1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116 { 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122 } 123 124 static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126 { 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134 } 135 136 int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138 { 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb, 147 struct ext4_super_block *es) 148 { 149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 150 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 151 return; 152 153 es->s_checksum = ext4_superblock_csum(sb, es); 154 } 155 156 void *ext4_kvmalloc(size_t size, gfp_t flags) 157 { 158 void *ret; 159 160 ret = kmalloc(size, flags); 161 if (!ret) 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 return ret; 164 } 165 166 void *ext4_kvzalloc(size_t size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = kzalloc(size, flags); 171 if (!ret) 172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 173 return ret; 174 } 175 176 void ext4_kvfree(void *ptr) 177 { 178 if (is_vmalloc_addr(ptr)) 179 vfree(ptr); 180 else 181 kfree(ptr); 182 183 } 184 185 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 186 struct ext4_group_desc *bg) 187 { 188 return le32_to_cpu(bg->bg_block_bitmap_lo) | 189 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 190 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 191 } 192 193 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 194 struct ext4_group_desc *bg) 195 { 196 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 197 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 198 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 199 } 200 201 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_inode_table_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 207 } 208 209 __u32 ext4_free_group_clusters(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 215 } 216 217 __u32 ext4_free_inodes_count(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 223 } 224 225 __u32 ext4_used_dirs_count(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_itable_unused_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_itable_unused_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 239 } 240 241 void ext4_block_bitmap_set(struct super_block *sb, 242 struct ext4_group_desc *bg, ext4_fsblk_t blk) 243 { 244 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 245 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 246 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 247 } 248 249 void ext4_inode_bitmap_set(struct super_block *sb, 250 struct ext4_group_desc *bg, ext4_fsblk_t blk) 251 { 252 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 253 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 254 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 255 } 256 257 void ext4_inode_table_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_free_group_clusters_set(struct super_block *sb, 266 struct ext4_group_desc *bg, __u32 count) 267 { 268 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 271 } 272 273 void ext4_free_inodes_set(struct super_block *sb, 274 struct ext4_group_desc *bg, __u32 count) 275 { 276 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 279 } 280 281 void ext4_used_dirs_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_itable_unused_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 295 } 296 297 298 /* Just increment the non-pointer handle value */ 299 static handle_t *ext4_get_nojournal(void) 300 { 301 handle_t *handle = current->journal_info; 302 unsigned long ref_cnt = (unsigned long)handle; 303 304 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 305 306 ref_cnt++; 307 handle = (handle_t *)ref_cnt; 308 309 current->journal_info = handle; 310 return handle; 311 } 312 313 314 /* Decrement the non-pointer handle value */ 315 static void ext4_put_nojournal(handle_t *handle) 316 { 317 unsigned long ref_cnt = (unsigned long)handle; 318 319 BUG_ON(ref_cnt == 0); 320 321 ref_cnt--; 322 handle = (handle_t *)ref_cnt; 323 324 current->journal_info = handle; 325 } 326 327 /* 328 * Wrappers for jbd2_journal_start/end. 329 */ 330 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 331 { 332 journal_t *journal; 333 334 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 335 if (sb->s_flags & MS_RDONLY) 336 return ERR_PTR(-EROFS); 337 338 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE); 339 journal = EXT4_SB(sb)->s_journal; 340 if (!journal) 341 return ext4_get_nojournal(); 342 /* 343 * Special case here: if the journal has aborted behind our 344 * backs (eg. EIO in the commit thread), then we still need to 345 * take the FS itself readonly cleanly. 346 */ 347 if (is_journal_aborted(journal)) { 348 ext4_abort(sb, "Detected aborted journal"); 349 return ERR_PTR(-EROFS); 350 } 351 return jbd2_journal_start(journal, nblocks); 352 } 353 354 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 355 { 356 struct super_block *sb; 357 int err; 358 int rc; 359 360 if (!ext4_handle_valid(handle)) { 361 ext4_put_nojournal(handle); 362 return 0; 363 } 364 sb = handle->h_transaction->t_journal->j_private; 365 err = handle->h_err; 366 rc = jbd2_journal_stop(handle); 367 368 if (!err) 369 err = rc; 370 if (err) 371 __ext4_std_error(sb, where, line, err); 372 return err; 373 } 374 375 void ext4_journal_abort_handle(const char *caller, unsigned int line, 376 const char *err_fn, struct buffer_head *bh, 377 handle_t *handle, int err) 378 { 379 char nbuf[16]; 380 const char *errstr = ext4_decode_error(NULL, err, nbuf); 381 382 BUG_ON(!ext4_handle_valid(handle)); 383 384 if (bh) 385 BUFFER_TRACE(bh, "abort"); 386 387 if (!handle->h_err) 388 handle->h_err = err; 389 390 if (is_handle_aborted(handle)) 391 return; 392 393 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 394 caller, line, errstr, err_fn); 395 396 jbd2_journal_abort_handle(handle); 397 } 398 399 static void __save_error_info(struct super_block *sb, const char *func, 400 unsigned int line) 401 { 402 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 403 404 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 405 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 406 es->s_last_error_time = cpu_to_le32(get_seconds()); 407 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 408 es->s_last_error_line = cpu_to_le32(line); 409 if (!es->s_first_error_time) { 410 es->s_first_error_time = es->s_last_error_time; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 } 417 /* 418 * Start the daily error reporting function if it hasn't been 419 * started already 420 */ 421 if (!es->s_error_count) 422 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 423 le32_add_cpu(&es->s_error_count, 1); 424 } 425 426 static void save_error_info(struct super_block *sb, const char *func, 427 unsigned int line) 428 { 429 __save_error_info(sb, func, line); 430 ext4_commit_super(sb, 1); 431 } 432 433 /* 434 * The del_gendisk() function uninitializes the disk-specific data 435 * structures, including the bdi structure, without telling anyone 436 * else. Once this happens, any attempt to call mark_buffer_dirty() 437 * (for example, by ext4_commit_super), will cause a kernel OOPS. 438 * This is a kludge to prevent these oops until we can put in a proper 439 * hook in del_gendisk() to inform the VFS and file system layers. 440 */ 441 static int block_device_ejected(struct super_block *sb) 442 { 443 struct inode *bd_inode = sb->s_bdev->bd_inode; 444 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 445 446 return bdi->dev == NULL; 447 } 448 449 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 450 { 451 struct super_block *sb = journal->j_private; 452 struct ext4_sb_info *sbi = EXT4_SB(sb); 453 int error = is_journal_aborted(journal); 454 struct ext4_journal_cb_entry *jce, *tmp; 455 456 spin_lock(&sbi->s_md_lock); 457 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 458 list_del_init(&jce->jce_list); 459 spin_unlock(&sbi->s_md_lock); 460 jce->jce_func(sb, jce, error); 461 spin_lock(&sbi->s_md_lock); 462 } 463 spin_unlock(&sbi->s_md_lock); 464 } 465 466 /* Deal with the reporting of failure conditions on a filesystem such as 467 * inconsistencies detected or read IO failures. 468 * 469 * On ext2, we can store the error state of the filesystem in the 470 * superblock. That is not possible on ext4, because we may have other 471 * write ordering constraints on the superblock which prevent us from 472 * writing it out straight away; and given that the journal is about to 473 * be aborted, we can't rely on the current, or future, transactions to 474 * write out the superblock safely. 475 * 476 * We'll just use the jbd2_journal_abort() error code to record an error in 477 * the journal instead. On recovery, the journal will complain about 478 * that error until we've noted it down and cleared it. 479 */ 480 481 static void ext4_handle_error(struct super_block *sb) 482 { 483 if (sb->s_flags & MS_RDONLY) 484 return; 485 486 if (!test_opt(sb, ERRORS_CONT)) { 487 journal_t *journal = EXT4_SB(sb)->s_journal; 488 489 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 490 if (journal) 491 jbd2_journal_abort(journal, -EIO); 492 } 493 if (test_opt(sb, ERRORS_RO)) { 494 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 495 sb->s_flags |= MS_RDONLY; 496 } 497 if (test_opt(sb, ERRORS_PANIC)) 498 panic("EXT4-fs (device %s): panic forced after error\n", 499 sb->s_id); 500 } 501 502 void __ext4_error(struct super_block *sb, const char *function, 503 unsigned int line, const char *fmt, ...) 504 { 505 struct va_format vaf; 506 va_list args; 507 508 va_start(args, fmt); 509 vaf.fmt = fmt; 510 vaf.va = &args; 511 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 512 sb->s_id, function, line, current->comm, &vaf); 513 va_end(args); 514 save_error_info(sb, function, line); 515 516 ext4_handle_error(sb); 517 } 518 519 void ext4_error_inode(struct inode *inode, const char *function, 520 unsigned int line, ext4_fsblk_t block, 521 const char *fmt, ...) 522 { 523 va_list args; 524 struct va_format vaf; 525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 526 527 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 528 es->s_last_error_block = cpu_to_le64(block); 529 save_error_info(inode->i_sb, function, line); 530 va_start(args, fmt); 531 vaf.fmt = fmt; 532 vaf.va = &args; 533 if (block) 534 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 535 "inode #%lu: block %llu: comm %s: %pV\n", 536 inode->i_sb->s_id, function, line, inode->i_ino, 537 block, current->comm, &vaf); 538 else 539 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 540 "inode #%lu: comm %s: %pV\n", 541 inode->i_sb->s_id, function, line, inode->i_ino, 542 current->comm, &vaf); 543 va_end(args); 544 545 ext4_handle_error(inode->i_sb); 546 } 547 548 void ext4_error_file(struct file *file, const char *function, 549 unsigned int line, ext4_fsblk_t block, 550 const char *fmt, ...) 551 { 552 va_list args; 553 struct va_format vaf; 554 struct ext4_super_block *es; 555 struct inode *inode = file->f_dentry->d_inode; 556 char pathname[80], *path; 557 558 es = EXT4_SB(inode->i_sb)->s_es; 559 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 560 save_error_info(inode->i_sb, function, line); 561 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 562 if (IS_ERR(path)) 563 path = "(unknown)"; 564 va_start(args, fmt); 565 vaf.fmt = fmt; 566 vaf.va = &args; 567 if (block) 568 printk(KERN_CRIT 569 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 570 "block %llu: comm %s: path %s: %pV\n", 571 inode->i_sb->s_id, function, line, inode->i_ino, 572 block, current->comm, path, &vaf); 573 else 574 printk(KERN_CRIT 575 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 576 "comm %s: path %s: %pV\n", 577 inode->i_sb->s_id, function, line, inode->i_ino, 578 current->comm, path, &vaf); 579 va_end(args); 580 581 ext4_handle_error(inode->i_sb); 582 } 583 584 static const char *ext4_decode_error(struct super_block *sb, int errno, 585 char nbuf[16]) 586 { 587 char *errstr = NULL; 588 589 switch (errno) { 590 case -EIO: 591 errstr = "IO failure"; 592 break; 593 case -ENOMEM: 594 errstr = "Out of memory"; 595 break; 596 case -EROFS: 597 if (!sb || (EXT4_SB(sb)->s_journal && 598 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 599 errstr = "Journal has aborted"; 600 else 601 errstr = "Readonly filesystem"; 602 break; 603 default: 604 /* If the caller passed in an extra buffer for unknown 605 * errors, textualise them now. Else we just return 606 * NULL. */ 607 if (nbuf) { 608 /* Check for truncated error codes... */ 609 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 610 errstr = nbuf; 611 } 612 break; 613 } 614 615 return errstr; 616 } 617 618 /* __ext4_std_error decodes expected errors from journaling functions 619 * automatically and invokes the appropriate error response. */ 620 621 void __ext4_std_error(struct super_block *sb, const char *function, 622 unsigned int line, int errno) 623 { 624 char nbuf[16]; 625 const char *errstr; 626 627 /* Special case: if the error is EROFS, and we're not already 628 * inside a transaction, then there's really no point in logging 629 * an error. */ 630 if (errno == -EROFS && journal_current_handle() == NULL && 631 (sb->s_flags & MS_RDONLY)) 632 return; 633 634 errstr = ext4_decode_error(sb, errno, nbuf); 635 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 636 sb->s_id, function, line, errstr); 637 save_error_info(sb, function, line); 638 639 ext4_handle_error(sb); 640 } 641 642 /* 643 * ext4_abort is a much stronger failure handler than ext4_error. The 644 * abort function may be used to deal with unrecoverable failures such 645 * as journal IO errors or ENOMEM at a critical moment in log management. 646 * 647 * We unconditionally force the filesystem into an ABORT|READONLY state, 648 * unless the error response on the fs has been set to panic in which 649 * case we take the easy way out and panic immediately. 650 */ 651 652 void __ext4_abort(struct super_block *sb, const char *function, 653 unsigned int line, const char *fmt, ...) 654 { 655 va_list args; 656 657 save_error_info(sb, function, line); 658 va_start(args, fmt); 659 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 660 function, line); 661 vprintk(fmt, args); 662 printk("\n"); 663 va_end(args); 664 665 if ((sb->s_flags & MS_RDONLY) == 0) { 666 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 667 sb->s_flags |= MS_RDONLY; 668 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 669 if (EXT4_SB(sb)->s_journal) 670 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 671 save_error_info(sb, function, line); 672 } 673 if (test_opt(sb, ERRORS_PANIC)) 674 panic("EXT4-fs panic from previous error\n"); 675 } 676 677 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 678 { 679 struct va_format vaf; 680 va_list args; 681 682 va_start(args, fmt); 683 vaf.fmt = fmt; 684 vaf.va = &args; 685 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 686 va_end(args); 687 } 688 689 void __ext4_warning(struct super_block *sb, const char *function, 690 unsigned int line, const char *fmt, ...) 691 { 692 struct va_format vaf; 693 va_list args; 694 695 va_start(args, fmt); 696 vaf.fmt = fmt; 697 vaf.va = &args; 698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 699 sb->s_id, function, line, &vaf); 700 va_end(args); 701 } 702 703 void __ext4_grp_locked_error(const char *function, unsigned int line, 704 struct super_block *sb, ext4_group_t grp, 705 unsigned long ino, ext4_fsblk_t block, 706 const char *fmt, ...) 707 __releases(bitlock) 708 __acquires(bitlock) 709 { 710 struct va_format vaf; 711 va_list args; 712 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 713 714 es->s_last_error_ino = cpu_to_le32(ino); 715 es->s_last_error_block = cpu_to_le64(block); 716 __save_error_info(sb, function, line); 717 718 va_start(args, fmt); 719 720 vaf.fmt = fmt; 721 vaf.va = &args; 722 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 723 sb->s_id, function, line, grp); 724 if (ino) 725 printk(KERN_CONT "inode %lu: ", ino); 726 if (block) 727 printk(KERN_CONT "block %llu:", (unsigned long long) block); 728 printk(KERN_CONT "%pV\n", &vaf); 729 va_end(args); 730 731 if (test_opt(sb, ERRORS_CONT)) { 732 ext4_commit_super(sb, 0); 733 return; 734 } 735 736 ext4_unlock_group(sb, grp); 737 ext4_handle_error(sb); 738 /* 739 * We only get here in the ERRORS_RO case; relocking the group 740 * may be dangerous, but nothing bad will happen since the 741 * filesystem will have already been marked read/only and the 742 * journal has been aborted. We return 1 as a hint to callers 743 * who might what to use the return value from 744 * ext4_grp_locked_error() to distinguish between the 745 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 746 * aggressively from the ext4 function in question, with a 747 * more appropriate error code. 748 */ 749 ext4_lock_group(sb, grp); 750 return; 751 } 752 753 void ext4_update_dynamic_rev(struct super_block *sb) 754 { 755 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 756 757 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 758 return; 759 760 ext4_warning(sb, 761 "updating to rev %d because of new feature flag, " 762 "running e2fsck is recommended", 763 EXT4_DYNAMIC_REV); 764 765 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 766 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 767 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 768 /* leave es->s_feature_*compat flags alone */ 769 /* es->s_uuid will be set by e2fsck if empty */ 770 771 /* 772 * The rest of the superblock fields should be zero, and if not it 773 * means they are likely already in use, so leave them alone. We 774 * can leave it up to e2fsck to clean up any inconsistencies there. 775 */ 776 } 777 778 /* 779 * Open the external journal device 780 */ 781 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 782 { 783 struct block_device *bdev; 784 char b[BDEVNAME_SIZE]; 785 786 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 787 if (IS_ERR(bdev)) 788 goto fail; 789 return bdev; 790 791 fail: 792 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 793 __bdevname(dev, b), PTR_ERR(bdev)); 794 return NULL; 795 } 796 797 /* 798 * Release the journal device 799 */ 800 static int ext4_blkdev_put(struct block_device *bdev) 801 { 802 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 803 } 804 805 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 806 { 807 struct block_device *bdev; 808 int ret = -ENODEV; 809 810 bdev = sbi->journal_bdev; 811 if (bdev) { 812 ret = ext4_blkdev_put(bdev); 813 sbi->journal_bdev = NULL; 814 } 815 return ret; 816 } 817 818 static inline struct inode *orphan_list_entry(struct list_head *l) 819 { 820 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 821 } 822 823 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 824 { 825 struct list_head *l; 826 827 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 828 le32_to_cpu(sbi->s_es->s_last_orphan)); 829 830 printk(KERN_ERR "sb_info orphan list:\n"); 831 list_for_each(l, &sbi->s_orphan) { 832 struct inode *inode = orphan_list_entry(l); 833 printk(KERN_ERR " " 834 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 835 inode->i_sb->s_id, inode->i_ino, inode, 836 inode->i_mode, inode->i_nlink, 837 NEXT_ORPHAN(inode)); 838 } 839 } 840 841 static void ext4_put_super(struct super_block *sb) 842 { 843 struct ext4_sb_info *sbi = EXT4_SB(sb); 844 struct ext4_super_block *es = sbi->s_es; 845 int i, err; 846 847 ext4_unregister_li_request(sb); 848 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 849 850 flush_workqueue(sbi->dio_unwritten_wq); 851 destroy_workqueue(sbi->dio_unwritten_wq); 852 853 if (sbi->s_journal) { 854 err = jbd2_journal_destroy(sbi->s_journal); 855 sbi->s_journal = NULL; 856 if (err < 0) 857 ext4_abort(sb, "Couldn't clean up the journal"); 858 } 859 860 del_timer(&sbi->s_err_report); 861 ext4_release_system_zone(sb); 862 ext4_mb_release(sb); 863 ext4_ext_release(sb); 864 ext4_xattr_put_super(sb); 865 866 if (!(sb->s_flags & MS_RDONLY)) { 867 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 868 es->s_state = cpu_to_le16(sbi->s_mount_state); 869 } 870 if (!(sb->s_flags & MS_RDONLY)) 871 ext4_commit_super(sb, 1); 872 873 if (sbi->s_proc) { 874 remove_proc_entry("options", sbi->s_proc); 875 remove_proc_entry(sb->s_id, ext4_proc_root); 876 } 877 kobject_del(&sbi->s_kobj); 878 879 for (i = 0; i < sbi->s_gdb_count; i++) 880 brelse(sbi->s_group_desc[i]); 881 ext4_kvfree(sbi->s_group_desc); 882 ext4_kvfree(sbi->s_flex_groups); 883 percpu_counter_destroy(&sbi->s_freeclusters_counter); 884 percpu_counter_destroy(&sbi->s_freeinodes_counter); 885 percpu_counter_destroy(&sbi->s_dirs_counter); 886 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 887 brelse(sbi->s_sbh); 888 #ifdef CONFIG_QUOTA 889 for (i = 0; i < MAXQUOTAS; i++) 890 kfree(sbi->s_qf_names[i]); 891 #endif 892 893 /* Debugging code just in case the in-memory inode orphan list 894 * isn't empty. The on-disk one can be non-empty if we've 895 * detected an error and taken the fs readonly, but the 896 * in-memory list had better be clean by this point. */ 897 if (!list_empty(&sbi->s_orphan)) 898 dump_orphan_list(sb, sbi); 899 J_ASSERT(list_empty(&sbi->s_orphan)); 900 901 invalidate_bdev(sb->s_bdev); 902 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 903 /* 904 * Invalidate the journal device's buffers. We don't want them 905 * floating about in memory - the physical journal device may 906 * hotswapped, and it breaks the `ro-after' testing code. 907 */ 908 sync_blockdev(sbi->journal_bdev); 909 invalidate_bdev(sbi->journal_bdev); 910 ext4_blkdev_remove(sbi); 911 } 912 if (sbi->s_mmp_tsk) 913 kthread_stop(sbi->s_mmp_tsk); 914 sb->s_fs_info = NULL; 915 /* 916 * Now that we are completely done shutting down the 917 * superblock, we need to actually destroy the kobject. 918 */ 919 kobject_put(&sbi->s_kobj); 920 wait_for_completion(&sbi->s_kobj_unregister); 921 if (sbi->s_chksum_driver) 922 crypto_free_shash(sbi->s_chksum_driver); 923 kfree(sbi->s_blockgroup_lock); 924 kfree(sbi); 925 } 926 927 static struct kmem_cache *ext4_inode_cachep; 928 929 /* 930 * Called inside transaction, so use GFP_NOFS 931 */ 932 static struct inode *ext4_alloc_inode(struct super_block *sb) 933 { 934 struct ext4_inode_info *ei; 935 936 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 937 if (!ei) 938 return NULL; 939 940 ei->vfs_inode.i_version = 1; 941 ei->vfs_inode.i_data.writeback_index = 0; 942 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 943 INIT_LIST_HEAD(&ei->i_prealloc_list); 944 spin_lock_init(&ei->i_prealloc_lock); 945 ei->i_reserved_data_blocks = 0; 946 ei->i_reserved_meta_blocks = 0; 947 ei->i_allocated_meta_blocks = 0; 948 ei->i_da_metadata_calc_len = 0; 949 ei->i_da_metadata_calc_last_lblock = 0; 950 spin_lock_init(&(ei->i_block_reservation_lock)); 951 #ifdef CONFIG_QUOTA 952 ei->i_reserved_quota = 0; 953 #endif 954 ei->jinode = NULL; 955 INIT_LIST_HEAD(&ei->i_completed_io_list); 956 spin_lock_init(&ei->i_completed_io_lock); 957 ei->i_sync_tid = 0; 958 ei->i_datasync_tid = 0; 959 atomic_set(&ei->i_ioend_count, 0); 960 atomic_set(&ei->i_unwritten, 0); 961 962 return &ei->vfs_inode; 963 } 964 965 static int ext4_drop_inode(struct inode *inode) 966 { 967 int drop = generic_drop_inode(inode); 968 969 trace_ext4_drop_inode(inode, drop); 970 return drop; 971 } 972 973 static void ext4_i_callback(struct rcu_head *head) 974 { 975 struct inode *inode = container_of(head, struct inode, i_rcu); 976 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 977 } 978 979 static void ext4_destroy_inode(struct inode *inode) 980 { 981 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 982 ext4_msg(inode->i_sb, KERN_ERR, 983 "Inode %lu (%p): orphan list check failed!", 984 inode->i_ino, EXT4_I(inode)); 985 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 986 EXT4_I(inode), sizeof(struct ext4_inode_info), 987 true); 988 dump_stack(); 989 } 990 call_rcu(&inode->i_rcu, ext4_i_callback); 991 } 992 993 static void init_once(void *foo) 994 { 995 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 996 997 INIT_LIST_HEAD(&ei->i_orphan); 998 #ifdef CONFIG_EXT4_FS_XATTR 999 init_rwsem(&ei->xattr_sem); 1000 #endif 1001 init_rwsem(&ei->i_data_sem); 1002 inode_init_once(&ei->vfs_inode); 1003 } 1004 1005 static int init_inodecache(void) 1006 { 1007 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1008 sizeof(struct ext4_inode_info), 1009 0, (SLAB_RECLAIM_ACCOUNT| 1010 SLAB_MEM_SPREAD), 1011 init_once); 1012 if (ext4_inode_cachep == NULL) 1013 return -ENOMEM; 1014 return 0; 1015 } 1016 1017 static void destroy_inodecache(void) 1018 { 1019 /* 1020 * Make sure all delayed rcu free inodes are flushed before we 1021 * destroy cache. 1022 */ 1023 rcu_barrier(); 1024 kmem_cache_destroy(ext4_inode_cachep); 1025 } 1026 1027 void ext4_clear_inode(struct inode *inode) 1028 { 1029 invalidate_inode_buffers(inode); 1030 clear_inode(inode); 1031 dquot_drop(inode); 1032 ext4_discard_preallocations(inode); 1033 if (EXT4_I(inode)->jinode) { 1034 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1035 EXT4_I(inode)->jinode); 1036 jbd2_free_inode(EXT4_I(inode)->jinode); 1037 EXT4_I(inode)->jinode = NULL; 1038 } 1039 } 1040 1041 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1042 u64 ino, u32 generation) 1043 { 1044 struct inode *inode; 1045 1046 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1047 return ERR_PTR(-ESTALE); 1048 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1049 return ERR_PTR(-ESTALE); 1050 1051 /* iget isn't really right if the inode is currently unallocated!! 1052 * 1053 * ext4_read_inode will return a bad_inode if the inode had been 1054 * deleted, so we should be safe. 1055 * 1056 * Currently we don't know the generation for parent directory, so 1057 * a generation of 0 means "accept any" 1058 */ 1059 inode = ext4_iget(sb, ino); 1060 if (IS_ERR(inode)) 1061 return ERR_CAST(inode); 1062 if (generation && inode->i_generation != generation) { 1063 iput(inode); 1064 return ERR_PTR(-ESTALE); 1065 } 1066 1067 return inode; 1068 } 1069 1070 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1071 int fh_len, int fh_type) 1072 { 1073 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1074 ext4_nfs_get_inode); 1075 } 1076 1077 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1078 int fh_len, int fh_type) 1079 { 1080 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1081 ext4_nfs_get_inode); 1082 } 1083 1084 /* 1085 * Try to release metadata pages (indirect blocks, directories) which are 1086 * mapped via the block device. Since these pages could have journal heads 1087 * which would prevent try_to_free_buffers() from freeing them, we must use 1088 * jbd2 layer's try_to_free_buffers() function to release them. 1089 */ 1090 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1091 gfp_t wait) 1092 { 1093 journal_t *journal = EXT4_SB(sb)->s_journal; 1094 1095 WARN_ON(PageChecked(page)); 1096 if (!page_has_buffers(page)) 1097 return 0; 1098 if (journal) 1099 return jbd2_journal_try_to_free_buffers(journal, page, 1100 wait & ~__GFP_WAIT); 1101 return try_to_free_buffers(page); 1102 } 1103 1104 #ifdef CONFIG_QUOTA 1105 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1106 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1107 1108 static int ext4_write_dquot(struct dquot *dquot); 1109 static int ext4_acquire_dquot(struct dquot *dquot); 1110 static int ext4_release_dquot(struct dquot *dquot); 1111 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1112 static int ext4_write_info(struct super_block *sb, int type); 1113 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1114 struct path *path); 1115 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1116 int format_id); 1117 static int ext4_quota_off(struct super_block *sb, int type); 1118 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1119 static int ext4_quota_on_mount(struct super_block *sb, int type); 1120 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1121 size_t len, loff_t off); 1122 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1123 const char *data, size_t len, loff_t off); 1124 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1125 unsigned int flags); 1126 static int ext4_enable_quotas(struct super_block *sb); 1127 1128 static const struct dquot_operations ext4_quota_operations = { 1129 .get_reserved_space = ext4_get_reserved_space, 1130 .write_dquot = ext4_write_dquot, 1131 .acquire_dquot = ext4_acquire_dquot, 1132 .release_dquot = ext4_release_dquot, 1133 .mark_dirty = ext4_mark_dquot_dirty, 1134 .write_info = ext4_write_info, 1135 .alloc_dquot = dquot_alloc, 1136 .destroy_dquot = dquot_destroy, 1137 }; 1138 1139 static const struct quotactl_ops ext4_qctl_operations = { 1140 .quota_on = ext4_quota_on, 1141 .quota_off = ext4_quota_off, 1142 .quota_sync = dquot_quota_sync, 1143 .get_info = dquot_get_dqinfo, 1144 .set_info = dquot_set_dqinfo, 1145 .get_dqblk = dquot_get_dqblk, 1146 .set_dqblk = dquot_set_dqblk 1147 }; 1148 1149 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1150 .quota_on_meta = ext4_quota_on_sysfile, 1151 .quota_off = ext4_quota_off_sysfile, 1152 .quota_sync = dquot_quota_sync, 1153 .get_info = dquot_get_dqinfo, 1154 .set_info = dquot_set_dqinfo, 1155 .get_dqblk = dquot_get_dqblk, 1156 .set_dqblk = dquot_set_dqblk 1157 }; 1158 #endif 1159 1160 static const struct super_operations ext4_sops = { 1161 .alloc_inode = ext4_alloc_inode, 1162 .destroy_inode = ext4_destroy_inode, 1163 .write_inode = ext4_write_inode, 1164 .dirty_inode = ext4_dirty_inode, 1165 .drop_inode = ext4_drop_inode, 1166 .evict_inode = ext4_evict_inode, 1167 .put_super = ext4_put_super, 1168 .sync_fs = ext4_sync_fs, 1169 .freeze_fs = ext4_freeze, 1170 .unfreeze_fs = ext4_unfreeze, 1171 .statfs = ext4_statfs, 1172 .remount_fs = ext4_remount, 1173 .show_options = ext4_show_options, 1174 #ifdef CONFIG_QUOTA 1175 .quota_read = ext4_quota_read, 1176 .quota_write = ext4_quota_write, 1177 #endif 1178 .bdev_try_to_free_page = bdev_try_to_free_page, 1179 }; 1180 1181 static const struct super_operations ext4_nojournal_sops = { 1182 .alloc_inode = ext4_alloc_inode, 1183 .destroy_inode = ext4_destroy_inode, 1184 .write_inode = ext4_write_inode, 1185 .dirty_inode = ext4_dirty_inode, 1186 .drop_inode = ext4_drop_inode, 1187 .evict_inode = ext4_evict_inode, 1188 .put_super = ext4_put_super, 1189 .statfs = ext4_statfs, 1190 .remount_fs = ext4_remount, 1191 .show_options = ext4_show_options, 1192 #ifdef CONFIG_QUOTA 1193 .quota_read = ext4_quota_read, 1194 .quota_write = ext4_quota_write, 1195 #endif 1196 .bdev_try_to_free_page = bdev_try_to_free_page, 1197 }; 1198 1199 static const struct export_operations ext4_export_ops = { 1200 .fh_to_dentry = ext4_fh_to_dentry, 1201 .fh_to_parent = ext4_fh_to_parent, 1202 .get_parent = ext4_get_parent, 1203 }; 1204 1205 enum { 1206 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1207 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1208 Opt_nouid32, Opt_debug, Opt_removed, 1209 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1210 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1211 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1212 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1213 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1214 Opt_data_err_abort, Opt_data_err_ignore, 1215 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1216 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1217 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1218 Opt_usrquota, Opt_grpquota, Opt_i_version, 1219 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1220 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1221 Opt_inode_readahead_blks, Opt_journal_ioprio, 1222 Opt_dioread_nolock, Opt_dioread_lock, 1223 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1224 Opt_max_dir_size_kb, 1225 }; 1226 1227 static const match_table_t tokens = { 1228 {Opt_bsd_df, "bsddf"}, 1229 {Opt_minix_df, "minixdf"}, 1230 {Opt_grpid, "grpid"}, 1231 {Opt_grpid, "bsdgroups"}, 1232 {Opt_nogrpid, "nogrpid"}, 1233 {Opt_nogrpid, "sysvgroups"}, 1234 {Opt_resgid, "resgid=%u"}, 1235 {Opt_resuid, "resuid=%u"}, 1236 {Opt_sb, "sb=%u"}, 1237 {Opt_err_cont, "errors=continue"}, 1238 {Opt_err_panic, "errors=panic"}, 1239 {Opt_err_ro, "errors=remount-ro"}, 1240 {Opt_nouid32, "nouid32"}, 1241 {Opt_debug, "debug"}, 1242 {Opt_removed, "oldalloc"}, 1243 {Opt_removed, "orlov"}, 1244 {Opt_user_xattr, "user_xattr"}, 1245 {Opt_nouser_xattr, "nouser_xattr"}, 1246 {Opt_acl, "acl"}, 1247 {Opt_noacl, "noacl"}, 1248 {Opt_noload, "norecovery"}, 1249 {Opt_noload, "noload"}, 1250 {Opt_removed, "nobh"}, 1251 {Opt_removed, "bh"}, 1252 {Opt_commit, "commit=%u"}, 1253 {Opt_min_batch_time, "min_batch_time=%u"}, 1254 {Opt_max_batch_time, "max_batch_time=%u"}, 1255 {Opt_journal_dev, "journal_dev=%u"}, 1256 {Opt_journal_checksum, "journal_checksum"}, 1257 {Opt_journal_async_commit, "journal_async_commit"}, 1258 {Opt_abort, "abort"}, 1259 {Opt_data_journal, "data=journal"}, 1260 {Opt_data_ordered, "data=ordered"}, 1261 {Opt_data_writeback, "data=writeback"}, 1262 {Opt_data_err_abort, "data_err=abort"}, 1263 {Opt_data_err_ignore, "data_err=ignore"}, 1264 {Opt_offusrjquota, "usrjquota="}, 1265 {Opt_usrjquota, "usrjquota=%s"}, 1266 {Opt_offgrpjquota, "grpjquota="}, 1267 {Opt_grpjquota, "grpjquota=%s"}, 1268 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1269 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1270 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1271 {Opt_grpquota, "grpquota"}, 1272 {Opt_noquota, "noquota"}, 1273 {Opt_quota, "quota"}, 1274 {Opt_usrquota, "usrquota"}, 1275 {Opt_barrier, "barrier=%u"}, 1276 {Opt_barrier, "barrier"}, 1277 {Opt_nobarrier, "nobarrier"}, 1278 {Opt_i_version, "i_version"}, 1279 {Opt_stripe, "stripe=%u"}, 1280 {Opt_delalloc, "delalloc"}, 1281 {Opt_nodelalloc, "nodelalloc"}, 1282 {Opt_mblk_io_submit, "mblk_io_submit"}, 1283 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1284 {Opt_block_validity, "block_validity"}, 1285 {Opt_noblock_validity, "noblock_validity"}, 1286 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1287 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1288 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1289 {Opt_auto_da_alloc, "auto_da_alloc"}, 1290 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1291 {Opt_dioread_nolock, "dioread_nolock"}, 1292 {Opt_dioread_lock, "dioread_lock"}, 1293 {Opt_discard, "discard"}, 1294 {Opt_nodiscard, "nodiscard"}, 1295 {Opt_init_itable, "init_itable=%u"}, 1296 {Opt_init_itable, "init_itable"}, 1297 {Opt_noinit_itable, "noinit_itable"}, 1298 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1299 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1300 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1301 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1302 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1303 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1304 {Opt_err, NULL}, 1305 }; 1306 1307 static ext4_fsblk_t get_sb_block(void **data) 1308 { 1309 ext4_fsblk_t sb_block; 1310 char *options = (char *) *data; 1311 1312 if (!options || strncmp(options, "sb=", 3) != 0) 1313 return 1; /* Default location */ 1314 1315 options += 3; 1316 /* TODO: use simple_strtoll with >32bit ext4 */ 1317 sb_block = simple_strtoul(options, &options, 0); 1318 if (*options && *options != ',') { 1319 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1320 (char *) *data); 1321 return 1; 1322 } 1323 if (*options == ',') 1324 options++; 1325 *data = (void *) options; 1326 1327 return sb_block; 1328 } 1329 1330 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1331 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1332 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1333 1334 #ifdef CONFIG_QUOTA 1335 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1336 { 1337 struct ext4_sb_info *sbi = EXT4_SB(sb); 1338 char *qname; 1339 1340 if (sb_any_quota_loaded(sb) && 1341 !sbi->s_qf_names[qtype]) { 1342 ext4_msg(sb, KERN_ERR, 1343 "Cannot change journaled " 1344 "quota options when quota turned on"); 1345 return -1; 1346 } 1347 qname = match_strdup(args); 1348 if (!qname) { 1349 ext4_msg(sb, KERN_ERR, 1350 "Not enough memory for storing quotafile name"); 1351 return -1; 1352 } 1353 if (sbi->s_qf_names[qtype] && 1354 strcmp(sbi->s_qf_names[qtype], qname)) { 1355 ext4_msg(sb, KERN_ERR, 1356 "%s quota file already specified", QTYPE2NAME(qtype)); 1357 kfree(qname); 1358 return -1; 1359 } 1360 sbi->s_qf_names[qtype] = qname; 1361 if (strchr(sbi->s_qf_names[qtype], '/')) { 1362 ext4_msg(sb, KERN_ERR, 1363 "quotafile must be on filesystem root"); 1364 kfree(sbi->s_qf_names[qtype]); 1365 sbi->s_qf_names[qtype] = NULL; 1366 return -1; 1367 } 1368 set_opt(sb, QUOTA); 1369 return 1; 1370 } 1371 1372 static int clear_qf_name(struct super_block *sb, int qtype) 1373 { 1374 1375 struct ext4_sb_info *sbi = EXT4_SB(sb); 1376 1377 if (sb_any_quota_loaded(sb) && 1378 sbi->s_qf_names[qtype]) { 1379 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1380 " when quota turned on"); 1381 return -1; 1382 } 1383 /* 1384 * The space will be released later when all options are confirmed 1385 * to be correct 1386 */ 1387 sbi->s_qf_names[qtype] = NULL; 1388 return 1; 1389 } 1390 #endif 1391 1392 #define MOPT_SET 0x0001 1393 #define MOPT_CLEAR 0x0002 1394 #define MOPT_NOSUPPORT 0x0004 1395 #define MOPT_EXPLICIT 0x0008 1396 #define MOPT_CLEAR_ERR 0x0010 1397 #define MOPT_GTE0 0x0020 1398 #ifdef CONFIG_QUOTA 1399 #define MOPT_Q 0 1400 #define MOPT_QFMT 0x0040 1401 #else 1402 #define MOPT_Q MOPT_NOSUPPORT 1403 #define MOPT_QFMT MOPT_NOSUPPORT 1404 #endif 1405 #define MOPT_DATAJ 0x0080 1406 1407 static const struct mount_opts { 1408 int token; 1409 int mount_opt; 1410 int flags; 1411 } ext4_mount_opts[] = { 1412 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1413 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1414 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1415 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1416 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1417 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1418 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1419 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1420 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1421 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1422 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1423 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1424 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1425 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1426 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1427 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1428 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1429 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1430 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1431 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1432 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1433 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1434 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1435 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1436 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1437 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1438 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1439 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1440 {Opt_commit, 0, MOPT_GTE0}, 1441 {Opt_max_batch_time, 0, MOPT_GTE0}, 1442 {Opt_min_batch_time, 0, MOPT_GTE0}, 1443 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1444 {Opt_init_itable, 0, MOPT_GTE0}, 1445 {Opt_stripe, 0, MOPT_GTE0}, 1446 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1447 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1448 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1449 #ifdef CONFIG_EXT4_FS_XATTR 1450 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1451 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1452 #else 1453 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1454 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1455 #endif 1456 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1457 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1458 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1459 #else 1460 {Opt_acl, 0, MOPT_NOSUPPORT}, 1461 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1462 #endif 1463 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1464 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1465 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1466 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1467 MOPT_SET | MOPT_Q}, 1468 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1469 MOPT_SET | MOPT_Q}, 1470 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1471 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1472 {Opt_usrjquota, 0, MOPT_Q}, 1473 {Opt_grpjquota, 0, MOPT_Q}, 1474 {Opt_offusrjquota, 0, MOPT_Q}, 1475 {Opt_offgrpjquota, 0, MOPT_Q}, 1476 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1477 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1478 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1479 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1480 {Opt_err, 0, 0} 1481 }; 1482 1483 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1484 substring_t *args, unsigned long *journal_devnum, 1485 unsigned int *journal_ioprio, int is_remount) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(sb); 1488 const struct mount_opts *m; 1489 kuid_t uid; 1490 kgid_t gid; 1491 int arg = 0; 1492 1493 #ifdef CONFIG_QUOTA 1494 if (token == Opt_usrjquota) 1495 return set_qf_name(sb, USRQUOTA, &args[0]); 1496 else if (token == Opt_grpjquota) 1497 return set_qf_name(sb, GRPQUOTA, &args[0]); 1498 else if (token == Opt_offusrjquota) 1499 return clear_qf_name(sb, USRQUOTA); 1500 else if (token == Opt_offgrpjquota) 1501 return clear_qf_name(sb, GRPQUOTA); 1502 #endif 1503 if (args->from && match_int(args, &arg)) 1504 return -1; 1505 switch (token) { 1506 case Opt_noacl: 1507 case Opt_nouser_xattr: 1508 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1509 break; 1510 case Opt_sb: 1511 return 1; /* handled by get_sb_block() */ 1512 case Opt_removed: 1513 ext4_msg(sb, KERN_WARNING, 1514 "Ignoring removed %s option", opt); 1515 return 1; 1516 case Opt_resuid: 1517 uid = make_kuid(current_user_ns(), arg); 1518 if (!uid_valid(uid)) { 1519 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1520 return -1; 1521 } 1522 sbi->s_resuid = uid; 1523 return 1; 1524 case Opt_resgid: 1525 gid = make_kgid(current_user_ns(), arg); 1526 if (!gid_valid(gid)) { 1527 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1528 return -1; 1529 } 1530 sbi->s_resgid = gid; 1531 return 1; 1532 case Opt_abort: 1533 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1534 return 1; 1535 case Opt_i_version: 1536 sb->s_flags |= MS_I_VERSION; 1537 return 1; 1538 case Opt_journal_dev: 1539 if (is_remount) { 1540 ext4_msg(sb, KERN_ERR, 1541 "Cannot specify journal on remount"); 1542 return -1; 1543 } 1544 *journal_devnum = arg; 1545 return 1; 1546 case Opt_journal_ioprio: 1547 if (arg < 0 || arg > 7) 1548 return -1; 1549 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1550 return 1; 1551 } 1552 1553 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1554 if (token != m->token) 1555 continue; 1556 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1557 return -1; 1558 if (m->flags & MOPT_EXPLICIT) 1559 set_opt2(sb, EXPLICIT_DELALLOC); 1560 if (m->flags & MOPT_CLEAR_ERR) 1561 clear_opt(sb, ERRORS_MASK); 1562 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1563 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1564 "options when quota turned on"); 1565 return -1; 1566 } 1567 1568 if (m->flags & MOPT_NOSUPPORT) { 1569 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1570 } else if (token == Opt_commit) { 1571 if (arg == 0) 1572 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1573 sbi->s_commit_interval = HZ * arg; 1574 } else if (token == Opt_max_batch_time) { 1575 if (arg == 0) 1576 arg = EXT4_DEF_MAX_BATCH_TIME; 1577 sbi->s_max_batch_time = arg; 1578 } else if (token == Opt_min_batch_time) { 1579 sbi->s_min_batch_time = arg; 1580 } else if (token == Opt_inode_readahead_blks) { 1581 if (arg > (1 << 30)) 1582 return -1; 1583 if (arg && !is_power_of_2(arg)) { 1584 ext4_msg(sb, KERN_ERR, 1585 "EXT4-fs: inode_readahead_blks" 1586 " must be a power of 2"); 1587 return -1; 1588 } 1589 sbi->s_inode_readahead_blks = arg; 1590 } else if (token == Opt_init_itable) { 1591 set_opt(sb, INIT_INODE_TABLE); 1592 if (!args->from) 1593 arg = EXT4_DEF_LI_WAIT_MULT; 1594 sbi->s_li_wait_mult = arg; 1595 } else if (token == Opt_max_dir_size_kb) { 1596 sbi->s_max_dir_size_kb = arg; 1597 } else if (token == Opt_stripe) { 1598 sbi->s_stripe = arg; 1599 } else if (m->flags & MOPT_DATAJ) { 1600 if (is_remount) { 1601 if (!sbi->s_journal) 1602 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1603 else if (test_opt(sb, DATA_FLAGS) != 1604 m->mount_opt) { 1605 ext4_msg(sb, KERN_ERR, 1606 "Cannot change data mode on remount"); 1607 return -1; 1608 } 1609 } else { 1610 clear_opt(sb, DATA_FLAGS); 1611 sbi->s_mount_opt |= m->mount_opt; 1612 } 1613 #ifdef CONFIG_QUOTA 1614 } else if (m->flags & MOPT_QFMT) { 1615 if (sb_any_quota_loaded(sb) && 1616 sbi->s_jquota_fmt != m->mount_opt) { 1617 ext4_msg(sb, KERN_ERR, "Cannot " 1618 "change journaled quota options " 1619 "when quota turned on"); 1620 return -1; 1621 } 1622 sbi->s_jquota_fmt = m->mount_opt; 1623 #endif 1624 } else { 1625 if (!args->from) 1626 arg = 1; 1627 if (m->flags & MOPT_CLEAR) 1628 arg = !arg; 1629 else if (unlikely(!(m->flags & MOPT_SET))) { 1630 ext4_msg(sb, KERN_WARNING, 1631 "buggy handling of option %s", opt); 1632 WARN_ON(1); 1633 return -1; 1634 } 1635 if (arg != 0) 1636 sbi->s_mount_opt |= m->mount_opt; 1637 else 1638 sbi->s_mount_opt &= ~m->mount_opt; 1639 } 1640 return 1; 1641 } 1642 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1643 "or missing value", opt); 1644 return -1; 1645 } 1646 1647 static int parse_options(char *options, struct super_block *sb, 1648 unsigned long *journal_devnum, 1649 unsigned int *journal_ioprio, 1650 int is_remount) 1651 { 1652 #ifdef CONFIG_QUOTA 1653 struct ext4_sb_info *sbi = EXT4_SB(sb); 1654 #endif 1655 char *p; 1656 substring_t args[MAX_OPT_ARGS]; 1657 int token; 1658 1659 if (!options) 1660 return 1; 1661 1662 while ((p = strsep(&options, ",")) != NULL) { 1663 if (!*p) 1664 continue; 1665 /* 1666 * Initialize args struct so we know whether arg was 1667 * found; some options take optional arguments. 1668 */ 1669 args[0].to = args[0].from = NULL; 1670 token = match_token(p, tokens, args); 1671 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1672 journal_ioprio, is_remount) < 0) 1673 return 0; 1674 } 1675 #ifdef CONFIG_QUOTA 1676 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1677 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1678 clear_opt(sb, USRQUOTA); 1679 1680 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1681 clear_opt(sb, GRPQUOTA); 1682 1683 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1684 ext4_msg(sb, KERN_ERR, "old and new quota " 1685 "format mixing"); 1686 return 0; 1687 } 1688 1689 if (!sbi->s_jquota_fmt) { 1690 ext4_msg(sb, KERN_ERR, "journaled quota format " 1691 "not specified"); 1692 return 0; 1693 } 1694 } else { 1695 if (sbi->s_jquota_fmt) { 1696 ext4_msg(sb, KERN_ERR, "journaled quota format " 1697 "specified with no journaling " 1698 "enabled"); 1699 return 0; 1700 } 1701 } 1702 #endif 1703 return 1; 1704 } 1705 1706 static inline void ext4_show_quota_options(struct seq_file *seq, 1707 struct super_block *sb) 1708 { 1709 #if defined(CONFIG_QUOTA) 1710 struct ext4_sb_info *sbi = EXT4_SB(sb); 1711 1712 if (sbi->s_jquota_fmt) { 1713 char *fmtname = ""; 1714 1715 switch (sbi->s_jquota_fmt) { 1716 case QFMT_VFS_OLD: 1717 fmtname = "vfsold"; 1718 break; 1719 case QFMT_VFS_V0: 1720 fmtname = "vfsv0"; 1721 break; 1722 case QFMT_VFS_V1: 1723 fmtname = "vfsv1"; 1724 break; 1725 } 1726 seq_printf(seq, ",jqfmt=%s", fmtname); 1727 } 1728 1729 if (sbi->s_qf_names[USRQUOTA]) 1730 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1731 1732 if (sbi->s_qf_names[GRPQUOTA]) 1733 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1734 1735 if (test_opt(sb, USRQUOTA)) 1736 seq_puts(seq, ",usrquota"); 1737 1738 if (test_opt(sb, GRPQUOTA)) 1739 seq_puts(seq, ",grpquota"); 1740 #endif 1741 } 1742 1743 static const char *token2str(int token) 1744 { 1745 const struct match_token *t; 1746 1747 for (t = tokens; t->token != Opt_err; t++) 1748 if (t->token == token && !strchr(t->pattern, '=')) 1749 break; 1750 return t->pattern; 1751 } 1752 1753 /* 1754 * Show an option if 1755 * - it's set to a non-default value OR 1756 * - if the per-sb default is different from the global default 1757 */ 1758 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1759 int nodefs) 1760 { 1761 struct ext4_sb_info *sbi = EXT4_SB(sb); 1762 struct ext4_super_block *es = sbi->s_es; 1763 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1764 const struct mount_opts *m; 1765 char sep = nodefs ? '\n' : ','; 1766 1767 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1768 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1769 1770 if (sbi->s_sb_block != 1) 1771 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1772 1773 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1774 int want_set = m->flags & MOPT_SET; 1775 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1776 (m->flags & MOPT_CLEAR_ERR)) 1777 continue; 1778 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1779 continue; /* skip if same as the default */ 1780 if ((want_set && 1781 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1782 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1783 continue; /* select Opt_noFoo vs Opt_Foo */ 1784 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1785 } 1786 1787 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1788 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1789 SEQ_OPTS_PRINT("resuid=%u", 1790 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1791 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1792 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1793 SEQ_OPTS_PRINT("resgid=%u", 1794 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1795 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1796 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1797 SEQ_OPTS_PUTS("errors=remount-ro"); 1798 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1799 SEQ_OPTS_PUTS("errors=continue"); 1800 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1801 SEQ_OPTS_PUTS("errors=panic"); 1802 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1803 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1804 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1805 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1806 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1807 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1808 if (sb->s_flags & MS_I_VERSION) 1809 SEQ_OPTS_PUTS("i_version"); 1810 if (nodefs || sbi->s_stripe) 1811 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1812 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1813 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1814 SEQ_OPTS_PUTS("data=journal"); 1815 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1816 SEQ_OPTS_PUTS("data=ordered"); 1817 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1818 SEQ_OPTS_PUTS("data=writeback"); 1819 } 1820 if (nodefs || 1821 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1822 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1823 sbi->s_inode_readahead_blks); 1824 1825 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1826 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1827 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1828 if (nodefs || sbi->s_max_dir_size_kb) 1829 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1830 1831 ext4_show_quota_options(seq, sb); 1832 return 0; 1833 } 1834 1835 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1836 { 1837 return _ext4_show_options(seq, root->d_sb, 0); 1838 } 1839 1840 static int options_seq_show(struct seq_file *seq, void *offset) 1841 { 1842 struct super_block *sb = seq->private; 1843 int rc; 1844 1845 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1846 rc = _ext4_show_options(seq, sb, 1); 1847 seq_puts(seq, "\n"); 1848 return rc; 1849 } 1850 1851 static int options_open_fs(struct inode *inode, struct file *file) 1852 { 1853 return single_open(file, options_seq_show, PDE(inode)->data); 1854 } 1855 1856 static const struct file_operations ext4_seq_options_fops = { 1857 .owner = THIS_MODULE, 1858 .open = options_open_fs, 1859 .read = seq_read, 1860 .llseek = seq_lseek, 1861 .release = single_release, 1862 }; 1863 1864 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1865 int read_only) 1866 { 1867 struct ext4_sb_info *sbi = EXT4_SB(sb); 1868 int res = 0; 1869 1870 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1871 ext4_msg(sb, KERN_ERR, "revision level too high, " 1872 "forcing read-only mode"); 1873 res = MS_RDONLY; 1874 } 1875 if (read_only) 1876 goto done; 1877 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1878 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1879 "running e2fsck is recommended"); 1880 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1881 ext4_msg(sb, KERN_WARNING, 1882 "warning: mounting fs with errors, " 1883 "running e2fsck is recommended"); 1884 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1885 le16_to_cpu(es->s_mnt_count) >= 1886 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1887 ext4_msg(sb, KERN_WARNING, 1888 "warning: maximal mount count reached, " 1889 "running e2fsck is recommended"); 1890 else if (le32_to_cpu(es->s_checkinterval) && 1891 (le32_to_cpu(es->s_lastcheck) + 1892 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1893 ext4_msg(sb, KERN_WARNING, 1894 "warning: checktime reached, " 1895 "running e2fsck is recommended"); 1896 if (!sbi->s_journal) 1897 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1898 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1899 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1900 le16_add_cpu(&es->s_mnt_count, 1); 1901 es->s_mtime = cpu_to_le32(get_seconds()); 1902 ext4_update_dynamic_rev(sb); 1903 if (sbi->s_journal) 1904 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1905 1906 ext4_commit_super(sb, 1); 1907 done: 1908 if (test_opt(sb, DEBUG)) 1909 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1910 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1911 sb->s_blocksize, 1912 sbi->s_groups_count, 1913 EXT4_BLOCKS_PER_GROUP(sb), 1914 EXT4_INODES_PER_GROUP(sb), 1915 sbi->s_mount_opt, sbi->s_mount_opt2); 1916 1917 cleancache_init_fs(sb); 1918 return res; 1919 } 1920 1921 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1922 { 1923 struct ext4_sb_info *sbi = EXT4_SB(sb); 1924 struct flex_groups *new_groups; 1925 int size; 1926 1927 if (!sbi->s_log_groups_per_flex) 1928 return 0; 1929 1930 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1931 if (size <= sbi->s_flex_groups_allocated) 1932 return 0; 1933 1934 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1935 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1936 if (!new_groups) { 1937 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1938 size / (int) sizeof(struct flex_groups)); 1939 return -ENOMEM; 1940 } 1941 1942 if (sbi->s_flex_groups) { 1943 memcpy(new_groups, sbi->s_flex_groups, 1944 (sbi->s_flex_groups_allocated * 1945 sizeof(struct flex_groups))); 1946 ext4_kvfree(sbi->s_flex_groups); 1947 } 1948 sbi->s_flex_groups = new_groups; 1949 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1950 return 0; 1951 } 1952 1953 static int ext4_fill_flex_info(struct super_block *sb) 1954 { 1955 struct ext4_sb_info *sbi = EXT4_SB(sb); 1956 struct ext4_group_desc *gdp = NULL; 1957 ext4_group_t flex_group; 1958 unsigned int groups_per_flex = 0; 1959 int i, err; 1960 1961 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1962 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1963 sbi->s_log_groups_per_flex = 0; 1964 return 1; 1965 } 1966 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1967 1968 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1969 if (err) 1970 goto failed; 1971 1972 for (i = 0; i < sbi->s_groups_count; i++) { 1973 gdp = ext4_get_group_desc(sb, i, NULL); 1974 1975 flex_group = ext4_flex_group(sbi, i); 1976 atomic_add(ext4_free_inodes_count(sb, gdp), 1977 &sbi->s_flex_groups[flex_group].free_inodes); 1978 atomic_add(ext4_free_group_clusters(sb, gdp), 1979 &sbi->s_flex_groups[flex_group].free_clusters); 1980 atomic_add(ext4_used_dirs_count(sb, gdp), 1981 &sbi->s_flex_groups[flex_group].used_dirs); 1982 } 1983 1984 return 1; 1985 failed: 1986 return 0; 1987 } 1988 1989 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1990 struct ext4_group_desc *gdp) 1991 { 1992 int offset; 1993 __u16 crc = 0; 1994 __le32 le_group = cpu_to_le32(block_group); 1995 1996 if ((sbi->s_es->s_feature_ro_compat & 1997 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1998 /* Use new metadata_csum algorithm */ 1999 __u16 old_csum; 2000 __u32 csum32; 2001 2002 old_csum = gdp->bg_checksum; 2003 gdp->bg_checksum = 0; 2004 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2005 sizeof(le_group)); 2006 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2007 sbi->s_desc_size); 2008 gdp->bg_checksum = old_csum; 2009 2010 crc = csum32 & 0xFFFF; 2011 goto out; 2012 } 2013 2014 /* old crc16 code */ 2015 offset = offsetof(struct ext4_group_desc, bg_checksum); 2016 2017 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2018 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2019 crc = crc16(crc, (__u8 *)gdp, offset); 2020 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2021 /* for checksum of struct ext4_group_desc do the rest...*/ 2022 if ((sbi->s_es->s_feature_incompat & 2023 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2024 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2025 crc = crc16(crc, (__u8 *)gdp + offset, 2026 le16_to_cpu(sbi->s_es->s_desc_size) - 2027 offset); 2028 2029 out: 2030 return cpu_to_le16(crc); 2031 } 2032 2033 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2034 struct ext4_group_desc *gdp) 2035 { 2036 if (ext4_has_group_desc_csum(sb) && 2037 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2038 block_group, gdp))) 2039 return 0; 2040 2041 return 1; 2042 } 2043 2044 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2045 struct ext4_group_desc *gdp) 2046 { 2047 if (!ext4_has_group_desc_csum(sb)) 2048 return; 2049 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2050 } 2051 2052 /* Called at mount-time, super-block is locked */ 2053 static int ext4_check_descriptors(struct super_block *sb, 2054 ext4_group_t *first_not_zeroed) 2055 { 2056 struct ext4_sb_info *sbi = EXT4_SB(sb); 2057 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2058 ext4_fsblk_t last_block; 2059 ext4_fsblk_t block_bitmap; 2060 ext4_fsblk_t inode_bitmap; 2061 ext4_fsblk_t inode_table; 2062 int flexbg_flag = 0; 2063 ext4_group_t i, grp = sbi->s_groups_count; 2064 2065 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2066 flexbg_flag = 1; 2067 2068 ext4_debug("Checking group descriptors"); 2069 2070 for (i = 0; i < sbi->s_groups_count; i++) { 2071 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2072 2073 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2074 last_block = ext4_blocks_count(sbi->s_es) - 1; 2075 else 2076 last_block = first_block + 2077 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2078 2079 if ((grp == sbi->s_groups_count) && 2080 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2081 grp = i; 2082 2083 block_bitmap = ext4_block_bitmap(sb, gdp); 2084 if (block_bitmap < first_block || block_bitmap > last_block) { 2085 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2086 "Block bitmap for group %u not in group " 2087 "(block %llu)!", i, block_bitmap); 2088 return 0; 2089 } 2090 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2091 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2092 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2093 "Inode bitmap for group %u not in group " 2094 "(block %llu)!", i, inode_bitmap); 2095 return 0; 2096 } 2097 inode_table = ext4_inode_table(sb, gdp); 2098 if (inode_table < first_block || 2099 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2100 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2101 "Inode table for group %u not in group " 2102 "(block %llu)!", i, inode_table); 2103 return 0; 2104 } 2105 ext4_lock_group(sb, i); 2106 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2107 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2108 "Checksum for group %u failed (%u!=%u)", 2109 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2110 gdp)), le16_to_cpu(gdp->bg_checksum)); 2111 if (!(sb->s_flags & MS_RDONLY)) { 2112 ext4_unlock_group(sb, i); 2113 return 0; 2114 } 2115 } 2116 ext4_unlock_group(sb, i); 2117 if (!flexbg_flag) 2118 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2119 } 2120 if (NULL != first_not_zeroed) 2121 *first_not_zeroed = grp; 2122 2123 ext4_free_blocks_count_set(sbi->s_es, 2124 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2125 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2126 return 1; 2127 } 2128 2129 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2130 * the superblock) which were deleted from all directories, but held open by 2131 * a process at the time of a crash. We walk the list and try to delete these 2132 * inodes at recovery time (only with a read-write filesystem). 2133 * 2134 * In order to keep the orphan inode chain consistent during traversal (in 2135 * case of crash during recovery), we link each inode into the superblock 2136 * orphan list_head and handle it the same way as an inode deletion during 2137 * normal operation (which journals the operations for us). 2138 * 2139 * We only do an iget() and an iput() on each inode, which is very safe if we 2140 * accidentally point at an in-use or already deleted inode. The worst that 2141 * can happen in this case is that we get a "bit already cleared" message from 2142 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2143 * e2fsck was run on this filesystem, and it must have already done the orphan 2144 * inode cleanup for us, so we can safely abort without any further action. 2145 */ 2146 static void ext4_orphan_cleanup(struct super_block *sb, 2147 struct ext4_super_block *es) 2148 { 2149 unsigned int s_flags = sb->s_flags; 2150 int nr_orphans = 0, nr_truncates = 0; 2151 #ifdef CONFIG_QUOTA 2152 int i; 2153 #endif 2154 if (!es->s_last_orphan) { 2155 jbd_debug(4, "no orphan inodes to clean up\n"); 2156 return; 2157 } 2158 2159 if (bdev_read_only(sb->s_bdev)) { 2160 ext4_msg(sb, KERN_ERR, "write access " 2161 "unavailable, skipping orphan cleanup"); 2162 return; 2163 } 2164 2165 /* Check if feature set would not allow a r/w mount */ 2166 if (!ext4_feature_set_ok(sb, 0)) { 2167 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2168 "unknown ROCOMPAT features"); 2169 return; 2170 } 2171 2172 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2173 /* don't clear list on RO mount w/ errors */ 2174 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2175 jbd_debug(1, "Errors on filesystem, " 2176 "clearing orphan list.\n"); 2177 es->s_last_orphan = 0; 2178 } 2179 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2180 return; 2181 } 2182 2183 if (s_flags & MS_RDONLY) { 2184 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2185 sb->s_flags &= ~MS_RDONLY; 2186 } 2187 #ifdef CONFIG_QUOTA 2188 /* Needed for iput() to work correctly and not trash data */ 2189 sb->s_flags |= MS_ACTIVE; 2190 /* Turn on quotas so that they are updated correctly */ 2191 for (i = 0; i < MAXQUOTAS; i++) { 2192 if (EXT4_SB(sb)->s_qf_names[i]) { 2193 int ret = ext4_quota_on_mount(sb, i); 2194 if (ret < 0) 2195 ext4_msg(sb, KERN_ERR, 2196 "Cannot turn on journaled " 2197 "quota: error %d", ret); 2198 } 2199 } 2200 #endif 2201 2202 while (es->s_last_orphan) { 2203 struct inode *inode; 2204 2205 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2206 if (IS_ERR(inode)) { 2207 es->s_last_orphan = 0; 2208 break; 2209 } 2210 2211 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2212 dquot_initialize(inode); 2213 if (inode->i_nlink) { 2214 ext4_msg(sb, KERN_DEBUG, 2215 "%s: truncating inode %lu to %lld bytes", 2216 __func__, inode->i_ino, inode->i_size); 2217 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2218 inode->i_ino, inode->i_size); 2219 ext4_truncate(inode); 2220 nr_truncates++; 2221 } else { 2222 ext4_msg(sb, KERN_DEBUG, 2223 "%s: deleting unreferenced inode %lu", 2224 __func__, inode->i_ino); 2225 jbd_debug(2, "deleting unreferenced inode %lu\n", 2226 inode->i_ino); 2227 nr_orphans++; 2228 } 2229 iput(inode); /* The delete magic happens here! */ 2230 } 2231 2232 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2233 2234 if (nr_orphans) 2235 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2236 PLURAL(nr_orphans)); 2237 if (nr_truncates) 2238 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2239 PLURAL(nr_truncates)); 2240 #ifdef CONFIG_QUOTA 2241 /* Turn quotas off */ 2242 for (i = 0; i < MAXQUOTAS; i++) { 2243 if (sb_dqopt(sb)->files[i]) 2244 dquot_quota_off(sb, i); 2245 } 2246 #endif 2247 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2248 } 2249 2250 /* 2251 * Maximal extent format file size. 2252 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2253 * extent format containers, within a sector_t, and within i_blocks 2254 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2255 * so that won't be a limiting factor. 2256 * 2257 * However there is other limiting factor. We do store extents in the form 2258 * of starting block and length, hence the resulting length of the extent 2259 * covering maximum file size must fit into on-disk format containers as 2260 * well. Given that length is always by 1 unit bigger than max unit (because 2261 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2262 * 2263 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2264 */ 2265 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2266 { 2267 loff_t res; 2268 loff_t upper_limit = MAX_LFS_FILESIZE; 2269 2270 /* small i_blocks in vfs inode? */ 2271 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2272 /* 2273 * CONFIG_LBDAF is not enabled implies the inode 2274 * i_block represent total blocks in 512 bytes 2275 * 32 == size of vfs inode i_blocks * 8 2276 */ 2277 upper_limit = (1LL << 32) - 1; 2278 2279 /* total blocks in file system block size */ 2280 upper_limit >>= (blkbits - 9); 2281 upper_limit <<= blkbits; 2282 } 2283 2284 /* 2285 * 32-bit extent-start container, ee_block. We lower the maxbytes 2286 * by one fs block, so ee_len can cover the extent of maximum file 2287 * size 2288 */ 2289 res = (1LL << 32) - 1; 2290 res <<= blkbits; 2291 2292 /* Sanity check against vm- & vfs- imposed limits */ 2293 if (res > upper_limit) 2294 res = upper_limit; 2295 2296 return res; 2297 } 2298 2299 /* 2300 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2301 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2302 * We need to be 1 filesystem block less than the 2^48 sector limit. 2303 */ 2304 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2305 { 2306 loff_t res = EXT4_NDIR_BLOCKS; 2307 int meta_blocks; 2308 loff_t upper_limit; 2309 /* This is calculated to be the largest file size for a dense, block 2310 * mapped file such that the file's total number of 512-byte sectors, 2311 * including data and all indirect blocks, does not exceed (2^48 - 1). 2312 * 2313 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2314 * number of 512-byte sectors of the file. 2315 */ 2316 2317 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2318 /* 2319 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2320 * the inode i_block field represents total file blocks in 2321 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2322 */ 2323 upper_limit = (1LL << 32) - 1; 2324 2325 /* total blocks in file system block size */ 2326 upper_limit >>= (bits - 9); 2327 2328 } else { 2329 /* 2330 * We use 48 bit ext4_inode i_blocks 2331 * With EXT4_HUGE_FILE_FL set the i_blocks 2332 * represent total number of blocks in 2333 * file system block size 2334 */ 2335 upper_limit = (1LL << 48) - 1; 2336 2337 } 2338 2339 /* indirect blocks */ 2340 meta_blocks = 1; 2341 /* double indirect blocks */ 2342 meta_blocks += 1 + (1LL << (bits-2)); 2343 /* tripple indirect blocks */ 2344 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2345 2346 upper_limit -= meta_blocks; 2347 upper_limit <<= bits; 2348 2349 res += 1LL << (bits-2); 2350 res += 1LL << (2*(bits-2)); 2351 res += 1LL << (3*(bits-2)); 2352 res <<= bits; 2353 if (res > upper_limit) 2354 res = upper_limit; 2355 2356 if (res > MAX_LFS_FILESIZE) 2357 res = MAX_LFS_FILESIZE; 2358 2359 return res; 2360 } 2361 2362 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2363 ext4_fsblk_t logical_sb_block, int nr) 2364 { 2365 struct ext4_sb_info *sbi = EXT4_SB(sb); 2366 ext4_group_t bg, first_meta_bg; 2367 int has_super = 0; 2368 2369 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2370 2371 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2372 nr < first_meta_bg) 2373 return logical_sb_block + nr + 1; 2374 bg = sbi->s_desc_per_block * nr; 2375 if (ext4_bg_has_super(sb, bg)) 2376 has_super = 1; 2377 2378 return (has_super + ext4_group_first_block_no(sb, bg)); 2379 } 2380 2381 /** 2382 * ext4_get_stripe_size: Get the stripe size. 2383 * @sbi: In memory super block info 2384 * 2385 * If we have specified it via mount option, then 2386 * use the mount option value. If the value specified at mount time is 2387 * greater than the blocks per group use the super block value. 2388 * If the super block value is greater than blocks per group return 0. 2389 * Allocator needs it be less than blocks per group. 2390 * 2391 */ 2392 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2393 { 2394 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2395 unsigned long stripe_width = 2396 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2397 int ret; 2398 2399 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2400 ret = sbi->s_stripe; 2401 else if (stripe_width <= sbi->s_blocks_per_group) 2402 ret = stripe_width; 2403 else if (stride <= sbi->s_blocks_per_group) 2404 ret = stride; 2405 else 2406 ret = 0; 2407 2408 /* 2409 * If the stripe width is 1, this makes no sense and 2410 * we set it to 0 to turn off stripe handling code. 2411 */ 2412 if (ret <= 1) 2413 ret = 0; 2414 2415 return ret; 2416 } 2417 2418 /* sysfs supprt */ 2419 2420 struct ext4_attr { 2421 struct attribute attr; 2422 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2423 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2424 const char *, size_t); 2425 int offset; 2426 }; 2427 2428 static int parse_strtoul(const char *buf, 2429 unsigned long max, unsigned long *value) 2430 { 2431 char *endp; 2432 2433 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2434 endp = skip_spaces(endp); 2435 if (*endp || *value > max) 2436 return -EINVAL; 2437 2438 return 0; 2439 } 2440 2441 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2442 struct ext4_sb_info *sbi, 2443 char *buf) 2444 { 2445 return snprintf(buf, PAGE_SIZE, "%llu\n", 2446 (s64) EXT4_C2B(sbi, 2447 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2448 } 2449 2450 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2451 struct ext4_sb_info *sbi, char *buf) 2452 { 2453 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2454 2455 if (!sb->s_bdev->bd_part) 2456 return snprintf(buf, PAGE_SIZE, "0\n"); 2457 return snprintf(buf, PAGE_SIZE, "%lu\n", 2458 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2459 sbi->s_sectors_written_start) >> 1); 2460 } 2461 2462 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2463 struct ext4_sb_info *sbi, char *buf) 2464 { 2465 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2466 2467 if (!sb->s_bdev->bd_part) 2468 return snprintf(buf, PAGE_SIZE, "0\n"); 2469 return snprintf(buf, PAGE_SIZE, "%llu\n", 2470 (unsigned long long)(sbi->s_kbytes_written + 2471 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2472 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2473 } 2474 2475 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2476 struct ext4_sb_info *sbi, 2477 const char *buf, size_t count) 2478 { 2479 unsigned long t; 2480 2481 if (parse_strtoul(buf, 0x40000000, &t)) 2482 return -EINVAL; 2483 2484 if (t && !is_power_of_2(t)) 2485 return -EINVAL; 2486 2487 sbi->s_inode_readahead_blks = t; 2488 return count; 2489 } 2490 2491 static ssize_t sbi_ui_show(struct ext4_attr *a, 2492 struct ext4_sb_info *sbi, char *buf) 2493 { 2494 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2495 2496 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2497 } 2498 2499 static ssize_t sbi_ui_store(struct ext4_attr *a, 2500 struct ext4_sb_info *sbi, 2501 const char *buf, size_t count) 2502 { 2503 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2504 unsigned long t; 2505 2506 if (parse_strtoul(buf, 0xffffffff, &t)) 2507 return -EINVAL; 2508 *ui = t; 2509 return count; 2510 } 2511 2512 static ssize_t trigger_test_error(struct ext4_attr *a, 2513 struct ext4_sb_info *sbi, 2514 const char *buf, size_t count) 2515 { 2516 int len = count; 2517 2518 if (!capable(CAP_SYS_ADMIN)) 2519 return -EPERM; 2520 2521 if (len && buf[len-1] == '\n') 2522 len--; 2523 2524 if (len) 2525 ext4_error(sbi->s_sb, "%.*s", len, buf); 2526 return count; 2527 } 2528 2529 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2530 static struct ext4_attr ext4_attr_##_name = { \ 2531 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2532 .show = _show, \ 2533 .store = _store, \ 2534 .offset = offsetof(struct ext4_sb_info, _elname), \ 2535 } 2536 #define EXT4_ATTR(name, mode, show, store) \ 2537 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2538 2539 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2540 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2541 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2542 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2543 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2544 #define ATTR_LIST(name) &ext4_attr_##name.attr 2545 2546 EXT4_RO_ATTR(delayed_allocation_blocks); 2547 EXT4_RO_ATTR(session_write_kbytes); 2548 EXT4_RO_ATTR(lifetime_write_kbytes); 2549 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2550 inode_readahead_blks_store, s_inode_readahead_blks); 2551 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2552 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2553 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2554 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2555 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2556 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2557 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2558 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2559 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2560 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2561 2562 static struct attribute *ext4_attrs[] = { 2563 ATTR_LIST(delayed_allocation_blocks), 2564 ATTR_LIST(session_write_kbytes), 2565 ATTR_LIST(lifetime_write_kbytes), 2566 ATTR_LIST(inode_readahead_blks), 2567 ATTR_LIST(inode_goal), 2568 ATTR_LIST(mb_stats), 2569 ATTR_LIST(mb_max_to_scan), 2570 ATTR_LIST(mb_min_to_scan), 2571 ATTR_LIST(mb_order2_req), 2572 ATTR_LIST(mb_stream_req), 2573 ATTR_LIST(mb_group_prealloc), 2574 ATTR_LIST(max_writeback_mb_bump), 2575 ATTR_LIST(extent_max_zeroout_kb), 2576 ATTR_LIST(trigger_fs_error), 2577 NULL, 2578 }; 2579 2580 /* Features this copy of ext4 supports */ 2581 EXT4_INFO_ATTR(lazy_itable_init); 2582 EXT4_INFO_ATTR(batched_discard); 2583 EXT4_INFO_ATTR(meta_bg_resize); 2584 2585 static struct attribute *ext4_feat_attrs[] = { 2586 ATTR_LIST(lazy_itable_init), 2587 ATTR_LIST(batched_discard), 2588 ATTR_LIST(meta_bg_resize), 2589 NULL, 2590 }; 2591 2592 static ssize_t ext4_attr_show(struct kobject *kobj, 2593 struct attribute *attr, char *buf) 2594 { 2595 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2596 s_kobj); 2597 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2598 2599 return a->show ? a->show(a, sbi, buf) : 0; 2600 } 2601 2602 static ssize_t ext4_attr_store(struct kobject *kobj, 2603 struct attribute *attr, 2604 const char *buf, size_t len) 2605 { 2606 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2607 s_kobj); 2608 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2609 2610 return a->store ? a->store(a, sbi, buf, len) : 0; 2611 } 2612 2613 static void ext4_sb_release(struct kobject *kobj) 2614 { 2615 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2616 s_kobj); 2617 complete(&sbi->s_kobj_unregister); 2618 } 2619 2620 static const struct sysfs_ops ext4_attr_ops = { 2621 .show = ext4_attr_show, 2622 .store = ext4_attr_store, 2623 }; 2624 2625 static struct kobj_type ext4_ktype = { 2626 .default_attrs = ext4_attrs, 2627 .sysfs_ops = &ext4_attr_ops, 2628 .release = ext4_sb_release, 2629 }; 2630 2631 static void ext4_feat_release(struct kobject *kobj) 2632 { 2633 complete(&ext4_feat->f_kobj_unregister); 2634 } 2635 2636 static struct kobj_type ext4_feat_ktype = { 2637 .default_attrs = ext4_feat_attrs, 2638 .sysfs_ops = &ext4_attr_ops, 2639 .release = ext4_feat_release, 2640 }; 2641 2642 /* 2643 * Check whether this filesystem can be mounted based on 2644 * the features present and the RDONLY/RDWR mount requested. 2645 * Returns 1 if this filesystem can be mounted as requested, 2646 * 0 if it cannot be. 2647 */ 2648 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2649 { 2650 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2651 ext4_msg(sb, KERN_ERR, 2652 "Couldn't mount because of " 2653 "unsupported optional features (%x)", 2654 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2655 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2656 return 0; 2657 } 2658 2659 if (readonly) 2660 return 1; 2661 2662 /* Check that feature set is OK for a read-write mount */ 2663 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2664 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2665 "unsupported optional features (%x)", 2666 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2667 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2668 return 0; 2669 } 2670 /* 2671 * Large file size enabled file system can only be mounted 2672 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2673 */ 2674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2675 if (sizeof(blkcnt_t) < sizeof(u64)) { 2676 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2677 "cannot be mounted RDWR without " 2678 "CONFIG_LBDAF"); 2679 return 0; 2680 } 2681 } 2682 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2683 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2684 ext4_msg(sb, KERN_ERR, 2685 "Can't support bigalloc feature without " 2686 "extents feature\n"); 2687 return 0; 2688 } 2689 2690 #ifndef CONFIG_QUOTA 2691 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2692 !readonly) { 2693 ext4_msg(sb, KERN_ERR, 2694 "Filesystem with quota feature cannot be mounted RDWR " 2695 "without CONFIG_QUOTA"); 2696 return 0; 2697 } 2698 #endif /* CONFIG_QUOTA */ 2699 return 1; 2700 } 2701 2702 /* 2703 * This function is called once a day if we have errors logged 2704 * on the file system 2705 */ 2706 static void print_daily_error_info(unsigned long arg) 2707 { 2708 struct super_block *sb = (struct super_block *) arg; 2709 struct ext4_sb_info *sbi; 2710 struct ext4_super_block *es; 2711 2712 sbi = EXT4_SB(sb); 2713 es = sbi->s_es; 2714 2715 if (es->s_error_count) 2716 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2717 le32_to_cpu(es->s_error_count)); 2718 if (es->s_first_error_time) { 2719 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2720 sb->s_id, le32_to_cpu(es->s_first_error_time), 2721 (int) sizeof(es->s_first_error_func), 2722 es->s_first_error_func, 2723 le32_to_cpu(es->s_first_error_line)); 2724 if (es->s_first_error_ino) 2725 printk(": inode %u", 2726 le32_to_cpu(es->s_first_error_ino)); 2727 if (es->s_first_error_block) 2728 printk(": block %llu", (unsigned long long) 2729 le64_to_cpu(es->s_first_error_block)); 2730 printk("\n"); 2731 } 2732 if (es->s_last_error_time) { 2733 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2734 sb->s_id, le32_to_cpu(es->s_last_error_time), 2735 (int) sizeof(es->s_last_error_func), 2736 es->s_last_error_func, 2737 le32_to_cpu(es->s_last_error_line)); 2738 if (es->s_last_error_ino) 2739 printk(": inode %u", 2740 le32_to_cpu(es->s_last_error_ino)); 2741 if (es->s_last_error_block) 2742 printk(": block %llu", (unsigned long long) 2743 le64_to_cpu(es->s_last_error_block)); 2744 printk("\n"); 2745 } 2746 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2747 } 2748 2749 /* Find next suitable group and run ext4_init_inode_table */ 2750 static int ext4_run_li_request(struct ext4_li_request *elr) 2751 { 2752 struct ext4_group_desc *gdp = NULL; 2753 ext4_group_t group, ngroups; 2754 struct super_block *sb; 2755 unsigned long timeout = 0; 2756 int ret = 0; 2757 2758 sb = elr->lr_super; 2759 ngroups = EXT4_SB(sb)->s_groups_count; 2760 2761 sb_start_write(sb); 2762 for (group = elr->lr_next_group; group < ngroups; group++) { 2763 gdp = ext4_get_group_desc(sb, group, NULL); 2764 if (!gdp) { 2765 ret = 1; 2766 break; 2767 } 2768 2769 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2770 break; 2771 } 2772 2773 if (group == ngroups) 2774 ret = 1; 2775 2776 if (!ret) { 2777 timeout = jiffies; 2778 ret = ext4_init_inode_table(sb, group, 2779 elr->lr_timeout ? 0 : 1); 2780 if (elr->lr_timeout == 0) { 2781 timeout = (jiffies - timeout) * 2782 elr->lr_sbi->s_li_wait_mult; 2783 elr->lr_timeout = timeout; 2784 } 2785 elr->lr_next_sched = jiffies + elr->lr_timeout; 2786 elr->lr_next_group = group + 1; 2787 } 2788 sb_end_write(sb); 2789 2790 return ret; 2791 } 2792 2793 /* 2794 * Remove lr_request from the list_request and free the 2795 * request structure. Should be called with li_list_mtx held 2796 */ 2797 static void ext4_remove_li_request(struct ext4_li_request *elr) 2798 { 2799 struct ext4_sb_info *sbi; 2800 2801 if (!elr) 2802 return; 2803 2804 sbi = elr->lr_sbi; 2805 2806 list_del(&elr->lr_request); 2807 sbi->s_li_request = NULL; 2808 kfree(elr); 2809 } 2810 2811 static void ext4_unregister_li_request(struct super_block *sb) 2812 { 2813 mutex_lock(&ext4_li_mtx); 2814 if (!ext4_li_info) { 2815 mutex_unlock(&ext4_li_mtx); 2816 return; 2817 } 2818 2819 mutex_lock(&ext4_li_info->li_list_mtx); 2820 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2821 mutex_unlock(&ext4_li_info->li_list_mtx); 2822 mutex_unlock(&ext4_li_mtx); 2823 } 2824 2825 static struct task_struct *ext4_lazyinit_task; 2826 2827 /* 2828 * This is the function where ext4lazyinit thread lives. It walks 2829 * through the request list searching for next scheduled filesystem. 2830 * When such a fs is found, run the lazy initialization request 2831 * (ext4_rn_li_request) and keep track of the time spend in this 2832 * function. Based on that time we compute next schedule time of 2833 * the request. When walking through the list is complete, compute 2834 * next waking time and put itself into sleep. 2835 */ 2836 static int ext4_lazyinit_thread(void *arg) 2837 { 2838 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2839 struct list_head *pos, *n; 2840 struct ext4_li_request *elr; 2841 unsigned long next_wakeup, cur; 2842 2843 BUG_ON(NULL == eli); 2844 2845 cont_thread: 2846 while (true) { 2847 next_wakeup = MAX_JIFFY_OFFSET; 2848 2849 mutex_lock(&eli->li_list_mtx); 2850 if (list_empty(&eli->li_request_list)) { 2851 mutex_unlock(&eli->li_list_mtx); 2852 goto exit_thread; 2853 } 2854 2855 list_for_each_safe(pos, n, &eli->li_request_list) { 2856 elr = list_entry(pos, struct ext4_li_request, 2857 lr_request); 2858 2859 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2860 if (ext4_run_li_request(elr) != 0) { 2861 /* error, remove the lazy_init job */ 2862 ext4_remove_li_request(elr); 2863 continue; 2864 } 2865 } 2866 2867 if (time_before(elr->lr_next_sched, next_wakeup)) 2868 next_wakeup = elr->lr_next_sched; 2869 } 2870 mutex_unlock(&eli->li_list_mtx); 2871 2872 try_to_freeze(); 2873 2874 cur = jiffies; 2875 if ((time_after_eq(cur, next_wakeup)) || 2876 (MAX_JIFFY_OFFSET == next_wakeup)) { 2877 cond_resched(); 2878 continue; 2879 } 2880 2881 schedule_timeout_interruptible(next_wakeup - cur); 2882 2883 if (kthread_should_stop()) { 2884 ext4_clear_request_list(); 2885 goto exit_thread; 2886 } 2887 } 2888 2889 exit_thread: 2890 /* 2891 * It looks like the request list is empty, but we need 2892 * to check it under the li_list_mtx lock, to prevent any 2893 * additions into it, and of course we should lock ext4_li_mtx 2894 * to atomically free the list and ext4_li_info, because at 2895 * this point another ext4 filesystem could be registering 2896 * new one. 2897 */ 2898 mutex_lock(&ext4_li_mtx); 2899 mutex_lock(&eli->li_list_mtx); 2900 if (!list_empty(&eli->li_request_list)) { 2901 mutex_unlock(&eli->li_list_mtx); 2902 mutex_unlock(&ext4_li_mtx); 2903 goto cont_thread; 2904 } 2905 mutex_unlock(&eli->li_list_mtx); 2906 kfree(ext4_li_info); 2907 ext4_li_info = NULL; 2908 mutex_unlock(&ext4_li_mtx); 2909 2910 return 0; 2911 } 2912 2913 static void ext4_clear_request_list(void) 2914 { 2915 struct list_head *pos, *n; 2916 struct ext4_li_request *elr; 2917 2918 mutex_lock(&ext4_li_info->li_list_mtx); 2919 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2920 elr = list_entry(pos, struct ext4_li_request, 2921 lr_request); 2922 ext4_remove_li_request(elr); 2923 } 2924 mutex_unlock(&ext4_li_info->li_list_mtx); 2925 } 2926 2927 static int ext4_run_lazyinit_thread(void) 2928 { 2929 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2930 ext4_li_info, "ext4lazyinit"); 2931 if (IS_ERR(ext4_lazyinit_task)) { 2932 int err = PTR_ERR(ext4_lazyinit_task); 2933 ext4_clear_request_list(); 2934 kfree(ext4_li_info); 2935 ext4_li_info = NULL; 2936 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2937 "initialization thread\n", 2938 err); 2939 return err; 2940 } 2941 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2942 return 0; 2943 } 2944 2945 /* 2946 * Check whether it make sense to run itable init. thread or not. 2947 * If there is at least one uninitialized inode table, return 2948 * corresponding group number, else the loop goes through all 2949 * groups and return total number of groups. 2950 */ 2951 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2952 { 2953 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2954 struct ext4_group_desc *gdp = NULL; 2955 2956 for (group = 0; group < ngroups; group++) { 2957 gdp = ext4_get_group_desc(sb, group, NULL); 2958 if (!gdp) 2959 continue; 2960 2961 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2962 break; 2963 } 2964 2965 return group; 2966 } 2967 2968 static int ext4_li_info_new(void) 2969 { 2970 struct ext4_lazy_init *eli = NULL; 2971 2972 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2973 if (!eli) 2974 return -ENOMEM; 2975 2976 INIT_LIST_HEAD(&eli->li_request_list); 2977 mutex_init(&eli->li_list_mtx); 2978 2979 eli->li_state |= EXT4_LAZYINIT_QUIT; 2980 2981 ext4_li_info = eli; 2982 2983 return 0; 2984 } 2985 2986 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2987 ext4_group_t start) 2988 { 2989 struct ext4_sb_info *sbi = EXT4_SB(sb); 2990 struct ext4_li_request *elr; 2991 unsigned long rnd; 2992 2993 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2994 if (!elr) 2995 return NULL; 2996 2997 elr->lr_super = sb; 2998 elr->lr_sbi = sbi; 2999 elr->lr_next_group = start; 3000 3001 /* 3002 * Randomize first schedule time of the request to 3003 * spread the inode table initialization requests 3004 * better. 3005 */ 3006 get_random_bytes(&rnd, sizeof(rnd)); 3007 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3008 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3009 3010 return elr; 3011 } 3012 3013 static int ext4_register_li_request(struct super_block *sb, 3014 ext4_group_t first_not_zeroed) 3015 { 3016 struct ext4_sb_info *sbi = EXT4_SB(sb); 3017 struct ext4_li_request *elr; 3018 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3019 int ret = 0; 3020 3021 if (sbi->s_li_request != NULL) { 3022 /* 3023 * Reset timeout so it can be computed again, because 3024 * s_li_wait_mult might have changed. 3025 */ 3026 sbi->s_li_request->lr_timeout = 0; 3027 return 0; 3028 } 3029 3030 if (first_not_zeroed == ngroups || 3031 (sb->s_flags & MS_RDONLY) || 3032 !test_opt(sb, INIT_INODE_TABLE)) 3033 return 0; 3034 3035 elr = ext4_li_request_new(sb, first_not_zeroed); 3036 if (!elr) 3037 return -ENOMEM; 3038 3039 mutex_lock(&ext4_li_mtx); 3040 3041 if (NULL == ext4_li_info) { 3042 ret = ext4_li_info_new(); 3043 if (ret) 3044 goto out; 3045 } 3046 3047 mutex_lock(&ext4_li_info->li_list_mtx); 3048 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3049 mutex_unlock(&ext4_li_info->li_list_mtx); 3050 3051 sbi->s_li_request = elr; 3052 /* 3053 * set elr to NULL here since it has been inserted to 3054 * the request_list and the removal and free of it is 3055 * handled by ext4_clear_request_list from now on. 3056 */ 3057 elr = NULL; 3058 3059 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3060 ret = ext4_run_lazyinit_thread(); 3061 if (ret) 3062 goto out; 3063 } 3064 out: 3065 mutex_unlock(&ext4_li_mtx); 3066 if (ret) 3067 kfree(elr); 3068 return ret; 3069 } 3070 3071 /* 3072 * We do not need to lock anything since this is called on 3073 * module unload. 3074 */ 3075 static void ext4_destroy_lazyinit_thread(void) 3076 { 3077 /* 3078 * If thread exited earlier 3079 * there's nothing to be done. 3080 */ 3081 if (!ext4_li_info || !ext4_lazyinit_task) 3082 return; 3083 3084 kthread_stop(ext4_lazyinit_task); 3085 } 3086 3087 static int set_journal_csum_feature_set(struct super_block *sb) 3088 { 3089 int ret = 1; 3090 int compat, incompat; 3091 struct ext4_sb_info *sbi = EXT4_SB(sb); 3092 3093 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3094 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3095 /* journal checksum v2 */ 3096 compat = 0; 3097 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3098 } else { 3099 /* journal checksum v1 */ 3100 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3101 incompat = 0; 3102 } 3103 3104 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3105 ret = jbd2_journal_set_features(sbi->s_journal, 3106 compat, 0, 3107 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3108 incompat); 3109 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3110 ret = jbd2_journal_set_features(sbi->s_journal, 3111 compat, 0, 3112 incompat); 3113 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3114 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3115 } else { 3116 jbd2_journal_clear_features(sbi->s_journal, 3117 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3118 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3119 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3120 } 3121 3122 return ret; 3123 } 3124 3125 /* 3126 * Note: calculating the overhead so we can be compatible with 3127 * historical BSD practice is quite difficult in the face of 3128 * clusters/bigalloc. This is because multiple metadata blocks from 3129 * different block group can end up in the same allocation cluster. 3130 * Calculating the exact overhead in the face of clustered allocation 3131 * requires either O(all block bitmaps) in memory or O(number of block 3132 * groups**2) in time. We will still calculate the superblock for 3133 * older file systems --- and if we come across with a bigalloc file 3134 * system with zero in s_overhead_clusters the estimate will be close to 3135 * correct especially for very large cluster sizes --- but for newer 3136 * file systems, it's better to calculate this figure once at mkfs 3137 * time, and store it in the superblock. If the superblock value is 3138 * present (even for non-bigalloc file systems), we will use it. 3139 */ 3140 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3141 char *buf) 3142 { 3143 struct ext4_sb_info *sbi = EXT4_SB(sb); 3144 struct ext4_group_desc *gdp; 3145 ext4_fsblk_t first_block, last_block, b; 3146 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3147 int s, j, count = 0; 3148 3149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3150 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3151 sbi->s_itb_per_group + 2); 3152 3153 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3154 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3155 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3156 for (i = 0; i < ngroups; i++) { 3157 gdp = ext4_get_group_desc(sb, i, NULL); 3158 b = ext4_block_bitmap(sb, gdp); 3159 if (b >= first_block && b <= last_block) { 3160 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3161 count++; 3162 } 3163 b = ext4_inode_bitmap(sb, gdp); 3164 if (b >= first_block && b <= last_block) { 3165 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3166 count++; 3167 } 3168 b = ext4_inode_table(sb, gdp); 3169 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3170 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3171 int c = EXT4_B2C(sbi, b - first_block); 3172 ext4_set_bit(c, buf); 3173 count++; 3174 } 3175 if (i != grp) 3176 continue; 3177 s = 0; 3178 if (ext4_bg_has_super(sb, grp)) { 3179 ext4_set_bit(s++, buf); 3180 count++; 3181 } 3182 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3183 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3184 count++; 3185 } 3186 } 3187 if (!count) 3188 return 0; 3189 return EXT4_CLUSTERS_PER_GROUP(sb) - 3190 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3191 } 3192 3193 /* 3194 * Compute the overhead and stash it in sbi->s_overhead 3195 */ 3196 int ext4_calculate_overhead(struct super_block *sb) 3197 { 3198 struct ext4_sb_info *sbi = EXT4_SB(sb); 3199 struct ext4_super_block *es = sbi->s_es; 3200 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3201 ext4_fsblk_t overhead = 0; 3202 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3203 3204 memset(buf, 0, PAGE_SIZE); 3205 if (!buf) 3206 return -ENOMEM; 3207 3208 /* 3209 * Compute the overhead (FS structures). This is constant 3210 * for a given filesystem unless the number of block groups 3211 * changes so we cache the previous value until it does. 3212 */ 3213 3214 /* 3215 * All of the blocks before first_data_block are overhead 3216 */ 3217 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3218 3219 /* 3220 * Add the overhead found in each block group 3221 */ 3222 for (i = 0; i < ngroups; i++) { 3223 int blks; 3224 3225 blks = count_overhead(sb, i, buf); 3226 overhead += blks; 3227 if (blks) 3228 memset(buf, 0, PAGE_SIZE); 3229 cond_resched(); 3230 } 3231 sbi->s_overhead = overhead; 3232 smp_wmb(); 3233 free_page((unsigned long) buf); 3234 return 0; 3235 } 3236 3237 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3238 { 3239 char *orig_data = kstrdup(data, GFP_KERNEL); 3240 struct buffer_head *bh; 3241 struct ext4_super_block *es = NULL; 3242 struct ext4_sb_info *sbi; 3243 ext4_fsblk_t block; 3244 ext4_fsblk_t sb_block = get_sb_block(&data); 3245 ext4_fsblk_t logical_sb_block; 3246 unsigned long offset = 0; 3247 unsigned long journal_devnum = 0; 3248 unsigned long def_mount_opts; 3249 struct inode *root; 3250 char *cp; 3251 const char *descr; 3252 int ret = -ENOMEM; 3253 int blocksize, clustersize; 3254 unsigned int db_count; 3255 unsigned int i; 3256 int needs_recovery, has_huge_files, has_bigalloc; 3257 __u64 blocks_count; 3258 int err; 3259 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3260 ext4_group_t first_not_zeroed; 3261 3262 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3263 if (!sbi) 3264 goto out_free_orig; 3265 3266 sbi->s_blockgroup_lock = 3267 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3268 if (!sbi->s_blockgroup_lock) { 3269 kfree(sbi); 3270 goto out_free_orig; 3271 } 3272 sb->s_fs_info = sbi; 3273 sbi->s_sb = sb; 3274 sbi->s_mount_opt = 0; 3275 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 3276 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 3277 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3278 sbi->s_sb_block = sb_block; 3279 if (sb->s_bdev->bd_part) 3280 sbi->s_sectors_written_start = 3281 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3282 3283 /* Cleanup superblock name */ 3284 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3285 *cp = '!'; 3286 3287 ret = -EINVAL; 3288 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3289 if (!blocksize) { 3290 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3291 goto out_fail; 3292 } 3293 3294 /* 3295 * The ext4 superblock will not be buffer aligned for other than 1kB 3296 * block sizes. We need to calculate the offset from buffer start. 3297 */ 3298 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3299 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3300 offset = do_div(logical_sb_block, blocksize); 3301 } else { 3302 logical_sb_block = sb_block; 3303 } 3304 3305 if (!(bh = sb_bread(sb, logical_sb_block))) { 3306 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3307 goto out_fail; 3308 } 3309 /* 3310 * Note: s_es must be initialized as soon as possible because 3311 * some ext4 macro-instructions depend on its value 3312 */ 3313 es = (struct ext4_super_block *) (bh->b_data + offset); 3314 sbi->s_es = es; 3315 sb->s_magic = le16_to_cpu(es->s_magic); 3316 if (sb->s_magic != EXT4_SUPER_MAGIC) 3317 goto cantfind_ext4; 3318 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3319 3320 /* Warn if metadata_csum and gdt_csum are both set. */ 3321 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3322 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3323 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3324 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3325 "redundant flags; please run fsck."); 3326 3327 /* Check for a known checksum algorithm */ 3328 if (!ext4_verify_csum_type(sb, es)) { 3329 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3330 "unknown checksum algorithm."); 3331 silent = 1; 3332 goto cantfind_ext4; 3333 } 3334 3335 /* Load the checksum driver */ 3336 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3337 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3338 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3339 if (IS_ERR(sbi->s_chksum_driver)) { 3340 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3341 ret = PTR_ERR(sbi->s_chksum_driver); 3342 sbi->s_chksum_driver = NULL; 3343 goto failed_mount; 3344 } 3345 } 3346 3347 /* Check superblock checksum */ 3348 if (!ext4_superblock_csum_verify(sb, es)) { 3349 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3350 "invalid superblock checksum. Run e2fsck?"); 3351 silent = 1; 3352 goto cantfind_ext4; 3353 } 3354 3355 /* Precompute checksum seed for all metadata */ 3356 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3357 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3358 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3359 sizeof(es->s_uuid)); 3360 3361 /* Set defaults before we parse the mount options */ 3362 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3363 set_opt(sb, INIT_INODE_TABLE); 3364 if (def_mount_opts & EXT4_DEFM_DEBUG) 3365 set_opt(sb, DEBUG); 3366 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3367 set_opt(sb, GRPID); 3368 if (def_mount_opts & EXT4_DEFM_UID16) 3369 set_opt(sb, NO_UID32); 3370 /* xattr user namespace & acls are now defaulted on */ 3371 #ifdef CONFIG_EXT4_FS_XATTR 3372 set_opt(sb, XATTR_USER); 3373 #endif 3374 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3375 set_opt(sb, POSIX_ACL); 3376 #endif 3377 set_opt(sb, MBLK_IO_SUBMIT); 3378 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3379 set_opt(sb, JOURNAL_DATA); 3380 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3381 set_opt(sb, ORDERED_DATA); 3382 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3383 set_opt(sb, WRITEBACK_DATA); 3384 3385 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3386 set_opt(sb, ERRORS_PANIC); 3387 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3388 set_opt(sb, ERRORS_CONT); 3389 else 3390 set_opt(sb, ERRORS_RO); 3391 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3392 set_opt(sb, BLOCK_VALIDITY); 3393 if (def_mount_opts & EXT4_DEFM_DISCARD) 3394 set_opt(sb, DISCARD); 3395 3396 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3397 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3398 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3399 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3400 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3401 3402 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3403 set_opt(sb, BARRIER); 3404 3405 /* 3406 * enable delayed allocation by default 3407 * Use -o nodelalloc to turn it off 3408 */ 3409 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3410 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3411 set_opt(sb, DELALLOC); 3412 3413 /* 3414 * set default s_li_wait_mult for lazyinit, for the case there is 3415 * no mount option specified. 3416 */ 3417 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3418 3419 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3420 &journal_devnum, &journal_ioprio, 0)) { 3421 ext4_msg(sb, KERN_WARNING, 3422 "failed to parse options in superblock: %s", 3423 sbi->s_es->s_mount_opts); 3424 } 3425 sbi->s_def_mount_opt = sbi->s_mount_opt; 3426 if (!parse_options((char *) data, sb, &journal_devnum, 3427 &journal_ioprio, 0)) 3428 goto failed_mount; 3429 3430 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3431 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3432 "with data=journal disables delayed " 3433 "allocation and O_DIRECT support!\n"); 3434 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3435 ext4_msg(sb, KERN_ERR, "can't mount with " 3436 "both data=journal and delalloc"); 3437 goto failed_mount; 3438 } 3439 if (test_opt(sb, DIOREAD_NOLOCK)) { 3440 ext4_msg(sb, KERN_ERR, "can't mount with " 3441 "both data=journal and delalloc"); 3442 goto failed_mount; 3443 } 3444 if (test_opt(sb, DELALLOC)) 3445 clear_opt(sb, DELALLOC); 3446 } 3447 3448 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3449 if (test_opt(sb, DIOREAD_NOLOCK)) { 3450 if (blocksize < PAGE_SIZE) { 3451 ext4_msg(sb, KERN_ERR, "can't mount with " 3452 "dioread_nolock if block size != PAGE_SIZE"); 3453 goto failed_mount; 3454 } 3455 } 3456 3457 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3458 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3459 3460 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3461 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3462 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3463 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3464 ext4_msg(sb, KERN_WARNING, 3465 "feature flags set on rev 0 fs, " 3466 "running e2fsck is recommended"); 3467 3468 if (IS_EXT2_SB(sb)) { 3469 if (ext2_feature_set_ok(sb)) 3470 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3471 "using the ext4 subsystem"); 3472 else { 3473 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3474 "to feature incompatibilities"); 3475 goto failed_mount; 3476 } 3477 } 3478 3479 if (IS_EXT3_SB(sb)) { 3480 if (ext3_feature_set_ok(sb)) 3481 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3482 "using the ext4 subsystem"); 3483 else { 3484 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3485 "to feature incompatibilities"); 3486 goto failed_mount; 3487 } 3488 } 3489 3490 /* 3491 * Check feature flags regardless of the revision level, since we 3492 * previously didn't change the revision level when setting the flags, 3493 * so there is a chance incompat flags are set on a rev 0 filesystem. 3494 */ 3495 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3496 goto failed_mount; 3497 3498 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3499 blocksize > EXT4_MAX_BLOCK_SIZE) { 3500 ext4_msg(sb, KERN_ERR, 3501 "Unsupported filesystem blocksize %d", blocksize); 3502 goto failed_mount; 3503 } 3504 3505 if (sb->s_blocksize != blocksize) { 3506 /* Validate the filesystem blocksize */ 3507 if (!sb_set_blocksize(sb, blocksize)) { 3508 ext4_msg(sb, KERN_ERR, "bad block size %d", 3509 blocksize); 3510 goto failed_mount; 3511 } 3512 3513 brelse(bh); 3514 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3515 offset = do_div(logical_sb_block, blocksize); 3516 bh = sb_bread(sb, logical_sb_block); 3517 if (!bh) { 3518 ext4_msg(sb, KERN_ERR, 3519 "Can't read superblock on 2nd try"); 3520 goto failed_mount; 3521 } 3522 es = (struct ext4_super_block *)(bh->b_data + offset); 3523 sbi->s_es = es; 3524 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3525 ext4_msg(sb, KERN_ERR, 3526 "Magic mismatch, very weird!"); 3527 goto failed_mount; 3528 } 3529 } 3530 3531 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3532 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3533 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3534 has_huge_files); 3535 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3536 3537 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3538 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3539 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3540 } else { 3541 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3542 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3543 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3544 (!is_power_of_2(sbi->s_inode_size)) || 3545 (sbi->s_inode_size > blocksize)) { 3546 ext4_msg(sb, KERN_ERR, 3547 "unsupported inode size: %d", 3548 sbi->s_inode_size); 3549 goto failed_mount; 3550 } 3551 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3552 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3553 } 3554 3555 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3556 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3557 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3558 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3559 !is_power_of_2(sbi->s_desc_size)) { 3560 ext4_msg(sb, KERN_ERR, 3561 "unsupported descriptor size %lu", 3562 sbi->s_desc_size); 3563 goto failed_mount; 3564 } 3565 } else 3566 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3567 3568 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3569 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3570 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3571 goto cantfind_ext4; 3572 3573 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3574 if (sbi->s_inodes_per_block == 0) 3575 goto cantfind_ext4; 3576 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3577 sbi->s_inodes_per_block; 3578 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3579 sbi->s_sbh = bh; 3580 sbi->s_mount_state = le16_to_cpu(es->s_state); 3581 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3582 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3583 3584 for (i = 0; i < 4; i++) 3585 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3586 sbi->s_def_hash_version = es->s_def_hash_version; 3587 i = le32_to_cpu(es->s_flags); 3588 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3589 sbi->s_hash_unsigned = 3; 3590 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3591 #ifdef __CHAR_UNSIGNED__ 3592 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3593 sbi->s_hash_unsigned = 3; 3594 #else 3595 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3596 #endif 3597 } 3598 3599 /* Handle clustersize */ 3600 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3601 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3602 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3603 if (has_bigalloc) { 3604 if (clustersize < blocksize) { 3605 ext4_msg(sb, KERN_ERR, 3606 "cluster size (%d) smaller than " 3607 "block size (%d)", clustersize, blocksize); 3608 goto failed_mount; 3609 } 3610 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3611 le32_to_cpu(es->s_log_block_size); 3612 sbi->s_clusters_per_group = 3613 le32_to_cpu(es->s_clusters_per_group); 3614 if (sbi->s_clusters_per_group > blocksize * 8) { 3615 ext4_msg(sb, KERN_ERR, 3616 "#clusters per group too big: %lu", 3617 sbi->s_clusters_per_group); 3618 goto failed_mount; 3619 } 3620 if (sbi->s_blocks_per_group != 3621 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3622 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3623 "clusters per group (%lu) inconsistent", 3624 sbi->s_blocks_per_group, 3625 sbi->s_clusters_per_group); 3626 goto failed_mount; 3627 } 3628 } else { 3629 if (clustersize != blocksize) { 3630 ext4_warning(sb, "fragment/cluster size (%d) != " 3631 "block size (%d)", clustersize, 3632 blocksize); 3633 clustersize = blocksize; 3634 } 3635 if (sbi->s_blocks_per_group > blocksize * 8) { 3636 ext4_msg(sb, KERN_ERR, 3637 "#blocks per group too big: %lu", 3638 sbi->s_blocks_per_group); 3639 goto failed_mount; 3640 } 3641 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3642 sbi->s_cluster_bits = 0; 3643 } 3644 sbi->s_cluster_ratio = clustersize / blocksize; 3645 3646 if (sbi->s_inodes_per_group > blocksize * 8) { 3647 ext4_msg(sb, KERN_ERR, 3648 "#inodes per group too big: %lu", 3649 sbi->s_inodes_per_group); 3650 goto failed_mount; 3651 } 3652 3653 /* 3654 * Test whether we have more sectors than will fit in sector_t, 3655 * and whether the max offset is addressable by the page cache. 3656 */ 3657 err = generic_check_addressable(sb->s_blocksize_bits, 3658 ext4_blocks_count(es)); 3659 if (err) { 3660 ext4_msg(sb, KERN_ERR, "filesystem" 3661 " too large to mount safely on this system"); 3662 if (sizeof(sector_t) < 8) 3663 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3664 ret = err; 3665 goto failed_mount; 3666 } 3667 3668 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3669 goto cantfind_ext4; 3670 3671 /* check blocks count against device size */ 3672 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3673 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3674 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3675 "exceeds size of device (%llu blocks)", 3676 ext4_blocks_count(es), blocks_count); 3677 goto failed_mount; 3678 } 3679 3680 /* 3681 * It makes no sense for the first data block to be beyond the end 3682 * of the filesystem. 3683 */ 3684 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3685 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3686 "block %u is beyond end of filesystem (%llu)", 3687 le32_to_cpu(es->s_first_data_block), 3688 ext4_blocks_count(es)); 3689 goto failed_mount; 3690 } 3691 blocks_count = (ext4_blocks_count(es) - 3692 le32_to_cpu(es->s_first_data_block) + 3693 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3694 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3695 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3696 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3697 "(block count %llu, first data block %u, " 3698 "blocks per group %lu)", sbi->s_groups_count, 3699 ext4_blocks_count(es), 3700 le32_to_cpu(es->s_first_data_block), 3701 EXT4_BLOCKS_PER_GROUP(sb)); 3702 goto failed_mount; 3703 } 3704 sbi->s_groups_count = blocks_count; 3705 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3706 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3707 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3708 EXT4_DESC_PER_BLOCK(sb); 3709 sbi->s_group_desc = ext4_kvmalloc(db_count * 3710 sizeof(struct buffer_head *), 3711 GFP_KERNEL); 3712 if (sbi->s_group_desc == NULL) { 3713 ext4_msg(sb, KERN_ERR, "not enough memory"); 3714 ret = -ENOMEM; 3715 goto failed_mount; 3716 } 3717 3718 if (ext4_proc_root) 3719 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3720 3721 if (sbi->s_proc) 3722 proc_create_data("options", S_IRUGO, sbi->s_proc, 3723 &ext4_seq_options_fops, sb); 3724 3725 bgl_lock_init(sbi->s_blockgroup_lock); 3726 3727 for (i = 0; i < db_count; i++) { 3728 block = descriptor_loc(sb, logical_sb_block, i); 3729 sbi->s_group_desc[i] = sb_bread(sb, block); 3730 if (!sbi->s_group_desc[i]) { 3731 ext4_msg(sb, KERN_ERR, 3732 "can't read group descriptor %d", i); 3733 db_count = i; 3734 goto failed_mount2; 3735 } 3736 } 3737 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3738 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3739 goto failed_mount2; 3740 } 3741 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3742 if (!ext4_fill_flex_info(sb)) { 3743 ext4_msg(sb, KERN_ERR, 3744 "unable to initialize " 3745 "flex_bg meta info!"); 3746 goto failed_mount2; 3747 } 3748 3749 sbi->s_gdb_count = db_count; 3750 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3751 spin_lock_init(&sbi->s_next_gen_lock); 3752 3753 init_timer(&sbi->s_err_report); 3754 sbi->s_err_report.function = print_daily_error_info; 3755 sbi->s_err_report.data = (unsigned long) sb; 3756 3757 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3758 ext4_count_free_clusters(sb)); 3759 if (!err) { 3760 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3761 ext4_count_free_inodes(sb)); 3762 } 3763 if (!err) { 3764 err = percpu_counter_init(&sbi->s_dirs_counter, 3765 ext4_count_dirs(sb)); 3766 } 3767 if (!err) { 3768 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3769 } 3770 if (err) { 3771 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3772 ret = err; 3773 goto failed_mount3; 3774 } 3775 3776 sbi->s_stripe = ext4_get_stripe_size(sbi); 3777 sbi->s_max_writeback_mb_bump = 128; 3778 sbi->s_extent_max_zeroout_kb = 32; 3779 3780 /* 3781 * set up enough so that it can read an inode 3782 */ 3783 if (!test_opt(sb, NOLOAD) && 3784 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3785 sb->s_op = &ext4_sops; 3786 else 3787 sb->s_op = &ext4_nojournal_sops; 3788 sb->s_export_op = &ext4_export_ops; 3789 sb->s_xattr = ext4_xattr_handlers; 3790 #ifdef CONFIG_QUOTA 3791 sb->s_qcop = &ext4_qctl_operations; 3792 sb->dq_op = &ext4_quota_operations; 3793 3794 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 3795 /* Use qctl operations for hidden quota files. */ 3796 sb->s_qcop = &ext4_qctl_sysfile_operations; 3797 } 3798 #endif 3799 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3800 3801 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3802 mutex_init(&sbi->s_orphan_lock); 3803 sbi->s_resize_flags = 0; 3804 3805 sb->s_root = NULL; 3806 3807 needs_recovery = (es->s_last_orphan != 0 || 3808 EXT4_HAS_INCOMPAT_FEATURE(sb, 3809 EXT4_FEATURE_INCOMPAT_RECOVER)); 3810 3811 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3812 !(sb->s_flags & MS_RDONLY)) 3813 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3814 goto failed_mount3; 3815 3816 /* 3817 * The first inode we look at is the journal inode. Don't try 3818 * root first: it may be modified in the journal! 3819 */ 3820 if (!test_opt(sb, NOLOAD) && 3821 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3822 if (ext4_load_journal(sb, es, journal_devnum)) 3823 goto failed_mount3; 3824 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3825 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3826 ext4_msg(sb, KERN_ERR, "required journal recovery " 3827 "suppressed and not mounted read-only"); 3828 goto failed_mount_wq; 3829 } else { 3830 clear_opt(sb, DATA_FLAGS); 3831 sbi->s_journal = NULL; 3832 needs_recovery = 0; 3833 goto no_journal; 3834 } 3835 3836 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3837 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3838 JBD2_FEATURE_INCOMPAT_64BIT)) { 3839 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3840 goto failed_mount_wq; 3841 } 3842 3843 if (!set_journal_csum_feature_set(sb)) { 3844 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3845 "feature set"); 3846 goto failed_mount_wq; 3847 } 3848 3849 /* We have now updated the journal if required, so we can 3850 * validate the data journaling mode. */ 3851 switch (test_opt(sb, DATA_FLAGS)) { 3852 case 0: 3853 /* No mode set, assume a default based on the journal 3854 * capabilities: ORDERED_DATA if the journal can 3855 * cope, else JOURNAL_DATA 3856 */ 3857 if (jbd2_journal_check_available_features 3858 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3859 set_opt(sb, ORDERED_DATA); 3860 else 3861 set_opt(sb, JOURNAL_DATA); 3862 break; 3863 3864 case EXT4_MOUNT_ORDERED_DATA: 3865 case EXT4_MOUNT_WRITEBACK_DATA: 3866 if (!jbd2_journal_check_available_features 3867 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3868 ext4_msg(sb, KERN_ERR, "Journal does not support " 3869 "requested data journaling mode"); 3870 goto failed_mount_wq; 3871 } 3872 default: 3873 break; 3874 } 3875 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3876 3877 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3878 3879 /* 3880 * The journal may have updated the bg summary counts, so we 3881 * need to update the global counters. 3882 */ 3883 percpu_counter_set(&sbi->s_freeclusters_counter, 3884 ext4_count_free_clusters(sb)); 3885 percpu_counter_set(&sbi->s_freeinodes_counter, 3886 ext4_count_free_inodes(sb)); 3887 percpu_counter_set(&sbi->s_dirs_counter, 3888 ext4_count_dirs(sb)); 3889 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3890 3891 no_journal: 3892 /* 3893 * Get the # of file system overhead blocks from the 3894 * superblock if present. 3895 */ 3896 if (es->s_overhead_clusters) 3897 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3898 else { 3899 ret = ext4_calculate_overhead(sb); 3900 if (ret) 3901 goto failed_mount_wq; 3902 } 3903 3904 /* 3905 * The maximum number of concurrent works can be high and 3906 * concurrency isn't really necessary. Limit it to 1. 3907 */ 3908 EXT4_SB(sb)->dio_unwritten_wq = 3909 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3910 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3911 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3912 goto failed_mount_wq; 3913 } 3914 3915 /* 3916 * The jbd2_journal_load will have done any necessary log recovery, 3917 * so we can safely mount the rest of the filesystem now. 3918 */ 3919 3920 root = ext4_iget(sb, EXT4_ROOT_INO); 3921 if (IS_ERR(root)) { 3922 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3923 ret = PTR_ERR(root); 3924 root = NULL; 3925 goto failed_mount4; 3926 } 3927 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3928 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3929 iput(root); 3930 goto failed_mount4; 3931 } 3932 sb->s_root = d_make_root(root); 3933 if (!sb->s_root) { 3934 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3935 ret = -ENOMEM; 3936 goto failed_mount4; 3937 } 3938 3939 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3940 sb->s_flags |= MS_RDONLY; 3941 3942 /* determine the minimum size of new large inodes, if present */ 3943 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3944 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3945 EXT4_GOOD_OLD_INODE_SIZE; 3946 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3947 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3948 if (sbi->s_want_extra_isize < 3949 le16_to_cpu(es->s_want_extra_isize)) 3950 sbi->s_want_extra_isize = 3951 le16_to_cpu(es->s_want_extra_isize); 3952 if (sbi->s_want_extra_isize < 3953 le16_to_cpu(es->s_min_extra_isize)) 3954 sbi->s_want_extra_isize = 3955 le16_to_cpu(es->s_min_extra_isize); 3956 } 3957 } 3958 /* Check if enough inode space is available */ 3959 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3960 sbi->s_inode_size) { 3961 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3962 EXT4_GOOD_OLD_INODE_SIZE; 3963 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3964 "available"); 3965 } 3966 3967 err = ext4_setup_system_zone(sb); 3968 if (err) { 3969 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3970 "zone (%d)", err); 3971 goto failed_mount4a; 3972 } 3973 3974 ext4_ext_init(sb); 3975 err = ext4_mb_init(sb); 3976 if (err) { 3977 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3978 err); 3979 goto failed_mount5; 3980 } 3981 3982 err = ext4_register_li_request(sb, first_not_zeroed); 3983 if (err) 3984 goto failed_mount6; 3985 3986 sbi->s_kobj.kset = ext4_kset; 3987 init_completion(&sbi->s_kobj_unregister); 3988 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3989 "%s", sb->s_id); 3990 if (err) 3991 goto failed_mount7; 3992 3993 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3994 ext4_orphan_cleanup(sb, es); 3995 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3996 if (needs_recovery) { 3997 ext4_msg(sb, KERN_INFO, "recovery complete"); 3998 ext4_mark_recovery_complete(sb, es); 3999 } 4000 if (EXT4_SB(sb)->s_journal) { 4001 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4002 descr = " journalled data mode"; 4003 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4004 descr = " ordered data mode"; 4005 else 4006 descr = " writeback data mode"; 4007 } else 4008 descr = "out journal"; 4009 4010 #ifdef CONFIG_QUOTA 4011 /* Enable quota usage during mount. */ 4012 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4013 !(sb->s_flags & MS_RDONLY)) { 4014 ret = ext4_enable_quotas(sb); 4015 if (ret) 4016 goto failed_mount7; 4017 } 4018 #endif /* CONFIG_QUOTA */ 4019 4020 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4021 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4022 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4023 4024 if (es->s_error_count) 4025 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4026 4027 kfree(orig_data); 4028 return 0; 4029 4030 cantfind_ext4: 4031 if (!silent) 4032 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4033 goto failed_mount; 4034 4035 failed_mount7: 4036 ext4_unregister_li_request(sb); 4037 failed_mount6: 4038 ext4_mb_release(sb); 4039 failed_mount5: 4040 ext4_ext_release(sb); 4041 ext4_release_system_zone(sb); 4042 failed_mount4a: 4043 dput(sb->s_root); 4044 sb->s_root = NULL; 4045 failed_mount4: 4046 ext4_msg(sb, KERN_ERR, "mount failed"); 4047 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4048 failed_mount_wq: 4049 if (sbi->s_journal) { 4050 jbd2_journal_destroy(sbi->s_journal); 4051 sbi->s_journal = NULL; 4052 } 4053 failed_mount3: 4054 del_timer(&sbi->s_err_report); 4055 if (sbi->s_flex_groups) 4056 ext4_kvfree(sbi->s_flex_groups); 4057 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4058 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4059 percpu_counter_destroy(&sbi->s_dirs_counter); 4060 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4061 if (sbi->s_mmp_tsk) 4062 kthread_stop(sbi->s_mmp_tsk); 4063 failed_mount2: 4064 for (i = 0; i < db_count; i++) 4065 brelse(sbi->s_group_desc[i]); 4066 ext4_kvfree(sbi->s_group_desc); 4067 failed_mount: 4068 if (sbi->s_chksum_driver) 4069 crypto_free_shash(sbi->s_chksum_driver); 4070 if (sbi->s_proc) { 4071 remove_proc_entry("options", sbi->s_proc); 4072 remove_proc_entry(sb->s_id, ext4_proc_root); 4073 } 4074 #ifdef CONFIG_QUOTA 4075 for (i = 0; i < MAXQUOTAS; i++) 4076 kfree(sbi->s_qf_names[i]); 4077 #endif 4078 ext4_blkdev_remove(sbi); 4079 brelse(bh); 4080 out_fail: 4081 sb->s_fs_info = NULL; 4082 kfree(sbi->s_blockgroup_lock); 4083 kfree(sbi); 4084 out_free_orig: 4085 kfree(orig_data); 4086 return ret; 4087 } 4088 4089 /* 4090 * Setup any per-fs journal parameters now. We'll do this both on 4091 * initial mount, once the journal has been initialised but before we've 4092 * done any recovery; and again on any subsequent remount. 4093 */ 4094 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4095 { 4096 struct ext4_sb_info *sbi = EXT4_SB(sb); 4097 4098 journal->j_commit_interval = sbi->s_commit_interval; 4099 journal->j_min_batch_time = sbi->s_min_batch_time; 4100 journal->j_max_batch_time = sbi->s_max_batch_time; 4101 4102 write_lock(&journal->j_state_lock); 4103 if (test_opt(sb, BARRIER)) 4104 journal->j_flags |= JBD2_BARRIER; 4105 else 4106 journal->j_flags &= ~JBD2_BARRIER; 4107 if (test_opt(sb, DATA_ERR_ABORT)) 4108 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4109 else 4110 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4111 write_unlock(&journal->j_state_lock); 4112 } 4113 4114 static journal_t *ext4_get_journal(struct super_block *sb, 4115 unsigned int journal_inum) 4116 { 4117 struct inode *journal_inode; 4118 journal_t *journal; 4119 4120 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4121 4122 /* First, test for the existence of a valid inode on disk. Bad 4123 * things happen if we iget() an unused inode, as the subsequent 4124 * iput() will try to delete it. */ 4125 4126 journal_inode = ext4_iget(sb, journal_inum); 4127 if (IS_ERR(journal_inode)) { 4128 ext4_msg(sb, KERN_ERR, "no journal found"); 4129 return NULL; 4130 } 4131 if (!journal_inode->i_nlink) { 4132 make_bad_inode(journal_inode); 4133 iput(journal_inode); 4134 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4135 return NULL; 4136 } 4137 4138 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4139 journal_inode, journal_inode->i_size); 4140 if (!S_ISREG(journal_inode->i_mode)) { 4141 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4142 iput(journal_inode); 4143 return NULL; 4144 } 4145 4146 journal = jbd2_journal_init_inode(journal_inode); 4147 if (!journal) { 4148 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4149 iput(journal_inode); 4150 return NULL; 4151 } 4152 journal->j_private = sb; 4153 ext4_init_journal_params(sb, journal); 4154 return journal; 4155 } 4156 4157 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4158 dev_t j_dev) 4159 { 4160 struct buffer_head *bh; 4161 journal_t *journal; 4162 ext4_fsblk_t start; 4163 ext4_fsblk_t len; 4164 int hblock, blocksize; 4165 ext4_fsblk_t sb_block; 4166 unsigned long offset; 4167 struct ext4_super_block *es; 4168 struct block_device *bdev; 4169 4170 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4171 4172 bdev = ext4_blkdev_get(j_dev, sb); 4173 if (bdev == NULL) 4174 return NULL; 4175 4176 blocksize = sb->s_blocksize; 4177 hblock = bdev_logical_block_size(bdev); 4178 if (blocksize < hblock) { 4179 ext4_msg(sb, KERN_ERR, 4180 "blocksize too small for journal device"); 4181 goto out_bdev; 4182 } 4183 4184 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4185 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4186 set_blocksize(bdev, blocksize); 4187 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4188 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4189 "external journal"); 4190 goto out_bdev; 4191 } 4192 4193 es = (struct ext4_super_block *) (bh->b_data + offset); 4194 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4195 !(le32_to_cpu(es->s_feature_incompat) & 4196 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4197 ext4_msg(sb, KERN_ERR, "external journal has " 4198 "bad superblock"); 4199 brelse(bh); 4200 goto out_bdev; 4201 } 4202 4203 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4204 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4205 brelse(bh); 4206 goto out_bdev; 4207 } 4208 4209 len = ext4_blocks_count(es); 4210 start = sb_block + 1; 4211 brelse(bh); /* we're done with the superblock */ 4212 4213 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4214 start, len, blocksize); 4215 if (!journal) { 4216 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4217 goto out_bdev; 4218 } 4219 journal->j_private = sb; 4220 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4221 wait_on_buffer(journal->j_sb_buffer); 4222 if (!buffer_uptodate(journal->j_sb_buffer)) { 4223 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4224 goto out_journal; 4225 } 4226 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4227 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4228 "user (unsupported) - %d", 4229 be32_to_cpu(journal->j_superblock->s_nr_users)); 4230 goto out_journal; 4231 } 4232 EXT4_SB(sb)->journal_bdev = bdev; 4233 ext4_init_journal_params(sb, journal); 4234 return journal; 4235 4236 out_journal: 4237 jbd2_journal_destroy(journal); 4238 out_bdev: 4239 ext4_blkdev_put(bdev); 4240 return NULL; 4241 } 4242 4243 static int ext4_load_journal(struct super_block *sb, 4244 struct ext4_super_block *es, 4245 unsigned long journal_devnum) 4246 { 4247 journal_t *journal; 4248 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4249 dev_t journal_dev; 4250 int err = 0; 4251 int really_read_only; 4252 4253 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4254 4255 if (journal_devnum && 4256 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4257 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4258 "numbers have changed"); 4259 journal_dev = new_decode_dev(journal_devnum); 4260 } else 4261 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4262 4263 really_read_only = bdev_read_only(sb->s_bdev); 4264 4265 /* 4266 * Are we loading a blank journal or performing recovery after a 4267 * crash? For recovery, we need to check in advance whether we 4268 * can get read-write access to the device. 4269 */ 4270 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4271 if (sb->s_flags & MS_RDONLY) { 4272 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4273 "required on readonly filesystem"); 4274 if (really_read_only) { 4275 ext4_msg(sb, KERN_ERR, "write access " 4276 "unavailable, cannot proceed"); 4277 return -EROFS; 4278 } 4279 ext4_msg(sb, KERN_INFO, "write access will " 4280 "be enabled during recovery"); 4281 } 4282 } 4283 4284 if (journal_inum && journal_dev) { 4285 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4286 "and inode journals!"); 4287 return -EINVAL; 4288 } 4289 4290 if (journal_inum) { 4291 if (!(journal = ext4_get_journal(sb, journal_inum))) 4292 return -EINVAL; 4293 } else { 4294 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4295 return -EINVAL; 4296 } 4297 4298 if (!(journal->j_flags & JBD2_BARRIER)) 4299 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4300 4301 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4302 err = jbd2_journal_wipe(journal, !really_read_only); 4303 if (!err) { 4304 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4305 if (save) 4306 memcpy(save, ((char *) es) + 4307 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4308 err = jbd2_journal_load(journal); 4309 if (save) 4310 memcpy(((char *) es) + EXT4_S_ERR_START, 4311 save, EXT4_S_ERR_LEN); 4312 kfree(save); 4313 } 4314 4315 if (err) { 4316 ext4_msg(sb, KERN_ERR, "error loading journal"); 4317 jbd2_journal_destroy(journal); 4318 return err; 4319 } 4320 4321 EXT4_SB(sb)->s_journal = journal; 4322 ext4_clear_journal_err(sb, es); 4323 4324 if (!really_read_only && journal_devnum && 4325 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4326 es->s_journal_dev = cpu_to_le32(journal_devnum); 4327 4328 /* Make sure we flush the recovery flag to disk. */ 4329 ext4_commit_super(sb, 1); 4330 } 4331 4332 return 0; 4333 } 4334 4335 static int ext4_commit_super(struct super_block *sb, int sync) 4336 { 4337 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4338 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4339 int error = 0; 4340 4341 if (!sbh || block_device_ejected(sb)) 4342 return error; 4343 if (buffer_write_io_error(sbh)) { 4344 /* 4345 * Oh, dear. A previous attempt to write the 4346 * superblock failed. This could happen because the 4347 * USB device was yanked out. Or it could happen to 4348 * be a transient write error and maybe the block will 4349 * be remapped. Nothing we can do but to retry the 4350 * write and hope for the best. 4351 */ 4352 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4353 "superblock detected"); 4354 clear_buffer_write_io_error(sbh); 4355 set_buffer_uptodate(sbh); 4356 } 4357 /* 4358 * If the file system is mounted read-only, don't update the 4359 * superblock write time. This avoids updating the superblock 4360 * write time when we are mounting the root file system 4361 * read/only but we need to replay the journal; at that point, 4362 * for people who are east of GMT and who make their clock 4363 * tick in localtime for Windows bug-for-bug compatibility, 4364 * the clock is set in the future, and this will cause e2fsck 4365 * to complain and force a full file system check. 4366 */ 4367 if (!(sb->s_flags & MS_RDONLY)) 4368 es->s_wtime = cpu_to_le32(get_seconds()); 4369 if (sb->s_bdev->bd_part) 4370 es->s_kbytes_written = 4371 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4372 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4373 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4374 else 4375 es->s_kbytes_written = 4376 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4377 ext4_free_blocks_count_set(es, 4378 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4379 &EXT4_SB(sb)->s_freeclusters_counter))); 4380 es->s_free_inodes_count = 4381 cpu_to_le32(percpu_counter_sum_positive( 4382 &EXT4_SB(sb)->s_freeinodes_counter)); 4383 BUFFER_TRACE(sbh, "marking dirty"); 4384 ext4_superblock_csum_set(sb, es); 4385 mark_buffer_dirty(sbh); 4386 if (sync) { 4387 error = sync_dirty_buffer(sbh); 4388 if (error) 4389 return error; 4390 4391 error = buffer_write_io_error(sbh); 4392 if (error) { 4393 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4394 "superblock"); 4395 clear_buffer_write_io_error(sbh); 4396 set_buffer_uptodate(sbh); 4397 } 4398 } 4399 return error; 4400 } 4401 4402 /* 4403 * Have we just finished recovery? If so, and if we are mounting (or 4404 * remounting) the filesystem readonly, then we will end up with a 4405 * consistent fs on disk. Record that fact. 4406 */ 4407 static void ext4_mark_recovery_complete(struct super_block *sb, 4408 struct ext4_super_block *es) 4409 { 4410 journal_t *journal = EXT4_SB(sb)->s_journal; 4411 4412 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4413 BUG_ON(journal != NULL); 4414 return; 4415 } 4416 jbd2_journal_lock_updates(journal); 4417 if (jbd2_journal_flush(journal) < 0) 4418 goto out; 4419 4420 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4421 sb->s_flags & MS_RDONLY) { 4422 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4423 ext4_commit_super(sb, 1); 4424 } 4425 4426 out: 4427 jbd2_journal_unlock_updates(journal); 4428 } 4429 4430 /* 4431 * If we are mounting (or read-write remounting) a filesystem whose journal 4432 * has recorded an error from a previous lifetime, move that error to the 4433 * main filesystem now. 4434 */ 4435 static void ext4_clear_journal_err(struct super_block *sb, 4436 struct ext4_super_block *es) 4437 { 4438 journal_t *journal; 4439 int j_errno; 4440 const char *errstr; 4441 4442 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4443 4444 journal = EXT4_SB(sb)->s_journal; 4445 4446 /* 4447 * Now check for any error status which may have been recorded in the 4448 * journal by a prior ext4_error() or ext4_abort() 4449 */ 4450 4451 j_errno = jbd2_journal_errno(journal); 4452 if (j_errno) { 4453 char nbuf[16]; 4454 4455 errstr = ext4_decode_error(sb, j_errno, nbuf); 4456 ext4_warning(sb, "Filesystem error recorded " 4457 "from previous mount: %s", errstr); 4458 ext4_warning(sb, "Marking fs in need of filesystem check."); 4459 4460 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4461 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4462 ext4_commit_super(sb, 1); 4463 4464 jbd2_journal_clear_err(journal); 4465 jbd2_journal_update_sb_errno(journal); 4466 } 4467 } 4468 4469 /* 4470 * Force the running and committing transactions to commit, 4471 * and wait on the commit. 4472 */ 4473 int ext4_force_commit(struct super_block *sb) 4474 { 4475 journal_t *journal; 4476 int ret = 0; 4477 4478 if (sb->s_flags & MS_RDONLY) 4479 return 0; 4480 4481 journal = EXT4_SB(sb)->s_journal; 4482 if (journal) 4483 ret = ext4_journal_force_commit(journal); 4484 4485 return ret; 4486 } 4487 4488 static int ext4_sync_fs(struct super_block *sb, int wait) 4489 { 4490 int ret = 0; 4491 tid_t target; 4492 struct ext4_sb_info *sbi = EXT4_SB(sb); 4493 4494 trace_ext4_sync_fs(sb, wait); 4495 flush_workqueue(sbi->dio_unwritten_wq); 4496 /* 4497 * Writeback quota in non-journalled quota case - journalled quota has 4498 * no dirty dquots 4499 */ 4500 dquot_writeback_dquots(sb, -1); 4501 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4502 if (wait) 4503 jbd2_log_wait_commit(sbi->s_journal, target); 4504 } 4505 return ret; 4506 } 4507 4508 /* 4509 * LVM calls this function before a (read-only) snapshot is created. This 4510 * gives us a chance to flush the journal completely and mark the fs clean. 4511 * 4512 * Note that only this function cannot bring a filesystem to be in a clean 4513 * state independently. It relies on upper layer to stop all data & metadata 4514 * modifications. 4515 */ 4516 static int ext4_freeze(struct super_block *sb) 4517 { 4518 int error = 0; 4519 journal_t *journal; 4520 4521 if (sb->s_flags & MS_RDONLY) 4522 return 0; 4523 4524 journal = EXT4_SB(sb)->s_journal; 4525 4526 /* Now we set up the journal barrier. */ 4527 jbd2_journal_lock_updates(journal); 4528 4529 /* 4530 * Don't clear the needs_recovery flag if we failed to flush 4531 * the journal. 4532 */ 4533 error = jbd2_journal_flush(journal); 4534 if (error < 0) 4535 goto out; 4536 4537 /* Journal blocked and flushed, clear needs_recovery flag. */ 4538 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4539 error = ext4_commit_super(sb, 1); 4540 out: 4541 /* we rely on upper layer to stop further updates */ 4542 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4543 return error; 4544 } 4545 4546 /* 4547 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4548 * flag here, even though the filesystem is not technically dirty yet. 4549 */ 4550 static int ext4_unfreeze(struct super_block *sb) 4551 { 4552 if (sb->s_flags & MS_RDONLY) 4553 return 0; 4554 4555 /* Reset the needs_recovery flag before the fs is unlocked. */ 4556 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4557 ext4_commit_super(sb, 1); 4558 return 0; 4559 } 4560 4561 /* 4562 * Structure to save mount options for ext4_remount's benefit 4563 */ 4564 struct ext4_mount_options { 4565 unsigned long s_mount_opt; 4566 unsigned long s_mount_opt2; 4567 kuid_t s_resuid; 4568 kgid_t s_resgid; 4569 unsigned long s_commit_interval; 4570 u32 s_min_batch_time, s_max_batch_time; 4571 #ifdef CONFIG_QUOTA 4572 int s_jquota_fmt; 4573 char *s_qf_names[MAXQUOTAS]; 4574 #endif 4575 }; 4576 4577 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4578 { 4579 struct ext4_super_block *es; 4580 struct ext4_sb_info *sbi = EXT4_SB(sb); 4581 unsigned long old_sb_flags; 4582 struct ext4_mount_options old_opts; 4583 int enable_quota = 0; 4584 ext4_group_t g; 4585 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4586 int err = 0; 4587 #ifdef CONFIG_QUOTA 4588 int i; 4589 #endif 4590 char *orig_data = kstrdup(data, GFP_KERNEL); 4591 4592 /* Store the original options */ 4593 old_sb_flags = sb->s_flags; 4594 old_opts.s_mount_opt = sbi->s_mount_opt; 4595 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4596 old_opts.s_resuid = sbi->s_resuid; 4597 old_opts.s_resgid = sbi->s_resgid; 4598 old_opts.s_commit_interval = sbi->s_commit_interval; 4599 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4600 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4601 #ifdef CONFIG_QUOTA 4602 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4603 for (i = 0; i < MAXQUOTAS; i++) 4604 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4605 #endif 4606 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4607 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4608 4609 /* 4610 * Allow the "check" option to be passed as a remount option. 4611 */ 4612 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4613 err = -EINVAL; 4614 goto restore_opts; 4615 } 4616 4617 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4618 ext4_abort(sb, "Abort forced by user"); 4619 4620 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4621 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4622 4623 es = sbi->s_es; 4624 4625 if (sbi->s_journal) { 4626 ext4_init_journal_params(sb, sbi->s_journal); 4627 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4628 } 4629 4630 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4631 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4632 err = -EROFS; 4633 goto restore_opts; 4634 } 4635 4636 if (*flags & MS_RDONLY) { 4637 err = dquot_suspend(sb, -1); 4638 if (err < 0) 4639 goto restore_opts; 4640 4641 /* 4642 * First of all, the unconditional stuff we have to do 4643 * to disable replay of the journal when we next remount 4644 */ 4645 sb->s_flags |= MS_RDONLY; 4646 4647 /* 4648 * OK, test if we are remounting a valid rw partition 4649 * readonly, and if so set the rdonly flag and then 4650 * mark the partition as valid again. 4651 */ 4652 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4653 (sbi->s_mount_state & EXT4_VALID_FS)) 4654 es->s_state = cpu_to_le16(sbi->s_mount_state); 4655 4656 if (sbi->s_journal) 4657 ext4_mark_recovery_complete(sb, es); 4658 } else { 4659 /* Make sure we can mount this feature set readwrite */ 4660 if (!ext4_feature_set_ok(sb, 0)) { 4661 err = -EROFS; 4662 goto restore_opts; 4663 } 4664 /* 4665 * Make sure the group descriptor checksums 4666 * are sane. If they aren't, refuse to remount r/w. 4667 */ 4668 for (g = 0; g < sbi->s_groups_count; g++) { 4669 struct ext4_group_desc *gdp = 4670 ext4_get_group_desc(sb, g, NULL); 4671 4672 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4673 ext4_msg(sb, KERN_ERR, 4674 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4675 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4676 le16_to_cpu(gdp->bg_checksum)); 4677 err = -EINVAL; 4678 goto restore_opts; 4679 } 4680 } 4681 4682 /* 4683 * If we have an unprocessed orphan list hanging 4684 * around from a previously readonly bdev mount, 4685 * require a full umount/remount for now. 4686 */ 4687 if (es->s_last_orphan) { 4688 ext4_msg(sb, KERN_WARNING, "Couldn't " 4689 "remount RDWR because of unprocessed " 4690 "orphan inode list. Please " 4691 "umount/remount instead"); 4692 err = -EINVAL; 4693 goto restore_opts; 4694 } 4695 4696 /* 4697 * Mounting a RDONLY partition read-write, so reread 4698 * and store the current valid flag. (It may have 4699 * been changed by e2fsck since we originally mounted 4700 * the partition.) 4701 */ 4702 if (sbi->s_journal) 4703 ext4_clear_journal_err(sb, es); 4704 sbi->s_mount_state = le16_to_cpu(es->s_state); 4705 if (!ext4_setup_super(sb, es, 0)) 4706 sb->s_flags &= ~MS_RDONLY; 4707 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4708 EXT4_FEATURE_INCOMPAT_MMP)) 4709 if (ext4_multi_mount_protect(sb, 4710 le64_to_cpu(es->s_mmp_block))) { 4711 err = -EROFS; 4712 goto restore_opts; 4713 } 4714 enable_quota = 1; 4715 } 4716 } 4717 4718 /* 4719 * Reinitialize lazy itable initialization thread based on 4720 * current settings 4721 */ 4722 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4723 ext4_unregister_li_request(sb); 4724 else { 4725 ext4_group_t first_not_zeroed; 4726 first_not_zeroed = ext4_has_uninit_itable(sb); 4727 ext4_register_li_request(sb, first_not_zeroed); 4728 } 4729 4730 ext4_setup_system_zone(sb); 4731 if (sbi->s_journal == NULL) 4732 ext4_commit_super(sb, 1); 4733 4734 #ifdef CONFIG_QUOTA 4735 /* Release old quota file names */ 4736 for (i = 0; i < MAXQUOTAS; i++) 4737 if (old_opts.s_qf_names[i] && 4738 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4739 kfree(old_opts.s_qf_names[i]); 4740 if (enable_quota) { 4741 if (sb_any_quota_suspended(sb)) 4742 dquot_resume(sb, -1); 4743 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4744 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4745 err = ext4_enable_quotas(sb); 4746 if (err) 4747 goto restore_opts; 4748 } 4749 } 4750 #endif 4751 4752 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4753 kfree(orig_data); 4754 return 0; 4755 4756 restore_opts: 4757 sb->s_flags = old_sb_flags; 4758 sbi->s_mount_opt = old_opts.s_mount_opt; 4759 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4760 sbi->s_resuid = old_opts.s_resuid; 4761 sbi->s_resgid = old_opts.s_resgid; 4762 sbi->s_commit_interval = old_opts.s_commit_interval; 4763 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4764 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4765 #ifdef CONFIG_QUOTA 4766 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4767 for (i = 0; i < MAXQUOTAS; i++) { 4768 if (sbi->s_qf_names[i] && 4769 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4770 kfree(sbi->s_qf_names[i]); 4771 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4772 } 4773 #endif 4774 kfree(orig_data); 4775 return err; 4776 } 4777 4778 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4779 { 4780 struct super_block *sb = dentry->d_sb; 4781 struct ext4_sb_info *sbi = EXT4_SB(sb); 4782 struct ext4_super_block *es = sbi->s_es; 4783 ext4_fsblk_t overhead = 0; 4784 u64 fsid; 4785 s64 bfree; 4786 4787 if (!test_opt(sb, MINIX_DF)) 4788 overhead = sbi->s_overhead; 4789 4790 buf->f_type = EXT4_SUPER_MAGIC; 4791 buf->f_bsize = sb->s_blocksize; 4792 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead); 4793 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4794 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4795 /* prevent underflow in case that few free space is available */ 4796 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4797 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4798 if (buf->f_bfree < ext4_r_blocks_count(es)) 4799 buf->f_bavail = 0; 4800 buf->f_files = le32_to_cpu(es->s_inodes_count); 4801 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4802 buf->f_namelen = EXT4_NAME_LEN; 4803 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4804 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4805 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4806 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4807 4808 return 0; 4809 } 4810 4811 /* Helper function for writing quotas on sync - we need to start transaction 4812 * before quota file is locked for write. Otherwise the are possible deadlocks: 4813 * Process 1 Process 2 4814 * ext4_create() quota_sync() 4815 * jbd2_journal_start() write_dquot() 4816 * dquot_initialize() down(dqio_mutex) 4817 * down(dqio_mutex) jbd2_journal_start() 4818 * 4819 */ 4820 4821 #ifdef CONFIG_QUOTA 4822 4823 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4824 { 4825 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4826 } 4827 4828 static int ext4_write_dquot(struct dquot *dquot) 4829 { 4830 int ret, err; 4831 handle_t *handle; 4832 struct inode *inode; 4833 4834 inode = dquot_to_inode(dquot); 4835 handle = ext4_journal_start(inode, 4836 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4837 if (IS_ERR(handle)) 4838 return PTR_ERR(handle); 4839 ret = dquot_commit(dquot); 4840 err = ext4_journal_stop(handle); 4841 if (!ret) 4842 ret = err; 4843 return ret; 4844 } 4845 4846 static int ext4_acquire_dquot(struct dquot *dquot) 4847 { 4848 int ret, err; 4849 handle_t *handle; 4850 4851 handle = ext4_journal_start(dquot_to_inode(dquot), 4852 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4853 if (IS_ERR(handle)) 4854 return PTR_ERR(handle); 4855 ret = dquot_acquire(dquot); 4856 err = ext4_journal_stop(handle); 4857 if (!ret) 4858 ret = err; 4859 return ret; 4860 } 4861 4862 static int ext4_release_dquot(struct dquot *dquot) 4863 { 4864 int ret, err; 4865 handle_t *handle; 4866 4867 handle = ext4_journal_start(dquot_to_inode(dquot), 4868 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4869 if (IS_ERR(handle)) { 4870 /* Release dquot anyway to avoid endless cycle in dqput() */ 4871 dquot_release(dquot); 4872 return PTR_ERR(handle); 4873 } 4874 ret = dquot_release(dquot); 4875 err = ext4_journal_stop(handle); 4876 if (!ret) 4877 ret = err; 4878 return ret; 4879 } 4880 4881 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4882 { 4883 /* Are we journaling quotas? */ 4884 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4885 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4886 dquot_mark_dquot_dirty(dquot); 4887 return ext4_write_dquot(dquot); 4888 } else { 4889 return dquot_mark_dquot_dirty(dquot); 4890 } 4891 } 4892 4893 static int ext4_write_info(struct super_block *sb, int type) 4894 { 4895 int ret, err; 4896 handle_t *handle; 4897 4898 /* Data block + inode block */ 4899 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4900 if (IS_ERR(handle)) 4901 return PTR_ERR(handle); 4902 ret = dquot_commit_info(sb, type); 4903 err = ext4_journal_stop(handle); 4904 if (!ret) 4905 ret = err; 4906 return ret; 4907 } 4908 4909 /* 4910 * Turn on quotas during mount time - we need to find 4911 * the quota file and such... 4912 */ 4913 static int ext4_quota_on_mount(struct super_block *sb, int type) 4914 { 4915 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4916 EXT4_SB(sb)->s_jquota_fmt, type); 4917 } 4918 4919 /* 4920 * Standard function to be called on quota_on 4921 */ 4922 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4923 struct path *path) 4924 { 4925 int err; 4926 4927 if (!test_opt(sb, QUOTA)) 4928 return -EINVAL; 4929 4930 /* Quotafile not on the same filesystem? */ 4931 if (path->dentry->d_sb != sb) 4932 return -EXDEV; 4933 /* Journaling quota? */ 4934 if (EXT4_SB(sb)->s_qf_names[type]) { 4935 /* Quotafile not in fs root? */ 4936 if (path->dentry->d_parent != sb->s_root) 4937 ext4_msg(sb, KERN_WARNING, 4938 "Quota file not on filesystem root. " 4939 "Journaled quota will not work"); 4940 } 4941 4942 /* 4943 * When we journal data on quota file, we have to flush journal to see 4944 * all updates to the file when we bypass pagecache... 4945 */ 4946 if (EXT4_SB(sb)->s_journal && 4947 ext4_should_journal_data(path->dentry->d_inode)) { 4948 /* 4949 * We don't need to lock updates but journal_flush() could 4950 * otherwise be livelocked... 4951 */ 4952 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4953 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4954 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4955 if (err) 4956 return err; 4957 } 4958 4959 return dquot_quota_on(sb, type, format_id, path); 4960 } 4961 4962 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4963 unsigned int flags) 4964 { 4965 int err; 4966 struct inode *qf_inode; 4967 unsigned long qf_inums[MAXQUOTAS] = { 4968 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4969 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4970 }; 4971 4972 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4973 4974 if (!qf_inums[type]) 4975 return -EPERM; 4976 4977 qf_inode = ext4_iget(sb, qf_inums[type]); 4978 if (IS_ERR(qf_inode)) { 4979 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4980 return PTR_ERR(qf_inode); 4981 } 4982 4983 err = dquot_enable(qf_inode, type, format_id, flags); 4984 iput(qf_inode); 4985 4986 return err; 4987 } 4988 4989 /* Enable usage tracking for all quota types. */ 4990 static int ext4_enable_quotas(struct super_block *sb) 4991 { 4992 int type, err = 0; 4993 unsigned long qf_inums[MAXQUOTAS] = { 4994 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4995 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4996 }; 4997 4998 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4999 for (type = 0; type < MAXQUOTAS; type++) { 5000 if (qf_inums[type]) { 5001 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5002 DQUOT_USAGE_ENABLED); 5003 if (err) { 5004 ext4_warning(sb, 5005 "Failed to enable quota (type=%d) " 5006 "tracking. Please run e2fsck to fix.", 5007 type); 5008 return err; 5009 } 5010 } 5011 } 5012 return 0; 5013 } 5014 5015 /* 5016 * quota_on function that is used when QUOTA feature is set. 5017 */ 5018 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5019 int format_id) 5020 { 5021 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5022 return -EINVAL; 5023 5024 /* 5025 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5026 */ 5027 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5028 } 5029 5030 static int ext4_quota_off(struct super_block *sb, int type) 5031 { 5032 struct inode *inode = sb_dqopt(sb)->files[type]; 5033 handle_t *handle; 5034 5035 /* Force all delayed allocation blocks to be allocated. 5036 * Caller already holds s_umount sem */ 5037 if (test_opt(sb, DELALLOC)) 5038 sync_filesystem(sb); 5039 5040 if (!inode) 5041 goto out; 5042 5043 /* Update modification times of quota files when userspace can 5044 * start looking at them */ 5045 handle = ext4_journal_start(inode, 1); 5046 if (IS_ERR(handle)) 5047 goto out; 5048 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5049 ext4_mark_inode_dirty(handle, inode); 5050 ext4_journal_stop(handle); 5051 5052 out: 5053 return dquot_quota_off(sb, type); 5054 } 5055 5056 /* 5057 * quota_off function that is used when QUOTA feature is set. 5058 */ 5059 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5060 { 5061 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5062 return -EINVAL; 5063 5064 /* Disable only the limits. */ 5065 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5066 } 5067 5068 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5069 * acquiring the locks... As quota files are never truncated and quota code 5070 * itself serializes the operations (and no one else should touch the files) 5071 * we don't have to be afraid of races */ 5072 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5073 size_t len, loff_t off) 5074 { 5075 struct inode *inode = sb_dqopt(sb)->files[type]; 5076 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5077 int err = 0; 5078 int offset = off & (sb->s_blocksize - 1); 5079 int tocopy; 5080 size_t toread; 5081 struct buffer_head *bh; 5082 loff_t i_size = i_size_read(inode); 5083 5084 if (off > i_size) 5085 return 0; 5086 if (off+len > i_size) 5087 len = i_size-off; 5088 toread = len; 5089 while (toread > 0) { 5090 tocopy = sb->s_blocksize - offset < toread ? 5091 sb->s_blocksize - offset : toread; 5092 bh = ext4_bread(NULL, inode, blk, 0, &err); 5093 if (err) 5094 return err; 5095 if (!bh) /* A hole? */ 5096 memset(data, 0, tocopy); 5097 else 5098 memcpy(data, bh->b_data+offset, tocopy); 5099 brelse(bh); 5100 offset = 0; 5101 toread -= tocopy; 5102 data += tocopy; 5103 blk++; 5104 } 5105 return len; 5106 } 5107 5108 /* Write to quotafile (we know the transaction is already started and has 5109 * enough credits) */ 5110 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5111 const char *data, size_t len, loff_t off) 5112 { 5113 struct inode *inode = sb_dqopt(sb)->files[type]; 5114 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5115 int err = 0; 5116 int offset = off & (sb->s_blocksize - 1); 5117 struct buffer_head *bh; 5118 handle_t *handle = journal_current_handle(); 5119 5120 if (EXT4_SB(sb)->s_journal && !handle) { 5121 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5122 " cancelled because transaction is not started", 5123 (unsigned long long)off, (unsigned long long)len); 5124 return -EIO; 5125 } 5126 /* 5127 * Since we account only one data block in transaction credits, 5128 * then it is impossible to cross a block boundary. 5129 */ 5130 if (sb->s_blocksize - offset < len) { 5131 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5132 " cancelled because not block aligned", 5133 (unsigned long long)off, (unsigned long long)len); 5134 return -EIO; 5135 } 5136 5137 bh = ext4_bread(handle, inode, blk, 1, &err); 5138 if (!bh) 5139 goto out; 5140 err = ext4_journal_get_write_access(handle, bh); 5141 if (err) { 5142 brelse(bh); 5143 goto out; 5144 } 5145 lock_buffer(bh); 5146 memcpy(bh->b_data+offset, data, len); 5147 flush_dcache_page(bh->b_page); 5148 unlock_buffer(bh); 5149 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5150 brelse(bh); 5151 out: 5152 if (err) 5153 return err; 5154 if (inode->i_size < off + len) { 5155 i_size_write(inode, off + len); 5156 EXT4_I(inode)->i_disksize = inode->i_size; 5157 ext4_mark_inode_dirty(handle, inode); 5158 } 5159 return len; 5160 } 5161 5162 #endif 5163 5164 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5165 const char *dev_name, void *data) 5166 { 5167 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5168 } 5169 5170 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5171 static inline void register_as_ext2(void) 5172 { 5173 int err = register_filesystem(&ext2_fs_type); 5174 if (err) 5175 printk(KERN_WARNING 5176 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5177 } 5178 5179 static inline void unregister_as_ext2(void) 5180 { 5181 unregister_filesystem(&ext2_fs_type); 5182 } 5183 5184 static inline int ext2_feature_set_ok(struct super_block *sb) 5185 { 5186 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5187 return 0; 5188 if (sb->s_flags & MS_RDONLY) 5189 return 1; 5190 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5191 return 0; 5192 return 1; 5193 } 5194 MODULE_ALIAS("ext2"); 5195 #else 5196 static inline void register_as_ext2(void) { } 5197 static inline void unregister_as_ext2(void) { } 5198 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5199 #endif 5200 5201 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5202 static inline void register_as_ext3(void) 5203 { 5204 int err = register_filesystem(&ext3_fs_type); 5205 if (err) 5206 printk(KERN_WARNING 5207 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5208 } 5209 5210 static inline void unregister_as_ext3(void) 5211 { 5212 unregister_filesystem(&ext3_fs_type); 5213 } 5214 5215 static inline int ext3_feature_set_ok(struct super_block *sb) 5216 { 5217 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5218 return 0; 5219 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5220 return 0; 5221 if (sb->s_flags & MS_RDONLY) 5222 return 1; 5223 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5224 return 0; 5225 return 1; 5226 } 5227 MODULE_ALIAS("ext3"); 5228 #else 5229 static inline void register_as_ext3(void) { } 5230 static inline void unregister_as_ext3(void) { } 5231 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5232 #endif 5233 5234 static struct file_system_type ext4_fs_type = { 5235 .owner = THIS_MODULE, 5236 .name = "ext4", 5237 .mount = ext4_mount, 5238 .kill_sb = kill_block_super, 5239 .fs_flags = FS_REQUIRES_DEV, 5240 }; 5241 5242 static int __init ext4_init_feat_adverts(void) 5243 { 5244 struct ext4_features *ef; 5245 int ret = -ENOMEM; 5246 5247 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5248 if (!ef) 5249 goto out; 5250 5251 ef->f_kobj.kset = ext4_kset; 5252 init_completion(&ef->f_kobj_unregister); 5253 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5254 "features"); 5255 if (ret) { 5256 kfree(ef); 5257 goto out; 5258 } 5259 5260 ext4_feat = ef; 5261 ret = 0; 5262 out: 5263 return ret; 5264 } 5265 5266 static void ext4_exit_feat_adverts(void) 5267 { 5268 kobject_put(&ext4_feat->f_kobj); 5269 wait_for_completion(&ext4_feat->f_kobj_unregister); 5270 kfree(ext4_feat); 5271 } 5272 5273 /* Shared across all ext4 file systems */ 5274 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5275 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5276 5277 static int __init ext4_init_fs(void) 5278 { 5279 int i, err; 5280 5281 ext4_li_info = NULL; 5282 mutex_init(&ext4_li_mtx); 5283 5284 ext4_check_flag_values(); 5285 5286 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5287 mutex_init(&ext4__aio_mutex[i]); 5288 init_waitqueue_head(&ext4__ioend_wq[i]); 5289 } 5290 5291 err = ext4_init_pageio(); 5292 if (err) 5293 return err; 5294 err = ext4_init_system_zone(); 5295 if (err) 5296 goto out6; 5297 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5298 if (!ext4_kset) { 5299 err = -ENOMEM; 5300 goto out5; 5301 } 5302 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5303 5304 err = ext4_init_feat_adverts(); 5305 if (err) 5306 goto out4; 5307 5308 err = ext4_init_mballoc(); 5309 if (err) 5310 goto out3; 5311 5312 err = ext4_init_xattr(); 5313 if (err) 5314 goto out2; 5315 err = init_inodecache(); 5316 if (err) 5317 goto out1; 5318 register_as_ext3(); 5319 register_as_ext2(); 5320 err = register_filesystem(&ext4_fs_type); 5321 if (err) 5322 goto out; 5323 5324 return 0; 5325 out: 5326 unregister_as_ext2(); 5327 unregister_as_ext3(); 5328 destroy_inodecache(); 5329 out1: 5330 ext4_exit_xattr(); 5331 out2: 5332 ext4_exit_mballoc(); 5333 out3: 5334 ext4_exit_feat_adverts(); 5335 out4: 5336 if (ext4_proc_root) 5337 remove_proc_entry("fs/ext4", NULL); 5338 kset_unregister(ext4_kset); 5339 out5: 5340 ext4_exit_system_zone(); 5341 out6: 5342 ext4_exit_pageio(); 5343 return err; 5344 } 5345 5346 static void __exit ext4_exit_fs(void) 5347 { 5348 ext4_destroy_lazyinit_thread(); 5349 unregister_as_ext2(); 5350 unregister_as_ext3(); 5351 unregister_filesystem(&ext4_fs_type); 5352 destroy_inodecache(); 5353 ext4_exit_xattr(); 5354 ext4_exit_mballoc(); 5355 ext4_exit_feat_adverts(); 5356 remove_proc_entry("fs/ext4", NULL); 5357 kset_unregister(ext4_kset); 5358 ext4_exit_system_zone(); 5359 ext4_exit_pageio(); 5360 } 5361 5362 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5363 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5364 MODULE_LICENSE("GPL"); 5365 module_init(ext4_init_fs) 5366 module_exit(ext4_exit_fs) 5367