1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static const char *ext4_decode_error(struct super_block *sb, int errno, 72 char nbuf[16]); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static void ext4_write_super(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 void *ext4_kvmalloc(size_t size, gfp_t flags) 115 { 116 void *ret; 117 118 ret = kmalloc(size, flags); 119 if (!ret) 120 ret = __vmalloc(size, flags, PAGE_KERNEL); 121 return ret; 122 } 123 124 void *ext4_kvzalloc(size_t size, gfp_t flags) 125 { 126 void *ret; 127 128 ret = kzalloc(size, flags); 129 if (!ret) 130 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 131 return ret; 132 } 133 134 void ext4_kvfree(void *ptr) 135 { 136 if (is_vmalloc_addr(ptr)) 137 vfree(ptr); 138 else 139 kfree(ptr); 140 141 } 142 143 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 144 struct ext4_group_desc *bg) 145 { 146 return le32_to_cpu(bg->bg_block_bitmap_lo) | 147 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 148 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 149 } 150 151 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 152 struct ext4_group_desc *bg) 153 { 154 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 155 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 156 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 157 } 158 159 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 160 struct ext4_group_desc *bg) 161 { 162 return le32_to_cpu(bg->bg_inode_table_lo) | 163 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 164 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 165 } 166 167 __u32 ext4_free_group_clusters(struct super_block *sb, 168 struct ext4_group_desc *bg) 169 { 170 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 171 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 172 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 173 } 174 175 __u32 ext4_free_inodes_count(struct super_block *sb, 176 struct ext4_group_desc *bg) 177 { 178 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 179 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 180 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 181 } 182 183 __u32 ext4_used_dirs_count(struct super_block *sb, 184 struct ext4_group_desc *bg) 185 { 186 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 187 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 188 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 189 } 190 191 __u32 ext4_itable_unused_count(struct super_block *sb, 192 struct ext4_group_desc *bg) 193 { 194 return le16_to_cpu(bg->bg_itable_unused_lo) | 195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 196 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 197 } 198 199 void ext4_block_bitmap_set(struct super_block *sb, 200 struct ext4_group_desc *bg, ext4_fsblk_t blk) 201 { 202 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 203 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 204 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 205 } 206 207 void ext4_inode_bitmap_set(struct super_block *sb, 208 struct ext4_group_desc *bg, ext4_fsblk_t blk) 209 { 210 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 211 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 212 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 213 } 214 215 void ext4_inode_table_set(struct super_block *sb, 216 struct ext4_group_desc *bg, ext4_fsblk_t blk) 217 { 218 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 219 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 220 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 221 } 222 223 void ext4_free_group_clusters_set(struct super_block *sb, 224 struct ext4_group_desc *bg, __u32 count) 225 { 226 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 227 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 228 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 229 } 230 231 void ext4_free_inodes_set(struct super_block *sb, 232 struct ext4_group_desc *bg, __u32 count) 233 { 234 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 235 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 236 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 237 } 238 239 void ext4_used_dirs_set(struct super_block *sb, 240 struct ext4_group_desc *bg, __u32 count) 241 { 242 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 243 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 244 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 245 } 246 247 void ext4_itable_unused_set(struct super_block *sb, 248 struct ext4_group_desc *bg, __u32 count) 249 { 250 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 252 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 253 } 254 255 256 /* Just increment the non-pointer handle value */ 257 static handle_t *ext4_get_nojournal(void) 258 { 259 handle_t *handle = current->journal_info; 260 unsigned long ref_cnt = (unsigned long)handle; 261 262 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 263 264 ref_cnt++; 265 handle = (handle_t *)ref_cnt; 266 267 current->journal_info = handle; 268 return handle; 269 } 270 271 272 /* Decrement the non-pointer handle value */ 273 static void ext4_put_nojournal(handle_t *handle) 274 { 275 unsigned long ref_cnt = (unsigned long)handle; 276 277 BUG_ON(ref_cnt == 0); 278 279 ref_cnt--; 280 handle = (handle_t *)ref_cnt; 281 282 current->journal_info = handle; 283 } 284 285 /* 286 * Wrappers for jbd2_journal_start/end. 287 * 288 * The only special thing we need to do here is to make sure that all 289 * journal_end calls result in the superblock being marked dirty, so 290 * that sync() will call the filesystem's write_super callback if 291 * appropriate. 292 * 293 * To avoid j_barrier hold in userspace when a user calls freeze(), 294 * ext4 prevents a new handle from being started by s_frozen, which 295 * is in an upper layer. 296 */ 297 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 298 { 299 journal_t *journal; 300 handle_t *handle; 301 302 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 303 if (sb->s_flags & MS_RDONLY) 304 return ERR_PTR(-EROFS); 305 306 journal = EXT4_SB(sb)->s_journal; 307 handle = ext4_journal_current_handle(); 308 309 /* 310 * If a handle has been started, it should be allowed to 311 * finish, otherwise deadlock could happen between freeze 312 * and others(e.g. truncate) due to the restart of the 313 * journal handle if the filesystem is forzen and active 314 * handles are not stopped. 315 */ 316 if (!handle) 317 vfs_check_frozen(sb, SB_FREEZE_TRANS); 318 319 if (!journal) 320 return ext4_get_nojournal(); 321 /* 322 * Special case here: if the journal has aborted behind our 323 * backs (eg. EIO in the commit thread), then we still need to 324 * take the FS itself readonly cleanly. 325 */ 326 if (is_journal_aborted(journal)) { 327 ext4_abort(sb, "Detected aborted journal"); 328 return ERR_PTR(-EROFS); 329 } 330 return jbd2_journal_start(journal, nblocks); 331 } 332 333 /* 334 * The only special thing we need to do here is to make sure that all 335 * jbd2_journal_stop calls result in the superblock being marked dirty, so 336 * that sync() will call the filesystem's write_super callback if 337 * appropriate. 338 */ 339 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 340 { 341 struct super_block *sb; 342 int err; 343 int rc; 344 345 if (!ext4_handle_valid(handle)) { 346 ext4_put_nojournal(handle); 347 return 0; 348 } 349 sb = handle->h_transaction->t_journal->j_private; 350 err = handle->h_err; 351 rc = jbd2_journal_stop(handle); 352 353 if (!err) 354 err = rc; 355 if (err) 356 __ext4_std_error(sb, where, line, err); 357 return err; 358 } 359 360 void ext4_journal_abort_handle(const char *caller, unsigned int line, 361 const char *err_fn, struct buffer_head *bh, 362 handle_t *handle, int err) 363 { 364 char nbuf[16]; 365 const char *errstr = ext4_decode_error(NULL, err, nbuf); 366 367 BUG_ON(!ext4_handle_valid(handle)); 368 369 if (bh) 370 BUFFER_TRACE(bh, "abort"); 371 372 if (!handle->h_err) 373 handle->h_err = err; 374 375 if (is_handle_aborted(handle)) 376 return; 377 378 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n", 379 caller, line, errstr, err_fn); 380 381 jbd2_journal_abort_handle(handle); 382 } 383 384 static void __save_error_info(struct super_block *sb, const char *func, 385 unsigned int line) 386 { 387 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 388 389 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 390 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 391 es->s_last_error_time = cpu_to_le32(get_seconds()); 392 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 393 es->s_last_error_line = cpu_to_le32(line); 394 if (!es->s_first_error_time) { 395 es->s_first_error_time = es->s_last_error_time; 396 strncpy(es->s_first_error_func, func, 397 sizeof(es->s_first_error_func)); 398 es->s_first_error_line = cpu_to_le32(line); 399 es->s_first_error_ino = es->s_last_error_ino; 400 es->s_first_error_block = es->s_last_error_block; 401 } 402 /* 403 * Start the daily error reporting function if it hasn't been 404 * started already 405 */ 406 if (!es->s_error_count) 407 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 408 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 409 } 410 411 static void save_error_info(struct super_block *sb, const char *func, 412 unsigned int line) 413 { 414 __save_error_info(sb, func, line); 415 ext4_commit_super(sb, 1); 416 } 417 418 /* 419 * The del_gendisk() function uninitializes the disk-specific data 420 * structures, including the bdi structure, without telling anyone 421 * else. Once this happens, any attempt to call mark_buffer_dirty() 422 * (for example, by ext4_commit_super), will cause a kernel OOPS. 423 * This is a kludge to prevent these oops until we can put in a proper 424 * hook in del_gendisk() to inform the VFS and file system layers. 425 */ 426 static int block_device_ejected(struct super_block *sb) 427 { 428 struct inode *bd_inode = sb->s_bdev->bd_inode; 429 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 430 431 return bdi->dev == NULL; 432 } 433 434 435 /* Deal with the reporting of failure conditions on a filesystem such as 436 * inconsistencies detected or read IO failures. 437 * 438 * On ext2, we can store the error state of the filesystem in the 439 * superblock. That is not possible on ext4, because we may have other 440 * write ordering constraints on the superblock which prevent us from 441 * writing it out straight away; and given that the journal is about to 442 * be aborted, we can't rely on the current, or future, transactions to 443 * write out the superblock safely. 444 * 445 * We'll just use the jbd2_journal_abort() error code to record an error in 446 * the journal instead. On recovery, the journal will complain about 447 * that error until we've noted it down and cleared it. 448 */ 449 450 static void ext4_handle_error(struct super_block *sb) 451 { 452 if (sb->s_flags & MS_RDONLY) 453 return; 454 455 if (!test_opt(sb, ERRORS_CONT)) { 456 journal_t *journal = EXT4_SB(sb)->s_journal; 457 458 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 459 if (journal) 460 jbd2_journal_abort(journal, -EIO); 461 } 462 if (test_opt(sb, ERRORS_RO)) { 463 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 464 sb->s_flags |= MS_RDONLY; 465 } 466 if (test_opt(sb, ERRORS_PANIC)) 467 panic("EXT4-fs (device %s): panic forced after error\n", 468 sb->s_id); 469 } 470 471 void __ext4_error(struct super_block *sb, const char *function, 472 unsigned int line, const char *fmt, ...) 473 { 474 struct va_format vaf; 475 va_list args; 476 477 va_start(args, fmt); 478 vaf.fmt = fmt; 479 vaf.va = &args; 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 481 sb->s_id, function, line, current->comm, &vaf); 482 va_end(args); 483 484 ext4_handle_error(sb); 485 } 486 487 void ext4_error_inode(struct inode *inode, const char *function, 488 unsigned int line, ext4_fsblk_t block, 489 const char *fmt, ...) 490 { 491 va_list args; 492 struct va_format vaf; 493 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 494 495 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 496 es->s_last_error_block = cpu_to_le64(block); 497 save_error_info(inode->i_sb, function, line); 498 va_start(args, fmt); 499 vaf.fmt = fmt; 500 vaf.va = &args; 501 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 502 inode->i_sb->s_id, function, line, inode->i_ino); 503 if (block) 504 printk(KERN_CONT "block %llu: ", block); 505 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf); 506 va_end(args); 507 508 ext4_handle_error(inode->i_sb); 509 } 510 511 void ext4_error_file(struct file *file, const char *function, 512 unsigned int line, ext4_fsblk_t block, 513 const char *fmt, ...) 514 { 515 va_list args; 516 struct va_format vaf; 517 struct ext4_super_block *es; 518 struct inode *inode = file->f_dentry->d_inode; 519 char pathname[80], *path; 520 521 es = EXT4_SB(inode->i_sb)->s_es; 522 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 523 save_error_info(inode->i_sb, function, line); 524 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 525 if (IS_ERR(path)) 526 path = "(unknown)"; 527 printk(KERN_CRIT 528 "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 529 inode->i_sb->s_id, function, line, inode->i_ino); 530 if (block) 531 printk(KERN_CONT "block %llu: ", block); 532 va_start(args, fmt); 533 vaf.fmt = fmt; 534 vaf.va = &args; 535 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf); 536 va_end(args); 537 538 ext4_handle_error(inode->i_sb); 539 } 540 541 static const char *ext4_decode_error(struct super_block *sb, int errno, 542 char nbuf[16]) 543 { 544 char *errstr = NULL; 545 546 switch (errno) { 547 case -EIO: 548 errstr = "IO failure"; 549 break; 550 case -ENOMEM: 551 errstr = "Out of memory"; 552 break; 553 case -EROFS: 554 if (!sb || (EXT4_SB(sb)->s_journal && 555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 556 errstr = "Journal has aborted"; 557 else 558 errstr = "Readonly filesystem"; 559 break; 560 default: 561 /* If the caller passed in an extra buffer for unknown 562 * errors, textualise them now. Else we just return 563 * NULL. */ 564 if (nbuf) { 565 /* Check for truncated error codes... */ 566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 567 errstr = nbuf; 568 } 569 break; 570 } 571 572 return errstr; 573 } 574 575 /* __ext4_std_error decodes expected errors from journaling functions 576 * automatically and invokes the appropriate error response. */ 577 578 void __ext4_std_error(struct super_block *sb, const char *function, 579 unsigned int line, int errno) 580 { 581 char nbuf[16]; 582 const char *errstr; 583 584 /* Special case: if the error is EROFS, and we're not already 585 * inside a transaction, then there's really no point in logging 586 * an error. */ 587 if (errno == -EROFS && journal_current_handle() == NULL && 588 (sb->s_flags & MS_RDONLY)) 589 return; 590 591 errstr = ext4_decode_error(sb, errno, nbuf); 592 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 593 sb->s_id, function, line, errstr); 594 save_error_info(sb, function, line); 595 596 ext4_handle_error(sb); 597 } 598 599 /* 600 * ext4_abort is a much stronger failure handler than ext4_error. The 601 * abort function may be used to deal with unrecoverable failures such 602 * as journal IO errors or ENOMEM at a critical moment in log management. 603 * 604 * We unconditionally force the filesystem into an ABORT|READONLY state, 605 * unless the error response on the fs has been set to panic in which 606 * case we take the easy way out and panic immediately. 607 */ 608 609 void __ext4_abort(struct super_block *sb, const char *function, 610 unsigned int line, const char *fmt, ...) 611 { 612 va_list args; 613 614 save_error_info(sb, function, line); 615 va_start(args, fmt); 616 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 617 function, line); 618 vprintk(fmt, args); 619 printk("\n"); 620 va_end(args); 621 622 if ((sb->s_flags & MS_RDONLY) == 0) { 623 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 624 sb->s_flags |= MS_RDONLY; 625 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 626 if (EXT4_SB(sb)->s_journal) 627 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 628 save_error_info(sb, function, line); 629 } 630 if (test_opt(sb, ERRORS_PANIC)) 631 panic("EXT4-fs panic from previous error\n"); 632 } 633 634 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 635 { 636 struct va_format vaf; 637 va_list args; 638 639 va_start(args, fmt); 640 vaf.fmt = fmt; 641 vaf.va = &args; 642 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 643 va_end(args); 644 } 645 646 void __ext4_warning(struct super_block *sb, const char *function, 647 unsigned int line, const char *fmt, ...) 648 { 649 struct va_format vaf; 650 va_list args; 651 652 va_start(args, fmt); 653 vaf.fmt = fmt; 654 vaf.va = &args; 655 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 656 sb->s_id, function, line, &vaf); 657 va_end(args); 658 } 659 660 void __ext4_grp_locked_error(const char *function, unsigned int line, 661 struct super_block *sb, ext4_group_t grp, 662 unsigned long ino, ext4_fsblk_t block, 663 const char *fmt, ...) 664 __releases(bitlock) 665 __acquires(bitlock) 666 { 667 struct va_format vaf; 668 va_list args; 669 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 670 671 es->s_last_error_ino = cpu_to_le32(ino); 672 es->s_last_error_block = cpu_to_le64(block); 673 __save_error_info(sb, function, line); 674 675 va_start(args, fmt); 676 677 vaf.fmt = fmt; 678 vaf.va = &args; 679 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 680 sb->s_id, function, line, grp); 681 if (ino) 682 printk(KERN_CONT "inode %lu: ", ino); 683 if (block) 684 printk(KERN_CONT "block %llu:", (unsigned long long) block); 685 printk(KERN_CONT "%pV\n", &vaf); 686 va_end(args); 687 688 if (test_opt(sb, ERRORS_CONT)) { 689 ext4_commit_super(sb, 0); 690 return; 691 } 692 693 ext4_unlock_group(sb, grp); 694 ext4_handle_error(sb); 695 /* 696 * We only get here in the ERRORS_RO case; relocking the group 697 * may be dangerous, but nothing bad will happen since the 698 * filesystem will have already been marked read/only and the 699 * journal has been aborted. We return 1 as a hint to callers 700 * who might what to use the return value from 701 * ext4_grp_locked_error() to distinguish between the 702 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 703 * aggressively from the ext4 function in question, with a 704 * more appropriate error code. 705 */ 706 ext4_lock_group(sb, grp); 707 return; 708 } 709 710 void ext4_update_dynamic_rev(struct super_block *sb) 711 { 712 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 713 714 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 715 return; 716 717 ext4_warning(sb, 718 "updating to rev %d because of new feature flag, " 719 "running e2fsck is recommended", 720 EXT4_DYNAMIC_REV); 721 722 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 723 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 724 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 725 /* leave es->s_feature_*compat flags alone */ 726 /* es->s_uuid will be set by e2fsck if empty */ 727 728 /* 729 * The rest of the superblock fields should be zero, and if not it 730 * means they are likely already in use, so leave them alone. We 731 * can leave it up to e2fsck to clean up any inconsistencies there. 732 */ 733 } 734 735 /* 736 * Open the external journal device 737 */ 738 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 739 { 740 struct block_device *bdev; 741 char b[BDEVNAME_SIZE]; 742 743 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 744 if (IS_ERR(bdev)) 745 goto fail; 746 return bdev; 747 748 fail: 749 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 750 __bdevname(dev, b), PTR_ERR(bdev)); 751 return NULL; 752 } 753 754 /* 755 * Release the journal device 756 */ 757 static int ext4_blkdev_put(struct block_device *bdev) 758 { 759 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 760 } 761 762 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 763 { 764 struct block_device *bdev; 765 int ret = -ENODEV; 766 767 bdev = sbi->journal_bdev; 768 if (bdev) { 769 ret = ext4_blkdev_put(bdev); 770 sbi->journal_bdev = NULL; 771 } 772 return ret; 773 } 774 775 static inline struct inode *orphan_list_entry(struct list_head *l) 776 { 777 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 778 } 779 780 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 781 { 782 struct list_head *l; 783 784 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 785 le32_to_cpu(sbi->s_es->s_last_orphan)); 786 787 printk(KERN_ERR "sb_info orphan list:\n"); 788 list_for_each(l, &sbi->s_orphan) { 789 struct inode *inode = orphan_list_entry(l); 790 printk(KERN_ERR " " 791 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 792 inode->i_sb->s_id, inode->i_ino, inode, 793 inode->i_mode, inode->i_nlink, 794 NEXT_ORPHAN(inode)); 795 } 796 } 797 798 static void ext4_put_super(struct super_block *sb) 799 { 800 struct ext4_sb_info *sbi = EXT4_SB(sb); 801 struct ext4_super_block *es = sbi->s_es; 802 int i, err; 803 804 ext4_unregister_li_request(sb); 805 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 806 807 flush_workqueue(sbi->dio_unwritten_wq); 808 destroy_workqueue(sbi->dio_unwritten_wq); 809 810 lock_super(sb); 811 if (sb->s_dirt) 812 ext4_commit_super(sb, 1); 813 814 if (sbi->s_journal) { 815 err = jbd2_journal_destroy(sbi->s_journal); 816 sbi->s_journal = NULL; 817 if (err < 0) 818 ext4_abort(sb, "Couldn't clean up the journal"); 819 } 820 821 del_timer(&sbi->s_err_report); 822 ext4_release_system_zone(sb); 823 ext4_mb_release(sb); 824 ext4_ext_release(sb); 825 ext4_xattr_put_super(sb); 826 827 if (!(sb->s_flags & MS_RDONLY)) { 828 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 829 es->s_state = cpu_to_le16(sbi->s_mount_state); 830 ext4_commit_super(sb, 1); 831 } 832 if (sbi->s_proc) { 833 remove_proc_entry(sb->s_id, ext4_proc_root); 834 } 835 kobject_del(&sbi->s_kobj); 836 837 for (i = 0; i < sbi->s_gdb_count; i++) 838 brelse(sbi->s_group_desc[i]); 839 ext4_kvfree(sbi->s_group_desc); 840 ext4_kvfree(sbi->s_flex_groups); 841 percpu_counter_destroy(&sbi->s_freeclusters_counter); 842 percpu_counter_destroy(&sbi->s_freeinodes_counter); 843 percpu_counter_destroy(&sbi->s_dirs_counter); 844 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 845 brelse(sbi->s_sbh); 846 #ifdef CONFIG_QUOTA 847 for (i = 0; i < MAXQUOTAS; i++) 848 kfree(sbi->s_qf_names[i]); 849 #endif 850 851 /* Debugging code just in case the in-memory inode orphan list 852 * isn't empty. The on-disk one can be non-empty if we've 853 * detected an error and taken the fs readonly, but the 854 * in-memory list had better be clean by this point. */ 855 if (!list_empty(&sbi->s_orphan)) 856 dump_orphan_list(sb, sbi); 857 J_ASSERT(list_empty(&sbi->s_orphan)); 858 859 invalidate_bdev(sb->s_bdev); 860 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 861 /* 862 * Invalidate the journal device's buffers. We don't want them 863 * floating about in memory - the physical journal device may 864 * hotswapped, and it breaks the `ro-after' testing code. 865 */ 866 sync_blockdev(sbi->journal_bdev); 867 invalidate_bdev(sbi->journal_bdev); 868 ext4_blkdev_remove(sbi); 869 } 870 if (sbi->s_mmp_tsk) 871 kthread_stop(sbi->s_mmp_tsk); 872 sb->s_fs_info = NULL; 873 /* 874 * Now that we are completely done shutting down the 875 * superblock, we need to actually destroy the kobject. 876 */ 877 unlock_super(sb); 878 kobject_put(&sbi->s_kobj); 879 wait_for_completion(&sbi->s_kobj_unregister); 880 kfree(sbi->s_blockgroup_lock); 881 kfree(sbi); 882 } 883 884 static struct kmem_cache *ext4_inode_cachep; 885 886 /* 887 * Called inside transaction, so use GFP_NOFS 888 */ 889 static struct inode *ext4_alloc_inode(struct super_block *sb) 890 { 891 struct ext4_inode_info *ei; 892 893 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 894 if (!ei) 895 return NULL; 896 897 ei->vfs_inode.i_version = 1; 898 ei->vfs_inode.i_data.writeback_index = 0; 899 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 900 INIT_LIST_HEAD(&ei->i_prealloc_list); 901 spin_lock_init(&ei->i_prealloc_lock); 902 ei->i_reserved_data_blocks = 0; 903 ei->i_reserved_meta_blocks = 0; 904 ei->i_allocated_meta_blocks = 0; 905 ei->i_da_metadata_calc_len = 0; 906 spin_lock_init(&(ei->i_block_reservation_lock)); 907 #ifdef CONFIG_QUOTA 908 ei->i_reserved_quota = 0; 909 #endif 910 ei->jinode = NULL; 911 INIT_LIST_HEAD(&ei->i_completed_io_list); 912 spin_lock_init(&ei->i_completed_io_lock); 913 ei->cur_aio_dio = NULL; 914 ei->i_sync_tid = 0; 915 ei->i_datasync_tid = 0; 916 atomic_set(&ei->i_ioend_count, 0); 917 atomic_set(&ei->i_aiodio_unwritten, 0); 918 919 return &ei->vfs_inode; 920 } 921 922 static int ext4_drop_inode(struct inode *inode) 923 { 924 int drop = generic_drop_inode(inode); 925 926 trace_ext4_drop_inode(inode, drop); 927 return drop; 928 } 929 930 static void ext4_i_callback(struct rcu_head *head) 931 { 932 struct inode *inode = container_of(head, struct inode, i_rcu); 933 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 934 } 935 936 static void ext4_destroy_inode(struct inode *inode) 937 { 938 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 939 ext4_msg(inode->i_sb, KERN_ERR, 940 "Inode %lu (%p): orphan list check failed!", 941 inode->i_ino, EXT4_I(inode)); 942 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 943 EXT4_I(inode), sizeof(struct ext4_inode_info), 944 true); 945 dump_stack(); 946 } 947 call_rcu(&inode->i_rcu, ext4_i_callback); 948 } 949 950 static void init_once(void *foo) 951 { 952 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 953 954 INIT_LIST_HEAD(&ei->i_orphan); 955 #ifdef CONFIG_EXT4_FS_XATTR 956 init_rwsem(&ei->xattr_sem); 957 #endif 958 init_rwsem(&ei->i_data_sem); 959 inode_init_once(&ei->vfs_inode); 960 } 961 962 static int init_inodecache(void) 963 { 964 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 965 sizeof(struct ext4_inode_info), 966 0, (SLAB_RECLAIM_ACCOUNT| 967 SLAB_MEM_SPREAD), 968 init_once); 969 if (ext4_inode_cachep == NULL) 970 return -ENOMEM; 971 return 0; 972 } 973 974 static void destroy_inodecache(void) 975 { 976 kmem_cache_destroy(ext4_inode_cachep); 977 } 978 979 void ext4_clear_inode(struct inode *inode) 980 { 981 invalidate_inode_buffers(inode); 982 end_writeback(inode); 983 dquot_drop(inode); 984 ext4_discard_preallocations(inode); 985 if (EXT4_I(inode)->jinode) { 986 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 987 EXT4_I(inode)->jinode); 988 jbd2_free_inode(EXT4_I(inode)->jinode); 989 EXT4_I(inode)->jinode = NULL; 990 } 991 } 992 993 static inline void ext4_show_quota_options(struct seq_file *seq, 994 struct super_block *sb) 995 { 996 #if defined(CONFIG_QUOTA) 997 struct ext4_sb_info *sbi = EXT4_SB(sb); 998 999 if (sbi->s_jquota_fmt) { 1000 char *fmtname = ""; 1001 1002 switch (sbi->s_jquota_fmt) { 1003 case QFMT_VFS_OLD: 1004 fmtname = "vfsold"; 1005 break; 1006 case QFMT_VFS_V0: 1007 fmtname = "vfsv0"; 1008 break; 1009 case QFMT_VFS_V1: 1010 fmtname = "vfsv1"; 1011 break; 1012 } 1013 seq_printf(seq, ",jqfmt=%s", fmtname); 1014 } 1015 1016 if (sbi->s_qf_names[USRQUOTA]) 1017 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1018 1019 if (sbi->s_qf_names[GRPQUOTA]) 1020 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1021 1022 if (test_opt(sb, USRQUOTA)) 1023 seq_puts(seq, ",usrquota"); 1024 1025 if (test_opt(sb, GRPQUOTA)) 1026 seq_puts(seq, ",grpquota"); 1027 #endif 1028 } 1029 1030 /* 1031 * Show an option if 1032 * - it's set to a non-default value OR 1033 * - if the per-sb default is different from the global default 1034 */ 1035 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1036 { 1037 int def_errors; 1038 unsigned long def_mount_opts; 1039 struct super_block *sb = root->d_sb; 1040 struct ext4_sb_info *sbi = EXT4_SB(sb); 1041 struct ext4_super_block *es = sbi->s_es; 1042 1043 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 1044 def_errors = le16_to_cpu(es->s_errors); 1045 1046 if (sbi->s_sb_block != 1) 1047 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 1048 if (test_opt(sb, MINIX_DF)) 1049 seq_puts(seq, ",minixdf"); 1050 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 1051 seq_puts(seq, ",grpid"); 1052 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 1053 seq_puts(seq, ",nogrpid"); 1054 if (sbi->s_resuid != EXT4_DEF_RESUID || 1055 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 1056 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 1057 } 1058 if (sbi->s_resgid != EXT4_DEF_RESGID || 1059 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 1060 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 1061 } 1062 if (test_opt(sb, ERRORS_RO)) { 1063 if (def_errors == EXT4_ERRORS_PANIC || 1064 def_errors == EXT4_ERRORS_CONTINUE) { 1065 seq_puts(seq, ",errors=remount-ro"); 1066 } 1067 } 1068 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1069 seq_puts(seq, ",errors=continue"); 1070 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1071 seq_puts(seq, ",errors=panic"); 1072 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 1073 seq_puts(seq, ",nouid32"); 1074 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 1075 seq_puts(seq, ",debug"); 1076 #ifdef CONFIG_EXT4_FS_XATTR 1077 if (test_opt(sb, XATTR_USER)) 1078 seq_puts(seq, ",user_xattr"); 1079 if (!test_opt(sb, XATTR_USER)) 1080 seq_puts(seq, ",nouser_xattr"); 1081 #endif 1082 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1083 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 1084 seq_puts(seq, ",acl"); 1085 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 1086 seq_puts(seq, ",noacl"); 1087 #endif 1088 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 1089 seq_printf(seq, ",commit=%u", 1090 (unsigned) (sbi->s_commit_interval / HZ)); 1091 } 1092 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 1093 seq_printf(seq, ",min_batch_time=%u", 1094 (unsigned) sbi->s_min_batch_time); 1095 } 1096 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 1097 seq_printf(seq, ",max_batch_time=%u", 1098 (unsigned) sbi->s_max_batch_time); 1099 } 1100 1101 /* 1102 * We're changing the default of barrier mount option, so 1103 * let's always display its mount state so it's clear what its 1104 * status is. 1105 */ 1106 seq_puts(seq, ",barrier="); 1107 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 1108 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 1109 seq_puts(seq, ",journal_async_commit"); 1110 else if (test_opt(sb, JOURNAL_CHECKSUM)) 1111 seq_puts(seq, ",journal_checksum"); 1112 if (test_opt(sb, I_VERSION)) 1113 seq_puts(seq, ",i_version"); 1114 if (!test_opt(sb, DELALLOC) && 1115 !(def_mount_opts & EXT4_DEFM_NODELALLOC)) 1116 seq_puts(seq, ",nodelalloc"); 1117 1118 if (!test_opt(sb, MBLK_IO_SUBMIT)) 1119 seq_puts(seq, ",nomblk_io_submit"); 1120 if (sbi->s_stripe) 1121 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 1122 /* 1123 * journal mode get enabled in different ways 1124 * So just print the value even if we didn't specify it 1125 */ 1126 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1127 seq_puts(seq, ",data=journal"); 1128 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1129 seq_puts(seq, ",data=ordered"); 1130 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1131 seq_puts(seq, ",data=writeback"); 1132 1133 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1134 seq_printf(seq, ",inode_readahead_blks=%u", 1135 sbi->s_inode_readahead_blks); 1136 1137 if (test_opt(sb, DATA_ERR_ABORT)) 1138 seq_puts(seq, ",data_err=abort"); 1139 1140 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 1141 seq_puts(seq, ",noauto_da_alloc"); 1142 1143 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD)) 1144 seq_puts(seq, ",discard"); 1145 1146 if (test_opt(sb, NOLOAD)) 1147 seq_puts(seq, ",norecovery"); 1148 1149 if (test_opt(sb, DIOREAD_NOLOCK)) 1150 seq_puts(seq, ",dioread_nolock"); 1151 1152 if (test_opt(sb, BLOCK_VALIDITY) && 1153 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)) 1154 seq_puts(seq, ",block_validity"); 1155 1156 if (!test_opt(sb, INIT_INODE_TABLE)) 1157 seq_puts(seq, ",noinit_itable"); 1158 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT) 1159 seq_printf(seq, ",init_itable=%u", 1160 (unsigned) sbi->s_li_wait_mult); 1161 1162 ext4_show_quota_options(seq, sb); 1163 1164 return 0; 1165 } 1166 1167 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1168 u64 ino, u32 generation) 1169 { 1170 struct inode *inode; 1171 1172 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1173 return ERR_PTR(-ESTALE); 1174 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1175 return ERR_PTR(-ESTALE); 1176 1177 /* iget isn't really right if the inode is currently unallocated!! 1178 * 1179 * ext4_read_inode will return a bad_inode if the inode had been 1180 * deleted, so we should be safe. 1181 * 1182 * Currently we don't know the generation for parent directory, so 1183 * a generation of 0 means "accept any" 1184 */ 1185 inode = ext4_iget(sb, ino); 1186 if (IS_ERR(inode)) 1187 return ERR_CAST(inode); 1188 if (generation && inode->i_generation != generation) { 1189 iput(inode); 1190 return ERR_PTR(-ESTALE); 1191 } 1192 1193 return inode; 1194 } 1195 1196 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1197 int fh_len, int fh_type) 1198 { 1199 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1200 ext4_nfs_get_inode); 1201 } 1202 1203 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1204 int fh_len, int fh_type) 1205 { 1206 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1207 ext4_nfs_get_inode); 1208 } 1209 1210 /* 1211 * Try to release metadata pages (indirect blocks, directories) which are 1212 * mapped via the block device. Since these pages could have journal heads 1213 * which would prevent try_to_free_buffers() from freeing them, we must use 1214 * jbd2 layer's try_to_free_buffers() function to release them. 1215 */ 1216 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1217 gfp_t wait) 1218 { 1219 journal_t *journal = EXT4_SB(sb)->s_journal; 1220 1221 WARN_ON(PageChecked(page)); 1222 if (!page_has_buffers(page)) 1223 return 0; 1224 if (journal) 1225 return jbd2_journal_try_to_free_buffers(journal, page, 1226 wait & ~__GFP_WAIT); 1227 return try_to_free_buffers(page); 1228 } 1229 1230 #ifdef CONFIG_QUOTA 1231 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1232 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1233 1234 static int ext4_write_dquot(struct dquot *dquot); 1235 static int ext4_acquire_dquot(struct dquot *dquot); 1236 static int ext4_release_dquot(struct dquot *dquot); 1237 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1238 static int ext4_write_info(struct super_block *sb, int type); 1239 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1240 struct path *path); 1241 static int ext4_quota_off(struct super_block *sb, int type); 1242 static int ext4_quota_on_mount(struct super_block *sb, int type); 1243 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1244 size_t len, loff_t off); 1245 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1246 const char *data, size_t len, loff_t off); 1247 1248 static const struct dquot_operations ext4_quota_operations = { 1249 .get_reserved_space = ext4_get_reserved_space, 1250 .write_dquot = ext4_write_dquot, 1251 .acquire_dquot = ext4_acquire_dquot, 1252 .release_dquot = ext4_release_dquot, 1253 .mark_dirty = ext4_mark_dquot_dirty, 1254 .write_info = ext4_write_info, 1255 .alloc_dquot = dquot_alloc, 1256 .destroy_dquot = dquot_destroy, 1257 }; 1258 1259 static const struct quotactl_ops ext4_qctl_operations = { 1260 .quota_on = ext4_quota_on, 1261 .quota_off = ext4_quota_off, 1262 .quota_sync = dquot_quota_sync, 1263 .get_info = dquot_get_dqinfo, 1264 .set_info = dquot_set_dqinfo, 1265 .get_dqblk = dquot_get_dqblk, 1266 .set_dqblk = dquot_set_dqblk 1267 }; 1268 #endif 1269 1270 static const struct super_operations ext4_sops = { 1271 .alloc_inode = ext4_alloc_inode, 1272 .destroy_inode = ext4_destroy_inode, 1273 .write_inode = ext4_write_inode, 1274 .dirty_inode = ext4_dirty_inode, 1275 .drop_inode = ext4_drop_inode, 1276 .evict_inode = ext4_evict_inode, 1277 .put_super = ext4_put_super, 1278 .sync_fs = ext4_sync_fs, 1279 .freeze_fs = ext4_freeze, 1280 .unfreeze_fs = ext4_unfreeze, 1281 .statfs = ext4_statfs, 1282 .remount_fs = ext4_remount, 1283 .show_options = ext4_show_options, 1284 #ifdef CONFIG_QUOTA 1285 .quota_read = ext4_quota_read, 1286 .quota_write = ext4_quota_write, 1287 #endif 1288 .bdev_try_to_free_page = bdev_try_to_free_page, 1289 }; 1290 1291 static const struct super_operations ext4_nojournal_sops = { 1292 .alloc_inode = ext4_alloc_inode, 1293 .destroy_inode = ext4_destroy_inode, 1294 .write_inode = ext4_write_inode, 1295 .dirty_inode = ext4_dirty_inode, 1296 .drop_inode = ext4_drop_inode, 1297 .evict_inode = ext4_evict_inode, 1298 .write_super = ext4_write_super, 1299 .put_super = ext4_put_super, 1300 .statfs = ext4_statfs, 1301 .remount_fs = ext4_remount, 1302 .show_options = ext4_show_options, 1303 #ifdef CONFIG_QUOTA 1304 .quota_read = ext4_quota_read, 1305 .quota_write = ext4_quota_write, 1306 #endif 1307 .bdev_try_to_free_page = bdev_try_to_free_page, 1308 }; 1309 1310 static const struct export_operations ext4_export_ops = { 1311 .fh_to_dentry = ext4_fh_to_dentry, 1312 .fh_to_parent = ext4_fh_to_parent, 1313 .get_parent = ext4_get_parent, 1314 }; 1315 1316 enum { 1317 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1318 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1319 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1320 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1321 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1322 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1323 Opt_journal_update, Opt_journal_dev, 1324 Opt_journal_checksum, Opt_journal_async_commit, 1325 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1326 Opt_data_err_abort, Opt_data_err_ignore, 1327 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1328 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1329 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1330 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1331 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1332 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1333 Opt_inode_readahead_blks, Opt_journal_ioprio, 1334 Opt_dioread_nolock, Opt_dioread_lock, 1335 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1336 }; 1337 1338 static const match_table_t tokens = { 1339 {Opt_bsd_df, "bsddf"}, 1340 {Opt_minix_df, "minixdf"}, 1341 {Opt_grpid, "grpid"}, 1342 {Opt_grpid, "bsdgroups"}, 1343 {Opt_nogrpid, "nogrpid"}, 1344 {Opt_nogrpid, "sysvgroups"}, 1345 {Opt_resgid, "resgid=%u"}, 1346 {Opt_resuid, "resuid=%u"}, 1347 {Opt_sb, "sb=%u"}, 1348 {Opt_err_cont, "errors=continue"}, 1349 {Opt_err_panic, "errors=panic"}, 1350 {Opt_err_ro, "errors=remount-ro"}, 1351 {Opt_nouid32, "nouid32"}, 1352 {Opt_debug, "debug"}, 1353 {Opt_oldalloc, "oldalloc"}, 1354 {Opt_orlov, "orlov"}, 1355 {Opt_user_xattr, "user_xattr"}, 1356 {Opt_nouser_xattr, "nouser_xattr"}, 1357 {Opt_acl, "acl"}, 1358 {Opt_noacl, "noacl"}, 1359 {Opt_noload, "noload"}, 1360 {Opt_noload, "norecovery"}, 1361 {Opt_nobh, "nobh"}, 1362 {Opt_bh, "bh"}, 1363 {Opt_commit, "commit=%u"}, 1364 {Opt_min_batch_time, "min_batch_time=%u"}, 1365 {Opt_max_batch_time, "max_batch_time=%u"}, 1366 {Opt_journal_update, "journal=update"}, 1367 {Opt_journal_dev, "journal_dev=%u"}, 1368 {Opt_journal_checksum, "journal_checksum"}, 1369 {Opt_journal_async_commit, "journal_async_commit"}, 1370 {Opt_abort, "abort"}, 1371 {Opt_data_journal, "data=journal"}, 1372 {Opt_data_ordered, "data=ordered"}, 1373 {Opt_data_writeback, "data=writeback"}, 1374 {Opt_data_err_abort, "data_err=abort"}, 1375 {Opt_data_err_ignore, "data_err=ignore"}, 1376 {Opt_offusrjquota, "usrjquota="}, 1377 {Opt_usrjquota, "usrjquota=%s"}, 1378 {Opt_offgrpjquota, "grpjquota="}, 1379 {Opt_grpjquota, "grpjquota=%s"}, 1380 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1381 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1382 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1383 {Opt_grpquota, "grpquota"}, 1384 {Opt_noquota, "noquota"}, 1385 {Opt_quota, "quota"}, 1386 {Opt_usrquota, "usrquota"}, 1387 {Opt_barrier, "barrier=%u"}, 1388 {Opt_barrier, "barrier"}, 1389 {Opt_nobarrier, "nobarrier"}, 1390 {Opt_i_version, "i_version"}, 1391 {Opt_stripe, "stripe=%u"}, 1392 {Opt_resize, "resize"}, 1393 {Opt_delalloc, "delalloc"}, 1394 {Opt_nodelalloc, "nodelalloc"}, 1395 {Opt_mblk_io_submit, "mblk_io_submit"}, 1396 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1397 {Opt_block_validity, "block_validity"}, 1398 {Opt_noblock_validity, "noblock_validity"}, 1399 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1400 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1401 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1402 {Opt_auto_da_alloc, "auto_da_alloc"}, 1403 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1404 {Opt_dioread_nolock, "dioread_nolock"}, 1405 {Opt_dioread_lock, "dioread_lock"}, 1406 {Opt_discard, "discard"}, 1407 {Opt_nodiscard, "nodiscard"}, 1408 {Opt_init_itable, "init_itable=%u"}, 1409 {Opt_init_itable, "init_itable"}, 1410 {Opt_noinit_itable, "noinit_itable"}, 1411 {Opt_err, NULL}, 1412 }; 1413 1414 static ext4_fsblk_t get_sb_block(void **data) 1415 { 1416 ext4_fsblk_t sb_block; 1417 char *options = (char *) *data; 1418 1419 if (!options || strncmp(options, "sb=", 3) != 0) 1420 return 1; /* Default location */ 1421 1422 options += 3; 1423 /* TODO: use simple_strtoll with >32bit ext4 */ 1424 sb_block = simple_strtoul(options, &options, 0); 1425 if (*options && *options != ',') { 1426 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1427 (char *) *data); 1428 return 1; 1429 } 1430 if (*options == ',') 1431 options++; 1432 *data = (void *) options; 1433 1434 return sb_block; 1435 } 1436 1437 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1438 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1439 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1440 1441 #ifdef CONFIG_QUOTA 1442 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1443 { 1444 struct ext4_sb_info *sbi = EXT4_SB(sb); 1445 char *qname; 1446 1447 if (sb_any_quota_loaded(sb) && 1448 !sbi->s_qf_names[qtype]) { 1449 ext4_msg(sb, KERN_ERR, 1450 "Cannot change journaled " 1451 "quota options when quota turned on"); 1452 return 0; 1453 } 1454 qname = match_strdup(args); 1455 if (!qname) { 1456 ext4_msg(sb, KERN_ERR, 1457 "Not enough memory for storing quotafile name"); 1458 return 0; 1459 } 1460 if (sbi->s_qf_names[qtype] && 1461 strcmp(sbi->s_qf_names[qtype], qname)) { 1462 ext4_msg(sb, KERN_ERR, 1463 "%s quota file already specified", QTYPE2NAME(qtype)); 1464 kfree(qname); 1465 return 0; 1466 } 1467 sbi->s_qf_names[qtype] = qname; 1468 if (strchr(sbi->s_qf_names[qtype], '/')) { 1469 ext4_msg(sb, KERN_ERR, 1470 "quotafile must be on filesystem root"); 1471 kfree(sbi->s_qf_names[qtype]); 1472 sbi->s_qf_names[qtype] = NULL; 1473 return 0; 1474 } 1475 set_opt(sb, QUOTA); 1476 return 1; 1477 } 1478 1479 static int clear_qf_name(struct super_block *sb, int qtype) 1480 { 1481 1482 struct ext4_sb_info *sbi = EXT4_SB(sb); 1483 1484 if (sb_any_quota_loaded(sb) && 1485 sbi->s_qf_names[qtype]) { 1486 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1487 " when quota turned on"); 1488 return 0; 1489 } 1490 /* 1491 * The space will be released later when all options are confirmed 1492 * to be correct 1493 */ 1494 sbi->s_qf_names[qtype] = NULL; 1495 return 1; 1496 } 1497 #endif 1498 1499 static int parse_options(char *options, struct super_block *sb, 1500 unsigned long *journal_devnum, 1501 unsigned int *journal_ioprio, 1502 ext4_fsblk_t *n_blocks_count, int is_remount) 1503 { 1504 struct ext4_sb_info *sbi = EXT4_SB(sb); 1505 char *p; 1506 substring_t args[MAX_OPT_ARGS]; 1507 int data_opt = 0; 1508 int option; 1509 #ifdef CONFIG_QUOTA 1510 int qfmt; 1511 #endif 1512 1513 if (!options) 1514 return 1; 1515 1516 while ((p = strsep(&options, ",")) != NULL) { 1517 int token; 1518 if (!*p) 1519 continue; 1520 1521 /* 1522 * Initialize args struct so we know whether arg was 1523 * found; some options take optional arguments. 1524 */ 1525 args[0].to = args[0].from = NULL; 1526 token = match_token(p, tokens, args); 1527 switch (token) { 1528 case Opt_bsd_df: 1529 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1530 clear_opt(sb, MINIX_DF); 1531 break; 1532 case Opt_minix_df: 1533 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1534 set_opt(sb, MINIX_DF); 1535 1536 break; 1537 case Opt_grpid: 1538 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1539 set_opt(sb, GRPID); 1540 1541 break; 1542 case Opt_nogrpid: 1543 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1544 clear_opt(sb, GRPID); 1545 1546 break; 1547 case Opt_resuid: 1548 if (match_int(&args[0], &option)) 1549 return 0; 1550 sbi->s_resuid = option; 1551 break; 1552 case Opt_resgid: 1553 if (match_int(&args[0], &option)) 1554 return 0; 1555 sbi->s_resgid = option; 1556 break; 1557 case Opt_sb: 1558 /* handled by get_sb_block() instead of here */ 1559 /* *sb_block = match_int(&args[0]); */ 1560 break; 1561 case Opt_err_panic: 1562 clear_opt(sb, ERRORS_CONT); 1563 clear_opt(sb, ERRORS_RO); 1564 set_opt(sb, ERRORS_PANIC); 1565 break; 1566 case Opt_err_ro: 1567 clear_opt(sb, ERRORS_CONT); 1568 clear_opt(sb, ERRORS_PANIC); 1569 set_opt(sb, ERRORS_RO); 1570 break; 1571 case Opt_err_cont: 1572 clear_opt(sb, ERRORS_RO); 1573 clear_opt(sb, ERRORS_PANIC); 1574 set_opt(sb, ERRORS_CONT); 1575 break; 1576 case Opt_nouid32: 1577 set_opt(sb, NO_UID32); 1578 break; 1579 case Opt_debug: 1580 set_opt(sb, DEBUG); 1581 break; 1582 case Opt_oldalloc: 1583 ext4_msg(sb, KERN_WARNING, 1584 "Ignoring deprecated oldalloc option"); 1585 break; 1586 case Opt_orlov: 1587 ext4_msg(sb, KERN_WARNING, 1588 "Ignoring deprecated orlov option"); 1589 break; 1590 #ifdef CONFIG_EXT4_FS_XATTR 1591 case Opt_user_xattr: 1592 set_opt(sb, XATTR_USER); 1593 break; 1594 case Opt_nouser_xattr: 1595 clear_opt(sb, XATTR_USER); 1596 break; 1597 #else 1598 case Opt_user_xattr: 1599 case Opt_nouser_xattr: 1600 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1601 break; 1602 #endif 1603 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1604 case Opt_acl: 1605 set_opt(sb, POSIX_ACL); 1606 break; 1607 case Opt_noacl: 1608 clear_opt(sb, POSIX_ACL); 1609 break; 1610 #else 1611 case Opt_acl: 1612 case Opt_noacl: 1613 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1614 break; 1615 #endif 1616 case Opt_journal_update: 1617 /* @@@ FIXME */ 1618 /* Eventually we will want to be able to create 1619 a journal file here. For now, only allow the 1620 user to specify an existing inode to be the 1621 journal file. */ 1622 if (is_remount) { 1623 ext4_msg(sb, KERN_ERR, 1624 "Cannot specify journal on remount"); 1625 return 0; 1626 } 1627 set_opt(sb, UPDATE_JOURNAL); 1628 break; 1629 case Opt_journal_dev: 1630 if (is_remount) { 1631 ext4_msg(sb, KERN_ERR, 1632 "Cannot specify journal on remount"); 1633 return 0; 1634 } 1635 if (match_int(&args[0], &option)) 1636 return 0; 1637 *journal_devnum = option; 1638 break; 1639 case Opt_journal_checksum: 1640 set_opt(sb, JOURNAL_CHECKSUM); 1641 break; 1642 case Opt_journal_async_commit: 1643 set_opt(sb, JOURNAL_ASYNC_COMMIT); 1644 set_opt(sb, JOURNAL_CHECKSUM); 1645 break; 1646 case Opt_noload: 1647 set_opt(sb, NOLOAD); 1648 break; 1649 case Opt_commit: 1650 if (match_int(&args[0], &option)) 1651 return 0; 1652 if (option < 0) 1653 return 0; 1654 if (option == 0) 1655 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1656 sbi->s_commit_interval = HZ * option; 1657 break; 1658 case Opt_max_batch_time: 1659 if (match_int(&args[0], &option)) 1660 return 0; 1661 if (option < 0) 1662 return 0; 1663 if (option == 0) 1664 option = EXT4_DEF_MAX_BATCH_TIME; 1665 sbi->s_max_batch_time = option; 1666 break; 1667 case Opt_min_batch_time: 1668 if (match_int(&args[0], &option)) 1669 return 0; 1670 if (option < 0) 1671 return 0; 1672 sbi->s_min_batch_time = option; 1673 break; 1674 case Opt_data_journal: 1675 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1676 goto datacheck; 1677 case Opt_data_ordered: 1678 data_opt = EXT4_MOUNT_ORDERED_DATA; 1679 goto datacheck; 1680 case Opt_data_writeback: 1681 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1682 datacheck: 1683 if (is_remount) { 1684 if (!sbi->s_journal) 1685 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1686 else if (test_opt(sb, DATA_FLAGS) != data_opt) { 1687 ext4_msg(sb, KERN_ERR, 1688 "Cannot change data mode on remount"); 1689 return 0; 1690 } 1691 } else { 1692 clear_opt(sb, DATA_FLAGS); 1693 sbi->s_mount_opt |= data_opt; 1694 } 1695 break; 1696 case Opt_data_err_abort: 1697 set_opt(sb, DATA_ERR_ABORT); 1698 break; 1699 case Opt_data_err_ignore: 1700 clear_opt(sb, DATA_ERR_ABORT); 1701 break; 1702 #ifdef CONFIG_QUOTA 1703 case Opt_usrjquota: 1704 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1705 return 0; 1706 break; 1707 case Opt_grpjquota: 1708 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1709 return 0; 1710 break; 1711 case Opt_offusrjquota: 1712 if (!clear_qf_name(sb, USRQUOTA)) 1713 return 0; 1714 break; 1715 case Opt_offgrpjquota: 1716 if (!clear_qf_name(sb, GRPQUOTA)) 1717 return 0; 1718 break; 1719 1720 case Opt_jqfmt_vfsold: 1721 qfmt = QFMT_VFS_OLD; 1722 goto set_qf_format; 1723 case Opt_jqfmt_vfsv0: 1724 qfmt = QFMT_VFS_V0; 1725 goto set_qf_format; 1726 case Opt_jqfmt_vfsv1: 1727 qfmt = QFMT_VFS_V1; 1728 set_qf_format: 1729 if (sb_any_quota_loaded(sb) && 1730 sbi->s_jquota_fmt != qfmt) { 1731 ext4_msg(sb, KERN_ERR, "Cannot change " 1732 "journaled quota options when " 1733 "quota turned on"); 1734 return 0; 1735 } 1736 sbi->s_jquota_fmt = qfmt; 1737 break; 1738 case Opt_quota: 1739 case Opt_usrquota: 1740 set_opt(sb, QUOTA); 1741 set_opt(sb, USRQUOTA); 1742 break; 1743 case Opt_grpquota: 1744 set_opt(sb, QUOTA); 1745 set_opt(sb, GRPQUOTA); 1746 break; 1747 case Opt_noquota: 1748 if (sb_any_quota_loaded(sb)) { 1749 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1750 "options when quota turned on"); 1751 return 0; 1752 } 1753 clear_opt(sb, QUOTA); 1754 clear_opt(sb, USRQUOTA); 1755 clear_opt(sb, GRPQUOTA); 1756 break; 1757 #else 1758 case Opt_quota: 1759 case Opt_usrquota: 1760 case Opt_grpquota: 1761 ext4_msg(sb, KERN_ERR, 1762 "quota options not supported"); 1763 break; 1764 case Opt_usrjquota: 1765 case Opt_grpjquota: 1766 case Opt_offusrjquota: 1767 case Opt_offgrpjquota: 1768 case Opt_jqfmt_vfsold: 1769 case Opt_jqfmt_vfsv0: 1770 case Opt_jqfmt_vfsv1: 1771 ext4_msg(sb, KERN_ERR, 1772 "journaled quota options not supported"); 1773 break; 1774 case Opt_noquota: 1775 break; 1776 #endif 1777 case Opt_abort: 1778 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1779 break; 1780 case Opt_nobarrier: 1781 clear_opt(sb, BARRIER); 1782 break; 1783 case Opt_barrier: 1784 if (args[0].from) { 1785 if (match_int(&args[0], &option)) 1786 return 0; 1787 } else 1788 option = 1; /* No argument, default to 1 */ 1789 if (option) 1790 set_opt(sb, BARRIER); 1791 else 1792 clear_opt(sb, BARRIER); 1793 break; 1794 case Opt_ignore: 1795 break; 1796 case Opt_resize: 1797 if (!is_remount) { 1798 ext4_msg(sb, KERN_ERR, 1799 "resize option only available " 1800 "for remount"); 1801 return 0; 1802 } 1803 if (match_int(&args[0], &option) != 0) 1804 return 0; 1805 *n_blocks_count = option; 1806 break; 1807 case Opt_nobh: 1808 ext4_msg(sb, KERN_WARNING, 1809 "Ignoring deprecated nobh option"); 1810 break; 1811 case Opt_bh: 1812 ext4_msg(sb, KERN_WARNING, 1813 "Ignoring deprecated bh option"); 1814 break; 1815 case Opt_i_version: 1816 set_opt(sb, I_VERSION); 1817 sb->s_flags |= MS_I_VERSION; 1818 break; 1819 case Opt_nodelalloc: 1820 clear_opt(sb, DELALLOC); 1821 clear_opt2(sb, EXPLICIT_DELALLOC); 1822 break; 1823 case Opt_mblk_io_submit: 1824 set_opt(sb, MBLK_IO_SUBMIT); 1825 break; 1826 case Opt_nomblk_io_submit: 1827 clear_opt(sb, MBLK_IO_SUBMIT); 1828 break; 1829 case Opt_stripe: 1830 if (match_int(&args[0], &option)) 1831 return 0; 1832 if (option < 0) 1833 return 0; 1834 sbi->s_stripe = option; 1835 break; 1836 case Opt_delalloc: 1837 set_opt(sb, DELALLOC); 1838 set_opt2(sb, EXPLICIT_DELALLOC); 1839 break; 1840 case Opt_block_validity: 1841 set_opt(sb, BLOCK_VALIDITY); 1842 break; 1843 case Opt_noblock_validity: 1844 clear_opt(sb, BLOCK_VALIDITY); 1845 break; 1846 case Opt_inode_readahead_blks: 1847 if (match_int(&args[0], &option)) 1848 return 0; 1849 if (option < 0 || option > (1 << 30)) 1850 return 0; 1851 if (option && !is_power_of_2(option)) { 1852 ext4_msg(sb, KERN_ERR, 1853 "EXT4-fs: inode_readahead_blks" 1854 " must be a power of 2"); 1855 return 0; 1856 } 1857 sbi->s_inode_readahead_blks = option; 1858 break; 1859 case Opt_journal_ioprio: 1860 if (match_int(&args[0], &option)) 1861 return 0; 1862 if (option < 0 || option > 7) 1863 break; 1864 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1865 option); 1866 break; 1867 case Opt_noauto_da_alloc: 1868 set_opt(sb, NO_AUTO_DA_ALLOC); 1869 break; 1870 case Opt_auto_da_alloc: 1871 if (args[0].from) { 1872 if (match_int(&args[0], &option)) 1873 return 0; 1874 } else 1875 option = 1; /* No argument, default to 1 */ 1876 if (option) 1877 clear_opt(sb, NO_AUTO_DA_ALLOC); 1878 else 1879 set_opt(sb,NO_AUTO_DA_ALLOC); 1880 break; 1881 case Opt_discard: 1882 set_opt(sb, DISCARD); 1883 break; 1884 case Opt_nodiscard: 1885 clear_opt(sb, DISCARD); 1886 break; 1887 case Opt_dioread_nolock: 1888 set_opt(sb, DIOREAD_NOLOCK); 1889 break; 1890 case Opt_dioread_lock: 1891 clear_opt(sb, DIOREAD_NOLOCK); 1892 break; 1893 case Opt_init_itable: 1894 set_opt(sb, INIT_INODE_TABLE); 1895 if (args[0].from) { 1896 if (match_int(&args[0], &option)) 1897 return 0; 1898 } else 1899 option = EXT4_DEF_LI_WAIT_MULT; 1900 if (option < 0) 1901 return 0; 1902 sbi->s_li_wait_mult = option; 1903 break; 1904 case Opt_noinit_itable: 1905 clear_opt(sb, INIT_INODE_TABLE); 1906 break; 1907 default: 1908 ext4_msg(sb, KERN_ERR, 1909 "Unrecognized mount option \"%s\" " 1910 "or missing value", p); 1911 return 0; 1912 } 1913 } 1914 #ifdef CONFIG_QUOTA 1915 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1916 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1917 clear_opt(sb, USRQUOTA); 1918 1919 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1920 clear_opt(sb, GRPQUOTA); 1921 1922 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1923 ext4_msg(sb, KERN_ERR, "old and new quota " 1924 "format mixing"); 1925 return 0; 1926 } 1927 1928 if (!sbi->s_jquota_fmt) { 1929 ext4_msg(sb, KERN_ERR, "journaled quota format " 1930 "not specified"); 1931 return 0; 1932 } 1933 } else { 1934 if (sbi->s_jquota_fmt) { 1935 ext4_msg(sb, KERN_ERR, "journaled quota format " 1936 "specified with no journaling " 1937 "enabled"); 1938 return 0; 1939 } 1940 } 1941 #endif 1942 return 1; 1943 } 1944 1945 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1946 int read_only) 1947 { 1948 struct ext4_sb_info *sbi = EXT4_SB(sb); 1949 int res = 0; 1950 1951 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1952 ext4_msg(sb, KERN_ERR, "revision level too high, " 1953 "forcing read-only mode"); 1954 res = MS_RDONLY; 1955 } 1956 if (read_only) 1957 goto done; 1958 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1959 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1960 "running e2fsck is recommended"); 1961 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1962 ext4_msg(sb, KERN_WARNING, 1963 "warning: mounting fs with errors, " 1964 "running e2fsck is recommended"); 1965 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1966 le16_to_cpu(es->s_mnt_count) >= 1967 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1968 ext4_msg(sb, KERN_WARNING, 1969 "warning: maximal mount count reached, " 1970 "running e2fsck is recommended"); 1971 else if (le32_to_cpu(es->s_checkinterval) && 1972 (le32_to_cpu(es->s_lastcheck) + 1973 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1974 ext4_msg(sb, KERN_WARNING, 1975 "warning: checktime reached, " 1976 "running e2fsck is recommended"); 1977 if (!sbi->s_journal) 1978 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1979 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1980 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1981 le16_add_cpu(&es->s_mnt_count, 1); 1982 es->s_mtime = cpu_to_le32(get_seconds()); 1983 ext4_update_dynamic_rev(sb); 1984 if (sbi->s_journal) 1985 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1986 1987 ext4_commit_super(sb, 1); 1988 done: 1989 if (test_opt(sb, DEBUG)) 1990 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1991 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1992 sb->s_blocksize, 1993 sbi->s_groups_count, 1994 EXT4_BLOCKS_PER_GROUP(sb), 1995 EXT4_INODES_PER_GROUP(sb), 1996 sbi->s_mount_opt, sbi->s_mount_opt2); 1997 1998 cleancache_init_fs(sb); 1999 return res; 2000 } 2001 2002 static int ext4_fill_flex_info(struct super_block *sb) 2003 { 2004 struct ext4_sb_info *sbi = EXT4_SB(sb); 2005 struct ext4_group_desc *gdp = NULL; 2006 ext4_group_t flex_group_count; 2007 ext4_group_t flex_group; 2008 unsigned int groups_per_flex = 0; 2009 size_t size; 2010 int i; 2011 2012 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2013 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2014 sbi->s_log_groups_per_flex = 0; 2015 return 1; 2016 } 2017 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 2018 2019 /* We allocate both existing and potentially added groups */ 2020 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 2021 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 2022 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 2023 size = flex_group_count * sizeof(struct flex_groups); 2024 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 2025 if (sbi->s_flex_groups == NULL) { 2026 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 2027 flex_group_count); 2028 goto failed; 2029 } 2030 2031 for (i = 0; i < sbi->s_groups_count; i++) { 2032 gdp = ext4_get_group_desc(sb, i, NULL); 2033 2034 flex_group = ext4_flex_group(sbi, i); 2035 atomic_add(ext4_free_inodes_count(sb, gdp), 2036 &sbi->s_flex_groups[flex_group].free_inodes); 2037 atomic_add(ext4_free_group_clusters(sb, gdp), 2038 &sbi->s_flex_groups[flex_group].free_clusters); 2039 atomic_add(ext4_used_dirs_count(sb, gdp), 2040 &sbi->s_flex_groups[flex_group].used_dirs); 2041 } 2042 2043 return 1; 2044 failed: 2045 return 0; 2046 } 2047 2048 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2049 struct ext4_group_desc *gdp) 2050 { 2051 __u16 crc = 0; 2052 2053 if (sbi->s_es->s_feature_ro_compat & 2054 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 2055 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2056 __le32 le_group = cpu_to_le32(block_group); 2057 2058 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2059 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2060 crc = crc16(crc, (__u8 *)gdp, offset); 2061 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2062 /* for checksum of struct ext4_group_desc do the rest...*/ 2063 if ((sbi->s_es->s_feature_incompat & 2064 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2065 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2066 crc = crc16(crc, (__u8 *)gdp + offset, 2067 le16_to_cpu(sbi->s_es->s_desc_size) - 2068 offset); 2069 } 2070 2071 return cpu_to_le16(crc); 2072 } 2073 2074 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 2075 struct ext4_group_desc *gdp) 2076 { 2077 if ((sbi->s_es->s_feature_ro_compat & 2078 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 2079 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 2080 return 0; 2081 2082 return 1; 2083 } 2084 2085 /* Called at mount-time, super-block is locked */ 2086 static int ext4_check_descriptors(struct super_block *sb, 2087 ext4_group_t *first_not_zeroed) 2088 { 2089 struct ext4_sb_info *sbi = EXT4_SB(sb); 2090 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2091 ext4_fsblk_t last_block; 2092 ext4_fsblk_t block_bitmap; 2093 ext4_fsblk_t inode_bitmap; 2094 ext4_fsblk_t inode_table; 2095 int flexbg_flag = 0; 2096 ext4_group_t i, grp = sbi->s_groups_count; 2097 2098 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2099 flexbg_flag = 1; 2100 2101 ext4_debug("Checking group descriptors"); 2102 2103 for (i = 0; i < sbi->s_groups_count; i++) { 2104 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2105 2106 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2107 last_block = ext4_blocks_count(sbi->s_es) - 1; 2108 else 2109 last_block = first_block + 2110 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2111 2112 if ((grp == sbi->s_groups_count) && 2113 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2114 grp = i; 2115 2116 block_bitmap = ext4_block_bitmap(sb, gdp); 2117 if (block_bitmap < first_block || block_bitmap > last_block) { 2118 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2119 "Block bitmap for group %u not in group " 2120 "(block %llu)!", i, block_bitmap); 2121 return 0; 2122 } 2123 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2124 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2125 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2126 "Inode bitmap for group %u not in group " 2127 "(block %llu)!", i, inode_bitmap); 2128 return 0; 2129 } 2130 inode_table = ext4_inode_table(sb, gdp); 2131 if (inode_table < first_block || 2132 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2133 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2134 "Inode table for group %u not in group " 2135 "(block %llu)!", i, inode_table); 2136 return 0; 2137 } 2138 ext4_lock_group(sb, i); 2139 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2140 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2141 "Checksum for group %u failed (%u!=%u)", 2142 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2143 gdp)), le16_to_cpu(gdp->bg_checksum)); 2144 if (!(sb->s_flags & MS_RDONLY)) { 2145 ext4_unlock_group(sb, i); 2146 return 0; 2147 } 2148 } 2149 ext4_unlock_group(sb, i); 2150 if (!flexbg_flag) 2151 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2152 } 2153 if (NULL != first_not_zeroed) 2154 *first_not_zeroed = grp; 2155 2156 ext4_free_blocks_count_set(sbi->s_es, 2157 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2158 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2159 return 1; 2160 } 2161 2162 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2163 * the superblock) which were deleted from all directories, but held open by 2164 * a process at the time of a crash. We walk the list and try to delete these 2165 * inodes at recovery time (only with a read-write filesystem). 2166 * 2167 * In order to keep the orphan inode chain consistent during traversal (in 2168 * case of crash during recovery), we link each inode into the superblock 2169 * orphan list_head and handle it the same way as an inode deletion during 2170 * normal operation (which journals the operations for us). 2171 * 2172 * We only do an iget() and an iput() on each inode, which is very safe if we 2173 * accidentally point at an in-use or already deleted inode. The worst that 2174 * can happen in this case is that we get a "bit already cleared" message from 2175 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2176 * e2fsck was run on this filesystem, and it must have already done the orphan 2177 * inode cleanup for us, so we can safely abort without any further action. 2178 */ 2179 static void ext4_orphan_cleanup(struct super_block *sb, 2180 struct ext4_super_block *es) 2181 { 2182 unsigned int s_flags = sb->s_flags; 2183 int nr_orphans = 0, nr_truncates = 0; 2184 #ifdef CONFIG_QUOTA 2185 int i; 2186 #endif 2187 if (!es->s_last_orphan) { 2188 jbd_debug(4, "no orphan inodes to clean up\n"); 2189 return; 2190 } 2191 2192 if (bdev_read_only(sb->s_bdev)) { 2193 ext4_msg(sb, KERN_ERR, "write access " 2194 "unavailable, skipping orphan cleanup"); 2195 return; 2196 } 2197 2198 /* Check if feature set would not allow a r/w mount */ 2199 if (!ext4_feature_set_ok(sb, 0)) { 2200 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2201 "unknown ROCOMPAT features"); 2202 return; 2203 } 2204 2205 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2206 if (es->s_last_orphan) 2207 jbd_debug(1, "Errors on filesystem, " 2208 "clearing orphan list.\n"); 2209 es->s_last_orphan = 0; 2210 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2211 return; 2212 } 2213 2214 if (s_flags & MS_RDONLY) { 2215 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2216 sb->s_flags &= ~MS_RDONLY; 2217 } 2218 #ifdef CONFIG_QUOTA 2219 /* Needed for iput() to work correctly and not trash data */ 2220 sb->s_flags |= MS_ACTIVE; 2221 /* Turn on quotas so that they are updated correctly */ 2222 for (i = 0; i < MAXQUOTAS; i++) { 2223 if (EXT4_SB(sb)->s_qf_names[i]) { 2224 int ret = ext4_quota_on_mount(sb, i); 2225 if (ret < 0) 2226 ext4_msg(sb, KERN_ERR, 2227 "Cannot turn on journaled " 2228 "quota: error %d", ret); 2229 } 2230 } 2231 #endif 2232 2233 while (es->s_last_orphan) { 2234 struct inode *inode; 2235 2236 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2237 if (IS_ERR(inode)) { 2238 es->s_last_orphan = 0; 2239 break; 2240 } 2241 2242 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2243 dquot_initialize(inode); 2244 if (inode->i_nlink) { 2245 ext4_msg(sb, KERN_DEBUG, 2246 "%s: truncating inode %lu to %lld bytes", 2247 __func__, inode->i_ino, inode->i_size); 2248 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2249 inode->i_ino, inode->i_size); 2250 ext4_truncate(inode); 2251 nr_truncates++; 2252 } else { 2253 ext4_msg(sb, KERN_DEBUG, 2254 "%s: deleting unreferenced inode %lu", 2255 __func__, inode->i_ino); 2256 jbd_debug(2, "deleting unreferenced inode %lu\n", 2257 inode->i_ino); 2258 nr_orphans++; 2259 } 2260 iput(inode); /* The delete magic happens here! */ 2261 } 2262 2263 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2264 2265 if (nr_orphans) 2266 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2267 PLURAL(nr_orphans)); 2268 if (nr_truncates) 2269 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2270 PLURAL(nr_truncates)); 2271 #ifdef CONFIG_QUOTA 2272 /* Turn quotas off */ 2273 for (i = 0; i < MAXQUOTAS; i++) { 2274 if (sb_dqopt(sb)->files[i]) 2275 dquot_quota_off(sb, i); 2276 } 2277 #endif 2278 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2279 } 2280 2281 /* 2282 * Maximal extent format file size. 2283 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2284 * extent format containers, within a sector_t, and within i_blocks 2285 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2286 * so that won't be a limiting factor. 2287 * 2288 * However there is other limiting factor. We do store extents in the form 2289 * of starting block and length, hence the resulting length of the extent 2290 * covering maximum file size must fit into on-disk format containers as 2291 * well. Given that length is always by 1 unit bigger than max unit (because 2292 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2293 * 2294 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2295 */ 2296 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2297 { 2298 loff_t res; 2299 loff_t upper_limit = MAX_LFS_FILESIZE; 2300 2301 /* small i_blocks in vfs inode? */ 2302 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2303 /* 2304 * CONFIG_LBDAF is not enabled implies the inode 2305 * i_block represent total blocks in 512 bytes 2306 * 32 == size of vfs inode i_blocks * 8 2307 */ 2308 upper_limit = (1LL << 32) - 1; 2309 2310 /* total blocks in file system block size */ 2311 upper_limit >>= (blkbits - 9); 2312 upper_limit <<= blkbits; 2313 } 2314 2315 /* 2316 * 32-bit extent-start container, ee_block. We lower the maxbytes 2317 * by one fs block, so ee_len can cover the extent of maximum file 2318 * size 2319 */ 2320 res = (1LL << 32) - 1; 2321 res <<= blkbits; 2322 2323 /* Sanity check against vm- & vfs- imposed limits */ 2324 if (res > upper_limit) 2325 res = upper_limit; 2326 2327 return res; 2328 } 2329 2330 /* 2331 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2332 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2333 * We need to be 1 filesystem block less than the 2^48 sector limit. 2334 */ 2335 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2336 { 2337 loff_t res = EXT4_NDIR_BLOCKS; 2338 int meta_blocks; 2339 loff_t upper_limit; 2340 /* This is calculated to be the largest file size for a dense, block 2341 * mapped file such that the file's total number of 512-byte sectors, 2342 * including data and all indirect blocks, does not exceed (2^48 - 1). 2343 * 2344 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2345 * number of 512-byte sectors of the file. 2346 */ 2347 2348 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2349 /* 2350 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2351 * the inode i_block field represents total file blocks in 2352 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2353 */ 2354 upper_limit = (1LL << 32) - 1; 2355 2356 /* total blocks in file system block size */ 2357 upper_limit >>= (bits - 9); 2358 2359 } else { 2360 /* 2361 * We use 48 bit ext4_inode i_blocks 2362 * With EXT4_HUGE_FILE_FL set the i_blocks 2363 * represent total number of blocks in 2364 * file system block size 2365 */ 2366 upper_limit = (1LL << 48) - 1; 2367 2368 } 2369 2370 /* indirect blocks */ 2371 meta_blocks = 1; 2372 /* double indirect blocks */ 2373 meta_blocks += 1 + (1LL << (bits-2)); 2374 /* tripple indirect blocks */ 2375 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2376 2377 upper_limit -= meta_blocks; 2378 upper_limit <<= bits; 2379 2380 res += 1LL << (bits-2); 2381 res += 1LL << (2*(bits-2)); 2382 res += 1LL << (3*(bits-2)); 2383 res <<= bits; 2384 if (res > upper_limit) 2385 res = upper_limit; 2386 2387 if (res > MAX_LFS_FILESIZE) 2388 res = MAX_LFS_FILESIZE; 2389 2390 return res; 2391 } 2392 2393 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2394 ext4_fsblk_t logical_sb_block, int nr) 2395 { 2396 struct ext4_sb_info *sbi = EXT4_SB(sb); 2397 ext4_group_t bg, first_meta_bg; 2398 int has_super = 0; 2399 2400 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2401 2402 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2403 nr < first_meta_bg) 2404 return logical_sb_block + nr + 1; 2405 bg = sbi->s_desc_per_block * nr; 2406 if (ext4_bg_has_super(sb, bg)) 2407 has_super = 1; 2408 2409 return (has_super + ext4_group_first_block_no(sb, bg)); 2410 } 2411 2412 /** 2413 * ext4_get_stripe_size: Get the stripe size. 2414 * @sbi: In memory super block info 2415 * 2416 * If we have specified it via mount option, then 2417 * use the mount option value. If the value specified at mount time is 2418 * greater than the blocks per group use the super block value. 2419 * If the super block value is greater than blocks per group return 0. 2420 * Allocator needs it be less than blocks per group. 2421 * 2422 */ 2423 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2424 { 2425 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2426 unsigned long stripe_width = 2427 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2428 int ret; 2429 2430 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2431 ret = sbi->s_stripe; 2432 else if (stripe_width <= sbi->s_blocks_per_group) 2433 ret = stripe_width; 2434 else if (stride <= sbi->s_blocks_per_group) 2435 ret = stride; 2436 else 2437 ret = 0; 2438 2439 /* 2440 * If the stripe width is 1, this makes no sense and 2441 * we set it to 0 to turn off stripe handling code. 2442 */ 2443 if (ret <= 1) 2444 ret = 0; 2445 2446 return ret; 2447 } 2448 2449 /* sysfs supprt */ 2450 2451 struct ext4_attr { 2452 struct attribute attr; 2453 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2454 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2455 const char *, size_t); 2456 int offset; 2457 }; 2458 2459 static int parse_strtoul(const char *buf, 2460 unsigned long max, unsigned long *value) 2461 { 2462 char *endp; 2463 2464 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2465 endp = skip_spaces(endp); 2466 if (*endp || *value > max) 2467 return -EINVAL; 2468 2469 return 0; 2470 } 2471 2472 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2473 struct ext4_sb_info *sbi, 2474 char *buf) 2475 { 2476 return snprintf(buf, PAGE_SIZE, "%llu\n", 2477 (s64) EXT4_C2B(sbi, 2478 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2479 } 2480 2481 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2482 struct ext4_sb_info *sbi, char *buf) 2483 { 2484 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2485 2486 if (!sb->s_bdev->bd_part) 2487 return snprintf(buf, PAGE_SIZE, "0\n"); 2488 return snprintf(buf, PAGE_SIZE, "%lu\n", 2489 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2490 sbi->s_sectors_written_start) >> 1); 2491 } 2492 2493 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2494 struct ext4_sb_info *sbi, char *buf) 2495 { 2496 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2497 2498 if (!sb->s_bdev->bd_part) 2499 return snprintf(buf, PAGE_SIZE, "0\n"); 2500 return snprintf(buf, PAGE_SIZE, "%llu\n", 2501 (unsigned long long)(sbi->s_kbytes_written + 2502 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2503 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2504 } 2505 2506 static ssize_t extent_cache_hits_show(struct ext4_attr *a, 2507 struct ext4_sb_info *sbi, char *buf) 2508 { 2509 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits); 2510 } 2511 2512 static ssize_t extent_cache_misses_show(struct ext4_attr *a, 2513 struct ext4_sb_info *sbi, char *buf) 2514 { 2515 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses); 2516 } 2517 2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2519 struct ext4_sb_info *sbi, 2520 const char *buf, size_t count) 2521 { 2522 unsigned long t; 2523 2524 if (parse_strtoul(buf, 0x40000000, &t)) 2525 return -EINVAL; 2526 2527 if (t && !is_power_of_2(t)) 2528 return -EINVAL; 2529 2530 sbi->s_inode_readahead_blks = t; 2531 return count; 2532 } 2533 2534 static ssize_t sbi_ui_show(struct ext4_attr *a, 2535 struct ext4_sb_info *sbi, char *buf) 2536 { 2537 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2538 2539 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2540 } 2541 2542 static ssize_t sbi_ui_store(struct ext4_attr *a, 2543 struct ext4_sb_info *sbi, 2544 const char *buf, size_t count) 2545 { 2546 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2547 unsigned long t; 2548 2549 if (parse_strtoul(buf, 0xffffffff, &t)) 2550 return -EINVAL; 2551 *ui = t; 2552 return count; 2553 } 2554 2555 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2556 static struct ext4_attr ext4_attr_##_name = { \ 2557 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2558 .show = _show, \ 2559 .store = _store, \ 2560 .offset = offsetof(struct ext4_sb_info, _elname), \ 2561 } 2562 #define EXT4_ATTR(name, mode, show, store) \ 2563 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2564 2565 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2566 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2567 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2568 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2569 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2570 #define ATTR_LIST(name) &ext4_attr_##name.attr 2571 2572 EXT4_RO_ATTR(delayed_allocation_blocks); 2573 EXT4_RO_ATTR(session_write_kbytes); 2574 EXT4_RO_ATTR(lifetime_write_kbytes); 2575 EXT4_RO_ATTR(extent_cache_hits); 2576 EXT4_RO_ATTR(extent_cache_misses); 2577 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2578 inode_readahead_blks_store, s_inode_readahead_blks); 2579 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2580 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2581 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2582 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2583 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2584 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2585 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2586 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2587 2588 static struct attribute *ext4_attrs[] = { 2589 ATTR_LIST(delayed_allocation_blocks), 2590 ATTR_LIST(session_write_kbytes), 2591 ATTR_LIST(lifetime_write_kbytes), 2592 ATTR_LIST(extent_cache_hits), 2593 ATTR_LIST(extent_cache_misses), 2594 ATTR_LIST(inode_readahead_blks), 2595 ATTR_LIST(inode_goal), 2596 ATTR_LIST(mb_stats), 2597 ATTR_LIST(mb_max_to_scan), 2598 ATTR_LIST(mb_min_to_scan), 2599 ATTR_LIST(mb_order2_req), 2600 ATTR_LIST(mb_stream_req), 2601 ATTR_LIST(mb_group_prealloc), 2602 ATTR_LIST(max_writeback_mb_bump), 2603 NULL, 2604 }; 2605 2606 /* Features this copy of ext4 supports */ 2607 EXT4_INFO_ATTR(lazy_itable_init); 2608 EXT4_INFO_ATTR(batched_discard); 2609 2610 static struct attribute *ext4_feat_attrs[] = { 2611 ATTR_LIST(lazy_itable_init), 2612 ATTR_LIST(batched_discard), 2613 NULL, 2614 }; 2615 2616 static ssize_t ext4_attr_show(struct kobject *kobj, 2617 struct attribute *attr, char *buf) 2618 { 2619 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2620 s_kobj); 2621 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2622 2623 return a->show ? a->show(a, sbi, buf) : 0; 2624 } 2625 2626 static ssize_t ext4_attr_store(struct kobject *kobj, 2627 struct attribute *attr, 2628 const char *buf, size_t len) 2629 { 2630 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2631 s_kobj); 2632 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2633 2634 return a->store ? a->store(a, sbi, buf, len) : 0; 2635 } 2636 2637 static void ext4_sb_release(struct kobject *kobj) 2638 { 2639 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2640 s_kobj); 2641 complete(&sbi->s_kobj_unregister); 2642 } 2643 2644 static const struct sysfs_ops ext4_attr_ops = { 2645 .show = ext4_attr_show, 2646 .store = ext4_attr_store, 2647 }; 2648 2649 static struct kobj_type ext4_ktype = { 2650 .default_attrs = ext4_attrs, 2651 .sysfs_ops = &ext4_attr_ops, 2652 .release = ext4_sb_release, 2653 }; 2654 2655 static void ext4_feat_release(struct kobject *kobj) 2656 { 2657 complete(&ext4_feat->f_kobj_unregister); 2658 } 2659 2660 static struct kobj_type ext4_feat_ktype = { 2661 .default_attrs = ext4_feat_attrs, 2662 .sysfs_ops = &ext4_attr_ops, 2663 .release = ext4_feat_release, 2664 }; 2665 2666 /* 2667 * Check whether this filesystem can be mounted based on 2668 * the features present and the RDONLY/RDWR mount requested. 2669 * Returns 1 if this filesystem can be mounted as requested, 2670 * 0 if it cannot be. 2671 */ 2672 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2673 { 2674 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2675 ext4_msg(sb, KERN_ERR, 2676 "Couldn't mount because of " 2677 "unsupported optional features (%x)", 2678 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2679 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2680 return 0; 2681 } 2682 2683 if (readonly) 2684 return 1; 2685 2686 /* Check that feature set is OK for a read-write mount */ 2687 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2688 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2689 "unsupported optional features (%x)", 2690 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2691 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2692 return 0; 2693 } 2694 /* 2695 * Large file size enabled file system can only be mounted 2696 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2697 */ 2698 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2699 if (sizeof(blkcnt_t) < sizeof(u64)) { 2700 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2701 "cannot be mounted RDWR without " 2702 "CONFIG_LBDAF"); 2703 return 0; 2704 } 2705 } 2706 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2707 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2708 ext4_msg(sb, KERN_ERR, 2709 "Can't support bigalloc feature without " 2710 "extents feature\n"); 2711 return 0; 2712 } 2713 return 1; 2714 } 2715 2716 /* 2717 * This function is called once a day if we have errors logged 2718 * on the file system 2719 */ 2720 static void print_daily_error_info(unsigned long arg) 2721 { 2722 struct super_block *sb = (struct super_block *) arg; 2723 struct ext4_sb_info *sbi; 2724 struct ext4_super_block *es; 2725 2726 sbi = EXT4_SB(sb); 2727 es = sbi->s_es; 2728 2729 if (es->s_error_count) 2730 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2731 le32_to_cpu(es->s_error_count)); 2732 if (es->s_first_error_time) { 2733 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2734 sb->s_id, le32_to_cpu(es->s_first_error_time), 2735 (int) sizeof(es->s_first_error_func), 2736 es->s_first_error_func, 2737 le32_to_cpu(es->s_first_error_line)); 2738 if (es->s_first_error_ino) 2739 printk(": inode %u", 2740 le32_to_cpu(es->s_first_error_ino)); 2741 if (es->s_first_error_block) 2742 printk(": block %llu", (unsigned long long) 2743 le64_to_cpu(es->s_first_error_block)); 2744 printk("\n"); 2745 } 2746 if (es->s_last_error_time) { 2747 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2748 sb->s_id, le32_to_cpu(es->s_last_error_time), 2749 (int) sizeof(es->s_last_error_func), 2750 es->s_last_error_func, 2751 le32_to_cpu(es->s_last_error_line)); 2752 if (es->s_last_error_ino) 2753 printk(": inode %u", 2754 le32_to_cpu(es->s_last_error_ino)); 2755 if (es->s_last_error_block) 2756 printk(": block %llu", (unsigned long long) 2757 le64_to_cpu(es->s_last_error_block)); 2758 printk("\n"); 2759 } 2760 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2761 } 2762 2763 /* Find next suitable group and run ext4_init_inode_table */ 2764 static int ext4_run_li_request(struct ext4_li_request *elr) 2765 { 2766 struct ext4_group_desc *gdp = NULL; 2767 ext4_group_t group, ngroups; 2768 struct super_block *sb; 2769 unsigned long timeout = 0; 2770 int ret = 0; 2771 2772 sb = elr->lr_super; 2773 ngroups = EXT4_SB(sb)->s_groups_count; 2774 2775 for (group = elr->lr_next_group; group < ngroups; group++) { 2776 gdp = ext4_get_group_desc(sb, group, NULL); 2777 if (!gdp) { 2778 ret = 1; 2779 break; 2780 } 2781 2782 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2783 break; 2784 } 2785 2786 if (group == ngroups) 2787 ret = 1; 2788 2789 if (!ret) { 2790 timeout = jiffies; 2791 ret = ext4_init_inode_table(sb, group, 2792 elr->lr_timeout ? 0 : 1); 2793 if (elr->lr_timeout == 0) { 2794 timeout = (jiffies - timeout) * 2795 elr->lr_sbi->s_li_wait_mult; 2796 elr->lr_timeout = timeout; 2797 } 2798 elr->lr_next_sched = jiffies + elr->lr_timeout; 2799 elr->lr_next_group = group + 1; 2800 } 2801 2802 return ret; 2803 } 2804 2805 /* 2806 * Remove lr_request from the list_request and free the 2807 * request structure. Should be called with li_list_mtx held 2808 */ 2809 static void ext4_remove_li_request(struct ext4_li_request *elr) 2810 { 2811 struct ext4_sb_info *sbi; 2812 2813 if (!elr) 2814 return; 2815 2816 sbi = elr->lr_sbi; 2817 2818 list_del(&elr->lr_request); 2819 sbi->s_li_request = NULL; 2820 kfree(elr); 2821 } 2822 2823 static void ext4_unregister_li_request(struct super_block *sb) 2824 { 2825 mutex_lock(&ext4_li_mtx); 2826 if (!ext4_li_info) { 2827 mutex_unlock(&ext4_li_mtx); 2828 return; 2829 } 2830 2831 mutex_lock(&ext4_li_info->li_list_mtx); 2832 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2833 mutex_unlock(&ext4_li_info->li_list_mtx); 2834 mutex_unlock(&ext4_li_mtx); 2835 } 2836 2837 static struct task_struct *ext4_lazyinit_task; 2838 2839 /* 2840 * This is the function where ext4lazyinit thread lives. It walks 2841 * through the request list searching for next scheduled filesystem. 2842 * When such a fs is found, run the lazy initialization request 2843 * (ext4_rn_li_request) and keep track of the time spend in this 2844 * function. Based on that time we compute next schedule time of 2845 * the request. When walking through the list is complete, compute 2846 * next waking time and put itself into sleep. 2847 */ 2848 static int ext4_lazyinit_thread(void *arg) 2849 { 2850 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2851 struct list_head *pos, *n; 2852 struct ext4_li_request *elr; 2853 unsigned long next_wakeup, cur; 2854 2855 BUG_ON(NULL == eli); 2856 2857 cont_thread: 2858 while (true) { 2859 next_wakeup = MAX_JIFFY_OFFSET; 2860 2861 mutex_lock(&eli->li_list_mtx); 2862 if (list_empty(&eli->li_request_list)) { 2863 mutex_unlock(&eli->li_list_mtx); 2864 goto exit_thread; 2865 } 2866 2867 list_for_each_safe(pos, n, &eli->li_request_list) { 2868 elr = list_entry(pos, struct ext4_li_request, 2869 lr_request); 2870 2871 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2872 if (ext4_run_li_request(elr) != 0) { 2873 /* error, remove the lazy_init job */ 2874 ext4_remove_li_request(elr); 2875 continue; 2876 } 2877 } 2878 2879 if (time_before(elr->lr_next_sched, next_wakeup)) 2880 next_wakeup = elr->lr_next_sched; 2881 } 2882 mutex_unlock(&eli->li_list_mtx); 2883 2884 try_to_freeze(); 2885 2886 cur = jiffies; 2887 if ((time_after_eq(cur, next_wakeup)) || 2888 (MAX_JIFFY_OFFSET == next_wakeup)) { 2889 cond_resched(); 2890 continue; 2891 } 2892 2893 schedule_timeout_interruptible(next_wakeup - cur); 2894 2895 if (kthread_should_stop()) { 2896 ext4_clear_request_list(); 2897 goto exit_thread; 2898 } 2899 } 2900 2901 exit_thread: 2902 /* 2903 * It looks like the request list is empty, but we need 2904 * to check it under the li_list_mtx lock, to prevent any 2905 * additions into it, and of course we should lock ext4_li_mtx 2906 * to atomically free the list and ext4_li_info, because at 2907 * this point another ext4 filesystem could be registering 2908 * new one. 2909 */ 2910 mutex_lock(&ext4_li_mtx); 2911 mutex_lock(&eli->li_list_mtx); 2912 if (!list_empty(&eli->li_request_list)) { 2913 mutex_unlock(&eli->li_list_mtx); 2914 mutex_unlock(&ext4_li_mtx); 2915 goto cont_thread; 2916 } 2917 mutex_unlock(&eli->li_list_mtx); 2918 kfree(ext4_li_info); 2919 ext4_li_info = NULL; 2920 mutex_unlock(&ext4_li_mtx); 2921 2922 return 0; 2923 } 2924 2925 static void ext4_clear_request_list(void) 2926 { 2927 struct list_head *pos, *n; 2928 struct ext4_li_request *elr; 2929 2930 mutex_lock(&ext4_li_info->li_list_mtx); 2931 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2932 elr = list_entry(pos, struct ext4_li_request, 2933 lr_request); 2934 ext4_remove_li_request(elr); 2935 } 2936 mutex_unlock(&ext4_li_info->li_list_mtx); 2937 } 2938 2939 static int ext4_run_lazyinit_thread(void) 2940 { 2941 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2942 ext4_li_info, "ext4lazyinit"); 2943 if (IS_ERR(ext4_lazyinit_task)) { 2944 int err = PTR_ERR(ext4_lazyinit_task); 2945 ext4_clear_request_list(); 2946 kfree(ext4_li_info); 2947 ext4_li_info = NULL; 2948 printk(KERN_CRIT "EXT4: error %d creating inode table " 2949 "initialization thread\n", 2950 err); 2951 return err; 2952 } 2953 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2954 return 0; 2955 } 2956 2957 /* 2958 * Check whether it make sense to run itable init. thread or not. 2959 * If there is at least one uninitialized inode table, return 2960 * corresponding group number, else the loop goes through all 2961 * groups and return total number of groups. 2962 */ 2963 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2964 { 2965 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2966 struct ext4_group_desc *gdp = NULL; 2967 2968 for (group = 0; group < ngroups; group++) { 2969 gdp = ext4_get_group_desc(sb, group, NULL); 2970 if (!gdp) 2971 continue; 2972 2973 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2974 break; 2975 } 2976 2977 return group; 2978 } 2979 2980 static int ext4_li_info_new(void) 2981 { 2982 struct ext4_lazy_init *eli = NULL; 2983 2984 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2985 if (!eli) 2986 return -ENOMEM; 2987 2988 INIT_LIST_HEAD(&eli->li_request_list); 2989 mutex_init(&eli->li_list_mtx); 2990 2991 eli->li_state |= EXT4_LAZYINIT_QUIT; 2992 2993 ext4_li_info = eli; 2994 2995 return 0; 2996 } 2997 2998 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2999 ext4_group_t start) 3000 { 3001 struct ext4_sb_info *sbi = EXT4_SB(sb); 3002 struct ext4_li_request *elr; 3003 unsigned long rnd; 3004 3005 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3006 if (!elr) 3007 return NULL; 3008 3009 elr->lr_super = sb; 3010 elr->lr_sbi = sbi; 3011 elr->lr_next_group = start; 3012 3013 /* 3014 * Randomize first schedule time of the request to 3015 * spread the inode table initialization requests 3016 * better. 3017 */ 3018 get_random_bytes(&rnd, sizeof(rnd)); 3019 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3020 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3021 3022 return elr; 3023 } 3024 3025 static int ext4_register_li_request(struct super_block *sb, 3026 ext4_group_t first_not_zeroed) 3027 { 3028 struct ext4_sb_info *sbi = EXT4_SB(sb); 3029 struct ext4_li_request *elr; 3030 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3031 int ret = 0; 3032 3033 if (sbi->s_li_request != NULL) { 3034 /* 3035 * Reset timeout so it can be computed again, because 3036 * s_li_wait_mult might have changed. 3037 */ 3038 sbi->s_li_request->lr_timeout = 0; 3039 return 0; 3040 } 3041 3042 if (first_not_zeroed == ngroups || 3043 (sb->s_flags & MS_RDONLY) || 3044 !test_opt(sb, INIT_INODE_TABLE)) 3045 return 0; 3046 3047 elr = ext4_li_request_new(sb, first_not_zeroed); 3048 if (!elr) 3049 return -ENOMEM; 3050 3051 mutex_lock(&ext4_li_mtx); 3052 3053 if (NULL == ext4_li_info) { 3054 ret = ext4_li_info_new(); 3055 if (ret) 3056 goto out; 3057 } 3058 3059 mutex_lock(&ext4_li_info->li_list_mtx); 3060 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3061 mutex_unlock(&ext4_li_info->li_list_mtx); 3062 3063 sbi->s_li_request = elr; 3064 /* 3065 * set elr to NULL here since it has been inserted to 3066 * the request_list and the removal and free of it is 3067 * handled by ext4_clear_request_list from now on. 3068 */ 3069 elr = NULL; 3070 3071 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3072 ret = ext4_run_lazyinit_thread(); 3073 if (ret) 3074 goto out; 3075 } 3076 out: 3077 mutex_unlock(&ext4_li_mtx); 3078 if (ret) 3079 kfree(elr); 3080 return ret; 3081 } 3082 3083 /* 3084 * We do not need to lock anything since this is called on 3085 * module unload. 3086 */ 3087 static void ext4_destroy_lazyinit_thread(void) 3088 { 3089 /* 3090 * If thread exited earlier 3091 * there's nothing to be done. 3092 */ 3093 if (!ext4_li_info || !ext4_lazyinit_task) 3094 return; 3095 3096 kthread_stop(ext4_lazyinit_task); 3097 } 3098 3099 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3100 { 3101 char *orig_data = kstrdup(data, GFP_KERNEL); 3102 struct buffer_head *bh; 3103 struct ext4_super_block *es = NULL; 3104 struct ext4_sb_info *sbi; 3105 ext4_fsblk_t block; 3106 ext4_fsblk_t sb_block = get_sb_block(&data); 3107 ext4_fsblk_t logical_sb_block; 3108 unsigned long offset = 0; 3109 unsigned long journal_devnum = 0; 3110 unsigned long def_mount_opts; 3111 struct inode *root; 3112 char *cp; 3113 const char *descr; 3114 int ret = -ENOMEM; 3115 int blocksize, clustersize; 3116 unsigned int db_count; 3117 unsigned int i; 3118 int needs_recovery, has_huge_files, has_bigalloc; 3119 __u64 blocks_count; 3120 int err; 3121 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3122 ext4_group_t first_not_zeroed; 3123 3124 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3125 if (!sbi) 3126 goto out_free_orig; 3127 3128 sbi->s_blockgroup_lock = 3129 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3130 if (!sbi->s_blockgroup_lock) { 3131 kfree(sbi); 3132 goto out_free_orig; 3133 } 3134 sb->s_fs_info = sbi; 3135 sbi->s_mount_opt = 0; 3136 sbi->s_resuid = EXT4_DEF_RESUID; 3137 sbi->s_resgid = EXT4_DEF_RESGID; 3138 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3139 sbi->s_sb_block = sb_block; 3140 if (sb->s_bdev->bd_part) 3141 sbi->s_sectors_written_start = 3142 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3143 3144 /* Cleanup superblock name */ 3145 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3146 *cp = '!'; 3147 3148 ret = -EINVAL; 3149 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3150 if (!blocksize) { 3151 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3152 goto out_fail; 3153 } 3154 3155 /* 3156 * The ext4 superblock will not be buffer aligned for other than 1kB 3157 * block sizes. We need to calculate the offset from buffer start. 3158 */ 3159 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3160 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3161 offset = do_div(logical_sb_block, blocksize); 3162 } else { 3163 logical_sb_block = sb_block; 3164 } 3165 3166 if (!(bh = sb_bread(sb, logical_sb_block))) { 3167 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3168 goto out_fail; 3169 } 3170 /* 3171 * Note: s_es must be initialized as soon as possible because 3172 * some ext4 macro-instructions depend on its value 3173 */ 3174 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3175 sbi->s_es = es; 3176 sb->s_magic = le16_to_cpu(es->s_magic); 3177 if (sb->s_magic != EXT4_SUPER_MAGIC) 3178 goto cantfind_ext4; 3179 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3180 3181 /* Set defaults before we parse the mount options */ 3182 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3183 set_opt(sb, INIT_INODE_TABLE); 3184 if (def_mount_opts & EXT4_DEFM_DEBUG) 3185 set_opt(sb, DEBUG); 3186 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) { 3187 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups", 3188 "2.6.38"); 3189 set_opt(sb, GRPID); 3190 } 3191 if (def_mount_opts & EXT4_DEFM_UID16) 3192 set_opt(sb, NO_UID32); 3193 /* xattr user namespace & acls are now defaulted on */ 3194 #ifdef CONFIG_EXT4_FS_XATTR 3195 set_opt(sb, XATTR_USER); 3196 #endif 3197 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3198 set_opt(sb, POSIX_ACL); 3199 #endif 3200 set_opt(sb, MBLK_IO_SUBMIT); 3201 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3202 set_opt(sb, JOURNAL_DATA); 3203 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3204 set_opt(sb, ORDERED_DATA); 3205 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3206 set_opt(sb, WRITEBACK_DATA); 3207 3208 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3209 set_opt(sb, ERRORS_PANIC); 3210 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3211 set_opt(sb, ERRORS_CONT); 3212 else 3213 set_opt(sb, ERRORS_RO); 3214 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3215 set_opt(sb, BLOCK_VALIDITY); 3216 if (def_mount_opts & EXT4_DEFM_DISCARD) 3217 set_opt(sb, DISCARD); 3218 3219 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3220 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3221 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3222 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3223 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3224 3225 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3226 set_opt(sb, BARRIER); 3227 3228 /* 3229 * enable delayed allocation by default 3230 * Use -o nodelalloc to turn it off 3231 */ 3232 if (!IS_EXT3_SB(sb) && 3233 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3234 set_opt(sb, DELALLOC); 3235 3236 /* 3237 * set default s_li_wait_mult for lazyinit, for the case there is 3238 * no mount option specified. 3239 */ 3240 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3241 3242 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3243 &journal_devnum, &journal_ioprio, NULL, 0)) { 3244 ext4_msg(sb, KERN_WARNING, 3245 "failed to parse options in superblock: %s", 3246 sbi->s_es->s_mount_opts); 3247 } 3248 if (!parse_options((char *) data, sb, &journal_devnum, 3249 &journal_ioprio, NULL, 0)) 3250 goto failed_mount; 3251 3252 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3253 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3254 "with data=journal disables delayed " 3255 "allocation and O_DIRECT support!\n"); 3256 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3257 ext4_msg(sb, KERN_ERR, "can't mount with " 3258 "both data=journal and delalloc"); 3259 goto failed_mount; 3260 } 3261 if (test_opt(sb, DIOREAD_NOLOCK)) { 3262 ext4_msg(sb, KERN_ERR, "can't mount with " 3263 "both data=journal and delalloc"); 3264 goto failed_mount; 3265 } 3266 if (test_opt(sb, DELALLOC)) 3267 clear_opt(sb, DELALLOC); 3268 } 3269 3270 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3271 if (test_opt(sb, DIOREAD_NOLOCK)) { 3272 if (blocksize < PAGE_SIZE) { 3273 ext4_msg(sb, KERN_ERR, "can't mount with " 3274 "dioread_nolock if block size != PAGE_SIZE"); 3275 goto failed_mount; 3276 } 3277 } 3278 3279 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3280 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3281 3282 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3283 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3284 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3285 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3286 ext4_msg(sb, KERN_WARNING, 3287 "feature flags set on rev 0 fs, " 3288 "running e2fsck is recommended"); 3289 3290 if (IS_EXT2_SB(sb)) { 3291 if (ext2_feature_set_ok(sb)) 3292 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3293 "using the ext4 subsystem"); 3294 else { 3295 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3296 "to feature incompatibilities"); 3297 goto failed_mount; 3298 } 3299 } 3300 3301 if (IS_EXT3_SB(sb)) { 3302 if (ext3_feature_set_ok(sb)) 3303 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3304 "using the ext4 subsystem"); 3305 else { 3306 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3307 "to feature incompatibilities"); 3308 goto failed_mount; 3309 } 3310 } 3311 3312 /* 3313 * Check feature flags regardless of the revision level, since we 3314 * previously didn't change the revision level when setting the flags, 3315 * so there is a chance incompat flags are set on a rev 0 filesystem. 3316 */ 3317 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3318 goto failed_mount; 3319 3320 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3321 blocksize > EXT4_MAX_BLOCK_SIZE) { 3322 ext4_msg(sb, KERN_ERR, 3323 "Unsupported filesystem blocksize %d", blocksize); 3324 goto failed_mount; 3325 } 3326 3327 if (sb->s_blocksize != blocksize) { 3328 /* Validate the filesystem blocksize */ 3329 if (!sb_set_blocksize(sb, blocksize)) { 3330 ext4_msg(sb, KERN_ERR, "bad block size %d", 3331 blocksize); 3332 goto failed_mount; 3333 } 3334 3335 brelse(bh); 3336 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3337 offset = do_div(logical_sb_block, blocksize); 3338 bh = sb_bread(sb, logical_sb_block); 3339 if (!bh) { 3340 ext4_msg(sb, KERN_ERR, 3341 "Can't read superblock on 2nd try"); 3342 goto failed_mount; 3343 } 3344 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3345 sbi->s_es = es; 3346 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3347 ext4_msg(sb, KERN_ERR, 3348 "Magic mismatch, very weird!"); 3349 goto failed_mount; 3350 } 3351 } 3352 3353 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3354 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3355 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3356 has_huge_files); 3357 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3358 3359 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3360 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3361 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3362 } else { 3363 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3364 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3365 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3366 (!is_power_of_2(sbi->s_inode_size)) || 3367 (sbi->s_inode_size > blocksize)) { 3368 ext4_msg(sb, KERN_ERR, 3369 "unsupported inode size: %d", 3370 sbi->s_inode_size); 3371 goto failed_mount; 3372 } 3373 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3374 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3375 } 3376 3377 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3378 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3379 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3380 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3381 !is_power_of_2(sbi->s_desc_size)) { 3382 ext4_msg(sb, KERN_ERR, 3383 "unsupported descriptor size %lu", 3384 sbi->s_desc_size); 3385 goto failed_mount; 3386 } 3387 } else 3388 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3389 3390 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3391 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3392 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3393 goto cantfind_ext4; 3394 3395 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3396 if (sbi->s_inodes_per_block == 0) 3397 goto cantfind_ext4; 3398 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3399 sbi->s_inodes_per_block; 3400 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3401 sbi->s_sbh = bh; 3402 sbi->s_mount_state = le16_to_cpu(es->s_state); 3403 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3404 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3405 3406 for (i = 0; i < 4; i++) 3407 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3408 sbi->s_def_hash_version = es->s_def_hash_version; 3409 i = le32_to_cpu(es->s_flags); 3410 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3411 sbi->s_hash_unsigned = 3; 3412 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3413 #ifdef __CHAR_UNSIGNED__ 3414 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3415 sbi->s_hash_unsigned = 3; 3416 #else 3417 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3418 #endif 3419 sb->s_dirt = 1; 3420 } 3421 3422 /* Handle clustersize */ 3423 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3424 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3425 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3426 if (has_bigalloc) { 3427 if (clustersize < blocksize) { 3428 ext4_msg(sb, KERN_ERR, 3429 "cluster size (%d) smaller than " 3430 "block size (%d)", clustersize, blocksize); 3431 goto failed_mount; 3432 } 3433 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3434 le32_to_cpu(es->s_log_block_size); 3435 sbi->s_clusters_per_group = 3436 le32_to_cpu(es->s_clusters_per_group); 3437 if (sbi->s_clusters_per_group > blocksize * 8) { 3438 ext4_msg(sb, KERN_ERR, 3439 "#clusters per group too big: %lu", 3440 sbi->s_clusters_per_group); 3441 goto failed_mount; 3442 } 3443 if (sbi->s_blocks_per_group != 3444 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3445 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3446 "clusters per group (%lu) inconsistent", 3447 sbi->s_blocks_per_group, 3448 sbi->s_clusters_per_group); 3449 goto failed_mount; 3450 } 3451 } else { 3452 if (clustersize != blocksize) { 3453 ext4_warning(sb, "fragment/cluster size (%d) != " 3454 "block size (%d)", clustersize, 3455 blocksize); 3456 clustersize = blocksize; 3457 } 3458 if (sbi->s_blocks_per_group > blocksize * 8) { 3459 ext4_msg(sb, KERN_ERR, 3460 "#blocks per group too big: %lu", 3461 sbi->s_blocks_per_group); 3462 goto failed_mount; 3463 } 3464 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3465 sbi->s_cluster_bits = 0; 3466 } 3467 sbi->s_cluster_ratio = clustersize / blocksize; 3468 3469 if (sbi->s_inodes_per_group > blocksize * 8) { 3470 ext4_msg(sb, KERN_ERR, 3471 "#inodes per group too big: %lu", 3472 sbi->s_inodes_per_group); 3473 goto failed_mount; 3474 } 3475 3476 /* 3477 * Test whether we have more sectors than will fit in sector_t, 3478 * and whether the max offset is addressable by the page cache. 3479 */ 3480 err = generic_check_addressable(sb->s_blocksize_bits, 3481 ext4_blocks_count(es)); 3482 if (err) { 3483 ext4_msg(sb, KERN_ERR, "filesystem" 3484 " too large to mount safely on this system"); 3485 if (sizeof(sector_t) < 8) 3486 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3487 ret = err; 3488 goto failed_mount; 3489 } 3490 3491 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3492 goto cantfind_ext4; 3493 3494 /* check blocks count against device size */ 3495 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3496 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3497 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3498 "exceeds size of device (%llu blocks)", 3499 ext4_blocks_count(es), blocks_count); 3500 goto failed_mount; 3501 } 3502 3503 /* 3504 * It makes no sense for the first data block to be beyond the end 3505 * of the filesystem. 3506 */ 3507 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3508 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3509 "block %u is beyond end of filesystem (%llu)", 3510 le32_to_cpu(es->s_first_data_block), 3511 ext4_blocks_count(es)); 3512 goto failed_mount; 3513 } 3514 blocks_count = (ext4_blocks_count(es) - 3515 le32_to_cpu(es->s_first_data_block) + 3516 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3517 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3518 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3519 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3520 "(block count %llu, first data block %u, " 3521 "blocks per group %lu)", sbi->s_groups_count, 3522 ext4_blocks_count(es), 3523 le32_to_cpu(es->s_first_data_block), 3524 EXT4_BLOCKS_PER_GROUP(sb)); 3525 goto failed_mount; 3526 } 3527 sbi->s_groups_count = blocks_count; 3528 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3529 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3530 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3531 EXT4_DESC_PER_BLOCK(sb); 3532 sbi->s_group_desc = ext4_kvmalloc(db_count * 3533 sizeof(struct buffer_head *), 3534 GFP_KERNEL); 3535 if (sbi->s_group_desc == NULL) { 3536 ext4_msg(sb, KERN_ERR, "not enough memory"); 3537 goto failed_mount; 3538 } 3539 3540 if (ext4_proc_root) 3541 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3542 3543 bgl_lock_init(sbi->s_blockgroup_lock); 3544 3545 for (i = 0; i < db_count; i++) { 3546 block = descriptor_loc(sb, logical_sb_block, i); 3547 sbi->s_group_desc[i] = sb_bread(sb, block); 3548 if (!sbi->s_group_desc[i]) { 3549 ext4_msg(sb, KERN_ERR, 3550 "can't read group descriptor %d", i); 3551 db_count = i; 3552 goto failed_mount2; 3553 } 3554 } 3555 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3556 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3557 goto failed_mount2; 3558 } 3559 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3560 if (!ext4_fill_flex_info(sb)) { 3561 ext4_msg(sb, KERN_ERR, 3562 "unable to initialize " 3563 "flex_bg meta info!"); 3564 goto failed_mount2; 3565 } 3566 3567 sbi->s_gdb_count = db_count; 3568 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3569 spin_lock_init(&sbi->s_next_gen_lock); 3570 3571 init_timer(&sbi->s_err_report); 3572 sbi->s_err_report.function = print_daily_error_info; 3573 sbi->s_err_report.data = (unsigned long) sb; 3574 3575 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3576 ext4_count_free_clusters(sb)); 3577 if (!err) { 3578 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3579 ext4_count_free_inodes(sb)); 3580 } 3581 if (!err) { 3582 err = percpu_counter_init(&sbi->s_dirs_counter, 3583 ext4_count_dirs(sb)); 3584 } 3585 if (!err) { 3586 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3587 } 3588 if (err) { 3589 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3590 goto failed_mount3; 3591 } 3592 3593 sbi->s_stripe = ext4_get_stripe_size(sbi); 3594 sbi->s_max_writeback_mb_bump = 128; 3595 3596 /* 3597 * set up enough so that it can read an inode 3598 */ 3599 if (!test_opt(sb, NOLOAD) && 3600 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3601 sb->s_op = &ext4_sops; 3602 else 3603 sb->s_op = &ext4_nojournal_sops; 3604 sb->s_export_op = &ext4_export_ops; 3605 sb->s_xattr = ext4_xattr_handlers; 3606 #ifdef CONFIG_QUOTA 3607 sb->s_qcop = &ext4_qctl_operations; 3608 sb->dq_op = &ext4_quota_operations; 3609 #endif 3610 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3611 3612 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3613 mutex_init(&sbi->s_orphan_lock); 3614 sbi->s_resize_flags = 0; 3615 3616 sb->s_root = NULL; 3617 3618 needs_recovery = (es->s_last_orphan != 0 || 3619 EXT4_HAS_INCOMPAT_FEATURE(sb, 3620 EXT4_FEATURE_INCOMPAT_RECOVER)); 3621 3622 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3623 !(sb->s_flags & MS_RDONLY)) 3624 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3625 goto failed_mount3; 3626 3627 /* 3628 * The first inode we look at is the journal inode. Don't try 3629 * root first: it may be modified in the journal! 3630 */ 3631 if (!test_opt(sb, NOLOAD) && 3632 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3633 if (ext4_load_journal(sb, es, journal_devnum)) 3634 goto failed_mount3; 3635 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3636 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3637 ext4_msg(sb, KERN_ERR, "required journal recovery " 3638 "suppressed and not mounted read-only"); 3639 goto failed_mount_wq; 3640 } else { 3641 clear_opt(sb, DATA_FLAGS); 3642 sbi->s_journal = NULL; 3643 needs_recovery = 0; 3644 goto no_journal; 3645 } 3646 3647 if (ext4_blocks_count(es) > 0xffffffffULL && 3648 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3649 JBD2_FEATURE_INCOMPAT_64BIT)) { 3650 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3651 goto failed_mount_wq; 3652 } 3653 3654 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3655 jbd2_journal_set_features(sbi->s_journal, 3656 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3657 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3658 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3659 jbd2_journal_set_features(sbi->s_journal, 3660 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3661 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3662 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3663 } else { 3664 jbd2_journal_clear_features(sbi->s_journal, 3665 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3666 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3667 } 3668 3669 /* We have now updated the journal if required, so we can 3670 * validate the data journaling mode. */ 3671 switch (test_opt(sb, DATA_FLAGS)) { 3672 case 0: 3673 /* No mode set, assume a default based on the journal 3674 * capabilities: ORDERED_DATA if the journal can 3675 * cope, else JOURNAL_DATA 3676 */ 3677 if (jbd2_journal_check_available_features 3678 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3679 set_opt(sb, ORDERED_DATA); 3680 else 3681 set_opt(sb, JOURNAL_DATA); 3682 break; 3683 3684 case EXT4_MOUNT_ORDERED_DATA: 3685 case EXT4_MOUNT_WRITEBACK_DATA: 3686 if (!jbd2_journal_check_available_features 3687 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3688 ext4_msg(sb, KERN_ERR, "Journal does not support " 3689 "requested data journaling mode"); 3690 goto failed_mount_wq; 3691 } 3692 default: 3693 break; 3694 } 3695 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3696 3697 /* 3698 * The journal may have updated the bg summary counts, so we 3699 * need to update the global counters. 3700 */ 3701 percpu_counter_set(&sbi->s_freeclusters_counter, 3702 ext4_count_free_clusters(sb)); 3703 percpu_counter_set(&sbi->s_freeinodes_counter, 3704 ext4_count_free_inodes(sb)); 3705 percpu_counter_set(&sbi->s_dirs_counter, 3706 ext4_count_dirs(sb)); 3707 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3708 3709 no_journal: 3710 /* 3711 * The maximum number of concurrent works can be high and 3712 * concurrency isn't really necessary. Limit it to 1. 3713 */ 3714 EXT4_SB(sb)->dio_unwritten_wq = 3715 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3716 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3717 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3718 goto failed_mount_wq; 3719 } 3720 3721 /* 3722 * The jbd2_journal_load will have done any necessary log recovery, 3723 * so we can safely mount the rest of the filesystem now. 3724 */ 3725 3726 root = ext4_iget(sb, EXT4_ROOT_INO); 3727 if (IS_ERR(root)) { 3728 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3729 ret = PTR_ERR(root); 3730 root = NULL; 3731 goto failed_mount4; 3732 } 3733 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3734 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3735 iput(root); 3736 goto failed_mount4; 3737 } 3738 sb->s_root = d_alloc_root(root); 3739 if (!sb->s_root) { 3740 iput(root); 3741 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3742 ret = -ENOMEM; 3743 goto failed_mount4; 3744 } 3745 3746 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3747 3748 /* determine the minimum size of new large inodes, if present */ 3749 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3750 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3751 EXT4_GOOD_OLD_INODE_SIZE; 3752 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3753 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3754 if (sbi->s_want_extra_isize < 3755 le16_to_cpu(es->s_want_extra_isize)) 3756 sbi->s_want_extra_isize = 3757 le16_to_cpu(es->s_want_extra_isize); 3758 if (sbi->s_want_extra_isize < 3759 le16_to_cpu(es->s_min_extra_isize)) 3760 sbi->s_want_extra_isize = 3761 le16_to_cpu(es->s_min_extra_isize); 3762 } 3763 } 3764 /* Check if enough inode space is available */ 3765 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3766 sbi->s_inode_size) { 3767 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3768 EXT4_GOOD_OLD_INODE_SIZE; 3769 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3770 "available"); 3771 } 3772 3773 err = ext4_setup_system_zone(sb); 3774 if (err) { 3775 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3776 "zone (%d)", err); 3777 goto failed_mount4a; 3778 } 3779 3780 ext4_ext_init(sb); 3781 err = ext4_mb_init(sb, needs_recovery); 3782 if (err) { 3783 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3784 err); 3785 goto failed_mount5; 3786 } 3787 3788 err = ext4_register_li_request(sb, first_not_zeroed); 3789 if (err) 3790 goto failed_mount6; 3791 3792 sbi->s_kobj.kset = ext4_kset; 3793 init_completion(&sbi->s_kobj_unregister); 3794 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3795 "%s", sb->s_id); 3796 if (err) 3797 goto failed_mount7; 3798 3799 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3800 ext4_orphan_cleanup(sb, es); 3801 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3802 if (needs_recovery) { 3803 ext4_msg(sb, KERN_INFO, "recovery complete"); 3804 ext4_mark_recovery_complete(sb, es); 3805 } 3806 if (EXT4_SB(sb)->s_journal) { 3807 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3808 descr = " journalled data mode"; 3809 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3810 descr = " ordered data mode"; 3811 else 3812 descr = " writeback data mode"; 3813 } else 3814 descr = "out journal"; 3815 3816 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3817 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3818 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3819 3820 if (es->s_error_count) 3821 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3822 3823 kfree(orig_data); 3824 return 0; 3825 3826 cantfind_ext4: 3827 if (!silent) 3828 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3829 goto failed_mount; 3830 3831 failed_mount7: 3832 ext4_unregister_li_request(sb); 3833 failed_mount6: 3834 ext4_mb_release(sb); 3835 failed_mount5: 3836 ext4_ext_release(sb); 3837 ext4_release_system_zone(sb); 3838 failed_mount4a: 3839 dput(sb->s_root); 3840 sb->s_root = NULL; 3841 failed_mount4: 3842 ext4_msg(sb, KERN_ERR, "mount failed"); 3843 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3844 failed_mount_wq: 3845 if (sbi->s_journal) { 3846 jbd2_journal_destroy(sbi->s_journal); 3847 sbi->s_journal = NULL; 3848 } 3849 failed_mount3: 3850 del_timer(&sbi->s_err_report); 3851 if (sbi->s_flex_groups) 3852 ext4_kvfree(sbi->s_flex_groups); 3853 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3854 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3855 percpu_counter_destroy(&sbi->s_dirs_counter); 3856 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3857 if (sbi->s_mmp_tsk) 3858 kthread_stop(sbi->s_mmp_tsk); 3859 failed_mount2: 3860 for (i = 0; i < db_count; i++) 3861 brelse(sbi->s_group_desc[i]); 3862 ext4_kvfree(sbi->s_group_desc); 3863 failed_mount: 3864 if (sbi->s_proc) { 3865 remove_proc_entry(sb->s_id, ext4_proc_root); 3866 } 3867 #ifdef CONFIG_QUOTA 3868 for (i = 0; i < MAXQUOTAS; i++) 3869 kfree(sbi->s_qf_names[i]); 3870 #endif 3871 ext4_blkdev_remove(sbi); 3872 brelse(bh); 3873 out_fail: 3874 sb->s_fs_info = NULL; 3875 kfree(sbi->s_blockgroup_lock); 3876 kfree(sbi); 3877 out_free_orig: 3878 kfree(orig_data); 3879 return ret; 3880 } 3881 3882 /* 3883 * Setup any per-fs journal parameters now. We'll do this both on 3884 * initial mount, once the journal has been initialised but before we've 3885 * done any recovery; and again on any subsequent remount. 3886 */ 3887 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3888 { 3889 struct ext4_sb_info *sbi = EXT4_SB(sb); 3890 3891 journal->j_commit_interval = sbi->s_commit_interval; 3892 journal->j_min_batch_time = sbi->s_min_batch_time; 3893 journal->j_max_batch_time = sbi->s_max_batch_time; 3894 3895 write_lock(&journal->j_state_lock); 3896 if (test_opt(sb, BARRIER)) 3897 journal->j_flags |= JBD2_BARRIER; 3898 else 3899 journal->j_flags &= ~JBD2_BARRIER; 3900 if (test_opt(sb, DATA_ERR_ABORT)) 3901 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3902 else 3903 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3904 write_unlock(&journal->j_state_lock); 3905 } 3906 3907 static journal_t *ext4_get_journal(struct super_block *sb, 3908 unsigned int journal_inum) 3909 { 3910 struct inode *journal_inode; 3911 journal_t *journal; 3912 3913 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3914 3915 /* First, test for the existence of a valid inode on disk. Bad 3916 * things happen if we iget() an unused inode, as the subsequent 3917 * iput() will try to delete it. */ 3918 3919 journal_inode = ext4_iget(sb, journal_inum); 3920 if (IS_ERR(journal_inode)) { 3921 ext4_msg(sb, KERN_ERR, "no journal found"); 3922 return NULL; 3923 } 3924 if (!journal_inode->i_nlink) { 3925 make_bad_inode(journal_inode); 3926 iput(journal_inode); 3927 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3928 return NULL; 3929 } 3930 3931 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3932 journal_inode, journal_inode->i_size); 3933 if (!S_ISREG(journal_inode->i_mode)) { 3934 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3935 iput(journal_inode); 3936 return NULL; 3937 } 3938 3939 journal = jbd2_journal_init_inode(journal_inode); 3940 if (!journal) { 3941 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3942 iput(journal_inode); 3943 return NULL; 3944 } 3945 journal->j_private = sb; 3946 ext4_init_journal_params(sb, journal); 3947 return journal; 3948 } 3949 3950 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3951 dev_t j_dev) 3952 { 3953 struct buffer_head *bh; 3954 journal_t *journal; 3955 ext4_fsblk_t start; 3956 ext4_fsblk_t len; 3957 int hblock, blocksize; 3958 ext4_fsblk_t sb_block; 3959 unsigned long offset; 3960 struct ext4_super_block *es; 3961 struct block_device *bdev; 3962 3963 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3964 3965 bdev = ext4_blkdev_get(j_dev, sb); 3966 if (bdev == NULL) 3967 return NULL; 3968 3969 blocksize = sb->s_blocksize; 3970 hblock = bdev_logical_block_size(bdev); 3971 if (blocksize < hblock) { 3972 ext4_msg(sb, KERN_ERR, 3973 "blocksize too small for journal device"); 3974 goto out_bdev; 3975 } 3976 3977 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3978 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3979 set_blocksize(bdev, blocksize); 3980 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3981 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3982 "external journal"); 3983 goto out_bdev; 3984 } 3985 3986 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3987 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3988 !(le32_to_cpu(es->s_feature_incompat) & 3989 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3990 ext4_msg(sb, KERN_ERR, "external journal has " 3991 "bad superblock"); 3992 brelse(bh); 3993 goto out_bdev; 3994 } 3995 3996 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3997 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3998 brelse(bh); 3999 goto out_bdev; 4000 } 4001 4002 len = ext4_blocks_count(es); 4003 start = sb_block + 1; 4004 brelse(bh); /* we're done with the superblock */ 4005 4006 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4007 start, len, blocksize); 4008 if (!journal) { 4009 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4010 goto out_bdev; 4011 } 4012 journal->j_private = sb; 4013 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4014 wait_on_buffer(journal->j_sb_buffer); 4015 if (!buffer_uptodate(journal->j_sb_buffer)) { 4016 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4017 goto out_journal; 4018 } 4019 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4020 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4021 "user (unsupported) - %d", 4022 be32_to_cpu(journal->j_superblock->s_nr_users)); 4023 goto out_journal; 4024 } 4025 EXT4_SB(sb)->journal_bdev = bdev; 4026 ext4_init_journal_params(sb, journal); 4027 return journal; 4028 4029 out_journal: 4030 jbd2_journal_destroy(journal); 4031 out_bdev: 4032 ext4_blkdev_put(bdev); 4033 return NULL; 4034 } 4035 4036 static int ext4_load_journal(struct super_block *sb, 4037 struct ext4_super_block *es, 4038 unsigned long journal_devnum) 4039 { 4040 journal_t *journal; 4041 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4042 dev_t journal_dev; 4043 int err = 0; 4044 int really_read_only; 4045 4046 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4047 4048 if (journal_devnum && 4049 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4050 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4051 "numbers have changed"); 4052 journal_dev = new_decode_dev(journal_devnum); 4053 } else 4054 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4055 4056 really_read_only = bdev_read_only(sb->s_bdev); 4057 4058 /* 4059 * Are we loading a blank journal or performing recovery after a 4060 * crash? For recovery, we need to check in advance whether we 4061 * can get read-write access to the device. 4062 */ 4063 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4064 if (sb->s_flags & MS_RDONLY) { 4065 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4066 "required on readonly filesystem"); 4067 if (really_read_only) { 4068 ext4_msg(sb, KERN_ERR, "write access " 4069 "unavailable, cannot proceed"); 4070 return -EROFS; 4071 } 4072 ext4_msg(sb, KERN_INFO, "write access will " 4073 "be enabled during recovery"); 4074 } 4075 } 4076 4077 if (journal_inum && journal_dev) { 4078 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4079 "and inode journals!"); 4080 return -EINVAL; 4081 } 4082 4083 if (journal_inum) { 4084 if (!(journal = ext4_get_journal(sb, journal_inum))) 4085 return -EINVAL; 4086 } else { 4087 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4088 return -EINVAL; 4089 } 4090 4091 if (!(journal->j_flags & JBD2_BARRIER)) 4092 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4093 4094 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 4095 err = jbd2_journal_update_format(journal); 4096 if (err) { 4097 ext4_msg(sb, KERN_ERR, "error updating journal"); 4098 jbd2_journal_destroy(journal); 4099 return err; 4100 } 4101 } 4102 4103 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4104 err = jbd2_journal_wipe(journal, !really_read_only); 4105 if (!err) { 4106 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4107 if (save) 4108 memcpy(save, ((char *) es) + 4109 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4110 err = jbd2_journal_load(journal); 4111 if (save) 4112 memcpy(((char *) es) + EXT4_S_ERR_START, 4113 save, EXT4_S_ERR_LEN); 4114 kfree(save); 4115 } 4116 4117 if (err) { 4118 ext4_msg(sb, KERN_ERR, "error loading journal"); 4119 jbd2_journal_destroy(journal); 4120 return err; 4121 } 4122 4123 EXT4_SB(sb)->s_journal = journal; 4124 ext4_clear_journal_err(sb, es); 4125 4126 if (!really_read_only && journal_devnum && 4127 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4128 es->s_journal_dev = cpu_to_le32(journal_devnum); 4129 4130 /* Make sure we flush the recovery flag to disk. */ 4131 ext4_commit_super(sb, 1); 4132 } 4133 4134 return 0; 4135 } 4136 4137 static int ext4_commit_super(struct super_block *sb, int sync) 4138 { 4139 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4140 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4141 int error = 0; 4142 4143 if (!sbh || block_device_ejected(sb)) 4144 return error; 4145 if (buffer_write_io_error(sbh)) { 4146 /* 4147 * Oh, dear. A previous attempt to write the 4148 * superblock failed. This could happen because the 4149 * USB device was yanked out. Or it could happen to 4150 * be a transient write error and maybe the block will 4151 * be remapped. Nothing we can do but to retry the 4152 * write and hope for the best. 4153 */ 4154 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4155 "superblock detected"); 4156 clear_buffer_write_io_error(sbh); 4157 set_buffer_uptodate(sbh); 4158 } 4159 /* 4160 * If the file system is mounted read-only, don't update the 4161 * superblock write time. This avoids updating the superblock 4162 * write time when we are mounting the root file system 4163 * read/only but we need to replay the journal; at that point, 4164 * for people who are east of GMT and who make their clock 4165 * tick in localtime for Windows bug-for-bug compatibility, 4166 * the clock is set in the future, and this will cause e2fsck 4167 * to complain and force a full file system check. 4168 */ 4169 if (!(sb->s_flags & MS_RDONLY)) 4170 es->s_wtime = cpu_to_le32(get_seconds()); 4171 if (sb->s_bdev->bd_part) 4172 es->s_kbytes_written = 4173 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4174 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4175 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4176 else 4177 es->s_kbytes_written = 4178 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4179 ext4_free_blocks_count_set(es, 4180 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4181 &EXT4_SB(sb)->s_freeclusters_counter))); 4182 es->s_free_inodes_count = 4183 cpu_to_le32(percpu_counter_sum_positive( 4184 &EXT4_SB(sb)->s_freeinodes_counter)); 4185 sb->s_dirt = 0; 4186 BUFFER_TRACE(sbh, "marking dirty"); 4187 mark_buffer_dirty(sbh); 4188 if (sync) { 4189 error = sync_dirty_buffer(sbh); 4190 if (error) 4191 return error; 4192 4193 error = buffer_write_io_error(sbh); 4194 if (error) { 4195 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4196 "superblock"); 4197 clear_buffer_write_io_error(sbh); 4198 set_buffer_uptodate(sbh); 4199 } 4200 } 4201 return error; 4202 } 4203 4204 /* 4205 * Have we just finished recovery? If so, and if we are mounting (or 4206 * remounting) the filesystem readonly, then we will end up with a 4207 * consistent fs on disk. Record that fact. 4208 */ 4209 static void ext4_mark_recovery_complete(struct super_block *sb, 4210 struct ext4_super_block *es) 4211 { 4212 journal_t *journal = EXT4_SB(sb)->s_journal; 4213 4214 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4215 BUG_ON(journal != NULL); 4216 return; 4217 } 4218 jbd2_journal_lock_updates(journal); 4219 if (jbd2_journal_flush(journal) < 0) 4220 goto out; 4221 4222 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4223 sb->s_flags & MS_RDONLY) { 4224 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4225 ext4_commit_super(sb, 1); 4226 } 4227 4228 out: 4229 jbd2_journal_unlock_updates(journal); 4230 } 4231 4232 /* 4233 * If we are mounting (or read-write remounting) a filesystem whose journal 4234 * has recorded an error from a previous lifetime, move that error to the 4235 * main filesystem now. 4236 */ 4237 static void ext4_clear_journal_err(struct super_block *sb, 4238 struct ext4_super_block *es) 4239 { 4240 journal_t *journal; 4241 int j_errno; 4242 const char *errstr; 4243 4244 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4245 4246 journal = EXT4_SB(sb)->s_journal; 4247 4248 /* 4249 * Now check for any error status which may have been recorded in the 4250 * journal by a prior ext4_error() or ext4_abort() 4251 */ 4252 4253 j_errno = jbd2_journal_errno(journal); 4254 if (j_errno) { 4255 char nbuf[16]; 4256 4257 errstr = ext4_decode_error(sb, j_errno, nbuf); 4258 ext4_warning(sb, "Filesystem error recorded " 4259 "from previous mount: %s", errstr); 4260 ext4_warning(sb, "Marking fs in need of filesystem check."); 4261 4262 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4263 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4264 ext4_commit_super(sb, 1); 4265 4266 jbd2_journal_clear_err(journal); 4267 } 4268 } 4269 4270 /* 4271 * Force the running and committing transactions to commit, 4272 * and wait on the commit. 4273 */ 4274 int ext4_force_commit(struct super_block *sb) 4275 { 4276 journal_t *journal; 4277 int ret = 0; 4278 4279 if (sb->s_flags & MS_RDONLY) 4280 return 0; 4281 4282 journal = EXT4_SB(sb)->s_journal; 4283 if (journal) { 4284 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4285 ret = ext4_journal_force_commit(journal); 4286 } 4287 4288 return ret; 4289 } 4290 4291 static void ext4_write_super(struct super_block *sb) 4292 { 4293 lock_super(sb); 4294 ext4_commit_super(sb, 1); 4295 unlock_super(sb); 4296 } 4297 4298 static int ext4_sync_fs(struct super_block *sb, int wait) 4299 { 4300 int ret = 0; 4301 tid_t target; 4302 struct ext4_sb_info *sbi = EXT4_SB(sb); 4303 4304 trace_ext4_sync_fs(sb, wait); 4305 flush_workqueue(sbi->dio_unwritten_wq); 4306 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4307 if (wait) 4308 jbd2_log_wait_commit(sbi->s_journal, target); 4309 } 4310 return ret; 4311 } 4312 4313 /* 4314 * LVM calls this function before a (read-only) snapshot is created. This 4315 * gives us a chance to flush the journal completely and mark the fs clean. 4316 * 4317 * Note that only this function cannot bring a filesystem to be in a clean 4318 * state independently, because ext4 prevents a new handle from being started 4319 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4320 * the upper layer. 4321 */ 4322 static int ext4_freeze(struct super_block *sb) 4323 { 4324 int error = 0; 4325 journal_t *journal; 4326 4327 if (sb->s_flags & MS_RDONLY) 4328 return 0; 4329 4330 journal = EXT4_SB(sb)->s_journal; 4331 4332 /* Now we set up the journal barrier. */ 4333 jbd2_journal_lock_updates(journal); 4334 4335 /* 4336 * Don't clear the needs_recovery flag if we failed to flush 4337 * the journal. 4338 */ 4339 error = jbd2_journal_flush(journal); 4340 if (error < 0) 4341 goto out; 4342 4343 /* Journal blocked and flushed, clear needs_recovery flag. */ 4344 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4345 error = ext4_commit_super(sb, 1); 4346 out: 4347 /* we rely on s_frozen to stop further updates */ 4348 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4349 return error; 4350 } 4351 4352 /* 4353 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4354 * flag here, even though the filesystem is not technically dirty yet. 4355 */ 4356 static int ext4_unfreeze(struct super_block *sb) 4357 { 4358 if (sb->s_flags & MS_RDONLY) 4359 return 0; 4360 4361 lock_super(sb); 4362 /* Reset the needs_recovery flag before the fs is unlocked. */ 4363 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4364 ext4_commit_super(sb, 1); 4365 unlock_super(sb); 4366 return 0; 4367 } 4368 4369 /* 4370 * Structure to save mount options for ext4_remount's benefit 4371 */ 4372 struct ext4_mount_options { 4373 unsigned long s_mount_opt; 4374 unsigned long s_mount_opt2; 4375 uid_t s_resuid; 4376 gid_t s_resgid; 4377 unsigned long s_commit_interval; 4378 u32 s_min_batch_time, s_max_batch_time; 4379 #ifdef CONFIG_QUOTA 4380 int s_jquota_fmt; 4381 char *s_qf_names[MAXQUOTAS]; 4382 #endif 4383 }; 4384 4385 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4386 { 4387 struct ext4_super_block *es; 4388 struct ext4_sb_info *sbi = EXT4_SB(sb); 4389 ext4_fsblk_t n_blocks_count = 0; 4390 unsigned long old_sb_flags; 4391 struct ext4_mount_options old_opts; 4392 int enable_quota = 0; 4393 ext4_group_t g; 4394 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4395 int err = 0; 4396 #ifdef CONFIG_QUOTA 4397 int i; 4398 #endif 4399 char *orig_data = kstrdup(data, GFP_KERNEL); 4400 4401 /* Store the original options */ 4402 lock_super(sb); 4403 old_sb_flags = sb->s_flags; 4404 old_opts.s_mount_opt = sbi->s_mount_opt; 4405 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4406 old_opts.s_resuid = sbi->s_resuid; 4407 old_opts.s_resgid = sbi->s_resgid; 4408 old_opts.s_commit_interval = sbi->s_commit_interval; 4409 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4410 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4411 #ifdef CONFIG_QUOTA 4412 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4413 for (i = 0; i < MAXQUOTAS; i++) 4414 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4415 #endif 4416 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4417 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4418 4419 /* 4420 * Allow the "check" option to be passed as a remount option. 4421 */ 4422 if (!parse_options(data, sb, NULL, &journal_ioprio, 4423 &n_blocks_count, 1)) { 4424 err = -EINVAL; 4425 goto restore_opts; 4426 } 4427 4428 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4429 ext4_abort(sb, "Abort forced by user"); 4430 4431 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4432 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4433 4434 es = sbi->s_es; 4435 4436 if (sbi->s_journal) { 4437 ext4_init_journal_params(sb, sbi->s_journal); 4438 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4439 } 4440 4441 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 4442 n_blocks_count > ext4_blocks_count(es)) { 4443 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4444 err = -EROFS; 4445 goto restore_opts; 4446 } 4447 4448 if (*flags & MS_RDONLY) { 4449 err = dquot_suspend(sb, -1); 4450 if (err < 0) 4451 goto restore_opts; 4452 4453 /* 4454 * First of all, the unconditional stuff we have to do 4455 * to disable replay of the journal when we next remount 4456 */ 4457 sb->s_flags |= MS_RDONLY; 4458 4459 /* 4460 * OK, test if we are remounting a valid rw partition 4461 * readonly, and if so set the rdonly flag and then 4462 * mark the partition as valid again. 4463 */ 4464 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4465 (sbi->s_mount_state & EXT4_VALID_FS)) 4466 es->s_state = cpu_to_le16(sbi->s_mount_state); 4467 4468 if (sbi->s_journal) 4469 ext4_mark_recovery_complete(sb, es); 4470 } else { 4471 /* Make sure we can mount this feature set readwrite */ 4472 if (!ext4_feature_set_ok(sb, 0)) { 4473 err = -EROFS; 4474 goto restore_opts; 4475 } 4476 /* 4477 * Make sure the group descriptor checksums 4478 * are sane. If they aren't, refuse to remount r/w. 4479 */ 4480 for (g = 0; g < sbi->s_groups_count; g++) { 4481 struct ext4_group_desc *gdp = 4482 ext4_get_group_desc(sb, g, NULL); 4483 4484 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4485 ext4_msg(sb, KERN_ERR, 4486 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4487 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4488 le16_to_cpu(gdp->bg_checksum)); 4489 err = -EINVAL; 4490 goto restore_opts; 4491 } 4492 } 4493 4494 /* 4495 * If we have an unprocessed orphan list hanging 4496 * around from a previously readonly bdev mount, 4497 * require a full umount/remount for now. 4498 */ 4499 if (es->s_last_orphan) { 4500 ext4_msg(sb, KERN_WARNING, "Couldn't " 4501 "remount RDWR because of unprocessed " 4502 "orphan inode list. Please " 4503 "umount/remount instead"); 4504 err = -EINVAL; 4505 goto restore_opts; 4506 } 4507 4508 /* 4509 * Mounting a RDONLY partition read-write, so reread 4510 * and store the current valid flag. (It may have 4511 * been changed by e2fsck since we originally mounted 4512 * the partition.) 4513 */ 4514 if (sbi->s_journal) 4515 ext4_clear_journal_err(sb, es); 4516 sbi->s_mount_state = le16_to_cpu(es->s_state); 4517 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 4518 goto restore_opts; 4519 if (!ext4_setup_super(sb, es, 0)) 4520 sb->s_flags &= ~MS_RDONLY; 4521 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4522 EXT4_FEATURE_INCOMPAT_MMP)) 4523 if (ext4_multi_mount_protect(sb, 4524 le64_to_cpu(es->s_mmp_block))) { 4525 err = -EROFS; 4526 goto restore_opts; 4527 } 4528 enable_quota = 1; 4529 } 4530 } 4531 4532 /* 4533 * Reinitialize lazy itable initialization thread based on 4534 * current settings 4535 */ 4536 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4537 ext4_unregister_li_request(sb); 4538 else { 4539 ext4_group_t first_not_zeroed; 4540 first_not_zeroed = ext4_has_uninit_itable(sb); 4541 ext4_register_li_request(sb, first_not_zeroed); 4542 } 4543 4544 ext4_setup_system_zone(sb); 4545 if (sbi->s_journal == NULL) 4546 ext4_commit_super(sb, 1); 4547 4548 #ifdef CONFIG_QUOTA 4549 /* Release old quota file names */ 4550 for (i = 0; i < MAXQUOTAS; i++) 4551 if (old_opts.s_qf_names[i] && 4552 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4553 kfree(old_opts.s_qf_names[i]); 4554 #endif 4555 unlock_super(sb); 4556 if (enable_quota) 4557 dquot_resume(sb, -1); 4558 4559 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4560 kfree(orig_data); 4561 return 0; 4562 4563 restore_opts: 4564 sb->s_flags = old_sb_flags; 4565 sbi->s_mount_opt = old_opts.s_mount_opt; 4566 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4567 sbi->s_resuid = old_opts.s_resuid; 4568 sbi->s_resgid = old_opts.s_resgid; 4569 sbi->s_commit_interval = old_opts.s_commit_interval; 4570 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4571 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4572 #ifdef CONFIG_QUOTA 4573 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4574 for (i = 0; i < MAXQUOTAS; i++) { 4575 if (sbi->s_qf_names[i] && 4576 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4577 kfree(sbi->s_qf_names[i]); 4578 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4579 } 4580 #endif 4581 unlock_super(sb); 4582 kfree(orig_data); 4583 return err; 4584 } 4585 4586 /* 4587 * Note: calculating the overhead so we can be compatible with 4588 * historical BSD practice is quite difficult in the face of 4589 * clusters/bigalloc. This is because multiple metadata blocks from 4590 * different block group can end up in the same allocation cluster. 4591 * Calculating the exact overhead in the face of clustered allocation 4592 * requires either O(all block bitmaps) in memory or O(number of block 4593 * groups**2) in time. We will still calculate the superblock for 4594 * older file systems --- and if we come across with a bigalloc file 4595 * system with zero in s_overhead_clusters the estimate will be close to 4596 * correct especially for very large cluster sizes --- but for newer 4597 * file systems, it's better to calculate this figure once at mkfs 4598 * time, and store it in the superblock. If the superblock value is 4599 * present (even for non-bigalloc file systems), we will use it. 4600 */ 4601 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4602 { 4603 struct super_block *sb = dentry->d_sb; 4604 struct ext4_sb_info *sbi = EXT4_SB(sb); 4605 struct ext4_super_block *es = sbi->s_es; 4606 struct ext4_group_desc *gdp; 4607 u64 fsid; 4608 s64 bfree; 4609 4610 if (test_opt(sb, MINIX_DF)) { 4611 sbi->s_overhead_last = 0; 4612 } else if (es->s_overhead_clusters) { 4613 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters); 4614 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4615 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4616 ext4_fsblk_t overhead = 0; 4617 4618 /* 4619 * Compute the overhead (FS structures). This is constant 4620 * for a given filesystem unless the number of block groups 4621 * changes so we cache the previous value until it does. 4622 */ 4623 4624 /* 4625 * All of the blocks before first_data_block are 4626 * overhead 4627 */ 4628 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4629 4630 /* 4631 * Add the overhead found in each block group 4632 */ 4633 for (i = 0; i < ngroups; i++) { 4634 gdp = ext4_get_group_desc(sb, i, NULL); 4635 overhead += ext4_num_overhead_clusters(sb, i, gdp); 4636 cond_resched(); 4637 } 4638 sbi->s_overhead_last = overhead; 4639 smp_wmb(); 4640 sbi->s_blocks_last = ext4_blocks_count(es); 4641 } 4642 4643 buf->f_type = EXT4_SUPER_MAGIC; 4644 buf->f_bsize = sb->s_blocksize; 4645 buf->f_blocks = (ext4_blocks_count(es) - 4646 EXT4_C2B(sbi, sbi->s_overhead_last)); 4647 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4648 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4649 /* prevent underflow in case that few free space is available */ 4650 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4651 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4652 if (buf->f_bfree < ext4_r_blocks_count(es)) 4653 buf->f_bavail = 0; 4654 buf->f_files = le32_to_cpu(es->s_inodes_count); 4655 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4656 buf->f_namelen = EXT4_NAME_LEN; 4657 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4658 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4659 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4660 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4661 4662 return 0; 4663 } 4664 4665 /* Helper function for writing quotas on sync - we need to start transaction 4666 * before quota file is locked for write. Otherwise the are possible deadlocks: 4667 * Process 1 Process 2 4668 * ext4_create() quota_sync() 4669 * jbd2_journal_start() write_dquot() 4670 * dquot_initialize() down(dqio_mutex) 4671 * down(dqio_mutex) jbd2_journal_start() 4672 * 4673 */ 4674 4675 #ifdef CONFIG_QUOTA 4676 4677 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4678 { 4679 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4680 } 4681 4682 static int ext4_write_dquot(struct dquot *dquot) 4683 { 4684 int ret, err; 4685 handle_t *handle; 4686 struct inode *inode; 4687 4688 inode = dquot_to_inode(dquot); 4689 handle = ext4_journal_start(inode, 4690 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4691 if (IS_ERR(handle)) 4692 return PTR_ERR(handle); 4693 ret = dquot_commit(dquot); 4694 err = ext4_journal_stop(handle); 4695 if (!ret) 4696 ret = err; 4697 return ret; 4698 } 4699 4700 static int ext4_acquire_dquot(struct dquot *dquot) 4701 { 4702 int ret, err; 4703 handle_t *handle; 4704 4705 handle = ext4_journal_start(dquot_to_inode(dquot), 4706 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4707 if (IS_ERR(handle)) 4708 return PTR_ERR(handle); 4709 ret = dquot_acquire(dquot); 4710 err = ext4_journal_stop(handle); 4711 if (!ret) 4712 ret = err; 4713 return ret; 4714 } 4715 4716 static int ext4_release_dquot(struct dquot *dquot) 4717 { 4718 int ret, err; 4719 handle_t *handle; 4720 4721 handle = ext4_journal_start(dquot_to_inode(dquot), 4722 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4723 if (IS_ERR(handle)) { 4724 /* Release dquot anyway to avoid endless cycle in dqput() */ 4725 dquot_release(dquot); 4726 return PTR_ERR(handle); 4727 } 4728 ret = dquot_release(dquot); 4729 err = ext4_journal_stop(handle); 4730 if (!ret) 4731 ret = err; 4732 return ret; 4733 } 4734 4735 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4736 { 4737 /* Are we journaling quotas? */ 4738 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4739 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4740 dquot_mark_dquot_dirty(dquot); 4741 return ext4_write_dquot(dquot); 4742 } else { 4743 return dquot_mark_dquot_dirty(dquot); 4744 } 4745 } 4746 4747 static int ext4_write_info(struct super_block *sb, int type) 4748 { 4749 int ret, err; 4750 handle_t *handle; 4751 4752 /* Data block + inode block */ 4753 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4754 if (IS_ERR(handle)) 4755 return PTR_ERR(handle); 4756 ret = dquot_commit_info(sb, type); 4757 err = ext4_journal_stop(handle); 4758 if (!ret) 4759 ret = err; 4760 return ret; 4761 } 4762 4763 /* 4764 * Turn on quotas during mount time - we need to find 4765 * the quota file and such... 4766 */ 4767 static int ext4_quota_on_mount(struct super_block *sb, int type) 4768 { 4769 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4770 EXT4_SB(sb)->s_jquota_fmt, type); 4771 } 4772 4773 /* 4774 * Standard function to be called on quota_on 4775 */ 4776 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4777 struct path *path) 4778 { 4779 int err; 4780 4781 if (!test_opt(sb, QUOTA)) 4782 return -EINVAL; 4783 4784 /* Quotafile not on the same filesystem? */ 4785 if (path->dentry->d_sb != sb) 4786 return -EXDEV; 4787 /* Journaling quota? */ 4788 if (EXT4_SB(sb)->s_qf_names[type]) { 4789 /* Quotafile not in fs root? */ 4790 if (path->dentry->d_parent != sb->s_root) 4791 ext4_msg(sb, KERN_WARNING, 4792 "Quota file not on filesystem root. " 4793 "Journaled quota will not work"); 4794 } 4795 4796 /* 4797 * When we journal data on quota file, we have to flush journal to see 4798 * all updates to the file when we bypass pagecache... 4799 */ 4800 if (EXT4_SB(sb)->s_journal && 4801 ext4_should_journal_data(path->dentry->d_inode)) { 4802 /* 4803 * We don't need to lock updates but journal_flush() could 4804 * otherwise be livelocked... 4805 */ 4806 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4807 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4808 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4809 if (err) 4810 return err; 4811 } 4812 4813 return dquot_quota_on(sb, type, format_id, path); 4814 } 4815 4816 static int ext4_quota_off(struct super_block *sb, int type) 4817 { 4818 struct inode *inode = sb_dqopt(sb)->files[type]; 4819 handle_t *handle; 4820 4821 /* Force all delayed allocation blocks to be allocated. 4822 * Caller already holds s_umount sem */ 4823 if (test_opt(sb, DELALLOC)) 4824 sync_filesystem(sb); 4825 4826 if (!inode) 4827 goto out; 4828 4829 /* Update modification times of quota files when userspace can 4830 * start looking at them */ 4831 handle = ext4_journal_start(inode, 1); 4832 if (IS_ERR(handle)) 4833 goto out; 4834 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4835 ext4_mark_inode_dirty(handle, inode); 4836 ext4_journal_stop(handle); 4837 4838 out: 4839 return dquot_quota_off(sb, type); 4840 } 4841 4842 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4843 * acquiring the locks... As quota files are never truncated and quota code 4844 * itself serializes the operations (and no one else should touch the files) 4845 * we don't have to be afraid of races */ 4846 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4847 size_t len, loff_t off) 4848 { 4849 struct inode *inode = sb_dqopt(sb)->files[type]; 4850 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4851 int err = 0; 4852 int offset = off & (sb->s_blocksize - 1); 4853 int tocopy; 4854 size_t toread; 4855 struct buffer_head *bh; 4856 loff_t i_size = i_size_read(inode); 4857 4858 if (off > i_size) 4859 return 0; 4860 if (off+len > i_size) 4861 len = i_size-off; 4862 toread = len; 4863 while (toread > 0) { 4864 tocopy = sb->s_blocksize - offset < toread ? 4865 sb->s_blocksize - offset : toread; 4866 bh = ext4_bread(NULL, inode, blk, 0, &err); 4867 if (err) 4868 return err; 4869 if (!bh) /* A hole? */ 4870 memset(data, 0, tocopy); 4871 else 4872 memcpy(data, bh->b_data+offset, tocopy); 4873 brelse(bh); 4874 offset = 0; 4875 toread -= tocopy; 4876 data += tocopy; 4877 blk++; 4878 } 4879 return len; 4880 } 4881 4882 /* Write to quotafile (we know the transaction is already started and has 4883 * enough credits) */ 4884 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4885 const char *data, size_t len, loff_t off) 4886 { 4887 struct inode *inode = sb_dqopt(sb)->files[type]; 4888 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4889 int err = 0; 4890 int offset = off & (sb->s_blocksize - 1); 4891 struct buffer_head *bh; 4892 handle_t *handle = journal_current_handle(); 4893 4894 if (EXT4_SB(sb)->s_journal && !handle) { 4895 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4896 " cancelled because transaction is not started", 4897 (unsigned long long)off, (unsigned long long)len); 4898 return -EIO; 4899 } 4900 /* 4901 * Since we account only one data block in transaction credits, 4902 * then it is impossible to cross a block boundary. 4903 */ 4904 if (sb->s_blocksize - offset < len) { 4905 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4906 " cancelled because not block aligned", 4907 (unsigned long long)off, (unsigned long long)len); 4908 return -EIO; 4909 } 4910 4911 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4912 bh = ext4_bread(handle, inode, blk, 1, &err); 4913 if (!bh) 4914 goto out; 4915 err = ext4_journal_get_write_access(handle, bh); 4916 if (err) { 4917 brelse(bh); 4918 goto out; 4919 } 4920 lock_buffer(bh); 4921 memcpy(bh->b_data+offset, data, len); 4922 flush_dcache_page(bh->b_page); 4923 unlock_buffer(bh); 4924 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4925 brelse(bh); 4926 out: 4927 if (err) { 4928 mutex_unlock(&inode->i_mutex); 4929 return err; 4930 } 4931 if (inode->i_size < off + len) { 4932 i_size_write(inode, off + len); 4933 EXT4_I(inode)->i_disksize = inode->i_size; 4934 ext4_mark_inode_dirty(handle, inode); 4935 } 4936 mutex_unlock(&inode->i_mutex); 4937 return len; 4938 } 4939 4940 #endif 4941 4942 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4943 const char *dev_name, void *data) 4944 { 4945 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4946 } 4947 4948 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4949 static inline void register_as_ext2(void) 4950 { 4951 int err = register_filesystem(&ext2_fs_type); 4952 if (err) 4953 printk(KERN_WARNING 4954 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4955 } 4956 4957 static inline void unregister_as_ext2(void) 4958 { 4959 unregister_filesystem(&ext2_fs_type); 4960 } 4961 4962 static inline int ext2_feature_set_ok(struct super_block *sb) 4963 { 4964 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 4965 return 0; 4966 if (sb->s_flags & MS_RDONLY) 4967 return 1; 4968 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 4969 return 0; 4970 return 1; 4971 } 4972 MODULE_ALIAS("ext2"); 4973 #else 4974 static inline void register_as_ext2(void) { } 4975 static inline void unregister_as_ext2(void) { } 4976 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 4977 #endif 4978 4979 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4980 static inline void register_as_ext3(void) 4981 { 4982 int err = register_filesystem(&ext3_fs_type); 4983 if (err) 4984 printk(KERN_WARNING 4985 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4986 } 4987 4988 static inline void unregister_as_ext3(void) 4989 { 4990 unregister_filesystem(&ext3_fs_type); 4991 } 4992 4993 static inline int ext3_feature_set_ok(struct super_block *sb) 4994 { 4995 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 4996 return 0; 4997 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 4998 return 0; 4999 if (sb->s_flags & MS_RDONLY) 5000 return 1; 5001 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5002 return 0; 5003 return 1; 5004 } 5005 MODULE_ALIAS("ext3"); 5006 #else 5007 static inline void register_as_ext3(void) { } 5008 static inline void unregister_as_ext3(void) { } 5009 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5010 #endif 5011 5012 static struct file_system_type ext4_fs_type = { 5013 .owner = THIS_MODULE, 5014 .name = "ext4", 5015 .mount = ext4_mount, 5016 .kill_sb = kill_block_super, 5017 .fs_flags = FS_REQUIRES_DEV, 5018 }; 5019 5020 static int __init ext4_init_feat_adverts(void) 5021 { 5022 struct ext4_features *ef; 5023 int ret = -ENOMEM; 5024 5025 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5026 if (!ef) 5027 goto out; 5028 5029 ef->f_kobj.kset = ext4_kset; 5030 init_completion(&ef->f_kobj_unregister); 5031 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5032 "features"); 5033 if (ret) { 5034 kfree(ef); 5035 goto out; 5036 } 5037 5038 ext4_feat = ef; 5039 ret = 0; 5040 out: 5041 return ret; 5042 } 5043 5044 static void ext4_exit_feat_adverts(void) 5045 { 5046 kobject_put(&ext4_feat->f_kobj); 5047 wait_for_completion(&ext4_feat->f_kobj_unregister); 5048 kfree(ext4_feat); 5049 } 5050 5051 /* Shared across all ext4 file systems */ 5052 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5053 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5054 5055 static int __init ext4_init_fs(void) 5056 { 5057 int i, err; 5058 5059 ext4_check_flag_values(); 5060 5061 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5062 mutex_init(&ext4__aio_mutex[i]); 5063 init_waitqueue_head(&ext4__ioend_wq[i]); 5064 } 5065 5066 err = ext4_init_pageio(); 5067 if (err) 5068 return err; 5069 err = ext4_init_system_zone(); 5070 if (err) 5071 goto out6; 5072 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5073 if (!ext4_kset) 5074 goto out5; 5075 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5076 5077 err = ext4_init_feat_adverts(); 5078 if (err) 5079 goto out4; 5080 5081 err = ext4_init_mballoc(); 5082 if (err) 5083 goto out3; 5084 5085 err = ext4_init_xattr(); 5086 if (err) 5087 goto out2; 5088 err = init_inodecache(); 5089 if (err) 5090 goto out1; 5091 register_as_ext3(); 5092 register_as_ext2(); 5093 err = register_filesystem(&ext4_fs_type); 5094 if (err) 5095 goto out; 5096 5097 ext4_li_info = NULL; 5098 mutex_init(&ext4_li_mtx); 5099 return 0; 5100 out: 5101 unregister_as_ext2(); 5102 unregister_as_ext3(); 5103 destroy_inodecache(); 5104 out1: 5105 ext4_exit_xattr(); 5106 out2: 5107 ext4_exit_mballoc(); 5108 out3: 5109 ext4_exit_feat_adverts(); 5110 out4: 5111 if (ext4_proc_root) 5112 remove_proc_entry("fs/ext4", NULL); 5113 kset_unregister(ext4_kset); 5114 out5: 5115 ext4_exit_system_zone(); 5116 out6: 5117 ext4_exit_pageio(); 5118 return err; 5119 } 5120 5121 static void __exit ext4_exit_fs(void) 5122 { 5123 ext4_destroy_lazyinit_thread(); 5124 unregister_as_ext2(); 5125 unregister_as_ext3(); 5126 unregister_filesystem(&ext4_fs_type); 5127 destroy_inodecache(); 5128 ext4_exit_xattr(); 5129 ext4_exit_mballoc(); 5130 ext4_exit_feat_adverts(); 5131 remove_proc_entry("fs/ext4", NULL); 5132 kset_unregister(ext4_kset); 5133 ext4_exit_system_zone(); 5134 ext4_exit_pageio(); 5135 } 5136 5137 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5138 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5139 MODULE_LICENSE("GPL"); 5140 module_init(ext4_init_fs) 5141 module_exit(ext4_exit_fs) 5142