 return ERR_PTR(-ENOMEM); 240 if (ext4_buffer_uptodate(bh)) 241 return bh; 242 243 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 244 if (ret) { 245 put_bh(bh); 246 return ERR_PTR(ret); 247 } 248 return bh; 249 } 250 251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 252 blk_opf_t op_flags) 253 { 254 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 255 ~__GFP_FS) | __GFP_MOVABLE; 256 257 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 258 } 259 260 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 261 sector_t block) 262 { 263 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 264 ~__GFP_FS); 265 266 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 267 } 268 269 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 270 { 271 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 272 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 273 274 if (likely(bh)) { 275 if (trylock_buffer(bh)) 276 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false); 277 brelse(bh); 278 } 279 } 280 281 static int ext4_verify_csum_type(struct super_block *sb, 282 struct ext4_super_block *es) 283 { 284 if (!ext4_has_feature_metadata_csum(sb)) 285 return 1; 286 287 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 288 } 289 290 __le32 ext4_superblock_csum(struct super_block *sb, 291 struct ext4_super_block *es) 292 { 293 struct ext4_sb_info *sbi = EXT4_SB(sb); 294 int offset = offsetof(struct ext4_super_block, s_checksum); 295 __u32 csum; 296 297 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 298 299 return cpu_to_le32(csum); 300 } 301 302 static int ext4_superblock_csum_verify(struct super_block *sb, 303 struct ext4_super_block *es) 304 { 305 if (!ext4_has_metadata_csum(sb)) 306 return 1; 307 308 return es->s_checksum == ext4_superblock_csum(sb, es); 309 } 310 311 void ext4_superblock_csum_set(struct super_block *sb) 312 { 313 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 314 315 if (!ext4_has_metadata_csum(sb)) 316 return; 317 318 es->s_checksum = ext4_superblock_csum(sb, es); 319 } 320 321 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 322 struct ext4_group_desc *bg) 323 { 324 return le32_to_cpu(bg->bg_block_bitmap_lo) | 325 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 326 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 327 } 328 329 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 330 struct ext4_group_desc *bg) 331 { 332 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 333 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 334 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 335 } 336 337 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 338 struct ext4_group_desc *bg) 339 { 340 return le32_to_cpu(bg->bg_inode_table_lo) | 341 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 342 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 343 } 344 345 __u32 ext4_free_group_clusters(struct super_block *sb, 346 struct ext4_group_desc *bg) 347 { 348 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 349 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 350 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 351 } 352 353 __u32 ext4_free_inodes_count(struct super_block *sb, 354 struct ext4_group_desc *bg) 355 { 356 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) | 357 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 358 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0); 359 } 360 361 __u32 ext4_used_dirs_count(struct super_block *sb, 362 struct ext4_group_desc *bg) 363 { 364 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 365 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 366 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 367 } 368 369 __u32 ext4_itable_unused_count(struct super_block *sb, 370 struct ext4_group_desc *bg) 371 { 372 return le16_to_cpu(bg->bg_itable_unused_lo) | 373 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 374 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 375 } 376 377 void ext4_block_bitmap_set(struct super_block *sb, 378 struct ext4_group_desc *bg, ext4_fsblk_t blk) 379 { 380 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 381 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 382 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 383 } 384 385 void ext4_inode_bitmap_set(struct super_block *sb, 386 struct ext4_group_desc *bg, ext4_fsblk_t blk) 387 { 388 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 389 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 390 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 391 } 392 393 void ext4_inode_table_set(struct super_block *sb, 394 struct ext4_group_desc *bg, ext4_fsblk_t blk) 395 { 396 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 397 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 398 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 399 } 400 401 void ext4_free_group_clusters_set(struct super_block *sb, 402 struct ext4_group_desc *bg, __u32 count) 403 { 404 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 405 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 406 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 407 } 408 409 void ext4_free_inodes_set(struct super_block *sb, 410 struct ext4_group_desc *bg, __u32 count) 411 { 412 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count)); 413 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 414 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16)); 415 } 416 417 void ext4_used_dirs_set(struct super_block *sb, 418 struct ext4_group_desc *bg, __u32 count) 419 { 420 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 421 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 422 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 423 } 424 425 void ext4_itable_unused_set(struct super_block *sb, 426 struct ext4_group_desc *bg, __u32 count) 427 { 428 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 429 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 430 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 431 } 432 433 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 434 { 435 now = clamp_val(now, 0, (1ull << 40) - 1); 436 437 *lo = cpu_to_le32(lower_32_bits(now)); 438 *hi = upper_32_bits(now); 439 } 440 441 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 442 { 443 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 444 } 445 #define ext4_update_tstamp(es, tstamp) \ 446 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 447 ktime_get_real_seconds()) 448 #define ext4_get_tstamp(es, tstamp) \ 449 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 450 451 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 452 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 453 454 /* 455 * The ext4_maybe_update_superblock() function checks and updates the 456 * superblock if needed. 457 * 458 * This function is designed to update the on-disk superblock only under 459 * certain conditions to prevent excessive disk writes and unnecessary 460 * waking of the disk from sleep. The superblock will be updated if: 461 * 1. More than an hour has passed since the last superblock update, and 462 * 2. More than 16MB have been written since the last superblock update. 463 * 464 * @sb: The superblock 465 */ 466 static void ext4_maybe_update_superblock(struct super_block *sb) 467 { 468 struct ext4_sb_info *sbi = EXT4_SB(sb); 469 struct ext4_super_block *es = sbi->s_es; 470 journal_t *journal = sbi->s_journal; 471 time64_t now; 472 __u64 last_update; 473 __u64 lifetime_write_kbytes; 474 __u64 diff_size; 475 476 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 477 !journal || (journal->j_flags & JBD2_UNMOUNT)) 478 return; 479 480 now = ktime_get_real_seconds(); 481 last_update = ext4_get_tstamp(es, s_wtime); 482 483 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 484 return; 485 486 lifetime_write_kbytes = sbi->s_kbytes_written + 487 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 488 sbi->s_sectors_written_start) >> 1); 489 490 /* Get the number of kilobytes not written to disk to account 491 * for statistics and compare with a multiple of 16 MB. This 492 * is used to determine when the next superblock commit should 493 * occur (i.e. not more often than once per 16MB if there was 494 * less written in an hour). 495 */ 496 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 497 498 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 499 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 500 } 501 502 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 503 { 504 struct super_block *sb = journal->j_private; 505 struct ext4_sb_info *sbi = EXT4_SB(sb); 506 int error = is_journal_aborted(journal); 507 struct ext4_journal_cb_entry *jce; 508 509 BUG_ON(txn->t_state == T_FINISHED); 510 511 ext4_process_freed_data(sb, txn->t_tid); 512 ext4_maybe_update_superblock(sb); 513 514 spin_lock(&sbi->s_md_lock); 515 while (!list_empty(&txn->t_private_list)) { 516 jce = list_entry(txn->t_private_list.next, 517 struct ext4_journal_cb_entry, jce_list); 518 list_del_init(&jce->jce_list); 519 spin_unlock(&sbi->s_md_lock); 520 jce->jce_func(sb, jce, error); 521 spin_lock(&sbi->s_md_lock); 522 } 523 spin_unlock(&sbi->s_md_lock); 524 } 525 526 /* 527 * This writepage callback for write_cache_pages() 528 * takes care of a few cases after page cleaning. 529 * 530 * write_cache_pages() already checks for dirty pages 531 * and calls clear_page_dirty_for_io(), which we want, 532 * to write protect the pages. 533 * 534 * However, we may have to redirty a page (see below.) 535 */ 536 static int ext4_journalled_writepage_callback(struct folio *folio, 537 struct writeback_control *wbc, 538 void *data) 539 { 540 transaction_t *transaction = (transaction_t *) data; 541 struct buffer_head *bh, *head; 542 struct journal_head *jh; 543 544 bh = head = folio_buffers(folio); 545 do { 546 /* 547 * We have to redirty a page in these cases: 548 * 1) If buffer is dirty, it means the page was dirty because it 549 * contains a buffer that needs checkpointing. So the dirty bit 550 * needs to be preserved so that checkpointing writes the buffer 551 * properly. 552 * 2) If buffer is not part of the committing transaction 553 * (we may have just accidentally come across this buffer because 554 * inode range tracking is not exact) or if the currently running 555 * transaction already contains this buffer as well, dirty bit 556 * needs to be preserved so that the buffer gets writeprotected 557 * properly on running transaction's commit. 558 */ 559 jh = bh2jh(bh); 560 if (buffer_dirty(bh) || 561 (jh && (jh->b_transaction != transaction || 562 jh->b_next_transaction))) { 563 folio_redirty_for_writepage(wbc, folio); 564 goto out; 565 } 566 } while ((bh = bh->b_this_page) != head); 567 568 out: 569 return AOP_WRITEPAGE_ACTIVATE; 570 } 571 572 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 573 { 574 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 575 struct writeback_control wbc = { 576 .sync_mode = WB_SYNC_ALL, 577 .nr_to_write = LONG_MAX, 578 .range_start = jinode->i_dirty_start, 579 .range_end = jinode->i_dirty_end, 580 }; 581 582 return write_cache_pages(mapping, &wbc, 583 ext4_journalled_writepage_callback, 584 jinode->i_transaction); 585 } 586 587 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 588 { 589 int ret; 590 591 if (ext4_should_journal_data(jinode->i_vfs_inode)) 592 ret = ext4_journalled_submit_inode_data_buffers(jinode); 593 else 594 ret = ext4_normal_submit_inode_data_buffers(jinode); 595 return ret; 596 } 597 598 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 599 { 600 int ret = 0; 601 602 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 603 ret = jbd2_journal_finish_inode_data_buffers(jinode); 604 605 return ret; 606 } 607 608 static bool system_going_down(void) 609 { 610 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 611 || system_state == SYSTEM_RESTART; 612 } 613 614 struct ext4_err_translation { 615 int code; 616 int errno; 617 }; 618 619 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 620 621 static struct ext4_err_translation err_translation[] = { 622 EXT4_ERR_TRANSLATE(EIO), 623 EXT4_ERR_TRANSLATE(ENOMEM), 624 EXT4_ERR_TRANSLATE(EFSBADCRC), 625 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 626 EXT4_ERR_TRANSLATE(ENOSPC), 627 EXT4_ERR_TRANSLATE(ENOKEY), 628 EXT4_ERR_TRANSLATE(EROFS), 629 EXT4_ERR_TRANSLATE(EFBIG), 630 EXT4_ERR_TRANSLATE(EEXIST), 631 EXT4_ERR_TRANSLATE(ERANGE), 632 EXT4_ERR_TRANSLATE(EOVERFLOW), 633 EXT4_ERR_TRANSLATE(EBUSY), 634 EXT4_ERR_TRANSLATE(ENOTDIR), 635 EXT4_ERR_TRANSLATE(ENOTEMPTY), 636 EXT4_ERR_TRANSLATE(ESHUTDOWN), 637 EXT4_ERR_TRANSLATE(EFAULT), 638 }; 639 640 static int ext4_errno_to_code(int errno) 641 { 642 int i; 643 644 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 645 if (err_translation[i].errno == errno) 646 return err_translation[i].code; 647 return EXT4_ERR_UNKNOWN; 648 } 649 650 static void save_error_info(struct super_block *sb, int error, 651 __u32 ino, __u64 block, 652 const char *func, unsigned int line) 653 { 654 struct ext4_sb_info *sbi = EXT4_SB(sb); 655 656 /* We default to EFSCORRUPTED error... */ 657 if (error == 0) 658 error = EFSCORRUPTED; 659 660 spin_lock(&sbi->s_error_lock); 661 sbi->s_add_error_count++; 662 sbi->s_last_error_code = error; 663 sbi->s_last_error_line = line; 664 sbi->s_last_error_ino = ino; 665 sbi->s_last_error_block = block; 666 sbi->s_last_error_func = func; 667 sbi->s_last_error_time = ktime_get_real_seconds(); 668 if (!sbi->s_first_error_time) { 669 sbi->s_first_error_code = error; 670 sbi->s_first_error_line = line; 671 sbi->s_first_error_ino = ino; 672 sbi->s_first_error_block = block; 673 sbi->s_first_error_func = func; 674 sbi->s_first_error_time = sbi->s_last_error_time; 675 } 676 spin_unlock(&sbi->s_error_lock); 677 } 678 679 /* Deal with the reporting of failure conditions on a filesystem such as 680 * inconsistencies detected or read IO failures. 681 * 682 * On ext2, we can store the error state of the filesystem in the 683 * superblock. That is not possible on ext4, because we may have other 684 * write ordering constraints on the superblock which prevent us from 685 * writing it out straight away; and given that the journal is about to 686 * be aborted, we can't rely on the current, or future, transactions to 687 * write out the superblock safely. 688 * 689 * We'll just use the jbd2_journal_abort() error code to record an error in 690 * the journal instead. On recovery, the journal will complain about 691 * that error until we've noted it down and cleared it. 692 * 693 * If force_ro is set, we unconditionally force the filesystem into an 694 * ABORT|READONLY state, unless the error response on the fs has been set to 695 * panic in which case we take the easy way out and panic immediately. This is 696 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 697 * at a critical moment in log management. 698 */ 699 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 700 __u32 ino, __u64 block, 701 const char *func, unsigned int line) 702 { 703 journal_t *journal = EXT4_SB(sb)->s_journal; 704 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 705 706 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 707 if (test_opt(sb, WARN_ON_ERROR)) 708 WARN_ON_ONCE(1); 709 710 if (!continue_fs && !sb_rdonly(sb)) { 711 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 712 if (journal) 713 jbd2_journal_abort(journal, -EIO); 714 } 715 716 if (!bdev_read_only(sb->s_bdev)) { 717 save_error_info(sb, error, ino, block, func, line); 718 /* 719 * In case the fs should keep running, we need to writeout 720 * superblock through the journal. Due to lock ordering 721 * constraints, it may not be safe to do it right here so we 722 * defer superblock flushing to a workqueue. 723 */ 724 if (continue_fs && journal) 725 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 726 else 727 ext4_commit_super(sb); 728 } 729 730 /* 731 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 732 * could panic during 'reboot -f' as the underlying device got already 733 * disabled. 734 */ 735 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 736 panic("EXT4-fs (device %s): panic forced after error\n", 737 sb->s_id); 738 } 739 740 if (sb_rdonly(sb) || continue_fs) 741 return; 742 743 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 744 /* 745 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem 746 * modifications. We don't set SB_RDONLY because that requires 747 * sb->s_umount semaphore and setting it without proper remount 748 * procedure is confusing code such as freeze_super() leading to 749 * deadlocks and other problems. 750 */ 751 } 752 753 static void update_super_work(struct work_struct *work) 754 { 755 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 756 s_sb_upd_work); 757 journal_t *journal = sbi->s_journal; 758 handle_t *handle; 759 760 /* 761 * If the journal is still running, we have to write out superblock 762 * through the journal to avoid collisions of other journalled sb 763 * updates. 764 * 765 * We use directly jbd2 functions here to avoid recursing back into 766 * ext4 error handling code during handling of previous errors. 767 */ 768 if (!sb_rdonly(sbi->s_sb) && journal) { 769 struct buffer_head *sbh = sbi->s_sbh; 770 bool call_notify_err = false; 771 772 handle = jbd2_journal_start(journal, 1); 773 if (IS_ERR(handle)) 774 goto write_directly; 775 if (jbd2_journal_get_write_access(handle, sbh)) { 776 jbd2_journal_stop(handle); 777 goto write_directly; 778 } 779 780 if (sbi->s_add_error_count > 0) 781 call_notify_err = true; 782 783 ext4_update_super(sbi->s_sb); 784 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 785 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 786 "superblock detected"); 787 clear_buffer_write_io_error(sbh); 788 set_buffer_uptodate(sbh); 789 } 790 791 if (jbd2_journal_dirty_metadata(handle, sbh)) { 792 jbd2_journal_stop(handle); 793 goto write_directly; 794 } 795 jbd2_journal_stop(handle); 796 797 if (call_notify_err) 798 ext4_notify_error_sysfs(sbi); 799 800 return; 801 } 802 write_directly: 803 /* 804 * Write through journal failed. Write sb directly to get error info 805 * out and hope for the best. 806 */ 807 ext4_commit_super(sbi->s_sb); 808 ext4_notify_error_sysfs(sbi); 809 } 810 811 #define ext4_error_ratelimit(sb) \ 812 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 813 "EXT4-fs error") 814 815 void __ext4_error(struct super_block *sb, const char *function, 816 unsigned int line, bool force_ro, int error, __u64 block, 817 const char *fmt, ...) 818 { 819 struct va_format vaf; 820 va_list args; 821 822 if (unlikely(ext4_forced_shutdown(sb))) 823 return; 824 825 trace_ext4_error(sb, function, line); 826 if (ext4_error_ratelimit(sb)) { 827 va_start(args, fmt); 828 vaf.fmt = fmt; 829 vaf.va = &args; 830 printk(KERN_CRIT 831 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 832 sb->s_id, function, line, current->comm, &vaf); 833 va_end(args); 834 } 835 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 836 837 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 838 } 839 840 void __ext4_error_inode(struct inode *inode, const char *function, 841 unsigned int line, ext4_fsblk_t block, int error, 842 const char *fmt, ...) 843 { 844 va_list args; 845 struct va_format vaf; 846 847 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 848 return; 849 850 trace_ext4_error(inode->i_sb, function, line); 851 if (ext4_error_ratelimit(inode->i_sb)) { 852 va_start(args, fmt); 853 vaf.fmt = fmt; 854 vaf.va = &args; 855 if (block) 856 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 857 "inode #%lu: block %llu: comm %s: %pV\n", 858 inode->i_sb->s_id, function, line, inode->i_ino, 859 block, current->comm, &vaf); 860 else 861 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 862 "inode #%lu: comm %s: %pV\n", 863 inode->i_sb->s_id, function, line, inode->i_ino, 864 current->comm, &vaf); 865 va_end(args); 866 } 867 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 868 869 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 870 function, line); 871 } 872 873 void __ext4_error_file(struct file *file, const char *function, 874 unsigned int line, ext4_fsblk_t block, 875 const char *fmt, ...) 876 { 877 va_list args; 878 struct va_format vaf; 879 struct inode *inode = file_inode(file); 880 char pathname[80], *path; 881 882 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 883 return; 884 885 trace_ext4_error(inode->i_sb, function, line); 886 if (ext4_error_ratelimit(inode->i_sb)) { 887 path = file_path(file, pathname, sizeof(pathname)); 888 if (IS_ERR(path)) 889 path = "(unknown)"; 890 va_start(args, fmt); 891 vaf.fmt = fmt; 892 vaf.va = &args; 893 if (block) 894 printk(KERN_CRIT 895 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 896 "block %llu: comm %s: path %s: %pV\n", 897 inode->i_sb->s_id, function, line, inode->i_ino, 898 block, current->comm, path, &vaf); 899 else 900 printk(KERN_CRIT 901 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 902 "comm %s: path %s: %pV\n", 903 inode->i_sb->s_id, function, line, inode->i_ino, 904 current->comm, path, &vaf); 905 va_end(args); 906 } 907 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 908 909 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 910 function, line); 911 } 912 913 const char *ext4_decode_error(struct super_block *sb, int errno, 914 char nbuf[16]) 915 { 916 char *errstr = NULL; 917 918 switch (errno) { 919 case -EFSCORRUPTED: 920 errstr = "Corrupt filesystem"; 921 break; 922 case -EFSBADCRC: 923 errstr = "Filesystem failed CRC"; 924 break; 925 case -EIO: 926 errstr = "IO failure"; 927 break; 928 case -ENOMEM: 929 errstr = "Out of memory"; 930 break; 931 case -EROFS: 932 if (!sb || (EXT4_SB(sb)->s_journal && 933 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 934 errstr = "Journal has aborted"; 935 else 936 errstr = "Readonly filesystem"; 937 break; 938 default: 939 /* If the caller passed in an extra buffer for unknown 940 * errors, textualise them now. Else we just return 941 * NULL. */ 942 if (nbuf) { 943 /* Check for truncated error codes... */ 944 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 945 errstr = nbuf; 946 } 947 break; 948 } 949 950 return errstr; 951 } 952 953 /* __ext4_std_error decodes expected errors from journaling functions 954 * automatically and invokes the appropriate error response. */ 955 956 void __ext4_std_error(struct super_block *sb, const char *function, 957 unsigned int line, int errno) 958 { 959 char nbuf[16]; 960 const char *errstr; 961 962 if (unlikely(ext4_forced_shutdown(sb))) 963 return; 964 965 /* Special case: if the error is EROFS, and we're not already 966 * inside a transaction, then there's really no point in logging 967 * an error. */ 968 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 969 return; 970 971 if (ext4_error_ratelimit(sb)) { 972 errstr = ext4_decode_error(sb, errno, nbuf); 973 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 974 sb->s_id, function, line, errstr); 975 } 976 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 977 978 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 979 } 980 981 void __ext4_msg(struct super_block *sb, 982 const char *prefix, const char *fmt, ...) 983 { 984 struct va_format vaf; 985 va_list args; 986 987 if (sb) { 988 atomic_inc(&EXT4_SB(sb)->s_msg_count); 989 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 990 "EXT4-fs")) 991 return; 992 } 993 994 va_start(args, fmt); 995 vaf.fmt = fmt; 996 vaf.va = &args; 997 if (sb) 998 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 999 else 1000 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 1001 va_end(args); 1002 } 1003 1004 static int ext4_warning_ratelimit(struct super_block *sb) 1005 { 1006 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1007 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1008 "EXT4-fs warning"); 1009 } 1010 1011 void __ext4_warning(struct super_block *sb, const char *function, 1012 unsigned int line, const char *fmt, ...) 1013 { 1014 struct va_format vaf; 1015 va_list args; 1016 1017 if (!ext4_warning_ratelimit(sb)) 1018 return; 1019 1020 va_start(args, fmt); 1021 vaf.fmt = fmt; 1022 vaf.va = &args; 1023 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1024 sb->s_id, function, line, &vaf); 1025 va_end(args); 1026 } 1027 1028 void __ext4_warning_inode(const struct inode *inode, const char *function, 1029 unsigned int line, const char *fmt, ...) 1030 { 1031 struct va_format vaf; 1032 va_list args; 1033 1034 if (!ext4_warning_ratelimit(inode->i_sb)) 1035 return; 1036 1037 va_start(args, fmt); 1038 vaf.fmt = fmt; 1039 vaf.va = &args; 1040 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1041 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1042 function, line, inode->i_ino, current->comm, &vaf); 1043 va_end(args); 1044 } 1045 1046 void __ext4_grp_locked_error(const char *function, unsigned int line, 1047 struct super_block *sb, ext4_group_t grp, 1048 unsigned long ino, ext4_fsblk_t block, 1049 const char *fmt, ...) 1050 __releases(bitlock) 1051 __acquires(bitlock) 1052 { 1053 struct va_format vaf; 1054 va_list args; 1055 1056 if (unlikely(ext4_forced_shutdown(sb))) 1057 return; 1058 1059 trace_ext4_error(sb, function, line); 1060 if (ext4_error_ratelimit(sb)) { 1061 va_start(args, fmt); 1062 vaf.fmt = fmt; 1063 vaf.va = &args; 1064 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1065 sb->s_id, function, line, grp); 1066 if (ino) 1067 printk(KERN_CONT "inode %lu: ", ino); 1068 if (block) 1069 printk(KERN_CONT "block %llu:", 1070 (unsigned long long) block); 1071 printk(KERN_CONT "%pV\n", &vaf); 1072 va_end(args); 1073 } 1074 1075 if (test_opt(sb, ERRORS_CONT)) { 1076 if (test_opt(sb, WARN_ON_ERROR)) 1077 WARN_ON_ONCE(1); 1078 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1079 if (!bdev_read_only(sb->s_bdev)) { 1080 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1081 line); 1082 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1083 } 1084 return; 1085 } 1086 ext4_unlock_group(sb, grp); 1087 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1088 /* 1089 * We only get here in the ERRORS_RO case; relocking the group 1090 * may be dangerous, but nothing bad will happen since the 1091 * filesystem will have already been marked read/only and the 1092 * journal has been aborted. We return 1 as a hint to callers 1093 * who might what to use the return value from 1094 * ext4_grp_locked_error() to distinguish between the 1095 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1096 * aggressively from the ext4 function in question, with a 1097 * more appropriate error code. 1098 */ 1099 ext4_lock_group(sb, grp); 1100 return; 1101 } 1102 1103 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1104 ext4_group_t group, 1105 unsigned int flags) 1106 { 1107 struct ext4_sb_info *sbi = EXT4_SB(sb); 1108 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1109 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1110 int ret; 1111 1112 if (!grp || !gdp) 1113 return; 1114 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1115 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1116 &grp->bb_state); 1117 if (!ret) 1118 percpu_counter_sub(&sbi->s_freeclusters_counter, 1119 grp->bb_free); 1120 } 1121 1122 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1124 &grp->bb_state); 1125 if (!ret && gdp) { 1126 int count; 1127 1128 count = ext4_free_inodes_count(sb, gdp); 1129 percpu_counter_sub(&sbi->s_freeinodes_counter, 1130 count); 1131 } 1132 } 1133 } 1134 1135 void ext4_update_dynamic_rev(struct super_block *sb) 1136 { 1137 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1138 1139 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1140 return; 1141 1142 ext4_warning(sb, 1143 "updating to rev %d because of new feature flag, " 1144 "running e2fsck is recommended", 1145 EXT4_DYNAMIC_REV); 1146 1147 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1148 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1149 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1150 /* leave es->s_feature_*compat flags alone */ 1151 /* es->s_uuid will be set by e2fsck if empty */ 1152 1153 /* 1154 * The rest of the superblock fields should be zero, and if not it 1155 * means they are likely already in use, so leave them alone. We 1156 * can leave it up to e2fsck to clean up any inconsistencies there. 1157 */ 1158 } 1159 1160 static inline struct inode *orphan_list_entry(struct list_head *l) 1161 { 1162 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1163 } 1164 1165 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1166 { 1167 struct list_head *l; 1168 1169 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1170 le32_to_cpu(sbi->s_es->s_last_orphan)); 1171 1172 printk(KERN_ERR "sb_info orphan list:\n"); 1173 list_for_each(l, &sbi->s_orphan) { 1174 struct inode *inode = orphan_list_entry(l); 1175 printk(KERN_ERR " " 1176 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1177 inode->i_sb->s_id, inode->i_ino, inode, 1178 inode->i_mode, inode->i_nlink, 1179 NEXT_ORPHAN(inode)); 1180 } 1181 } 1182 1183 #ifdef CONFIG_QUOTA 1184 static int ext4_quota_off(struct super_block *sb, int type); 1185 1186 static inline void ext4_quotas_off(struct super_block *sb, int type) 1187 { 1188 BUG_ON(type > EXT4_MAXQUOTAS); 1189 1190 /* Use our quota_off function to clear inode flags etc. */ 1191 for (type--; type >= 0; type--) 1192 ext4_quota_off(sb, type); 1193 } 1194 1195 /* 1196 * This is a helper function which is used in the mount/remount 1197 * codepaths (which holds s_umount) to fetch the quota file name. 1198 */ 1199 static inline char *get_qf_name(struct super_block *sb, 1200 struct ext4_sb_info *sbi, 1201 int type) 1202 { 1203 return rcu_dereference_protected(sbi->s_qf_names[type], 1204 lockdep_is_held(&sb->s_umount)); 1205 } 1206 #else 1207 static inline void ext4_quotas_off(struct super_block *sb, int type) 1208 { 1209 } 1210 #endif 1211 1212 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1213 { 1214 ext4_fsblk_t block; 1215 int err; 1216 1217 block = ext4_count_free_clusters(sbi->s_sb); 1218 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1219 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1220 GFP_KERNEL); 1221 if (!err) { 1222 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1223 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1224 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1225 GFP_KERNEL); 1226 } 1227 if (!err) 1228 err = percpu_counter_init(&sbi->s_dirs_counter, 1229 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1230 if (!err) 1231 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1232 GFP_KERNEL); 1233 if (!err) 1234 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1235 GFP_KERNEL); 1236 if (!err) 1237 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1238 1239 if (err) 1240 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1241 1242 return err; 1243 } 1244 1245 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1246 { 1247 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1248 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1249 percpu_counter_destroy(&sbi->s_dirs_counter); 1250 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1251 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1252 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1253 } 1254 1255 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1256 { 1257 struct buffer_head **group_desc; 1258 int i; 1259 1260 rcu_read_lock(); 1261 group_desc = rcu_dereference(sbi->s_group_desc); 1262 for (i = 0; i < sbi->s_gdb_count; i++) 1263 brelse(group_desc[i]); 1264 kvfree(group_desc); 1265 rcu_read_unlock(); 1266 } 1267 1268 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1269 { 1270 struct flex_groups **flex_groups; 1271 int i; 1272 1273 rcu_read_lock(); 1274 flex_groups = rcu_dereference(sbi->s_flex_groups); 1275 if (flex_groups) { 1276 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1277 kvfree(flex_groups[i]); 1278 kvfree(flex_groups); 1279 } 1280 rcu_read_unlock(); 1281 } 1282 1283 static void ext4_put_super(struct super_block *sb) 1284 { 1285 struct ext4_sb_info *sbi = EXT4_SB(sb); 1286 struct ext4_super_block *es = sbi->s_es; 1287 int aborted = 0; 1288 int err; 1289 1290 /* 1291 * Unregister sysfs before destroying jbd2 journal. 1292 * Since we could still access attr_journal_task attribute via sysfs 1293 * path which could have sbi->s_journal->j_task as NULL 1294 * Unregister sysfs before flush sbi->s_sb_upd_work. 1295 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1296 * read metadata verify failed then will queue error work. 1297 * update_super_work will call start_this_handle may trigger 1298 * BUG_ON. 1299 */ 1300 ext4_unregister_sysfs(sb); 1301 1302 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1303 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1304 &sb->s_uuid); 1305 1306 ext4_unregister_li_request(sb); 1307 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1308 1309 flush_work(&sbi->s_sb_upd_work); 1310 destroy_workqueue(sbi->rsv_conversion_wq); 1311 ext4_release_orphan_info(sb); 1312 1313 if (sbi->s_journal) { 1314 aborted = is_journal_aborted(sbi->s_journal); 1315 err = jbd2_journal_destroy(sbi->s_journal); 1316 sbi->s_journal = NULL; 1317 if ((err < 0) && !aborted) { 1318 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1319 } 1320 } 1321 1322 ext4_es_unregister_shrinker(sbi); 1323 timer_shutdown_sync(&sbi->s_err_report); 1324 ext4_release_system_zone(sb); 1325 ext4_mb_release(sb); 1326 ext4_ext_release(sb); 1327 1328 if (!sb_rdonly(sb) && !aborted) { 1329 ext4_clear_feature_journal_needs_recovery(sb); 1330 ext4_clear_feature_orphan_present(sb); 1331 es->s_state = cpu_to_le16(sbi->s_mount_state); 1332 } 1333 if (!sb_rdonly(sb)) 1334 ext4_commit_super(sb); 1335 1336 ext4_group_desc_free(sbi); 1337 ext4_flex_groups_free(sbi); 1338 1339 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) && 1340 percpu_counter_sum(&sbi->s_dirtyclusters_counter)); 1341 ext4_percpu_param_destroy(sbi); 1342 #ifdef CONFIG_QUOTA 1343 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1344 kfree(get_qf_name(sb, sbi, i)); 1345 #endif 1346 1347 /* Debugging code just in case the in-memory inode orphan list 1348 * isn't empty. The on-disk one can be non-empty if we've 1349 * detected an error and taken the fs readonly, but the 1350 * in-memory list had better be clean by this point. */ 1351 if (!list_empty(&sbi->s_orphan)) 1352 dump_orphan_list(sb, sbi); 1353 ASSERT(list_empty(&sbi->s_orphan)); 1354 1355 sync_blockdev(sb->s_bdev); 1356 invalidate_bdev(sb->s_bdev); 1357 if (sbi->s_journal_bdev_file) { 1358 /* 1359 * Invalidate the journal device's buffers. We don't want them 1360 * floating about in memory - the physical journal device may 1361 * hotswapped, and it breaks the `ro-after' testing code. 1362 */ 1363 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1364 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1365 } 1366 1367 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1368 sbi->s_ea_inode_cache = NULL; 1369 1370 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1371 sbi->s_ea_block_cache = NULL; 1372 1373 ext4_stop_mmpd(sbi); 1374 1375 brelse(sbi->s_sbh); 1376 sb->s_fs_info = NULL; 1377 /* 1378 * Now that we are completely done shutting down the 1379 * superblock, we need to actually destroy the kobject. 1380 */ 1381 kobject_put(&sbi->s_kobj); 1382 wait_for_completion(&sbi->s_kobj_unregister); 1383 if (sbi->s_chksum_driver) 1384 crypto_free_shash(sbi->s_chksum_driver); 1385 kfree(sbi->s_blockgroup_lock); 1386 fs_put_dax(sbi->s_daxdev, NULL); 1387 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1388 #if IS_ENABLED(CONFIG_UNICODE) 1389 utf8_unload(sb->s_encoding); 1390 #endif 1391 kfree(sbi); 1392 } 1393 1394 static struct kmem_cache *ext4_inode_cachep; 1395 1396 /* 1397 * Called inside transaction, so use GFP_NOFS 1398 */ 1399 static struct inode *ext4_alloc_inode(struct super_block *sb) 1400 { 1401 struct ext4_inode_info *ei; 1402 1403 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1404 if (!ei) 1405 return NULL; 1406 1407 inode_set_iversion(&ei->vfs_inode, 1); 1408 ei->i_flags = 0; 1409 spin_lock_init(&ei->i_raw_lock); 1410 ei->i_prealloc_node = RB_ROOT; 1411 atomic_set(&ei->i_prealloc_active, 0); 1412 rwlock_init(&ei->i_prealloc_lock); 1413 ext4_es_init_tree(&ei->i_es_tree); 1414 rwlock_init(&ei->i_es_lock); 1415 INIT_LIST_HEAD(&ei->i_es_list); 1416 ei->i_es_all_nr = 0; 1417 ei->i_es_shk_nr = 0; 1418 ei->i_es_shrink_lblk = 0; 1419 ei->i_reserved_data_blocks = 0; 1420 spin_lock_init(&(ei->i_block_reservation_lock)); 1421 ext4_init_pending_tree(&ei->i_pending_tree); 1422 #ifdef CONFIG_QUOTA 1423 ei->i_reserved_quota = 0; 1424 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1425 #endif 1426 ei->jinode = NULL; 1427 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1428 spin_lock_init(&ei->i_completed_io_lock); 1429 ei->i_sync_tid = 0; 1430 ei->i_datasync_tid = 0; 1431 atomic_set(&ei->i_unwritten, 0); 1432 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1433 ext4_fc_init_inode(&ei->vfs_inode); 1434 mutex_init(&ei->i_fc_lock); 1435 return &ei->vfs_inode; 1436 } 1437 1438 static int ext4_drop_inode(struct inode *inode) 1439 { 1440 int drop = generic_drop_inode(inode); 1441 1442 if (!drop) 1443 drop = fscrypt_drop_inode(inode); 1444 1445 trace_ext4_drop_inode(inode, drop); 1446 return drop; 1447 } 1448 1449 static void ext4_free_in_core_inode(struct inode *inode) 1450 { 1451 fscrypt_free_inode(inode); 1452 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1453 pr_warn("%s: inode %ld still in fc list", 1454 __func__, inode->i_ino); 1455 } 1456 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1457 } 1458 1459 static void ext4_destroy_inode(struct inode *inode) 1460 { 1461 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1462 ext4_msg(inode->i_sb, KERN_ERR, 1463 "Inode %lu (%p): orphan list check failed!", 1464 inode->i_ino, EXT4_I(inode)); 1465 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1466 EXT4_I(inode), sizeof(struct ext4_inode_info), 1467 true); 1468 dump_stack(); 1469 } 1470 1471 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) && 1472 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks)) 1473 ext4_msg(inode->i_sb, KERN_ERR, 1474 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1475 inode->i_ino, EXT4_I(inode), 1476 EXT4_I(inode)->i_reserved_data_blocks); 1477 } 1478 1479 static void ext4_shutdown(struct super_block *sb) 1480 { 1481 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1482 } 1483 1484 static void init_once(void *foo) 1485 { 1486 struct ext4_inode_info *ei = foo; 1487 1488 INIT_LIST_HEAD(&ei->i_orphan); 1489 init_rwsem(&ei->xattr_sem); 1490 init_rwsem(&ei->i_data_sem); 1491 inode_init_once(&ei->vfs_inode); 1492 ext4_fc_init_inode(&ei->vfs_inode); 1493 } 1494 1495 static int __init init_inodecache(void) 1496 { 1497 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1498 sizeof(struct ext4_inode_info), 0, 1499 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1500 offsetof(struct ext4_inode_info, i_data), 1501 sizeof_field(struct ext4_inode_info, i_data), 1502 init_once); 1503 if (ext4_inode_cachep == NULL) 1504 return -ENOMEM; 1505 return 0; 1506 } 1507 1508 static void destroy_inodecache(void) 1509 { 1510 /* 1511 * Make sure all delayed rcu free inodes are flushed before we 1512 * destroy cache. 1513 */ 1514 rcu_barrier(); 1515 kmem_cache_destroy(ext4_inode_cachep); 1516 } 1517 1518 void ext4_clear_inode(struct inode *inode) 1519 { 1520 ext4_fc_del(inode); 1521 invalidate_inode_buffers(inode); 1522 clear_inode(inode); 1523 ext4_discard_preallocations(inode); 1524 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1525 dquot_drop(inode); 1526 if (EXT4_I(inode)->jinode) { 1527 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1528 EXT4_I(inode)->jinode); 1529 jbd2_free_inode(EXT4_I(inode)->jinode); 1530 EXT4_I(inode)->jinode = NULL; 1531 } 1532 fscrypt_put_encryption_info(inode); 1533 fsverity_cleanup_inode(inode); 1534 } 1535 1536 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1537 u64 ino, u32 generation) 1538 { 1539 struct inode *inode; 1540 1541 /* 1542 * Currently we don't know the generation for parent directory, so 1543 * a generation of 0 means "accept any" 1544 */ 1545 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1546 if (IS_ERR(inode)) 1547 return ERR_CAST(inode); 1548 if (generation && inode->i_generation != generation) { 1549 iput(inode); 1550 return ERR_PTR(-ESTALE); 1551 } 1552 1553 return inode; 1554 } 1555 1556 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1557 int fh_len, int fh_type) 1558 { 1559 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1560 ext4_nfs_get_inode); 1561 } 1562 1563 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1564 int fh_len, int fh_type) 1565 { 1566 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1567 ext4_nfs_get_inode); 1568 } 1569 1570 static int ext4_nfs_commit_metadata(struct inode *inode) 1571 { 1572 struct writeback_control wbc = { 1573 .sync_mode = WB_SYNC_ALL 1574 }; 1575 1576 trace_ext4_nfs_commit_metadata(inode); 1577 return ext4_write_inode(inode, &wbc); 1578 } 1579 1580 #ifdef CONFIG_QUOTA 1581 static const char * const quotatypes[] = INITQFNAMES; 1582 #define QTYPE2NAME(t) (quotatypes[t]) 1583 1584 static int ext4_write_dquot(struct dquot *dquot); 1585 static int ext4_acquire_dquot(struct dquot *dquot); 1586 static int ext4_release_dquot(struct dquot *dquot); 1587 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1588 static int ext4_write_info(struct super_block *sb, int type); 1589 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1590 const struct path *path); 1591 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1592 size_t len, loff_t off); 1593 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1594 const char *data, size_t len, loff_t off); 1595 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1596 unsigned int flags); 1597 1598 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1599 { 1600 return EXT4_I(inode)->i_dquot; 1601 } 1602 1603 static const struct dquot_operations ext4_quota_operations = { 1604 .get_reserved_space = ext4_get_reserved_space, 1605 .write_dquot = ext4_write_dquot, 1606 .acquire_dquot = ext4_acquire_dquot, 1607 .release_dquot = ext4_release_dquot, 1608 .mark_dirty = ext4_mark_dquot_dirty, 1609 .write_info = ext4_write_info, 1610 .alloc_dquot = dquot_alloc, 1611 .destroy_dquot = dquot_destroy, 1612 .get_projid = ext4_get_projid, 1613 .get_inode_usage = ext4_get_inode_usage, 1614 .get_next_id = dquot_get_next_id, 1615 }; 1616 1617 static const struct quotactl_ops ext4_qctl_operations = { 1618 .quota_on = ext4_quota_on, 1619 .quota_off = ext4_quota_off, 1620 .quota_sync = dquot_quota_sync, 1621 .get_state = dquot_get_state, 1622 .set_info = dquot_set_dqinfo, 1623 .get_dqblk = dquot_get_dqblk, 1624 .set_dqblk = dquot_set_dqblk, 1625 .get_nextdqblk = dquot_get_next_dqblk, 1626 }; 1627 #endif 1628 1629 static const struct super_operations ext4_sops = { 1630 .alloc_inode = ext4_alloc_inode, 1631 .free_inode = ext4_free_in_core_inode, 1632 .destroy_inode = ext4_destroy_inode, 1633 .write_inode = ext4_write_inode, 1634 .dirty_inode = ext4_dirty_inode, 1635 .drop_inode = ext4_drop_inode, 1636 .evict_inode = ext4_evict_inode, 1637 .put_super = ext4_put_super, 1638 .sync_fs = ext4_sync_fs, 1639 .freeze_fs = ext4_freeze, 1640 .unfreeze_fs = ext4_unfreeze, 1641 .statfs = ext4_statfs, 1642 .show_options = ext4_show_options, 1643 .shutdown = ext4_shutdown, 1644 #ifdef CONFIG_QUOTA 1645 .quota_read = ext4_quota_read, 1646 .quota_write = ext4_quota_write, 1647 .get_dquots = ext4_get_dquots, 1648 #endif 1649 }; 1650 1651 static const struct export_operations ext4_export_ops = { 1652 .encode_fh = generic_encode_ino32_fh, 1653 .fh_to_dentry = ext4_fh_to_dentry, 1654 .fh_to_parent = ext4_fh_to_parent, 1655 .get_parent = ext4_get_parent, 1656 .commit_metadata = ext4_nfs_commit_metadata, 1657 }; 1658 1659 enum { 1660 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1661 Opt_resgid, Opt_resuid, Opt_sb, 1662 Opt_nouid32, Opt_debug, Opt_removed, 1663 Opt_user_xattr, Opt_acl, 1664 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1665 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1666 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1667 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1668 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1669 Opt_inlinecrypt, 1670 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1671 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1672 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1673 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1674 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1675 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1676 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1677 Opt_inode_readahead_blks, Opt_journal_ioprio, 1678 Opt_dioread_nolock, Opt_dioread_lock, 1679 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1680 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1681 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1682 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1683 #ifdef CONFIG_EXT4_DEBUG 1684 Opt_fc_debug_max_replay, Opt_fc_debug_force 1685 #endif 1686 }; 1687 1688 static const struct constant_table ext4_param_errors[] = { 1689 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1690 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1691 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1692 {} 1693 }; 1694 1695 static const struct constant_table ext4_param_data[] = { 1696 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1697 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1698 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1699 {} 1700 }; 1701 1702 static const struct constant_table ext4_param_data_err[] = { 1703 {"abort", Opt_data_err_abort}, 1704 {"ignore", Opt_data_err_ignore}, 1705 {} 1706 }; 1707 1708 static const struct constant_table ext4_param_jqfmt[] = { 1709 {"vfsold", QFMT_VFS_OLD}, 1710 {"vfsv0", QFMT_VFS_V0}, 1711 {"vfsv1", QFMT_VFS_V1}, 1712 {} 1713 }; 1714 1715 static const struct constant_table ext4_param_dax[] = { 1716 {"always", Opt_dax_always}, 1717 {"inode", Opt_dax_inode}, 1718 {"never", Opt_dax_never}, 1719 {} 1720 }; 1721 1722 /* 1723 * Mount option specification 1724 * We don't use fsparam_flag_no because of the way we set the 1725 * options and the way we show them in _ext4_show_options(). To 1726 * keep the changes to a minimum, let's keep the negative options 1727 * separate for now. 1728 */ 1729 static const struct fs_parameter_spec ext4_param_specs[] = { 1730 fsparam_flag ("bsddf", Opt_bsd_df), 1731 fsparam_flag ("minixdf", Opt_minix_df), 1732 fsparam_flag ("grpid", Opt_grpid), 1733 fsparam_flag ("bsdgroups", Opt_grpid), 1734 fsparam_flag ("nogrpid", Opt_nogrpid), 1735 fsparam_flag ("sysvgroups", Opt_nogrpid), 1736 fsparam_gid ("resgid", Opt_resgid), 1737 fsparam_uid ("resuid", Opt_resuid), 1738 fsparam_u32 ("sb", Opt_sb), 1739 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1740 fsparam_flag ("nouid32", Opt_nouid32), 1741 fsparam_flag ("debug", Opt_debug), 1742 fsparam_flag ("oldalloc", Opt_removed), 1743 fsparam_flag ("orlov", Opt_removed), 1744 fsparam_flag ("user_xattr", Opt_user_xattr), 1745 fsparam_flag ("acl", Opt_acl), 1746 fsparam_flag ("norecovery", Opt_noload), 1747 fsparam_flag ("noload", Opt_noload), 1748 fsparam_flag ("bh", Opt_removed), 1749 fsparam_flag ("nobh", Opt_removed), 1750 fsparam_u32 ("commit", Opt_commit), 1751 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1752 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1753 fsparam_u32 ("journal_dev", Opt_journal_dev), 1754 fsparam_bdev ("journal_path", Opt_journal_path), 1755 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1756 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1757 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1758 fsparam_flag ("abort", Opt_abort), 1759 fsparam_enum ("data", Opt_data, ext4_param_data), 1760 fsparam_enum ("data_err", Opt_data_err, 1761 ext4_param_data_err), 1762 fsparam_string_empty 1763 ("usrjquota", Opt_usrjquota), 1764 fsparam_string_empty 1765 ("grpjquota", Opt_grpjquota), 1766 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1767 fsparam_flag ("grpquota", Opt_grpquota), 1768 fsparam_flag ("quota", Opt_quota), 1769 fsparam_flag ("noquota", Opt_noquota), 1770 fsparam_flag ("usrquota", Opt_usrquota), 1771 fsparam_flag ("prjquota", Opt_prjquota), 1772 fsparam_flag ("barrier", Opt_barrier), 1773 fsparam_u32 ("barrier", Opt_barrier), 1774 fsparam_flag ("nobarrier", Opt_nobarrier), 1775 fsparam_flag ("i_version", Opt_removed), 1776 fsparam_flag ("dax", Opt_dax), 1777 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1778 fsparam_u32 ("stripe", Opt_stripe), 1779 fsparam_flag ("delalloc", Opt_delalloc), 1780 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1781 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1782 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1783 fsparam_u32 ("debug_want_extra_isize", 1784 Opt_debug_want_extra_isize), 1785 fsparam_flag ("mblk_io_submit", Opt_removed), 1786 fsparam_flag ("nomblk_io_submit", Opt_removed), 1787 fsparam_flag ("block_validity", Opt_block_validity), 1788 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1789 fsparam_u32 ("inode_readahead_blks", 1790 Opt_inode_readahead_blks), 1791 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1792 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1793 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1794 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1795 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1796 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1797 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1798 fsparam_flag ("discard", Opt_discard), 1799 fsparam_flag ("nodiscard", Opt_nodiscard), 1800 fsparam_u32 ("init_itable", Opt_init_itable), 1801 fsparam_flag ("init_itable", Opt_init_itable), 1802 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1803 #ifdef CONFIG_EXT4_DEBUG 1804 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1805 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1806 #endif 1807 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1808 fsparam_flag ("test_dummy_encryption", 1809 Opt_test_dummy_encryption), 1810 fsparam_string ("test_dummy_encryption", 1811 Opt_test_dummy_encryption), 1812 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1813 fsparam_flag ("nombcache", Opt_nombcache), 1814 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1815 fsparam_flag ("prefetch_block_bitmaps", 1816 Opt_removed), 1817 fsparam_flag ("no_prefetch_block_bitmaps", 1818 Opt_no_prefetch_block_bitmaps), 1819 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1820 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1821 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1822 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1823 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1824 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1825 {} 1826 }; 1827 1828 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1829 1830 #define MOPT_SET 0x0001 1831 #define MOPT_CLEAR 0x0002 1832 #define MOPT_NOSUPPORT 0x0004 1833 #define MOPT_EXPLICIT 0x0008 1834 #ifdef CONFIG_QUOTA 1835 #define MOPT_Q 0 1836 #define MOPT_QFMT 0x0010 1837 #else 1838 #define MOPT_Q MOPT_NOSUPPORT 1839 #define MOPT_QFMT MOPT_NOSUPPORT 1840 #endif 1841 #define MOPT_NO_EXT2 0x0020 1842 #define MOPT_NO_EXT3 0x0040 1843 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1844 #define MOPT_SKIP 0x0080 1845 #define MOPT_2 0x0100 1846 1847 static const struct mount_opts { 1848 int token; 1849 int mount_opt; 1850 int flags; 1851 } ext4_mount_opts[] = { 1852 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1853 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1854 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1855 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1856 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1857 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1858 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1859 MOPT_EXT4_ONLY | MOPT_SET}, 1860 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1861 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1862 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1863 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1864 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1865 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1866 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1867 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1868 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1869 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1870 {Opt_commit, 0, MOPT_NO_EXT2}, 1871 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1872 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1873 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1874 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1875 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1876 EXT4_MOUNT_JOURNAL_CHECKSUM), 1877 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1878 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1879 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1880 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1881 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1882 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1883 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1884 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1885 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1886 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1887 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1888 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1889 {Opt_data, 0, MOPT_NO_EXT2}, 1890 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1891 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1892 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1893 #else 1894 {Opt_acl, 0, MOPT_NOSUPPORT}, 1895 #endif 1896 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1897 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1898 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1899 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1900 MOPT_SET | MOPT_Q}, 1901 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1902 MOPT_SET | MOPT_Q}, 1903 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1904 MOPT_SET | MOPT_Q}, 1905 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1906 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1907 MOPT_CLEAR | MOPT_Q}, 1908 {Opt_usrjquota, 0, MOPT_Q}, 1909 {Opt_grpjquota, 0, MOPT_Q}, 1910 {Opt_jqfmt, 0, MOPT_QFMT}, 1911 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1912 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1913 MOPT_SET}, 1914 #ifdef CONFIG_EXT4_DEBUG 1915 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1916 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1917 #endif 1918 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1919 {Opt_err, 0, 0} 1920 }; 1921 1922 #if IS_ENABLED(CONFIG_UNICODE) 1923 static const struct ext4_sb_encodings { 1924 __u16 magic; 1925 char *name; 1926 unsigned int version; 1927 } ext4_sb_encoding_map[] = { 1928 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1929 }; 1930 1931 static const struct ext4_sb_encodings * 1932 ext4_sb_read_encoding(const struct ext4_super_block *es) 1933 { 1934 __u16 magic = le16_to_cpu(es->s_encoding); 1935 int i; 1936 1937 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1938 if (magic == ext4_sb_encoding_map[i].magic) 1939 return &ext4_sb_encoding_map[i]; 1940 1941 return NULL; 1942 } 1943 #endif 1944 1945 #define EXT4_SPEC_JQUOTA (1 << 0) 1946 #define EXT4_SPEC_JQFMT (1 << 1) 1947 #define EXT4_SPEC_DATAJ (1 << 2) 1948 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1949 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1950 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1951 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1952 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1953 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1954 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1955 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1956 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1957 #define EXT4_SPEC_s_stripe (1 << 13) 1958 #define EXT4_SPEC_s_resuid (1 << 14) 1959 #define EXT4_SPEC_s_resgid (1 << 15) 1960 #define EXT4_SPEC_s_commit_interval (1 << 16) 1961 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1962 #define EXT4_SPEC_s_sb_block (1 << 18) 1963 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1964 1965 struct ext4_fs_context { 1966 char *s_qf_names[EXT4_MAXQUOTAS]; 1967 struct fscrypt_dummy_policy dummy_enc_policy; 1968 int s_jquota_fmt; /* Format of quota to use */ 1969 #ifdef CONFIG_EXT4_DEBUG 1970 int s_fc_debug_max_replay; 1971 #endif 1972 unsigned short qname_spec; 1973 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1974 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1975 unsigned long journal_devnum; 1976 unsigned long s_commit_interval; 1977 unsigned long s_stripe; 1978 unsigned int s_inode_readahead_blks; 1979 unsigned int s_want_extra_isize; 1980 unsigned int s_li_wait_mult; 1981 unsigned int s_max_dir_size_kb; 1982 unsigned int journal_ioprio; 1983 unsigned int vals_s_mount_opt; 1984 unsigned int mask_s_mount_opt; 1985 unsigned int vals_s_mount_opt2; 1986 unsigned int mask_s_mount_opt2; 1987 unsigned int opt_flags; /* MOPT flags */ 1988 unsigned int spec; 1989 u32 s_max_batch_time; 1990 u32 s_min_batch_time; 1991 kuid_t s_resuid; 1992 kgid_t s_resgid; 1993 ext4_fsblk_t s_sb_block; 1994 }; 1995 1996 static void ext4_fc_free(struct fs_context *fc) 1997 { 1998 struct ext4_fs_context *ctx = fc->fs_private; 1999 int i; 2000 2001 if (!ctx) 2002 return; 2003 2004 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2005 kfree(ctx->s_qf_names[i]); 2006 2007 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2008 kfree(ctx); 2009 } 2010 2011 int ext4_init_fs_context(struct fs_context *fc) 2012 { 2013 struct ext4_fs_context *ctx; 2014 2015 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2016 if (!ctx) 2017 return -ENOMEM; 2018 2019 fc->fs_private = ctx; 2020 fc->ops = &ext4_context_ops; 2021 2022 return 0; 2023 } 2024 2025 #ifdef CONFIG_QUOTA 2026 /* 2027 * Note the name of the specified quota file. 2028 */ 2029 static int note_qf_name(struct fs_context *fc, int qtype, 2030 struct fs_parameter *param) 2031 { 2032 struct ext4_fs_context *ctx = fc->fs_private; 2033 char *qname; 2034 2035 if (param->size < 1) { 2036 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2037 return -EINVAL; 2038 } 2039 if (strchr(param->string, '/')) { 2040 ext4_msg(NULL, KERN_ERR, 2041 "quotafile must be on filesystem root"); 2042 return -EINVAL; 2043 } 2044 if (ctx->s_qf_names[qtype]) { 2045 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2046 ext4_msg(NULL, KERN_ERR, 2047 "%s quota file already specified", 2048 QTYPE2NAME(qtype)); 2049 return -EINVAL; 2050 } 2051 return 0; 2052 } 2053 2054 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2055 if (!qname) { 2056 ext4_msg(NULL, KERN_ERR, 2057 "Not enough memory for storing quotafile name"); 2058 return -ENOMEM; 2059 } 2060 ctx->s_qf_names[qtype] = qname; 2061 ctx->qname_spec |= 1 << qtype; 2062 ctx->spec |= EXT4_SPEC_JQUOTA; 2063 return 0; 2064 } 2065 2066 /* 2067 * Clear the name of the specified quota file. 2068 */ 2069 static int unnote_qf_name(struct fs_context *fc, int qtype) 2070 { 2071 struct ext4_fs_context *ctx = fc->fs_private; 2072 2073 kfree(ctx->s_qf_names[qtype]); 2074 2075 ctx->s_qf_names[qtype] = NULL; 2076 ctx->qname_spec |= 1 << qtype; 2077 ctx->spec |= EXT4_SPEC_JQUOTA; 2078 return 0; 2079 } 2080 #endif 2081 2082 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2083 struct ext4_fs_context *ctx) 2084 { 2085 int err; 2086 2087 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2088 ext4_msg(NULL, KERN_WARNING, 2089 "test_dummy_encryption option not supported"); 2090 return -EINVAL; 2091 } 2092 err = fscrypt_parse_test_dummy_encryption(param, 2093 &ctx->dummy_enc_policy); 2094 if (err == -EINVAL) { 2095 ext4_msg(NULL, KERN_WARNING, 2096 "Value of option \"%s\" is unrecognized", param->key); 2097 } else if (err == -EEXIST) { 2098 ext4_msg(NULL, KERN_WARNING, 2099 "Conflicting test_dummy_encryption options"); 2100 return -EINVAL; 2101 } 2102 return err; 2103 } 2104 2105 #define EXT4_SET_CTX(name) \ 2106 static inline __maybe_unused \ 2107 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2108 { \ 2109 ctx->mask_s_##name |= flag; \ 2110 ctx->vals_s_##name |= flag; \ 2111 } 2112 2113 #define EXT4_CLEAR_CTX(name) \ 2114 static inline __maybe_unused \ 2115 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2116 { \ 2117 ctx->mask_s_##name |= flag; \ 2118 ctx->vals_s_##name &= ~flag; \ 2119 } 2120 2121 #define EXT4_TEST_CTX(name) \ 2122 static inline unsigned long \ 2123 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2124 { \ 2125 return (ctx->vals_s_##name & flag); \ 2126 } 2127 2128 EXT4_SET_CTX(flags); /* set only */ 2129 EXT4_SET_CTX(mount_opt); 2130 EXT4_CLEAR_CTX(mount_opt); 2131 EXT4_TEST_CTX(mount_opt); 2132 EXT4_SET_CTX(mount_opt2); 2133 EXT4_CLEAR_CTX(mount_opt2); 2134 EXT4_TEST_CTX(mount_opt2); 2135 2136 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2137 { 2138 struct ext4_fs_context *ctx = fc->fs_private; 2139 struct fs_parse_result result; 2140 const struct mount_opts *m; 2141 int is_remount; 2142 int token; 2143 2144 token = fs_parse(fc, ext4_param_specs, param, &result); 2145 if (token < 0) 2146 return token; 2147 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2148 2149 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2150 if (token == m->token) 2151 break; 2152 2153 ctx->opt_flags |= m->flags; 2154 2155 if (m->flags & MOPT_EXPLICIT) { 2156 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2157 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2158 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2159 ctx_set_mount_opt2(ctx, 2160 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2161 } else 2162 return -EINVAL; 2163 } 2164 2165 if (m->flags & MOPT_NOSUPPORT) { 2166 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2167 param->key); 2168 return 0; 2169 } 2170 2171 switch (token) { 2172 #ifdef CONFIG_QUOTA 2173 case Opt_usrjquota: 2174 if (!*param->string) 2175 return unnote_qf_name(fc, USRQUOTA); 2176 else 2177 return note_qf_name(fc, USRQUOTA, param); 2178 case Opt_grpjquota: 2179 if (!*param->string) 2180 return unnote_qf_name(fc, GRPQUOTA); 2181 else 2182 return note_qf_name(fc, GRPQUOTA, param); 2183 #endif 2184 case Opt_sb: 2185 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2186 ext4_msg(NULL, KERN_WARNING, 2187 "Ignoring %s option on remount", param->key); 2188 } else { 2189 ctx->s_sb_block = result.uint_32; 2190 ctx->spec |= EXT4_SPEC_s_sb_block; 2191 } 2192 return 0; 2193 case Opt_removed: 2194 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2195 param->key); 2196 return 0; 2197 case Opt_inlinecrypt: 2198 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2199 ctx_set_flags(ctx, SB_INLINECRYPT); 2200 #else 2201 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2202 #endif 2203 return 0; 2204 case Opt_errors: 2205 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2206 ctx_set_mount_opt(ctx, result.uint_32); 2207 return 0; 2208 #ifdef CONFIG_QUOTA 2209 case Opt_jqfmt: 2210 ctx->s_jquota_fmt = result.uint_32; 2211 ctx->spec |= EXT4_SPEC_JQFMT; 2212 return 0; 2213 #endif 2214 case Opt_data: 2215 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2216 ctx_set_mount_opt(ctx, result.uint_32); 2217 ctx->spec |= EXT4_SPEC_DATAJ; 2218 return 0; 2219 case Opt_commit: 2220 if (result.uint_32 == 0) 2221 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2222 else if (result.uint_32 > INT_MAX / HZ) { 2223 ext4_msg(NULL, KERN_ERR, 2224 "Invalid commit interval %d, " 2225 "must be smaller than %d", 2226 result.uint_32, INT_MAX / HZ); 2227 return -EINVAL; 2228 } 2229 ctx->s_commit_interval = HZ * result.uint_32; 2230 ctx->spec |= EXT4_SPEC_s_commit_interval; 2231 return 0; 2232 case Opt_debug_want_extra_isize: 2233 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2234 ext4_msg(NULL, KERN_ERR, 2235 "Invalid want_extra_isize %d", result.uint_32); 2236 return -EINVAL; 2237 } 2238 ctx->s_want_extra_isize = result.uint_32; 2239 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2240 return 0; 2241 case Opt_max_batch_time: 2242 ctx->s_max_batch_time = result.uint_32; 2243 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2244 return 0; 2245 case Opt_min_batch_time: 2246 ctx->s_min_batch_time = result.uint_32; 2247 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2248 return 0; 2249 case Opt_inode_readahead_blks: 2250 if (result.uint_32 && 2251 (result.uint_32 > (1 << 30) || 2252 !is_power_of_2(result.uint_32))) { 2253 ext4_msg(NULL, KERN_ERR, 2254 "EXT4-fs: inode_readahead_blks must be " 2255 "0 or a power of 2 smaller than 2^31"); 2256 return -EINVAL; 2257 } 2258 ctx->s_inode_readahead_blks = result.uint_32; 2259 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2260 return 0; 2261 case Opt_init_itable: 2262 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2263 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2264 if (param->type == fs_value_is_string) 2265 ctx->s_li_wait_mult = result.uint_32; 2266 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2267 return 0; 2268 case Opt_max_dir_size_kb: 2269 ctx->s_max_dir_size_kb = result.uint_32; 2270 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2271 return 0; 2272 #ifdef CONFIG_EXT4_DEBUG 2273 case Opt_fc_debug_max_replay: 2274 ctx->s_fc_debug_max_replay = result.uint_32; 2275 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2276 return 0; 2277 #endif 2278 case Opt_stripe: 2279 ctx->s_stripe = result.uint_32; 2280 ctx->spec |= EXT4_SPEC_s_stripe; 2281 return 0; 2282 case Opt_resuid: 2283 ctx->s_resuid = result.uid; 2284 ctx->spec |= EXT4_SPEC_s_resuid; 2285 return 0; 2286 case Opt_resgid: 2287 ctx->s_resgid = result.gid; 2288 ctx->spec |= EXT4_SPEC_s_resgid; 2289 return 0; 2290 case Opt_journal_dev: 2291 if (is_remount) { 2292 ext4_msg(NULL, KERN_ERR, 2293 "Cannot specify journal on remount"); 2294 return -EINVAL; 2295 } 2296 ctx->journal_devnum = result.uint_32; 2297 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2298 return 0; 2299 case Opt_journal_path: 2300 { 2301 struct inode *journal_inode; 2302 struct path path; 2303 int error; 2304 2305 if (is_remount) { 2306 ext4_msg(NULL, KERN_ERR, 2307 "Cannot specify journal on remount"); 2308 return -EINVAL; 2309 } 2310 2311 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2312 if (error) { 2313 ext4_msg(NULL, KERN_ERR, "error: could not find " 2314 "journal device path"); 2315 return -EINVAL; 2316 } 2317 2318 journal_inode = d_inode(path.dentry); 2319 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2320 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2321 path_put(&path); 2322 return 0; 2323 } 2324 case Opt_journal_ioprio: 2325 if (result.uint_32 > 7) { 2326 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2327 " (must be 0-7)"); 2328 return -EINVAL; 2329 } 2330 ctx->journal_ioprio = 2331 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2332 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2333 return 0; 2334 case Opt_test_dummy_encryption: 2335 return ext4_parse_test_dummy_encryption(param, ctx); 2336 case Opt_dax: 2337 case Opt_dax_type: 2338 #ifdef CONFIG_FS_DAX 2339 { 2340 int type = (token == Opt_dax) ? 2341 Opt_dax : result.uint_32; 2342 2343 switch (type) { 2344 case Opt_dax: 2345 case Opt_dax_always: 2346 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2347 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2348 break; 2349 case Opt_dax_never: 2350 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2351 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2352 break; 2353 case Opt_dax_inode: 2354 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2355 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2356 /* Strictly for printing options */ 2357 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2358 break; 2359 } 2360 return 0; 2361 } 2362 #else 2363 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2364 return -EINVAL; 2365 #endif 2366 case Opt_data_err: 2367 if (result.uint_32 == Opt_data_err_abort) 2368 ctx_set_mount_opt(ctx, m->mount_opt); 2369 else if (result.uint_32 == Opt_data_err_ignore) 2370 ctx_clear_mount_opt(ctx, m->mount_opt); 2371 return 0; 2372 case Opt_mb_optimize_scan: 2373 if (result.int_32 == 1) { 2374 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2375 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2376 } else if (result.int_32 == 0) { 2377 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2378 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2379 } else { 2380 ext4_msg(NULL, KERN_WARNING, 2381 "mb_optimize_scan should be set to 0 or 1."); 2382 return -EINVAL; 2383 } 2384 return 0; 2385 } 2386 2387 /* 2388 * At this point we should only be getting options requiring MOPT_SET, 2389 * or MOPT_CLEAR. Anything else is a bug 2390 */ 2391 if (m->token == Opt_err) { 2392 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2393 param->key); 2394 WARN_ON(1); 2395 return -EINVAL; 2396 } 2397 2398 else { 2399 unsigned int set = 0; 2400 2401 if ((param->type == fs_value_is_flag) || 2402 result.uint_32 > 0) 2403 set = 1; 2404 2405 if (m->flags & MOPT_CLEAR) 2406 set = !set; 2407 else if (unlikely(!(m->flags & MOPT_SET))) { 2408 ext4_msg(NULL, KERN_WARNING, 2409 "buggy handling of option %s", 2410 param->key); 2411 WARN_ON(1); 2412 return -EINVAL; 2413 } 2414 if (m->flags & MOPT_2) { 2415 if (set != 0) 2416 ctx_set_mount_opt2(ctx, m->mount_opt); 2417 else 2418 ctx_clear_mount_opt2(ctx, m->mount_opt); 2419 } else { 2420 if (set != 0) 2421 ctx_set_mount_opt(ctx, m->mount_opt); 2422 else 2423 ctx_clear_mount_opt(ctx, m->mount_opt); 2424 } 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int parse_options(struct fs_context *fc, char *options) 2431 { 2432 struct fs_parameter param; 2433 int ret; 2434 char *key; 2435 2436 if (!options) 2437 return 0; 2438 2439 while ((key = strsep(&options, ",")) != NULL) { 2440 if (*key) { 2441 size_t v_len = 0; 2442 char *value = strchr(key, '='); 2443 2444 param.type = fs_value_is_flag; 2445 param.string = NULL; 2446 2447 if (value) { 2448 if (value == key) 2449 continue; 2450 2451 *value++ = 0; 2452 v_len = strlen(value); 2453 param.string = kmemdup_nul(value, v_len, 2454 GFP_KERNEL); 2455 if (!param.string) 2456 return -ENOMEM; 2457 param.type = fs_value_is_string; 2458 } 2459 2460 param.key = key; 2461 param.size = v_len; 2462 2463 ret = ext4_parse_param(fc, ¶m); 2464 kfree(param.string); 2465 if (ret < 0) 2466 return ret; 2467 } 2468 } 2469 2470 ret = ext4_validate_options(fc); 2471 if (ret < 0) 2472 return ret; 2473 2474 return 0; 2475 } 2476 2477 static int parse_apply_sb_mount_options(struct super_block *sb, 2478 struct ext4_fs_context *m_ctx) 2479 { 2480 struct ext4_sb_info *sbi = EXT4_SB(sb); 2481 char *s_mount_opts = NULL; 2482 struct ext4_fs_context *s_ctx = NULL; 2483 struct fs_context *fc = NULL; 2484 int ret = -ENOMEM; 2485 2486 if (!sbi->s_es->s_mount_opts[0]) 2487 return 0; 2488 2489 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2490 sizeof(sbi->s_es->s_mount_opts), 2491 GFP_KERNEL); 2492 if (!s_mount_opts) 2493 return ret; 2494 2495 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2496 if (!fc) 2497 goto out_free; 2498 2499 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2500 if (!s_ctx) 2501 goto out_free; 2502 2503 fc->fs_private = s_ctx; 2504 fc->s_fs_info = sbi; 2505 2506 ret = parse_options(fc, s_mount_opts); 2507 if (ret < 0) 2508 goto parse_failed; 2509 2510 ret = ext4_check_opt_consistency(fc, sb); 2511 if (ret < 0) { 2512 parse_failed: 2513 ext4_msg(sb, KERN_WARNING, 2514 "failed to parse options in superblock: %s", 2515 s_mount_opts); 2516 ret = 0; 2517 goto out_free; 2518 } 2519 2520 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2521 m_ctx->journal_devnum = s_ctx->journal_devnum; 2522 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2523 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2524 2525 ext4_apply_options(fc, sb); 2526 ret = 0; 2527 2528 out_free: 2529 if (fc) { 2530 ext4_fc_free(fc); 2531 kfree(fc); 2532 } 2533 kfree(s_mount_opts); 2534 return ret; 2535 } 2536 2537 static void ext4_apply_quota_options(struct fs_context *fc, 2538 struct super_block *sb) 2539 { 2540 #ifdef CONFIG_QUOTA 2541 bool quota_feature = ext4_has_feature_quota(sb); 2542 struct ext4_fs_context *ctx = fc->fs_private; 2543 struct ext4_sb_info *sbi = EXT4_SB(sb); 2544 char *qname; 2545 int i; 2546 2547 if (quota_feature) 2548 return; 2549 2550 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2551 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2552 if (!(ctx->qname_spec & (1 << i))) 2553 continue; 2554 2555 qname = ctx->s_qf_names[i]; /* May be NULL */ 2556 if (qname) 2557 set_opt(sb, QUOTA); 2558 ctx->s_qf_names[i] = NULL; 2559 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2560 lockdep_is_held(&sb->s_umount)); 2561 if (qname) 2562 kfree_rcu_mightsleep(qname); 2563 } 2564 } 2565 2566 if (ctx->spec & EXT4_SPEC_JQFMT) 2567 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2568 #endif 2569 } 2570 2571 /* 2572 * Check quota settings consistency. 2573 */ 2574 static int ext4_check_quota_consistency(struct fs_context *fc, 2575 struct super_block *sb) 2576 { 2577 #ifdef CONFIG_QUOTA 2578 struct ext4_fs_context *ctx = fc->fs_private; 2579 struct ext4_sb_info *sbi = EXT4_SB(sb); 2580 bool quota_feature = ext4_has_feature_quota(sb); 2581 bool quota_loaded = sb_any_quota_loaded(sb); 2582 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2583 int quota_flags, i; 2584 2585 /* 2586 * We do the test below only for project quotas. 'usrquota' and 2587 * 'grpquota' mount options are allowed even without quota feature 2588 * to support legacy quotas in quota files. 2589 */ 2590 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2591 !ext4_has_feature_project(sb)) { 2592 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2593 "Cannot enable project quota enforcement."); 2594 return -EINVAL; 2595 } 2596 2597 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2598 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2599 if (quota_loaded && 2600 ctx->mask_s_mount_opt & quota_flags && 2601 !ctx_test_mount_opt(ctx, quota_flags)) 2602 goto err_quota_change; 2603 2604 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2605 2606 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2607 if (!(ctx->qname_spec & (1 << i))) 2608 continue; 2609 2610 if (quota_loaded && 2611 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2612 goto err_jquota_change; 2613 2614 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2615 strcmp(get_qf_name(sb, sbi, i), 2616 ctx->s_qf_names[i]) != 0) 2617 goto err_jquota_specified; 2618 } 2619 2620 if (quota_feature) { 2621 ext4_msg(NULL, KERN_INFO, 2622 "Journaled quota options ignored when " 2623 "QUOTA feature is enabled"); 2624 return 0; 2625 } 2626 } 2627 2628 if (ctx->spec & EXT4_SPEC_JQFMT) { 2629 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2630 goto err_jquota_change; 2631 if (quota_feature) { 2632 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2633 "ignored when QUOTA feature is enabled"); 2634 return 0; 2635 } 2636 } 2637 2638 /* Make sure we don't mix old and new quota format */ 2639 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2640 ctx->s_qf_names[USRQUOTA]); 2641 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2642 ctx->s_qf_names[GRPQUOTA]); 2643 2644 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2645 test_opt(sb, USRQUOTA)); 2646 2647 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2648 test_opt(sb, GRPQUOTA)); 2649 2650 if (usr_qf_name) { 2651 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2652 usrquota = false; 2653 } 2654 if (grp_qf_name) { 2655 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2656 grpquota = false; 2657 } 2658 2659 if (usr_qf_name || grp_qf_name) { 2660 if (usrquota || grpquota) { 2661 ext4_msg(NULL, KERN_ERR, "old and new quota " 2662 "format mixing"); 2663 return -EINVAL; 2664 } 2665 2666 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2667 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2668 "not specified"); 2669 return -EINVAL; 2670 } 2671 } 2672 2673 return 0; 2674 2675 err_quota_change: 2676 ext4_msg(NULL, KERN_ERR, 2677 "Cannot change quota options when quota turned on"); 2678 return -EINVAL; 2679 err_jquota_change: 2680 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2681 "options when quota turned on"); 2682 return -EINVAL; 2683 err_jquota_specified: 2684 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2685 QTYPE2NAME(i)); 2686 return -EINVAL; 2687 #else 2688 return 0; 2689 #endif 2690 } 2691 2692 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2693 struct super_block *sb) 2694 { 2695 const struct ext4_fs_context *ctx = fc->fs_private; 2696 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2697 2698 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2699 return 0; 2700 2701 if (!ext4_has_feature_encrypt(sb)) { 2702 ext4_msg(NULL, KERN_WARNING, 2703 "test_dummy_encryption requires encrypt feature"); 2704 return -EINVAL; 2705 } 2706 /* 2707 * This mount option is just for testing, and it's not worthwhile to 2708 * implement the extra complexity (e.g. RCU protection) that would be 2709 * needed to allow it to be set or changed during remount. We do allow 2710 * it to be specified during remount, but only if there is no change. 2711 */ 2712 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2713 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2714 &ctx->dummy_enc_policy)) 2715 return 0; 2716 ext4_msg(NULL, KERN_WARNING, 2717 "Can't set or change test_dummy_encryption on remount"); 2718 return -EINVAL; 2719 } 2720 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2721 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2722 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2723 &ctx->dummy_enc_policy)) 2724 return 0; 2725 ext4_msg(NULL, KERN_WARNING, 2726 "Conflicting test_dummy_encryption options"); 2727 return -EINVAL; 2728 } 2729 return 0; 2730 } 2731 2732 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2733 struct super_block *sb) 2734 { 2735 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2736 /* if already set, it was already verified to be the same */ 2737 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2738 return; 2739 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2740 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2741 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2742 } 2743 2744 static int ext4_check_opt_consistency(struct fs_context *fc, 2745 struct super_block *sb) 2746 { 2747 struct ext4_fs_context *ctx = fc->fs_private; 2748 struct ext4_sb_info *sbi = fc->s_fs_info; 2749 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2750 int err; 2751 2752 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2753 ext4_msg(NULL, KERN_ERR, 2754 "Mount option(s) incompatible with ext2"); 2755 return -EINVAL; 2756 } 2757 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2758 ext4_msg(NULL, KERN_ERR, 2759 "Mount option(s) incompatible with ext3"); 2760 return -EINVAL; 2761 } 2762 2763 if (ctx->s_want_extra_isize > 2764 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2765 ext4_msg(NULL, KERN_ERR, 2766 "Invalid want_extra_isize %d", 2767 ctx->s_want_extra_isize); 2768 return -EINVAL; 2769 } 2770 2771 err = ext4_check_test_dummy_encryption(fc, sb); 2772 if (err) 2773 return err; 2774 2775 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2776 if (!sbi->s_journal) { 2777 ext4_msg(NULL, KERN_WARNING, 2778 "Remounting file system with no journal " 2779 "so ignoring journalled data option"); 2780 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2781 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2782 test_opt(sb, DATA_FLAGS)) { 2783 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2784 "on remount"); 2785 return -EINVAL; 2786 } 2787 } 2788 2789 if (is_remount) { 2790 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2791 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2792 ext4_msg(NULL, KERN_ERR, "can't mount with " 2793 "both data=journal and dax"); 2794 return -EINVAL; 2795 } 2796 2797 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2798 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2799 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2800 fail_dax_change_remount: 2801 ext4_msg(NULL, KERN_ERR, "can't change " 2802 "dax mount option while remounting"); 2803 return -EINVAL; 2804 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2805 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2806 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2807 goto fail_dax_change_remount; 2808 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2809 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2810 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2811 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2812 goto fail_dax_change_remount; 2813 } 2814 } 2815 2816 return ext4_check_quota_consistency(fc, sb); 2817 } 2818 2819 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2820 { 2821 struct ext4_fs_context *ctx = fc->fs_private; 2822 struct ext4_sb_info *sbi = fc->s_fs_info; 2823 2824 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2825 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2826 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2827 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2828 sb->s_flags &= ~ctx->mask_s_flags; 2829 sb->s_flags |= ctx->vals_s_flags; 2830 2831 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2832 APPLY(s_commit_interval); 2833 APPLY(s_stripe); 2834 APPLY(s_max_batch_time); 2835 APPLY(s_min_batch_time); 2836 APPLY(s_want_extra_isize); 2837 APPLY(s_inode_readahead_blks); 2838 APPLY(s_max_dir_size_kb); 2839 APPLY(s_li_wait_mult); 2840 APPLY(s_resgid); 2841 APPLY(s_resuid); 2842 2843 #ifdef CONFIG_EXT4_DEBUG 2844 APPLY(s_fc_debug_max_replay); 2845 #endif 2846 2847 ext4_apply_quota_options(fc, sb); 2848 ext4_apply_test_dummy_encryption(ctx, sb); 2849 } 2850 2851 2852 static int ext4_validate_options(struct fs_context *fc) 2853 { 2854 #ifdef CONFIG_QUOTA 2855 struct ext4_fs_context *ctx = fc->fs_private; 2856 char *usr_qf_name, *grp_qf_name; 2857 2858 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2859 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2860 2861 if (usr_qf_name || grp_qf_name) { 2862 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2863 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2864 2865 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2866 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2867 2868 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2869 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2870 ext4_msg(NULL, KERN_ERR, "old and new quota " 2871 "format mixing"); 2872 return -EINVAL; 2873 } 2874 } 2875 #endif 2876 return 1; 2877 } 2878 2879 static inline void ext4_show_quota_options(struct seq_file *seq, 2880 struct super_block *sb) 2881 { 2882 #if defined(CONFIG_QUOTA) 2883 struct ext4_sb_info *sbi = EXT4_SB(sb); 2884 char *usr_qf_name, *grp_qf_name; 2885 2886 if (sbi->s_jquota_fmt) { 2887 char *fmtname = ""; 2888 2889 switch (sbi->s_jquota_fmt) { 2890 case QFMT_VFS_OLD: 2891 fmtname = "vfsold"; 2892 break; 2893 case QFMT_VFS_V0: 2894 fmtname = "vfsv0"; 2895 break; 2896 case QFMT_VFS_V1: 2897 fmtname = "vfsv1"; 2898 break; 2899 } 2900 seq_printf(seq, ",jqfmt=%s", fmtname); 2901 } 2902 2903 rcu_read_lock(); 2904 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2905 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2906 if (usr_qf_name) 2907 seq_show_option(seq, "usrjquota", usr_qf_name); 2908 if (grp_qf_name) 2909 seq_show_option(seq, "grpjquota", grp_qf_name); 2910 rcu_read_unlock(); 2911 #endif 2912 } 2913 2914 static const char *token2str(int token) 2915 { 2916 const struct fs_parameter_spec *spec; 2917 2918 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2919 if (spec->opt == token && !spec->type) 2920 break; 2921 return spec->name; 2922 } 2923 2924 /* 2925 * Show an option if 2926 * - it's set to a non-default value OR 2927 * - if the per-sb default is different from the global default 2928 */ 2929 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2930 int nodefs) 2931 { 2932 struct ext4_sb_info *sbi = EXT4_SB(sb); 2933 struct ext4_super_block *es = sbi->s_es; 2934 int def_errors; 2935 const struct mount_opts *m; 2936 char sep = nodefs ? '\n' : ','; 2937 2938 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2939 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2940 2941 if (sbi->s_sb_block != 1) 2942 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2943 2944 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2945 int want_set = m->flags & MOPT_SET; 2946 int opt_2 = m->flags & MOPT_2; 2947 unsigned int mount_opt, def_mount_opt; 2948 2949 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2950 m->flags & MOPT_SKIP) 2951 continue; 2952 2953 if (opt_2) { 2954 mount_opt = sbi->s_mount_opt2; 2955 def_mount_opt = sbi->s_def_mount_opt2; 2956 } else { 2957 mount_opt = sbi->s_mount_opt; 2958 def_mount_opt = sbi->s_def_mount_opt; 2959 } 2960 /* skip if same as the default */ 2961 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2962 continue; 2963 /* select Opt_noFoo vs Opt_Foo */ 2964 if ((want_set && 2965 (mount_opt & m->mount_opt) != m->mount_opt) || 2966 (!want_set && (mount_opt & m->mount_opt))) 2967 continue; 2968 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2969 } 2970 2971 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2972 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2973 SEQ_OPTS_PRINT("resuid=%u", 2974 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2975 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2976 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2977 SEQ_OPTS_PRINT("resgid=%u", 2978 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2979 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2980 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2981 SEQ_OPTS_PUTS("errors=remount-ro"); 2982 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2983 SEQ_OPTS_PUTS("errors=continue"); 2984 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2985 SEQ_OPTS_PUTS("errors=panic"); 2986 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2987 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2988 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2989 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2990 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2991 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2992 if (nodefs || sbi->s_stripe) 2993 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2994 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2995 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 2996 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2997 SEQ_OPTS_PUTS("data=journal"); 2998 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2999 SEQ_OPTS_PUTS("data=ordered"); 3000 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3001 SEQ_OPTS_PUTS("data=writeback"); 3002 } 3003 if (nodefs || 3004 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3005 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3006 sbi->s_inode_readahead_blks); 3007 3008 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3009 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3010 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3011 if (nodefs || sbi->s_max_dir_size_kb) 3012 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3013 if (test_opt(sb, DATA_ERR_ABORT)) 3014 SEQ_OPTS_PUTS("data_err=abort"); 3015 3016 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3017 3018 if (sb->s_flags & SB_INLINECRYPT) 3019 SEQ_OPTS_PUTS("inlinecrypt"); 3020 3021 if (test_opt(sb, DAX_ALWAYS)) { 3022 if (IS_EXT2_SB(sb)) 3023 SEQ_OPTS_PUTS("dax"); 3024 else 3025 SEQ_OPTS_PUTS("dax=always"); 3026 } else if (test_opt2(sb, DAX_NEVER)) { 3027 SEQ_OPTS_PUTS("dax=never"); 3028 } else if (test_opt2(sb, DAX_INODE)) { 3029 SEQ_OPTS_PUTS("dax=inode"); 3030 } 3031 3032 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3033 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3034 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3035 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3036 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3037 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3038 } 3039 3040 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) 3041 SEQ_OPTS_PUTS("prefetch_block_bitmaps"); 3042 3043 ext4_show_quota_options(seq, sb); 3044 return 0; 3045 } 3046 3047 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3048 { 3049 return _ext4_show_options(seq, root->d_sb, 0); 3050 } 3051 3052 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3053 { 3054 struct super_block *sb = seq->private; 3055 int rc; 3056 3057 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3058 rc = _ext4_show_options(seq, sb, 1); 3059 seq_putc(seq, '\n'); 3060 return rc; 3061 } 3062 3063 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3064 int read_only) 3065 { 3066 struct ext4_sb_info *sbi = EXT4_SB(sb); 3067 int err = 0; 3068 3069 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3070 ext4_msg(sb, KERN_ERR, "revision level too high, " 3071 "forcing read-only mode"); 3072 err = -EROFS; 3073 goto done; 3074 } 3075 if (read_only) 3076 goto done; 3077 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3078 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3079 "running e2fsck is recommended"); 3080 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3081 ext4_msg(sb, KERN_WARNING, 3082 "warning: mounting fs with errors, " 3083 "running e2fsck is recommended"); 3084 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3085 le16_to_cpu(es->s_mnt_count) >= 3086 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3087 ext4_msg(sb, KERN_WARNING, 3088 "warning: maximal mount count reached, " 3089 "running e2fsck is recommended"); 3090 else if (le32_to_cpu(es->s_checkinterval) && 3091 (ext4_get_tstamp(es, s_lastcheck) + 3092 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3093 ext4_msg(sb, KERN_WARNING, 3094 "warning: checktime reached, " 3095 "running e2fsck is recommended"); 3096 if (!sbi->s_journal) 3097 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3098 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3099 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3100 le16_add_cpu(&es->s_mnt_count, 1); 3101 ext4_update_tstamp(es, s_mtime); 3102 if (sbi->s_journal) { 3103 ext4_set_feature_journal_needs_recovery(sb); 3104 if (ext4_has_feature_orphan_file(sb)) 3105 ext4_set_feature_orphan_present(sb); 3106 } 3107 3108 err = ext4_commit_super(sb); 3109 done: 3110 if (test_opt(sb, DEBUG)) 3111 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3112 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3113 sb->s_blocksize, 3114 sbi->s_groups_count, 3115 EXT4_BLOCKS_PER_GROUP(sb), 3116 EXT4_INODES_PER_GROUP(sb), 3117 sbi->s_mount_opt, sbi->s_mount_opt2); 3118 return err; 3119 } 3120 3121 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3122 { 3123 struct ext4_sb_info *sbi = EXT4_SB(sb); 3124 struct flex_groups **old_groups, **new_groups; 3125 int size, i, j; 3126 3127 if (!sbi->s_log_groups_per_flex) 3128 return 0; 3129 3130 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3131 if (size <= sbi->s_flex_groups_allocated) 3132 return 0; 3133 3134 new_groups = kvzalloc(roundup_pow_of_two(size * 3135 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3136 if (!new_groups) { 3137 ext4_msg(sb, KERN_ERR, 3138 "not enough memory for %d flex group pointers", size); 3139 return -ENOMEM; 3140 } 3141 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3142 new_groups[i] = kvzalloc(roundup_pow_of_two( 3143 sizeof(struct flex_groups)), 3144 GFP_KERNEL); 3145 if (!new_groups[i]) { 3146 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3147 kvfree(new_groups[j]); 3148 kvfree(new_groups); 3149 ext4_msg(sb, KERN_ERR, 3150 "not enough memory for %d flex groups", size); 3151 return -ENOMEM; 3152 } 3153 } 3154 rcu_read_lock(); 3155 old_groups = rcu_dereference(sbi->s_flex_groups); 3156 if (old_groups) 3157 memcpy(new_groups, old_groups, 3158 (sbi->s_flex_groups_allocated * 3159 sizeof(struct flex_groups *))); 3160 rcu_read_unlock(); 3161 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3162 sbi->s_flex_groups_allocated = size; 3163 if (old_groups) 3164 ext4_kvfree_array_rcu(old_groups); 3165 return 0; 3166 } 3167 3168 static int ext4_fill_flex_info(struct super_block *sb) 3169 { 3170 struct ext4_sb_info *sbi = EXT4_SB(sb); 3171 struct ext4_group_desc *gdp = NULL; 3172 struct flex_groups *fg; 3173 ext4_group_t flex_group; 3174 int i, err; 3175 3176 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3177 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3178 sbi->s_log_groups_per_flex = 0; 3179 return 1; 3180 } 3181 3182 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3183 if (err) 3184 goto failed; 3185 3186 for (i = 0; i < sbi->s_groups_count; i++) { 3187 gdp = ext4_get_group_desc(sb, i, NULL); 3188 3189 flex_group = ext4_flex_group(sbi, i); 3190 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3191 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3192 atomic64_add(ext4_free_group_clusters(sb, gdp), 3193 &fg->free_clusters); 3194 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3195 } 3196 3197 return 1; 3198 failed: 3199 return 0; 3200 } 3201 3202 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3203 struct ext4_group_desc *gdp) 3204 { 3205 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3206 __u16 crc = 0; 3207 __le32 le_group = cpu_to_le32(block_group); 3208 struct ext4_sb_info *sbi = EXT4_SB(sb); 3209 3210 if (ext4_has_metadata_csum(sbi->s_sb)) { 3211 /* Use new metadata_csum algorithm */ 3212 __u32 csum32; 3213 __u16 dummy_csum = 0; 3214 3215 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3216 sizeof(le_group)); 3217 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3218 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3219 sizeof(dummy_csum)); 3220 offset += sizeof(dummy_csum); 3221 if (offset < sbi->s_desc_size) 3222 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3223 sbi->s_desc_size - offset); 3224 3225 crc = csum32 & 0xFFFF; 3226 goto out; 3227 } 3228 3229 /* old crc16 code */ 3230 if (!ext4_has_feature_gdt_csum(sb)) 3231 return 0; 3232 3233 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3234 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3235 crc = crc16(crc, (__u8 *)gdp, offset); 3236 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3237 /* for checksum of struct ext4_group_desc do the rest...*/ 3238 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3239 crc = crc16(crc, (__u8 *)gdp + offset, 3240 sbi->s_desc_size - offset); 3241 3242 out: 3243 return cpu_to_le16(crc); 3244 } 3245 3246 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3247 struct ext4_group_desc *gdp) 3248 { 3249 if (ext4_has_group_desc_csum(sb) && 3250 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3251 return 0; 3252 3253 return 1; 3254 } 3255 3256 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3257 struct ext4_group_desc *gdp) 3258 { 3259 if (!ext4_has_group_desc_csum(sb)) 3260 return; 3261 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3262 } 3263 3264 /* Called at mount-time, super-block is locked */ 3265 static int ext4_check_descriptors(struct super_block *sb, 3266 ext4_fsblk_t sb_block, 3267 ext4_group_t *first_not_zeroed) 3268 { 3269 struct ext4_sb_info *sbi = EXT4_SB(sb); 3270 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3271 ext4_fsblk_t last_block; 3272 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3273 ext4_fsblk_t block_bitmap; 3274 ext4_fsblk_t inode_bitmap; 3275 ext4_fsblk_t inode_table; 3276 int flexbg_flag = 0; 3277 ext4_group_t i, grp = sbi->s_groups_count; 3278 3279 if (ext4_has_feature_flex_bg(sb)) 3280 flexbg_flag = 1; 3281 3282 ext4_debug("Checking group descriptors"); 3283 3284 for (i = 0; i < sbi->s_groups_count; i++) { 3285 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3286 3287 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3288 last_block = ext4_blocks_count(sbi->s_es) - 1; 3289 else 3290 last_block = first_block + 3291 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3292 3293 if ((grp == sbi->s_groups_count) && 3294 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3295 grp = i; 3296 3297 block_bitmap = ext4_block_bitmap(sb, gdp); 3298 if (block_bitmap == sb_block) { 3299 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3300 "Block bitmap for group %u overlaps " 3301 "superblock", i); 3302 if (!sb_rdonly(sb)) 3303 return 0; 3304 } 3305 if (block_bitmap >= sb_block + 1 && 3306 block_bitmap <= last_bg_block) { 3307 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3308 "Block bitmap for group %u overlaps " 3309 "block group descriptors", i); 3310 if (!sb_rdonly(sb)) 3311 return 0; 3312 } 3313 if (block_bitmap < first_block || block_bitmap > last_block) { 3314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3315 "Block bitmap for group %u not in group " 3316 "(block %llu)!", i, block_bitmap); 3317 return 0; 3318 } 3319 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3320 if (inode_bitmap == sb_block) { 3321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3322 "Inode bitmap for group %u overlaps " 3323 "superblock", i); 3324 if (!sb_rdonly(sb)) 3325 return 0; 3326 } 3327 if (inode_bitmap >= sb_block + 1 && 3328 inode_bitmap <= last_bg_block) { 3329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3330 "Inode bitmap for group %u overlaps " 3331 "block group descriptors", i); 3332 if (!sb_rdonly(sb)) 3333 return 0; 3334 } 3335 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3337 "Inode bitmap for group %u not in group " 3338 "(block %llu)!", i, inode_bitmap); 3339 return 0; 3340 } 3341 inode_table = ext4_inode_table(sb, gdp); 3342 if (inode_table == sb_block) { 3343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3344 "Inode table for group %u overlaps " 3345 "superblock", i); 3346 if (!sb_rdonly(sb)) 3347 return 0; 3348 } 3349 if (inode_table >= sb_block + 1 && 3350 inode_table <= last_bg_block) { 3351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3352 "Inode table for group %u overlaps " 3353 "block group descriptors", i); 3354 if (!sb_rdonly(sb)) 3355 return 0; 3356 } 3357 if (inode_table < first_block || 3358 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3360 "Inode table for group %u not in group " 3361 "(block %llu)!", i, inode_table); 3362 return 0; 3363 } 3364 ext4_lock_group(sb, i); 3365 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3367 "Checksum for group %u failed (%u!=%u)", 3368 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3369 gdp)), le16_to_cpu(gdp->bg_checksum)); 3370 if (!sb_rdonly(sb)) { 3371 ext4_unlock_group(sb, i); 3372 return 0; 3373 } 3374 } 3375 ext4_unlock_group(sb, i); 3376 if (!flexbg_flag) 3377 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3378 } 3379 if (NULL != first_not_zeroed) 3380 *first_not_zeroed = grp; 3381 return 1; 3382 } 3383 3384 /* 3385 * Maximal extent format file size. 3386 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3387 * extent format containers, within a sector_t, and within i_blocks 3388 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3389 * so that won't be a limiting factor. 3390 * 3391 * However there is other limiting factor. We do store extents in the form 3392 * of starting block and length, hence the resulting length of the extent 3393 * covering maximum file size must fit into on-disk format containers as 3394 * well. Given that length is always by 1 unit bigger than max unit (because 3395 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3396 * 3397 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3398 */ 3399 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3400 { 3401 loff_t res; 3402 loff_t upper_limit = MAX_LFS_FILESIZE; 3403 3404 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3405 3406 if (!has_huge_files) { 3407 upper_limit = (1LL << 32) - 1; 3408 3409 /* total blocks in file system block size */ 3410 upper_limit >>= (blkbits - 9); 3411 upper_limit <<= blkbits; 3412 } 3413 3414 /* 3415 * 32-bit extent-start container, ee_block. We lower the maxbytes 3416 * by one fs block, so ee_len can cover the extent of maximum file 3417 * size 3418 */ 3419 res = (1LL << 32) - 1; 3420 res <<= blkbits; 3421 3422 /* Sanity check against vm- & vfs- imposed limits */ 3423 if (res > upper_limit) 3424 res = upper_limit; 3425 3426 return res; 3427 } 3428 3429 /* 3430 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3431 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3432 * We need to be 1 filesystem block less than the 2^48 sector limit. 3433 */ 3434 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3435 { 3436 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3437 int meta_blocks; 3438 unsigned int ppb = 1 << (bits - 2); 3439 3440 /* 3441 * This is calculated to be the largest file size for a dense, block 3442 * mapped file such that the file's total number of 512-byte sectors, 3443 * including data and all indirect blocks, does not exceed (2^48 - 1). 3444 * 3445 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3446 * number of 512-byte sectors of the file. 3447 */ 3448 if (!has_huge_files) { 3449 /* 3450 * !has_huge_files or implies that the inode i_block field 3451 * represents total file blocks in 2^32 512-byte sectors == 3452 * size of vfs inode i_blocks * 8 3453 */ 3454 upper_limit = (1LL << 32) - 1; 3455 3456 /* total blocks in file system block size */ 3457 upper_limit >>= (bits - 9); 3458 3459 } else { 3460 /* 3461 * We use 48 bit ext4_inode i_blocks 3462 * With EXT4_HUGE_FILE_FL set the i_blocks 3463 * represent total number of blocks in 3464 * file system block size 3465 */ 3466 upper_limit = (1LL << 48) - 1; 3467 3468 } 3469 3470 /* Compute how many blocks we can address by block tree */ 3471 res += ppb; 3472 res += ppb * ppb; 3473 res += ((loff_t)ppb) * ppb * ppb; 3474 /* Compute how many metadata blocks are needed */ 3475 meta_blocks = 1; 3476 meta_blocks += 1 + ppb; 3477 meta_blocks += 1 + ppb + ppb * ppb; 3478 /* Does block tree limit file size? */ 3479 if (res + meta_blocks <= upper_limit) 3480 goto check_lfs; 3481 3482 res = upper_limit; 3483 /* How many metadata blocks are needed for addressing upper_limit? */ 3484 upper_limit -= EXT4_NDIR_BLOCKS; 3485 /* indirect blocks */ 3486 meta_blocks = 1; 3487 upper_limit -= ppb; 3488 /* double indirect blocks */ 3489 if (upper_limit < ppb * ppb) { 3490 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3491 res -= meta_blocks; 3492 goto check_lfs; 3493 } 3494 meta_blocks += 1 + ppb; 3495 upper_limit -= ppb * ppb; 3496 /* tripple indirect blocks for the rest */ 3497 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3498 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3499 res -= meta_blocks; 3500 check_lfs: 3501 res <<= bits; 3502 if (res > MAX_LFS_FILESIZE) 3503 res = MAX_LFS_FILESIZE; 3504 3505 return res; 3506 } 3507 3508 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3509 ext4_fsblk_t logical_sb_block, int nr) 3510 { 3511 struct ext4_sb_info *sbi = EXT4_SB(sb); 3512 ext4_group_t bg, first_meta_bg; 3513 int has_super = 0; 3514 3515 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3516 3517 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3518 return logical_sb_block + nr + 1; 3519 bg = sbi->s_desc_per_block * nr; 3520 if (ext4_bg_has_super(sb, bg)) 3521 has_super = 1; 3522 3523 /* 3524 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3525 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3526 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3527 * compensate. 3528 */ 3529 if (sb->s_blocksize == 1024 && nr == 0 && 3530 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3531 has_super++; 3532 3533 return (has_super + ext4_group_first_block_no(sb, bg)); 3534 } 3535 3536 /** 3537 * ext4_get_stripe_size: Get the stripe size. 3538 * @sbi: In memory super block info 3539 * 3540 * If we have specified it via mount option, then 3541 * use the mount option value. If the value specified at mount time is 3542 * greater than the blocks per group use the super block value. 3543 * If the super block value is greater than blocks per group return 0. 3544 * Allocator needs it be less than blocks per group. 3545 * 3546 */ 3547 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3548 { 3549 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3550 unsigned long stripe_width = 3551 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3552 int ret; 3553 3554 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3555 ret = sbi->s_stripe; 3556 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3557 ret = stripe_width; 3558 else if (stride && stride <= sbi->s_blocks_per_group) 3559 ret = stride; 3560 else 3561 ret = 0; 3562 3563 /* 3564 * If the stripe width is 1, this makes no sense and 3565 * we set it to 0 to turn off stripe handling code. 3566 */ 3567 if (ret <= 1) 3568 ret = 0; 3569 3570 return ret; 3571 } 3572 3573 /* 3574 * Check whether this filesystem can be mounted based on 3575 * the features present and the RDONLY/RDWR mount requested. 3576 * Returns 1 if this filesystem can be mounted as requested, 3577 * 0 if it cannot be. 3578 */ 3579 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3580 { 3581 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3582 ext4_msg(sb, KERN_ERR, 3583 "Couldn't mount because of " 3584 "unsupported optional features (%x)", 3585 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3586 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3587 return 0; 3588 } 3589 3590 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) { 3591 ext4_msg(sb, KERN_ERR, 3592 "Filesystem with casefold feature cannot be " 3593 "mounted without CONFIG_UNICODE"); 3594 return 0; 3595 } 3596 3597 if (readonly) 3598 return 1; 3599 3600 if (ext4_has_feature_readonly(sb)) { 3601 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3602 sb->s_flags |= SB_RDONLY; 3603 return 1; 3604 } 3605 3606 /* Check that feature set is OK for a read-write mount */ 3607 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3608 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3609 "unsupported optional features (%x)", 3610 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3611 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3612 return 0; 3613 } 3614 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3615 ext4_msg(sb, KERN_ERR, 3616 "Can't support bigalloc feature without " 3617 "extents feature\n"); 3618 return 0; 3619 } 3620 3621 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3622 if (!readonly && (ext4_has_feature_quota(sb) || 3623 ext4_has_feature_project(sb))) { 3624 ext4_msg(sb, KERN_ERR, 3625 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3626 return 0; 3627 } 3628 #endif /* CONFIG_QUOTA */ 3629 return 1; 3630 } 3631 3632 /* 3633 * This function is called once a day if we have errors logged 3634 * on the file system 3635 */ 3636 static void print_daily_error_info(struct timer_list *t) 3637 { 3638 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3639 struct super_block *sb = sbi->s_sb; 3640 struct ext4_super_block *es = sbi->s_es; 3641 3642 if (es->s_error_count) 3643 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3644 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3645 le32_to_cpu(es->s_error_count)); 3646 if (es->s_first_error_time) { 3647 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3648 sb->s_id, 3649 ext4_get_tstamp(es, s_first_error_time), 3650 (int) sizeof(es->s_first_error_func), 3651 es->s_first_error_func, 3652 le32_to_cpu(es->s_first_error_line)); 3653 if (es->s_first_error_ino) 3654 printk(KERN_CONT ": inode %u", 3655 le32_to_cpu(es->s_first_error_ino)); 3656 if (es->s_first_error_block) 3657 printk(KERN_CONT ": block %llu", (unsigned long long) 3658 le64_to_cpu(es->s_first_error_block)); 3659 printk(KERN_CONT "\n"); 3660 } 3661 if (es->s_last_error_time) { 3662 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3663 sb->s_id, 3664 ext4_get_tstamp(es, s_last_error_time), 3665 (int) sizeof(es->s_last_error_func), 3666 es->s_last_error_func, 3667 le32_to_cpu(es->s_last_error_line)); 3668 if (es->s_last_error_ino) 3669 printk(KERN_CONT ": inode %u", 3670 le32_to_cpu(es->s_last_error_ino)); 3671 if (es->s_last_error_block) 3672 printk(KERN_CONT ": block %llu", (unsigned long long) 3673 le64_to_cpu(es->s_last_error_block)); 3674 printk(KERN_CONT "\n"); 3675 } 3676 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3677 } 3678 3679 /* Find next suitable group and run ext4_init_inode_table */ 3680 static int ext4_run_li_request(struct ext4_li_request *elr) 3681 { 3682 struct ext4_group_desc *gdp = NULL; 3683 struct super_block *sb = elr->lr_super; 3684 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3685 ext4_group_t group = elr->lr_next_group; 3686 unsigned int prefetch_ios = 0; 3687 int ret = 0; 3688 int nr = EXT4_SB(sb)->s_mb_prefetch; 3689 u64 start_time; 3690 3691 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3692 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3693 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3694 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3695 if (group >= elr->lr_next_group) { 3696 ret = 1; 3697 if (elr->lr_first_not_zeroed != ngroups && 3698 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3699 elr->lr_next_group = elr->lr_first_not_zeroed; 3700 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3701 ret = 0; 3702 } 3703 } 3704 return ret; 3705 } 3706 3707 for (; group < ngroups; group++) { 3708 gdp = ext4_get_group_desc(sb, group, NULL); 3709 if (!gdp) { 3710 ret = 1; 3711 break; 3712 } 3713 3714 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3715 break; 3716 } 3717 3718 if (group >= ngroups) 3719 ret = 1; 3720 3721 if (!ret) { 3722 start_time = ktime_get_ns(); 3723 ret = ext4_init_inode_table(sb, group, 3724 elr->lr_timeout ? 0 : 1); 3725 trace_ext4_lazy_itable_init(sb, group); 3726 if (elr->lr_timeout == 0) { 3727 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) * 3728 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3729 } 3730 elr->lr_next_sched = jiffies + elr->lr_timeout; 3731 elr->lr_next_group = group + 1; 3732 } 3733 return ret; 3734 } 3735 3736 /* 3737 * Remove lr_request from the list_request and free the 3738 * request structure. Should be called with li_list_mtx held 3739 */ 3740 static void ext4_remove_li_request(struct ext4_li_request *elr) 3741 { 3742 if (!elr) 3743 return; 3744 3745 list_del(&elr->lr_request); 3746 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3747 kfree(elr); 3748 } 3749 3750 static void ext4_unregister_li_request(struct super_block *sb) 3751 { 3752 mutex_lock(&ext4_li_mtx); 3753 if (!ext4_li_info) { 3754 mutex_unlock(&ext4_li_mtx); 3755 return; 3756 } 3757 3758 mutex_lock(&ext4_li_info->li_list_mtx); 3759 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3760 mutex_unlock(&ext4_li_info->li_list_mtx); 3761 mutex_unlock(&ext4_li_mtx); 3762 } 3763 3764 static struct task_struct *ext4_lazyinit_task; 3765 3766 /* 3767 * This is the function where ext4lazyinit thread lives. It walks 3768 * through the request list searching for next scheduled filesystem. 3769 * When such a fs is found, run the lazy initialization request 3770 * (ext4_rn_li_request) and keep track of the time spend in this 3771 * function. Based on that time we compute next schedule time of 3772 * the request. When walking through the list is complete, compute 3773 * next waking time and put itself into sleep. 3774 */ 3775 static int ext4_lazyinit_thread(void *arg) 3776 { 3777 struct ext4_lazy_init *eli = arg; 3778 struct list_head *pos, *n; 3779 struct ext4_li_request *elr; 3780 unsigned long next_wakeup, cur; 3781 3782 BUG_ON(NULL == eli); 3783 set_freezable(); 3784 3785 cont_thread: 3786 while (true) { 3787 bool next_wakeup_initialized = false; 3788 3789 next_wakeup = 0; 3790 mutex_lock(&eli->li_list_mtx); 3791 if (list_empty(&eli->li_request_list)) { 3792 mutex_unlock(&eli->li_list_mtx); 3793 goto exit_thread; 3794 } 3795 list_for_each_safe(pos, n, &eli->li_request_list) { 3796 int err = 0; 3797 int progress = 0; 3798 elr = list_entry(pos, struct ext4_li_request, 3799 lr_request); 3800 3801 if (time_before(jiffies, elr->lr_next_sched)) { 3802 if (!next_wakeup_initialized || 3803 time_before(elr->lr_next_sched, next_wakeup)) { 3804 next_wakeup = elr->lr_next_sched; 3805 next_wakeup_initialized = true; 3806 } 3807 continue; 3808 } 3809 if (down_read_trylock(&elr->lr_super->s_umount)) { 3810 if (sb_start_write_trylock(elr->lr_super)) { 3811 progress = 1; 3812 /* 3813 * We hold sb->s_umount, sb can not 3814 * be removed from the list, it is 3815 * now safe to drop li_list_mtx 3816 */ 3817 mutex_unlock(&eli->li_list_mtx); 3818 err = ext4_run_li_request(elr); 3819 sb_end_write(elr->lr_super); 3820 mutex_lock(&eli->li_list_mtx); 3821 n = pos->next; 3822 } 3823 up_read((&elr->lr_super->s_umount)); 3824 } 3825 /* error, remove the lazy_init job */ 3826 if (err) { 3827 ext4_remove_li_request(elr); 3828 continue; 3829 } 3830 if (!progress) { 3831 elr->lr_next_sched = jiffies + 3832 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3833 } 3834 if (!next_wakeup_initialized || 3835 time_before(elr->lr_next_sched, next_wakeup)) { 3836 next_wakeup = elr->lr_next_sched; 3837 next_wakeup_initialized = true; 3838 } 3839 } 3840 mutex_unlock(&eli->li_list_mtx); 3841 3842 try_to_freeze(); 3843 3844 cur = jiffies; 3845 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) { 3846 cond_resched(); 3847 continue; 3848 } 3849 3850 schedule_timeout_interruptible(next_wakeup - cur); 3851 3852 if (kthread_should_stop()) { 3853 ext4_clear_request_list(); 3854 goto exit_thread; 3855 } 3856 } 3857 3858 exit_thread: 3859 /* 3860 * It looks like the request list is empty, but we need 3861 * to check it under the li_list_mtx lock, to prevent any 3862 * additions into it, and of course we should lock ext4_li_mtx 3863 * to atomically free the list and ext4_li_info, because at 3864 * this point another ext4 filesystem could be registering 3865 * new one. 3866 */ 3867 mutex_lock(&ext4_li_mtx); 3868 mutex_lock(&eli->li_list_mtx); 3869 if (!list_empty(&eli->li_request_list)) { 3870 mutex_unlock(&eli->li_list_mtx); 3871 mutex_unlock(&ext4_li_mtx); 3872 goto cont_thread; 3873 } 3874 mutex_unlock(&eli->li_list_mtx); 3875 kfree(ext4_li_info); 3876 ext4_li_info = NULL; 3877 mutex_unlock(&ext4_li_mtx); 3878 3879 return 0; 3880 } 3881 3882 static void ext4_clear_request_list(void) 3883 { 3884 struct list_head *pos, *n; 3885 struct ext4_li_request *elr; 3886 3887 mutex_lock(&ext4_li_info->li_list_mtx); 3888 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3889 elr = list_entry(pos, struct ext4_li_request, 3890 lr_request); 3891 ext4_remove_li_request(elr); 3892 } 3893 mutex_unlock(&ext4_li_info->li_list_mtx); 3894 } 3895 3896 static int ext4_run_lazyinit_thread(void) 3897 { 3898 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3899 ext4_li_info, "ext4lazyinit"); 3900 if (IS_ERR(ext4_lazyinit_task)) { 3901 int err = PTR_ERR(ext4_lazyinit_task); 3902 ext4_clear_request_list(); 3903 kfree(ext4_li_info); 3904 ext4_li_info = NULL; 3905 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3906 "initialization thread\n", 3907 err); 3908 return err; 3909 } 3910 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3911 return 0; 3912 } 3913 3914 /* 3915 * Check whether it make sense to run itable init. thread or not. 3916 * If there is at least one uninitialized inode table, return 3917 * corresponding group number, else the loop goes through all 3918 * groups and return total number of groups. 3919 */ 3920 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3921 { 3922 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3923 struct ext4_group_desc *gdp = NULL; 3924 3925 if (!ext4_has_group_desc_csum(sb)) 3926 return ngroups; 3927 3928 for (group = 0; group < ngroups; group++) { 3929 gdp = ext4_get_group_desc(sb, group, NULL); 3930 if (!gdp) 3931 continue; 3932 3933 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3934 break; 3935 } 3936 3937 return group; 3938 } 3939 3940 static int ext4_li_info_new(void) 3941 { 3942 struct ext4_lazy_init *eli = NULL; 3943 3944 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3945 if (!eli) 3946 return -ENOMEM; 3947 3948 INIT_LIST_HEAD(&eli->li_request_list); 3949 mutex_init(&eli->li_list_mtx); 3950 3951 eli->li_state |= EXT4_LAZYINIT_QUIT; 3952 3953 ext4_li_info = eli; 3954 3955 return 0; 3956 } 3957 3958 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3959 ext4_group_t start) 3960 { 3961 struct ext4_li_request *elr; 3962 3963 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3964 if (!elr) 3965 return NULL; 3966 3967 elr->lr_super = sb; 3968 elr->lr_first_not_zeroed = start; 3969 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3970 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3971 elr->lr_next_group = start; 3972 } else { 3973 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3974 } 3975 3976 /* 3977 * Randomize first schedule time of the request to 3978 * spread the inode table initialization requests 3979 * better. 3980 */ 3981 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3982 return elr; 3983 } 3984 3985 int ext4_register_li_request(struct super_block *sb, 3986 ext4_group_t first_not_zeroed) 3987 { 3988 struct ext4_sb_info *sbi = EXT4_SB(sb); 3989 struct ext4_li_request *elr = NULL; 3990 ext4_group_t ngroups = sbi->s_groups_count; 3991 int ret = 0; 3992 3993 mutex_lock(&ext4_li_mtx); 3994 if (sbi->s_li_request != NULL) { 3995 /* 3996 * Reset timeout so it can be computed again, because 3997 * s_li_wait_mult might have changed. 3998 */ 3999 sbi->s_li_request->lr_timeout = 0; 4000 goto out; 4001 } 4002 4003 if (sb_rdonly(sb) || 4004 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4005 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4006 goto out; 4007 4008 elr = ext4_li_request_new(sb, first_not_zeroed); 4009 if (!elr) { 4010 ret = -ENOMEM; 4011 goto out; 4012 } 4013 4014 if (NULL == ext4_li_info) { 4015 ret = ext4_li_info_new(); 4016 if (ret) 4017 goto out; 4018 } 4019 4020 mutex_lock(&ext4_li_info->li_list_mtx); 4021 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4022 mutex_unlock(&ext4_li_info->li_list_mtx); 4023 4024 sbi->s_li_request = elr; 4025 /* 4026 * set elr to NULL here since it has been inserted to 4027 * the request_list and the removal and free of it is 4028 * handled by ext4_clear_request_list from now on. 4029 */ 4030 elr = NULL; 4031 4032 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4033 ret = ext4_run_lazyinit_thread(); 4034 if (ret) 4035 goto out; 4036 } 4037 out: 4038 mutex_unlock(&ext4_li_mtx); 4039 if (ret) 4040 kfree(elr); 4041 return ret; 4042 } 4043 4044 /* 4045 * We do not need to lock anything since this is called on 4046 * module unload. 4047 */ 4048 static void ext4_destroy_lazyinit_thread(void) 4049 { 4050 /* 4051 * If thread exited earlier 4052 * there's nothing to be done. 4053 */ 4054 if (!ext4_li_info || !ext4_lazyinit_task) 4055 return; 4056 4057 kthread_stop(ext4_lazyinit_task); 4058 } 4059 4060 static int set_journal_csum_feature_set(struct super_block *sb) 4061 { 4062 int ret = 1; 4063 int compat, incompat; 4064 struct ext4_sb_info *sbi = EXT4_SB(sb); 4065 4066 if (ext4_has_metadata_csum(sb)) { 4067 /* journal checksum v3 */ 4068 compat = 0; 4069 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4070 } else { 4071 /* journal checksum v1 */ 4072 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4073 incompat = 0; 4074 } 4075 4076 jbd2_journal_clear_features(sbi->s_journal, 4077 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4078 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4079 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4080 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4081 ret = jbd2_journal_set_features(sbi->s_journal, 4082 compat, 0, 4083 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4084 incompat); 4085 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4086 ret = jbd2_journal_set_features(sbi->s_journal, 4087 compat, 0, 4088 incompat); 4089 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4090 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4091 } else { 4092 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4093 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4094 } 4095 4096 return ret; 4097 } 4098 4099 /* 4100 * Note: calculating the overhead so we can be compatible with 4101 * historical BSD practice is quite difficult in the face of 4102 * clusters/bigalloc. This is because multiple metadata blocks from 4103 * different block group can end up in the same allocation cluster. 4104 * Calculating the exact overhead in the face of clustered allocation 4105 * requires either O(all block bitmaps) in memory or O(number of block 4106 * groups**2) in time. We will still calculate the superblock for 4107 * older file systems --- and if we come across with a bigalloc file 4108 * system with zero in s_overhead_clusters the estimate will be close to 4109 * correct especially for very large cluster sizes --- but for newer 4110 * file systems, it's better to calculate this figure once at mkfs 4111 * time, and store it in the superblock. If the superblock value is 4112 * present (even for non-bigalloc file systems), we will use it. 4113 */ 4114 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4115 char *buf) 4116 { 4117 struct ext4_sb_info *sbi = EXT4_SB(sb); 4118 struct ext4_group_desc *gdp; 4119 ext4_fsblk_t first_block, last_block, b; 4120 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4121 int s, j, count = 0; 4122 int has_super = ext4_bg_has_super(sb, grp); 4123 4124 if (!ext4_has_feature_bigalloc(sb)) 4125 return (has_super + ext4_bg_num_gdb(sb, grp) + 4126 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4127 sbi->s_itb_per_group + 2); 4128 4129 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4130 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4131 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4132 for (i = 0; i < ngroups; i++) { 4133 gdp = ext4_get_group_desc(sb, i, NULL); 4134 b = ext4_block_bitmap(sb, gdp); 4135 if (b >= first_block && b <= last_block) { 4136 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4137 count++; 4138 } 4139 b = ext4_inode_bitmap(sb, gdp); 4140 if (b >= first_block && b <= last_block) { 4141 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4142 count++; 4143 } 4144 b = ext4_inode_table(sb, gdp); 4145 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4146 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4147 int c = EXT4_B2C(sbi, b - first_block); 4148 ext4_set_bit(c, buf); 4149 count++; 4150 } 4151 if (i != grp) 4152 continue; 4153 s = 0; 4154 if (ext4_bg_has_super(sb, grp)) { 4155 ext4_set_bit(s++, buf); 4156 count++; 4157 } 4158 j = ext4_bg_num_gdb(sb, grp); 4159 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4160 ext4_error(sb, "Invalid number of block group " 4161 "descriptor blocks: %d", j); 4162 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4163 } 4164 count += j; 4165 for (; j > 0; j--) 4166 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4167 } 4168 if (!count) 4169 return 0; 4170 return EXT4_CLUSTERS_PER_GROUP(sb) - 4171 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4172 } 4173 4174 /* 4175 * Compute the overhead and stash it in sbi->s_overhead 4176 */ 4177 int ext4_calculate_overhead(struct super_block *sb) 4178 { 4179 struct ext4_sb_info *sbi = EXT4_SB(sb); 4180 struct ext4_super_block *es = sbi->s_es; 4181 struct inode *j_inode; 4182 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4183 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4184 ext4_fsblk_t overhead = 0; 4185 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4186 4187 if (!buf) 4188 return -ENOMEM; 4189 4190 /* 4191 * Compute the overhead (FS structures). This is constant 4192 * for a given filesystem unless the number of block groups 4193 * changes so we cache the previous value until it does. 4194 */ 4195 4196 /* 4197 * All of the blocks before first_data_block are overhead 4198 */ 4199 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4200 4201 /* 4202 * Add the overhead found in each block group 4203 */ 4204 for (i = 0; i < ngroups; i++) { 4205 int blks; 4206 4207 blks = count_overhead(sb, i, buf); 4208 overhead += blks; 4209 if (blks) 4210 memset(buf, 0, PAGE_SIZE); 4211 cond_resched(); 4212 } 4213 4214 /* 4215 * Add the internal journal blocks whether the journal has been 4216 * loaded or not 4217 */ 4218 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4219 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4220 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4221 /* j_inum for internal journal is non-zero */ 4222 j_inode = ext4_get_journal_inode(sb, j_inum); 4223 if (!IS_ERR(j_inode)) { 4224 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4225 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4226 iput(j_inode); 4227 } else { 4228 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4229 } 4230 } 4231 sbi->s_overhead = overhead; 4232 smp_wmb(); 4233 free_page((unsigned long) buf); 4234 return 0; 4235 } 4236 4237 static void ext4_set_resv_clusters(struct super_block *sb) 4238 { 4239 ext4_fsblk_t resv_clusters; 4240 struct ext4_sb_info *sbi = EXT4_SB(sb); 4241 4242 /* 4243 * There's no need to reserve anything when we aren't using extents. 4244 * The space estimates are exact, there are no unwritten extents, 4245 * hole punching doesn't need new metadata... This is needed especially 4246 * to keep ext2/3 backward compatibility. 4247 */ 4248 if (!ext4_has_feature_extents(sb)) 4249 return; 4250 /* 4251 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4252 * This should cover the situations where we can not afford to run 4253 * out of space like for example punch hole, or converting 4254 * unwritten extents in delalloc path. In most cases such 4255 * allocation would require 1, or 2 blocks, higher numbers are 4256 * very rare. 4257 */ 4258 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4259 sbi->s_cluster_bits); 4260 4261 do_div(resv_clusters, 50); 4262 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4263 4264 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4265 } 4266 4267 static const char *ext4_quota_mode(struct super_block *sb) 4268 { 4269 #ifdef CONFIG_QUOTA 4270 if (!ext4_quota_capable(sb)) 4271 return "none"; 4272 4273 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4274 return "journalled"; 4275 else 4276 return "writeback"; 4277 #else 4278 return "disabled"; 4279 #endif 4280 } 4281 4282 static void ext4_setup_csum_trigger(struct super_block *sb, 4283 enum ext4_journal_trigger_type type, 4284 void (*trigger)( 4285 struct jbd2_buffer_trigger_type *type, 4286 struct buffer_head *bh, 4287 void *mapped_data, 4288 size_t size)) 4289 { 4290 struct ext4_sb_info *sbi = EXT4_SB(sb); 4291 4292 sbi->s_journal_triggers[type].sb = sb; 4293 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4294 } 4295 4296 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4297 { 4298 if (!sbi) 4299 return; 4300 4301 kfree(sbi->s_blockgroup_lock); 4302 fs_put_dax(sbi->s_daxdev, NULL); 4303 kfree(sbi); 4304 } 4305 4306 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4307 { 4308 struct ext4_sb_info *sbi; 4309 4310 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4311 if (!sbi) 4312 return NULL; 4313 4314 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4315 NULL, NULL); 4316 4317 sbi->s_blockgroup_lock = 4318 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4319 4320 if (!sbi->s_blockgroup_lock) 4321 goto err_out; 4322 4323 sb->s_fs_info = sbi; 4324 sbi->s_sb = sb; 4325 return sbi; 4326 err_out: 4327 fs_put_dax(sbi->s_daxdev, NULL); 4328 kfree(sbi); 4329 return NULL; 4330 } 4331 4332 static void ext4_set_def_opts(struct super_block *sb, 4333 struct ext4_super_block *es) 4334 { 4335 unsigned long def_mount_opts; 4336 4337 /* Set defaults before we parse the mount options */ 4338 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4339 set_opt(sb, INIT_INODE_TABLE); 4340 if (def_mount_opts & EXT4_DEFM_DEBUG) 4341 set_opt(sb, DEBUG); 4342 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4343 set_opt(sb, GRPID); 4344 if (def_mount_opts & EXT4_DEFM_UID16) 4345 set_opt(sb, NO_UID32); 4346 /* xattr user namespace & acls are now defaulted on */ 4347 set_opt(sb, XATTR_USER); 4348 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4349 set_opt(sb, POSIX_ACL); 4350 #endif 4351 if (ext4_has_feature_fast_commit(sb)) 4352 set_opt2(sb, JOURNAL_FAST_COMMIT); 4353 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4354 if (ext4_has_metadata_csum(sb)) 4355 set_opt(sb, JOURNAL_CHECKSUM); 4356 4357 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4358 set_opt(sb, JOURNAL_DATA); 4359 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4360 set_opt(sb, ORDERED_DATA); 4361 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4362 set_opt(sb, WRITEBACK_DATA); 4363 4364 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4365 set_opt(sb, ERRORS_PANIC); 4366 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4367 set_opt(sb, ERRORS_CONT); 4368 else 4369 set_opt(sb, ERRORS_RO); 4370 /* block_validity enabled by default; disable with noblock_validity */ 4371 set_opt(sb, BLOCK_VALIDITY); 4372 if (def_mount_opts & EXT4_DEFM_DISCARD) 4373 set_opt(sb, DISCARD); 4374 4375 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4376 set_opt(sb, BARRIER); 4377 4378 /* 4379 * enable delayed allocation by default 4380 * Use -o nodelalloc to turn it off 4381 */ 4382 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4383 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4384 set_opt(sb, DELALLOC); 4385 4386 if (sb->s_blocksize <= PAGE_SIZE) 4387 set_opt(sb, DIOREAD_NOLOCK); 4388 } 4389 4390 static int ext4_handle_clustersize(struct super_block *sb) 4391 { 4392 struct ext4_sb_info *sbi = EXT4_SB(sb); 4393 struct ext4_super_block *es = sbi->s_es; 4394 int clustersize; 4395 4396 /* Handle clustersize */ 4397 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4398 if (ext4_has_feature_bigalloc(sb)) { 4399 if (clustersize < sb->s_blocksize) { 4400 ext4_msg(sb, KERN_ERR, 4401 "cluster size (%d) smaller than " 4402 "block size (%lu)", clustersize, sb->s_blocksize); 4403 return -EINVAL; 4404 } 4405 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4406 le32_to_cpu(es->s_log_block_size); 4407 } else { 4408 if (clustersize != sb->s_blocksize) { 4409 ext4_msg(sb, KERN_ERR, 4410 "fragment/cluster size (%d) != " 4411 "block size (%lu)", clustersize, sb->s_blocksize); 4412 return -EINVAL; 4413 } 4414 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4415 ext4_msg(sb, KERN_ERR, 4416 "#blocks per group too big: %lu", 4417 sbi->s_blocks_per_group); 4418 return -EINVAL; 4419 } 4420 sbi->s_cluster_bits = 0; 4421 } 4422 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4423 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4424 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4425 sbi->s_clusters_per_group); 4426 return -EINVAL; 4427 } 4428 if (sbi->s_blocks_per_group != 4429 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4430 ext4_msg(sb, KERN_ERR, 4431 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4432 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4433 return -EINVAL; 4434 } 4435 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4436 4437 /* Do we have standard group size of clustersize * 8 blocks ? */ 4438 if (sbi->s_blocks_per_group == clustersize << 3) 4439 set_opt2(sb, STD_GROUP_SIZE); 4440 4441 return 0; 4442 } 4443 4444 /* 4445 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units. 4446 * @sb: super block 4447 * TODO: Later add support for bigalloc 4448 */ 4449 static void ext4_atomic_write_init(struct super_block *sb) 4450 { 4451 struct ext4_sb_info *sbi = EXT4_SB(sb); 4452 struct block_device *bdev = sb->s_bdev; 4453 4454 if (!bdev_can_atomic_write(bdev)) 4455 return; 4456 4457 if (!ext4_has_feature_extents(sb)) 4458 return; 4459 4460 sbi->s_awu_min = max(sb->s_blocksize, 4461 bdev_atomic_write_unit_min_bytes(bdev)); 4462 sbi->s_awu_max = min(sb->s_blocksize, 4463 bdev_atomic_write_unit_max_bytes(bdev)); 4464 if (sbi->s_awu_min && sbi->s_awu_max && 4465 sbi->s_awu_min <= sbi->s_awu_max) { 4466 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u", 4467 sbi->s_awu_min, sbi->s_awu_max); 4468 } else { 4469 sbi->s_awu_min = 0; 4470 sbi->s_awu_max = 0; 4471 } 4472 } 4473 4474 static void ext4_fast_commit_init(struct super_block *sb) 4475 { 4476 struct ext4_sb_info *sbi = EXT4_SB(sb); 4477 4478 /* Initialize fast commit stuff */ 4479 atomic_set(&sbi->s_fc_subtid, 0); 4480 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4481 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4482 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4483 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4484 sbi->s_fc_bytes = 0; 4485 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4486 sbi->s_fc_ineligible_tid = 0; 4487 spin_lock_init(&sbi->s_fc_lock); 4488 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4489 sbi->s_fc_replay_state.fc_regions = NULL; 4490 sbi->s_fc_replay_state.fc_regions_size = 0; 4491 sbi->s_fc_replay_state.fc_regions_used = 0; 4492 sbi->s_fc_replay_state.fc_regions_valid = 0; 4493 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4494 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4495 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4496 } 4497 4498 static int ext4_inode_info_init(struct super_block *sb, 4499 struct ext4_super_block *es) 4500 { 4501 struct ext4_sb_info *sbi = EXT4_SB(sb); 4502 4503 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4504 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4505 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4506 } else { 4507 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4508 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4509 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4510 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4511 sbi->s_first_ino); 4512 return -EINVAL; 4513 } 4514 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4515 (!is_power_of_2(sbi->s_inode_size)) || 4516 (sbi->s_inode_size > sb->s_blocksize)) { 4517 ext4_msg(sb, KERN_ERR, 4518 "unsupported inode size: %d", 4519 sbi->s_inode_size); 4520 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4521 return -EINVAL; 4522 } 4523 /* 4524 * i_atime_extra is the last extra field available for 4525 * [acm]times in struct ext4_inode. Checking for that 4526 * field should suffice to ensure we have extra space 4527 * for all three. 4528 */ 4529 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4530 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4531 sb->s_time_gran = 1; 4532 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4533 } else { 4534 sb->s_time_gran = NSEC_PER_SEC; 4535 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4536 } 4537 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4538 } 4539 4540 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4541 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4542 EXT4_GOOD_OLD_INODE_SIZE; 4543 if (ext4_has_feature_extra_isize(sb)) { 4544 unsigned v, max = (sbi->s_inode_size - 4545 EXT4_GOOD_OLD_INODE_SIZE); 4546 4547 v = le16_to_cpu(es->s_want_extra_isize); 4548 if (v > max) { 4549 ext4_msg(sb, KERN_ERR, 4550 "bad s_want_extra_isize: %d", v); 4551 return -EINVAL; 4552 } 4553 if (sbi->s_want_extra_isize < v) 4554 sbi->s_want_extra_isize = v; 4555 4556 v = le16_to_cpu(es->s_min_extra_isize); 4557 if (v > max) { 4558 ext4_msg(sb, KERN_ERR, 4559 "bad s_min_extra_isize: %d", v); 4560 return -EINVAL; 4561 } 4562 if (sbi->s_want_extra_isize < v) 4563 sbi->s_want_extra_isize = v; 4564 } 4565 } 4566 4567 return 0; 4568 } 4569 4570 #if IS_ENABLED(CONFIG_UNICODE) 4571 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4572 { 4573 const struct ext4_sb_encodings *encoding_info; 4574 struct unicode_map *encoding; 4575 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4576 4577 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4578 return 0; 4579 4580 encoding_info = ext4_sb_read_encoding(es); 4581 if (!encoding_info) { 4582 ext4_msg(sb, KERN_ERR, 4583 "Encoding requested by superblock is unknown"); 4584 return -EINVAL; 4585 } 4586 4587 encoding = utf8_load(encoding_info->version); 4588 if (IS_ERR(encoding)) { 4589 ext4_msg(sb, KERN_ERR, 4590 "can't mount with superblock charset: %s-%u.%u.%u " 4591 "not supported by the kernel. flags: 0x%x.", 4592 encoding_info->name, 4593 unicode_major(encoding_info->version), 4594 unicode_minor(encoding_info->version), 4595 unicode_rev(encoding_info->version), 4596 encoding_flags); 4597 return -EINVAL; 4598 } 4599 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4600 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4601 unicode_major(encoding_info->version), 4602 unicode_minor(encoding_info->version), 4603 unicode_rev(encoding_info->version), 4604 encoding_flags); 4605 4606 sb->s_encoding = encoding; 4607 sb->s_encoding_flags = encoding_flags; 4608 4609 return 0; 4610 } 4611 #else 4612 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4613 { 4614 return 0; 4615 } 4616 #endif 4617 4618 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4619 { 4620 struct ext4_sb_info *sbi = EXT4_SB(sb); 4621 4622 /* Warn if metadata_csum and gdt_csum are both set. */ 4623 if (ext4_has_feature_metadata_csum(sb) && 4624 ext4_has_feature_gdt_csum(sb)) 4625 ext4_warning(sb, "metadata_csum and uninit_bg are " 4626 "redundant flags; please run fsck."); 4627 4628 /* Check for a known checksum algorithm */ 4629 if (!ext4_verify_csum_type(sb, es)) { 4630 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4631 "unknown checksum algorithm."); 4632 return -EINVAL; 4633 } 4634 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4635 ext4_orphan_file_block_trigger); 4636 4637 /* Load the checksum driver */ 4638 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4639 if (IS_ERR(sbi->s_chksum_driver)) { 4640 int ret = PTR_ERR(sbi->s_chksum_driver); 4641 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4642 sbi->s_chksum_driver = NULL; 4643 return ret; 4644 } 4645 4646 /* Check superblock checksum */ 4647 if (!ext4_superblock_csum_verify(sb, es)) { 4648 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4649 "invalid superblock checksum. Run e2fsck?"); 4650 return -EFSBADCRC; 4651 } 4652 4653 /* Precompute checksum seed for all metadata */ 4654 if (ext4_has_feature_csum_seed(sb)) 4655 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4656 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4657 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4658 sizeof(es->s_uuid)); 4659 return 0; 4660 } 4661 4662 static int ext4_check_feature_compatibility(struct super_block *sb, 4663 struct ext4_super_block *es, 4664 int silent) 4665 { 4666 struct ext4_sb_info *sbi = EXT4_SB(sb); 4667 4668 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4669 (ext4_has_compat_features(sb) || 4670 ext4_has_ro_compat_features(sb) || 4671 ext4_has_incompat_features(sb))) 4672 ext4_msg(sb, KERN_WARNING, 4673 "feature flags set on rev 0 fs, " 4674 "running e2fsck is recommended"); 4675 4676 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4677 set_opt2(sb, HURD_COMPAT); 4678 if (ext4_has_feature_64bit(sb)) { 4679 ext4_msg(sb, KERN_ERR, 4680 "The Hurd can't support 64-bit file systems"); 4681 return -EINVAL; 4682 } 4683 4684 /* 4685 * ea_inode feature uses l_i_version field which is not 4686 * available in HURD_COMPAT mode. 4687 */ 4688 if (ext4_has_feature_ea_inode(sb)) { 4689 ext4_msg(sb, KERN_ERR, 4690 "ea_inode feature is not supported for Hurd"); 4691 return -EINVAL; 4692 } 4693 } 4694 4695 if (IS_EXT2_SB(sb)) { 4696 if (ext2_feature_set_ok(sb)) 4697 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4698 "using the ext4 subsystem"); 4699 else { 4700 /* 4701 * If we're probing be silent, if this looks like 4702 * it's actually an ext[34] filesystem. 4703 */ 4704 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4705 return -EINVAL; 4706 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4707 "to feature incompatibilities"); 4708 return -EINVAL; 4709 } 4710 } 4711 4712 if (IS_EXT3_SB(sb)) { 4713 if (ext3_feature_set_ok(sb)) 4714 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4715 "using the ext4 subsystem"); 4716 else { 4717 /* 4718 * If we're probing be silent, if this looks like 4719 * it's actually an ext4 filesystem. 4720 */ 4721 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4722 return -EINVAL; 4723 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4724 "to feature incompatibilities"); 4725 return -EINVAL; 4726 } 4727 } 4728 4729 /* 4730 * Check feature flags regardless of the revision level, since we 4731 * previously didn't change the revision level when setting the flags, 4732 * so there is a chance incompat flags are set on a rev 0 filesystem. 4733 */ 4734 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4735 return -EINVAL; 4736 4737 if (sbi->s_daxdev) { 4738 if (sb->s_blocksize == PAGE_SIZE) 4739 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4740 else 4741 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4742 } 4743 4744 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4745 if (ext4_has_feature_inline_data(sb)) { 4746 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4747 " that may contain inline data"); 4748 return -EINVAL; 4749 } 4750 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4751 ext4_msg(sb, KERN_ERR, 4752 "DAX unsupported by block device."); 4753 return -EINVAL; 4754 } 4755 } 4756 4757 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4758 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4759 es->s_encryption_level); 4760 return -EINVAL; 4761 } 4762 4763 return 0; 4764 } 4765 4766 static int ext4_check_geometry(struct super_block *sb, 4767 struct ext4_super_block *es) 4768 { 4769 struct ext4_sb_info *sbi = EXT4_SB(sb); 4770 __u64 blocks_count; 4771 int err; 4772 4773 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4774 ext4_msg(sb, KERN_ERR, 4775 "Number of reserved GDT blocks insanely large: %d", 4776 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4777 return -EINVAL; 4778 } 4779 /* 4780 * Test whether we have more sectors than will fit in sector_t, 4781 * and whether the max offset is addressable by the page cache. 4782 */ 4783 err = generic_check_addressable(sb->s_blocksize_bits, 4784 ext4_blocks_count(es)); 4785 if (err) { 4786 ext4_msg(sb, KERN_ERR, "filesystem" 4787 " too large to mount safely on this system"); 4788 return err; 4789 } 4790 4791 /* check blocks count against device size */ 4792 blocks_count = sb_bdev_nr_blocks(sb); 4793 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4794 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4795 "exceeds size of device (%llu blocks)", 4796 ext4_blocks_count(es), blocks_count); 4797 return -EINVAL; 4798 } 4799 4800 /* 4801 * It makes no sense for the first data block to be beyond the end 4802 * of the filesystem. 4803 */ 4804 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4805 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4806 "block %u is beyond end of filesystem (%llu)", 4807 le32_to_cpu(es->s_first_data_block), 4808 ext4_blocks_count(es)); 4809 return -EINVAL; 4810 } 4811 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4812 (sbi->s_cluster_ratio == 1)) { 4813 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4814 "block is 0 with a 1k block and cluster size"); 4815 return -EINVAL; 4816 } 4817 4818 blocks_count = (ext4_blocks_count(es) - 4819 le32_to_cpu(es->s_first_data_block) + 4820 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4821 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4822 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4823 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4824 "(block count %llu, first data block %u, " 4825 "blocks per group %lu)", blocks_count, 4826 ext4_blocks_count(es), 4827 le32_to_cpu(es->s_first_data_block), 4828 EXT4_BLOCKS_PER_GROUP(sb)); 4829 return -EINVAL; 4830 } 4831 sbi->s_groups_count = blocks_count; 4832 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4833 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4834 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4835 le32_to_cpu(es->s_inodes_count)) { 4836 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4837 le32_to_cpu(es->s_inodes_count), 4838 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4839 return -EINVAL; 4840 } 4841 4842 return 0; 4843 } 4844 4845 static int ext4_group_desc_init(struct super_block *sb, 4846 struct ext4_super_block *es, 4847 ext4_fsblk_t logical_sb_block, 4848 ext4_group_t *first_not_zeroed) 4849 { 4850 struct ext4_sb_info *sbi = EXT4_SB(sb); 4851 unsigned int db_count; 4852 ext4_fsblk_t block; 4853 int i; 4854 4855 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4856 EXT4_DESC_PER_BLOCK(sb); 4857 if (ext4_has_feature_meta_bg(sb)) { 4858 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4859 ext4_msg(sb, KERN_WARNING, 4860 "first meta block group too large: %u " 4861 "(group descriptor block count %u)", 4862 le32_to_cpu(es->s_first_meta_bg), db_count); 4863 return -EINVAL; 4864 } 4865 } 4866 rcu_assign_pointer(sbi->s_group_desc, 4867 kvmalloc_array(db_count, 4868 sizeof(struct buffer_head *), 4869 GFP_KERNEL)); 4870 if (sbi->s_group_desc == NULL) { 4871 ext4_msg(sb, KERN_ERR, "not enough memory"); 4872 return -ENOMEM; 4873 } 4874 4875 bgl_lock_init(sbi->s_blockgroup_lock); 4876 4877 /* Pre-read the descriptors into the buffer cache */ 4878 for (i = 0; i < db_count; i++) { 4879 block = descriptor_loc(sb, logical_sb_block, i); 4880 ext4_sb_breadahead_unmovable(sb, block); 4881 } 4882 4883 for (i = 0; i < db_count; i++) { 4884 struct buffer_head *bh; 4885 4886 block = descriptor_loc(sb, logical_sb_block, i); 4887 bh = ext4_sb_bread_unmovable(sb, block); 4888 if (IS_ERR(bh)) { 4889 ext4_msg(sb, KERN_ERR, 4890 "can't read group descriptor %d", i); 4891 sbi->s_gdb_count = i; 4892 return PTR_ERR(bh); 4893 } 4894 rcu_read_lock(); 4895 rcu_dereference(sbi->s_group_desc)[i] = bh; 4896 rcu_read_unlock(); 4897 } 4898 sbi->s_gdb_count = db_count; 4899 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4900 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4901 return -EFSCORRUPTED; 4902 } 4903 4904 return 0; 4905 } 4906 4907 static int ext4_load_and_init_journal(struct super_block *sb, 4908 struct ext4_super_block *es, 4909 struct ext4_fs_context *ctx) 4910 { 4911 struct ext4_sb_info *sbi = EXT4_SB(sb); 4912 int err; 4913 4914 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4915 if (err) 4916 return err; 4917 4918 if (ext4_has_feature_64bit(sb) && 4919 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4920 JBD2_FEATURE_INCOMPAT_64BIT)) { 4921 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4922 goto out; 4923 } 4924 4925 if (!set_journal_csum_feature_set(sb)) { 4926 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4927 "feature set"); 4928 goto out; 4929 } 4930 4931 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4932 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4933 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4934 ext4_msg(sb, KERN_ERR, 4935 "Failed to set fast commit journal feature"); 4936 goto out; 4937 } 4938 4939 /* We have now updated the journal if required, so we can 4940 * validate the data journaling mode. */ 4941 switch (test_opt(sb, DATA_FLAGS)) { 4942 case 0: 4943 /* No mode set, assume a default based on the journal 4944 * capabilities: ORDERED_DATA if the journal can 4945 * cope, else JOURNAL_DATA 4946 */ 4947 if (jbd2_journal_check_available_features 4948 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4949 set_opt(sb, ORDERED_DATA); 4950 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4951 } else { 4952 set_opt(sb, JOURNAL_DATA); 4953 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4954 } 4955 break; 4956 4957 case EXT4_MOUNT_ORDERED_DATA: 4958 case EXT4_MOUNT_WRITEBACK_DATA: 4959 if (!jbd2_journal_check_available_features 4960 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4961 ext4_msg(sb, KERN_ERR, "Journal does not support " 4962 "requested data journaling mode"); 4963 goto out; 4964 } 4965 break; 4966 default: 4967 break; 4968 } 4969 4970 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4971 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4972 ext4_msg(sb, KERN_ERR, "can't mount with " 4973 "journal_async_commit in data=ordered mode"); 4974 goto out; 4975 } 4976 4977 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4978 4979 sbi->s_journal->j_submit_inode_data_buffers = 4980 ext4_journal_submit_inode_data_buffers; 4981 sbi->s_journal->j_finish_inode_data_buffers = 4982 ext4_journal_finish_inode_data_buffers; 4983 4984 return 0; 4985 4986 out: 4987 /* flush s_sb_upd_work before destroying the journal. */ 4988 flush_work(&sbi->s_sb_upd_work); 4989 jbd2_journal_destroy(sbi->s_journal); 4990 sbi->s_journal = NULL; 4991 return -EINVAL; 4992 } 4993 4994 static int ext4_check_journal_data_mode(struct super_block *sb) 4995 { 4996 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4997 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4998 "data=journal disables delayed allocation, " 4999 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 5000 /* can't mount with both data=journal and dioread_nolock. */ 5001 clear_opt(sb, DIOREAD_NOLOCK); 5002 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5003 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5004 ext4_msg(sb, KERN_ERR, "can't mount with " 5005 "both data=journal and delalloc"); 5006 return -EINVAL; 5007 } 5008 if (test_opt(sb, DAX_ALWAYS)) { 5009 ext4_msg(sb, KERN_ERR, "can't mount with " 5010 "both data=journal and dax"); 5011 return -EINVAL; 5012 } 5013 if (ext4_has_feature_encrypt(sb)) { 5014 ext4_msg(sb, KERN_WARNING, 5015 "encrypted files will use data=ordered " 5016 "instead of data journaling mode"); 5017 } 5018 if (test_opt(sb, DELALLOC)) 5019 clear_opt(sb, DELALLOC); 5020 } else { 5021 sb->s_iflags |= SB_I_CGROUPWB; 5022 } 5023 5024 return 0; 5025 } 5026 5027 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5028 int silent) 5029 { 5030 struct ext4_sb_info *sbi = EXT4_SB(sb); 5031 struct ext4_super_block *es; 5032 ext4_fsblk_t logical_sb_block; 5033 unsigned long offset = 0; 5034 struct buffer_head *bh; 5035 int ret = -EINVAL; 5036 int blocksize; 5037 5038 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5039 if (!blocksize) { 5040 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5041 return -EINVAL; 5042 } 5043 5044 /* 5045 * The ext4 superblock will not be buffer aligned for other than 1kB 5046 * block sizes. We need to calculate the offset from buffer start. 5047 */ 5048 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5049 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5050 offset = do_div(logical_sb_block, blocksize); 5051 } else { 5052 logical_sb_block = sbi->s_sb_block; 5053 } 5054 5055 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5056 if (IS_ERR(bh)) { 5057 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5058 return PTR_ERR(bh); 5059 } 5060 /* 5061 * Note: s_es must be initialized as soon as possible because 5062 * some ext4 macro-instructions depend on its value 5063 */ 5064 es = (struct ext4_super_block *) (bh->b_data + offset); 5065 sbi->s_es = es; 5066 sb->s_magic = le16_to_cpu(es->s_magic); 5067 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5068 if (!silent) 5069 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5070 goto out; 5071 } 5072 5073 if (le32_to_cpu(es->s_log_block_size) > 5074 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5075 ext4_msg(sb, KERN_ERR, 5076 "Invalid log block size: %u", 5077 le32_to_cpu(es->s_log_block_size)); 5078 goto out; 5079 } 5080 if (le32_to_cpu(es->s_log_cluster_size) > 5081 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5082 ext4_msg(sb, KERN_ERR, 5083 "Invalid log cluster size: %u", 5084 le32_to_cpu(es->s_log_cluster_size)); 5085 goto out; 5086 } 5087 5088 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5089 5090 /* 5091 * If the default block size is not the same as the real block size, 5092 * we need to reload it. 5093 */ 5094 if (sb->s_blocksize == blocksize) { 5095 *lsb = logical_sb_block; 5096 sbi->s_sbh = bh; 5097 return 0; 5098 } 5099 5100 /* 5101 * bh must be released before kill_bdev(), otherwise 5102 * it won't be freed and its page also. kill_bdev() 5103 * is called by sb_set_blocksize(). 5104 */ 5105 brelse(bh); 5106 /* Validate the filesystem blocksize */ 5107 if (!sb_set_blocksize(sb, blocksize)) { 5108 ext4_msg(sb, KERN_ERR, "bad block size %d", 5109 blocksize); 5110 bh = NULL; 5111 goto out; 5112 } 5113 5114 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5115 offset = do_div(logical_sb_block, blocksize); 5116 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5117 if (IS_ERR(bh)) { 5118 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5119 ret = PTR_ERR(bh); 5120 bh = NULL; 5121 goto out; 5122 } 5123 es = (struct ext4_super_block *)(bh->b_data + offset); 5124 sbi->s_es = es; 5125 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5126 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5127 goto out; 5128 } 5129 *lsb = logical_sb_block; 5130 sbi->s_sbh = bh; 5131 return 0; 5132 out: 5133 brelse(bh); 5134 return ret; 5135 } 5136 5137 static int ext4_hash_info_init(struct super_block *sb) 5138 { 5139 struct ext4_sb_info *sbi = EXT4_SB(sb); 5140 struct ext4_super_block *es = sbi->s_es; 5141 unsigned int i; 5142 5143 sbi->s_def_hash_version = es->s_def_hash_version; 5144 5145 if (sbi->s_def_hash_version > DX_HASH_LAST) { 5146 ext4_msg(sb, KERN_ERR, 5147 "Invalid default hash set in the superblock"); 5148 return -EINVAL; 5149 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) { 5150 ext4_msg(sb, KERN_ERR, 5151 "SIPHASH is not a valid default hash value"); 5152 return -EINVAL; 5153 } 5154 5155 for (i = 0; i < 4; i++) 5156 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5157 5158 if (ext4_has_feature_dir_index(sb)) { 5159 i = le32_to_cpu(es->s_flags); 5160 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5161 sbi->s_hash_unsigned = 3; 5162 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5163 #ifdef __CHAR_UNSIGNED__ 5164 if (!sb_rdonly(sb)) 5165 es->s_flags |= 5166 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5167 sbi->s_hash_unsigned = 3; 5168 #else 5169 if (!sb_rdonly(sb)) 5170 es->s_flags |= 5171 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5172 #endif 5173 } 5174 } 5175 return 0; 5176 } 5177 5178 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5179 { 5180 struct ext4_sb_info *sbi = EXT4_SB(sb); 5181 struct ext4_super_block *es = sbi->s_es; 5182 int has_huge_files; 5183 5184 has_huge_files = ext4_has_feature_huge_file(sb); 5185 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5186 has_huge_files); 5187 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5188 5189 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5190 if (ext4_has_feature_64bit(sb)) { 5191 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5192 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5193 !is_power_of_2(sbi->s_desc_size)) { 5194 ext4_msg(sb, KERN_ERR, 5195 "unsupported descriptor size %lu", 5196 sbi->s_desc_size); 5197 return -EINVAL; 5198 } 5199 } else 5200 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5201 5202 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5203 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5204 5205 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5206 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5207 if (!silent) 5208 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5209 return -EINVAL; 5210 } 5211 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5212 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5213 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5214 sbi->s_inodes_per_group); 5215 return -EINVAL; 5216 } 5217 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5218 sbi->s_inodes_per_block; 5219 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5220 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5221 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5222 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5223 5224 return 0; 5225 } 5226 5227 /* 5228 * It's hard to get stripe aligned blocks if stripe is not aligned with 5229 * cluster, just disable stripe and alert user to simplify code and avoid 5230 * stripe aligned allocation which will rarely succeed. 5231 */ 5232 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe) 5233 { 5234 struct ext4_sb_info *sbi = EXT4_SB(sb); 5235 return (stripe > 0 && sbi->s_cluster_ratio > 1 && 5236 stripe % sbi->s_cluster_ratio != 0); 5237 } 5238 5239 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5240 { 5241 struct ext4_super_block *es = NULL; 5242 struct ext4_sb_info *sbi = EXT4_SB(sb); 5243 ext4_fsblk_t logical_sb_block; 5244 struct inode *root; 5245 int needs_recovery; 5246 int err; 5247 ext4_group_t first_not_zeroed; 5248 struct ext4_fs_context *ctx = fc->fs_private; 5249 int silent = fc->sb_flags & SB_SILENT; 5250 5251 /* Set defaults for the variables that will be set during parsing */ 5252 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5253 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5254 5255 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5256 sbi->s_sectors_written_start = 5257 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5258 5259 err = ext4_load_super(sb, &logical_sb_block, silent); 5260 if (err) 5261 goto out_fail; 5262 5263 es = sbi->s_es; 5264 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5265 5266 err = ext4_init_metadata_csum(sb, es); 5267 if (err) 5268 goto failed_mount; 5269 5270 ext4_set_def_opts(sb, es); 5271 5272 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5273 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5274 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5275 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5276 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5277 5278 /* 5279 * set default s_li_wait_mult for lazyinit, for the case there is 5280 * no mount option specified. 5281 */ 5282 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5283 5284 err = ext4_inode_info_init(sb, es); 5285 if (err) 5286 goto failed_mount; 5287 5288 err = parse_apply_sb_mount_options(sb, ctx); 5289 if (err < 0) 5290 goto failed_mount; 5291 5292 sbi->s_def_mount_opt = sbi->s_mount_opt; 5293 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5294 5295 err = ext4_check_opt_consistency(fc, sb); 5296 if (err < 0) 5297 goto failed_mount; 5298 5299 ext4_apply_options(fc, sb); 5300 5301 err = ext4_encoding_init(sb, es); 5302 if (err) 5303 goto failed_mount; 5304 5305 err = ext4_check_journal_data_mode(sb); 5306 if (err) 5307 goto failed_mount; 5308 5309 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5310 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5311 5312 /* i_version is always enabled now */ 5313 sb->s_flags |= SB_I_VERSION; 5314 5315 err = ext4_check_feature_compatibility(sb, es, silent); 5316 if (err) 5317 goto failed_mount; 5318 5319 err = ext4_block_group_meta_init(sb, silent); 5320 if (err) 5321 goto failed_mount; 5322 5323 err = ext4_hash_info_init(sb); 5324 if (err) 5325 goto failed_mount; 5326 5327 err = ext4_handle_clustersize(sb); 5328 if (err) 5329 goto failed_mount; 5330 5331 err = ext4_check_geometry(sb, es); 5332 if (err) 5333 goto failed_mount; 5334 5335 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5336 spin_lock_init(&sbi->s_error_lock); 5337 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5338 5339 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5340 if (err) 5341 goto failed_mount3; 5342 5343 err = ext4_es_register_shrinker(sbi); 5344 if (err) 5345 goto failed_mount3; 5346 5347 sbi->s_stripe = ext4_get_stripe_size(sbi); 5348 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) { 5349 ext4_msg(sb, KERN_WARNING, 5350 "stripe (%lu) is not aligned with cluster size (%u), " 5351 "stripe is disabled", 5352 sbi->s_stripe, sbi->s_cluster_ratio); 5353 sbi->s_stripe = 0; 5354 } 5355 sbi->s_extent_max_zeroout_kb = 32; 5356 5357 /* 5358 * set up enough so that it can read an inode 5359 */ 5360 sb->s_op = &ext4_sops; 5361 sb->s_export_op = &ext4_export_ops; 5362 sb->s_xattr = ext4_xattr_handlers; 5363 #ifdef CONFIG_FS_ENCRYPTION 5364 sb->s_cop = &ext4_cryptops; 5365 #endif 5366 #ifdef CONFIG_FS_VERITY 5367 sb->s_vop = &ext4_verityops; 5368 #endif 5369 #ifdef CONFIG_QUOTA 5370 sb->dq_op = &ext4_quota_operations; 5371 if (ext4_has_feature_quota(sb)) 5372 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5373 else 5374 sb->s_qcop = &ext4_qctl_operations; 5375 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5376 #endif 5377 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5378 super_set_sysfs_name_bdev(sb); 5379 5380 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5381 mutex_init(&sbi->s_orphan_lock); 5382 5383 spin_lock_init(&sbi->s_bdev_wb_lock); 5384 5385 ext4_atomic_write_init(sb); 5386 ext4_fast_commit_init(sb); 5387 5388 sb->s_root = NULL; 5389 5390 needs_recovery = (es->s_last_orphan != 0 || 5391 ext4_has_feature_orphan_present(sb) || 5392 ext4_has_feature_journal_needs_recovery(sb)); 5393 5394 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5395 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5396 if (err) 5397 goto failed_mount3a; 5398 } 5399 5400 err = -EINVAL; 5401 /* 5402 * The first inode we look at is the journal inode. Don't try 5403 * root first: it may be modified in the journal! 5404 */ 5405 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5406 err = ext4_load_and_init_journal(sb, es, ctx); 5407 if (err) 5408 goto failed_mount3a; 5409 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5410 ext4_has_feature_journal_needs_recovery(sb)) { 5411 ext4_msg(sb, KERN_ERR, "required journal recovery " 5412 "suppressed and not mounted read-only"); 5413 goto failed_mount3a; 5414 } else { 5415 /* Nojournal mode, all journal mount options are illegal */ 5416 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5417 ext4_msg(sb, KERN_ERR, "can't mount with " 5418 "journal_async_commit, fs mounted w/o journal"); 5419 goto failed_mount3a; 5420 } 5421 5422 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5423 ext4_msg(sb, KERN_ERR, "can't mount with " 5424 "journal_checksum, fs mounted w/o journal"); 5425 goto failed_mount3a; 5426 } 5427 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5428 ext4_msg(sb, KERN_ERR, "can't mount with " 5429 "commit=%lu, fs mounted w/o journal", 5430 sbi->s_commit_interval / HZ); 5431 goto failed_mount3a; 5432 } 5433 if (EXT4_MOUNT_DATA_FLAGS & 5434 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5435 ext4_msg(sb, KERN_ERR, "can't mount with " 5436 "data=, fs mounted w/o journal"); 5437 goto failed_mount3a; 5438 } 5439 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5440 clear_opt(sb, JOURNAL_CHECKSUM); 5441 clear_opt(sb, DATA_FLAGS); 5442 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5443 sbi->s_journal = NULL; 5444 needs_recovery = 0; 5445 } 5446 5447 if (!test_opt(sb, NO_MBCACHE)) { 5448 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5449 if (!sbi->s_ea_block_cache) { 5450 ext4_msg(sb, KERN_ERR, 5451 "Failed to create ea_block_cache"); 5452 err = -EINVAL; 5453 goto failed_mount_wq; 5454 } 5455 5456 if (ext4_has_feature_ea_inode(sb)) { 5457 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5458 if (!sbi->s_ea_inode_cache) { 5459 ext4_msg(sb, KERN_ERR, 5460 "Failed to create ea_inode_cache"); 5461 err = -EINVAL; 5462 goto failed_mount_wq; 5463 } 5464 } 5465 } 5466 5467 /* 5468 * Get the # of file system overhead blocks from the 5469 * superblock if present. 5470 */ 5471 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5472 /* ignore the precalculated value if it is ridiculous */ 5473 if (sbi->s_overhead > ext4_blocks_count(es)) 5474 sbi->s_overhead = 0; 5475 /* 5476 * If the bigalloc feature is not enabled recalculating the 5477 * overhead doesn't take long, so we might as well just redo 5478 * it to make sure we are using the correct value. 5479 */ 5480 if (!ext4_has_feature_bigalloc(sb)) 5481 sbi->s_overhead = 0; 5482 if (sbi->s_overhead == 0) { 5483 err = ext4_calculate_overhead(sb); 5484 if (err) 5485 goto failed_mount_wq; 5486 } 5487 5488 /* 5489 * The maximum number of concurrent works can be high and 5490 * concurrency isn't really necessary. Limit it to 1. 5491 */ 5492 EXT4_SB(sb)->rsv_conversion_wq = 5493 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5494 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5495 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5496 err = -ENOMEM; 5497 goto failed_mount4; 5498 } 5499 5500 /* 5501 * The jbd2_journal_load will have done any necessary log recovery, 5502 * so we can safely mount the rest of the filesystem now. 5503 */ 5504 5505 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5506 if (IS_ERR(root)) { 5507 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5508 err = PTR_ERR(root); 5509 root = NULL; 5510 goto failed_mount4; 5511 } 5512 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5513 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5514 iput(root); 5515 err = -EFSCORRUPTED; 5516 goto failed_mount4; 5517 } 5518 5519 generic_set_sb_d_ops(sb); 5520 sb->s_root = d_make_root(root); 5521 if (!sb->s_root) { 5522 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5523 err = -ENOMEM; 5524 goto failed_mount4; 5525 } 5526 5527 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5528 if (err == -EROFS) { 5529 sb->s_flags |= SB_RDONLY; 5530 } else if (err) 5531 goto failed_mount4a; 5532 5533 ext4_set_resv_clusters(sb); 5534 5535 if (test_opt(sb, BLOCK_VALIDITY)) { 5536 err = ext4_setup_system_zone(sb); 5537 if (err) { 5538 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5539 "zone (%d)", err); 5540 goto failed_mount4a; 5541 } 5542 } 5543 ext4_fc_replay_cleanup(sb); 5544 5545 ext4_ext_init(sb); 5546 5547 /* 5548 * Enable optimize_scan if number of groups is > threshold. This can be 5549 * turned off by passing "mb_optimize_scan=0". This can also be 5550 * turned on forcefully by passing "mb_optimize_scan=1". 5551 */ 5552 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5553 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5554 set_opt2(sb, MB_OPTIMIZE_SCAN); 5555 else 5556 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5557 } 5558 5559 err = ext4_mb_init(sb); 5560 if (err) { 5561 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5562 err); 5563 goto failed_mount5; 5564 } 5565 5566 /* 5567 * We can only set up the journal commit callback once 5568 * mballoc is initialized 5569 */ 5570 if (sbi->s_journal) 5571 sbi->s_journal->j_commit_callback = 5572 ext4_journal_commit_callback; 5573 5574 err = ext4_percpu_param_init(sbi); 5575 if (err) 5576 goto failed_mount6; 5577 5578 if (ext4_has_feature_flex_bg(sb)) 5579 if (!ext4_fill_flex_info(sb)) { 5580 ext4_msg(sb, KERN_ERR, 5581 "unable to initialize " 5582 "flex_bg meta info!"); 5583 err = -ENOMEM; 5584 goto failed_mount6; 5585 } 5586 5587 err = ext4_register_li_request(sb, first_not_zeroed); 5588 if (err) 5589 goto failed_mount6; 5590 5591 err = ext4_init_orphan_info(sb); 5592 if (err) 5593 goto failed_mount7; 5594 #ifdef CONFIG_QUOTA 5595 /* Enable quota usage during mount. */ 5596 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5597 err = ext4_enable_quotas(sb); 5598 if (err) 5599 goto failed_mount8; 5600 } 5601 #endif /* CONFIG_QUOTA */ 5602 5603 /* 5604 * Save the original bdev mapping's wb_err value which could be 5605 * used to detect the metadata async write error. 5606 */ 5607 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err, 5608 &sbi->s_bdev_wb_err); 5609 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5610 ext4_orphan_cleanup(sb, es); 5611 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5612 /* 5613 * Update the checksum after updating free space/inode counters and 5614 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5615 * checksum in the buffer cache until it is written out and 5616 * e2fsprogs programs trying to open a file system immediately 5617 * after it is mounted can fail. 5618 */ 5619 ext4_superblock_csum_set(sb); 5620 if (needs_recovery) { 5621 ext4_msg(sb, KERN_INFO, "recovery complete"); 5622 err = ext4_mark_recovery_complete(sb, es); 5623 if (err) 5624 goto failed_mount9; 5625 } 5626 5627 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5628 ext4_msg(sb, KERN_WARNING, 5629 "mounting with \"discard\" option, but the device does not support discard"); 5630 5631 if (es->s_error_count) 5632 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5633 5634 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5635 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5636 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5637 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5638 atomic_set(&sbi->s_warning_count, 0); 5639 atomic_set(&sbi->s_msg_count, 0); 5640 5641 /* Register sysfs after all initializations are complete. */ 5642 err = ext4_register_sysfs(sb); 5643 if (err) 5644 goto failed_mount9; 5645 5646 return 0; 5647 5648 failed_mount9: 5649 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5650 failed_mount8: __maybe_unused 5651 ext4_release_orphan_info(sb); 5652 failed_mount7: 5653 ext4_unregister_li_request(sb); 5654 failed_mount6: 5655 ext4_mb_release(sb); 5656 ext4_flex_groups_free(sbi); 5657 ext4_percpu_param_destroy(sbi); 5658 failed_mount5: 5659 ext4_ext_release(sb); 5660 ext4_release_system_zone(sb); 5661 failed_mount4a: 5662 dput(sb->s_root); 5663 sb->s_root = NULL; 5664 failed_mount4: 5665 ext4_msg(sb, KERN_ERR, "mount failed"); 5666 if (EXT4_SB(sb)->rsv_conversion_wq) 5667 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5668 failed_mount_wq: 5669 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5670 sbi->s_ea_inode_cache = NULL; 5671 5672 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5673 sbi->s_ea_block_cache = NULL; 5674 5675 if (sbi->s_journal) { 5676 /* flush s_sb_upd_work before journal destroy. */ 5677 flush_work(&sbi->s_sb_upd_work); 5678 jbd2_journal_destroy(sbi->s_journal); 5679 sbi->s_journal = NULL; 5680 } 5681 failed_mount3a: 5682 ext4_es_unregister_shrinker(sbi); 5683 failed_mount3: 5684 /* flush s_sb_upd_work before sbi destroy */ 5685 flush_work(&sbi->s_sb_upd_work); 5686 ext4_stop_mmpd(sbi); 5687 del_timer_sync(&sbi->s_err_report); 5688 ext4_group_desc_free(sbi); 5689 failed_mount: 5690 if (sbi->s_chksum_driver) 5691 crypto_free_shash(sbi->s_chksum_driver); 5692 5693 #if IS_ENABLED(CONFIG_UNICODE) 5694 utf8_unload(sb->s_encoding); 5695 #endif 5696 5697 #ifdef CONFIG_QUOTA 5698 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5699 kfree(get_qf_name(sb, sbi, i)); 5700 #endif 5701 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5702 brelse(sbi->s_sbh); 5703 if (sbi->s_journal_bdev_file) { 5704 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5705 bdev_fput(sbi->s_journal_bdev_file); 5706 } 5707 out_fail: 5708 invalidate_bdev(sb->s_bdev); 5709 sb->s_fs_info = NULL; 5710 return err; 5711 } 5712 5713 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5714 { 5715 struct ext4_fs_context *ctx = fc->fs_private; 5716 struct ext4_sb_info *sbi; 5717 const char *descr; 5718 int ret; 5719 5720 sbi = ext4_alloc_sbi(sb); 5721 if (!sbi) 5722 return -ENOMEM; 5723 5724 fc->s_fs_info = sbi; 5725 5726 /* Cleanup superblock name */ 5727 strreplace(sb->s_id, '/', '!'); 5728 5729 sbi->s_sb_block = 1; /* Default super block location */ 5730 if (ctx->spec & EXT4_SPEC_s_sb_block) 5731 sbi->s_sb_block = ctx->s_sb_block; 5732 5733 ret = __ext4_fill_super(fc, sb); 5734 if (ret < 0) 5735 goto free_sbi; 5736 5737 if (sbi->s_journal) { 5738 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5739 descr = " journalled data mode"; 5740 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5741 descr = " ordered data mode"; 5742 else 5743 descr = " writeback data mode"; 5744 } else 5745 descr = "out journal"; 5746 5747 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5748 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5749 "Quota mode: %s.", &sb->s_uuid, 5750 sb_rdonly(sb) ? "ro" : "r/w", descr, 5751 ext4_quota_mode(sb)); 5752 5753 /* Update the s_overhead_clusters if necessary */ 5754 ext4_update_overhead(sb, false); 5755 return 0; 5756 5757 free_sbi: 5758 ext4_free_sbi(sbi); 5759 fc->s_fs_info = NULL; 5760 return ret; 5761 } 5762 5763 static int ext4_get_tree(struct fs_context *fc) 5764 { 5765 return get_tree_bdev(fc, ext4_fill_super); 5766 } 5767 5768 /* 5769 * Setup any per-fs journal parameters now. We'll do this both on 5770 * initial mount, once the journal has been initialised but before we've 5771 * done any recovery; and again on any subsequent remount. 5772 */ 5773 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5774 { 5775 struct ext4_sb_info *sbi = EXT4_SB(sb); 5776 5777 journal->j_commit_interval = sbi->s_commit_interval; 5778 journal->j_min_batch_time = sbi->s_min_batch_time; 5779 journal->j_max_batch_time = sbi->s_max_batch_time; 5780 ext4_fc_init(sb, journal); 5781 5782 write_lock(&journal->j_state_lock); 5783 if (test_opt(sb, BARRIER)) 5784 journal->j_flags |= JBD2_BARRIER; 5785 else 5786 journal->j_flags &= ~JBD2_BARRIER; 5787 if (test_opt(sb, DATA_ERR_ABORT)) 5788 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5789 else 5790 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5791 /* 5792 * Always enable journal cycle record option, letting the journal 5793 * records log transactions continuously between each mount. 5794 */ 5795 journal->j_flags |= JBD2_CYCLE_RECORD; 5796 write_unlock(&journal->j_state_lock); 5797 } 5798 5799 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5800 unsigned int journal_inum) 5801 { 5802 struct inode *journal_inode; 5803 5804 /* 5805 * Test for the existence of a valid inode on disk. Bad things 5806 * happen if we iget() an unused inode, as the subsequent iput() 5807 * will try to delete it. 5808 */ 5809 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5810 if (IS_ERR(journal_inode)) { 5811 ext4_msg(sb, KERN_ERR, "no journal found"); 5812 return ERR_CAST(journal_inode); 5813 } 5814 if (!journal_inode->i_nlink) { 5815 make_bad_inode(journal_inode); 5816 iput(journal_inode); 5817 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5818 return ERR_PTR(-EFSCORRUPTED); 5819 } 5820 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5821 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5822 iput(journal_inode); 5823 return ERR_PTR(-EFSCORRUPTED); 5824 } 5825 5826 ext4_debug("Journal inode found at %p: %lld bytes\n", 5827 journal_inode, journal_inode->i_size); 5828 return journal_inode; 5829 } 5830 5831 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5832 { 5833 struct ext4_map_blocks map; 5834 int ret; 5835 5836 if (journal->j_inode == NULL) 5837 return 0; 5838 5839 map.m_lblk = *block; 5840 map.m_len = 1; 5841 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5842 if (ret <= 0) { 5843 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5844 "journal bmap failed: block %llu ret %d\n", 5845 *block, ret); 5846 jbd2_journal_abort(journal, ret ? ret : -EIO); 5847 return ret; 5848 } 5849 *block = map.m_pblk; 5850 return 0; 5851 } 5852 5853 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5854 unsigned int journal_inum) 5855 { 5856 struct inode *journal_inode; 5857 journal_t *journal; 5858 5859 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5860 if (IS_ERR(journal_inode)) 5861 return ERR_CAST(journal_inode); 5862 5863 journal = jbd2_journal_init_inode(journal_inode); 5864 if (IS_ERR(journal)) { 5865 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5866 iput(journal_inode); 5867 return ERR_CAST(journal); 5868 } 5869 journal->j_private = sb; 5870 journal->j_bmap = ext4_journal_bmap; 5871 ext4_init_journal_params(sb, journal); 5872 return journal; 5873 } 5874 5875 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5876 dev_t j_dev, ext4_fsblk_t *j_start, 5877 ext4_fsblk_t *j_len) 5878 { 5879 struct buffer_head *bh; 5880 struct block_device *bdev; 5881 struct file *bdev_file; 5882 int hblock, blocksize; 5883 ext4_fsblk_t sb_block; 5884 unsigned long offset; 5885 struct ext4_super_block *es; 5886 int errno; 5887 5888 bdev_file = bdev_file_open_by_dev(j_dev, 5889 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5890 sb, &fs_holder_ops); 5891 if (IS_ERR(bdev_file)) { 5892 ext4_msg(sb, KERN_ERR, 5893 "failed to open journal device unknown-block(%u,%u) %ld", 5894 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5895 return bdev_file; 5896 } 5897 5898 bdev = file_bdev(bdev_file); 5899 blocksize = sb->s_blocksize; 5900 hblock = bdev_logical_block_size(bdev); 5901 if (blocksize < hblock) { 5902 ext4_msg(sb, KERN_ERR, 5903 "blocksize too small for journal device"); 5904 errno = -EINVAL; 5905 goto out_bdev; 5906 } 5907 5908 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5909 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5910 set_blocksize(bdev_file, blocksize); 5911 bh = __bread(bdev, sb_block, blocksize); 5912 if (!bh) { 5913 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5914 "external journal"); 5915 errno = -EINVAL; 5916 goto out_bdev; 5917 } 5918 5919 es = (struct ext4_super_block *) (bh->b_data + offset); 5920 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5921 !(le32_to_cpu(es->s_feature_incompat) & 5922 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5923 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5924 errno = -EFSCORRUPTED; 5925 goto out_bh; 5926 } 5927 5928 if ((le32_to_cpu(es->s_feature_ro_compat) & 5929 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5930 es->s_checksum != ext4_superblock_csum(sb, es)) { 5931 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5932 errno = -EFSCORRUPTED; 5933 goto out_bh; 5934 } 5935 5936 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5937 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5938 errno = -EFSCORRUPTED; 5939 goto out_bh; 5940 } 5941 5942 *j_start = sb_block + 1; 5943 *j_len = ext4_blocks_count(es); 5944 brelse(bh); 5945 return bdev_file; 5946 5947 out_bh: 5948 brelse(bh); 5949 out_bdev: 5950 bdev_fput(bdev_file); 5951 return ERR_PTR(errno); 5952 } 5953 5954 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5955 dev_t j_dev) 5956 { 5957 journal_t *journal; 5958 ext4_fsblk_t j_start; 5959 ext4_fsblk_t j_len; 5960 struct file *bdev_file; 5961 int errno = 0; 5962 5963 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5964 if (IS_ERR(bdev_file)) 5965 return ERR_CAST(bdev_file); 5966 5967 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5968 j_len, sb->s_blocksize); 5969 if (IS_ERR(journal)) { 5970 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5971 errno = PTR_ERR(journal); 5972 goto out_bdev; 5973 } 5974 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5975 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5976 "user (unsupported) - %d", 5977 be32_to_cpu(journal->j_superblock->s_nr_users)); 5978 errno = -EINVAL; 5979 goto out_journal; 5980 } 5981 journal->j_private = sb; 5982 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5983 ext4_init_journal_params(sb, journal); 5984 return journal; 5985 5986 out_journal: 5987 jbd2_journal_destroy(journal); 5988 out_bdev: 5989 bdev_fput(bdev_file); 5990 return ERR_PTR(errno); 5991 } 5992 5993 static int ext4_load_journal(struct super_block *sb, 5994 struct ext4_super_block *es, 5995 unsigned long journal_devnum) 5996 { 5997 journal_t *journal; 5998 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5999 dev_t journal_dev; 6000 int err = 0; 6001 int really_read_only; 6002 int journal_dev_ro; 6003 6004 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 6005 return -EFSCORRUPTED; 6006 6007 if (journal_devnum && 6008 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6009 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 6010 "numbers have changed"); 6011 journal_dev = new_decode_dev(journal_devnum); 6012 } else 6013 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 6014 6015 if (journal_inum && journal_dev) { 6016 ext4_msg(sb, KERN_ERR, 6017 "filesystem has both journal inode and journal device!"); 6018 return -EINVAL; 6019 } 6020 6021 if (journal_inum) { 6022 journal = ext4_open_inode_journal(sb, journal_inum); 6023 if (IS_ERR(journal)) 6024 return PTR_ERR(journal); 6025 } else { 6026 journal = ext4_open_dev_journal(sb, journal_dev); 6027 if (IS_ERR(journal)) 6028 return PTR_ERR(journal); 6029 } 6030 6031 journal_dev_ro = bdev_read_only(journal->j_dev); 6032 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 6033 6034 if (journal_dev_ro && !sb_rdonly(sb)) { 6035 ext4_msg(sb, KERN_ERR, 6036 "journal device read-only, try mounting with '-o ro'"); 6037 err = -EROFS; 6038 goto err_out; 6039 } 6040 6041 /* 6042 * Are we loading a blank journal or performing recovery after a 6043 * crash? For recovery, we need to check in advance whether we 6044 * can get read-write access to the device. 6045 */ 6046 if (ext4_has_feature_journal_needs_recovery(sb)) { 6047 if (sb_rdonly(sb)) { 6048 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6049 "required on readonly filesystem"); 6050 if (really_read_only) { 6051 ext4_msg(sb, KERN_ERR, "write access " 6052 "unavailable, cannot proceed " 6053 "(try mounting with noload)"); 6054 err = -EROFS; 6055 goto err_out; 6056 } 6057 ext4_msg(sb, KERN_INFO, "write access will " 6058 "be enabled during recovery"); 6059 } 6060 } 6061 6062 if (!(journal->j_flags & JBD2_BARRIER)) 6063 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6064 6065 if (!ext4_has_feature_journal_needs_recovery(sb)) 6066 err = jbd2_journal_wipe(journal, !really_read_only); 6067 if (!err) { 6068 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6069 __le16 orig_state; 6070 bool changed = false; 6071 6072 if (save) 6073 memcpy(save, ((char *) es) + 6074 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6075 err = jbd2_journal_load(journal); 6076 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6077 save, EXT4_S_ERR_LEN)) { 6078 memcpy(((char *) es) + EXT4_S_ERR_START, 6079 save, EXT4_S_ERR_LEN); 6080 changed = true; 6081 } 6082 kfree(save); 6083 orig_state = es->s_state; 6084 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6085 EXT4_ERROR_FS); 6086 if (orig_state != es->s_state) 6087 changed = true; 6088 /* Write out restored error information to the superblock */ 6089 if (changed && !really_read_only) { 6090 int err2; 6091 err2 = ext4_commit_super(sb); 6092 err = err ? : err2; 6093 } 6094 } 6095 6096 if (err) { 6097 ext4_msg(sb, KERN_ERR, "error loading journal"); 6098 goto err_out; 6099 } 6100 6101 EXT4_SB(sb)->s_journal = journal; 6102 err = ext4_clear_journal_err(sb, es); 6103 if (err) { 6104 EXT4_SB(sb)->s_journal = NULL; 6105 jbd2_journal_destroy(journal); 6106 return err; 6107 } 6108 6109 if (!really_read_only && journal_devnum && 6110 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6111 es->s_journal_dev = cpu_to_le32(journal_devnum); 6112 ext4_commit_super(sb); 6113 } 6114 if (!really_read_only && journal_inum && 6115 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6116 es->s_journal_inum = cpu_to_le32(journal_inum); 6117 ext4_commit_super(sb); 6118 } 6119 6120 return 0; 6121 6122 err_out: 6123 jbd2_journal_destroy(journal); 6124 return err; 6125 } 6126 6127 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6128 static void ext4_update_super(struct super_block *sb) 6129 { 6130 struct ext4_sb_info *sbi = EXT4_SB(sb); 6131 struct ext4_super_block *es = sbi->s_es; 6132 struct buffer_head *sbh = sbi->s_sbh; 6133 6134 lock_buffer(sbh); 6135 /* 6136 * If the file system is mounted read-only, don't update the 6137 * superblock write time. This avoids updating the superblock 6138 * write time when we are mounting the root file system 6139 * read/only but we need to replay the journal; at that point, 6140 * for people who are east of GMT and who make their clock 6141 * tick in localtime for Windows bug-for-bug compatibility, 6142 * the clock is set in the future, and this will cause e2fsck 6143 * to complain and force a full file system check. 6144 */ 6145 if (!sb_rdonly(sb)) 6146 ext4_update_tstamp(es, s_wtime); 6147 es->s_kbytes_written = 6148 cpu_to_le64(sbi->s_kbytes_written + 6149 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6150 sbi->s_sectors_written_start) >> 1)); 6151 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6152 ext4_free_blocks_count_set(es, 6153 EXT4_C2B(sbi, percpu_counter_sum_positive( 6154 &sbi->s_freeclusters_counter))); 6155 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6156 es->s_free_inodes_count = 6157 cpu_to_le32(percpu_counter_sum_positive( 6158 &sbi->s_freeinodes_counter)); 6159 /* Copy error information to the on-disk superblock */ 6160 spin_lock(&sbi->s_error_lock); 6161 if (sbi->s_add_error_count > 0) { 6162 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6163 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6164 __ext4_update_tstamp(&es->s_first_error_time, 6165 &es->s_first_error_time_hi, 6166 sbi->s_first_error_time); 6167 strtomem_pad(es->s_first_error_func, 6168 sbi->s_first_error_func, 0); 6169 es->s_first_error_line = 6170 cpu_to_le32(sbi->s_first_error_line); 6171 es->s_first_error_ino = 6172 cpu_to_le32(sbi->s_first_error_ino); 6173 es->s_first_error_block = 6174 cpu_to_le64(sbi->s_first_error_block); 6175 es->s_first_error_errcode = 6176 ext4_errno_to_code(sbi->s_first_error_code); 6177 } 6178 __ext4_update_tstamp(&es->s_last_error_time, 6179 &es->s_last_error_time_hi, 6180 sbi->s_last_error_time); 6181 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0); 6182 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6183 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6184 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6185 es->s_last_error_errcode = 6186 ext4_errno_to_code(sbi->s_last_error_code); 6187 /* 6188 * Start the daily error reporting function if it hasn't been 6189 * started already 6190 */ 6191 if (!es->s_error_count) 6192 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6193 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6194 sbi->s_add_error_count = 0; 6195 } 6196 spin_unlock(&sbi->s_error_lock); 6197 6198 ext4_superblock_csum_set(sb); 6199 unlock_buffer(sbh); 6200 } 6201 6202 static int ext4_commit_super(struct super_block *sb) 6203 { 6204 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6205 6206 if (!sbh) 6207 return -EINVAL; 6208 6209 ext4_update_super(sb); 6210 6211 lock_buffer(sbh); 6212 /* Buffer got discarded which means block device got invalidated */ 6213 if (!buffer_mapped(sbh)) { 6214 unlock_buffer(sbh); 6215 return -EIO; 6216 } 6217 6218 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6219 /* 6220 * Oh, dear. A previous attempt to write the 6221 * superblock failed. This could happen because the 6222 * USB device was yanked out. Or it could happen to 6223 * be a transient write error and maybe the block will 6224 * be remapped. Nothing we can do but to retry the 6225 * write and hope for the best. 6226 */ 6227 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6228 "superblock detected"); 6229 clear_buffer_write_io_error(sbh); 6230 set_buffer_uptodate(sbh); 6231 } 6232 get_bh(sbh); 6233 /* Clear potential dirty bit if it was journalled update */ 6234 clear_buffer_dirty(sbh); 6235 sbh->b_end_io = end_buffer_write_sync; 6236 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6237 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6238 wait_on_buffer(sbh); 6239 if (buffer_write_io_error(sbh)) { 6240 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6241 "superblock"); 6242 clear_buffer_write_io_error(sbh); 6243 set_buffer_uptodate(sbh); 6244 return -EIO; 6245 } 6246 return 0; 6247 } 6248 6249 /* 6250 * Have we just finished recovery? If so, and if we are mounting (or 6251 * remounting) the filesystem readonly, then we will end up with a 6252 * consistent fs on disk. Record that fact. 6253 */ 6254 static int ext4_mark_recovery_complete(struct super_block *sb, 6255 struct ext4_super_block *es) 6256 { 6257 int err; 6258 journal_t *journal = EXT4_SB(sb)->s_journal; 6259 6260 if (!ext4_has_feature_journal(sb)) { 6261 if (journal != NULL) { 6262 ext4_error(sb, "Journal got removed while the fs was " 6263 "mounted!"); 6264 return -EFSCORRUPTED; 6265 } 6266 return 0; 6267 } 6268 jbd2_journal_lock_updates(journal); 6269 err = jbd2_journal_flush(journal, 0); 6270 if (err < 0) 6271 goto out; 6272 6273 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6274 ext4_has_feature_orphan_present(sb))) { 6275 if (!ext4_orphan_file_empty(sb)) { 6276 ext4_error(sb, "Orphan file not empty on read-only fs."); 6277 err = -EFSCORRUPTED; 6278 goto out; 6279 } 6280 ext4_clear_feature_journal_needs_recovery(sb); 6281 ext4_clear_feature_orphan_present(sb); 6282 ext4_commit_super(sb); 6283 } 6284 out: 6285 jbd2_journal_unlock_updates(journal); 6286 return err; 6287 } 6288 6289 /* 6290 * If we are mounting (or read-write remounting) a filesystem whose journal 6291 * has recorded an error from a previous lifetime, move that error to the 6292 * main filesystem now. 6293 */ 6294 static int ext4_clear_journal_err(struct super_block *sb, 6295 struct ext4_super_block *es) 6296 { 6297 journal_t *journal; 6298 int j_errno; 6299 const char *errstr; 6300 6301 if (!ext4_has_feature_journal(sb)) { 6302 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6303 return -EFSCORRUPTED; 6304 } 6305 6306 journal = EXT4_SB(sb)->s_journal; 6307 6308 /* 6309 * Now check for any error status which may have been recorded in the 6310 * journal by a prior ext4_error() or ext4_abort() 6311 */ 6312 6313 j_errno = jbd2_journal_errno(journal); 6314 if (j_errno) { 6315 char nbuf[16]; 6316 6317 errstr = ext4_decode_error(sb, j_errno, nbuf); 6318 ext4_warning(sb, "Filesystem error recorded " 6319 "from previous mount: %s", errstr); 6320 6321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6323 j_errno = ext4_commit_super(sb); 6324 if (j_errno) 6325 return j_errno; 6326 ext4_warning(sb, "Marked fs in need of filesystem check."); 6327 6328 jbd2_journal_clear_err(journal); 6329 jbd2_journal_update_sb_errno(journal); 6330 } 6331 return 0; 6332 } 6333 6334 /* 6335 * Force the running and committing transactions to commit, 6336 * and wait on the commit. 6337 */ 6338 int ext4_force_commit(struct super_block *sb) 6339 { 6340 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6341 } 6342 6343 static int ext4_sync_fs(struct super_block *sb, int wait) 6344 { 6345 int ret = 0; 6346 tid_t target; 6347 bool needs_barrier = false; 6348 struct ext4_sb_info *sbi = EXT4_SB(sb); 6349 6350 if (unlikely(ext4_forced_shutdown(sb))) 6351 return -EIO; 6352 6353 trace_ext4_sync_fs(sb, wait); 6354 flush_workqueue(sbi->rsv_conversion_wq); 6355 /* 6356 * Writeback quota in non-journalled quota case - journalled quota has 6357 * no dirty dquots 6358 */ 6359 dquot_writeback_dquots(sb, -1); 6360 /* 6361 * Data writeback is possible w/o journal transaction, so barrier must 6362 * being sent at the end of the function. But we can skip it if 6363 * transaction_commit will do it for us. 6364 */ 6365 if (sbi->s_journal) { 6366 target = jbd2_get_latest_transaction(sbi->s_journal); 6367 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6368 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6369 needs_barrier = true; 6370 6371 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6372 if (wait) 6373 ret = jbd2_log_wait_commit(sbi->s_journal, 6374 target); 6375 } 6376 } else if (wait && test_opt(sb, BARRIER)) 6377 needs_barrier = true; 6378 if (needs_barrier) { 6379 int err; 6380 err = blkdev_issue_flush(sb->s_bdev); 6381 if (!ret) 6382 ret = err; 6383 } 6384 6385 return ret; 6386 } 6387 6388 /* 6389 * LVM calls this function before a (read-only) snapshot is created. This 6390 * gives us a chance to flush the journal completely and mark the fs clean. 6391 * 6392 * Note that only this function cannot bring a filesystem to be in a clean 6393 * state independently. It relies on upper layer to stop all data & metadata 6394 * modifications. 6395 */ 6396 static int ext4_freeze(struct super_block *sb) 6397 { 6398 int error = 0; 6399 journal_t *journal = EXT4_SB(sb)->s_journal; 6400 6401 if (journal) { 6402 /* Now we set up the journal barrier. */ 6403 jbd2_journal_lock_updates(journal); 6404 6405 /* 6406 * Don't clear the needs_recovery flag if we failed to 6407 * flush the journal. 6408 */ 6409 error = jbd2_journal_flush(journal, 0); 6410 if (error < 0) 6411 goto out; 6412 6413 /* Journal blocked and flushed, clear needs_recovery flag. */ 6414 ext4_clear_feature_journal_needs_recovery(sb); 6415 if (ext4_orphan_file_empty(sb)) 6416 ext4_clear_feature_orphan_present(sb); 6417 } 6418 6419 error = ext4_commit_super(sb); 6420 out: 6421 if (journal) 6422 /* we rely on upper layer to stop further updates */ 6423 jbd2_journal_unlock_updates(journal); 6424 return error; 6425 } 6426 6427 /* 6428 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6429 * flag here, even though the filesystem is not technically dirty yet. 6430 */ 6431 static int ext4_unfreeze(struct super_block *sb) 6432 { 6433 if (ext4_forced_shutdown(sb)) 6434 return 0; 6435 6436 if (EXT4_SB(sb)->s_journal) { 6437 /* Reset the needs_recovery flag before the fs is unlocked. */ 6438 ext4_set_feature_journal_needs_recovery(sb); 6439 if (ext4_has_feature_orphan_file(sb)) 6440 ext4_set_feature_orphan_present(sb); 6441 } 6442 6443 ext4_commit_super(sb); 6444 return 0; 6445 } 6446 6447 /* 6448 * Structure to save mount options for ext4_remount's benefit 6449 */ 6450 struct ext4_mount_options { 6451 unsigned long s_mount_opt; 6452 unsigned long s_mount_opt2; 6453 kuid_t s_resuid; 6454 kgid_t s_resgid; 6455 unsigned long s_commit_interval; 6456 u32 s_min_batch_time, s_max_batch_time; 6457 #ifdef CONFIG_QUOTA 6458 int s_jquota_fmt; 6459 char *s_qf_names[EXT4_MAXQUOTAS]; 6460 #endif 6461 }; 6462 6463 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6464 { 6465 struct ext4_fs_context *ctx = fc->fs_private; 6466 struct ext4_super_block *es; 6467 struct ext4_sb_info *sbi = EXT4_SB(sb); 6468 unsigned long old_sb_flags; 6469 struct ext4_mount_options old_opts; 6470 ext4_group_t g; 6471 int err = 0; 6472 int alloc_ctx; 6473 #ifdef CONFIG_QUOTA 6474 int enable_quota = 0; 6475 int i, j; 6476 char *to_free[EXT4_MAXQUOTAS]; 6477 #endif 6478 6479 6480 /* Store the original options */ 6481 old_sb_flags = sb->s_flags; 6482 old_opts.s_mount_opt = sbi->s_mount_opt; 6483 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6484 old_opts.s_resuid = sbi->s_resuid; 6485 old_opts.s_resgid = sbi->s_resgid; 6486 old_opts.s_commit_interval = sbi->s_commit_interval; 6487 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6488 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6489 #ifdef CONFIG_QUOTA 6490 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6491 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6492 if (sbi->s_qf_names[i]) { 6493 char *qf_name = get_qf_name(sb, sbi, i); 6494 6495 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6496 if (!old_opts.s_qf_names[i]) { 6497 for (j = 0; j < i; j++) 6498 kfree(old_opts.s_qf_names[j]); 6499 return -ENOMEM; 6500 } 6501 } else 6502 old_opts.s_qf_names[i] = NULL; 6503 #endif 6504 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6505 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6506 ctx->journal_ioprio = 6507 sbi->s_journal->j_task->io_context->ioprio; 6508 else 6509 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6510 6511 } 6512 6513 if ((ctx->spec & EXT4_SPEC_s_stripe) && 6514 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) { 6515 ext4_msg(sb, KERN_WARNING, 6516 "stripe (%lu) is not aligned with cluster size (%u), " 6517 "stripe is disabled", 6518 ctx->s_stripe, sbi->s_cluster_ratio); 6519 ctx->s_stripe = 0; 6520 } 6521 6522 /* 6523 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6524 * two calls to ext4_should_dioread_nolock() to return inconsistent 6525 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6526 * here s_writepages_rwsem to avoid race between writepages ops and 6527 * remount. 6528 */ 6529 alloc_ctx = ext4_writepages_down_write(sb); 6530 ext4_apply_options(fc, sb); 6531 ext4_writepages_up_write(sb, alloc_ctx); 6532 6533 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6534 test_opt(sb, JOURNAL_CHECKSUM)) { 6535 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6536 "during remount not supported; ignoring"); 6537 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6538 } 6539 6540 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6541 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6542 ext4_msg(sb, KERN_ERR, "can't mount with " 6543 "both data=journal and delalloc"); 6544 err = -EINVAL; 6545 goto restore_opts; 6546 } 6547 if (test_opt(sb, DIOREAD_NOLOCK)) { 6548 ext4_msg(sb, KERN_ERR, "can't mount with " 6549 "both data=journal and dioread_nolock"); 6550 err = -EINVAL; 6551 goto restore_opts; 6552 } 6553 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6554 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6555 ext4_msg(sb, KERN_ERR, "can't mount with " 6556 "journal_async_commit in data=ordered mode"); 6557 err = -EINVAL; 6558 goto restore_opts; 6559 } 6560 } 6561 6562 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6563 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6564 err = -EINVAL; 6565 goto restore_opts; 6566 } 6567 6568 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) && 6569 !test_opt(sb, DELALLOC)) { 6570 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount"); 6571 err = -EINVAL; 6572 goto restore_opts; 6573 } 6574 6575 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6576 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6577 6578 es = sbi->s_es; 6579 6580 if (sbi->s_journal) { 6581 ext4_init_journal_params(sb, sbi->s_journal); 6582 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6583 } 6584 6585 /* Flush outstanding errors before changing fs state */ 6586 flush_work(&sbi->s_sb_upd_work); 6587 6588 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6589 if (ext4_forced_shutdown(sb)) { 6590 err = -EROFS; 6591 goto restore_opts; 6592 } 6593 6594 if (fc->sb_flags & SB_RDONLY) { 6595 err = sync_filesystem(sb); 6596 if (err < 0) 6597 goto restore_opts; 6598 err = dquot_suspend(sb, -1); 6599 if (err < 0) 6600 goto restore_opts; 6601 6602 /* 6603 * First of all, the unconditional stuff we have to do 6604 * to disable replay of the journal when we next remount 6605 */ 6606 sb->s_flags |= SB_RDONLY; 6607 6608 /* 6609 * OK, test if we are remounting a valid rw partition 6610 * readonly, and if so set the rdonly flag and then 6611 * mark the partition as valid again. 6612 */ 6613 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6614 (sbi->s_mount_state & EXT4_VALID_FS)) 6615 es->s_state = cpu_to_le16(sbi->s_mount_state); 6616 6617 if (sbi->s_journal) { 6618 /* 6619 * We let remount-ro finish even if marking fs 6620 * as clean failed... 6621 */ 6622 ext4_mark_recovery_complete(sb, es); 6623 } 6624 } else { 6625 /* Make sure we can mount this feature set readwrite */ 6626 if (ext4_has_feature_readonly(sb) || 6627 !ext4_feature_set_ok(sb, 0)) { 6628 err = -EROFS; 6629 goto restore_opts; 6630 } 6631 /* 6632 * Make sure the group descriptor checksums 6633 * are sane. If they aren't, refuse to remount r/w. 6634 */ 6635 for (g = 0; g < sbi->s_groups_count; g++) { 6636 struct ext4_group_desc *gdp = 6637 ext4_get_group_desc(sb, g, NULL); 6638 6639 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6640 ext4_msg(sb, KERN_ERR, 6641 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6642 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6643 le16_to_cpu(gdp->bg_checksum)); 6644 err = -EFSBADCRC; 6645 goto restore_opts; 6646 } 6647 } 6648 6649 /* 6650 * If we have an unprocessed orphan list hanging 6651 * around from a previously readonly bdev mount, 6652 * require a full umount/remount for now. 6653 */ 6654 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6655 ext4_msg(sb, KERN_WARNING, "Couldn't " 6656 "remount RDWR because of unprocessed " 6657 "orphan inode list. Please " 6658 "umount/remount instead"); 6659 err = -EINVAL; 6660 goto restore_opts; 6661 } 6662 6663 /* 6664 * Mounting a RDONLY partition read-write, so reread 6665 * and store the current valid flag. (It may have 6666 * been changed by e2fsck since we originally mounted 6667 * the partition.) 6668 */ 6669 if (sbi->s_journal) { 6670 err = ext4_clear_journal_err(sb, es); 6671 if (err) 6672 goto restore_opts; 6673 } 6674 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6675 ~EXT4_FC_REPLAY); 6676 6677 err = ext4_setup_super(sb, es, 0); 6678 if (err) 6679 goto restore_opts; 6680 6681 sb->s_flags &= ~SB_RDONLY; 6682 if (ext4_has_feature_mmp(sb)) { 6683 err = ext4_multi_mount_protect(sb, 6684 le64_to_cpu(es->s_mmp_block)); 6685 if (err) 6686 goto restore_opts; 6687 } 6688 #ifdef CONFIG_QUOTA 6689 enable_quota = 1; 6690 #endif 6691 } 6692 } 6693 6694 /* 6695 * Handle creation of system zone data early because it can fail. 6696 * Releasing of existing data is done when we are sure remount will 6697 * succeed. 6698 */ 6699 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6700 err = ext4_setup_system_zone(sb); 6701 if (err) 6702 goto restore_opts; 6703 } 6704 6705 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6706 err = ext4_commit_super(sb); 6707 if (err) 6708 goto restore_opts; 6709 } 6710 6711 #ifdef CONFIG_QUOTA 6712 if (enable_quota) { 6713 if (sb_any_quota_suspended(sb)) 6714 dquot_resume(sb, -1); 6715 else if (ext4_has_feature_quota(sb)) { 6716 err = ext4_enable_quotas(sb); 6717 if (err) 6718 goto restore_opts; 6719 } 6720 } 6721 /* Release old quota file names */ 6722 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6723 kfree(old_opts.s_qf_names[i]); 6724 #endif 6725 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6726 ext4_release_system_zone(sb); 6727 6728 /* 6729 * Reinitialize lazy itable initialization thread based on 6730 * current settings 6731 */ 6732 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6733 ext4_unregister_li_request(sb); 6734 else { 6735 ext4_group_t first_not_zeroed; 6736 first_not_zeroed = ext4_has_uninit_itable(sb); 6737 ext4_register_li_request(sb, first_not_zeroed); 6738 } 6739 6740 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6741 ext4_stop_mmpd(sbi); 6742 6743 /* 6744 * Handle aborting the filesystem as the last thing during remount to 6745 * avoid obsure errors during remount when some option changes fail to 6746 * apply due to shutdown filesystem. 6747 */ 6748 if (test_opt2(sb, ABORT)) 6749 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6750 6751 return 0; 6752 6753 restore_opts: 6754 /* 6755 * If there was a failing r/w to ro transition, we may need to 6756 * re-enable quota 6757 */ 6758 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6759 sb_any_quota_suspended(sb)) 6760 dquot_resume(sb, -1); 6761 6762 alloc_ctx = ext4_writepages_down_write(sb); 6763 sb->s_flags = old_sb_flags; 6764 sbi->s_mount_opt = old_opts.s_mount_opt; 6765 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6766 sbi->s_resuid = old_opts.s_resuid; 6767 sbi->s_resgid = old_opts.s_resgid; 6768 sbi->s_commit_interval = old_opts.s_commit_interval; 6769 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6770 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6771 ext4_writepages_up_write(sb, alloc_ctx); 6772 6773 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6774 ext4_release_system_zone(sb); 6775 #ifdef CONFIG_QUOTA 6776 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6777 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6778 to_free[i] = get_qf_name(sb, sbi, i); 6779 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6780 } 6781 synchronize_rcu(); 6782 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6783 kfree(to_free[i]); 6784 #endif 6785 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6786 ext4_stop_mmpd(sbi); 6787 return err; 6788 } 6789 6790 static int ext4_reconfigure(struct fs_context *fc) 6791 { 6792 struct super_block *sb = fc->root->d_sb; 6793 int ret; 6794 6795 fc->s_fs_info = EXT4_SB(sb); 6796 6797 ret = ext4_check_opt_consistency(fc, sb); 6798 if (ret < 0) 6799 return ret; 6800 6801 ret = __ext4_remount(fc, sb); 6802 if (ret < 0) 6803 return ret; 6804 6805 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6806 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6807 ext4_quota_mode(sb)); 6808 6809 return 0; 6810 } 6811 6812 #ifdef CONFIG_QUOTA 6813 static int ext4_statfs_project(struct super_block *sb, 6814 kprojid_t projid, struct kstatfs *buf) 6815 { 6816 struct kqid qid; 6817 struct dquot *dquot; 6818 u64 limit; 6819 u64 curblock; 6820 6821 qid = make_kqid_projid(projid); 6822 dquot = dqget(sb, qid); 6823 if (IS_ERR(dquot)) 6824 return PTR_ERR(dquot); 6825 spin_lock(&dquot->dq_dqb_lock); 6826 6827 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6828 dquot->dq_dqb.dqb_bhardlimit); 6829 limit >>= sb->s_blocksize_bits; 6830 6831 if (limit && buf->f_blocks > limit) { 6832 curblock = (dquot->dq_dqb.dqb_curspace + 6833 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6834 buf->f_blocks = limit; 6835 buf->f_bfree = buf->f_bavail = 6836 (buf->f_blocks > curblock) ? 6837 (buf->f_blocks - curblock) : 0; 6838 } 6839 6840 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6841 dquot->dq_dqb.dqb_ihardlimit); 6842 if (limit && buf->f_files > limit) { 6843 buf->f_files = limit; 6844 buf->f_ffree = 6845 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6846 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6847 } 6848 6849 spin_unlock(&dquot->dq_dqb_lock); 6850 dqput(dquot); 6851 return 0; 6852 } 6853 #endif 6854 6855 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6856 { 6857 struct super_block *sb = dentry->d_sb; 6858 struct ext4_sb_info *sbi = EXT4_SB(sb); 6859 struct ext4_super_block *es = sbi->s_es; 6860 ext4_fsblk_t overhead = 0, resv_blocks; 6861 s64 bfree; 6862 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6863 6864 if (!test_opt(sb, MINIX_DF)) 6865 overhead = sbi->s_overhead; 6866 6867 buf->f_type = EXT4_SUPER_MAGIC; 6868 buf->f_bsize = sb->s_blocksize; 6869 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6870 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6871 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6872 /* prevent underflow in case that few free space is available */ 6873 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6874 buf->f_bavail = buf->f_bfree - 6875 (ext4_r_blocks_count(es) + resv_blocks); 6876 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6877 buf->f_bavail = 0; 6878 buf->f_files = le32_to_cpu(es->s_inodes_count); 6879 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6880 buf->f_namelen = EXT4_NAME_LEN; 6881 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6882 6883 #ifdef CONFIG_QUOTA 6884 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6885 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6886 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6887 #endif 6888 return 0; 6889 } 6890 6891 6892 #ifdef CONFIG_QUOTA 6893 6894 /* 6895 * Helper functions so that transaction is started before we acquire dqio_sem 6896 * to keep correct lock ordering of transaction > dqio_sem 6897 */ 6898 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6899 { 6900 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6901 } 6902 6903 static int ext4_write_dquot(struct dquot *dquot) 6904 { 6905 int ret, err; 6906 handle_t *handle; 6907 struct inode *inode; 6908 6909 inode = dquot_to_inode(dquot); 6910 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6911 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6912 if (IS_ERR(handle)) 6913 return PTR_ERR(handle); 6914 ret = dquot_commit(dquot); 6915 if (ret < 0) 6916 ext4_error_err(dquot->dq_sb, -ret, 6917 "Failed to commit dquot type %d", 6918 dquot->dq_id.type); 6919 err = ext4_journal_stop(handle); 6920 if (!ret) 6921 ret = err; 6922 return ret; 6923 } 6924 6925 static int ext4_acquire_dquot(struct dquot *dquot) 6926 { 6927 int ret, err; 6928 handle_t *handle; 6929 6930 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6931 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6932 if (IS_ERR(handle)) 6933 return PTR_ERR(handle); 6934 ret = dquot_acquire(dquot); 6935 if (ret < 0) 6936 ext4_error_err(dquot->dq_sb, -ret, 6937 "Failed to acquire dquot type %d", 6938 dquot->dq_id.type); 6939 err = ext4_journal_stop(handle); 6940 if (!ret) 6941 ret = err; 6942 return ret; 6943 } 6944 6945 static int ext4_release_dquot(struct dquot *dquot) 6946 { 6947 int ret, err; 6948 handle_t *handle; 6949 6950 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6951 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6952 if (IS_ERR(handle)) { 6953 /* Release dquot anyway to avoid endless cycle in dqput() */ 6954 dquot_release(dquot); 6955 return PTR_ERR(handle); 6956 } 6957 ret = dquot_release(dquot); 6958 if (ret < 0) 6959 ext4_error_err(dquot->dq_sb, -ret, 6960 "Failed to release dquot type %d", 6961 dquot->dq_id.type); 6962 err = ext4_journal_stop(handle); 6963 if (!ret) 6964 ret = err; 6965 return ret; 6966 } 6967 6968 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6969 { 6970 struct super_block *sb = dquot->dq_sb; 6971 6972 if (ext4_is_quota_journalled(sb)) { 6973 dquot_mark_dquot_dirty(dquot); 6974 return ext4_write_dquot(dquot); 6975 } else { 6976 return dquot_mark_dquot_dirty(dquot); 6977 } 6978 } 6979 6980 static int ext4_write_info(struct super_block *sb, int type) 6981 { 6982 int ret, err; 6983 handle_t *handle; 6984 6985 /* Data block + inode block */ 6986 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6987 if (IS_ERR(handle)) 6988 return PTR_ERR(handle); 6989 ret = dquot_commit_info(sb, type); 6990 err = ext4_journal_stop(handle); 6991 if (!ret) 6992 ret = err; 6993 return ret; 6994 } 6995 6996 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6997 { 6998 struct ext4_inode_info *ei = EXT4_I(inode); 6999 7000 /* The first argument of lockdep_set_subclass has to be 7001 * *exactly* the same as the argument to init_rwsem() --- in 7002 * this case, in init_once() --- or lockdep gets unhappy 7003 * because the name of the lock is set using the 7004 * stringification of the argument to init_rwsem(). 7005 */ 7006 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 7007 lockdep_set_subclass(&ei->i_data_sem, subclass); 7008 } 7009 7010 /* 7011 * Standard function to be called on quota_on 7012 */ 7013 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 7014 const struct path *path) 7015 { 7016 int err; 7017 7018 if (!test_opt(sb, QUOTA)) 7019 return -EINVAL; 7020 7021 /* Quotafile not on the same filesystem? */ 7022 if (path->dentry->d_sb != sb) 7023 return -EXDEV; 7024 7025 /* Quota already enabled for this file? */ 7026 if (IS_NOQUOTA(d_inode(path->dentry))) 7027 return -EBUSY; 7028 7029 /* Journaling quota? */ 7030 if (EXT4_SB(sb)->s_qf_names[type]) { 7031 /* Quotafile not in fs root? */ 7032 if (path->dentry->d_parent != sb->s_root) 7033 ext4_msg(sb, KERN_WARNING, 7034 "Quota file not on filesystem root. " 7035 "Journaled quota will not work"); 7036 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 7037 } else { 7038 /* 7039 * Clear the flag just in case mount options changed since 7040 * last time. 7041 */ 7042 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 7043 } 7044 7045 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 7046 err = dquot_quota_on(sb, type, format_id, path); 7047 if (!err) { 7048 struct inode *inode = d_inode(path->dentry); 7049 handle_t *handle; 7050 7051 /* 7052 * Set inode flags to prevent userspace from messing with quota 7053 * files. If this fails, we return success anyway since quotas 7054 * are already enabled and this is not a hard failure. 7055 */ 7056 inode_lock(inode); 7057 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7058 if (IS_ERR(handle)) 7059 goto unlock_inode; 7060 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7061 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7062 S_NOATIME | S_IMMUTABLE); 7063 err = ext4_mark_inode_dirty(handle, inode); 7064 ext4_journal_stop(handle); 7065 unlock_inode: 7066 inode_unlock(inode); 7067 if (err) 7068 dquot_quota_off(sb, type); 7069 } 7070 if (err) 7071 lockdep_set_quota_inode(path->dentry->d_inode, 7072 I_DATA_SEM_NORMAL); 7073 return err; 7074 } 7075 7076 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7077 { 7078 switch (type) { 7079 case USRQUOTA: 7080 return qf_inum == EXT4_USR_QUOTA_INO; 7081 case GRPQUOTA: 7082 return qf_inum == EXT4_GRP_QUOTA_INO; 7083 case PRJQUOTA: 7084 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7085 default: 7086 BUG(); 7087 } 7088 } 7089 7090 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7091 unsigned int flags) 7092 { 7093 int err; 7094 struct inode *qf_inode; 7095 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7096 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7097 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7098 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7099 }; 7100 7101 BUG_ON(!ext4_has_feature_quota(sb)); 7102 7103 if (!qf_inums[type]) 7104 return -EPERM; 7105 7106 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7107 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7108 qf_inums[type], type); 7109 return -EUCLEAN; 7110 } 7111 7112 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7113 if (IS_ERR(qf_inode)) { 7114 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7115 qf_inums[type], type); 7116 return PTR_ERR(qf_inode); 7117 } 7118 7119 /* Don't account quota for quota files to avoid recursion */ 7120 qf_inode->i_flags |= S_NOQUOTA; 7121 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7122 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7123 if (err) 7124 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7125 iput(qf_inode); 7126 7127 return err; 7128 } 7129 7130 /* Enable usage tracking for all quota types. */ 7131 int ext4_enable_quotas(struct super_block *sb) 7132 { 7133 int type, err = 0; 7134 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7135 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7136 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7137 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7138 }; 7139 bool quota_mopt[EXT4_MAXQUOTAS] = { 7140 test_opt(sb, USRQUOTA), 7141 test_opt(sb, GRPQUOTA), 7142 test_opt(sb, PRJQUOTA), 7143 }; 7144 7145 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7146 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7147 if (qf_inums[type]) { 7148 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7149 DQUOT_USAGE_ENABLED | 7150 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7151 if (err) { 7152 ext4_warning(sb, 7153 "Failed to enable quota tracking " 7154 "(type=%d, err=%d, ino=%lu). " 7155 "Please run e2fsck to fix.", type, 7156 err, qf_inums[type]); 7157 7158 ext4_quotas_off(sb, type); 7159 return err; 7160 } 7161 } 7162 } 7163 return 0; 7164 } 7165 7166 static int ext4_quota_off(struct super_block *sb, int type) 7167 { 7168 struct inode *inode = sb_dqopt(sb)->files[type]; 7169 handle_t *handle; 7170 int err; 7171 7172 /* Force all delayed allocation blocks to be allocated. 7173 * Caller already holds s_umount sem */ 7174 if (test_opt(sb, DELALLOC)) 7175 sync_filesystem(sb); 7176 7177 if (!inode || !igrab(inode)) 7178 goto out; 7179 7180 err = dquot_quota_off(sb, type); 7181 if (err || ext4_has_feature_quota(sb)) 7182 goto out_put; 7183 /* 7184 * When the filesystem was remounted read-only first, we cannot cleanup 7185 * inode flags here. Bad luck but people should be using QUOTA feature 7186 * these days anyway. 7187 */ 7188 if (sb_rdonly(sb)) 7189 goto out_put; 7190 7191 inode_lock(inode); 7192 /* 7193 * Update modification times of quota files when userspace can 7194 * start looking at them. If we fail, we return success anyway since 7195 * this is not a hard failure and quotas are already disabled. 7196 */ 7197 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7198 if (IS_ERR(handle)) { 7199 err = PTR_ERR(handle); 7200 goto out_unlock; 7201 } 7202 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7203 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7204 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7205 err = ext4_mark_inode_dirty(handle, inode); 7206 ext4_journal_stop(handle); 7207 out_unlock: 7208 inode_unlock(inode); 7209 out_put: 7210 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7211 iput(inode); 7212 return err; 7213 out: 7214 return dquot_quota_off(sb, type); 7215 } 7216 7217 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7218 * acquiring the locks... As quota files are never truncated and quota code 7219 * itself serializes the operations (and no one else should touch the files) 7220 * we don't have to be afraid of races */ 7221 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7222 size_t len, loff_t off) 7223 { 7224 struct inode *inode = sb_dqopt(sb)->files[type]; 7225 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7226 int offset = off & (sb->s_blocksize - 1); 7227 int tocopy; 7228 size_t toread; 7229 struct buffer_head *bh; 7230 loff_t i_size = i_size_read(inode); 7231 7232 if (off > i_size) 7233 return 0; 7234 if (off+len > i_size) 7235 len = i_size-off; 7236 toread = len; 7237 while (toread > 0) { 7238 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7239 bh = ext4_bread(NULL, inode, blk, 0); 7240 if (IS_ERR(bh)) 7241 return PTR_ERR(bh); 7242 if (!bh) /* A hole? */ 7243 memset(data, 0, tocopy); 7244 else 7245 memcpy(data, bh->b_data+offset, tocopy); 7246 brelse(bh); 7247 offset = 0; 7248 toread -= tocopy; 7249 data += tocopy; 7250 blk++; 7251 } 7252 return len; 7253 } 7254 7255 /* Write to quotafile (we know the transaction is already started and has 7256 * enough credits) */ 7257 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7258 const char *data, size_t len, loff_t off) 7259 { 7260 struct inode *inode = sb_dqopt(sb)->files[type]; 7261 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7262 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7263 int retries = 0; 7264 struct buffer_head *bh; 7265 handle_t *handle = journal_current_handle(); 7266 7267 if (!handle) { 7268 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7269 " cancelled because transaction is not started", 7270 (unsigned long long)off, (unsigned long long)len); 7271 return -EIO; 7272 } 7273 /* 7274 * Since we account only one data block in transaction credits, 7275 * then it is impossible to cross a block boundary. 7276 */ 7277 if (sb->s_blocksize - offset < len) { 7278 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7279 " cancelled because not block aligned", 7280 (unsigned long long)off, (unsigned long long)len); 7281 return -EIO; 7282 } 7283 7284 do { 7285 bh = ext4_bread(handle, inode, blk, 7286 EXT4_GET_BLOCKS_CREATE | 7287 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7288 } while (PTR_ERR(bh) == -ENOSPC && 7289 ext4_should_retry_alloc(inode->i_sb, &retries)); 7290 if (IS_ERR(bh)) 7291 return PTR_ERR(bh); 7292 if (!bh) 7293 goto out; 7294 BUFFER_TRACE(bh, "get write access"); 7295 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7296 if (err) { 7297 brelse(bh); 7298 return err; 7299 } 7300 lock_buffer(bh); 7301 memcpy(bh->b_data+offset, data, len); 7302 flush_dcache_page(bh->b_page); 7303 unlock_buffer(bh); 7304 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7305 brelse(bh); 7306 out: 7307 if (inode->i_size < off + len) { 7308 i_size_write(inode, off + len); 7309 EXT4_I(inode)->i_disksize = inode->i_size; 7310 err2 = ext4_mark_inode_dirty(handle, inode); 7311 if (unlikely(err2 && !err)) 7312 err = err2; 7313 } 7314 return err ? err : len; 7315 } 7316 #endif 7317 7318 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7319 static inline void register_as_ext2(void) 7320 { 7321 int err = register_filesystem(&ext2_fs_type); 7322 if (err) 7323 printk(KERN_WARNING 7324 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7325 } 7326 7327 static inline void unregister_as_ext2(void) 7328 { 7329 unregister_filesystem(&ext2_fs_type); 7330 } 7331 7332 static inline int ext2_feature_set_ok(struct super_block *sb) 7333 { 7334 if (ext4_has_unknown_ext2_incompat_features(sb)) 7335 return 0; 7336 if (sb_rdonly(sb)) 7337 return 1; 7338 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7339 return 0; 7340 return 1; 7341 } 7342 #else 7343 static inline void register_as_ext2(void) { } 7344 static inline void unregister_as_ext2(void) { } 7345 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7346 #endif 7347 7348 static inline void register_as_ext3(void) 7349 { 7350 int err = register_filesystem(&ext3_fs_type); 7351 if (err) 7352 printk(KERN_WARNING 7353 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7354 } 7355 7356 static inline void unregister_as_ext3(void) 7357 { 7358 unregister_filesystem(&ext3_fs_type); 7359 } 7360 7361 static inline int ext3_feature_set_ok(struct super_block *sb) 7362 { 7363 if (ext4_has_unknown_ext3_incompat_features(sb)) 7364 return 0; 7365 if (!ext4_has_feature_journal(sb)) 7366 return 0; 7367 if (sb_rdonly(sb)) 7368 return 1; 7369 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7370 return 0; 7371 return 1; 7372 } 7373 7374 static void ext4_kill_sb(struct super_block *sb) 7375 { 7376 struct ext4_sb_info *sbi = EXT4_SB(sb); 7377 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7378 7379 kill_block_super(sb); 7380 7381 if (bdev_file) 7382 bdev_fput(bdev_file); 7383 } 7384 7385 static struct file_system_type ext4_fs_type = { 7386 .owner = THIS_MODULE, 7387 .name = "ext4", 7388 .init_fs_context = ext4_init_fs_context, 7389 .parameters = ext4_param_specs, 7390 .kill_sb = ext4_kill_sb, 7391 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME, 7392 }; 7393 MODULE_ALIAS_FS("ext4"); 7394 7395 /* Shared across all ext4 file systems */ 7396 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7397 7398 static int __init ext4_init_fs(void) 7399 { 7400 int i, err; 7401 7402 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7403 ext4_li_info = NULL; 7404 7405 /* Build-time check for flags consistency */ 7406 ext4_check_flag_values(); 7407 7408 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7409 init_waitqueue_head(&ext4__ioend_wq[i]); 7410 7411 err = ext4_init_es(); 7412 if (err) 7413 return err; 7414 7415 err = ext4_init_pending(); 7416 if (err) 7417 goto out7; 7418 7419 err = ext4_init_post_read_processing(); 7420 if (err) 7421 goto out6; 7422 7423 err = ext4_init_pageio(); 7424 if (err) 7425 goto out5; 7426 7427 err = ext4_init_system_zone(); 7428 if (err) 7429 goto out4; 7430 7431 err = ext4_init_sysfs(); 7432 if (err) 7433 goto out3; 7434 7435 err = ext4_init_mballoc(); 7436 if (err) 7437 goto out2; 7438 err = init_inodecache(); 7439 if (err) 7440 goto out1; 7441 7442 err = ext4_fc_init_dentry_cache(); 7443 if (err) 7444 goto out05; 7445 7446 register_as_ext3(); 7447 register_as_ext2(); 7448 err = register_filesystem(&ext4_fs_type); 7449 if (err) 7450 goto out; 7451 7452 return 0; 7453 out: 7454 unregister_as_ext2(); 7455 unregister_as_ext3(); 7456 ext4_fc_destroy_dentry_cache(); 7457 out05: 7458 destroy_inodecache(); 7459 out1: 7460 ext4_exit_mballoc(); 7461 out2: 7462 ext4_exit_sysfs(); 7463 out3: 7464 ext4_exit_system_zone(); 7465 out4: 7466 ext4_exit_pageio(); 7467 out5: 7468 ext4_exit_post_read_processing(); 7469 out6: 7470 ext4_exit_pending(); 7471 out7: 7472 ext4_exit_es(); 7473 7474 return err; 7475 } 7476 7477 static void __exit ext4_exit_fs(void) 7478 { 7479 ext4_destroy_lazyinit_thread(); 7480 unregister_as_ext2(); 7481 unregister_as_ext3(); 7482 unregister_filesystem(&ext4_fs_type); 7483 ext4_fc_destroy_dentry_cache(); 7484 destroy_inodecache(); 7485 ext4_exit_mballoc(); 7486 ext4_exit_sysfs(); 7487 ext4_exit_system_zone(); 7488 ext4_exit_pageio(); 7489 ext4_exit_post_read_processing(); 7490 ext4_exit_es(); 7491 ext4_exit_pending(); 7492 } 7493 7494 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7495 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7496 MODULE_LICENSE("GPL"); 7497 MODULE_SOFTDEP("pre: crc32c"); 7498 module_init(ext4_init_fs) 7499 module_exit(ext4_exit_fs) 7500