1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 #include "fsmap.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ext4.h> 57 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ratelimit_state ext4_mount_msg_ratelimit; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 76 const char *dev_name, void *data); 77 static inline int ext2_feature_set_ok(struct super_block *sb); 78 static inline int ext3_feature_set_ok(struct super_block *sb); 79 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 80 static void ext4_destroy_lazyinit_thread(void); 81 static void ext4_unregister_li_request(struct super_block *sb); 82 static void ext4_clear_request_list(void); 83 static struct inode *ext4_get_journal_inode(struct super_block *sb, 84 unsigned int journal_inum); 85 86 /* 87 * Lock ordering 88 * 89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 90 * i_mmap_rwsem (inode->i_mmap_rwsem)! 91 * 92 * page fault path: 93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 94 * page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_sem 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * i_mmap_rwsem (w) -> page lock 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * transaction start -> i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 110 * transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (sb->s_flags & MS_RDONLY) 409 return; 410 411 if (!test_opt(sb, ERRORS_CONT)) { 412 journal_t *journal = EXT4_SB(sb)->s_journal; 413 414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 415 if (journal) 416 jbd2_journal_abort(journal, -EIO); 417 } 418 if (test_opt(sb, ERRORS_RO)) { 419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 420 /* 421 * Make sure updated value of ->s_mount_flags will be visible 422 * before ->s_flags update 423 */ 424 smp_wmb(); 425 sb->s_flags |= MS_RDONLY; 426 } 427 if (test_opt(sb, ERRORS_PANIC)) { 428 if (EXT4_SB(sb)->s_journal && 429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 430 return; 431 panic("EXT4-fs (device %s): panic forced after error\n", 432 sb->s_id); 433 } 434 } 435 436 #define ext4_error_ratelimit(sb) \ 437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 438 "EXT4-fs error") 439 440 void __ext4_error(struct super_block *sb, const char *function, 441 unsigned int line, const char *fmt, ...) 442 { 443 struct va_format vaf; 444 va_list args; 445 446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 447 return; 448 449 if (ext4_error_ratelimit(sb)) { 450 va_start(args, fmt); 451 vaf.fmt = fmt; 452 vaf.va = &args; 453 printk(KERN_CRIT 454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 455 sb->s_id, function, line, current->comm, &vaf); 456 va_end(args); 457 } 458 save_error_info(sb, function, line); 459 ext4_handle_error(sb); 460 } 461 462 void __ext4_error_inode(struct inode *inode, const char *function, 463 unsigned int line, ext4_fsblk_t block, 464 const char *fmt, ...) 465 { 466 va_list args; 467 struct va_format vaf; 468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 469 470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 471 return; 472 473 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 474 es->s_last_error_block = cpu_to_le64(block); 475 if (ext4_error_ratelimit(inode->i_sb)) { 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 481 "inode #%lu: block %llu: comm %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 block, current->comm, &vaf); 484 else 485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 486 "inode #%lu: comm %s: %pV\n", 487 inode->i_sb->s_id, function, line, inode->i_ino, 488 current->comm, &vaf); 489 va_end(args); 490 } 491 save_error_info(inode->i_sb, function, line); 492 ext4_handle_error(inode->i_sb); 493 } 494 495 void __ext4_error_file(struct file *file, const char *function, 496 unsigned int line, ext4_fsblk_t block, 497 const char *fmt, ...) 498 { 499 va_list args; 500 struct va_format vaf; 501 struct ext4_super_block *es; 502 struct inode *inode = file_inode(file); 503 char pathname[80], *path; 504 505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 506 return; 507 508 es = EXT4_SB(inode->i_sb)->s_es; 509 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 510 if (ext4_error_ratelimit(inode->i_sb)) { 511 path = file_path(file, pathname, sizeof(pathname)); 512 if (IS_ERR(path)) 513 path = "(unknown)"; 514 va_start(args, fmt); 515 vaf.fmt = fmt; 516 vaf.va = &args; 517 if (block) 518 printk(KERN_CRIT 519 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 520 "block %llu: comm %s: path %s: %pV\n", 521 inode->i_sb->s_id, function, line, inode->i_ino, 522 block, current->comm, path, &vaf); 523 else 524 printk(KERN_CRIT 525 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 526 "comm %s: path %s: %pV\n", 527 inode->i_sb->s_id, function, line, inode->i_ino, 528 current->comm, path, &vaf); 529 va_end(args); 530 } 531 save_error_info(inode->i_sb, function, line); 532 ext4_handle_error(inode->i_sb); 533 } 534 535 const char *ext4_decode_error(struct super_block *sb, int errno, 536 char nbuf[16]) 537 { 538 char *errstr = NULL; 539 540 switch (errno) { 541 case -EFSCORRUPTED: 542 errstr = "Corrupt filesystem"; 543 break; 544 case -EFSBADCRC: 545 errstr = "Filesystem failed CRC"; 546 break; 547 case -EIO: 548 errstr = "IO failure"; 549 break; 550 case -ENOMEM: 551 errstr = "Out of memory"; 552 break; 553 case -EROFS: 554 if (!sb || (EXT4_SB(sb)->s_journal && 555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 556 errstr = "Journal has aborted"; 557 else 558 errstr = "Readonly filesystem"; 559 break; 560 default: 561 /* If the caller passed in an extra buffer for unknown 562 * errors, textualise them now. Else we just return 563 * NULL. */ 564 if (nbuf) { 565 /* Check for truncated error codes... */ 566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 567 errstr = nbuf; 568 } 569 break; 570 } 571 572 return errstr; 573 } 574 575 /* __ext4_std_error decodes expected errors from journaling functions 576 * automatically and invokes the appropriate error response. */ 577 578 void __ext4_std_error(struct super_block *sb, const char *function, 579 unsigned int line, int errno) 580 { 581 char nbuf[16]; 582 const char *errstr; 583 584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 585 return; 586 587 /* Special case: if the error is EROFS, and we're not already 588 * inside a transaction, then there's really no point in logging 589 * an error. */ 590 if (errno == -EROFS && journal_current_handle() == NULL && 591 (sb->s_flags & MS_RDONLY)) 592 return; 593 594 if (ext4_error_ratelimit(sb)) { 595 errstr = ext4_decode_error(sb, errno, nbuf); 596 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 597 sb->s_id, function, line, errstr); 598 } 599 600 save_error_info(sb, function, line); 601 ext4_handle_error(sb); 602 } 603 604 /* 605 * ext4_abort is a much stronger failure handler than ext4_error. The 606 * abort function may be used to deal with unrecoverable failures such 607 * as journal IO errors or ENOMEM at a critical moment in log management. 608 * 609 * We unconditionally force the filesystem into an ABORT|READONLY state, 610 * unless the error response on the fs has been set to panic in which 611 * case we take the easy way out and panic immediately. 612 */ 613 614 void __ext4_abort(struct super_block *sb, const char *function, 615 unsigned int line, const char *fmt, ...) 616 { 617 struct va_format vaf; 618 va_list args; 619 620 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 621 return; 622 623 save_error_info(sb, function, line); 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 628 sb->s_id, function, line, &vaf); 629 va_end(args); 630 631 if ((sb->s_flags & MS_RDONLY) == 0) { 632 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 633 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 634 /* 635 * Make sure updated value of ->s_mount_flags will be visible 636 * before ->s_flags update 637 */ 638 smp_wmb(); 639 sb->s_flags |= MS_RDONLY; 640 if (EXT4_SB(sb)->s_journal) 641 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 642 save_error_info(sb, function, line); 643 } 644 if (test_opt(sb, ERRORS_PANIC)) { 645 if (EXT4_SB(sb)->s_journal && 646 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 647 return; 648 panic("EXT4-fs panic from previous error\n"); 649 } 650 } 651 652 void __ext4_msg(struct super_block *sb, 653 const char *prefix, const char *fmt, ...) 654 { 655 struct va_format vaf; 656 va_list args; 657 658 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 659 return; 660 661 va_start(args, fmt); 662 vaf.fmt = fmt; 663 vaf.va = &args; 664 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 665 va_end(args); 666 } 667 668 #define ext4_warning_ratelimit(sb) \ 669 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 670 "EXT4-fs warning") 671 672 void __ext4_warning(struct super_block *sb, const char *function, 673 unsigned int line, const char *fmt, ...) 674 { 675 struct va_format vaf; 676 va_list args; 677 678 if (!ext4_warning_ratelimit(sb)) 679 return; 680 681 va_start(args, fmt); 682 vaf.fmt = fmt; 683 vaf.va = &args; 684 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 685 sb->s_id, function, line, &vaf); 686 va_end(args); 687 } 688 689 void __ext4_warning_inode(const struct inode *inode, const char *function, 690 unsigned int line, const char *fmt, ...) 691 { 692 struct va_format vaf; 693 va_list args; 694 695 if (!ext4_warning_ratelimit(inode->i_sb)) 696 return; 697 698 va_start(args, fmt); 699 vaf.fmt = fmt; 700 vaf.va = &args; 701 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 702 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 703 function, line, inode->i_ino, current->comm, &vaf); 704 va_end(args); 705 } 706 707 void __ext4_grp_locked_error(const char *function, unsigned int line, 708 struct super_block *sb, ext4_group_t grp, 709 unsigned long ino, ext4_fsblk_t block, 710 const char *fmt, ...) 711 __releases(bitlock) 712 __acquires(bitlock) 713 { 714 struct va_format vaf; 715 va_list args; 716 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 717 718 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 719 return; 720 721 es->s_last_error_ino = cpu_to_le32(ino); 722 es->s_last_error_block = cpu_to_le64(block); 723 __save_error_info(sb, function, line); 724 725 if (ext4_error_ratelimit(sb)) { 726 va_start(args, fmt); 727 vaf.fmt = fmt; 728 vaf.va = &args; 729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 730 sb->s_id, function, line, grp); 731 if (ino) 732 printk(KERN_CONT "inode %lu: ", ino); 733 if (block) 734 printk(KERN_CONT "block %llu:", 735 (unsigned long long) block); 736 printk(KERN_CONT "%pV\n", &vaf); 737 va_end(args); 738 } 739 740 if (test_opt(sb, ERRORS_CONT)) { 741 ext4_commit_super(sb, 0); 742 return; 743 } 744 745 ext4_unlock_group(sb, grp); 746 ext4_handle_error(sb); 747 /* 748 * We only get here in the ERRORS_RO case; relocking the group 749 * may be dangerous, but nothing bad will happen since the 750 * filesystem will have already been marked read/only and the 751 * journal has been aborted. We return 1 as a hint to callers 752 * who might what to use the return value from 753 * ext4_grp_locked_error() to distinguish between the 754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 755 * aggressively from the ext4 function in question, with a 756 * more appropriate error code. 757 */ 758 ext4_lock_group(sb, grp); 759 return; 760 } 761 762 void ext4_update_dynamic_rev(struct super_block *sb) 763 { 764 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 765 766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 767 return; 768 769 ext4_warning(sb, 770 "updating to rev %d because of new feature flag, " 771 "running e2fsck is recommended", 772 EXT4_DYNAMIC_REV); 773 774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 777 /* leave es->s_feature_*compat flags alone */ 778 /* es->s_uuid will be set by e2fsck if empty */ 779 780 /* 781 * The rest of the superblock fields should be zero, and if not it 782 * means they are likely already in use, so leave them alone. We 783 * can leave it up to e2fsck to clean up any inconsistencies there. 784 */ 785 } 786 787 /* 788 * Open the external journal device 789 */ 790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 791 { 792 struct block_device *bdev; 793 char b[BDEVNAME_SIZE]; 794 795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 796 if (IS_ERR(bdev)) 797 goto fail; 798 return bdev; 799 800 fail: 801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 802 __bdevname(dev, b), PTR_ERR(bdev)); 803 return NULL; 804 } 805 806 /* 807 * Release the journal device 808 */ 809 static void ext4_blkdev_put(struct block_device *bdev) 810 { 811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 812 } 813 814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 815 { 816 struct block_device *bdev; 817 bdev = sbi->journal_bdev; 818 if (bdev) { 819 ext4_blkdev_put(bdev); 820 sbi->journal_bdev = NULL; 821 } 822 } 823 824 static inline struct inode *orphan_list_entry(struct list_head *l) 825 { 826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 827 } 828 829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 830 { 831 struct list_head *l; 832 833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 834 le32_to_cpu(sbi->s_es->s_last_orphan)); 835 836 printk(KERN_ERR "sb_info orphan list:\n"); 837 list_for_each(l, &sbi->s_orphan) { 838 struct inode *inode = orphan_list_entry(l); 839 printk(KERN_ERR " " 840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 841 inode->i_sb->s_id, inode->i_ino, inode, 842 inode->i_mode, inode->i_nlink, 843 NEXT_ORPHAN(inode)); 844 } 845 } 846 847 #ifdef CONFIG_QUOTA 848 static int ext4_quota_off(struct super_block *sb, int type); 849 850 static inline void ext4_quota_off_umount(struct super_block *sb) 851 { 852 int type; 853 854 /* Use our quota_off function to clear inode flags etc. */ 855 for (type = 0; type < EXT4_MAXQUOTAS; type++) 856 ext4_quota_off(sb, type); 857 } 858 #else 859 static inline void ext4_quota_off_umount(struct super_block *sb) 860 { 861 } 862 #endif 863 864 static void ext4_put_super(struct super_block *sb) 865 { 866 struct ext4_sb_info *sbi = EXT4_SB(sb); 867 struct ext4_super_block *es = sbi->s_es; 868 int aborted = 0; 869 int i, err; 870 871 ext4_unregister_li_request(sb); 872 ext4_quota_off_umount(sb); 873 874 flush_workqueue(sbi->rsv_conversion_wq); 875 destroy_workqueue(sbi->rsv_conversion_wq); 876 877 if (sbi->s_journal) { 878 aborted = is_journal_aborted(sbi->s_journal); 879 err = jbd2_journal_destroy(sbi->s_journal); 880 sbi->s_journal = NULL; 881 if ((err < 0) && !aborted) 882 ext4_abort(sb, "Couldn't clean up the journal"); 883 } 884 885 ext4_unregister_sysfs(sb); 886 ext4_es_unregister_shrinker(sbi); 887 del_timer_sync(&sbi->s_err_report); 888 ext4_release_system_zone(sb); 889 ext4_mb_release(sb); 890 ext4_ext_release(sb); 891 892 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 893 ext4_clear_feature_journal_needs_recovery(sb); 894 es->s_state = cpu_to_le16(sbi->s_mount_state); 895 } 896 if (!(sb->s_flags & MS_RDONLY)) 897 ext4_commit_super(sb, 1); 898 899 for (i = 0; i < sbi->s_gdb_count; i++) 900 brelse(sbi->s_group_desc[i]); 901 kvfree(sbi->s_group_desc); 902 kvfree(sbi->s_flex_groups); 903 percpu_counter_destroy(&sbi->s_freeclusters_counter); 904 percpu_counter_destroy(&sbi->s_freeinodes_counter); 905 percpu_counter_destroy(&sbi->s_dirs_counter); 906 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 907 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 908 #ifdef CONFIG_QUOTA 909 for (i = 0; i < EXT4_MAXQUOTAS; i++) 910 kfree(sbi->s_qf_names[i]); 911 #endif 912 913 /* Debugging code just in case the in-memory inode orphan list 914 * isn't empty. The on-disk one can be non-empty if we've 915 * detected an error and taken the fs readonly, but the 916 * in-memory list had better be clean by this point. */ 917 if (!list_empty(&sbi->s_orphan)) 918 dump_orphan_list(sb, sbi); 919 J_ASSERT(list_empty(&sbi->s_orphan)); 920 921 sync_blockdev(sb->s_bdev); 922 invalidate_bdev(sb->s_bdev); 923 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 924 /* 925 * Invalidate the journal device's buffers. We don't want them 926 * floating about in memory - the physical journal device may 927 * hotswapped, and it breaks the `ro-after' testing code. 928 */ 929 sync_blockdev(sbi->journal_bdev); 930 invalidate_bdev(sbi->journal_bdev); 931 ext4_blkdev_remove(sbi); 932 } 933 if (sbi->s_ea_inode_cache) { 934 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 935 sbi->s_ea_inode_cache = NULL; 936 } 937 if (sbi->s_ea_block_cache) { 938 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 939 sbi->s_ea_block_cache = NULL; 940 } 941 if (sbi->s_mmp_tsk) 942 kthread_stop(sbi->s_mmp_tsk); 943 brelse(sbi->s_sbh); 944 sb->s_fs_info = NULL; 945 /* 946 * Now that we are completely done shutting down the 947 * superblock, we need to actually destroy the kobject. 948 */ 949 kobject_put(&sbi->s_kobj); 950 wait_for_completion(&sbi->s_kobj_unregister); 951 if (sbi->s_chksum_driver) 952 crypto_free_shash(sbi->s_chksum_driver); 953 kfree(sbi->s_blockgroup_lock); 954 fs_put_dax(sbi->s_daxdev); 955 kfree(sbi); 956 } 957 958 static struct kmem_cache *ext4_inode_cachep; 959 960 /* 961 * Called inside transaction, so use GFP_NOFS 962 */ 963 static struct inode *ext4_alloc_inode(struct super_block *sb) 964 { 965 struct ext4_inode_info *ei; 966 967 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 968 if (!ei) 969 return NULL; 970 971 ei->vfs_inode.i_version = 1; 972 spin_lock_init(&ei->i_raw_lock); 973 INIT_LIST_HEAD(&ei->i_prealloc_list); 974 spin_lock_init(&ei->i_prealloc_lock); 975 ext4_es_init_tree(&ei->i_es_tree); 976 rwlock_init(&ei->i_es_lock); 977 INIT_LIST_HEAD(&ei->i_es_list); 978 ei->i_es_all_nr = 0; 979 ei->i_es_shk_nr = 0; 980 ei->i_es_shrink_lblk = 0; 981 ei->i_reserved_data_blocks = 0; 982 ei->i_da_metadata_calc_len = 0; 983 ei->i_da_metadata_calc_last_lblock = 0; 984 spin_lock_init(&(ei->i_block_reservation_lock)); 985 #ifdef CONFIG_QUOTA 986 ei->i_reserved_quota = 0; 987 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 988 #endif 989 ei->jinode = NULL; 990 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 991 spin_lock_init(&ei->i_completed_io_lock); 992 ei->i_sync_tid = 0; 993 ei->i_datasync_tid = 0; 994 atomic_set(&ei->i_unwritten, 0); 995 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 996 return &ei->vfs_inode; 997 } 998 999 static int ext4_drop_inode(struct inode *inode) 1000 { 1001 int drop = generic_drop_inode(inode); 1002 1003 trace_ext4_drop_inode(inode, drop); 1004 return drop; 1005 } 1006 1007 static void ext4_i_callback(struct rcu_head *head) 1008 { 1009 struct inode *inode = container_of(head, struct inode, i_rcu); 1010 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1011 } 1012 1013 static void ext4_destroy_inode(struct inode *inode) 1014 { 1015 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1016 ext4_msg(inode->i_sb, KERN_ERR, 1017 "Inode %lu (%p): orphan list check failed!", 1018 inode->i_ino, EXT4_I(inode)); 1019 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1020 EXT4_I(inode), sizeof(struct ext4_inode_info), 1021 true); 1022 dump_stack(); 1023 } 1024 call_rcu(&inode->i_rcu, ext4_i_callback); 1025 } 1026 1027 static void init_once(void *foo) 1028 { 1029 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1030 1031 INIT_LIST_HEAD(&ei->i_orphan); 1032 init_rwsem(&ei->xattr_sem); 1033 init_rwsem(&ei->i_data_sem); 1034 init_rwsem(&ei->i_mmap_sem); 1035 inode_init_once(&ei->vfs_inode); 1036 } 1037 1038 static int __init init_inodecache(void) 1039 { 1040 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1041 sizeof(struct ext4_inode_info), 1042 0, (SLAB_RECLAIM_ACCOUNT| 1043 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1044 init_once); 1045 if (ext4_inode_cachep == NULL) 1046 return -ENOMEM; 1047 return 0; 1048 } 1049 1050 static void destroy_inodecache(void) 1051 { 1052 /* 1053 * Make sure all delayed rcu free inodes are flushed before we 1054 * destroy cache. 1055 */ 1056 rcu_barrier(); 1057 kmem_cache_destroy(ext4_inode_cachep); 1058 } 1059 1060 void ext4_clear_inode(struct inode *inode) 1061 { 1062 invalidate_inode_buffers(inode); 1063 clear_inode(inode); 1064 dquot_drop(inode); 1065 ext4_discard_preallocations(inode); 1066 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1067 if (EXT4_I(inode)->jinode) { 1068 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1069 EXT4_I(inode)->jinode); 1070 jbd2_free_inode(EXT4_I(inode)->jinode); 1071 EXT4_I(inode)->jinode = NULL; 1072 } 1073 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1074 fscrypt_put_encryption_info(inode, NULL); 1075 #endif 1076 } 1077 1078 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1079 u64 ino, u32 generation) 1080 { 1081 struct inode *inode; 1082 1083 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1084 return ERR_PTR(-ESTALE); 1085 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1086 return ERR_PTR(-ESTALE); 1087 1088 /* iget isn't really right if the inode is currently unallocated!! 1089 * 1090 * ext4_read_inode will return a bad_inode if the inode had been 1091 * deleted, so we should be safe. 1092 * 1093 * Currently we don't know the generation for parent directory, so 1094 * a generation of 0 means "accept any" 1095 */ 1096 inode = ext4_iget_normal(sb, ino); 1097 if (IS_ERR(inode)) 1098 return ERR_CAST(inode); 1099 if (generation && inode->i_generation != generation) { 1100 iput(inode); 1101 return ERR_PTR(-ESTALE); 1102 } 1103 1104 return inode; 1105 } 1106 1107 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1108 int fh_len, int fh_type) 1109 { 1110 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1111 ext4_nfs_get_inode); 1112 } 1113 1114 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1115 int fh_len, int fh_type) 1116 { 1117 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1118 ext4_nfs_get_inode); 1119 } 1120 1121 /* 1122 * Try to release metadata pages (indirect blocks, directories) which are 1123 * mapped via the block device. Since these pages could have journal heads 1124 * which would prevent try_to_free_buffers() from freeing them, we must use 1125 * jbd2 layer's try_to_free_buffers() function to release them. 1126 */ 1127 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1128 gfp_t wait) 1129 { 1130 journal_t *journal = EXT4_SB(sb)->s_journal; 1131 1132 WARN_ON(PageChecked(page)); 1133 if (!page_has_buffers(page)) 1134 return 0; 1135 if (journal) 1136 return jbd2_journal_try_to_free_buffers(journal, page, 1137 wait & ~__GFP_DIRECT_RECLAIM); 1138 return try_to_free_buffers(page); 1139 } 1140 1141 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1142 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1143 { 1144 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1145 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1146 } 1147 1148 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1149 void *fs_data) 1150 { 1151 handle_t *handle = fs_data; 1152 int res, res2, credits, retries = 0; 1153 1154 /* 1155 * Encrypting the root directory is not allowed because e2fsck expects 1156 * lost+found to exist and be unencrypted, and encrypting the root 1157 * directory would imply encrypting the lost+found directory as well as 1158 * the filename "lost+found" itself. 1159 */ 1160 if (inode->i_ino == EXT4_ROOT_INO) 1161 return -EPERM; 1162 1163 res = ext4_convert_inline_data(inode); 1164 if (res) 1165 return res; 1166 1167 /* 1168 * If a journal handle was specified, then the encryption context is 1169 * being set on a new inode via inheritance and is part of a larger 1170 * transaction to create the inode. Otherwise the encryption context is 1171 * being set on an existing inode in its own transaction. Only in the 1172 * latter case should the "retry on ENOSPC" logic be used. 1173 */ 1174 1175 if (handle) { 1176 res = ext4_xattr_set_handle(handle, inode, 1177 EXT4_XATTR_INDEX_ENCRYPTION, 1178 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1179 ctx, len, 0); 1180 if (!res) { 1181 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1182 ext4_clear_inode_state(inode, 1183 EXT4_STATE_MAY_INLINE_DATA); 1184 /* 1185 * Update inode->i_flags - e.g. S_DAX may get disabled 1186 */ 1187 ext4_set_inode_flags(inode); 1188 } 1189 return res; 1190 } 1191 1192 res = dquot_initialize(inode); 1193 if (res) 1194 return res; 1195 retry: 1196 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1197 &credits); 1198 if (res) 1199 return res; 1200 1201 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1202 if (IS_ERR(handle)) 1203 return PTR_ERR(handle); 1204 1205 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1206 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1207 ctx, len, 0); 1208 if (!res) { 1209 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1210 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1211 ext4_set_inode_flags(inode); 1212 res = ext4_mark_inode_dirty(handle, inode); 1213 if (res) 1214 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1215 } 1216 res2 = ext4_journal_stop(handle); 1217 1218 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1219 goto retry; 1220 if (!res) 1221 res = res2; 1222 return res; 1223 } 1224 1225 static bool ext4_dummy_context(struct inode *inode) 1226 { 1227 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1228 } 1229 1230 static unsigned ext4_max_namelen(struct inode *inode) 1231 { 1232 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1233 EXT4_NAME_LEN; 1234 } 1235 1236 static const struct fscrypt_operations ext4_cryptops = { 1237 .key_prefix = "ext4:", 1238 .get_context = ext4_get_context, 1239 .set_context = ext4_set_context, 1240 .dummy_context = ext4_dummy_context, 1241 .is_encrypted = ext4_encrypted_inode, 1242 .empty_dir = ext4_empty_dir, 1243 .max_namelen = ext4_max_namelen, 1244 }; 1245 #else 1246 static const struct fscrypt_operations ext4_cryptops = { 1247 .is_encrypted = ext4_encrypted_inode, 1248 }; 1249 #endif 1250 1251 #ifdef CONFIG_QUOTA 1252 static const char * const quotatypes[] = INITQFNAMES; 1253 #define QTYPE2NAME(t) (quotatypes[t]) 1254 1255 static int ext4_write_dquot(struct dquot *dquot); 1256 static int ext4_acquire_dquot(struct dquot *dquot); 1257 static int ext4_release_dquot(struct dquot *dquot); 1258 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1259 static int ext4_write_info(struct super_block *sb, int type); 1260 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1261 const struct path *path); 1262 static int ext4_quota_on_mount(struct super_block *sb, int type); 1263 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1264 size_t len, loff_t off); 1265 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1266 const char *data, size_t len, loff_t off); 1267 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1268 unsigned int flags); 1269 static int ext4_enable_quotas(struct super_block *sb); 1270 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1271 1272 static struct dquot **ext4_get_dquots(struct inode *inode) 1273 { 1274 return EXT4_I(inode)->i_dquot; 1275 } 1276 1277 static const struct dquot_operations ext4_quota_operations = { 1278 .get_reserved_space = ext4_get_reserved_space, 1279 .write_dquot = ext4_write_dquot, 1280 .acquire_dquot = ext4_acquire_dquot, 1281 .release_dquot = ext4_release_dquot, 1282 .mark_dirty = ext4_mark_dquot_dirty, 1283 .write_info = ext4_write_info, 1284 .alloc_dquot = dquot_alloc, 1285 .destroy_dquot = dquot_destroy, 1286 .get_projid = ext4_get_projid, 1287 .get_inode_usage = ext4_get_inode_usage, 1288 .get_next_id = ext4_get_next_id, 1289 }; 1290 1291 static const struct quotactl_ops ext4_qctl_operations = { 1292 .quota_on = ext4_quota_on, 1293 .quota_off = ext4_quota_off, 1294 .quota_sync = dquot_quota_sync, 1295 .get_state = dquot_get_state, 1296 .set_info = dquot_set_dqinfo, 1297 .get_dqblk = dquot_get_dqblk, 1298 .set_dqblk = dquot_set_dqblk, 1299 .get_nextdqblk = dquot_get_next_dqblk, 1300 }; 1301 #endif 1302 1303 static const struct super_operations ext4_sops = { 1304 .alloc_inode = ext4_alloc_inode, 1305 .destroy_inode = ext4_destroy_inode, 1306 .write_inode = ext4_write_inode, 1307 .dirty_inode = ext4_dirty_inode, 1308 .drop_inode = ext4_drop_inode, 1309 .evict_inode = ext4_evict_inode, 1310 .put_super = ext4_put_super, 1311 .sync_fs = ext4_sync_fs, 1312 .freeze_fs = ext4_freeze, 1313 .unfreeze_fs = ext4_unfreeze, 1314 .statfs = ext4_statfs, 1315 .remount_fs = ext4_remount, 1316 .show_options = ext4_show_options, 1317 #ifdef CONFIG_QUOTA 1318 .quota_read = ext4_quota_read, 1319 .quota_write = ext4_quota_write, 1320 .get_dquots = ext4_get_dquots, 1321 #endif 1322 .bdev_try_to_free_page = bdev_try_to_free_page, 1323 }; 1324 1325 static const struct export_operations ext4_export_ops = { 1326 .fh_to_dentry = ext4_fh_to_dentry, 1327 .fh_to_parent = ext4_fh_to_parent, 1328 .get_parent = ext4_get_parent, 1329 }; 1330 1331 enum { 1332 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1333 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1334 Opt_nouid32, Opt_debug, Opt_removed, 1335 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1336 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1337 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1338 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1339 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1340 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1341 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1342 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1343 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1344 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1345 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1346 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1347 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1348 Opt_inode_readahead_blks, Opt_journal_ioprio, 1349 Opt_dioread_nolock, Opt_dioread_lock, 1350 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1351 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1352 }; 1353 1354 static const match_table_t tokens = { 1355 {Opt_bsd_df, "bsddf"}, 1356 {Opt_minix_df, "minixdf"}, 1357 {Opt_grpid, "grpid"}, 1358 {Opt_grpid, "bsdgroups"}, 1359 {Opt_nogrpid, "nogrpid"}, 1360 {Opt_nogrpid, "sysvgroups"}, 1361 {Opt_resgid, "resgid=%u"}, 1362 {Opt_resuid, "resuid=%u"}, 1363 {Opt_sb, "sb=%u"}, 1364 {Opt_err_cont, "errors=continue"}, 1365 {Opt_err_panic, "errors=panic"}, 1366 {Opt_err_ro, "errors=remount-ro"}, 1367 {Opt_nouid32, "nouid32"}, 1368 {Opt_debug, "debug"}, 1369 {Opt_removed, "oldalloc"}, 1370 {Opt_removed, "orlov"}, 1371 {Opt_user_xattr, "user_xattr"}, 1372 {Opt_nouser_xattr, "nouser_xattr"}, 1373 {Opt_acl, "acl"}, 1374 {Opt_noacl, "noacl"}, 1375 {Opt_noload, "norecovery"}, 1376 {Opt_noload, "noload"}, 1377 {Opt_removed, "nobh"}, 1378 {Opt_removed, "bh"}, 1379 {Opt_commit, "commit=%u"}, 1380 {Opt_min_batch_time, "min_batch_time=%u"}, 1381 {Opt_max_batch_time, "max_batch_time=%u"}, 1382 {Opt_journal_dev, "journal_dev=%u"}, 1383 {Opt_journal_path, "journal_path=%s"}, 1384 {Opt_journal_checksum, "journal_checksum"}, 1385 {Opt_nojournal_checksum, "nojournal_checksum"}, 1386 {Opt_journal_async_commit, "journal_async_commit"}, 1387 {Opt_abort, "abort"}, 1388 {Opt_data_journal, "data=journal"}, 1389 {Opt_data_ordered, "data=ordered"}, 1390 {Opt_data_writeback, "data=writeback"}, 1391 {Opt_data_err_abort, "data_err=abort"}, 1392 {Opt_data_err_ignore, "data_err=ignore"}, 1393 {Opt_offusrjquota, "usrjquota="}, 1394 {Opt_usrjquota, "usrjquota=%s"}, 1395 {Opt_offgrpjquota, "grpjquota="}, 1396 {Opt_grpjquota, "grpjquota=%s"}, 1397 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1398 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1399 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1400 {Opt_grpquota, "grpquota"}, 1401 {Opt_noquota, "noquota"}, 1402 {Opt_quota, "quota"}, 1403 {Opt_usrquota, "usrquota"}, 1404 {Opt_prjquota, "prjquota"}, 1405 {Opt_barrier, "barrier=%u"}, 1406 {Opt_barrier, "barrier"}, 1407 {Opt_nobarrier, "nobarrier"}, 1408 {Opt_i_version, "i_version"}, 1409 {Opt_dax, "dax"}, 1410 {Opt_stripe, "stripe=%u"}, 1411 {Opt_delalloc, "delalloc"}, 1412 {Opt_lazytime, "lazytime"}, 1413 {Opt_nolazytime, "nolazytime"}, 1414 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1415 {Opt_nodelalloc, "nodelalloc"}, 1416 {Opt_removed, "mblk_io_submit"}, 1417 {Opt_removed, "nomblk_io_submit"}, 1418 {Opt_block_validity, "block_validity"}, 1419 {Opt_noblock_validity, "noblock_validity"}, 1420 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1421 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1422 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1423 {Opt_auto_da_alloc, "auto_da_alloc"}, 1424 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1425 {Opt_dioread_nolock, "dioread_nolock"}, 1426 {Opt_dioread_lock, "dioread_lock"}, 1427 {Opt_discard, "discard"}, 1428 {Opt_nodiscard, "nodiscard"}, 1429 {Opt_init_itable, "init_itable=%u"}, 1430 {Opt_init_itable, "init_itable"}, 1431 {Opt_noinit_itable, "noinit_itable"}, 1432 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1433 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1434 {Opt_nombcache, "nombcache"}, 1435 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1436 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1437 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1438 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1439 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1440 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1441 {Opt_err, NULL}, 1442 }; 1443 1444 static ext4_fsblk_t get_sb_block(void **data) 1445 { 1446 ext4_fsblk_t sb_block; 1447 char *options = (char *) *data; 1448 1449 if (!options || strncmp(options, "sb=", 3) != 0) 1450 return 1; /* Default location */ 1451 1452 options += 3; 1453 /* TODO: use simple_strtoll with >32bit ext4 */ 1454 sb_block = simple_strtoul(options, &options, 0); 1455 if (*options && *options != ',') { 1456 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1457 (char *) *data); 1458 return 1; 1459 } 1460 if (*options == ',') 1461 options++; 1462 *data = (void *) options; 1463 1464 return sb_block; 1465 } 1466 1467 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1468 static const char deprecated_msg[] = 1469 "Mount option \"%s\" will be removed by %s\n" 1470 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1471 1472 #ifdef CONFIG_QUOTA 1473 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1474 { 1475 struct ext4_sb_info *sbi = EXT4_SB(sb); 1476 char *qname; 1477 int ret = -1; 1478 1479 if (sb_any_quota_loaded(sb) && 1480 !sbi->s_qf_names[qtype]) { 1481 ext4_msg(sb, KERN_ERR, 1482 "Cannot change journaled " 1483 "quota options when quota turned on"); 1484 return -1; 1485 } 1486 if (ext4_has_feature_quota(sb)) { 1487 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1488 "ignored when QUOTA feature is enabled"); 1489 return 1; 1490 } 1491 qname = match_strdup(args); 1492 if (!qname) { 1493 ext4_msg(sb, KERN_ERR, 1494 "Not enough memory for storing quotafile name"); 1495 return -1; 1496 } 1497 if (sbi->s_qf_names[qtype]) { 1498 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1499 ret = 1; 1500 else 1501 ext4_msg(sb, KERN_ERR, 1502 "%s quota file already specified", 1503 QTYPE2NAME(qtype)); 1504 goto errout; 1505 } 1506 if (strchr(qname, '/')) { 1507 ext4_msg(sb, KERN_ERR, 1508 "quotafile must be on filesystem root"); 1509 goto errout; 1510 } 1511 sbi->s_qf_names[qtype] = qname; 1512 set_opt(sb, QUOTA); 1513 return 1; 1514 errout: 1515 kfree(qname); 1516 return ret; 1517 } 1518 1519 static int clear_qf_name(struct super_block *sb, int qtype) 1520 { 1521 1522 struct ext4_sb_info *sbi = EXT4_SB(sb); 1523 1524 if (sb_any_quota_loaded(sb) && 1525 sbi->s_qf_names[qtype]) { 1526 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1527 " when quota turned on"); 1528 return -1; 1529 } 1530 kfree(sbi->s_qf_names[qtype]); 1531 sbi->s_qf_names[qtype] = NULL; 1532 return 1; 1533 } 1534 #endif 1535 1536 #define MOPT_SET 0x0001 1537 #define MOPT_CLEAR 0x0002 1538 #define MOPT_NOSUPPORT 0x0004 1539 #define MOPT_EXPLICIT 0x0008 1540 #define MOPT_CLEAR_ERR 0x0010 1541 #define MOPT_GTE0 0x0020 1542 #ifdef CONFIG_QUOTA 1543 #define MOPT_Q 0 1544 #define MOPT_QFMT 0x0040 1545 #else 1546 #define MOPT_Q MOPT_NOSUPPORT 1547 #define MOPT_QFMT MOPT_NOSUPPORT 1548 #endif 1549 #define MOPT_DATAJ 0x0080 1550 #define MOPT_NO_EXT2 0x0100 1551 #define MOPT_NO_EXT3 0x0200 1552 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1553 #define MOPT_STRING 0x0400 1554 1555 static const struct mount_opts { 1556 int token; 1557 int mount_opt; 1558 int flags; 1559 } ext4_mount_opts[] = { 1560 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1561 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1562 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1563 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1564 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1565 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1566 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1567 MOPT_EXT4_ONLY | MOPT_SET}, 1568 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1569 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1570 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1571 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1572 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1573 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1574 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1575 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1576 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1577 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1578 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1579 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1580 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1581 EXT4_MOUNT_JOURNAL_CHECKSUM), 1582 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1583 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1584 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1585 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1586 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1587 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1588 MOPT_NO_EXT2}, 1589 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1590 MOPT_NO_EXT2}, 1591 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1592 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1593 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1594 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1595 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1596 {Opt_commit, 0, MOPT_GTE0}, 1597 {Opt_max_batch_time, 0, MOPT_GTE0}, 1598 {Opt_min_batch_time, 0, MOPT_GTE0}, 1599 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1600 {Opt_init_itable, 0, MOPT_GTE0}, 1601 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1602 {Opt_stripe, 0, MOPT_GTE0}, 1603 {Opt_resuid, 0, MOPT_GTE0}, 1604 {Opt_resgid, 0, MOPT_GTE0}, 1605 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1606 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1607 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1608 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1609 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1610 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1611 MOPT_NO_EXT2 | MOPT_DATAJ}, 1612 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1613 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1614 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1615 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1616 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1617 #else 1618 {Opt_acl, 0, MOPT_NOSUPPORT}, 1619 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1620 #endif 1621 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1622 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1623 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1624 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1625 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1626 MOPT_SET | MOPT_Q}, 1627 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1628 MOPT_SET | MOPT_Q}, 1629 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1630 MOPT_SET | MOPT_Q}, 1631 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1632 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1633 MOPT_CLEAR | MOPT_Q}, 1634 {Opt_usrjquota, 0, MOPT_Q}, 1635 {Opt_grpjquota, 0, MOPT_Q}, 1636 {Opt_offusrjquota, 0, MOPT_Q}, 1637 {Opt_offgrpjquota, 0, MOPT_Q}, 1638 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1639 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1640 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1641 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1642 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1643 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1644 {Opt_err, 0, 0} 1645 }; 1646 1647 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1648 substring_t *args, unsigned long *journal_devnum, 1649 unsigned int *journal_ioprio, int is_remount) 1650 { 1651 struct ext4_sb_info *sbi = EXT4_SB(sb); 1652 const struct mount_opts *m; 1653 kuid_t uid; 1654 kgid_t gid; 1655 int arg = 0; 1656 1657 #ifdef CONFIG_QUOTA 1658 if (token == Opt_usrjquota) 1659 return set_qf_name(sb, USRQUOTA, &args[0]); 1660 else if (token == Opt_grpjquota) 1661 return set_qf_name(sb, GRPQUOTA, &args[0]); 1662 else if (token == Opt_offusrjquota) 1663 return clear_qf_name(sb, USRQUOTA); 1664 else if (token == Opt_offgrpjquota) 1665 return clear_qf_name(sb, GRPQUOTA); 1666 #endif 1667 switch (token) { 1668 case Opt_noacl: 1669 case Opt_nouser_xattr: 1670 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1671 break; 1672 case Opt_sb: 1673 return 1; /* handled by get_sb_block() */ 1674 case Opt_removed: 1675 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1676 return 1; 1677 case Opt_abort: 1678 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1679 return 1; 1680 case Opt_i_version: 1681 sb->s_flags |= MS_I_VERSION; 1682 return 1; 1683 case Opt_lazytime: 1684 sb->s_flags |= MS_LAZYTIME; 1685 return 1; 1686 case Opt_nolazytime: 1687 sb->s_flags &= ~MS_LAZYTIME; 1688 return 1; 1689 } 1690 1691 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1692 if (token == m->token) 1693 break; 1694 1695 if (m->token == Opt_err) { 1696 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1697 "or missing value", opt); 1698 return -1; 1699 } 1700 1701 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1702 ext4_msg(sb, KERN_ERR, 1703 "Mount option \"%s\" incompatible with ext2", opt); 1704 return -1; 1705 } 1706 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1707 ext4_msg(sb, KERN_ERR, 1708 "Mount option \"%s\" incompatible with ext3", opt); 1709 return -1; 1710 } 1711 1712 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1713 return -1; 1714 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1715 return -1; 1716 if (m->flags & MOPT_EXPLICIT) { 1717 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1718 set_opt2(sb, EXPLICIT_DELALLOC); 1719 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1720 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1721 } else 1722 return -1; 1723 } 1724 if (m->flags & MOPT_CLEAR_ERR) 1725 clear_opt(sb, ERRORS_MASK); 1726 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1727 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1728 "options when quota turned on"); 1729 return -1; 1730 } 1731 1732 if (m->flags & MOPT_NOSUPPORT) { 1733 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1734 } else if (token == Opt_commit) { 1735 if (arg == 0) 1736 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1737 sbi->s_commit_interval = HZ * arg; 1738 } else if (token == Opt_debug_want_extra_isize) { 1739 sbi->s_want_extra_isize = arg; 1740 } else if (token == Opt_max_batch_time) { 1741 sbi->s_max_batch_time = arg; 1742 } else if (token == Opt_min_batch_time) { 1743 sbi->s_min_batch_time = arg; 1744 } else if (token == Opt_inode_readahead_blks) { 1745 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1746 ext4_msg(sb, KERN_ERR, 1747 "EXT4-fs: inode_readahead_blks must be " 1748 "0 or a power of 2 smaller than 2^31"); 1749 return -1; 1750 } 1751 sbi->s_inode_readahead_blks = arg; 1752 } else if (token == Opt_init_itable) { 1753 set_opt(sb, INIT_INODE_TABLE); 1754 if (!args->from) 1755 arg = EXT4_DEF_LI_WAIT_MULT; 1756 sbi->s_li_wait_mult = arg; 1757 } else if (token == Opt_max_dir_size_kb) { 1758 sbi->s_max_dir_size_kb = arg; 1759 } else if (token == Opt_stripe) { 1760 sbi->s_stripe = arg; 1761 } else if (token == Opt_resuid) { 1762 uid = make_kuid(current_user_ns(), arg); 1763 if (!uid_valid(uid)) { 1764 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1765 return -1; 1766 } 1767 sbi->s_resuid = uid; 1768 } else if (token == Opt_resgid) { 1769 gid = make_kgid(current_user_ns(), arg); 1770 if (!gid_valid(gid)) { 1771 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1772 return -1; 1773 } 1774 sbi->s_resgid = gid; 1775 } else if (token == Opt_journal_dev) { 1776 if (is_remount) { 1777 ext4_msg(sb, KERN_ERR, 1778 "Cannot specify journal on remount"); 1779 return -1; 1780 } 1781 *journal_devnum = arg; 1782 } else if (token == Opt_journal_path) { 1783 char *journal_path; 1784 struct inode *journal_inode; 1785 struct path path; 1786 int error; 1787 1788 if (is_remount) { 1789 ext4_msg(sb, KERN_ERR, 1790 "Cannot specify journal on remount"); 1791 return -1; 1792 } 1793 journal_path = match_strdup(&args[0]); 1794 if (!journal_path) { 1795 ext4_msg(sb, KERN_ERR, "error: could not dup " 1796 "journal device string"); 1797 return -1; 1798 } 1799 1800 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1801 if (error) { 1802 ext4_msg(sb, KERN_ERR, "error: could not find " 1803 "journal device path: error %d", error); 1804 kfree(journal_path); 1805 return -1; 1806 } 1807 1808 journal_inode = d_inode(path.dentry); 1809 if (!S_ISBLK(journal_inode->i_mode)) { 1810 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1811 "is not a block device", journal_path); 1812 path_put(&path); 1813 kfree(journal_path); 1814 return -1; 1815 } 1816 1817 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1818 path_put(&path); 1819 kfree(journal_path); 1820 } else if (token == Opt_journal_ioprio) { 1821 if (arg > 7) { 1822 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1823 " (must be 0-7)"); 1824 return -1; 1825 } 1826 *journal_ioprio = 1827 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1828 } else if (token == Opt_test_dummy_encryption) { 1829 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1830 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1831 ext4_msg(sb, KERN_WARNING, 1832 "Test dummy encryption mode enabled"); 1833 #else 1834 ext4_msg(sb, KERN_WARNING, 1835 "Test dummy encryption mount option ignored"); 1836 #endif 1837 } else if (m->flags & MOPT_DATAJ) { 1838 if (is_remount) { 1839 if (!sbi->s_journal) 1840 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1841 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1842 ext4_msg(sb, KERN_ERR, 1843 "Cannot change data mode on remount"); 1844 return -1; 1845 } 1846 } else { 1847 clear_opt(sb, DATA_FLAGS); 1848 sbi->s_mount_opt |= m->mount_opt; 1849 } 1850 #ifdef CONFIG_QUOTA 1851 } else if (m->flags & MOPT_QFMT) { 1852 if (sb_any_quota_loaded(sb) && 1853 sbi->s_jquota_fmt != m->mount_opt) { 1854 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1855 "quota options when quota turned on"); 1856 return -1; 1857 } 1858 if (ext4_has_feature_quota(sb)) { 1859 ext4_msg(sb, KERN_INFO, 1860 "Quota format mount options ignored " 1861 "when QUOTA feature is enabled"); 1862 return 1; 1863 } 1864 sbi->s_jquota_fmt = m->mount_opt; 1865 #endif 1866 } else if (token == Opt_dax) { 1867 #ifdef CONFIG_FS_DAX 1868 ext4_msg(sb, KERN_WARNING, 1869 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1870 sbi->s_mount_opt |= m->mount_opt; 1871 #else 1872 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1873 return -1; 1874 #endif 1875 } else if (token == Opt_data_err_abort) { 1876 sbi->s_mount_opt |= m->mount_opt; 1877 } else if (token == Opt_data_err_ignore) { 1878 sbi->s_mount_opt &= ~m->mount_opt; 1879 } else { 1880 if (!args->from) 1881 arg = 1; 1882 if (m->flags & MOPT_CLEAR) 1883 arg = !arg; 1884 else if (unlikely(!(m->flags & MOPT_SET))) { 1885 ext4_msg(sb, KERN_WARNING, 1886 "buggy handling of option %s", opt); 1887 WARN_ON(1); 1888 return -1; 1889 } 1890 if (arg != 0) 1891 sbi->s_mount_opt |= m->mount_opt; 1892 else 1893 sbi->s_mount_opt &= ~m->mount_opt; 1894 } 1895 return 1; 1896 } 1897 1898 static int parse_options(char *options, struct super_block *sb, 1899 unsigned long *journal_devnum, 1900 unsigned int *journal_ioprio, 1901 int is_remount) 1902 { 1903 struct ext4_sb_info *sbi = EXT4_SB(sb); 1904 char *p; 1905 substring_t args[MAX_OPT_ARGS]; 1906 int token; 1907 1908 if (!options) 1909 return 1; 1910 1911 while ((p = strsep(&options, ",")) != NULL) { 1912 if (!*p) 1913 continue; 1914 /* 1915 * Initialize args struct so we know whether arg was 1916 * found; some options take optional arguments. 1917 */ 1918 args[0].to = args[0].from = NULL; 1919 token = match_token(p, tokens, args); 1920 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1921 journal_ioprio, is_remount) < 0) 1922 return 0; 1923 } 1924 #ifdef CONFIG_QUOTA 1925 /* 1926 * We do the test below only for project quotas. 'usrquota' and 1927 * 'grpquota' mount options are allowed even without quota feature 1928 * to support legacy quotas in quota files. 1929 */ 1930 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1931 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1932 "Cannot enable project quota enforcement."); 1933 return 0; 1934 } 1935 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1936 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1937 clear_opt(sb, USRQUOTA); 1938 1939 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1940 clear_opt(sb, GRPQUOTA); 1941 1942 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1943 ext4_msg(sb, KERN_ERR, "old and new quota " 1944 "format mixing"); 1945 return 0; 1946 } 1947 1948 if (!sbi->s_jquota_fmt) { 1949 ext4_msg(sb, KERN_ERR, "journaled quota format " 1950 "not specified"); 1951 return 0; 1952 } 1953 } 1954 #endif 1955 if (test_opt(sb, DIOREAD_NOLOCK)) { 1956 int blocksize = 1957 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1958 1959 if (blocksize < PAGE_SIZE) { 1960 ext4_msg(sb, KERN_ERR, "can't mount with " 1961 "dioread_nolock if block size != PAGE_SIZE"); 1962 return 0; 1963 } 1964 } 1965 return 1; 1966 } 1967 1968 static inline void ext4_show_quota_options(struct seq_file *seq, 1969 struct super_block *sb) 1970 { 1971 #if defined(CONFIG_QUOTA) 1972 struct ext4_sb_info *sbi = EXT4_SB(sb); 1973 1974 if (sbi->s_jquota_fmt) { 1975 char *fmtname = ""; 1976 1977 switch (sbi->s_jquota_fmt) { 1978 case QFMT_VFS_OLD: 1979 fmtname = "vfsold"; 1980 break; 1981 case QFMT_VFS_V0: 1982 fmtname = "vfsv0"; 1983 break; 1984 case QFMT_VFS_V1: 1985 fmtname = "vfsv1"; 1986 break; 1987 } 1988 seq_printf(seq, ",jqfmt=%s", fmtname); 1989 } 1990 1991 if (sbi->s_qf_names[USRQUOTA]) 1992 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1993 1994 if (sbi->s_qf_names[GRPQUOTA]) 1995 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1996 #endif 1997 } 1998 1999 static const char *token2str(int token) 2000 { 2001 const struct match_token *t; 2002 2003 for (t = tokens; t->token != Opt_err; t++) 2004 if (t->token == token && !strchr(t->pattern, '=')) 2005 break; 2006 return t->pattern; 2007 } 2008 2009 /* 2010 * Show an option if 2011 * - it's set to a non-default value OR 2012 * - if the per-sb default is different from the global default 2013 */ 2014 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2015 int nodefs) 2016 { 2017 struct ext4_sb_info *sbi = EXT4_SB(sb); 2018 struct ext4_super_block *es = sbi->s_es; 2019 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 2020 const struct mount_opts *m; 2021 char sep = nodefs ? '\n' : ','; 2022 2023 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2024 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2025 2026 if (sbi->s_sb_block != 1) 2027 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2028 2029 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2030 int want_set = m->flags & MOPT_SET; 2031 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2032 (m->flags & MOPT_CLEAR_ERR)) 2033 continue; 2034 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2035 continue; /* skip if same as the default */ 2036 if ((want_set && 2037 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2038 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2039 continue; /* select Opt_noFoo vs Opt_Foo */ 2040 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2041 } 2042 2043 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2044 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2045 SEQ_OPTS_PRINT("resuid=%u", 2046 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2047 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2048 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2049 SEQ_OPTS_PRINT("resgid=%u", 2050 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2051 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2052 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2053 SEQ_OPTS_PUTS("errors=remount-ro"); 2054 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2055 SEQ_OPTS_PUTS("errors=continue"); 2056 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2057 SEQ_OPTS_PUTS("errors=panic"); 2058 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2059 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2060 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2061 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2062 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2063 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2064 if (sb->s_flags & MS_I_VERSION) 2065 SEQ_OPTS_PUTS("i_version"); 2066 if (nodefs || sbi->s_stripe) 2067 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2068 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2069 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2070 SEQ_OPTS_PUTS("data=journal"); 2071 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2072 SEQ_OPTS_PUTS("data=ordered"); 2073 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2074 SEQ_OPTS_PUTS("data=writeback"); 2075 } 2076 if (nodefs || 2077 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2078 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2079 sbi->s_inode_readahead_blks); 2080 2081 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2082 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2083 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2084 if (nodefs || sbi->s_max_dir_size_kb) 2085 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2086 if (test_opt(sb, DATA_ERR_ABORT)) 2087 SEQ_OPTS_PUTS("data_err=abort"); 2088 2089 ext4_show_quota_options(seq, sb); 2090 return 0; 2091 } 2092 2093 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2094 { 2095 return _ext4_show_options(seq, root->d_sb, 0); 2096 } 2097 2098 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2099 { 2100 struct super_block *sb = seq->private; 2101 int rc; 2102 2103 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2104 rc = _ext4_show_options(seq, sb, 1); 2105 seq_puts(seq, "\n"); 2106 return rc; 2107 } 2108 2109 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2110 int read_only) 2111 { 2112 struct ext4_sb_info *sbi = EXT4_SB(sb); 2113 int res = 0; 2114 2115 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2116 ext4_msg(sb, KERN_ERR, "revision level too high, " 2117 "forcing read-only mode"); 2118 res = MS_RDONLY; 2119 } 2120 if (read_only) 2121 goto done; 2122 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2123 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2124 "running e2fsck is recommended"); 2125 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2126 ext4_msg(sb, KERN_WARNING, 2127 "warning: mounting fs with errors, " 2128 "running e2fsck is recommended"); 2129 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2130 le16_to_cpu(es->s_mnt_count) >= 2131 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2132 ext4_msg(sb, KERN_WARNING, 2133 "warning: maximal mount count reached, " 2134 "running e2fsck is recommended"); 2135 else if (le32_to_cpu(es->s_checkinterval) && 2136 (le32_to_cpu(es->s_lastcheck) + 2137 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2138 ext4_msg(sb, KERN_WARNING, 2139 "warning: checktime reached, " 2140 "running e2fsck is recommended"); 2141 if (!sbi->s_journal) 2142 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2143 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2144 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2145 le16_add_cpu(&es->s_mnt_count, 1); 2146 es->s_mtime = cpu_to_le32(get_seconds()); 2147 ext4_update_dynamic_rev(sb); 2148 if (sbi->s_journal) 2149 ext4_set_feature_journal_needs_recovery(sb); 2150 2151 ext4_commit_super(sb, 1); 2152 done: 2153 if (test_opt(sb, DEBUG)) 2154 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2155 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2156 sb->s_blocksize, 2157 sbi->s_groups_count, 2158 EXT4_BLOCKS_PER_GROUP(sb), 2159 EXT4_INODES_PER_GROUP(sb), 2160 sbi->s_mount_opt, sbi->s_mount_opt2); 2161 2162 cleancache_init_fs(sb); 2163 return res; 2164 } 2165 2166 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2167 { 2168 struct ext4_sb_info *sbi = EXT4_SB(sb); 2169 struct flex_groups *new_groups; 2170 int size; 2171 2172 if (!sbi->s_log_groups_per_flex) 2173 return 0; 2174 2175 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2176 if (size <= sbi->s_flex_groups_allocated) 2177 return 0; 2178 2179 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2180 new_groups = kvzalloc(size, GFP_KERNEL); 2181 if (!new_groups) { 2182 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2183 size / (int) sizeof(struct flex_groups)); 2184 return -ENOMEM; 2185 } 2186 2187 if (sbi->s_flex_groups) { 2188 memcpy(new_groups, sbi->s_flex_groups, 2189 (sbi->s_flex_groups_allocated * 2190 sizeof(struct flex_groups))); 2191 kvfree(sbi->s_flex_groups); 2192 } 2193 sbi->s_flex_groups = new_groups; 2194 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2195 return 0; 2196 } 2197 2198 static int ext4_fill_flex_info(struct super_block *sb) 2199 { 2200 struct ext4_sb_info *sbi = EXT4_SB(sb); 2201 struct ext4_group_desc *gdp = NULL; 2202 ext4_group_t flex_group; 2203 int i, err; 2204 2205 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2206 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2207 sbi->s_log_groups_per_flex = 0; 2208 return 1; 2209 } 2210 2211 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2212 if (err) 2213 goto failed; 2214 2215 for (i = 0; i < sbi->s_groups_count; i++) { 2216 gdp = ext4_get_group_desc(sb, i, NULL); 2217 2218 flex_group = ext4_flex_group(sbi, i); 2219 atomic_add(ext4_free_inodes_count(sb, gdp), 2220 &sbi->s_flex_groups[flex_group].free_inodes); 2221 atomic64_add(ext4_free_group_clusters(sb, gdp), 2222 &sbi->s_flex_groups[flex_group].free_clusters); 2223 atomic_add(ext4_used_dirs_count(sb, gdp), 2224 &sbi->s_flex_groups[flex_group].used_dirs); 2225 } 2226 2227 return 1; 2228 failed: 2229 return 0; 2230 } 2231 2232 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2233 struct ext4_group_desc *gdp) 2234 { 2235 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2236 __u16 crc = 0; 2237 __le32 le_group = cpu_to_le32(block_group); 2238 struct ext4_sb_info *sbi = EXT4_SB(sb); 2239 2240 if (ext4_has_metadata_csum(sbi->s_sb)) { 2241 /* Use new metadata_csum algorithm */ 2242 __u32 csum32; 2243 __u16 dummy_csum = 0; 2244 2245 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2246 sizeof(le_group)); 2247 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2249 sizeof(dummy_csum)); 2250 offset += sizeof(dummy_csum); 2251 if (offset < sbi->s_desc_size) 2252 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2253 sbi->s_desc_size - offset); 2254 2255 crc = csum32 & 0xFFFF; 2256 goto out; 2257 } 2258 2259 /* old crc16 code */ 2260 if (!ext4_has_feature_gdt_csum(sb)) 2261 return 0; 2262 2263 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2264 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2265 crc = crc16(crc, (__u8 *)gdp, offset); 2266 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2267 /* for checksum of struct ext4_group_desc do the rest...*/ 2268 if (ext4_has_feature_64bit(sb) && 2269 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2270 crc = crc16(crc, (__u8 *)gdp + offset, 2271 le16_to_cpu(sbi->s_es->s_desc_size) - 2272 offset); 2273 2274 out: 2275 return cpu_to_le16(crc); 2276 } 2277 2278 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2279 struct ext4_group_desc *gdp) 2280 { 2281 if (ext4_has_group_desc_csum(sb) && 2282 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2283 return 0; 2284 2285 return 1; 2286 } 2287 2288 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2289 struct ext4_group_desc *gdp) 2290 { 2291 if (!ext4_has_group_desc_csum(sb)) 2292 return; 2293 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2294 } 2295 2296 /* Called at mount-time, super-block is locked */ 2297 static int ext4_check_descriptors(struct super_block *sb, 2298 ext4_fsblk_t sb_block, 2299 ext4_group_t *first_not_zeroed) 2300 { 2301 struct ext4_sb_info *sbi = EXT4_SB(sb); 2302 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2303 ext4_fsblk_t last_block; 2304 ext4_fsblk_t block_bitmap; 2305 ext4_fsblk_t inode_bitmap; 2306 ext4_fsblk_t inode_table; 2307 int flexbg_flag = 0; 2308 ext4_group_t i, grp = sbi->s_groups_count; 2309 2310 if (ext4_has_feature_flex_bg(sb)) 2311 flexbg_flag = 1; 2312 2313 ext4_debug("Checking group descriptors"); 2314 2315 for (i = 0; i < sbi->s_groups_count; i++) { 2316 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2317 2318 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2319 last_block = ext4_blocks_count(sbi->s_es) - 1; 2320 else 2321 last_block = first_block + 2322 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2323 2324 if ((grp == sbi->s_groups_count) && 2325 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2326 grp = i; 2327 2328 block_bitmap = ext4_block_bitmap(sb, gdp); 2329 if (block_bitmap == sb_block) { 2330 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2331 "Block bitmap for group %u overlaps " 2332 "superblock", i); 2333 } 2334 if (block_bitmap < first_block || block_bitmap > last_block) { 2335 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2336 "Block bitmap for group %u not in group " 2337 "(block %llu)!", i, block_bitmap); 2338 return 0; 2339 } 2340 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2341 if (inode_bitmap == sb_block) { 2342 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2343 "Inode bitmap for group %u overlaps " 2344 "superblock", i); 2345 } 2346 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2347 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2348 "Inode bitmap for group %u not in group " 2349 "(block %llu)!", i, inode_bitmap); 2350 return 0; 2351 } 2352 inode_table = ext4_inode_table(sb, gdp); 2353 if (inode_table == sb_block) { 2354 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2355 "Inode table for group %u overlaps " 2356 "superblock", i); 2357 } 2358 if (inode_table < first_block || 2359 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2361 "Inode table for group %u not in group " 2362 "(block %llu)!", i, inode_table); 2363 return 0; 2364 } 2365 ext4_lock_group(sb, i); 2366 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2368 "Checksum for group %u failed (%u!=%u)", 2369 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2370 gdp)), le16_to_cpu(gdp->bg_checksum)); 2371 if (!(sb->s_flags & MS_RDONLY)) { 2372 ext4_unlock_group(sb, i); 2373 return 0; 2374 } 2375 } 2376 ext4_unlock_group(sb, i); 2377 if (!flexbg_flag) 2378 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2379 } 2380 if (NULL != first_not_zeroed) 2381 *first_not_zeroed = grp; 2382 return 1; 2383 } 2384 2385 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2386 * the superblock) which were deleted from all directories, but held open by 2387 * a process at the time of a crash. We walk the list and try to delete these 2388 * inodes at recovery time (only with a read-write filesystem). 2389 * 2390 * In order to keep the orphan inode chain consistent during traversal (in 2391 * case of crash during recovery), we link each inode into the superblock 2392 * orphan list_head and handle it the same way as an inode deletion during 2393 * normal operation (which journals the operations for us). 2394 * 2395 * We only do an iget() and an iput() on each inode, which is very safe if we 2396 * accidentally point at an in-use or already deleted inode. The worst that 2397 * can happen in this case is that we get a "bit already cleared" message from 2398 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2399 * e2fsck was run on this filesystem, and it must have already done the orphan 2400 * inode cleanup for us, so we can safely abort without any further action. 2401 */ 2402 static void ext4_orphan_cleanup(struct super_block *sb, 2403 struct ext4_super_block *es) 2404 { 2405 unsigned int s_flags = sb->s_flags; 2406 int ret, nr_orphans = 0, nr_truncates = 0; 2407 #ifdef CONFIG_QUOTA 2408 int quota_update = 0; 2409 int i; 2410 #endif 2411 if (!es->s_last_orphan) { 2412 jbd_debug(4, "no orphan inodes to clean up\n"); 2413 return; 2414 } 2415 2416 if (bdev_read_only(sb->s_bdev)) { 2417 ext4_msg(sb, KERN_ERR, "write access " 2418 "unavailable, skipping orphan cleanup"); 2419 return; 2420 } 2421 2422 /* Check if feature set would not allow a r/w mount */ 2423 if (!ext4_feature_set_ok(sb, 0)) { 2424 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2425 "unknown ROCOMPAT features"); 2426 return; 2427 } 2428 2429 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2430 /* don't clear list on RO mount w/ errors */ 2431 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2432 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2433 "clearing orphan list.\n"); 2434 es->s_last_orphan = 0; 2435 } 2436 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2437 return; 2438 } 2439 2440 if (s_flags & MS_RDONLY) { 2441 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2442 sb->s_flags &= ~MS_RDONLY; 2443 } 2444 #ifdef CONFIG_QUOTA 2445 /* Needed for iput() to work correctly and not trash data */ 2446 sb->s_flags |= MS_ACTIVE; 2447 2448 /* 2449 * Turn on quotas which were not enabled for read-only mounts if 2450 * filesystem has quota feature, so that they are updated correctly. 2451 */ 2452 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) { 2453 int ret = ext4_enable_quotas(sb); 2454 2455 if (!ret) 2456 quota_update = 1; 2457 else 2458 ext4_msg(sb, KERN_ERR, 2459 "Cannot turn on quotas: error %d", ret); 2460 } 2461 2462 /* Turn on journaled quotas used for old sytle */ 2463 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2464 if (EXT4_SB(sb)->s_qf_names[i]) { 2465 int ret = ext4_quota_on_mount(sb, i); 2466 2467 if (!ret) 2468 quota_update = 1; 2469 else 2470 ext4_msg(sb, KERN_ERR, 2471 "Cannot turn on journaled " 2472 "quota: type %d: error %d", i, ret); 2473 } 2474 } 2475 #endif 2476 2477 while (es->s_last_orphan) { 2478 struct inode *inode; 2479 2480 /* 2481 * We may have encountered an error during cleanup; if 2482 * so, skip the rest. 2483 */ 2484 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2485 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2486 es->s_last_orphan = 0; 2487 break; 2488 } 2489 2490 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2491 if (IS_ERR(inode)) { 2492 es->s_last_orphan = 0; 2493 break; 2494 } 2495 2496 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2497 dquot_initialize(inode); 2498 if (inode->i_nlink) { 2499 if (test_opt(sb, DEBUG)) 2500 ext4_msg(sb, KERN_DEBUG, 2501 "%s: truncating inode %lu to %lld bytes", 2502 __func__, inode->i_ino, inode->i_size); 2503 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2504 inode->i_ino, inode->i_size); 2505 inode_lock(inode); 2506 truncate_inode_pages(inode->i_mapping, inode->i_size); 2507 ret = ext4_truncate(inode); 2508 if (ret) 2509 ext4_std_error(inode->i_sb, ret); 2510 inode_unlock(inode); 2511 nr_truncates++; 2512 } else { 2513 if (test_opt(sb, DEBUG)) 2514 ext4_msg(sb, KERN_DEBUG, 2515 "%s: deleting unreferenced inode %lu", 2516 __func__, inode->i_ino); 2517 jbd_debug(2, "deleting unreferenced inode %lu\n", 2518 inode->i_ino); 2519 nr_orphans++; 2520 } 2521 iput(inode); /* The delete magic happens here! */ 2522 } 2523 2524 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2525 2526 if (nr_orphans) 2527 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2528 PLURAL(nr_orphans)); 2529 if (nr_truncates) 2530 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2531 PLURAL(nr_truncates)); 2532 #ifdef CONFIG_QUOTA 2533 /* Turn off quotas if they were enabled for orphan cleanup */ 2534 if (quota_update) { 2535 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2536 if (sb_dqopt(sb)->files[i]) 2537 dquot_quota_off(sb, i); 2538 } 2539 } 2540 #endif 2541 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2542 } 2543 2544 /* 2545 * Maximal extent format file size. 2546 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2547 * extent format containers, within a sector_t, and within i_blocks 2548 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2549 * so that won't be a limiting factor. 2550 * 2551 * However there is other limiting factor. We do store extents in the form 2552 * of starting block and length, hence the resulting length of the extent 2553 * covering maximum file size must fit into on-disk format containers as 2554 * well. Given that length is always by 1 unit bigger than max unit (because 2555 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2556 * 2557 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2558 */ 2559 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2560 { 2561 loff_t res; 2562 loff_t upper_limit = MAX_LFS_FILESIZE; 2563 2564 /* small i_blocks in vfs inode? */ 2565 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2566 /* 2567 * CONFIG_LBDAF is not enabled implies the inode 2568 * i_block represent total blocks in 512 bytes 2569 * 32 == size of vfs inode i_blocks * 8 2570 */ 2571 upper_limit = (1LL << 32) - 1; 2572 2573 /* total blocks in file system block size */ 2574 upper_limit >>= (blkbits - 9); 2575 upper_limit <<= blkbits; 2576 } 2577 2578 /* 2579 * 32-bit extent-start container, ee_block. We lower the maxbytes 2580 * by one fs block, so ee_len can cover the extent of maximum file 2581 * size 2582 */ 2583 res = (1LL << 32) - 1; 2584 res <<= blkbits; 2585 2586 /* Sanity check against vm- & vfs- imposed limits */ 2587 if (res > upper_limit) 2588 res = upper_limit; 2589 2590 return res; 2591 } 2592 2593 /* 2594 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2595 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2596 * We need to be 1 filesystem block less than the 2^48 sector limit. 2597 */ 2598 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2599 { 2600 loff_t res = EXT4_NDIR_BLOCKS; 2601 int meta_blocks; 2602 loff_t upper_limit; 2603 /* This is calculated to be the largest file size for a dense, block 2604 * mapped file such that the file's total number of 512-byte sectors, 2605 * including data and all indirect blocks, does not exceed (2^48 - 1). 2606 * 2607 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2608 * number of 512-byte sectors of the file. 2609 */ 2610 2611 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2612 /* 2613 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2614 * the inode i_block field represents total file blocks in 2615 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2616 */ 2617 upper_limit = (1LL << 32) - 1; 2618 2619 /* total blocks in file system block size */ 2620 upper_limit >>= (bits - 9); 2621 2622 } else { 2623 /* 2624 * We use 48 bit ext4_inode i_blocks 2625 * With EXT4_HUGE_FILE_FL set the i_blocks 2626 * represent total number of blocks in 2627 * file system block size 2628 */ 2629 upper_limit = (1LL << 48) - 1; 2630 2631 } 2632 2633 /* indirect blocks */ 2634 meta_blocks = 1; 2635 /* double indirect blocks */ 2636 meta_blocks += 1 + (1LL << (bits-2)); 2637 /* tripple indirect blocks */ 2638 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2639 2640 upper_limit -= meta_blocks; 2641 upper_limit <<= bits; 2642 2643 res += 1LL << (bits-2); 2644 res += 1LL << (2*(bits-2)); 2645 res += 1LL << (3*(bits-2)); 2646 res <<= bits; 2647 if (res > upper_limit) 2648 res = upper_limit; 2649 2650 if (res > MAX_LFS_FILESIZE) 2651 res = MAX_LFS_FILESIZE; 2652 2653 return res; 2654 } 2655 2656 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2657 ext4_fsblk_t logical_sb_block, int nr) 2658 { 2659 struct ext4_sb_info *sbi = EXT4_SB(sb); 2660 ext4_group_t bg, first_meta_bg; 2661 int has_super = 0; 2662 2663 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2664 2665 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2666 return logical_sb_block + nr + 1; 2667 bg = sbi->s_desc_per_block * nr; 2668 if (ext4_bg_has_super(sb, bg)) 2669 has_super = 1; 2670 2671 /* 2672 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2673 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2674 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2675 * compensate. 2676 */ 2677 if (sb->s_blocksize == 1024 && nr == 0 && 2678 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2679 has_super++; 2680 2681 return (has_super + ext4_group_first_block_no(sb, bg)); 2682 } 2683 2684 /** 2685 * ext4_get_stripe_size: Get the stripe size. 2686 * @sbi: In memory super block info 2687 * 2688 * If we have specified it via mount option, then 2689 * use the mount option value. If the value specified at mount time is 2690 * greater than the blocks per group use the super block value. 2691 * If the super block value is greater than blocks per group return 0. 2692 * Allocator needs it be less than blocks per group. 2693 * 2694 */ 2695 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2696 { 2697 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2698 unsigned long stripe_width = 2699 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2700 int ret; 2701 2702 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2703 ret = sbi->s_stripe; 2704 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2705 ret = stripe_width; 2706 else if (stride && stride <= sbi->s_blocks_per_group) 2707 ret = stride; 2708 else 2709 ret = 0; 2710 2711 /* 2712 * If the stripe width is 1, this makes no sense and 2713 * we set it to 0 to turn off stripe handling code. 2714 */ 2715 if (ret <= 1) 2716 ret = 0; 2717 2718 return ret; 2719 } 2720 2721 /* 2722 * Check whether this filesystem can be mounted based on 2723 * the features present and the RDONLY/RDWR mount requested. 2724 * Returns 1 if this filesystem can be mounted as requested, 2725 * 0 if it cannot be. 2726 */ 2727 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2728 { 2729 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2730 ext4_msg(sb, KERN_ERR, 2731 "Couldn't mount because of " 2732 "unsupported optional features (%x)", 2733 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2734 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2735 return 0; 2736 } 2737 2738 if (readonly) 2739 return 1; 2740 2741 if (ext4_has_feature_readonly(sb)) { 2742 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2743 sb->s_flags |= MS_RDONLY; 2744 return 1; 2745 } 2746 2747 /* Check that feature set is OK for a read-write mount */ 2748 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2749 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2750 "unsupported optional features (%x)", 2751 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2752 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2753 return 0; 2754 } 2755 /* 2756 * Large file size enabled file system can only be mounted 2757 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2758 */ 2759 if (ext4_has_feature_huge_file(sb)) { 2760 if (sizeof(blkcnt_t) < sizeof(u64)) { 2761 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2762 "cannot be mounted RDWR without " 2763 "CONFIG_LBDAF"); 2764 return 0; 2765 } 2766 } 2767 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2768 ext4_msg(sb, KERN_ERR, 2769 "Can't support bigalloc feature without " 2770 "extents feature\n"); 2771 return 0; 2772 } 2773 2774 #ifndef CONFIG_QUOTA 2775 if (ext4_has_feature_quota(sb) && !readonly) { 2776 ext4_msg(sb, KERN_ERR, 2777 "Filesystem with quota feature cannot be mounted RDWR " 2778 "without CONFIG_QUOTA"); 2779 return 0; 2780 } 2781 if (ext4_has_feature_project(sb) && !readonly) { 2782 ext4_msg(sb, KERN_ERR, 2783 "Filesystem with project quota feature cannot be mounted RDWR " 2784 "without CONFIG_QUOTA"); 2785 return 0; 2786 } 2787 #endif /* CONFIG_QUOTA */ 2788 return 1; 2789 } 2790 2791 /* 2792 * This function is called once a day if we have errors logged 2793 * on the file system 2794 */ 2795 static void print_daily_error_info(unsigned long arg) 2796 { 2797 struct super_block *sb = (struct super_block *) arg; 2798 struct ext4_sb_info *sbi; 2799 struct ext4_super_block *es; 2800 2801 sbi = EXT4_SB(sb); 2802 es = sbi->s_es; 2803 2804 if (es->s_error_count) 2805 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2806 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2807 le32_to_cpu(es->s_error_count)); 2808 if (es->s_first_error_time) { 2809 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2810 sb->s_id, le32_to_cpu(es->s_first_error_time), 2811 (int) sizeof(es->s_first_error_func), 2812 es->s_first_error_func, 2813 le32_to_cpu(es->s_first_error_line)); 2814 if (es->s_first_error_ino) 2815 printk(KERN_CONT ": inode %u", 2816 le32_to_cpu(es->s_first_error_ino)); 2817 if (es->s_first_error_block) 2818 printk(KERN_CONT ": block %llu", (unsigned long long) 2819 le64_to_cpu(es->s_first_error_block)); 2820 printk(KERN_CONT "\n"); 2821 } 2822 if (es->s_last_error_time) { 2823 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2824 sb->s_id, le32_to_cpu(es->s_last_error_time), 2825 (int) sizeof(es->s_last_error_func), 2826 es->s_last_error_func, 2827 le32_to_cpu(es->s_last_error_line)); 2828 if (es->s_last_error_ino) 2829 printk(KERN_CONT ": inode %u", 2830 le32_to_cpu(es->s_last_error_ino)); 2831 if (es->s_last_error_block) 2832 printk(KERN_CONT ": block %llu", (unsigned long long) 2833 le64_to_cpu(es->s_last_error_block)); 2834 printk(KERN_CONT "\n"); 2835 } 2836 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2837 } 2838 2839 /* Find next suitable group and run ext4_init_inode_table */ 2840 static int ext4_run_li_request(struct ext4_li_request *elr) 2841 { 2842 struct ext4_group_desc *gdp = NULL; 2843 ext4_group_t group, ngroups; 2844 struct super_block *sb; 2845 unsigned long timeout = 0; 2846 int ret = 0; 2847 2848 sb = elr->lr_super; 2849 ngroups = EXT4_SB(sb)->s_groups_count; 2850 2851 for (group = elr->lr_next_group; group < ngroups; group++) { 2852 gdp = ext4_get_group_desc(sb, group, NULL); 2853 if (!gdp) { 2854 ret = 1; 2855 break; 2856 } 2857 2858 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2859 break; 2860 } 2861 2862 if (group >= ngroups) 2863 ret = 1; 2864 2865 if (!ret) { 2866 timeout = jiffies; 2867 ret = ext4_init_inode_table(sb, group, 2868 elr->lr_timeout ? 0 : 1); 2869 if (elr->lr_timeout == 0) { 2870 timeout = (jiffies - timeout) * 2871 elr->lr_sbi->s_li_wait_mult; 2872 elr->lr_timeout = timeout; 2873 } 2874 elr->lr_next_sched = jiffies + elr->lr_timeout; 2875 elr->lr_next_group = group + 1; 2876 } 2877 return ret; 2878 } 2879 2880 /* 2881 * Remove lr_request from the list_request and free the 2882 * request structure. Should be called with li_list_mtx held 2883 */ 2884 static void ext4_remove_li_request(struct ext4_li_request *elr) 2885 { 2886 struct ext4_sb_info *sbi; 2887 2888 if (!elr) 2889 return; 2890 2891 sbi = elr->lr_sbi; 2892 2893 list_del(&elr->lr_request); 2894 sbi->s_li_request = NULL; 2895 kfree(elr); 2896 } 2897 2898 static void ext4_unregister_li_request(struct super_block *sb) 2899 { 2900 mutex_lock(&ext4_li_mtx); 2901 if (!ext4_li_info) { 2902 mutex_unlock(&ext4_li_mtx); 2903 return; 2904 } 2905 2906 mutex_lock(&ext4_li_info->li_list_mtx); 2907 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2908 mutex_unlock(&ext4_li_info->li_list_mtx); 2909 mutex_unlock(&ext4_li_mtx); 2910 } 2911 2912 static struct task_struct *ext4_lazyinit_task; 2913 2914 /* 2915 * This is the function where ext4lazyinit thread lives. It walks 2916 * through the request list searching for next scheduled filesystem. 2917 * When such a fs is found, run the lazy initialization request 2918 * (ext4_rn_li_request) and keep track of the time spend in this 2919 * function. Based on that time we compute next schedule time of 2920 * the request. When walking through the list is complete, compute 2921 * next waking time and put itself into sleep. 2922 */ 2923 static int ext4_lazyinit_thread(void *arg) 2924 { 2925 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2926 struct list_head *pos, *n; 2927 struct ext4_li_request *elr; 2928 unsigned long next_wakeup, cur; 2929 2930 BUG_ON(NULL == eli); 2931 2932 cont_thread: 2933 while (true) { 2934 next_wakeup = MAX_JIFFY_OFFSET; 2935 2936 mutex_lock(&eli->li_list_mtx); 2937 if (list_empty(&eli->li_request_list)) { 2938 mutex_unlock(&eli->li_list_mtx); 2939 goto exit_thread; 2940 } 2941 list_for_each_safe(pos, n, &eli->li_request_list) { 2942 int err = 0; 2943 int progress = 0; 2944 elr = list_entry(pos, struct ext4_li_request, 2945 lr_request); 2946 2947 if (time_before(jiffies, elr->lr_next_sched)) { 2948 if (time_before(elr->lr_next_sched, next_wakeup)) 2949 next_wakeup = elr->lr_next_sched; 2950 continue; 2951 } 2952 if (down_read_trylock(&elr->lr_super->s_umount)) { 2953 if (sb_start_write_trylock(elr->lr_super)) { 2954 progress = 1; 2955 /* 2956 * We hold sb->s_umount, sb can not 2957 * be removed from the list, it is 2958 * now safe to drop li_list_mtx 2959 */ 2960 mutex_unlock(&eli->li_list_mtx); 2961 err = ext4_run_li_request(elr); 2962 sb_end_write(elr->lr_super); 2963 mutex_lock(&eli->li_list_mtx); 2964 n = pos->next; 2965 } 2966 up_read((&elr->lr_super->s_umount)); 2967 } 2968 /* error, remove the lazy_init job */ 2969 if (err) { 2970 ext4_remove_li_request(elr); 2971 continue; 2972 } 2973 if (!progress) { 2974 elr->lr_next_sched = jiffies + 2975 (prandom_u32() 2976 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2977 } 2978 if (time_before(elr->lr_next_sched, next_wakeup)) 2979 next_wakeup = elr->lr_next_sched; 2980 } 2981 mutex_unlock(&eli->li_list_mtx); 2982 2983 try_to_freeze(); 2984 2985 cur = jiffies; 2986 if ((time_after_eq(cur, next_wakeup)) || 2987 (MAX_JIFFY_OFFSET == next_wakeup)) { 2988 cond_resched(); 2989 continue; 2990 } 2991 2992 schedule_timeout_interruptible(next_wakeup - cur); 2993 2994 if (kthread_should_stop()) { 2995 ext4_clear_request_list(); 2996 goto exit_thread; 2997 } 2998 } 2999 3000 exit_thread: 3001 /* 3002 * It looks like the request list is empty, but we need 3003 * to check it under the li_list_mtx lock, to prevent any 3004 * additions into it, and of course we should lock ext4_li_mtx 3005 * to atomically free the list and ext4_li_info, because at 3006 * this point another ext4 filesystem could be registering 3007 * new one. 3008 */ 3009 mutex_lock(&ext4_li_mtx); 3010 mutex_lock(&eli->li_list_mtx); 3011 if (!list_empty(&eli->li_request_list)) { 3012 mutex_unlock(&eli->li_list_mtx); 3013 mutex_unlock(&ext4_li_mtx); 3014 goto cont_thread; 3015 } 3016 mutex_unlock(&eli->li_list_mtx); 3017 kfree(ext4_li_info); 3018 ext4_li_info = NULL; 3019 mutex_unlock(&ext4_li_mtx); 3020 3021 return 0; 3022 } 3023 3024 static void ext4_clear_request_list(void) 3025 { 3026 struct list_head *pos, *n; 3027 struct ext4_li_request *elr; 3028 3029 mutex_lock(&ext4_li_info->li_list_mtx); 3030 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3031 elr = list_entry(pos, struct ext4_li_request, 3032 lr_request); 3033 ext4_remove_li_request(elr); 3034 } 3035 mutex_unlock(&ext4_li_info->li_list_mtx); 3036 } 3037 3038 static int ext4_run_lazyinit_thread(void) 3039 { 3040 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3041 ext4_li_info, "ext4lazyinit"); 3042 if (IS_ERR(ext4_lazyinit_task)) { 3043 int err = PTR_ERR(ext4_lazyinit_task); 3044 ext4_clear_request_list(); 3045 kfree(ext4_li_info); 3046 ext4_li_info = NULL; 3047 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3048 "initialization thread\n", 3049 err); 3050 return err; 3051 } 3052 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3053 return 0; 3054 } 3055 3056 /* 3057 * Check whether it make sense to run itable init. thread or not. 3058 * If there is at least one uninitialized inode table, return 3059 * corresponding group number, else the loop goes through all 3060 * groups and return total number of groups. 3061 */ 3062 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3063 { 3064 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3065 struct ext4_group_desc *gdp = NULL; 3066 3067 for (group = 0; group < ngroups; group++) { 3068 gdp = ext4_get_group_desc(sb, group, NULL); 3069 if (!gdp) 3070 continue; 3071 3072 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3073 break; 3074 } 3075 3076 return group; 3077 } 3078 3079 static int ext4_li_info_new(void) 3080 { 3081 struct ext4_lazy_init *eli = NULL; 3082 3083 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3084 if (!eli) 3085 return -ENOMEM; 3086 3087 INIT_LIST_HEAD(&eli->li_request_list); 3088 mutex_init(&eli->li_list_mtx); 3089 3090 eli->li_state |= EXT4_LAZYINIT_QUIT; 3091 3092 ext4_li_info = eli; 3093 3094 return 0; 3095 } 3096 3097 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3098 ext4_group_t start) 3099 { 3100 struct ext4_sb_info *sbi = EXT4_SB(sb); 3101 struct ext4_li_request *elr; 3102 3103 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3104 if (!elr) 3105 return NULL; 3106 3107 elr->lr_super = sb; 3108 elr->lr_sbi = sbi; 3109 elr->lr_next_group = start; 3110 3111 /* 3112 * Randomize first schedule time of the request to 3113 * spread the inode table initialization requests 3114 * better. 3115 */ 3116 elr->lr_next_sched = jiffies + (prandom_u32() % 3117 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3118 return elr; 3119 } 3120 3121 int ext4_register_li_request(struct super_block *sb, 3122 ext4_group_t first_not_zeroed) 3123 { 3124 struct ext4_sb_info *sbi = EXT4_SB(sb); 3125 struct ext4_li_request *elr = NULL; 3126 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3127 int ret = 0; 3128 3129 mutex_lock(&ext4_li_mtx); 3130 if (sbi->s_li_request != NULL) { 3131 /* 3132 * Reset timeout so it can be computed again, because 3133 * s_li_wait_mult might have changed. 3134 */ 3135 sbi->s_li_request->lr_timeout = 0; 3136 goto out; 3137 } 3138 3139 if (first_not_zeroed == ngroups || 3140 (sb->s_flags & MS_RDONLY) || 3141 !test_opt(sb, INIT_INODE_TABLE)) 3142 goto out; 3143 3144 elr = ext4_li_request_new(sb, first_not_zeroed); 3145 if (!elr) { 3146 ret = -ENOMEM; 3147 goto out; 3148 } 3149 3150 if (NULL == ext4_li_info) { 3151 ret = ext4_li_info_new(); 3152 if (ret) 3153 goto out; 3154 } 3155 3156 mutex_lock(&ext4_li_info->li_list_mtx); 3157 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3158 mutex_unlock(&ext4_li_info->li_list_mtx); 3159 3160 sbi->s_li_request = elr; 3161 /* 3162 * set elr to NULL here since it has been inserted to 3163 * the request_list and the removal and free of it is 3164 * handled by ext4_clear_request_list from now on. 3165 */ 3166 elr = NULL; 3167 3168 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3169 ret = ext4_run_lazyinit_thread(); 3170 if (ret) 3171 goto out; 3172 } 3173 out: 3174 mutex_unlock(&ext4_li_mtx); 3175 if (ret) 3176 kfree(elr); 3177 return ret; 3178 } 3179 3180 /* 3181 * We do not need to lock anything since this is called on 3182 * module unload. 3183 */ 3184 static void ext4_destroy_lazyinit_thread(void) 3185 { 3186 /* 3187 * If thread exited earlier 3188 * there's nothing to be done. 3189 */ 3190 if (!ext4_li_info || !ext4_lazyinit_task) 3191 return; 3192 3193 kthread_stop(ext4_lazyinit_task); 3194 } 3195 3196 static int set_journal_csum_feature_set(struct super_block *sb) 3197 { 3198 int ret = 1; 3199 int compat, incompat; 3200 struct ext4_sb_info *sbi = EXT4_SB(sb); 3201 3202 if (ext4_has_metadata_csum(sb)) { 3203 /* journal checksum v3 */ 3204 compat = 0; 3205 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3206 } else { 3207 /* journal checksum v1 */ 3208 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3209 incompat = 0; 3210 } 3211 3212 jbd2_journal_clear_features(sbi->s_journal, 3213 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3214 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3215 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3216 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3217 ret = jbd2_journal_set_features(sbi->s_journal, 3218 compat, 0, 3219 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3220 incompat); 3221 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3222 ret = jbd2_journal_set_features(sbi->s_journal, 3223 compat, 0, 3224 incompat); 3225 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3226 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3227 } else { 3228 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3229 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3230 } 3231 3232 return ret; 3233 } 3234 3235 /* 3236 * Note: calculating the overhead so we can be compatible with 3237 * historical BSD practice is quite difficult in the face of 3238 * clusters/bigalloc. This is because multiple metadata blocks from 3239 * different block group can end up in the same allocation cluster. 3240 * Calculating the exact overhead in the face of clustered allocation 3241 * requires either O(all block bitmaps) in memory or O(number of block 3242 * groups**2) in time. We will still calculate the superblock for 3243 * older file systems --- and if we come across with a bigalloc file 3244 * system with zero in s_overhead_clusters the estimate will be close to 3245 * correct especially for very large cluster sizes --- but for newer 3246 * file systems, it's better to calculate this figure once at mkfs 3247 * time, and store it in the superblock. If the superblock value is 3248 * present (even for non-bigalloc file systems), we will use it. 3249 */ 3250 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3251 char *buf) 3252 { 3253 struct ext4_sb_info *sbi = EXT4_SB(sb); 3254 struct ext4_group_desc *gdp; 3255 ext4_fsblk_t first_block, last_block, b; 3256 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3257 int s, j, count = 0; 3258 3259 if (!ext4_has_feature_bigalloc(sb)) 3260 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3261 sbi->s_itb_per_group + 2); 3262 3263 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3264 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3265 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3266 for (i = 0; i < ngroups; i++) { 3267 gdp = ext4_get_group_desc(sb, i, NULL); 3268 b = ext4_block_bitmap(sb, gdp); 3269 if (b >= first_block && b <= last_block) { 3270 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3271 count++; 3272 } 3273 b = ext4_inode_bitmap(sb, gdp); 3274 if (b >= first_block && b <= last_block) { 3275 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3276 count++; 3277 } 3278 b = ext4_inode_table(sb, gdp); 3279 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3280 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3281 int c = EXT4_B2C(sbi, b - first_block); 3282 ext4_set_bit(c, buf); 3283 count++; 3284 } 3285 if (i != grp) 3286 continue; 3287 s = 0; 3288 if (ext4_bg_has_super(sb, grp)) { 3289 ext4_set_bit(s++, buf); 3290 count++; 3291 } 3292 j = ext4_bg_num_gdb(sb, grp); 3293 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3294 ext4_error(sb, "Invalid number of block group " 3295 "descriptor blocks: %d", j); 3296 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3297 } 3298 count += j; 3299 for (; j > 0; j--) 3300 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3301 } 3302 if (!count) 3303 return 0; 3304 return EXT4_CLUSTERS_PER_GROUP(sb) - 3305 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3306 } 3307 3308 /* 3309 * Compute the overhead and stash it in sbi->s_overhead 3310 */ 3311 int ext4_calculate_overhead(struct super_block *sb) 3312 { 3313 struct ext4_sb_info *sbi = EXT4_SB(sb); 3314 struct ext4_super_block *es = sbi->s_es; 3315 struct inode *j_inode; 3316 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3317 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3318 ext4_fsblk_t overhead = 0; 3319 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3320 3321 if (!buf) 3322 return -ENOMEM; 3323 3324 /* 3325 * Compute the overhead (FS structures). This is constant 3326 * for a given filesystem unless the number of block groups 3327 * changes so we cache the previous value until it does. 3328 */ 3329 3330 /* 3331 * All of the blocks before first_data_block are overhead 3332 */ 3333 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3334 3335 /* 3336 * Add the overhead found in each block group 3337 */ 3338 for (i = 0; i < ngroups; i++) { 3339 int blks; 3340 3341 blks = count_overhead(sb, i, buf); 3342 overhead += blks; 3343 if (blks) 3344 memset(buf, 0, PAGE_SIZE); 3345 cond_resched(); 3346 } 3347 3348 /* 3349 * Add the internal journal blocks whether the journal has been 3350 * loaded or not 3351 */ 3352 if (sbi->s_journal && !sbi->journal_bdev) 3353 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3354 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3355 j_inode = ext4_get_journal_inode(sb, j_inum); 3356 if (j_inode) { 3357 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3358 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3359 iput(j_inode); 3360 } else { 3361 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3362 } 3363 } 3364 sbi->s_overhead = overhead; 3365 smp_wmb(); 3366 free_page((unsigned long) buf); 3367 return 0; 3368 } 3369 3370 static void ext4_set_resv_clusters(struct super_block *sb) 3371 { 3372 ext4_fsblk_t resv_clusters; 3373 struct ext4_sb_info *sbi = EXT4_SB(sb); 3374 3375 /* 3376 * There's no need to reserve anything when we aren't using extents. 3377 * The space estimates are exact, there are no unwritten extents, 3378 * hole punching doesn't need new metadata... This is needed especially 3379 * to keep ext2/3 backward compatibility. 3380 */ 3381 if (!ext4_has_feature_extents(sb)) 3382 return; 3383 /* 3384 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3385 * This should cover the situations where we can not afford to run 3386 * out of space like for example punch hole, or converting 3387 * unwritten extents in delalloc path. In most cases such 3388 * allocation would require 1, or 2 blocks, higher numbers are 3389 * very rare. 3390 */ 3391 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3392 sbi->s_cluster_bits); 3393 3394 do_div(resv_clusters, 50); 3395 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3396 3397 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3398 } 3399 3400 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3401 { 3402 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3403 char *orig_data = kstrdup(data, GFP_KERNEL); 3404 struct buffer_head *bh; 3405 struct ext4_super_block *es = NULL; 3406 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3407 ext4_fsblk_t block; 3408 ext4_fsblk_t sb_block = get_sb_block(&data); 3409 ext4_fsblk_t logical_sb_block; 3410 unsigned long offset = 0; 3411 unsigned long journal_devnum = 0; 3412 unsigned long def_mount_opts; 3413 struct inode *root; 3414 const char *descr; 3415 int ret = -ENOMEM; 3416 int blocksize, clustersize; 3417 unsigned int db_count; 3418 unsigned int i; 3419 int needs_recovery, has_huge_files, has_bigalloc; 3420 __u64 blocks_count; 3421 int err = 0; 3422 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3423 ext4_group_t first_not_zeroed; 3424 3425 if ((data && !orig_data) || !sbi) 3426 goto out_free_base; 3427 3428 sbi->s_daxdev = dax_dev; 3429 sbi->s_blockgroup_lock = 3430 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3431 if (!sbi->s_blockgroup_lock) 3432 goto out_free_base; 3433 3434 sb->s_fs_info = sbi; 3435 sbi->s_sb = sb; 3436 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3437 sbi->s_sb_block = sb_block; 3438 if (sb->s_bdev->bd_part) 3439 sbi->s_sectors_written_start = 3440 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3441 3442 /* Cleanup superblock name */ 3443 strreplace(sb->s_id, '/', '!'); 3444 3445 /* -EINVAL is default */ 3446 ret = -EINVAL; 3447 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3448 if (!blocksize) { 3449 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3450 goto out_fail; 3451 } 3452 3453 /* 3454 * The ext4 superblock will not be buffer aligned for other than 1kB 3455 * block sizes. We need to calculate the offset from buffer start. 3456 */ 3457 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3458 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3459 offset = do_div(logical_sb_block, blocksize); 3460 } else { 3461 logical_sb_block = sb_block; 3462 } 3463 3464 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3465 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3466 goto out_fail; 3467 } 3468 /* 3469 * Note: s_es must be initialized as soon as possible because 3470 * some ext4 macro-instructions depend on its value 3471 */ 3472 es = (struct ext4_super_block *) (bh->b_data + offset); 3473 sbi->s_es = es; 3474 sb->s_magic = le16_to_cpu(es->s_magic); 3475 if (sb->s_magic != EXT4_SUPER_MAGIC) 3476 goto cantfind_ext4; 3477 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3478 3479 /* Warn if metadata_csum and gdt_csum are both set. */ 3480 if (ext4_has_feature_metadata_csum(sb) && 3481 ext4_has_feature_gdt_csum(sb)) 3482 ext4_warning(sb, "metadata_csum and uninit_bg are " 3483 "redundant flags; please run fsck."); 3484 3485 /* Check for a known checksum algorithm */ 3486 if (!ext4_verify_csum_type(sb, es)) { 3487 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3488 "unknown checksum algorithm."); 3489 silent = 1; 3490 goto cantfind_ext4; 3491 } 3492 3493 /* Load the checksum driver */ 3494 if (ext4_has_feature_metadata_csum(sb) || 3495 ext4_has_feature_ea_inode(sb)) { 3496 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3497 if (IS_ERR(sbi->s_chksum_driver)) { 3498 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3499 ret = PTR_ERR(sbi->s_chksum_driver); 3500 sbi->s_chksum_driver = NULL; 3501 goto failed_mount; 3502 } 3503 } 3504 3505 /* Check superblock checksum */ 3506 if (!ext4_superblock_csum_verify(sb, es)) { 3507 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3508 "invalid superblock checksum. Run e2fsck?"); 3509 silent = 1; 3510 ret = -EFSBADCRC; 3511 goto cantfind_ext4; 3512 } 3513 3514 /* Precompute checksum seed for all metadata */ 3515 if (ext4_has_feature_csum_seed(sb)) 3516 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3517 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3518 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3519 sizeof(es->s_uuid)); 3520 3521 /* Set defaults before we parse the mount options */ 3522 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3523 set_opt(sb, INIT_INODE_TABLE); 3524 if (def_mount_opts & EXT4_DEFM_DEBUG) 3525 set_opt(sb, DEBUG); 3526 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3527 set_opt(sb, GRPID); 3528 if (def_mount_opts & EXT4_DEFM_UID16) 3529 set_opt(sb, NO_UID32); 3530 /* xattr user namespace & acls are now defaulted on */ 3531 set_opt(sb, XATTR_USER); 3532 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3533 set_opt(sb, POSIX_ACL); 3534 #endif 3535 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3536 if (ext4_has_metadata_csum(sb)) 3537 set_opt(sb, JOURNAL_CHECKSUM); 3538 3539 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3540 set_opt(sb, JOURNAL_DATA); 3541 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3542 set_opt(sb, ORDERED_DATA); 3543 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3544 set_opt(sb, WRITEBACK_DATA); 3545 3546 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3547 set_opt(sb, ERRORS_PANIC); 3548 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3549 set_opt(sb, ERRORS_CONT); 3550 else 3551 set_opt(sb, ERRORS_RO); 3552 /* block_validity enabled by default; disable with noblock_validity */ 3553 set_opt(sb, BLOCK_VALIDITY); 3554 if (def_mount_opts & EXT4_DEFM_DISCARD) 3555 set_opt(sb, DISCARD); 3556 3557 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3558 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3559 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3560 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3561 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3562 3563 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3564 set_opt(sb, BARRIER); 3565 3566 /* 3567 * enable delayed allocation by default 3568 * Use -o nodelalloc to turn it off 3569 */ 3570 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3571 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3572 set_opt(sb, DELALLOC); 3573 3574 /* 3575 * set default s_li_wait_mult for lazyinit, for the case there is 3576 * no mount option specified. 3577 */ 3578 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3579 3580 if (sbi->s_es->s_mount_opts[0]) { 3581 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3582 sizeof(sbi->s_es->s_mount_opts), 3583 GFP_KERNEL); 3584 if (!s_mount_opts) 3585 goto failed_mount; 3586 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3587 &journal_ioprio, 0)) { 3588 ext4_msg(sb, KERN_WARNING, 3589 "failed to parse options in superblock: %s", 3590 s_mount_opts); 3591 } 3592 kfree(s_mount_opts); 3593 } 3594 sbi->s_def_mount_opt = sbi->s_mount_opt; 3595 if (!parse_options((char *) data, sb, &journal_devnum, 3596 &journal_ioprio, 0)) 3597 goto failed_mount; 3598 3599 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3600 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3601 "with data=journal disables delayed " 3602 "allocation and O_DIRECT support!\n"); 3603 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3604 ext4_msg(sb, KERN_ERR, "can't mount with " 3605 "both data=journal and delalloc"); 3606 goto failed_mount; 3607 } 3608 if (test_opt(sb, DIOREAD_NOLOCK)) { 3609 ext4_msg(sb, KERN_ERR, "can't mount with " 3610 "both data=journal and dioread_nolock"); 3611 goto failed_mount; 3612 } 3613 if (test_opt(sb, DAX)) { 3614 ext4_msg(sb, KERN_ERR, "can't mount with " 3615 "both data=journal and dax"); 3616 goto failed_mount; 3617 } 3618 if (ext4_has_feature_encrypt(sb)) { 3619 ext4_msg(sb, KERN_WARNING, 3620 "encrypted files will use data=ordered " 3621 "instead of data journaling mode"); 3622 } 3623 if (test_opt(sb, DELALLOC)) 3624 clear_opt(sb, DELALLOC); 3625 } else { 3626 sb->s_iflags |= SB_I_CGROUPWB; 3627 } 3628 3629 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3630 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3631 3632 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3633 (ext4_has_compat_features(sb) || 3634 ext4_has_ro_compat_features(sb) || 3635 ext4_has_incompat_features(sb))) 3636 ext4_msg(sb, KERN_WARNING, 3637 "feature flags set on rev 0 fs, " 3638 "running e2fsck is recommended"); 3639 3640 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3641 set_opt2(sb, HURD_COMPAT); 3642 if (ext4_has_feature_64bit(sb)) { 3643 ext4_msg(sb, KERN_ERR, 3644 "The Hurd can't support 64-bit file systems"); 3645 goto failed_mount; 3646 } 3647 3648 /* 3649 * ea_inode feature uses l_i_version field which is not 3650 * available in HURD_COMPAT mode. 3651 */ 3652 if (ext4_has_feature_ea_inode(sb)) { 3653 ext4_msg(sb, KERN_ERR, 3654 "ea_inode feature is not supported for Hurd"); 3655 goto failed_mount; 3656 } 3657 } 3658 3659 if (IS_EXT2_SB(sb)) { 3660 if (ext2_feature_set_ok(sb)) 3661 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3662 "using the ext4 subsystem"); 3663 else { 3664 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3665 "to feature incompatibilities"); 3666 goto failed_mount; 3667 } 3668 } 3669 3670 if (IS_EXT3_SB(sb)) { 3671 if (ext3_feature_set_ok(sb)) 3672 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3673 "using the ext4 subsystem"); 3674 else { 3675 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3676 "to feature incompatibilities"); 3677 goto failed_mount; 3678 } 3679 } 3680 3681 /* 3682 * Check feature flags regardless of the revision level, since we 3683 * previously didn't change the revision level when setting the flags, 3684 * so there is a chance incompat flags are set on a rev 0 filesystem. 3685 */ 3686 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3687 goto failed_mount; 3688 3689 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3690 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3691 blocksize > EXT4_MAX_BLOCK_SIZE) { 3692 ext4_msg(sb, KERN_ERR, 3693 "Unsupported filesystem blocksize %d (%d log_block_size)", 3694 blocksize, le32_to_cpu(es->s_log_block_size)); 3695 goto failed_mount; 3696 } 3697 if (le32_to_cpu(es->s_log_block_size) > 3698 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3699 ext4_msg(sb, KERN_ERR, 3700 "Invalid log block size: %u", 3701 le32_to_cpu(es->s_log_block_size)); 3702 goto failed_mount; 3703 } 3704 3705 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3706 ext4_msg(sb, KERN_ERR, 3707 "Number of reserved GDT blocks insanely large: %d", 3708 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3709 goto failed_mount; 3710 } 3711 3712 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3713 err = bdev_dax_supported(sb, blocksize); 3714 if (err) 3715 goto failed_mount; 3716 } 3717 3718 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3719 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3720 es->s_encryption_level); 3721 goto failed_mount; 3722 } 3723 3724 if (sb->s_blocksize != blocksize) { 3725 /* Validate the filesystem blocksize */ 3726 if (!sb_set_blocksize(sb, blocksize)) { 3727 ext4_msg(sb, KERN_ERR, "bad block size %d", 3728 blocksize); 3729 goto failed_mount; 3730 } 3731 3732 brelse(bh); 3733 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3734 offset = do_div(logical_sb_block, blocksize); 3735 bh = sb_bread_unmovable(sb, logical_sb_block); 3736 if (!bh) { 3737 ext4_msg(sb, KERN_ERR, 3738 "Can't read superblock on 2nd try"); 3739 goto failed_mount; 3740 } 3741 es = (struct ext4_super_block *)(bh->b_data + offset); 3742 sbi->s_es = es; 3743 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3744 ext4_msg(sb, KERN_ERR, 3745 "Magic mismatch, very weird!"); 3746 goto failed_mount; 3747 } 3748 } 3749 3750 has_huge_files = ext4_has_feature_huge_file(sb); 3751 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3752 has_huge_files); 3753 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3754 3755 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3756 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3757 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3758 } else { 3759 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3760 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3761 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3762 (!is_power_of_2(sbi->s_inode_size)) || 3763 (sbi->s_inode_size > blocksize)) { 3764 ext4_msg(sb, KERN_ERR, 3765 "unsupported inode size: %d", 3766 sbi->s_inode_size); 3767 goto failed_mount; 3768 } 3769 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3770 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3771 } 3772 3773 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3774 if (ext4_has_feature_64bit(sb)) { 3775 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3776 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3777 !is_power_of_2(sbi->s_desc_size)) { 3778 ext4_msg(sb, KERN_ERR, 3779 "unsupported descriptor size %lu", 3780 sbi->s_desc_size); 3781 goto failed_mount; 3782 } 3783 } else 3784 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3785 3786 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3787 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3788 3789 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3790 if (sbi->s_inodes_per_block == 0) 3791 goto cantfind_ext4; 3792 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3793 sbi->s_inodes_per_group > blocksize * 8) { 3794 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3795 sbi->s_blocks_per_group); 3796 goto failed_mount; 3797 } 3798 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3799 sbi->s_inodes_per_block; 3800 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3801 sbi->s_sbh = bh; 3802 sbi->s_mount_state = le16_to_cpu(es->s_state); 3803 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3804 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3805 3806 for (i = 0; i < 4; i++) 3807 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3808 sbi->s_def_hash_version = es->s_def_hash_version; 3809 if (ext4_has_feature_dir_index(sb)) { 3810 i = le32_to_cpu(es->s_flags); 3811 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3812 sbi->s_hash_unsigned = 3; 3813 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3814 #ifdef __CHAR_UNSIGNED__ 3815 if (!(sb->s_flags & MS_RDONLY)) 3816 es->s_flags |= 3817 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3818 sbi->s_hash_unsigned = 3; 3819 #else 3820 if (!(sb->s_flags & MS_RDONLY)) 3821 es->s_flags |= 3822 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3823 #endif 3824 } 3825 } 3826 3827 /* Handle clustersize */ 3828 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3829 has_bigalloc = ext4_has_feature_bigalloc(sb); 3830 if (has_bigalloc) { 3831 if (clustersize < blocksize) { 3832 ext4_msg(sb, KERN_ERR, 3833 "cluster size (%d) smaller than " 3834 "block size (%d)", clustersize, blocksize); 3835 goto failed_mount; 3836 } 3837 if (le32_to_cpu(es->s_log_cluster_size) > 3838 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3839 ext4_msg(sb, KERN_ERR, 3840 "Invalid log cluster size: %u", 3841 le32_to_cpu(es->s_log_cluster_size)); 3842 goto failed_mount; 3843 } 3844 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3845 le32_to_cpu(es->s_log_block_size); 3846 sbi->s_clusters_per_group = 3847 le32_to_cpu(es->s_clusters_per_group); 3848 if (sbi->s_clusters_per_group > blocksize * 8) { 3849 ext4_msg(sb, KERN_ERR, 3850 "#clusters per group too big: %lu", 3851 sbi->s_clusters_per_group); 3852 goto failed_mount; 3853 } 3854 if (sbi->s_blocks_per_group != 3855 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3856 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3857 "clusters per group (%lu) inconsistent", 3858 sbi->s_blocks_per_group, 3859 sbi->s_clusters_per_group); 3860 goto failed_mount; 3861 } 3862 } else { 3863 if (clustersize != blocksize) { 3864 ext4_warning(sb, "fragment/cluster size (%d) != " 3865 "block size (%d)", clustersize, 3866 blocksize); 3867 clustersize = blocksize; 3868 } 3869 if (sbi->s_blocks_per_group > blocksize * 8) { 3870 ext4_msg(sb, KERN_ERR, 3871 "#blocks per group too big: %lu", 3872 sbi->s_blocks_per_group); 3873 goto failed_mount; 3874 } 3875 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3876 sbi->s_cluster_bits = 0; 3877 } 3878 sbi->s_cluster_ratio = clustersize / blocksize; 3879 3880 /* Do we have standard group size of clustersize * 8 blocks ? */ 3881 if (sbi->s_blocks_per_group == clustersize << 3) 3882 set_opt2(sb, STD_GROUP_SIZE); 3883 3884 /* 3885 * Test whether we have more sectors than will fit in sector_t, 3886 * and whether the max offset is addressable by the page cache. 3887 */ 3888 err = generic_check_addressable(sb->s_blocksize_bits, 3889 ext4_blocks_count(es)); 3890 if (err) { 3891 ext4_msg(sb, KERN_ERR, "filesystem" 3892 " too large to mount safely on this system"); 3893 if (sizeof(sector_t) < 8) 3894 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3895 goto failed_mount; 3896 } 3897 3898 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3899 goto cantfind_ext4; 3900 3901 /* check blocks count against device size */ 3902 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3903 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3904 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3905 "exceeds size of device (%llu blocks)", 3906 ext4_blocks_count(es), blocks_count); 3907 goto failed_mount; 3908 } 3909 3910 /* 3911 * It makes no sense for the first data block to be beyond the end 3912 * of the filesystem. 3913 */ 3914 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3915 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3916 "block %u is beyond end of filesystem (%llu)", 3917 le32_to_cpu(es->s_first_data_block), 3918 ext4_blocks_count(es)); 3919 goto failed_mount; 3920 } 3921 blocks_count = (ext4_blocks_count(es) - 3922 le32_to_cpu(es->s_first_data_block) + 3923 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3924 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3925 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3926 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3927 "(block count %llu, first data block %u, " 3928 "blocks per group %lu)", sbi->s_groups_count, 3929 ext4_blocks_count(es), 3930 le32_to_cpu(es->s_first_data_block), 3931 EXT4_BLOCKS_PER_GROUP(sb)); 3932 goto failed_mount; 3933 } 3934 sbi->s_groups_count = blocks_count; 3935 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3936 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3937 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3938 EXT4_DESC_PER_BLOCK(sb); 3939 if (ext4_has_feature_meta_bg(sb)) { 3940 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3941 ext4_msg(sb, KERN_WARNING, 3942 "first meta block group too large: %u " 3943 "(group descriptor block count %u)", 3944 le32_to_cpu(es->s_first_meta_bg), db_count); 3945 goto failed_mount; 3946 } 3947 } 3948 sbi->s_group_desc = kvmalloc(db_count * 3949 sizeof(struct buffer_head *), 3950 GFP_KERNEL); 3951 if (sbi->s_group_desc == NULL) { 3952 ext4_msg(sb, KERN_ERR, "not enough memory"); 3953 ret = -ENOMEM; 3954 goto failed_mount; 3955 } 3956 3957 bgl_lock_init(sbi->s_blockgroup_lock); 3958 3959 /* Pre-read the descriptors into the buffer cache */ 3960 for (i = 0; i < db_count; i++) { 3961 block = descriptor_loc(sb, logical_sb_block, i); 3962 sb_breadahead(sb, block); 3963 } 3964 3965 for (i = 0; i < db_count; i++) { 3966 block = descriptor_loc(sb, logical_sb_block, i); 3967 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3968 if (!sbi->s_group_desc[i]) { 3969 ext4_msg(sb, KERN_ERR, 3970 "can't read group descriptor %d", i); 3971 db_count = i; 3972 goto failed_mount2; 3973 } 3974 } 3975 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3976 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3977 ret = -EFSCORRUPTED; 3978 goto failed_mount2; 3979 } 3980 3981 sbi->s_gdb_count = db_count; 3982 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3983 spin_lock_init(&sbi->s_next_gen_lock); 3984 3985 setup_timer(&sbi->s_err_report, print_daily_error_info, 3986 (unsigned long) sb); 3987 3988 /* Register extent status tree shrinker */ 3989 if (ext4_es_register_shrinker(sbi)) 3990 goto failed_mount3; 3991 3992 sbi->s_stripe = ext4_get_stripe_size(sbi); 3993 sbi->s_extent_max_zeroout_kb = 32; 3994 3995 /* 3996 * set up enough so that it can read an inode 3997 */ 3998 sb->s_op = &ext4_sops; 3999 sb->s_export_op = &ext4_export_ops; 4000 sb->s_xattr = ext4_xattr_handlers; 4001 sb->s_cop = &ext4_cryptops; 4002 #ifdef CONFIG_QUOTA 4003 sb->dq_op = &ext4_quota_operations; 4004 if (ext4_has_feature_quota(sb)) 4005 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4006 else 4007 sb->s_qcop = &ext4_qctl_operations; 4008 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4009 #endif 4010 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4011 4012 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4013 mutex_init(&sbi->s_orphan_lock); 4014 4015 sb->s_root = NULL; 4016 4017 needs_recovery = (es->s_last_orphan != 0 || 4018 ext4_has_feature_journal_needs_recovery(sb)); 4019 4020 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 4021 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4022 goto failed_mount3a; 4023 4024 /* 4025 * The first inode we look at is the journal inode. Don't try 4026 * root first: it may be modified in the journal! 4027 */ 4028 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4029 err = ext4_load_journal(sb, es, journal_devnum); 4030 if (err) 4031 goto failed_mount3a; 4032 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 4033 ext4_has_feature_journal_needs_recovery(sb)) { 4034 ext4_msg(sb, KERN_ERR, "required journal recovery " 4035 "suppressed and not mounted read-only"); 4036 goto failed_mount_wq; 4037 } else { 4038 /* Nojournal mode, all journal mount options are illegal */ 4039 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4040 ext4_msg(sb, KERN_ERR, "can't mount with " 4041 "journal_checksum, fs mounted w/o journal"); 4042 goto failed_mount_wq; 4043 } 4044 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4045 ext4_msg(sb, KERN_ERR, "can't mount with " 4046 "journal_async_commit, fs mounted w/o journal"); 4047 goto failed_mount_wq; 4048 } 4049 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4050 ext4_msg(sb, KERN_ERR, "can't mount with " 4051 "commit=%lu, fs mounted w/o journal", 4052 sbi->s_commit_interval / HZ); 4053 goto failed_mount_wq; 4054 } 4055 if (EXT4_MOUNT_DATA_FLAGS & 4056 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4057 ext4_msg(sb, KERN_ERR, "can't mount with " 4058 "data=, fs mounted w/o journal"); 4059 goto failed_mount_wq; 4060 } 4061 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4062 clear_opt(sb, JOURNAL_CHECKSUM); 4063 clear_opt(sb, DATA_FLAGS); 4064 sbi->s_journal = NULL; 4065 needs_recovery = 0; 4066 goto no_journal; 4067 } 4068 4069 if (ext4_has_feature_64bit(sb) && 4070 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4071 JBD2_FEATURE_INCOMPAT_64BIT)) { 4072 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4073 goto failed_mount_wq; 4074 } 4075 4076 if (!set_journal_csum_feature_set(sb)) { 4077 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4078 "feature set"); 4079 goto failed_mount_wq; 4080 } 4081 4082 /* We have now updated the journal if required, so we can 4083 * validate the data journaling mode. */ 4084 switch (test_opt(sb, DATA_FLAGS)) { 4085 case 0: 4086 /* No mode set, assume a default based on the journal 4087 * capabilities: ORDERED_DATA if the journal can 4088 * cope, else JOURNAL_DATA 4089 */ 4090 if (jbd2_journal_check_available_features 4091 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4092 set_opt(sb, ORDERED_DATA); 4093 else 4094 set_opt(sb, JOURNAL_DATA); 4095 break; 4096 4097 case EXT4_MOUNT_ORDERED_DATA: 4098 case EXT4_MOUNT_WRITEBACK_DATA: 4099 if (!jbd2_journal_check_available_features 4100 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4101 ext4_msg(sb, KERN_ERR, "Journal does not support " 4102 "requested data journaling mode"); 4103 goto failed_mount_wq; 4104 } 4105 default: 4106 break; 4107 } 4108 4109 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4110 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4111 ext4_msg(sb, KERN_ERR, "can't mount with " 4112 "journal_async_commit in data=ordered mode"); 4113 goto failed_mount_wq; 4114 } 4115 4116 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4117 4118 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4119 4120 no_journal: 4121 if (!test_opt(sb, NO_MBCACHE)) { 4122 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4123 if (!sbi->s_ea_block_cache) { 4124 ext4_msg(sb, KERN_ERR, 4125 "Failed to create ea_block_cache"); 4126 goto failed_mount_wq; 4127 } 4128 4129 if (ext4_has_feature_ea_inode(sb)) { 4130 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4131 if (!sbi->s_ea_inode_cache) { 4132 ext4_msg(sb, KERN_ERR, 4133 "Failed to create ea_inode_cache"); 4134 goto failed_mount_wq; 4135 } 4136 } 4137 } 4138 4139 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4140 (blocksize != PAGE_SIZE)) { 4141 ext4_msg(sb, KERN_ERR, 4142 "Unsupported blocksize for fs encryption"); 4143 goto failed_mount_wq; 4144 } 4145 4146 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4147 !ext4_has_feature_encrypt(sb)) { 4148 ext4_set_feature_encrypt(sb); 4149 ext4_commit_super(sb, 1); 4150 } 4151 4152 /* 4153 * Get the # of file system overhead blocks from the 4154 * superblock if present. 4155 */ 4156 if (es->s_overhead_clusters) 4157 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4158 else { 4159 err = ext4_calculate_overhead(sb); 4160 if (err) 4161 goto failed_mount_wq; 4162 } 4163 4164 /* 4165 * The maximum number of concurrent works can be high and 4166 * concurrency isn't really necessary. Limit it to 1. 4167 */ 4168 EXT4_SB(sb)->rsv_conversion_wq = 4169 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4170 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4171 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4172 ret = -ENOMEM; 4173 goto failed_mount4; 4174 } 4175 4176 /* 4177 * The jbd2_journal_load will have done any necessary log recovery, 4178 * so we can safely mount the rest of the filesystem now. 4179 */ 4180 4181 root = ext4_iget(sb, EXT4_ROOT_INO); 4182 if (IS_ERR(root)) { 4183 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4184 ret = PTR_ERR(root); 4185 root = NULL; 4186 goto failed_mount4; 4187 } 4188 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4189 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4190 iput(root); 4191 goto failed_mount4; 4192 } 4193 sb->s_root = d_make_root(root); 4194 if (!sb->s_root) { 4195 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4196 ret = -ENOMEM; 4197 goto failed_mount4; 4198 } 4199 4200 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4201 sb->s_flags |= MS_RDONLY; 4202 4203 /* determine the minimum size of new large inodes, if present */ 4204 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4205 sbi->s_want_extra_isize == 0) { 4206 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4207 EXT4_GOOD_OLD_INODE_SIZE; 4208 if (ext4_has_feature_extra_isize(sb)) { 4209 if (sbi->s_want_extra_isize < 4210 le16_to_cpu(es->s_want_extra_isize)) 4211 sbi->s_want_extra_isize = 4212 le16_to_cpu(es->s_want_extra_isize); 4213 if (sbi->s_want_extra_isize < 4214 le16_to_cpu(es->s_min_extra_isize)) 4215 sbi->s_want_extra_isize = 4216 le16_to_cpu(es->s_min_extra_isize); 4217 } 4218 } 4219 /* Check if enough inode space is available */ 4220 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4221 sbi->s_inode_size) { 4222 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4223 EXT4_GOOD_OLD_INODE_SIZE; 4224 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4225 "available"); 4226 } 4227 4228 ext4_set_resv_clusters(sb); 4229 4230 err = ext4_setup_system_zone(sb); 4231 if (err) { 4232 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4233 "zone (%d)", err); 4234 goto failed_mount4a; 4235 } 4236 4237 ext4_ext_init(sb); 4238 err = ext4_mb_init(sb); 4239 if (err) { 4240 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4241 err); 4242 goto failed_mount5; 4243 } 4244 4245 block = ext4_count_free_clusters(sb); 4246 ext4_free_blocks_count_set(sbi->s_es, 4247 EXT4_C2B(sbi, block)); 4248 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4249 GFP_KERNEL); 4250 if (!err) { 4251 unsigned long freei = ext4_count_free_inodes(sb); 4252 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4253 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4254 GFP_KERNEL); 4255 } 4256 if (!err) 4257 err = percpu_counter_init(&sbi->s_dirs_counter, 4258 ext4_count_dirs(sb), GFP_KERNEL); 4259 if (!err) 4260 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4261 GFP_KERNEL); 4262 if (!err) 4263 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4264 4265 if (err) { 4266 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4267 goto failed_mount6; 4268 } 4269 4270 if (ext4_has_feature_flex_bg(sb)) 4271 if (!ext4_fill_flex_info(sb)) { 4272 ext4_msg(sb, KERN_ERR, 4273 "unable to initialize " 4274 "flex_bg meta info!"); 4275 goto failed_mount6; 4276 } 4277 4278 err = ext4_register_li_request(sb, first_not_zeroed); 4279 if (err) 4280 goto failed_mount6; 4281 4282 err = ext4_register_sysfs(sb); 4283 if (err) 4284 goto failed_mount7; 4285 4286 #ifdef CONFIG_QUOTA 4287 /* Enable quota usage during mount. */ 4288 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4289 err = ext4_enable_quotas(sb); 4290 if (err) 4291 goto failed_mount8; 4292 } 4293 #endif /* CONFIG_QUOTA */ 4294 4295 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4296 ext4_orphan_cleanup(sb, es); 4297 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4298 if (needs_recovery) { 4299 ext4_msg(sb, KERN_INFO, "recovery complete"); 4300 ext4_mark_recovery_complete(sb, es); 4301 } 4302 if (EXT4_SB(sb)->s_journal) { 4303 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4304 descr = " journalled data mode"; 4305 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4306 descr = " ordered data mode"; 4307 else 4308 descr = " writeback data mode"; 4309 } else 4310 descr = "out journal"; 4311 4312 if (test_opt(sb, DISCARD)) { 4313 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4314 if (!blk_queue_discard(q)) 4315 ext4_msg(sb, KERN_WARNING, 4316 "mounting with \"discard\" option, but " 4317 "the device does not support discard"); 4318 } 4319 4320 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4321 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4322 "Opts: %.*s%s%s", descr, 4323 (int) sizeof(sbi->s_es->s_mount_opts), 4324 sbi->s_es->s_mount_opts, 4325 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4326 4327 if (es->s_error_count) 4328 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4329 4330 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4331 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4332 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4333 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4334 4335 kfree(orig_data); 4336 return 0; 4337 4338 cantfind_ext4: 4339 if (!silent) 4340 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4341 goto failed_mount; 4342 4343 #ifdef CONFIG_QUOTA 4344 failed_mount8: 4345 ext4_unregister_sysfs(sb); 4346 #endif 4347 failed_mount7: 4348 ext4_unregister_li_request(sb); 4349 failed_mount6: 4350 ext4_mb_release(sb); 4351 if (sbi->s_flex_groups) 4352 kvfree(sbi->s_flex_groups); 4353 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4354 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4355 percpu_counter_destroy(&sbi->s_dirs_counter); 4356 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4357 failed_mount5: 4358 ext4_ext_release(sb); 4359 ext4_release_system_zone(sb); 4360 failed_mount4a: 4361 dput(sb->s_root); 4362 sb->s_root = NULL; 4363 failed_mount4: 4364 ext4_msg(sb, KERN_ERR, "mount failed"); 4365 if (EXT4_SB(sb)->rsv_conversion_wq) 4366 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4367 failed_mount_wq: 4368 if (sbi->s_ea_inode_cache) { 4369 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4370 sbi->s_ea_inode_cache = NULL; 4371 } 4372 if (sbi->s_ea_block_cache) { 4373 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4374 sbi->s_ea_block_cache = NULL; 4375 } 4376 if (sbi->s_journal) { 4377 jbd2_journal_destroy(sbi->s_journal); 4378 sbi->s_journal = NULL; 4379 } 4380 failed_mount3a: 4381 ext4_es_unregister_shrinker(sbi); 4382 failed_mount3: 4383 del_timer_sync(&sbi->s_err_report); 4384 if (sbi->s_mmp_tsk) 4385 kthread_stop(sbi->s_mmp_tsk); 4386 failed_mount2: 4387 for (i = 0; i < db_count; i++) 4388 brelse(sbi->s_group_desc[i]); 4389 kvfree(sbi->s_group_desc); 4390 failed_mount: 4391 if (sbi->s_chksum_driver) 4392 crypto_free_shash(sbi->s_chksum_driver); 4393 #ifdef CONFIG_QUOTA 4394 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4395 kfree(sbi->s_qf_names[i]); 4396 #endif 4397 ext4_blkdev_remove(sbi); 4398 brelse(bh); 4399 out_fail: 4400 sb->s_fs_info = NULL; 4401 kfree(sbi->s_blockgroup_lock); 4402 out_free_base: 4403 kfree(sbi); 4404 kfree(orig_data); 4405 fs_put_dax(dax_dev); 4406 return err ? err : ret; 4407 } 4408 4409 /* 4410 * Setup any per-fs journal parameters now. We'll do this both on 4411 * initial mount, once the journal has been initialised but before we've 4412 * done any recovery; and again on any subsequent remount. 4413 */ 4414 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4415 { 4416 struct ext4_sb_info *sbi = EXT4_SB(sb); 4417 4418 journal->j_commit_interval = sbi->s_commit_interval; 4419 journal->j_min_batch_time = sbi->s_min_batch_time; 4420 journal->j_max_batch_time = sbi->s_max_batch_time; 4421 4422 write_lock(&journal->j_state_lock); 4423 if (test_opt(sb, BARRIER)) 4424 journal->j_flags |= JBD2_BARRIER; 4425 else 4426 journal->j_flags &= ~JBD2_BARRIER; 4427 if (test_opt(sb, DATA_ERR_ABORT)) 4428 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4429 else 4430 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4431 write_unlock(&journal->j_state_lock); 4432 } 4433 4434 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4435 unsigned int journal_inum) 4436 { 4437 struct inode *journal_inode; 4438 4439 /* 4440 * Test for the existence of a valid inode on disk. Bad things 4441 * happen if we iget() an unused inode, as the subsequent iput() 4442 * will try to delete it. 4443 */ 4444 journal_inode = ext4_iget(sb, journal_inum); 4445 if (IS_ERR(journal_inode)) { 4446 ext4_msg(sb, KERN_ERR, "no journal found"); 4447 return NULL; 4448 } 4449 if (!journal_inode->i_nlink) { 4450 make_bad_inode(journal_inode); 4451 iput(journal_inode); 4452 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4453 return NULL; 4454 } 4455 4456 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4457 journal_inode, journal_inode->i_size); 4458 if (!S_ISREG(journal_inode->i_mode)) { 4459 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4460 iput(journal_inode); 4461 return NULL; 4462 } 4463 return journal_inode; 4464 } 4465 4466 static journal_t *ext4_get_journal(struct super_block *sb, 4467 unsigned int journal_inum) 4468 { 4469 struct inode *journal_inode; 4470 journal_t *journal; 4471 4472 BUG_ON(!ext4_has_feature_journal(sb)); 4473 4474 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4475 if (!journal_inode) 4476 return NULL; 4477 4478 journal = jbd2_journal_init_inode(journal_inode); 4479 if (!journal) { 4480 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4481 iput(journal_inode); 4482 return NULL; 4483 } 4484 journal->j_private = sb; 4485 ext4_init_journal_params(sb, journal); 4486 return journal; 4487 } 4488 4489 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4490 dev_t j_dev) 4491 { 4492 struct buffer_head *bh; 4493 journal_t *journal; 4494 ext4_fsblk_t start; 4495 ext4_fsblk_t len; 4496 int hblock, blocksize; 4497 ext4_fsblk_t sb_block; 4498 unsigned long offset; 4499 struct ext4_super_block *es; 4500 struct block_device *bdev; 4501 4502 BUG_ON(!ext4_has_feature_journal(sb)); 4503 4504 bdev = ext4_blkdev_get(j_dev, sb); 4505 if (bdev == NULL) 4506 return NULL; 4507 4508 blocksize = sb->s_blocksize; 4509 hblock = bdev_logical_block_size(bdev); 4510 if (blocksize < hblock) { 4511 ext4_msg(sb, KERN_ERR, 4512 "blocksize too small for journal device"); 4513 goto out_bdev; 4514 } 4515 4516 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4517 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4518 set_blocksize(bdev, blocksize); 4519 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4520 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4521 "external journal"); 4522 goto out_bdev; 4523 } 4524 4525 es = (struct ext4_super_block *) (bh->b_data + offset); 4526 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4527 !(le32_to_cpu(es->s_feature_incompat) & 4528 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4529 ext4_msg(sb, KERN_ERR, "external journal has " 4530 "bad superblock"); 4531 brelse(bh); 4532 goto out_bdev; 4533 } 4534 4535 if ((le32_to_cpu(es->s_feature_ro_compat) & 4536 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4537 es->s_checksum != ext4_superblock_csum(sb, es)) { 4538 ext4_msg(sb, KERN_ERR, "external journal has " 4539 "corrupt superblock"); 4540 brelse(bh); 4541 goto out_bdev; 4542 } 4543 4544 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4545 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4546 brelse(bh); 4547 goto out_bdev; 4548 } 4549 4550 len = ext4_blocks_count(es); 4551 start = sb_block + 1; 4552 brelse(bh); /* we're done with the superblock */ 4553 4554 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4555 start, len, blocksize); 4556 if (!journal) { 4557 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4558 goto out_bdev; 4559 } 4560 journal->j_private = sb; 4561 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4562 wait_on_buffer(journal->j_sb_buffer); 4563 if (!buffer_uptodate(journal->j_sb_buffer)) { 4564 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4565 goto out_journal; 4566 } 4567 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4568 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4569 "user (unsupported) - %d", 4570 be32_to_cpu(journal->j_superblock->s_nr_users)); 4571 goto out_journal; 4572 } 4573 EXT4_SB(sb)->journal_bdev = bdev; 4574 ext4_init_journal_params(sb, journal); 4575 return journal; 4576 4577 out_journal: 4578 jbd2_journal_destroy(journal); 4579 out_bdev: 4580 ext4_blkdev_put(bdev); 4581 return NULL; 4582 } 4583 4584 static int ext4_load_journal(struct super_block *sb, 4585 struct ext4_super_block *es, 4586 unsigned long journal_devnum) 4587 { 4588 journal_t *journal; 4589 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4590 dev_t journal_dev; 4591 int err = 0; 4592 int really_read_only; 4593 4594 BUG_ON(!ext4_has_feature_journal(sb)); 4595 4596 if (journal_devnum && 4597 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4598 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4599 "numbers have changed"); 4600 journal_dev = new_decode_dev(journal_devnum); 4601 } else 4602 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4603 4604 really_read_only = bdev_read_only(sb->s_bdev); 4605 4606 /* 4607 * Are we loading a blank journal or performing recovery after a 4608 * crash? For recovery, we need to check in advance whether we 4609 * can get read-write access to the device. 4610 */ 4611 if (ext4_has_feature_journal_needs_recovery(sb)) { 4612 if (sb->s_flags & MS_RDONLY) { 4613 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4614 "required on readonly filesystem"); 4615 if (really_read_only) { 4616 ext4_msg(sb, KERN_ERR, "write access " 4617 "unavailable, cannot proceed"); 4618 return -EROFS; 4619 } 4620 ext4_msg(sb, KERN_INFO, "write access will " 4621 "be enabled during recovery"); 4622 } 4623 } 4624 4625 if (journal_inum && journal_dev) { 4626 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4627 "and inode journals!"); 4628 return -EINVAL; 4629 } 4630 4631 if (journal_inum) { 4632 if (!(journal = ext4_get_journal(sb, journal_inum))) 4633 return -EINVAL; 4634 } else { 4635 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4636 return -EINVAL; 4637 } 4638 4639 if (!(journal->j_flags & JBD2_BARRIER)) 4640 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4641 4642 if (!ext4_has_feature_journal_needs_recovery(sb)) 4643 err = jbd2_journal_wipe(journal, !really_read_only); 4644 if (!err) { 4645 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4646 if (save) 4647 memcpy(save, ((char *) es) + 4648 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4649 err = jbd2_journal_load(journal); 4650 if (save) 4651 memcpy(((char *) es) + EXT4_S_ERR_START, 4652 save, EXT4_S_ERR_LEN); 4653 kfree(save); 4654 } 4655 4656 if (err) { 4657 ext4_msg(sb, KERN_ERR, "error loading journal"); 4658 jbd2_journal_destroy(journal); 4659 return err; 4660 } 4661 4662 EXT4_SB(sb)->s_journal = journal; 4663 ext4_clear_journal_err(sb, es); 4664 4665 if (!really_read_only && journal_devnum && 4666 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4667 es->s_journal_dev = cpu_to_le32(journal_devnum); 4668 4669 /* Make sure we flush the recovery flag to disk. */ 4670 ext4_commit_super(sb, 1); 4671 } 4672 4673 return 0; 4674 } 4675 4676 static int ext4_commit_super(struct super_block *sb, int sync) 4677 { 4678 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4679 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4680 int error = 0; 4681 4682 if (!sbh || block_device_ejected(sb)) 4683 return error; 4684 /* 4685 * If the file system is mounted read-only, don't update the 4686 * superblock write time. This avoids updating the superblock 4687 * write time when we are mounting the root file system 4688 * read/only but we need to replay the journal; at that point, 4689 * for people who are east of GMT and who make their clock 4690 * tick in localtime for Windows bug-for-bug compatibility, 4691 * the clock is set in the future, and this will cause e2fsck 4692 * to complain and force a full file system check. 4693 */ 4694 if (!(sb->s_flags & MS_RDONLY)) 4695 es->s_wtime = cpu_to_le32(get_seconds()); 4696 if (sb->s_bdev->bd_part) 4697 es->s_kbytes_written = 4698 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4699 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4700 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4701 else 4702 es->s_kbytes_written = 4703 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4704 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4705 ext4_free_blocks_count_set(es, 4706 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4707 &EXT4_SB(sb)->s_freeclusters_counter))); 4708 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4709 es->s_free_inodes_count = 4710 cpu_to_le32(percpu_counter_sum_positive( 4711 &EXT4_SB(sb)->s_freeinodes_counter)); 4712 BUFFER_TRACE(sbh, "marking dirty"); 4713 ext4_superblock_csum_set(sb); 4714 if (sync) 4715 lock_buffer(sbh); 4716 if (buffer_write_io_error(sbh)) { 4717 /* 4718 * Oh, dear. A previous attempt to write the 4719 * superblock failed. This could happen because the 4720 * USB device was yanked out. Or it could happen to 4721 * be a transient write error and maybe the block will 4722 * be remapped. Nothing we can do but to retry the 4723 * write and hope for the best. 4724 */ 4725 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4726 "superblock detected"); 4727 clear_buffer_write_io_error(sbh); 4728 set_buffer_uptodate(sbh); 4729 } 4730 mark_buffer_dirty(sbh); 4731 if (sync) { 4732 unlock_buffer(sbh); 4733 error = __sync_dirty_buffer(sbh, 4734 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4735 if (error) 4736 return error; 4737 4738 error = buffer_write_io_error(sbh); 4739 if (error) { 4740 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4741 "superblock"); 4742 clear_buffer_write_io_error(sbh); 4743 set_buffer_uptodate(sbh); 4744 } 4745 } 4746 return error; 4747 } 4748 4749 /* 4750 * Have we just finished recovery? If so, and if we are mounting (or 4751 * remounting) the filesystem readonly, then we will end up with a 4752 * consistent fs on disk. Record that fact. 4753 */ 4754 static void ext4_mark_recovery_complete(struct super_block *sb, 4755 struct ext4_super_block *es) 4756 { 4757 journal_t *journal = EXT4_SB(sb)->s_journal; 4758 4759 if (!ext4_has_feature_journal(sb)) { 4760 BUG_ON(journal != NULL); 4761 return; 4762 } 4763 jbd2_journal_lock_updates(journal); 4764 if (jbd2_journal_flush(journal) < 0) 4765 goto out; 4766 4767 if (ext4_has_feature_journal_needs_recovery(sb) && 4768 sb->s_flags & MS_RDONLY) { 4769 ext4_clear_feature_journal_needs_recovery(sb); 4770 ext4_commit_super(sb, 1); 4771 } 4772 4773 out: 4774 jbd2_journal_unlock_updates(journal); 4775 } 4776 4777 /* 4778 * If we are mounting (or read-write remounting) a filesystem whose journal 4779 * has recorded an error from a previous lifetime, move that error to the 4780 * main filesystem now. 4781 */ 4782 static void ext4_clear_journal_err(struct super_block *sb, 4783 struct ext4_super_block *es) 4784 { 4785 journal_t *journal; 4786 int j_errno; 4787 const char *errstr; 4788 4789 BUG_ON(!ext4_has_feature_journal(sb)); 4790 4791 journal = EXT4_SB(sb)->s_journal; 4792 4793 /* 4794 * Now check for any error status which may have been recorded in the 4795 * journal by a prior ext4_error() or ext4_abort() 4796 */ 4797 4798 j_errno = jbd2_journal_errno(journal); 4799 if (j_errno) { 4800 char nbuf[16]; 4801 4802 errstr = ext4_decode_error(sb, j_errno, nbuf); 4803 ext4_warning(sb, "Filesystem error recorded " 4804 "from previous mount: %s", errstr); 4805 ext4_warning(sb, "Marking fs in need of filesystem check."); 4806 4807 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4808 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4809 ext4_commit_super(sb, 1); 4810 4811 jbd2_journal_clear_err(journal); 4812 jbd2_journal_update_sb_errno(journal); 4813 } 4814 } 4815 4816 /* 4817 * Force the running and committing transactions to commit, 4818 * and wait on the commit. 4819 */ 4820 int ext4_force_commit(struct super_block *sb) 4821 { 4822 journal_t *journal; 4823 4824 if (sb->s_flags & MS_RDONLY) 4825 return 0; 4826 4827 journal = EXT4_SB(sb)->s_journal; 4828 return ext4_journal_force_commit(journal); 4829 } 4830 4831 static int ext4_sync_fs(struct super_block *sb, int wait) 4832 { 4833 int ret = 0; 4834 tid_t target; 4835 bool needs_barrier = false; 4836 struct ext4_sb_info *sbi = EXT4_SB(sb); 4837 4838 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4839 return 0; 4840 4841 trace_ext4_sync_fs(sb, wait); 4842 flush_workqueue(sbi->rsv_conversion_wq); 4843 /* 4844 * Writeback quota in non-journalled quota case - journalled quota has 4845 * no dirty dquots 4846 */ 4847 dquot_writeback_dquots(sb, -1); 4848 /* 4849 * Data writeback is possible w/o journal transaction, so barrier must 4850 * being sent at the end of the function. But we can skip it if 4851 * transaction_commit will do it for us. 4852 */ 4853 if (sbi->s_journal) { 4854 target = jbd2_get_latest_transaction(sbi->s_journal); 4855 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4856 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4857 needs_barrier = true; 4858 4859 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4860 if (wait) 4861 ret = jbd2_log_wait_commit(sbi->s_journal, 4862 target); 4863 } 4864 } else if (wait && test_opt(sb, BARRIER)) 4865 needs_barrier = true; 4866 if (needs_barrier) { 4867 int err; 4868 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4869 if (!ret) 4870 ret = err; 4871 } 4872 4873 return ret; 4874 } 4875 4876 /* 4877 * LVM calls this function before a (read-only) snapshot is created. This 4878 * gives us a chance to flush the journal completely and mark the fs clean. 4879 * 4880 * Note that only this function cannot bring a filesystem to be in a clean 4881 * state independently. It relies on upper layer to stop all data & metadata 4882 * modifications. 4883 */ 4884 static int ext4_freeze(struct super_block *sb) 4885 { 4886 int error = 0; 4887 journal_t *journal; 4888 4889 if (sb->s_flags & MS_RDONLY) 4890 return 0; 4891 4892 journal = EXT4_SB(sb)->s_journal; 4893 4894 if (journal) { 4895 /* Now we set up the journal barrier. */ 4896 jbd2_journal_lock_updates(journal); 4897 4898 /* 4899 * Don't clear the needs_recovery flag if we failed to 4900 * flush the journal. 4901 */ 4902 error = jbd2_journal_flush(journal); 4903 if (error < 0) 4904 goto out; 4905 4906 /* Journal blocked and flushed, clear needs_recovery flag. */ 4907 ext4_clear_feature_journal_needs_recovery(sb); 4908 } 4909 4910 error = ext4_commit_super(sb, 1); 4911 out: 4912 if (journal) 4913 /* we rely on upper layer to stop further updates */ 4914 jbd2_journal_unlock_updates(journal); 4915 return error; 4916 } 4917 4918 /* 4919 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4920 * flag here, even though the filesystem is not technically dirty yet. 4921 */ 4922 static int ext4_unfreeze(struct super_block *sb) 4923 { 4924 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4925 return 0; 4926 4927 if (EXT4_SB(sb)->s_journal) { 4928 /* Reset the needs_recovery flag before the fs is unlocked. */ 4929 ext4_set_feature_journal_needs_recovery(sb); 4930 } 4931 4932 ext4_commit_super(sb, 1); 4933 return 0; 4934 } 4935 4936 /* 4937 * Structure to save mount options for ext4_remount's benefit 4938 */ 4939 struct ext4_mount_options { 4940 unsigned long s_mount_opt; 4941 unsigned long s_mount_opt2; 4942 kuid_t s_resuid; 4943 kgid_t s_resgid; 4944 unsigned long s_commit_interval; 4945 u32 s_min_batch_time, s_max_batch_time; 4946 #ifdef CONFIG_QUOTA 4947 int s_jquota_fmt; 4948 char *s_qf_names[EXT4_MAXQUOTAS]; 4949 #endif 4950 }; 4951 4952 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4953 { 4954 struct ext4_super_block *es; 4955 struct ext4_sb_info *sbi = EXT4_SB(sb); 4956 unsigned long old_sb_flags; 4957 struct ext4_mount_options old_opts; 4958 int enable_quota = 0; 4959 ext4_group_t g; 4960 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4961 int err = 0; 4962 #ifdef CONFIG_QUOTA 4963 int i, j; 4964 #endif 4965 char *orig_data = kstrdup(data, GFP_KERNEL); 4966 4967 /* Store the original options */ 4968 old_sb_flags = sb->s_flags; 4969 old_opts.s_mount_opt = sbi->s_mount_opt; 4970 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4971 old_opts.s_resuid = sbi->s_resuid; 4972 old_opts.s_resgid = sbi->s_resgid; 4973 old_opts.s_commit_interval = sbi->s_commit_interval; 4974 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4975 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4976 #ifdef CONFIG_QUOTA 4977 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4978 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4979 if (sbi->s_qf_names[i]) { 4980 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4981 GFP_KERNEL); 4982 if (!old_opts.s_qf_names[i]) { 4983 for (j = 0; j < i; j++) 4984 kfree(old_opts.s_qf_names[j]); 4985 kfree(orig_data); 4986 return -ENOMEM; 4987 } 4988 } else 4989 old_opts.s_qf_names[i] = NULL; 4990 #endif 4991 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4992 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4993 4994 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4995 err = -EINVAL; 4996 goto restore_opts; 4997 } 4998 4999 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5000 test_opt(sb, JOURNAL_CHECKSUM)) { 5001 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5002 "during remount not supported; ignoring"); 5003 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5004 } 5005 5006 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5007 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5008 ext4_msg(sb, KERN_ERR, "can't mount with " 5009 "both data=journal and delalloc"); 5010 err = -EINVAL; 5011 goto restore_opts; 5012 } 5013 if (test_opt(sb, DIOREAD_NOLOCK)) { 5014 ext4_msg(sb, KERN_ERR, "can't mount with " 5015 "both data=journal and dioread_nolock"); 5016 err = -EINVAL; 5017 goto restore_opts; 5018 } 5019 if (test_opt(sb, DAX)) { 5020 ext4_msg(sb, KERN_ERR, "can't mount with " 5021 "both data=journal and dax"); 5022 err = -EINVAL; 5023 goto restore_opts; 5024 } 5025 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5026 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5027 ext4_msg(sb, KERN_ERR, "can't mount with " 5028 "journal_async_commit in data=ordered mode"); 5029 err = -EINVAL; 5030 goto restore_opts; 5031 } 5032 } 5033 5034 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5035 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5036 err = -EINVAL; 5037 goto restore_opts; 5038 } 5039 5040 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5041 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5042 "dax flag with busy inodes while remounting"); 5043 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5044 } 5045 5046 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5047 ext4_abort(sb, "Abort forced by user"); 5048 5049 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 5050 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 5051 5052 es = sbi->s_es; 5053 5054 if (sbi->s_journal) { 5055 ext4_init_journal_params(sb, sbi->s_journal); 5056 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5057 } 5058 5059 if (*flags & MS_LAZYTIME) 5060 sb->s_flags |= MS_LAZYTIME; 5061 5062 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 5063 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5064 err = -EROFS; 5065 goto restore_opts; 5066 } 5067 5068 if (*flags & MS_RDONLY) { 5069 err = sync_filesystem(sb); 5070 if (err < 0) 5071 goto restore_opts; 5072 err = dquot_suspend(sb, -1); 5073 if (err < 0) 5074 goto restore_opts; 5075 5076 /* 5077 * First of all, the unconditional stuff we have to do 5078 * to disable replay of the journal when we next remount 5079 */ 5080 sb->s_flags |= MS_RDONLY; 5081 5082 /* 5083 * OK, test if we are remounting a valid rw partition 5084 * readonly, and if so set the rdonly flag and then 5085 * mark the partition as valid again. 5086 */ 5087 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5088 (sbi->s_mount_state & EXT4_VALID_FS)) 5089 es->s_state = cpu_to_le16(sbi->s_mount_state); 5090 5091 if (sbi->s_journal) 5092 ext4_mark_recovery_complete(sb, es); 5093 } else { 5094 /* Make sure we can mount this feature set readwrite */ 5095 if (ext4_has_feature_readonly(sb) || 5096 !ext4_feature_set_ok(sb, 0)) { 5097 err = -EROFS; 5098 goto restore_opts; 5099 } 5100 /* 5101 * Make sure the group descriptor checksums 5102 * are sane. If they aren't, refuse to remount r/w. 5103 */ 5104 for (g = 0; g < sbi->s_groups_count; g++) { 5105 struct ext4_group_desc *gdp = 5106 ext4_get_group_desc(sb, g, NULL); 5107 5108 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5109 ext4_msg(sb, KERN_ERR, 5110 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5111 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5112 le16_to_cpu(gdp->bg_checksum)); 5113 err = -EFSBADCRC; 5114 goto restore_opts; 5115 } 5116 } 5117 5118 /* 5119 * If we have an unprocessed orphan list hanging 5120 * around from a previously readonly bdev mount, 5121 * require a full umount/remount for now. 5122 */ 5123 if (es->s_last_orphan) { 5124 ext4_msg(sb, KERN_WARNING, "Couldn't " 5125 "remount RDWR because of unprocessed " 5126 "orphan inode list. Please " 5127 "umount/remount instead"); 5128 err = -EINVAL; 5129 goto restore_opts; 5130 } 5131 5132 /* 5133 * Mounting a RDONLY partition read-write, so reread 5134 * and store the current valid flag. (It may have 5135 * been changed by e2fsck since we originally mounted 5136 * the partition.) 5137 */ 5138 if (sbi->s_journal) 5139 ext4_clear_journal_err(sb, es); 5140 sbi->s_mount_state = le16_to_cpu(es->s_state); 5141 if (!ext4_setup_super(sb, es, 0)) 5142 sb->s_flags &= ~MS_RDONLY; 5143 if (ext4_has_feature_mmp(sb)) 5144 if (ext4_multi_mount_protect(sb, 5145 le64_to_cpu(es->s_mmp_block))) { 5146 err = -EROFS; 5147 goto restore_opts; 5148 } 5149 enable_quota = 1; 5150 } 5151 } 5152 5153 /* 5154 * Reinitialize lazy itable initialization thread based on 5155 * current settings 5156 */ 5157 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5158 ext4_unregister_li_request(sb); 5159 else { 5160 ext4_group_t first_not_zeroed; 5161 first_not_zeroed = ext4_has_uninit_itable(sb); 5162 ext4_register_li_request(sb, first_not_zeroed); 5163 } 5164 5165 ext4_setup_system_zone(sb); 5166 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5167 ext4_commit_super(sb, 1); 5168 5169 #ifdef CONFIG_QUOTA 5170 /* Release old quota file names */ 5171 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5172 kfree(old_opts.s_qf_names[i]); 5173 if (enable_quota) { 5174 if (sb_any_quota_suspended(sb)) 5175 dquot_resume(sb, -1); 5176 else if (ext4_has_feature_quota(sb)) { 5177 err = ext4_enable_quotas(sb); 5178 if (err) 5179 goto restore_opts; 5180 } 5181 } 5182 #endif 5183 5184 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5185 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5186 kfree(orig_data); 5187 return 0; 5188 5189 restore_opts: 5190 sb->s_flags = old_sb_flags; 5191 sbi->s_mount_opt = old_opts.s_mount_opt; 5192 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5193 sbi->s_resuid = old_opts.s_resuid; 5194 sbi->s_resgid = old_opts.s_resgid; 5195 sbi->s_commit_interval = old_opts.s_commit_interval; 5196 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5197 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5198 #ifdef CONFIG_QUOTA 5199 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5200 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5201 kfree(sbi->s_qf_names[i]); 5202 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5203 } 5204 #endif 5205 kfree(orig_data); 5206 return err; 5207 } 5208 5209 #ifdef CONFIG_QUOTA 5210 static int ext4_statfs_project(struct super_block *sb, 5211 kprojid_t projid, struct kstatfs *buf) 5212 { 5213 struct kqid qid; 5214 struct dquot *dquot; 5215 u64 limit; 5216 u64 curblock; 5217 5218 qid = make_kqid_projid(projid); 5219 dquot = dqget(sb, qid); 5220 if (IS_ERR(dquot)) 5221 return PTR_ERR(dquot); 5222 spin_lock(&dquot->dq_dqb_lock); 5223 5224 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5225 dquot->dq_dqb.dqb_bsoftlimit : 5226 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5227 if (limit && buf->f_blocks > limit) { 5228 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5229 buf->f_blocks = limit; 5230 buf->f_bfree = buf->f_bavail = 5231 (buf->f_blocks > curblock) ? 5232 (buf->f_blocks - curblock) : 0; 5233 } 5234 5235 limit = dquot->dq_dqb.dqb_isoftlimit ? 5236 dquot->dq_dqb.dqb_isoftlimit : 5237 dquot->dq_dqb.dqb_ihardlimit; 5238 if (limit && buf->f_files > limit) { 5239 buf->f_files = limit; 5240 buf->f_ffree = 5241 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5242 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5243 } 5244 5245 spin_unlock(&dquot->dq_dqb_lock); 5246 dqput(dquot); 5247 return 0; 5248 } 5249 #endif 5250 5251 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5252 { 5253 struct super_block *sb = dentry->d_sb; 5254 struct ext4_sb_info *sbi = EXT4_SB(sb); 5255 struct ext4_super_block *es = sbi->s_es; 5256 ext4_fsblk_t overhead = 0, resv_blocks; 5257 u64 fsid; 5258 s64 bfree; 5259 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5260 5261 if (!test_opt(sb, MINIX_DF)) 5262 overhead = sbi->s_overhead; 5263 5264 buf->f_type = EXT4_SUPER_MAGIC; 5265 buf->f_bsize = sb->s_blocksize; 5266 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5267 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5268 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5269 /* prevent underflow in case that few free space is available */ 5270 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5271 buf->f_bavail = buf->f_bfree - 5272 (ext4_r_blocks_count(es) + resv_blocks); 5273 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5274 buf->f_bavail = 0; 5275 buf->f_files = le32_to_cpu(es->s_inodes_count); 5276 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5277 buf->f_namelen = EXT4_NAME_LEN; 5278 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5279 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5280 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5281 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5282 5283 #ifdef CONFIG_QUOTA 5284 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5285 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5286 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5287 #endif 5288 return 0; 5289 } 5290 5291 5292 #ifdef CONFIG_QUOTA 5293 5294 /* 5295 * Helper functions so that transaction is started before we acquire dqio_sem 5296 * to keep correct lock ordering of transaction > dqio_sem 5297 */ 5298 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5299 { 5300 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5301 } 5302 5303 static int ext4_write_dquot(struct dquot *dquot) 5304 { 5305 int ret, err; 5306 handle_t *handle; 5307 struct inode *inode; 5308 5309 inode = dquot_to_inode(dquot); 5310 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5311 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5312 if (IS_ERR(handle)) 5313 return PTR_ERR(handle); 5314 ret = dquot_commit(dquot); 5315 err = ext4_journal_stop(handle); 5316 if (!ret) 5317 ret = err; 5318 return ret; 5319 } 5320 5321 static int ext4_acquire_dquot(struct dquot *dquot) 5322 { 5323 int ret, err; 5324 handle_t *handle; 5325 5326 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5327 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5328 if (IS_ERR(handle)) 5329 return PTR_ERR(handle); 5330 ret = dquot_acquire(dquot); 5331 err = ext4_journal_stop(handle); 5332 if (!ret) 5333 ret = err; 5334 return ret; 5335 } 5336 5337 static int ext4_release_dquot(struct dquot *dquot) 5338 { 5339 int ret, err; 5340 handle_t *handle; 5341 5342 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5343 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5344 if (IS_ERR(handle)) { 5345 /* Release dquot anyway to avoid endless cycle in dqput() */ 5346 dquot_release(dquot); 5347 return PTR_ERR(handle); 5348 } 5349 ret = dquot_release(dquot); 5350 err = ext4_journal_stop(handle); 5351 if (!ret) 5352 ret = err; 5353 return ret; 5354 } 5355 5356 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5357 { 5358 struct super_block *sb = dquot->dq_sb; 5359 struct ext4_sb_info *sbi = EXT4_SB(sb); 5360 5361 /* Are we journaling quotas? */ 5362 if (ext4_has_feature_quota(sb) || 5363 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5364 dquot_mark_dquot_dirty(dquot); 5365 return ext4_write_dquot(dquot); 5366 } else { 5367 return dquot_mark_dquot_dirty(dquot); 5368 } 5369 } 5370 5371 static int ext4_write_info(struct super_block *sb, int type) 5372 { 5373 int ret, err; 5374 handle_t *handle; 5375 5376 /* Data block + inode block */ 5377 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5378 if (IS_ERR(handle)) 5379 return PTR_ERR(handle); 5380 ret = dquot_commit_info(sb, type); 5381 err = ext4_journal_stop(handle); 5382 if (!ret) 5383 ret = err; 5384 return ret; 5385 } 5386 5387 /* 5388 * Turn on quotas during mount time - we need to find 5389 * the quota file and such... 5390 */ 5391 static int ext4_quota_on_mount(struct super_block *sb, int type) 5392 { 5393 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5394 EXT4_SB(sb)->s_jquota_fmt, type); 5395 } 5396 5397 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5398 { 5399 struct ext4_inode_info *ei = EXT4_I(inode); 5400 5401 /* The first argument of lockdep_set_subclass has to be 5402 * *exactly* the same as the argument to init_rwsem() --- in 5403 * this case, in init_once() --- or lockdep gets unhappy 5404 * because the name of the lock is set using the 5405 * stringification of the argument to init_rwsem(). 5406 */ 5407 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5408 lockdep_set_subclass(&ei->i_data_sem, subclass); 5409 } 5410 5411 /* 5412 * Standard function to be called on quota_on 5413 */ 5414 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5415 const struct path *path) 5416 { 5417 int err; 5418 5419 if (!test_opt(sb, QUOTA)) 5420 return -EINVAL; 5421 5422 /* Quotafile not on the same filesystem? */ 5423 if (path->dentry->d_sb != sb) 5424 return -EXDEV; 5425 /* Journaling quota? */ 5426 if (EXT4_SB(sb)->s_qf_names[type]) { 5427 /* Quotafile not in fs root? */ 5428 if (path->dentry->d_parent != sb->s_root) 5429 ext4_msg(sb, KERN_WARNING, 5430 "Quota file not on filesystem root. " 5431 "Journaled quota will not work"); 5432 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5433 } else { 5434 /* 5435 * Clear the flag just in case mount options changed since 5436 * last time. 5437 */ 5438 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5439 } 5440 5441 /* 5442 * When we journal data on quota file, we have to flush journal to see 5443 * all updates to the file when we bypass pagecache... 5444 */ 5445 if (EXT4_SB(sb)->s_journal && 5446 ext4_should_journal_data(d_inode(path->dentry))) { 5447 /* 5448 * We don't need to lock updates but journal_flush() could 5449 * otherwise be livelocked... 5450 */ 5451 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5452 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5453 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5454 if (err) 5455 return err; 5456 } 5457 5458 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5459 err = dquot_quota_on(sb, type, format_id, path); 5460 if (err) { 5461 lockdep_set_quota_inode(path->dentry->d_inode, 5462 I_DATA_SEM_NORMAL); 5463 } else { 5464 struct inode *inode = d_inode(path->dentry); 5465 handle_t *handle; 5466 5467 /* 5468 * Set inode flags to prevent userspace from messing with quota 5469 * files. If this fails, we return success anyway since quotas 5470 * are already enabled and this is not a hard failure. 5471 */ 5472 inode_lock(inode); 5473 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5474 if (IS_ERR(handle)) 5475 goto unlock_inode; 5476 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5477 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5478 S_NOATIME | S_IMMUTABLE); 5479 ext4_mark_inode_dirty(handle, inode); 5480 ext4_journal_stop(handle); 5481 unlock_inode: 5482 inode_unlock(inode); 5483 } 5484 return err; 5485 } 5486 5487 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5488 unsigned int flags) 5489 { 5490 int err; 5491 struct inode *qf_inode; 5492 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5493 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5494 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5495 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5496 }; 5497 5498 BUG_ON(!ext4_has_feature_quota(sb)); 5499 5500 if (!qf_inums[type]) 5501 return -EPERM; 5502 5503 qf_inode = ext4_iget(sb, qf_inums[type]); 5504 if (IS_ERR(qf_inode)) { 5505 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5506 return PTR_ERR(qf_inode); 5507 } 5508 5509 /* Don't account quota for quota files to avoid recursion */ 5510 qf_inode->i_flags |= S_NOQUOTA; 5511 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5512 err = dquot_enable(qf_inode, type, format_id, flags); 5513 iput(qf_inode); 5514 if (err) 5515 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5516 5517 return err; 5518 } 5519 5520 /* Enable usage tracking for all quota types. */ 5521 static int ext4_enable_quotas(struct super_block *sb) 5522 { 5523 int type, err = 0; 5524 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5525 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5526 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5527 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5528 }; 5529 bool quota_mopt[EXT4_MAXQUOTAS] = { 5530 test_opt(sb, USRQUOTA), 5531 test_opt(sb, GRPQUOTA), 5532 test_opt(sb, PRJQUOTA), 5533 }; 5534 5535 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5536 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5537 if (qf_inums[type]) { 5538 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5539 DQUOT_USAGE_ENABLED | 5540 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5541 if (err) { 5542 for (type--; type >= 0; type--) 5543 dquot_quota_off(sb, type); 5544 5545 ext4_warning(sb, 5546 "Failed to enable quota tracking " 5547 "(type=%d, err=%d). Please run " 5548 "e2fsck to fix.", type, err); 5549 return err; 5550 } 5551 } 5552 } 5553 return 0; 5554 } 5555 5556 static int ext4_quota_off(struct super_block *sb, int type) 5557 { 5558 struct inode *inode = sb_dqopt(sb)->files[type]; 5559 handle_t *handle; 5560 int err; 5561 5562 /* Force all delayed allocation blocks to be allocated. 5563 * Caller already holds s_umount sem */ 5564 if (test_opt(sb, DELALLOC)) 5565 sync_filesystem(sb); 5566 5567 if (!inode || !igrab(inode)) 5568 goto out; 5569 5570 err = dquot_quota_off(sb, type); 5571 if (err || ext4_has_feature_quota(sb)) 5572 goto out_put; 5573 5574 inode_lock(inode); 5575 /* 5576 * Update modification times of quota files when userspace can 5577 * start looking at them. If we fail, we return success anyway since 5578 * this is not a hard failure and quotas are already disabled. 5579 */ 5580 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5581 if (IS_ERR(handle)) 5582 goto out_unlock; 5583 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5584 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5585 inode->i_mtime = inode->i_ctime = current_time(inode); 5586 ext4_mark_inode_dirty(handle, inode); 5587 ext4_journal_stop(handle); 5588 out_unlock: 5589 inode_unlock(inode); 5590 out_put: 5591 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5592 iput(inode); 5593 return err; 5594 out: 5595 return dquot_quota_off(sb, type); 5596 } 5597 5598 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5599 * acquiring the locks... As quota files are never truncated and quota code 5600 * itself serializes the operations (and no one else should touch the files) 5601 * we don't have to be afraid of races */ 5602 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5603 size_t len, loff_t off) 5604 { 5605 struct inode *inode = sb_dqopt(sb)->files[type]; 5606 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5607 int offset = off & (sb->s_blocksize - 1); 5608 int tocopy; 5609 size_t toread; 5610 struct buffer_head *bh; 5611 loff_t i_size = i_size_read(inode); 5612 5613 if (off > i_size) 5614 return 0; 5615 if (off+len > i_size) 5616 len = i_size-off; 5617 toread = len; 5618 while (toread > 0) { 5619 tocopy = sb->s_blocksize - offset < toread ? 5620 sb->s_blocksize - offset : toread; 5621 bh = ext4_bread(NULL, inode, blk, 0); 5622 if (IS_ERR(bh)) 5623 return PTR_ERR(bh); 5624 if (!bh) /* A hole? */ 5625 memset(data, 0, tocopy); 5626 else 5627 memcpy(data, bh->b_data+offset, tocopy); 5628 brelse(bh); 5629 offset = 0; 5630 toread -= tocopy; 5631 data += tocopy; 5632 blk++; 5633 } 5634 return len; 5635 } 5636 5637 /* Write to quotafile (we know the transaction is already started and has 5638 * enough credits) */ 5639 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5640 const char *data, size_t len, loff_t off) 5641 { 5642 struct inode *inode = sb_dqopt(sb)->files[type]; 5643 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5644 int err, offset = off & (sb->s_blocksize - 1); 5645 int retries = 0; 5646 struct buffer_head *bh; 5647 handle_t *handle = journal_current_handle(); 5648 5649 if (EXT4_SB(sb)->s_journal && !handle) { 5650 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5651 " cancelled because transaction is not started", 5652 (unsigned long long)off, (unsigned long long)len); 5653 return -EIO; 5654 } 5655 /* 5656 * Since we account only one data block in transaction credits, 5657 * then it is impossible to cross a block boundary. 5658 */ 5659 if (sb->s_blocksize - offset < len) { 5660 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5661 " cancelled because not block aligned", 5662 (unsigned long long)off, (unsigned long long)len); 5663 return -EIO; 5664 } 5665 5666 do { 5667 bh = ext4_bread(handle, inode, blk, 5668 EXT4_GET_BLOCKS_CREATE | 5669 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5670 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5671 ext4_should_retry_alloc(inode->i_sb, &retries)); 5672 if (IS_ERR(bh)) 5673 return PTR_ERR(bh); 5674 if (!bh) 5675 goto out; 5676 BUFFER_TRACE(bh, "get write access"); 5677 err = ext4_journal_get_write_access(handle, bh); 5678 if (err) { 5679 brelse(bh); 5680 return err; 5681 } 5682 lock_buffer(bh); 5683 memcpy(bh->b_data+offset, data, len); 5684 flush_dcache_page(bh->b_page); 5685 unlock_buffer(bh); 5686 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5687 brelse(bh); 5688 out: 5689 if (inode->i_size < off + len) { 5690 i_size_write(inode, off + len); 5691 EXT4_I(inode)->i_disksize = inode->i_size; 5692 ext4_mark_inode_dirty(handle, inode); 5693 } 5694 return len; 5695 } 5696 5697 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5698 { 5699 const struct quota_format_ops *ops; 5700 5701 if (!sb_has_quota_loaded(sb, qid->type)) 5702 return -ESRCH; 5703 ops = sb_dqopt(sb)->ops[qid->type]; 5704 if (!ops || !ops->get_next_id) 5705 return -ENOSYS; 5706 return dquot_get_next_id(sb, qid); 5707 } 5708 #endif 5709 5710 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5711 const char *dev_name, void *data) 5712 { 5713 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5714 } 5715 5716 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5717 static inline void register_as_ext2(void) 5718 { 5719 int err = register_filesystem(&ext2_fs_type); 5720 if (err) 5721 printk(KERN_WARNING 5722 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5723 } 5724 5725 static inline void unregister_as_ext2(void) 5726 { 5727 unregister_filesystem(&ext2_fs_type); 5728 } 5729 5730 static inline int ext2_feature_set_ok(struct super_block *sb) 5731 { 5732 if (ext4_has_unknown_ext2_incompat_features(sb)) 5733 return 0; 5734 if (sb->s_flags & MS_RDONLY) 5735 return 1; 5736 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5737 return 0; 5738 return 1; 5739 } 5740 #else 5741 static inline void register_as_ext2(void) { } 5742 static inline void unregister_as_ext2(void) { } 5743 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5744 #endif 5745 5746 static inline void register_as_ext3(void) 5747 { 5748 int err = register_filesystem(&ext3_fs_type); 5749 if (err) 5750 printk(KERN_WARNING 5751 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5752 } 5753 5754 static inline void unregister_as_ext3(void) 5755 { 5756 unregister_filesystem(&ext3_fs_type); 5757 } 5758 5759 static inline int ext3_feature_set_ok(struct super_block *sb) 5760 { 5761 if (ext4_has_unknown_ext3_incompat_features(sb)) 5762 return 0; 5763 if (!ext4_has_feature_journal(sb)) 5764 return 0; 5765 if (sb->s_flags & MS_RDONLY) 5766 return 1; 5767 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5768 return 0; 5769 return 1; 5770 } 5771 5772 static struct file_system_type ext4_fs_type = { 5773 .owner = THIS_MODULE, 5774 .name = "ext4", 5775 .mount = ext4_mount, 5776 .kill_sb = kill_block_super, 5777 .fs_flags = FS_REQUIRES_DEV, 5778 }; 5779 MODULE_ALIAS_FS("ext4"); 5780 5781 /* Shared across all ext4 file systems */ 5782 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5783 5784 static int __init ext4_init_fs(void) 5785 { 5786 int i, err; 5787 5788 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5789 ext4_li_info = NULL; 5790 mutex_init(&ext4_li_mtx); 5791 5792 /* Build-time check for flags consistency */ 5793 ext4_check_flag_values(); 5794 5795 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5796 init_waitqueue_head(&ext4__ioend_wq[i]); 5797 5798 err = ext4_init_es(); 5799 if (err) 5800 return err; 5801 5802 err = ext4_init_pageio(); 5803 if (err) 5804 goto out5; 5805 5806 err = ext4_init_system_zone(); 5807 if (err) 5808 goto out4; 5809 5810 err = ext4_init_sysfs(); 5811 if (err) 5812 goto out3; 5813 5814 err = ext4_init_mballoc(); 5815 if (err) 5816 goto out2; 5817 err = init_inodecache(); 5818 if (err) 5819 goto out1; 5820 register_as_ext3(); 5821 register_as_ext2(); 5822 err = register_filesystem(&ext4_fs_type); 5823 if (err) 5824 goto out; 5825 5826 return 0; 5827 out: 5828 unregister_as_ext2(); 5829 unregister_as_ext3(); 5830 destroy_inodecache(); 5831 out1: 5832 ext4_exit_mballoc(); 5833 out2: 5834 ext4_exit_sysfs(); 5835 out3: 5836 ext4_exit_system_zone(); 5837 out4: 5838 ext4_exit_pageio(); 5839 out5: 5840 ext4_exit_es(); 5841 5842 return err; 5843 } 5844 5845 static void __exit ext4_exit_fs(void) 5846 { 5847 ext4_destroy_lazyinit_thread(); 5848 unregister_as_ext2(); 5849 unregister_as_ext3(); 5850 unregister_filesystem(&ext4_fs_type); 5851 destroy_inodecache(); 5852 ext4_exit_mballoc(); 5853 ext4_exit_sysfs(); 5854 ext4_exit_system_zone(); 5855 ext4_exit_pageio(); 5856 ext4_exit_es(); 5857 } 5858 5859 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5860 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5861 MODULE_LICENSE("GPL"); 5862 module_init(ext4_init_fs) 5863 module_exit(ext4_exit_fs) 5864