1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static inline int ext2_feature_set_ok(struct super_block *sb); 79 static inline int ext3_feature_set_ok(struct super_block *sb); 80 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81 static void ext4_destroy_lazyinit_thread(void); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 85 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 86 static struct file_system_type ext2_fs_type = { 87 .owner = THIS_MODULE, 88 .name = "ext2", 89 .mount = ext4_mount, 90 .kill_sb = kill_block_super, 91 .fs_flags = FS_REQUIRES_DEV, 92 }; 93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 94 #else 95 #define IS_EXT2_SB(sb) (0) 96 #endif 97 98 99 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 100 static struct file_system_type ext3_fs_type = { 101 .owner = THIS_MODULE, 102 .name = "ext3", 103 .mount = ext4_mount, 104 .kill_sb = kill_block_super, 105 .fs_flags = FS_REQUIRES_DEV, 106 }; 107 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 108 #else 109 #define IS_EXT3_SB(sb) (0) 110 #endif 111 112 static int ext4_verify_csum_type(struct super_block *sb, 113 struct ext4_super_block *es) 114 { 115 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 116 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 117 return 1; 118 119 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 120 } 121 122 static __le32 ext4_superblock_csum(struct super_block *sb, 123 struct ext4_super_block *es) 124 { 125 struct ext4_sb_info *sbi = EXT4_SB(sb); 126 int offset = offsetof(struct ext4_super_block, s_checksum); 127 __u32 csum; 128 129 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 130 131 return cpu_to_le32(csum); 132 } 133 134 int ext4_superblock_csum_verify(struct super_block *sb, 135 struct ext4_super_block *es) 136 { 137 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 138 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 139 return 1; 140 141 return es->s_checksum == ext4_superblock_csum(sb, es); 142 } 143 144 void ext4_superblock_csum_set(struct super_block *sb) 145 { 146 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 147 148 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 149 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 150 return; 151 152 es->s_checksum = ext4_superblock_csum(sb, es); 153 } 154 155 void *ext4_kvmalloc(size_t size, gfp_t flags) 156 { 157 void *ret; 158 159 ret = kmalloc(size, flags); 160 if (!ret) 161 ret = __vmalloc(size, flags, PAGE_KERNEL); 162 return ret; 163 } 164 165 void *ext4_kvzalloc(size_t size, gfp_t flags) 166 { 167 void *ret; 168 169 ret = kzalloc(size, flags); 170 if (!ret) 171 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 172 return ret; 173 } 174 175 void ext4_kvfree(void *ptr) 176 { 177 if (is_vmalloc_addr(ptr)) 178 vfree(ptr); 179 else 180 kfree(ptr); 181 182 } 183 184 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 185 struct ext4_group_desc *bg) 186 { 187 return le32_to_cpu(bg->bg_block_bitmap_lo) | 188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 189 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 190 } 191 192 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 193 struct ext4_group_desc *bg) 194 { 195 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 197 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 198 } 199 200 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 201 struct ext4_group_desc *bg) 202 { 203 return le32_to_cpu(bg->bg_inode_table_lo) | 204 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 205 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 206 } 207 208 __u32 ext4_free_group_clusters(struct super_block *sb, 209 struct ext4_group_desc *bg) 210 { 211 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 212 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 213 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 214 } 215 216 __u32 ext4_free_inodes_count(struct super_block *sb, 217 struct ext4_group_desc *bg) 218 { 219 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 220 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 221 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 222 } 223 224 __u32 ext4_used_dirs_count(struct super_block *sb, 225 struct ext4_group_desc *bg) 226 { 227 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 228 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 229 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 230 } 231 232 __u32 ext4_itable_unused_count(struct super_block *sb, 233 struct ext4_group_desc *bg) 234 { 235 return le16_to_cpu(bg->bg_itable_unused_lo) | 236 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 237 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 238 } 239 240 void ext4_block_bitmap_set(struct super_block *sb, 241 struct ext4_group_desc *bg, ext4_fsblk_t blk) 242 { 243 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 245 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 246 } 247 248 void ext4_inode_bitmap_set(struct super_block *sb, 249 struct ext4_group_desc *bg, ext4_fsblk_t blk) 250 { 251 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 253 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 254 } 255 256 void ext4_inode_table_set(struct super_block *sb, 257 struct ext4_group_desc *bg, ext4_fsblk_t blk) 258 { 259 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 260 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 261 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 262 } 263 264 void ext4_free_group_clusters_set(struct super_block *sb, 265 struct ext4_group_desc *bg, __u32 count) 266 { 267 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 268 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 269 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 270 } 271 272 void ext4_free_inodes_set(struct super_block *sb, 273 struct ext4_group_desc *bg, __u32 count) 274 { 275 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 276 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 277 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 278 } 279 280 void ext4_used_dirs_set(struct super_block *sb, 281 struct ext4_group_desc *bg, __u32 count) 282 { 283 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 284 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 285 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 286 } 287 288 void ext4_itable_unused_set(struct super_block *sb, 289 struct ext4_group_desc *bg, __u32 count) 290 { 291 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 292 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 293 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 294 } 295 296 297 static void __save_error_info(struct super_block *sb, const char *func, 298 unsigned int line) 299 { 300 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 301 302 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 303 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 304 es->s_last_error_time = cpu_to_le32(get_seconds()); 305 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 306 es->s_last_error_line = cpu_to_le32(line); 307 if (!es->s_first_error_time) { 308 es->s_first_error_time = es->s_last_error_time; 309 strncpy(es->s_first_error_func, func, 310 sizeof(es->s_first_error_func)); 311 es->s_first_error_line = cpu_to_le32(line); 312 es->s_first_error_ino = es->s_last_error_ino; 313 es->s_first_error_block = es->s_last_error_block; 314 } 315 /* 316 * Start the daily error reporting function if it hasn't been 317 * started already 318 */ 319 if (!es->s_error_count) 320 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 321 le32_add_cpu(&es->s_error_count, 1); 322 } 323 324 static void save_error_info(struct super_block *sb, const char *func, 325 unsigned int line) 326 { 327 __save_error_info(sb, func, line); 328 ext4_commit_super(sb, 1); 329 } 330 331 /* 332 * The del_gendisk() function uninitializes the disk-specific data 333 * structures, including the bdi structure, without telling anyone 334 * else. Once this happens, any attempt to call mark_buffer_dirty() 335 * (for example, by ext4_commit_super), will cause a kernel OOPS. 336 * This is a kludge to prevent these oops until we can put in a proper 337 * hook in del_gendisk() to inform the VFS and file system layers. 338 */ 339 static int block_device_ejected(struct super_block *sb) 340 { 341 struct inode *bd_inode = sb->s_bdev->bd_inode; 342 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 343 344 return bdi->dev == NULL; 345 } 346 347 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 348 { 349 struct super_block *sb = journal->j_private; 350 struct ext4_sb_info *sbi = EXT4_SB(sb); 351 int error = is_journal_aborted(journal); 352 struct ext4_journal_cb_entry *jce, *tmp; 353 354 spin_lock(&sbi->s_md_lock); 355 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 356 list_del_init(&jce->jce_list); 357 spin_unlock(&sbi->s_md_lock); 358 jce->jce_func(sb, jce, error); 359 spin_lock(&sbi->s_md_lock); 360 } 361 spin_unlock(&sbi->s_md_lock); 362 } 363 364 /* Deal with the reporting of failure conditions on a filesystem such as 365 * inconsistencies detected or read IO failures. 366 * 367 * On ext2, we can store the error state of the filesystem in the 368 * superblock. That is not possible on ext4, because we may have other 369 * write ordering constraints on the superblock which prevent us from 370 * writing it out straight away; and given that the journal is about to 371 * be aborted, we can't rely on the current, or future, transactions to 372 * write out the superblock safely. 373 * 374 * We'll just use the jbd2_journal_abort() error code to record an error in 375 * the journal instead. On recovery, the journal will complain about 376 * that error until we've noted it down and cleared it. 377 */ 378 379 static void ext4_handle_error(struct super_block *sb) 380 { 381 if (sb->s_flags & MS_RDONLY) 382 return; 383 384 if (!test_opt(sb, ERRORS_CONT)) { 385 journal_t *journal = EXT4_SB(sb)->s_journal; 386 387 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 388 if (journal) 389 jbd2_journal_abort(journal, -EIO); 390 } 391 if (test_opt(sb, ERRORS_RO)) { 392 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 393 sb->s_flags |= MS_RDONLY; 394 } 395 if (test_opt(sb, ERRORS_PANIC)) 396 panic("EXT4-fs (device %s): panic forced after error\n", 397 sb->s_id); 398 } 399 400 void __ext4_error(struct super_block *sb, const char *function, 401 unsigned int line, const char *fmt, ...) 402 { 403 struct va_format vaf; 404 va_list args; 405 406 va_start(args, fmt); 407 vaf.fmt = fmt; 408 vaf.va = &args; 409 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 410 sb->s_id, function, line, current->comm, &vaf); 411 va_end(args); 412 save_error_info(sb, function, line); 413 414 ext4_handle_error(sb); 415 } 416 417 void ext4_error_inode(struct inode *inode, const char *function, 418 unsigned int line, ext4_fsblk_t block, 419 const char *fmt, ...) 420 { 421 va_list args; 422 struct va_format vaf; 423 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 424 425 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 426 es->s_last_error_block = cpu_to_le64(block); 427 save_error_info(inode->i_sb, function, line); 428 va_start(args, fmt); 429 vaf.fmt = fmt; 430 vaf.va = &args; 431 if (block) 432 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 433 "inode #%lu: block %llu: comm %s: %pV\n", 434 inode->i_sb->s_id, function, line, inode->i_ino, 435 block, current->comm, &vaf); 436 else 437 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 438 "inode #%lu: comm %s: %pV\n", 439 inode->i_sb->s_id, function, line, inode->i_ino, 440 current->comm, &vaf); 441 va_end(args); 442 443 ext4_handle_error(inode->i_sb); 444 } 445 446 void ext4_error_file(struct file *file, const char *function, 447 unsigned int line, ext4_fsblk_t block, 448 const char *fmt, ...) 449 { 450 va_list args; 451 struct va_format vaf; 452 struct ext4_super_block *es; 453 struct inode *inode = file_inode(file); 454 char pathname[80], *path; 455 456 es = EXT4_SB(inode->i_sb)->s_es; 457 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 458 save_error_info(inode->i_sb, function, line); 459 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 460 if (IS_ERR(path)) 461 path = "(unknown)"; 462 va_start(args, fmt); 463 vaf.fmt = fmt; 464 vaf.va = &args; 465 if (block) 466 printk(KERN_CRIT 467 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 468 "block %llu: comm %s: path %s: %pV\n", 469 inode->i_sb->s_id, function, line, inode->i_ino, 470 block, current->comm, path, &vaf); 471 else 472 printk(KERN_CRIT 473 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 474 "comm %s: path %s: %pV\n", 475 inode->i_sb->s_id, function, line, inode->i_ino, 476 current->comm, path, &vaf); 477 va_end(args); 478 479 ext4_handle_error(inode->i_sb); 480 } 481 482 const char *ext4_decode_error(struct super_block *sb, int errno, 483 char nbuf[16]) 484 { 485 char *errstr = NULL; 486 487 switch (errno) { 488 case -EIO: 489 errstr = "IO failure"; 490 break; 491 case -ENOMEM: 492 errstr = "Out of memory"; 493 break; 494 case -EROFS: 495 if (!sb || (EXT4_SB(sb)->s_journal && 496 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 497 errstr = "Journal has aborted"; 498 else 499 errstr = "Readonly filesystem"; 500 break; 501 default: 502 /* If the caller passed in an extra buffer for unknown 503 * errors, textualise them now. Else we just return 504 * NULL. */ 505 if (nbuf) { 506 /* Check for truncated error codes... */ 507 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 508 errstr = nbuf; 509 } 510 break; 511 } 512 513 return errstr; 514 } 515 516 /* __ext4_std_error decodes expected errors from journaling functions 517 * automatically and invokes the appropriate error response. */ 518 519 void __ext4_std_error(struct super_block *sb, const char *function, 520 unsigned int line, int errno) 521 { 522 char nbuf[16]; 523 const char *errstr; 524 525 /* Special case: if the error is EROFS, and we're not already 526 * inside a transaction, then there's really no point in logging 527 * an error. */ 528 if (errno == -EROFS && journal_current_handle() == NULL && 529 (sb->s_flags & MS_RDONLY)) 530 return; 531 532 errstr = ext4_decode_error(sb, errno, nbuf); 533 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 534 sb->s_id, function, line, errstr); 535 save_error_info(sb, function, line); 536 537 ext4_handle_error(sb); 538 } 539 540 /* 541 * ext4_abort is a much stronger failure handler than ext4_error. The 542 * abort function may be used to deal with unrecoverable failures such 543 * as journal IO errors or ENOMEM at a critical moment in log management. 544 * 545 * We unconditionally force the filesystem into an ABORT|READONLY state, 546 * unless the error response on the fs has been set to panic in which 547 * case we take the easy way out and panic immediately. 548 */ 549 550 void __ext4_abort(struct super_block *sb, const char *function, 551 unsigned int line, const char *fmt, ...) 552 { 553 va_list args; 554 555 save_error_info(sb, function, line); 556 va_start(args, fmt); 557 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 558 function, line); 559 vprintk(fmt, args); 560 printk("\n"); 561 va_end(args); 562 563 if ((sb->s_flags & MS_RDONLY) == 0) { 564 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 565 sb->s_flags |= MS_RDONLY; 566 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 567 if (EXT4_SB(sb)->s_journal) 568 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 569 save_error_info(sb, function, line); 570 } 571 if (test_opt(sb, ERRORS_PANIC)) 572 panic("EXT4-fs panic from previous error\n"); 573 } 574 575 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 576 { 577 struct va_format vaf; 578 va_list args; 579 580 va_start(args, fmt); 581 vaf.fmt = fmt; 582 vaf.va = &args; 583 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 584 va_end(args); 585 } 586 587 void __ext4_warning(struct super_block *sb, const char *function, 588 unsigned int line, const char *fmt, ...) 589 { 590 struct va_format vaf; 591 va_list args; 592 593 va_start(args, fmt); 594 vaf.fmt = fmt; 595 vaf.va = &args; 596 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 597 sb->s_id, function, line, &vaf); 598 va_end(args); 599 } 600 601 void __ext4_grp_locked_error(const char *function, unsigned int line, 602 struct super_block *sb, ext4_group_t grp, 603 unsigned long ino, ext4_fsblk_t block, 604 const char *fmt, ...) 605 __releases(bitlock) 606 __acquires(bitlock) 607 { 608 struct va_format vaf; 609 va_list args; 610 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 611 612 es->s_last_error_ino = cpu_to_le32(ino); 613 es->s_last_error_block = cpu_to_le64(block); 614 __save_error_info(sb, function, line); 615 616 va_start(args, fmt); 617 618 vaf.fmt = fmt; 619 vaf.va = &args; 620 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 621 sb->s_id, function, line, grp); 622 if (ino) 623 printk(KERN_CONT "inode %lu: ", ino); 624 if (block) 625 printk(KERN_CONT "block %llu:", (unsigned long long) block); 626 printk(KERN_CONT "%pV\n", &vaf); 627 va_end(args); 628 629 if (test_opt(sb, ERRORS_CONT)) { 630 ext4_commit_super(sb, 0); 631 return; 632 } 633 634 ext4_unlock_group(sb, grp); 635 ext4_handle_error(sb); 636 /* 637 * We only get here in the ERRORS_RO case; relocking the group 638 * may be dangerous, but nothing bad will happen since the 639 * filesystem will have already been marked read/only and the 640 * journal has been aborted. We return 1 as a hint to callers 641 * who might what to use the return value from 642 * ext4_grp_locked_error() to distinguish between the 643 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 644 * aggressively from the ext4 function in question, with a 645 * more appropriate error code. 646 */ 647 ext4_lock_group(sb, grp); 648 return; 649 } 650 651 void ext4_update_dynamic_rev(struct super_block *sb) 652 { 653 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 654 655 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 656 return; 657 658 ext4_warning(sb, 659 "updating to rev %d because of new feature flag, " 660 "running e2fsck is recommended", 661 EXT4_DYNAMIC_REV); 662 663 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 664 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 665 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 666 /* leave es->s_feature_*compat flags alone */ 667 /* es->s_uuid will be set by e2fsck if empty */ 668 669 /* 670 * The rest of the superblock fields should be zero, and if not it 671 * means they are likely already in use, so leave them alone. We 672 * can leave it up to e2fsck to clean up any inconsistencies there. 673 */ 674 } 675 676 /* 677 * Open the external journal device 678 */ 679 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 680 { 681 struct block_device *bdev; 682 char b[BDEVNAME_SIZE]; 683 684 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 685 if (IS_ERR(bdev)) 686 goto fail; 687 return bdev; 688 689 fail: 690 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 691 __bdevname(dev, b), PTR_ERR(bdev)); 692 return NULL; 693 } 694 695 /* 696 * Release the journal device 697 */ 698 static int ext4_blkdev_put(struct block_device *bdev) 699 { 700 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 701 } 702 703 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 704 { 705 struct block_device *bdev; 706 int ret = -ENODEV; 707 708 bdev = sbi->journal_bdev; 709 if (bdev) { 710 ret = ext4_blkdev_put(bdev); 711 sbi->journal_bdev = NULL; 712 } 713 return ret; 714 } 715 716 static inline struct inode *orphan_list_entry(struct list_head *l) 717 { 718 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 719 } 720 721 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 722 { 723 struct list_head *l; 724 725 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 726 le32_to_cpu(sbi->s_es->s_last_orphan)); 727 728 printk(KERN_ERR "sb_info orphan list:\n"); 729 list_for_each(l, &sbi->s_orphan) { 730 struct inode *inode = orphan_list_entry(l); 731 printk(KERN_ERR " " 732 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 733 inode->i_sb->s_id, inode->i_ino, inode, 734 inode->i_mode, inode->i_nlink, 735 NEXT_ORPHAN(inode)); 736 } 737 } 738 739 static void ext4_put_super(struct super_block *sb) 740 { 741 struct ext4_sb_info *sbi = EXT4_SB(sb); 742 struct ext4_super_block *es = sbi->s_es; 743 int i, err; 744 745 ext4_unregister_li_request(sb); 746 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 747 748 flush_workqueue(sbi->dio_unwritten_wq); 749 destroy_workqueue(sbi->dio_unwritten_wq); 750 751 if (sbi->s_journal) { 752 err = jbd2_journal_destroy(sbi->s_journal); 753 sbi->s_journal = NULL; 754 if (err < 0) 755 ext4_abort(sb, "Couldn't clean up the journal"); 756 } 757 758 ext4_es_unregister_shrinker(sb); 759 del_timer(&sbi->s_err_report); 760 ext4_release_system_zone(sb); 761 ext4_mb_release(sb); 762 ext4_ext_release(sb); 763 ext4_xattr_put_super(sb); 764 765 if (!(sb->s_flags & MS_RDONLY)) { 766 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 767 es->s_state = cpu_to_le16(sbi->s_mount_state); 768 } 769 if (!(sb->s_flags & MS_RDONLY)) 770 ext4_commit_super(sb, 1); 771 772 if (sbi->s_proc) { 773 remove_proc_entry("options", sbi->s_proc); 774 remove_proc_entry(sb->s_id, ext4_proc_root); 775 } 776 kobject_del(&sbi->s_kobj); 777 778 for (i = 0; i < sbi->s_gdb_count; i++) 779 brelse(sbi->s_group_desc[i]); 780 ext4_kvfree(sbi->s_group_desc); 781 ext4_kvfree(sbi->s_flex_groups); 782 percpu_counter_destroy(&sbi->s_freeclusters_counter); 783 percpu_counter_destroy(&sbi->s_freeinodes_counter); 784 percpu_counter_destroy(&sbi->s_dirs_counter); 785 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 786 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 787 brelse(sbi->s_sbh); 788 #ifdef CONFIG_QUOTA 789 for (i = 0; i < MAXQUOTAS; i++) 790 kfree(sbi->s_qf_names[i]); 791 #endif 792 793 /* Debugging code just in case the in-memory inode orphan list 794 * isn't empty. The on-disk one can be non-empty if we've 795 * detected an error and taken the fs readonly, but the 796 * in-memory list had better be clean by this point. */ 797 if (!list_empty(&sbi->s_orphan)) 798 dump_orphan_list(sb, sbi); 799 J_ASSERT(list_empty(&sbi->s_orphan)); 800 801 invalidate_bdev(sb->s_bdev); 802 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 803 /* 804 * Invalidate the journal device's buffers. We don't want them 805 * floating about in memory - the physical journal device may 806 * hotswapped, and it breaks the `ro-after' testing code. 807 */ 808 sync_blockdev(sbi->journal_bdev); 809 invalidate_bdev(sbi->journal_bdev); 810 ext4_blkdev_remove(sbi); 811 } 812 if (sbi->s_mmp_tsk) 813 kthread_stop(sbi->s_mmp_tsk); 814 sb->s_fs_info = NULL; 815 /* 816 * Now that we are completely done shutting down the 817 * superblock, we need to actually destroy the kobject. 818 */ 819 kobject_put(&sbi->s_kobj); 820 wait_for_completion(&sbi->s_kobj_unregister); 821 if (sbi->s_chksum_driver) 822 crypto_free_shash(sbi->s_chksum_driver); 823 kfree(sbi->s_blockgroup_lock); 824 kfree(sbi); 825 } 826 827 static struct kmem_cache *ext4_inode_cachep; 828 829 /* 830 * Called inside transaction, so use GFP_NOFS 831 */ 832 static struct inode *ext4_alloc_inode(struct super_block *sb) 833 { 834 struct ext4_inode_info *ei; 835 836 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 837 if (!ei) 838 return NULL; 839 840 ei->vfs_inode.i_version = 1; 841 INIT_LIST_HEAD(&ei->i_prealloc_list); 842 spin_lock_init(&ei->i_prealloc_lock); 843 ext4_es_init_tree(&ei->i_es_tree); 844 rwlock_init(&ei->i_es_lock); 845 INIT_LIST_HEAD(&ei->i_es_lru); 846 ei->i_es_lru_nr = 0; 847 ei->i_reserved_data_blocks = 0; 848 ei->i_reserved_meta_blocks = 0; 849 ei->i_allocated_meta_blocks = 0; 850 ei->i_da_metadata_calc_len = 0; 851 ei->i_da_metadata_calc_last_lblock = 0; 852 spin_lock_init(&(ei->i_block_reservation_lock)); 853 #ifdef CONFIG_QUOTA 854 ei->i_reserved_quota = 0; 855 #endif 856 ei->jinode = NULL; 857 INIT_LIST_HEAD(&ei->i_completed_io_list); 858 spin_lock_init(&ei->i_completed_io_lock); 859 ei->i_sync_tid = 0; 860 ei->i_datasync_tid = 0; 861 atomic_set(&ei->i_ioend_count, 0); 862 atomic_set(&ei->i_unwritten, 0); 863 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work); 864 865 return &ei->vfs_inode; 866 } 867 868 static int ext4_drop_inode(struct inode *inode) 869 { 870 int drop = generic_drop_inode(inode); 871 872 trace_ext4_drop_inode(inode, drop); 873 return drop; 874 } 875 876 static void ext4_i_callback(struct rcu_head *head) 877 { 878 struct inode *inode = container_of(head, struct inode, i_rcu); 879 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 880 } 881 882 static void ext4_destroy_inode(struct inode *inode) 883 { 884 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 885 ext4_msg(inode->i_sb, KERN_ERR, 886 "Inode %lu (%p): orphan list check failed!", 887 inode->i_ino, EXT4_I(inode)); 888 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 889 EXT4_I(inode), sizeof(struct ext4_inode_info), 890 true); 891 dump_stack(); 892 } 893 call_rcu(&inode->i_rcu, ext4_i_callback); 894 } 895 896 static void init_once(void *foo) 897 { 898 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 899 900 INIT_LIST_HEAD(&ei->i_orphan); 901 init_rwsem(&ei->xattr_sem); 902 init_rwsem(&ei->i_data_sem); 903 inode_init_once(&ei->vfs_inode); 904 } 905 906 static int init_inodecache(void) 907 { 908 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 909 sizeof(struct ext4_inode_info), 910 0, (SLAB_RECLAIM_ACCOUNT| 911 SLAB_MEM_SPREAD), 912 init_once); 913 if (ext4_inode_cachep == NULL) 914 return -ENOMEM; 915 return 0; 916 } 917 918 static void destroy_inodecache(void) 919 { 920 /* 921 * Make sure all delayed rcu free inodes are flushed before we 922 * destroy cache. 923 */ 924 rcu_barrier(); 925 kmem_cache_destroy(ext4_inode_cachep); 926 } 927 928 void ext4_clear_inode(struct inode *inode) 929 { 930 invalidate_inode_buffers(inode); 931 clear_inode(inode); 932 dquot_drop(inode); 933 ext4_discard_preallocations(inode); 934 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 935 ext4_es_lru_del(inode); 936 if (EXT4_I(inode)->jinode) { 937 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 938 EXT4_I(inode)->jinode); 939 jbd2_free_inode(EXT4_I(inode)->jinode); 940 EXT4_I(inode)->jinode = NULL; 941 } 942 } 943 944 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 945 u64 ino, u32 generation) 946 { 947 struct inode *inode; 948 949 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 950 return ERR_PTR(-ESTALE); 951 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 952 return ERR_PTR(-ESTALE); 953 954 /* iget isn't really right if the inode is currently unallocated!! 955 * 956 * ext4_read_inode will return a bad_inode if the inode had been 957 * deleted, so we should be safe. 958 * 959 * Currently we don't know the generation for parent directory, so 960 * a generation of 0 means "accept any" 961 */ 962 inode = ext4_iget(sb, ino); 963 if (IS_ERR(inode)) 964 return ERR_CAST(inode); 965 if (generation && inode->i_generation != generation) { 966 iput(inode); 967 return ERR_PTR(-ESTALE); 968 } 969 970 return inode; 971 } 972 973 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 974 int fh_len, int fh_type) 975 { 976 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 977 ext4_nfs_get_inode); 978 } 979 980 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 981 int fh_len, int fh_type) 982 { 983 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 984 ext4_nfs_get_inode); 985 } 986 987 /* 988 * Try to release metadata pages (indirect blocks, directories) which are 989 * mapped via the block device. Since these pages could have journal heads 990 * which would prevent try_to_free_buffers() from freeing them, we must use 991 * jbd2 layer's try_to_free_buffers() function to release them. 992 */ 993 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 994 gfp_t wait) 995 { 996 journal_t *journal = EXT4_SB(sb)->s_journal; 997 998 WARN_ON(PageChecked(page)); 999 if (!page_has_buffers(page)) 1000 return 0; 1001 if (journal) 1002 return jbd2_journal_try_to_free_buffers(journal, page, 1003 wait & ~__GFP_WAIT); 1004 return try_to_free_buffers(page); 1005 } 1006 1007 #ifdef CONFIG_QUOTA 1008 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1009 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1010 1011 static int ext4_write_dquot(struct dquot *dquot); 1012 static int ext4_acquire_dquot(struct dquot *dquot); 1013 static int ext4_release_dquot(struct dquot *dquot); 1014 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1015 static int ext4_write_info(struct super_block *sb, int type); 1016 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1017 struct path *path); 1018 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1019 int format_id); 1020 static int ext4_quota_off(struct super_block *sb, int type); 1021 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1022 static int ext4_quota_on_mount(struct super_block *sb, int type); 1023 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1024 size_t len, loff_t off); 1025 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1026 const char *data, size_t len, loff_t off); 1027 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1028 unsigned int flags); 1029 static int ext4_enable_quotas(struct super_block *sb); 1030 1031 static const struct dquot_operations ext4_quota_operations = { 1032 .get_reserved_space = ext4_get_reserved_space, 1033 .write_dquot = ext4_write_dquot, 1034 .acquire_dquot = ext4_acquire_dquot, 1035 .release_dquot = ext4_release_dquot, 1036 .mark_dirty = ext4_mark_dquot_dirty, 1037 .write_info = ext4_write_info, 1038 .alloc_dquot = dquot_alloc, 1039 .destroy_dquot = dquot_destroy, 1040 }; 1041 1042 static const struct quotactl_ops ext4_qctl_operations = { 1043 .quota_on = ext4_quota_on, 1044 .quota_off = ext4_quota_off, 1045 .quota_sync = dquot_quota_sync, 1046 .get_info = dquot_get_dqinfo, 1047 .set_info = dquot_set_dqinfo, 1048 .get_dqblk = dquot_get_dqblk, 1049 .set_dqblk = dquot_set_dqblk 1050 }; 1051 1052 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1053 .quota_on_meta = ext4_quota_on_sysfile, 1054 .quota_off = ext4_quota_off_sysfile, 1055 .quota_sync = dquot_quota_sync, 1056 .get_info = dquot_get_dqinfo, 1057 .set_info = dquot_set_dqinfo, 1058 .get_dqblk = dquot_get_dqblk, 1059 .set_dqblk = dquot_set_dqblk 1060 }; 1061 #endif 1062 1063 static const struct super_operations ext4_sops = { 1064 .alloc_inode = ext4_alloc_inode, 1065 .destroy_inode = ext4_destroy_inode, 1066 .write_inode = ext4_write_inode, 1067 .dirty_inode = ext4_dirty_inode, 1068 .drop_inode = ext4_drop_inode, 1069 .evict_inode = ext4_evict_inode, 1070 .put_super = ext4_put_super, 1071 .sync_fs = ext4_sync_fs, 1072 .freeze_fs = ext4_freeze, 1073 .unfreeze_fs = ext4_unfreeze, 1074 .statfs = ext4_statfs, 1075 .remount_fs = ext4_remount, 1076 .show_options = ext4_show_options, 1077 #ifdef CONFIG_QUOTA 1078 .quota_read = ext4_quota_read, 1079 .quota_write = ext4_quota_write, 1080 #endif 1081 .bdev_try_to_free_page = bdev_try_to_free_page, 1082 }; 1083 1084 static const struct super_operations ext4_nojournal_sops = { 1085 .alloc_inode = ext4_alloc_inode, 1086 .destroy_inode = ext4_destroy_inode, 1087 .write_inode = ext4_write_inode, 1088 .dirty_inode = ext4_dirty_inode, 1089 .drop_inode = ext4_drop_inode, 1090 .evict_inode = ext4_evict_inode, 1091 .put_super = ext4_put_super, 1092 .statfs = ext4_statfs, 1093 .remount_fs = ext4_remount, 1094 .show_options = ext4_show_options, 1095 #ifdef CONFIG_QUOTA 1096 .quota_read = ext4_quota_read, 1097 .quota_write = ext4_quota_write, 1098 #endif 1099 .bdev_try_to_free_page = bdev_try_to_free_page, 1100 }; 1101 1102 static const struct export_operations ext4_export_ops = { 1103 .fh_to_dentry = ext4_fh_to_dentry, 1104 .fh_to_parent = ext4_fh_to_parent, 1105 .get_parent = ext4_get_parent, 1106 }; 1107 1108 enum { 1109 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1110 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1111 Opt_nouid32, Opt_debug, Opt_removed, 1112 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1113 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1114 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1115 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1116 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1117 Opt_data_err_abort, Opt_data_err_ignore, 1118 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1119 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1120 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1121 Opt_usrquota, Opt_grpquota, Opt_i_version, 1122 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1123 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1124 Opt_inode_readahead_blks, Opt_journal_ioprio, 1125 Opt_dioread_nolock, Opt_dioread_lock, 1126 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1127 Opt_max_dir_size_kb, 1128 }; 1129 1130 static const match_table_t tokens = { 1131 {Opt_bsd_df, "bsddf"}, 1132 {Opt_minix_df, "minixdf"}, 1133 {Opt_grpid, "grpid"}, 1134 {Opt_grpid, "bsdgroups"}, 1135 {Opt_nogrpid, "nogrpid"}, 1136 {Opt_nogrpid, "sysvgroups"}, 1137 {Opt_resgid, "resgid=%u"}, 1138 {Opt_resuid, "resuid=%u"}, 1139 {Opt_sb, "sb=%u"}, 1140 {Opt_err_cont, "errors=continue"}, 1141 {Opt_err_panic, "errors=panic"}, 1142 {Opt_err_ro, "errors=remount-ro"}, 1143 {Opt_nouid32, "nouid32"}, 1144 {Opt_debug, "debug"}, 1145 {Opt_removed, "oldalloc"}, 1146 {Opt_removed, "orlov"}, 1147 {Opt_user_xattr, "user_xattr"}, 1148 {Opt_nouser_xattr, "nouser_xattr"}, 1149 {Opt_acl, "acl"}, 1150 {Opt_noacl, "noacl"}, 1151 {Opt_noload, "norecovery"}, 1152 {Opt_noload, "noload"}, 1153 {Opt_removed, "nobh"}, 1154 {Opt_removed, "bh"}, 1155 {Opt_commit, "commit=%u"}, 1156 {Opt_min_batch_time, "min_batch_time=%u"}, 1157 {Opt_max_batch_time, "max_batch_time=%u"}, 1158 {Opt_journal_dev, "journal_dev=%u"}, 1159 {Opt_journal_checksum, "journal_checksum"}, 1160 {Opt_journal_async_commit, "journal_async_commit"}, 1161 {Opt_abort, "abort"}, 1162 {Opt_data_journal, "data=journal"}, 1163 {Opt_data_ordered, "data=ordered"}, 1164 {Opt_data_writeback, "data=writeback"}, 1165 {Opt_data_err_abort, "data_err=abort"}, 1166 {Opt_data_err_ignore, "data_err=ignore"}, 1167 {Opt_offusrjquota, "usrjquota="}, 1168 {Opt_usrjquota, "usrjquota=%s"}, 1169 {Opt_offgrpjquota, "grpjquota="}, 1170 {Opt_grpjquota, "grpjquota=%s"}, 1171 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1172 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1173 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1174 {Opt_grpquota, "grpquota"}, 1175 {Opt_noquota, "noquota"}, 1176 {Opt_quota, "quota"}, 1177 {Opt_usrquota, "usrquota"}, 1178 {Opt_barrier, "barrier=%u"}, 1179 {Opt_barrier, "barrier"}, 1180 {Opt_nobarrier, "nobarrier"}, 1181 {Opt_i_version, "i_version"}, 1182 {Opt_stripe, "stripe=%u"}, 1183 {Opt_delalloc, "delalloc"}, 1184 {Opt_nodelalloc, "nodelalloc"}, 1185 {Opt_removed, "mblk_io_submit"}, 1186 {Opt_removed, "nomblk_io_submit"}, 1187 {Opt_block_validity, "block_validity"}, 1188 {Opt_noblock_validity, "noblock_validity"}, 1189 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1190 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1191 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1192 {Opt_auto_da_alloc, "auto_da_alloc"}, 1193 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1194 {Opt_dioread_nolock, "dioread_nolock"}, 1195 {Opt_dioread_lock, "dioread_lock"}, 1196 {Opt_discard, "discard"}, 1197 {Opt_nodiscard, "nodiscard"}, 1198 {Opt_init_itable, "init_itable=%u"}, 1199 {Opt_init_itable, "init_itable"}, 1200 {Opt_noinit_itable, "noinit_itable"}, 1201 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1202 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1203 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1204 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1205 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1206 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1207 {Opt_err, NULL}, 1208 }; 1209 1210 static ext4_fsblk_t get_sb_block(void **data) 1211 { 1212 ext4_fsblk_t sb_block; 1213 char *options = (char *) *data; 1214 1215 if (!options || strncmp(options, "sb=", 3) != 0) 1216 return 1; /* Default location */ 1217 1218 options += 3; 1219 /* TODO: use simple_strtoll with >32bit ext4 */ 1220 sb_block = simple_strtoul(options, &options, 0); 1221 if (*options && *options != ',') { 1222 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1223 (char *) *data); 1224 return 1; 1225 } 1226 if (*options == ',') 1227 options++; 1228 *data = (void *) options; 1229 1230 return sb_block; 1231 } 1232 1233 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1234 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1235 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1236 1237 #ifdef CONFIG_QUOTA 1238 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1239 { 1240 struct ext4_sb_info *sbi = EXT4_SB(sb); 1241 char *qname; 1242 int ret = -1; 1243 1244 if (sb_any_quota_loaded(sb) && 1245 !sbi->s_qf_names[qtype]) { 1246 ext4_msg(sb, KERN_ERR, 1247 "Cannot change journaled " 1248 "quota options when quota turned on"); 1249 return -1; 1250 } 1251 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1252 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1253 "when QUOTA feature is enabled"); 1254 return -1; 1255 } 1256 qname = match_strdup(args); 1257 if (!qname) { 1258 ext4_msg(sb, KERN_ERR, 1259 "Not enough memory for storing quotafile name"); 1260 return -1; 1261 } 1262 if (sbi->s_qf_names[qtype]) { 1263 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1264 ret = 1; 1265 else 1266 ext4_msg(sb, KERN_ERR, 1267 "%s quota file already specified", 1268 QTYPE2NAME(qtype)); 1269 goto errout; 1270 } 1271 if (strchr(qname, '/')) { 1272 ext4_msg(sb, KERN_ERR, 1273 "quotafile must be on filesystem root"); 1274 goto errout; 1275 } 1276 sbi->s_qf_names[qtype] = qname; 1277 set_opt(sb, QUOTA); 1278 return 1; 1279 errout: 1280 kfree(qname); 1281 return ret; 1282 } 1283 1284 static int clear_qf_name(struct super_block *sb, int qtype) 1285 { 1286 1287 struct ext4_sb_info *sbi = EXT4_SB(sb); 1288 1289 if (sb_any_quota_loaded(sb) && 1290 sbi->s_qf_names[qtype]) { 1291 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1292 " when quota turned on"); 1293 return -1; 1294 } 1295 kfree(sbi->s_qf_names[qtype]); 1296 sbi->s_qf_names[qtype] = NULL; 1297 return 1; 1298 } 1299 #endif 1300 1301 #define MOPT_SET 0x0001 1302 #define MOPT_CLEAR 0x0002 1303 #define MOPT_NOSUPPORT 0x0004 1304 #define MOPT_EXPLICIT 0x0008 1305 #define MOPT_CLEAR_ERR 0x0010 1306 #define MOPT_GTE0 0x0020 1307 #ifdef CONFIG_QUOTA 1308 #define MOPT_Q 0 1309 #define MOPT_QFMT 0x0040 1310 #else 1311 #define MOPT_Q MOPT_NOSUPPORT 1312 #define MOPT_QFMT MOPT_NOSUPPORT 1313 #endif 1314 #define MOPT_DATAJ 0x0080 1315 #define MOPT_NO_EXT2 0x0100 1316 #define MOPT_NO_EXT3 0x0200 1317 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1318 1319 static const struct mount_opts { 1320 int token; 1321 int mount_opt; 1322 int flags; 1323 } ext4_mount_opts[] = { 1324 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1325 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1326 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1327 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1328 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1329 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1330 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1331 MOPT_EXT4_ONLY | MOPT_SET}, 1332 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1333 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1334 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1335 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1336 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1337 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1338 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1339 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT}, 1340 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1341 MOPT_EXT4_ONLY | MOPT_SET}, 1342 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1343 EXT4_MOUNT_JOURNAL_CHECKSUM), 1344 MOPT_EXT4_ONLY | MOPT_SET}, 1345 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1346 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1347 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1348 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1349 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1350 MOPT_NO_EXT2 | MOPT_SET}, 1351 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1352 MOPT_NO_EXT2 | MOPT_CLEAR}, 1353 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1354 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1355 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1356 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1357 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1358 {Opt_commit, 0, MOPT_GTE0}, 1359 {Opt_max_batch_time, 0, MOPT_GTE0}, 1360 {Opt_min_batch_time, 0, MOPT_GTE0}, 1361 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1362 {Opt_init_itable, 0, MOPT_GTE0}, 1363 {Opt_stripe, 0, MOPT_GTE0}, 1364 {Opt_resuid, 0, MOPT_GTE0}, 1365 {Opt_resgid, 0, MOPT_GTE0}, 1366 {Opt_journal_dev, 0, MOPT_GTE0}, 1367 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1368 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1369 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1370 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1371 MOPT_NO_EXT2 | MOPT_DATAJ}, 1372 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1373 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1374 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1375 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1376 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1377 #else 1378 {Opt_acl, 0, MOPT_NOSUPPORT}, 1379 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1380 #endif 1381 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1382 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1383 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1384 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1385 MOPT_SET | MOPT_Q}, 1386 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1387 MOPT_SET | MOPT_Q}, 1388 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1389 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1390 {Opt_usrjquota, 0, MOPT_Q}, 1391 {Opt_grpjquota, 0, MOPT_Q}, 1392 {Opt_offusrjquota, 0, MOPT_Q}, 1393 {Opt_offgrpjquota, 0, MOPT_Q}, 1394 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1395 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1396 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1397 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1398 {Opt_err, 0, 0} 1399 }; 1400 1401 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1402 substring_t *args, unsigned long *journal_devnum, 1403 unsigned int *journal_ioprio, int is_remount) 1404 { 1405 struct ext4_sb_info *sbi = EXT4_SB(sb); 1406 const struct mount_opts *m; 1407 kuid_t uid; 1408 kgid_t gid; 1409 int arg = 0; 1410 1411 #ifdef CONFIG_QUOTA 1412 if (token == Opt_usrjquota) 1413 return set_qf_name(sb, USRQUOTA, &args[0]); 1414 else if (token == Opt_grpjquota) 1415 return set_qf_name(sb, GRPQUOTA, &args[0]); 1416 else if (token == Opt_offusrjquota) 1417 return clear_qf_name(sb, USRQUOTA); 1418 else if (token == Opt_offgrpjquota) 1419 return clear_qf_name(sb, GRPQUOTA); 1420 #endif 1421 switch (token) { 1422 case Opt_noacl: 1423 case Opt_nouser_xattr: 1424 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1425 break; 1426 case Opt_sb: 1427 return 1; /* handled by get_sb_block() */ 1428 case Opt_removed: 1429 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1430 return 1; 1431 case Opt_abort: 1432 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1433 return 1; 1434 case Opt_i_version: 1435 sb->s_flags |= MS_I_VERSION; 1436 return 1; 1437 } 1438 1439 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1440 if (token == m->token) 1441 break; 1442 1443 if (m->token == Opt_err) { 1444 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1445 "or missing value", opt); 1446 return -1; 1447 } 1448 1449 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1450 ext4_msg(sb, KERN_ERR, 1451 "Mount option \"%s\" incompatible with ext2", opt); 1452 return -1; 1453 } 1454 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1455 ext4_msg(sb, KERN_ERR, 1456 "Mount option \"%s\" incompatible with ext3", opt); 1457 return -1; 1458 } 1459 1460 if (args->from && match_int(args, &arg)) 1461 return -1; 1462 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1463 return -1; 1464 if (m->flags & MOPT_EXPLICIT) 1465 set_opt2(sb, EXPLICIT_DELALLOC); 1466 if (m->flags & MOPT_CLEAR_ERR) 1467 clear_opt(sb, ERRORS_MASK); 1468 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1469 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1470 "options when quota turned on"); 1471 return -1; 1472 } 1473 1474 if (m->flags & MOPT_NOSUPPORT) { 1475 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1476 } else if (token == Opt_commit) { 1477 if (arg == 0) 1478 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1479 sbi->s_commit_interval = HZ * arg; 1480 } else if (token == Opt_max_batch_time) { 1481 if (arg == 0) 1482 arg = EXT4_DEF_MAX_BATCH_TIME; 1483 sbi->s_max_batch_time = arg; 1484 } else if (token == Opt_min_batch_time) { 1485 sbi->s_min_batch_time = arg; 1486 } else if (token == Opt_inode_readahead_blks) { 1487 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1488 ext4_msg(sb, KERN_ERR, 1489 "EXT4-fs: inode_readahead_blks must be " 1490 "0 or a power of 2 smaller than 2^31"); 1491 return -1; 1492 } 1493 sbi->s_inode_readahead_blks = arg; 1494 } else if (token == Opt_init_itable) { 1495 set_opt(sb, INIT_INODE_TABLE); 1496 if (!args->from) 1497 arg = EXT4_DEF_LI_WAIT_MULT; 1498 sbi->s_li_wait_mult = arg; 1499 } else if (token == Opt_max_dir_size_kb) { 1500 sbi->s_max_dir_size_kb = arg; 1501 } else if (token == Opt_stripe) { 1502 sbi->s_stripe = arg; 1503 } else if (token == Opt_resuid) { 1504 uid = make_kuid(current_user_ns(), arg); 1505 if (!uid_valid(uid)) { 1506 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1507 return -1; 1508 } 1509 sbi->s_resuid = uid; 1510 } else if (token == Opt_resgid) { 1511 gid = make_kgid(current_user_ns(), arg); 1512 if (!gid_valid(gid)) { 1513 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1514 return -1; 1515 } 1516 sbi->s_resgid = gid; 1517 } else if (token == Opt_journal_dev) { 1518 if (is_remount) { 1519 ext4_msg(sb, KERN_ERR, 1520 "Cannot specify journal on remount"); 1521 return -1; 1522 } 1523 *journal_devnum = arg; 1524 } else if (token == Opt_journal_ioprio) { 1525 if (arg > 7) { 1526 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1527 " (must be 0-7)"); 1528 return -1; 1529 } 1530 *journal_ioprio = 1531 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1532 } else if (m->flags & MOPT_DATAJ) { 1533 if (is_remount) { 1534 if (!sbi->s_journal) 1535 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1536 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1537 ext4_msg(sb, KERN_ERR, 1538 "Cannot change data mode on remount"); 1539 return -1; 1540 } 1541 } else { 1542 clear_opt(sb, DATA_FLAGS); 1543 sbi->s_mount_opt |= m->mount_opt; 1544 } 1545 #ifdef CONFIG_QUOTA 1546 } else if (m->flags & MOPT_QFMT) { 1547 if (sb_any_quota_loaded(sb) && 1548 sbi->s_jquota_fmt != m->mount_opt) { 1549 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1550 "quota options when quota turned on"); 1551 return -1; 1552 } 1553 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1554 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1555 ext4_msg(sb, KERN_ERR, 1556 "Cannot set journaled quota options " 1557 "when QUOTA feature is enabled"); 1558 return -1; 1559 } 1560 sbi->s_jquota_fmt = m->mount_opt; 1561 #endif 1562 } else { 1563 if (!args->from) 1564 arg = 1; 1565 if (m->flags & MOPT_CLEAR) 1566 arg = !arg; 1567 else if (unlikely(!(m->flags & MOPT_SET))) { 1568 ext4_msg(sb, KERN_WARNING, 1569 "buggy handling of option %s", opt); 1570 WARN_ON(1); 1571 return -1; 1572 } 1573 if (arg != 0) 1574 sbi->s_mount_opt |= m->mount_opt; 1575 else 1576 sbi->s_mount_opt &= ~m->mount_opt; 1577 } 1578 return 1; 1579 } 1580 1581 static int parse_options(char *options, struct super_block *sb, 1582 unsigned long *journal_devnum, 1583 unsigned int *journal_ioprio, 1584 int is_remount) 1585 { 1586 struct ext4_sb_info *sbi = EXT4_SB(sb); 1587 char *p; 1588 substring_t args[MAX_OPT_ARGS]; 1589 int token; 1590 1591 if (!options) 1592 return 1; 1593 1594 while ((p = strsep(&options, ",")) != NULL) { 1595 if (!*p) 1596 continue; 1597 /* 1598 * Initialize args struct so we know whether arg was 1599 * found; some options take optional arguments. 1600 */ 1601 args[0].to = args[0].from = NULL; 1602 token = match_token(p, tokens, args); 1603 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1604 journal_ioprio, is_remount) < 0) 1605 return 0; 1606 } 1607 #ifdef CONFIG_QUOTA 1608 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1609 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1610 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1611 "feature is enabled"); 1612 return 0; 1613 } 1614 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1615 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1616 clear_opt(sb, USRQUOTA); 1617 1618 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1619 clear_opt(sb, GRPQUOTA); 1620 1621 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1622 ext4_msg(sb, KERN_ERR, "old and new quota " 1623 "format mixing"); 1624 return 0; 1625 } 1626 1627 if (!sbi->s_jquota_fmt) { 1628 ext4_msg(sb, KERN_ERR, "journaled quota format " 1629 "not specified"); 1630 return 0; 1631 } 1632 } else { 1633 if (sbi->s_jquota_fmt) { 1634 ext4_msg(sb, KERN_ERR, "journaled quota format " 1635 "specified with no journaling " 1636 "enabled"); 1637 return 0; 1638 } 1639 } 1640 #endif 1641 if (test_opt(sb, DIOREAD_NOLOCK)) { 1642 int blocksize = 1643 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1644 1645 if (blocksize < PAGE_CACHE_SIZE) { 1646 ext4_msg(sb, KERN_ERR, "can't mount with " 1647 "dioread_nolock if block size != PAGE_SIZE"); 1648 return 0; 1649 } 1650 } 1651 return 1; 1652 } 1653 1654 static inline void ext4_show_quota_options(struct seq_file *seq, 1655 struct super_block *sb) 1656 { 1657 #if defined(CONFIG_QUOTA) 1658 struct ext4_sb_info *sbi = EXT4_SB(sb); 1659 1660 if (sbi->s_jquota_fmt) { 1661 char *fmtname = ""; 1662 1663 switch (sbi->s_jquota_fmt) { 1664 case QFMT_VFS_OLD: 1665 fmtname = "vfsold"; 1666 break; 1667 case QFMT_VFS_V0: 1668 fmtname = "vfsv0"; 1669 break; 1670 case QFMT_VFS_V1: 1671 fmtname = "vfsv1"; 1672 break; 1673 } 1674 seq_printf(seq, ",jqfmt=%s", fmtname); 1675 } 1676 1677 if (sbi->s_qf_names[USRQUOTA]) 1678 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1679 1680 if (sbi->s_qf_names[GRPQUOTA]) 1681 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1682 1683 if (test_opt(sb, USRQUOTA)) 1684 seq_puts(seq, ",usrquota"); 1685 1686 if (test_opt(sb, GRPQUOTA)) 1687 seq_puts(seq, ",grpquota"); 1688 #endif 1689 } 1690 1691 static const char *token2str(int token) 1692 { 1693 const struct match_token *t; 1694 1695 for (t = tokens; t->token != Opt_err; t++) 1696 if (t->token == token && !strchr(t->pattern, '=')) 1697 break; 1698 return t->pattern; 1699 } 1700 1701 /* 1702 * Show an option if 1703 * - it's set to a non-default value OR 1704 * - if the per-sb default is different from the global default 1705 */ 1706 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1707 int nodefs) 1708 { 1709 struct ext4_sb_info *sbi = EXT4_SB(sb); 1710 struct ext4_super_block *es = sbi->s_es; 1711 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1712 const struct mount_opts *m; 1713 char sep = nodefs ? '\n' : ','; 1714 1715 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1716 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1717 1718 if (sbi->s_sb_block != 1) 1719 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1720 1721 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1722 int want_set = m->flags & MOPT_SET; 1723 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1724 (m->flags & MOPT_CLEAR_ERR)) 1725 continue; 1726 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1727 continue; /* skip if same as the default */ 1728 if ((want_set && 1729 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1730 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1731 continue; /* select Opt_noFoo vs Opt_Foo */ 1732 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1733 } 1734 1735 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1736 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1737 SEQ_OPTS_PRINT("resuid=%u", 1738 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1739 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1740 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1741 SEQ_OPTS_PRINT("resgid=%u", 1742 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1743 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1744 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1745 SEQ_OPTS_PUTS("errors=remount-ro"); 1746 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1747 SEQ_OPTS_PUTS("errors=continue"); 1748 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1749 SEQ_OPTS_PUTS("errors=panic"); 1750 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1751 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1752 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1753 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1754 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1755 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1756 if (sb->s_flags & MS_I_VERSION) 1757 SEQ_OPTS_PUTS("i_version"); 1758 if (nodefs || sbi->s_stripe) 1759 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1760 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1761 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1762 SEQ_OPTS_PUTS("data=journal"); 1763 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1764 SEQ_OPTS_PUTS("data=ordered"); 1765 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1766 SEQ_OPTS_PUTS("data=writeback"); 1767 } 1768 if (nodefs || 1769 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1770 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1771 sbi->s_inode_readahead_blks); 1772 1773 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1774 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1775 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1776 if (nodefs || sbi->s_max_dir_size_kb) 1777 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1778 1779 ext4_show_quota_options(seq, sb); 1780 return 0; 1781 } 1782 1783 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1784 { 1785 return _ext4_show_options(seq, root->d_sb, 0); 1786 } 1787 1788 static int options_seq_show(struct seq_file *seq, void *offset) 1789 { 1790 struct super_block *sb = seq->private; 1791 int rc; 1792 1793 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1794 rc = _ext4_show_options(seq, sb, 1); 1795 seq_puts(seq, "\n"); 1796 return rc; 1797 } 1798 1799 static int options_open_fs(struct inode *inode, struct file *file) 1800 { 1801 return single_open(file, options_seq_show, PDE(inode)->data); 1802 } 1803 1804 static const struct file_operations ext4_seq_options_fops = { 1805 .owner = THIS_MODULE, 1806 .open = options_open_fs, 1807 .read = seq_read, 1808 .llseek = seq_lseek, 1809 .release = single_release, 1810 }; 1811 1812 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1813 int read_only) 1814 { 1815 struct ext4_sb_info *sbi = EXT4_SB(sb); 1816 int res = 0; 1817 1818 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1819 ext4_msg(sb, KERN_ERR, "revision level too high, " 1820 "forcing read-only mode"); 1821 res = MS_RDONLY; 1822 } 1823 if (read_only) 1824 goto done; 1825 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1826 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1827 "running e2fsck is recommended"); 1828 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1829 ext4_msg(sb, KERN_WARNING, 1830 "warning: mounting fs with errors, " 1831 "running e2fsck is recommended"); 1832 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1833 le16_to_cpu(es->s_mnt_count) >= 1834 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1835 ext4_msg(sb, KERN_WARNING, 1836 "warning: maximal mount count reached, " 1837 "running e2fsck is recommended"); 1838 else if (le32_to_cpu(es->s_checkinterval) && 1839 (le32_to_cpu(es->s_lastcheck) + 1840 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1841 ext4_msg(sb, KERN_WARNING, 1842 "warning: checktime reached, " 1843 "running e2fsck is recommended"); 1844 if (!sbi->s_journal) 1845 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1846 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1847 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1848 le16_add_cpu(&es->s_mnt_count, 1); 1849 es->s_mtime = cpu_to_le32(get_seconds()); 1850 ext4_update_dynamic_rev(sb); 1851 if (sbi->s_journal) 1852 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1853 1854 ext4_commit_super(sb, 1); 1855 done: 1856 if (test_opt(sb, DEBUG)) 1857 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1858 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1859 sb->s_blocksize, 1860 sbi->s_groups_count, 1861 EXT4_BLOCKS_PER_GROUP(sb), 1862 EXT4_INODES_PER_GROUP(sb), 1863 sbi->s_mount_opt, sbi->s_mount_opt2); 1864 1865 cleancache_init_fs(sb); 1866 return res; 1867 } 1868 1869 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1870 { 1871 struct ext4_sb_info *sbi = EXT4_SB(sb); 1872 struct flex_groups *new_groups; 1873 int size; 1874 1875 if (!sbi->s_log_groups_per_flex) 1876 return 0; 1877 1878 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1879 if (size <= sbi->s_flex_groups_allocated) 1880 return 0; 1881 1882 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1883 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1884 if (!new_groups) { 1885 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1886 size / (int) sizeof(struct flex_groups)); 1887 return -ENOMEM; 1888 } 1889 1890 if (sbi->s_flex_groups) { 1891 memcpy(new_groups, sbi->s_flex_groups, 1892 (sbi->s_flex_groups_allocated * 1893 sizeof(struct flex_groups))); 1894 ext4_kvfree(sbi->s_flex_groups); 1895 } 1896 sbi->s_flex_groups = new_groups; 1897 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1898 return 0; 1899 } 1900 1901 static int ext4_fill_flex_info(struct super_block *sb) 1902 { 1903 struct ext4_sb_info *sbi = EXT4_SB(sb); 1904 struct ext4_group_desc *gdp = NULL; 1905 ext4_group_t flex_group; 1906 unsigned int groups_per_flex = 0; 1907 int i, err; 1908 1909 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1910 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1911 sbi->s_log_groups_per_flex = 0; 1912 return 1; 1913 } 1914 groups_per_flex = 1U << sbi->s_log_groups_per_flex; 1915 1916 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1917 if (err) 1918 goto failed; 1919 1920 for (i = 0; i < sbi->s_groups_count; i++) { 1921 gdp = ext4_get_group_desc(sb, i, NULL); 1922 1923 flex_group = ext4_flex_group(sbi, i); 1924 atomic_add(ext4_free_inodes_count(sb, gdp), 1925 &sbi->s_flex_groups[flex_group].free_inodes); 1926 atomic_add(ext4_free_group_clusters(sb, gdp), 1927 &sbi->s_flex_groups[flex_group].free_clusters); 1928 atomic_add(ext4_used_dirs_count(sb, gdp), 1929 &sbi->s_flex_groups[flex_group].used_dirs); 1930 } 1931 1932 return 1; 1933 failed: 1934 return 0; 1935 } 1936 1937 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1938 struct ext4_group_desc *gdp) 1939 { 1940 int offset; 1941 __u16 crc = 0; 1942 __le32 le_group = cpu_to_le32(block_group); 1943 1944 if ((sbi->s_es->s_feature_ro_compat & 1945 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1946 /* Use new metadata_csum algorithm */ 1947 __u16 old_csum; 1948 __u32 csum32; 1949 1950 old_csum = gdp->bg_checksum; 1951 gdp->bg_checksum = 0; 1952 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1953 sizeof(le_group)); 1954 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1955 sbi->s_desc_size); 1956 gdp->bg_checksum = old_csum; 1957 1958 crc = csum32 & 0xFFFF; 1959 goto out; 1960 } 1961 1962 /* old crc16 code */ 1963 offset = offsetof(struct ext4_group_desc, bg_checksum); 1964 1965 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1966 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1967 crc = crc16(crc, (__u8 *)gdp, offset); 1968 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1969 /* for checksum of struct ext4_group_desc do the rest...*/ 1970 if ((sbi->s_es->s_feature_incompat & 1971 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1972 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1973 crc = crc16(crc, (__u8 *)gdp + offset, 1974 le16_to_cpu(sbi->s_es->s_desc_size) - 1975 offset); 1976 1977 out: 1978 return cpu_to_le16(crc); 1979 } 1980 1981 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 1982 struct ext4_group_desc *gdp) 1983 { 1984 if (ext4_has_group_desc_csum(sb) && 1985 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 1986 block_group, gdp))) 1987 return 0; 1988 1989 return 1; 1990 } 1991 1992 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 1993 struct ext4_group_desc *gdp) 1994 { 1995 if (!ext4_has_group_desc_csum(sb)) 1996 return; 1997 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 1998 } 1999 2000 /* Called at mount-time, super-block is locked */ 2001 static int ext4_check_descriptors(struct super_block *sb, 2002 ext4_group_t *first_not_zeroed) 2003 { 2004 struct ext4_sb_info *sbi = EXT4_SB(sb); 2005 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2006 ext4_fsblk_t last_block; 2007 ext4_fsblk_t block_bitmap; 2008 ext4_fsblk_t inode_bitmap; 2009 ext4_fsblk_t inode_table; 2010 int flexbg_flag = 0; 2011 ext4_group_t i, grp = sbi->s_groups_count; 2012 2013 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2014 flexbg_flag = 1; 2015 2016 ext4_debug("Checking group descriptors"); 2017 2018 for (i = 0; i < sbi->s_groups_count; i++) { 2019 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2020 2021 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2022 last_block = ext4_blocks_count(sbi->s_es) - 1; 2023 else 2024 last_block = first_block + 2025 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2026 2027 if ((grp == sbi->s_groups_count) && 2028 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2029 grp = i; 2030 2031 block_bitmap = ext4_block_bitmap(sb, gdp); 2032 if (block_bitmap < first_block || block_bitmap > last_block) { 2033 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2034 "Block bitmap for group %u not in group " 2035 "(block %llu)!", i, block_bitmap); 2036 return 0; 2037 } 2038 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2039 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2040 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2041 "Inode bitmap for group %u not in group " 2042 "(block %llu)!", i, inode_bitmap); 2043 return 0; 2044 } 2045 inode_table = ext4_inode_table(sb, gdp); 2046 if (inode_table < first_block || 2047 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2048 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2049 "Inode table for group %u not in group " 2050 "(block %llu)!", i, inode_table); 2051 return 0; 2052 } 2053 ext4_lock_group(sb, i); 2054 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2055 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2056 "Checksum for group %u failed (%u!=%u)", 2057 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2058 gdp)), le16_to_cpu(gdp->bg_checksum)); 2059 if (!(sb->s_flags & MS_RDONLY)) { 2060 ext4_unlock_group(sb, i); 2061 return 0; 2062 } 2063 } 2064 ext4_unlock_group(sb, i); 2065 if (!flexbg_flag) 2066 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2067 } 2068 if (NULL != first_not_zeroed) 2069 *first_not_zeroed = grp; 2070 2071 ext4_free_blocks_count_set(sbi->s_es, 2072 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2073 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2074 return 1; 2075 } 2076 2077 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2078 * the superblock) which were deleted from all directories, but held open by 2079 * a process at the time of a crash. We walk the list and try to delete these 2080 * inodes at recovery time (only with a read-write filesystem). 2081 * 2082 * In order to keep the orphan inode chain consistent during traversal (in 2083 * case of crash during recovery), we link each inode into the superblock 2084 * orphan list_head and handle it the same way as an inode deletion during 2085 * normal operation (which journals the operations for us). 2086 * 2087 * We only do an iget() and an iput() on each inode, which is very safe if we 2088 * accidentally point at an in-use or already deleted inode. The worst that 2089 * can happen in this case is that we get a "bit already cleared" message from 2090 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2091 * e2fsck was run on this filesystem, and it must have already done the orphan 2092 * inode cleanup for us, so we can safely abort without any further action. 2093 */ 2094 static void ext4_orphan_cleanup(struct super_block *sb, 2095 struct ext4_super_block *es) 2096 { 2097 unsigned int s_flags = sb->s_flags; 2098 int nr_orphans = 0, nr_truncates = 0; 2099 #ifdef CONFIG_QUOTA 2100 int i; 2101 #endif 2102 if (!es->s_last_orphan) { 2103 jbd_debug(4, "no orphan inodes to clean up\n"); 2104 return; 2105 } 2106 2107 if (bdev_read_only(sb->s_bdev)) { 2108 ext4_msg(sb, KERN_ERR, "write access " 2109 "unavailable, skipping orphan cleanup"); 2110 return; 2111 } 2112 2113 /* Check if feature set would not allow a r/w mount */ 2114 if (!ext4_feature_set_ok(sb, 0)) { 2115 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2116 "unknown ROCOMPAT features"); 2117 return; 2118 } 2119 2120 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2121 /* don't clear list on RO mount w/ errors */ 2122 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2123 jbd_debug(1, "Errors on filesystem, " 2124 "clearing orphan list.\n"); 2125 es->s_last_orphan = 0; 2126 } 2127 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2128 return; 2129 } 2130 2131 if (s_flags & MS_RDONLY) { 2132 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2133 sb->s_flags &= ~MS_RDONLY; 2134 } 2135 #ifdef CONFIG_QUOTA 2136 /* Needed for iput() to work correctly and not trash data */ 2137 sb->s_flags |= MS_ACTIVE; 2138 /* Turn on quotas so that they are updated correctly */ 2139 for (i = 0; i < MAXQUOTAS; i++) { 2140 if (EXT4_SB(sb)->s_qf_names[i]) { 2141 int ret = ext4_quota_on_mount(sb, i); 2142 if (ret < 0) 2143 ext4_msg(sb, KERN_ERR, 2144 "Cannot turn on journaled " 2145 "quota: error %d", ret); 2146 } 2147 } 2148 #endif 2149 2150 while (es->s_last_orphan) { 2151 struct inode *inode; 2152 2153 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2154 if (IS_ERR(inode)) { 2155 es->s_last_orphan = 0; 2156 break; 2157 } 2158 2159 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2160 dquot_initialize(inode); 2161 if (inode->i_nlink) { 2162 ext4_msg(sb, KERN_DEBUG, 2163 "%s: truncating inode %lu to %lld bytes", 2164 __func__, inode->i_ino, inode->i_size); 2165 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2166 inode->i_ino, inode->i_size); 2167 mutex_lock(&inode->i_mutex); 2168 ext4_truncate(inode); 2169 mutex_unlock(&inode->i_mutex); 2170 nr_truncates++; 2171 } else { 2172 ext4_msg(sb, KERN_DEBUG, 2173 "%s: deleting unreferenced inode %lu", 2174 __func__, inode->i_ino); 2175 jbd_debug(2, "deleting unreferenced inode %lu\n", 2176 inode->i_ino); 2177 nr_orphans++; 2178 } 2179 iput(inode); /* The delete magic happens here! */ 2180 } 2181 2182 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2183 2184 if (nr_orphans) 2185 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2186 PLURAL(nr_orphans)); 2187 if (nr_truncates) 2188 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2189 PLURAL(nr_truncates)); 2190 #ifdef CONFIG_QUOTA 2191 /* Turn quotas off */ 2192 for (i = 0; i < MAXQUOTAS; i++) { 2193 if (sb_dqopt(sb)->files[i]) 2194 dquot_quota_off(sb, i); 2195 } 2196 #endif 2197 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2198 } 2199 2200 /* 2201 * Maximal extent format file size. 2202 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2203 * extent format containers, within a sector_t, and within i_blocks 2204 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2205 * so that won't be a limiting factor. 2206 * 2207 * However there is other limiting factor. We do store extents in the form 2208 * of starting block and length, hence the resulting length of the extent 2209 * covering maximum file size must fit into on-disk format containers as 2210 * well. Given that length is always by 1 unit bigger than max unit (because 2211 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2212 * 2213 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2214 */ 2215 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2216 { 2217 loff_t res; 2218 loff_t upper_limit = MAX_LFS_FILESIZE; 2219 2220 /* small i_blocks in vfs inode? */ 2221 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2222 /* 2223 * CONFIG_LBDAF is not enabled implies the inode 2224 * i_block represent total blocks in 512 bytes 2225 * 32 == size of vfs inode i_blocks * 8 2226 */ 2227 upper_limit = (1LL << 32) - 1; 2228 2229 /* total blocks in file system block size */ 2230 upper_limit >>= (blkbits - 9); 2231 upper_limit <<= blkbits; 2232 } 2233 2234 /* 2235 * 32-bit extent-start container, ee_block. We lower the maxbytes 2236 * by one fs block, so ee_len can cover the extent of maximum file 2237 * size 2238 */ 2239 res = (1LL << 32) - 1; 2240 res <<= blkbits; 2241 2242 /* Sanity check against vm- & vfs- imposed limits */ 2243 if (res > upper_limit) 2244 res = upper_limit; 2245 2246 return res; 2247 } 2248 2249 /* 2250 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2251 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2252 * We need to be 1 filesystem block less than the 2^48 sector limit. 2253 */ 2254 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2255 { 2256 loff_t res = EXT4_NDIR_BLOCKS; 2257 int meta_blocks; 2258 loff_t upper_limit; 2259 /* This is calculated to be the largest file size for a dense, block 2260 * mapped file such that the file's total number of 512-byte sectors, 2261 * including data and all indirect blocks, does not exceed (2^48 - 1). 2262 * 2263 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2264 * number of 512-byte sectors of the file. 2265 */ 2266 2267 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2268 /* 2269 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2270 * the inode i_block field represents total file blocks in 2271 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2272 */ 2273 upper_limit = (1LL << 32) - 1; 2274 2275 /* total blocks in file system block size */ 2276 upper_limit >>= (bits - 9); 2277 2278 } else { 2279 /* 2280 * We use 48 bit ext4_inode i_blocks 2281 * With EXT4_HUGE_FILE_FL set the i_blocks 2282 * represent total number of blocks in 2283 * file system block size 2284 */ 2285 upper_limit = (1LL << 48) - 1; 2286 2287 } 2288 2289 /* indirect blocks */ 2290 meta_blocks = 1; 2291 /* double indirect blocks */ 2292 meta_blocks += 1 + (1LL << (bits-2)); 2293 /* tripple indirect blocks */ 2294 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2295 2296 upper_limit -= meta_blocks; 2297 upper_limit <<= bits; 2298 2299 res += 1LL << (bits-2); 2300 res += 1LL << (2*(bits-2)); 2301 res += 1LL << (3*(bits-2)); 2302 res <<= bits; 2303 if (res > upper_limit) 2304 res = upper_limit; 2305 2306 if (res > MAX_LFS_FILESIZE) 2307 res = MAX_LFS_FILESIZE; 2308 2309 return res; 2310 } 2311 2312 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2313 ext4_fsblk_t logical_sb_block, int nr) 2314 { 2315 struct ext4_sb_info *sbi = EXT4_SB(sb); 2316 ext4_group_t bg, first_meta_bg; 2317 int has_super = 0; 2318 2319 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2320 2321 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2322 nr < first_meta_bg) 2323 return logical_sb_block + nr + 1; 2324 bg = sbi->s_desc_per_block * nr; 2325 if (ext4_bg_has_super(sb, bg)) 2326 has_super = 1; 2327 2328 return (has_super + ext4_group_first_block_no(sb, bg)); 2329 } 2330 2331 /** 2332 * ext4_get_stripe_size: Get the stripe size. 2333 * @sbi: In memory super block info 2334 * 2335 * If we have specified it via mount option, then 2336 * use the mount option value. If the value specified at mount time is 2337 * greater than the blocks per group use the super block value. 2338 * If the super block value is greater than blocks per group return 0. 2339 * Allocator needs it be less than blocks per group. 2340 * 2341 */ 2342 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2343 { 2344 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2345 unsigned long stripe_width = 2346 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2347 int ret; 2348 2349 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2350 ret = sbi->s_stripe; 2351 else if (stripe_width <= sbi->s_blocks_per_group) 2352 ret = stripe_width; 2353 else if (stride <= sbi->s_blocks_per_group) 2354 ret = stride; 2355 else 2356 ret = 0; 2357 2358 /* 2359 * If the stripe width is 1, this makes no sense and 2360 * we set it to 0 to turn off stripe handling code. 2361 */ 2362 if (ret <= 1) 2363 ret = 0; 2364 2365 return ret; 2366 } 2367 2368 /* sysfs supprt */ 2369 2370 struct ext4_attr { 2371 struct attribute attr; 2372 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2373 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2374 const char *, size_t); 2375 int offset; 2376 }; 2377 2378 static int parse_strtoul(const char *buf, 2379 unsigned long max, unsigned long *value) 2380 { 2381 char *endp; 2382 2383 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2384 endp = skip_spaces(endp); 2385 if (*endp || *value > max) 2386 return -EINVAL; 2387 2388 return 0; 2389 } 2390 2391 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2392 struct ext4_sb_info *sbi, 2393 char *buf) 2394 { 2395 return snprintf(buf, PAGE_SIZE, "%llu\n", 2396 (s64) EXT4_C2B(sbi, 2397 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2398 } 2399 2400 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2401 struct ext4_sb_info *sbi, char *buf) 2402 { 2403 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2404 2405 if (!sb->s_bdev->bd_part) 2406 return snprintf(buf, PAGE_SIZE, "0\n"); 2407 return snprintf(buf, PAGE_SIZE, "%lu\n", 2408 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2409 sbi->s_sectors_written_start) >> 1); 2410 } 2411 2412 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2413 struct ext4_sb_info *sbi, char *buf) 2414 { 2415 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2416 2417 if (!sb->s_bdev->bd_part) 2418 return snprintf(buf, PAGE_SIZE, "0\n"); 2419 return snprintf(buf, PAGE_SIZE, "%llu\n", 2420 (unsigned long long)(sbi->s_kbytes_written + 2421 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2422 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2423 } 2424 2425 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2426 struct ext4_sb_info *sbi, 2427 const char *buf, size_t count) 2428 { 2429 unsigned long t; 2430 2431 if (parse_strtoul(buf, 0x40000000, &t)) 2432 return -EINVAL; 2433 2434 if (t && !is_power_of_2(t)) 2435 return -EINVAL; 2436 2437 sbi->s_inode_readahead_blks = t; 2438 return count; 2439 } 2440 2441 static ssize_t sbi_ui_show(struct ext4_attr *a, 2442 struct ext4_sb_info *sbi, char *buf) 2443 { 2444 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2445 2446 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2447 } 2448 2449 static ssize_t sbi_ui_store(struct ext4_attr *a, 2450 struct ext4_sb_info *sbi, 2451 const char *buf, size_t count) 2452 { 2453 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2454 unsigned long t; 2455 2456 if (parse_strtoul(buf, 0xffffffff, &t)) 2457 return -EINVAL; 2458 *ui = t; 2459 return count; 2460 } 2461 2462 static ssize_t trigger_test_error(struct ext4_attr *a, 2463 struct ext4_sb_info *sbi, 2464 const char *buf, size_t count) 2465 { 2466 int len = count; 2467 2468 if (!capable(CAP_SYS_ADMIN)) 2469 return -EPERM; 2470 2471 if (len && buf[len-1] == '\n') 2472 len--; 2473 2474 if (len) 2475 ext4_error(sbi->s_sb, "%.*s", len, buf); 2476 return count; 2477 } 2478 2479 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2480 static struct ext4_attr ext4_attr_##_name = { \ 2481 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2482 .show = _show, \ 2483 .store = _store, \ 2484 .offset = offsetof(struct ext4_sb_info, _elname), \ 2485 } 2486 #define EXT4_ATTR(name, mode, show, store) \ 2487 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2488 2489 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2490 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2491 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2492 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2493 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2494 #define ATTR_LIST(name) &ext4_attr_##name.attr 2495 2496 EXT4_RO_ATTR(delayed_allocation_blocks); 2497 EXT4_RO_ATTR(session_write_kbytes); 2498 EXT4_RO_ATTR(lifetime_write_kbytes); 2499 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2500 inode_readahead_blks_store, s_inode_readahead_blks); 2501 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2502 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2503 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2504 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2505 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2506 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2507 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2508 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2509 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2510 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2511 2512 static struct attribute *ext4_attrs[] = { 2513 ATTR_LIST(delayed_allocation_blocks), 2514 ATTR_LIST(session_write_kbytes), 2515 ATTR_LIST(lifetime_write_kbytes), 2516 ATTR_LIST(inode_readahead_blks), 2517 ATTR_LIST(inode_goal), 2518 ATTR_LIST(mb_stats), 2519 ATTR_LIST(mb_max_to_scan), 2520 ATTR_LIST(mb_min_to_scan), 2521 ATTR_LIST(mb_order2_req), 2522 ATTR_LIST(mb_stream_req), 2523 ATTR_LIST(mb_group_prealloc), 2524 ATTR_LIST(max_writeback_mb_bump), 2525 ATTR_LIST(extent_max_zeroout_kb), 2526 ATTR_LIST(trigger_fs_error), 2527 NULL, 2528 }; 2529 2530 /* Features this copy of ext4 supports */ 2531 EXT4_INFO_ATTR(lazy_itable_init); 2532 EXT4_INFO_ATTR(batched_discard); 2533 EXT4_INFO_ATTR(meta_bg_resize); 2534 2535 static struct attribute *ext4_feat_attrs[] = { 2536 ATTR_LIST(lazy_itable_init), 2537 ATTR_LIST(batched_discard), 2538 ATTR_LIST(meta_bg_resize), 2539 NULL, 2540 }; 2541 2542 static ssize_t ext4_attr_show(struct kobject *kobj, 2543 struct attribute *attr, char *buf) 2544 { 2545 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2546 s_kobj); 2547 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2548 2549 return a->show ? a->show(a, sbi, buf) : 0; 2550 } 2551 2552 static ssize_t ext4_attr_store(struct kobject *kobj, 2553 struct attribute *attr, 2554 const char *buf, size_t len) 2555 { 2556 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2557 s_kobj); 2558 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2559 2560 return a->store ? a->store(a, sbi, buf, len) : 0; 2561 } 2562 2563 static void ext4_sb_release(struct kobject *kobj) 2564 { 2565 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2566 s_kobj); 2567 complete(&sbi->s_kobj_unregister); 2568 } 2569 2570 static const struct sysfs_ops ext4_attr_ops = { 2571 .show = ext4_attr_show, 2572 .store = ext4_attr_store, 2573 }; 2574 2575 static struct kobj_type ext4_ktype = { 2576 .default_attrs = ext4_attrs, 2577 .sysfs_ops = &ext4_attr_ops, 2578 .release = ext4_sb_release, 2579 }; 2580 2581 static void ext4_feat_release(struct kobject *kobj) 2582 { 2583 complete(&ext4_feat->f_kobj_unregister); 2584 } 2585 2586 static struct kobj_type ext4_feat_ktype = { 2587 .default_attrs = ext4_feat_attrs, 2588 .sysfs_ops = &ext4_attr_ops, 2589 .release = ext4_feat_release, 2590 }; 2591 2592 /* 2593 * Check whether this filesystem can be mounted based on 2594 * the features present and the RDONLY/RDWR mount requested. 2595 * Returns 1 if this filesystem can be mounted as requested, 2596 * 0 if it cannot be. 2597 */ 2598 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2599 { 2600 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2601 ext4_msg(sb, KERN_ERR, 2602 "Couldn't mount because of " 2603 "unsupported optional features (%x)", 2604 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2605 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2606 return 0; 2607 } 2608 2609 if (readonly) 2610 return 1; 2611 2612 /* Check that feature set is OK for a read-write mount */ 2613 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2614 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2615 "unsupported optional features (%x)", 2616 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2617 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2618 return 0; 2619 } 2620 /* 2621 * Large file size enabled file system can only be mounted 2622 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2623 */ 2624 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2625 if (sizeof(blkcnt_t) < sizeof(u64)) { 2626 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2627 "cannot be mounted RDWR without " 2628 "CONFIG_LBDAF"); 2629 return 0; 2630 } 2631 } 2632 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2633 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2634 ext4_msg(sb, KERN_ERR, 2635 "Can't support bigalloc feature without " 2636 "extents feature\n"); 2637 return 0; 2638 } 2639 2640 #ifndef CONFIG_QUOTA 2641 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2642 !readonly) { 2643 ext4_msg(sb, KERN_ERR, 2644 "Filesystem with quota feature cannot be mounted RDWR " 2645 "without CONFIG_QUOTA"); 2646 return 0; 2647 } 2648 #endif /* CONFIG_QUOTA */ 2649 return 1; 2650 } 2651 2652 /* 2653 * This function is called once a day if we have errors logged 2654 * on the file system 2655 */ 2656 static void print_daily_error_info(unsigned long arg) 2657 { 2658 struct super_block *sb = (struct super_block *) arg; 2659 struct ext4_sb_info *sbi; 2660 struct ext4_super_block *es; 2661 2662 sbi = EXT4_SB(sb); 2663 es = sbi->s_es; 2664 2665 if (es->s_error_count) 2666 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2667 le32_to_cpu(es->s_error_count)); 2668 if (es->s_first_error_time) { 2669 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2670 sb->s_id, le32_to_cpu(es->s_first_error_time), 2671 (int) sizeof(es->s_first_error_func), 2672 es->s_first_error_func, 2673 le32_to_cpu(es->s_first_error_line)); 2674 if (es->s_first_error_ino) 2675 printk(": inode %u", 2676 le32_to_cpu(es->s_first_error_ino)); 2677 if (es->s_first_error_block) 2678 printk(": block %llu", (unsigned long long) 2679 le64_to_cpu(es->s_first_error_block)); 2680 printk("\n"); 2681 } 2682 if (es->s_last_error_time) { 2683 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2684 sb->s_id, le32_to_cpu(es->s_last_error_time), 2685 (int) sizeof(es->s_last_error_func), 2686 es->s_last_error_func, 2687 le32_to_cpu(es->s_last_error_line)); 2688 if (es->s_last_error_ino) 2689 printk(": inode %u", 2690 le32_to_cpu(es->s_last_error_ino)); 2691 if (es->s_last_error_block) 2692 printk(": block %llu", (unsigned long long) 2693 le64_to_cpu(es->s_last_error_block)); 2694 printk("\n"); 2695 } 2696 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2697 } 2698 2699 /* Find next suitable group and run ext4_init_inode_table */ 2700 static int ext4_run_li_request(struct ext4_li_request *elr) 2701 { 2702 struct ext4_group_desc *gdp = NULL; 2703 ext4_group_t group, ngroups; 2704 struct super_block *sb; 2705 unsigned long timeout = 0; 2706 int ret = 0; 2707 2708 sb = elr->lr_super; 2709 ngroups = EXT4_SB(sb)->s_groups_count; 2710 2711 sb_start_write(sb); 2712 for (group = elr->lr_next_group; group < ngroups; group++) { 2713 gdp = ext4_get_group_desc(sb, group, NULL); 2714 if (!gdp) { 2715 ret = 1; 2716 break; 2717 } 2718 2719 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2720 break; 2721 } 2722 2723 if (group >= ngroups) 2724 ret = 1; 2725 2726 if (!ret) { 2727 timeout = jiffies; 2728 ret = ext4_init_inode_table(sb, group, 2729 elr->lr_timeout ? 0 : 1); 2730 if (elr->lr_timeout == 0) { 2731 timeout = (jiffies - timeout) * 2732 elr->lr_sbi->s_li_wait_mult; 2733 elr->lr_timeout = timeout; 2734 } 2735 elr->lr_next_sched = jiffies + elr->lr_timeout; 2736 elr->lr_next_group = group + 1; 2737 } 2738 sb_end_write(sb); 2739 2740 return ret; 2741 } 2742 2743 /* 2744 * Remove lr_request from the list_request and free the 2745 * request structure. Should be called with li_list_mtx held 2746 */ 2747 static void ext4_remove_li_request(struct ext4_li_request *elr) 2748 { 2749 struct ext4_sb_info *sbi; 2750 2751 if (!elr) 2752 return; 2753 2754 sbi = elr->lr_sbi; 2755 2756 list_del(&elr->lr_request); 2757 sbi->s_li_request = NULL; 2758 kfree(elr); 2759 } 2760 2761 static void ext4_unregister_li_request(struct super_block *sb) 2762 { 2763 mutex_lock(&ext4_li_mtx); 2764 if (!ext4_li_info) { 2765 mutex_unlock(&ext4_li_mtx); 2766 return; 2767 } 2768 2769 mutex_lock(&ext4_li_info->li_list_mtx); 2770 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2771 mutex_unlock(&ext4_li_info->li_list_mtx); 2772 mutex_unlock(&ext4_li_mtx); 2773 } 2774 2775 static struct task_struct *ext4_lazyinit_task; 2776 2777 /* 2778 * This is the function where ext4lazyinit thread lives. It walks 2779 * through the request list searching for next scheduled filesystem. 2780 * When such a fs is found, run the lazy initialization request 2781 * (ext4_rn_li_request) and keep track of the time spend in this 2782 * function. Based on that time we compute next schedule time of 2783 * the request. When walking through the list is complete, compute 2784 * next waking time and put itself into sleep. 2785 */ 2786 static int ext4_lazyinit_thread(void *arg) 2787 { 2788 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2789 struct list_head *pos, *n; 2790 struct ext4_li_request *elr; 2791 unsigned long next_wakeup, cur; 2792 2793 BUG_ON(NULL == eli); 2794 2795 cont_thread: 2796 while (true) { 2797 next_wakeup = MAX_JIFFY_OFFSET; 2798 2799 mutex_lock(&eli->li_list_mtx); 2800 if (list_empty(&eli->li_request_list)) { 2801 mutex_unlock(&eli->li_list_mtx); 2802 goto exit_thread; 2803 } 2804 2805 list_for_each_safe(pos, n, &eli->li_request_list) { 2806 elr = list_entry(pos, struct ext4_li_request, 2807 lr_request); 2808 2809 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2810 if (ext4_run_li_request(elr) != 0) { 2811 /* error, remove the lazy_init job */ 2812 ext4_remove_li_request(elr); 2813 continue; 2814 } 2815 } 2816 2817 if (time_before(elr->lr_next_sched, next_wakeup)) 2818 next_wakeup = elr->lr_next_sched; 2819 } 2820 mutex_unlock(&eli->li_list_mtx); 2821 2822 try_to_freeze(); 2823 2824 cur = jiffies; 2825 if ((time_after_eq(cur, next_wakeup)) || 2826 (MAX_JIFFY_OFFSET == next_wakeup)) { 2827 cond_resched(); 2828 continue; 2829 } 2830 2831 schedule_timeout_interruptible(next_wakeup - cur); 2832 2833 if (kthread_should_stop()) { 2834 ext4_clear_request_list(); 2835 goto exit_thread; 2836 } 2837 } 2838 2839 exit_thread: 2840 /* 2841 * It looks like the request list is empty, but we need 2842 * to check it under the li_list_mtx lock, to prevent any 2843 * additions into it, and of course we should lock ext4_li_mtx 2844 * to atomically free the list and ext4_li_info, because at 2845 * this point another ext4 filesystem could be registering 2846 * new one. 2847 */ 2848 mutex_lock(&ext4_li_mtx); 2849 mutex_lock(&eli->li_list_mtx); 2850 if (!list_empty(&eli->li_request_list)) { 2851 mutex_unlock(&eli->li_list_mtx); 2852 mutex_unlock(&ext4_li_mtx); 2853 goto cont_thread; 2854 } 2855 mutex_unlock(&eli->li_list_mtx); 2856 kfree(ext4_li_info); 2857 ext4_li_info = NULL; 2858 mutex_unlock(&ext4_li_mtx); 2859 2860 return 0; 2861 } 2862 2863 static void ext4_clear_request_list(void) 2864 { 2865 struct list_head *pos, *n; 2866 struct ext4_li_request *elr; 2867 2868 mutex_lock(&ext4_li_info->li_list_mtx); 2869 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2870 elr = list_entry(pos, struct ext4_li_request, 2871 lr_request); 2872 ext4_remove_li_request(elr); 2873 } 2874 mutex_unlock(&ext4_li_info->li_list_mtx); 2875 } 2876 2877 static int ext4_run_lazyinit_thread(void) 2878 { 2879 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2880 ext4_li_info, "ext4lazyinit"); 2881 if (IS_ERR(ext4_lazyinit_task)) { 2882 int err = PTR_ERR(ext4_lazyinit_task); 2883 ext4_clear_request_list(); 2884 kfree(ext4_li_info); 2885 ext4_li_info = NULL; 2886 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2887 "initialization thread\n", 2888 err); 2889 return err; 2890 } 2891 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2892 return 0; 2893 } 2894 2895 /* 2896 * Check whether it make sense to run itable init. thread or not. 2897 * If there is at least one uninitialized inode table, return 2898 * corresponding group number, else the loop goes through all 2899 * groups and return total number of groups. 2900 */ 2901 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2902 { 2903 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2904 struct ext4_group_desc *gdp = NULL; 2905 2906 for (group = 0; group < ngroups; group++) { 2907 gdp = ext4_get_group_desc(sb, group, NULL); 2908 if (!gdp) 2909 continue; 2910 2911 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2912 break; 2913 } 2914 2915 return group; 2916 } 2917 2918 static int ext4_li_info_new(void) 2919 { 2920 struct ext4_lazy_init *eli = NULL; 2921 2922 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2923 if (!eli) 2924 return -ENOMEM; 2925 2926 INIT_LIST_HEAD(&eli->li_request_list); 2927 mutex_init(&eli->li_list_mtx); 2928 2929 eli->li_state |= EXT4_LAZYINIT_QUIT; 2930 2931 ext4_li_info = eli; 2932 2933 return 0; 2934 } 2935 2936 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2937 ext4_group_t start) 2938 { 2939 struct ext4_sb_info *sbi = EXT4_SB(sb); 2940 struct ext4_li_request *elr; 2941 unsigned long rnd; 2942 2943 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2944 if (!elr) 2945 return NULL; 2946 2947 elr->lr_super = sb; 2948 elr->lr_sbi = sbi; 2949 elr->lr_next_group = start; 2950 2951 /* 2952 * Randomize first schedule time of the request to 2953 * spread the inode table initialization requests 2954 * better. 2955 */ 2956 get_random_bytes(&rnd, sizeof(rnd)); 2957 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2958 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2959 2960 return elr; 2961 } 2962 2963 int ext4_register_li_request(struct super_block *sb, 2964 ext4_group_t first_not_zeroed) 2965 { 2966 struct ext4_sb_info *sbi = EXT4_SB(sb); 2967 struct ext4_li_request *elr = NULL; 2968 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2969 int ret = 0; 2970 2971 mutex_lock(&ext4_li_mtx); 2972 if (sbi->s_li_request != NULL) { 2973 /* 2974 * Reset timeout so it can be computed again, because 2975 * s_li_wait_mult might have changed. 2976 */ 2977 sbi->s_li_request->lr_timeout = 0; 2978 goto out; 2979 } 2980 2981 if (first_not_zeroed == ngroups || 2982 (sb->s_flags & MS_RDONLY) || 2983 !test_opt(sb, INIT_INODE_TABLE)) 2984 goto out; 2985 2986 elr = ext4_li_request_new(sb, first_not_zeroed); 2987 if (!elr) { 2988 ret = -ENOMEM; 2989 goto out; 2990 } 2991 2992 if (NULL == ext4_li_info) { 2993 ret = ext4_li_info_new(); 2994 if (ret) 2995 goto out; 2996 } 2997 2998 mutex_lock(&ext4_li_info->li_list_mtx); 2999 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3000 mutex_unlock(&ext4_li_info->li_list_mtx); 3001 3002 sbi->s_li_request = elr; 3003 /* 3004 * set elr to NULL here since it has been inserted to 3005 * the request_list and the removal and free of it is 3006 * handled by ext4_clear_request_list from now on. 3007 */ 3008 elr = NULL; 3009 3010 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3011 ret = ext4_run_lazyinit_thread(); 3012 if (ret) 3013 goto out; 3014 } 3015 out: 3016 mutex_unlock(&ext4_li_mtx); 3017 if (ret) 3018 kfree(elr); 3019 return ret; 3020 } 3021 3022 /* 3023 * We do not need to lock anything since this is called on 3024 * module unload. 3025 */ 3026 static void ext4_destroy_lazyinit_thread(void) 3027 { 3028 /* 3029 * If thread exited earlier 3030 * there's nothing to be done. 3031 */ 3032 if (!ext4_li_info || !ext4_lazyinit_task) 3033 return; 3034 3035 kthread_stop(ext4_lazyinit_task); 3036 } 3037 3038 static int set_journal_csum_feature_set(struct super_block *sb) 3039 { 3040 int ret = 1; 3041 int compat, incompat; 3042 struct ext4_sb_info *sbi = EXT4_SB(sb); 3043 3044 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3045 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3046 /* journal checksum v2 */ 3047 compat = 0; 3048 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3049 } else { 3050 /* journal checksum v1 */ 3051 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3052 incompat = 0; 3053 } 3054 3055 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3056 ret = jbd2_journal_set_features(sbi->s_journal, 3057 compat, 0, 3058 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3059 incompat); 3060 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3061 ret = jbd2_journal_set_features(sbi->s_journal, 3062 compat, 0, 3063 incompat); 3064 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3065 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3066 } else { 3067 jbd2_journal_clear_features(sbi->s_journal, 3068 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3069 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3070 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3071 } 3072 3073 return ret; 3074 } 3075 3076 /* 3077 * Note: calculating the overhead so we can be compatible with 3078 * historical BSD practice is quite difficult in the face of 3079 * clusters/bigalloc. This is because multiple metadata blocks from 3080 * different block group can end up in the same allocation cluster. 3081 * Calculating the exact overhead in the face of clustered allocation 3082 * requires either O(all block bitmaps) in memory or O(number of block 3083 * groups**2) in time. We will still calculate the superblock for 3084 * older file systems --- and if we come across with a bigalloc file 3085 * system with zero in s_overhead_clusters the estimate will be close to 3086 * correct especially for very large cluster sizes --- but for newer 3087 * file systems, it's better to calculate this figure once at mkfs 3088 * time, and store it in the superblock. If the superblock value is 3089 * present (even for non-bigalloc file systems), we will use it. 3090 */ 3091 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3092 char *buf) 3093 { 3094 struct ext4_sb_info *sbi = EXT4_SB(sb); 3095 struct ext4_group_desc *gdp; 3096 ext4_fsblk_t first_block, last_block, b; 3097 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3098 int s, j, count = 0; 3099 3100 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3101 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3102 sbi->s_itb_per_group + 2); 3103 3104 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3105 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3106 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3107 for (i = 0; i < ngroups; i++) { 3108 gdp = ext4_get_group_desc(sb, i, NULL); 3109 b = ext4_block_bitmap(sb, gdp); 3110 if (b >= first_block && b <= last_block) { 3111 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3112 count++; 3113 } 3114 b = ext4_inode_bitmap(sb, gdp); 3115 if (b >= first_block && b <= last_block) { 3116 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3117 count++; 3118 } 3119 b = ext4_inode_table(sb, gdp); 3120 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3121 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3122 int c = EXT4_B2C(sbi, b - first_block); 3123 ext4_set_bit(c, buf); 3124 count++; 3125 } 3126 if (i != grp) 3127 continue; 3128 s = 0; 3129 if (ext4_bg_has_super(sb, grp)) { 3130 ext4_set_bit(s++, buf); 3131 count++; 3132 } 3133 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3134 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3135 count++; 3136 } 3137 } 3138 if (!count) 3139 return 0; 3140 return EXT4_CLUSTERS_PER_GROUP(sb) - 3141 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3142 } 3143 3144 /* 3145 * Compute the overhead and stash it in sbi->s_overhead 3146 */ 3147 int ext4_calculate_overhead(struct super_block *sb) 3148 { 3149 struct ext4_sb_info *sbi = EXT4_SB(sb); 3150 struct ext4_super_block *es = sbi->s_es; 3151 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3152 ext4_fsblk_t overhead = 0; 3153 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3154 3155 if (!buf) 3156 return -ENOMEM; 3157 3158 /* 3159 * Compute the overhead (FS structures). This is constant 3160 * for a given filesystem unless the number of block groups 3161 * changes so we cache the previous value until it does. 3162 */ 3163 3164 /* 3165 * All of the blocks before first_data_block are overhead 3166 */ 3167 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3168 3169 /* 3170 * Add the overhead found in each block group 3171 */ 3172 for (i = 0; i < ngroups; i++) { 3173 int blks; 3174 3175 blks = count_overhead(sb, i, buf); 3176 overhead += blks; 3177 if (blks) 3178 memset(buf, 0, PAGE_SIZE); 3179 cond_resched(); 3180 } 3181 /* Add the journal blocks as well */ 3182 if (sbi->s_journal) 3183 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3184 3185 sbi->s_overhead = overhead; 3186 smp_wmb(); 3187 free_page((unsigned long) buf); 3188 return 0; 3189 } 3190 3191 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3192 { 3193 char *orig_data = kstrdup(data, GFP_KERNEL); 3194 struct buffer_head *bh; 3195 struct ext4_super_block *es = NULL; 3196 struct ext4_sb_info *sbi; 3197 ext4_fsblk_t block; 3198 ext4_fsblk_t sb_block = get_sb_block(&data); 3199 ext4_fsblk_t logical_sb_block; 3200 unsigned long offset = 0; 3201 unsigned long journal_devnum = 0; 3202 unsigned long def_mount_opts; 3203 struct inode *root; 3204 char *cp; 3205 const char *descr; 3206 int ret = -ENOMEM; 3207 int blocksize, clustersize; 3208 unsigned int db_count; 3209 unsigned int i; 3210 int needs_recovery, has_huge_files, has_bigalloc; 3211 __u64 blocks_count; 3212 int err = 0; 3213 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3214 ext4_group_t first_not_zeroed; 3215 3216 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3217 if (!sbi) 3218 goto out_free_orig; 3219 3220 sbi->s_blockgroup_lock = 3221 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3222 if (!sbi->s_blockgroup_lock) { 3223 kfree(sbi); 3224 goto out_free_orig; 3225 } 3226 sb->s_fs_info = sbi; 3227 sbi->s_sb = sb; 3228 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3229 sbi->s_sb_block = sb_block; 3230 if (sb->s_bdev->bd_part) 3231 sbi->s_sectors_written_start = 3232 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3233 3234 /* Cleanup superblock name */ 3235 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3236 *cp = '!'; 3237 3238 /* -EINVAL is default */ 3239 ret = -EINVAL; 3240 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3241 if (!blocksize) { 3242 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3243 goto out_fail; 3244 } 3245 3246 /* 3247 * The ext4 superblock will not be buffer aligned for other than 1kB 3248 * block sizes. We need to calculate the offset from buffer start. 3249 */ 3250 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3251 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3252 offset = do_div(logical_sb_block, blocksize); 3253 } else { 3254 logical_sb_block = sb_block; 3255 } 3256 3257 if (!(bh = sb_bread(sb, logical_sb_block))) { 3258 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3259 goto out_fail; 3260 } 3261 /* 3262 * Note: s_es must be initialized as soon as possible because 3263 * some ext4 macro-instructions depend on its value 3264 */ 3265 es = (struct ext4_super_block *) (bh->b_data + offset); 3266 sbi->s_es = es; 3267 sb->s_magic = le16_to_cpu(es->s_magic); 3268 if (sb->s_magic != EXT4_SUPER_MAGIC) 3269 goto cantfind_ext4; 3270 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3271 3272 /* Warn if metadata_csum and gdt_csum are both set. */ 3273 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3274 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3275 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3276 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3277 "redundant flags; please run fsck."); 3278 3279 /* Check for a known checksum algorithm */ 3280 if (!ext4_verify_csum_type(sb, es)) { 3281 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3282 "unknown checksum algorithm."); 3283 silent = 1; 3284 goto cantfind_ext4; 3285 } 3286 3287 /* Load the checksum driver */ 3288 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3289 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3290 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3291 if (IS_ERR(sbi->s_chksum_driver)) { 3292 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3293 ret = PTR_ERR(sbi->s_chksum_driver); 3294 sbi->s_chksum_driver = NULL; 3295 goto failed_mount; 3296 } 3297 } 3298 3299 /* Check superblock checksum */ 3300 if (!ext4_superblock_csum_verify(sb, es)) { 3301 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3302 "invalid superblock checksum. Run e2fsck?"); 3303 silent = 1; 3304 goto cantfind_ext4; 3305 } 3306 3307 /* Precompute checksum seed for all metadata */ 3308 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3309 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3310 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3311 sizeof(es->s_uuid)); 3312 3313 /* Set defaults before we parse the mount options */ 3314 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3315 set_opt(sb, INIT_INODE_TABLE); 3316 if (def_mount_opts & EXT4_DEFM_DEBUG) 3317 set_opt(sb, DEBUG); 3318 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3319 set_opt(sb, GRPID); 3320 if (def_mount_opts & EXT4_DEFM_UID16) 3321 set_opt(sb, NO_UID32); 3322 /* xattr user namespace & acls are now defaulted on */ 3323 set_opt(sb, XATTR_USER); 3324 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3325 set_opt(sb, POSIX_ACL); 3326 #endif 3327 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3328 set_opt(sb, JOURNAL_DATA); 3329 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3330 set_opt(sb, ORDERED_DATA); 3331 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3332 set_opt(sb, WRITEBACK_DATA); 3333 3334 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3335 set_opt(sb, ERRORS_PANIC); 3336 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3337 set_opt(sb, ERRORS_CONT); 3338 else 3339 set_opt(sb, ERRORS_RO); 3340 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3341 set_opt(sb, BLOCK_VALIDITY); 3342 if (def_mount_opts & EXT4_DEFM_DISCARD) 3343 set_opt(sb, DISCARD); 3344 3345 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3346 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3347 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3348 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3349 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3350 3351 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3352 set_opt(sb, BARRIER); 3353 3354 /* 3355 * enable delayed allocation by default 3356 * Use -o nodelalloc to turn it off 3357 */ 3358 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3359 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3360 set_opt(sb, DELALLOC); 3361 3362 /* 3363 * set default s_li_wait_mult for lazyinit, for the case there is 3364 * no mount option specified. 3365 */ 3366 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3367 3368 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3369 &journal_devnum, &journal_ioprio, 0)) { 3370 ext4_msg(sb, KERN_WARNING, 3371 "failed to parse options in superblock: %s", 3372 sbi->s_es->s_mount_opts); 3373 } 3374 sbi->s_def_mount_opt = sbi->s_mount_opt; 3375 if (!parse_options((char *) data, sb, &journal_devnum, 3376 &journal_ioprio, 0)) 3377 goto failed_mount; 3378 3379 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3380 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3381 "with data=journal disables delayed " 3382 "allocation and O_DIRECT support!\n"); 3383 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3384 ext4_msg(sb, KERN_ERR, "can't mount with " 3385 "both data=journal and delalloc"); 3386 goto failed_mount; 3387 } 3388 if (test_opt(sb, DIOREAD_NOLOCK)) { 3389 ext4_msg(sb, KERN_ERR, "can't mount with " 3390 "both data=journal and delalloc"); 3391 goto failed_mount; 3392 } 3393 if (test_opt(sb, DELALLOC)) 3394 clear_opt(sb, DELALLOC); 3395 } 3396 3397 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3398 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3399 3400 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3401 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3402 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3403 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3404 ext4_msg(sb, KERN_WARNING, 3405 "feature flags set on rev 0 fs, " 3406 "running e2fsck is recommended"); 3407 3408 if (IS_EXT2_SB(sb)) { 3409 if (ext2_feature_set_ok(sb)) 3410 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3411 "using the ext4 subsystem"); 3412 else { 3413 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3414 "to feature incompatibilities"); 3415 goto failed_mount; 3416 } 3417 } 3418 3419 if (IS_EXT3_SB(sb)) { 3420 if (ext3_feature_set_ok(sb)) 3421 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3422 "using the ext4 subsystem"); 3423 else { 3424 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3425 "to feature incompatibilities"); 3426 goto failed_mount; 3427 } 3428 } 3429 3430 /* 3431 * Check feature flags regardless of the revision level, since we 3432 * previously didn't change the revision level when setting the flags, 3433 * so there is a chance incompat flags are set on a rev 0 filesystem. 3434 */ 3435 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3436 goto failed_mount; 3437 3438 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3439 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3440 blocksize > EXT4_MAX_BLOCK_SIZE) { 3441 ext4_msg(sb, KERN_ERR, 3442 "Unsupported filesystem blocksize %d", blocksize); 3443 goto failed_mount; 3444 } 3445 3446 if (sb->s_blocksize != blocksize) { 3447 /* Validate the filesystem blocksize */ 3448 if (!sb_set_blocksize(sb, blocksize)) { 3449 ext4_msg(sb, KERN_ERR, "bad block size %d", 3450 blocksize); 3451 goto failed_mount; 3452 } 3453 3454 brelse(bh); 3455 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3456 offset = do_div(logical_sb_block, blocksize); 3457 bh = sb_bread(sb, logical_sb_block); 3458 if (!bh) { 3459 ext4_msg(sb, KERN_ERR, 3460 "Can't read superblock on 2nd try"); 3461 goto failed_mount; 3462 } 3463 es = (struct ext4_super_block *)(bh->b_data + offset); 3464 sbi->s_es = es; 3465 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3466 ext4_msg(sb, KERN_ERR, 3467 "Magic mismatch, very weird!"); 3468 goto failed_mount; 3469 } 3470 } 3471 3472 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3473 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3474 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3475 has_huge_files); 3476 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3477 3478 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3479 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3480 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3481 } else { 3482 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3483 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3484 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3485 (!is_power_of_2(sbi->s_inode_size)) || 3486 (sbi->s_inode_size > blocksize)) { 3487 ext4_msg(sb, KERN_ERR, 3488 "unsupported inode size: %d", 3489 sbi->s_inode_size); 3490 goto failed_mount; 3491 } 3492 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3493 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3494 } 3495 3496 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3497 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3498 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3499 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3500 !is_power_of_2(sbi->s_desc_size)) { 3501 ext4_msg(sb, KERN_ERR, 3502 "unsupported descriptor size %lu", 3503 sbi->s_desc_size); 3504 goto failed_mount; 3505 } 3506 } else 3507 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3508 3509 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3510 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3511 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3512 goto cantfind_ext4; 3513 3514 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3515 if (sbi->s_inodes_per_block == 0) 3516 goto cantfind_ext4; 3517 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3518 sbi->s_inodes_per_block; 3519 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3520 sbi->s_sbh = bh; 3521 sbi->s_mount_state = le16_to_cpu(es->s_state); 3522 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3523 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3524 3525 for (i = 0; i < 4; i++) 3526 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3527 sbi->s_def_hash_version = es->s_def_hash_version; 3528 i = le32_to_cpu(es->s_flags); 3529 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3530 sbi->s_hash_unsigned = 3; 3531 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3532 #ifdef __CHAR_UNSIGNED__ 3533 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3534 sbi->s_hash_unsigned = 3; 3535 #else 3536 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3537 #endif 3538 } 3539 3540 /* Handle clustersize */ 3541 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3542 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3543 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3544 if (has_bigalloc) { 3545 if (clustersize < blocksize) { 3546 ext4_msg(sb, KERN_ERR, 3547 "cluster size (%d) smaller than " 3548 "block size (%d)", clustersize, blocksize); 3549 goto failed_mount; 3550 } 3551 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3552 le32_to_cpu(es->s_log_block_size); 3553 sbi->s_clusters_per_group = 3554 le32_to_cpu(es->s_clusters_per_group); 3555 if (sbi->s_clusters_per_group > blocksize * 8) { 3556 ext4_msg(sb, KERN_ERR, 3557 "#clusters per group too big: %lu", 3558 sbi->s_clusters_per_group); 3559 goto failed_mount; 3560 } 3561 if (sbi->s_blocks_per_group != 3562 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3563 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3564 "clusters per group (%lu) inconsistent", 3565 sbi->s_blocks_per_group, 3566 sbi->s_clusters_per_group); 3567 goto failed_mount; 3568 } 3569 } else { 3570 if (clustersize != blocksize) { 3571 ext4_warning(sb, "fragment/cluster size (%d) != " 3572 "block size (%d)", clustersize, 3573 blocksize); 3574 clustersize = blocksize; 3575 } 3576 if (sbi->s_blocks_per_group > blocksize * 8) { 3577 ext4_msg(sb, KERN_ERR, 3578 "#blocks per group too big: %lu", 3579 sbi->s_blocks_per_group); 3580 goto failed_mount; 3581 } 3582 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3583 sbi->s_cluster_bits = 0; 3584 } 3585 sbi->s_cluster_ratio = clustersize / blocksize; 3586 3587 if (sbi->s_inodes_per_group > blocksize * 8) { 3588 ext4_msg(sb, KERN_ERR, 3589 "#inodes per group too big: %lu", 3590 sbi->s_inodes_per_group); 3591 goto failed_mount; 3592 } 3593 3594 /* 3595 * Test whether we have more sectors than will fit in sector_t, 3596 * and whether the max offset is addressable by the page cache. 3597 */ 3598 err = generic_check_addressable(sb->s_blocksize_bits, 3599 ext4_blocks_count(es)); 3600 if (err) { 3601 ext4_msg(sb, KERN_ERR, "filesystem" 3602 " too large to mount safely on this system"); 3603 if (sizeof(sector_t) < 8) 3604 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3605 goto failed_mount; 3606 } 3607 3608 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3609 goto cantfind_ext4; 3610 3611 /* check blocks count against device size */ 3612 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3613 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3614 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3615 "exceeds size of device (%llu blocks)", 3616 ext4_blocks_count(es), blocks_count); 3617 goto failed_mount; 3618 } 3619 3620 /* 3621 * It makes no sense for the first data block to be beyond the end 3622 * of the filesystem. 3623 */ 3624 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3625 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3626 "block %u is beyond end of filesystem (%llu)", 3627 le32_to_cpu(es->s_first_data_block), 3628 ext4_blocks_count(es)); 3629 goto failed_mount; 3630 } 3631 blocks_count = (ext4_blocks_count(es) - 3632 le32_to_cpu(es->s_first_data_block) + 3633 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3634 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3635 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3636 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3637 "(block count %llu, first data block %u, " 3638 "blocks per group %lu)", sbi->s_groups_count, 3639 ext4_blocks_count(es), 3640 le32_to_cpu(es->s_first_data_block), 3641 EXT4_BLOCKS_PER_GROUP(sb)); 3642 goto failed_mount; 3643 } 3644 sbi->s_groups_count = blocks_count; 3645 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3646 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3647 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3648 EXT4_DESC_PER_BLOCK(sb); 3649 sbi->s_group_desc = ext4_kvmalloc(db_count * 3650 sizeof(struct buffer_head *), 3651 GFP_KERNEL); 3652 if (sbi->s_group_desc == NULL) { 3653 ext4_msg(sb, KERN_ERR, "not enough memory"); 3654 ret = -ENOMEM; 3655 goto failed_mount; 3656 } 3657 3658 if (ext4_proc_root) 3659 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3660 3661 if (sbi->s_proc) 3662 proc_create_data("options", S_IRUGO, sbi->s_proc, 3663 &ext4_seq_options_fops, sb); 3664 3665 bgl_lock_init(sbi->s_blockgroup_lock); 3666 3667 for (i = 0; i < db_count; i++) { 3668 block = descriptor_loc(sb, logical_sb_block, i); 3669 sbi->s_group_desc[i] = sb_bread(sb, block); 3670 if (!sbi->s_group_desc[i]) { 3671 ext4_msg(sb, KERN_ERR, 3672 "can't read group descriptor %d", i); 3673 db_count = i; 3674 goto failed_mount2; 3675 } 3676 } 3677 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3678 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3679 goto failed_mount2; 3680 } 3681 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3682 if (!ext4_fill_flex_info(sb)) { 3683 ext4_msg(sb, KERN_ERR, 3684 "unable to initialize " 3685 "flex_bg meta info!"); 3686 goto failed_mount2; 3687 } 3688 3689 sbi->s_gdb_count = db_count; 3690 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3691 spin_lock_init(&sbi->s_next_gen_lock); 3692 3693 init_timer(&sbi->s_err_report); 3694 sbi->s_err_report.function = print_daily_error_info; 3695 sbi->s_err_report.data = (unsigned long) sb; 3696 3697 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3698 ext4_count_free_clusters(sb)); 3699 if (!err) { 3700 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3701 ext4_count_free_inodes(sb)); 3702 } 3703 if (!err) { 3704 err = percpu_counter_init(&sbi->s_dirs_counter, 3705 ext4_count_dirs(sb)); 3706 } 3707 if (!err) { 3708 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3709 } 3710 if (!err) { 3711 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3712 } 3713 if (err) { 3714 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3715 goto failed_mount3; 3716 } 3717 3718 sbi->s_stripe = ext4_get_stripe_size(sbi); 3719 sbi->s_max_writeback_mb_bump = 128; 3720 sbi->s_extent_max_zeroout_kb = 32; 3721 3722 /* Register extent status tree shrinker */ 3723 ext4_es_register_shrinker(sb); 3724 3725 /* 3726 * set up enough so that it can read an inode 3727 */ 3728 if (!test_opt(sb, NOLOAD) && 3729 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3730 sb->s_op = &ext4_sops; 3731 else 3732 sb->s_op = &ext4_nojournal_sops; 3733 sb->s_export_op = &ext4_export_ops; 3734 sb->s_xattr = ext4_xattr_handlers; 3735 #ifdef CONFIG_QUOTA 3736 sb->dq_op = &ext4_quota_operations; 3737 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3738 sb->s_qcop = &ext4_qctl_sysfile_operations; 3739 else 3740 sb->s_qcop = &ext4_qctl_operations; 3741 #endif 3742 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3743 3744 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3745 mutex_init(&sbi->s_orphan_lock); 3746 3747 sb->s_root = NULL; 3748 3749 needs_recovery = (es->s_last_orphan != 0 || 3750 EXT4_HAS_INCOMPAT_FEATURE(sb, 3751 EXT4_FEATURE_INCOMPAT_RECOVER)); 3752 3753 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3754 !(sb->s_flags & MS_RDONLY)) 3755 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3756 goto failed_mount3; 3757 3758 /* 3759 * The first inode we look at is the journal inode. Don't try 3760 * root first: it may be modified in the journal! 3761 */ 3762 if (!test_opt(sb, NOLOAD) && 3763 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3764 if (ext4_load_journal(sb, es, journal_devnum)) 3765 goto failed_mount3; 3766 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3767 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3768 ext4_msg(sb, KERN_ERR, "required journal recovery " 3769 "suppressed and not mounted read-only"); 3770 goto failed_mount_wq; 3771 } else { 3772 clear_opt(sb, DATA_FLAGS); 3773 sbi->s_journal = NULL; 3774 needs_recovery = 0; 3775 goto no_journal; 3776 } 3777 3778 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3779 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3780 JBD2_FEATURE_INCOMPAT_64BIT)) { 3781 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3782 goto failed_mount_wq; 3783 } 3784 3785 if (!set_journal_csum_feature_set(sb)) { 3786 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3787 "feature set"); 3788 goto failed_mount_wq; 3789 } 3790 3791 /* We have now updated the journal if required, so we can 3792 * validate the data journaling mode. */ 3793 switch (test_opt(sb, DATA_FLAGS)) { 3794 case 0: 3795 /* No mode set, assume a default based on the journal 3796 * capabilities: ORDERED_DATA if the journal can 3797 * cope, else JOURNAL_DATA 3798 */ 3799 if (jbd2_journal_check_available_features 3800 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3801 set_opt(sb, ORDERED_DATA); 3802 else 3803 set_opt(sb, JOURNAL_DATA); 3804 break; 3805 3806 case EXT4_MOUNT_ORDERED_DATA: 3807 case EXT4_MOUNT_WRITEBACK_DATA: 3808 if (!jbd2_journal_check_available_features 3809 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3810 ext4_msg(sb, KERN_ERR, "Journal does not support " 3811 "requested data journaling mode"); 3812 goto failed_mount_wq; 3813 } 3814 default: 3815 break; 3816 } 3817 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3818 3819 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3820 3821 /* 3822 * The journal may have updated the bg summary counts, so we 3823 * need to update the global counters. 3824 */ 3825 percpu_counter_set(&sbi->s_freeclusters_counter, 3826 ext4_count_free_clusters(sb)); 3827 percpu_counter_set(&sbi->s_freeinodes_counter, 3828 ext4_count_free_inodes(sb)); 3829 percpu_counter_set(&sbi->s_dirs_counter, 3830 ext4_count_dirs(sb)); 3831 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3832 3833 no_journal: 3834 /* 3835 * Get the # of file system overhead blocks from the 3836 * superblock if present. 3837 */ 3838 if (es->s_overhead_clusters) 3839 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3840 else { 3841 err = ext4_calculate_overhead(sb); 3842 if (err) 3843 goto failed_mount_wq; 3844 } 3845 3846 /* 3847 * The maximum number of concurrent works can be high and 3848 * concurrency isn't really necessary. Limit it to 1. 3849 */ 3850 EXT4_SB(sb)->dio_unwritten_wq = 3851 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3852 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3853 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3854 ret = -ENOMEM; 3855 goto failed_mount_wq; 3856 } 3857 3858 /* 3859 * The jbd2_journal_load will have done any necessary log recovery, 3860 * so we can safely mount the rest of the filesystem now. 3861 */ 3862 3863 root = ext4_iget(sb, EXT4_ROOT_INO); 3864 if (IS_ERR(root)) { 3865 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3866 ret = PTR_ERR(root); 3867 root = NULL; 3868 goto failed_mount4; 3869 } 3870 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3871 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3872 iput(root); 3873 goto failed_mount4; 3874 } 3875 sb->s_root = d_make_root(root); 3876 if (!sb->s_root) { 3877 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3878 ret = -ENOMEM; 3879 goto failed_mount4; 3880 } 3881 3882 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3883 sb->s_flags |= MS_RDONLY; 3884 3885 /* determine the minimum size of new large inodes, if present */ 3886 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3887 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3888 EXT4_GOOD_OLD_INODE_SIZE; 3889 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3890 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3891 if (sbi->s_want_extra_isize < 3892 le16_to_cpu(es->s_want_extra_isize)) 3893 sbi->s_want_extra_isize = 3894 le16_to_cpu(es->s_want_extra_isize); 3895 if (sbi->s_want_extra_isize < 3896 le16_to_cpu(es->s_min_extra_isize)) 3897 sbi->s_want_extra_isize = 3898 le16_to_cpu(es->s_min_extra_isize); 3899 } 3900 } 3901 /* Check if enough inode space is available */ 3902 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3903 sbi->s_inode_size) { 3904 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3905 EXT4_GOOD_OLD_INODE_SIZE; 3906 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3907 "available"); 3908 } 3909 3910 err = ext4_setup_system_zone(sb); 3911 if (err) { 3912 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3913 "zone (%d)", err); 3914 goto failed_mount4a; 3915 } 3916 3917 ext4_ext_init(sb); 3918 err = ext4_mb_init(sb); 3919 if (err) { 3920 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3921 err); 3922 goto failed_mount5; 3923 } 3924 3925 err = ext4_register_li_request(sb, first_not_zeroed); 3926 if (err) 3927 goto failed_mount6; 3928 3929 sbi->s_kobj.kset = ext4_kset; 3930 init_completion(&sbi->s_kobj_unregister); 3931 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3932 "%s", sb->s_id); 3933 if (err) 3934 goto failed_mount7; 3935 3936 #ifdef CONFIG_QUOTA 3937 /* Enable quota usage during mount. */ 3938 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 3939 !(sb->s_flags & MS_RDONLY)) { 3940 err = ext4_enable_quotas(sb); 3941 if (err) 3942 goto failed_mount8; 3943 } 3944 #endif /* CONFIG_QUOTA */ 3945 3946 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3947 ext4_orphan_cleanup(sb, es); 3948 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3949 if (needs_recovery) { 3950 ext4_msg(sb, KERN_INFO, "recovery complete"); 3951 ext4_mark_recovery_complete(sb, es); 3952 } 3953 if (EXT4_SB(sb)->s_journal) { 3954 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3955 descr = " journalled data mode"; 3956 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3957 descr = " ordered data mode"; 3958 else 3959 descr = " writeback data mode"; 3960 } else 3961 descr = "out journal"; 3962 3963 if (test_opt(sb, DISCARD)) { 3964 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3965 if (!blk_queue_discard(q)) 3966 ext4_msg(sb, KERN_WARNING, 3967 "mounting with \"discard\" option, but " 3968 "the device does not support discard"); 3969 } 3970 3971 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3972 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3973 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3974 3975 if (es->s_error_count) 3976 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3977 3978 kfree(orig_data); 3979 return 0; 3980 3981 cantfind_ext4: 3982 if (!silent) 3983 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3984 goto failed_mount; 3985 3986 #ifdef CONFIG_QUOTA 3987 failed_mount8: 3988 kobject_del(&sbi->s_kobj); 3989 #endif 3990 failed_mount7: 3991 ext4_unregister_li_request(sb); 3992 failed_mount6: 3993 ext4_mb_release(sb); 3994 failed_mount5: 3995 ext4_ext_release(sb); 3996 ext4_release_system_zone(sb); 3997 failed_mount4a: 3998 dput(sb->s_root); 3999 sb->s_root = NULL; 4000 failed_mount4: 4001 ext4_msg(sb, KERN_ERR, "mount failed"); 4002 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4003 failed_mount_wq: 4004 if (sbi->s_journal) { 4005 jbd2_journal_destroy(sbi->s_journal); 4006 sbi->s_journal = NULL; 4007 } 4008 failed_mount3: 4009 del_timer(&sbi->s_err_report); 4010 if (sbi->s_flex_groups) 4011 ext4_kvfree(sbi->s_flex_groups); 4012 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4013 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4014 percpu_counter_destroy(&sbi->s_dirs_counter); 4015 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4016 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4017 if (sbi->s_mmp_tsk) 4018 kthread_stop(sbi->s_mmp_tsk); 4019 failed_mount2: 4020 for (i = 0; i < db_count; i++) 4021 brelse(sbi->s_group_desc[i]); 4022 ext4_kvfree(sbi->s_group_desc); 4023 failed_mount: 4024 if (sbi->s_chksum_driver) 4025 crypto_free_shash(sbi->s_chksum_driver); 4026 if (sbi->s_proc) { 4027 remove_proc_entry("options", sbi->s_proc); 4028 remove_proc_entry(sb->s_id, ext4_proc_root); 4029 } 4030 #ifdef CONFIG_QUOTA 4031 for (i = 0; i < MAXQUOTAS; i++) 4032 kfree(sbi->s_qf_names[i]); 4033 #endif 4034 ext4_blkdev_remove(sbi); 4035 brelse(bh); 4036 out_fail: 4037 sb->s_fs_info = NULL; 4038 kfree(sbi->s_blockgroup_lock); 4039 kfree(sbi); 4040 out_free_orig: 4041 kfree(orig_data); 4042 return err ? err : ret; 4043 } 4044 4045 /* 4046 * Setup any per-fs journal parameters now. We'll do this both on 4047 * initial mount, once the journal has been initialised but before we've 4048 * done any recovery; and again on any subsequent remount. 4049 */ 4050 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4051 { 4052 struct ext4_sb_info *sbi = EXT4_SB(sb); 4053 4054 journal->j_commit_interval = sbi->s_commit_interval; 4055 journal->j_min_batch_time = sbi->s_min_batch_time; 4056 journal->j_max_batch_time = sbi->s_max_batch_time; 4057 4058 write_lock(&journal->j_state_lock); 4059 if (test_opt(sb, BARRIER)) 4060 journal->j_flags |= JBD2_BARRIER; 4061 else 4062 journal->j_flags &= ~JBD2_BARRIER; 4063 if (test_opt(sb, DATA_ERR_ABORT)) 4064 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4065 else 4066 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4067 write_unlock(&journal->j_state_lock); 4068 } 4069 4070 static journal_t *ext4_get_journal(struct super_block *sb, 4071 unsigned int journal_inum) 4072 { 4073 struct inode *journal_inode; 4074 journal_t *journal; 4075 4076 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4077 4078 /* First, test for the existence of a valid inode on disk. Bad 4079 * things happen if we iget() an unused inode, as the subsequent 4080 * iput() will try to delete it. */ 4081 4082 journal_inode = ext4_iget(sb, journal_inum); 4083 if (IS_ERR(journal_inode)) { 4084 ext4_msg(sb, KERN_ERR, "no journal found"); 4085 return NULL; 4086 } 4087 if (!journal_inode->i_nlink) { 4088 make_bad_inode(journal_inode); 4089 iput(journal_inode); 4090 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4091 return NULL; 4092 } 4093 4094 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4095 journal_inode, journal_inode->i_size); 4096 if (!S_ISREG(journal_inode->i_mode)) { 4097 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4098 iput(journal_inode); 4099 return NULL; 4100 } 4101 4102 journal = jbd2_journal_init_inode(journal_inode); 4103 if (!journal) { 4104 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4105 iput(journal_inode); 4106 return NULL; 4107 } 4108 journal->j_private = sb; 4109 ext4_init_journal_params(sb, journal); 4110 return journal; 4111 } 4112 4113 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4114 dev_t j_dev) 4115 { 4116 struct buffer_head *bh; 4117 journal_t *journal; 4118 ext4_fsblk_t start; 4119 ext4_fsblk_t len; 4120 int hblock, blocksize; 4121 ext4_fsblk_t sb_block; 4122 unsigned long offset; 4123 struct ext4_super_block *es; 4124 struct block_device *bdev; 4125 4126 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4127 4128 bdev = ext4_blkdev_get(j_dev, sb); 4129 if (bdev == NULL) 4130 return NULL; 4131 4132 blocksize = sb->s_blocksize; 4133 hblock = bdev_logical_block_size(bdev); 4134 if (blocksize < hblock) { 4135 ext4_msg(sb, KERN_ERR, 4136 "blocksize too small for journal device"); 4137 goto out_bdev; 4138 } 4139 4140 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4141 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4142 set_blocksize(bdev, blocksize); 4143 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4144 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4145 "external journal"); 4146 goto out_bdev; 4147 } 4148 4149 es = (struct ext4_super_block *) (bh->b_data + offset); 4150 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4151 !(le32_to_cpu(es->s_feature_incompat) & 4152 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4153 ext4_msg(sb, KERN_ERR, "external journal has " 4154 "bad superblock"); 4155 brelse(bh); 4156 goto out_bdev; 4157 } 4158 4159 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4160 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4161 brelse(bh); 4162 goto out_bdev; 4163 } 4164 4165 len = ext4_blocks_count(es); 4166 start = sb_block + 1; 4167 brelse(bh); /* we're done with the superblock */ 4168 4169 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4170 start, len, blocksize); 4171 if (!journal) { 4172 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4173 goto out_bdev; 4174 } 4175 journal->j_private = sb; 4176 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4177 wait_on_buffer(journal->j_sb_buffer); 4178 if (!buffer_uptodate(journal->j_sb_buffer)) { 4179 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4180 goto out_journal; 4181 } 4182 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4183 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4184 "user (unsupported) - %d", 4185 be32_to_cpu(journal->j_superblock->s_nr_users)); 4186 goto out_journal; 4187 } 4188 EXT4_SB(sb)->journal_bdev = bdev; 4189 ext4_init_journal_params(sb, journal); 4190 return journal; 4191 4192 out_journal: 4193 jbd2_journal_destroy(journal); 4194 out_bdev: 4195 ext4_blkdev_put(bdev); 4196 return NULL; 4197 } 4198 4199 static int ext4_load_journal(struct super_block *sb, 4200 struct ext4_super_block *es, 4201 unsigned long journal_devnum) 4202 { 4203 journal_t *journal; 4204 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4205 dev_t journal_dev; 4206 int err = 0; 4207 int really_read_only; 4208 4209 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4210 4211 if (journal_devnum && 4212 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4213 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4214 "numbers have changed"); 4215 journal_dev = new_decode_dev(journal_devnum); 4216 } else 4217 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4218 4219 really_read_only = bdev_read_only(sb->s_bdev); 4220 4221 /* 4222 * Are we loading a blank journal or performing recovery after a 4223 * crash? For recovery, we need to check in advance whether we 4224 * can get read-write access to the device. 4225 */ 4226 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4227 if (sb->s_flags & MS_RDONLY) { 4228 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4229 "required on readonly filesystem"); 4230 if (really_read_only) { 4231 ext4_msg(sb, KERN_ERR, "write access " 4232 "unavailable, cannot proceed"); 4233 return -EROFS; 4234 } 4235 ext4_msg(sb, KERN_INFO, "write access will " 4236 "be enabled during recovery"); 4237 } 4238 } 4239 4240 if (journal_inum && journal_dev) { 4241 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4242 "and inode journals!"); 4243 return -EINVAL; 4244 } 4245 4246 if (journal_inum) { 4247 if (!(journal = ext4_get_journal(sb, journal_inum))) 4248 return -EINVAL; 4249 } else { 4250 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4251 return -EINVAL; 4252 } 4253 4254 if (!(journal->j_flags & JBD2_BARRIER)) 4255 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4256 4257 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4258 err = jbd2_journal_wipe(journal, !really_read_only); 4259 if (!err) { 4260 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4261 if (save) 4262 memcpy(save, ((char *) es) + 4263 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4264 err = jbd2_journal_load(journal); 4265 if (save) 4266 memcpy(((char *) es) + EXT4_S_ERR_START, 4267 save, EXT4_S_ERR_LEN); 4268 kfree(save); 4269 } 4270 4271 if (err) { 4272 ext4_msg(sb, KERN_ERR, "error loading journal"); 4273 jbd2_journal_destroy(journal); 4274 return err; 4275 } 4276 4277 EXT4_SB(sb)->s_journal = journal; 4278 ext4_clear_journal_err(sb, es); 4279 4280 if (!really_read_only && journal_devnum && 4281 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4282 es->s_journal_dev = cpu_to_le32(journal_devnum); 4283 4284 /* Make sure we flush the recovery flag to disk. */ 4285 ext4_commit_super(sb, 1); 4286 } 4287 4288 return 0; 4289 } 4290 4291 static int ext4_commit_super(struct super_block *sb, int sync) 4292 { 4293 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4294 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4295 int error = 0; 4296 4297 if (!sbh || block_device_ejected(sb)) 4298 return error; 4299 if (buffer_write_io_error(sbh)) { 4300 /* 4301 * Oh, dear. A previous attempt to write the 4302 * superblock failed. This could happen because the 4303 * USB device was yanked out. Or it could happen to 4304 * be a transient write error and maybe the block will 4305 * be remapped. Nothing we can do but to retry the 4306 * write and hope for the best. 4307 */ 4308 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4309 "superblock detected"); 4310 clear_buffer_write_io_error(sbh); 4311 set_buffer_uptodate(sbh); 4312 } 4313 /* 4314 * If the file system is mounted read-only, don't update the 4315 * superblock write time. This avoids updating the superblock 4316 * write time when we are mounting the root file system 4317 * read/only but we need to replay the journal; at that point, 4318 * for people who are east of GMT and who make their clock 4319 * tick in localtime for Windows bug-for-bug compatibility, 4320 * the clock is set in the future, and this will cause e2fsck 4321 * to complain and force a full file system check. 4322 */ 4323 if (!(sb->s_flags & MS_RDONLY)) 4324 es->s_wtime = cpu_to_le32(get_seconds()); 4325 if (sb->s_bdev->bd_part) 4326 es->s_kbytes_written = 4327 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4328 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4329 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4330 else 4331 es->s_kbytes_written = 4332 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4333 ext4_free_blocks_count_set(es, 4334 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4335 &EXT4_SB(sb)->s_freeclusters_counter))); 4336 es->s_free_inodes_count = 4337 cpu_to_le32(percpu_counter_sum_positive( 4338 &EXT4_SB(sb)->s_freeinodes_counter)); 4339 BUFFER_TRACE(sbh, "marking dirty"); 4340 ext4_superblock_csum_set(sb); 4341 mark_buffer_dirty(sbh); 4342 if (sync) { 4343 error = sync_dirty_buffer(sbh); 4344 if (error) 4345 return error; 4346 4347 error = buffer_write_io_error(sbh); 4348 if (error) { 4349 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4350 "superblock"); 4351 clear_buffer_write_io_error(sbh); 4352 set_buffer_uptodate(sbh); 4353 } 4354 } 4355 return error; 4356 } 4357 4358 /* 4359 * Have we just finished recovery? If so, and if we are mounting (or 4360 * remounting) the filesystem readonly, then we will end up with a 4361 * consistent fs on disk. Record that fact. 4362 */ 4363 static void ext4_mark_recovery_complete(struct super_block *sb, 4364 struct ext4_super_block *es) 4365 { 4366 journal_t *journal = EXT4_SB(sb)->s_journal; 4367 4368 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4369 BUG_ON(journal != NULL); 4370 return; 4371 } 4372 jbd2_journal_lock_updates(journal); 4373 if (jbd2_journal_flush(journal) < 0) 4374 goto out; 4375 4376 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4377 sb->s_flags & MS_RDONLY) { 4378 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4379 ext4_commit_super(sb, 1); 4380 } 4381 4382 out: 4383 jbd2_journal_unlock_updates(journal); 4384 } 4385 4386 /* 4387 * If we are mounting (or read-write remounting) a filesystem whose journal 4388 * has recorded an error from a previous lifetime, move that error to the 4389 * main filesystem now. 4390 */ 4391 static void ext4_clear_journal_err(struct super_block *sb, 4392 struct ext4_super_block *es) 4393 { 4394 journal_t *journal; 4395 int j_errno; 4396 const char *errstr; 4397 4398 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4399 4400 journal = EXT4_SB(sb)->s_journal; 4401 4402 /* 4403 * Now check for any error status which may have been recorded in the 4404 * journal by a prior ext4_error() or ext4_abort() 4405 */ 4406 4407 j_errno = jbd2_journal_errno(journal); 4408 if (j_errno) { 4409 char nbuf[16]; 4410 4411 errstr = ext4_decode_error(sb, j_errno, nbuf); 4412 ext4_warning(sb, "Filesystem error recorded " 4413 "from previous mount: %s", errstr); 4414 ext4_warning(sb, "Marking fs in need of filesystem check."); 4415 4416 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4417 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4418 ext4_commit_super(sb, 1); 4419 4420 jbd2_journal_clear_err(journal); 4421 jbd2_journal_update_sb_errno(journal); 4422 } 4423 } 4424 4425 /* 4426 * Force the running and committing transactions to commit, 4427 * and wait on the commit. 4428 */ 4429 int ext4_force_commit(struct super_block *sb) 4430 { 4431 journal_t *journal; 4432 4433 if (sb->s_flags & MS_RDONLY) 4434 return 0; 4435 4436 journal = EXT4_SB(sb)->s_journal; 4437 return ext4_journal_force_commit(journal); 4438 } 4439 4440 static int ext4_sync_fs(struct super_block *sb, int wait) 4441 { 4442 int ret = 0; 4443 tid_t target; 4444 struct ext4_sb_info *sbi = EXT4_SB(sb); 4445 4446 trace_ext4_sync_fs(sb, wait); 4447 flush_workqueue(sbi->dio_unwritten_wq); 4448 /* 4449 * Writeback quota in non-journalled quota case - journalled quota has 4450 * no dirty dquots 4451 */ 4452 dquot_writeback_dquots(sb, -1); 4453 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4454 if (wait) 4455 jbd2_log_wait_commit(sbi->s_journal, target); 4456 } 4457 return ret; 4458 } 4459 4460 /* 4461 * LVM calls this function before a (read-only) snapshot is created. This 4462 * gives us a chance to flush the journal completely and mark the fs clean. 4463 * 4464 * Note that only this function cannot bring a filesystem to be in a clean 4465 * state independently. It relies on upper layer to stop all data & metadata 4466 * modifications. 4467 */ 4468 static int ext4_freeze(struct super_block *sb) 4469 { 4470 int error = 0; 4471 journal_t *journal; 4472 4473 if (sb->s_flags & MS_RDONLY) 4474 return 0; 4475 4476 journal = EXT4_SB(sb)->s_journal; 4477 4478 /* Now we set up the journal barrier. */ 4479 jbd2_journal_lock_updates(journal); 4480 4481 /* 4482 * Don't clear the needs_recovery flag if we failed to flush 4483 * the journal. 4484 */ 4485 error = jbd2_journal_flush(journal); 4486 if (error < 0) 4487 goto out; 4488 4489 /* Journal blocked and flushed, clear needs_recovery flag. */ 4490 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4491 error = ext4_commit_super(sb, 1); 4492 out: 4493 /* we rely on upper layer to stop further updates */ 4494 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4495 return error; 4496 } 4497 4498 /* 4499 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4500 * flag here, even though the filesystem is not technically dirty yet. 4501 */ 4502 static int ext4_unfreeze(struct super_block *sb) 4503 { 4504 if (sb->s_flags & MS_RDONLY) 4505 return 0; 4506 4507 /* Reset the needs_recovery flag before the fs is unlocked. */ 4508 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4509 ext4_commit_super(sb, 1); 4510 return 0; 4511 } 4512 4513 /* 4514 * Structure to save mount options for ext4_remount's benefit 4515 */ 4516 struct ext4_mount_options { 4517 unsigned long s_mount_opt; 4518 unsigned long s_mount_opt2; 4519 kuid_t s_resuid; 4520 kgid_t s_resgid; 4521 unsigned long s_commit_interval; 4522 u32 s_min_batch_time, s_max_batch_time; 4523 #ifdef CONFIG_QUOTA 4524 int s_jquota_fmt; 4525 char *s_qf_names[MAXQUOTAS]; 4526 #endif 4527 }; 4528 4529 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4530 { 4531 struct ext4_super_block *es; 4532 struct ext4_sb_info *sbi = EXT4_SB(sb); 4533 unsigned long old_sb_flags; 4534 struct ext4_mount_options old_opts; 4535 int enable_quota = 0; 4536 ext4_group_t g; 4537 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4538 int err = 0; 4539 #ifdef CONFIG_QUOTA 4540 int i, j; 4541 #endif 4542 char *orig_data = kstrdup(data, GFP_KERNEL); 4543 4544 /* Store the original options */ 4545 old_sb_flags = sb->s_flags; 4546 old_opts.s_mount_opt = sbi->s_mount_opt; 4547 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4548 old_opts.s_resuid = sbi->s_resuid; 4549 old_opts.s_resgid = sbi->s_resgid; 4550 old_opts.s_commit_interval = sbi->s_commit_interval; 4551 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4552 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4553 #ifdef CONFIG_QUOTA 4554 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4555 for (i = 0; i < MAXQUOTAS; i++) 4556 if (sbi->s_qf_names[i]) { 4557 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4558 GFP_KERNEL); 4559 if (!old_opts.s_qf_names[i]) { 4560 for (j = 0; j < i; j++) 4561 kfree(old_opts.s_qf_names[j]); 4562 kfree(orig_data); 4563 return -ENOMEM; 4564 } 4565 } else 4566 old_opts.s_qf_names[i] = NULL; 4567 #endif 4568 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4569 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4570 4571 /* 4572 * Allow the "check" option to be passed as a remount option. 4573 */ 4574 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4575 err = -EINVAL; 4576 goto restore_opts; 4577 } 4578 4579 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4580 ext4_abort(sb, "Abort forced by user"); 4581 4582 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4583 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4584 4585 es = sbi->s_es; 4586 4587 if (sbi->s_journal) { 4588 ext4_init_journal_params(sb, sbi->s_journal); 4589 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4590 } 4591 4592 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4593 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4594 err = -EROFS; 4595 goto restore_opts; 4596 } 4597 4598 if (*flags & MS_RDONLY) { 4599 err = dquot_suspend(sb, -1); 4600 if (err < 0) 4601 goto restore_opts; 4602 4603 /* 4604 * First of all, the unconditional stuff we have to do 4605 * to disable replay of the journal when we next remount 4606 */ 4607 sb->s_flags |= MS_RDONLY; 4608 4609 /* 4610 * OK, test if we are remounting a valid rw partition 4611 * readonly, and if so set the rdonly flag and then 4612 * mark the partition as valid again. 4613 */ 4614 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4615 (sbi->s_mount_state & EXT4_VALID_FS)) 4616 es->s_state = cpu_to_le16(sbi->s_mount_state); 4617 4618 if (sbi->s_journal) 4619 ext4_mark_recovery_complete(sb, es); 4620 } else { 4621 /* Make sure we can mount this feature set readwrite */ 4622 if (!ext4_feature_set_ok(sb, 0)) { 4623 err = -EROFS; 4624 goto restore_opts; 4625 } 4626 /* 4627 * Make sure the group descriptor checksums 4628 * are sane. If they aren't, refuse to remount r/w. 4629 */ 4630 for (g = 0; g < sbi->s_groups_count; g++) { 4631 struct ext4_group_desc *gdp = 4632 ext4_get_group_desc(sb, g, NULL); 4633 4634 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4635 ext4_msg(sb, KERN_ERR, 4636 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4637 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4638 le16_to_cpu(gdp->bg_checksum)); 4639 err = -EINVAL; 4640 goto restore_opts; 4641 } 4642 } 4643 4644 /* 4645 * If we have an unprocessed orphan list hanging 4646 * around from a previously readonly bdev mount, 4647 * require a full umount/remount for now. 4648 */ 4649 if (es->s_last_orphan) { 4650 ext4_msg(sb, KERN_WARNING, "Couldn't " 4651 "remount RDWR because of unprocessed " 4652 "orphan inode list. Please " 4653 "umount/remount instead"); 4654 err = -EINVAL; 4655 goto restore_opts; 4656 } 4657 4658 /* 4659 * Mounting a RDONLY partition read-write, so reread 4660 * and store the current valid flag. (It may have 4661 * been changed by e2fsck since we originally mounted 4662 * the partition.) 4663 */ 4664 if (sbi->s_journal) 4665 ext4_clear_journal_err(sb, es); 4666 sbi->s_mount_state = le16_to_cpu(es->s_state); 4667 if (!ext4_setup_super(sb, es, 0)) 4668 sb->s_flags &= ~MS_RDONLY; 4669 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4670 EXT4_FEATURE_INCOMPAT_MMP)) 4671 if (ext4_multi_mount_protect(sb, 4672 le64_to_cpu(es->s_mmp_block))) { 4673 err = -EROFS; 4674 goto restore_opts; 4675 } 4676 enable_quota = 1; 4677 } 4678 } 4679 4680 /* 4681 * Reinitialize lazy itable initialization thread based on 4682 * current settings 4683 */ 4684 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4685 ext4_unregister_li_request(sb); 4686 else { 4687 ext4_group_t first_not_zeroed; 4688 first_not_zeroed = ext4_has_uninit_itable(sb); 4689 ext4_register_li_request(sb, first_not_zeroed); 4690 } 4691 4692 ext4_setup_system_zone(sb); 4693 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4694 ext4_commit_super(sb, 1); 4695 4696 #ifdef CONFIG_QUOTA 4697 /* Release old quota file names */ 4698 for (i = 0; i < MAXQUOTAS; i++) 4699 kfree(old_opts.s_qf_names[i]); 4700 if (enable_quota) { 4701 if (sb_any_quota_suspended(sb)) 4702 dquot_resume(sb, -1); 4703 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4704 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4705 err = ext4_enable_quotas(sb); 4706 if (err) 4707 goto restore_opts; 4708 } 4709 } 4710 #endif 4711 4712 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4713 kfree(orig_data); 4714 return 0; 4715 4716 restore_opts: 4717 sb->s_flags = old_sb_flags; 4718 sbi->s_mount_opt = old_opts.s_mount_opt; 4719 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4720 sbi->s_resuid = old_opts.s_resuid; 4721 sbi->s_resgid = old_opts.s_resgid; 4722 sbi->s_commit_interval = old_opts.s_commit_interval; 4723 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4724 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4725 #ifdef CONFIG_QUOTA 4726 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4727 for (i = 0; i < MAXQUOTAS; i++) { 4728 kfree(sbi->s_qf_names[i]); 4729 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4730 } 4731 #endif 4732 kfree(orig_data); 4733 return err; 4734 } 4735 4736 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4737 { 4738 struct super_block *sb = dentry->d_sb; 4739 struct ext4_sb_info *sbi = EXT4_SB(sb); 4740 struct ext4_super_block *es = sbi->s_es; 4741 ext4_fsblk_t overhead = 0; 4742 u64 fsid; 4743 s64 bfree; 4744 4745 if (!test_opt(sb, MINIX_DF)) 4746 overhead = sbi->s_overhead; 4747 4748 buf->f_type = EXT4_SUPER_MAGIC; 4749 buf->f_bsize = sb->s_blocksize; 4750 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4751 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4752 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4753 /* prevent underflow in case that few free space is available */ 4754 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4755 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4756 if (buf->f_bfree < ext4_r_blocks_count(es)) 4757 buf->f_bavail = 0; 4758 buf->f_files = le32_to_cpu(es->s_inodes_count); 4759 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4760 buf->f_namelen = EXT4_NAME_LEN; 4761 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4762 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4763 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4764 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4765 4766 return 0; 4767 } 4768 4769 /* Helper function for writing quotas on sync - we need to start transaction 4770 * before quota file is locked for write. Otherwise the are possible deadlocks: 4771 * Process 1 Process 2 4772 * ext4_create() quota_sync() 4773 * jbd2_journal_start() write_dquot() 4774 * dquot_initialize() down(dqio_mutex) 4775 * down(dqio_mutex) jbd2_journal_start() 4776 * 4777 */ 4778 4779 #ifdef CONFIG_QUOTA 4780 4781 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4782 { 4783 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4784 } 4785 4786 static int ext4_write_dquot(struct dquot *dquot) 4787 { 4788 int ret, err; 4789 handle_t *handle; 4790 struct inode *inode; 4791 4792 inode = dquot_to_inode(dquot); 4793 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4794 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4795 if (IS_ERR(handle)) 4796 return PTR_ERR(handle); 4797 ret = dquot_commit(dquot); 4798 err = ext4_journal_stop(handle); 4799 if (!ret) 4800 ret = err; 4801 return ret; 4802 } 4803 4804 static int ext4_acquire_dquot(struct dquot *dquot) 4805 { 4806 int ret, err; 4807 handle_t *handle; 4808 4809 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4810 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4811 if (IS_ERR(handle)) 4812 return PTR_ERR(handle); 4813 ret = dquot_acquire(dquot); 4814 err = ext4_journal_stop(handle); 4815 if (!ret) 4816 ret = err; 4817 return ret; 4818 } 4819 4820 static int ext4_release_dquot(struct dquot *dquot) 4821 { 4822 int ret, err; 4823 handle_t *handle; 4824 4825 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4826 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4827 if (IS_ERR(handle)) { 4828 /* Release dquot anyway to avoid endless cycle in dqput() */ 4829 dquot_release(dquot); 4830 return PTR_ERR(handle); 4831 } 4832 ret = dquot_release(dquot); 4833 err = ext4_journal_stop(handle); 4834 if (!ret) 4835 ret = err; 4836 return ret; 4837 } 4838 4839 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4840 { 4841 struct super_block *sb = dquot->dq_sb; 4842 struct ext4_sb_info *sbi = EXT4_SB(sb); 4843 4844 /* Are we journaling quotas? */ 4845 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 4846 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4847 dquot_mark_dquot_dirty(dquot); 4848 return ext4_write_dquot(dquot); 4849 } else { 4850 return dquot_mark_dquot_dirty(dquot); 4851 } 4852 } 4853 4854 static int ext4_write_info(struct super_block *sb, int type) 4855 { 4856 int ret, err; 4857 handle_t *handle; 4858 4859 /* Data block + inode block */ 4860 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 4861 if (IS_ERR(handle)) 4862 return PTR_ERR(handle); 4863 ret = dquot_commit_info(sb, type); 4864 err = ext4_journal_stop(handle); 4865 if (!ret) 4866 ret = err; 4867 return ret; 4868 } 4869 4870 /* 4871 * Turn on quotas during mount time - we need to find 4872 * the quota file and such... 4873 */ 4874 static int ext4_quota_on_mount(struct super_block *sb, int type) 4875 { 4876 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4877 EXT4_SB(sb)->s_jquota_fmt, type); 4878 } 4879 4880 /* 4881 * Standard function to be called on quota_on 4882 */ 4883 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4884 struct path *path) 4885 { 4886 int err; 4887 4888 if (!test_opt(sb, QUOTA)) 4889 return -EINVAL; 4890 4891 /* Quotafile not on the same filesystem? */ 4892 if (path->dentry->d_sb != sb) 4893 return -EXDEV; 4894 /* Journaling quota? */ 4895 if (EXT4_SB(sb)->s_qf_names[type]) { 4896 /* Quotafile not in fs root? */ 4897 if (path->dentry->d_parent != sb->s_root) 4898 ext4_msg(sb, KERN_WARNING, 4899 "Quota file not on filesystem root. " 4900 "Journaled quota will not work"); 4901 } 4902 4903 /* 4904 * When we journal data on quota file, we have to flush journal to see 4905 * all updates to the file when we bypass pagecache... 4906 */ 4907 if (EXT4_SB(sb)->s_journal && 4908 ext4_should_journal_data(path->dentry->d_inode)) { 4909 /* 4910 * We don't need to lock updates but journal_flush() could 4911 * otherwise be livelocked... 4912 */ 4913 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4914 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4915 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4916 if (err) 4917 return err; 4918 } 4919 4920 return dquot_quota_on(sb, type, format_id, path); 4921 } 4922 4923 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4924 unsigned int flags) 4925 { 4926 int err; 4927 struct inode *qf_inode; 4928 unsigned long qf_inums[MAXQUOTAS] = { 4929 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4930 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4931 }; 4932 4933 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4934 4935 if (!qf_inums[type]) 4936 return -EPERM; 4937 4938 qf_inode = ext4_iget(sb, qf_inums[type]); 4939 if (IS_ERR(qf_inode)) { 4940 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4941 return PTR_ERR(qf_inode); 4942 } 4943 4944 err = dquot_enable(qf_inode, type, format_id, flags); 4945 iput(qf_inode); 4946 4947 return err; 4948 } 4949 4950 /* Enable usage tracking for all quota types. */ 4951 static int ext4_enable_quotas(struct super_block *sb) 4952 { 4953 int type, err = 0; 4954 unsigned long qf_inums[MAXQUOTAS] = { 4955 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4956 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4957 }; 4958 4959 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4960 for (type = 0; type < MAXQUOTAS; type++) { 4961 if (qf_inums[type]) { 4962 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4963 DQUOT_USAGE_ENABLED); 4964 if (err) { 4965 ext4_warning(sb, 4966 "Failed to enable quota tracking " 4967 "(type=%d, err=%d). Please run " 4968 "e2fsck to fix.", type, err); 4969 return err; 4970 } 4971 } 4972 } 4973 return 0; 4974 } 4975 4976 /* 4977 * quota_on function that is used when QUOTA feature is set. 4978 */ 4979 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 4980 int format_id) 4981 { 4982 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 4983 return -EINVAL; 4984 4985 /* 4986 * USAGE was enabled at mount time. Only need to enable LIMITS now. 4987 */ 4988 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 4989 } 4990 4991 static int ext4_quota_off(struct super_block *sb, int type) 4992 { 4993 struct inode *inode = sb_dqopt(sb)->files[type]; 4994 handle_t *handle; 4995 4996 /* Force all delayed allocation blocks to be allocated. 4997 * Caller already holds s_umount sem */ 4998 if (test_opt(sb, DELALLOC)) 4999 sync_filesystem(sb); 5000 5001 if (!inode) 5002 goto out; 5003 5004 /* Update modification times of quota files when userspace can 5005 * start looking at them */ 5006 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5007 if (IS_ERR(handle)) 5008 goto out; 5009 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5010 ext4_mark_inode_dirty(handle, inode); 5011 ext4_journal_stop(handle); 5012 5013 out: 5014 return dquot_quota_off(sb, type); 5015 } 5016 5017 /* 5018 * quota_off function that is used when QUOTA feature is set. 5019 */ 5020 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5021 { 5022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5023 return -EINVAL; 5024 5025 /* Disable only the limits. */ 5026 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5027 } 5028 5029 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5030 * acquiring the locks... As quota files are never truncated and quota code 5031 * itself serializes the operations (and no one else should touch the files) 5032 * we don't have to be afraid of races */ 5033 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5034 size_t len, loff_t off) 5035 { 5036 struct inode *inode = sb_dqopt(sb)->files[type]; 5037 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5038 int err = 0; 5039 int offset = off & (sb->s_blocksize - 1); 5040 int tocopy; 5041 size_t toread; 5042 struct buffer_head *bh; 5043 loff_t i_size = i_size_read(inode); 5044 5045 if (off > i_size) 5046 return 0; 5047 if (off+len > i_size) 5048 len = i_size-off; 5049 toread = len; 5050 while (toread > 0) { 5051 tocopy = sb->s_blocksize - offset < toread ? 5052 sb->s_blocksize - offset : toread; 5053 bh = ext4_bread(NULL, inode, blk, 0, &err); 5054 if (err) 5055 return err; 5056 if (!bh) /* A hole? */ 5057 memset(data, 0, tocopy); 5058 else 5059 memcpy(data, bh->b_data+offset, tocopy); 5060 brelse(bh); 5061 offset = 0; 5062 toread -= tocopy; 5063 data += tocopy; 5064 blk++; 5065 } 5066 return len; 5067 } 5068 5069 /* Write to quotafile (we know the transaction is already started and has 5070 * enough credits) */ 5071 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5072 const char *data, size_t len, loff_t off) 5073 { 5074 struct inode *inode = sb_dqopt(sb)->files[type]; 5075 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5076 int err = 0; 5077 int offset = off & (sb->s_blocksize - 1); 5078 struct buffer_head *bh; 5079 handle_t *handle = journal_current_handle(); 5080 5081 if (EXT4_SB(sb)->s_journal && !handle) { 5082 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5083 " cancelled because transaction is not started", 5084 (unsigned long long)off, (unsigned long long)len); 5085 return -EIO; 5086 } 5087 /* 5088 * Since we account only one data block in transaction credits, 5089 * then it is impossible to cross a block boundary. 5090 */ 5091 if (sb->s_blocksize - offset < len) { 5092 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5093 " cancelled because not block aligned", 5094 (unsigned long long)off, (unsigned long long)len); 5095 return -EIO; 5096 } 5097 5098 bh = ext4_bread(handle, inode, blk, 1, &err); 5099 if (!bh) 5100 goto out; 5101 err = ext4_journal_get_write_access(handle, bh); 5102 if (err) { 5103 brelse(bh); 5104 goto out; 5105 } 5106 lock_buffer(bh); 5107 memcpy(bh->b_data+offset, data, len); 5108 flush_dcache_page(bh->b_page); 5109 unlock_buffer(bh); 5110 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5111 brelse(bh); 5112 out: 5113 if (err) 5114 return err; 5115 if (inode->i_size < off + len) { 5116 i_size_write(inode, off + len); 5117 EXT4_I(inode)->i_disksize = inode->i_size; 5118 ext4_mark_inode_dirty(handle, inode); 5119 } 5120 return len; 5121 } 5122 5123 #endif 5124 5125 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5126 const char *dev_name, void *data) 5127 { 5128 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5129 } 5130 5131 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5132 static inline void register_as_ext2(void) 5133 { 5134 int err = register_filesystem(&ext2_fs_type); 5135 if (err) 5136 printk(KERN_WARNING 5137 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5138 } 5139 5140 static inline void unregister_as_ext2(void) 5141 { 5142 unregister_filesystem(&ext2_fs_type); 5143 } 5144 5145 static inline int ext2_feature_set_ok(struct super_block *sb) 5146 { 5147 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5148 return 0; 5149 if (sb->s_flags & MS_RDONLY) 5150 return 1; 5151 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5152 return 0; 5153 return 1; 5154 } 5155 MODULE_ALIAS("ext2"); 5156 #else 5157 static inline void register_as_ext2(void) { } 5158 static inline void unregister_as_ext2(void) { } 5159 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5160 #endif 5161 5162 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5163 static inline void register_as_ext3(void) 5164 { 5165 int err = register_filesystem(&ext3_fs_type); 5166 if (err) 5167 printk(KERN_WARNING 5168 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5169 } 5170 5171 static inline void unregister_as_ext3(void) 5172 { 5173 unregister_filesystem(&ext3_fs_type); 5174 } 5175 5176 static inline int ext3_feature_set_ok(struct super_block *sb) 5177 { 5178 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5179 return 0; 5180 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5181 return 0; 5182 if (sb->s_flags & MS_RDONLY) 5183 return 1; 5184 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5185 return 0; 5186 return 1; 5187 } 5188 MODULE_ALIAS("ext3"); 5189 #else 5190 static inline void register_as_ext3(void) { } 5191 static inline void unregister_as_ext3(void) { } 5192 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5193 #endif 5194 5195 static struct file_system_type ext4_fs_type = { 5196 .owner = THIS_MODULE, 5197 .name = "ext4", 5198 .mount = ext4_mount, 5199 .kill_sb = kill_block_super, 5200 .fs_flags = FS_REQUIRES_DEV, 5201 }; 5202 5203 static int __init ext4_init_feat_adverts(void) 5204 { 5205 struct ext4_features *ef; 5206 int ret = -ENOMEM; 5207 5208 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5209 if (!ef) 5210 goto out; 5211 5212 ef->f_kobj.kset = ext4_kset; 5213 init_completion(&ef->f_kobj_unregister); 5214 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5215 "features"); 5216 if (ret) { 5217 kfree(ef); 5218 goto out; 5219 } 5220 5221 ext4_feat = ef; 5222 ret = 0; 5223 out: 5224 return ret; 5225 } 5226 5227 static void ext4_exit_feat_adverts(void) 5228 { 5229 kobject_put(&ext4_feat->f_kobj); 5230 wait_for_completion(&ext4_feat->f_kobj_unregister); 5231 kfree(ext4_feat); 5232 } 5233 5234 /* Shared across all ext4 file systems */ 5235 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5236 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5237 5238 static int __init ext4_init_fs(void) 5239 { 5240 int i, err; 5241 5242 ext4_li_info = NULL; 5243 mutex_init(&ext4_li_mtx); 5244 5245 /* Build-time check for flags consistency */ 5246 ext4_check_flag_values(); 5247 5248 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5249 mutex_init(&ext4__aio_mutex[i]); 5250 init_waitqueue_head(&ext4__ioend_wq[i]); 5251 } 5252 5253 err = ext4_init_es(); 5254 if (err) 5255 return err; 5256 5257 err = ext4_init_pageio(); 5258 if (err) 5259 goto out7; 5260 5261 err = ext4_init_system_zone(); 5262 if (err) 5263 goto out6; 5264 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5265 if (!ext4_kset) { 5266 err = -ENOMEM; 5267 goto out5; 5268 } 5269 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5270 5271 err = ext4_init_feat_adverts(); 5272 if (err) 5273 goto out4; 5274 5275 err = ext4_init_mballoc(); 5276 if (err) 5277 goto out3; 5278 5279 err = ext4_init_xattr(); 5280 if (err) 5281 goto out2; 5282 err = init_inodecache(); 5283 if (err) 5284 goto out1; 5285 register_as_ext3(); 5286 register_as_ext2(); 5287 err = register_filesystem(&ext4_fs_type); 5288 if (err) 5289 goto out; 5290 5291 return 0; 5292 out: 5293 unregister_as_ext2(); 5294 unregister_as_ext3(); 5295 destroy_inodecache(); 5296 out1: 5297 ext4_exit_xattr(); 5298 out2: 5299 ext4_exit_mballoc(); 5300 out3: 5301 ext4_exit_feat_adverts(); 5302 out4: 5303 if (ext4_proc_root) 5304 remove_proc_entry("fs/ext4", NULL); 5305 kset_unregister(ext4_kset); 5306 out5: 5307 ext4_exit_system_zone(); 5308 out6: 5309 ext4_exit_pageio(); 5310 out7: 5311 ext4_exit_es(); 5312 5313 return err; 5314 } 5315 5316 static void __exit ext4_exit_fs(void) 5317 { 5318 ext4_destroy_lazyinit_thread(); 5319 unregister_as_ext2(); 5320 unregister_as_ext3(); 5321 unregister_filesystem(&ext4_fs_type); 5322 destroy_inodecache(); 5323 ext4_exit_xattr(); 5324 ext4_exit_mballoc(); 5325 ext4_exit_feat_adverts(); 5326 remove_proc_entry("fs/ext4", NULL); 5327 kset_unregister(ext4_kset); 5328 ext4_exit_system_zone(); 5329 ext4_exit_pageio(); 5330 } 5331 5332 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5333 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5334 MODULE_LICENSE("GPL"); 5335 module_init(ext4_init_fs) 5336 module_exit(ext4_exit_fs) 5337