xref: /linux/fs/ext4/super.c (revision 5451093081db6ca1a708d149e11cfd219800bc4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 #include <linux/fsnotify.h>
50 
51 #include "ext4.h"
52 #include "ext4_extents.h"	/* Needed for trace points definition */
53 #include "ext4_jbd2.h"
54 #include "xattr.h"
55 #include "acl.h"
56 #include "mballoc.h"
57 #include "fsmap.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/ext4.h>
61 
62 static struct ext4_lazy_init *ext4_li_info;
63 static DEFINE_MUTEX(ext4_li_mtx);
64 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 
66 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
67 			     unsigned long journal_devnum);
68 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
69 static void ext4_update_super(struct super_block *sb);
70 static int ext4_commit_super(struct super_block *sb);
71 static int ext4_mark_recovery_complete(struct super_block *sb,
72 					struct ext4_super_block *es);
73 static int ext4_clear_journal_err(struct super_block *sb,
74 				  struct ext4_super_block *es);
75 static int ext4_sync_fs(struct super_block *sb, int wait);
76 static int ext4_remount(struct super_block *sb, int *flags, char *data);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
81 		       const char *dev_name, void *data);
82 static inline int ext2_feature_set_ok(struct super_block *sb);
83 static inline int ext3_feature_set_ok(struct super_block *sb);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * page fault path:
94  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
95  *   -> page lock -> i_data_sem (rw)
96  *
97  * buffered write path:
98  * sb_start_write -> i_mutex -> mmap_lock
99  * sb_start_write -> i_mutex -> transaction start -> page lock ->
100  *   i_data_sem (rw)
101  *
102  * truncate:
103  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
104  *   page lock
105  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
106  *   i_data_sem (rw)
107  *
108  * direct IO:
109  * sb_start_write -> i_mutex -> mmap_lock
110  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 
144 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
145 				  bh_end_io_t *end_io)
146 {
147 	/*
148 	 * buffer's verified bit is no longer valid after reading from
149 	 * disk again due to write out error, clear it to make sure we
150 	 * recheck the buffer contents.
151 	 */
152 	clear_buffer_verified(bh);
153 
154 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
155 	get_bh(bh);
156 	submit_bh(REQ_OP_READ, op_flags, bh);
157 }
158 
159 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
160 			 bh_end_io_t *end_io)
161 {
162 	BUG_ON(!buffer_locked(bh));
163 
164 	if (ext4_buffer_uptodate(bh)) {
165 		unlock_buffer(bh);
166 		return;
167 	}
168 	__ext4_read_bh(bh, op_flags, end_io);
169 }
170 
171 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
172 {
173 	BUG_ON(!buffer_locked(bh));
174 
175 	if (ext4_buffer_uptodate(bh)) {
176 		unlock_buffer(bh);
177 		return 0;
178 	}
179 
180 	__ext4_read_bh(bh, op_flags, end_io);
181 
182 	wait_on_buffer(bh);
183 	if (buffer_uptodate(bh))
184 		return 0;
185 	return -EIO;
186 }
187 
188 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
189 {
190 	if (trylock_buffer(bh)) {
191 		if (wait)
192 			return ext4_read_bh(bh, op_flags, NULL);
193 		ext4_read_bh_nowait(bh, op_flags, NULL);
194 		return 0;
195 	}
196 	if (wait) {
197 		wait_on_buffer(bh);
198 		if (buffer_uptodate(bh))
199 			return 0;
200 		return -EIO;
201 	}
202 	return 0;
203 }
204 
205 /*
206  * This works like __bread_gfp() except it uses ERR_PTR for error
207  * returns.  Currently with sb_bread it's impossible to distinguish
208  * between ENOMEM and EIO situations (since both result in a NULL
209  * return.
210  */
211 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
212 					       sector_t block, int op_flags,
213 					       gfp_t gfp)
214 {
215 	struct buffer_head *bh;
216 	int ret;
217 
218 	bh = sb_getblk_gfp(sb, block, gfp);
219 	if (bh == NULL)
220 		return ERR_PTR(-ENOMEM);
221 	if (ext4_buffer_uptodate(bh))
222 		return bh;
223 
224 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
225 	if (ret) {
226 		put_bh(bh);
227 		return ERR_PTR(ret);
228 	}
229 	return bh;
230 }
231 
232 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
233 				   int op_flags)
234 {
235 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
236 }
237 
238 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
239 					    sector_t block)
240 {
241 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
242 }
243 
244 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
245 {
246 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
247 
248 	if (likely(bh)) {
249 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
250 		brelse(bh);
251 	}
252 }
253 
254 static int ext4_verify_csum_type(struct super_block *sb,
255 				 struct ext4_super_block *es)
256 {
257 	if (!ext4_has_feature_metadata_csum(sb))
258 		return 1;
259 
260 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
261 }
262 
263 static __le32 ext4_superblock_csum(struct super_block *sb,
264 				   struct ext4_super_block *es)
265 {
266 	struct ext4_sb_info *sbi = EXT4_SB(sb);
267 	int offset = offsetof(struct ext4_super_block, s_checksum);
268 	__u32 csum;
269 
270 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
271 
272 	return cpu_to_le32(csum);
273 }
274 
275 static int ext4_superblock_csum_verify(struct super_block *sb,
276 				       struct ext4_super_block *es)
277 {
278 	if (!ext4_has_metadata_csum(sb))
279 		return 1;
280 
281 	return es->s_checksum == ext4_superblock_csum(sb, es);
282 }
283 
284 void ext4_superblock_csum_set(struct super_block *sb)
285 {
286 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
287 
288 	if (!ext4_has_metadata_csum(sb))
289 		return;
290 
291 	es->s_checksum = ext4_superblock_csum(sb, es);
292 }
293 
294 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
295 			       struct ext4_group_desc *bg)
296 {
297 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
298 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
299 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
300 }
301 
302 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
303 			       struct ext4_group_desc *bg)
304 {
305 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
306 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
307 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
308 }
309 
310 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
311 			      struct ext4_group_desc *bg)
312 {
313 	return le32_to_cpu(bg->bg_inode_table_lo) |
314 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
315 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
316 }
317 
318 __u32 ext4_free_group_clusters(struct super_block *sb,
319 			       struct ext4_group_desc *bg)
320 {
321 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
322 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
323 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
324 }
325 
326 __u32 ext4_free_inodes_count(struct super_block *sb,
327 			      struct ext4_group_desc *bg)
328 {
329 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
330 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
331 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
332 }
333 
334 __u32 ext4_used_dirs_count(struct super_block *sb,
335 			      struct ext4_group_desc *bg)
336 {
337 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
338 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
339 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
340 }
341 
342 __u32 ext4_itable_unused_count(struct super_block *sb,
343 			      struct ext4_group_desc *bg)
344 {
345 	return le16_to_cpu(bg->bg_itable_unused_lo) |
346 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
347 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
348 }
349 
350 void ext4_block_bitmap_set(struct super_block *sb,
351 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
352 {
353 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
354 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
355 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
356 }
357 
358 void ext4_inode_bitmap_set(struct super_block *sb,
359 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
360 {
361 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
362 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
363 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
364 }
365 
366 void ext4_inode_table_set(struct super_block *sb,
367 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
368 {
369 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
370 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
371 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
372 }
373 
374 void ext4_free_group_clusters_set(struct super_block *sb,
375 				  struct ext4_group_desc *bg, __u32 count)
376 {
377 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
378 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
379 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
380 }
381 
382 void ext4_free_inodes_set(struct super_block *sb,
383 			  struct ext4_group_desc *bg, __u32 count)
384 {
385 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
386 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
387 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
388 }
389 
390 void ext4_used_dirs_set(struct super_block *sb,
391 			  struct ext4_group_desc *bg, __u32 count)
392 {
393 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
394 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
395 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
396 }
397 
398 void ext4_itable_unused_set(struct super_block *sb,
399 			  struct ext4_group_desc *bg, __u32 count)
400 {
401 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
402 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
403 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
404 }
405 
406 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
407 {
408 	now = clamp_val(now, 0, (1ull << 40) - 1);
409 
410 	*lo = cpu_to_le32(lower_32_bits(now));
411 	*hi = upper_32_bits(now);
412 }
413 
414 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
415 {
416 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
417 }
418 #define ext4_update_tstamp(es, tstamp) \
419 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
420 			     ktime_get_real_seconds())
421 #define ext4_get_tstamp(es, tstamp) \
422 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
423 
424 /*
425  * The del_gendisk() function uninitializes the disk-specific data
426  * structures, including the bdi structure, without telling anyone
427  * else.  Once this happens, any attempt to call mark_buffer_dirty()
428  * (for example, by ext4_commit_super), will cause a kernel OOPS.
429  * This is a kludge to prevent these oops until we can put in a proper
430  * hook in del_gendisk() to inform the VFS and file system layers.
431  */
432 static int block_device_ejected(struct super_block *sb)
433 {
434 	struct inode *bd_inode = sb->s_bdev->bd_inode;
435 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
436 
437 	return bdi->dev == NULL;
438 }
439 
440 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
441 {
442 	struct super_block		*sb = journal->j_private;
443 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
444 	int				error = is_journal_aborted(journal);
445 	struct ext4_journal_cb_entry	*jce;
446 
447 	BUG_ON(txn->t_state == T_FINISHED);
448 
449 	ext4_process_freed_data(sb, txn->t_tid);
450 
451 	spin_lock(&sbi->s_md_lock);
452 	while (!list_empty(&txn->t_private_list)) {
453 		jce = list_entry(txn->t_private_list.next,
454 				 struct ext4_journal_cb_entry, jce_list);
455 		list_del_init(&jce->jce_list);
456 		spin_unlock(&sbi->s_md_lock);
457 		jce->jce_func(sb, jce, error);
458 		spin_lock(&sbi->s_md_lock);
459 	}
460 	spin_unlock(&sbi->s_md_lock);
461 }
462 
463 /*
464  * This writepage callback for write_cache_pages()
465  * takes care of a few cases after page cleaning.
466  *
467  * write_cache_pages() already checks for dirty pages
468  * and calls clear_page_dirty_for_io(), which we want,
469  * to write protect the pages.
470  *
471  * However, we may have to redirty a page (see below.)
472  */
473 static int ext4_journalled_writepage_callback(struct page *page,
474 					      struct writeback_control *wbc,
475 					      void *data)
476 {
477 	transaction_t *transaction = (transaction_t *) data;
478 	struct buffer_head *bh, *head;
479 	struct journal_head *jh;
480 
481 	bh = head = page_buffers(page);
482 	do {
483 		/*
484 		 * We have to redirty a page in these cases:
485 		 * 1) If buffer is dirty, it means the page was dirty because it
486 		 * contains a buffer that needs checkpointing. So the dirty bit
487 		 * needs to be preserved so that checkpointing writes the buffer
488 		 * properly.
489 		 * 2) If buffer is not part of the committing transaction
490 		 * (we may have just accidentally come across this buffer because
491 		 * inode range tracking is not exact) or if the currently running
492 		 * transaction already contains this buffer as well, dirty bit
493 		 * needs to be preserved so that the buffer gets writeprotected
494 		 * properly on running transaction's commit.
495 		 */
496 		jh = bh2jh(bh);
497 		if (buffer_dirty(bh) ||
498 		    (jh && (jh->b_transaction != transaction ||
499 			    jh->b_next_transaction))) {
500 			redirty_page_for_writepage(wbc, page);
501 			goto out;
502 		}
503 	} while ((bh = bh->b_this_page) != head);
504 
505 out:
506 	return AOP_WRITEPAGE_ACTIVATE;
507 }
508 
509 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
510 {
511 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
512 	struct writeback_control wbc = {
513 		.sync_mode =  WB_SYNC_ALL,
514 		.nr_to_write = LONG_MAX,
515 		.range_start = jinode->i_dirty_start,
516 		.range_end = jinode->i_dirty_end,
517         };
518 
519 	return write_cache_pages(mapping, &wbc,
520 				 ext4_journalled_writepage_callback,
521 				 jinode->i_transaction);
522 }
523 
524 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
525 {
526 	int ret;
527 
528 	if (ext4_should_journal_data(jinode->i_vfs_inode))
529 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
530 	else
531 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
532 
533 	return ret;
534 }
535 
536 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
537 {
538 	int ret = 0;
539 
540 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
541 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
542 
543 	return ret;
544 }
545 
546 static bool system_going_down(void)
547 {
548 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
549 		|| system_state == SYSTEM_RESTART;
550 }
551 
552 struct ext4_err_translation {
553 	int code;
554 	int errno;
555 };
556 
557 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
558 
559 static struct ext4_err_translation err_translation[] = {
560 	EXT4_ERR_TRANSLATE(EIO),
561 	EXT4_ERR_TRANSLATE(ENOMEM),
562 	EXT4_ERR_TRANSLATE(EFSBADCRC),
563 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
564 	EXT4_ERR_TRANSLATE(ENOSPC),
565 	EXT4_ERR_TRANSLATE(ENOKEY),
566 	EXT4_ERR_TRANSLATE(EROFS),
567 	EXT4_ERR_TRANSLATE(EFBIG),
568 	EXT4_ERR_TRANSLATE(EEXIST),
569 	EXT4_ERR_TRANSLATE(ERANGE),
570 	EXT4_ERR_TRANSLATE(EOVERFLOW),
571 	EXT4_ERR_TRANSLATE(EBUSY),
572 	EXT4_ERR_TRANSLATE(ENOTDIR),
573 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
574 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
575 	EXT4_ERR_TRANSLATE(EFAULT),
576 };
577 
578 static int ext4_errno_to_code(int errno)
579 {
580 	int i;
581 
582 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
583 		if (err_translation[i].errno == errno)
584 			return err_translation[i].code;
585 	return EXT4_ERR_UNKNOWN;
586 }
587 
588 static void save_error_info(struct super_block *sb, int error,
589 			    __u32 ino, __u64 block,
590 			    const char *func, unsigned int line)
591 {
592 	struct ext4_sb_info *sbi = EXT4_SB(sb);
593 
594 	/* We default to EFSCORRUPTED error... */
595 	if (error == 0)
596 		error = EFSCORRUPTED;
597 
598 	spin_lock(&sbi->s_error_lock);
599 	sbi->s_add_error_count++;
600 	sbi->s_last_error_code = error;
601 	sbi->s_last_error_line = line;
602 	sbi->s_last_error_ino = ino;
603 	sbi->s_last_error_block = block;
604 	sbi->s_last_error_func = func;
605 	sbi->s_last_error_time = ktime_get_real_seconds();
606 	if (!sbi->s_first_error_time) {
607 		sbi->s_first_error_code = error;
608 		sbi->s_first_error_line = line;
609 		sbi->s_first_error_ino = ino;
610 		sbi->s_first_error_block = block;
611 		sbi->s_first_error_func = func;
612 		sbi->s_first_error_time = sbi->s_last_error_time;
613 	}
614 	spin_unlock(&sbi->s_error_lock);
615 }
616 
617 /* Deal with the reporting of failure conditions on a filesystem such as
618  * inconsistencies detected or read IO failures.
619  *
620  * On ext2, we can store the error state of the filesystem in the
621  * superblock.  That is not possible on ext4, because we may have other
622  * write ordering constraints on the superblock which prevent us from
623  * writing it out straight away; and given that the journal is about to
624  * be aborted, we can't rely on the current, or future, transactions to
625  * write out the superblock safely.
626  *
627  * We'll just use the jbd2_journal_abort() error code to record an error in
628  * the journal instead.  On recovery, the journal will complain about
629  * that error until we've noted it down and cleared it.
630  *
631  * If force_ro is set, we unconditionally force the filesystem into an
632  * ABORT|READONLY state, unless the error response on the fs has been set to
633  * panic in which case we take the easy way out and panic immediately. This is
634  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
635  * at a critical moment in log management.
636  */
637 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
638 			      __u32 ino, __u64 block,
639 			      const char *func, unsigned int line)
640 {
641 	journal_t *journal = EXT4_SB(sb)->s_journal;
642 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
643 
644 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
645 	if (test_opt(sb, WARN_ON_ERROR))
646 		WARN_ON_ONCE(1);
647 
648 	if (!continue_fs && !sb_rdonly(sb)) {
649 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
650 		if (journal)
651 			jbd2_journal_abort(journal, -EIO);
652 	}
653 
654 	if (!bdev_read_only(sb->s_bdev)) {
655 		save_error_info(sb, error, ino, block, func, line);
656 		/*
657 		 * In case the fs should keep running, we need to writeout
658 		 * superblock through the journal. Due to lock ordering
659 		 * constraints, it may not be safe to do it right here so we
660 		 * defer superblock flushing to a workqueue.
661 		 */
662 		if (continue_fs && journal)
663 			schedule_work(&EXT4_SB(sb)->s_error_work);
664 		else
665 			ext4_commit_super(sb);
666 	}
667 
668 	/*
669 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
670 	 * could panic during 'reboot -f' as the underlying device got already
671 	 * disabled.
672 	 */
673 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
674 		panic("EXT4-fs (device %s): panic forced after error\n",
675 			sb->s_id);
676 	}
677 
678 	if (sb_rdonly(sb) || continue_fs)
679 		return;
680 
681 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
682 	/*
683 	 * Make sure updated value of ->s_mount_flags will be visible before
684 	 * ->s_flags update
685 	 */
686 	smp_wmb();
687 	sb->s_flags |= SB_RDONLY;
688 }
689 
690 static void flush_stashed_error_work(struct work_struct *work)
691 {
692 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
693 						s_error_work);
694 	journal_t *journal = sbi->s_journal;
695 	handle_t *handle;
696 
697 	/*
698 	 * If the journal is still running, we have to write out superblock
699 	 * through the journal to avoid collisions of other journalled sb
700 	 * updates.
701 	 *
702 	 * We use directly jbd2 functions here to avoid recursing back into
703 	 * ext4 error handling code during handling of previous errors.
704 	 */
705 	if (!sb_rdonly(sbi->s_sb) && journal) {
706 		struct buffer_head *sbh = sbi->s_sbh;
707 		handle = jbd2_journal_start(journal, 1);
708 		if (IS_ERR(handle))
709 			goto write_directly;
710 		if (jbd2_journal_get_write_access(handle, sbh)) {
711 			jbd2_journal_stop(handle);
712 			goto write_directly;
713 		}
714 		ext4_update_super(sbi->s_sb);
715 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
716 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
717 				 "superblock detected");
718 			clear_buffer_write_io_error(sbh);
719 			set_buffer_uptodate(sbh);
720 		}
721 
722 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
723 			jbd2_journal_stop(handle);
724 			goto write_directly;
725 		}
726 		jbd2_journal_stop(handle);
727 		ext4_notify_error_sysfs(sbi);
728 		return;
729 	}
730 write_directly:
731 	/*
732 	 * Write through journal failed. Write sb directly to get error info
733 	 * out and hope for the best.
734 	 */
735 	ext4_commit_super(sbi->s_sb);
736 	ext4_notify_error_sysfs(sbi);
737 }
738 
739 #define ext4_error_ratelimit(sb)					\
740 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
741 			     "EXT4-fs error")
742 
743 void __ext4_error(struct super_block *sb, const char *function,
744 		  unsigned int line, bool force_ro, int error, __u64 block,
745 		  const char *fmt, ...)
746 {
747 	struct va_format vaf;
748 	va_list args;
749 
750 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
751 		return;
752 
753 	trace_ext4_error(sb, function, line);
754 	if (ext4_error_ratelimit(sb)) {
755 		va_start(args, fmt);
756 		vaf.fmt = fmt;
757 		vaf.va = &args;
758 		printk(KERN_CRIT
759 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
760 		       sb->s_id, function, line, current->comm, &vaf);
761 		va_end(args);
762 	}
763 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
764 
765 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
766 }
767 
768 void __ext4_error_inode(struct inode *inode, const char *function,
769 			unsigned int line, ext4_fsblk_t block, int error,
770 			const char *fmt, ...)
771 {
772 	va_list args;
773 	struct va_format vaf;
774 
775 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
776 		return;
777 
778 	trace_ext4_error(inode->i_sb, function, line);
779 	if (ext4_error_ratelimit(inode->i_sb)) {
780 		va_start(args, fmt);
781 		vaf.fmt = fmt;
782 		vaf.va = &args;
783 		if (block)
784 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
785 			       "inode #%lu: block %llu: comm %s: %pV\n",
786 			       inode->i_sb->s_id, function, line, inode->i_ino,
787 			       block, current->comm, &vaf);
788 		else
789 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
790 			       "inode #%lu: comm %s: %pV\n",
791 			       inode->i_sb->s_id, function, line, inode->i_ino,
792 			       current->comm, &vaf);
793 		va_end(args);
794 	}
795 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
796 
797 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
798 			  function, line);
799 }
800 
801 void __ext4_error_file(struct file *file, const char *function,
802 		       unsigned int line, ext4_fsblk_t block,
803 		       const char *fmt, ...)
804 {
805 	va_list args;
806 	struct va_format vaf;
807 	struct inode *inode = file_inode(file);
808 	char pathname[80], *path;
809 
810 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
811 		return;
812 
813 	trace_ext4_error(inode->i_sb, function, line);
814 	if (ext4_error_ratelimit(inode->i_sb)) {
815 		path = file_path(file, pathname, sizeof(pathname));
816 		if (IS_ERR(path))
817 			path = "(unknown)";
818 		va_start(args, fmt);
819 		vaf.fmt = fmt;
820 		vaf.va = &args;
821 		if (block)
822 			printk(KERN_CRIT
823 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
824 			       "block %llu: comm %s: path %s: %pV\n",
825 			       inode->i_sb->s_id, function, line, inode->i_ino,
826 			       block, current->comm, path, &vaf);
827 		else
828 			printk(KERN_CRIT
829 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
830 			       "comm %s: path %s: %pV\n",
831 			       inode->i_sb->s_id, function, line, inode->i_ino,
832 			       current->comm, path, &vaf);
833 		va_end(args);
834 	}
835 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
836 
837 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
838 			  function, line);
839 }
840 
841 const char *ext4_decode_error(struct super_block *sb, int errno,
842 			      char nbuf[16])
843 {
844 	char *errstr = NULL;
845 
846 	switch (errno) {
847 	case -EFSCORRUPTED:
848 		errstr = "Corrupt filesystem";
849 		break;
850 	case -EFSBADCRC:
851 		errstr = "Filesystem failed CRC";
852 		break;
853 	case -EIO:
854 		errstr = "IO failure";
855 		break;
856 	case -ENOMEM:
857 		errstr = "Out of memory";
858 		break;
859 	case -EROFS:
860 		if (!sb || (EXT4_SB(sb)->s_journal &&
861 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
862 			errstr = "Journal has aborted";
863 		else
864 			errstr = "Readonly filesystem";
865 		break;
866 	default:
867 		/* If the caller passed in an extra buffer for unknown
868 		 * errors, textualise them now.  Else we just return
869 		 * NULL. */
870 		if (nbuf) {
871 			/* Check for truncated error codes... */
872 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
873 				errstr = nbuf;
874 		}
875 		break;
876 	}
877 
878 	return errstr;
879 }
880 
881 /* __ext4_std_error decodes expected errors from journaling functions
882  * automatically and invokes the appropriate error response.  */
883 
884 void __ext4_std_error(struct super_block *sb, const char *function,
885 		      unsigned int line, int errno)
886 {
887 	char nbuf[16];
888 	const char *errstr;
889 
890 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
891 		return;
892 
893 	/* Special case: if the error is EROFS, and we're not already
894 	 * inside a transaction, then there's really no point in logging
895 	 * an error. */
896 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
897 		return;
898 
899 	if (ext4_error_ratelimit(sb)) {
900 		errstr = ext4_decode_error(sb, errno, nbuf);
901 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
902 		       sb->s_id, function, line, errstr);
903 	}
904 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
905 
906 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
907 }
908 
909 void __ext4_msg(struct super_block *sb,
910 		const char *prefix, const char *fmt, ...)
911 {
912 	struct va_format vaf;
913 	va_list args;
914 
915 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
916 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
917 		return;
918 
919 	va_start(args, fmt);
920 	vaf.fmt = fmt;
921 	vaf.va = &args;
922 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
923 	va_end(args);
924 }
925 
926 static int ext4_warning_ratelimit(struct super_block *sb)
927 {
928 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
929 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
930 			    "EXT4-fs warning");
931 }
932 
933 void __ext4_warning(struct super_block *sb, const char *function,
934 		    unsigned int line, const char *fmt, ...)
935 {
936 	struct va_format vaf;
937 	va_list args;
938 
939 	if (!ext4_warning_ratelimit(sb))
940 		return;
941 
942 	va_start(args, fmt);
943 	vaf.fmt = fmt;
944 	vaf.va = &args;
945 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
946 	       sb->s_id, function, line, &vaf);
947 	va_end(args);
948 }
949 
950 void __ext4_warning_inode(const struct inode *inode, const char *function,
951 			  unsigned int line, const char *fmt, ...)
952 {
953 	struct va_format vaf;
954 	va_list args;
955 
956 	if (!ext4_warning_ratelimit(inode->i_sb))
957 		return;
958 
959 	va_start(args, fmt);
960 	vaf.fmt = fmt;
961 	vaf.va = &args;
962 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
963 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
964 	       function, line, inode->i_ino, current->comm, &vaf);
965 	va_end(args);
966 }
967 
968 void __ext4_grp_locked_error(const char *function, unsigned int line,
969 			     struct super_block *sb, ext4_group_t grp,
970 			     unsigned long ino, ext4_fsblk_t block,
971 			     const char *fmt, ...)
972 __releases(bitlock)
973 __acquires(bitlock)
974 {
975 	struct va_format vaf;
976 	va_list args;
977 
978 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
979 		return;
980 
981 	trace_ext4_error(sb, function, line);
982 	if (ext4_error_ratelimit(sb)) {
983 		va_start(args, fmt);
984 		vaf.fmt = fmt;
985 		vaf.va = &args;
986 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
987 		       sb->s_id, function, line, grp);
988 		if (ino)
989 			printk(KERN_CONT "inode %lu: ", ino);
990 		if (block)
991 			printk(KERN_CONT "block %llu:",
992 			       (unsigned long long) block);
993 		printk(KERN_CONT "%pV\n", &vaf);
994 		va_end(args);
995 	}
996 
997 	if (test_opt(sb, ERRORS_CONT)) {
998 		if (test_opt(sb, WARN_ON_ERROR))
999 			WARN_ON_ONCE(1);
1000 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1001 		if (!bdev_read_only(sb->s_bdev)) {
1002 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1003 					line);
1004 			schedule_work(&EXT4_SB(sb)->s_error_work);
1005 		}
1006 		return;
1007 	}
1008 	ext4_unlock_group(sb, grp);
1009 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1010 	/*
1011 	 * We only get here in the ERRORS_RO case; relocking the group
1012 	 * may be dangerous, but nothing bad will happen since the
1013 	 * filesystem will have already been marked read/only and the
1014 	 * journal has been aborted.  We return 1 as a hint to callers
1015 	 * who might what to use the return value from
1016 	 * ext4_grp_locked_error() to distinguish between the
1017 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1018 	 * aggressively from the ext4 function in question, with a
1019 	 * more appropriate error code.
1020 	 */
1021 	ext4_lock_group(sb, grp);
1022 	return;
1023 }
1024 
1025 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1026 				     ext4_group_t group,
1027 				     unsigned int flags)
1028 {
1029 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1030 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1031 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1032 	int ret;
1033 
1034 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1035 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1036 					    &grp->bb_state);
1037 		if (!ret)
1038 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1039 					   grp->bb_free);
1040 	}
1041 
1042 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1043 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1044 					    &grp->bb_state);
1045 		if (!ret && gdp) {
1046 			int count;
1047 
1048 			count = ext4_free_inodes_count(sb, gdp);
1049 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1050 					   count);
1051 		}
1052 	}
1053 }
1054 
1055 void ext4_update_dynamic_rev(struct super_block *sb)
1056 {
1057 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1058 
1059 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1060 		return;
1061 
1062 	ext4_warning(sb,
1063 		     "updating to rev %d because of new feature flag, "
1064 		     "running e2fsck is recommended",
1065 		     EXT4_DYNAMIC_REV);
1066 
1067 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1068 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1069 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1070 	/* leave es->s_feature_*compat flags alone */
1071 	/* es->s_uuid will be set by e2fsck if empty */
1072 
1073 	/*
1074 	 * The rest of the superblock fields should be zero, and if not it
1075 	 * means they are likely already in use, so leave them alone.  We
1076 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1077 	 */
1078 }
1079 
1080 /*
1081  * Open the external journal device
1082  */
1083 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1084 {
1085 	struct block_device *bdev;
1086 
1087 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1088 	if (IS_ERR(bdev))
1089 		goto fail;
1090 	return bdev;
1091 
1092 fail:
1093 	ext4_msg(sb, KERN_ERR,
1094 		 "failed to open journal device unknown-block(%u,%u) %ld",
1095 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1096 	return NULL;
1097 }
1098 
1099 /*
1100  * Release the journal device
1101  */
1102 static void ext4_blkdev_put(struct block_device *bdev)
1103 {
1104 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1105 }
1106 
1107 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1108 {
1109 	struct block_device *bdev;
1110 	bdev = sbi->s_journal_bdev;
1111 	if (bdev) {
1112 		ext4_blkdev_put(bdev);
1113 		sbi->s_journal_bdev = NULL;
1114 	}
1115 }
1116 
1117 static inline struct inode *orphan_list_entry(struct list_head *l)
1118 {
1119 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1120 }
1121 
1122 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1123 {
1124 	struct list_head *l;
1125 
1126 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1127 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1128 
1129 	printk(KERN_ERR "sb_info orphan list:\n");
1130 	list_for_each(l, &sbi->s_orphan) {
1131 		struct inode *inode = orphan_list_entry(l);
1132 		printk(KERN_ERR "  "
1133 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1134 		       inode->i_sb->s_id, inode->i_ino, inode,
1135 		       inode->i_mode, inode->i_nlink,
1136 		       NEXT_ORPHAN(inode));
1137 	}
1138 }
1139 
1140 #ifdef CONFIG_QUOTA
1141 static int ext4_quota_off(struct super_block *sb, int type);
1142 
1143 static inline void ext4_quota_off_umount(struct super_block *sb)
1144 {
1145 	int type;
1146 
1147 	/* Use our quota_off function to clear inode flags etc. */
1148 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1149 		ext4_quota_off(sb, type);
1150 }
1151 
1152 /*
1153  * This is a helper function which is used in the mount/remount
1154  * codepaths (which holds s_umount) to fetch the quota file name.
1155  */
1156 static inline char *get_qf_name(struct super_block *sb,
1157 				struct ext4_sb_info *sbi,
1158 				int type)
1159 {
1160 	return rcu_dereference_protected(sbi->s_qf_names[type],
1161 					 lockdep_is_held(&sb->s_umount));
1162 }
1163 #else
1164 static inline void ext4_quota_off_umount(struct super_block *sb)
1165 {
1166 }
1167 #endif
1168 
1169 static void ext4_put_super(struct super_block *sb)
1170 {
1171 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1172 	struct ext4_super_block *es = sbi->s_es;
1173 	struct buffer_head **group_desc;
1174 	struct flex_groups **flex_groups;
1175 	int aborted = 0;
1176 	int i, err;
1177 
1178 	ext4_unregister_li_request(sb);
1179 	ext4_quota_off_umount(sb);
1180 
1181 	flush_work(&sbi->s_error_work);
1182 	destroy_workqueue(sbi->rsv_conversion_wq);
1183 	ext4_release_orphan_info(sb);
1184 
1185 	/*
1186 	 * Unregister sysfs before destroying jbd2 journal.
1187 	 * Since we could still access attr_journal_task attribute via sysfs
1188 	 * path which could have sbi->s_journal->j_task as NULL
1189 	 */
1190 	ext4_unregister_sysfs(sb);
1191 
1192 	if (sbi->s_journal) {
1193 		aborted = is_journal_aborted(sbi->s_journal);
1194 		err = jbd2_journal_destroy(sbi->s_journal);
1195 		sbi->s_journal = NULL;
1196 		if ((err < 0) && !aborted) {
1197 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1198 		}
1199 	}
1200 
1201 	ext4_es_unregister_shrinker(sbi);
1202 	del_timer_sync(&sbi->s_err_report);
1203 	ext4_release_system_zone(sb);
1204 	ext4_mb_release(sb);
1205 	ext4_ext_release(sb);
1206 
1207 	if (!sb_rdonly(sb) && !aborted) {
1208 		ext4_clear_feature_journal_needs_recovery(sb);
1209 		ext4_clear_feature_orphan_present(sb);
1210 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1211 	}
1212 	if (!sb_rdonly(sb))
1213 		ext4_commit_super(sb);
1214 
1215 	rcu_read_lock();
1216 	group_desc = rcu_dereference(sbi->s_group_desc);
1217 	for (i = 0; i < sbi->s_gdb_count; i++)
1218 		brelse(group_desc[i]);
1219 	kvfree(group_desc);
1220 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1221 	if (flex_groups) {
1222 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1223 			kvfree(flex_groups[i]);
1224 		kvfree(flex_groups);
1225 	}
1226 	rcu_read_unlock();
1227 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1228 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1229 	percpu_counter_destroy(&sbi->s_dirs_counter);
1230 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1231 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1232 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1233 #ifdef CONFIG_QUOTA
1234 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1235 		kfree(get_qf_name(sb, sbi, i));
1236 #endif
1237 
1238 	/* Debugging code just in case the in-memory inode orphan list
1239 	 * isn't empty.  The on-disk one can be non-empty if we've
1240 	 * detected an error and taken the fs readonly, but the
1241 	 * in-memory list had better be clean by this point. */
1242 	if (!list_empty(&sbi->s_orphan))
1243 		dump_orphan_list(sb, sbi);
1244 	ASSERT(list_empty(&sbi->s_orphan));
1245 
1246 	sync_blockdev(sb->s_bdev);
1247 	invalidate_bdev(sb->s_bdev);
1248 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1249 		/*
1250 		 * Invalidate the journal device's buffers.  We don't want them
1251 		 * floating about in memory - the physical journal device may
1252 		 * hotswapped, and it breaks the `ro-after' testing code.
1253 		 */
1254 		sync_blockdev(sbi->s_journal_bdev);
1255 		invalidate_bdev(sbi->s_journal_bdev);
1256 		ext4_blkdev_remove(sbi);
1257 	}
1258 
1259 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1260 	sbi->s_ea_inode_cache = NULL;
1261 
1262 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1263 	sbi->s_ea_block_cache = NULL;
1264 
1265 	ext4_stop_mmpd(sbi);
1266 
1267 	brelse(sbi->s_sbh);
1268 	sb->s_fs_info = NULL;
1269 	/*
1270 	 * Now that we are completely done shutting down the
1271 	 * superblock, we need to actually destroy the kobject.
1272 	 */
1273 	kobject_put(&sbi->s_kobj);
1274 	wait_for_completion(&sbi->s_kobj_unregister);
1275 	if (sbi->s_chksum_driver)
1276 		crypto_free_shash(sbi->s_chksum_driver);
1277 	kfree(sbi->s_blockgroup_lock);
1278 	fs_put_dax(sbi->s_daxdev);
1279 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1280 #ifdef CONFIG_UNICODE
1281 	utf8_unload(sb->s_encoding);
1282 #endif
1283 	kfree(sbi);
1284 }
1285 
1286 static struct kmem_cache *ext4_inode_cachep;
1287 
1288 /*
1289  * Called inside transaction, so use GFP_NOFS
1290  */
1291 static struct inode *ext4_alloc_inode(struct super_block *sb)
1292 {
1293 	struct ext4_inode_info *ei;
1294 
1295 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1296 	if (!ei)
1297 		return NULL;
1298 
1299 	inode_set_iversion(&ei->vfs_inode, 1);
1300 	spin_lock_init(&ei->i_raw_lock);
1301 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1302 	atomic_set(&ei->i_prealloc_active, 0);
1303 	spin_lock_init(&ei->i_prealloc_lock);
1304 	ext4_es_init_tree(&ei->i_es_tree);
1305 	rwlock_init(&ei->i_es_lock);
1306 	INIT_LIST_HEAD(&ei->i_es_list);
1307 	ei->i_es_all_nr = 0;
1308 	ei->i_es_shk_nr = 0;
1309 	ei->i_es_shrink_lblk = 0;
1310 	ei->i_reserved_data_blocks = 0;
1311 	spin_lock_init(&(ei->i_block_reservation_lock));
1312 	ext4_init_pending_tree(&ei->i_pending_tree);
1313 #ifdef CONFIG_QUOTA
1314 	ei->i_reserved_quota = 0;
1315 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1316 #endif
1317 	ei->jinode = NULL;
1318 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1319 	spin_lock_init(&ei->i_completed_io_lock);
1320 	ei->i_sync_tid = 0;
1321 	ei->i_datasync_tid = 0;
1322 	atomic_set(&ei->i_unwritten, 0);
1323 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1324 	ext4_fc_init_inode(&ei->vfs_inode);
1325 	mutex_init(&ei->i_fc_lock);
1326 	return &ei->vfs_inode;
1327 }
1328 
1329 static int ext4_drop_inode(struct inode *inode)
1330 {
1331 	int drop = generic_drop_inode(inode);
1332 
1333 	if (!drop)
1334 		drop = fscrypt_drop_inode(inode);
1335 
1336 	trace_ext4_drop_inode(inode, drop);
1337 	return drop;
1338 }
1339 
1340 static void ext4_free_in_core_inode(struct inode *inode)
1341 {
1342 	fscrypt_free_inode(inode);
1343 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1344 		pr_warn("%s: inode %ld still in fc list",
1345 			__func__, inode->i_ino);
1346 	}
1347 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1348 }
1349 
1350 static void ext4_destroy_inode(struct inode *inode)
1351 {
1352 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1353 		ext4_msg(inode->i_sb, KERN_ERR,
1354 			 "Inode %lu (%p): orphan list check failed!",
1355 			 inode->i_ino, EXT4_I(inode));
1356 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1357 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1358 				true);
1359 		dump_stack();
1360 	}
1361 
1362 	if (EXT4_I(inode)->i_reserved_data_blocks)
1363 		ext4_msg(inode->i_sb, KERN_ERR,
1364 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1365 			 inode->i_ino, EXT4_I(inode),
1366 			 EXT4_I(inode)->i_reserved_data_blocks);
1367 }
1368 
1369 static void init_once(void *foo)
1370 {
1371 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1372 
1373 	INIT_LIST_HEAD(&ei->i_orphan);
1374 	init_rwsem(&ei->xattr_sem);
1375 	init_rwsem(&ei->i_data_sem);
1376 	inode_init_once(&ei->vfs_inode);
1377 	ext4_fc_init_inode(&ei->vfs_inode);
1378 }
1379 
1380 static int __init init_inodecache(void)
1381 {
1382 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1383 				sizeof(struct ext4_inode_info), 0,
1384 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1385 					SLAB_ACCOUNT),
1386 				offsetof(struct ext4_inode_info, i_data),
1387 				sizeof_field(struct ext4_inode_info, i_data),
1388 				init_once);
1389 	if (ext4_inode_cachep == NULL)
1390 		return -ENOMEM;
1391 	return 0;
1392 }
1393 
1394 static void destroy_inodecache(void)
1395 {
1396 	/*
1397 	 * Make sure all delayed rcu free inodes are flushed before we
1398 	 * destroy cache.
1399 	 */
1400 	rcu_barrier();
1401 	kmem_cache_destroy(ext4_inode_cachep);
1402 }
1403 
1404 void ext4_clear_inode(struct inode *inode)
1405 {
1406 	ext4_fc_del(inode);
1407 	invalidate_inode_buffers(inode);
1408 	clear_inode(inode);
1409 	ext4_discard_preallocations(inode, 0);
1410 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1411 	dquot_drop(inode);
1412 	if (EXT4_I(inode)->jinode) {
1413 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1414 					       EXT4_I(inode)->jinode);
1415 		jbd2_free_inode(EXT4_I(inode)->jinode);
1416 		EXT4_I(inode)->jinode = NULL;
1417 	}
1418 	fscrypt_put_encryption_info(inode);
1419 	fsverity_cleanup_inode(inode);
1420 }
1421 
1422 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1423 					u64 ino, u32 generation)
1424 {
1425 	struct inode *inode;
1426 
1427 	/*
1428 	 * Currently we don't know the generation for parent directory, so
1429 	 * a generation of 0 means "accept any"
1430 	 */
1431 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1432 	if (IS_ERR(inode))
1433 		return ERR_CAST(inode);
1434 	if (generation && inode->i_generation != generation) {
1435 		iput(inode);
1436 		return ERR_PTR(-ESTALE);
1437 	}
1438 
1439 	return inode;
1440 }
1441 
1442 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1443 					int fh_len, int fh_type)
1444 {
1445 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1446 				    ext4_nfs_get_inode);
1447 }
1448 
1449 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1450 					int fh_len, int fh_type)
1451 {
1452 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1453 				    ext4_nfs_get_inode);
1454 }
1455 
1456 static int ext4_nfs_commit_metadata(struct inode *inode)
1457 {
1458 	struct writeback_control wbc = {
1459 		.sync_mode = WB_SYNC_ALL
1460 	};
1461 
1462 	trace_ext4_nfs_commit_metadata(inode);
1463 	return ext4_write_inode(inode, &wbc);
1464 }
1465 
1466 #ifdef CONFIG_FS_ENCRYPTION
1467 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1468 {
1469 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1470 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1471 }
1472 
1473 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1474 							void *fs_data)
1475 {
1476 	handle_t *handle = fs_data;
1477 	int res, res2, credits, retries = 0;
1478 
1479 	/*
1480 	 * Encrypting the root directory is not allowed because e2fsck expects
1481 	 * lost+found to exist and be unencrypted, and encrypting the root
1482 	 * directory would imply encrypting the lost+found directory as well as
1483 	 * the filename "lost+found" itself.
1484 	 */
1485 	if (inode->i_ino == EXT4_ROOT_INO)
1486 		return -EPERM;
1487 
1488 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1489 		return -EINVAL;
1490 
1491 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1492 		return -EOPNOTSUPP;
1493 
1494 	res = ext4_convert_inline_data(inode);
1495 	if (res)
1496 		return res;
1497 
1498 	/*
1499 	 * If a journal handle was specified, then the encryption context is
1500 	 * being set on a new inode via inheritance and is part of a larger
1501 	 * transaction to create the inode.  Otherwise the encryption context is
1502 	 * being set on an existing inode in its own transaction.  Only in the
1503 	 * latter case should the "retry on ENOSPC" logic be used.
1504 	 */
1505 
1506 	if (handle) {
1507 		res = ext4_xattr_set_handle(handle, inode,
1508 					    EXT4_XATTR_INDEX_ENCRYPTION,
1509 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1510 					    ctx, len, 0);
1511 		if (!res) {
1512 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1513 			ext4_clear_inode_state(inode,
1514 					EXT4_STATE_MAY_INLINE_DATA);
1515 			/*
1516 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1517 			 * S_DAX may be disabled
1518 			 */
1519 			ext4_set_inode_flags(inode, false);
1520 		}
1521 		return res;
1522 	}
1523 
1524 	res = dquot_initialize(inode);
1525 	if (res)
1526 		return res;
1527 retry:
1528 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1529 				     &credits);
1530 	if (res)
1531 		return res;
1532 
1533 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1534 	if (IS_ERR(handle))
1535 		return PTR_ERR(handle);
1536 
1537 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1538 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1539 				    ctx, len, 0);
1540 	if (!res) {
1541 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1542 		/*
1543 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1544 		 * S_DAX may be disabled
1545 		 */
1546 		ext4_set_inode_flags(inode, false);
1547 		res = ext4_mark_inode_dirty(handle, inode);
1548 		if (res)
1549 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1550 	}
1551 	res2 = ext4_journal_stop(handle);
1552 
1553 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1554 		goto retry;
1555 	if (!res)
1556 		res = res2;
1557 	return res;
1558 }
1559 
1560 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1561 {
1562 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1563 }
1564 
1565 static bool ext4_has_stable_inodes(struct super_block *sb)
1566 {
1567 	return ext4_has_feature_stable_inodes(sb);
1568 }
1569 
1570 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1571 				       int *ino_bits_ret, int *lblk_bits_ret)
1572 {
1573 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1574 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1575 }
1576 
1577 static const struct fscrypt_operations ext4_cryptops = {
1578 	.key_prefix		= "ext4:",
1579 	.get_context		= ext4_get_context,
1580 	.set_context		= ext4_set_context,
1581 	.get_dummy_policy	= ext4_get_dummy_policy,
1582 	.empty_dir		= ext4_empty_dir,
1583 	.max_namelen		= EXT4_NAME_LEN,
1584 	.has_stable_inodes	= ext4_has_stable_inodes,
1585 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1586 };
1587 #endif
1588 
1589 #ifdef CONFIG_QUOTA
1590 static const char * const quotatypes[] = INITQFNAMES;
1591 #define QTYPE2NAME(t) (quotatypes[t])
1592 
1593 static int ext4_write_dquot(struct dquot *dquot);
1594 static int ext4_acquire_dquot(struct dquot *dquot);
1595 static int ext4_release_dquot(struct dquot *dquot);
1596 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1597 static int ext4_write_info(struct super_block *sb, int type);
1598 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1599 			 const struct path *path);
1600 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1601 			       size_t len, loff_t off);
1602 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1603 				const char *data, size_t len, loff_t off);
1604 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1605 			     unsigned int flags);
1606 
1607 static struct dquot **ext4_get_dquots(struct inode *inode)
1608 {
1609 	return EXT4_I(inode)->i_dquot;
1610 }
1611 
1612 static const struct dquot_operations ext4_quota_operations = {
1613 	.get_reserved_space	= ext4_get_reserved_space,
1614 	.write_dquot		= ext4_write_dquot,
1615 	.acquire_dquot		= ext4_acquire_dquot,
1616 	.release_dquot		= ext4_release_dquot,
1617 	.mark_dirty		= ext4_mark_dquot_dirty,
1618 	.write_info		= ext4_write_info,
1619 	.alloc_dquot		= dquot_alloc,
1620 	.destroy_dquot		= dquot_destroy,
1621 	.get_projid		= ext4_get_projid,
1622 	.get_inode_usage	= ext4_get_inode_usage,
1623 	.get_next_id		= dquot_get_next_id,
1624 };
1625 
1626 static const struct quotactl_ops ext4_qctl_operations = {
1627 	.quota_on	= ext4_quota_on,
1628 	.quota_off	= ext4_quota_off,
1629 	.quota_sync	= dquot_quota_sync,
1630 	.get_state	= dquot_get_state,
1631 	.set_info	= dquot_set_dqinfo,
1632 	.get_dqblk	= dquot_get_dqblk,
1633 	.set_dqblk	= dquot_set_dqblk,
1634 	.get_nextdqblk	= dquot_get_next_dqblk,
1635 };
1636 #endif
1637 
1638 static const struct super_operations ext4_sops = {
1639 	.alloc_inode	= ext4_alloc_inode,
1640 	.free_inode	= ext4_free_in_core_inode,
1641 	.destroy_inode	= ext4_destroy_inode,
1642 	.write_inode	= ext4_write_inode,
1643 	.dirty_inode	= ext4_dirty_inode,
1644 	.drop_inode	= ext4_drop_inode,
1645 	.evict_inode	= ext4_evict_inode,
1646 	.put_super	= ext4_put_super,
1647 	.sync_fs	= ext4_sync_fs,
1648 	.freeze_fs	= ext4_freeze,
1649 	.unfreeze_fs	= ext4_unfreeze,
1650 	.statfs		= ext4_statfs,
1651 	.remount_fs	= ext4_remount,
1652 	.show_options	= ext4_show_options,
1653 #ifdef CONFIG_QUOTA
1654 	.quota_read	= ext4_quota_read,
1655 	.quota_write	= ext4_quota_write,
1656 	.get_dquots	= ext4_get_dquots,
1657 #endif
1658 };
1659 
1660 static const struct export_operations ext4_export_ops = {
1661 	.fh_to_dentry = ext4_fh_to_dentry,
1662 	.fh_to_parent = ext4_fh_to_parent,
1663 	.get_parent = ext4_get_parent,
1664 	.commit_metadata = ext4_nfs_commit_metadata,
1665 };
1666 
1667 enum {
1668 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1669 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1670 	Opt_nouid32, Opt_debug, Opt_removed,
1671 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1672 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1673 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1674 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1675 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1676 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1677 	Opt_inlinecrypt,
1678 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1679 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1680 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1681 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1682 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1683 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1684 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1685 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1686 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1687 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1688 	Opt_dioread_nolock, Opt_dioread_lock,
1689 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1690 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1691 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1692 #ifdef CONFIG_EXT4_DEBUG
1693 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1694 #endif
1695 };
1696 
1697 static const match_table_t tokens = {
1698 	{Opt_bsd_df, "bsddf"},
1699 	{Opt_minix_df, "minixdf"},
1700 	{Opt_grpid, "grpid"},
1701 	{Opt_grpid, "bsdgroups"},
1702 	{Opt_nogrpid, "nogrpid"},
1703 	{Opt_nogrpid, "sysvgroups"},
1704 	{Opt_resgid, "resgid=%u"},
1705 	{Opt_resuid, "resuid=%u"},
1706 	{Opt_sb, "sb=%u"},
1707 	{Opt_err_cont, "errors=continue"},
1708 	{Opt_err_panic, "errors=panic"},
1709 	{Opt_err_ro, "errors=remount-ro"},
1710 	{Opt_nouid32, "nouid32"},
1711 	{Opt_debug, "debug"},
1712 	{Opt_removed, "oldalloc"},
1713 	{Opt_removed, "orlov"},
1714 	{Opt_user_xattr, "user_xattr"},
1715 	{Opt_nouser_xattr, "nouser_xattr"},
1716 	{Opt_acl, "acl"},
1717 	{Opt_noacl, "noacl"},
1718 	{Opt_noload, "norecovery"},
1719 	{Opt_noload, "noload"},
1720 	{Opt_removed, "nobh"},
1721 	{Opt_removed, "bh"},
1722 	{Opt_commit, "commit=%u"},
1723 	{Opt_min_batch_time, "min_batch_time=%u"},
1724 	{Opt_max_batch_time, "max_batch_time=%u"},
1725 	{Opt_journal_dev, "journal_dev=%u"},
1726 	{Opt_journal_path, "journal_path=%s"},
1727 	{Opt_journal_checksum, "journal_checksum"},
1728 	{Opt_nojournal_checksum, "nojournal_checksum"},
1729 	{Opt_journal_async_commit, "journal_async_commit"},
1730 	{Opt_abort, "abort"},
1731 	{Opt_data_journal, "data=journal"},
1732 	{Opt_data_ordered, "data=ordered"},
1733 	{Opt_data_writeback, "data=writeback"},
1734 	{Opt_data_err_abort, "data_err=abort"},
1735 	{Opt_data_err_ignore, "data_err=ignore"},
1736 	{Opt_offusrjquota, "usrjquota="},
1737 	{Opt_usrjquota, "usrjquota=%s"},
1738 	{Opt_offgrpjquota, "grpjquota="},
1739 	{Opt_grpjquota, "grpjquota=%s"},
1740 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1741 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1742 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1743 	{Opt_grpquota, "grpquota"},
1744 	{Opt_noquota, "noquota"},
1745 	{Opt_quota, "quota"},
1746 	{Opt_usrquota, "usrquota"},
1747 	{Opt_prjquota, "prjquota"},
1748 	{Opt_barrier, "barrier=%u"},
1749 	{Opt_barrier, "barrier"},
1750 	{Opt_nobarrier, "nobarrier"},
1751 	{Opt_i_version, "i_version"},
1752 	{Opt_dax, "dax"},
1753 	{Opt_dax_always, "dax=always"},
1754 	{Opt_dax_inode, "dax=inode"},
1755 	{Opt_dax_never, "dax=never"},
1756 	{Opt_stripe, "stripe=%u"},
1757 	{Opt_delalloc, "delalloc"},
1758 	{Opt_warn_on_error, "warn_on_error"},
1759 	{Opt_nowarn_on_error, "nowarn_on_error"},
1760 	{Opt_lazytime, "lazytime"},
1761 	{Opt_nolazytime, "nolazytime"},
1762 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1763 	{Opt_nodelalloc, "nodelalloc"},
1764 	{Opt_removed, "mblk_io_submit"},
1765 	{Opt_removed, "nomblk_io_submit"},
1766 	{Opt_block_validity, "block_validity"},
1767 	{Opt_noblock_validity, "noblock_validity"},
1768 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1769 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1770 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1771 	{Opt_auto_da_alloc, "auto_da_alloc"},
1772 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1773 	{Opt_dioread_nolock, "dioread_nolock"},
1774 	{Opt_dioread_lock, "nodioread_nolock"},
1775 	{Opt_dioread_lock, "dioread_lock"},
1776 	{Opt_discard, "discard"},
1777 	{Opt_nodiscard, "nodiscard"},
1778 	{Opt_init_itable, "init_itable=%u"},
1779 	{Opt_init_itable, "init_itable"},
1780 	{Opt_noinit_itable, "noinit_itable"},
1781 #ifdef CONFIG_EXT4_DEBUG
1782 	{Opt_fc_debug_force, "fc_debug_force"},
1783 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1784 #endif
1785 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1786 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1787 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1788 	{Opt_inlinecrypt, "inlinecrypt"},
1789 	{Opt_nombcache, "nombcache"},
1790 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1791 	{Opt_removed, "prefetch_block_bitmaps"},
1792 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1793 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1794 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1795 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1796 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1797 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1798 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1799 	{Opt_err, NULL},
1800 };
1801 
1802 static ext4_fsblk_t get_sb_block(void **data)
1803 {
1804 	ext4_fsblk_t	sb_block;
1805 	char		*options = (char *) *data;
1806 
1807 	if (!options || strncmp(options, "sb=", 3) != 0)
1808 		return 1;	/* Default location */
1809 
1810 	options += 3;
1811 	/* TODO: use simple_strtoll with >32bit ext4 */
1812 	sb_block = simple_strtoul(options, &options, 0);
1813 	if (*options && *options != ',') {
1814 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1815 		       (char *) *data);
1816 		return 1;
1817 	}
1818 	if (*options == ',')
1819 		options++;
1820 	*data = (void *) options;
1821 
1822 	return sb_block;
1823 }
1824 
1825 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1826 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1827 
1828 static const char deprecated_msg[] =
1829 	"Mount option \"%s\" will be removed by %s\n"
1830 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1831 
1832 #ifdef CONFIG_QUOTA
1833 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1834 {
1835 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1836 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1837 	int ret = -1;
1838 
1839 	if (sb_any_quota_loaded(sb) && !old_qname) {
1840 		ext4_msg(sb, KERN_ERR,
1841 			"Cannot change journaled "
1842 			"quota options when quota turned on");
1843 		return -1;
1844 	}
1845 	if (ext4_has_feature_quota(sb)) {
1846 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1847 			 "ignored when QUOTA feature is enabled");
1848 		return 1;
1849 	}
1850 	qname = match_strdup(args);
1851 	if (!qname) {
1852 		ext4_msg(sb, KERN_ERR,
1853 			"Not enough memory for storing quotafile name");
1854 		return -1;
1855 	}
1856 	if (old_qname) {
1857 		if (strcmp(old_qname, qname) == 0)
1858 			ret = 1;
1859 		else
1860 			ext4_msg(sb, KERN_ERR,
1861 				 "%s quota file already specified",
1862 				 QTYPE2NAME(qtype));
1863 		goto errout;
1864 	}
1865 	if (strchr(qname, '/')) {
1866 		ext4_msg(sb, KERN_ERR,
1867 			"quotafile must be on filesystem root");
1868 		goto errout;
1869 	}
1870 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1871 	set_opt(sb, QUOTA);
1872 	return 1;
1873 errout:
1874 	kfree(qname);
1875 	return ret;
1876 }
1877 
1878 static int clear_qf_name(struct super_block *sb, int qtype)
1879 {
1880 
1881 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1882 	char *old_qname = get_qf_name(sb, sbi, qtype);
1883 
1884 	if (sb_any_quota_loaded(sb) && old_qname) {
1885 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1886 			" when quota turned on");
1887 		return -1;
1888 	}
1889 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1890 	synchronize_rcu();
1891 	kfree(old_qname);
1892 	return 1;
1893 }
1894 #endif
1895 
1896 #define MOPT_SET	0x0001
1897 #define MOPT_CLEAR	0x0002
1898 #define MOPT_NOSUPPORT	0x0004
1899 #define MOPT_EXPLICIT	0x0008
1900 #define MOPT_CLEAR_ERR	0x0010
1901 #define MOPT_GTE0	0x0020
1902 #ifdef CONFIG_QUOTA
1903 #define MOPT_Q		0
1904 #define MOPT_QFMT	0x0040
1905 #else
1906 #define MOPT_Q		MOPT_NOSUPPORT
1907 #define MOPT_QFMT	MOPT_NOSUPPORT
1908 #endif
1909 #define MOPT_DATAJ	0x0080
1910 #define MOPT_NO_EXT2	0x0100
1911 #define MOPT_NO_EXT3	0x0200
1912 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1913 #define MOPT_STRING	0x0400
1914 #define MOPT_SKIP	0x0800
1915 #define	MOPT_2		0x1000
1916 
1917 static const struct mount_opts {
1918 	int	token;
1919 	int	mount_opt;
1920 	int	flags;
1921 } ext4_mount_opts[] = {
1922 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1923 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1924 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1925 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1926 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1927 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1928 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1929 	 MOPT_EXT4_ONLY | MOPT_SET},
1930 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1931 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1932 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1933 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1934 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1935 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1937 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1938 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1939 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1940 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1941 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1942 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1943 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1944 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1945 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1946 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1947 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1948 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1949 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1950 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1951 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1952 	 MOPT_NO_EXT2},
1953 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1954 	 MOPT_NO_EXT2},
1955 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1956 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1957 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1958 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1959 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1960 	{Opt_commit, 0, MOPT_GTE0},
1961 	{Opt_max_batch_time, 0, MOPT_GTE0},
1962 	{Opt_min_batch_time, 0, MOPT_GTE0},
1963 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1964 	{Opt_init_itable, 0, MOPT_GTE0},
1965 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1966 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1967 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1968 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1969 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1970 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1971 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1972 	{Opt_stripe, 0, MOPT_GTE0},
1973 	{Opt_resuid, 0, MOPT_GTE0},
1974 	{Opt_resgid, 0, MOPT_GTE0},
1975 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1976 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1977 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1978 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1979 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1980 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1981 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1982 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1983 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1984 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1985 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1986 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1987 #else
1988 	{Opt_acl, 0, MOPT_NOSUPPORT},
1989 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1990 #endif
1991 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1992 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1993 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1994 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1995 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1996 							MOPT_SET | MOPT_Q},
1997 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1998 							MOPT_SET | MOPT_Q},
1999 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
2000 							MOPT_SET | MOPT_Q},
2001 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2002 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2003 							MOPT_CLEAR | MOPT_Q},
2004 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2005 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2006 	{Opt_offusrjquota, 0, MOPT_Q},
2007 	{Opt_offgrpjquota, 0, MOPT_Q},
2008 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2009 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2010 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2011 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2012 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2013 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2014 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2015 	 MOPT_SET},
2016 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2017 #ifdef CONFIG_EXT4_DEBUG
2018 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2019 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2020 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2021 #endif
2022 	{Opt_err, 0, 0}
2023 };
2024 
2025 #ifdef CONFIG_UNICODE
2026 static const struct ext4_sb_encodings {
2027 	__u16 magic;
2028 	char *name;
2029 	char *version;
2030 } ext4_sb_encoding_map[] = {
2031 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2032 };
2033 
2034 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2035 				 const struct ext4_sb_encodings **encoding,
2036 				 __u16 *flags)
2037 {
2038 	__u16 magic = le16_to_cpu(es->s_encoding);
2039 	int i;
2040 
2041 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2042 		if (magic == ext4_sb_encoding_map[i].magic)
2043 			break;
2044 
2045 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2046 		return -EINVAL;
2047 
2048 	*encoding = &ext4_sb_encoding_map[i];
2049 	*flags = le16_to_cpu(es->s_encoding_flags);
2050 
2051 	return 0;
2052 }
2053 #endif
2054 
2055 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2056 					  const char *opt,
2057 					  const substring_t *arg,
2058 					  bool is_remount)
2059 {
2060 #ifdef CONFIG_FS_ENCRYPTION
2061 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2062 	int err;
2063 
2064 	/*
2065 	 * This mount option is just for testing, and it's not worthwhile to
2066 	 * implement the extra complexity (e.g. RCU protection) that would be
2067 	 * needed to allow it to be set or changed during remount.  We do allow
2068 	 * it to be specified during remount, but only if there is no change.
2069 	 */
2070 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2071 		ext4_msg(sb, KERN_WARNING,
2072 			 "Can't set test_dummy_encryption on remount");
2073 		return -1;
2074 	}
2075 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2076 						&sbi->s_dummy_enc_policy);
2077 	if (err) {
2078 		if (err == -EEXIST)
2079 			ext4_msg(sb, KERN_WARNING,
2080 				 "Can't change test_dummy_encryption on remount");
2081 		else if (err == -EINVAL)
2082 			ext4_msg(sb, KERN_WARNING,
2083 				 "Value of option \"%s\" is unrecognized", opt);
2084 		else
2085 			ext4_msg(sb, KERN_WARNING,
2086 				 "Error processing option \"%s\" [%d]",
2087 				 opt, err);
2088 		return -1;
2089 	}
2090 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2091 #else
2092 	ext4_msg(sb, KERN_WARNING,
2093 		 "Test dummy encryption mount option ignored");
2094 #endif
2095 	return 1;
2096 }
2097 
2098 struct ext4_parsed_options {
2099 	unsigned long journal_devnum;
2100 	unsigned int journal_ioprio;
2101 	int mb_optimize_scan;
2102 };
2103 
2104 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2105 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2106 			    int is_remount)
2107 {
2108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2109 	const struct mount_opts *m;
2110 	kuid_t uid;
2111 	kgid_t gid;
2112 	int arg = 0;
2113 
2114 #ifdef CONFIG_QUOTA
2115 	if (token == Opt_usrjquota)
2116 		return set_qf_name(sb, USRQUOTA, &args[0]);
2117 	else if (token == Opt_grpjquota)
2118 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2119 	else if (token == Opt_offusrjquota)
2120 		return clear_qf_name(sb, USRQUOTA);
2121 	else if (token == Opt_offgrpjquota)
2122 		return clear_qf_name(sb, GRPQUOTA);
2123 #endif
2124 	switch (token) {
2125 	case Opt_noacl:
2126 	case Opt_nouser_xattr:
2127 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2128 		break;
2129 	case Opt_sb:
2130 		return 1;	/* handled by get_sb_block() */
2131 	case Opt_removed:
2132 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2133 		return 1;
2134 	case Opt_abort:
2135 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2136 		return 1;
2137 	case Opt_i_version:
2138 		sb->s_flags |= SB_I_VERSION;
2139 		return 1;
2140 	case Opt_lazytime:
2141 		sb->s_flags |= SB_LAZYTIME;
2142 		return 1;
2143 	case Opt_nolazytime:
2144 		sb->s_flags &= ~SB_LAZYTIME;
2145 		return 1;
2146 	case Opt_inlinecrypt:
2147 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2148 		sb->s_flags |= SB_INLINECRYPT;
2149 #else
2150 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2151 #endif
2152 		return 1;
2153 	}
2154 
2155 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2156 		if (token == m->token)
2157 			break;
2158 
2159 	if (m->token == Opt_err) {
2160 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2161 			 "or missing value", opt);
2162 		return -1;
2163 	}
2164 
2165 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2166 		ext4_msg(sb, KERN_ERR,
2167 			 "Mount option \"%s\" incompatible with ext2", opt);
2168 		return -1;
2169 	}
2170 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2171 		ext4_msg(sb, KERN_ERR,
2172 			 "Mount option \"%s\" incompatible with ext3", opt);
2173 		return -1;
2174 	}
2175 
2176 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2177 		return -1;
2178 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2179 		return -1;
2180 	if (m->flags & MOPT_EXPLICIT) {
2181 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2182 			set_opt2(sb, EXPLICIT_DELALLOC);
2183 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2184 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2185 		} else
2186 			return -1;
2187 	}
2188 	if (m->flags & MOPT_CLEAR_ERR)
2189 		clear_opt(sb, ERRORS_MASK);
2190 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2191 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2192 			 "options when quota turned on");
2193 		return -1;
2194 	}
2195 
2196 	if (m->flags & MOPT_NOSUPPORT) {
2197 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2198 	} else if (token == Opt_commit) {
2199 		if (arg == 0)
2200 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2201 		else if (arg > INT_MAX / HZ) {
2202 			ext4_msg(sb, KERN_ERR,
2203 				 "Invalid commit interval %d, "
2204 				 "must be smaller than %d",
2205 				 arg, INT_MAX / HZ);
2206 			return -1;
2207 		}
2208 		sbi->s_commit_interval = HZ * arg;
2209 	} else if (token == Opt_debug_want_extra_isize) {
2210 		if ((arg & 1) ||
2211 		    (arg < 4) ||
2212 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2213 			ext4_msg(sb, KERN_ERR,
2214 				 "Invalid want_extra_isize %d", arg);
2215 			return -1;
2216 		}
2217 		sbi->s_want_extra_isize = arg;
2218 	} else if (token == Opt_max_batch_time) {
2219 		sbi->s_max_batch_time = arg;
2220 	} else if (token == Opt_min_batch_time) {
2221 		sbi->s_min_batch_time = arg;
2222 	} else if (token == Opt_inode_readahead_blks) {
2223 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2224 			ext4_msg(sb, KERN_ERR,
2225 				 "EXT4-fs: inode_readahead_blks must be "
2226 				 "0 or a power of 2 smaller than 2^31");
2227 			return -1;
2228 		}
2229 		sbi->s_inode_readahead_blks = arg;
2230 	} else if (token == Opt_init_itable) {
2231 		set_opt(sb, INIT_INODE_TABLE);
2232 		if (!args->from)
2233 			arg = EXT4_DEF_LI_WAIT_MULT;
2234 		sbi->s_li_wait_mult = arg;
2235 	} else if (token == Opt_max_dir_size_kb) {
2236 		sbi->s_max_dir_size_kb = arg;
2237 #ifdef CONFIG_EXT4_DEBUG
2238 	} else if (token == Opt_fc_debug_max_replay) {
2239 		sbi->s_fc_debug_max_replay = arg;
2240 #endif
2241 	} else if (token == Opt_stripe) {
2242 		sbi->s_stripe = arg;
2243 	} else if (token == Opt_resuid) {
2244 		uid = make_kuid(current_user_ns(), arg);
2245 		if (!uid_valid(uid)) {
2246 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2247 			return -1;
2248 		}
2249 		sbi->s_resuid = uid;
2250 	} else if (token == Opt_resgid) {
2251 		gid = make_kgid(current_user_ns(), arg);
2252 		if (!gid_valid(gid)) {
2253 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2254 			return -1;
2255 		}
2256 		sbi->s_resgid = gid;
2257 	} else if (token == Opt_journal_dev) {
2258 		if (is_remount) {
2259 			ext4_msg(sb, KERN_ERR,
2260 				 "Cannot specify journal on remount");
2261 			return -1;
2262 		}
2263 		parsed_opts->journal_devnum = arg;
2264 	} else if (token == Opt_journal_path) {
2265 		char *journal_path;
2266 		struct inode *journal_inode;
2267 		struct path path;
2268 		int error;
2269 
2270 		if (is_remount) {
2271 			ext4_msg(sb, KERN_ERR,
2272 				 "Cannot specify journal on remount");
2273 			return -1;
2274 		}
2275 		journal_path = match_strdup(&args[0]);
2276 		if (!journal_path) {
2277 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2278 				"journal device string");
2279 			return -1;
2280 		}
2281 
2282 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2283 		if (error) {
2284 			ext4_msg(sb, KERN_ERR, "error: could not find "
2285 				"journal device path: error %d", error);
2286 			kfree(journal_path);
2287 			return -1;
2288 		}
2289 
2290 		journal_inode = d_inode(path.dentry);
2291 		if (!S_ISBLK(journal_inode->i_mode)) {
2292 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2293 				"is not a block device", journal_path);
2294 			path_put(&path);
2295 			kfree(journal_path);
2296 			return -1;
2297 		}
2298 
2299 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2300 		path_put(&path);
2301 		kfree(journal_path);
2302 	} else if (token == Opt_journal_ioprio) {
2303 		if (arg > 7) {
2304 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2305 				 " (must be 0-7)");
2306 			return -1;
2307 		}
2308 		parsed_opts->journal_ioprio =
2309 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2310 	} else if (token == Opt_test_dummy_encryption) {
2311 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2312 						      is_remount);
2313 	} else if (m->flags & MOPT_DATAJ) {
2314 		if (is_remount) {
2315 			if (!sbi->s_journal)
2316 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2317 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2318 				ext4_msg(sb, KERN_ERR,
2319 					 "Cannot change data mode on remount");
2320 				return -1;
2321 			}
2322 		} else {
2323 			clear_opt(sb, DATA_FLAGS);
2324 			sbi->s_mount_opt |= m->mount_opt;
2325 		}
2326 #ifdef CONFIG_QUOTA
2327 	} else if (m->flags & MOPT_QFMT) {
2328 		if (sb_any_quota_loaded(sb) &&
2329 		    sbi->s_jquota_fmt != m->mount_opt) {
2330 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2331 				 "quota options when quota turned on");
2332 			return -1;
2333 		}
2334 		if (ext4_has_feature_quota(sb)) {
2335 			ext4_msg(sb, KERN_INFO,
2336 				 "Quota format mount options ignored "
2337 				 "when QUOTA feature is enabled");
2338 			return 1;
2339 		}
2340 		sbi->s_jquota_fmt = m->mount_opt;
2341 #endif
2342 	} else if (token == Opt_dax || token == Opt_dax_always ||
2343 		   token == Opt_dax_inode || token == Opt_dax_never) {
2344 #ifdef CONFIG_FS_DAX
2345 		switch (token) {
2346 		case Opt_dax:
2347 		case Opt_dax_always:
2348 			if (is_remount &&
2349 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2350 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2351 			fail_dax_change_remount:
2352 				ext4_msg(sb, KERN_ERR, "can't change "
2353 					 "dax mount option while remounting");
2354 				return -1;
2355 			}
2356 			if (is_remount &&
2357 			    (test_opt(sb, DATA_FLAGS) ==
2358 			     EXT4_MOUNT_JOURNAL_DATA)) {
2359 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2360 					     "both data=journal and dax");
2361 				    return -1;
2362 			}
2363 			ext4_msg(sb, KERN_WARNING,
2364 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2365 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2366 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2367 			break;
2368 		case Opt_dax_never:
2369 			if (is_remount &&
2370 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2371 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2372 				goto fail_dax_change_remount;
2373 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2374 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2375 			break;
2376 		case Opt_dax_inode:
2377 			if (is_remount &&
2378 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2379 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2380 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2381 				goto fail_dax_change_remount;
2382 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2383 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2384 			/* Strictly for printing options */
2385 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2386 			break;
2387 		}
2388 #else
2389 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2390 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2391 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2392 		return -1;
2393 #endif
2394 	} else if (token == Opt_data_err_abort) {
2395 		sbi->s_mount_opt |= m->mount_opt;
2396 	} else if (token == Opt_data_err_ignore) {
2397 		sbi->s_mount_opt &= ~m->mount_opt;
2398 	} else if (token == Opt_mb_optimize_scan) {
2399 		if (arg != 0 && arg != 1) {
2400 			ext4_msg(sb, KERN_WARNING,
2401 				 "mb_optimize_scan should be set to 0 or 1.");
2402 			return -1;
2403 		}
2404 		parsed_opts->mb_optimize_scan = arg;
2405 	} else {
2406 		if (!args->from)
2407 			arg = 1;
2408 		if (m->flags & MOPT_CLEAR)
2409 			arg = !arg;
2410 		else if (unlikely(!(m->flags & MOPT_SET))) {
2411 			ext4_msg(sb, KERN_WARNING,
2412 				 "buggy handling of option %s", opt);
2413 			WARN_ON(1);
2414 			return -1;
2415 		}
2416 		if (m->flags & MOPT_2) {
2417 			if (arg != 0)
2418 				sbi->s_mount_opt2 |= m->mount_opt;
2419 			else
2420 				sbi->s_mount_opt2 &= ~m->mount_opt;
2421 		} else {
2422 			if (arg != 0)
2423 				sbi->s_mount_opt |= m->mount_opt;
2424 			else
2425 				sbi->s_mount_opt &= ~m->mount_opt;
2426 		}
2427 	}
2428 	return 1;
2429 }
2430 
2431 static int parse_options(char *options, struct super_block *sb,
2432 			 struct ext4_parsed_options *ret_opts,
2433 			 int is_remount)
2434 {
2435 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2436 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2437 	substring_t args[MAX_OPT_ARGS];
2438 	int token;
2439 
2440 	if (!options)
2441 		return 1;
2442 
2443 	while ((p = strsep(&options, ",")) != NULL) {
2444 		if (!*p)
2445 			continue;
2446 		/*
2447 		 * Initialize args struct so we know whether arg was
2448 		 * found; some options take optional arguments.
2449 		 */
2450 		args[0].to = args[0].from = NULL;
2451 		token = match_token(p, tokens, args);
2452 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2453 				     is_remount) < 0)
2454 			return 0;
2455 	}
2456 #ifdef CONFIG_QUOTA
2457 	/*
2458 	 * We do the test below only for project quotas. 'usrquota' and
2459 	 * 'grpquota' mount options are allowed even without quota feature
2460 	 * to support legacy quotas in quota files.
2461 	 */
2462 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2463 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2464 			 "Cannot enable project quota enforcement.");
2465 		return 0;
2466 	}
2467 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2468 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2469 	if (usr_qf_name || grp_qf_name) {
2470 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2471 			clear_opt(sb, USRQUOTA);
2472 
2473 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2474 			clear_opt(sb, GRPQUOTA);
2475 
2476 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2477 			ext4_msg(sb, KERN_ERR, "old and new quota "
2478 					"format mixing");
2479 			return 0;
2480 		}
2481 
2482 		if (!sbi->s_jquota_fmt) {
2483 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2484 					"not specified");
2485 			return 0;
2486 		}
2487 	}
2488 #endif
2489 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2490 		int blocksize =
2491 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2492 		if (blocksize < PAGE_SIZE)
2493 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2494 				 "experimental mount option 'dioread_nolock' "
2495 				 "for blocksize < PAGE_SIZE");
2496 	}
2497 	return 1;
2498 }
2499 
2500 static inline void ext4_show_quota_options(struct seq_file *seq,
2501 					   struct super_block *sb)
2502 {
2503 #if defined(CONFIG_QUOTA)
2504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 	char *usr_qf_name, *grp_qf_name;
2506 
2507 	if (sbi->s_jquota_fmt) {
2508 		char *fmtname = "";
2509 
2510 		switch (sbi->s_jquota_fmt) {
2511 		case QFMT_VFS_OLD:
2512 			fmtname = "vfsold";
2513 			break;
2514 		case QFMT_VFS_V0:
2515 			fmtname = "vfsv0";
2516 			break;
2517 		case QFMT_VFS_V1:
2518 			fmtname = "vfsv1";
2519 			break;
2520 		}
2521 		seq_printf(seq, ",jqfmt=%s", fmtname);
2522 	}
2523 
2524 	rcu_read_lock();
2525 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2526 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2527 	if (usr_qf_name)
2528 		seq_show_option(seq, "usrjquota", usr_qf_name);
2529 	if (grp_qf_name)
2530 		seq_show_option(seq, "grpjquota", grp_qf_name);
2531 	rcu_read_unlock();
2532 #endif
2533 }
2534 
2535 static const char *token2str(int token)
2536 {
2537 	const struct match_token *t;
2538 
2539 	for (t = tokens; t->token != Opt_err; t++)
2540 		if (t->token == token && !strchr(t->pattern, '='))
2541 			break;
2542 	return t->pattern;
2543 }
2544 
2545 /*
2546  * Show an option if
2547  *  - it's set to a non-default value OR
2548  *  - if the per-sb default is different from the global default
2549  */
2550 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2551 			      int nodefs)
2552 {
2553 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2554 	struct ext4_super_block *es = sbi->s_es;
2555 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2556 	const struct mount_opts *m;
2557 	char sep = nodefs ? '\n' : ',';
2558 
2559 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2560 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2561 
2562 	if (sbi->s_sb_block != 1)
2563 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2564 
2565 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2566 		int want_set = m->flags & MOPT_SET;
2567 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2568 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2569 			continue;
2570 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2571 			continue; /* skip if same as the default */
2572 		if ((want_set &&
2573 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2574 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2575 			continue; /* select Opt_noFoo vs Opt_Foo */
2576 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2577 	}
2578 
2579 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2580 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2581 		SEQ_OPTS_PRINT("resuid=%u",
2582 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2583 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2584 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2585 		SEQ_OPTS_PRINT("resgid=%u",
2586 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2587 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2588 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2589 		SEQ_OPTS_PUTS("errors=remount-ro");
2590 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2591 		SEQ_OPTS_PUTS("errors=continue");
2592 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2593 		SEQ_OPTS_PUTS("errors=panic");
2594 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2595 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2596 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2597 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2598 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2599 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2600 	if (sb->s_flags & SB_I_VERSION)
2601 		SEQ_OPTS_PUTS("i_version");
2602 	if (nodefs || sbi->s_stripe)
2603 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2604 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2605 			(sbi->s_mount_opt ^ def_mount_opt)) {
2606 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2607 			SEQ_OPTS_PUTS("data=journal");
2608 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2609 			SEQ_OPTS_PUTS("data=ordered");
2610 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2611 			SEQ_OPTS_PUTS("data=writeback");
2612 	}
2613 	if (nodefs ||
2614 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2615 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2616 			       sbi->s_inode_readahead_blks);
2617 
2618 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2619 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2620 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2621 	if (nodefs || sbi->s_max_dir_size_kb)
2622 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2623 	if (test_opt(sb, DATA_ERR_ABORT))
2624 		SEQ_OPTS_PUTS("data_err=abort");
2625 
2626 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2627 
2628 	if (sb->s_flags & SB_INLINECRYPT)
2629 		SEQ_OPTS_PUTS("inlinecrypt");
2630 
2631 	if (test_opt(sb, DAX_ALWAYS)) {
2632 		if (IS_EXT2_SB(sb))
2633 			SEQ_OPTS_PUTS("dax");
2634 		else
2635 			SEQ_OPTS_PUTS("dax=always");
2636 	} else if (test_opt2(sb, DAX_NEVER)) {
2637 		SEQ_OPTS_PUTS("dax=never");
2638 	} else if (test_opt2(sb, DAX_INODE)) {
2639 		SEQ_OPTS_PUTS("dax=inode");
2640 	}
2641 	ext4_show_quota_options(seq, sb);
2642 	return 0;
2643 }
2644 
2645 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2646 {
2647 	return _ext4_show_options(seq, root->d_sb, 0);
2648 }
2649 
2650 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2651 {
2652 	struct super_block *sb = seq->private;
2653 	int rc;
2654 
2655 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2656 	rc = _ext4_show_options(seq, sb, 1);
2657 	seq_puts(seq, "\n");
2658 	return rc;
2659 }
2660 
2661 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2662 			    int read_only)
2663 {
2664 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2665 	int err = 0;
2666 
2667 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2668 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2669 			 "forcing read-only mode");
2670 		err = -EROFS;
2671 		goto done;
2672 	}
2673 	if (read_only)
2674 		goto done;
2675 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2676 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2677 			 "running e2fsck is recommended");
2678 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2679 		ext4_msg(sb, KERN_WARNING,
2680 			 "warning: mounting fs with errors, "
2681 			 "running e2fsck is recommended");
2682 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2683 		 le16_to_cpu(es->s_mnt_count) >=
2684 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2685 		ext4_msg(sb, KERN_WARNING,
2686 			 "warning: maximal mount count reached, "
2687 			 "running e2fsck is recommended");
2688 	else if (le32_to_cpu(es->s_checkinterval) &&
2689 		 (ext4_get_tstamp(es, s_lastcheck) +
2690 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2691 		ext4_msg(sb, KERN_WARNING,
2692 			 "warning: checktime reached, "
2693 			 "running e2fsck is recommended");
2694 	if (!sbi->s_journal)
2695 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2696 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2697 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2698 	le16_add_cpu(&es->s_mnt_count, 1);
2699 	ext4_update_tstamp(es, s_mtime);
2700 	if (sbi->s_journal) {
2701 		ext4_set_feature_journal_needs_recovery(sb);
2702 		if (ext4_has_feature_orphan_file(sb))
2703 			ext4_set_feature_orphan_present(sb);
2704 	}
2705 
2706 	err = ext4_commit_super(sb);
2707 done:
2708 	if (test_opt(sb, DEBUG))
2709 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2710 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2711 			sb->s_blocksize,
2712 			sbi->s_groups_count,
2713 			EXT4_BLOCKS_PER_GROUP(sb),
2714 			EXT4_INODES_PER_GROUP(sb),
2715 			sbi->s_mount_opt, sbi->s_mount_opt2);
2716 
2717 	cleancache_init_fs(sb);
2718 	return err;
2719 }
2720 
2721 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2722 {
2723 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2724 	struct flex_groups **old_groups, **new_groups;
2725 	int size, i, j;
2726 
2727 	if (!sbi->s_log_groups_per_flex)
2728 		return 0;
2729 
2730 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2731 	if (size <= sbi->s_flex_groups_allocated)
2732 		return 0;
2733 
2734 	new_groups = kvzalloc(roundup_pow_of_two(size *
2735 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2736 	if (!new_groups) {
2737 		ext4_msg(sb, KERN_ERR,
2738 			 "not enough memory for %d flex group pointers", size);
2739 		return -ENOMEM;
2740 	}
2741 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2742 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2743 					 sizeof(struct flex_groups)),
2744 					 GFP_KERNEL);
2745 		if (!new_groups[i]) {
2746 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2747 				kvfree(new_groups[j]);
2748 			kvfree(new_groups);
2749 			ext4_msg(sb, KERN_ERR,
2750 				 "not enough memory for %d flex groups", size);
2751 			return -ENOMEM;
2752 		}
2753 	}
2754 	rcu_read_lock();
2755 	old_groups = rcu_dereference(sbi->s_flex_groups);
2756 	if (old_groups)
2757 		memcpy(new_groups, old_groups,
2758 		       (sbi->s_flex_groups_allocated *
2759 			sizeof(struct flex_groups *)));
2760 	rcu_read_unlock();
2761 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2762 	sbi->s_flex_groups_allocated = size;
2763 	if (old_groups)
2764 		ext4_kvfree_array_rcu(old_groups);
2765 	return 0;
2766 }
2767 
2768 static int ext4_fill_flex_info(struct super_block *sb)
2769 {
2770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2771 	struct ext4_group_desc *gdp = NULL;
2772 	struct flex_groups *fg;
2773 	ext4_group_t flex_group;
2774 	int i, err;
2775 
2776 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2777 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2778 		sbi->s_log_groups_per_flex = 0;
2779 		return 1;
2780 	}
2781 
2782 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2783 	if (err)
2784 		goto failed;
2785 
2786 	for (i = 0; i < sbi->s_groups_count; i++) {
2787 		gdp = ext4_get_group_desc(sb, i, NULL);
2788 
2789 		flex_group = ext4_flex_group(sbi, i);
2790 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2791 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2792 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2793 			     &fg->free_clusters);
2794 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2795 	}
2796 
2797 	return 1;
2798 failed:
2799 	return 0;
2800 }
2801 
2802 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2803 				   struct ext4_group_desc *gdp)
2804 {
2805 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2806 	__u16 crc = 0;
2807 	__le32 le_group = cpu_to_le32(block_group);
2808 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2809 
2810 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2811 		/* Use new metadata_csum algorithm */
2812 		__u32 csum32;
2813 		__u16 dummy_csum = 0;
2814 
2815 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2816 				     sizeof(le_group));
2817 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2818 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2819 				     sizeof(dummy_csum));
2820 		offset += sizeof(dummy_csum);
2821 		if (offset < sbi->s_desc_size)
2822 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2823 					     sbi->s_desc_size - offset);
2824 
2825 		crc = csum32 & 0xFFFF;
2826 		goto out;
2827 	}
2828 
2829 	/* old crc16 code */
2830 	if (!ext4_has_feature_gdt_csum(sb))
2831 		return 0;
2832 
2833 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2834 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2835 	crc = crc16(crc, (__u8 *)gdp, offset);
2836 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2837 	/* for checksum of struct ext4_group_desc do the rest...*/
2838 	if (ext4_has_feature_64bit(sb) &&
2839 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2840 		crc = crc16(crc, (__u8 *)gdp + offset,
2841 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2842 				offset);
2843 
2844 out:
2845 	return cpu_to_le16(crc);
2846 }
2847 
2848 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2849 				struct ext4_group_desc *gdp)
2850 {
2851 	if (ext4_has_group_desc_csum(sb) &&
2852 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2853 		return 0;
2854 
2855 	return 1;
2856 }
2857 
2858 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2859 			      struct ext4_group_desc *gdp)
2860 {
2861 	if (!ext4_has_group_desc_csum(sb))
2862 		return;
2863 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2864 }
2865 
2866 /* Called at mount-time, super-block is locked */
2867 static int ext4_check_descriptors(struct super_block *sb,
2868 				  ext4_fsblk_t sb_block,
2869 				  ext4_group_t *first_not_zeroed)
2870 {
2871 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2872 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2873 	ext4_fsblk_t last_block;
2874 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2875 	ext4_fsblk_t block_bitmap;
2876 	ext4_fsblk_t inode_bitmap;
2877 	ext4_fsblk_t inode_table;
2878 	int flexbg_flag = 0;
2879 	ext4_group_t i, grp = sbi->s_groups_count;
2880 
2881 	if (ext4_has_feature_flex_bg(sb))
2882 		flexbg_flag = 1;
2883 
2884 	ext4_debug("Checking group descriptors");
2885 
2886 	for (i = 0; i < sbi->s_groups_count; i++) {
2887 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2888 
2889 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2890 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2891 		else
2892 			last_block = first_block +
2893 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2894 
2895 		if ((grp == sbi->s_groups_count) &&
2896 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2897 			grp = i;
2898 
2899 		block_bitmap = ext4_block_bitmap(sb, gdp);
2900 		if (block_bitmap == sb_block) {
2901 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2902 				 "Block bitmap for group %u overlaps "
2903 				 "superblock", i);
2904 			if (!sb_rdonly(sb))
2905 				return 0;
2906 		}
2907 		if (block_bitmap >= sb_block + 1 &&
2908 		    block_bitmap <= last_bg_block) {
2909 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2910 				 "Block bitmap for group %u overlaps "
2911 				 "block group descriptors", i);
2912 			if (!sb_rdonly(sb))
2913 				return 0;
2914 		}
2915 		if (block_bitmap < first_block || block_bitmap > last_block) {
2916 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2917 			       "Block bitmap for group %u not in group "
2918 			       "(block %llu)!", i, block_bitmap);
2919 			return 0;
2920 		}
2921 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2922 		if (inode_bitmap == sb_block) {
2923 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2924 				 "Inode bitmap for group %u overlaps "
2925 				 "superblock", i);
2926 			if (!sb_rdonly(sb))
2927 				return 0;
2928 		}
2929 		if (inode_bitmap >= sb_block + 1 &&
2930 		    inode_bitmap <= last_bg_block) {
2931 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2932 				 "Inode bitmap for group %u overlaps "
2933 				 "block group descriptors", i);
2934 			if (!sb_rdonly(sb))
2935 				return 0;
2936 		}
2937 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2938 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2939 			       "Inode bitmap for group %u not in group "
2940 			       "(block %llu)!", i, inode_bitmap);
2941 			return 0;
2942 		}
2943 		inode_table = ext4_inode_table(sb, gdp);
2944 		if (inode_table == sb_block) {
2945 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2946 				 "Inode table for group %u overlaps "
2947 				 "superblock", i);
2948 			if (!sb_rdonly(sb))
2949 				return 0;
2950 		}
2951 		if (inode_table >= sb_block + 1 &&
2952 		    inode_table <= last_bg_block) {
2953 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2954 				 "Inode table for group %u overlaps "
2955 				 "block group descriptors", i);
2956 			if (!sb_rdonly(sb))
2957 				return 0;
2958 		}
2959 		if (inode_table < first_block ||
2960 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2961 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2962 			       "Inode table for group %u not in group "
2963 			       "(block %llu)!", i, inode_table);
2964 			return 0;
2965 		}
2966 		ext4_lock_group(sb, i);
2967 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2968 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2969 				 "Checksum for group %u failed (%u!=%u)",
2970 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2971 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2972 			if (!sb_rdonly(sb)) {
2973 				ext4_unlock_group(sb, i);
2974 				return 0;
2975 			}
2976 		}
2977 		ext4_unlock_group(sb, i);
2978 		if (!flexbg_flag)
2979 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2980 	}
2981 	if (NULL != first_not_zeroed)
2982 		*first_not_zeroed = grp;
2983 	return 1;
2984 }
2985 
2986 /*
2987  * Maximal extent format file size.
2988  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2989  * extent format containers, within a sector_t, and within i_blocks
2990  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2991  * so that won't be a limiting factor.
2992  *
2993  * However there is other limiting factor. We do store extents in the form
2994  * of starting block and length, hence the resulting length of the extent
2995  * covering maximum file size must fit into on-disk format containers as
2996  * well. Given that length is always by 1 unit bigger than max unit (because
2997  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2998  *
2999  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3000  */
3001 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3002 {
3003 	loff_t res;
3004 	loff_t upper_limit = MAX_LFS_FILESIZE;
3005 
3006 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3007 
3008 	if (!has_huge_files) {
3009 		upper_limit = (1LL << 32) - 1;
3010 
3011 		/* total blocks in file system block size */
3012 		upper_limit >>= (blkbits - 9);
3013 		upper_limit <<= blkbits;
3014 	}
3015 
3016 	/*
3017 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3018 	 * by one fs block, so ee_len can cover the extent of maximum file
3019 	 * size
3020 	 */
3021 	res = (1LL << 32) - 1;
3022 	res <<= blkbits;
3023 
3024 	/* Sanity check against vm- & vfs- imposed limits */
3025 	if (res > upper_limit)
3026 		res = upper_limit;
3027 
3028 	return res;
3029 }
3030 
3031 /*
3032  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3033  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3034  * We need to be 1 filesystem block less than the 2^48 sector limit.
3035  */
3036 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3037 {
3038 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3039 	int meta_blocks;
3040 
3041 	/*
3042 	 * This is calculated to be the largest file size for a dense, block
3043 	 * mapped file such that the file's total number of 512-byte sectors,
3044 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3045 	 *
3046 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3047 	 * number of 512-byte sectors of the file.
3048 	 */
3049 	if (!has_huge_files) {
3050 		/*
3051 		 * !has_huge_files or implies that the inode i_block field
3052 		 * represents total file blocks in 2^32 512-byte sectors ==
3053 		 * size of vfs inode i_blocks * 8
3054 		 */
3055 		upper_limit = (1LL << 32) - 1;
3056 
3057 		/* total blocks in file system block size */
3058 		upper_limit >>= (bits - 9);
3059 
3060 	} else {
3061 		/*
3062 		 * We use 48 bit ext4_inode i_blocks
3063 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3064 		 * represent total number of blocks in
3065 		 * file system block size
3066 		 */
3067 		upper_limit = (1LL << 48) - 1;
3068 
3069 	}
3070 
3071 	/* indirect blocks */
3072 	meta_blocks = 1;
3073 	/* double indirect blocks */
3074 	meta_blocks += 1 + (1LL << (bits-2));
3075 	/* tripple indirect blocks */
3076 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3077 
3078 	upper_limit -= meta_blocks;
3079 	upper_limit <<= bits;
3080 
3081 	res += 1LL << (bits-2);
3082 	res += 1LL << (2*(bits-2));
3083 	res += 1LL << (3*(bits-2));
3084 	res <<= bits;
3085 	if (res > upper_limit)
3086 		res = upper_limit;
3087 
3088 	if (res > MAX_LFS_FILESIZE)
3089 		res = MAX_LFS_FILESIZE;
3090 
3091 	return (loff_t)res;
3092 }
3093 
3094 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3095 				   ext4_fsblk_t logical_sb_block, int nr)
3096 {
3097 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3098 	ext4_group_t bg, first_meta_bg;
3099 	int has_super = 0;
3100 
3101 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3102 
3103 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3104 		return logical_sb_block + nr + 1;
3105 	bg = sbi->s_desc_per_block * nr;
3106 	if (ext4_bg_has_super(sb, bg))
3107 		has_super = 1;
3108 
3109 	/*
3110 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3111 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3112 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3113 	 * compensate.
3114 	 */
3115 	if (sb->s_blocksize == 1024 && nr == 0 &&
3116 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3117 		has_super++;
3118 
3119 	return (has_super + ext4_group_first_block_no(sb, bg));
3120 }
3121 
3122 /**
3123  * ext4_get_stripe_size: Get the stripe size.
3124  * @sbi: In memory super block info
3125  *
3126  * If we have specified it via mount option, then
3127  * use the mount option value. If the value specified at mount time is
3128  * greater than the blocks per group use the super block value.
3129  * If the super block value is greater than blocks per group return 0.
3130  * Allocator needs it be less than blocks per group.
3131  *
3132  */
3133 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3134 {
3135 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3136 	unsigned long stripe_width =
3137 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3138 	int ret;
3139 
3140 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3141 		ret = sbi->s_stripe;
3142 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3143 		ret = stripe_width;
3144 	else if (stride && stride <= sbi->s_blocks_per_group)
3145 		ret = stride;
3146 	else
3147 		ret = 0;
3148 
3149 	/*
3150 	 * If the stripe width is 1, this makes no sense and
3151 	 * we set it to 0 to turn off stripe handling code.
3152 	 */
3153 	if (ret <= 1)
3154 		ret = 0;
3155 
3156 	return ret;
3157 }
3158 
3159 /*
3160  * Check whether this filesystem can be mounted based on
3161  * the features present and the RDONLY/RDWR mount requested.
3162  * Returns 1 if this filesystem can be mounted as requested,
3163  * 0 if it cannot be.
3164  */
3165 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3166 {
3167 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3168 		ext4_msg(sb, KERN_ERR,
3169 			"Couldn't mount because of "
3170 			"unsupported optional features (%x)",
3171 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3172 			~EXT4_FEATURE_INCOMPAT_SUPP));
3173 		return 0;
3174 	}
3175 
3176 #ifndef CONFIG_UNICODE
3177 	if (ext4_has_feature_casefold(sb)) {
3178 		ext4_msg(sb, KERN_ERR,
3179 			 "Filesystem with casefold feature cannot be "
3180 			 "mounted without CONFIG_UNICODE");
3181 		return 0;
3182 	}
3183 #endif
3184 
3185 	if (readonly)
3186 		return 1;
3187 
3188 	if (ext4_has_feature_readonly(sb)) {
3189 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3190 		sb->s_flags |= SB_RDONLY;
3191 		return 1;
3192 	}
3193 
3194 	/* Check that feature set is OK for a read-write mount */
3195 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3196 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3197 			 "unsupported optional features (%x)",
3198 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3199 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3200 		return 0;
3201 	}
3202 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3203 		ext4_msg(sb, KERN_ERR,
3204 			 "Can't support bigalloc feature without "
3205 			 "extents feature\n");
3206 		return 0;
3207 	}
3208 
3209 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3210 	if (!readonly && (ext4_has_feature_quota(sb) ||
3211 			  ext4_has_feature_project(sb))) {
3212 		ext4_msg(sb, KERN_ERR,
3213 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3214 		return 0;
3215 	}
3216 #endif  /* CONFIG_QUOTA */
3217 	return 1;
3218 }
3219 
3220 /*
3221  * This function is called once a day if we have errors logged
3222  * on the file system
3223  */
3224 static void print_daily_error_info(struct timer_list *t)
3225 {
3226 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3227 	struct super_block *sb = sbi->s_sb;
3228 	struct ext4_super_block *es = sbi->s_es;
3229 
3230 	if (es->s_error_count)
3231 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3232 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3233 			 le32_to_cpu(es->s_error_count));
3234 	if (es->s_first_error_time) {
3235 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3236 		       sb->s_id,
3237 		       ext4_get_tstamp(es, s_first_error_time),
3238 		       (int) sizeof(es->s_first_error_func),
3239 		       es->s_first_error_func,
3240 		       le32_to_cpu(es->s_first_error_line));
3241 		if (es->s_first_error_ino)
3242 			printk(KERN_CONT ": inode %u",
3243 			       le32_to_cpu(es->s_first_error_ino));
3244 		if (es->s_first_error_block)
3245 			printk(KERN_CONT ": block %llu", (unsigned long long)
3246 			       le64_to_cpu(es->s_first_error_block));
3247 		printk(KERN_CONT "\n");
3248 	}
3249 	if (es->s_last_error_time) {
3250 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3251 		       sb->s_id,
3252 		       ext4_get_tstamp(es, s_last_error_time),
3253 		       (int) sizeof(es->s_last_error_func),
3254 		       es->s_last_error_func,
3255 		       le32_to_cpu(es->s_last_error_line));
3256 		if (es->s_last_error_ino)
3257 			printk(KERN_CONT ": inode %u",
3258 			       le32_to_cpu(es->s_last_error_ino));
3259 		if (es->s_last_error_block)
3260 			printk(KERN_CONT ": block %llu", (unsigned long long)
3261 			       le64_to_cpu(es->s_last_error_block));
3262 		printk(KERN_CONT "\n");
3263 	}
3264 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3265 }
3266 
3267 /* Find next suitable group and run ext4_init_inode_table */
3268 static int ext4_run_li_request(struct ext4_li_request *elr)
3269 {
3270 	struct ext4_group_desc *gdp = NULL;
3271 	struct super_block *sb = elr->lr_super;
3272 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3273 	ext4_group_t group = elr->lr_next_group;
3274 	unsigned long timeout = 0;
3275 	unsigned int prefetch_ios = 0;
3276 	int ret = 0;
3277 
3278 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3279 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3280 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3281 		if (prefetch_ios)
3282 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3283 					      prefetch_ios);
3284 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3285 					    prefetch_ios);
3286 		if (group >= elr->lr_next_group) {
3287 			ret = 1;
3288 			if (elr->lr_first_not_zeroed != ngroups &&
3289 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3290 				elr->lr_next_group = elr->lr_first_not_zeroed;
3291 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3292 				ret = 0;
3293 			}
3294 		}
3295 		return ret;
3296 	}
3297 
3298 	for (; group < ngroups; group++) {
3299 		gdp = ext4_get_group_desc(sb, group, NULL);
3300 		if (!gdp) {
3301 			ret = 1;
3302 			break;
3303 		}
3304 
3305 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3306 			break;
3307 	}
3308 
3309 	if (group >= ngroups)
3310 		ret = 1;
3311 
3312 	if (!ret) {
3313 		timeout = jiffies;
3314 		ret = ext4_init_inode_table(sb, group,
3315 					    elr->lr_timeout ? 0 : 1);
3316 		trace_ext4_lazy_itable_init(sb, group);
3317 		if (elr->lr_timeout == 0) {
3318 			timeout = (jiffies - timeout) *
3319 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3320 			elr->lr_timeout = timeout;
3321 		}
3322 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3323 		elr->lr_next_group = group + 1;
3324 	}
3325 	return ret;
3326 }
3327 
3328 /*
3329  * Remove lr_request from the list_request and free the
3330  * request structure. Should be called with li_list_mtx held
3331  */
3332 static void ext4_remove_li_request(struct ext4_li_request *elr)
3333 {
3334 	if (!elr)
3335 		return;
3336 
3337 	list_del(&elr->lr_request);
3338 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3339 	kfree(elr);
3340 }
3341 
3342 static void ext4_unregister_li_request(struct super_block *sb)
3343 {
3344 	mutex_lock(&ext4_li_mtx);
3345 	if (!ext4_li_info) {
3346 		mutex_unlock(&ext4_li_mtx);
3347 		return;
3348 	}
3349 
3350 	mutex_lock(&ext4_li_info->li_list_mtx);
3351 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3352 	mutex_unlock(&ext4_li_info->li_list_mtx);
3353 	mutex_unlock(&ext4_li_mtx);
3354 }
3355 
3356 static struct task_struct *ext4_lazyinit_task;
3357 
3358 /*
3359  * This is the function where ext4lazyinit thread lives. It walks
3360  * through the request list searching for next scheduled filesystem.
3361  * When such a fs is found, run the lazy initialization request
3362  * (ext4_rn_li_request) and keep track of the time spend in this
3363  * function. Based on that time we compute next schedule time of
3364  * the request. When walking through the list is complete, compute
3365  * next waking time and put itself into sleep.
3366  */
3367 static int ext4_lazyinit_thread(void *arg)
3368 {
3369 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3370 	struct list_head *pos, *n;
3371 	struct ext4_li_request *elr;
3372 	unsigned long next_wakeup, cur;
3373 
3374 	BUG_ON(NULL == eli);
3375 
3376 cont_thread:
3377 	while (true) {
3378 		next_wakeup = MAX_JIFFY_OFFSET;
3379 
3380 		mutex_lock(&eli->li_list_mtx);
3381 		if (list_empty(&eli->li_request_list)) {
3382 			mutex_unlock(&eli->li_list_mtx);
3383 			goto exit_thread;
3384 		}
3385 		list_for_each_safe(pos, n, &eli->li_request_list) {
3386 			int err = 0;
3387 			int progress = 0;
3388 			elr = list_entry(pos, struct ext4_li_request,
3389 					 lr_request);
3390 
3391 			if (time_before(jiffies, elr->lr_next_sched)) {
3392 				if (time_before(elr->lr_next_sched, next_wakeup))
3393 					next_wakeup = elr->lr_next_sched;
3394 				continue;
3395 			}
3396 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3397 				if (sb_start_write_trylock(elr->lr_super)) {
3398 					progress = 1;
3399 					/*
3400 					 * We hold sb->s_umount, sb can not
3401 					 * be removed from the list, it is
3402 					 * now safe to drop li_list_mtx
3403 					 */
3404 					mutex_unlock(&eli->li_list_mtx);
3405 					err = ext4_run_li_request(elr);
3406 					sb_end_write(elr->lr_super);
3407 					mutex_lock(&eli->li_list_mtx);
3408 					n = pos->next;
3409 				}
3410 				up_read((&elr->lr_super->s_umount));
3411 			}
3412 			/* error, remove the lazy_init job */
3413 			if (err) {
3414 				ext4_remove_li_request(elr);
3415 				continue;
3416 			}
3417 			if (!progress) {
3418 				elr->lr_next_sched = jiffies +
3419 					(prandom_u32()
3420 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3421 			}
3422 			if (time_before(elr->lr_next_sched, next_wakeup))
3423 				next_wakeup = elr->lr_next_sched;
3424 		}
3425 		mutex_unlock(&eli->li_list_mtx);
3426 
3427 		try_to_freeze();
3428 
3429 		cur = jiffies;
3430 		if ((time_after_eq(cur, next_wakeup)) ||
3431 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3432 			cond_resched();
3433 			continue;
3434 		}
3435 
3436 		schedule_timeout_interruptible(next_wakeup - cur);
3437 
3438 		if (kthread_should_stop()) {
3439 			ext4_clear_request_list();
3440 			goto exit_thread;
3441 		}
3442 	}
3443 
3444 exit_thread:
3445 	/*
3446 	 * It looks like the request list is empty, but we need
3447 	 * to check it under the li_list_mtx lock, to prevent any
3448 	 * additions into it, and of course we should lock ext4_li_mtx
3449 	 * to atomically free the list and ext4_li_info, because at
3450 	 * this point another ext4 filesystem could be registering
3451 	 * new one.
3452 	 */
3453 	mutex_lock(&ext4_li_mtx);
3454 	mutex_lock(&eli->li_list_mtx);
3455 	if (!list_empty(&eli->li_request_list)) {
3456 		mutex_unlock(&eli->li_list_mtx);
3457 		mutex_unlock(&ext4_li_mtx);
3458 		goto cont_thread;
3459 	}
3460 	mutex_unlock(&eli->li_list_mtx);
3461 	kfree(ext4_li_info);
3462 	ext4_li_info = NULL;
3463 	mutex_unlock(&ext4_li_mtx);
3464 
3465 	return 0;
3466 }
3467 
3468 static void ext4_clear_request_list(void)
3469 {
3470 	struct list_head *pos, *n;
3471 	struct ext4_li_request *elr;
3472 
3473 	mutex_lock(&ext4_li_info->li_list_mtx);
3474 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3475 		elr = list_entry(pos, struct ext4_li_request,
3476 				 lr_request);
3477 		ext4_remove_li_request(elr);
3478 	}
3479 	mutex_unlock(&ext4_li_info->li_list_mtx);
3480 }
3481 
3482 static int ext4_run_lazyinit_thread(void)
3483 {
3484 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3485 					 ext4_li_info, "ext4lazyinit");
3486 	if (IS_ERR(ext4_lazyinit_task)) {
3487 		int err = PTR_ERR(ext4_lazyinit_task);
3488 		ext4_clear_request_list();
3489 		kfree(ext4_li_info);
3490 		ext4_li_info = NULL;
3491 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3492 				 "initialization thread\n",
3493 				 err);
3494 		return err;
3495 	}
3496 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3497 	return 0;
3498 }
3499 
3500 /*
3501  * Check whether it make sense to run itable init. thread or not.
3502  * If there is at least one uninitialized inode table, return
3503  * corresponding group number, else the loop goes through all
3504  * groups and return total number of groups.
3505  */
3506 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3507 {
3508 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3509 	struct ext4_group_desc *gdp = NULL;
3510 
3511 	if (!ext4_has_group_desc_csum(sb))
3512 		return ngroups;
3513 
3514 	for (group = 0; group < ngroups; group++) {
3515 		gdp = ext4_get_group_desc(sb, group, NULL);
3516 		if (!gdp)
3517 			continue;
3518 
3519 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3520 			break;
3521 	}
3522 
3523 	return group;
3524 }
3525 
3526 static int ext4_li_info_new(void)
3527 {
3528 	struct ext4_lazy_init *eli = NULL;
3529 
3530 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3531 	if (!eli)
3532 		return -ENOMEM;
3533 
3534 	INIT_LIST_HEAD(&eli->li_request_list);
3535 	mutex_init(&eli->li_list_mtx);
3536 
3537 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3538 
3539 	ext4_li_info = eli;
3540 
3541 	return 0;
3542 }
3543 
3544 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3545 					    ext4_group_t start)
3546 {
3547 	struct ext4_li_request *elr;
3548 
3549 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3550 	if (!elr)
3551 		return NULL;
3552 
3553 	elr->lr_super = sb;
3554 	elr->lr_first_not_zeroed = start;
3555 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3556 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3557 		elr->lr_next_group = start;
3558 	} else {
3559 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3560 	}
3561 
3562 	/*
3563 	 * Randomize first schedule time of the request to
3564 	 * spread the inode table initialization requests
3565 	 * better.
3566 	 */
3567 	elr->lr_next_sched = jiffies + (prandom_u32() %
3568 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3569 	return elr;
3570 }
3571 
3572 int ext4_register_li_request(struct super_block *sb,
3573 			     ext4_group_t first_not_zeroed)
3574 {
3575 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3576 	struct ext4_li_request *elr = NULL;
3577 	ext4_group_t ngroups = sbi->s_groups_count;
3578 	int ret = 0;
3579 
3580 	mutex_lock(&ext4_li_mtx);
3581 	if (sbi->s_li_request != NULL) {
3582 		/*
3583 		 * Reset timeout so it can be computed again, because
3584 		 * s_li_wait_mult might have changed.
3585 		 */
3586 		sbi->s_li_request->lr_timeout = 0;
3587 		goto out;
3588 	}
3589 
3590 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3591 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3592 	     !test_opt(sb, INIT_INODE_TABLE)))
3593 		goto out;
3594 
3595 	elr = ext4_li_request_new(sb, first_not_zeroed);
3596 	if (!elr) {
3597 		ret = -ENOMEM;
3598 		goto out;
3599 	}
3600 
3601 	if (NULL == ext4_li_info) {
3602 		ret = ext4_li_info_new();
3603 		if (ret)
3604 			goto out;
3605 	}
3606 
3607 	mutex_lock(&ext4_li_info->li_list_mtx);
3608 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3609 	mutex_unlock(&ext4_li_info->li_list_mtx);
3610 
3611 	sbi->s_li_request = elr;
3612 	/*
3613 	 * set elr to NULL here since it has been inserted to
3614 	 * the request_list and the removal and free of it is
3615 	 * handled by ext4_clear_request_list from now on.
3616 	 */
3617 	elr = NULL;
3618 
3619 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3620 		ret = ext4_run_lazyinit_thread();
3621 		if (ret)
3622 			goto out;
3623 	}
3624 out:
3625 	mutex_unlock(&ext4_li_mtx);
3626 	if (ret)
3627 		kfree(elr);
3628 	return ret;
3629 }
3630 
3631 /*
3632  * We do not need to lock anything since this is called on
3633  * module unload.
3634  */
3635 static void ext4_destroy_lazyinit_thread(void)
3636 {
3637 	/*
3638 	 * If thread exited earlier
3639 	 * there's nothing to be done.
3640 	 */
3641 	if (!ext4_li_info || !ext4_lazyinit_task)
3642 		return;
3643 
3644 	kthread_stop(ext4_lazyinit_task);
3645 }
3646 
3647 static int set_journal_csum_feature_set(struct super_block *sb)
3648 {
3649 	int ret = 1;
3650 	int compat, incompat;
3651 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3652 
3653 	if (ext4_has_metadata_csum(sb)) {
3654 		/* journal checksum v3 */
3655 		compat = 0;
3656 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3657 	} else {
3658 		/* journal checksum v1 */
3659 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3660 		incompat = 0;
3661 	}
3662 
3663 	jbd2_journal_clear_features(sbi->s_journal,
3664 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3665 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3666 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3667 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3668 		ret = jbd2_journal_set_features(sbi->s_journal,
3669 				compat, 0,
3670 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3671 				incompat);
3672 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3673 		ret = jbd2_journal_set_features(sbi->s_journal,
3674 				compat, 0,
3675 				incompat);
3676 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3677 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3678 	} else {
3679 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3680 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3681 	}
3682 
3683 	return ret;
3684 }
3685 
3686 /*
3687  * Note: calculating the overhead so we can be compatible with
3688  * historical BSD practice is quite difficult in the face of
3689  * clusters/bigalloc.  This is because multiple metadata blocks from
3690  * different block group can end up in the same allocation cluster.
3691  * Calculating the exact overhead in the face of clustered allocation
3692  * requires either O(all block bitmaps) in memory or O(number of block
3693  * groups**2) in time.  We will still calculate the superblock for
3694  * older file systems --- and if we come across with a bigalloc file
3695  * system with zero in s_overhead_clusters the estimate will be close to
3696  * correct especially for very large cluster sizes --- but for newer
3697  * file systems, it's better to calculate this figure once at mkfs
3698  * time, and store it in the superblock.  If the superblock value is
3699  * present (even for non-bigalloc file systems), we will use it.
3700  */
3701 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3702 			  char *buf)
3703 {
3704 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3705 	struct ext4_group_desc	*gdp;
3706 	ext4_fsblk_t		first_block, last_block, b;
3707 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3708 	int			s, j, count = 0;
3709 
3710 	if (!ext4_has_feature_bigalloc(sb))
3711 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3712 			sbi->s_itb_per_group + 2);
3713 
3714 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3715 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3716 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3717 	for (i = 0; i < ngroups; i++) {
3718 		gdp = ext4_get_group_desc(sb, i, NULL);
3719 		b = ext4_block_bitmap(sb, gdp);
3720 		if (b >= first_block && b <= last_block) {
3721 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3722 			count++;
3723 		}
3724 		b = ext4_inode_bitmap(sb, gdp);
3725 		if (b >= first_block && b <= last_block) {
3726 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3727 			count++;
3728 		}
3729 		b = ext4_inode_table(sb, gdp);
3730 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3731 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3732 				int c = EXT4_B2C(sbi, b - first_block);
3733 				ext4_set_bit(c, buf);
3734 				count++;
3735 			}
3736 		if (i != grp)
3737 			continue;
3738 		s = 0;
3739 		if (ext4_bg_has_super(sb, grp)) {
3740 			ext4_set_bit(s++, buf);
3741 			count++;
3742 		}
3743 		j = ext4_bg_num_gdb(sb, grp);
3744 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3745 			ext4_error(sb, "Invalid number of block group "
3746 				   "descriptor blocks: %d", j);
3747 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3748 		}
3749 		count += j;
3750 		for (; j > 0; j--)
3751 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3752 	}
3753 	if (!count)
3754 		return 0;
3755 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3756 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3757 }
3758 
3759 /*
3760  * Compute the overhead and stash it in sbi->s_overhead
3761  */
3762 int ext4_calculate_overhead(struct super_block *sb)
3763 {
3764 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3765 	struct ext4_super_block *es = sbi->s_es;
3766 	struct inode *j_inode;
3767 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3768 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3769 	ext4_fsblk_t overhead = 0;
3770 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3771 
3772 	if (!buf)
3773 		return -ENOMEM;
3774 
3775 	/*
3776 	 * Compute the overhead (FS structures).  This is constant
3777 	 * for a given filesystem unless the number of block groups
3778 	 * changes so we cache the previous value until it does.
3779 	 */
3780 
3781 	/*
3782 	 * All of the blocks before first_data_block are overhead
3783 	 */
3784 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3785 
3786 	/*
3787 	 * Add the overhead found in each block group
3788 	 */
3789 	for (i = 0; i < ngroups; i++) {
3790 		int blks;
3791 
3792 		blks = count_overhead(sb, i, buf);
3793 		overhead += blks;
3794 		if (blks)
3795 			memset(buf, 0, PAGE_SIZE);
3796 		cond_resched();
3797 	}
3798 
3799 	/*
3800 	 * Add the internal journal blocks whether the journal has been
3801 	 * loaded or not
3802 	 */
3803 	if (sbi->s_journal && !sbi->s_journal_bdev)
3804 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3805 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3806 		/* j_inum for internal journal is non-zero */
3807 		j_inode = ext4_get_journal_inode(sb, j_inum);
3808 		if (j_inode) {
3809 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3810 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3811 			iput(j_inode);
3812 		} else {
3813 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3814 		}
3815 	}
3816 	sbi->s_overhead = overhead;
3817 	smp_wmb();
3818 	free_page((unsigned long) buf);
3819 	return 0;
3820 }
3821 
3822 static void ext4_set_resv_clusters(struct super_block *sb)
3823 {
3824 	ext4_fsblk_t resv_clusters;
3825 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3826 
3827 	/*
3828 	 * There's no need to reserve anything when we aren't using extents.
3829 	 * The space estimates are exact, there are no unwritten extents,
3830 	 * hole punching doesn't need new metadata... This is needed especially
3831 	 * to keep ext2/3 backward compatibility.
3832 	 */
3833 	if (!ext4_has_feature_extents(sb))
3834 		return;
3835 	/*
3836 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3837 	 * This should cover the situations where we can not afford to run
3838 	 * out of space like for example punch hole, or converting
3839 	 * unwritten extents in delalloc path. In most cases such
3840 	 * allocation would require 1, or 2 blocks, higher numbers are
3841 	 * very rare.
3842 	 */
3843 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3844 			 sbi->s_cluster_bits);
3845 
3846 	do_div(resv_clusters, 50);
3847 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3848 
3849 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3850 }
3851 
3852 static const char *ext4_quota_mode(struct super_block *sb)
3853 {
3854 #ifdef CONFIG_QUOTA
3855 	if (!ext4_quota_capable(sb))
3856 		return "none";
3857 
3858 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3859 		return "journalled";
3860 	else
3861 		return "writeback";
3862 #else
3863 	return "disabled";
3864 #endif
3865 }
3866 
3867 static void ext4_setup_csum_trigger(struct super_block *sb,
3868 				    enum ext4_journal_trigger_type type,
3869 				    void (*trigger)(
3870 					struct jbd2_buffer_trigger_type *type,
3871 					struct buffer_head *bh,
3872 					void *mapped_data,
3873 					size_t size))
3874 {
3875 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3876 
3877 	sbi->s_journal_triggers[type].sb = sb;
3878 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3879 }
3880 
3881 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3882 {
3883 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3884 	char *orig_data = kstrdup(data, GFP_KERNEL);
3885 	struct buffer_head *bh, **group_desc;
3886 	struct ext4_super_block *es = NULL;
3887 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3888 	struct flex_groups **flex_groups;
3889 	ext4_fsblk_t block;
3890 	ext4_fsblk_t sb_block = get_sb_block(&data);
3891 	ext4_fsblk_t logical_sb_block;
3892 	unsigned long offset = 0;
3893 	unsigned long def_mount_opts;
3894 	struct inode *root;
3895 	const char *descr;
3896 	int ret = -ENOMEM;
3897 	int blocksize, clustersize;
3898 	unsigned int db_count;
3899 	unsigned int i;
3900 	int needs_recovery, has_huge_files;
3901 	__u64 blocks_count;
3902 	int err = 0;
3903 	ext4_group_t first_not_zeroed;
3904 	struct ext4_parsed_options parsed_opts;
3905 
3906 	/* Set defaults for the variables that will be set during parsing */
3907 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3908 	parsed_opts.journal_devnum = 0;
3909 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3910 
3911 	if ((data && !orig_data) || !sbi)
3912 		goto out_free_base;
3913 
3914 	sbi->s_daxdev = dax_dev;
3915 	sbi->s_blockgroup_lock =
3916 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3917 	if (!sbi->s_blockgroup_lock)
3918 		goto out_free_base;
3919 
3920 	sb->s_fs_info = sbi;
3921 	sbi->s_sb = sb;
3922 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3923 	sbi->s_sb_block = sb_block;
3924 	sbi->s_sectors_written_start =
3925 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3926 
3927 	/* Cleanup superblock name */
3928 	strreplace(sb->s_id, '/', '!');
3929 
3930 	/* -EINVAL is default */
3931 	ret = -EINVAL;
3932 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3933 	if (!blocksize) {
3934 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3935 		goto out_fail;
3936 	}
3937 
3938 	/*
3939 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3940 	 * block sizes.  We need to calculate the offset from buffer start.
3941 	 */
3942 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3943 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3944 		offset = do_div(logical_sb_block, blocksize);
3945 	} else {
3946 		logical_sb_block = sb_block;
3947 	}
3948 
3949 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3950 	if (IS_ERR(bh)) {
3951 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3952 		ret = PTR_ERR(bh);
3953 		goto out_fail;
3954 	}
3955 	/*
3956 	 * Note: s_es must be initialized as soon as possible because
3957 	 *       some ext4 macro-instructions depend on its value
3958 	 */
3959 	es = (struct ext4_super_block *) (bh->b_data + offset);
3960 	sbi->s_es = es;
3961 	sb->s_magic = le16_to_cpu(es->s_magic);
3962 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3963 		goto cantfind_ext4;
3964 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3965 
3966 	/* Warn if metadata_csum and gdt_csum are both set. */
3967 	if (ext4_has_feature_metadata_csum(sb) &&
3968 	    ext4_has_feature_gdt_csum(sb))
3969 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3970 			     "redundant flags; please run fsck.");
3971 
3972 	/* Check for a known checksum algorithm */
3973 	if (!ext4_verify_csum_type(sb, es)) {
3974 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3975 			 "unknown checksum algorithm.");
3976 		silent = 1;
3977 		goto cantfind_ext4;
3978 	}
3979 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3980 				ext4_orphan_file_block_trigger);
3981 
3982 	/* Load the checksum driver */
3983 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3984 	if (IS_ERR(sbi->s_chksum_driver)) {
3985 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3986 		ret = PTR_ERR(sbi->s_chksum_driver);
3987 		sbi->s_chksum_driver = NULL;
3988 		goto failed_mount;
3989 	}
3990 
3991 	/* Check superblock checksum */
3992 	if (!ext4_superblock_csum_verify(sb, es)) {
3993 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3994 			 "invalid superblock checksum.  Run e2fsck?");
3995 		silent = 1;
3996 		ret = -EFSBADCRC;
3997 		goto cantfind_ext4;
3998 	}
3999 
4000 	/* Precompute checksum seed for all metadata */
4001 	if (ext4_has_feature_csum_seed(sb))
4002 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4003 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4004 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4005 					       sizeof(es->s_uuid));
4006 
4007 	/* Set defaults before we parse the mount options */
4008 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4009 	set_opt(sb, INIT_INODE_TABLE);
4010 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4011 		set_opt(sb, DEBUG);
4012 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4013 		set_opt(sb, GRPID);
4014 	if (def_mount_opts & EXT4_DEFM_UID16)
4015 		set_opt(sb, NO_UID32);
4016 	/* xattr user namespace & acls are now defaulted on */
4017 	set_opt(sb, XATTR_USER);
4018 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4019 	set_opt(sb, POSIX_ACL);
4020 #endif
4021 	if (ext4_has_feature_fast_commit(sb))
4022 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4023 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4024 	if (ext4_has_metadata_csum(sb))
4025 		set_opt(sb, JOURNAL_CHECKSUM);
4026 
4027 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4028 		set_opt(sb, JOURNAL_DATA);
4029 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4030 		set_opt(sb, ORDERED_DATA);
4031 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4032 		set_opt(sb, WRITEBACK_DATA);
4033 
4034 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4035 		set_opt(sb, ERRORS_PANIC);
4036 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4037 		set_opt(sb, ERRORS_CONT);
4038 	else
4039 		set_opt(sb, ERRORS_RO);
4040 	/* block_validity enabled by default; disable with noblock_validity */
4041 	set_opt(sb, BLOCK_VALIDITY);
4042 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4043 		set_opt(sb, DISCARD);
4044 
4045 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4046 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4047 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4048 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4049 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4050 
4051 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4052 		set_opt(sb, BARRIER);
4053 
4054 	/*
4055 	 * enable delayed allocation by default
4056 	 * Use -o nodelalloc to turn it off
4057 	 */
4058 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4059 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4060 		set_opt(sb, DELALLOC);
4061 
4062 	/*
4063 	 * set default s_li_wait_mult for lazyinit, for the case there is
4064 	 * no mount option specified.
4065 	 */
4066 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4067 
4068 	if (le32_to_cpu(es->s_log_block_size) >
4069 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4070 		ext4_msg(sb, KERN_ERR,
4071 			 "Invalid log block size: %u",
4072 			 le32_to_cpu(es->s_log_block_size));
4073 		goto failed_mount;
4074 	}
4075 	if (le32_to_cpu(es->s_log_cluster_size) >
4076 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4077 		ext4_msg(sb, KERN_ERR,
4078 			 "Invalid log cluster size: %u",
4079 			 le32_to_cpu(es->s_log_cluster_size));
4080 		goto failed_mount;
4081 	}
4082 
4083 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4084 
4085 	if (blocksize == PAGE_SIZE)
4086 		set_opt(sb, DIOREAD_NOLOCK);
4087 
4088 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4089 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4090 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4091 	} else {
4092 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4093 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4094 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4095 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4096 				 sbi->s_first_ino);
4097 			goto failed_mount;
4098 		}
4099 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4100 		    (!is_power_of_2(sbi->s_inode_size)) ||
4101 		    (sbi->s_inode_size > blocksize)) {
4102 			ext4_msg(sb, KERN_ERR,
4103 			       "unsupported inode size: %d",
4104 			       sbi->s_inode_size);
4105 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4106 			goto failed_mount;
4107 		}
4108 		/*
4109 		 * i_atime_extra is the last extra field available for
4110 		 * [acm]times in struct ext4_inode. Checking for that
4111 		 * field should suffice to ensure we have extra space
4112 		 * for all three.
4113 		 */
4114 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4115 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4116 			sb->s_time_gran = 1;
4117 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4118 		} else {
4119 			sb->s_time_gran = NSEC_PER_SEC;
4120 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4121 		}
4122 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4123 	}
4124 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4125 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4126 			EXT4_GOOD_OLD_INODE_SIZE;
4127 		if (ext4_has_feature_extra_isize(sb)) {
4128 			unsigned v, max = (sbi->s_inode_size -
4129 					   EXT4_GOOD_OLD_INODE_SIZE);
4130 
4131 			v = le16_to_cpu(es->s_want_extra_isize);
4132 			if (v > max) {
4133 				ext4_msg(sb, KERN_ERR,
4134 					 "bad s_want_extra_isize: %d", v);
4135 				goto failed_mount;
4136 			}
4137 			if (sbi->s_want_extra_isize < v)
4138 				sbi->s_want_extra_isize = v;
4139 
4140 			v = le16_to_cpu(es->s_min_extra_isize);
4141 			if (v > max) {
4142 				ext4_msg(sb, KERN_ERR,
4143 					 "bad s_min_extra_isize: %d", v);
4144 				goto failed_mount;
4145 			}
4146 			if (sbi->s_want_extra_isize < v)
4147 				sbi->s_want_extra_isize = v;
4148 		}
4149 	}
4150 
4151 	if (sbi->s_es->s_mount_opts[0]) {
4152 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4153 					      sizeof(sbi->s_es->s_mount_opts),
4154 					      GFP_KERNEL);
4155 		if (!s_mount_opts)
4156 			goto failed_mount;
4157 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4158 			ext4_msg(sb, KERN_WARNING,
4159 				 "failed to parse options in superblock: %s",
4160 				 s_mount_opts);
4161 		}
4162 		kfree(s_mount_opts);
4163 	}
4164 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4165 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4166 		goto failed_mount;
4167 
4168 #ifdef CONFIG_UNICODE
4169 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4170 		const struct ext4_sb_encodings *encoding_info;
4171 		struct unicode_map *encoding;
4172 		__u16 encoding_flags;
4173 
4174 		if (ext4_sb_read_encoding(es, &encoding_info,
4175 					  &encoding_flags)) {
4176 			ext4_msg(sb, KERN_ERR,
4177 				 "Encoding requested by superblock is unknown");
4178 			goto failed_mount;
4179 		}
4180 
4181 		encoding = utf8_load(encoding_info->version);
4182 		if (IS_ERR(encoding)) {
4183 			ext4_msg(sb, KERN_ERR,
4184 				 "can't mount with superblock charset: %s-%s "
4185 				 "not supported by the kernel. flags: 0x%x.",
4186 				 encoding_info->name, encoding_info->version,
4187 				 encoding_flags);
4188 			goto failed_mount;
4189 		}
4190 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4191 			 "%s-%s with flags 0x%hx", encoding_info->name,
4192 			 encoding_info->version?:"\b", encoding_flags);
4193 
4194 		sb->s_encoding = encoding;
4195 		sb->s_encoding_flags = encoding_flags;
4196 	}
4197 #endif
4198 
4199 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4200 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4201 		/* can't mount with both data=journal and dioread_nolock. */
4202 		clear_opt(sb, DIOREAD_NOLOCK);
4203 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4204 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4205 			ext4_msg(sb, KERN_ERR, "can't mount with "
4206 				 "both data=journal and delalloc");
4207 			goto failed_mount;
4208 		}
4209 		if (test_opt(sb, DAX_ALWAYS)) {
4210 			ext4_msg(sb, KERN_ERR, "can't mount with "
4211 				 "both data=journal and dax");
4212 			goto failed_mount;
4213 		}
4214 		if (ext4_has_feature_encrypt(sb)) {
4215 			ext4_msg(sb, KERN_WARNING,
4216 				 "encrypted files will use data=ordered "
4217 				 "instead of data journaling mode");
4218 		}
4219 		if (test_opt(sb, DELALLOC))
4220 			clear_opt(sb, DELALLOC);
4221 	} else {
4222 		sb->s_iflags |= SB_I_CGROUPWB;
4223 	}
4224 
4225 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4226 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4227 
4228 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4229 	    (ext4_has_compat_features(sb) ||
4230 	     ext4_has_ro_compat_features(sb) ||
4231 	     ext4_has_incompat_features(sb)))
4232 		ext4_msg(sb, KERN_WARNING,
4233 		       "feature flags set on rev 0 fs, "
4234 		       "running e2fsck is recommended");
4235 
4236 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4237 		set_opt2(sb, HURD_COMPAT);
4238 		if (ext4_has_feature_64bit(sb)) {
4239 			ext4_msg(sb, KERN_ERR,
4240 				 "The Hurd can't support 64-bit file systems");
4241 			goto failed_mount;
4242 		}
4243 
4244 		/*
4245 		 * ea_inode feature uses l_i_version field which is not
4246 		 * available in HURD_COMPAT mode.
4247 		 */
4248 		if (ext4_has_feature_ea_inode(sb)) {
4249 			ext4_msg(sb, KERN_ERR,
4250 				 "ea_inode feature is not supported for Hurd");
4251 			goto failed_mount;
4252 		}
4253 	}
4254 
4255 	if (IS_EXT2_SB(sb)) {
4256 		if (ext2_feature_set_ok(sb))
4257 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4258 				 "using the ext4 subsystem");
4259 		else {
4260 			/*
4261 			 * If we're probing be silent, if this looks like
4262 			 * it's actually an ext[34] filesystem.
4263 			 */
4264 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4265 				goto failed_mount;
4266 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4267 				 "to feature incompatibilities");
4268 			goto failed_mount;
4269 		}
4270 	}
4271 
4272 	if (IS_EXT3_SB(sb)) {
4273 		if (ext3_feature_set_ok(sb))
4274 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4275 				 "using the ext4 subsystem");
4276 		else {
4277 			/*
4278 			 * If we're probing be silent, if this looks like
4279 			 * it's actually an ext4 filesystem.
4280 			 */
4281 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4282 				goto failed_mount;
4283 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4284 				 "to feature incompatibilities");
4285 			goto failed_mount;
4286 		}
4287 	}
4288 
4289 	/*
4290 	 * Check feature flags regardless of the revision level, since we
4291 	 * previously didn't change the revision level when setting the flags,
4292 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4293 	 */
4294 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4295 		goto failed_mount;
4296 
4297 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4298 		ext4_msg(sb, KERN_ERR,
4299 			 "Number of reserved GDT blocks insanely large: %d",
4300 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4301 		goto failed_mount;
4302 	}
4303 
4304 	if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0,
4305 			bdev_nr_sectors(sb->s_bdev)))
4306 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4307 
4308 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4309 		if (ext4_has_feature_inline_data(sb)) {
4310 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4311 					" that may contain inline data");
4312 			goto failed_mount;
4313 		}
4314 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4315 			ext4_msg(sb, KERN_ERR,
4316 				"DAX unsupported by block device.");
4317 			goto failed_mount;
4318 		}
4319 	}
4320 
4321 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4322 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4323 			 es->s_encryption_level);
4324 		goto failed_mount;
4325 	}
4326 
4327 	if (sb->s_blocksize != blocksize) {
4328 		/*
4329 		 * bh must be released before kill_bdev(), otherwise
4330 		 * it won't be freed and its page also. kill_bdev()
4331 		 * is called by sb_set_blocksize().
4332 		 */
4333 		brelse(bh);
4334 		/* Validate the filesystem blocksize */
4335 		if (!sb_set_blocksize(sb, blocksize)) {
4336 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4337 					blocksize);
4338 			bh = NULL;
4339 			goto failed_mount;
4340 		}
4341 
4342 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4343 		offset = do_div(logical_sb_block, blocksize);
4344 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4345 		if (IS_ERR(bh)) {
4346 			ext4_msg(sb, KERN_ERR,
4347 			       "Can't read superblock on 2nd try");
4348 			ret = PTR_ERR(bh);
4349 			bh = NULL;
4350 			goto failed_mount;
4351 		}
4352 		es = (struct ext4_super_block *)(bh->b_data + offset);
4353 		sbi->s_es = es;
4354 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4355 			ext4_msg(sb, KERN_ERR,
4356 			       "Magic mismatch, very weird!");
4357 			goto failed_mount;
4358 		}
4359 	}
4360 
4361 	has_huge_files = ext4_has_feature_huge_file(sb);
4362 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4363 						      has_huge_files);
4364 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4365 
4366 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4367 	if (ext4_has_feature_64bit(sb)) {
4368 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4369 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4370 		    !is_power_of_2(sbi->s_desc_size)) {
4371 			ext4_msg(sb, KERN_ERR,
4372 			       "unsupported descriptor size %lu",
4373 			       sbi->s_desc_size);
4374 			goto failed_mount;
4375 		}
4376 	} else
4377 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4378 
4379 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4380 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4381 
4382 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4383 	if (sbi->s_inodes_per_block == 0)
4384 		goto cantfind_ext4;
4385 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4386 	    sbi->s_inodes_per_group > blocksize * 8) {
4387 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4388 			 sbi->s_inodes_per_group);
4389 		goto failed_mount;
4390 	}
4391 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4392 					sbi->s_inodes_per_block;
4393 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4394 	sbi->s_sbh = bh;
4395 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4396 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4397 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4398 
4399 	for (i = 0; i < 4; i++)
4400 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4401 	sbi->s_def_hash_version = es->s_def_hash_version;
4402 	if (ext4_has_feature_dir_index(sb)) {
4403 		i = le32_to_cpu(es->s_flags);
4404 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4405 			sbi->s_hash_unsigned = 3;
4406 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4407 #ifdef __CHAR_UNSIGNED__
4408 			if (!sb_rdonly(sb))
4409 				es->s_flags |=
4410 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4411 			sbi->s_hash_unsigned = 3;
4412 #else
4413 			if (!sb_rdonly(sb))
4414 				es->s_flags |=
4415 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4416 #endif
4417 		}
4418 	}
4419 
4420 	/* Handle clustersize */
4421 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4422 	if (ext4_has_feature_bigalloc(sb)) {
4423 		if (clustersize < blocksize) {
4424 			ext4_msg(sb, KERN_ERR,
4425 				 "cluster size (%d) smaller than "
4426 				 "block size (%d)", clustersize, blocksize);
4427 			goto failed_mount;
4428 		}
4429 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4430 			le32_to_cpu(es->s_log_block_size);
4431 		sbi->s_clusters_per_group =
4432 			le32_to_cpu(es->s_clusters_per_group);
4433 		if (sbi->s_clusters_per_group > blocksize * 8) {
4434 			ext4_msg(sb, KERN_ERR,
4435 				 "#clusters per group too big: %lu",
4436 				 sbi->s_clusters_per_group);
4437 			goto failed_mount;
4438 		}
4439 		if (sbi->s_blocks_per_group !=
4440 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4441 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4442 				 "clusters per group (%lu) inconsistent",
4443 				 sbi->s_blocks_per_group,
4444 				 sbi->s_clusters_per_group);
4445 			goto failed_mount;
4446 		}
4447 	} else {
4448 		if (clustersize != blocksize) {
4449 			ext4_msg(sb, KERN_ERR,
4450 				 "fragment/cluster size (%d) != "
4451 				 "block size (%d)", clustersize, blocksize);
4452 			goto failed_mount;
4453 		}
4454 		if (sbi->s_blocks_per_group > blocksize * 8) {
4455 			ext4_msg(sb, KERN_ERR,
4456 				 "#blocks per group too big: %lu",
4457 				 sbi->s_blocks_per_group);
4458 			goto failed_mount;
4459 		}
4460 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4461 		sbi->s_cluster_bits = 0;
4462 	}
4463 	sbi->s_cluster_ratio = clustersize / blocksize;
4464 
4465 	/* Do we have standard group size of clustersize * 8 blocks ? */
4466 	if (sbi->s_blocks_per_group == clustersize << 3)
4467 		set_opt2(sb, STD_GROUP_SIZE);
4468 
4469 	/*
4470 	 * Test whether we have more sectors than will fit in sector_t,
4471 	 * and whether the max offset is addressable by the page cache.
4472 	 */
4473 	err = generic_check_addressable(sb->s_blocksize_bits,
4474 					ext4_blocks_count(es));
4475 	if (err) {
4476 		ext4_msg(sb, KERN_ERR, "filesystem"
4477 			 " too large to mount safely on this system");
4478 		goto failed_mount;
4479 	}
4480 
4481 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4482 		goto cantfind_ext4;
4483 
4484 	/* check blocks count against device size */
4485 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4486 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4487 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4488 		       "exceeds size of device (%llu blocks)",
4489 		       ext4_blocks_count(es), blocks_count);
4490 		goto failed_mount;
4491 	}
4492 
4493 	/*
4494 	 * It makes no sense for the first data block to be beyond the end
4495 	 * of the filesystem.
4496 	 */
4497 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4498 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4499 			 "block %u is beyond end of filesystem (%llu)",
4500 			 le32_to_cpu(es->s_first_data_block),
4501 			 ext4_blocks_count(es));
4502 		goto failed_mount;
4503 	}
4504 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4505 	    (sbi->s_cluster_ratio == 1)) {
4506 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4507 			 "block is 0 with a 1k block and cluster size");
4508 		goto failed_mount;
4509 	}
4510 
4511 	blocks_count = (ext4_blocks_count(es) -
4512 			le32_to_cpu(es->s_first_data_block) +
4513 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4514 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4515 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4516 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4517 		       "(block count %llu, first data block %u, "
4518 		       "blocks per group %lu)", blocks_count,
4519 		       ext4_blocks_count(es),
4520 		       le32_to_cpu(es->s_first_data_block),
4521 		       EXT4_BLOCKS_PER_GROUP(sb));
4522 		goto failed_mount;
4523 	}
4524 	sbi->s_groups_count = blocks_count;
4525 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4526 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4527 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4528 	    le32_to_cpu(es->s_inodes_count)) {
4529 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4530 			 le32_to_cpu(es->s_inodes_count),
4531 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4532 		ret = -EINVAL;
4533 		goto failed_mount;
4534 	}
4535 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4536 		   EXT4_DESC_PER_BLOCK(sb);
4537 	if (ext4_has_feature_meta_bg(sb)) {
4538 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4539 			ext4_msg(sb, KERN_WARNING,
4540 				 "first meta block group too large: %u "
4541 				 "(group descriptor block count %u)",
4542 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4543 			goto failed_mount;
4544 		}
4545 	}
4546 	rcu_assign_pointer(sbi->s_group_desc,
4547 			   kvmalloc_array(db_count,
4548 					  sizeof(struct buffer_head *),
4549 					  GFP_KERNEL));
4550 	if (sbi->s_group_desc == NULL) {
4551 		ext4_msg(sb, KERN_ERR, "not enough memory");
4552 		ret = -ENOMEM;
4553 		goto failed_mount;
4554 	}
4555 
4556 	bgl_lock_init(sbi->s_blockgroup_lock);
4557 
4558 	/* Pre-read the descriptors into the buffer cache */
4559 	for (i = 0; i < db_count; i++) {
4560 		block = descriptor_loc(sb, logical_sb_block, i);
4561 		ext4_sb_breadahead_unmovable(sb, block);
4562 	}
4563 
4564 	for (i = 0; i < db_count; i++) {
4565 		struct buffer_head *bh;
4566 
4567 		block = descriptor_loc(sb, logical_sb_block, i);
4568 		bh = ext4_sb_bread_unmovable(sb, block);
4569 		if (IS_ERR(bh)) {
4570 			ext4_msg(sb, KERN_ERR,
4571 			       "can't read group descriptor %d", i);
4572 			db_count = i;
4573 			ret = PTR_ERR(bh);
4574 			goto failed_mount2;
4575 		}
4576 		rcu_read_lock();
4577 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4578 		rcu_read_unlock();
4579 	}
4580 	sbi->s_gdb_count = db_count;
4581 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4582 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4583 		ret = -EFSCORRUPTED;
4584 		goto failed_mount2;
4585 	}
4586 
4587 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4588 	spin_lock_init(&sbi->s_error_lock);
4589 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4590 
4591 	/* Register extent status tree shrinker */
4592 	if (ext4_es_register_shrinker(sbi))
4593 		goto failed_mount3;
4594 
4595 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4596 	sbi->s_extent_max_zeroout_kb = 32;
4597 
4598 	/*
4599 	 * set up enough so that it can read an inode
4600 	 */
4601 	sb->s_op = &ext4_sops;
4602 	sb->s_export_op = &ext4_export_ops;
4603 	sb->s_xattr = ext4_xattr_handlers;
4604 #ifdef CONFIG_FS_ENCRYPTION
4605 	sb->s_cop = &ext4_cryptops;
4606 #endif
4607 #ifdef CONFIG_FS_VERITY
4608 	sb->s_vop = &ext4_verityops;
4609 #endif
4610 #ifdef CONFIG_QUOTA
4611 	sb->dq_op = &ext4_quota_operations;
4612 	if (ext4_has_feature_quota(sb))
4613 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4614 	else
4615 		sb->s_qcop = &ext4_qctl_operations;
4616 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4617 #endif
4618 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4619 
4620 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4621 	mutex_init(&sbi->s_orphan_lock);
4622 
4623 	/* Initialize fast commit stuff */
4624 	atomic_set(&sbi->s_fc_subtid, 0);
4625 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4626 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4627 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4628 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4629 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4630 	sbi->s_fc_bytes = 0;
4631 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4632 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4633 	spin_lock_init(&sbi->s_fc_lock);
4634 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4635 	sbi->s_fc_replay_state.fc_regions = NULL;
4636 	sbi->s_fc_replay_state.fc_regions_size = 0;
4637 	sbi->s_fc_replay_state.fc_regions_used = 0;
4638 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4639 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4640 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4641 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4642 
4643 	sb->s_root = NULL;
4644 
4645 	needs_recovery = (es->s_last_orphan != 0 ||
4646 			  ext4_has_feature_orphan_present(sb) ||
4647 			  ext4_has_feature_journal_needs_recovery(sb));
4648 
4649 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4650 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4651 			goto failed_mount3a;
4652 
4653 	/*
4654 	 * The first inode we look at is the journal inode.  Don't try
4655 	 * root first: it may be modified in the journal!
4656 	 */
4657 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4658 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4659 		if (err)
4660 			goto failed_mount3a;
4661 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4662 		   ext4_has_feature_journal_needs_recovery(sb)) {
4663 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4664 		       "suppressed and not mounted read-only");
4665 		goto failed_mount_wq;
4666 	} else {
4667 		/* Nojournal mode, all journal mount options are illegal */
4668 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4669 			ext4_msg(sb, KERN_ERR, "can't mount with "
4670 				 "journal_checksum, fs mounted w/o journal");
4671 			goto failed_mount_wq;
4672 		}
4673 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4674 			ext4_msg(sb, KERN_ERR, "can't mount with "
4675 				 "journal_async_commit, fs mounted w/o journal");
4676 			goto failed_mount_wq;
4677 		}
4678 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4679 			ext4_msg(sb, KERN_ERR, "can't mount with "
4680 				 "commit=%lu, fs mounted w/o journal",
4681 				 sbi->s_commit_interval / HZ);
4682 			goto failed_mount_wq;
4683 		}
4684 		if (EXT4_MOUNT_DATA_FLAGS &
4685 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4686 			ext4_msg(sb, KERN_ERR, "can't mount with "
4687 				 "data=, fs mounted w/o journal");
4688 			goto failed_mount_wq;
4689 		}
4690 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4691 		clear_opt(sb, JOURNAL_CHECKSUM);
4692 		clear_opt(sb, DATA_FLAGS);
4693 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4694 		sbi->s_journal = NULL;
4695 		needs_recovery = 0;
4696 		goto no_journal;
4697 	}
4698 
4699 	if (ext4_has_feature_64bit(sb) &&
4700 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4701 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4702 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4703 		goto failed_mount_wq;
4704 	}
4705 
4706 	if (!set_journal_csum_feature_set(sb)) {
4707 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4708 			 "feature set");
4709 		goto failed_mount_wq;
4710 	}
4711 
4712 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4713 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4714 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4715 		ext4_msg(sb, KERN_ERR,
4716 			"Failed to set fast commit journal feature");
4717 		goto failed_mount_wq;
4718 	}
4719 
4720 	/* We have now updated the journal if required, so we can
4721 	 * validate the data journaling mode. */
4722 	switch (test_opt(sb, DATA_FLAGS)) {
4723 	case 0:
4724 		/* No mode set, assume a default based on the journal
4725 		 * capabilities: ORDERED_DATA if the journal can
4726 		 * cope, else JOURNAL_DATA
4727 		 */
4728 		if (jbd2_journal_check_available_features
4729 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4730 			set_opt(sb, ORDERED_DATA);
4731 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4732 		} else {
4733 			set_opt(sb, JOURNAL_DATA);
4734 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4735 		}
4736 		break;
4737 
4738 	case EXT4_MOUNT_ORDERED_DATA:
4739 	case EXT4_MOUNT_WRITEBACK_DATA:
4740 		if (!jbd2_journal_check_available_features
4741 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4742 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4743 			       "requested data journaling mode");
4744 			goto failed_mount_wq;
4745 		}
4746 		break;
4747 	default:
4748 		break;
4749 	}
4750 
4751 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4752 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4753 		ext4_msg(sb, KERN_ERR, "can't mount with "
4754 			"journal_async_commit in data=ordered mode");
4755 		goto failed_mount_wq;
4756 	}
4757 
4758 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4759 
4760 	sbi->s_journal->j_submit_inode_data_buffers =
4761 		ext4_journal_submit_inode_data_buffers;
4762 	sbi->s_journal->j_finish_inode_data_buffers =
4763 		ext4_journal_finish_inode_data_buffers;
4764 
4765 no_journal:
4766 	if (!test_opt(sb, NO_MBCACHE)) {
4767 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4768 		if (!sbi->s_ea_block_cache) {
4769 			ext4_msg(sb, KERN_ERR,
4770 				 "Failed to create ea_block_cache");
4771 			goto failed_mount_wq;
4772 		}
4773 
4774 		if (ext4_has_feature_ea_inode(sb)) {
4775 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4776 			if (!sbi->s_ea_inode_cache) {
4777 				ext4_msg(sb, KERN_ERR,
4778 					 "Failed to create ea_inode_cache");
4779 				goto failed_mount_wq;
4780 			}
4781 		}
4782 	}
4783 
4784 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4785 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4786 		goto failed_mount_wq;
4787 	}
4788 
4789 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4790 	    !ext4_has_feature_encrypt(sb)) {
4791 		ext4_set_feature_encrypt(sb);
4792 		ext4_commit_super(sb);
4793 	}
4794 
4795 	/*
4796 	 * Get the # of file system overhead blocks from the
4797 	 * superblock if present.
4798 	 */
4799 	if (es->s_overhead_clusters)
4800 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4801 	else {
4802 		err = ext4_calculate_overhead(sb);
4803 		if (err)
4804 			goto failed_mount_wq;
4805 	}
4806 
4807 	/*
4808 	 * The maximum number of concurrent works can be high and
4809 	 * concurrency isn't really necessary.  Limit it to 1.
4810 	 */
4811 	EXT4_SB(sb)->rsv_conversion_wq =
4812 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4813 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4814 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4815 		ret = -ENOMEM;
4816 		goto failed_mount4;
4817 	}
4818 
4819 	/*
4820 	 * The jbd2_journal_load will have done any necessary log recovery,
4821 	 * so we can safely mount the rest of the filesystem now.
4822 	 */
4823 
4824 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4825 	if (IS_ERR(root)) {
4826 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4827 		ret = PTR_ERR(root);
4828 		root = NULL;
4829 		goto failed_mount4;
4830 	}
4831 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4832 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4833 		iput(root);
4834 		goto failed_mount4;
4835 	}
4836 
4837 	sb->s_root = d_make_root(root);
4838 	if (!sb->s_root) {
4839 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4840 		ret = -ENOMEM;
4841 		goto failed_mount4;
4842 	}
4843 
4844 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4845 	if (ret == -EROFS) {
4846 		sb->s_flags |= SB_RDONLY;
4847 		ret = 0;
4848 	} else if (ret)
4849 		goto failed_mount4a;
4850 
4851 	ext4_set_resv_clusters(sb);
4852 
4853 	if (test_opt(sb, BLOCK_VALIDITY)) {
4854 		err = ext4_setup_system_zone(sb);
4855 		if (err) {
4856 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4857 				 "zone (%d)", err);
4858 			goto failed_mount4a;
4859 		}
4860 	}
4861 	ext4_fc_replay_cleanup(sb);
4862 
4863 	ext4_ext_init(sb);
4864 
4865 	/*
4866 	 * Enable optimize_scan if number of groups is > threshold. This can be
4867 	 * turned off by passing "mb_optimize_scan=0". This can also be
4868 	 * turned on forcefully by passing "mb_optimize_scan=1".
4869 	 */
4870 	if (parsed_opts.mb_optimize_scan == 1)
4871 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4872 	else if (parsed_opts.mb_optimize_scan == 0)
4873 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
4874 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4875 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4876 
4877 	err = ext4_mb_init(sb);
4878 	if (err) {
4879 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4880 			 err);
4881 		goto failed_mount5;
4882 	}
4883 
4884 	/*
4885 	 * We can only set up the journal commit callback once
4886 	 * mballoc is initialized
4887 	 */
4888 	if (sbi->s_journal)
4889 		sbi->s_journal->j_commit_callback =
4890 			ext4_journal_commit_callback;
4891 
4892 	block = ext4_count_free_clusters(sb);
4893 	ext4_free_blocks_count_set(sbi->s_es,
4894 				   EXT4_C2B(sbi, block));
4895 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4896 				  GFP_KERNEL);
4897 	if (!err) {
4898 		unsigned long freei = ext4_count_free_inodes(sb);
4899 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4900 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4901 					  GFP_KERNEL);
4902 	}
4903 	/*
4904 	 * Update the checksum after updating free space/inode
4905 	 * counters.  Otherwise the superblock can have an incorrect
4906 	 * checksum in the buffer cache until it is written out and
4907 	 * e2fsprogs programs trying to open a file system immediately
4908 	 * after it is mounted can fail.
4909 	 */
4910 	ext4_superblock_csum_set(sb);
4911 	if (!err)
4912 		err = percpu_counter_init(&sbi->s_dirs_counter,
4913 					  ext4_count_dirs(sb), GFP_KERNEL);
4914 	if (!err)
4915 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4916 					  GFP_KERNEL);
4917 	if (!err)
4918 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4919 					  GFP_KERNEL);
4920 	if (!err)
4921 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4922 
4923 	if (err) {
4924 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4925 		goto failed_mount6;
4926 	}
4927 
4928 	if (ext4_has_feature_flex_bg(sb))
4929 		if (!ext4_fill_flex_info(sb)) {
4930 			ext4_msg(sb, KERN_ERR,
4931 			       "unable to initialize "
4932 			       "flex_bg meta info!");
4933 			ret = -ENOMEM;
4934 			goto failed_mount6;
4935 		}
4936 
4937 	err = ext4_register_li_request(sb, first_not_zeroed);
4938 	if (err)
4939 		goto failed_mount6;
4940 
4941 	err = ext4_register_sysfs(sb);
4942 	if (err)
4943 		goto failed_mount7;
4944 
4945 	err = ext4_init_orphan_info(sb);
4946 	if (err)
4947 		goto failed_mount8;
4948 #ifdef CONFIG_QUOTA
4949 	/* Enable quota usage during mount. */
4950 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4951 		err = ext4_enable_quotas(sb);
4952 		if (err)
4953 			goto failed_mount9;
4954 	}
4955 #endif  /* CONFIG_QUOTA */
4956 
4957 	/*
4958 	 * Save the original bdev mapping's wb_err value which could be
4959 	 * used to detect the metadata async write error.
4960 	 */
4961 	spin_lock_init(&sbi->s_bdev_wb_lock);
4962 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4963 				 &sbi->s_bdev_wb_err);
4964 	sb->s_bdev->bd_super = sb;
4965 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4966 	ext4_orphan_cleanup(sb, es);
4967 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4968 	if (needs_recovery) {
4969 		ext4_msg(sb, KERN_INFO, "recovery complete");
4970 		err = ext4_mark_recovery_complete(sb, es);
4971 		if (err)
4972 			goto failed_mount9;
4973 	}
4974 	if (EXT4_SB(sb)->s_journal) {
4975 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4976 			descr = " journalled data mode";
4977 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4978 			descr = " ordered data mode";
4979 		else
4980 			descr = " writeback data mode";
4981 	} else
4982 		descr = "out journal";
4983 
4984 	if (test_opt(sb, DISCARD)) {
4985 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4986 		if (!blk_queue_discard(q))
4987 			ext4_msg(sb, KERN_WARNING,
4988 				 "mounting with \"discard\" option, but "
4989 				 "the device does not support discard");
4990 	}
4991 
4992 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4993 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4994 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
4995 			 (int) sizeof(sbi->s_es->s_mount_opts),
4996 			 sbi->s_es->s_mount_opts,
4997 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
4998 			 ext4_quota_mode(sb));
4999 
5000 	if (es->s_error_count)
5001 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5002 
5003 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5004 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5005 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5006 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5007 	atomic_set(&sbi->s_warning_count, 0);
5008 	atomic_set(&sbi->s_msg_count, 0);
5009 
5010 	kfree(orig_data);
5011 	return 0;
5012 
5013 cantfind_ext4:
5014 	if (!silent)
5015 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5016 	goto failed_mount;
5017 
5018 failed_mount9:
5019 	ext4_release_orphan_info(sb);
5020 failed_mount8:
5021 	ext4_unregister_sysfs(sb);
5022 	kobject_put(&sbi->s_kobj);
5023 failed_mount7:
5024 	ext4_unregister_li_request(sb);
5025 failed_mount6:
5026 	ext4_mb_release(sb);
5027 	rcu_read_lock();
5028 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5029 	if (flex_groups) {
5030 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5031 			kvfree(flex_groups[i]);
5032 		kvfree(flex_groups);
5033 	}
5034 	rcu_read_unlock();
5035 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5036 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5037 	percpu_counter_destroy(&sbi->s_dirs_counter);
5038 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5039 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5040 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5041 failed_mount5:
5042 	ext4_ext_release(sb);
5043 	ext4_release_system_zone(sb);
5044 failed_mount4a:
5045 	dput(sb->s_root);
5046 	sb->s_root = NULL;
5047 failed_mount4:
5048 	ext4_msg(sb, KERN_ERR, "mount failed");
5049 	if (EXT4_SB(sb)->rsv_conversion_wq)
5050 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5051 failed_mount_wq:
5052 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5053 	sbi->s_ea_inode_cache = NULL;
5054 
5055 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5056 	sbi->s_ea_block_cache = NULL;
5057 
5058 	if (sbi->s_journal) {
5059 		/* flush s_error_work before journal destroy. */
5060 		flush_work(&sbi->s_error_work);
5061 		jbd2_journal_destroy(sbi->s_journal);
5062 		sbi->s_journal = NULL;
5063 	}
5064 failed_mount3a:
5065 	ext4_es_unregister_shrinker(sbi);
5066 failed_mount3:
5067 	/* flush s_error_work before sbi destroy */
5068 	flush_work(&sbi->s_error_work);
5069 	del_timer_sync(&sbi->s_err_report);
5070 	ext4_stop_mmpd(sbi);
5071 failed_mount2:
5072 	rcu_read_lock();
5073 	group_desc = rcu_dereference(sbi->s_group_desc);
5074 	for (i = 0; i < db_count; i++)
5075 		brelse(group_desc[i]);
5076 	kvfree(group_desc);
5077 	rcu_read_unlock();
5078 failed_mount:
5079 	if (sbi->s_chksum_driver)
5080 		crypto_free_shash(sbi->s_chksum_driver);
5081 
5082 #ifdef CONFIG_UNICODE
5083 	utf8_unload(sb->s_encoding);
5084 #endif
5085 
5086 #ifdef CONFIG_QUOTA
5087 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5088 		kfree(get_qf_name(sb, sbi, i));
5089 #endif
5090 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5091 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5092 	brelse(bh);
5093 	ext4_blkdev_remove(sbi);
5094 out_fail:
5095 	sb->s_fs_info = NULL;
5096 	kfree(sbi->s_blockgroup_lock);
5097 out_free_base:
5098 	kfree(sbi);
5099 	kfree(orig_data);
5100 	fs_put_dax(dax_dev);
5101 	return err ? err : ret;
5102 }
5103 
5104 /*
5105  * Setup any per-fs journal parameters now.  We'll do this both on
5106  * initial mount, once the journal has been initialised but before we've
5107  * done any recovery; and again on any subsequent remount.
5108  */
5109 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5110 {
5111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5112 
5113 	journal->j_commit_interval = sbi->s_commit_interval;
5114 	journal->j_min_batch_time = sbi->s_min_batch_time;
5115 	journal->j_max_batch_time = sbi->s_max_batch_time;
5116 	ext4_fc_init(sb, journal);
5117 
5118 	write_lock(&journal->j_state_lock);
5119 	if (test_opt(sb, BARRIER))
5120 		journal->j_flags |= JBD2_BARRIER;
5121 	else
5122 		journal->j_flags &= ~JBD2_BARRIER;
5123 	if (test_opt(sb, DATA_ERR_ABORT))
5124 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5125 	else
5126 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5127 	write_unlock(&journal->j_state_lock);
5128 }
5129 
5130 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5131 					     unsigned int journal_inum)
5132 {
5133 	struct inode *journal_inode;
5134 
5135 	/*
5136 	 * Test for the existence of a valid inode on disk.  Bad things
5137 	 * happen if we iget() an unused inode, as the subsequent iput()
5138 	 * will try to delete it.
5139 	 */
5140 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5141 	if (IS_ERR(journal_inode)) {
5142 		ext4_msg(sb, KERN_ERR, "no journal found");
5143 		return NULL;
5144 	}
5145 	if (!journal_inode->i_nlink) {
5146 		make_bad_inode(journal_inode);
5147 		iput(journal_inode);
5148 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5149 		return NULL;
5150 	}
5151 
5152 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5153 		  journal_inode, journal_inode->i_size);
5154 	if (!S_ISREG(journal_inode->i_mode)) {
5155 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5156 		iput(journal_inode);
5157 		return NULL;
5158 	}
5159 	return journal_inode;
5160 }
5161 
5162 static journal_t *ext4_get_journal(struct super_block *sb,
5163 				   unsigned int journal_inum)
5164 {
5165 	struct inode *journal_inode;
5166 	journal_t *journal;
5167 
5168 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5169 		return NULL;
5170 
5171 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5172 	if (!journal_inode)
5173 		return NULL;
5174 
5175 	journal = jbd2_journal_init_inode(journal_inode);
5176 	if (!journal) {
5177 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5178 		iput(journal_inode);
5179 		return NULL;
5180 	}
5181 	journal->j_private = sb;
5182 	ext4_init_journal_params(sb, journal);
5183 	return journal;
5184 }
5185 
5186 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5187 				       dev_t j_dev)
5188 {
5189 	struct buffer_head *bh;
5190 	journal_t *journal;
5191 	ext4_fsblk_t start;
5192 	ext4_fsblk_t len;
5193 	int hblock, blocksize;
5194 	ext4_fsblk_t sb_block;
5195 	unsigned long offset;
5196 	struct ext4_super_block *es;
5197 	struct block_device *bdev;
5198 
5199 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5200 		return NULL;
5201 
5202 	bdev = ext4_blkdev_get(j_dev, sb);
5203 	if (bdev == NULL)
5204 		return NULL;
5205 
5206 	blocksize = sb->s_blocksize;
5207 	hblock = bdev_logical_block_size(bdev);
5208 	if (blocksize < hblock) {
5209 		ext4_msg(sb, KERN_ERR,
5210 			"blocksize too small for journal device");
5211 		goto out_bdev;
5212 	}
5213 
5214 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5215 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5216 	set_blocksize(bdev, blocksize);
5217 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5218 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5219 		       "external journal");
5220 		goto out_bdev;
5221 	}
5222 
5223 	es = (struct ext4_super_block *) (bh->b_data + offset);
5224 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5225 	    !(le32_to_cpu(es->s_feature_incompat) &
5226 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5227 		ext4_msg(sb, KERN_ERR, "external journal has "
5228 					"bad superblock");
5229 		brelse(bh);
5230 		goto out_bdev;
5231 	}
5232 
5233 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5234 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5235 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5236 		ext4_msg(sb, KERN_ERR, "external journal has "
5237 				       "corrupt superblock");
5238 		brelse(bh);
5239 		goto out_bdev;
5240 	}
5241 
5242 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5243 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5244 		brelse(bh);
5245 		goto out_bdev;
5246 	}
5247 
5248 	len = ext4_blocks_count(es);
5249 	start = sb_block + 1;
5250 	brelse(bh);	/* we're done with the superblock */
5251 
5252 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5253 					start, len, blocksize);
5254 	if (!journal) {
5255 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5256 		goto out_bdev;
5257 	}
5258 	journal->j_private = sb;
5259 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5260 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5261 		goto out_journal;
5262 	}
5263 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5264 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5265 					"user (unsupported) - %d",
5266 			be32_to_cpu(journal->j_superblock->s_nr_users));
5267 		goto out_journal;
5268 	}
5269 	EXT4_SB(sb)->s_journal_bdev = bdev;
5270 	ext4_init_journal_params(sb, journal);
5271 	return journal;
5272 
5273 out_journal:
5274 	jbd2_journal_destroy(journal);
5275 out_bdev:
5276 	ext4_blkdev_put(bdev);
5277 	return NULL;
5278 }
5279 
5280 static int ext4_load_journal(struct super_block *sb,
5281 			     struct ext4_super_block *es,
5282 			     unsigned long journal_devnum)
5283 {
5284 	journal_t *journal;
5285 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5286 	dev_t journal_dev;
5287 	int err = 0;
5288 	int really_read_only;
5289 	int journal_dev_ro;
5290 
5291 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5292 		return -EFSCORRUPTED;
5293 
5294 	if (journal_devnum &&
5295 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5296 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5297 			"numbers have changed");
5298 		journal_dev = new_decode_dev(journal_devnum);
5299 	} else
5300 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5301 
5302 	if (journal_inum && journal_dev) {
5303 		ext4_msg(sb, KERN_ERR,
5304 			 "filesystem has both journal inode and journal device!");
5305 		return -EINVAL;
5306 	}
5307 
5308 	if (journal_inum) {
5309 		journal = ext4_get_journal(sb, journal_inum);
5310 		if (!journal)
5311 			return -EINVAL;
5312 	} else {
5313 		journal = ext4_get_dev_journal(sb, journal_dev);
5314 		if (!journal)
5315 			return -EINVAL;
5316 	}
5317 
5318 	journal_dev_ro = bdev_read_only(journal->j_dev);
5319 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5320 
5321 	if (journal_dev_ro && !sb_rdonly(sb)) {
5322 		ext4_msg(sb, KERN_ERR,
5323 			 "journal device read-only, try mounting with '-o ro'");
5324 		err = -EROFS;
5325 		goto err_out;
5326 	}
5327 
5328 	/*
5329 	 * Are we loading a blank journal or performing recovery after a
5330 	 * crash?  For recovery, we need to check in advance whether we
5331 	 * can get read-write access to the device.
5332 	 */
5333 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5334 		if (sb_rdonly(sb)) {
5335 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5336 					"required on readonly filesystem");
5337 			if (really_read_only) {
5338 				ext4_msg(sb, KERN_ERR, "write access "
5339 					"unavailable, cannot proceed "
5340 					"(try mounting with noload)");
5341 				err = -EROFS;
5342 				goto err_out;
5343 			}
5344 			ext4_msg(sb, KERN_INFO, "write access will "
5345 			       "be enabled during recovery");
5346 		}
5347 	}
5348 
5349 	if (!(journal->j_flags & JBD2_BARRIER))
5350 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5351 
5352 	if (!ext4_has_feature_journal_needs_recovery(sb))
5353 		err = jbd2_journal_wipe(journal, !really_read_only);
5354 	if (!err) {
5355 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5356 		if (save)
5357 			memcpy(save, ((char *) es) +
5358 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5359 		err = jbd2_journal_load(journal);
5360 		if (save)
5361 			memcpy(((char *) es) + EXT4_S_ERR_START,
5362 			       save, EXT4_S_ERR_LEN);
5363 		kfree(save);
5364 	}
5365 
5366 	if (err) {
5367 		ext4_msg(sb, KERN_ERR, "error loading journal");
5368 		goto err_out;
5369 	}
5370 
5371 	EXT4_SB(sb)->s_journal = journal;
5372 	err = ext4_clear_journal_err(sb, es);
5373 	if (err) {
5374 		EXT4_SB(sb)->s_journal = NULL;
5375 		jbd2_journal_destroy(journal);
5376 		return err;
5377 	}
5378 
5379 	if (!really_read_only && journal_devnum &&
5380 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5381 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5382 
5383 		/* Make sure we flush the recovery flag to disk. */
5384 		ext4_commit_super(sb);
5385 	}
5386 
5387 	return 0;
5388 
5389 err_out:
5390 	jbd2_journal_destroy(journal);
5391 	return err;
5392 }
5393 
5394 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5395 static void ext4_update_super(struct super_block *sb)
5396 {
5397 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5398 	struct ext4_super_block *es = sbi->s_es;
5399 	struct buffer_head *sbh = sbi->s_sbh;
5400 
5401 	lock_buffer(sbh);
5402 	/*
5403 	 * If the file system is mounted read-only, don't update the
5404 	 * superblock write time.  This avoids updating the superblock
5405 	 * write time when we are mounting the root file system
5406 	 * read/only but we need to replay the journal; at that point,
5407 	 * for people who are east of GMT and who make their clock
5408 	 * tick in localtime for Windows bug-for-bug compatibility,
5409 	 * the clock is set in the future, and this will cause e2fsck
5410 	 * to complain and force a full file system check.
5411 	 */
5412 	if (!(sb->s_flags & SB_RDONLY))
5413 		ext4_update_tstamp(es, s_wtime);
5414 	es->s_kbytes_written =
5415 		cpu_to_le64(sbi->s_kbytes_written +
5416 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5417 		      sbi->s_sectors_written_start) >> 1));
5418 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5419 		ext4_free_blocks_count_set(es,
5420 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5421 				&sbi->s_freeclusters_counter)));
5422 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5423 		es->s_free_inodes_count =
5424 			cpu_to_le32(percpu_counter_sum_positive(
5425 				&sbi->s_freeinodes_counter));
5426 	/* Copy error information to the on-disk superblock */
5427 	spin_lock(&sbi->s_error_lock);
5428 	if (sbi->s_add_error_count > 0) {
5429 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5430 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5431 			__ext4_update_tstamp(&es->s_first_error_time,
5432 					     &es->s_first_error_time_hi,
5433 					     sbi->s_first_error_time);
5434 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5435 				sizeof(es->s_first_error_func));
5436 			es->s_first_error_line =
5437 				cpu_to_le32(sbi->s_first_error_line);
5438 			es->s_first_error_ino =
5439 				cpu_to_le32(sbi->s_first_error_ino);
5440 			es->s_first_error_block =
5441 				cpu_to_le64(sbi->s_first_error_block);
5442 			es->s_first_error_errcode =
5443 				ext4_errno_to_code(sbi->s_first_error_code);
5444 		}
5445 		__ext4_update_tstamp(&es->s_last_error_time,
5446 				     &es->s_last_error_time_hi,
5447 				     sbi->s_last_error_time);
5448 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5449 			sizeof(es->s_last_error_func));
5450 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5451 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5452 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5453 		es->s_last_error_errcode =
5454 				ext4_errno_to_code(sbi->s_last_error_code);
5455 		/*
5456 		 * Start the daily error reporting function if it hasn't been
5457 		 * started already
5458 		 */
5459 		if (!es->s_error_count)
5460 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5461 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5462 		sbi->s_add_error_count = 0;
5463 	}
5464 	spin_unlock(&sbi->s_error_lock);
5465 
5466 	ext4_superblock_csum_set(sb);
5467 	unlock_buffer(sbh);
5468 }
5469 
5470 static int ext4_commit_super(struct super_block *sb)
5471 {
5472 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5473 	int error = 0;
5474 
5475 	if (!sbh)
5476 		return -EINVAL;
5477 	if (block_device_ejected(sb))
5478 		return -ENODEV;
5479 
5480 	ext4_update_super(sb);
5481 
5482 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5483 		/*
5484 		 * Oh, dear.  A previous attempt to write the
5485 		 * superblock failed.  This could happen because the
5486 		 * USB device was yanked out.  Or it could happen to
5487 		 * be a transient write error and maybe the block will
5488 		 * be remapped.  Nothing we can do but to retry the
5489 		 * write and hope for the best.
5490 		 */
5491 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5492 		       "superblock detected");
5493 		clear_buffer_write_io_error(sbh);
5494 		set_buffer_uptodate(sbh);
5495 	}
5496 	BUFFER_TRACE(sbh, "marking dirty");
5497 	mark_buffer_dirty(sbh);
5498 	error = __sync_dirty_buffer(sbh,
5499 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5500 	if (buffer_write_io_error(sbh)) {
5501 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5502 		       "superblock");
5503 		clear_buffer_write_io_error(sbh);
5504 		set_buffer_uptodate(sbh);
5505 	}
5506 	return error;
5507 }
5508 
5509 /*
5510  * Have we just finished recovery?  If so, and if we are mounting (or
5511  * remounting) the filesystem readonly, then we will end up with a
5512  * consistent fs on disk.  Record that fact.
5513  */
5514 static int ext4_mark_recovery_complete(struct super_block *sb,
5515 				       struct ext4_super_block *es)
5516 {
5517 	int err;
5518 	journal_t *journal = EXT4_SB(sb)->s_journal;
5519 
5520 	if (!ext4_has_feature_journal(sb)) {
5521 		if (journal != NULL) {
5522 			ext4_error(sb, "Journal got removed while the fs was "
5523 				   "mounted!");
5524 			return -EFSCORRUPTED;
5525 		}
5526 		return 0;
5527 	}
5528 	jbd2_journal_lock_updates(journal);
5529 	err = jbd2_journal_flush(journal, 0);
5530 	if (err < 0)
5531 		goto out;
5532 
5533 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5534 	    ext4_has_feature_orphan_present(sb))) {
5535 		if (!ext4_orphan_file_empty(sb)) {
5536 			ext4_error(sb, "Orphan file not empty on read-only fs.");
5537 			err = -EFSCORRUPTED;
5538 			goto out;
5539 		}
5540 		ext4_clear_feature_journal_needs_recovery(sb);
5541 		ext4_clear_feature_orphan_present(sb);
5542 		ext4_commit_super(sb);
5543 	}
5544 out:
5545 	jbd2_journal_unlock_updates(journal);
5546 	return err;
5547 }
5548 
5549 /*
5550  * If we are mounting (or read-write remounting) a filesystem whose journal
5551  * has recorded an error from a previous lifetime, move that error to the
5552  * main filesystem now.
5553  */
5554 static int ext4_clear_journal_err(struct super_block *sb,
5555 				   struct ext4_super_block *es)
5556 {
5557 	journal_t *journal;
5558 	int j_errno;
5559 	const char *errstr;
5560 
5561 	if (!ext4_has_feature_journal(sb)) {
5562 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5563 		return -EFSCORRUPTED;
5564 	}
5565 
5566 	journal = EXT4_SB(sb)->s_journal;
5567 
5568 	/*
5569 	 * Now check for any error status which may have been recorded in the
5570 	 * journal by a prior ext4_error() or ext4_abort()
5571 	 */
5572 
5573 	j_errno = jbd2_journal_errno(journal);
5574 	if (j_errno) {
5575 		char nbuf[16];
5576 
5577 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5578 		ext4_warning(sb, "Filesystem error recorded "
5579 			     "from previous mount: %s", errstr);
5580 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5581 
5582 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5583 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5584 		ext4_commit_super(sb);
5585 
5586 		jbd2_journal_clear_err(journal);
5587 		jbd2_journal_update_sb_errno(journal);
5588 	}
5589 	return 0;
5590 }
5591 
5592 /*
5593  * Force the running and committing transactions to commit,
5594  * and wait on the commit.
5595  */
5596 int ext4_force_commit(struct super_block *sb)
5597 {
5598 	journal_t *journal;
5599 
5600 	if (sb_rdonly(sb))
5601 		return 0;
5602 
5603 	journal = EXT4_SB(sb)->s_journal;
5604 	return ext4_journal_force_commit(journal);
5605 }
5606 
5607 static int ext4_sync_fs(struct super_block *sb, int wait)
5608 {
5609 	int ret = 0;
5610 	tid_t target;
5611 	bool needs_barrier = false;
5612 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5613 
5614 	if (unlikely(ext4_forced_shutdown(sbi)))
5615 		return 0;
5616 
5617 	trace_ext4_sync_fs(sb, wait);
5618 	flush_workqueue(sbi->rsv_conversion_wq);
5619 	/*
5620 	 * Writeback quota in non-journalled quota case - journalled quota has
5621 	 * no dirty dquots
5622 	 */
5623 	dquot_writeback_dquots(sb, -1);
5624 	/*
5625 	 * Data writeback is possible w/o journal transaction, so barrier must
5626 	 * being sent at the end of the function. But we can skip it if
5627 	 * transaction_commit will do it for us.
5628 	 */
5629 	if (sbi->s_journal) {
5630 		target = jbd2_get_latest_transaction(sbi->s_journal);
5631 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5632 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5633 			needs_barrier = true;
5634 
5635 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5636 			if (wait)
5637 				ret = jbd2_log_wait_commit(sbi->s_journal,
5638 							   target);
5639 		}
5640 	} else if (wait && test_opt(sb, BARRIER))
5641 		needs_barrier = true;
5642 	if (needs_barrier) {
5643 		int err;
5644 		err = blkdev_issue_flush(sb->s_bdev);
5645 		if (!ret)
5646 			ret = err;
5647 	}
5648 
5649 	return ret;
5650 }
5651 
5652 /*
5653  * LVM calls this function before a (read-only) snapshot is created.  This
5654  * gives us a chance to flush the journal completely and mark the fs clean.
5655  *
5656  * Note that only this function cannot bring a filesystem to be in a clean
5657  * state independently. It relies on upper layer to stop all data & metadata
5658  * modifications.
5659  */
5660 static int ext4_freeze(struct super_block *sb)
5661 {
5662 	int error = 0;
5663 	journal_t *journal;
5664 
5665 	if (sb_rdonly(sb))
5666 		return 0;
5667 
5668 	journal = EXT4_SB(sb)->s_journal;
5669 
5670 	if (journal) {
5671 		/* Now we set up the journal barrier. */
5672 		jbd2_journal_lock_updates(journal);
5673 
5674 		/*
5675 		 * Don't clear the needs_recovery flag if we failed to
5676 		 * flush the journal.
5677 		 */
5678 		error = jbd2_journal_flush(journal, 0);
5679 		if (error < 0)
5680 			goto out;
5681 
5682 		/* Journal blocked and flushed, clear needs_recovery flag. */
5683 		ext4_clear_feature_journal_needs_recovery(sb);
5684 		if (ext4_orphan_file_empty(sb))
5685 			ext4_clear_feature_orphan_present(sb);
5686 	}
5687 
5688 	error = ext4_commit_super(sb);
5689 out:
5690 	if (journal)
5691 		/* we rely on upper layer to stop further updates */
5692 		jbd2_journal_unlock_updates(journal);
5693 	return error;
5694 }
5695 
5696 /*
5697  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5698  * flag here, even though the filesystem is not technically dirty yet.
5699  */
5700 static int ext4_unfreeze(struct super_block *sb)
5701 {
5702 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5703 		return 0;
5704 
5705 	if (EXT4_SB(sb)->s_journal) {
5706 		/* Reset the needs_recovery flag before the fs is unlocked. */
5707 		ext4_set_feature_journal_needs_recovery(sb);
5708 		if (ext4_has_feature_orphan_file(sb))
5709 			ext4_set_feature_orphan_present(sb);
5710 	}
5711 
5712 	ext4_commit_super(sb);
5713 	return 0;
5714 }
5715 
5716 /*
5717  * Structure to save mount options for ext4_remount's benefit
5718  */
5719 struct ext4_mount_options {
5720 	unsigned long s_mount_opt;
5721 	unsigned long s_mount_opt2;
5722 	kuid_t s_resuid;
5723 	kgid_t s_resgid;
5724 	unsigned long s_commit_interval;
5725 	u32 s_min_batch_time, s_max_batch_time;
5726 #ifdef CONFIG_QUOTA
5727 	int s_jquota_fmt;
5728 	char *s_qf_names[EXT4_MAXQUOTAS];
5729 #endif
5730 };
5731 
5732 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5733 {
5734 	struct ext4_super_block *es;
5735 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5736 	unsigned long old_sb_flags, vfs_flags;
5737 	struct ext4_mount_options old_opts;
5738 	int enable_quota = 0;
5739 	ext4_group_t g;
5740 	int err = 0;
5741 #ifdef CONFIG_QUOTA
5742 	int i, j;
5743 	char *to_free[EXT4_MAXQUOTAS];
5744 #endif
5745 	char *orig_data = kstrdup(data, GFP_KERNEL);
5746 	struct ext4_parsed_options parsed_opts;
5747 
5748 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5749 	parsed_opts.journal_devnum = 0;
5750 
5751 	if (data && !orig_data)
5752 		return -ENOMEM;
5753 
5754 	/* Store the original options */
5755 	old_sb_flags = sb->s_flags;
5756 	old_opts.s_mount_opt = sbi->s_mount_opt;
5757 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5758 	old_opts.s_resuid = sbi->s_resuid;
5759 	old_opts.s_resgid = sbi->s_resgid;
5760 	old_opts.s_commit_interval = sbi->s_commit_interval;
5761 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5762 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5763 #ifdef CONFIG_QUOTA
5764 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5765 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5766 		if (sbi->s_qf_names[i]) {
5767 			char *qf_name = get_qf_name(sb, sbi, i);
5768 
5769 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5770 			if (!old_opts.s_qf_names[i]) {
5771 				for (j = 0; j < i; j++)
5772 					kfree(old_opts.s_qf_names[j]);
5773 				kfree(orig_data);
5774 				return -ENOMEM;
5775 			}
5776 		} else
5777 			old_opts.s_qf_names[i] = NULL;
5778 #endif
5779 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5780 		parsed_opts.journal_ioprio =
5781 			sbi->s_journal->j_task->io_context->ioprio;
5782 
5783 	/*
5784 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5785 	 * either way we need to make sure it matches in both *flags and
5786 	 * s_flags. Copy those selected flags from *flags to s_flags
5787 	 */
5788 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5789 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5790 
5791 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5792 		err = -EINVAL;
5793 		goto restore_opts;
5794 	}
5795 
5796 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5797 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5798 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5799 			 "during remount not supported; ignoring");
5800 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5801 	}
5802 
5803 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5804 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5805 			ext4_msg(sb, KERN_ERR, "can't mount with "
5806 				 "both data=journal and delalloc");
5807 			err = -EINVAL;
5808 			goto restore_opts;
5809 		}
5810 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5811 			ext4_msg(sb, KERN_ERR, "can't mount with "
5812 				 "both data=journal and dioread_nolock");
5813 			err = -EINVAL;
5814 			goto restore_opts;
5815 		}
5816 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5817 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5818 			ext4_msg(sb, KERN_ERR, "can't mount with "
5819 				"journal_async_commit in data=ordered mode");
5820 			err = -EINVAL;
5821 			goto restore_opts;
5822 		}
5823 	}
5824 
5825 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5826 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5827 		err = -EINVAL;
5828 		goto restore_opts;
5829 	}
5830 
5831 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5832 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5833 
5834 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5835 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5836 
5837 	es = sbi->s_es;
5838 
5839 	if (sbi->s_journal) {
5840 		ext4_init_journal_params(sb, sbi->s_journal);
5841 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5842 	}
5843 
5844 	/* Flush outstanding errors before changing fs state */
5845 	flush_work(&sbi->s_error_work);
5846 
5847 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5848 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5849 			err = -EROFS;
5850 			goto restore_opts;
5851 		}
5852 
5853 		if (*flags & SB_RDONLY) {
5854 			err = sync_filesystem(sb);
5855 			if (err < 0)
5856 				goto restore_opts;
5857 			err = dquot_suspend(sb, -1);
5858 			if (err < 0)
5859 				goto restore_opts;
5860 
5861 			/*
5862 			 * First of all, the unconditional stuff we have to do
5863 			 * to disable replay of the journal when we next remount
5864 			 */
5865 			sb->s_flags |= SB_RDONLY;
5866 
5867 			/*
5868 			 * OK, test if we are remounting a valid rw partition
5869 			 * readonly, and if so set the rdonly flag and then
5870 			 * mark the partition as valid again.
5871 			 */
5872 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5873 			    (sbi->s_mount_state & EXT4_VALID_FS))
5874 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5875 
5876 			if (sbi->s_journal) {
5877 				/*
5878 				 * We let remount-ro finish even if marking fs
5879 				 * as clean failed...
5880 				 */
5881 				ext4_mark_recovery_complete(sb, es);
5882 			}
5883 		} else {
5884 			/* Make sure we can mount this feature set readwrite */
5885 			if (ext4_has_feature_readonly(sb) ||
5886 			    !ext4_feature_set_ok(sb, 0)) {
5887 				err = -EROFS;
5888 				goto restore_opts;
5889 			}
5890 			/*
5891 			 * Make sure the group descriptor checksums
5892 			 * are sane.  If they aren't, refuse to remount r/w.
5893 			 */
5894 			for (g = 0; g < sbi->s_groups_count; g++) {
5895 				struct ext4_group_desc *gdp =
5896 					ext4_get_group_desc(sb, g, NULL);
5897 
5898 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5899 					ext4_msg(sb, KERN_ERR,
5900 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5901 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5902 					       le16_to_cpu(gdp->bg_checksum));
5903 					err = -EFSBADCRC;
5904 					goto restore_opts;
5905 				}
5906 			}
5907 
5908 			/*
5909 			 * If we have an unprocessed orphan list hanging
5910 			 * around from a previously readonly bdev mount,
5911 			 * require a full umount/remount for now.
5912 			 */
5913 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5914 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5915 				       "remount RDWR because of unprocessed "
5916 				       "orphan inode list.  Please "
5917 				       "umount/remount instead");
5918 				err = -EINVAL;
5919 				goto restore_opts;
5920 			}
5921 
5922 			/*
5923 			 * Mounting a RDONLY partition read-write, so reread
5924 			 * and store the current valid flag.  (It may have
5925 			 * been changed by e2fsck since we originally mounted
5926 			 * the partition.)
5927 			 */
5928 			if (sbi->s_journal) {
5929 				err = ext4_clear_journal_err(sb, es);
5930 				if (err)
5931 					goto restore_opts;
5932 			}
5933 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5934 
5935 			err = ext4_setup_super(sb, es, 0);
5936 			if (err)
5937 				goto restore_opts;
5938 
5939 			sb->s_flags &= ~SB_RDONLY;
5940 			if (ext4_has_feature_mmp(sb))
5941 				if (ext4_multi_mount_protect(sb,
5942 						le64_to_cpu(es->s_mmp_block))) {
5943 					err = -EROFS;
5944 					goto restore_opts;
5945 				}
5946 			enable_quota = 1;
5947 		}
5948 	}
5949 
5950 	/*
5951 	 * Reinitialize lazy itable initialization thread based on
5952 	 * current settings
5953 	 */
5954 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5955 		ext4_unregister_li_request(sb);
5956 	else {
5957 		ext4_group_t first_not_zeroed;
5958 		first_not_zeroed = ext4_has_uninit_itable(sb);
5959 		ext4_register_li_request(sb, first_not_zeroed);
5960 	}
5961 
5962 	/*
5963 	 * Handle creation of system zone data early because it can fail.
5964 	 * Releasing of existing data is done when we are sure remount will
5965 	 * succeed.
5966 	 */
5967 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5968 		err = ext4_setup_system_zone(sb);
5969 		if (err)
5970 			goto restore_opts;
5971 	}
5972 
5973 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5974 		err = ext4_commit_super(sb);
5975 		if (err)
5976 			goto restore_opts;
5977 	}
5978 
5979 #ifdef CONFIG_QUOTA
5980 	/* Release old quota file names */
5981 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5982 		kfree(old_opts.s_qf_names[i]);
5983 	if (enable_quota) {
5984 		if (sb_any_quota_suspended(sb))
5985 			dquot_resume(sb, -1);
5986 		else if (ext4_has_feature_quota(sb)) {
5987 			err = ext4_enable_quotas(sb);
5988 			if (err)
5989 				goto restore_opts;
5990 		}
5991 	}
5992 #endif
5993 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5994 		ext4_release_system_zone(sb);
5995 
5996 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
5997 		ext4_stop_mmpd(sbi);
5998 
5999 	/*
6000 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6001 	 * either way we need to make sure it matches in both *flags and
6002 	 * s_flags. Copy those selected flags from s_flags to *flags
6003 	 */
6004 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6005 
6006 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6007 		 orig_data, ext4_quota_mode(sb));
6008 	kfree(orig_data);
6009 	return 0;
6010 
6011 restore_opts:
6012 	sb->s_flags = old_sb_flags;
6013 	sbi->s_mount_opt = old_opts.s_mount_opt;
6014 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6015 	sbi->s_resuid = old_opts.s_resuid;
6016 	sbi->s_resgid = old_opts.s_resgid;
6017 	sbi->s_commit_interval = old_opts.s_commit_interval;
6018 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6019 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6020 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6021 		ext4_release_system_zone(sb);
6022 #ifdef CONFIG_QUOTA
6023 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6024 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6025 		to_free[i] = get_qf_name(sb, sbi, i);
6026 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6027 	}
6028 	synchronize_rcu();
6029 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6030 		kfree(to_free[i]);
6031 #endif
6032 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6033 		ext4_stop_mmpd(sbi);
6034 	kfree(orig_data);
6035 	return err;
6036 }
6037 
6038 #ifdef CONFIG_QUOTA
6039 static int ext4_statfs_project(struct super_block *sb,
6040 			       kprojid_t projid, struct kstatfs *buf)
6041 {
6042 	struct kqid qid;
6043 	struct dquot *dquot;
6044 	u64 limit;
6045 	u64 curblock;
6046 
6047 	qid = make_kqid_projid(projid);
6048 	dquot = dqget(sb, qid);
6049 	if (IS_ERR(dquot))
6050 		return PTR_ERR(dquot);
6051 	spin_lock(&dquot->dq_dqb_lock);
6052 
6053 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6054 			     dquot->dq_dqb.dqb_bhardlimit);
6055 	limit >>= sb->s_blocksize_bits;
6056 
6057 	if (limit && buf->f_blocks > limit) {
6058 		curblock = (dquot->dq_dqb.dqb_curspace +
6059 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6060 		buf->f_blocks = limit;
6061 		buf->f_bfree = buf->f_bavail =
6062 			(buf->f_blocks > curblock) ?
6063 			 (buf->f_blocks - curblock) : 0;
6064 	}
6065 
6066 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6067 			     dquot->dq_dqb.dqb_ihardlimit);
6068 	if (limit && buf->f_files > limit) {
6069 		buf->f_files = limit;
6070 		buf->f_ffree =
6071 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6072 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6073 	}
6074 
6075 	spin_unlock(&dquot->dq_dqb_lock);
6076 	dqput(dquot);
6077 	return 0;
6078 }
6079 #endif
6080 
6081 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6082 {
6083 	struct super_block *sb = dentry->d_sb;
6084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6085 	struct ext4_super_block *es = sbi->s_es;
6086 	ext4_fsblk_t overhead = 0, resv_blocks;
6087 	s64 bfree;
6088 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6089 
6090 	if (!test_opt(sb, MINIX_DF))
6091 		overhead = sbi->s_overhead;
6092 
6093 	buf->f_type = EXT4_SUPER_MAGIC;
6094 	buf->f_bsize = sb->s_blocksize;
6095 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6096 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6097 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6098 	/* prevent underflow in case that few free space is available */
6099 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6100 	buf->f_bavail = buf->f_bfree -
6101 			(ext4_r_blocks_count(es) + resv_blocks);
6102 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6103 		buf->f_bavail = 0;
6104 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6105 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6106 	buf->f_namelen = EXT4_NAME_LEN;
6107 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6108 
6109 #ifdef CONFIG_QUOTA
6110 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6111 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6112 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6113 #endif
6114 	return 0;
6115 }
6116 
6117 
6118 #ifdef CONFIG_QUOTA
6119 
6120 /*
6121  * Helper functions so that transaction is started before we acquire dqio_sem
6122  * to keep correct lock ordering of transaction > dqio_sem
6123  */
6124 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6125 {
6126 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6127 }
6128 
6129 static int ext4_write_dquot(struct dquot *dquot)
6130 {
6131 	int ret, err;
6132 	handle_t *handle;
6133 	struct inode *inode;
6134 
6135 	inode = dquot_to_inode(dquot);
6136 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6137 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6138 	if (IS_ERR(handle))
6139 		return PTR_ERR(handle);
6140 	ret = dquot_commit(dquot);
6141 	err = ext4_journal_stop(handle);
6142 	if (!ret)
6143 		ret = err;
6144 	return ret;
6145 }
6146 
6147 static int ext4_acquire_dquot(struct dquot *dquot)
6148 {
6149 	int ret, err;
6150 	handle_t *handle;
6151 
6152 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6153 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6154 	if (IS_ERR(handle))
6155 		return PTR_ERR(handle);
6156 	ret = dquot_acquire(dquot);
6157 	err = ext4_journal_stop(handle);
6158 	if (!ret)
6159 		ret = err;
6160 	return ret;
6161 }
6162 
6163 static int ext4_release_dquot(struct dquot *dquot)
6164 {
6165 	int ret, err;
6166 	handle_t *handle;
6167 
6168 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6169 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6170 	if (IS_ERR(handle)) {
6171 		/* Release dquot anyway to avoid endless cycle in dqput() */
6172 		dquot_release(dquot);
6173 		return PTR_ERR(handle);
6174 	}
6175 	ret = dquot_release(dquot);
6176 	err = ext4_journal_stop(handle);
6177 	if (!ret)
6178 		ret = err;
6179 	return ret;
6180 }
6181 
6182 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6183 {
6184 	struct super_block *sb = dquot->dq_sb;
6185 
6186 	if (ext4_is_quota_journalled(sb)) {
6187 		dquot_mark_dquot_dirty(dquot);
6188 		return ext4_write_dquot(dquot);
6189 	} else {
6190 		return dquot_mark_dquot_dirty(dquot);
6191 	}
6192 }
6193 
6194 static int ext4_write_info(struct super_block *sb, int type)
6195 {
6196 	int ret, err;
6197 	handle_t *handle;
6198 
6199 	/* Data block + inode block */
6200 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6201 	if (IS_ERR(handle))
6202 		return PTR_ERR(handle);
6203 	ret = dquot_commit_info(sb, type);
6204 	err = ext4_journal_stop(handle);
6205 	if (!ret)
6206 		ret = err;
6207 	return ret;
6208 }
6209 
6210 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6211 {
6212 	struct ext4_inode_info *ei = EXT4_I(inode);
6213 
6214 	/* The first argument of lockdep_set_subclass has to be
6215 	 * *exactly* the same as the argument to init_rwsem() --- in
6216 	 * this case, in init_once() --- or lockdep gets unhappy
6217 	 * because the name of the lock is set using the
6218 	 * stringification of the argument to init_rwsem().
6219 	 */
6220 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6221 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6222 }
6223 
6224 /*
6225  * Standard function to be called on quota_on
6226  */
6227 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6228 			 const struct path *path)
6229 {
6230 	int err;
6231 
6232 	if (!test_opt(sb, QUOTA))
6233 		return -EINVAL;
6234 
6235 	/* Quotafile not on the same filesystem? */
6236 	if (path->dentry->d_sb != sb)
6237 		return -EXDEV;
6238 
6239 	/* Quota already enabled for this file? */
6240 	if (IS_NOQUOTA(d_inode(path->dentry)))
6241 		return -EBUSY;
6242 
6243 	/* Journaling quota? */
6244 	if (EXT4_SB(sb)->s_qf_names[type]) {
6245 		/* Quotafile not in fs root? */
6246 		if (path->dentry->d_parent != sb->s_root)
6247 			ext4_msg(sb, KERN_WARNING,
6248 				"Quota file not on filesystem root. "
6249 				"Journaled quota will not work");
6250 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6251 	} else {
6252 		/*
6253 		 * Clear the flag just in case mount options changed since
6254 		 * last time.
6255 		 */
6256 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6257 	}
6258 
6259 	/*
6260 	 * When we journal data on quota file, we have to flush journal to see
6261 	 * all updates to the file when we bypass pagecache...
6262 	 */
6263 	if (EXT4_SB(sb)->s_journal &&
6264 	    ext4_should_journal_data(d_inode(path->dentry))) {
6265 		/*
6266 		 * We don't need to lock updates but journal_flush() could
6267 		 * otherwise be livelocked...
6268 		 */
6269 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6270 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6271 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6272 		if (err)
6273 			return err;
6274 	}
6275 
6276 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6277 	err = dquot_quota_on(sb, type, format_id, path);
6278 	if (err) {
6279 		lockdep_set_quota_inode(path->dentry->d_inode,
6280 					     I_DATA_SEM_NORMAL);
6281 	} else {
6282 		struct inode *inode = d_inode(path->dentry);
6283 		handle_t *handle;
6284 
6285 		/*
6286 		 * Set inode flags to prevent userspace from messing with quota
6287 		 * files. If this fails, we return success anyway since quotas
6288 		 * are already enabled and this is not a hard failure.
6289 		 */
6290 		inode_lock(inode);
6291 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6292 		if (IS_ERR(handle))
6293 			goto unlock_inode;
6294 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6295 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6296 				S_NOATIME | S_IMMUTABLE);
6297 		err = ext4_mark_inode_dirty(handle, inode);
6298 		ext4_journal_stop(handle);
6299 	unlock_inode:
6300 		inode_unlock(inode);
6301 	}
6302 	return err;
6303 }
6304 
6305 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6306 			     unsigned int flags)
6307 {
6308 	int err;
6309 	struct inode *qf_inode;
6310 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6311 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6312 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6313 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6314 	};
6315 
6316 	BUG_ON(!ext4_has_feature_quota(sb));
6317 
6318 	if (!qf_inums[type])
6319 		return -EPERM;
6320 
6321 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6322 	if (IS_ERR(qf_inode)) {
6323 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6324 		return PTR_ERR(qf_inode);
6325 	}
6326 
6327 	/* Don't account quota for quota files to avoid recursion */
6328 	qf_inode->i_flags |= S_NOQUOTA;
6329 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6330 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6331 	if (err)
6332 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6333 	iput(qf_inode);
6334 
6335 	return err;
6336 }
6337 
6338 /* Enable usage tracking for all quota types. */
6339 int ext4_enable_quotas(struct super_block *sb)
6340 {
6341 	int type, err = 0;
6342 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6343 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6344 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6345 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6346 	};
6347 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6348 		test_opt(sb, USRQUOTA),
6349 		test_opt(sb, GRPQUOTA),
6350 		test_opt(sb, PRJQUOTA),
6351 	};
6352 
6353 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6354 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6355 		if (qf_inums[type]) {
6356 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6357 				DQUOT_USAGE_ENABLED |
6358 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6359 			if (err) {
6360 				ext4_warning(sb,
6361 					"Failed to enable quota tracking "
6362 					"(type=%d, err=%d). Please run "
6363 					"e2fsck to fix.", type, err);
6364 				for (type--; type >= 0; type--)
6365 					dquot_quota_off(sb, type);
6366 
6367 				return err;
6368 			}
6369 		}
6370 	}
6371 	return 0;
6372 }
6373 
6374 static int ext4_quota_off(struct super_block *sb, int type)
6375 {
6376 	struct inode *inode = sb_dqopt(sb)->files[type];
6377 	handle_t *handle;
6378 	int err;
6379 
6380 	/* Force all delayed allocation blocks to be allocated.
6381 	 * Caller already holds s_umount sem */
6382 	if (test_opt(sb, DELALLOC))
6383 		sync_filesystem(sb);
6384 
6385 	if (!inode || !igrab(inode))
6386 		goto out;
6387 
6388 	err = dquot_quota_off(sb, type);
6389 	if (err || ext4_has_feature_quota(sb))
6390 		goto out_put;
6391 
6392 	inode_lock(inode);
6393 	/*
6394 	 * Update modification times of quota files when userspace can
6395 	 * start looking at them. If we fail, we return success anyway since
6396 	 * this is not a hard failure and quotas are already disabled.
6397 	 */
6398 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6399 	if (IS_ERR(handle)) {
6400 		err = PTR_ERR(handle);
6401 		goto out_unlock;
6402 	}
6403 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6404 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6405 	inode->i_mtime = inode->i_ctime = current_time(inode);
6406 	err = ext4_mark_inode_dirty(handle, inode);
6407 	ext4_journal_stop(handle);
6408 out_unlock:
6409 	inode_unlock(inode);
6410 out_put:
6411 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6412 	iput(inode);
6413 	return err;
6414 out:
6415 	return dquot_quota_off(sb, type);
6416 }
6417 
6418 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6419  * acquiring the locks... As quota files are never truncated and quota code
6420  * itself serializes the operations (and no one else should touch the files)
6421  * we don't have to be afraid of races */
6422 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6423 			       size_t len, loff_t off)
6424 {
6425 	struct inode *inode = sb_dqopt(sb)->files[type];
6426 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6427 	int offset = off & (sb->s_blocksize - 1);
6428 	int tocopy;
6429 	size_t toread;
6430 	struct buffer_head *bh;
6431 	loff_t i_size = i_size_read(inode);
6432 
6433 	if (off > i_size)
6434 		return 0;
6435 	if (off+len > i_size)
6436 		len = i_size-off;
6437 	toread = len;
6438 	while (toread > 0) {
6439 		tocopy = sb->s_blocksize - offset < toread ?
6440 				sb->s_blocksize - offset : toread;
6441 		bh = ext4_bread(NULL, inode, blk, 0);
6442 		if (IS_ERR(bh))
6443 			return PTR_ERR(bh);
6444 		if (!bh)	/* A hole? */
6445 			memset(data, 0, tocopy);
6446 		else
6447 			memcpy(data, bh->b_data+offset, tocopy);
6448 		brelse(bh);
6449 		offset = 0;
6450 		toread -= tocopy;
6451 		data += tocopy;
6452 		blk++;
6453 	}
6454 	return len;
6455 }
6456 
6457 /* Write to quotafile (we know the transaction is already started and has
6458  * enough credits) */
6459 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6460 				const char *data, size_t len, loff_t off)
6461 {
6462 	struct inode *inode = sb_dqopt(sb)->files[type];
6463 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6464 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6465 	int retries = 0;
6466 	struct buffer_head *bh;
6467 	handle_t *handle = journal_current_handle();
6468 
6469 	if (EXT4_SB(sb)->s_journal && !handle) {
6470 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6471 			" cancelled because transaction is not started",
6472 			(unsigned long long)off, (unsigned long long)len);
6473 		return -EIO;
6474 	}
6475 	/*
6476 	 * Since we account only one data block in transaction credits,
6477 	 * then it is impossible to cross a block boundary.
6478 	 */
6479 	if (sb->s_blocksize - offset < len) {
6480 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6481 			" cancelled because not block aligned",
6482 			(unsigned long long)off, (unsigned long long)len);
6483 		return -EIO;
6484 	}
6485 
6486 	do {
6487 		bh = ext4_bread(handle, inode, blk,
6488 				EXT4_GET_BLOCKS_CREATE |
6489 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6490 	} while (PTR_ERR(bh) == -ENOSPC &&
6491 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6492 	if (IS_ERR(bh))
6493 		return PTR_ERR(bh);
6494 	if (!bh)
6495 		goto out;
6496 	BUFFER_TRACE(bh, "get write access");
6497 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6498 	if (err) {
6499 		brelse(bh);
6500 		return err;
6501 	}
6502 	lock_buffer(bh);
6503 	memcpy(bh->b_data+offset, data, len);
6504 	flush_dcache_page(bh->b_page);
6505 	unlock_buffer(bh);
6506 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6507 	brelse(bh);
6508 out:
6509 	if (inode->i_size < off + len) {
6510 		i_size_write(inode, off + len);
6511 		EXT4_I(inode)->i_disksize = inode->i_size;
6512 		err2 = ext4_mark_inode_dirty(handle, inode);
6513 		if (unlikely(err2 && !err))
6514 			err = err2;
6515 	}
6516 	return err ? err : len;
6517 }
6518 #endif
6519 
6520 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6521 		       const char *dev_name, void *data)
6522 {
6523 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6524 }
6525 
6526 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6527 static inline void register_as_ext2(void)
6528 {
6529 	int err = register_filesystem(&ext2_fs_type);
6530 	if (err)
6531 		printk(KERN_WARNING
6532 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6533 }
6534 
6535 static inline void unregister_as_ext2(void)
6536 {
6537 	unregister_filesystem(&ext2_fs_type);
6538 }
6539 
6540 static inline int ext2_feature_set_ok(struct super_block *sb)
6541 {
6542 	if (ext4_has_unknown_ext2_incompat_features(sb))
6543 		return 0;
6544 	if (sb_rdonly(sb))
6545 		return 1;
6546 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6547 		return 0;
6548 	return 1;
6549 }
6550 #else
6551 static inline void register_as_ext2(void) { }
6552 static inline void unregister_as_ext2(void) { }
6553 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6554 #endif
6555 
6556 static inline void register_as_ext3(void)
6557 {
6558 	int err = register_filesystem(&ext3_fs_type);
6559 	if (err)
6560 		printk(KERN_WARNING
6561 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6562 }
6563 
6564 static inline void unregister_as_ext3(void)
6565 {
6566 	unregister_filesystem(&ext3_fs_type);
6567 }
6568 
6569 static inline int ext3_feature_set_ok(struct super_block *sb)
6570 {
6571 	if (ext4_has_unknown_ext3_incompat_features(sb))
6572 		return 0;
6573 	if (!ext4_has_feature_journal(sb))
6574 		return 0;
6575 	if (sb_rdonly(sb))
6576 		return 1;
6577 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6578 		return 0;
6579 	return 1;
6580 }
6581 
6582 static struct file_system_type ext4_fs_type = {
6583 	.owner		= THIS_MODULE,
6584 	.name		= "ext4",
6585 	.mount		= ext4_mount,
6586 	.kill_sb	= kill_block_super,
6587 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6588 };
6589 MODULE_ALIAS_FS("ext4");
6590 
6591 /* Shared across all ext4 file systems */
6592 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6593 
6594 static int __init ext4_init_fs(void)
6595 {
6596 	int i, err;
6597 
6598 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6599 	ext4_li_info = NULL;
6600 
6601 	/* Build-time check for flags consistency */
6602 	ext4_check_flag_values();
6603 
6604 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6605 		init_waitqueue_head(&ext4__ioend_wq[i]);
6606 
6607 	err = ext4_init_es();
6608 	if (err)
6609 		return err;
6610 
6611 	err = ext4_init_pending();
6612 	if (err)
6613 		goto out7;
6614 
6615 	err = ext4_init_post_read_processing();
6616 	if (err)
6617 		goto out6;
6618 
6619 	err = ext4_init_pageio();
6620 	if (err)
6621 		goto out5;
6622 
6623 	err = ext4_init_system_zone();
6624 	if (err)
6625 		goto out4;
6626 
6627 	err = ext4_init_sysfs();
6628 	if (err)
6629 		goto out3;
6630 
6631 	err = ext4_init_mballoc();
6632 	if (err)
6633 		goto out2;
6634 	err = init_inodecache();
6635 	if (err)
6636 		goto out1;
6637 
6638 	err = ext4_fc_init_dentry_cache();
6639 	if (err)
6640 		goto out05;
6641 
6642 	register_as_ext3();
6643 	register_as_ext2();
6644 	err = register_filesystem(&ext4_fs_type);
6645 	if (err)
6646 		goto out;
6647 
6648 	return 0;
6649 out:
6650 	unregister_as_ext2();
6651 	unregister_as_ext3();
6652 out05:
6653 	destroy_inodecache();
6654 out1:
6655 	ext4_exit_mballoc();
6656 out2:
6657 	ext4_exit_sysfs();
6658 out3:
6659 	ext4_exit_system_zone();
6660 out4:
6661 	ext4_exit_pageio();
6662 out5:
6663 	ext4_exit_post_read_processing();
6664 out6:
6665 	ext4_exit_pending();
6666 out7:
6667 	ext4_exit_es();
6668 
6669 	return err;
6670 }
6671 
6672 static void __exit ext4_exit_fs(void)
6673 {
6674 	ext4_destroy_lazyinit_thread();
6675 	unregister_as_ext2();
6676 	unregister_as_ext3();
6677 	unregister_filesystem(&ext4_fs_type);
6678 	destroy_inodecache();
6679 	ext4_exit_mballoc();
6680 	ext4_exit_sysfs();
6681 	ext4_exit_system_zone();
6682 	ext4_exit_pageio();
6683 	ext4_exit_post_read_processing();
6684 	ext4_exit_es();
6685 	ext4_exit_pending();
6686 }
6687 
6688 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6689 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6690 MODULE_LICENSE("GPL");
6691 MODULE_SOFTDEP("pre: crc32c");
6692 module_init(ext4_init_fs)
6693 module_exit(ext4_exit_fs)
6694