1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 #include "fsmap.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ext4.h> 57 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ratelimit_state ext4_mount_msg_ratelimit; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 76 const char *dev_name, void *data); 77 static inline int ext2_feature_set_ok(struct super_block *sb); 78 static inline int ext3_feature_set_ok(struct super_block *sb); 79 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 80 static void ext4_destroy_lazyinit_thread(void); 81 static void ext4_unregister_li_request(struct super_block *sb); 82 static void ext4_clear_request_list(void); 83 static struct inode *ext4_get_journal_inode(struct super_block *sb, 84 unsigned int journal_inum); 85 86 /* 87 * Lock ordering 88 * 89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 90 * i_mmap_rwsem (inode->i_mmap_rwsem)! 91 * 92 * page fault path: 93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 94 * page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_sem 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * i_mmap_rwsem (w) -> page lock 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * transaction start -> i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 110 * transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (sb->s_flags & MS_RDONLY) 409 return; 410 411 if (!test_opt(sb, ERRORS_CONT)) { 412 journal_t *journal = EXT4_SB(sb)->s_journal; 413 414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 415 if (journal) 416 jbd2_journal_abort(journal, -EIO); 417 } 418 if (test_opt(sb, ERRORS_RO)) { 419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 420 /* 421 * Make sure updated value of ->s_mount_flags will be visible 422 * before ->s_flags update 423 */ 424 smp_wmb(); 425 sb->s_flags |= MS_RDONLY; 426 } 427 if (test_opt(sb, ERRORS_PANIC)) { 428 if (EXT4_SB(sb)->s_journal && 429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 430 return; 431 panic("EXT4-fs (device %s): panic forced after error\n", 432 sb->s_id); 433 } 434 } 435 436 #define ext4_error_ratelimit(sb) \ 437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 438 "EXT4-fs error") 439 440 void __ext4_error(struct super_block *sb, const char *function, 441 unsigned int line, const char *fmt, ...) 442 { 443 struct va_format vaf; 444 va_list args; 445 446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 447 return; 448 449 if (ext4_error_ratelimit(sb)) { 450 va_start(args, fmt); 451 vaf.fmt = fmt; 452 vaf.va = &args; 453 printk(KERN_CRIT 454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 455 sb->s_id, function, line, current->comm, &vaf); 456 va_end(args); 457 } 458 save_error_info(sb, function, line); 459 ext4_handle_error(sb); 460 } 461 462 void __ext4_error_inode(struct inode *inode, const char *function, 463 unsigned int line, ext4_fsblk_t block, 464 const char *fmt, ...) 465 { 466 va_list args; 467 struct va_format vaf; 468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 469 470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 471 return; 472 473 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 474 es->s_last_error_block = cpu_to_le64(block); 475 if (ext4_error_ratelimit(inode->i_sb)) { 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 481 "inode #%lu: block %llu: comm %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 block, current->comm, &vaf); 484 else 485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 486 "inode #%lu: comm %s: %pV\n", 487 inode->i_sb->s_id, function, line, inode->i_ino, 488 current->comm, &vaf); 489 va_end(args); 490 } 491 save_error_info(inode->i_sb, function, line); 492 ext4_handle_error(inode->i_sb); 493 } 494 495 void __ext4_error_file(struct file *file, const char *function, 496 unsigned int line, ext4_fsblk_t block, 497 const char *fmt, ...) 498 { 499 va_list args; 500 struct va_format vaf; 501 struct ext4_super_block *es; 502 struct inode *inode = file_inode(file); 503 char pathname[80], *path; 504 505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 506 return; 507 508 es = EXT4_SB(inode->i_sb)->s_es; 509 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 510 if (ext4_error_ratelimit(inode->i_sb)) { 511 path = file_path(file, pathname, sizeof(pathname)); 512 if (IS_ERR(path)) 513 path = "(unknown)"; 514 va_start(args, fmt); 515 vaf.fmt = fmt; 516 vaf.va = &args; 517 if (block) 518 printk(KERN_CRIT 519 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 520 "block %llu: comm %s: path %s: %pV\n", 521 inode->i_sb->s_id, function, line, inode->i_ino, 522 block, current->comm, path, &vaf); 523 else 524 printk(KERN_CRIT 525 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 526 "comm %s: path %s: %pV\n", 527 inode->i_sb->s_id, function, line, inode->i_ino, 528 current->comm, path, &vaf); 529 va_end(args); 530 } 531 save_error_info(inode->i_sb, function, line); 532 ext4_handle_error(inode->i_sb); 533 } 534 535 const char *ext4_decode_error(struct super_block *sb, int errno, 536 char nbuf[16]) 537 { 538 char *errstr = NULL; 539 540 switch (errno) { 541 case -EFSCORRUPTED: 542 errstr = "Corrupt filesystem"; 543 break; 544 case -EFSBADCRC: 545 errstr = "Filesystem failed CRC"; 546 break; 547 case -EIO: 548 errstr = "IO failure"; 549 break; 550 case -ENOMEM: 551 errstr = "Out of memory"; 552 break; 553 case -EROFS: 554 if (!sb || (EXT4_SB(sb)->s_journal && 555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 556 errstr = "Journal has aborted"; 557 else 558 errstr = "Readonly filesystem"; 559 break; 560 default: 561 /* If the caller passed in an extra buffer for unknown 562 * errors, textualise them now. Else we just return 563 * NULL. */ 564 if (nbuf) { 565 /* Check for truncated error codes... */ 566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 567 errstr = nbuf; 568 } 569 break; 570 } 571 572 return errstr; 573 } 574 575 /* __ext4_std_error decodes expected errors from journaling functions 576 * automatically and invokes the appropriate error response. */ 577 578 void __ext4_std_error(struct super_block *sb, const char *function, 579 unsigned int line, int errno) 580 { 581 char nbuf[16]; 582 const char *errstr; 583 584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 585 return; 586 587 /* Special case: if the error is EROFS, and we're not already 588 * inside a transaction, then there's really no point in logging 589 * an error. */ 590 if (errno == -EROFS && journal_current_handle() == NULL && 591 (sb->s_flags & MS_RDONLY)) 592 return; 593 594 if (ext4_error_ratelimit(sb)) { 595 errstr = ext4_decode_error(sb, errno, nbuf); 596 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 597 sb->s_id, function, line, errstr); 598 } 599 600 save_error_info(sb, function, line); 601 ext4_handle_error(sb); 602 } 603 604 /* 605 * ext4_abort is a much stronger failure handler than ext4_error. The 606 * abort function may be used to deal with unrecoverable failures such 607 * as journal IO errors or ENOMEM at a critical moment in log management. 608 * 609 * We unconditionally force the filesystem into an ABORT|READONLY state, 610 * unless the error response on the fs has been set to panic in which 611 * case we take the easy way out and panic immediately. 612 */ 613 614 void __ext4_abort(struct super_block *sb, const char *function, 615 unsigned int line, const char *fmt, ...) 616 { 617 struct va_format vaf; 618 va_list args; 619 620 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 621 return; 622 623 save_error_info(sb, function, line); 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 628 sb->s_id, function, line, &vaf); 629 va_end(args); 630 631 if ((sb->s_flags & MS_RDONLY) == 0) { 632 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 633 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 634 /* 635 * Make sure updated value of ->s_mount_flags will be visible 636 * before ->s_flags update 637 */ 638 smp_wmb(); 639 sb->s_flags |= MS_RDONLY; 640 if (EXT4_SB(sb)->s_journal) 641 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 642 save_error_info(sb, function, line); 643 } 644 if (test_opt(sb, ERRORS_PANIC)) { 645 if (EXT4_SB(sb)->s_journal && 646 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 647 return; 648 panic("EXT4-fs panic from previous error\n"); 649 } 650 } 651 652 void __ext4_msg(struct super_block *sb, 653 const char *prefix, const char *fmt, ...) 654 { 655 struct va_format vaf; 656 va_list args; 657 658 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 659 return; 660 661 va_start(args, fmt); 662 vaf.fmt = fmt; 663 vaf.va = &args; 664 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 665 va_end(args); 666 } 667 668 #define ext4_warning_ratelimit(sb) \ 669 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 670 "EXT4-fs warning") 671 672 void __ext4_warning(struct super_block *sb, const char *function, 673 unsigned int line, const char *fmt, ...) 674 { 675 struct va_format vaf; 676 va_list args; 677 678 if (!ext4_warning_ratelimit(sb)) 679 return; 680 681 va_start(args, fmt); 682 vaf.fmt = fmt; 683 vaf.va = &args; 684 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 685 sb->s_id, function, line, &vaf); 686 va_end(args); 687 } 688 689 void __ext4_warning_inode(const struct inode *inode, const char *function, 690 unsigned int line, const char *fmt, ...) 691 { 692 struct va_format vaf; 693 va_list args; 694 695 if (!ext4_warning_ratelimit(inode->i_sb)) 696 return; 697 698 va_start(args, fmt); 699 vaf.fmt = fmt; 700 vaf.va = &args; 701 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 702 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 703 function, line, inode->i_ino, current->comm, &vaf); 704 va_end(args); 705 } 706 707 void __ext4_grp_locked_error(const char *function, unsigned int line, 708 struct super_block *sb, ext4_group_t grp, 709 unsigned long ino, ext4_fsblk_t block, 710 const char *fmt, ...) 711 __releases(bitlock) 712 __acquires(bitlock) 713 { 714 struct va_format vaf; 715 va_list args; 716 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 717 718 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 719 return; 720 721 es->s_last_error_ino = cpu_to_le32(ino); 722 es->s_last_error_block = cpu_to_le64(block); 723 __save_error_info(sb, function, line); 724 725 if (ext4_error_ratelimit(sb)) { 726 va_start(args, fmt); 727 vaf.fmt = fmt; 728 vaf.va = &args; 729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 730 sb->s_id, function, line, grp); 731 if (ino) 732 printk(KERN_CONT "inode %lu: ", ino); 733 if (block) 734 printk(KERN_CONT "block %llu:", 735 (unsigned long long) block); 736 printk(KERN_CONT "%pV\n", &vaf); 737 va_end(args); 738 } 739 740 if (test_opt(sb, ERRORS_CONT)) { 741 ext4_commit_super(sb, 0); 742 return; 743 } 744 745 ext4_unlock_group(sb, grp); 746 ext4_handle_error(sb); 747 /* 748 * We only get here in the ERRORS_RO case; relocking the group 749 * may be dangerous, but nothing bad will happen since the 750 * filesystem will have already been marked read/only and the 751 * journal has been aborted. We return 1 as a hint to callers 752 * who might what to use the return value from 753 * ext4_grp_locked_error() to distinguish between the 754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 755 * aggressively from the ext4 function in question, with a 756 * more appropriate error code. 757 */ 758 ext4_lock_group(sb, grp); 759 return; 760 } 761 762 void ext4_update_dynamic_rev(struct super_block *sb) 763 { 764 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 765 766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 767 return; 768 769 ext4_warning(sb, 770 "updating to rev %d because of new feature flag, " 771 "running e2fsck is recommended", 772 EXT4_DYNAMIC_REV); 773 774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 777 /* leave es->s_feature_*compat flags alone */ 778 /* es->s_uuid will be set by e2fsck if empty */ 779 780 /* 781 * The rest of the superblock fields should be zero, and if not it 782 * means they are likely already in use, so leave them alone. We 783 * can leave it up to e2fsck to clean up any inconsistencies there. 784 */ 785 } 786 787 /* 788 * Open the external journal device 789 */ 790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 791 { 792 struct block_device *bdev; 793 char b[BDEVNAME_SIZE]; 794 795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 796 if (IS_ERR(bdev)) 797 goto fail; 798 return bdev; 799 800 fail: 801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 802 __bdevname(dev, b), PTR_ERR(bdev)); 803 return NULL; 804 } 805 806 /* 807 * Release the journal device 808 */ 809 static void ext4_blkdev_put(struct block_device *bdev) 810 { 811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 812 } 813 814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 815 { 816 struct block_device *bdev; 817 bdev = sbi->journal_bdev; 818 if (bdev) { 819 ext4_blkdev_put(bdev); 820 sbi->journal_bdev = NULL; 821 } 822 } 823 824 static inline struct inode *orphan_list_entry(struct list_head *l) 825 { 826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 827 } 828 829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 830 { 831 struct list_head *l; 832 833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 834 le32_to_cpu(sbi->s_es->s_last_orphan)); 835 836 printk(KERN_ERR "sb_info orphan list:\n"); 837 list_for_each(l, &sbi->s_orphan) { 838 struct inode *inode = orphan_list_entry(l); 839 printk(KERN_ERR " " 840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 841 inode->i_sb->s_id, inode->i_ino, inode, 842 inode->i_mode, inode->i_nlink, 843 NEXT_ORPHAN(inode)); 844 } 845 } 846 847 #ifdef CONFIG_QUOTA 848 static int ext4_quota_off(struct super_block *sb, int type); 849 850 static inline void ext4_quota_off_umount(struct super_block *sb) 851 { 852 int type; 853 854 /* Use our quota_off function to clear inode flags etc. */ 855 for (type = 0; type < EXT4_MAXQUOTAS; type++) 856 ext4_quota_off(sb, type); 857 } 858 #else 859 static inline void ext4_quota_off_umount(struct super_block *sb) 860 { 861 } 862 #endif 863 864 static void ext4_put_super(struct super_block *sb) 865 { 866 struct ext4_sb_info *sbi = EXT4_SB(sb); 867 struct ext4_super_block *es = sbi->s_es; 868 int aborted = 0; 869 int i, err; 870 871 ext4_unregister_li_request(sb); 872 ext4_quota_off_umount(sb); 873 874 flush_workqueue(sbi->rsv_conversion_wq); 875 destroy_workqueue(sbi->rsv_conversion_wq); 876 877 if (sbi->s_journal) { 878 aborted = is_journal_aborted(sbi->s_journal); 879 err = jbd2_journal_destroy(sbi->s_journal); 880 sbi->s_journal = NULL; 881 if ((err < 0) && !aborted) 882 ext4_abort(sb, "Couldn't clean up the journal"); 883 } 884 885 ext4_unregister_sysfs(sb); 886 ext4_es_unregister_shrinker(sbi); 887 del_timer_sync(&sbi->s_err_report); 888 ext4_release_system_zone(sb); 889 ext4_mb_release(sb); 890 ext4_ext_release(sb); 891 892 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 893 ext4_clear_feature_journal_needs_recovery(sb); 894 es->s_state = cpu_to_le16(sbi->s_mount_state); 895 } 896 if (!(sb->s_flags & MS_RDONLY)) 897 ext4_commit_super(sb, 1); 898 899 for (i = 0; i < sbi->s_gdb_count; i++) 900 brelse(sbi->s_group_desc[i]); 901 kvfree(sbi->s_group_desc); 902 kvfree(sbi->s_flex_groups); 903 percpu_counter_destroy(&sbi->s_freeclusters_counter); 904 percpu_counter_destroy(&sbi->s_freeinodes_counter); 905 percpu_counter_destroy(&sbi->s_dirs_counter); 906 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 907 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 908 #ifdef CONFIG_QUOTA 909 for (i = 0; i < EXT4_MAXQUOTAS; i++) 910 kfree(sbi->s_qf_names[i]); 911 #endif 912 913 /* Debugging code just in case the in-memory inode orphan list 914 * isn't empty. The on-disk one can be non-empty if we've 915 * detected an error and taken the fs readonly, but the 916 * in-memory list had better be clean by this point. */ 917 if (!list_empty(&sbi->s_orphan)) 918 dump_orphan_list(sb, sbi); 919 J_ASSERT(list_empty(&sbi->s_orphan)); 920 921 sync_blockdev(sb->s_bdev); 922 invalidate_bdev(sb->s_bdev); 923 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 924 /* 925 * Invalidate the journal device's buffers. We don't want them 926 * floating about in memory - the physical journal device may 927 * hotswapped, and it breaks the `ro-after' testing code. 928 */ 929 sync_blockdev(sbi->journal_bdev); 930 invalidate_bdev(sbi->journal_bdev); 931 ext4_blkdev_remove(sbi); 932 } 933 if (sbi->s_ea_inode_cache) { 934 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 935 sbi->s_ea_inode_cache = NULL; 936 } 937 if (sbi->s_ea_block_cache) { 938 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 939 sbi->s_ea_block_cache = NULL; 940 } 941 if (sbi->s_mmp_tsk) 942 kthread_stop(sbi->s_mmp_tsk); 943 brelse(sbi->s_sbh); 944 sb->s_fs_info = NULL; 945 /* 946 * Now that we are completely done shutting down the 947 * superblock, we need to actually destroy the kobject. 948 */ 949 kobject_put(&sbi->s_kobj); 950 wait_for_completion(&sbi->s_kobj_unregister); 951 if (sbi->s_chksum_driver) 952 crypto_free_shash(sbi->s_chksum_driver); 953 kfree(sbi->s_blockgroup_lock); 954 kfree(sbi); 955 } 956 957 static struct kmem_cache *ext4_inode_cachep; 958 959 /* 960 * Called inside transaction, so use GFP_NOFS 961 */ 962 static struct inode *ext4_alloc_inode(struct super_block *sb) 963 { 964 struct ext4_inode_info *ei; 965 966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 967 if (!ei) 968 return NULL; 969 970 ei->vfs_inode.i_version = 1; 971 spin_lock_init(&ei->i_raw_lock); 972 INIT_LIST_HEAD(&ei->i_prealloc_list); 973 spin_lock_init(&ei->i_prealloc_lock); 974 ext4_es_init_tree(&ei->i_es_tree); 975 rwlock_init(&ei->i_es_lock); 976 INIT_LIST_HEAD(&ei->i_es_list); 977 ei->i_es_all_nr = 0; 978 ei->i_es_shk_nr = 0; 979 ei->i_es_shrink_lblk = 0; 980 ei->i_reserved_data_blocks = 0; 981 ei->i_da_metadata_calc_len = 0; 982 ei->i_da_metadata_calc_last_lblock = 0; 983 spin_lock_init(&(ei->i_block_reservation_lock)); 984 #ifdef CONFIG_QUOTA 985 ei->i_reserved_quota = 0; 986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 987 #endif 988 ei->jinode = NULL; 989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 990 spin_lock_init(&ei->i_completed_io_lock); 991 ei->i_sync_tid = 0; 992 ei->i_datasync_tid = 0; 993 atomic_set(&ei->i_unwritten, 0); 994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 995 return &ei->vfs_inode; 996 } 997 998 static int ext4_drop_inode(struct inode *inode) 999 { 1000 int drop = generic_drop_inode(inode); 1001 1002 trace_ext4_drop_inode(inode, drop); 1003 return drop; 1004 } 1005 1006 static void ext4_i_callback(struct rcu_head *head) 1007 { 1008 struct inode *inode = container_of(head, struct inode, i_rcu); 1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1010 } 1011 1012 static void ext4_destroy_inode(struct inode *inode) 1013 { 1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1015 ext4_msg(inode->i_sb, KERN_ERR, 1016 "Inode %lu (%p): orphan list check failed!", 1017 inode->i_ino, EXT4_I(inode)); 1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1019 EXT4_I(inode), sizeof(struct ext4_inode_info), 1020 true); 1021 dump_stack(); 1022 } 1023 call_rcu(&inode->i_rcu, ext4_i_callback); 1024 } 1025 1026 static void init_once(void *foo) 1027 { 1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1029 1030 INIT_LIST_HEAD(&ei->i_orphan); 1031 init_rwsem(&ei->xattr_sem); 1032 init_rwsem(&ei->i_data_sem); 1033 init_rwsem(&ei->i_mmap_sem); 1034 inode_init_once(&ei->vfs_inode); 1035 } 1036 1037 static int __init init_inodecache(void) 1038 { 1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1040 sizeof(struct ext4_inode_info), 1041 0, (SLAB_RECLAIM_ACCOUNT| 1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1043 init_once); 1044 if (ext4_inode_cachep == NULL) 1045 return -ENOMEM; 1046 return 0; 1047 } 1048 1049 static void destroy_inodecache(void) 1050 { 1051 /* 1052 * Make sure all delayed rcu free inodes are flushed before we 1053 * destroy cache. 1054 */ 1055 rcu_barrier(); 1056 kmem_cache_destroy(ext4_inode_cachep); 1057 } 1058 1059 void ext4_clear_inode(struct inode *inode) 1060 { 1061 invalidate_inode_buffers(inode); 1062 clear_inode(inode); 1063 dquot_drop(inode); 1064 ext4_discard_preallocations(inode); 1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1066 if (EXT4_I(inode)->jinode) { 1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1068 EXT4_I(inode)->jinode); 1069 jbd2_free_inode(EXT4_I(inode)->jinode); 1070 EXT4_I(inode)->jinode = NULL; 1071 } 1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1073 fscrypt_put_encryption_info(inode, NULL); 1074 #endif 1075 } 1076 1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1078 u64 ino, u32 generation) 1079 { 1080 struct inode *inode; 1081 1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1083 return ERR_PTR(-ESTALE); 1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1085 return ERR_PTR(-ESTALE); 1086 1087 /* iget isn't really right if the inode is currently unallocated!! 1088 * 1089 * ext4_read_inode will return a bad_inode if the inode had been 1090 * deleted, so we should be safe. 1091 * 1092 * Currently we don't know the generation for parent directory, so 1093 * a generation of 0 means "accept any" 1094 */ 1095 inode = ext4_iget_normal(sb, ino); 1096 if (IS_ERR(inode)) 1097 return ERR_CAST(inode); 1098 if (generation && inode->i_generation != generation) { 1099 iput(inode); 1100 return ERR_PTR(-ESTALE); 1101 } 1102 1103 return inode; 1104 } 1105 1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1107 int fh_len, int fh_type) 1108 { 1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1110 ext4_nfs_get_inode); 1111 } 1112 1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1114 int fh_len, int fh_type) 1115 { 1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1117 ext4_nfs_get_inode); 1118 } 1119 1120 /* 1121 * Try to release metadata pages (indirect blocks, directories) which are 1122 * mapped via the block device. Since these pages could have journal heads 1123 * which would prevent try_to_free_buffers() from freeing them, we must use 1124 * jbd2 layer's try_to_free_buffers() function to release them. 1125 */ 1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1127 gfp_t wait) 1128 { 1129 journal_t *journal = EXT4_SB(sb)->s_journal; 1130 1131 WARN_ON(PageChecked(page)); 1132 if (!page_has_buffers(page)) 1133 return 0; 1134 if (journal) 1135 return jbd2_journal_try_to_free_buffers(journal, page, 1136 wait & ~__GFP_DIRECT_RECLAIM); 1137 return try_to_free_buffers(page); 1138 } 1139 1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1142 { 1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1145 } 1146 1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1148 void *fs_data) 1149 { 1150 handle_t *handle = fs_data; 1151 int res, res2, credits, retries = 0; 1152 1153 /* 1154 * Encrypting the root directory is not allowed because e2fsck expects 1155 * lost+found to exist and be unencrypted, and encrypting the root 1156 * directory would imply encrypting the lost+found directory as well as 1157 * the filename "lost+found" itself. 1158 */ 1159 if (inode->i_ino == EXT4_ROOT_INO) 1160 return -EPERM; 1161 1162 res = ext4_convert_inline_data(inode); 1163 if (res) 1164 return res; 1165 1166 /* 1167 * If a journal handle was specified, then the encryption context is 1168 * being set on a new inode via inheritance and is part of a larger 1169 * transaction to create the inode. Otherwise the encryption context is 1170 * being set on an existing inode in its own transaction. Only in the 1171 * latter case should the "retry on ENOSPC" logic be used. 1172 */ 1173 1174 if (handle) { 1175 res = ext4_xattr_set_handle(handle, inode, 1176 EXT4_XATTR_INDEX_ENCRYPTION, 1177 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1178 ctx, len, 0); 1179 if (!res) { 1180 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1181 ext4_clear_inode_state(inode, 1182 EXT4_STATE_MAY_INLINE_DATA); 1183 /* 1184 * Update inode->i_flags - e.g. S_DAX may get disabled 1185 */ 1186 ext4_set_inode_flags(inode); 1187 } 1188 return res; 1189 } 1190 1191 res = dquot_initialize(inode); 1192 if (res) 1193 return res; 1194 retry: 1195 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1196 &credits); 1197 if (res) 1198 return res; 1199 1200 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1201 if (IS_ERR(handle)) 1202 return PTR_ERR(handle); 1203 1204 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1205 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1206 ctx, len, 0); 1207 if (!res) { 1208 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1209 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1210 ext4_set_inode_flags(inode); 1211 res = ext4_mark_inode_dirty(handle, inode); 1212 if (res) 1213 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1214 } 1215 res2 = ext4_journal_stop(handle); 1216 1217 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1218 goto retry; 1219 if (!res) 1220 res = res2; 1221 return res; 1222 } 1223 1224 static bool ext4_dummy_context(struct inode *inode) 1225 { 1226 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1227 } 1228 1229 static unsigned ext4_max_namelen(struct inode *inode) 1230 { 1231 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1232 EXT4_NAME_LEN; 1233 } 1234 1235 static const struct fscrypt_operations ext4_cryptops = { 1236 .key_prefix = "ext4:", 1237 .get_context = ext4_get_context, 1238 .set_context = ext4_set_context, 1239 .dummy_context = ext4_dummy_context, 1240 .is_encrypted = ext4_encrypted_inode, 1241 .empty_dir = ext4_empty_dir, 1242 .max_namelen = ext4_max_namelen, 1243 }; 1244 #else 1245 static const struct fscrypt_operations ext4_cryptops = { 1246 .is_encrypted = ext4_encrypted_inode, 1247 }; 1248 #endif 1249 1250 #ifdef CONFIG_QUOTA 1251 static const char * const quotatypes[] = INITQFNAMES; 1252 #define QTYPE2NAME(t) (quotatypes[t]) 1253 1254 static int ext4_write_dquot(struct dquot *dquot); 1255 static int ext4_acquire_dquot(struct dquot *dquot); 1256 static int ext4_release_dquot(struct dquot *dquot); 1257 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1258 static int ext4_write_info(struct super_block *sb, int type); 1259 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1260 const struct path *path); 1261 static int ext4_quota_on_mount(struct super_block *sb, int type); 1262 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1263 size_t len, loff_t off); 1264 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1265 const char *data, size_t len, loff_t off); 1266 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1267 unsigned int flags); 1268 static int ext4_enable_quotas(struct super_block *sb); 1269 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1270 1271 static struct dquot **ext4_get_dquots(struct inode *inode) 1272 { 1273 return EXT4_I(inode)->i_dquot; 1274 } 1275 1276 static const struct dquot_operations ext4_quota_operations = { 1277 .get_reserved_space = ext4_get_reserved_space, 1278 .write_dquot = ext4_write_dquot, 1279 .acquire_dquot = ext4_acquire_dquot, 1280 .release_dquot = ext4_release_dquot, 1281 .mark_dirty = ext4_mark_dquot_dirty, 1282 .write_info = ext4_write_info, 1283 .alloc_dquot = dquot_alloc, 1284 .destroy_dquot = dquot_destroy, 1285 .get_projid = ext4_get_projid, 1286 .get_inode_usage = ext4_get_inode_usage, 1287 .get_next_id = ext4_get_next_id, 1288 }; 1289 1290 static const struct quotactl_ops ext4_qctl_operations = { 1291 .quota_on = ext4_quota_on, 1292 .quota_off = ext4_quota_off, 1293 .quota_sync = dquot_quota_sync, 1294 .get_state = dquot_get_state, 1295 .set_info = dquot_set_dqinfo, 1296 .get_dqblk = dquot_get_dqblk, 1297 .set_dqblk = dquot_set_dqblk, 1298 .get_nextdqblk = dquot_get_next_dqblk, 1299 }; 1300 #endif 1301 1302 static const struct super_operations ext4_sops = { 1303 .alloc_inode = ext4_alloc_inode, 1304 .destroy_inode = ext4_destroy_inode, 1305 .write_inode = ext4_write_inode, 1306 .dirty_inode = ext4_dirty_inode, 1307 .drop_inode = ext4_drop_inode, 1308 .evict_inode = ext4_evict_inode, 1309 .put_super = ext4_put_super, 1310 .sync_fs = ext4_sync_fs, 1311 .freeze_fs = ext4_freeze, 1312 .unfreeze_fs = ext4_unfreeze, 1313 .statfs = ext4_statfs, 1314 .remount_fs = ext4_remount, 1315 .show_options = ext4_show_options, 1316 #ifdef CONFIG_QUOTA 1317 .quota_read = ext4_quota_read, 1318 .quota_write = ext4_quota_write, 1319 .get_dquots = ext4_get_dquots, 1320 #endif 1321 .bdev_try_to_free_page = bdev_try_to_free_page, 1322 }; 1323 1324 static const struct export_operations ext4_export_ops = { 1325 .fh_to_dentry = ext4_fh_to_dentry, 1326 .fh_to_parent = ext4_fh_to_parent, 1327 .get_parent = ext4_get_parent, 1328 }; 1329 1330 enum { 1331 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1332 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1333 Opt_nouid32, Opt_debug, Opt_removed, 1334 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1335 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1336 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1337 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1338 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1339 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1340 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1341 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1342 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1343 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1344 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1345 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1346 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1347 Opt_inode_readahead_blks, Opt_journal_ioprio, 1348 Opt_dioread_nolock, Opt_dioread_lock, 1349 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1350 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1351 }; 1352 1353 static const match_table_t tokens = { 1354 {Opt_bsd_df, "bsddf"}, 1355 {Opt_minix_df, "minixdf"}, 1356 {Opt_grpid, "grpid"}, 1357 {Opt_grpid, "bsdgroups"}, 1358 {Opt_nogrpid, "nogrpid"}, 1359 {Opt_nogrpid, "sysvgroups"}, 1360 {Opt_resgid, "resgid=%u"}, 1361 {Opt_resuid, "resuid=%u"}, 1362 {Opt_sb, "sb=%u"}, 1363 {Opt_err_cont, "errors=continue"}, 1364 {Opt_err_panic, "errors=panic"}, 1365 {Opt_err_ro, "errors=remount-ro"}, 1366 {Opt_nouid32, "nouid32"}, 1367 {Opt_debug, "debug"}, 1368 {Opt_removed, "oldalloc"}, 1369 {Opt_removed, "orlov"}, 1370 {Opt_user_xattr, "user_xattr"}, 1371 {Opt_nouser_xattr, "nouser_xattr"}, 1372 {Opt_acl, "acl"}, 1373 {Opt_noacl, "noacl"}, 1374 {Opt_noload, "norecovery"}, 1375 {Opt_noload, "noload"}, 1376 {Opt_removed, "nobh"}, 1377 {Opt_removed, "bh"}, 1378 {Opt_commit, "commit=%u"}, 1379 {Opt_min_batch_time, "min_batch_time=%u"}, 1380 {Opt_max_batch_time, "max_batch_time=%u"}, 1381 {Opt_journal_dev, "journal_dev=%u"}, 1382 {Opt_journal_path, "journal_path=%s"}, 1383 {Opt_journal_checksum, "journal_checksum"}, 1384 {Opt_nojournal_checksum, "nojournal_checksum"}, 1385 {Opt_journal_async_commit, "journal_async_commit"}, 1386 {Opt_abort, "abort"}, 1387 {Opt_data_journal, "data=journal"}, 1388 {Opt_data_ordered, "data=ordered"}, 1389 {Opt_data_writeback, "data=writeback"}, 1390 {Opt_data_err_abort, "data_err=abort"}, 1391 {Opt_data_err_ignore, "data_err=ignore"}, 1392 {Opt_offusrjquota, "usrjquota="}, 1393 {Opt_usrjquota, "usrjquota=%s"}, 1394 {Opt_offgrpjquota, "grpjquota="}, 1395 {Opt_grpjquota, "grpjquota=%s"}, 1396 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1397 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1398 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1399 {Opt_grpquota, "grpquota"}, 1400 {Opt_noquota, "noquota"}, 1401 {Opt_quota, "quota"}, 1402 {Opt_usrquota, "usrquota"}, 1403 {Opt_prjquota, "prjquota"}, 1404 {Opt_barrier, "barrier=%u"}, 1405 {Opt_barrier, "barrier"}, 1406 {Opt_nobarrier, "nobarrier"}, 1407 {Opt_i_version, "i_version"}, 1408 {Opt_dax, "dax"}, 1409 {Opt_stripe, "stripe=%u"}, 1410 {Opt_delalloc, "delalloc"}, 1411 {Opt_lazytime, "lazytime"}, 1412 {Opt_nolazytime, "nolazytime"}, 1413 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1414 {Opt_nodelalloc, "nodelalloc"}, 1415 {Opt_removed, "mblk_io_submit"}, 1416 {Opt_removed, "nomblk_io_submit"}, 1417 {Opt_block_validity, "block_validity"}, 1418 {Opt_noblock_validity, "noblock_validity"}, 1419 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1420 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1421 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1422 {Opt_auto_da_alloc, "auto_da_alloc"}, 1423 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1424 {Opt_dioread_nolock, "dioread_nolock"}, 1425 {Opt_dioread_lock, "dioread_lock"}, 1426 {Opt_discard, "discard"}, 1427 {Opt_nodiscard, "nodiscard"}, 1428 {Opt_init_itable, "init_itable=%u"}, 1429 {Opt_init_itable, "init_itable"}, 1430 {Opt_noinit_itable, "noinit_itable"}, 1431 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1432 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1433 {Opt_nombcache, "nombcache"}, 1434 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1435 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1436 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1437 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1438 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1439 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1440 {Opt_err, NULL}, 1441 }; 1442 1443 static ext4_fsblk_t get_sb_block(void **data) 1444 { 1445 ext4_fsblk_t sb_block; 1446 char *options = (char *) *data; 1447 1448 if (!options || strncmp(options, "sb=", 3) != 0) 1449 return 1; /* Default location */ 1450 1451 options += 3; 1452 /* TODO: use simple_strtoll with >32bit ext4 */ 1453 sb_block = simple_strtoul(options, &options, 0); 1454 if (*options && *options != ',') { 1455 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1456 (char *) *data); 1457 return 1; 1458 } 1459 if (*options == ',') 1460 options++; 1461 *data = (void *) options; 1462 1463 return sb_block; 1464 } 1465 1466 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1467 static const char deprecated_msg[] = 1468 "Mount option \"%s\" will be removed by %s\n" 1469 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1470 1471 #ifdef CONFIG_QUOTA 1472 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1473 { 1474 struct ext4_sb_info *sbi = EXT4_SB(sb); 1475 char *qname; 1476 int ret = -1; 1477 1478 if (sb_any_quota_loaded(sb) && 1479 !sbi->s_qf_names[qtype]) { 1480 ext4_msg(sb, KERN_ERR, 1481 "Cannot change journaled " 1482 "quota options when quota turned on"); 1483 return -1; 1484 } 1485 if (ext4_has_feature_quota(sb)) { 1486 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1487 "ignored when QUOTA feature is enabled"); 1488 return 1; 1489 } 1490 qname = match_strdup(args); 1491 if (!qname) { 1492 ext4_msg(sb, KERN_ERR, 1493 "Not enough memory for storing quotafile name"); 1494 return -1; 1495 } 1496 if (sbi->s_qf_names[qtype]) { 1497 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1498 ret = 1; 1499 else 1500 ext4_msg(sb, KERN_ERR, 1501 "%s quota file already specified", 1502 QTYPE2NAME(qtype)); 1503 goto errout; 1504 } 1505 if (strchr(qname, '/')) { 1506 ext4_msg(sb, KERN_ERR, 1507 "quotafile must be on filesystem root"); 1508 goto errout; 1509 } 1510 sbi->s_qf_names[qtype] = qname; 1511 set_opt(sb, QUOTA); 1512 return 1; 1513 errout: 1514 kfree(qname); 1515 return ret; 1516 } 1517 1518 static int clear_qf_name(struct super_block *sb, int qtype) 1519 { 1520 1521 struct ext4_sb_info *sbi = EXT4_SB(sb); 1522 1523 if (sb_any_quota_loaded(sb) && 1524 sbi->s_qf_names[qtype]) { 1525 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1526 " when quota turned on"); 1527 return -1; 1528 } 1529 kfree(sbi->s_qf_names[qtype]); 1530 sbi->s_qf_names[qtype] = NULL; 1531 return 1; 1532 } 1533 #endif 1534 1535 #define MOPT_SET 0x0001 1536 #define MOPT_CLEAR 0x0002 1537 #define MOPT_NOSUPPORT 0x0004 1538 #define MOPT_EXPLICIT 0x0008 1539 #define MOPT_CLEAR_ERR 0x0010 1540 #define MOPT_GTE0 0x0020 1541 #ifdef CONFIG_QUOTA 1542 #define MOPT_Q 0 1543 #define MOPT_QFMT 0x0040 1544 #else 1545 #define MOPT_Q MOPT_NOSUPPORT 1546 #define MOPT_QFMT MOPT_NOSUPPORT 1547 #endif 1548 #define MOPT_DATAJ 0x0080 1549 #define MOPT_NO_EXT2 0x0100 1550 #define MOPT_NO_EXT3 0x0200 1551 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1552 #define MOPT_STRING 0x0400 1553 1554 static const struct mount_opts { 1555 int token; 1556 int mount_opt; 1557 int flags; 1558 } ext4_mount_opts[] = { 1559 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1560 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1561 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1562 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1563 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1564 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1565 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1566 MOPT_EXT4_ONLY | MOPT_SET}, 1567 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1568 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1569 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1570 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1571 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1572 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1573 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1574 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1575 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1576 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1577 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1579 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1580 EXT4_MOUNT_JOURNAL_CHECKSUM), 1581 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1582 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1583 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1584 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1585 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1586 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1587 MOPT_NO_EXT2}, 1588 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1589 MOPT_NO_EXT2}, 1590 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1591 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1592 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1593 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1594 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1595 {Opt_commit, 0, MOPT_GTE0}, 1596 {Opt_max_batch_time, 0, MOPT_GTE0}, 1597 {Opt_min_batch_time, 0, MOPT_GTE0}, 1598 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1599 {Opt_init_itable, 0, MOPT_GTE0}, 1600 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1601 {Opt_stripe, 0, MOPT_GTE0}, 1602 {Opt_resuid, 0, MOPT_GTE0}, 1603 {Opt_resgid, 0, MOPT_GTE0}, 1604 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1605 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1606 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1607 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1608 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1609 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1610 MOPT_NO_EXT2 | MOPT_DATAJ}, 1611 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1612 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1613 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1614 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1615 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1616 #else 1617 {Opt_acl, 0, MOPT_NOSUPPORT}, 1618 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1619 #endif 1620 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1621 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1622 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1623 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1624 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1625 MOPT_SET | MOPT_Q}, 1626 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1627 MOPT_SET | MOPT_Q}, 1628 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1629 MOPT_SET | MOPT_Q}, 1630 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1631 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1632 MOPT_CLEAR | MOPT_Q}, 1633 {Opt_usrjquota, 0, MOPT_Q}, 1634 {Opt_grpjquota, 0, MOPT_Q}, 1635 {Opt_offusrjquota, 0, MOPT_Q}, 1636 {Opt_offgrpjquota, 0, MOPT_Q}, 1637 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1638 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1639 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1640 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1641 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1642 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1643 {Opt_err, 0, 0} 1644 }; 1645 1646 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1647 substring_t *args, unsigned long *journal_devnum, 1648 unsigned int *journal_ioprio, int is_remount) 1649 { 1650 struct ext4_sb_info *sbi = EXT4_SB(sb); 1651 const struct mount_opts *m; 1652 kuid_t uid; 1653 kgid_t gid; 1654 int arg = 0; 1655 1656 #ifdef CONFIG_QUOTA 1657 if (token == Opt_usrjquota) 1658 return set_qf_name(sb, USRQUOTA, &args[0]); 1659 else if (token == Opt_grpjquota) 1660 return set_qf_name(sb, GRPQUOTA, &args[0]); 1661 else if (token == Opt_offusrjquota) 1662 return clear_qf_name(sb, USRQUOTA); 1663 else if (token == Opt_offgrpjquota) 1664 return clear_qf_name(sb, GRPQUOTA); 1665 #endif 1666 switch (token) { 1667 case Opt_noacl: 1668 case Opt_nouser_xattr: 1669 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1670 break; 1671 case Opt_sb: 1672 return 1; /* handled by get_sb_block() */ 1673 case Opt_removed: 1674 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1675 return 1; 1676 case Opt_abort: 1677 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1678 return 1; 1679 case Opt_i_version: 1680 sb->s_flags |= MS_I_VERSION; 1681 return 1; 1682 case Opt_lazytime: 1683 sb->s_flags |= MS_LAZYTIME; 1684 return 1; 1685 case Opt_nolazytime: 1686 sb->s_flags &= ~MS_LAZYTIME; 1687 return 1; 1688 } 1689 1690 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1691 if (token == m->token) 1692 break; 1693 1694 if (m->token == Opt_err) { 1695 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1696 "or missing value", opt); 1697 return -1; 1698 } 1699 1700 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1701 ext4_msg(sb, KERN_ERR, 1702 "Mount option \"%s\" incompatible with ext2", opt); 1703 return -1; 1704 } 1705 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1706 ext4_msg(sb, KERN_ERR, 1707 "Mount option \"%s\" incompatible with ext3", opt); 1708 return -1; 1709 } 1710 1711 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1712 return -1; 1713 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1714 return -1; 1715 if (m->flags & MOPT_EXPLICIT) { 1716 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1717 set_opt2(sb, EXPLICIT_DELALLOC); 1718 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1719 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1720 } else 1721 return -1; 1722 } 1723 if (m->flags & MOPT_CLEAR_ERR) 1724 clear_opt(sb, ERRORS_MASK); 1725 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1726 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1727 "options when quota turned on"); 1728 return -1; 1729 } 1730 1731 if (m->flags & MOPT_NOSUPPORT) { 1732 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1733 } else if (token == Opt_commit) { 1734 if (arg == 0) 1735 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1736 sbi->s_commit_interval = HZ * arg; 1737 } else if (token == Opt_debug_want_extra_isize) { 1738 sbi->s_want_extra_isize = arg; 1739 } else if (token == Opt_max_batch_time) { 1740 sbi->s_max_batch_time = arg; 1741 } else if (token == Opt_min_batch_time) { 1742 sbi->s_min_batch_time = arg; 1743 } else if (token == Opt_inode_readahead_blks) { 1744 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1745 ext4_msg(sb, KERN_ERR, 1746 "EXT4-fs: inode_readahead_blks must be " 1747 "0 or a power of 2 smaller than 2^31"); 1748 return -1; 1749 } 1750 sbi->s_inode_readahead_blks = arg; 1751 } else if (token == Opt_init_itable) { 1752 set_opt(sb, INIT_INODE_TABLE); 1753 if (!args->from) 1754 arg = EXT4_DEF_LI_WAIT_MULT; 1755 sbi->s_li_wait_mult = arg; 1756 } else if (token == Opt_max_dir_size_kb) { 1757 sbi->s_max_dir_size_kb = arg; 1758 } else if (token == Opt_stripe) { 1759 sbi->s_stripe = arg; 1760 } else if (token == Opt_resuid) { 1761 uid = make_kuid(current_user_ns(), arg); 1762 if (!uid_valid(uid)) { 1763 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1764 return -1; 1765 } 1766 sbi->s_resuid = uid; 1767 } else if (token == Opt_resgid) { 1768 gid = make_kgid(current_user_ns(), arg); 1769 if (!gid_valid(gid)) { 1770 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1771 return -1; 1772 } 1773 sbi->s_resgid = gid; 1774 } else if (token == Opt_journal_dev) { 1775 if (is_remount) { 1776 ext4_msg(sb, KERN_ERR, 1777 "Cannot specify journal on remount"); 1778 return -1; 1779 } 1780 *journal_devnum = arg; 1781 } else if (token == Opt_journal_path) { 1782 char *journal_path; 1783 struct inode *journal_inode; 1784 struct path path; 1785 int error; 1786 1787 if (is_remount) { 1788 ext4_msg(sb, KERN_ERR, 1789 "Cannot specify journal on remount"); 1790 return -1; 1791 } 1792 journal_path = match_strdup(&args[0]); 1793 if (!journal_path) { 1794 ext4_msg(sb, KERN_ERR, "error: could not dup " 1795 "journal device string"); 1796 return -1; 1797 } 1798 1799 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1800 if (error) { 1801 ext4_msg(sb, KERN_ERR, "error: could not find " 1802 "journal device path: error %d", error); 1803 kfree(journal_path); 1804 return -1; 1805 } 1806 1807 journal_inode = d_inode(path.dentry); 1808 if (!S_ISBLK(journal_inode->i_mode)) { 1809 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1810 "is not a block device", journal_path); 1811 path_put(&path); 1812 kfree(journal_path); 1813 return -1; 1814 } 1815 1816 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1817 path_put(&path); 1818 kfree(journal_path); 1819 } else if (token == Opt_journal_ioprio) { 1820 if (arg > 7) { 1821 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1822 " (must be 0-7)"); 1823 return -1; 1824 } 1825 *journal_ioprio = 1826 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1827 } else if (token == Opt_test_dummy_encryption) { 1828 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1829 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1830 ext4_msg(sb, KERN_WARNING, 1831 "Test dummy encryption mode enabled"); 1832 #else 1833 ext4_msg(sb, KERN_WARNING, 1834 "Test dummy encryption mount option ignored"); 1835 #endif 1836 } else if (m->flags & MOPT_DATAJ) { 1837 if (is_remount) { 1838 if (!sbi->s_journal) 1839 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1840 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1841 ext4_msg(sb, KERN_ERR, 1842 "Cannot change data mode on remount"); 1843 return -1; 1844 } 1845 } else { 1846 clear_opt(sb, DATA_FLAGS); 1847 sbi->s_mount_opt |= m->mount_opt; 1848 } 1849 #ifdef CONFIG_QUOTA 1850 } else if (m->flags & MOPT_QFMT) { 1851 if (sb_any_quota_loaded(sb) && 1852 sbi->s_jquota_fmt != m->mount_opt) { 1853 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1854 "quota options when quota turned on"); 1855 return -1; 1856 } 1857 if (ext4_has_feature_quota(sb)) { 1858 ext4_msg(sb, KERN_INFO, 1859 "Quota format mount options ignored " 1860 "when QUOTA feature is enabled"); 1861 return 1; 1862 } 1863 sbi->s_jquota_fmt = m->mount_opt; 1864 #endif 1865 } else if (token == Opt_dax) { 1866 #ifdef CONFIG_FS_DAX 1867 ext4_msg(sb, KERN_WARNING, 1868 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1869 sbi->s_mount_opt |= m->mount_opt; 1870 #else 1871 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1872 return -1; 1873 #endif 1874 } else if (token == Opt_data_err_abort) { 1875 sbi->s_mount_opt |= m->mount_opt; 1876 } else if (token == Opt_data_err_ignore) { 1877 sbi->s_mount_opt &= ~m->mount_opt; 1878 } else { 1879 if (!args->from) 1880 arg = 1; 1881 if (m->flags & MOPT_CLEAR) 1882 arg = !arg; 1883 else if (unlikely(!(m->flags & MOPT_SET))) { 1884 ext4_msg(sb, KERN_WARNING, 1885 "buggy handling of option %s", opt); 1886 WARN_ON(1); 1887 return -1; 1888 } 1889 if (arg != 0) 1890 sbi->s_mount_opt |= m->mount_opt; 1891 else 1892 sbi->s_mount_opt &= ~m->mount_opt; 1893 } 1894 return 1; 1895 } 1896 1897 static int parse_options(char *options, struct super_block *sb, 1898 unsigned long *journal_devnum, 1899 unsigned int *journal_ioprio, 1900 int is_remount) 1901 { 1902 struct ext4_sb_info *sbi = EXT4_SB(sb); 1903 char *p; 1904 substring_t args[MAX_OPT_ARGS]; 1905 int token; 1906 1907 if (!options) 1908 return 1; 1909 1910 while ((p = strsep(&options, ",")) != NULL) { 1911 if (!*p) 1912 continue; 1913 /* 1914 * Initialize args struct so we know whether arg was 1915 * found; some options take optional arguments. 1916 */ 1917 args[0].to = args[0].from = NULL; 1918 token = match_token(p, tokens, args); 1919 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1920 journal_ioprio, is_remount) < 0) 1921 return 0; 1922 } 1923 #ifdef CONFIG_QUOTA 1924 /* 1925 * We do the test below only for project quotas. 'usrquota' and 1926 * 'grpquota' mount options are allowed even without quota feature 1927 * to support legacy quotas in quota files. 1928 */ 1929 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1930 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1931 "Cannot enable project quota enforcement."); 1932 return 0; 1933 } 1934 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1935 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1936 clear_opt(sb, USRQUOTA); 1937 1938 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1939 clear_opt(sb, GRPQUOTA); 1940 1941 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1942 ext4_msg(sb, KERN_ERR, "old and new quota " 1943 "format mixing"); 1944 return 0; 1945 } 1946 1947 if (!sbi->s_jquota_fmt) { 1948 ext4_msg(sb, KERN_ERR, "journaled quota format " 1949 "not specified"); 1950 return 0; 1951 } 1952 } 1953 #endif 1954 if (test_opt(sb, DIOREAD_NOLOCK)) { 1955 int blocksize = 1956 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1957 1958 if (blocksize < PAGE_SIZE) { 1959 ext4_msg(sb, KERN_ERR, "can't mount with " 1960 "dioread_nolock if block size != PAGE_SIZE"); 1961 return 0; 1962 } 1963 } 1964 return 1; 1965 } 1966 1967 static inline void ext4_show_quota_options(struct seq_file *seq, 1968 struct super_block *sb) 1969 { 1970 #if defined(CONFIG_QUOTA) 1971 struct ext4_sb_info *sbi = EXT4_SB(sb); 1972 1973 if (sbi->s_jquota_fmt) { 1974 char *fmtname = ""; 1975 1976 switch (sbi->s_jquota_fmt) { 1977 case QFMT_VFS_OLD: 1978 fmtname = "vfsold"; 1979 break; 1980 case QFMT_VFS_V0: 1981 fmtname = "vfsv0"; 1982 break; 1983 case QFMT_VFS_V1: 1984 fmtname = "vfsv1"; 1985 break; 1986 } 1987 seq_printf(seq, ",jqfmt=%s", fmtname); 1988 } 1989 1990 if (sbi->s_qf_names[USRQUOTA]) 1991 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1992 1993 if (sbi->s_qf_names[GRPQUOTA]) 1994 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1995 #endif 1996 } 1997 1998 static const char *token2str(int token) 1999 { 2000 const struct match_token *t; 2001 2002 for (t = tokens; t->token != Opt_err; t++) 2003 if (t->token == token && !strchr(t->pattern, '=')) 2004 break; 2005 return t->pattern; 2006 } 2007 2008 /* 2009 * Show an option if 2010 * - it's set to a non-default value OR 2011 * - if the per-sb default is different from the global default 2012 */ 2013 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2014 int nodefs) 2015 { 2016 struct ext4_sb_info *sbi = EXT4_SB(sb); 2017 struct ext4_super_block *es = sbi->s_es; 2018 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 2019 const struct mount_opts *m; 2020 char sep = nodefs ? '\n' : ','; 2021 2022 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2023 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2024 2025 if (sbi->s_sb_block != 1) 2026 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2027 2028 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2029 int want_set = m->flags & MOPT_SET; 2030 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2031 (m->flags & MOPT_CLEAR_ERR)) 2032 continue; 2033 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2034 continue; /* skip if same as the default */ 2035 if ((want_set && 2036 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2037 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2038 continue; /* select Opt_noFoo vs Opt_Foo */ 2039 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2040 } 2041 2042 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2043 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2044 SEQ_OPTS_PRINT("resuid=%u", 2045 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2046 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2047 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2048 SEQ_OPTS_PRINT("resgid=%u", 2049 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2050 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2051 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2052 SEQ_OPTS_PUTS("errors=remount-ro"); 2053 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2054 SEQ_OPTS_PUTS("errors=continue"); 2055 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2056 SEQ_OPTS_PUTS("errors=panic"); 2057 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2058 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2059 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2060 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2061 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2062 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2063 if (sb->s_flags & MS_I_VERSION) 2064 SEQ_OPTS_PUTS("i_version"); 2065 if (nodefs || sbi->s_stripe) 2066 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2067 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2068 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2069 SEQ_OPTS_PUTS("data=journal"); 2070 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2071 SEQ_OPTS_PUTS("data=ordered"); 2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2073 SEQ_OPTS_PUTS("data=writeback"); 2074 } 2075 if (nodefs || 2076 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2077 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2078 sbi->s_inode_readahead_blks); 2079 2080 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2081 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2082 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2083 if (nodefs || sbi->s_max_dir_size_kb) 2084 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2085 if (test_opt(sb, DATA_ERR_ABORT)) 2086 SEQ_OPTS_PUTS("data_err=abort"); 2087 2088 ext4_show_quota_options(seq, sb); 2089 return 0; 2090 } 2091 2092 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2093 { 2094 return _ext4_show_options(seq, root->d_sb, 0); 2095 } 2096 2097 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2098 { 2099 struct super_block *sb = seq->private; 2100 int rc; 2101 2102 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2103 rc = _ext4_show_options(seq, sb, 1); 2104 seq_puts(seq, "\n"); 2105 return rc; 2106 } 2107 2108 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2109 int read_only) 2110 { 2111 struct ext4_sb_info *sbi = EXT4_SB(sb); 2112 int res = 0; 2113 2114 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2115 ext4_msg(sb, KERN_ERR, "revision level too high, " 2116 "forcing read-only mode"); 2117 res = MS_RDONLY; 2118 } 2119 if (read_only) 2120 goto done; 2121 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2122 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2123 "running e2fsck is recommended"); 2124 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2125 ext4_msg(sb, KERN_WARNING, 2126 "warning: mounting fs with errors, " 2127 "running e2fsck is recommended"); 2128 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2129 le16_to_cpu(es->s_mnt_count) >= 2130 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2131 ext4_msg(sb, KERN_WARNING, 2132 "warning: maximal mount count reached, " 2133 "running e2fsck is recommended"); 2134 else if (le32_to_cpu(es->s_checkinterval) && 2135 (le32_to_cpu(es->s_lastcheck) + 2136 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2137 ext4_msg(sb, KERN_WARNING, 2138 "warning: checktime reached, " 2139 "running e2fsck is recommended"); 2140 if (!sbi->s_journal) 2141 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2142 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2143 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2144 le16_add_cpu(&es->s_mnt_count, 1); 2145 es->s_mtime = cpu_to_le32(get_seconds()); 2146 ext4_update_dynamic_rev(sb); 2147 if (sbi->s_journal) 2148 ext4_set_feature_journal_needs_recovery(sb); 2149 2150 ext4_commit_super(sb, 1); 2151 done: 2152 if (test_opt(sb, DEBUG)) 2153 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2154 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2155 sb->s_blocksize, 2156 sbi->s_groups_count, 2157 EXT4_BLOCKS_PER_GROUP(sb), 2158 EXT4_INODES_PER_GROUP(sb), 2159 sbi->s_mount_opt, sbi->s_mount_opt2); 2160 2161 cleancache_init_fs(sb); 2162 return res; 2163 } 2164 2165 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2166 { 2167 struct ext4_sb_info *sbi = EXT4_SB(sb); 2168 struct flex_groups *new_groups; 2169 int size; 2170 2171 if (!sbi->s_log_groups_per_flex) 2172 return 0; 2173 2174 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2175 if (size <= sbi->s_flex_groups_allocated) 2176 return 0; 2177 2178 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2179 new_groups = kvzalloc(size, GFP_KERNEL); 2180 if (!new_groups) { 2181 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2182 size / (int) sizeof(struct flex_groups)); 2183 return -ENOMEM; 2184 } 2185 2186 if (sbi->s_flex_groups) { 2187 memcpy(new_groups, sbi->s_flex_groups, 2188 (sbi->s_flex_groups_allocated * 2189 sizeof(struct flex_groups))); 2190 kvfree(sbi->s_flex_groups); 2191 } 2192 sbi->s_flex_groups = new_groups; 2193 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2194 return 0; 2195 } 2196 2197 static int ext4_fill_flex_info(struct super_block *sb) 2198 { 2199 struct ext4_sb_info *sbi = EXT4_SB(sb); 2200 struct ext4_group_desc *gdp = NULL; 2201 ext4_group_t flex_group; 2202 int i, err; 2203 2204 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2205 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2206 sbi->s_log_groups_per_flex = 0; 2207 return 1; 2208 } 2209 2210 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2211 if (err) 2212 goto failed; 2213 2214 for (i = 0; i < sbi->s_groups_count; i++) { 2215 gdp = ext4_get_group_desc(sb, i, NULL); 2216 2217 flex_group = ext4_flex_group(sbi, i); 2218 atomic_add(ext4_free_inodes_count(sb, gdp), 2219 &sbi->s_flex_groups[flex_group].free_inodes); 2220 atomic64_add(ext4_free_group_clusters(sb, gdp), 2221 &sbi->s_flex_groups[flex_group].free_clusters); 2222 atomic_add(ext4_used_dirs_count(sb, gdp), 2223 &sbi->s_flex_groups[flex_group].used_dirs); 2224 } 2225 2226 return 1; 2227 failed: 2228 return 0; 2229 } 2230 2231 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2232 struct ext4_group_desc *gdp) 2233 { 2234 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2235 __u16 crc = 0; 2236 __le32 le_group = cpu_to_le32(block_group); 2237 struct ext4_sb_info *sbi = EXT4_SB(sb); 2238 2239 if (ext4_has_metadata_csum(sbi->s_sb)) { 2240 /* Use new metadata_csum algorithm */ 2241 __u32 csum32; 2242 __u16 dummy_csum = 0; 2243 2244 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2245 sizeof(le_group)); 2246 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2247 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2248 sizeof(dummy_csum)); 2249 offset += sizeof(dummy_csum); 2250 if (offset < sbi->s_desc_size) 2251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2252 sbi->s_desc_size - offset); 2253 2254 crc = csum32 & 0xFFFF; 2255 goto out; 2256 } 2257 2258 /* old crc16 code */ 2259 if (!ext4_has_feature_gdt_csum(sb)) 2260 return 0; 2261 2262 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2263 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2264 crc = crc16(crc, (__u8 *)gdp, offset); 2265 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2266 /* for checksum of struct ext4_group_desc do the rest...*/ 2267 if (ext4_has_feature_64bit(sb) && 2268 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2269 crc = crc16(crc, (__u8 *)gdp + offset, 2270 le16_to_cpu(sbi->s_es->s_desc_size) - 2271 offset); 2272 2273 out: 2274 return cpu_to_le16(crc); 2275 } 2276 2277 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2278 struct ext4_group_desc *gdp) 2279 { 2280 if (ext4_has_group_desc_csum(sb) && 2281 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2282 return 0; 2283 2284 return 1; 2285 } 2286 2287 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2288 struct ext4_group_desc *gdp) 2289 { 2290 if (!ext4_has_group_desc_csum(sb)) 2291 return; 2292 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2293 } 2294 2295 /* Called at mount-time, super-block is locked */ 2296 static int ext4_check_descriptors(struct super_block *sb, 2297 ext4_fsblk_t sb_block, 2298 ext4_group_t *first_not_zeroed) 2299 { 2300 struct ext4_sb_info *sbi = EXT4_SB(sb); 2301 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2302 ext4_fsblk_t last_block; 2303 ext4_fsblk_t block_bitmap; 2304 ext4_fsblk_t inode_bitmap; 2305 ext4_fsblk_t inode_table; 2306 int flexbg_flag = 0; 2307 ext4_group_t i, grp = sbi->s_groups_count; 2308 2309 if (ext4_has_feature_flex_bg(sb)) 2310 flexbg_flag = 1; 2311 2312 ext4_debug("Checking group descriptors"); 2313 2314 for (i = 0; i < sbi->s_groups_count; i++) { 2315 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2316 2317 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2318 last_block = ext4_blocks_count(sbi->s_es) - 1; 2319 else 2320 last_block = first_block + 2321 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2322 2323 if ((grp == sbi->s_groups_count) && 2324 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2325 grp = i; 2326 2327 block_bitmap = ext4_block_bitmap(sb, gdp); 2328 if (block_bitmap == sb_block) { 2329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2330 "Block bitmap for group %u overlaps " 2331 "superblock", i); 2332 } 2333 if (block_bitmap < first_block || block_bitmap > last_block) { 2334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2335 "Block bitmap for group %u not in group " 2336 "(block %llu)!", i, block_bitmap); 2337 return 0; 2338 } 2339 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2340 if (inode_bitmap == sb_block) { 2341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2342 "Inode bitmap for group %u overlaps " 2343 "superblock", i); 2344 } 2345 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2347 "Inode bitmap for group %u not in group " 2348 "(block %llu)!", i, inode_bitmap); 2349 return 0; 2350 } 2351 inode_table = ext4_inode_table(sb, gdp); 2352 if (inode_table == sb_block) { 2353 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2354 "Inode table for group %u overlaps " 2355 "superblock", i); 2356 } 2357 if (inode_table < first_block || 2358 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2360 "Inode table for group %u not in group " 2361 "(block %llu)!", i, inode_table); 2362 return 0; 2363 } 2364 ext4_lock_group(sb, i); 2365 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2367 "Checksum for group %u failed (%u!=%u)", 2368 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2369 gdp)), le16_to_cpu(gdp->bg_checksum)); 2370 if (!(sb->s_flags & MS_RDONLY)) { 2371 ext4_unlock_group(sb, i); 2372 return 0; 2373 } 2374 } 2375 ext4_unlock_group(sb, i); 2376 if (!flexbg_flag) 2377 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2378 } 2379 if (NULL != first_not_zeroed) 2380 *first_not_zeroed = grp; 2381 return 1; 2382 } 2383 2384 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2385 * the superblock) which were deleted from all directories, but held open by 2386 * a process at the time of a crash. We walk the list and try to delete these 2387 * inodes at recovery time (only with a read-write filesystem). 2388 * 2389 * In order to keep the orphan inode chain consistent during traversal (in 2390 * case of crash during recovery), we link each inode into the superblock 2391 * orphan list_head and handle it the same way as an inode deletion during 2392 * normal operation (which journals the operations for us). 2393 * 2394 * We only do an iget() and an iput() on each inode, which is very safe if we 2395 * accidentally point at an in-use or already deleted inode. The worst that 2396 * can happen in this case is that we get a "bit already cleared" message from 2397 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2398 * e2fsck was run on this filesystem, and it must have already done the orphan 2399 * inode cleanup for us, so we can safely abort without any further action. 2400 */ 2401 static void ext4_orphan_cleanup(struct super_block *sb, 2402 struct ext4_super_block *es) 2403 { 2404 unsigned int s_flags = sb->s_flags; 2405 int ret, nr_orphans = 0, nr_truncates = 0; 2406 #ifdef CONFIG_QUOTA 2407 int i; 2408 #endif 2409 if (!es->s_last_orphan) { 2410 jbd_debug(4, "no orphan inodes to clean up\n"); 2411 return; 2412 } 2413 2414 if (bdev_read_only(sb->s_bdev)) { 2415 ext4_msg(sb, KERN_ERR, "write access " 2416 "unavailable, skipping orphan cleanup"); 2417 return; 2418 } 2419 2420 /* Check if feature set would not allow a r/w mount */ 2421 if (!ext4_feature_set_ok(sb, 0)) { 2422 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2423 "unknown ROCOMPAT features"); 2424 return; 2425 } 2426 2427 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2428 /* don't clear list on RO mount w/ errors */ 2429 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2430 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2431 "clearing orphan list.\n"); 2432 es->s_last_orphan = 0; 2433 } 2434 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2435 return; 2436 } 2437 2438 if (s_flags & MS_RDONLY) { 2439 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2440 sb->s_flags &= ~MS_RDONLY; 2441 } 2442 #ifdef CONFIG_QUOTA 2443 /* Needed for iput() to work correctly and not trash data */ 2444 sb->s_flags |= MS_ACTIVE; 2445 /* Turn on quotas so that they are updated correctly */ 2446 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2447 if (EXT4_SB(sb)->s_qf_names[i]) { 2448 int ret = ext4_quota_on_mount(sb, i); 2449 if (ret < 0) 2450 ext4_msg(sb, KERN_ERR, 2451 "Cannot turn on journaled " 2452 "quota: error %d", ret); 2453 } 2454 } 2455 #endif 2456 2457 while (es->s_last_orphan) { 2458 struct inode *inode; 2459 2460 /* 2461 * We may have encountered an error during cleanup; if 2462 * so, skip the rest. 2463 */ 2464 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2465 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2466 es->s_last_orphan = 0; 2467 break; 2468 } 2469 2470 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2471 if (IS_ERR(inode)) { 2472 es->s_last_orphan = 0; 2473 break; 2474 } 2475 2476 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2477 dquot_initialize(inode); 2478 if (inode->i_nlink) { 2479 if (test_opt(sb, DEBUG)) 2480 ext4_msg(sb, KERN_DEBUG, 2481 "%s: truncating inode %lu to %lld bytes", 2482 __func__, inode->i_ino, inode->i_size); 2483 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2484 inode->i_ino, inode->i_size); 2485 inode_lock(inode); 2486 truncate_inode_pages(inode->i_mapping, inode->i_size); 2487 ret = ext4_truncate(inode); 2488 if (ret) 2489 ext4_std_error(inode->i_sb, ret); 2490 inode_unlock(inode); 2491 nr_truncates++; 2492 } else { 2493 if (test_opt(sb, DEBUG)) 2494 ext4_msg(sb, KERN_DEBUG, 2495 "%s: deleting unreferenced inode %lu", 2496 __func__, inode->i_ino); 2497 jbd_debug(2, "deleting unreferenced inode %lu\n", 2498 inode->i_ino); 2499 nr_orphans++; 2500 } 2501 iput(inode); /* The delete magic happens here! */ 2502 } 2503 2504 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2505 2506 if (nr_orphans) 2507 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2508 PLURAL(nr_orphans)); 2509 if (nr_truncates) 2510 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2511 PLURAL(nr_truncates)); 2512 #ifdef CONFIG_QUOTA 2513 /* Turn quotas off */ 2514 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2515 if (sb_dqopt(sb)->files[i]) 2516 dquot_quota_off(sb, i); 2517 } 2518 #endif 2519 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2520 } 2521 2522 /* 2523 * Maximal extent format file size. 2524 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2525 * extent format containers, within a sector_t, and within i_blocks 2526 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2527 * so that won't be a limiting factor. 2528 * 2529 * However there is other limiting factor. We do store extents in the form 2530 * of starting block and length, hence the resulting length of the extent 2531 * covering maximum file size must fit into on-disk format containers as 2532 * well. Given that length is always by 1 unit bigger than max unit (because 2533 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2534 * 2535 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2536 */ 2537 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2538 { 2539 loff_t res; 2540 loff_t upper_limit = MAX_LFS_FILESIZE; 2541 2542 /* small i_blocks in vfs inode? */ 2543 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2544 /* 2545 * CONFIG_LBDAF is not enabled implies the inode 2546 * i_block represent total blocks in 512 bytes 2547 * 32 == size of vfs inode i_blocks * 8 2548 */ 2549 upper_limit = (1LL << 32) - 1; 2550 2551 /* total blocks in file system block size */ 2552 upper_limit >>= (blkbits - 9); 2553 upper_limit <<= blkbits; 2554 } 2555 2556 /* 2557 * 32-bit extent-start container, ee_block. We lower the maxbytes 2558 * by one fs block, so ee_len can cover the extent of maximum file 2559 * size 2560 */ 2561 res = (1LL << 32) - 1; 2562 res <<= blkbits; 2563 2564 /* Sanity check against vm- & vfs- imposed limits */ 2565 if (res > upper_limit) 2566 res = upper_limit; 2567 2568 return res; 2569 } 2570 2571 /* 2572 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2573 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2574 * We need to be 1 filesystem block less than the 2^48 sector limit. 2575 */ 2576 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2577 { 2578 loff_t res = EXT4_NDIR_BLOCKS; 2579 int meta_blocks; 2580 loff_t upper_limit; 2581 /* This is calculated to be the largest file size for a dense, block 2582 * mapped file such that the file's total number of 512-byte sectors, 2583 * including data and all indirect blocks, does not exceed (2^48 - 1). 2584 * 2585 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2586 * number of 512-byte sectors of the file. 2587 */ 2588 2589 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2590 /* 2591 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2592 * the inode i_block field represents total file blocks in 2593 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2594 */ 2595 upper_limit = (1LL << 32) - 1; 2596 2597 /* total blocks in file system block size */ 2598 upper_limit >>= (bits - 9); 2599 2600 } else { 2601 /* 2602 * We use 48 bit ext4_inode i_blocks 2603 * With EXT4_HUGE_FILE_FL set the i_blocks 2604 * represent total number of blocks in 2605 * file system block size 2606 */ 2607 upper_limit = (1LL << 48) - 1; 2608 2609 } 2610 2611 /* indirect blocks */ 2612 meta_blocks = 1; 2613 /* double indirect blocks */ 2614 meta_blocks += 1 + (1LL << (bits-2)); 2615 /* tripple indirect blocks */ 2616 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2617 2618 upper_limit -= meta_blocks; 2619 upper_limit <<= bits; 2620 2621 res += 1LL << (bits-2); 2622 res += 1LL << (2*(bits-2)); 2623 res += 1LL << (3*(bits-2)); 2624 res <<= bits; 2625 if (res > upper_limit) 2626 res = upper_limit; 2627 2628 if (res > MAX_LFS_FILESIZE) 2629 res = MAX_LFS_FILESIZE; 2630 2631 return res; 2632 } 2633 2634 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2635 ext4_fsblk_t logical_sb_block, int nr) 2636 { 2637 struct ext4_sb_info *sbi = EXT4_SB(sb); 2638 ext4_group_t bg, first_meta_bg; 2639 int has_super = 0; 2640 2641 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2642 2643 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2644 return logical_sb_block + nr + 1; 2645 bg = sbi->s_desc_per_block * nr; 2646 if (ext4_bg_has_super(sb, bg)) 2647 has_super = 1; 2648 2649 /* 2650 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2651 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2652 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2653 * compensate. 2654 */ 2655 if (sb->s_blocksize == 1024 && nr == 0 && 2656 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2657 has_super++; 2658 2659 return (has_super + ext4_group_first_block_no(sb, bg)); 2660 } 2661 2662 /** 2663 * ext4_get_stripe_size: Get the stripe size. 2664 * @sbi: In memory super block info 2665 * 2666 * If we have specified it via mount option, then 2667 * use the mount option value. If the value specified at mount time is 2668 * greater than the blocks per group use the super block value. 2669 * If the super block value is greater than blocks per group return 0. 2670 * Allocator needs it be less than blocks per group. 2671 * 2672 */ 2673 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2674 { 2675 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2676 unsigned long stripe_width = 2677 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2678 int ret; 2679 2680 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2681 ret = sbi->s_stripe; 2682 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2683 ret = stripe_width; 2684 else if (stride && stride <= sbi->s_blocks_per_group) 2685 ret = stride; 2686 else 2687 ret = 0; 2688 2689 /* 2690 * If the stripe width is 1, this makes no sense and 2691 * we set it to 0 to turn off stripe handling code. 2692 */ 2693 if (ret <= 1) 2694 ret = 0; 2695 2696 return ret; 2697 } 2698 2699 /* 2700 * Check whether this filesystem can be mounted based on 2701 * the features present and the RDONLY/RDWR mount requested. 2702 * Returns 1 if this filesystem can be mounted as requested, 2703 * 0 if it cannot be. 2704 */ 2705 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2706 { 2707 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2708 ext4_msg(sb, KERN_ERR, 2709 "Couldn't mount because of " 2710 "unsupported optional features (%x)", 2711 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2712 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2713 return 0; 2714 } 2715 2716 if (readonly) 2717 return 1; 2718 2719 if (ext4_has_feature_readonly(sb)) { 2720 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2721 sb->s_flags |= MS_RDONLY; 2722 return 1; 2723 } 2724 2725 /* Check that feature set is OK for a read-write mount */ 2726 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2727 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2728 "unsupported optional features (%x)", 2729 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2730 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2731 return 0; 2732 } 2733 /* 2734 * Large file size enabled file system can only be mounted 2735 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2736 */ 2737 if (ext4_has_feature_huge_file(sb)) { 2738 if (sizeof(blkcnt_t) < sizeof(u64)) { 2739 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2740 "cannot be mounted RDWR without " 2741 "CONFIG_LBDAF"); 2742 return 0; 2743 } 2744 } 2745 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2746 ext4_msg(sb, KERN_ERR, 2747 "Can't support bigalloc feature without " 2748 "extents feature\n"); 2749 return 0; 2750 } 2751 2752 #ifndef CONFIG_QUOTA 2753 if (ext4_has_feature_quota(sb) && !readonly) { 2754 ext4_msg(sb, KERN_ERR, 2755 "Filesystem with quota feature cannot be mounted RDWR " 2756 "without CONFIG_QUOTA"); 2757 return 0; 2758 } 2759 if (ext4_has_feature_project(sb) && !readonly) { 2760 ext4_msg(sb, KERN_ERR, 2761 "Filesystem with project quota feature cannot be mounted RDWR " 2762 "without CONFIG_QUOTA"); 2763 return 0; 2764 } 2765 #endif /* CONFIG_QUOTA */ 2766 return 1; 2767 } 2768 2769 /* 2770 * This function is called once a day if we have errors logged 2771 * on the file system 2772 */ 2773 static void print_daily_error_info(unsigned long arg) 2774 { 2775 struct super_block *sb = (struct super_block *) arg; 2776 struct ext4_sb_info *sbi; 2777 struct ext4_super_block *es; 2778 2779 sbi = EXT4_SB(sb); 2780 es = sbi->s_es; 2781 2782 if (es->s_error_count) 2783 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2784 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2785 le32_to_cpu(es->s_error_count)); 2786 if (es->s_first_error_time) { 2787 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2788 sb->s_id, le32_to_cpu(es->s_first_error_time), 2789 (int) sizeof(es->s_first_error_func), 2790 es->s_first_error_func, 2791 le32_to_cpu(es->s_first_error_line)); 2792 if (es->s_first_error_ino) 2793 printk(KERN_CONT ": inode %u", 2794 le32_to_cpu(es->s_first_error_ino)); 2795 if (es->s_first_error_block) 2796 printk(KERN_CONT ": block %llu", (unsigned long long) 2797 le64_to_cpu(es->s_first_error_block)); 2798 printk(KERN_CONT "\n"); 2799 } 2800 if (es->s_last_error_time) { 2801 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2802 sb->s_id, le32_to_cpu(es->s_last_error_time), 2803 (int) sizeof(es->s_last_error_func), 2804 es->s_last_error_func, 2805 le32_to_cpu(es->s_last_error_line)); 2806 if (es->s_last_error_ino) 2807 printk(KERN_CONT ": inode %u", 2808 le32_to_cpu(es->s_last_error_ino)); 2809 if (es->s_last_error_block) 2810 printk(KERN_CONT ": block %llu", (unsigned long long) 2811 le64_to_cpu(es->s_last_error_block)); 2812 printk(KERN_CONT "\n"); 2813 } 2814 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2815 } 2816 2817 /* Find next suitable group and run ext4_init_inode_table */ 2818 static int ext4_run_li_request(struct ext4_li_request *elr) 2819 { 2820 struct ext4_group_desc *gdp = NULL; 2821 ext4_group_t group, ngroups; 2822 struct super_block *sb; 2823 unsigned long timeout = 0; 2824 int ret = 0; 2825 2826 sb = elr->lr_super; 2827 ngroups = EXT4_SB(sb)->s_groups_count; 2828 2829 for (group = elr->lr_next_group; group < ngroups; group++) { 2830 gdp = ext4_get_group_desc(sb, group, NULL); 2831 if (!gdp) { 2832 ret = 1; 2833 break; 2834 } 2835 2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2837 break; 2838 } 2839 2840 if (group >= ngroups) 2841 ret = 1; 2842 2843 if (!ret) { 2844 timeout = jiffies; 2845 ret = ext4_init_inode_table(sb, group, 2846 elr->lr_timeout ? 0 : 1); 2847 if (elr->lr_timeout == 0) { 2848 timeout = (jiffies - timeout) * 2849 elr->lr_sbi->s_li_wait_mult; 2850 elr->lr_timeout = timeout; 2851 } 2852 elr->lr_next_sched = jiffies + elr->lr_timeout; 2853 elr->lr_next_group = group + 1; 2854 } 2855 return ret; 2856 } 2857 2858 /* 2859 * Remove lr_request from the list_request and free the 2860 * request structure. Should be called with li_list_mtx held 2861 */ 2862 static void ext4_remove_li_request(struct ext4_li_request *elr) 2863 { 2864 struct ext4_sb_info *sbi; 2865 2866 if (!elr) 2867 return; 2868 2869 sbi = elr->lr_sbi; 2870 2871 list_del(&elr->lr_request); 2872 sbi->s_li_request = NULL; 2873 kfree(elr); 2874 } 2875 2876 static void ext4_unregister_li_request(struct super_block *sb) 2877 { 2878 mutex_lock(&ext4_li_mtx); 2879 if (!ext4_li_info) { 2880 mutex_unlock(&ext4_li_mtx); 2881 return; 2882 } 2883 2884 mutex_lock(&ext4_li_info->li_list_mtx); 2885 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2886 mutex_unlock(&ext4_li_info->li_list_mtx); 2887 mutex_unlock(&ext4_li_mtx); 2888 } 2889 2890 static struct task_struct *ext4_lazyinit_task; 2891 2892 /* 2893 * This is the function where ext4lazyinit thread lives. It walks 2894 * through the request list searching for next scheduled filesystem. 2895 * When such a fs is found, run the lazy initialization request 2896 * (ext4_rn_li_request) and keep track of the time spend in this 2897 * function. Based on that time we compute next schedule time of 2898 * the request. When walking through the list is complete, compute 2899 * next waking time and put itself into sleep. 2900 */ 2901 static int ext4_lazyinit_thread(void *arg) 2902 { 2903 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2904 struct list_head *pos, *n; 2905 struct ext4_li_request *elr; 2906 unsigned long next_wakeup, cur; 2907 2908 BUG_ON(NULL == eli); 2909 2910 cont_thread: 2911 while (true) { 2912 next_wakeup = MAX_JIFFY_OFFSET; 2913 2914 mutex_lock(&eli->li_list_mtx); 2915 if (list_empty(&eli->li_request_list)) { 2916 mutex_unlock(&eli->li_list_mtx); 2917 goto exit_thread; 2918 } 2919 list_for_each_safe(pos, n, &eli->li_request_list) { 2920 int err = 0; 2921 int progress = 0; 2922 elr = list_entry(pos, struct ext4_li_request, 2923 lr_request); 2924 2925 if (time_before(jiffies, elr->lr_next_sched)) { 2926 if (time_before(elr->lr_next_sched, next_wakeup)) 2927 next_wakeup = elr->lr_next_sched; 2928 continue; 2929 } 2930 if (down_read_trylock(&elr->lr_super->s_umount)) { 2931 if (sb_start_write_trylock(elr->lr_super)) { 2932 progress = 1; 2933 /* 2934 * We hold sb->s_umount, sb can not 2935 * be removed from the list, it is 2936 * now safe to drop li_list_mtx 2937 */ 2938 mutex_unlock(&eli->li_list_mtx); 2939 err = ext4_run_li_request(elr); 2940 sb_end_write(elr->lr_super); 2941 mutex_lock(&eli->li_list_mtx); 2942 n = pos->next; 2943 } 2944 up_read((&elr->lr_super->s_umount)); 2945 } 2946 /* error, remove the lazy_init job */ 2947 if (err) { 2948 ext4_remove_li_request(elr); 2949 continue; 2950 } 2951 if (!progress) { 2952 elr->lr_next_sched = jiffies + 2953 (prandom_u32() 2954 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2955 } 2956 if (time_before(elr->lr_next_sched, next_wakeup)) 2957 next_wakeup = elr->lr_next_sched; 2958 } 2959 mutex_unlock(&eli->li_list_mtx); 2960 2961 try_to_freeze(); 2962 2963 cur = jiffies; 2964 if ((time_after_eq(cur, next_wakeup)) || 2965 (MAX_JIFFY_OFFSET == next_wakeup)) { 2966 cond_resched(); 2967 continue; 2968 } 2969 2970 schedule_timeout_interruptible(next_wakeup - cur); 2971 2972 if (kthread_should_stop()) { 2973 ext4_clear_request_list(); 2974 goto exit_thread; 2975 } 2976 } 2977 2978 exit_thread: 2979 /* 2980 * It looks like the request list is empty, but we need 2981 * to check it under the li_list_mtx lock, to prevent any 2982 * additions into it, and of course we should lock ext4_li_mtx 2983 * to atomically free the list and ext4_li_info, because at 2984 * this point another ext4 filesystem could be registering 2985 * new one. 2986 */ 2987 mutex_lock(&ext4_li_mtx); 2988 mutex_lock(&eli->li_list_mtx); 2989 if (!list_empty(&eli->li_request_list)) { 2990 mutex_unlock(&eli->li_list_mtx); 2991 mutex_unlock(&ext4_li_mtx); 2992 goto cont_thread; 2993 } 2994 mutex_unlock(&eli->li_list_mtx); 2995 kfree(ext4_li_info); 2996 ext4_li_info = NULL; 2997 mutex_unlock(&ext4_li_mtx); 2998 2999 return 0; 3000 } 3001 3002 static void ext4_clear_request_list(void) 3003 { 3004 struct list_head *pos, *n; 3005 struct ext4_li_request *elr; 3006 3007 mutex_lock(&ext4_li_info->li_list_mtx); 3008 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3009 elr = list_entry(pos, struct ext4_li_request, 3010 lr_request); 3011 ext4_remove_li_request(elr); 3012 } 3013 mutex_unlock(&ext4_li_info->li_list_mtx); 3014 } 3015 3016 static int ext4_run_lazyinit_thread(void) 3017 { 3018 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3019 ext4_li_info, "ext4lazyinit"); 3020 if (IS_ERR(ext4_lazyinit_task)) { 3021 int err = PTR_ERR(ext4_lazyinit_task); 3022 ext4_clear_request_list(); 3023 kfree(ext4_li_info); 3024 ext4_li_info = NULL; 3025 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3026 "initialization thread\n", 3027 err); 3028 return err; 3029 } 3030 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3031 return 0; 3032 } 3033 3034 /* 3035 * Check whether it make sense to run itable init. thread or not. 3036 * If there is at least one uninitialized inode table, return 3037 * corresponding group number, else the loop goes through all 3038 * groups and return total number of groups. 3039 */ 3040 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3041 { 3042 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3043 struct ext4_group_desc *gdp = NULL; 3044 3045 for (group = 0; group < ngroups; group++) { 3046 gdp = ext4_get_group_desc(sb, group, NULL); 3047 if (!gdp) 3048 continue; 3049 3050 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3051 break; 3052 } 3053 3054 return group; 3055 } 3056 3057 static int ext4_li_info_new(void) 3058 { 3059 struct ext4_lazy_init *eli = NULL; 3060 3061 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3062 if (!eli) 3063 return -ENOMEM; 3064 3065 INIT_LIST_HEAD(&eli->li_request_list); 3066 mutex_init(&eli->li_list_mtx); 3067 3068 eli->li_state |= EXT4_LAZYINIT_QUIT; 3069 3070 ext4_li_info = eli; 3071 3072 return 0; 3073 } 3074 3075 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3076 ext4_group_t start) 3077 { 3078 struct ext4_sb_info *sbi = EXT4_SB(sb); 3079 struct ext4_li_request *elr; 3080 3081 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3082 if (!elr) 3083 return NULL; 3084 3085 elr->lr_super = sb; 3086 elr->lr_sbi = sbi; 3087 elr->lr_next_group = start; 3088 3089 /* 3090 * Randomize first schedule time of the request to 3091 * spread the inode table initialization requests 3092 * better. 3093 */ 3094 elr->lr_next_sched = jiffies + (prandom_u32() % 3095 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3096 return elr; 3097 } 3098 3099 int ext4_register_li_request(struct super_block *sb, 3100 ext4_group_t first_not_zeroed) 3101 { 3102 struct ext4_sb_info *sbi = EXT4_SB(sb); 3103 struct ext4_li_request *elr = NULL; 3104 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3105 int ret = 0; 3106 3107 mutex_lock(&ext4_li_mtx); 3108 if (sbi->s_li_request != NULL) { 3109 /* 3110 * Reset timeout so it can be computed again, because 3111 * s_li_wait_mult might have changed. 3112 */ 3113 sbi->s_li_request->lr_timeout = 0; 3114 goto out; 3115 } 3116 3117 if (first_not_zeroed == ngroups || 3118 (sb->s_flags & MS_RDONLY) || 3119 !test_opt(sb, INIT_INODE_TABLE)) 3120 goto out; 3121 3122 elr = ext4_li_request_new(sb, first_not_zeroed); 3123 if (!elr) { 3124 ret = -ENOMEM; 3125 goto out; 3126 } 3127 3128 if (NULL == ext4_li_info) { 3129 ret = ext4_li_info_new(); 3130 if (ret) 3131 goto out; 3132 } 3133 3134 mutex_lock(&ext4_li_info->li_list_mtx); 3135 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3136 mutex_unlock(&ext4_li_info->li_list_mtx); 3137 3138 sbi->s_li_request = elr; 3139 /* 3140 * set elr to NULL here since it has been inserted to 3141 * the request_list and the removal and free of it is 3142 * handled by ext4_clear_request_list from now on. 3143 */ 3144 elr = NULL; 3145 3146 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3147 ret = ext4_run_lazyinit_thread(); 3148 if (ret) 3149 goto out; 3150 } 3151 out: 3152 mutex_unlock(&ext4_li_mtx); 3153 if (ret) 3154 kfree(elr); 3155 return ret; 3156 } 3157 3158 /* 3159 * We do not need to lock anything since this is called on 3160 * module unload. 3161 */ 3162 static void ext4_destroy_lazyinit_thread(void) 3163 { 3164 /* 3165 * If thread exited earlier 3166 * there's nothing to be done. 3167 */ 3168 if (!ext4_li_info || !ext4_lazyinit_task) 3169 return; 3170 3171 kthread_stop(ext4_lazyinit_task); 3172 } 3173 3174 static int set_journal_csum_feature_set(struct super_block *sb) 3175 { 3176 int ret = 1; 3177 int compat, incompat; 3178 struct ext4_sb_info *sbi = EXT4_SB(sb); 3179 3180 if (ext4_has_metadata_csum(sb)) { 3181 /* journal checksum v3 */ 3182 compat = 0; 3183 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3184 } else { 3185 /* journal checksum v1 */ 3186 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3187 incompat = 0; 3188 } 3189 3190 jbd2_journal_clear_features(sbi->s_journal, 3191 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3192 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3193 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3194 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3195 ret = jbd2_journal_set_features(sbi->s_journal, 3196 compat, 0, 3197 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3198 incompat); 3199 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3200 ret = jbd2_journal_set_features(sbi->s_journal, 3201 compat, 0, 3202 incompat); 3203 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3204 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3205 } else { 3206 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3207 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3208 } 3209 3210 return ret; 3211 } 3212 3213 /* 3214 * Note: calculating the overhead so we can be compatible with 3215 * historical BSD practice is quite difficult in the face of 3216 * clusters/bigalloc. This is because multiple metadata blocks from 3217 * different block group can end up in the same allocation cluster. 3218 * Calculating the exact overhead in the face of clustered allocation 3219 * requires either O(all block bitmaps) in memory or O(number of block 3220 * groups**2) in time. We will still calculate the superblock for 3221 * older file systems --- and if we come across with a bigalloc file 3222 * system with zero in s_overhead_clusters the estimate will be close to 3223 * correct especially for very large cluster sizes --- but for newer 3224 * file systems, it's better to calculate this figure once at mkfs 3225 * time, and store it in the superblock. If the superblock value is 3226 * present (even for non-bigalloc file systems), we will use it. 3227 */ 3228 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3229 char *buf) 3230 { 3231 struct ext4_sb_info *sbi = EXT4_SB(sb); 3232 struct ext4_group_desc *gdp; 3233 ext4_fsblk_t first_block, last_block, b; 3234 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3235 int s, j, count = 0; 3236 3237 if (!ext4_has_feature_bigalloc(sb)) 3238 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3239 sbi->s_itb_per_group + 2); 3240 3241 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3242 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3243 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3244 for (i = 0; i < ngroups; i++) { 3245 gdp = ext4_get_group_desc(sb, i, NULL); 3246 b = ext4_block_bitmap(sb, gdp); 3247 if (b >= first_block && b <= last_block) { 3248 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3249 count++; 3250 } 3251 b = ext4_inode_bitmap(sb, gdp); 3252 if (b >= first_block && b <= last_block) { 3253 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3254 count++; 3255 } 3256 b = ext4_inode_table(sb, gdp); 3257 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3258 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3259 int c = EXT4_B2C(sbi, b - first_block); 3260 ext4_set_bit(c, buf); 3261 count++; 3262 } 3263 if (i != grp) 3264 continue; 3265 s = 0; 3266 if (ext4_bg_has_super(sb, grp)) { 3267 ext4_set_bit(s++, buf); 3268 count++; 3269 } 3270 j = ext4_bg_num_gdb(sb, grp); 3271 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3272 ext4_error(sb, "Invalid number of block group " 3273 "descriptor blocks: %d", j); 3274 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3275 } 3276 count += j; 3277 for (; j > 0; j--) 3278 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3279 } 3280 if (!count) 3281 return 0; 3282 return EXT4_CLUSTERS_PER_GROUP(sb) - 3283 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3284 } 3285 3286 /* 3287 * Compute the overhead and stash it in sbi->s_overhead 3288 */ 3289 int ext4_calculate_overhead(struct super_block *sb) 3290 { 3291 struct ext4_sb_info *sbi = EXT4_SB(sb); 3292 struct ext4_super_block *es = sbi->s_es; 3293 struct inode *j_inode; 3294 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3295 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3296 ext4_fsblk_t overhead = 0; 3297 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3298 3299 if (!buf) 3300 return -ENOMEM; 3301 3302 /* 3303 * Compute the overhead (FS structures). This is constant 3304 * for a given filesystem unless the number of block groups 3305 * changes so we cache the previous value until it does. 3306 */ 3307 3308 /* 3309 * All of the blocks before first_data_block are overhead 3310 */ 3311 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3312 3313 /* 3314 * Add the overhead found in each block group 3315 */ 3316 for (i = 0; i < ngroups; i++) { 3317 int blks; 3318 3319 blks = count_overhead(sb, i, buf); 3320 overhead += blks; 3321 if (blks) 3322 memset(buf, 0, PAGE_SIZE); 3323 cond_resched(); 3324 } 3325 3326 /* 3327 * Add the internal journal blocks whether the journal has been 3328 * loaded or not 3329 */ 3330 if (sbi->s_journal && !sbi->journal_bdev) 3331 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3332 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3333 j_inode = ext4_get_journal_inode(sb, j_inum); 3334 if (j_inode) { 3335 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3336 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3337 iput(j_inode); 3338 } else { 3339 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3340 } 3341 } 3342 sbi->s_overhead = overhead; 3343 smp_wmb(); 3344 free_page((unsigned long) buf); 3345 return 0; 3346 } 3347 3348 static void ext4_set_resv_clusters(struct super_block *sb) 3349 { 3350 ext4_fsblk_t resv_clusters; 3351 struct ext4_sb_info *sbi = EXT4_SB(sb); 3352 3353 /* 3354 * There's no need to reserve anything when we aren't using extents. 3355 * The space estimates are exact, there are no unwritten extents, 3356 * hole punching doesn't need new metadata... This is needed especially 3357 * to keep ext2/3 backward compatibility. 3358 */ 3359 if (!ext4_has_feature_extents(sb)) 3360 return; 3361 /* 3362 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3363 * This should cover the situations where we can not afford to run 3364 * out of space like for example punch hole, or converting 3365 * unwritten extents in delalloc path. In most cases such 3366 * allocation would require 1, or 2 blocks, higher numbers are 3367 * very rare. 3368 */ 3369 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3370 sbi->s_cluster_bits); 3371 3372 do_div(resv_clusters, 50); 3373 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3374 3375 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3376 } 3377 3378 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3379 { 3380 char *orig_data = kstrdup(data, GFP_KERNEL); 3381 struct buffer_head *bh; 3382 struct ext4_super_block *es = NULL; 3383 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3384 ext4_fsblk_t block; 3385 ext4_fsblk_t sb_block = get_sb_block(&data); 3386 ext4_fsblk_t logical_sb_block; 3387 unsigned long offset = 0; 3388 unsigned long journal_devnum = 0; 3389 unsigned long def_mount_opts; 3390 struct inode *root; 3391 const char *descr; 3392 int ret = -ENOMEM; 3393 int blocksize, clustersize; 3394 unsigned int db_count; 3395 unsigned int i; 3396 int needs_recovery, has_huge_files, has_bigalloc; 3397 __u64 blocks_count; 3398 int err = 0; 3399 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3400 ext4_group_t first_not_zeroed; 3401 3402 if ((data && !orig_data) || !sbi) 3403 goto out_free_base; 3404 3405 sbi->s_blockgroup_lock = 3406 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3407 if (!sbi->s_blockgroup_lock) 3408 goto out_free_base; 3409 3410 sb->s_fs_info = sbi; 3411 sbi->s_sb = sb; 3412 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3413 sbi->s_sb_block = sb_block; 3414 if (sb->s_bdev->bd_part) 3415 sbi->s_sectors_written_start = 3416 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3417 3418 /* Cleanup superblock name */ 3419 strreplace(sb->s_id, '/', '!'); 3420 3421 /* -EINVAL is default */ 3422 ret = -EINVAL; 3423 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3424 if (!blocksize) { 3425 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3426 goto out_fail; 3427 } 3428 3429 /* 3430 * The ext4 superblock will not be buffer aligned for other than 1kB 3431 * block sizes. We need to calculate the offset from buffer start. 3432 */ 3433 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3434 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3435 offset = do_div(logical_sb_block, blocksize); 3436 } else { 3437 logical_sb_block = sb_block; 3438 } 3439 3440 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3441 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3442 goto out_fail; 3443 } 3444 /* 3445 * Note: s_es must be initialized as soon as possible because 3446 * some ext4 macro-instructions depend on its value 3447 */ 3448 es = (struct ext4_super_block *) (bh->b_data + offset); 3449 sbi->s_es = es; 3450 sb->s_magic = le16_to_cpu(es->s_magic); 3451 if (sb->s_magic != EXT4_SUPER_MAGIC) 3452 goto cantfind_ext4; 3453 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3454 3455 /* Warn if metadata_csum and gdt_csum are both set. */ 3456 if (ext4_has_feature_metadata_csum(sb) && 3457 ext4_has_feature_gdt_csum(sb)) 3458 ext4_warning(sb, "metadata_csum and uninit_bg are " 3459 "redundant flags; please run fsck."); 3460 3461 /* Check for a known checksum algorithm */ 3462 if (!ext4_verify_csum_type(sb, es)) { 3463 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3464 "unknown checksum algorithm."); 3465 silent = 1; 3466 goto cantfind_ext4; 3467 } 3468 3469 /* Load the checksum driver */ 3470 if (ext4_has_feature_metadata_csum(sb) || 3471 ext4_has_feature_ea_inode(sb)) { 3472 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3473 if (IS_ERR(sbi->s_chksum_driver)) { 3474 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3475 ret = PTR_ERR(sbi->s_chksum_driver); 3476 sbi->s_chksum_driver = NULL; 3477 goto failed_mount; 3478 } 3479 } 3480 3481 /* Check superblock checksum */ 3482 if (!ext4_superblock_csum_verify(sb, es)) { 3483 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3484 "invalid superblock checksum. Run e2fsck?"); 3485 silent = 1; 3486 ret = -EFSBADCRC; 3487 goto cantfind_ext4; 3488 } 3489 3490 /* Precompute checksum seed for all metadata */ 3491 if (ext4_has_feature_csum_seed(sb)) 3492 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3493 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3494 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3495 sizeof(es->s_uuid)); 3496 3497 /* Set defaults before we parse the mount options */ 3498 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3499 set_opt(sb, INIT_INODE_TABLE); 3500 if (def_mount_opts & EXT4_DEFM_DEBUG) 3501 set_opt(sb, DEBUG); 3502 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3503 set_opt(sb, GRPID); 3504 if (def_mount_opts & EXT4_DEFM_UID16) 3505 set_opt(sb, NO_UID32); 3506 /* xattr user namespace & acls are now defaulted on */ 3507 set_opt(sb, XATTR_USER); 3508 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3509 set_opt(sb, POSIX_ACL); 3510 #endif 3511 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3512 if (ext4_has_metadata_csum(sb)) 3513 set_opt(sb, JOURNAL_CHECKSUM); 3514 3515 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3516 set_opt(sb, JOURNAL_DATA); 3517 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3518 set_opt(sb, ORDERED_DATA); 3519 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3520 set_opt(sb, WRITEBACK_DATA); 3521 3522 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3523 set_opt(sb, ERRORS_PANIC); 3524 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3525 set_opt(sb, ERRORS_CONT); 3526 else 3527 set_opt(sb, ERRORS_RO); 3528 /* block_validity enabled by default; disable with noblock_validity */ 3529 set_opt(sb, BLOCK_VALIDITY); 3530 if (def_mount_opts & EXT4_DEFM_DISCARD) 3531 set_opt(sb, DISCARD); 3532 3533 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3534 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3535 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3536 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3537 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3538 3539 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3540 set_opt(sb, BARRIER); 3541 3542 /* 3543 * enable delayed allocation by default 3544 * Use -o nodelalloc to turn it off 3545 */ 3546 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3547 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3548 set_opt(sb, DELALLOC); 3549 3550 /* 3551 * set default s_li_wait_mult for lazyinit, for the case there is 3552 * no mount option specified. 3553 */ 3554 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3555 3556 if (sbi->s_es->s_mount_opts[0]) { 3557 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3558 sizeof(sbi->s_es->s_mount_opts), 3559 GFP_KERNEL); 3560 if (!s_mount_opts) 3561 goto failed_mount; 3562 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3563 &journal_ioprio, 0)) { 3564 ext4_msg(sb, KERN_WARNING, 3565 "failed to parse options in superblock: %s", 3566 s_mount_opts); 3567 } 3568 kfree(s_mount_opts); 3569 } 3570 sbi->s_def_mount_opt = sbi->s_mount_opt; 3571 if (!parse_options((char *) data, sb, &journal_devnum, 3572 &journal_ioprio, 0)) 3573 goto failed_mount; 3574 3575 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3576 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3577 "with data=journal disables delayed " 3578 "allocation and O_DIRECT support!\n"); 3579 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3580 ext4_msg(sb, KERN_ERR, "can't mount with " 3581 "both data=journal and delalloc"); 3582 goto failed_mount; 3583 } 3584 if (test_opt(sb, DIOREAD_NOLOCK)) { 3585 ext4_msg(sb, KERN_ERR, "can't mount with " 3586 "both data=journal and dioread_nolock"); 3587 goto failed_mount; 3588 } 3589 if (test_opt(sb, DAX)) { 3590 ext4_msg(sb, KERN_ERR, "can't mount with " 3591 "both data=journal and dax"); 3592 goto failed_mount; 3593 } 3594 if (ext4_has_feature_encrypt(sb)) { 3595 ext4_msg(sb, KERN_WARNING, 3596 "encrypted files will use data=ordered " 3597 "instead of data journaling mode"); 3598 } 3599 if (test_opt(sb, DELALLOC)) 3600 clear_opt(sb, DELALLOC); 3601 } else { 3602 sb->s_iflags |= SB_I_CGROUPWB; 3603 } 3604 3605 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3606 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3607 3608 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3609 (ext4_has_compat_features(sb) || 3610 ext4_has_ro_compat_features(sb) || 3611 ext4_has_incompat_features(sb))) 3612 ext4_msg(sb, KERN_WARNING, 3613 "feature flags set on rev 0 fs, " 3614 "running e2fsck is recommended"); 3615 3616 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3617 set_opt2(sb, HURD_COMPAT); 3618 if (ext4_has_feature_64bit(sb)) { 3619 ext4_msg(sb, KERN_ERR, 3620 "The Hurd can't support 64-bit file systems"); 3621 goto failed_mount; 3622 } 3623 3624 /* 3625 * ea_inode feature uses l_i_version field which is not 3626 * available in HURD_COMPAT mode. 3627 */ 3628 if (ext4_has_feature_ea_inode(sb)) { 3629 ext4_msg(sb, KERN_ERR, 3630 "ea_inode feature is not supported for Hurd"); 3631 goto failed_mount; 3632 } 3633 } 3634 3635 if (IS_EXT2_SB(sb)) { 3636 if (ext2_feature_set_ok(sb)) 3637 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3638 "using the ext4 subsystem"); 3639 else { 3640 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3641 "to feature incompatibilities"); 3642 goto failed_mount; 3643 } 3644 } 3645 3646 if (IS_EXT3_SB(sb)) { 3647 if (ext3_feature_set_ok(sb)) 3648 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3649 "using the ext4 subsystem"); 3650 else { 3651 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3652 "to feature incompatibilities"); 3653 goto failed_mount; 3654 } 3655 } 3656 3657 /* 3658 * Check feature flags regardless of the revision level, since we 3659 * previously didn't change the revision level when setting the flags, 3660 * so there is a chance incompat flags are set on a rev 0 filesystem. 3661 */ 3662 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3663 goto failed_mount; 3664 3665 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3666 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3667 blocksize > EXT4_MAX_BLOCK_SIZE) { 3668 ext4_msg(sb, KERN_ERR, 3669 "Unsupported filesystem blocksize %d (%d log_block_size)", 3670 blocksize, le32_to_cpu(es->s_log_block_size)); 3671 goto failed_mount; 3672 } 3673 if (le32_to_cpu(es->s_log_block_size) > 3674 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3675 ext4_msg(sb, KERN_ERR, 3676 "Invalid log block size: %u", 3677 le32_to_cpu(es->s_log_block_size)); 3678 goto failed_mount; 3679 } 3680 3681 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3682 ext4_msg(sb, KERN_ERR, 3683 "Number of reserved GDT blocks insanely large: %d", 3684 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3685 goto failed_mount; 3686 } 3687 3688 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3689 err = bdev_dax_supported(sb, blocksize); 3690 if (err) 3691 goto failed_mount; 3692 } 3693 3694 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3695 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3696 es->s_encryption_level); 3697 goto failed_mount; 3698 } 3699 3700 if (sb->s_blocksize != blocksize) { 3701 /* Validate the filesystem blocksize */ 3702 if (!sb_set_blocksize(sb, blocksize)) { 3703 ext4_msg(sb, KERN_ERR, "bad block size %d", 3704 blocksize); 3705 goto failed_mount; 3706 } 3707 3708 brelse(bh); 3709 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3710 offset = do_div(logical_sb_block, blocksize); 3711 bh = sb_bread_unmovable(sb, logical_sb_block); 3712 if (!bh) { 3713 ext4_msg(sb, KERN_ERR, 3714 "Can't read superblock on 2nd try"); 3715 goto failed_mount; 3716 } 3717 es = (struct ext4_super_block *)(bh->b_data + offset); 3718 sbi->s_es = es; 3719 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3720 ext4_msg(sb, KERN_ERR, 3721 "Magic mismatch, very weird!"); 3722 goto failed_mount; 3723 } 3724 } 3725 3726 has_huge_files = ext4_has_feature_huge_file(sb); 3727 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3728 has_huge_files); 3729 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3730 3731 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3732 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3733 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3734 } else { 3735 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3736 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3737 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3738 (!is_power_of_2(sbi->s_inode_size)) || 3739 (sbi->s_inode_size > blocksize)) { 3740 ext4_msg(sb, KERN_ERR, 3741 "unsupported inode size: %d", 3742 sbi->s_inode_size); 3743 goto failed_mount; 3744 } 3745 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3746 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3747 } 3748 3749 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3750 if (ext4_has_feature_64bit(sb)) { 3751 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3752 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3753 !is_power_of_2(sbi->s_desc_size)) { 3754 ext4_msg(sb, KERN_ERR, 3755 "unsupported descriptor size %lu", 3756 sbi->s_desc_size); 3757 goto failed_mount; 3758 } 3759 } else 3760 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3761 3762 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3763 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3764 3765 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3766 if (sbi->s_inodes_per_block == 0) 3767 goto cantfind_ext4; 3768 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3769 sbi->s_inodes_per_group > blocksize * 8) { 3770 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3771 sbi->s_blocks_per_group); 3772 goto failed_mount; 3773 } 3774 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3775 sbi->s_inodes_per_block; 3776 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3777 sbi->s_sbh = bh; 3778 sbi->s_mount_state = le16_to_cpu(es->s_state); 3779 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3780 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3781 3782 for (i = 0; i < 4; i++) 3783 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3784 sbi->s_def_hash_version = es->s_def_hash_version; 3785 if (ext4_has_feature_dir_index(sb)) { 3786 i = le32_to_cpu(es->s_flags); 3787 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3788 sbi->s_hash_unsigned = 3; 3789 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3790 #ifdef __CHAR_UNSIGNED__ 3791 if (!(sb->s_flags & MS_RDONLY)) 3792 es->s_flags |= 3793 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3794 sbi->s_hash_unsigned = 3; 3795 #else 3796 if (!(sb->s_flags & MS_RDONLY)) 3797 es->s_flags |= 3798 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3799 #endif 3800 } 3801 } 3802 3803 /* Handle clustersize */ 3804 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3805 has_bigalloc = ext4_has_feature_bigalloc(sb); 3806 if (has_bigalloc) { 3807 if (clustersize < blocksize) { 3808 ext4_msg(sb, KERN_ERR, 3809 "cluster size (%d) smaller than " 3810 "block size (%d)", clustersize, blocksize); 3811 goto failed_mount; 3812 } 3813 if (le32_to_cpu(es->s_log_cluster_size) > 3814 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3815 ext4_msg(sb, KERN_ERR, 3816 "Invalid log cluster size: %u", 3817 le32_to_cpu(es->s_log_cluster_size)); 3818 goto failed_mount; 3819 } 3820 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3821 le32_to_cpu(es->s_log_block_size); 3822 sbi->s_clusters_per_group = 3823 le32_to_cpu(es->s_clusters_per_group); 3824 if (sbi->s_clusters_per_group > blocksize * 8) { 3825 ext4_msg(sb, KERN_ERR, 3826 "#clusters per group too big: %lu", 3827 sbi->s_clusters_per_group); 3828 goto failed_mount; 3829 } 3830 if (sbi->s_blocks_per_group != 3831 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3832 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3833 "clusters per group (%lu) inconsistent", 3834 sbi->s_blocks_per_group, 3835 sbi->s_clusters_per_group); 3836 goto failed_mount; 3837 } 3838 } else { 3839 if (clustersize != blocksize) { 3840 ext4_warning(sb, "fragment/cluster size (%d) != " 3841 "block size (%d)", clustersize, 3842 blocksize); 3843 clustersize = blocksize; 3844 } 3845 if (sbi->s_blocks_per_group > blocksize * 8) { 3846 ext4_msg(sb, KERN_ERR, 3847 "#blocks per group too big: %lu", 3848 sbi->s_blocks_per_group); 3849 goto failed_mount; 3850 } 3851 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3852 sbi->s_cluster_bits = 0; 3853 } 3854 sbi->s_cluster_ratio = clustersize / blocksize; 3855 3856 /* Do we have standard group size of clustersize * 8 blocks ? */ 3857 if (sbi->s_blocks_per_group == clustersize << 3) 3858 set_opt2(sb, STD_GROUP_SIZE); 3859 3860 /* 3861 * Test whether we have more sectors than will fit in sector_t, 3862 * and whether the max offset is addressable by the page cache. 3863 */ 3864 err = generic_check_addressable(sb->s_blocksize_bits, 3865 ext4_blocks_count(es)); 3866 if (err) { 3867 ext4_msg(sb, KERN_ERR, "filesystem" 3868 " too large to mount safely on this system"); 3869 if (sizeof(sector_t) < 8) 3870 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3871 goto failed_mount; 3872 } 3873 3874 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3875 goto cantfind_ext4; 3876 3877 /* check blocks count against device size */ 3878 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3879 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3880 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3881 "exceeds size of device (%llu blocks)", 3882 ext4_blocks_count(es), blocks_count); 3883 goto failed_mount; 3884 } 3885 3886 /* 3887 * It makes no sense for the first data block to be beyond the end 3888 * of the filesystem. 3889 */ 3890 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3891 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3892 "block %u is beyond end of filesystem (%llu)", 3893 le32_to_cpu(es->s_first_data_block), 3894 ext4_blocks_count(es)); 3895 goto failed_mount; 3896 } 3897 blocks_count = (ext4_blocks_count(es) - 3898 le32_to_cpu(es->s_first_data_block) + 3899 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3900 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3901 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3902 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3903 "(block count %llu, first data block %u, " 3904 "blocks per group %lu)", sbi->s_groups_count, 3905 ext4_blocks_count(es), 3906 le32_to_cpu(es->s_first_data_block), 3907 EXT4_BLOCKS_PER_GROUP(sb)); 3908 goto failed_mount; 3909 } 3910 sbi->s_groups_count = blocks_count; 3911 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3912 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3913 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3914 EXT4_DESC_PER_BLOCK(sb); 3915 if (ext4_has_feature_meta_bg(sb)) { 3916 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3917 ext4_msg(sb, KERN_WARNING, 3918 "first meta block group too large: %u " 3919 "(group descriptor block count %u)", 3920 le32_to_cpu(es->s_first_meta_bg), db_count); 3921 goto failed_mount; 3922 } 3923 } 3924 sbi->s_group_desc = kvmalloc(db_count * 3925 sizeof(struct buffer_head *), 3926 GFP_KERNEL); 3927 if (sbi->s_group_desc == NULL) { 3928 ext4_msg(sb, KERN_ERR, "not enough memory"); 3929 ret = -ENOMEM; 3930 goto failed_mount; 3931 } 3932 3933 bgl_lock_init(sbi->s_blockgroup_lock); 3934 3935 /* Pre-read the descriptors into the buffer cache */ 3936 for (i = 0; i < db_count; i++) { 3937 block = descriptor_loc(sb, logical_sb_block, i); 3938 sb_breadahead(sb, block); 3939 } 3940 3941 for (i = 0; i < db_count; i++) { 3942 block = descriptor_loc(sb, logical_sb_block, i); 3943 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3944 if (!sbi->s_group_desc[i]) { 3945 ext4_msg(sb, KERN_ERR, 3946 "can't read group descriptor %d", i); 3947 db_count = i; 3948 goto failed_mount2; 3949 } 3950 } 3951 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3952 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3953 ret = -EFSCORRUPTED; 3954 goto failed_mount2; 3955 } 3956 3957 sbi->s_gdb_count = db_count; 3958 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3959 spin_lock_init(&sbi->s_next_gen_lock); 3960 3961 setup_timer(&sbi->s_err_report, print_daily_error_info, 3962 (unsigned long) sb); 3963 3964 /* Register extent status tree shrinker */ 3965 if (ext4_es_register_shrinker(sbi)) 3966 goto failed_mount3; 3967 3968 sbi->s_stripe = ext4_get_stripe_size(sbi); 3969 sbi->s_extent_max_zeroout_kb = 32; 3970 3971 /* 3972 * set up enough so that it can read an inode 3973 */ 3974 sb->s_op = &ext4_sops; 3975 sb->s_export_op = &ext4_export_ops; 3976 sb->s_xattr = ext4_xattr_handlers; 3977 sb->s_cop = &ext4_cryptops; 3978 #ifdef CONFIG_QUOTA 3979 sb->dq_op = &ext4_quota_operations; 3980 if (ext4_has_feature_quota(sb)) 3981 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3982 else 3983 sb->s_qcop = &ext4_qctl_operations; 3984 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3985 #endif 3986 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3987 3988 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3989 mutex_init(&sbi->s_orphan_lock); 3990 3991 sb->s_root = NULL; 3992 3993 needs_recovery = (es->s_last_orphan != 0 || 3994 ext4_has_feature_journal_needs_recovery(sb)); 3995 3996 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3997 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3998 goto failed_mount3a; 3999 4000 /* 4001 * The first inode we look at is the journal inode. Don't try 4002 * root first: it may be modified in the journal! 4003 */ 4004 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4005 err = ext4_load_journal(sb, es, journal_devnum); 4006 if (err) 4007 goto failed_mount3a; 4008 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 4009 ext4_has_feature_journal_needs_recovery(sb)) { 4010 ext4_msg(sb, KERN_ERR, "required journal recovery " 4011 "suppressed and not mounted read-only"); 4012 goto failed_mount_wq; 4013 } else { 4014 /* Nojournal mode, all journal mount options are illegal */ 4015 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4016 ext4_msg(sb, KERN_ERR, "can't mount with " 4017 "journal_checksum, fs mounted w/o journal"); 4018 goto failed_mount_wq; 4019 } 4020 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4021 ext4_msg(sb, KERN_ERR, "can't mount with " 4022 "journal_async_commit, fs mounted w/o journal"); 4023 goto failed_mount_wq; 4024 } 4025 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4026 ext4_msg(sb, KERN_ERR, "can't mount with " 4027 "commit=%lu, fs mounted w/o journal", 4028 sbi->s_commit_interval / HZ); 4029 goto failed_mount_wq; 4030 } 4031 if (EXT4_MOUNT_DATA_FLAGS & 4032 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4033 ext4_msg(sb, KERN_ERR, "can't mount with " 4034 "data=, fs mounted w/o journal"); 4035 goto failed_mount_wq; 4036 } 4037 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4038 clear_opt(sb, JOURNAL_CHECKSUM); 4039 clear_opt(sb, DATA_FLAGS); 4040 sbi->s_journal = NULL; 4041 needs_recovery = 0; 4042 goto no_journal; 4043 } 4044 4045 if (ext4_has_feature_64bit(sb) && 4046 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4047 JBD2_FEATURE_INCOMPAT_64BIT)) { 4048 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4049 goto failed_mount_wq; 4050 } 4051 4052 if (!set_journal_csum_feature_set(sb)) { 4053 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4054 "feature set"); 4055 goto failed_mount_wq; 4056 } 4057 4058 /* We have now updated the journal if required, so we can 4059 * validate the data journaling mode. */ 4060 switch (test_opt(sb, DATA_FLAGS)) { 4061 case 0: 4062 /* No mode set, assume a default based on the journal 4063 * capabilities: ORDERED_DATA if the journal can 4064 * cope, else JOURNAL_DATA 4065 */ 4066 if (jbd2_journal_check_available_features 4067 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4068 set_opt(sb, ORDERED_DATA); 4069 else 4070 set_opt(sb, JOURNAL_DATA); 4071 break; 4072 4073 case EXT4_MOUNT_ORDERED_DATA: 4074 case EXT4_MOUNT_WRITEBACK_DATA: 4075 if (!jbd2_journal_check_available_features 4076 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4077 ext4_msg(sb, KERN_ERR, "Journal does not support " 4078 "requested data journaling mode"); 4079 goto failed_mount_wq; 4080 } 4081 default: 4082 break; 4083 } 4084 4085 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4086 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4087 ext4_msg(sb, KERN_ERR, "can't mount with " 4088 "journal_async_commit in data=ordered mode"); 4089 goto failed_mount_wq; 4090 } 4091 4092 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4093 4094 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4095 4096 no_journal: 4097 if (!test_opt(sb, NO_MBCACHE)) { 4098 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4099 if (!sbi->s_ea_block_cache) { 4100 ext4_msg(sb, KERN_ERR, 4101 "Failed to create ea_block_cache"); 4102 goto failed_mount_wq; 4103 } 4104 4105 if (ext4_has_feature_ea_inode(sb)) { 4106 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4107 if (!sbi->s_ea_inode_cache) { 4108 ext4_msg(sb, KERN_ERR, 4109 "Failed to create ea_inode_cache"); 4110 goto failed_mount_wq; 4111 } 4112 } 4113 } 4114 4115 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4116 (blocksize != PAGE_SIZE)) { 4117 ext4_msg(sb, KERN_ERR, 4118 "Unsupported blocksize for fs encryption"); 4119 goto failed_mount_wq; 4120 } 4121 4122 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4123 !ext4_has_feature_encrypt(sb)) { 4124 ext4_set_feature_encrypt(sb); 4125 ext4_commit_super(sb, 1); 4126 } 4127 4128 /* 4129 * Get the # of file system overhead blocks from the 4130 * superblock if present. 4131 */ 4132 if (es->s_overhead_clusters) 4133 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4134 else { 4135 err = ext4_calculate_overhead(sb); 4136 if (err) 4137 goto failed_mount_wq; 4138 } 4139 4140 /* 4141 * The maximum number of concurrent works can be high and 4142 * concurrency isn't really necessary. Limit it to 1. 4143 */ 4144 EXT4_SB(sb)->rsv_conversion_wq = 4145 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4146 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4147 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4148 ret = -ENOMEM; 4149 goto failed_mount4; 4150 } 4151 4152 /* 4153 * The jbd2_journal_load will have done any necessary log recovery, 4154 * so we can safely mount the rest of the filesystem now. 4155 */ 4156 4157 root = ext4_iget(sb, EXT4_ROOT_INO); 4158 if (IS_ERR(root)) { 4159 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4160 ret = PTR_ERR(root); 4161 root = NULL; 4162 goto failed_mount4; 4163 } 4164 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4165 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4166 iput(root); 4167 goto failed_mount4; 4168 } 4169 sb->s_root = d_make_root(root); 4170 if (!sb->s_root) { 4171 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4172 ret = -ENOMEM; 4173 goto failed_mount4; 4174 } 4175 4176 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4177 sb->s_flags |= MS_RDONLY; 4178 4179 /* determine the minimum size of new large inodes, if present */ 4180 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4181 sbi->s_want_extra_isize == 0) { 4182 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4183 EXT4_GOOD_OLD_INODE_SIZE; 4184 if (ext4_has_feature_extra_isize(sb)) { 4185 if (sbi->s_want_extra_isize < 4186 le16_to_cpu(es->s_want_extra_isize)) 4187 sbi->s_want_extra_isize = 4188 le16_to_cpu(es->s_want_extra_isize); 4189 if (sbi->s_want_extra_isize < 4190 le16_to_cpu(es->s_min_extra_isize)) 4191 sbi->s_want_extra_isize = 4192 le16_to_cpu(es->s_min_extra_isize); 4193 } 4194 } 4195 /* Check if enough inode space is available */ 4196 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4197 sbi->s_inode_size) { 4198 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4199 EXT4_GOOD_OLD_INODE_SIZE; 4200 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4201 "available"); 4202 } 4203 4204 ext4_set_resv_clusters(sb); 4205 4206 err = ext4_setup_system_zone(sb); 4207 if (err) { 4208 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4209 "zone (%d)", err); 4210 goto failed_mount4a; 4211 } 4212 4213 ext4_ext_init(sb); 4214 err = ext4_mb_init(sb); 4215 if (err) { 4216 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4217 err); 4218 goto failed_mount5; 4219 } 4220 4221 block = ext4_count_free_clusters(sb); 4222 ext4_free_blocks_count_set(sbi->s_es, 4223 EXT4_C2B(sbi, block)); 4224 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4225 GFP_KERNEL); 4226 if (!err) { 4227 unsigned long freei = ext4_count_free_inodes(sb); 4228 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4229 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4230 GFP_KERNEL); 4231 } 4232 if (!err) 4233 err = percpu_counter_init(&sbi->s_dirs_counter, 4234 ext4_count_dirs(sb), GFP_KERNEL); 4235 if (!err) 4236 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4237 GFP_KERNEL); 4238 if (!err) 4239 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4240 4241 if (err) { 4242 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4243 goto failed_mount6; 4244 } 4245 4246 if (ext4_has_feature_flex_bg(sb)) 4247 if (!ext4_fill_flex_info(sb)) { 4248 ext4_msg(sb, KERN_ERR, 4249 "unable to initialize " 4250 "flex_bg meta info!"); 4251 goto failed_mount6; 4252 } 4253 4254 err = ext4_register_li_request(sb, first_not_zeroed); 4255 if (err) 4256 goto failed_mount6; 4257 4258 err = ext4_register_sysfs(sb); 4259 if (err) 4260 goto failed_mount7; 4261 4262 #ifdef CONFIG_QUOTA 4263 /* Enable quota usage during mount. */ 4264 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4265 err = ext4_enable_quotas(sb); 4266 if (err) 4267 goto failed_mount8; 4268 } 4269 #endif /* CONFIG_QUOTA */ 4270 4271 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4272 ext4_orphan_cleanup(sb, es); 4273 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4274 if (needs_recovery) { 4275 ext4_msg(sb, KERN_INFO, "recovery complete"); 4276 ext4_mark_recovery_complete(sb, es); 4277 } 4278 if (EXT4_SB(sb)->s_journal) { 4279 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4280 descr = " journalled data mode"; 4281 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4282 descr = " ordered data mode"; 4283 else 4284 descr = " writeback data mode"; 4285 } else 4286 descr = "out journal"; 4287 4288 if (test_opt(sb, DISCARD)) { 4289 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4290 if (!blk_queue_discard(q)) 4291 ext4_msg(sb, KERN_WARNING, 4292 "mounting with \"discard\" option, but " 4293 "the device does not support discard"); 4294 } 4295 4296 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4297 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4298 "Opts: %.*s%s%s", descr, 4299 (int) sizeof(sbi->s_es->s_mount_opts), 4300 sbi->s_es->s_mount_opts, 4301 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4302 4303 if (es->s_error_count) 4304 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4305 4306 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4307 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4308 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4309 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4310 4311 kfree(orig_data); 4312 return 0; 4313 4314 cantfind_ext4: 4315 if (!silent) 4316 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4317 goto failed_mount; 4318 4319 #ifdef CONFIG_QUOTA 4320 failed_mount8: 4321 ext4_unregister_sysfs(sb); 4322 #endif 4323 failed_mount7: 4324 ext4_unregister_li_request(sb); 4325 failed_mount6: 4326 ext4_mb_release(sb); 4327 if (sbi->s_flex_groups) 4328 kvfree(sbi->s_flex_groups); 4329 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4330 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4331 percpu_counter_destroy(&sbi->s_dirs_counter); 4332 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4333 failed_mount5: 4334 ext4_ext_release(sb); 4335 ext4_release_system_zone(sb); 4336 failed_mount4a: 4337 dput(sb->s_root); 4338 sb->s_root = NULL; 4339 failed_mount4: 4340 ext4_msg(sb, KERN_ERR, "mount failed"); 4341 if (EXT4_SB(sb)->rsv_conversion_wq) 4342 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4343 failed_mount_wq: 4344 if (sbi->s_ea_inode_cache) { 4345 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4346 sbi->s_ea_inode_cache = NULL; 4347 } 4348 if (sbi->s_ea_block_cache) { 4349 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4350 sbi->s_ea_block_cache = NULL; 4351 } 4352 if (sbi->s_journal) { 4353 jbd2_journal_destroy(sbi->s_journal); 4354 sbi->s_journal = NULL; 4355 } 4356 failed_mount3a: 4357 ext4_es_unregister_shrinker(sbi); 4358 failed_mount3: 4359 del_timer_sync(&sbi->s_err_report); 4360 if (sbi->s_mmp_tsk) 4361 kthread_stop(sbi->s_mmp_tsk); 4362 failed_mount2: 4363 for (i = 0; i < db_count; i++) 4364 brelse(sbi->s_group_desc[i]); 4365 kvfree(sbi->s_group_desc); 4366 failed_mount: 4367 if (sbi->s_chksum_driver) 4368 crypto_free_shash(sbi->s_chksum_driver); 4369 #ifdef CONFIG_QUOTA 4370 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4371 kfree(sbi->s_qf_names[i]); 4372 #endif 4373 ext4_blkdev_remove(sbi); 4374 brelse(bh); 4375 out_fail: 4376 sb->s_fs_info = NULL; 4377 kfree(sbi->s_blockgroup_lock); 4378 out_free_base: 4379 kfree(sbi); 4380 kfree(orig_data); 4381 return err ? err : ret; 4382 } 4383 4384 /* 4385 * Setup any per-fs journal parameters now. We'll do this both on 4386 * initial mount, once the journal has been initialised but before we've 4387 * done any recovery; and again on any subsequent remount. 4388 */ 4389 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4390 { 4391 struct ext4_sb_info *sbi = EXT4_SB(sb); 4392 4393 journal->j_commit_interval = sbi->s_commit_interval; 4394 journal->j_min_batch_time = sbi->s_min_batch_time; 4395 journal->j_max_batch_time = sbi->s_max_batch_time; 4396 4397 write_lock(&journal->j_state_lock); 4398 if (test_opt(sb, BARRIER)) 4399 journal->j_flags |= JBD2_BARRIER; 4400 else 4401 journal->j_flags &= ~JBD2_BARRIER; 4402 if (test_opt(sb, DATA_ERR_ABORT)) 4403 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4404 else 4405 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4406 write_unlock(&journal->j_state_lock); 4407 } 4408 4409 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4410 unsigned int journal_inum) 4411 { 4412 struct inode *journal_inode; 4413 4414 /* 4415 * Test for the existence of a valid inode on disk. Bad things 4416 * happen if we iget() an unused inode, as the subsequent iput() 4417 * will try to delete it. 4418 */ 4419 journal_inode = ext4_iget(sb, journal_inum); 4420 if (IS_ERR(journal_inode)) { 4421 ext4_msg(sb, KERN_ERR, "no journal found"); 4422 return NULL; 4423 } 4424 if (!journal_inode->i_nlink) { 4425 make_bad_inode(journal_inode); 4426 iput(journal_inode); 4427 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4428 return NULL; 4429 } 4430 4431 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4432 journal_inode, journal_inode->i_size); 4433 if (!S_ISREG(journal_inode->i_mode)) { 4434 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4435 iput(journal_inode); 4436 return NULL; 4437 } 4438 return journal_inode; 4439 } 4440 4441 static journal_t *ext4_get_journal(struct super_block *sb, 4442 unsigned int journal_inum) 4443 { 4444 struct inode *journal_inode; 4445 journal_t *journal; 4446 4447 BUG_ON(!ext4_has_feature_journal(sb)); 4448 4449 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4450 if (!journal_inode) 4451 return NULL; 4452 4453 journal = jbd2_journal_init_inode(journal_inode); 4454 if (!journal) { 4455 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4456 iput(journal_inode); 4457 return NULL; 4458 } 4459 journal->j_private = sb; 4460 ext4_init_journal_params(sb, journal); 4461 return journal; 4462 } 4463 4464 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4465 dev_t j_dev) 4466 { 4467 struct buffer_head *bh; 4468 journal_t *journal; 4469 ext4_fsblk_t start; 4470 ext4_fsblk_t len; 4471 int hblock, blocksize; 4472 ext4_fsblk_t sb_block; 4473 unsigned long offset; 4474 struct ext4_super_block *es; 4475 struct block_device *bdev; 4476 4477 BUG_ON(!ext4_has_feature_journal(sb)); 4478 4479 bdev = ext4_blkdev_get(j_dev, sb); 4480 if (bdev == NULL) 4481 return NULL; 4482 4483 blocksize = sb->s_blocksize; 4484 hblock = bdev_logical_block_size(bdev); 4485 if (blocksize < hblock) { 4486 ext4_msg(sb, KERN_ERR, 4487 "blocksize too small for journal device"); 4488 goto out_bdev; 4489 } 4490 4491 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4492 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4493 set_blocksize(bdev, blocksize); 4494 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4495 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4496 "external journal"); 4497 goto out_bdev; 4498 } 4499 4500 es = (struct ext4_super_block *) (bh->b_data + offset); 4501 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4502 !(le32_to_cpu(es->s_feature_incompat) & 4503 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4504 ext4_msg(sb, KERN_ERR, "external journal has " 4505 "bad superblock"); 4506 brelse(bh); 4507 goto out_bdev; 4508 } 4509 4510 if ((le32_to_cpu(es->s_feature_ro_compat) & 4511 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4512 es->s_checksum != ext4_superblock_csum(sb, es)) { 4513 ext4_msg(sb, KERN_ERR, "external journal has " 4514 "corrupt superblock"); 4515 brelse(bh); 4516 goto out_bdev; 4517 } 4518 4519 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4520 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4521 brelse(bh); 4522 goto out_bdev; 4523 } 4524 4525 len = ext4_blocks_count(es); 4526 start = sb_block + 1; 4527 brelse(bh); /* we're done with the superblock */ 4528 4529 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4530 start, len, blocksize); 4531 if (!journal) { 4532 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4533 goto out_bdev; 4534 } 4535 journal->j_private = sb; 4536 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4537 wait_on_buffer(journal->j_sb_buffer); 4538 if (!buffer_uptodate(journal->j_sb_buffer)) { 4539 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4540 goto out_journal; 4541 } 4542 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4543 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4544 "user (unsupported) - %d", 4545 be32_to_cpu(journal->j_superblock->s_nr_users)); 4546 goto out_journal; 4547 } 4548 EXT4_SB(sb)->journal_bdev = bdev; 4549 ext4_init_journal_params(sb, journal); 4550 return journal; 4551 4552 out_journal: 4553 jbd2_journal_destroy(journal); 4554 out_bdev: 4555 ext4_blkdev_put(bdev); 4556 return NULL; 4557 } 4558 4559 static int ext4_load_journal(struct super_block *sb, 4560 struct ext4_super_block *es, 4561 unsigned long journal_devnum) 4562 { 4563 journal_t *journal; 4564 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4565 dev_t journal_dev; 4566 int err = 0; 4567 int really_read_only; 4568 4569 BUG_ON(!ext4_has_feature_journal(sb)); 4570 4571 if (journal_devnum && 4572 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4573 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4574 "numbers have changed"); 4575 journal_dev = new_decode_dev(journal_devnum); 4576 } else 4577 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4578 4579 really_read_only = bdev_read_only(sb->s_bdev); 4580 4581 /* 4582 * Are we loading a blank journal or performing recovery after a 4583 * crash? For recovery, we need to check in advance whether we 4584 * can get read-write access to the device. 4585 */ 4586 if (ext4_has_feature_journal_needs_recovery(sb)) { 4587 if (sb->s_flags & MS_RDONLY) { 4588 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4589 "required on readonly filesystem"); 4590 if (really_read_only) { 4591 ext4_msg(sb, KERN_ERR, "write access " 4592 "unavailable, cannot proceed"); 4593 return -EROFS; 4594 } 4595 ext4_msg(sb, KERN_INFO, "write access will " 4596 "be enabled during recovery"); 4597 } 4598 } 4599 4600 if (journal_inum && journal_dev) { 4601 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4602 "and inode journals!"); 4603 return -EINVAL; 4604 } 4605 4606 if (journal_inum) { 4607 if (!(journal = ext4_get_journal(sb, journal_inum))) 4608 return -EINVAL; 4609 } else { 4610 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4611 return -EINVAL; 4612 } 4613 4614 if (!(journal->j_flags & JBD2_BARRIER)) 4615 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4616 4617 if (!ext4_has_feature_journal_needs_recovery(sb)) 4618 err = jbd2_journal_wipe(journal, !really_read_only); 4619 if (!err) { 4620 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4621 if (save) 4622 memcpy(save, ((char *) es) + 4623 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4624 err = jbd2_journal_load(journal); 4625 if (save) 4626 memcpy(((char *) es) + EXT4_S_ERR_START, 4627 save, EXT4_S_ERR_LEN); 4628 kfree(save); 4629 } 4630 4631 if (err) { 4632 ext4_msg(sb, KERN_ERR, "error loading journal"); 4633 jbd2_journal_destroy(journal); 4634 return err; 4635 } 4636 4637 EXT4_SB(sb)->s_journal = journal; 4638 ext4_clear_journal_err(sb, es); 4639 4640 if (!really_read_only && journal_devnum && 4641 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4642 es->s_journal_dev = cpu_to_le32(journal_devnum); 4643 4644 /* Make sure we flush the recovery flag to disk. */ 4645 ext4_commit_super(sb, 1); 4646 } 4647 4648 return 0; 4649 } 4650 4651 static int ext4_commit_super(struct super_block *sb, int sync) 4652 { 4653 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4654 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4655 int error = 0; 4656 4657 if (!sbh || block_device_ejected(sb)) 4658 return error; 4659 /* 4660 * If the file system is mounted read-only, don't update the 4661 * superblock write time. This avoids updating the superblock 4662 * write time when we are mounting the root file system 4663 * read/only but we need to replay the journal; at that point, 4664 * for people who are east of GMT and who make their clock 4665 * tick in localtime for Windows bug-for-bug compatibility, 4666 * the clock is set in the future, and this will cause e2fsck 4667 * to complain and force a full file system check. 4668 */ 4669 if (!(sb->s_flags & MS_RDONLY)) 4670 es->s_wtime = cpu_to_le32(get_seconds()); 4671 if (sb->s_bdev->bd_part) 4672 es->s_kbytes_written = 4673 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4674 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4675 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4676 else 4677 es->s_kbytes_written = 4678 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4679 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4680 ext4_free_blocks_count_set(es, 4681 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4682 &EXT4_SB(sb)->s_freeclusters_counter))); 4683 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4684 es->s_free_inodes_count = 4685 cpu_to_le32(percpu_counter_sum_positive( 4686 &EXT4_SB(sb)->s_freeinodes_counter)); 4687 BUFFER_TRACE(sbh, "marking dirty"); 4688 ext4_superblock_csum_set(sb); 4689 if (sync) 4690 lock_buffer(sbh); 4691 if (buffer_write_io_error(sbh)) { 4692 /* 4693 * Oh, dear. A previous attempt to write the 4694 * superblock failed. This could happen because the 4695 * USB device was yanked out. Or it could happen to 4696 * be a transient write error and maybe the block will 4697 * be remapped. Nothing we can do but to retry the 4698 * write and hope for the best. 4699 */ 4700 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4701 "superblock detected"); 4702 clear_buffer_write_io_error(sbh); 4703 set_buffer_uptodate(sbh); 4704 } 4705 mark_buffer_dirty(sbh); 4706 if (sync) { 4707 unlock_buffer(sbh); 4708 error = __sync_dirty_buffer(sbh, 4709 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4710 if (error) 4711 return error; 4712 4713 error = buffer_write_io_error(sbh); 4714 if (error) { 4715 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4716 "superblock"); 4717 clear_buffer_write_io_error(sbh); 4718 set_buffer_uptodate(sbh); 4719 } 4720 } 4721 return error; 4722 } 4723 4724 /* 4725 * Have we just finished recovery? If so, and if we are mounting (or 4726 * remounting) the filesystem readonly, then we will end up with a 4727 * consistent fs on disk. Record that fact. 4728 */ 4729 static void ext4_mark_recovery_complete(struct super_block *sb, 4730 struct ext4_super_block *es) 4731 { 4732 journal_t *journal = EXT4_SB(sb)->s_journal; 4733 4734 if (!ext4_has_feature_journal(sb)) { 4735 BUG_ON(journal != NULL); 4736 return; 4737 } 4738 jbd2_journal_lock_updates(journal); 4739 if (jbd2_journal_flush(journal) < 0) 4740 goto out; 4741 4742 if (ext4_has_feature_journal_needs_recovery(sb) && 4743 sb->s_flags & MS_RDONLY) { 4744 ext4_clear_feature_journal_needs_recovery(sb); 4745 ext4_commit_super(sb, 1); 4746 } 4747 4748 out: 4749 jbd2_journal_unlock_updates(journal); 4750 } 4751 4752 /* 4753 * If we are mounting (or read-write remounting) a filesystem whose journal 4754 * has recorded an error from a previous lifetime, move that error to the 4755 * main filesystem now. 4756 */ 4757 static void ext4_clear_journal_err(struct super_block *sb, 4758 struct ext4_super_block *es) 4759 { 4760 journal_t *journal; 4761 int j_errno; 4762 const char *errstr; 4763 4764 BUG_ON(!ext4_has_feature_journal(sb)); 4765 4766 journal = EXT4_SB(sb)->s_journal; 4767 4768 /* 4769 * Now check for any error status which may have been recorded in the 4770 * journal by a prior ext4_error() or ext4_abort() 4771 */ 4772 4773 j_errno = jbd2_journal_errno(journal); 4774 if (j_errno) { 4775 char nbuf[16]; 4776 4777 errstr = ext4_decode_error(sb, j_errno, nbuf); 4778 ext4_warning(sb, "Filesystem error recorded " 4779 "from previous mount: %s", errstr); 4780 ext4_warning(sb, "Marking fs in need of filesystem check."); 4781 4782 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4783 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4784 ext4_commit_super(sb, 1); 4785 4786 jbd2_journal_clear_err(journal); 4787 jbd2_journal_update_sb_errno(journal); 4788 } 4789 } 4790 4791 /* 4792 * Force the running and committing transactions to commit, 4793 * and wait on the commit. 4794 */ 4795 int ext4_force_commit(struct super_block *sb) 4796 { 4797 journal_t *journal; 4798 4799 if (sb->s_flags & MS_RDONLY) 4800 return 0; 4801 4802 journal = EXT4_SB(sb)->s_journal; 4803 return ext4_journal_force_commit(journal); 4804 } 4805 4806 static int ext4_sync_fs(struct super_block *sb, int wait) 4807 { 4808 int ret = 0; 4809 tid_t target; 4810 bool needs_barrier = false; 4811 struct ext4_sb_info *sbi = EXT4_SB(sb); 4812 4813 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4814 return 0; 4815 4816 trace_ext4_sync_fs(sb, wait); 4817 flush_workqueue(sbi->rsv_conversion_wq); 4818 /* 4819 * Writeback quota in non-journalled quota case - journalled quota has 4820 * no dirty dquots 4821 */ 4822 dquot_writeback_dquots(sb, -1); 4823 /* 4824 * Data writeback is possible w/o journal transaction, so barrier must 4825 * being sent at the end of the function. But we can skip it if 4826 * transaction_commit will do it for us. 4827 */ 4828 if (sbi->s_journal) { 4829 target = jbd2_get_latest_transaction(sbi->s_journal); 4830 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4831 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4832 needs_barrier = true; 4833 4834 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4835 if (wait) 4836 ret = jbd2_log_wait_commit(sbi->s_journal, 4837 target); 4838 } 4839 } else if (wait && test_opt(sb, BARRIER)) 4840 needs_barrier = true; 4841 if (needs_barrier) { 4842 int err; 4843 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4844 if (!ret) 4845 ret = err; 4846 } 4847 4848 return ret; 4849 } 4850 4851 /* 4852 * LVM calls this function before a (read-only) snapshot is created. This 4853 * gives us a chance to flush the journal completely and mark the fs clean. 4854 * 4855 * Note that only this function cannot bring a filesystem to be in a clean 4856 * state independently. It relies on upper layer to stop all data & metadata 4857 * modifications. 4858 */ 4859 static int ext4_freeze(struct super_block *sb) 4860 { 4861 int error = 0; 4862 journal_t *journal; 4863 4864 if (sb->s_flags & MS_RDONLY) 4865 return 0; 4866 4867 journal = EXT4_SB(sb)->s_journal; 4868 4869 if (journal) { 4870 /* Now we set up the journal barrier. */ 4871 jbd2_journal_lock_updates(journal); 4872 4873 /* 4874 * Don't clear the needs_recovery flag if we failed to 4875 * flush the journal. 4876 */ 4877 error = jbd2_journal_flush(journal); 4878 if (error < 0) 4879 goto out; 4880 4881 /* Journal blocked and flushed, clear needs_recovery flag. */ 4882 ext4_clear_feature_journal_needs_recovery(sb); 4883 } 4884 4885 error = ext4_commit_super(sb, 1); 4886 out: 4887 if (journal) 4888 /* we rely on upper layer to stop further updates */ 4889 jbd2_journal_unlock_updates(journal); 4890 return error; 4891 } 4892 4893 /* 4894 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4895 * flag here, even though the filesystem is not technically dirty yet. 4896 */ 4897 static int ext4_unfreeze(struct super_block *sb) 4898 { 4899 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4900 return 0; 4901 4902 if (EXT4_SB(sb)->s_journal) { 4903 /* Reset the needs_recovery flag before the fs is unlocked. */ 4904 ext4_set_feature_journal_needs_recovery(sb); 4905 } 4906 4907 ext4_commit_super(sb, 1); 4908 return 0; 4909 } 4910 4911 /* 4912 * Structure to save mount options for ext4_remount's benefit 4913 */ 4914 struct ext4_mount_options { 4915 unsigned long s_mount_opt; 4916 unsigned long s_mount_opt2; 4917 kuid_t s_resuid; 4918 kgid_t s_resgid; 4919 unsigned long s_commit_interval; 4920 u32 s_min_batch_time, s_max_batch_time; 4921 #ifdef CONFIG_QUOTA 4922 int s_jquota_fmt; 4923 char *s_qf_names[EXT4_MAXQUOTAS]; 4924 #endif 4925 }; 4926 4927 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4928 { 4929 struct ext4_super_block *es; 4930 struct ext4_sb_info *sbi = EXT4_SB(sb); 4931 unsigned long old_sb_flags; 4932 struct ext4_mount_options old_opts; 4933 int enable_quota = 0; 4934 ext4_group_t g; 4935 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4936 int err = 0; 4937 #ifdef CONFIG_QUOTA 4938 int i, j; 4939 #endif 4940 char *orig_data = kstrdup(data, GFP_KERNEL); 4941 4942 /* Store the original options */ 4943 old_sb_flags = sb->s_flags; 4944 old_opts.s_mount_opt = sbi->s_mount_opt; 4945 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4946 old_opts.s_resuid = sbi->s_resuid; 4947 old_opts.s_resgid = sbi->s_resgid; 4948 old_opts.s_commit_interval = sbi->s_commit_interval; 4949 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4950 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4951 #ifdef CONFIG_QUOTA 4952 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4953 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4954 if (sbi->s_qf_names[i]) { 4955 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4956 GFP_KERNEL); 4957 if (!old_opts.s_qf_names[i]) { 4958 for (j = 0; j < i; j++) 4959 kfree(old_opts.s_qf_names[j]); 4960 kfree(orig_data); 4961 return -ENOMEM; 4962 } 4963 } else 4964 old_opts.s_qf_names[i] = NULL; 4965 #endif 4966 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4967 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4968 4969 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4970 err = -EINVAL; 4971 goto restore_opts; 4972 } 4973 4974 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4975 test_opt(sb, JOURNAL_CHECKSUM)) { 4976 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4977 "during remount not supported; ignoring"); 4978 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4979 } 4980 4981 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4982 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4983 ext4_msg(sb, KERN_ERR, "can't mount with " 4984 "both data=journal and delalloc"); 4985 err = -EINVAL; 4986 goto restore_opts; 4987 } 4988 if (test_opt(sb, DIOREAD_NOLOCK)) { 4989 ext4_msg(sb, KERN_ERR, "can't mount with " 4990 "both data=journal and dioread_nolock"); 4991 err = -EINVAL; 4992 goto restore_opts; 4993 } 4994 if (test_opt(sb, DAX)) { 4995 ext4_msg(sb, KERN_ERR, "can't mount with " 4996 "both data=journal and dax"); 4997 err = -EINVAL; 4998 goto restore_opts; 4999 } 5000 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5001 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5002 ext4_msg(sb, KERN_ERR, "can't mount with " 5003 "journal_async_commit in data=ordered mode"); 5004 err = -EINVAL; 5005 goto restore_opts; 5006 } 5007 } 5008 5009 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5010 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5011 err = -EINVAL; 5012 goto restore_opts; 5013 } 5014 5015 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5016 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5017 "dax flag with busy inodes while remounting"); 5018 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5019 } 5020 5021 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5022 ext4_abort(sb, "Abort forced by user"); 5023 5024 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 5025 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 5026 5027 es = sbi->s_es; 5028 5029 if (sbi->s_journal) { 5030 ext4_init_journal_params(sb, sbi->s_journal); 5031 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5032 } 5033 5034 if (*flags & MS_LAZYTIME) 5035 sb->s_flags |= MS_LAZYTIME; 5036 5037 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 5038 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5039 err = -EROFS; 5040 goto restore_opts; 5041 } 5042 5043 if (*flags & MS_RDONLY) { 5044 err = sync_filesystem(sb); 5045 if (err < 0) 5046 goto restore_opts; 5047 err = dquot_suspend(sb, -1); 5048 if (err < 0) 5049 goto restore_opts; 5050 5051 /* 5052 * First of all, the unconditional stuff we have to do 5053 * to disable replay of the journal when we next remount 5054 */ 5055 sb->s_flags |= MS_RDONLY; 5056 5057 /* 5058 * OK, test if we are remounting a valid rw partition 5059 * readonly, and if so set the rdonly flag and then 5060 * mark the partition as valid again. 5061 */ 5062 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5063 (sbi->s_mount_state & EXT4_VALID_FS)) 5064 es->s_state = cpu_to_le16(sbi->s_mount_state); 5065 5066 if (sbi->s_journal) 5067 ext4_mark_recovery_complete(sb, es); 5068 } else { 5069 /* Make sure we can mount this feature set readwrite */ 5070 if (ext4_has_feature_readonly(sb) || 5071 !ext4_feature_set_ok(sb, 0)) { 5072 err = -EROFS; 5073 goto restore_opts; 5074 } 5075 /* 5076 * Make sure the group descriptor checksums 5077 * are sane. If they aren't, refuse to remount r/w. 5078 */ 5079 for (g = 0; g < sbi->s_groups_count; g++) { 5080 struct ext4_group_desc *gdp = 5081 ext4_get_group_desc(sb, g, NULL); 5082 5083 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5084 ext4_msg(sb, KERN_ERR, 5085 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5086 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5087 le16_to_cpu(gdp->bg_checksum)); 5088 err = -EFSBADCRC; 5089 goto restore_opts; 5090 } 5091 } 5092 5093 /* 5094 * If we have an unprocessed orphan list hanging 5095 * around from a previously readonly bdev mount, 5096 * require a full umount/remount for now. 5097 */ 5098 if (es->s_last_orphan) { 5099 ext4_msg(sb, KERN_WARNING, "Couldn't " 5100 "remount RDWR because of unprocessed " 5101 "orphan inode list. Please " 5102 "umount/remount instead"); 5103 err = -EINVAL; 5104 goto restore_opts; 5105 } 5106 5107 /* 5108 * Mounting a RDONLY partition read-write, so reread 5109 * and store the current valid flag. (It may have 5110 * been changed by e2fsck since we originally mounted 5111 * the partition.) 5112 */ 5113 if (sbi->s_journal) 5114 ext4_clear_journal_err(sb, es); 5115 sbi->s_mount_state = le16_to_cpu(es->s_state); 5116 if (!ext4_setup_super(sb, es, 0)) 5117 sb->s_flags &= ~MS_RDONLY; 5118 if (ext4_has_feature_mmp(sb)) 5119 if (ext4_multi_mount_protect(sb, 5120 le64_to_cpu(es->s_mmp_block))) { 5121 err = -EROFS; 5122 goto restore_opts; 5123 } 5124 enable_quota = 1; 5125 } 5126 } 5127 5128 /* 5129 * Reinitialize lazy itable initialization thread based on 5130 * current settings 5131 */ 5132 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5133 ext4_unregister_li_request(sb); 5134 else { 5135 ext4_group_t first_not_zeroed; 5136 first_not_zeroed = ext4_has_uninit_itable(sb); 5137 ext4_register_li_request(sb, first_not_zeroed); 5138 } 5139 5140 ext4_setup_system_zone(sb); 5141 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5142 ext4_commit_super(sb, 1); 5143 5144 #ifdef CONFIG_QUOTA 5145 /* Release old quota file names */ 5146 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5147 kfree(old_opts.s_qf_names[i]); 5148 if (enable_quota) { 5149 if (sb_any_quota_suspended(sb)) 5150 dquot_resume(sb, -1); 5151 else if (ext4_has_feature_quota(sb)) { 5152 err = ext4_enable_quotas(sb); 5153 if (err) 5154 goto restore_opts; 5155 } 5156 } 5157 #endif 5158 5159 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5160 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5161 kfree(orig_data); 5162 return 0; 5163 5164 restore_opts: 5165 sb->s_flags = old_sb_flags; 5166 sbi->s_mount_opt = old_opts.s_mount_opt; 5167 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5168 sbi->s_resuid = old_opts.s_resuid; 5169 sbi->s_resgid = old_opts.s_resgid; 5170 sbi->s_commit_interval = old_opts.s_commit_interval; 5171 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5172 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5173 #ifdef CONFIG_QUOTA 5174 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5175 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5176 kfree(sbi->s_qf_names[i]); 5177 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5178 } 5179 #endif 5180 kfree(orig_data); 5181 return err; 5182 } 5183 5184 #ifdef CONFIG_QUOTA 5185 static int ext4_statfs_project(struct super_block *sb, 5186 kprojid_t projid, struct kstatfs *buf) 5187 { 5188 struct kqid qid; 5189 struct dquot *dquot; 5190 u64 limit; 5191 u64 curblock; 5192 5193 qid = make_kqid_projid(projid); 5194 dquot = dqget(sb, qid); 5195 if (IS_ERR(dquot)) 5196 return PTR_ERR(dquot); 5197 spin_lock(&dq_data_lock); 5198 5199 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5200 dquot->dq_dqb.dqb_bsoftlimit : 5201 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5202 if (limit && buf->f_blocks > limit) { 5203 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5204 buf->f_blocks = limit; 5205 buf->f_bfree = buf->f_bavail = 5206 (buf->f_blocks > curblock) ? 5207 (buf->f_blocks - curblock) : 0; 5208 } 5209 5210 limit = dquot->dq_dqb.dqb_isoftlimit ? 5211 dquot->dq_dqb.dqb_isoftlimit : 5212 dquot->dq_dqb.dqb_ihardlimit; 5213 if (limit && buf->f_files > limit) { 5214 buf->f_files = limit; 5215 buf->f_ffree = 5216 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5217 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5218 } 5219 5220 spin_unlock(&dq_data_lock); 5221 dqput(dquot); 5222 return 0; 5223 } 5224 #endif 5225 5226 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5227 { 5228 struct super_block *sb = dentry->d_sb; 5229 struct ext4_sb_info *sbi = EXT4_SB(sb); 5230 struct ext4_super_block *es = sbi->s_es; 5231 ext4_fsblk_t overhead = 0, resv_blocks; 5232 u64 fsid; 5233 s64 bfree; 5234 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5235 5236 if (!test_opt(sb, MINIX_DF)) 5237 overhead = sbi->s_overhead; 5238 5239 buf->f_type = EXT4_SUPER_MAGIC; 5240 buf->f_bsize = sb->s_blocksize; 5241 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5242 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5243 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5244 /* prevent underflow in case that few free space is available */ 5245 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5246 buf->f_bavail = buf->f_bfree - 5247 (ext4_r_blocks_count(es) + resv_blocks); 5248 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5249 buf->f_bavail = 0; 5250 buf->f_files = le32_to_cpu(es->s_inodes_count); 5251 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5252 buf->f_namelen = EXT4_NAME_LEN; 5253 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5254 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5255 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5256 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5257 5258 #ifdef CONFIG_QUOTA 5259 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5260 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5261 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5262 #endif 5263 return 0; 5264 } 5265 5266 /* Helper function for writing quotas on sync - we need to start transaction 5267 * before quota file is locked for write. Otherwise the are possible deadlocks: 5268 * Process 1 Process 2 5269 * ext4_create() quota_sync() 5270 * jbd2_journal_start() write_dquot() 5271 * dquot_initialize() down(dqio_mutex) 5272 * down(dqio_mutex) jbd2_journal_start() 5273 * 5274 */ 5275 5276 #ifdef CONFIG_QUOTA 5277 5278 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5279 { 5280 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5281 } 5282 5283 static int ext4_write_dquot(struct dquot *dquot) 5284 { 5285 int ret, err; 5286 handle_t *handle; 5287 struct inode *inode; 5288 5289 inode = dquot_to_inode(dquot); 5290 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5291 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5292 if (IS_ERR(handle)) 5293 return PTR_ERR(handle); 5294 ret = dquot_commit(dquot); 5295 err = ext4_journal_stop(handle); 5296 if (!ret) 5297 ret = err; 5298 return ret; 5299 } 5300 5301 static int ext4_acquire_dquot(struct dquot *dquot) 5302 { 5303 int ret, err; 5304 handle_t *handle; 5305 5306 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5307 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5308 if (IS_ERR(handle)) 5309 return PTR_ERR(handle); 5310 ret = dquot_acquire(dquot); 5311 err = ext4_journal_stop(handle); 5312 if (!ret) 5313 ret = err; 5314 return ret; 5315 } 5316 5317 static int ext4_release_dquot(struct dquot *dquot) 5318 { 5319 int ret, err; 5320 handle_t *handle; 5321 5322 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5323 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5324 if (IS_ERR(handle)) { 5325 /* Release dquot anyway to avoid endless cycle in dqput() */ 5326 dquot_release(dquot); 5327 return PTR_ERR(handle); 5328 } 5329 ret = dquot_release(dquot); 5330 err = ext4_journal_stop(handle); 5331 if (!ret) 5332 ret = err; 5333 return ret; 5334 } 5335 5336 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5337 { 5338 struct super_block *sb = dquot->dq_sb; 5339 struct ext4_sb_info *sbi = EXT4_SB(sb); 5340 5341 /* Are we journaling quotas? */ 5342 if (ext4_has_feature_quota(sb) || 5343 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5344 dquot_mark_dquot_dirty(dquot); 5345 return ext4_write_dquot(dquot); 5346 } else { 5347 return dquot_mark_dquot_dirty(dquot); 5348 } 5349 } 5350 5351 static int ext4_write_info(struct super_block *sb, int type) 5352 { 5353 int ret, err; 5354 handle_t *handle; 5355 5356 /* Data block + inode block */ 5357 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5358 if (IS_ERR(handle)) 5359 return PTR_ERR(handle); 5360 ret = dquot_commit_info(sb, type); 5361 err = ext4_journal_stop(handle); 5362 if (!ret) 5363 ret = err; 5364 return ret; 5365 } 5366 5367 /* 5368 * Turn on quotas during mount time - we need to find 5369 * the quota file and such... 5370 */ 5371 static int ext4_quota_on_mount(struct super_block *sb, int type) 5372 { 5373 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5374 EXT4_SB(sb)->s_jquota_fmt, type); 5375 } 5376 5377 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5378 { 5379 struct ext4_inode_info *ei = EXT4_I(inode); 5380 5381 /* The first argument of lockdep_set_subclass has to be 5382 * *exactly* the same as the argument to init_rwsem() --- in 5383 * this case, in init_once() --- or lockdep gets unhappy 5384 * because the name of the lock is set using the 5385 * stringification of the argument to init_rwsem(). 5386 */ 5387 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5388 lockdep_set_subclass(&ei->i_data_sem, subclass); 5389 } 5390 5391 /* 5392 * Standard function to be called on quota_on 5393 */ 5394 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5395 const struct path *path) 5396 { 5397 int err; 5398 5399 if (!test_opt(sb, QUOTA)) 5400 return -EINVAL; 5401 5402 /* Quotafile not on the same filesystem? */ 5403 if (path->dentry->d_sb != sb) 5404 return -EXDEV; 5405 /* Journaling quota? */ 5406 if (EXT4_SB(sb)->s_qf_names[type]) { 5407 /* Quotafile not in fs root? */ 5408 if (path->dentry->d_parent != sb->s_root) 5409 ext4_msg(sb, KERN_WARNING, 5410 "Quota file not on filesystem root. " 5411 "Journaled quota will not work"); 5412 } 5413 5414 /* 5415 * When we journal data on quota file, we have to flush journal to see 5416 * all updates to the file when we bypass pagecache... 5417 */ 5418 if (EXT4_SB(sb)->s_journal && 5419 ext4_should_journal_data(d_inode(path->dentry))) { 5420 /* 5421 * We don't need to lock updates but journal_flush() could 5422 * otherwise be livelocked... 5423 */ 5424 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5425 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5426 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5427 if (err) 5428 return err; 5429 } 5430 5431 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5432 err = dquot_quota_on(sb, type, format_id, path); 5433 if (err) { 5434 lockdep_set_quota_inode(path->dentry->d_inode, 5435 I_DATA_SEM_NORMAL); 5436 } else { 5437 struct inode *inode = d_inode(path->dentry); 5438 handle_t *handle; 5439 5440 /* 5441 * Set inode flags to prevent userspace from messing with quota 5442 * files. If this fails, we return success anyway since quotas 5443 * are already enabled and this is not a hard failure. 5444 */ 5445 inode_lock(inode); 5446 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5447 if (IS_ERR(handle)) 5448 goto unlock_inode; 5449 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5450 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5451 S_NOATIME | S_IMMUTABLE); 5452 ext4_mark_inode_dirty(handle, inode); 5453 ext4_journal_stop(handle); 5454 unlock_inode: 5455 inode_unlock(inode); 5456 } 5457 return err; 5458 } 5459 5460 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5461 unsigned int flags) 5462 { 5463 int err; 5464 struct inode *qf_inode; 5465 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5466 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5467 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5468 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5469 }; 5470 5471 BUG_ON(!ext4_has_feature_quota(sb)); 5472 5473 if (!qf_inums[type]) 5474 return -EPERM; 5475 5476 qf_inode = ext4_iget(sb, qf_inums[type]); 5477 if (IS_ERR(qf_inode)) { 5478 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5479 return PTR_ERR(qf_inode); 5480 } 5481 5482 /* Don't account quota for quota files to avoid recursion */ 5483 qf_inode->i_flags |= S_NOQUOTA; 5484 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5485 err = dquot_enable(qf_inode, type, format_id, flags); 5486 iput(qf_inode); 5487 if (err) 5488 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5489 5490 return err; 5491 } 5492 5493 /* Enable usage tracking for all quota types. */ 5494 static int ext4_enable_quotas(struct super_block *sb) 5495 { 5496 int type, err = 0; 5497 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5498 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5499 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5500 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5501 }; 5502 bool quota_mopt[EXT4_MAXQUOTAS] = { 5503 test_opt(sb, USRQUOTA), 5504 test_opt(sb, GRPQUOTA), 5505 test_opt(sb, PRJQUOTA), 5506 }; 5507 5508 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5509 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5510 if (qf_inums[type]) { 5511 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5512 DQUOT_USAGE_ENABLED | 5513 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5514 if (err) { 5515 ext4_warning(sb, 5516 "Failed to enable quota tracking " 5517 "(type=%d, err=%d). Please run " 5518 "e2fsck to fix.", type, err); 5519 return err; 5520 } 5521 } 5522 } 5523 return 0; 5524 } 5525 5526 static int ext4_quota_off(struct super_block *sb, int type) 5527 { 5528 struct inode *inode = sb_dqopt(sb)->files[type]; 5529 handle_t *handle; 5530 int err; 5531 5532 /* Force all delayed allocation blocks to be allocated. 5533 * Caller already holds s_umount sem */ 5534 if (test_opt(sb, DELALLOC)) 5535 sync_filesystem(sb); 5536 5537 if (!inode || !igrab(inode)) 5538 goto out; 5539 5540 err = dquot_quota_off(sb, type); 5541 if (err || ext4_has_feature_quota(sb)) 5542 goto out_put; 5543 5544 inode_lock(inode); 5545 /* 5546 * Update modification times of quota files when userspace can 5547 * start looking at them. If we fail, we return success anyway since 5548 * this is not a hard failure and quotas are already disabled. 5549 */ 5550 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5551 if (IS_ERR(handle)) 5552 goto out_unlock; 5553 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5554 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5555 inode->i_mtime = inode->i_ctime = current_time(inode); 5556 ext4_mark_inode_dirty(handle, inode); 5557 ext4_journal_stop(handle); 5558 out_unlock: 5559 inode_unlock(inode); 5560 out_put: 5561 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5562 iput(inode); 5563 return err; 5564 out: 5565 return dquot_quota_off(sb, type); 5566 } 5567 5568 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5569 * acquiring the locks... As quota files are never truncated and quota code 5570 * itself serializes the operations (and no one else should touch the files) 5571 * we don't have to be afraid of races */ 5572 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5573 size_t len, loff_t off) 5574 { 5575 struct inode *inode = sb_dqopt(sb)->files[type]; 5576 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5577 int offset = off & (sb->s_blocksize - 1); 5578 int tocopy; 5579 size_t toread; 5580 struct buffer_head *bh; 5581 loff_t i_size = i_size_read(inode); 5582 5583 if (off > i_size) 5584 return 0; 5585 if (off+len > i_size) 5586 len = i_size-off; 5587 toread = len; 5588 while (toread > 0) { 5589 tocopy = sb->s_blocksize - offset < toread ? 5590 sb->s_blocksize - offset : toread; 5591 bh = ext4_bread(NULL, inode, blk, 0); 5592 if (IS_ERR(bh)) 5593 return PTR_ERR(bh); 5594 if (!bh) /* A hole? */ 5595 memset(data, 0, tocopy); 5596 else 5597 memcpy(data, bh->b_data+offset, tocopy); 5598 brelse(bh); 5599 offset = 0; 5600 toread -= tocopy; 5601 data += tocopy; 5602 blk++; 5603 } 5604 return len; 5605 } 5606 5607 /* Write to quotafile (we know the transaction is already started and has 5608 * enough credits) */ 5609 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5610 const char *data, size_t len, loff_t off) 5611 { 5612 struct inode *inode = sb_dqopt(sb)->files[type]; 5613 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5614 int err, offset = off & (sb->s_blocksize - 1); 5615 int retries = 0; 5616 struct buffer_head *bh; 5617 handle_t *handle = journal_current_handle(); 5618 5619 if (EXT4_SB(sb)->s_journal && !handle) { 5620 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5621 " cancelled because transaction is not started", 5622 (unsigned long long)off, (unsigned long long)len); 5623 return -EIO; 5624 } 5625 /* 5626 * Since we account only one data block in transaction credits, 5627 * then it is impossible to cross a block boundary. 5628 */ 5629 if (sb->s_blocksize - offset < len) { 5630 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5631 " cancelled because not block aligned", 5632 (unsigned long long)off, (unsigned long long)len); 5633 return -EIO; 5634 } 5635 5636 do { 5637 bh = ext4_bread(handle, inode, blk, 5638 EXT4_GET_BLOCKS_CREATE | 5639 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5640 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5641 ext4_should_retry_alloc(inode->i_sb, &retries)); 5642 if (IS_ERR(bh)) 5643 return PTR_ERR(bh); 5644 if (!bh) 5645 goto out; 5646 BUFFER_TRACE(bh, "get write access"); 5647 err = ext4_journal_get_write_access(handle, bh); 5648 if (err) { 5649 brelse(bh); 5650 return err; 5651 } 5652 lock_buffer(bh); 5653 memcpy(bh->b_data+offset, data, len); 5654 flush_dcache_page(bh->b_page); 5655 unlock_buffer(bh); 5656 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5657 brelse(bh); 5658 out: 5659 if (inode->i_size < off + len) { 5660 i_size_write(inode, off + len); 5661 EXT4_I(inode)->i_disksize = inode->i_size; 5662 ext4_mark_inode_dirty(handle, inode); 5663 } 5664 return len; 5665 } 5666 5667 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5668 { 5669 const struct quota_format_ops *ops; 5670 5671 if (!sb_has_quota_loaded(sb, qid->type)) 5672 return -ESRCH; 5673 ops = sb_dqopt(sb)->ops[qid->type]; 5674 if (!ops || !ops->get_next_id) 5675 return -ENOSYS; 5676 return dquot_get_next_id(sb, qid); 5677 } 5678 #endif 5679 5680 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5681 const char *dev_name, void *data) 5682 { 5683 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5684 } 5685 5686 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5687 static inline void register_as_ext2(void) 5688 { 5689 int err = register_filesystem(&ext2_fs_type); 5690 if (err) 5691 printk(KERN_WARNING 5692 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5693 } 5694 5695 static inline void unregister_as_ext2(void) 5696 { 5697 unregister_filesystem(&ext2_fs_type); 5698 } 5699 5700 static inline int ext2_feature_set_ok(struct super_block *sb) 5701 { 5702 if (ext4_has_unknown_ext2_incompat_features(sb)) 5703 return 0; 5704 if (sb->s_flags & MS_RDONLY) 5705 return 1; 5706 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5707 return 0; 5708 return 1; 5709 } 5710 #else 5711 static inline void register_as_ext2(void) { } 5712 static inline void unregister_as_ext2(void) { } 5713 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5714 #endif 5715 5716 static inline void register_as_ext3(void) 5717 { 5718 int err = register_filesystem(&ext3_fs_type); 5719 if (err) 5720 printk(KERN_WARNING 5721 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5722 } 5723 5724 static inline void unregister_as_ext3(void) 5725 { 5726 unregister_filesystem(&ext3_fs_type); 5727 } 5728 5729 static inline int ext3_feature_set_ok(struct super_block *sb) 5730 { 5731 if (ext4_has_unknown_ext3_incompat_features(sb)) 5732 return 0; 5733 if (!ext4_has_feature_journal(sb)) 5734 return 0; 5735 if (sb->s_flags & MS_RDONLY) 5736 return 1; 5737 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5738 return 0; 5739 return 1; 5740 } 5741 5742 static struct file_system_type ext4_fs_type = { 5743 .owner = THIS_MODULE, 5744 .name = "ext4", 5745 .mount = ext4_mount, 5746 .kill_sb = kill_block_super, 5747 .fs_flags = FS_REQUIRES_DEV, 5748 }; 5749 MODULE_ALIAS_FS("ext4"); 5750 5751 /* Shared across all ext4 file systems */ 5752 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5753 5754 static int __init ext4_init_fs(void) 5755 { 5756 int i, err; 5757 5758 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5759 ext4_li_info = NULL; 5760 mutex_init(&ext4_li_mtx); 5761 5762 /* Build-time check for flags consistency */ 5763 ext4_check_flag_values(); 5764 5765 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5766 init_waitqueue_head(&ext4__ioend_wq[i]); 5767 5768 err = ext4_init_es(); 5769 if (err) 5770 return err; 5771 5772 err = ext4_init_pageio(); 5773 if (err) 5774 goto out5; 5775 5776 err = ext4_init_system_zone(); 5777 if (err) 5778 goto out4; 5779 5780 err = ext4_init_sysfs(); 5781 if (err) 5782 goto out3; 5783 5784 err = ext4_init_mballoc(); 5785 if (err) 5786 goto out2; 5787 err = init_inodecache(); 5788 if (err) 5789 goto out1; 5790 register_as_ext3(); 5791 register_as_ext2(); 5792 err = register_filesystem(&ext4_fs_type); 5793 if (err) 5794 goto out; 5795 5796 return 0; 5797 out: 5798 unregister_as_ext2(); 5799 unregister_as_ext3(); 5800 destroy_inodecache(); 5801 out1: 5802 ext4_exit_mballoc(); 5803 out2: 5804 ext4_exit_sysfs(); 5805 out3: 5806 ext4_exit_system_zone(); 5807 out4: 5808 ext4_exit_pageio(); 5809 out5: 5810 ext4_exit_es(); 5811 5812 return err; 5813 } 5814 5815 static void __exit ext4_exit_fs(void) 5816 { 5817 ext4_destroy_lazyinit_thread(); 5818 unregister_as_ext2(); 5819 unregister_as_ext3(); 5820 unregister_filesystem(&ext4_fs_type); 5821 destroy_inodecache(); 5822 ext4_exit_mballoc(); 5823 ext4_exit_sysfs(); 5824 ext4_exit_system_zone(); 5825 ext4_exit_pageio(); 5826 ext4_exit_es(); 5827 } 5828 5829 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5830 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5831 MODULE_LICENSE("GPL"); 5832 module_init(ext4_init_fs) 5833 module_exit(ext4_exit_fs) 5834