1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/ext4.h> 51 52 static int default_mb_history_length = 1000; 53 54 module_param_named(default_mb_history_length, default_mb_history_length, 55 int, 0644); 56 MODULE_PARM_DESC(default_mb_history_length, 57 "Default number of entries saved for mb_history"); 58 59 struct proc_dir_entry *ext4_proc_root; 60 static struct kset *ext4_kset; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static const char *ext4_decode_error(struct super_block *sb, int errno, 71 char nbuf[16]); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static void ext4_write_super(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 78 79 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 80 struct ext4_group_desc *bg) 81 { 82 return le32_to_cpu(bg->bg_block_bitmap_lo) | 83 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 84 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 85 } 86 87 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 88 struct ext4_group_desc *bg) 89 { 90 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 91 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 92 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 93 } 94 95 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 96 struct ext4_group_desc *bg) 97 { 98 return le32_to_cpu(bg->bg_inode_table_lo) | 99 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 100 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 101 } 102 103 __u32 ext4_free_blks_count(struct super_block *sb, 104 struct ext4_group_desc *bg) 105 { 106 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 107 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 108 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 109 } 110 111 __u32 ext4_free_inodes_count(struct super_block *sb, 112 struct ext4_group_desc *bg) 113 { 114 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 115 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 116 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 117 } 118 119 __u32 ext4_used_dirs_count(struct super_block *sb, 120 struct ext4_group_desc *bg) 121 { 122 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 123 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 124 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 125 } 126 127 __u32 ext4_itable_unused_count(struct super_block *sb, 128 struct ext4_group_desc *bg) 129 { 130 return le16_to_cpu(bg->bg_itable_unused_lo) | 131 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 132 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 133 } 134 135 void ext4_block_bitmap_set(struct super_block *sb, 136 struct ext4_group_desc *bg, ext4_fsblk_t blk) 137 { 138 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 139 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 140 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 141 } 142 143 void ext4_inode_bitmap_set(struct super_block *sb, 144 struct ext4_group_desc *bg, ext4_fsblk_t blk) 145 { 146 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 147 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 148 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 149 } 150 151 void ext4_inode_table_set(struct super_block *sb, 152 struct ext4_group_desc *bg, ext4_fsblk_t blk) 153 { 154 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 155 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 156 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 157 } 158 159 void ext4_free_blks_set(struct super_block *sb, 160 struct ext4_group_desc *bg, __u32 count) 161 { 162 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 163 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 164 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 165 } 166 167 void ext4_free_inodes_set(struct super_block *sb, 168 struct ext4_group_desc *bg, __u32 count) 169 { 170 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 171 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 172 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 173 } 174 175 void ext4_used_dirs_set(struct super_block *sb, 176 struct ext4_group_desc *bg, __u32 count) 177 { 178 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 179 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 180 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 181 } 182 183 void ext4_itable_unused_set(struct super_block *sb, 184 struct ext4_group_desc *bg, __u32 count) 185 { 186 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 187 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 188 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 189 } 190 191 /* 192 * Wrappers for jbd2_journal_start/end. 193 * 194 * The only special thing we need to do here is to make sure that all 195 * journal_end calls result in the superblock being marked dirty, so 196 * that sync() will call the filesystem's write_super callback if 197 * appropriate. 198 */ 199 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 200 { 201 journal_t *journal; 202 203 if (sb->s_flags & MS_RDONLY) 204 return ERR_PTR(-EROFS); 205 206 /* Special case here: if the journal has aborted behind our 207 * backs (eg. EIO in the commit thread), then we still need to 208 * take the FS itself readonly cleanly. */ 209 journal = EXT4_SB(sb)->s_journal; 210 if (journal) { 211 if (is_journal_aborted(journal)) { 212 ext4_abort(sb, __func__, "Detected aborted journal"); 213 return ERR_PTR(-EROFS); 214 } 215 return jbd2_journal_start(journal, nblocks); 216 } 217 /* 218 * We're not journaling, return the appropriate indication. 219 */ 220 current->journal_info = EXT4_NOJOURNAL_HANDLE; 221 return current->journal_info; 222 } 223 224 /* 225 * The only special thing we need to do here is to make sure that all 226 * jbd2_journal_stop calls result in the superblock being marked dirty, so 227 * that sync() will call the filesystem's write_super callback if 228 * appropriate. 229 */ 230 int __ext4_journal_stop(const char *where, handle_t *handle) 231 { 232 struct super_block *sb; 233 int err; 234 int rc; 235 236 if (!ext4_handle_valid(handle)) { 237 /* 238 * Do this here since we don't call jbd2_journal_stop() in 239 * no-journal mode. 240 */ 241 current->journal_info = NULL; 242 return 0; 243 } 244 sb = handle->h_transaction->t_journal->j_private; 245 err = handle->h_err; 246 rc = jbd2_journal_stop(handle); 247 248 if (!err) 249 err = rc; 250 if (err) 251 __ext4_std_error(sb, where, err); 252 return err; 253 } 254 255 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 256 struct buffer_head *bh, handle_t *handle, int err) 257 { 258 char nbuf[16]; 259 const char *errstr = ext4_decode_error(NULL, err, nbuf); 260 261 BUG_ON(!ext4_handle_valid(handle)); 262 263 if (bh) 264 BUFFER_TRACE(bh, "abort"); 265 266 if (!handle->h_err) 267 handle->h_err = err; 268 269 if (is_handle_aborted(handle)) 270 return; 271 272 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 273 caller, errstr, err_fn); 274 275 jbd2_journal_abort_handle(handle); 276 } 277 278 /* Deal with the reporting of failure conditions on a filesystem such as 279 * inconsistencies detected or read IO failures. 280 * 281 * On ext2, we can store the error state of the filesystem in the 282 * superblock. That is not possible on ext4, because we may have other 283 * write ordering constraints on the superblock which prevent us from 284 * writing it out straight away; and given that the journal is about to 285 * be aborted, we can't rely on the current, or future, transactions to 286 * write out the superblock safely. 287 * 288 * We'll just use the jbd2_journal_abort() error code to record an error in 289 * the journal instead. On recovery, the journal will compain about 290 * that error until we've noted it down and cleared it. 291 */ 292 293 static void ext4_handle_error(struct super_block *sb) 294 { 295 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 296 297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 298 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 299 300 if (sb->s_flags & MS_RDONLY) 301 return; 302 303 if (!test_opt(sb, ERRORS_CONT)) { 304 journal_t *journal = EXT4_SB(sb)->s_journal; 305 306 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 307 if (journal) 308 jbd2_journal_abort(journal, -EIO); 309 } 310 if (test_opt(sb, ERRORS_RO)) { 311 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 312 sb->s_flags |= MS_RDONLY; 313 } 314 ext4_commit_super(sb, 1); 315 if (test_opt(sb, ERRORS_PANIC)) 316 panic("EXT4-fs (device %s): panic forced after error\n", 317 sb->s_id); 318 } 319 320 void ext4_error(struct super_block *sb, const char *function, 321 const char *fmt, ...) 322 { 323 va_list args; 324 325 va_start(args, fmt); 326 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 327 vprintk(fmt, args); 328 printk("\n"); 329 va_end(args); 330 331 ext4_handle_error(sb); 332 } 333 334 static const char *ext4_decode_error(struct super_block *sb, int errno, 335 char nbuf[16]) 336 { 337 char *errstr = NULL; 338 339 switch (errno) { 340 case -EIO: 341 errstr = "IO failure"; 342 break; 343 case -ENOMEM: 344 errstr = "Out of memory"; 345 break; 346 case -EROFS: 347 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) 348 errstr = "Journal has aborted"; 349 else 350 errstr = "Readonly filesystem"; 351 break; 352 default: 353 /* If the caller passed in an extra buffer for unknown 354 * errors, textualise them now. Else we just return 355 * NULL. */ 356 if (nbuf) { 357 /* Check for truncated error codes... */ 358 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 359 errstr = nbuf; 360 } 361 break; 362 } 363 364 return errstr; 365 } 366 367 /* __ext4_std_error decodes expected errors from journaling functions 368 * automatically and invokes the appropriate error response. */ 369 370 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 371 { 372 char nbuf[16]; 373 const char *errstr; 374 375 /* Special case: if the error is EROFS, and we're not already 376 * inside a transaction, then there's really no point in logging 377 * an error. */ 378 if (errno == -EROFS && journal_current_handle() == NULL && 379 (sb->s_flags & MS_RDONLY)) 380 return; 381 382 errstr = ext4_decode_error(sb, errno, nbuf); 383 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 384 sb->s_id, function, errstr); 385 386 ext4_handle_error(sb); 387 } 388 389 /* 390 * ext4_abort is a much stronger failure handler than ext4_error. The 391 * abort function may be used to deal with unrecoverable failures such 392 * as journal IO errors or ENOMEM at a critical moment in log management. 393 * 394 * We unconditionally force the filesystem into an ABORT|READONLY state, 395 * unless the error response on the fs has been set to panic in which 396 * case we take the easy way out and panic immediately. 397 */ 398 399 void ext4_abort(struct super_block *sb, const char *function, 400 const char *fmt, ...) 401 { 402 va_list args; 403 404 va_start(args, fmt); 405 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 406 vprintk(fmt, args); 407 printk("\n"); 408 va_end(args); 409 410 if (test_opt(sb, ERRORS_PANIC)) 411 panic("EXT4-fs panic from previous error\n"); 412 413 if (sb->s_flags & MS_RDONLY) 414 return; 415 416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 417 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 418 sb->s_flags |= MS_RDONLY; 419 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 420 if (EXT4_SB(sb)->s_journal) 421 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 422 } 423 424 void ext4_msg (struct super_block * sb, const char *prefix, 425 const char *fmt, ...) 426 { 427 va_list args; 428 429 va_start(args, fmt); 430 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 431 vprintk(fmt, args); 432 printk("\n"); 433 va_end(args); 434 } 435 436 void ext4_warning(struct super_block *sb, const char *function, 437 const char *fmt, ...) 438 { 439 va_list args; 440 441 va_start(args, fmt); 442 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 443 sb->s_id, function); 444 vprintk(fmt, args); 445 printk("\n"); 446 va_end(args); 447 } 448 449 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 450 const char *function, const char *fmt, ...) 451 __releases(bitlock) 452 __acquires(bitlock) 453 { 454 va_list args; 455 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 456 457 va_start(args, fmt); 458 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 459 vprintk(fmt, args); 460 printk("\n"); 461 va_end(args); 462 463 if (test_opt(sb, ERRORS_CONT)) { 464 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 465 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 466 ext4_commit_super(sb, 0); 467 return; 468 } 469 ext4_unlock_group(sb, grp); 470 ext4_handle_error(sb); 471 /* 472 * We only get here in the ERRORS_RO case; relocking the group 473 * may be dangerous, but nothing bad will happen since the 474 * filesystem will have already been marked read/only and the 475 * journal has been aborted. We return 1 as a hint to callers 476 * who might what to use the return value from 477 * ext4_grp_locked_error() to distinguish beween the 478 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 479 * aggressively from the ext4 function in question, with a 480 * more appropriate error code. 481 */ 482 ext4_lock_group(sb, grp); 483 return; 484 } 485 486 void ext4_update_dynamic_rev(struct super_block *sb) 487 { 488 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 489 490 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 491 return; 492 493 ext4_warning(sb, __func__, 494 "updating to rev %d because of new feature flag, " 495 "running e2fsck is recommended", 496 EXT4_DYNAMIC_REV); 497 498 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 499 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 500 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 501 /* leave es->s_feature_*compat flags alone */ 502 /* es->s_uuid will be set by e2fsck if empty */ 503 504 /* 505 * The rest of the superblock fields should be zero, and if not it 506 * means they are likely already in use, so leave them alone. We 507 * can leave it up to e2fsck to clean up any inconsistencies there. 508 */ 509 } 510 511 /* 512 * Open the external journal device 513 */ 514 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 515 { 516 struct block_device *bdev; 517 char b[BDEVNAME_SIZE]; 518 519 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 520 if (IS_ERR(bdev)) 521 goto fail; 522 return bdev; 523 524 fail: 525 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 526 __bdevname(dev, b), PTR_ERR(bdev)); 527 return NULL; 528 } 529 530 /* 531 * Release the journal device 532 */ 533 static int ext4_blkdev_put(struct block_device *bdev) 534 { 535 bd_release(bdev); 536 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 537 } 538 539 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 540 { 541 struct block_device *bdev; 542 int ret = -ENODEV; 543 544 bdev = sbi->journal_bdev; 545 if (bdev) { 546 ret = ext4_blkdev_put(bdev); 547 sbi->journal_bdev = NULL; 548 } 549 return ret; 550 } 551 552 static inline struct inode *orphan_list_entry(struct list_head *l) 553 { 554 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 555 } 556 557 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 558 { 559 struct list_head *l; 560 561 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 562 le32_to_cpu(sbi->s_es->s_last_orphan)); 563 564 printk(KERN_ERR "sb_info orphan list:\n"); 565 list_for_each(l, &sbi->s_orphan) { 566 struct inode *inode = orphan_list_entry(l); 567 printk(KERN_ERR " " 568 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 569 inode->i_sb->s_id, inode->i_ino, inode, 570 inode->i_mode, inode->i_nlink, 571 NEXT_ORPHAN(inode)); 572 } 573 } 574 575 static void ext4_put_super(struct super_block *sb) 576 { 577 struct ext4_sb_info *sbi = EXT4_SB(sb); 578 struct ext4_super_block *es = sbi->s_es; 579 int i, err; 580 581 lock_super(sb); 582 lock_kernel(); 583 if (sb->s_dirt) 584 ext4_commit_super(sb, 1); 585 586 ext4_release_system_zone(sb); 587 ext4_mb_release(sb); 588 ext4_ext_release(sb); 589 ext4_xattr_put_super(sb); 590 if (sbi->s_journal) { 591 err = jbd2_journal_destroy(sbi->s_journal); 592 sbi->s_journal = NULL; 593 if (err < 0) 594 ext4_abort(sb, __func__, 595 "Couldn't clean up the journal"); 596 } 597 if (!(sb->s_flags & MS_RDONLY)) { 598 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 599 es->s_state = cpu_to_le16(sbi->s_mount_state); 600 ext4_commit_super(sb, 1); 601 } 602 if (sbi->s_proc) { 603 remove_proc_entry(sb->s_id, ext4_proc_root); 604 } 605 kobject_del(&sbi->s_kobj); 606 607 for (i = 0; i < sbi->s_gdb_count; i++) 608 brelse(sbi->s_group_desc[i]); 609 kfree(sbi->s_group_desc); 610 if (is_vmalloc_addr(sbi->s_flex_groups)) 611 vfree(sbi->s_flex_groups); 612 else 613 kfree(sbi->s_flex_groups); 614 percpu_counter_destroy(&sbi->s_freeblocks_counter); 615 percpu_counter_destroy(&sbi->s_freeinodes_counter); 616 percpu_counter_destroy(&sbi->s_dirs_counter); 617 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 618 brelse(sbi->s_sbh); 619 #ifdef CONFIG_QUOTA 620 for (i = 0; i < MAXQUOTAS; i++) 621 kfree(sbi->s_qf_names[i]); 622 #endif 623 624 /* Debugging code just in case the in-memory inode orphan list 625 * isn't empty. The on-disk one can be non-empty if we've 626 * detected an error and taken the fs readonly, but the 627 * in-memory list had better be clean by this point. */ 628 if (!list_empty(&sbi->s_orphan)) 629 dump_orphan_list(sb, sbi); 630 J_ASSERT(list_empty(&sbi->s_orphan)); 631 632 invalidate_bdev(sb->s_bdev); 633 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 634 /* 635 * Invalidate the journal device's buffers. We don't want them 636 * floating about in memory - the physical journal device may 637 * hotswapped, and it breaks the `ro-after' testing code. 638 */ 639 sync_blockdev(sbi->journal_bdev); 640 invalidate_bdev(sbi->journal_bdev); 641 ext4_blkdev_remove(sbi); 642 } 643 sb->s_fs_info = NULL; 644 /* 645 * Now that we are completely done shutting down the 646 * superblock, we need to actually destroy the kobject. 647 */ 648 unlock_kernel(); 649 unlock_super(sb); 650 kobject_put(&sbi->s_kobj); 651 wait_for_completion(&sbi->s_kobj_unregister); 652 kfree(sbi->s_blockgroup_lock); 653 kfree(sbi); 654 } 655 656 static struct kmem_cache *ext4_inode_cachep; 657 658 /* 659 * Called inside transaction, so use GFP_NOFS 660 */ 661 static struct inode *ext4_alloc_inode(struct super_block *sb) 662 { 663 struct ext4_inode_info *ei; 664 665 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 666 if (!ei) 667 return NULL; 668 669 ei->vfs_inode.i_version = 1; 670 ei->vfs_inode.i_data.writeback_index = 0; 671 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 672 INIT_LIST_HEAD(&ei->i_prealloc_list); 673 spin_lock_init(&ei->i_prealloc_lock); 674 /* 675 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 676 * therefore it can be null here. Don't check it, just initialize 677 * jinode. 678 */ 679 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 680 ei->i_reserved_data_blocks = 0; 681 ei->i_reserved_meta_blocks = 0; 682 ei->i_allocated_meta_blocks = 0; 683 ei->i_delalloc_reserved_flag = 0; 684 spin_lock_init(&(ei->i_block_reservation_lock)); 685 686 return &ei->vfs_inode; 687 } 688 689 static void ext4_destroy_inode(struct inode *inode) 690 { 691 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 692 ext4_msg(inode->i_sb, KERN_ERR, 693 "Inode %lu (%p): orphan list check failed!", 694 inode->i_ino, EXT4_I(inode)); 695 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 696 EXT4_I(inode), sizeof(struct ext4_inode_info), 697 true); 698 dump_stack(); 699 } 700 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 701 } 702 703 static void init_once(void *foo) 704 { 705 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 706 707 INIT_LIST_HEAD(&ei->i_orphan); 708 #ifdef CONFIG_EXT4_FS_XATTR 709 init_rwsem(&ei->xattr_sem); 710 #endif 711 init_rwsem(&ei->i_data_sem); 712 inode_init_once(&ei->vfs_inode); 713 } 714 715 static int init_inodecache(void) 716 { 717 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 718 sizeof(struct ext4_inode_info), 719 0, (SLAB_RECLAIM_ACCOUNT| 720 SLAB_MEM_SPREAD), 721 init_once); 722 if (ext4_inode_cachep == NULL) 723 return -ENOMEM; 724 return 0; 725 } 726 727 static void destroy_inodecache(void) 728 { 729 kmem_cache_destroy(ext4_inode_cachep); 730 } 731 732 static void ext4_clear_inode(struct inode *inode) 733 { 734 ext4_discard_preallocations(inode); 735 if (EXT4_JOURNAL(inode)) 736 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 737 &EXT4_I(inode)->jinode); 738 } 739 740 static inline void ext4_show_quota_options(struct seq_file *seq, 741 struct super_block *sb) 742 { 743 #if defined(CONFIG_QUOTA) 744 struct ext4_sb_info *sbi = EXT4_SB(sb); 745 746 if (sbi->s_jquota_fmt) 747 seq_printf(seq, ",jqfmt=%s", 748 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 749 750 if (sbi->s_qf_names[USRQUOTA]) 751 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 752 753 if (sbi->s_qf_names[GRPQUOTA]) 754 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 755 756 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 757 seq_puts(seq, ",usrquota"); 758 759 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 760 seq_puts(seq, ",grpquota"); 761 #endif 762 } 763 764 /* 765 * Show an option if 766 * - it's set to a non-default value OR 767 * - if the per-sb default is different from the global default 768 */ 769 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 770 { 771 int def_errors; 772 unsigned long def_mount_opts; 773 struct super_block *sb = vfs->mnt_sb; 774 struct ext4_sb_info *sbi = EXT4_SB(sb); 775 struct ext4_super_block *es = sbi->s_es; 776 777 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 778 def_errors = le16_to_cpu(es->s_errors); 779 780 if (sbi->s_sb_block != 1) 781 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 782 if (test_opt(sb, MINIX_DF)) 783 seq_puts(seq, ",minixdf"); 784 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 785 seq_puts(seq, ",grpid"); 786 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 787 seq_puts(seq, ",nogrpid"); 788 if (sbi->s_resuid != EXT4_DEF_RESUID || 789 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 790 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 791 } 792 if (sbi->s_resgid != EXT4_DEF_RESGID || 793 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 794 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 795 } 796 if (test_opt(sb, ERRORS_RO)) { 797 if (def_errors == EXT4_ERRORS_PANIC || 798 def_errors == EXT4_ERRORS_CONTINUE) { 799 seq_puts(seq, ",errors=remount-ro"); 800 } 801 } 802 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 803 seq_puts(seq, ",errors=continue"); 804 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 805 seq_puts(seq, ",errors=panic"); 806 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 807 seq_puts(seq, ",nouid32"); 808 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 809 seq_puts(seq, ",debug"); 810 if (test_opt(sb, OLDALLOC)) 811 seq_puts(seq, ",oldalloc"); 812 #ifdef CONFIG_EXT4_FS_XATTR 813 if (test_opt(sb, XATTR_USER) && 814 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 815 seq_puts(seq, ",user_xattr"); 816 if (!test_opt(sb, XATTR_USER) && 817 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 818 seq_puts(seq, ",nouser_xattr"); 819 } 820 #endif 821 #ifdef CONFIG_EXT4_FS_POSIX_ACL 822 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 823 seq_puts(seq, ",acl"); 824 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 825 seq_puts(seq, ",noacl"); 826 #endif 827 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 828 seq_printf(seq, ",commit=%u", 829 (unsigned) (sbi->s_commit_interval / HZ)); 830 } 831 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 832 seq_printf(seq, ",min_batch_time=%u", 833 (unsigned) sbi->s_min_batch_time); 834 } 835 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 836 seq_printf(seq, ",max_batch_time=%u", 837 (unsigned) sbi->s_min_batch_time); 838 } 839 840 /* 841 * We're changing the default of barrier mount option, so 842 * let's always display its mount state so it's clear what its 843 * status is. 844 */ 845 seq_puts(seq, ",barrier="); 846 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 847 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 848 seq_puts(seq, ",journal_async_commit"); 849 if (test_opt(sb, NOBH)) 850 seq_puts(seq, ",nobh"); 851 if (test_opt(sb, I_VERSION)) 852 seq_puts(seq, ",i_version"); 853 if (!test_opt(sb, DELALLOC)) 854 seq_puts(seq, ",nodelalloc"); 855 856 857 if (sbi->s_stripe) 858 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 859 /* 860 * journal mode get enabled in different ways 861 * So just print the value even if we didn't specify it 862 */ 863 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 864 seq_puts(seq, ",data=journal"); 865 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 866 seq_puts(seq, ",data=ordered"); 867 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 868 seq_puts(seq, ",data=writeback"); 869 870 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 871 seq_printf(seq, ",inode_readahead_blks=%u", 872 sbi->s_inode_readahead_blks); 873 874 if (test_opt(sb, DATA_ERR_ABORT)) 875 seq_puts(seq, ",data_err=abort"); 876 877 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 878 seq_puts(seq, ",noauto_da_alloc"); 879 880 ext4_show_quota_options(seq, sb); 881 882 return 0; 883 } 884 885 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 886 u64 ino, u32 generation) 887 { 888 struct inode *inode; 889 890 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 891 return ERR_PTR(-ESTALE); 892 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 893 return ERR_PTR(-ESTALE); 894 895 /* iget isn't really right if the inode is currently unallocated!! 896 * 897 * ext4_read_inode will return a bad_inode if the inode had been 898 * deleted, so we should be safe. 899 * 900 * Currently we don't know the generation for parent directory, so 901 * a generation of 0 means "accept any" 902 */ 903 inode = ext4_iget(sb, ino); 904 if (IS_ERR(inode)) 905 return ERR_CAST(inode); 906 if (generation && inode->i_generation != generation) { 907 iput(inode); 908 return ERR_PTR(-ESTALE); 909 } 910 911 return inode; 912 } 913 914 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 915 int fh_len, int fh_type) 916 { 917 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 918 ext4_nfs_get_inode); 919 } 920 921 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 922 int fh_len, int fh_type) 923 { 924 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 925 ext4_nfs_get_inode); 926 } 927 928 /* 929 * Try to release metadata pages (indirect blocks, directories) which are 930 * mapped via the block device. Since these pages could have journal heads 931 * which would prevent try_to_free_buffers() from freeing them, we must use 932 * jbd2 layer's try_to_free_buffers() function to release them. 933 */ 934 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 935 gfp_t wait) 936 { 937 journal_t *journal = EXT4_SB(sb)->s_journal; 938 939 WARN_ON(PageChecked(page)); 940 if (!page_has_buffers(page)) 941 return 0; 942 if (journal) 943 return jbd2_journal_try_to_free_buffers(journal, page, 944 wait & ~__GFP_WAIT); 945 return try_to_free_buffers(page); 946 } 947 948 #ifdef CONFIG_QUOTA 949 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 950 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 951 952 static int ext4_write_dquot(struct dquot *dquot); 953 static int ext4_acquire_dquot(struct dquot *dquot); 954 static int ext4_release_dquot(struct dquot *dquot); 955 static int ext4_mark_dquot_dirty(struct dquot *dquot); 956 static int ext4_write_info(struct super_block *sb, int type); 957 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 958 char *path, int remount); 959 static int ext4_quota_on_mount(struct super_block *sb, int type); 960 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 961 size_t len, loff_t off); 962 static ssize_t ext4_quota_write(struct super_block *sb, int type, 963 const char *data, size_t len, loff_t off); 964 965 static struct dquot_operations ext4_quota_operations = { 966 .initialize = dquot_initialize, 967 .drop = dquot_drop, 968 .alloc_space = dquot_alloc_space, 969 .reserve_space = dquot_reserve_space, 970 .claim_space = dquot_claim_space, 971 .release_rsv = dquot_release_reserved_space, 972 .get_reserved_space = ext4_get_reserved_space, 973 .alloc_inode = dquot_alloc_inode, 974 .free_space = dquot_free_space, 975 .free_inode = dquot_free_inode, 976 .transfer = dquot_transfer, 977 .write_dquot = ext4_write_dquot, 978 .acquire_dquot = ext4_acquire_dquot, 979 .release_dquot = ext4_release_dquot, 980 .mark_dirty = ext4_mark_dquot_dirty, 981 .write_info = ext4_write_info, 982 .alloc_dquot = dquot_alloc, 983 .destroy_dquot = dquot_destroy, 984 }; 985 986 static struct quotactl_ops ext4_qctl_operations = { 987 .quota_on = ext4_quota_on, 988 .quota_off = vfs_quota_off, 989 .quota_sync = vfs_quota_sync, 990 .get_info = vfs_get_dqinfo, 991 .set_info = vfs_set_dqinfo, 992 .get_dqblk = vfs_get_dqblk, 993 .set_dqblk = vfs_set_dqblk 994 }; 995 #endif 996 997 static const struct super_operations ext4_sops = { 998 .alloc_inode = ext4_alloc_inode, 999 .destroy_inode = ext4_destroy_inode, 1000 .write_inode = ext4_write_inode, 1001 .dirty_inode = ext4_dirty_inode, 1002 .delete_inode = ext4_delete_inode, 1003 .put_super = ext4_put_super, 1004 .sync_fs = ext4_sync_fs, 1005 .freeze_fs = ext4_freeze, 1006 .unfreeze_fs = ext4_unfreeze, 1007 .statfs = ext4_statfs, 1008 .remount_fs = ext4_remount, 1009 .clear_inode = ext4_clear_inode, 1010 .show_options = ext4_show_options, 1011 #ifdef CONFIG_QUOTA 1012 .quota_read = ext4_quota_read, 1013 .quota_write = ext4_quota_write, 1014 #endif 1015 .bdev_try_to_free_page = bdev_try_to_free_page, 1016 }; 1017 1018 static const struct super_operations ext4_nojournal_sops = { 1019 .alloc_inode = ext4_alloc_inode, 1020 .destroy_inode = ext4_destroy_inode, 1021 .write_inode = ext4_write_inode, 1022 .dirty_inode = ext4_dirty_inode, 1023 .delete_inode = ext4_delete_inode, 1024 .write_super = ext4_write_super, 1025 .put_super = ext4_put_super, 1026 .statfs = ext4_statfs, 1027 .remount_fs = ext4_remount, 1028 .clear_inode = ext4_clear_inode, 1029 .show_options = ext4_show_options, 1030 #ifdef CONFIG_QUOTA 1031 .quota_read = ext4_quota_read, 1032 .quota_write = ext4_quota_write, 1033 #endif 1034 .bdev_try_to_free_page = bdev_try_to_free_page, 1035 }; 1036 1037 static const struct export_operations ext4_export_ops = { 1038 .fh_to_dentry = ext4_fh_to_dentry, 1039 .fh_to_parent = ext4_fh_to_parent, 1040 .get_parent = ext4_get_parent, 1041 }; 1042 1043 enum { 1044 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1045 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1046 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1047 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1048 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1049 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1050 Opt_journal_update, Opt_journal_dev, 1051 Opt_journal_checksum, Opt_journal_async_commit, 1052 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1053 Opt_data_err_abort, Opt_data_err_ignore, Opt_mb_history_length, 1054 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1055 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1056 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, 1057 Opt_usrquota, Opt_grpquota, Opt_i_version, 1058 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1059 Opt_block_validity, Opt_noblock_validity, 1060 Opt_inode_readahead_blks, Opt_journal_ioprio 1061 }; 1062 1063 static const match_table_t tokens = { 1064 {Opt_bsd_df, "bsddf"}, 1065 {Opt_minix_df, "minixdf"}, 1066 {Opt_grpid, "grpid"}, 1067 {Opt_grpid, "bsdgroups"}, 1068 {Opt_nogrpid, "nogrpid"}, 1069 {Opt_nogrpid, "sysvgroups"}, 1070 {Opt_resgid, "resgid=%u"}, 1071 {Opt_resuid, "resuid=%u"}, 1072 {Opt_sb, "sb=%u"}, 1073 {Opt_err_cont, "errors=continue"}, 1074 {Opt_err_panic, "errors=panic"}, 1075 {Opt_err_ro, "errors=remount-ro"}, 1076 {Opt_nouid32, "nouid32"}, 1077 {Opt_debug, "debug"}, 1078 {Opt_oldalloc, "oldalloc"}, 1079 {Opt_orlov, "orlov"}, 1080 {Opt_user_xattr, "user_xattr"}, 1081 {Opt_nouser_xattr, "nouser_xattr"}, 1082 {Opt_acl, "acl"}, 1083 {Opt_noacl, "noacl"}, 1084 {Opt_noload, "noload"}, 1085 {Opt_nobh, "nobh"}, 1086 {Opt_bh, "bh"}, 1087 {Opt_commit, "commit=%u"}, 1088 {Opt_min_batch_time, "min_batch_time=%u"}, 1089 {Opt_max_batch_time, "max_batch_time=%u"}, 1090 {Opt_journal_update, "journal=update"}, 1091 {Opt_journal_dev, "journal_dev=%u"}, 1092 {Opt_journal_checksum, "journal_checksum"}, 1093 {Opt_journal_async_commit, "journal_async_commit"}, 1094 {Opt_abort, "abort"}, 1095 {Opt_data_journal, "data=journal"}, 1096 {Opt_data_ordered, "data=ordered"}, 1097 {Opt_data_writeback, "data=writeback"}, 1098 {Opt_data_err_abort, "data_err=abort"}, 1099 {Opt_data_err_ignore, "data_err=ignore"}, 1100 {Opt_mb_history_length, "mb_history_length=%u"}, 1101 {Opt_offusrjquota, "usrjquota="}, 1102 {Opt_usrjquota, "usrjquota=%s"}, 1103 {Opt_offgrpjquota, "grpjquota="}, 1104 {Opt_grpjquota, "grpjquota=%s"}, 1105 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1106 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1107 {Opt_grpquota, "grpquota"}, 1108 {Opt_noquota, "noquota"}, 1109 {Opt_quota, "quota"}, 1110 {Opt_usrquota, "usrquota"}, 1111 {Opt_barrier, "barrier=%u"}, 1112 {Opt_barrier, "barrier"}, 1113 {Opt_nobarrier, "nobarrier"}, 1114 {Opt_i_version, "i_version"}, 1115 {Opt_stripe, "stripe=%u"}, 1116 {Opt_resize, "resize"}, 1117 {Opt_delalloc, "delalloc"}, 1118 {Opt_nodelalloc, "nodelalloc"}, 1119 {Opt_block_validity, "block_validity"}, 1120 {Opt_noblock_validity, "noblock_validity"}, 1121 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1122 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1123 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1124 {Opt_auto_da_alloc, "auto_da_alloc"}, 1125 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1126 {Opt_err, NULL}, 1127 }; 1128 1129 static ext4_fsblk_t get_sb_block(void **data) 1130 { 1131 ext4_fsblk_t sb_block; 1132 char *options = (char *) *data; 1133 1134 if (!options || strncmp(options, "sb=", 3) != 0) 1135 return 1; /* Default location */ 1136 1137 options += 3; 1138 /* TODO: use simple_strtoll with >32bit ext4 */ 1139 sb_block = simple_strtoul(options, &options, 0); 1140 if (*options && *options != ',') { 1141 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1142 (char *) *data); 1143 return 1; 1144 } 1145 if (*options == ',') 1146 options++; 1147 *data = (void *) options; 1148 1149 return sb_block; 1150 } 1151 1152 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1153 1154 static int parse_options(char *options, struct super_block *sb, 1155 unsigned long *journal_devnum, 1156 unsigned int *journal_ioprio, 1157 ext4_fsblk_t *n_blocks_count, int is_remount) 1158 { 1159 struct ext4_sb_info *sbi = EXT4_SB(sb); 1160 char *p; 1161 substring_t args[MAX_OPT_ARGS]; 1162 int data_opt = 0; 1163 int option; 1164 #ifdef CONFIG_QUOTA 1165 int qtype, qfmt; 1166 char *qname; 1167 #endif 1168 1169 if (!options) 1170 return 1; 1171 1172 while ((p = strsep(&options, ",")) != NULL) { 1173 int token; 1174 if (!*p) 1175 continue; 1176 1177 token = match_token(p, tokens, args); 1178 switch (token) { 1179 case Opt_bsd_df: 1180 clear_opt(sbi->s_mount_opt, MINIX_DF); 1181 break; 1182 case Opt_minix_df: 1183 set_opt(sbi->s_mount_opt, MINIX_DF); 1184 break; 1185 case Opt_grpid: 1186 set_opt(sbi->s_mount_opt, GRPID); 1187 break; 1188 case Opt_nogrpid: 1189 clear_opt(sbi->s_mount_opt, GRPID); 1190 break; 1191 case Opt_resuid: 1192 if (match_int(&args[0], &option)) 1193 return 0; 1194 sbi->s_resuid = option; 1195 break; 1196 case Opt_resgid: 1197 if (match_int(&args[0], &option)) 1198 return 0; 1199 sbi->s_resgid = option; 1200 break; 1201 case Opt_sb: 1202 /* handled by get_sb_block() instead of here */ 1203 /* *sb_block = match_int(&args[0]); */ 1204 break; 1205 case Opt_err_panic: 1206 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1207 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1208 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1209 break; 1210 case Opt_err_ro: 1211 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1212 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1213 set_opt(sbi->s_mount_opt, ERRORS_RO); 1214 break; 1215 case Opt_err_cont: 1216 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1217 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1218 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1219 break; 1220 case Opt_nouid32: 1221 set_opt(sbi->s_mount_opt, NO_UID32); 1222 break; 1223 case Opt_debug: 1224 set_opt(sbi->s_mount_opt, DEBUG); 1225 break; 1226 case Opt_oldalloc: 1227 set_opt(sbi->s_mount_opt, OLDALLOC); 1228 break; 1229 case Opt_orlov: 1230 clear_opt(sbi->s_mount_opt, OLDALLOC); 1231 break; 1232 #ifdef CONFIG_EXT4_FS_XATTR 1233 case Opt_user_xattr: 1234 set_opt(sbi->s_mount_opt, XATTR_USER); 1235 break; 1236 case Opt_nouser_xattr: 1237 clear_opt(sbi->s_mount_opt, XATTR_USER); 1238 break; 1239 #else 1240 case Opt_user_xattr: 1241 case Opt_nouser_xattr: 1242 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1243 break; 1244 #endif 1245 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1246 case Opt_acl: 1247 set_opt(sbi->s_mount_opt, POSIX_ACL); 1248 break; 1249 case Opt_noacl: 1250 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1251 break; 1252 #else 1253 case Opt_acl: 1254 case Opt_noacl: 1255 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1256 break; 1257 #endif 1258 case Opt_journal_update: 1259 /* @@@ FIXME */ 1260 /* Eventually we will want to be able to create 1261 a journal file here. For now, only allow the 1262 user to specify an existing inode to be the 1263 journal file. */ 1264 if (is_remount) { 1265 ext4_msg(sb, KERN_ERR, 1266 "Cannot specify journal on remount"); 1267 return 0; 1268 } 1269 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1270 break; 1271 case Opt_journal_dev: 1272 if (is_remount) { 1273 ext4_msg(sb, KERN_ERR, 1274 "Cannot specify journal on remount"); 1275 return 0; 1276 } 1277 if (match_int(&args[0], &option)) 1278 return 0; 1279 *journal_devnum = option; 1280 break; 1281 case Opt_journal_checksum: 1282 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1283 break; 1284 case Opt_journal_async_commit: 1285 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1286 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1287 break; 1288 case Opt_noload: 1289 set_opt(sbi->s_mount_opt, NOLOAD); 1290 break; 1291 case Opt_commit: 1292 if (match_int(&args[0], &option)) 1293 return 0; 1294 if (option < 0) 1295 return 0; 1296 if (option == 0) 1297 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1298 sbi->s_commit_interval = HZ * option; 1299 break; 1300 case Opt_max_batch_time: 1301 if (match_int(&args[0], &option)) 1302 return 0; 1303 if (option < 0) 1304 return 0; 1305 if (option == 0) 1306 option = EXT4_DEF_MAX_BATCH_TIME; 1307 sbi->s_max_batch_time = option; 1308 break; 1309 case Opt_min_batch_time: 1310 if (match_int(&args[0], &option)) 1311 return 0; 1312 if (option < 0) 1313 return 0; 1314 sbi->s_min_batch_time = option; 1315 break; 1316 case Opt_data_journal: 1317 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1318 goto datacheck; 1319 case Opt_data_ordered: 1320 data_opt = EXT4_MOUNT_ORDERED_DATA; 1321 goto datacheck; 1322 case Opt_data_writeback: 1323 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1324 datacheck: 1325 if (is_remount) { 1326 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1327 != data_opt) { 1328 ext4_msg(sb, KERN_ERR, 1329 "Cannot change data mode on remount"); 1330 return 0; 1331 } 1332 } else { 1333 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1334 sbi->s_mount_opt |= data_opt; 1335 } 1336 break; 1337 case Opt_data_err_abort: 1338 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1339 break; 1340 case Opt_data_err_ignore: 1341 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1342 break; 1343 case Opt_mb_history_length: 1344 if (match_int(&args[0], &option)) 1345 return 0; 1346 if (option < 0) 1347 return 0; 1348 sbi->s_mb_history_max = option; 1349 break; 1350 #ifdef CONFIG_QUOTA 1351 case Opt_usrjquota: 1352 qtype = USRQUOTA; 1353 goto set_qf_name; 1354 case Opt_grpjquota: 1355 qtype = GRPQUOTA; 1356 set_qf_name: 1357 if (sb_any_quota_loaded(sb) && 1358 !sbi->s_qf_names[qtype]) { 1359 ext4_msg(sb, KERN_ERR, 1360 "Cannot change journaled " 1361 "quota options when quota turned on"); 1362 return 0; 1363 } 1364 qname = match_strdup(&args[0]); 1365 if (!qname) { 1366 ext4_msg(sb, KERN_ERR, 1367 "Not enough memory for " 1368 "storing quotafile name"); 1369 return 0; 1370 } 1371 if (sbi->s_qf_names[qtype] && 1372 strcmp(sbi->s_qf_names[qtype], qname)) { 1373 ext4_msg(sb, KERN_ERR, 1374 "%s quota file already " 1375 "specified", QTYPE2NAME(qtype)); 1376 kfree(qname); 1377 return 0; 1378 } 1379 sbi->s_qf_names[qtype] = qname; 1380 if (strchr(sbi->s_qf_names[qtype], '/')) { 1381 ext4_msg(sb, KERN_ERR, 1382 "quotafile must be on " 1383 "filesystem root"); 1384 kfree(sbi->s_qf_names[qtype]); 1385 sbi->s_qf_names[qtype] = NULL; 1386 return 0; 1387 } 1388 set_opt(sbi->s_mount_opt, QUOTA); 1389 break; 1390 case Opt_offusrjquota: 1391 qtype = USRQUOTA; 1392 goto clear_qf_name; 1393 case Opt_offgrpjquota: 1394 qtype = GRPQUOTA; 1395 clear_qf_name: 1396 if (sb_any_quota_loaded(sb) && 1397 sbi->s_qf_names[qtype]) { 1398 ext4_msg(sb, KERN_ERR, "Cannot change " 1399 "journaled quota options when " 1400 "quota turned on"); 1401 return 0; 1402 } 1403 /* 1404 * The space will be released later when all options 1405 * are confirmed to be correct 1406 */ 1407 sbi->s_qf_names[qtype] = NULL; 1408 break; 1409 case Opt_jqfmt_vfsold: 1410 qfmt = QFMT_VFS_OLD; 1411 goto set_qf_format; 1412 case Opt_jqfmt_vfsv0: 1413 qfmt = QFMT_VFS_V0; 1414 set_qf_format: 1415 if (sb_any_quota_loaded(sb) && 1416 sbi->s_jquota_fmt != qfmt) { 1417 ext4_msg(sb, KERN_ERR, "Cannot change " 1418 "journaled quota options when " 1419 "quota turned on"); 1420 return 0; 1421 } 1422 sbi->s_jquota_fmt = qfmt; 1423 break; 1424 case Opt_quota: 1425 case Opt_usrquota: 1426 set_opt(sbi->s_mount_opt, QUOTA); 1427 set_opt(sbi->s_mount_opt, USRQUOTA); 1428 break; 1429 case Opt_grpquota: 1430 set_opt(sbi->s_mount_opt, QUOTA); 1431 set_opt(sbi->s_mount_opt, GRPQUOTA); 1432 break; 1433 case Opt_noquota: 1434 if (sb_any_quota_loaded(sb)) { 1435 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1436 "options when quota turned on"); 1437 return 0; 1438 } 1439 clear_opt(sbi->s_mount_opt, QUOTA); 1440 clear_opt(sbi->s_mount_opt, USRQUOTA); 1441 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1442 break; 1443 #else 1444 case Opt_quota: 1445 case Opt_usrquota: 1446 case Opt_grpquota: 1447 ext4_msg(sb, KERN_ERR, 1448 "quota options not supported"); 1449 break; 1450 case Opt_usrjquota: 1451 case Opt_grpjquota: 1452 case Opt_offusrjquota: 1453 case Opt_offgrpjquota: 1454 case Opt_jqfmt_vfsold: 1455 case Opt_jqfmt_vfsv0: 1456 ext4_msg(sb, KERN_ERR, 1457 "journaled quota options not supported"); 1458 break; 1459 case Opt_noquota: 1460 break; 1461 #endif 1462 case Opt_abort: 1463 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1464 break; 1465 case Opt_nobarrier: 1466 clear_opt(sbi->s_mount_opt, BARRIER); 1467 break; 1468 case Opt_barrier: 1469 if (match_int(&args[0], &option)) { 1470 set_opt(sbi->s_mount_opt, BARRIER); 1471 break; 1472 } 1473 if (option) 1474 set_opt(sbi->s_mount_opt, BARRIER); 1475 else 1476 clear_opt(sbi->s_mount_opt, BARRIER); 1477 break; 1478 case Opt_ignore: 1479 break; 1480 case Opt_resize: 1481 if (!is_remount) { 1482 ext4_msg(sb, KERN_ERR, 1483 "resize option only available " 1484 "for remount"); 1485 return 0; 1486 } 1487 if (match_int(&args[0], &option) != 0) 1488 return 0; 1489 *n_blocks_count = option; 1490 break; 1491 case Opt_nobh: 1492 set_opt(sbi->s_mount_opt, NOBH); 1493 break; 1494 case Opt_bh: 1495 clear_opt(sbi->s_mount_opt, NOBH); 1496 break; 1497 case Opt_i_version: 1498 set_opt(sbi->s_mount_opt, I_VERSION); 1499 sb->s_flags |= MS_I_VERSION; 1500 break; 1501 case Opt_nodelalloc: 1502 clear_opt(sbi->s_mount_opt, DELALLOC); 1503 break; 1504 case Opt_stripe: 1505 if (match_int(&args[0], &option)) 1506 return 0; 1507 if (option < 0) 1508 return 0; 1509 sbi->s_stripe = option; 1510 break; 1511 case Opt_delalloc: 1512 set_opt(sbi->s_mount_opt, DELALLOC); 1513 break; 1514 case Opt_block_validity: 1515 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1516 break; 1517 case Opt_noblock_validity: 1518 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1519 break; 1520 case Opt_inode_readahead_blks: 1521 if (match_int(&args[0], &option)) 1522 return 0; 1523 if (option < 0 || option > (1 << 30)) 1524 return 0; 1525 if (!is_power_of_2(option)) { 1526 ext4_msg(sb, KERN_ERR, 1527 "EXT4-fs: inode_readahead_blks" 1528 " must be a power of 2"); 1529 return 0; 1530 } 1531 sbi->s_inode_readahead_blks = option; 1532 break; 1533 case Opt_journal_ioprio: 1534 if (match_int(&args[0], &option)) 1535 return 0; 1536 if (option < 0 || option > 7) 1537 break; 1538 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1539 option); 1540 break; 1541 case Opt_noauto_da_alloc: 1542 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1543 break; 1544 case Opt_auto_da_alloc: 1545 if (match_int(&args[0], &option)) { 1546 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1547 break; 1548 } 1549 if (option) 1550 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1551 else 1552 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1553 break; 1554 default: 1555 ext4_msg(sb, KERN_ERR, 1556 "Unrecognized mount option \"%s\" " 1557 "or missing value", p); 1558 return 0; 1559 } 1560 } 1561 #ifdef CONFIG_QUOTA 1562 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1563 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1564 sbi->s_qf_names[USRQUOTA]) 1565 clear_opt(sbi->s_mount_opt, USRQUOTA); 1566 1567 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1568 sbi->s_qf_names[GRPQUOTA]) 1569 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1570 1571 if ((sbi->s_qf_names[USRQUOTA] && 1572 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1573 (sbi->s_qf_names[GRPQUOTA] && 1574 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1575 ext4_msg(sb, KERN_ERR, "old and new quota " 1576 "format mixing"); 1577 return 0; 1578 } 1579 1580 if (!sbi->s_jquota_fmt) { 1581 ext4_msg(sb, KERN_ERR, "journaled quota format " 1582 "not specified"); 1583 return 0; 1584 } 1585 } else { 1586 if (sbi->s_jquota_fmt) { 1587 ext4_msg(sb, KERN_ERR, "journaled quota format " 1588 "specified with no journaling " 1589 "enabled"); 1590 return 0; 1591 } 1592 } 1593 #endif 1594 return 1; 1595 } 1596 1597 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1598 int read_only) 1599 { 1600 struct ext4_sb_info *sbi = EXT4_SB(sb); 1601 int res = 0; 1602 1603 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1604 ext4_msg(sb, KERN_ERR, "revision level too high, " 1605 "forcing read-only mode"); 1606 res = MS_RDONLY; 1607 } 1608 if (read_only) 1609 return res; 1610 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1611 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1612 "running e2fsck is recommended"); 1613 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1614 ext4_msg(sb, KERN_WARNING, 1615 "warning: mounting fs with errors, " 1616 "running e2fsck is recommended"); 1617 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1618 le16_to_cpu(es->s_mnt_count) >= 1619 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1620 ext4_msg(sb, KERN_WARNING, 1621 "warning: maximal mount count reached, " 1622 "running e2fsck is recommended"); 1623 else if (le32_to_cpu(es->s_checkinterval) && 1624 (le32_to_cpu(es->s_lastcheck) + 1625 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1626 ext4_msg(sb, KERN_WARNING, 1627 "warning: checktime reached, " 1628 "running e2fsck is recommended"); 1629 if (!sbi->s_journal) 1630 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1631 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1632 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1633 le16_add_cpu(&es->s_mnt_count, 1); 1634 es->s_mtime = cpu_to_le32(get_seconds()); 1635 ext4_update_dynamic_rev(sb); 1636 if (sbi->s_journal) 1637 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1638 1639 ext4_commit_super(sb, 1); 1640 if (test_opt(sb, DEBUG)) 1641 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1642 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1643 sb->s_blocksize, 1644 sbi->s_groups_count, 1645 EXT4_BLOCKS_PER_GROUP(sb), 1646 EXT4_INODES_PER_GROUP(sb), 1647 sbi->s_mount_opt); 1648 1649 if (EXT4_SB(sb)->s_journal) { 1650 ext4_msg(sb, KERN_INFO, "%s journal on %s", 1651 EXT4_SB(sb)->s_journal->j_inode ? "internal" : 1652 "external", EXT4_SB(sb)->s_journal->j_devname); 1653 } else { 1654 ext4_msg(sb, KERN_INFO, "no journal"); 1655 } 1656 return res; 1657 } 1658 1659 static int ext4_fill_flex_info(struct super_block *sb) 1660 { 1661 struct ext4_sb_info *sbi = EXT4_SB(sb); 1662 struct ext4_group_desc *gdp = NULL; 1663 ext4_group_t flex_group_count; 1664 ext4_group_t flex_group; 1665 int groups_per_flex = 0; 1666 size_t size; 1667 int i; 1668 1669 if (!sbi->s_es->s_log_groups_per_flex) { 1670 sbi->s_log_groups_per_flex = 0; 1671 return 1; 1672 } 1673 1674 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1675 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1676 1677 /* We allocate both existing and potentially added groups */ 1678 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1679 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1680 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1681 size = flex_group_count * sizeof(struct flex_groups); 1682 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1683 if (sbi->s_flex_groups == NULL) { 1684 sbi->s_flex_groups = vmalloc(size); 1685 if (sbi->s_flex_groups) 1686 memset(sbi->s_flex_groups, 0, size); 1687 } 1688 if (sbi->s_flex_groups == NULL) { 1689 ext4_msg(sb, KERN_ERR, "not enough memory for " 1690 "%u flex groups", flex_group_count); 1691 goto failed; 1692 } 1693 1694 for (i = 0; i < sbi->s_groups_count; i++) { 1695 gdp = ext4_get_group_desc(sb, i, NULL); 1696 1697 flex_group = ext4_flex_group(sbi, i); 1698 atomic_set(&sbi->s_flex_groups[flex_group].free_inodes, 1699 ext4_free_inodes_count(sb, gdp)); 1700 atomic_set(&sbi->s_flex_groups[flex_group].free_blocks, 1701 ext4_free_blks_count(sb, gdp)); 1702 atomic_set(&sbi->s_flex_groups[flex_group].used_dirs, 1703 ext4_used_dirs_count(sb, gdp)); 1704 } 1705 1706 return 1; 1707 failed: 1708 return 0; 1709 } 1710 1711 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1712 struct ext4_group_desc *gdp) 1713 { 1714 __u16 crc = 0; 1715 1716 if (sbi->s_es->s_feature_ro_compat & 1717 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1718 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1719 __le32 le_group = cpu_to_le32(block_group); 1720 1721 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1722 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1723 crc = crc16(crc, (__u8 *)gdp, offset); 1724 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1725 /* for checksum of struct ext4_group_desc do the rest...*/ 1726 if ((sbi->s_es->s_feature_incompat & 1727 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1728 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1729 crc = crc16(crc, (__u8 *)gdp + offset, 1730 le16_to_cpu(sbi->s_es->s_desc_size) - 1731 offset); 1732 } 1733 1734 return cpu_to_le16(crc); 1735 } 1736 1737 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1738 struct ext4_group_desc *gdp) 1739 { 1740 if ((sbi->s_es->s_feature_ro_compat & 1741 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1742 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1743 return 0; 1744 1745 return 1; 1746 } 1747 1748 /* Called at mount-time, super-block is locked */ 1749 static int ext4_check_descriptors(struct super_block *sb) 1750 { 1751 struct ext4_sb_info *sbi = EXT4_SB(sb); 1752 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1753 ext4_fsblk_t last_block; 1754 ext4_fsblk_t block_bitmap; 1755 ext4_fsblk_t inode_bitmap; 1756 ext4_fsblk_t inode_table; 1757 int flexbg_flag = 0; 1758 ext4_group_t i; 1759 1760 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1761 flexbg_flag = 1; 1762 1763 ext4_debug("Checking group descriptors"); 1764 1765 for (i = 0; i < sbi->s_groups_count; i++) { 1766 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1767 1768 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1769 last_block = ext4_blocks_count(sbi->s_es) - 1; 1770 else 1771 last_block = first_block + 1772 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1773 1774 block_bitmap = ext4_block_bitmap(sb, gdp); 1775 if (block_bitmap < first_block || block_bitmap > last_block) { 1776 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1777 "Block bitmap for group %u not in group " 1778 "(block %llu)!", i, block_bitmap); 1779 return 0; 1780 } 1781 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1782 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1783 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1784 "Inode bitmap for group %u not in group " 1785 "(block %llu)!", i, inode_bitmap); 1786 return 0; 1787 } 1788 inode_table = ext4_inode_table(sb, gdp); 1789 if (inode_table < first_block || 1790 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1791 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1792 "Inode table for group %u not in group " 1793 "(block %llu)!", i, inode_table); 1794 return 0; 1795 } 1796 ext4_lock_group(sb, i); 1797 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1798 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1799 "Checksum for group %u failed (%u!=%u)", 1800 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1801 gdp)), le16_to_cpu(gdp->bg_checksum)); 1802 if (!(sb->s_flags & MS_RDONLY)) { 1803 ext4_unlock_group(sb, i); 1804 return 0; 1805 } 1806 } 1807 ext4_unlock_group(sb, i); 1808 if (!flexbg_flag) 1809 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1810 } 1811 1812 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1813 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1814 return 1; 1815 } 1816 1817 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1818 * the superblock) which were deleted from all directories, but held open by 1819 * a process at the time of a crash. We walk the list and try to delete these 1820 * inodes at recovery time (only with a read-write filesystem). 1821 * 1822 * In order to keep the orphan inode chain consistent during traversal (in 1823 * case of crash during recovery), we link each inode into the superblock 1824 * orphan list_head and handle it the same way as an inode deletion during 1825 * normal operation (which journals the operations for us). 1826 * 1827 * We only do an iget() and an iput() on each inode, which is very safe if we 1828 * accidentally point at an in-use or already deleted inode. The worst that 1829 * can happen in this case is that we get a "bit already cleared" message from 1830 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1831 * e2fsck was run on this filesystem, and it must have already done the orphan 1832 * inode cleanup for us, so we can safely abort without any further action. 1833 */ 1834 static void ext4_orphan_cleanup(struct super_block *sb, 1835 struct ext4_super_block *es) 1836 { 1837 unsigned int s_flags = sb->s_flags; 1838 int nr_orphans = 0, nr_truncates = 0; 1839 #ifdef CONFIG_QUOTA 1840 int i; 1841 #endif 1842 if (!es->s_last_orphan) { 1843 jbd_debug(4, "no orphan inodes to clean up\n"); 1844 return; 1845 } 1846 1847 if (bdev_read_only(sb->s_bdev)) { 1848 ext4_msg(sb, KERN_ERR, "write access " 1849 "unavailable, skipping orphan cleanup"); 1850 return; 1851 } 1852 1853 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1854 if (es->s_last_orphan) 1855 jbd_debug(1, "Errors on filesystem, " 1856 "clearing orphan list.\n"); 1857 es->s_last_orphan = 0; 1858 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1859 return; 1860 } 1861 1862 if (s_flags & MS_RDONLY) { 1863 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1864 sb->s_flags &= ~MS_RDONLY; 1865 } 1866 #ifdef CONFIG_QUOTA 1867 /* Needed for iput() to work correctly and not trash data */ 1868 sb->s_flags |= MS_ACTIVE; 1869 /* Turn on quotas so that they are updated correctly */ 1870 for (i = 0; i < MAXQUOTAS; i++) { 1871 if (EXT4_SB(sb)->s_qf_names[i]) { 1872 int ret = ext4_quota_on_mount(sb, i); 1873 if (ret < 0) 1874 ext4_msg(sb, KERN_ERR, 1875 "Cannot turn on journaled " 1876 "quota: error %d", ret); 1877 } 1878 } 1879 #endif 1880 1881 while (es->s_last_orphan) { 1882 struct inode *inode; 1883 1884 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1885 if (IS_ERR(inode)) { 1886 es->s_last_orphan = 0; 1887 break; 1888 } 1889 1890 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1891 vfs_dq_init(inode); 1892 if (inode->i_nlink) { 1893 ext4_msg(sb, KERN_DEBUG, 1894 "%s: truncating inode %lu to %lld bytes", 1895 __func__, inode->i_ino, inode->i_size); 1896 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1897 inode->i_ino, inode->i_size); 1898 ext4_truncate(inode); 1899 nr_truncates++; 1900 } else { 1901 ext4_msg(sb, KERN_DEBUG, 1902 "%s: deleting unreferenced inode %lu", 1903 __func__, inode->i_ino); 1904 jbd_debug(2, "deleting unreferenced inode %lu\n", 1905 inode->i_ino); 1906 nr_orphans++; 1907 } 1908 iput(inode); /* The delete magic happens here! */ 1909 } 1910 1911 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1912 1913 if (nr_orphans) 1914 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1915 PLURAL(nr_orphans)); 1916 if (nr_truncates) 1917 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1918 PLURAL(nr_truncates)); 1919 #ifdef CONFIG_QUOTA 1920 /* Turn quotas off */ 1921 for (i = 0; i < MAXQUOTAS; i++) { 1922 if (sb_dqopt(sb)->files[i]) 1923 vfs_quota_off(sb, i, 0); 1924 } 1925 #endif 1926 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1927 } 1928 1929 /* 1930 * Maximal extent format file size. 1931 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1932 * extent format containers, within a sector_t, and within i_blocks 1933 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1934 * so that won't be a limiting factor. 1935 * 1936 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1937 */ 1938 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1939 { 1940 loff_t res; 1941 loff_t upper_limit = MAX_LFS_FILESIZE; 1942 1943 /* small i_blocks in vfs inode? */ 1944 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1945 /* 1946 * CONFIG_LBDAF is not enabled implies the inode 1947 * i_block represent total blocks in 512 bytes 1948 * 32 == size of vfs inode i_blocks * 8 1949 */ 1950 upper_limit = (1LL << 32) - 1; 1951 1952 /* total blocks in file system block size */ 1953 upper_limit >>= (blkbits - 9); 1954 upper_limit <<= blkbits; 1955 } 1956 1957 /* 32-bit extent-start container, ee_block */ 1958 res = 1LL << 32; 1959 res <<= blkbits; 1960 res -= 1; 1961 1962 /* Sanity check against vm- & vfs- imposed limits */ 1963 if (res > upper_limit) 1964 res = upper_limit; 1965 1966 return res; 1967 } 1968 1969 /* 1970 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1971 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1972 * We need to be 1 filesystem block less than the 2^48 sector limit. 1973 */ 1974 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1975 { 1976 loff_t res = EXT4_NDIR_BLOCKS; 1977 int meta_blocks; 1978 loff_t upper_limit; 1979 /* This is calculated to be the largest file size for a dense, block 1980 * mapped file such that the file's total number of 512-byte sectors, 1981 * including data and all indirect blocks, does not exceed (2^48 - 1). 1982 * 1983 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 1984 * number of 512-byte sectors of the file. 1985 */ 1986 1987 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1988 /* 1989 * !has_huge_files or CONFIG_LBDAF not enabled implies that 1990 * the inode i_block field represents total file blocks in 1991 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 1992 */ 1993 upper_limit = (1LL << 32) - 1; 1994 1995 /* total blocks in file system block size */ 1996 upper_limit >>= (bits - 9); 1997 1998 } else { 1999 /* 2000 * We use 48 bit ext4_inode i_blocks 2001 * With EXT4_HUGE_FILE_FL set the i_blocks 2002 * represent total number of blocks in 2003 * file system block size 2004 */ 2005 upper_limit = (1LL << 48) - 1; 2006 2007 } 2008 2009 /* indirect blocks */ 2010 meta_blocks = 1; 2011 /* double indirect blocks */ 2012 meta_blocks += 1 + (1LL << (bits-2)); 2013 /* tripple indirect blocks */ 2014 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2015 2016 upper_limit -= meta_blocks; 2017 upper_limit <<= bits; 2018 2019 res += 1LL << (bits-2); 2020 res += 1LL << (2*(bits-2)); 2021 res += 1LL << (3*(bits-2)); 2022 res <<= bits; 2023 if (res > upper_limit) 2024 res = upper_limit; 2025 2026 if (res > MAX_LFS_FILESIZE) 2027 res = MAX_LFS_FILESIZE; 2028 2029 return res; 2030 } 2031 2032 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2033 ext4_fsblk_t logical_sb_block, int nr) 2034 { 2035 struct ext4_sb_info *sbi = EXT4_SB(sb); 2036 ext4_group_t bg, first_meta_bg; 2037 int has_super = 0; 2038 2039 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2040 2041 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2042 nr < first_meta_bg) 2043 return logical_sb_block + nr + 1; 2044 bg = sbi->s_desc_per_block * nr; 2045 if (ext4_bg_has_super(sb, bg)) 2046 has_super = 1; 2047 2048 return (has_super + ext4_group_first_block_no(sb, bg)); 2049 } 2050 2051 /** 2052 * ext4_get_stripe_size: Get the stripe size. 2053 * @sbi: In memory super block info 2054 * 2055 * If we have specified it via mount option, then 2056 * use the mount option value. If the value specified at mount time is 2057 * greater than the blocks per group use the super block value. 2058 * If the super block value is greater than blocks per group return 0. 2059 * Allocator needs it be less than blocks per group. 2060 * 2061 */ 2062 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2063 { 2064 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2065 unsigned long stripe_width = 2066 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2067 2068 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2069 return sbi->s_stripe; 2070 2071 if (stripe_width <= sbi->s_blocks_per_group) 2072 return stripe_width; 2073 2074 if (stride <= sbi->s_blocks_per_group) 2075 return stride; 2076 2077 return 0; 2078 } 2079 2080 /* sysfs supprt */ 2081 2082 struct ext4_attr { 2083 struct attribute attr; 2084 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2085 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2086 const char *, size_t); 2087 int offset; 2088 }; 2089 2090 static int parse_strtoul(const char *buf, 2091 unsigned long max, unsigned long *value) 2092 { 2093 char *endp; 2094 2095 while (*buf && isspace(*buf)) 2096 buf++; 2097 *value = simple_strtoul(buf, &endp, 0); 2098 while (*endp && isspace(*endp)) 2099 endp++; 2100 if (*endp || *value > max) 2101 return -EINVAL; 2102 2103 return 0; 2104 } 2105 2106 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2107 struct ext4_sb_info *sbi, 2108 char *buf) 2109 { 2110 return snprintf(buf, PAGE_SIZE, "%llu\n", 2111 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2112 } 2113 2114 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2115 struct ext4_sb_info *sbi, char *buf) 2116 { 2117 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2118 2119 return snprintf(buf, PAGE_SIZE, "%lu\n", 2120 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2121 sbi->s_sectors_written_start) >> 1); 2122 } 2123 2124 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2125 struct ext4_sb_info *sbi, char *buf) 2126 { 2127 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2128 2129 return snprintf(buf, PAGE_SIZE, "%llu\n", 2130 sbi->s_kbytes_written + 2131 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2132 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2133 } 2134 2135 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2136 struct ext4_sb_info *sbi, 2137 const char *buf, size_t count) 2138 { 2139 unsigned long t; 2140 2141 if (parse_strtoul(buf, 0x40000000, &t)) 2142 return -EINVAL; 2143 2144 if (!is_power_of_2(t)) 2145 return -EINVAL; 2146 2147 sbi->s_inode_readahead_blks = t; 2148 return count; 2149 } 2150 2151 static ssize_t sbi_ui_show(struct ext4_attr *a, 2152 struct ext4_sb_info *sbi, char *buf) 2153 { 2154 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2155 2156 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2157 } 2158 2159 static ssize_t sbi_ui_store(struct ext4_attr *a, 2160 struct ext4_sb_info *sbi, 2161 const char *buf, size_t count) 2162 { 2163 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2164 unsigned long t; 2165 2166 if (parse_strtoul(buf, 0xffffffff, &t)) 2167 return -EINVAL; 2168 *ui = t; 2169 return count; 2170 } 2171 2172 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2173 static struct ext4_attr ext4_attr_##_name = { \ 2174 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2175 .show = _show, \ 2176 .store = _store, \ 2177 .offset = offsetof(struct ext4_sb_info, _elname), \ 2178 } 2179 #define EXT4_ATTR(name, mode, show, store) \ 2180 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2181 2182 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2183 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2184 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2185 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2186 #define ATTR_LIST(name) &ext4_attr_##name.attr 2187 2188 EXT4_RO_ATTR(delayed_allocation_blocks); 2189 EXT4_RO_ATTR(session_write_kbytes); 2190 EXT4_RO_ATTR(lifetime_write_kbytes); 2191 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2192 inode_readahead_blks_store, s_inode_readahead_blks); 2193 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2194 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2195 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2196 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2197 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2198 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2199 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2200 2201 static struct attribute *ext4_attrs[] = { 2202 ATTR_LIST(delayed_allocation_blocks), 2203 ATTR_LIST(session_write_kbytes), 2204 ATTR_LIST(lifetime_write_kbytes), 2205 ATTR_LIST(inode_readahead_blks), 2206 ATTR_LIST(inode_goal), 2207 ATTR_LIST(mb_stats), 2208 ATTR_LIST(mb_max_to_scan), 2209 ATTR_LIST(mb_min_to_scan), 2210 ATTR_LIST(mb_order2_req), 2211 ATTR_LIST(mb_stream_req), 2212 ATTR_LIST(mb_group_prealloc), 2213 NULL, 2214 }; 2215 2216 static ssize_t ext4_attr_show(struct kobject *kobj, 2217 struct attribute *attr, char *buf) 2218 { 2219 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2220 s_kobj); 2221 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2222 2223 return a->show ? a->show(a, sbi, buf) : 0; 2224 } 2225 2226 static ssize_t ext4_attr_store(struct kobject *kobj, 2227 struct attribute *attr, 2228 const char *buf, size_t len) 2229 { 2230 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2231 s_kobj); 2232 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2233 2234 return a->store ? a->store(a, sbi, buf, len) : 0; 2235 } 2236 2237 static void ext4_sb_release(struct kobject *kobj) 2238 { 2239 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2240 s_kobj); 2241 complete(&sbi->s_kobj_unregister); 2242 } 2243 2244 2245 static struct sysfs_ops ext4_attr_ops = { 2246 .show = ext4_attr_show, 2247 .store = ext4_attr_store, 2248 }; 2249 2250 static struct kobj_type ext4_ktype = { 2251 .default_attrs = ext4_attrs, 2252 .sysfs_ops = &ext4_attr_ops, 2253 .release = ext4_sb_release, 2254 }; 2255 2256 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2257 __releases(kernel_lock) 2258 __acquires(kernel_lock) 2259 { 2260 struct buffer_head *bh; 2261 struct ext4_super_block *es = NULL; 2262 struct ext4_sb_info *sbi; 2263 ext4_fsblk_t block; 2264 ext4_fsblk_t sb_block = get_sb_block(&data); 2265 ext4_fsblk_t logical_sb_block; 2266 unsigned long offset = 0; 2267 unsigned long journal_devnum = 0; 2268 unsigned long def_mount_opts; 2269 struct inode *root; 2270 char *cp; 2271 const char *descr; 2272 int ret = -EINVAL; 2273 int blocksize; 2274 unsigned int db_count; 2275 unsigned int i; 2276 int needs_recovery, has_huge_files; 2277 int features; 2278 __u64 blocks_count; 2279 int err; 2280 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2281 2282 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2283 if (!sbi) 2284 return -ENOMEM; 2285 2286 sbi->s_blockgroup_lock = 2287 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2288 if (!sbi->s_blockgroup_lock) { 2289 kfree(sbi); 2290 return -ENOMEM; 2291 } 2292 sb->s_fs_info = sbi; 2293 sbi->s_mount_opt = 0; 2294 sbi->s_resuid = EXT4_DEF_RESUID; 2295 sbi->s_resgid = EXT4_DEF_RESGID; 2296 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2297 sbi->s_sb_block = sb_block; 2298 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2299 sectors[1]); 2300 2301 unlock_kernel(); 2302 2303 /* Cleanup superblock name */ 2304 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2305 *cp = '!'; 2306 2307 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2308 if (!blocksize) { 2309 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2310 goto out_fail; 2311 } 2312 2313 /* 2314 * The ext4 superblock will not be buffer aligned for other than 1kB 2315 * block sizes. We need to calculate the offset from buffer start. 2316 */ 2317 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2318 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2319 offset = do_div(logical_sb_block, blocksize); 2320 } else { 2321 logical_sb_block = sb_block; 2322 } 2323 2324 if (!(bh = sb_bread(sb, logical_sb_block))) { 2325 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2326 goto out_fail; 2327 } 2328 /* 2329 * Note: s_es must be initialized as soon as possible because 2330 * some ext4 macro-instructions depend on its value 2331 */ 2332 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2333 sbi->s_es = es; 2334 sb->s_magic = le16_to_cpu(es->s_magic); 2335 if (sb->s_magic != EXT4_SUPER_MAGIC) 2336 goto cantfind_ext4; 2337 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2338 2339 /* Set defaults before we parse the mount options */ 2340 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2341 if (def_mount_opts & EXT4_DEFM_DEBUG) 2342 set_opt(sbi->s_mount_opt, DEBUG); 2343 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2344 set_opt(sbi->s_mount_opt, GRPID); 2345 if (def_mount_opts & EXT4_DEFM_UID16) 2346 set_opt(sbi->s_mount_opt, NO_UID32); 2347 #ifdef CONFIG_EXT4_FS_XATTR 2348 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2349 set_opt(sbi->s_mount_opt, XATTR_USER); 2350 #endif 2351 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2352 if (def_mount_opts & EXT4_DEFM_ACL) 2353 set_opt(sbi->s_mount_opt, POSIX_ACL); 2354 #endif 2355 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2356 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2357 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2358 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2359 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2360 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2361 2362 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2363 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2364 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2365 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2366 else 2367 set_opt(sbi->s_mount_opt, ERRORS_RO); 2368 2369 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2370 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2371 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2372 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2373 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2374 sbi->s_mb_history_max = default_mb_history_length; 2375 2376 set_opt(sbi->s_mount_opt, BARRIER); 2377 2378 /* 2379 * enable delayed allocation by default 2380 * Use -o nodelalloc to turn it off 2381 */ 2382 set_opt(sbi->s_mount_opt, DELALLOC); 2383 2384 if (!parse_options((char *) data, sb, &journal_devnum, 2385 &journal_ioprio, NULL, 0)) 2386 goto failed_mount; 2387 2388 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2389 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2390 2391 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2392 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2393 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2394 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2395 ext4_msg(sb, KERN_WARNING, 2396 "feature flags set on rev 0 fs, " 2397 "running e2fsck is recommended"); 2398 2399 /* 2400 * Check feature flags regardless of the revision level, since we 2401 * previously didn't change the revision level when setting the flags, 2402 * so there is a chance incompat flags are set on a rev 0 filesystem. 2403 */ 2404 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); 2405 if (features) { 2406 ext4_msg(sb, KERN_ERR, 2407 "Couldn't mount because of " 2408 "unsupported optional features (%x)", 2409 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2410 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2411 goto failed_mount; 2412 } 2413 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); 2414 if (!(sb->s_flags & MS_RDONLY) && features) { 2415 ext4_msg(sb, KERN_ERR, 2416 "Couldn't mount RDWR because of " 2417 "unsupported optional features (%x)", 2418 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2419 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2420 goto failed_mount; 2421 } 2422 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2423 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2424 if (has_huge_files) { 2425 /* 2426 * Large file size enabled file system can only be 2427 * mount if kernel is build with CONFIG_LBDAF 2428 */ 2429 if (sizeof(root->i_blocks) < sizeof(u64) && 2430 !(sb->s_flags & MS_RDONLY)) { 2431 ext4_msg(sb, KERN_ERR, "Filesystem with huge " 2432 "files cannot be mounted read-write " 2433 "without CONFIG_LBDAF"); 2434 goto failed_mount; 2435 } 2436 } 2437 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2438 2439 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2440 blocksize > EXT4_MAX_BLOCK_SIZE) { 2441 ext4_msg(sb, KERN_ERR, 2442 "Unsupported filesystem blocksize %d", blocksize); 2443 goto failed_mount; 2444 } 2445 2446 if (sb->s_blocksize != blocksize) { 2447 /* Validate the filesystem blocksize */ 2448 if (!sb_set_blocksize(sb, blocksize)) { 2449 ext4_msg(sb, KERN_ERR, "bad block size %d", 2450 blocksize); 2451 goto failed_mount; 2452 } 2453 2454 brelse(bh); 2455 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2456 offset = do_div(logical_sb_block, blocksize); 2457 bh = sb_bread(sb, logical_sb_block); 2458 if (!bh) { 2459 ext4_msg(sb, KERN_ERR, 2460 "Can't read superblock on 2nd try"); 2461 goto failed_mount; 2462 } 2463 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2464 sbi->s_es = es; 2465 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2466 ext4_msg(sb, KERN_ERR, 2467 "Magic mismatch, very weird!"); 2468 goto failed_mount; 2469 } 2470 } 2471 2472 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2473 has_huge_files); 2474 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2475 2476 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2477 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2478 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2479 } else { 2480 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2481 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2482 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2483 (!is_power_of_2(sbi->s_inode_size)) || 2484 (sbi->s_inode_size > blocksize)) { 2485 ext4_msg(sb, KERN_ERR, 2486 "unsupported inode size: %d", 2487 sbi->s_inode_size); 2488 goto failed_mount; 2489 } 2490 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2491 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2492 } 2493 2494 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2495 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2496 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2497 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2498 !is_power_of_2(sbi->s_desc_size)) { 2499 ext4_msg(sb, KERN_ERR, 2500 "unsupported descriptor size %lu", 2501 sbi->s_desc_size); 2502 goto failed_mount; 2503 } 2504 } else 2505 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2506 2507 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2508 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2509 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2510 goto cantfind_ext4; 2511 2512 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2513 if (sbi->s_inodes_per_block == 0) 2514 goto cantfind_ext4; 2515 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2516 sbi->s_inodes_per_block; 2517 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2518 sbi->s_sbh = bh; 2519 sbi->s_mount_state = le16_to_cpu(es->s_state); 2520 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2521 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2522 2523 for (i = 0; i < 4; i++) 2524 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2525 sbi->s_def_hash_version = es->s_def_hash_version; 2526 i = le32_to_cpu(es->s_flags); 2527 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2528 sbi->s_hash_unsigned = 3; 2529 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2530 #ifdef __CHAR_UNSIGNED__ 2531 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2532 sbi->s_hash_unsigned = 3; 2533 #else 2534 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2535 #endif 2536 sb->s_dirt = 1; 2537 } 2538 2539 if (sbi->s_blocks_per_group > blocksize * 8) { 2540 ext4_msg(sb, KERN_ERR, 2541 "#blocks per group too big: %lu", 2542 sbi->s_blocks_per_group); 2543 goto failed_mount; 2544 } 2545 if (sbi->s_inodes_per_group > blocksize * 8) { 2546 ext4_msg(sb, KERN_ERR, 2547 "#inodes per group too big: %lu", 2548 sbi->s_inodes_per_group); 2549 goto failed_mount; 2550 } 2551 2552 if (ext4_blocks_count(es) > 2553 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { 2554 ext4_msg(sb, KERN_ERR, "filesystem" 2555 " too large to mount safely"); 2556 if (sizeof(sector_t) < 8) 2557 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 2558 goto failed_mount; 2559 } 2560 2561 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2562 goto cantfind_ext4; 2563 2564 /* check blocks count against device size */ 2565 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2566 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2567 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2568 "exceeds size of device (%llu blocks)", 2569 ext4_blocks_count(es), blocks_count); 2570 goto failed_mount; 2571 } 2572 2573 /* 2574 * It makes no sense for the first data block to be beyond the end 2575 * of the filesystem. 2576 */ 2577 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2578 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2579 "block %u is beyond end of filesystem (%llu)", 2580 le32_to_cpu(es->s_first_data_block), 2581 ext4_blocks_count(es)); 2582 goto failed_mount; 2583 } 2584 blocks_count = (ext4_blocks_count(es) - 2585 le32_to_cpu(es->s_first_data_block) + 2586 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2587 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2588 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2589 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2590 "(block count %llu, first data block %u, " 2591 "blocks per group %lu)", sbi->s_groups_count, 2592 ext4_blocks_count(es), 2593 le32_to_cpu(es->s_first_data_block), 2594 EXT4_BLOCKS_PER_GROUP(sb)); 2595 goto failed_mount; 2596 } 2597 sbi->s_groups_count = blocks_count; 2598 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2599 EXT4_DESC_PER_BLOCK(sb); 2600 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2601 GFP_KERNEL); 2602 if (sbi->s_group_desc == NULL) { 2603 ext4_msg(sb, KERN_ERR, "not enough memory"); 2604 goto failed_mount; 2605 } 2606 2607 #ifdef CONFIG_PROC_FS 2608 if (ext4_proc_root) 2609 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2610 #endif 2611 2612 bgl_lock_init(sbi->s_blockgroup_lock); 2613 2614 for (i = 0; i < db_count; i++) { 2615 block = descriptor_loc(sb, logical_sb_block, i); 2616 sbi->s_group_desc[i] = sb_bread(sb, block); 2617 if (!sbi->s_group_desc[i]) { 2618 ext4_msg(sb, KERN_ERR, 2619 "can't read group descriptor %d", i); 2620 db_count = i; 2621 goto failed_mount2; 2622 } 2623 } 2624 if (!ext4_check_descriptors(sb)) { 2625 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2626 goto failed_mount2; 2627 } 2628 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2629 if (!ext4_fill_flex_info(sb)) { 2630 ext4_msg(sb, KERN_ERR, 2631 "unable to initialize " 2632 "flex_bg meta info!"); 2633 goto failed_mount2; 2634 } 2635 2636 sbi->s_gdb_count = db_count; 2637 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2638 spin_lock_init(&sbi->s_next_gen_lock); 2639 2640 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2641 ext4_count_free_blocks(sb)); 2642 if (!err) { 2643 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2644 ext4_count_free_inodes(sb)); 2645 } 2646 if (!err) { 2647 err = percpu_counter_init(&sbi->s_dirs_counter, 2648 ext4_count_dirs(sb)); 2649 } 2650 if (!err) { 2651 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2652 } 2653 if (err) { 2654 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2655 goto failed_mount3; 2656 } 2657 2658 sbi->s_stripe = ext4_get_stripe_size(sbi); 2659 2660 /* 2661 * set up enough so that it can read an inode 2662 */ 2663 if (!test_opt(sb, NOLOAD) && 2664 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2665 sb->s_op = &ext4_sops; 2666 else 2667 sb->s_op = &ext4_nojournal_sops; 2668 sb->s_export_op = &ext4_export_ops; 2669 sb->s_xattr = ext4_xattr_handlers; 2670 #ifdef CONFIG_QUOTA 2671 sb->s_qcop = &ext4_qctl_operations; 2672 sb->dq_op = &ext4_quota_operations; 2673 #endif 2674 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2675 mutex_init(&sbi->s_orphan_lock); 2676 mutex_init(&sbi->s_resize_lock); 2677 2678 sb->s_root = NULL; 2679 2680 needs_recovery = (es->s_last_orphan != 0 || 2681 EXT4_HAS_INCOMPAT_FEATURE(sb, 2682 EXT4_FEATURE_INCOMPAT_RECOVER)); 2683 2684 /* 2685 * The first inode we look at is the journal inode. Don't try 2686 * root first: it may be modified in the journal! 2687 */ 2688 if (!test_opt(sb, NOLOAD) && 2689 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2690 if (ext4_load_journal(sb, es, journal_devnum)) 2691 goto failed_mount3; 2692 if (!(sb->s_flags & MS_RDONLY) && 2693 EXT4_SB(sb)->s_journal->j_failed_commit) { 2694 ext4_msg(sb, KERN_CRIT, "error: " 2695 "ext4_fill_super: Journal transaction " 2696 "%u is corrupt", 2697 EXT4_SB(sb)->s_journal->j_failed_commit); 2698 if (test_opt(sb, ERRORS_RO)) { 2699 ext4_msg(sb, KERN_CRIT, 2700 "Mounting filesystem read-only"); 2701 sb->s_flags |= MS_RDONLY; 2702 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2703 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2704 } 2705 if (test_opt(sb, ERRORS_PANIC)) { 2706 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2707 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2708 ext4_commit_super(sb, 1); 2709 goto failed_mount4; 2710 } 2711 } 2712 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2713 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2714 ext4_msg(sb, KERN_ERR, "required journal recovery " 2715 "suppressed and not mounted read-only"); 2716 goto failed_mount4; 2717 } else { 2718 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2719 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2720 sbi->s_journal = NULL; 2721 needs_recovery = 0; 2722 goto no_journal; 2723 } 2724 2725 if (ext4_blocks_count(es) > 0xffffffffULL && 2726 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2727 JBD2_FEATURE_INCOMPAT_64BIT)) { 2728 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2729 goto failed_mount4; 2730 } 2731 2732 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2733 jbd2_journal_set_features(sbi->s_journal, 2734 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2735 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2736 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2737 jbd2_journal_set_features(sbi->s_journal, 2738 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2739 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2740 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2741 } else { 2742 jbd2_journal_clear_features(sbi->s_journal, 2743 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2744 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2745 } 2746 2747 /* We have now updated the journal if required, so we can 2748 * validate the data journaling mode. */ 2749 switch (test_opt(sb, DATA_FLAGS)) { 2750 case 0: 2751 /* No mode set, assume a default based on the journal 2752 * capabilities: ORDERED_DATA if the journal can 2753 * cope, else JOURNAL_DATA 2754 */ 2755 if (jbd2_journal_check_available_features 2756 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2757 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2758 else 2759 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2760 break; 2761 2762 case EXT4_MOUNT_ORDERED_DATA: 2763 case EXT4_MOUNT_WRITEBACK_DATA: 2764 if (!jbd2_journal_check_available_features 2765 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2766 ext4_msg(sb, KERN_ERR, "Journal does not support " 2767 "requested data journaling mode"); 2768 goto failed_mount4; 2769 } 2770 default: 2771 break; 2772 } 2773 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2774 2775 no_journal: 2776 2777 if (test_opt(sb, NOBH)) { 2778 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2779 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2780 "its supported only with writeback mode"); 2781 clear_opt(sbi->s_mount_opt, NOBH); 2782 } 2783 } 2784 /* 2785 * The jbd2_journal_load will have done any necessary log recovery, 2786 * so we can safely mount the rest of the filesystem now. 2787 */ 2788 2789 root = ext4_iget(sb, EXT4_ROOT_INO); 2790 if (IS_ERR(root)) { 2791 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2792 ret = PTR_ERR(root); 2793 goto failed_mount4; 2794 } 2795 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2796 iput(root); 2797 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2798 goto failed_mount4; 2799 } 2800 sb->s_root = d_alloc_root(root); 2801 if (!sb->s_root) { 2802 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2803 iput(root); 2804 ret = -ENOMEM; 2805 goto failed_mount4; 2806 } 2807 2808 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2809 2810 /* determine the minimum size of new large inodes, if present */ 2811 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2812 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2813 EXT4_GOOD_OLD_INODE_SIZE; 2814 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2815 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2816 if (sbi->s_want_extra_isize < 2817 le16_to_cpu(es->s_want_extra_isize)) 2818 sbi->s_want_extra_isize = 2819 le16_to_cpu(es->s_want_extra_isize); 2820 if (sbi->s_want_extra_isize < 2821 le16_to_cpu(es->s_min_extra_isize)) 2822 sbi->s_want_extra_isize = 2823 le16_to_cpu(es->s_min_extra_isize); 2824 } 2825 } 2826 /* Check if enough inode space is available */ 2827 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2828 sbi->s_inode_size) { 2829 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2830 EXT4_GOOD_OLD_INODE_SIZE; 2831 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2832 "available"); 2833 } 2834 2835 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 2836 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2837 "requested data journaling mode"); 2838 clear_opt(sbi->s_mount_opt, DELALLOC); 2839 } else if (test_opt(sb, DELALLOC)) 2840 ext4_msg(sb, KERN_INFO, "delayed allocation enabled"); 2841 2842 err = ext4_setup_system_zone(sb); 2843 if (err) { 2844 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2845 "zone (%d)\n", err); 2846 goto failed_mount4; 2847 } 2848 2849 ext4_ext_init(sb); 2850 err = ext4_mb_init(sb, needs_recovery); 2851 if (err) { 2852 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2853 err); 2854 goto failed_mount4; 2855 } 2856 2857 sbi->s_kobj.kset = ext4_kset; 2858 init_completion(&sbi->s_kobj_unregister); 2859 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2860 "%s", sb->s_id); 2861 if (err) { 2862 ext4_mb_release(sb); 2863 ext4_ext_release(sb); 2864 goto failed_mount4; 2865 }; 2866 2867 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2868 ext4_orphan_cleanup(sb, es); 2869 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2870 if (needs_recovery) { 2871 ext4_msg(sb, KERN_INFO, "recovery complete"); 2872 ext4_mark_recovery_complete(sb, es); 2873 } 2874 if (EXT4_SB(sb)->s_journal) { 2875 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2876 descr = " journalled data mode"; 2877 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2878 descr = " ordered data mode"; 2879 else 2880 descr = " writeback data mode"; 2881 } else 2882 descr = "out journal"; 2883 2884 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2885 2886 lock_kernel(); 2887 return 0; 2888 2889 cantfind_ext4: 2890 if (!silent) 2891 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2892 goto failed_mount; 2893 2894 failed_mount4: 2895 ext4_msg(sb, KERN_ERR, "mount failed"); 2896 ext4_release_system_zone(sb); 2897 if (sbi->s_journal) { 2898 jbd2_journal_destroy(sbi->s_journal); 2899 sbi->s_journal = NULL; 2900 } 2901 failed_mount3: 2902 if (sbi->s_flex_groups) { 2903 if (is_vmalloc_addr(sbi->s_flex_groups)) 2904 vfree(sbi->s_flex_groups); 2905 else 2906 kfree(sbi->s_flex_groups); 2907 } 2908 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2909 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2910 percpu_counter_destroy(&sbi->s_dirs_counter); 2911 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2912 failed_mount2: 2913 for (i = 0; i < db_count; i++) 2914 brelse(sbi->s_group_desc[i]); 2915 kfree(sbi->s_group_desc); 2916 failed_mount: 2917 if (sbi->s_proc) { 2918 remove_proc_entry(sb->s_id, ext4_proc_root); 2919 } 2920 #ifdef CONFIG_QUOTA 2921 for (i = 0; i < MAXQUOTAS; i++) 2922 kfree(sbi->s_qf_names[i]); 2923 #endif 2924 ext4_blkdev_remove(sbi); 2925 brelse(bh); 2926 out_fail: 2927 sb->s_fs_info = NULL; 2928 kfree(sbi->s_blockgroup_lock); 2929 kfree(sbi); 2930 lock_kernel(); 2931 return ret; 2932 } 2933 2934 /* 2935 * Setup any per-fs journal parameters now. We'll do this both on 2936 * initial mount, once the journal has been initialised but before we've 2937 * done any recovery; and again on any subsequent remount. 2938 */ 2939 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2940 { 2941 struct ext4_sb_info *sbi = EXT4_SB(sb); 2942 2943 journal->j_commit_interval = sbi->s_commit_interval; 2944 journal->j_min_batch_time = sbi->s_min_batch_time; 2945 journal->j_max_batch_time = sbi->s_max_batch_time; 2946 2947 spin_lock(&journal->j_state_lock); 2948 if (test_opt(sb, BARRIER)) 2949 journal->j_flags |= JBD2_BARRIER; 2950 else 2951 journal->j_flags &= ~JBD2_BARRIER; 2952 if (test_opt(sb, DATA_ERR_ABORT)) 2953 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2954 else 2955 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2956 spin_unlock(&journal->j_state_lock); 2957 } 2958 2959 static journal_t *ext4_get_journal(struct super_block *sb, 2960 unsigned int journal_inum) 2961 { 2962 struct inode *journal_inode; 2963 journal_t *journal; 2964 2965 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2966 2967 /* First, test for the existence of a valid inode on disk. Bad 2968 * things happen if we iget() an unused inode, as the subsequent 2969 * iput() will try to delete it. */ 2970 2971 journal_inode = ext4_iget(sb, journal_inum); 2972 if (IS_ERR(journal_inode)) { 2973 ext4_msg(sb, KERN_ERR, "no journal found"); 2974 return NULL; 2975 } 2976 if (!journal_inode->i_nlink) { 2977 make_bad_inode(journal_inode); 2978 iput(journal_inode); 2979 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 2980 return NULL; 2981 } 2982 2983 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 2984 journal_inode, journal_inode->i_size); 2985 if (!S_ISREG(journal_inode->i_mode)) { 2986 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 2987 iput(journal_inode); 2988 return NULL; 2989 } 2990 2991 journal = jbd2_journal_init_inode(journal_inode); 2992 if (!journal) { 2993 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 2994 iput(journal_inode); 2995 return NULL; 2996 } 2997 journal->j_private = sb; 2998 ext4_init_journal_params(sb, journal); 2999 return journal; 3000 } 3001 3002 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3003 dev_t j_dev) 3004 { 3005 struct buffer_head *bh; 3006 journal_t *journal; 3007 ext4_fsblk_t start; 3008 ext4_fsblk_t len; 3009 int hblock, blocksize; 3010 ext4_fsblk_t sb_block; 3011 unsigned long offset; 3012 struct ext4_super_block *es; 3013 struct block_device *bdev; 3014 3015 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3016 3017 bdev = ext4_blkdev_get(j_dev, sb); 3018 if (bdev == NULL) 3019 return NULL; 3020 3021 if (bd_claim(bdev, sb)) { 3022 ext4_msg(sb, KERN_ERR, 3023 "failed to claim external journal device"); 3024 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3025 return NULL; 3026 } 3027 3028 blocksize = sb->s_blocksize; 3029 hblock = bdev_logical_block_size(bdev); 3030 if (blocksize < hblock) { 3031 ext4_msg(sb, KERN_ERR, 3032 "blocksize too small for journal device"); 3033 goto out_bdev; 3034 } 3035 3036 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3037 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3038 set_blocksize(bdev, blocksize); 3039 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3040 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3041 "external journal"); 3042 goto out_bdev; 3043 } 3044 3045 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3046 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3047 !(le32_to_cpu(es->s_feature_incompat) & 3048 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3049 ext4_msg(sb, KERN_ERR, "external journal has " 3050 "bad superblock"); 3051 brelse(bh); 3052 goto out_bdev; 3053 } 3054 3055 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3056 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3057 brelse(bh); 3058 goto out_bdev; 3059 } 3060 3061 len = ext4_blocks_count(es); 3062 start = sb_block + 1; 3063 brelse(bh); /* we're done with the superblock */ 3064 3065 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3066 start, len, blocksize); 3067 if (!journal) { 3068 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3069 goto out_bdev; 3070 } 3071 journal->j_private = sb; 3072 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3073 wait_on_buffer(journal->j_sb_buffer); 3074 if (!buffer_uptodate(journal->j_sb_buffer)) { 3075 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3076 goto out_journal; 3077 } 3078 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3079 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3080 "user (unsupported) - %d", 3081 be32_to_cpu(journal->j_superblock->s_nr_users)); 3082 goto out_journal; 3083 } 3084 EXT4_SB(sb)->journal_bdev = bdev; 3085 ext4_init_journal_params(sb, journal); 3086 return journal; 3087 3088 out_journal: 3089 jbd2_journal_destroy(journal); 3090 out_bdev: 3091 ext4_blkdev_put(bdev); 3092 return NULL; 3093 } 3094 3095 static int ext4_load_journal(struct super_block *sb, 3096 struct ext4_super_block *es, 3097 unsigned long journal_devnum) 3098 { 3099 journal_t *journal; 3100 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3101 dev_t journal_dev; 3102 int err = 0; 3103 int really_read_only; 3104 3105 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3106 3107 if (journal_devnum && 3108 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3109 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3110 "numbers have changed"); 3111 journal_dev = new_decode_dev(journal_devnum); 3112 } else 3113 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3114 3115 really_read_only = bdev_read_only(sb->s_bdev); 3116 3117 /* 3118 * Are we loading a blank journal or performing recovery after a 3119 * crash? For recovery, we need to check in advance whether we 3120 * can get read-write access to the device. 3121 */ 3122 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3123 if (sb->s_flags & MS_RDONLY) { 3124 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3125 "required on readonly filesystem"); 3126 if (really_read_only) { 3127 ext4_msg(sb, KERN_ERR, "write access " 3128 "unavailable, cannot proceed"); 3129 return -EROFS; 3130 } 3131 ext4_msg(sb, KERN_INFO, "write access will " 3132 "be enabled during recovery"); 3133 } 3134 } 3135 3136 if (journal_inum && journal_dev) { 3137 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3138 "and inode journals!"); 3139 return -EINVAL; 3140 } 3141 3142 if (journal_inum) { 3143 if (!(journal = ext4_get_journal(sb, journal_inum))) 3144 return -EINVAL; 3145 } else { 3146 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3147 return -EINVAL; 3148 } 3149 3150 if (journal->j_flags & JBD2_BARRIER) 3151 ext4_msg(sb, KERN_INFO, "barriers enabled"); 3152 else 3153 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3154 3155 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3156 err = jbd2_journal_update_format(journal); 3157 if (err) { 3158 ext4_msg(sb, KERN_ERR, "error updating journal"); 3159 jbd2_journal_destroy(journal); 3160 return err; 3161 } 3162 } 3163 3164 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3165 err = jbd2_journal_wipe(journal, !really_read_only); 3166 if (!err) 3167 err = jbd2_journal_load(journal); 3168 3169 if (err) { 3170 ext4_msg(sb, KERN_ERR, "error loading journal"); 3171 jbd2_journal_destroy(journal); 3172 return err; 3173 } 3174 3175 EXT4_SB(sb)->s_journal = journal; 3176 ext4_clear_journal_err(sb, es); 3177 3178 if (journal_devnum && 3179 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3180 es->s_journal_dev = cpu_to_le32(journal_devnum); 3181 3182 /* Make sure we flush the recovery flag to disk. */ 3183 ext4_commit_super(sb, 1); 3184 } 3185 3186 return 0; 3187 } 3188 3189 static int ext4_commit_super(struct super_block *sb, int sync) 3190 { 3191 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3192 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3193 int error = 0; 3194 3195 if (!sbh) 3196 return error; 3197 if (buffer_write_io_error(sbh)) { 3198 /* 3199 * Oh, dear. A previous attempt to write the 3200 * superblock failed. This could happen because the 3201 * USB device was yanked out. Or it could happen to 3202 * be a transient write error and maybe the block will 3203 * be remapped. Nothing we can do but to retry the 3204 * write and hope for the best. 3205 */ 3206 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3207 "superblock detected"); 3208 clear_buffer_write_io_error(sbh); 3209 set_buffer_uptodate(sbh); 3210 } 3211 es->s_wtime = cpu_to_le32(get_seconds()); 3212 es->s_kbytes_written = 3213 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3214 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3215 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3216 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3217 &EXT4_SB(sb)->s_freeblocks_counter)); 3218 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3219 &EXT4_SB(sb)->s_freeinodes_counter)); 3220 sb->s_dirt = 0; 3221 BUFFER_TRACE(sbh, "marking dirty"); 3222 mark_buffer_dirty(sbh); 3223 if (sync) { 3224 error = sync_dirty_buffer(sbh); 3225 if (error) 3226 return error; 3227 3228 error = buffer_write_io_error(sbh); 3229 if (error) { 3230 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3231 "superblock"); 3232 clear_buffer_write_io_error(sbh); 3233 set_buffer_uptodate(sbh); 3234 } 3235 } 3236 return error; 3237 } 3238 3239 /* 3240 * Have we just finished recovery? If so, and if we are mounting (or 3241 * remounting) the filesystem readonly, then we will end up with a 3242 * consistent fs on disk. Record that fact. 3243 */ 3244 static void ext4_mark_recovery_complete(struct super_block *sb, 3245 struct ext4_super_block *es) 3246 { 3247 journal_t *journal = EXT4_SB(sb)->s_journal; 3248 3249 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3250 BUG_ON(journal != NULL); 3251 return; 3252 } 3253 jbd2_journal_lock_updates(journal); 3254 if (jbd2_journal_flush(journal) < 0) 3255 goto out; 3256 3257 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3258 sb->s_flags & MS_RDONLY) { 3259 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3260 ext4_commit_super(sb, 1); 3261 } 3262 3263 out: 3264 jbd2_journal_unlock_updates(journal); 3265 } 3266 3267 /* 3268 * If we are mounting (or read-write remounting) a filesystem whose journal 3269 * has recorded an error from a previous lifetime, move that error to the 3270 * main filesystem now. 3271 */ 3272 static void ext4_clear_journal_err(struct super_block *sb, 3273 struct ext4_super_block *es) 3274 { 3275 journal_t *journal; 3276 int j_errno; 3277 const char *errstr; 3278 3279 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3280 3281 journal = EXT4_SB(sb)->s_journal; 3282 3283 /* 3284 * Now check for any error status which may have been recorded in the 3285 * journal by a prior ext4_error() or ext4_abort() 3286 */ 3287 3288 j_errno = jbd2_journal_errno(journal); 3289 if (j_errno) { 3290 char nbuf[16]; 3291 3292 errstr = ext4_decode_error(sb, j_errno, nbuf); 3293 ext4_warning(sb, __func__, "Filesystem error recorded " 3294 "from previous mount: %s", errstr); 3295 ext4_warning(sb, __func__, "Marking fs in need of " 3296 "filesystem check."); 3297 3298 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3300 ext4_commit_super(sb, 1); 3301 3302 jbd2_journal_clear_err(journal); 3303 } 3304 } 3305 3306 /* 3307 * Force the running and committing transactions to commit, 3308 * and wait on the commit. 3309 */ 3310 int ext4_force_commit(struct super_block *sb) 3311 { 3312 journal_t *journal; 3313 int ret = 0; 3314 3315 if (sb->s_flags & MS_RDONLY) 3316 return 0; 3317 3318 journal = EXT4_SB(sb)->s_journal; 3319 if (journal) 3320 ret = ext4_journal_force_commit(journal); 3321 3322 return ret; 3323 } 3324 3325 static void ext4_write_super(struct super_block *sb) 3326 { 3327 lock_super(sb); 3328 ext4_commit_super(sb, 1); 3329 unlock_super(sb); 3330 } 3331 3332 static int ext4_sync_fs(struct super_block *sb, int wait) 3333 { 3334 int ret = 0; 3335 tid_t target; 3336 3337 trace_ext4_sync_fs(sb, wait); 3338 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) { 3339 if (wait) 3340 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target); 3341 } 3342 return ret; 3343 } 3344 3345 /* 3346 * LVM calls this function before a (read-only) snapshot is created. This 3347 * gives us a chance to flush the journal completely and mark the fs clean. 3348 */ 3349 static int ext4_freeze(struct super_block *sb) 3350 { 3351 int error = 0; 3352 journal_t *journal; 3353 3354 if (sb->s_flags & MS_RDONLY) 3355 return 0; 3356 3357 journal = EXT4_SB(sb)->s_journal; 3358 3359 /* Now we set up the journal barrier. */ 3360 jbd2_journal_lock_updates(journal); 3361 3362 /* 3363 * Don't clear the needs_recovery flag if we failed to flush 3364 * the journal. 3365 */ 3366 error = jbd2_journal_flush(journal); 3367 if (error < 0) { 3368 out: 3369 jbd2_journal_unlock_updates(journal); 3370 return error; 3371 } 3372 3373 /* Journal blocked and flushed, clear needs_recovery flag. */ 3374 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3375 error = ext4_commit_super(sb, 1); 3376 if (error) 3377 goto out; 3378 return 0; 3379 } 3380 3381 /* 3382 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3383 * flag here, even though the filesystem is not technically dirty yet. 3384 */ 3385 static int ext4_unfreeze(struct super_block *sb) 3386 { 3387 if (sb->s_flags & MS_RDONLY) 3388 return 0; 3389 3390 lock_super(sb); 3391 /* Reset the needs_recovery flag before the fs is unlocked. */ 3392 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3393 ext4_commit_super(sb, 1); 3394 unlock_super(sb); 3395 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3396 return 0; 3397 } 3398 3399 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3400 { 3401 struct ext4_super_block *es; 3402 struct ext4_sb_info *sbi = EXT4_SB(sb); 3403 ext4_fsblk_t n_blocks_count = 0; 3404 unsigned long old_sb_flags; 3405 struct ext4_mount_options old_opts; 3406 ext4_group_t g; 3407 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3408 int err; 3409 #ifdef CONFIG_QUOTA 3410 int i; 3411 #endif 3412 3413 lock_kernel(); 3414 3415 /* Store the original options */ 3416 lock_super(sb); 3417 old_sb_flags = sb->s_flags; 3418 old_opts.s_mount_opt = sbi->s_mount_opt; 3419 old_opts.s_resuid = sbi->s_resuid; 3420 old_opts.s_resgid = sbi->s_resgid; 3421 old_opts.s_commit_interval = sbi->s_commit_interval; 3422 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3423 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3424 #ifdef CONFIG_QUOTA 3425 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3426 for (i = 0; i < MAXQUOTAS; i++) 3427 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3428 #endif 3429 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3430 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3431 3432 /* 3433 * Allow the "check" option to be passed as a remount option. 3434 */ 3435 if (!parse_options(data, sb, NULL, &journal_ioprio, 3436 &n_blocks_count, 1)) { 3437 err = -EINVAL; 3438 goto restore_opts; 3439 } 3440 3441 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 3442 ext4_abort(sb, __func__, "Abort forced by user"); 3443 3444 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3445 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3446 3447 es = sbi->s_es; 3448 3449 if (sbi->s_journal) { 3450 ext4_init_journal_params(sb, sbi->s_journal); 3451 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3452 } 3453 3454 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3455 n_blocks_count > ext4_blocks_count(es)) { 3456 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 3457 err = -EROFS; 3458 goto restore_opts; 3459 } 3460 3461 if (*flags & MS_RDONLY) { 3462 /* 3463 * First of all, the unconditional stuff we have to do 3464 * to disable replay of the journal when we next remount 3465 */ 3466 sb->s_flags |= MS_RDONLY; 3467 3468 /* 3469 * OK, test if we are remounting a valid rw partition 3470 * readonly, and if so set the rdonly flag and then 3471 * mark the partition as valid again. 3472 */ 3473 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3474 (sbi->s_mount_state & EXT4_VALID_FS)) 3475 es->s_state = cpu_to_le16(sbi->s_mount_state); 3476 3477 if (sbi->s_journal) 3478 ext4_mark_recovery_complete(sb, es); 3479 } else { 3480 int ret; 3481 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3482 ~EXT4_FEATURE_RO_COMPAT_SUPP))) { 3483 ext4_msg(sb, KERN_WARNING, "couldn't " 3484 "remount RDWR because of unsupported " 3485 "optional features (%x)", 3486 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) & 3487 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3488 err = -EROFS; 3489 goto restore_opts; 3490 } 3491 3492 /* 3493 * Make sure the group descriptor checksums 3494 * are sane. If they aren't, refuse to remount r/w. 3495 */ 3496 for (g = 0; g < sbi->s_groups_count; g++) { 3497 struct ext4_group_desc *gdp = 3498 ext4_get_group_desc(sb, g, NULL); 3499 3500 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3501 ext4_msg(sb, KERN_ERR, 3502 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3503 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3504 le16_to_cpu(gdp->bg_checksum)); 3505 err = -EINVAL; 3506 goto restore_opts; 3507 } 3508 } 3509 3510 /* 3511 * If we have an unprocessed orphan list hanging 3512 * around from a previously readonly bdev mount, 3513 * require a full umount/remount for now. 3514 */ 3515 if (es->s_last_orphan) { 3516 ext4_msg(sb, KERN_WARNING, "Couldn't " 3517 "remount RDWR because of unprocessed " 3518 "orphan inode list. Please " 3519 "umount/remount instead"); 3520 err = -EINVAL; 3521 goto restore_opts; 3522 } 3523 3524 /* 3525 * Mounting a RDONLY partition read-write, so reread 3526 * and store the current valid flag. (It may have 3527 * been changed by e2fsck since we originally mounted 3528 * the partition.) 3529 */ 3530 if (sbi->s_journal) 3531 ext4_clear_journal_err(sb, es); 3532 sbi->s_mount_state = le16_to_cpu(es->s_state); 3533 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3534 goto restore_opts; 3535 if (!ext4_setup_super(sb, es, 0)) 3536 sb->s_flags &= ~MS_RDONLY; 3537 } 3538 } 3539 ext4_setup_system_zone(sb); 3540 if (sbi->s_journal == NULL) 3541 ext4_commit_super(sb, 1); 3542 3543 #ifdef CONFIG_QUOTA 3544 /* Release old quota file names */ 3545 for (i = 0; i < MAXQUOTAS; i++) 3546 if (old_opts.s_qf_names[i] && 3547 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3548 kfree(old_opts.s_qf_names[i]); 3549 #endif 3550 unlock_super(sb); 3551 unlock_kernel(); 3552 return 0; 3553 3554 restore_opts: 3555 sb->s_flags = old_sb_flags; 3556 sbi->s_mount_opt = old_opts.s_mount_opt; 3557 sbi->s_resuid = old_opts.s_resuid; 3558 sbi->s_resgid = old_opts.s_resgid; 3559 sbi->s_commit_interval = old_opts.s_commit_interval; 3560 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3561 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3562 #ifdef CONFIG_QUOTA 3563 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3564 for (i = 0; i < MAXQUOTAS; i++) { 3565 if (sbi->s_qf_names[i] && 3566 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3567 kfree(sbi->s_qf_names[i]); 3568 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3569 } 3570 #endif 3571 unlock_super(sb); 3572 unlock_kernel(); 3573 return err; 3574 } 3575 3576 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3577 { 3578 struct super_block *sb = dentry->d_sb; 3579 struct ext4_sb_info *sbi = EXT4_SB(sb); 3580 struct ext4_super_block *es = sbi->s_es; 3581 u64 fsid; 3582 3583 if (test_opt(sb, MINIX_DF)) { 3584 sbi->s_overhead_last = 0; 3585 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3586 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3587 ext4_fsblk_t overhead = 0; 3588 3589 /* 3590 * Compute the overhead (FS structures). This is constant 3591 * for a given filesystem unless the number of block groups 3592 * changes so we cache the previous value until it does. 3593 */ 3594 3595 /* 3596 * All of the blocks before first_data_block are 3597 * overhead 3598 */ 3599 overhead = le32_to_cpu(es->s_first_data_block); 3600 3601 /* 3602 * Add the overhead attributed to the superblock and 3603 * block group descriptors. If the sparse superblocks 3604 * feature is turned on, then not all groups have this. 3605 */ 3606 for (i = 0; i < ngroups; i++) { 3607 overhead += ext4_bg_has_super(sb, i) + 3608 ext4_bg_num_gdb(sb, i); 3609 cond_resched(); 3610 } 3611 3612 /* 3613 * Every block group has an inode bitmap, a block 3614 * bitmap, and an inode table. 3615 */ 3616 overhead += ngroups * (2 + sbi->s_itb_per_group); 3617 sbi->s_overhead_last = overhead; 3618 smp_wmb(); 3619 sbi->s_blocks_last = ext4_blocks_count(es); 3620 } 3621 3622 buf->f_type = EXT4_SUPER_MAGIC; 3623 buf->f_bsize = sb->s_blocksize; 3624 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3625 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3626 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3627 ext4_free_blocks_count_set(es, buf->f_bfree); 3628 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3629 if (buf->f_bfree < ext4_r_blocks_count(es)) 3630 buf->f_bavail = 0; 3631 buf->f_files = le32_to_cpu(es->s_inodes_count); 3632 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3633 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3634 buf->f_namelen = EXT4_NAME_LEN; 3635 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3636 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3637 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3638 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3639 3640 return 0; 3641 } 3642 3643 /* Helper function for writing quotas on sync - we need to start transaction 3644 * before quota file is locked for write. Otherwise the are possible deadlocks: 3645 * Process 1 Process 2 3646 * ext4_create() quota_sync() 3647 * jbd2_journal_start() write_dquot() 3648 * vfs_dq_init() down(dqio_mutex) 3649 * down(dqio_mutex) jbd2_journal_start() 3650 * 3651 */ 3652 3653 #ifdef CONFIG_QUOTA 3654 3655 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3656 { 3657 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3658 } 3659 3660 static int ext4_write_dquot(struct dquot *dquot) 3661 { 3662 int ret, err; 3663 handle_t *handle; 3664 struct inode *inode; 3665 3666 inode = dquot_to_inode(dquot); 3667 handle = ext4_journal_start(inode, 3668 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3669 if (IS_ERR(handle)) 3670 return PTR_ERR(handle); 3671 ret = dquot_commit(dquot); 3672 err = ext4_journal_stop(handle); 3673 if (!ret) 3674 ret = err; 3675 return ret; 3676 } 3677 3678 static int ext4_acquire_dquot(struct dquot *dquot) 3679 { 3680 int ret, err; 3681 handle_t *handle; 3682 3683 handle = ext4_journal_start(dquot_to_inode(dquot), 3684 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3685 if (IS_ERR(handle)) 3686 return PTR_ERR(handle); 3687 ret = dquot_acquire(dquot); 3688 err = ext4_journal_stop(handle); 3689 if (!ret) 3690 ret = err; 3691 return ret; 3692 } 3693 3694 static int ext4_release_dquot(struct dquot *dquot) 3695 { 3696 int ret, err; 3697 handle_t *handle; 3698 3699 handle = ext4_journal_start(dquot_to_inode(dquot), 3700 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3701 if (IS_ERR(handle)) { 3702 /* Release dquot anyway to avoid endless cycle in dqput() */ 3703 dquot_release(dquot); 3704 return PTR_ERR(handle); 3705 } 3706 ret = dquot_release(dquot); 3707 err = ext4_journal_stop(handle); 3708 if (!ret) 3709 ret = err; 3710 return ret; 3711 } 3712 3713 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3714 { 3715 /* Are we journaling quotas? */ 3716 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3717 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3718 dquot_mark_dquot_dirty(dquot); 3719 return ext4_write_dquot(dquot); 3720 } else { 3721 return dquot_mark_dquot_dirty(dquot); 3722 } 3723 } 3724 3725 static int ext4_write_info(struct super_block *sb, int type) 3726 { 3727 int ret, err; 3728 handle_t *handle; 3729 3730 /* Data block + inode block */ 3731 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3732 if (IS_ERR(handle)) 3733 return PTR_ERR(handle); 3734 ret = dquot_commit_info(sb, type); 3735 err = ext4_journal_stop(handle); 3736 if (!ret) 3737 ret = err; 3738 return ret; 3739 } 3740 3741 /* 3742 * Turn on quotas during mount time - we need to find 3743 * the quota file and such... 3744 */ 3745 static int ext4_quota_on_mount(struct super_block *sb, int type) 3746 { 3747 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3748 EXT4_SB(sb)->s_jquota_fmt, type); 3749 } 3750 3751 /* 3752 * Standard function to be called on quota_on 3753 */ 3754 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3755 char *name, int remount) 3756 { 3757 int err; 3758 struct path path; 3759 3760 if (!test_opt(sb, QUOTA)) 3761 return -EINVAL; 3762 /* When remounting, no checks are needed and in fact, name is NULL */ 3763 if (remount) 3764 return vfs_quota_on(sb, type, format_id, name, remount); 3765 3766 err = kern_path(name, LOOKUP_FOLLOW, &path); 3767 if (err) 3768 return err; 3769 3770 /* Quotafile not on the same filesystem? */ 3771 if (path.mnt->mnt_sb != sb) { 3772 path_put(&path); 3773 return -EXDEV; 3774 } 3775 /* Journaling quota? */ 3776 if (EXT4_SB(sb)->s_qf_names[type]) { 3777 /* Quotafile not in fs root? */ 3778 if (path.dentry->d_parent != sb->s_root) 3779 ext4_msg(sb, KERN_WARNING, 3780 "Quota file not on filesystem root. " 3781 "Journaled quota will not work"); 3782 } 3783 3784 /* 3785 * When we journal data on quota file, we have to flush journal to see 3786 * all updates to the file when we bypass pagecache... 3787 */ 3788 if (EXT4_SB(sb)->s_journal && 3789 ext4_should_journal_data(path.dentry->d_inode)) { 3790 /* 3791 * We don't need to lock updates but journal_flush() could 3792 * otherwise be livelocked... 3793 */ 3794 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3795 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3796 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3797 if (err) { 3798 path_put(&path); 3799 return err; 3800 } 3801 } 3802 3803 err = vfs_quota_on_path(sb, type, format_id, &path); 3804 path_put(&path); 3805 return err; 3806 } 3807 3808 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3809 * acquiring the locks... As quota files are never truncated and quota code 3810 * itself serializes the operations (and noone else should touch the files) 3811 * we don't have to be afraid of races */ 3812 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3813 size_t len, loff_t off) 3814 { 3815 struct inode *inode = sb_dqopt(sb)->files[type]; 3816 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3817 int err = 0; 3818 int offset = off & (sb->s_blocksize - 1); 3819 int tocopy; 3820 size_t toread; 3821 struct buffer_head *bh; 3822 loff_t i_size = i_size_read(inode); 3823 3824 if (off > i_size) 3825 return 0; 3826 if (off+len > i_size) 3827 len = i_size-off; 3828 toread = len; 3829 while (toread > 0) { 3830 tocopy = sb->s_blocksize - offset < toread ? 3831 sb->s_blocksize - offset : toread; 3832 bh = ext4_bread(NULL, inode, blk, 0, &err); 3833 if (err) 3834 return err; 3835 if (!bh) /* A hole? */ 3836 memset(data, 0, tocopy); 3837 else 3838 memcpy(data, bh->b_data+offset, tocopy); 3839 brelse(bh); 3840 offset = 0; 3841 toread -= tocopy; 3842 data += tocopy; 3843 blk++; 3844 } 3845 return len; 3846 } 3847 3848 /* Write to quotafile (we know the transaction is already started and has 3849 * enough credits) */ 3850 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3851 const char *data, size_t len, loff_t off) 3852 { 3853 struct inode *inode = sb_dqopt(sb)->files[type]; 3854 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3855 int err = 0; 3856 int offset = off & (sb->s_blocksize - 1); 3857 int tocopy; 3858 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3859 size_t towrite = len; 3860 struct buffer_head *bh; 3861 handle_t *handle = journal_current_handle(); 3862 3863 if (EXT4_SB(sb)->s_journal && !handle) { 3864 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3865 " cancelled because transaction is not started", 3866 (unsigned long long)off, (unsigned long long)len); 3867 return -EIO; 3868 } 3869 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3870 while (towrite > 0) { 3871 tocopy = sb->s_blocksize - offset < towrite ? 3872 sb->s_blocksize - offset : towrite; 3873 bh = ext4_bread(handle, inode, blk, 1, &err); 3874 if (!bh) 3875 goto out; 3876 if (journal_quota) { 3877 err = ext4_journal_get_write_access(handle, bh); 3878 if (err) { 3879 brelse(bh); 3880 goto out; 3881 } 3882 } 3883 lock_buffer(bh); 3884 memcpy(bh->b_data+offset, data, tocopy); 3885 flush_dcache_page(bh->b_page); 3886 unlock_buffer(bh); 3887 if (journal_quota) 3888 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3889 else { 3890 /* Always do at least ordered writes for quotas */ 3891 err = ext4_jbd2_file_inode(handle, inode); 3892 mark_buffer_dirty(bh); 3893 } 3894 brelse(bh); 3895 if (err) 3896 goto out; 3897 offset = 0; 3898 towrite -= tocopy; 3899 data += tocopy; 3900 blk++; 3901 } 3902 out: 3903 if (len == towrite) { 3904 mutex_unlock(&inode->i_mutex); 3905 return err; 3906 } 3907 if (inode->i_size < off+len-towrite) { 3908 i_size_write(inode, off+len-towrite); 3909 EXT4_I(inode)->i_disksize = inode->i_size; 3910 } 3911 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3912 ext4_mark_inode_dirty(handle, inode); 3913 mutex_unlock(&inode->i_mutex); 3914 return len - towrite; 3915 } 3916 3917 #endif 3918 3919 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3920 const char *dev_name, void *data, struct vfsmount *mnt) 3921 { 3922 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3923 } 3924 3925 static struct file_system_type ext4_fs_type = { 3926 .owner = THIS_MODULE, 3927 .name = "ext4", 3928 .get_sb = ext4_get_sb, 3929 .kill_sb = kill_block_super, 3930 .fs_flags = FS_REQUIRES_DEV, 3931 }; 3932 3933 #ifdef CONFIG_EXT4DEV_COMPAT 3934 static int ext4dev_get_sb(struct file_system_type *fs_type, int flags, 3935 const char *dev_name, void *data,struct vfsmount *mnt) 3936 { 3937 printk(KERN_WARNING "EXT4-fs (%s): Update your userspace programs " 3938 "to mount using ext4\n", dev_name); 3939 printk(KERN_WARNING "EXT4-fs (%s): ext4dev backwards compatibility " 3940 "will go away by 2.6.31\n", dev_name); 3941 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3942 } 3943 3944 static struct file_system_type ext4dev_fs_type = { 3945 .owner = THIS_MODULE, 3946 .name = "ext4dev", 3947 .get_sb = ext4dev_get_sb, 3948 .kill_sb = kill_block_super, 3949 .fs_flags = FS_REQUIRES_DEV, 3950 }; 3951 MODULE_ALIAS("ext4dev"); 3952 #endif 3953 3954 static int __init init_ext4_fs(void) 3955 { 3956 int err; 3957 3958 err = init_ext4_system_zone(); 3959 if (err) 3960 return err; 3961 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 3962 if (!ext4_kset) 3963 goto out4; 3964 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3965 err = init_ext4_mballoc(); 3966 if (err) 3967 goto out3; 3968 3969 err = init_ext4_xattr(); 3970 if (err) 3971 goto out2; 3972 err = init_inodecache(); 3973 if (err) 3974 goto out1; 3975 err = register_filesystem(&ext4_fs_type); 3976 if (err) 3977 goto out; 3978 #ifdef CONFIG_EXT4DEV_COMPAT 3979 err = register_filesystem(&ext4dev_fs_type); 3980 if (err) { 3981 unregister_filesystem(&ext4_fs_type); 3982 goto out; 3983 } 3984 #endif 3985 return 0; 3986 out: 3987 destroy_inodecache(); 3988 out1: 3989 exit_ext4_xattr(); 3990 out2: 3991 exit_ext4_mballoc(); 3992 out3: 3993 remove_proc_entry("fs/ext4", NULL); 3994 kset_unregister(ext4_kset); 3995 out4: 3996 exit_ext4_system_zone(); 3997 return err; 3998 } 3999 4000 static void __exit exit_ext4_fs(void) 4001 { 4002 unregister_filesystem(&ext4_fs_type); 4003 #ifdef CONFIG_EXT4DEV_COMPAT 4004 unregister_filesystem(&ext4dev_fs_type); 4005 #endif 4006 destroy_inodecache(); 4007 exit_ext4_xattr(); 4008 exit_ext4_mballoc(); 4009 remove_proc_entry("fs/ext4", NULL); 4010 kset_unregister(ext4_kset); 4011 exit_ext4_system_zone(); 4012 } 4013 4014 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4015 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4016 MODULE_LICENSE("GPL"); 4017 module_init(init_ext4_fs) 4018 module_exit(exit_ext4_fs) 4019