xref: /linux/fs/ext4/super.c (revision 4b471b736ea1ce08113a12bd7dcdaea621b0f65f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 					    unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 				      struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97 
98 /*
99  * Lock ordering
100  *
101  * page fault path:
102  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103  *   -> page lock -> i_data_sem (rw)
104  *
105  * buffered write path:
106  * sb_start_write -> i_mutex -> mmap_lock
107  * sb_start_write -> i_mutex -> transaction start -> page lock ->
108  *   i_data_sem (rw)
109  *
110  * truncate:
111  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112  *   page lock
113  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114  *   i_data_sem (rw)
115  *
116  * direct IO:
117  * sb_start_write -> i_mutex -> mmap_lock
118  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119  *
120  * writepages:
121  * transaction start -> page lock(s) -> i_data_sem (rw)
122  */
123 
124 static const struct fs_context_operations ext4_context_ops = {
125 	.parse_param	= ext4_parse_param,
126 	.get_tree	= ext4_get_tree,
127 	.reconfigure	= ext4_reconfigure,
128 	.free		= ext4_fc_free,
129 };
130 
131 
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 	.owner			= THIS_MODULE,
135 	.name			= "ext2",
136 	.init_fs_context	= ext4_init_fs_context,
137 	.parameters		= ext4_param_specs,
138 	.kill_sb		= ext4_kill_sb,
139 	.fs_flags		= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147 
148 
149 static struct file_system_type ext3_fs_type = {
150 	.owner			= THIS_MODULE,
151 	.name			= "ext3",
152 	.init_fs_context	= ext4_init_fs_context,
153 	.parameters		= ext4_param_specs,
154 	.kill_sb		= ext4_kill_sb,
155 	.fs_flags		= FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160 
161 
162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 				  bh_end_io_t *end_io, bool simu_fail)
164 {
165 	if (simu_fail) {
166 		clear_buffer_uptodate(bh);
167 		unlock_buffer(bh);
168 		return;
169 	}
170 
171 	/*
172 	 * buffer's verified bit is no longer valid after reading from
173 	 * disk again due to write out error, clear it to make sure we
174 	 * recheck the buffer contents.
175 	 */
176 	clear_buffer_verified(bh);
177 
178 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 	get_bh(bh);
180 	submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182 
183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 			 bh_end_io_t *end_io, bool simu_fail)
185 {
186 	BUG_ON(!buffer_locked(bh));
187 
188 	if (ext4_buffer_uptodate(bh)) {
189 		unlock_buffer(bh);
190 		return;
191 	}
192 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194 
195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 		 bh_end_io_t *end_io, bool simu_fail)
197 {
198 	BUG_ON(!buffer_locked(bh));
199 
200 	if (ext4_buffer_uptodate(bh)) {
201 		unlock_buffer(bh);
202 		return 0;
203 	}
204 
205 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
206 
207 	wait_on_buffer(bh);
208 	if (buffer_uptodate(bh))
209 		return 0;
210 	return -EIO;
211 }
212 
213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 	lock_buffer(bh);
216 	if (!wait) {
217 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 		return 0;
219 	}
220 	return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222 
223 /*
224  * This works like __bread_gfp() except it uses ERR_PTR for error
225  * returns.  Currently with sb_bread it's impossible to distinguish
226  * between ENOMEM and EIO situations (since both result in a NULL
227  * return.
228  */
229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 					       sector_t block,
231 					       blk_opf_t op_flags, gfp_t gfp)
232 {
233 	struct buffer_head *bh;
234 	int ret;
235 
236 	bh = sb_getblk_gfp(sb, block, gfp);
237 	if (bh == NULL)
238 		return ERR_PTR(-ENOMEM);
239 	if (ext4_buffer_uptodate(bh))
240 		return bh;
241 
242 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 	if (ret) {
244 		put_bh(bh);
245 		return ERR_PTR(ret);
246 	}
247 	return bh;
248 }
249 
250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 				   blk_opf_t op_flags)
252 {
253 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 			~__GFP_FS) | __GFP_MOVABLE;
255 
256 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258 
259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 					    sector_t block)
261 {
262 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 			~__GFP_FS);
264 
265 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267 
268 struct buffer_head *ext4_sb_bread_nofail(struct super_block *sb,
269 					 sector_t block)
270 {
271 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
272 			~__GFP_FS) | __GFP_MOVABLE | __GFP_NOFAIL;
273 
274 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
275 }
276 
277 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
278 {
279 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
280 			sb->s_blocksize, GFP_NOWAIT);
281 
282 	if (likely(bh)) {
283 		if (trylock_buffer(bh))
284 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
285 		brelse(bh);
286 	}
287 }
288 
289 static int ext4_verify_csum_type(struct super_block *sb,
290 				 struct ext4_super_block *es)
291 {
292 	if (!ext4_has_feature_metadata_csum(sb))
293 		return 1;
294 
295 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
296 }
297 
298 __le32 ext4_superblock_csum(struct ext4_super_block *es)
299 {
300 	int offset = offsetof(struct ext4_super_block, s_checksum);
301 	__u32 csum;
302 
303 	csum = ext4_chksum(~0, (char *)es, offset);
304 
305 	return cpu_to_le32(csum);
306 }
307 
308 static int ext4_superblock_csum_verify(struct super_block *sb,
309 				       struct ext4_super_block *es)
310 {
311 	if (!ext4_has_feature_metadata_csum(sb))
312 		return 1;
313 
314 	return es->s_checksum == ext4_superblock_csum(es);
315 }
316 
317 void ext4_superblock_csum_set(struct super_block *sb)
318 {
319 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320 
321 	if (!ext4_has_feature_metadata_csum(sb))
322 		return;
323 
324 	es->s_checksum = ext4_superblock_csum(es);
325 }
326 
327 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
328 			       struct ext4_group_desc *bg)
329 {
330 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
331 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
333 }
334 
335 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
336 			       struct ext4_group_desc *bg)
337 {
338 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
339 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
341 }
342 
343 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
344 			      struct ext4_group_desc *bg)
345 {
346 	return le32_to_cpu(bg->bg_inode_table_lo) |
347 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
348 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
349 }
350 
351 __u32 ext4_free_group_clusters(struct super_block *sb,
352 			       struct ext4_group_desc *bg)
353 {
354 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
355 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
356 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
357 }
358 
359 __u32 ext4_free_inodes_count(struct super_block *sb,
360 			      struct ext4_group_desc *bg)
361 {
362 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
363 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
364 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
365 }
366 
367 __u32 ext4_used_dirs_count(struct super_block *sb,
368 			      struct ext4_group_desc *bg)
369 {
370 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
371 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
372 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
373 }
374 
375 __u32 ext4_itable_unused_count(struct super_block *sb,
376 			      struct ext4_group_desc *bg)
377 {
378 	return le16_to_cpu(bg->bg_itable_unused_lo) |
379 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
380 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
381 }
382 
383 void ext4_block_bitmap_set(struct super_block *sb,
384 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
385 {
386 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
387 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
389 }
390 
391 void ext4_inode_bitmap_set(struct super_block *sb,
392 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
393 {
394 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
395 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
397 }
398 
399 void ext4_inode_table_set(struct super_block *sb,
400 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
401 {
402 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
403 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
404 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
405 }
406 
407 void ext4_free_group_clusters_set(struct super_block *sb,
408 				  struct ext4_group_desc *bg, __u32 count)
409 {
410 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
411 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
412 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
413 }
414 
415 void ext4_free_inodes_set(struct super_block *sb,
416 			  struct ext4_group_desc *bg, __u32 count)
417 {
418 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
419 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
420 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
421 }
422 
423 void ext4_used_dirs_set(struct super_block *sb,
424 			  struct ext4_group_desc *bg, __u32 count)
425 {
426 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
427 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
428 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
429 }
430 
431 void ext4_itable_unused_set(struct super_block *sb,
432 			  struct ext4_group_desc *bg, __u32 count)
433 {
434 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
435 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
436 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
437 }
438 
439 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
440 {
441 	now = clamp_val(now, 0, (1ull << 40) - 1);
442 
443 	*lo = cpu_to_le32(lower_32_bits(now));
444 	*hi = upper_32_bits(now);
445 }
446 
447 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
448 {
449 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
450 }
451 #define ext4_update_tstamp(es, tstamp) \
452 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
453 			     ktime_get_real_seconds())
454 #define ext4_get_tstamp(es, tstamp) \
455 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
456 
457 /*
458  * The ext4_maybe_update_superblock() function checks and updates the
459  * superblock if needed.
460  *
461  * This function is designed to update the on-disk superblock only under
462  * certain conditions to prevent excessive disk writes and unnecessary
463  * waking of the disk from sleep. The superblock will be updated if:
464  * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
465  *    superblock update
466  * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
467  *    last superblock update.
468  *
469  * @sb: The superblock
470  */
471 static void ext4_maybe_update_superblock(struct super_block *sb)
472 {
473 	struct ext4_sb_info *sbi = EXT4_SB(sb);
474 	struct ext4_super_block *es = sbi->s_es;
475 	journal_t *journal = sbi->s_journal;
476 	time64_t now;
477 	__u64 last_update;
478 	__u64 lifetime_write_kbytes;
479 	__u64 diff_size;
480 
481 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
482 	    !(sb->s_flags & SB_ACTIVE) || !journal ||
483 	    journal->j_flags & JBD2_UNMOUNT)
484 		return;
485 
486 	now = ktime_get_real_seconds();
487 	last_update = ext4_get_tstamp(es, s_wtime);
488 
489 	if (likely(now - last_update < sbi->s_sb_update_sec))
490 		return;
491 
492 	lifetime_write_kbytes = sbi->s_kbytes_written +
493 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
494 		  sbi->s_sectors_written_start) >> 1);
495 
496 	/* Get the number of kilobytes not written to disk to account
497 	 * for statistics and compare with a multiple of 16 MB. This
498 	 * is used to determine when the next superblock commit should
499 	 * occur (i.e. not more often than once per 16MB if there was
500 	 * less written in an hour).
501 	 */
502 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
503 
504 	if (diff_size > sbi->s_sb_update_kb)
505 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
506 }
507 
508 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
509 {
510 	struct super_block		*sb = journal->j_private;
511 
512 	BUG_ON(txn->t_state == T_FINISHED);
513 
514 	ext4_process_freed_data(sb, txn->t_tid);
515 	ext4_maybe_update_superblock(sb);
516 }
517 
518 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
519 		struct folio *folio)
520 {
521 	struct buffer_head *bh, *head;
522 	struct journal_head *jh;
523 
524 	bh = head = folio_buffers(folio);
525 	do {
526 		/*
527 		 * We have to redirty a page in these cases:
528 		 * 1) If buffer is dirty, it means the page was dirty because it
529 		 * contains a buffer that needs checkpointing. So the dirty bit
530 		 * needs to be preserved so that checkpointing writes the buffer
531 		 * properly.
532 		 * 2) If buffer is not part of the committing transaction
533 		 * (we may have just accidentally come across this buffer because
534 		 * inode range tracking is not exact) or if the currently running
535 		 * transaction already contains this buffer as well, dirty bit
536 		 * needs to be preserved so that the buffer gets writeprotected
537 		 * properly on running transaction's commit.
538 		 */
539 		jh = bh2jh(bh);
540 		if (buffer_dirty(bh) ||
541 		    (jh && (jh->b_transaction != jinode->i_transaction ||
542 			    jh->b_next_transaction)))
543 			return true;
544 	} while ((bh = bh->b_this_page) != head);
545 
546 	return false;
547 }
548 
549 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
550 {
551 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
552 	struct writeback_control wbc = {
553 		.sync_mode =  WB_SYNC_ALL,
554 		.nr_to_write = LONG_MAX,
555 		.range_start = jinode->i_dirty_start,
556 		.range_end = jinode->i_dirty_end,
557         };
558 	struct folio *folio = NULL;
559 	int error;
560 
561 	/*
562 	 * writeback_iter() already checks for dirty pages and calls
563 	 * folio_clear_dirty_for_io(), which we want to write protect the
564 	 * folios.
565 	 *
566 	 * However, we may have to redirty a folio sometimes.
567 	 */
568 	while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
569 		if (ext4_journalled_writepage_needs_redirty(jinode, folio))
570 			folio_redirty_for_writepage(&wbc, folio);
571 		folio_unlock(folio);
572 	}
573 
574 	return error;
575 }
576 
577 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
578 {
579 	int ret;
580 
581 	if (ext4_should_journal_data(jinode->i_vfs_inode))
582 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
583 	else
584 		ret = ext4_normal_submit_inode_data_buffers(jinode);
585 	return ret;
586 }
587 
588 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
589 {
590 	int ret = 0;
591 
592 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
593 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
594 
595 	return ret;
596 }
597 
598 static bool system_going_down(void)
599 {
600 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
601 		|| system_state == SYSTEM_RESTART;
602 }
603 
604 struct ext4_err_translation {
605 	int code;
606 	int errno;
607 };
608 
609 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
610 
611 static struct ext4_err_translation err_translation[] = {
612 	EXT4_ERR_TRANSLATE(EIO),
613 	EXT4_ERR_TRANSLATE(ENOMEM),
614 	EXT4_ERR_TRANSLATE(EFSBADCRC),
615 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
616 	EXT4_ERR_TRANSLATE(ENOSPC),
617 	EXT4_ERR_TRANSLATE(ENOKEY),
618 	EXT4_ERR_TRANSLATE(EROFS),
619 	EXT4_ERR_TRANSLATE(EFBIG),
620 	EXT4_ERR_TRANSLATE(EEXIST),
621 	EXT4_ERR_TRANSLATE(ERANGE),
622 	EXT4_ERR_TRANSLATE(EOVERFLOW),
623 	EXT4_ERR_TRANSLATE(EBUSY),
624 	EXT4_ERR_TRANSLATE(ENOTDIR),
625 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
626 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
627 	EXT4_ERR_TRANSLATE(EFAULT),
628 };
629 
630 static int ext4_errno_to_code(int errno)
631 {
632 	int i;
633 
634 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
635 		if (err_translation[i].errno == errno)
636 			return err_translation[i].code;
637 	return EXT4_ERR_UNKNOWN;
638 }
639 
640 static void save_error_info(struct super_block *sb, int error,
641 			    __u32 ino, __u64 block,
642 			    const char *func, unsigned int line)
643 {
644 	struct ext4_sb_info *sbi = EXT4_SB(sb);
645 
646 	/* We default to EFSCORRUPTED error... */
647 	if (error == 0)
648 		error = EFSCORRUPTED;
649 
650 	spin_lock(&sbi->s_error_lock);
651 	sbi->s_add_error_count++;
652 	sbi->s_last_error_code = error;
653 	sbi->s_last_error_line = line;
654 	sbi->s_last_error_ino = ino;
655 	sbi->s_last_error_block = block;
656 	sbi->s_last_error_func = func;
657 	sbi->s_last_error_time = ktime_get_real_seconds();
658 	if (!sbi->s_first_error_time) {
659 		sbi->s_first_error_code = error;
660 		sbi->s_first_error_line = line;
661 		sbi->s_first_error_ino = ino;
662 		sbi->s_first_error_block = block;
663 		sbi->s_first_error_func = func;
664 		sbi->s_first_error_time = sbi->s_last_error_time;
665 	}
666 	spin_unlock(&sbi->s_error_lock);
667 }
668 
669 /* Deal with the reporting of failure conditions on a filesystem such as
670  * inconsistencies detected or read IO failures.
671  *
672  * On ext2, we can store the error state of the filesystem in the
673  * superblock.  That is not possible on ext4, because we may have other
674  * write ordering constraints on the superblock which prevent us from
675  * writing it out straight away; and given that the journal is about to
676  * be aborted, we can't rely on the current, or future, transactions to
677  * write out the superblock safely.
678  *
679  * We'll just use the jbd2_journal_abort() error code to record an error in
680  * the journal instead.  On recovery, the journal will complain about
681  * that error until we've noted it down and cleared it.
682  *
683  * If force_ro is set, we unconditionally force the filesystem into an
684  * ABORT|READONLY state, unless the error response on the fs has been set to
685  * panic in which case we take the easy way out and panic immediately. This is
686  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
687  * at a critical moment in log management.
688  */
689 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
690 			      __u32 ino, __u64 block,
691 			      const char *func, unsigned int line)
692 {
693 	journal_t *journal = EXT4_SB(sb)->s_journal;
694 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
695 
696 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
697 	if (test_opt(sb, WARN_ON_ERROR))
698 		WARN_ON_ONCE(1);
699 
700 	if (!continue_fs && !ext4_emergency_ro(sb) && journal)
701 		jbd2_journal_abort(journal, -EIO);
702 
703 	if (!bdev_read_only(sb->s_bdev)) {
704 		save_error_info(sb, error, ino, block, func, line);
705 		/*
706 		 * In case the fs should keep running, we need to writeout
707 		 * superblock through the journal. Due to lock ordering
708 		 * constraints, it may not be safe to do it right here so we
709 		 * defer superblock flushing to a workqueue. We just need to be
710 		 * careful when the journal is already shutting down. If we get
711 		 * here in that case, just update the sb directly as the last
712 		 * transaction won't commit anyway.
713 		 */
714 		if (continue_fs && journal &&
715 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
716 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
717 		else
718 			ext4_commit_super(sb);
719 	}
720 
721 	/*
722 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
723 	 * could panic during 'reboot -f' as the underlying device got already
724 	 * disabled.
725 	 */
726 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
727 		panic("EXT4-fs (device %s): panic forced after error\n",
728 			sb->s_id);
729 	}
730 
731 	if (ext4_emergency_ro(sb) || continue_fs)
732 		return;
733 
734 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
735 	/*
736 	 * We don't set SB_RDONLY because that requires sb->s_umount
737 	 * semaphore and setting it without proper remount procedure is
738 	 * confusing code such as freeze_super() leading to deadlocks
739 	 * and other problems.
740 	 */
741 	set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
742 }
743 
744 static void update_super_work(struct work_struct *work)
745 {
746 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
747 						s_sb_upd_work);
748 	journal_t *journal = sbi->s_journal;
749 	handle_t *handle;
750 
751 	/*
752 	 * If the journal is still running, we have to write out superblock
753 	 * through the journal to avoid collisions of other journalled sb
754 	 * updates.
755 	 *
756 	 * We use directly jbd2 functions here to avoid recursing back into
757 	 * ext4 error handling code during handling of previous errors.
758 	 */
759 	if (!ext4_emergency_state(sbi->s_sb) &&
760 	    !sb_rdonly(sbi->s_sb) && journal) {
761 		struct buffer_head *sbh = sbi->s_sbh;
762 		bool call_notify_err = false;
763 
764 		handle = jbd2_journal_start(journal, 1);
765 		if (IS_ERR(handle))
766 			goto write_directly;
767 		if (jbd2_journal_get_write_access(handle, sbh)) {
768 			jbd2_journal_stop(handle);
769 			goto write_directly;
770 		}
771 
772 		if (sbi->s_add_error_count > 0)
773 			call_notify_err = true;
774 
775 		ext4_update_super(sbi->s_sb);
776 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
777 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
778 				 "superblock detected");
779 			clear_buffer_write_io_error(sbh);
780 			set_buffer_uptodate(sbh);
781 		}
782 
783 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
784 			jbd2_journal_stop(handle);
785 			goto write_directly;
786 		}
787 		jbd2_journal_stop(handle);
788 
789 		if (call_notify_err)
790 			ext4_notify_error_sysfs(sbi);
791 
792 		return;
793 	}
794 write_directly:
795 	/*
796 	 * Write through journal failed. Write sb directly to get error info
797 	 * out and hope for the best.
798 	 */
799 	ext4_commit_super(sbi->s_sb);
800 	ext4_notify_error_sysfs(sbi);
801 }
802 
803 #define ext4_error_ratelimit(sb)					\
804 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
805 			     "EXT4-fs error")
806 
807 void __ext4_error(struct super_block *sb, const char *function,
808 		  unsigned int line, bool force_ro, int error, __u64 block,
809 		  const char *fmt, ...)
810 {
811 	struct va_format vaf;
812 	va_list args;
813 
814 	if (unlikely(ext4_emergency_state(sb)))
815 		return;
816 
817 	trace_ext4_error(sb, function, line);
818 	if (ext4_error_ratelimit(sb)) {
819 		va_start(args, fmt);
820 		vaf.fmt = fmt;
821 		vaf.va = &args;
822 		printk(KERN_CRIT
823 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
824 		       sb->s_id, function, line, current->comm, &vaf);
825 		va_end(args);
826 	}
827 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
828 
829 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
830 }
831 
832 void __ext4_error_inode(struct inode *inode, const char *function,
833 			unsigned int line, ext4_fsblk_t block, int error,
834 			const char *fmt, ...)
835 {
836 	va_list args;
837 	struct va_format vaf;
838 
839 	if (unlikely(ext4_emergency_state(inode->i_sb)))
840 		return;
841 
842 	trace_ext4_error(inode->i_sb, function, line);
843 	if (ext4_error_ratelimit(inode->i_sb)) {
844 		va_start(args, fmt);
845 		vaf.fmt = fmt;
846 		vaf.va = &args;
847 		if (block)
848 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
849 			       "inode #%lu: block %llu: comm %s: %pV\n",
850 			       inode->i_sb->s_id, function, line, inode->i_ino,
851 			       block, current->comm, &vaf);
852 		else
853 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
854 			       "inode #%lu: comm %s: %pV\n",
855 			       inode->i_sb->s_id, function, line, inode->i_ino,
856 			       current->comm, &vaf);
857 		va_end(args);
858 	}
859 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
860 
861 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
862 			  function, line);
863 }
864 
865 void __ext4_error_file(struct file *file, const char *function,
866 		       unsigned int line, ext4_fsblk_t block,
867 		       const char *fmt, ...)
868 {
869 	va_list args;
870 	struct va_format vaf;
871 	struct inode *inode = file_inode(file);
872 	char pathname[80], *path;
873 
874 	if (unlikely(ext4_emergency_state(inode->i_sb)))
875 		return;
876 
877 	trace_ext4_error(inode->i_sb, function, line);
878 	if (ext4_error_ratelimit(inode->i_sb)) {
879 		path = file_path(file, pathname, sizeof(pathname));
880 		if (IS_ERR(path))
881 			path = "(unknown)";
882 		va_start(args, fmt);
883 		vaf.fmt = fmt;
884 		vaf.va = &args;
885 		if (block)
886 			printk(KERN_CRIT
887 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
888 			       "block %llu: comm %s: path %s: %pV\n",
889 			       inode->i_sb->s_id, function, line, inode->i_ino,
890 			       block, current->comm, path, &vaf);
891 		else
892 			printk(KERN_CRIT
893 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
894 			       "comm %s: path %s: %pV\n",
895 			       inode->i_sb->s_id, function, line, inode->i_ino,
896 			       current->comm, path, &vaf);
897 		va_end(args);
898 	}
899 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
900 
901 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
902 			  function, line);
903 }
904 
905 const char *ext4_decode_error(struct super_block *sb, int errno,
906 			      char nbuf[16])
907 {
908 	char *errstr = NULL;
909 
910 	switch (errno) {
911 	case -EFSCORRUPTED:
912 		errstr = "Corrupt filesystem";
913 		break;
914 	case -EFSBADCRC:
915 		errstr = "Filesystem failed CRC";
916 		break;
917 	case -EIO:
918 		errstr = "IO failure";
919 		break;
920 	case -ENOMEM:
921 		errstr = "Out of memory";
922 		break;
923 	case -EROFS:
924 		if (!sb || (EXT4_SB(sb)->s_journal &&
925 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
926 			errstr = "Journal has aborted";
927 		else
928 			errstr = "Readonly filesystem";
929 		break;
930 	default:
931 		/* If the caller passed in an extra buffer for unknown
932 		 * errors, textualise them now.  Else we just return
933 		 * NULL. */
934 		if (nbuf) {
935 			/* Check for truncated error codes... */
936 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
937 				errstr = nbuf;
938 		}
939 		break;
940 	}
941 
942 	return errstr;
943 }
944 
945 /* __ext4_std_error decodes expected errors from journaling functions
946  * automatically and invokes the appropriate error response.  */
947 
948 void __ext4_std_error(struct super_block *sb, const char *function,
949 		      unsigned int line, int errno)
950 {
951 	char nbuf[16];
952 	const char *errstr;
953 
954 	if (unlikely(ext4_emergency_state(sb)))
955 		return;
956 
957 	/* Special case: if the error is EROFS, and we're not already
958 	 * inside a transaction, then there's really no point in logging
959 	 * an error. */
960 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
961 		return;
962 
963 	if (ext4_error_ratelimit(sb)) {
964 		errstr = ext4_decode_error(sb, errno, nbuf);
965 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
966 		       sb->s_id, function, line, errstr);
967 	}
968 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
969 
970 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
971 }
972 
973 void __ext4_msg(struct super_block *sb,
974 		const char *prefix, const char *fmt, ...)
975 {
976 	struct va_format vaf;
977 	va_list args;
978 
979 	if (sb) {
980 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
981 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
982 				  "EXT4-fs"))
983 			return;
984 	}
985 
986 	va_start(args, fmt);
987 	vaf.fmt = fmt;
988 	vaf.va = &args;
989 	if (sb)
990 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
991 	else
992 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
993 	va_end(args);
994 }
995 
996 static int ext4_warning_ratelimit(struct super_block *sb)
997 {
998 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
999 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1000 			    "EXT4-fs warning");
1001 }
1002 
1003 void __ext4_warning(struct super_block *sb, const char *function,
1004 		    unsigned int line, const char *fmt, ...)
1005 {
1006 	struct va_format vaf;
1007 	va_list args;
1008 
1009 	if (!ext4_warning_ratelimit(sb))
1010 		return;
1011 
1012 	va_start(args, fmt);
1013 	vaf.fmt = fmt;
1014 	vaf.va = &args;
1015 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1016 	       sb->s_id, function, line, &vaf);
1017 	va_end(args);
1018 }
1019 
1020 void __ext4_warning_inode(const struct inode *inode, const char *function,
1021 			  unsigned int line, const char *fmt, ...)
1022 {
1023 	struct va_format vaf;
1024 	va_list args;
1025 
1026 	if (!ext4_warning_ratelimit(inode->i_sb))
1027 		return;
1028 
1029 	va_start(args, fmt);
1030 	vaf.fmt = fmt;
1031 	vaf.va = &args;
1032 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1033 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1034 	       function, line, inode->i_ino, current->comm, &vaf);
1035 	va_end(args);
1036 }
1037 
1038 void __ext4_grp_locked_error(const char *function, unsigned int line,
1039 			     struct super_block *sb, ext4_group_t grp,
1040 			     unsigned long ino, ext4_fsblk_t block,
1041 			     const char *fmt, ...)
1042 __releases(bitlock)
1043 __acquires(bitlock)
1044 {
1045 	struct va_format vaf;
1046 	va_list args;
1047 
1048 	if (unlikely(ext4_emergency_state(sb)))
1049 		return;
1050 
1051 	trace_ext4_error(sb, function, line);
1052 	if (ext4_error_ratelimit(sb)) {
1053 		va_start(args, fmt);
1054 		vaf.fmt = fmt;
1055 		vaf.va = &args;
1056 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1057 		       sb->s_id, function, line, grp);
1058 		if (ino)
1059 			printk(KERN_CONT "inode %lu: ", ino);
1060 		if (block)
1061 			printk(KERN_CONT "block %llu:",
1062 			       (unsigned long long) block);
1063 		printk(KERN_CONT "%pV\n", &vaf);
1064 		va_end(args);
1065 	}
1066 
1067 	if (test_opt(sb, ERRORS_CONT)) {
1068 		if (test_opt(sb, WARN_ON_ERROR))
1069 			WARN_ON_ONCE(1);
1070 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1071 		if (!bdev_read_only(sb->s_bdev)) {
1072 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1073 					line);
1074 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1075 		}
1076 		return;
1077 	}
1078 	ext4_unlock_group(sb, grp);
1079 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1080 	/*
1081 	 * We only get here in the ERRORS_RO case; relocking the group
1082 	 * may be dangerous, but nothing bad will happen since the
1083 	 * filesystem will have already been marked read/only and the
1084 	 * journal has been aborted.  We return 1 as a hint to callers
1085 	 * who might what to use the return value from
1086 	 * ext4_grp_locked_error() to distinguish between the
1087 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1088 	 * aggressively from the ext4 function in question, with a
1089 	 * more appropriate error code.
1090 	 */
1091 	ext4_lock_group(sb, grp);
1092 	return;
1093 }
1094 
1095 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1096 				     ext4_group_t group,
1097 				     unsigned int flags)
1098 {
1099 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1100 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1101 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1102 	int ret;
1103 
1104 	if (!grp || !gdp)
1105 		return;
1106 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1107 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1108 					    &grp->bb_state);
1109 		if (!ret)
1110 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1111 					   grp->bb_free);
1112 	}
1113 
1114 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1115 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1116 					    &grp->bb_state);
1117 		if (!ret && gdp) {
1118 			int count;
1119 
1120 			count = ext4_free_inodes_count(sb, gdp);
1121 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1122 					   count);
1123 		}
1124 	}
1125 }
1126 
1127 void ext4_update_dynamic_rev(struct super_block *sb)
1128 {
1129 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1130 
1131 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1132 		return;
1133 
1134 	ext4_warning(sb,
1135 		     "updating to rev %d because of new feature flag, "
1136 		     "running e2fsck is recommended",
1137 		     EXT4_DYNAMIC_REV);
1138 
1139 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1140 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1141 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1142 	/* leave es->s_feature_*compat flags alone */
1143 	/* es->s_uuid will be set by e2fsck if empty */
1144 
1145 	/*
1146 	 * The rest of the superblock fields should be zero, and if not it
1147 	 * means they are likely already in use, so leave them alone.  We
1148 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1149 	 */
1150 }
1151 
1152 static inline struct inode *orphan_list_entry(struct list_head *l)
1153 {
1154 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1155 }
1156 
1157 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1158 {
1159 	struct list_head *l;
1160 
1161 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1162 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1163 
1164 	printk(KERN_ERR "sb_info orphan list:\n");
1165 	list_for_each(l, &sbi->s_orphan) {
1166 		struct inode *inode = orphan_list_entry(l);
1167 		printk(KERN_ERR "  "
1168 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1169 		       inode->i_sb->s_id, inode->i_ino, inode,
1170 		       inode->i_mode, inode->i_nlink,
1171 		       NEXT_ORPHAN(inode));
1172 	}
1173 }
1174 
1175 #ifdef CONFIG_QUOTA
1176 static int ext4_quota_off(struct super_block *sb, int type);
1177 
1178 static inline void ext4_quotas_off(struct super_block *sb, int type)
1179 {
1180 	BUG_ON(type > EXT4_MAXQUOTAS);
1181 
1182 	/* Use our quota_off function to clear inode flags etc. */
1183 	for (type--; type >= 0; type--)
1184 		ext4_quota_off(sb, type);
1185 }
1186 
1187 /*
1188  * This is a helper function which is used in the mount/remount
1189  * codepaths (which holds s_umount) to fetch the quota file name.
1190  */
1191 static inline char *get_qf_name(struct super_block *sb,
1192 				struct ext4_sb_info *sbi,
1193 				int type)
1194 {
1195 	return rcu_dereference_protected(sbi->s_qf_names[type],
1196 					 lockdep_is_held(&sb->s_umount));
1197 }
1198 #else
1199 static inline void ext4_quotas_off(struct super_block *sb, int type)
1200 {
1201 }
1202 #endif
1203 
1204 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1205 {
1206 	ext4_fsblk_t block;
1207 	int err;
1208 
1209 	block = ext4_count_free_clusters(sbi->s_sb);
1210 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1211 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1212 				  GFP_KERNEL);
1213 	if (!err) {
1214 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1215 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1216 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1217 					  GFP_KERNEL);
1218 	}
1219 	if (!err)
1220 		err = percpu_counter_init(&sbi->s_dirs_counter,
1221 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1222 	if (!err)
1223 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1224 					  GFP_KERNEL);
1225 	if (!err)
1226 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1227 					  GFP_KERNEL);
1228 	if (!err)
1229 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1230 
1231 	if (err)
1232 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1233 
1234 	return err;
1235 }
1236 
1237 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1238 {
1239 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1240 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1241 	percpu_counter_destroy(&sbi->s_dirs_counter);
1242 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1243 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1244 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1245 }
1246 
1247 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1248 {
1249 	struct buffer_head **group_desc;
1250 	int i;
1251 
1252 	rcu_read_lock();
1253 	group_desc = rcu_dereference(sbi->s_group_desc);
1254 	for (i = 0; i < sbi->s_gdb_count; i++)
1255 		brelse(group_desc[i]);
1256 	kvfree(group_desc);
1257 	rcu_read_unlock();
1258 }
1259 
1260 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1261 {
1262 	struct flex_groups **flex_groups;
1263 	int i;
1264 
1265 	rcu_read_lock();
1266 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1267 	if (flex_groups) {
1268 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1269 			kvfree(flex_groups[i]);
1270 		kvfree(flex_groups);
1271 	}
1272 	rcu_read_unlock();
1273 }
1274 
1275 static void ext4_put_super(struct super_block *sb)
1276 {
1277 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1278 	struct ext4_super_block *es = sbi->s_es;
1279 	int aborted = 0;
1280 	int err;
1281 
1282 	/*
1283 	 * Unregister sysfs before destroying jbd2 journal.
1284 	 * Since we could still access attr_journal_task attribute via sysfs
1285 	 * path which could have sbi->s_journal->j_task as NULL
1286 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1287 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1288 	 * read metadata verify failed then will queue error work.
1289 	 * update_super_work will call start_this_handle may trigger
1290 	 * BUG_ON.
1291 	 */
1292 	ext4_unregister_sysfs(sb);
1293 
1294 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1295 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1296 			 &sb->s_uuid);
1297 
1298 	ext4_unregister_li_request(sb);
1299 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1300 
1301 	destroy_workqueue(sbi->rsv_conversion_wq);
1302 	ext4_release_orphan_info(sb);
1303 
1304 	if (sbi->s_journal) {
1305 		aborted = is_journal_aborted(sbi->s_journal);
1306 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1307 		if ((err < 0) && !aborted) {
1308 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1309 		}
1310 	} else
1311 		flush_work(&sbi->s_sb_upd_work);
1312 
1313 	ext4_es_unregister_shrinker(sbi);
1314 	timer_shutdown_sync(&sbi->s_err_report);
1315 	ext4_release_system_zone(sb);
1316 	ext4_mb_release(sb);
1317 	ext4_ext_release(sb);
1318 
1319 	if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1320 		if (!aborted) {
1321 			ext4_clear_feature_journal_needs_recovery(sb);
1322 			ext4_clear_feature_orphan_present(sb);
1323 			es->s_state = cpu_to_le16(sbi->s_mount_state);
1324 		}
1325 		ext4_commit_super(sb);
1326 	}
1327 
1328 	ext4_group_desc_free(sbi);
1329 	ext4_flex_groups_free(sbi);
1330 
1331 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1332 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1333 	ext4_percpu_param_destroy(sbi);
1334 #ifdef CONFIG_QUOTA
1335 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1336 		kfree(get_qf_name(sb, sbi, i));
1337 #endif
1338 
1339 	/* Debugging code just in case the in-memory inode orphan list
1340 	 * isn't empty.  The on-disk one can be non-empty if we've
1341 	 * detected an error and taken the fs readonly, but the
1342 	 * in-memory list had better be clean by this point. */
1343 	if (!list_empty(&sbi->s_orphan))
1344 		dump_orphan_list(sb, sbi);
1345 	ASSERT(list_empty(&sbi->s_orphan));
1346 
1347 	sync_blockdev(sb->s_bdev);
1348 	invalidate_bdev(sb->s_bdev);
1349 	if (sbi->s_journal_bdev_file) {
1350 		/*
1351 		 * Invalidate the journal device's buffers.  We don't want them
1352 		 * floating about in memory - the physical journal device may
1353 		 * hotswapped, and it breaks the `ro-after' testing code.
1354 		 */
1355 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1356 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1357 	}
1358 
1359 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1360 	sbi->s_ea_inode_cache = NULL;
1361 
1362 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1363 	sbi->s_ea_block_cache = NULL;
1364 
1365 	ext4_stop_mmpd(sbi);
1366 
1367 	brelse(sbi->s_sbh);
1368 	sb->s_fs_info = NULL;
1369 	/*
1370 	 * Now that we are completely done shutting down the
1371 	 * superblock, we need to actually destroy the kobject.
1372 	 */
1373 	kobject_put(&sbi->s_kobj);
1374 	wait_for_completion(&sbi->s_kobj_unregister);
1375 	kfree(sbi->s_blockgroup_lock);
1376 	fs_put_dax(sbi->s_daxdev, NULL);
1377 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1378 #if IS_ENABLED(CONFIG_UNICODE)
1379 	utf8_unload(sb->s_encoding);
1380 #endif
1381 	kfree(sbi);
1382 }
1383 
1384 static struct kmem_cache *ext4_inode_cachep;
1385 
1386 /*
1387  * Called inside transaction, so use GFP_NOFS
1388  */
1389 static struct inode *ext4_alloc_inode(struct super_block *sb)
1390 {
1391 	struct ext4_inode_info *ei;
1392 
1393 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1394 	if (!ei)
1395 		return NULL;
1396 
1397 	inode_set_iversion(&ei->vfs_inode, 1);
1398 	ei->i_flags = 0;
1399 	spin_lock_init(&ei->i_raw_lock);
1400 	ei->i_prealloc_node = RB_ROOT;
1401 	atomic_set(&ei->i_prealloc_active, 0);
1402 	rwlock_init(&ei->i_prealloc_lock);
1403 	ext4_es_init_tree(&ei->i_es_tree);
1404 	rwlock_init(&ei->i_es_lock);
1405 	INIT_LIST_HEAD(&ei->i_es_list);
1406 	ei->i_es_all_nr = 0;
1407 	ei->i_es_shk_nr = 0;
1408 	ei->i_es_shrink_lblk = 0;
1409 	ei->i_reserved_data_blocks = 0;
1410 	spin_lock_init(&(ei->i_block_reservation_lock));
1411 	ext4_init_pending_tree(&ei->i_pending_tree);
1412 #ifdef CONFIG_QUOTA
1413 	ei->i_reserved_quota = 0;
1414 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1415 #endif
1416 	ei->jinode = NULL;
1417 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1418 	spin_lock_init(&ei->i_completed_io_lock);
1419 	ei->i_sync_tid = 0;
1420 	ei->i_datasync_tid = 0;
1421 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1422 	ext4_fc_init_inode(&ei->vfs_inode);
1423 	spin_lock_init(&ei->i_fc_lock);
1424 	return &ei->vfs_inode;
1425 }
1426 
1427 static int ext4_drop_inode(struct inode *inode)
1428 {
1429 	int drop = generic_drop_inode(inode);
1430 
1431 	if (!drop)
1432 		drop = fscrypt_drop_inode(inode);
1433 
1434 	trace_ext4_drop_inode(inode, drop);
1435 	return drop;
1436 }
1437 
1438 static void ext4_free_in_core_inode(struct inode *inode)
1439 {
1440 	fscrypt_free_inode(inode);
1441 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1442 		pr_warn("%s: inode %ld still in fc list",
1443 			__func__, inode->i_ino);
1444 	}
1445 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1446 }
1447 
1448 static void ext4_destroy_inode(struct inode *inode)
1449 {
1450 	if (ext4_inode_orphan_tracked(inode)) {
1451 		ext4_msg(inode->i_sb, KERN_ERR,
1452 			 "Inode %lu (%p): inode tracked as orphan!",
1453 			 inode->i_ino, EXT4_I(inode));
1454 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1455 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1456 				true);
1457 		dump_stack();
1458 	}
1459 
1460 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1461 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1462 		ext4_msg(inode->i_sb, KERN_ERR,
1463 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1464 			 inode->i_ino, EXT4_I(inode),
1465 			 EXT4_I(inode)->i_reserved_data_blocks);
1466 }
1467 
1468 static void ext4_shutdown(struct super_block *sb)
1469 {
1470        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1471 }
1472 
1473 static void init_once(void *foo)
1474 {
1475 	struct ext4_inode_info *ei = foo;
1476 
1477 	INIT_LIST_HEAD(&ei->i_orphan);
1478 	init_rwsem(&ei->xattr_sem);
1479 	init_rwsem(&ei->i_data_sem);
1480 	inode_init_once(&ei->vfs_inode);
1481 	ext4_fc_init_inode(&ei->vfs_inode);
1482 }
1483 
1484 static int __init init_inodecache(void)
1485 {
1486 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1487 				sizeof(struct ext4_inode_info), 0,
1488 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1489 				offsetof(struct ext4_inode_info, i_data),
1490 				sizeof_field(struct ext4_inode_info, i_data),
1491 				init_once);
1492 	if (ext4_inode_cachep == NULL)
1493 		return -ENOMEM;
1494 	return 0;
1495 }
1496 
1497 static void destroy_inodecache(void)
1498 {
1499 	/*
1500 	 * Make sure all delayed rcu free inodes are flushed before we
1501 	 * destroy cache.
1502 	 */
1503 	rcu_barrier();
1504 	kmem_cache_destroy(ext4_inode_cachep);
1505 }
1506 
1507 void ext4_clear_inode(struct inode *inode)
1508 {
1509 	ext4_fc_del(inode);
1510 	invalidate_inode_buffers(inode);
1511 	clear_inode(inode);
1512 	ext4_discard_preallocations(inode);
1513 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1514 	dquot_drop(inode);
1515 	if (EXT4_I(inode)->jinode) {
1516 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1517 					       EXT4_I(inode)->jinode);
1518 		jbd2_free_inode(EXT4_I(inode)->jinode);
1519 		EXT4_I(inode)->jinode = NULL;
1520 	}
1521 	fscrypt_put_encryption_info(inode);
1522 	fsverity_cleanup_inode(inode);
1523 }
1524 
1525 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1526 					u64 ino, u32 generation)
1527 {
1528 	struct inode *inode;
1529 
1530 	/*
1531 	 * Currently we don't know the generation for parent directory, so
1532 	 * a generation of 0 means "accept any"
1533 	 */
1534 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1535 	if (IS_ERR(inode))
1536 		return ERR_CAST(inode);
1537 	if (generation && inode->i_generation != generation) {
1538 		iput(inode);
1539 		return ERR_PTR(-ESTALE);
1540 	}
1541 
1542 	return inode;
1543 }
1544 
1545 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1546 					int fh_len, int fh_type)
1547 {
1548 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1549 				    ext4_nfs_get_inode);
1550 }
1551 
1552 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1553 					int fh_len, int fh_type)
1554 {
1555 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1556 				    ext4_nfs_get_inode);
1557 }
1558 
1559 static int ext4_nfs_commit_metadata(struct inode *inode)
1560 {
1561 	struct writeback_control wbc = {
1562 		.sync_mode = WB_SYNC_ALL
1563 	};
1564 
1565 	trace_ext4_nfs_commit_metadata(inode);
1566 	return ext4_write_inode(inode, &wbc);
1567 }
1568 
1569 #ifdef CONFIG_QUOTA
1570 static const char * const quotatypes[] = INITQFNAMES;
1571 #define QTYPE2NAME(t) (quotatypes[t])
1572 
1573 static int ext4_write_dquot(struct dquot *dquot);
1574 static int ext4_acquire_dquot(struct dquot *dquot);
1575 static int ext4_release_dquot(struct dquot *dquot);
1576 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1577 static int ext4_write_info(struct super_block *sb, int type);
1578 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1579 			 const struct path *path);
1580 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1581 			       size_t len, loff_t off);
1582 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1583 				const char *data, size_t len, loff_t off);
1584 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1585 			     unsigned int flags);
1586 
1587 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1588 {
1589 	return EXT4_I(inode)->i_dquot;
1590 }
1591 
1592 static const struct dquot_operations ext4_quota_operations = {
1593 	.get_reserved_space	= ext4_get_reserved_space,
1594 	.write_dquot		= ext4_write_dquot,
1595 	.acquire_dquot		= ext4_acquire_dquot,
1596 	.release_dquot		= ext4_release_dquot,
1597 	.mark_dirty		= ext4_mark_dquot_dirty,
1598 	.write_info		= ext4_write_info,
1599 	.alloc_dquot		= dquot_alloc,
1600 	.destroy_dquot		= dquot_destroy,
1601 	.get_projid		= ext4_get_projid,
1602 	.get_inode_usage	= ext4_get_inode_usage,
1603 	.get_next_id		= dquot_get_next_id,
1604 };
1605 
1606 static const struct quotactl_ops ext4_qctl_operations = {
1607 	.quota_on	= ext4_quota_on,
1608 	.quota_off	= ext4_quota_off,
1609 	.quota_sync	= dquot_quota_sync,
1610 	.get_state	= dquot_get_state,
1611 	.set_info	= dquot_set_dqinfo,
1612 	.get_dqblk	= dquot_get_dqblk,
1613 	.set_dqblk	= dquot_set_dqblk,
1614 	.get_nextdqblk	= dquot_get_next_dqblk,
1615 };
1616 #endif
1617 
1618 static const struct super_operations ext4_sops = {
1619 	.alloc_inode	= ext4_alloc_inode,
1620 	.free_inode	= ext4_free_in_core_inode,
1621 	.destroy_inode	= ext4_destroy_inode,
1622 	.write_inode	= ext4_write_inode,
1623 	.dirty_inode	= ext4_dirty_inode,
1624 	.drop_inode	= ext4_drop_inode,
1625 	.evict_inode	= ext4_evict_inode,
1626 	.put_super	= ext4_put_super,
1627 	.sync_fs	= ext4_sync_fs,
1628 	.freeze_fs	= ext4_freeze,
1629 	.unfreeze_fs	= ext4_unfreeze,
1630 	.statfs		= ext4_statfs,
1631 	.show_options	= ext4_show_options,
1632 	.shutdown	= ext4_shutdown,
1633 #ifdef CONFIG_QUOTA
1634 	.quota_read	= ext4_quota_read,
1635 	.quota_write	= ext4_quota_write,
1636 	.get_dquots	= ext4_get_dquots,
1637 #endif
1638 };
1639 
1640 static const struct export_operations ext4_export_ops = {
1641 	.encode_fh = generic_encode_ino32_fh,
1642 	.fh_to_dentry = ext4_fh_to_dentry,
1643 	.fh_to_parent = ext4_fh_to_parent,
1644 	.get_parent = ext4_get_parent,
1645 	.commit_metadata = ext4_nfs_commit_metadata,
1646 };
1647 
1648 enum {
1649 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1650 	Opt_resgid, Opt_resuid, Opt_sb,
1651 	Opt_nouid32, Opt_debug, Opt_removed,
1652 	Opt_user_xattr, Opt_acl,
1653 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1654 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1655 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1656 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1657 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1658 	Opt_inlinecrypt,
1659 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1660 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1661 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1662 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1663 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1664 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1665 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1666 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1667 	Opt_dioread_nolock, Opt_dioread_lock,
1668 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1669 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1670 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1671 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1672 #ifdef CONFIG_EXT4_DEBUG
1673 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1674 #endif
1675 };
1676 
1677 static const struct constant_table ext4_param_errors[] = {
1678 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1679 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1680 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1681 	{}
1682 };
1683 
1684 static const struct constant_table ext4_param_data[] = {
1685 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1686 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1687 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1688 	{}
1689 };
1690 
1691 static const struct constant_table ext4_param_data_err[] = {
1692 	{"abort",	Opt_data_err_abort},
1693 	{"ignore",	Opt_data_err_ignore},
1694 	{}
1695 };
1696 
1697 static const struct constant_table ext4_param_jqfmt[] = {
1698 	{"vfsold",	QFMT_VFS_OLD},
1699 	{"vfsv0",	QFMT_VFS_V0},
1700 	{"vfsv1",	QFMT_VFS_V1},
1701 	{}
1702 };
1703 
1704 static const struct constant_table ext4_param_dax[] = {
1705 	{"always",	Opt_dax_always},
1706 	{"inode",	Opt_dax_inode},
1707 	{"never",	Opt_dax_never},
1708 	{}
1709 };
1710 
1711 /*
1712  * Mount option specification
1713  * We don't use fsparam_flag_no because of the way we set the
1714  * options and the way we show them in _ext4_show_options(). To
1715  * keep the changes to a minimum, let's keep the negative options
1716  * separate for now.
1717  */
1718 static const struct fs_parameter_spec ext4_param_specs[] = {
1719 	fsparam_flag	("bsddf",		Opt_bsd_df),
1720 	fsparam_flag	("minixdf",		Opt_minix_df),
1721 	fsparam_flag	("grpid",		Opt_grpid),
1722 	fsparam_flag	("bsdgroups",		Opt_grpid),
1723 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1724 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1725 	fsparam_gid	("resgid",		Opt_resgid),
1726 	fsparam_uid	("resuid",		Opt_resuid),
1727 	fsparam_u32	("sb",			Opt_sb),
1728 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1729 	fsparam_flag	("nouid32",		Opt_nouid32),
1730 	fsparam_flag	("debug",		Opt_debug),
1731 	fsparam_flag	("oldalloc",		Opt_removed),
1732 	fsparam_flag	("orlov",		Opt_removed),
1733 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1734 	fsparam_flag	("acl",			Opt_acl),
1735 	fsparam_flag	("norecovery",		Opt_noload),
1736 	fsparam_flag	("noload",		Opt_noload),
1737 	fsparam_flag	("bh",			Opt_removed),
1738 	fsparam_flag	("nobh",		Opt_removed),
1739 	fsparam_u32	("commit",		Opt_commit),
1740 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1741 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1742 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1743 	fsparam_bdev	("journal_path",	Opt_journal_path),
1744 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1745 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1746 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1747 	fsparam_flag	("abort",		Opt_abort),
1748 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1749 	fsparam_enum	("data_err",		Opt_data_err,
1750 						ext4_param_data_err),
1751 	fsparam_string_empty
1752 			("usrjquota",		Opt_usrjquota),
1753 	fsparam_string_empty
1754 			("grpjquota",		Opt_grpjquota),
1755 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1756 	fsparam_flag	("grpquota",		Opt_grpquota),
1757 	fsparam_flag	("quota",		Opt_quota),
1758 	fsparam_flag	("noquota",		Opt_noquota),
1759 	fsparam_flag	("usrquota",		Opt_usrquota),
1760 	fsparam_flag	("prjquota",		Opt_prjquota),
1761 	fsparam_flag	("barrier",		Opt_barrier),
1762 	fsparam_u32	("barrier",		Opt_barrier),
1763 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1764 	fsparam_flag	("i_version",		Opt_removed),
1765 	fsparam_flag	("dax",			Opt_dax),
1766 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1767 	fsparam_u32	("stripe",		Opt_stripe),
1768 	fsparam_flag	("delalloc",		Opt_delalloc),
1769 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1770 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1771 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1772 	fsparam_u32	("debug_want_extra_isize",
1773 						Opt_debug_want_extra_isize),
1774 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1775 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1776 	fsparam_flag	("block_validity",	Opt_block_validity),
1777 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1778 	fsparam_u32	("inode_readahead_blks",
1779 						Opt_inode_readahead_blks),
1780 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1781 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1782 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1783 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1784 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1785 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1786 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1787 	fsparam_flag	("discard",		Opt_discard),
1788 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1789 	fsparam_u32	("init_itable",		Opt_init_itable),
1790 	fsparam_flag	("init_itable",		Opt_init_itable),
1791 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1792 #ifdef CONFIG_EXT4_DEBUG
1793 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1794 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1795 #endif
1796 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1797 	fsparam_flag	("test_dummy_encryption",
1798 						Opt_test_dummy_encryption),
1799 	fsparam_string	("test_dummy_encryption",
1800 						Opt_test_dummy_encryption),
1801 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1802 	fsparam_flag	("nombcache",		Opt_nombcache),
1803 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1804 	fsparam_flag	("prefetch_block_bitmaps",
1805 						Opt_removed),
1806 	fsparam_flag	("no_prefetch_block_bitmaps",
1807 						Opt_no_prefetch_block_bitmaps),
1808 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1809 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1810 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1811 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1812 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1813 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1814 	{}
1815 };
1816 
1817 
1818 #define MOPT_SET	0x0001
1819 #define MOPT_CLEAR	0x0002
1820 #define MOPT_NOSUPPORT	0x0004
1821 #define MOPT_EXPLICIT	0x0008
1822 #ifdef CONFIG_QUOTA
1823 #define MOPT_Q		0
1824 #define MOPT_QFMT	0x0010
1825 #else
1826 #define MOPT_Q		MOPT_NOSUPPORT
1827 #define MOPT_QFMT	MOPT_NOSUPPORT
1828 #endif
1829 #define MOPT_NO_EXT2	0x0020
1830 #define MOPT_NO_EXT3	0x0040
1831 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1832 #define MOPT_SKIP	0x0080
1833 #define	MOPT_2		0x0100
1834 
1835 static const struct mount_opts {
1836 	int	token;
1837 	int	mount_opt;
1838 	int	flags;
1839 } ext4_mount_opts[] = {
1840 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1841 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1842 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1843 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1844 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1845 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1846 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1847 	 MOPT_EXT4_ONLY | MOPT_SET},
1848 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1849 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1850 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1851 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1852 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1853 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1854 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1855 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1856 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1857 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1858 	{Opt_commit, 0, MOPT_NO_EXT2},
1859 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1860 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1861 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1862 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1863 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1864 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1865 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1866 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1867 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1868 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1869 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1870 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1871 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1872 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1873 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1874 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1875 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1876 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1877 	{Opt_data, 0, MOPT_NO_EXT2},
1878 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1879 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1880 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1881 #else
1882 	{Opt_acl, 0, MOPT_NOSUPPORT},
1883 #endif
1884 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1885 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1886 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1887 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1888 							MOPT_SET | MOPT_Q},
1889 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1890 							MOPT_SET | MOPT_Q},
1891 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1892 							MOPT_SET | MOPT_Q},
1893 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1894 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1895 							MOPT_CLEAR | MOPT_Q},
1896 	{Opt_usrjquota, 0, MOPT_Q},
1897 	{Opt_grpjquota, 0, MOPT_Q},
1898 	{Opt_jqfmt, 0, MOPT_QFMT},
1899 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1900 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1901 	 MOPT_SET},
1902 #ifdef CONFIG_EXT4_DEBUG
1903 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1904 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1905 #endif
1906 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1907 	{Opt_err, 0, 0}
1908 };
1909 
1910 #if IS_ENABLED(CONFIG_UNICODE)
1911 static const struct ext4_sb_encodings {
1912 	__u16 magic;
1913 	char *name;
1914 	unsigned int version;
1915 } ext4_sb_encoding_map[] = {
1916 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1917 };
1918 
1919 static const struct ext4_sb_encodings *
1920 ext4_sb_read_encoding(const struct ext4_super_block *es)
1921 {
1922 	__u16 magic = le16_to_cpu(es->s_encoding);
1923 	int i;
1924 
1925 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1926 		if (magic == ext4_sb_encoding_map[i].magic)
1927 			return &ext4_sb_encoding_map[i];
1928 
1929 	return NULL;
1930 }
1931 #endif
1932 
1933 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1934 #define EXT4_SPEC_JQFMT				(1 <<  1)
1935 #define EXT4_SPEC_DATAJ				(1 <<  2)
1936 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1937 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1938 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1939 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1940 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1941 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1942 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1943 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1944 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1945 #define EXT4_SPEC_s_stripe			(1 << 13)
1946 #define EXT4_SPEC_s_resuid			(1 << 14)
1947 #define EXT4_SPEC_s_resgid			(1 << 15)
1948 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1949 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1950 #define EXT4_SPEC_s_sb_block			(1 << 18)
1951 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1952 
1953 struct ext4_fs_context {
1954 	char		*s_qf_names[EXT4_MAXQUOTAS];
1955 	struct fscrypt_dummy_policy dummy_enc_policy;
1956 	int		s_jquota_fmt;	/* Format of quota to use */
1957 #ifdef CONFIG_EXT4_DEBUG
1958 	int s_fc_debug_max_replay;
1959 #endif
1960 	unsigned short	qname_spec;
1961 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1962 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1963 	unsigned long	journal_devnum;
1964 	unsigned long	s_commit_interval;
1965 	unsigned long	s_stripe;
1966 	unsigned int	s_inode_readahead_blks;
1967 	unsigned int	s_want_extra_isize;
1968 	unsigned int	s_li_wait_mult;
1969 	unsigned int	s_max_dir_size_kb;
1970 	unsigned int	journal_ioprio;
1971 	unsigned int	vals_s_mount_opt;
1972 	unsigned int	mask_s_mount_opt;
1973 	unsigned int	vals_s_mount_opt2;
1974 	unsigned int	mask_s_mount_opt2;
1975 	unsigned int	opt_flags;	/* MOPT flags */
1976 	unsigned int	spec;
1977 	u32		s_max_batch_time;
1978 	u32		s_min_batch_time;
1979 	kuid_t		s_resuid;
1980 	kgid_t		s_resgid;
1981 	ext4_fsblk_t	s_sb_block;
1982 };
1983 
1984 static void ext4_fc_free(struct fs_context *fc)
1985 {
1986 	struct ext4_fs_context *ctx = fc->fs_private;
1987 	int i;
1988 
1989 	if (!ctx)
1990 		return;
1991 
1992 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1993 		kfree(ctx->s_qf_names[i]);
1994 
1995 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1996 	kfree(ctx);
1997 }
1998 
1999 int ext4_init_fs_context(struct fs_context *fc)
2000 {
2001 	struct ext4_fs_context *ctx;
2002 
2003 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2004 	if (!ctx)
2005 		return -ENOMEM;
2006 
2007 	fc->fs_private = ctx;
2008 	fc->ops = &ext4_context_ops;
2009 
2010 	/* i_version is always enabled now */
2011 	fc->sb_flags |= SB_I_VERSION;
2012 
2013 	return 0;
2014 }
2015 
2016 #ifdef CONFIG_QUOTA
2017 /*
2018  * Note the name of the specified quota file.
2019  */
2020 static int note_qf_name(struct fs_context *fc, int qtype,
2021 		       struct fs_parameter *param)
2022 {
2023 	struct ext4_fs_context *ctx = fc->fs_private;
2024 	char *qname;
2025 
2026 	if (param->size < 1) {
2027 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2028 		return -EINVAL;
2029 	}
2030 	if (strchr(param->string, '/')) {
2031 		ext4_msg(NULL, KERN_ERR,
2032 			 "quotafile must be on filesystem root");
2033 		return -EINVAL;
2034 	}
2035 	if (ctx->s_qf_names[qtype]) {
2036 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2037 			ext4_msg(NULL, KERN_ERR,
2038 				 "%s quota file already specified",
2039 				 QTYPE2NAME(qtype));
2040 			return -EINVAL;
2041 		}
2042 		return 0;
2043 	}
2044 
2045 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2046 	if (!qname) {
2047 		ext4_msg(NULL, KERN_ERR,
2048 			 "Not enough memory for storing quotafile name");
2049 		return -ENOMEM;
2050 	}
2051 	ctx->s_qf_names[qtype] = qname;
2052 	ctx->qname_spec |= 1 << qtype;
2053 	ctx->spec |= EXT4_SPEC_JQUOTA;
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Clear the name of the specified quota file.
2059  */
2060 static int unnote_qf_name(struct fs_context *fc, int qtype)
2061 {
2062 	struct ext4_fs_context *ctx = fc->fs_private;
2063 
2064 	kfree(ctx->s_qf_names[qtype]);
2065 
2066 	ctx->s_qf_names[qtype] = NULL;
2067 	ctx->qname_spec |= 1 << qtype;
2068 	ctx->spec |= EXT4_SPEC_JQUOTA;
2069 	return 0;
2070 }
2071 #endif
2072 
2073 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2074 					    struct ext4_fs_context *ctx)
2075 {
2076 	int err;
2077 
2078 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2079 		ext4_msg(NULL, KERN_WARNING,
2080 			 "test_dummy_encryption option not supported");
2081 		return -EINVAL;
2082 	}
2083 	err = fscrypt_parse_test_dummy_encryption(param,
2084 						  &ctx->dummy_enc_policy);
2085 	if (err == -EINVAL) {
2086 		ext4_msg(NULL, KERN_WARNING,
2087 			 "Value of option \"%s\" is unrecognized", param->key);
2088 	} else if (err == -EEXIST) {
2089 		ext4_msg(NULL, KERN_WARNING,
2090 			 "Conflicting test_dummy_encryption options");
2091 		return -EINVAL;
2092 	}
2093 	return err;
2094 }
2095 
2096 #define EXT4_SET_CTX(name)						\
2097 static inline __maybe_unused						\
2098 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2099 {									\
2100 	ctx->mask_s_##name |= flag;					\
2101 	ctx->vals_s_##name |= flag;					\
2102 }
2103 
2104 #define EXT4_CLEAR_CTX(name)						\
2105 static inline __maybe_unused						\
2106 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2107 {									\
2108 	ctx->mask_s_##name |= flag;					\
2109 	ctx->vals_s_##name &= ~flag;					\
2110 }
2111 
2112 #define EXT4_TEST_CTX(name)						\
2113 static inline unsigned long						\
2114 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2115 {									\
2116 	return (ctx->vals_s_##name & flag);				\
2117 }
2118 
2119 EXT4_SET_CTX(flags); /* set only */
2120 EXT4_SET_CTX(mount_opt);
2121 EXT4_CLEAR_CTX(mount_opt);
2122 EXT4_TEST_CTX(mount_opt);
2123 EXT4_SET_CTX(mount_opt2);
2124 EXT4_CLEAR_CTX(mount_opt2);
2125 EXT4_TEST_CTX(mount_opt2);
2126 
2127 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2128 {
2129 	struct ext4_fs_context *ctx = fc->fs_private;
2130 	struct fs_parse_result result;
2131 	const struct mount_opts *m;
2132 	int is_remount;
2133 	int token;
2134 
2135 	token = fs_parse(fc, ext4_param_specs, param, &result);
2136 	if (token < 0)
2137 		return token;
2138 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2139 
2140 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2141 		if (token == m->token)
2142 			break;
2143 
2144 	ctx->opt_flags |= m->flags;
2145 
2146 	if (m->flags & MOPT_EXPLICIT) {
2147 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2148 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2149 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2150 			ctx_set_mount_opt2(ctx,
2151 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2152 		} else
2153 			return -EINVAL;
2154 	}
2155 
2156 	if (m->flags & MOPT_NOSUPPORT) {
2157 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2158 			 param->key);
2159 		return 0;
2160 	}
2161 
2162 	switch (token) {
2163 #ifdef CONFIG_QUOTA
2164 	case Opt_usrjquota:
2165 		if (!*param->string)
2166 			return unnote_qf_name(fc, USRQUOTA);
2167 		else
2168 			return note_qf_name(fc, USRQUOTA, param);
2169 	case Opt_grpjquota:
2170 		if (!*param->string)
2171 			return unnote_qf_name(fc, GRPQUOTA);
2172 		else
2173 			return note_qf_name(fc, GRPQUOTA, param);
2174 #endif
2175 	case Opt_sb:
2176 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2177 			ext4_msg(NULL, KERN_WARNING,
2178 				 "Ignoring %s option on remount", param->key);
2179 		} else {
2180 			ctx->s_sb_block = result.uint_32;
2181 			ctx->spec |= EXT4_SPEC_s_sb_block;
2182 		}
2183 		return 0;
2184 	case Opt_removed:
2185 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2186 			 param->key);
2187 		return 0;
2188 	case Opt_inlinecrypt:
2189 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2190 		ctx_set_flags(ctx, SB_INLINECRYPT);
2191 #else
2192 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2193 #endif
2194 		return 0;
2195 	case Opt_errors:
2196 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2197 		ctx_set_mount_opt(ctx, result.uint_32);
2198 		return 0;
2199 #ifdef CONFIG_QUOTA
2200 	case Opt_jqfmt:
2201 		ctx->s_jquota_fmt = result.uint_32;
2202 		ctx->spec |= EXT4_SPEC_JQFMT;
2203 		return 0;
2204 #endif
2205 	case Opt_data:
2206 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2207 		ctx_set_mount_opt(ctx, result.uint_32);
2208 		ctx->spec |= EXT4_SPEC_DATAJ;
2209 		return 0;
2210 	case Opt_commit:
2211 		if (result.uint_32 == 0)
2212 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2213 		else if (result.uint_32 > INT_MAX / HZ) {
2214 			ext4_msg(NULL, KERN_ERR,
2215 				 "Invalid commit interval %d, "
2216 				 "must be smaller than %d",
2217 				 result.uint_32, INT_MAX / HZ);
2218 			return -EINVAL;
2219 		}
2220 		ctx->s_commit_interval = HZ * result.uint_32;
2221 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2222 		return 0;
2223 	case Opt_debug_want_extra_isize:
2224 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2225 			ext4_msg(NULL, KERN_ERR,
2226 				 "Invalid want_extra_isize %d", result.uint_32);
2227 			return -EINVAL;
2228 		}
2229 		ctx->s_want_extra_isize = result.uint_32;
2230 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2231 		return 0;
2232 	case Opt_max_batch_time:
2233 		ctx->s_max_batch_time = result.uint_32;
2234 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2235 		return 0;
2236 	case Opt_min_batch_time:
2237 		ctx->s_min_batch_time = result.uint_32;
2238 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2239 		return 0;
2240 	case Opt_inode_readahead_blks:
2241 		if (result.uint_32 &&
2242 		    (result.uint_32 > (1 << 30) ||
2243 		     !is_power_of_2(result.uint_32))) {
2244 			ext4_msg(NULL, KERN_ERR,
2245 				 "EXT4-fs: inode_readahead_blks must be "
2246 				 "0 or a power of 2 smaller than 2^31");
2247 			return -EINVAL;
2248 		}
2249 		ctx->s_inode_readahead_blks = result.uint_32;
2250 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2251 		return 0;
2252 	case Opt_init_itable:
2253 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2254 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2255 		if (param->type == fs_value_is_string)
2256 			ctx->s_li_wait_mult = result.uint_32;
2257 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2258 		return 0;
2259 	case Opt_max_dir_size_kb:
2260 		ctx->s_max_dir_size_kb = result.uint_32;
2261 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2262 		return 0;
2263 #ifdef CONFIG_EXT4_DEBUG
2264 	case Opt_fc_debug_max_replay:
2265 		ctx->s_fc_debug_max_replay = result.uint_32;
2266 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2267 		return 0;
2268 #endif
2269 	case Opt_stripe:
2270 		ctx->s_stripe = result.uint_32;
2271 		ctx->spec |= EXT4_SPEC_s_stripe;
2272 		return 0;
2273 	case Opt_resuid:
2274 		ctx->s_resuid = result.uid;
2275 		ctx->spec |= EXT4_SPEC_s_resuid;
2276 		return 0;
2277 	case Opt_resgid:
2278 		ctx->s_resgid = result.gid;
2279 		ctx->spec |= EXT4_SPEC_s_resgid;
2280 		return 0;
2281 	case Opt_journal_dev:
2282 		if (is_remount) {
2283 			ext4_msg(NULL, KERN_ERR,
2284 				 "Cannot specify journal on remount");
2285 			return -EINVAL;
2286 		}
2287 		ctx->journal_devnum = result.uint_32;
2288 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2289 		return 0;
2290 	case Opt_journal_path:
2291 	{
2292 		struct inode *journal_inode;
2293 		struct path path;
2294 		int error;
2295 
2296 		if (is_remount) {
2297 			ext4_msg(NULL, KERN_ERR,
2298 				 "Cannot specify journal on remount");
2299 			return -EINVAL;
2300 		}
2301 
2302 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2303 		if (error) {
2304 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2305 				 "journal device path");
2306 			return -EINVAL;
2307 		}
2308 
2309 		journal_inode = d_inode(path.dentry);
2310 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2311 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2312 		path_put(&path);
2313 		return 0;
2314 	}
2315 	case Opt_journal_ioprio:
2316 		if (result.uint_32 > 7) {
2317 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2318 				 " (must be 0-7)");
2319 			return -EINVAL;
2320 		}
2321 		ctx->journal_ioprio =
2322 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2323 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2324 		return 0;
2325 	case Opt_test_dummy_encryption:
2326 		return ext4_parse_test_dummy_encryption(param, ctx);
2327 	case Opt_dax:
2328 	case Opt_dax_type:
2329 #ifdef CONFIG_FS_DAX
2330 	{
2331 		int type = (token == Opt_dax) ?
2332 			   Opt_dax : result.uint_32;
2333 
2334 		switch (type) {
2335 		case Opt_dax:
2336 		case Opt_dax_always:
2337 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2338 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2339 			break;
2340 		case Opt_dax_never:
2341 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2342 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2343 			break;
2344 		case Opt_dax_inode:
2345 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2346 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2347 			/* Strictly for printing options */
2348 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2349 			break;
2350 		}
2351 		return 0;
2352 	}
2353 #else
2354 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2355 		return -EINVAL;
2356 #endif
2357 	case Opt_data_err:
2358 		if (result.uint_32 == Opt_data_err_abort)
2359 			ctx_set_mount_opt(ctx, m->mount_opt);
2360 		else if (result.uint_32 == Opt_data_err_ignore)
2361 			ctx_clear_mount_opt(ctx, m->mount_opt);
2362 		return 0;
2363 	case Opt_mb_optimize_scan:
2364 		if (result.int_32 == 1) {
2365 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2366 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2367 		} else if (result.int_32 == 0) {
2368 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2369 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2370 		} else {
2371 			ext4_msg(NULL, KERN_WARNING,
2372 				 "mb_optimize_scan should be set to 0 or 1.");
2373 			return -EINVAL;
2374 		}
2375 		return 0;
2376 	}
2377 
2378 	/*
2379 	 * At this point we should only be getting options requiring MOPT_SET,
2380 	 * or MOPT_CLEAR. Anything else is a bug
2381 	 */
2382 	if (m->token == Opt_err) {
2383 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2384 			 param->key);
2385 		WARN_ON(1);
2386 		return -EINVAL;
2387 	}
2388 
2389 	else {
2390 		unsigned int set = 0;
2391 
2392 		if ((param->type == fs_value_is_flag) ||
2393 		    result.uint_32 > 0)
2394 			set = 1;
2395 
2396 		if (m->flags & MOPT_CLEAR)
2397 			set = !set;
2398 		else if (unlikely(!(m->flags & MOPT_SET))) {
2399 			ext4_msg(NULL, KERN_WARNING,
2400 				 "buggy handling of option %s",
2401 				 param->key);
2402 			WARN_ON(1);
2403 			return -EINVAL;
2404 		}
2405 		if (m->flags & MOPT_2) {
2406 			if (set != 0)
2407 				ctx_set_mount_opt2(ctx, m->mount_opt);
2408 			else
2409 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2410 		} else {
2411 			if (set != 0)
2412 				ctx_set_mount_opt(ctx, m->mount_opt);
2413 			else
2414 				ctx_clear_mount_opt(ctx, m->mount_opt);
2415 		}
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 static int parse_options(struct fs_context *fc, char *options)
2422 {
2423 	struct fs_parameter param;
2424 	int ret;
2425 	char *key;
2426 
2427 	if (!options)
2428 		return 0;
2429 
2430 	while ((key = strsep(&options, ",")) != NULL) {
2431 		if (*key) {
2432 			size_t v_len = 0;
2433 			char *value = strchr(key, '=');
2434 
2435 			param.type = fs_value_is_flag;
2436 			param.string = NULL;
2437 
2438 			if (value) {
2439 				if (value == key)
2440 					continue;
2441 
2442 				*value++ = 0;
2443 				v_len = strlen(value);
2444 				param.string = kmemdup_nul(value, v_len,
2445 							   GFP_KERNEL);
2446 				if (!param.string)
2447 					return -ENOMEM;
2448 				param.type = fs_value_is_string;
2449 			}
2450 
2451 			param.key = key;
2452 			param.size = v_len;
2453 
2454 			ret = ext4_parse_param(fc, &param);
2455 			kfree(param.string);
2456 			if (ret < 0)
2457 				return ret;
2458 		}
2459 	}
2460 
2461 	ret = ext4_validate_options(fc);
2462 	if (ret < 0)
2463 		return ret;
2464 
2465 	return 0;
2466 }
2467 
2468 static int parse_apply_sb_mount_options(struct super_block *sb,
2469 					struct ext4_fs_context *m_ctx)
2470 {
2471 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2472 	char s_mount_opts[65];
2473 	struct ext4_fs_context *s_ctx = NULL;
2474 	struct fs_context *fc = NULL;
2475 	int ret = -ENOMEM;
2476 
2477 	if (!sbi->s_es->s_mount_opts[0])
2478 		return 0;
2479 
2480 	strscpy_pad(s_mount_opts, sbi->s_es->s_mount_opts);
2481 
2482 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2483 	if (!fc)
2484 		return -ENOMEM;
2485 
2486 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2487 	if (!s_ctx)
2488 		goto out_free;
2489 
2490 	fc->fs_private = s_ctx;
2491 	fc->s_fs_info = sbi;
2492 
2493 	ret = parse_options(fc, s_mount_opts);
2494 	if (ret < 0)
2495 		goto parse_failed;
2496 
2497 	ret = ext4_check_opt_consistency(fc, sb);
2498 	if (ret < 0) {
2499 parse_failed:
2500 		ext4_msg(sb, KERN_WARNING,
2501 			 "failed to parse options in superblock: %s",
2502 			 s_mount_opts);
2503 		ret = 0;
2504 		goto out_free;
2505 	}
2506 
2507 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2508 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2509 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2510 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2511 
2512 	ext4_apply_options(fc, sb);
2513 	ret = 0;
2514 
2515 out_free:
2516 	ext4_fc_free(fc);
2517 	kfree(fc);
2518 	return ret;
2519 }
2520 
2521 static void ext4_apply_quota_options(struct fs_context *fc,
2522 				     struct super_block *sb)
2523 {
2524 #ifdef CONFIG_QUOTA
2525 	bool quota_feature = ext4_has_feature_quota(sb);
2526 	struct ext4_fs_context *ctx = fc->fs_private;
2527 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2528 	char *qname;
2529 	int i;
2530 
2531 	if (quota_feature)
2532 		return;
2533 
2534 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2535 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2536 			if (!(ctx->qname_spec & (1 << i)))
2537 				continue;
2538 
2539 			qname = ctx->s_qf_names[i]; /* May be NULL */
2540 			if (qname)
2541 				set_opt(sb, QUOTA);
2542 			ctx->s_qf_names[i] = NULL;
2543 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2544 						lockdep_is_held(&sb->s_umount));
2545 			if (qname)
2546 				kfree_rcu_mightsleep(qname);
2547 		}
2548 	}
2549 
2550 	if (ctx->spec & EXT4_SPEC_JQFMT)
2551 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2552 #endif
2553 }
2554 
2555 /*
2556  * Check quota settings consistency.
2557  */
2558 static int ext4_check_quota_consistency(struct fs_context *fc,
2559 					struct super_block *sb)
2560 {
2561 #ifdef CONFIG_QUOTA
2562 	struct ext4_fs_context *ctx = fc->fs_private;
2563 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2564 	bool quota_feature = ext4_has_feature_quota(sb);
2565 	bool quota_loaded = sb_any_quota_loaded(sb);
2566 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2567 	int quota_flags, i;
2568 
2569 	/*
2570 	 * We do the test below only for project quotas. 'usrquota' and
2571 	 * 'grpquota' mount options are allowed even without quota feature
2572 	 * to support legacy quotas in quota files.
2573 	 */
2574 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2575 	    !ext4_has_feature_project(sb)) {
2576 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2577 			 "Cannot enable project quota enforcement.");
2578 		return -EINVAL;
2579 	}
2580 
2581 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2582 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2583 	if (quota_loaded &&
2584 	    ctx->mask_s_mount_opt & quota_flags &&
2585 	    !ctx_test_mount_opt(ctx, quota_flags))
2586 		goto err_quota_change;
2587 
2588 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2589 
2590 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2591 			if (!(ctx->qname_spec & (1 << i)))
2592 				continue;
2593 
2594 			if (quota_loaded &&
2595 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2596 				goto err_jquota_change;
2597 
2598 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2599 			    strcmp(get_qf_name(sb, sbi, i),
2600 				   ctx->s_qf_names[i]) != 0)
2601 				goto err_jquota_specified;
2602 		}
2603 
2604 		if (quota_feature) {
2605 			ext4_msg(NULL, KERN_INFO,
2606 				 "Journaled quota options ignored when "
2607 				 "QUOTA feature is enabled");
2608 			return 0;
2609 		}
2610 	}
2611 
2612 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2613 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2614 			goto err_jquota_change;
2615 		if (quota_feature) {
2616 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2617 				 "ignored when QUOTA feature is enabled");
2618 			return 0;
2619 		}
2620 	}
2621 
2622 	/* Make sure we don't mix old and new quota format */
2623 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2624 		       ctx->s_qf_names[USRQUOTA]);
2625 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2626 		       ctx->s_qf_names[GRPQUOTA]);
2627 
2628 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2629 		    test_opt(sb, USRQUOTA));
2630 
2631 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2632 		    test_opt(sb, GRPQUOTA));
2633 
2634 	if (usr_qf_name) {
2635 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2636 		usrquota = false;
2637 	}
2638 	if (grp_qf_name) {
2639 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2640 		grpquota = false;
2641 	}
2642 
2643 	if (usr_qf_name || grp_qf_name) {
2644 		if (usrquota || grpquota) {
2645 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2646 				 "format mixing");
2647 			return -EINVAL;
2648 		}
2649 
2650 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2651 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2652 				 "not specified");
2653 			return -EINVAL;
2654 		}
2655 	}
2656 
2657 	return 0;
2658 
2659 err_quota_change:
2660 	ext4_msg(NULL, KERN_ERR,
2661 		 "Cannot change quota options when quota turned on");
2662 	return -EINVAL;
2663 err_jquota_change:
2664 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2665 		 "options when quota turned on");
2666 	return -EINVAL;
2667 err_jquota_specified:
2668 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2669 		 QTYPE2NAME(i));
2670 	return -EINVAL;
2671 #else
2672 	return 0;
2673 #endif
2674 }
2675 
2676 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2677 					    struct super_block *sb)
2678 {
2679 	const struct ext4_fs_context *ctx = fc->fs_private;
2680 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2681 
2682 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2683 		return 0;
2684 
2685 	if (!ext4_has_feature_encrypt(sb)) {
2686 		ext4_msg(NULL, KERN_WARNING,
2687 			 "test_dummy_encryption requires encrypt feature");
2688 		return -EINVAL;
2689 	}
2690 	/*
2691 	 * This mount option is just for testing, and it's not worthwhile to
2692 	 * implement the extra complexity (e.g. RCU protection) that would be
2693 	 * needed to allow it to be set or changed during remount.  We do allow
2694 	 * it to be specified during remount, but only if there is no change.
2695 	 */
2696 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2697 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2698 						 &ctx->dummy_enc_policy))
2699 			return 0;
2700 		ext4_msg(NULL, KERN_WARNING,
2701 			 "Can't set or change test_dummy_encryption on remount");
2702 		return -EINVAL;
2703 	}
2704 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2705 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2706 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2707 						 &ctx->dummy_enc_policy))
2708 			return 0;
2709 		ext4_msg(NULL, KERN_WARNING,
2710 			 "Conflicting test_dummy_encryption options");
2711 		return -EINVAL;
2712 	}
2713 	return 0;
2714 }
2715 
2716 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2717 					     struct super_block *sb)
2718 {
2719 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2720 	    /* if already set, it was already verified to be the same */
2721 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2722 		return;
2723 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2724 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2725 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2726 }
2727 
2728 static int ext4_check_opt_consistency(struct fs_context *fc,
2729 				      struct super_block *sb)
2730 {
2731 	struct ext4_fs_context *ctx = fc->fs_private;
2732 	struct ext4_sb_info *sbi = fc->s_fs_info;
2733 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2734 	int err;
2735 
2736 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2737 		ext4_msg(NULL, KERN_ERR,
2738 			 "Mount option(s) incompatible with ext2");
2739 		return -EINVAL;
2740 	}
2741 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2742 		ext4_msg(NULL, KERN_ERR,
2743 			 "Mount option(s) incompatible with ext3");
2744 		return -EINVAL;
2745 	}
2746 
2747 	if (ctx->s_want_extra_isize >
2748 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2749 		ext4_msg(NULL, KERN_ERR,
2750 			 "Invalid want_extra_isize %d",
2751 			 ctx->s_want_extra_isize);
2752 		return -EINVAL;
2753 	}
2754 
2755 	err = ext4_check_test_dummy_encryption(fc, sb);
2756 	if (err)
2757 		return err;
2758 
2759 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2760 		if (!sbi->s_journal) {
2761 			ext4_msg(NULL, KERN_WARNING,
2762 				 "Remounting file system with no journal "
2763 				 "so ignoring journalled data option");
2764 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2765 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2766 			   test_opt(sb, DATA_FLAGS)) {
2767 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2768 				 "on remount");
2769 			return -EINVAL;
2770 		}
2771 	}
2772 
2773 	if (is_remount) {
2774 		if (!sbi->s_journal &&
2775 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2776 			ext4_msg(NULL, KERN_WARNING,
2777 				 "Remounting fs w/o journal so ignoring data_err option");
2778 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2779 		}
2780 
2781 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2782 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2783 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2784 				 "both data=journal and dax");
2785 			return -EINVAL;
2786 		}
2787 
2788 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2789 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2790 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2791 fail_dax_change_remount:
2792 			ext4_msg(NULL, KERN_ERR, "can't change "
2793 				 "dax mount option while remounting");
2794 			return -EINVAL;
2795 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2796 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2797 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2798 			goto fail_dax_change_remount;
2799 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2800 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2801 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2802 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2803 			goto fail_dax_change_remount;
2804 		}
2805 	}
2806 
2807 	return ext4_check_quota_consistency(fc, sb);
2808 }
2809 
2810 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2811 {
2812 	struct ext4_fs_context *ctx = fc->fs_private;
2813 	struct ext4_sb_info *sbi = fc->s_fs_info;
2814 
2815 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2816 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2817 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2818 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2819 	sb->s_flags &= ~ctx->mask_s_flags;
2820 	sb->s_flags |= ctx->vals_s_flags;
2821 
2822 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2823 	APPLY(s_commit_interval);
2824 	APPLY(s_stripe);
2825 	APPLY(s_max_batch_time);
2826 	APPLY(s_min_batch_time);
2827 	APPLY(s_want_extra_isize);
2828 	APPLY(s_inode_readahead_blks);
2829 	APPLY(s_max_dir_size_kb);
2830 	APPLY(s_li_wait_mult);
2831 	APPLY(s_resgid);
2832 	APPLY(s_resuid);
2833 
2834 #ifdef CONFIG_EXT4_DEBUG
2835 	APPLY(s_fc_debug_max_replay);
2836 #endif
2837 
2838 	ext4_apply_quota_options(fc, sb);
2839 	ext4_apply_test_dummy_encryption(ctx, sb);
2840 }
2841 
2842 
2843 static int ext4_validate_options(struct fs_context *fc)
2844 {
2845 #ifdef CONFIG_QUOTA
2846 	struct ext4_fs_context *ctx = fc->fs_private;
2847 	char *usr_qf_name, *grp_qf_name;
2848 
2849 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2850 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2851 
2852 	if (usr_qf_name || grp_qf_name) {
2853 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2854 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2855 
2856 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2857 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2858 
2859 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2860 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2861 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2862 				 "format mixing");
2863 			return -EINVAL;
2864 		}
2865 	}
2866 #endif
2867 	return 1;
2868 }
2869 
2870 static inline void ext4_show_quota_options(struct seq_file *seq,
2871 					   struct super_block *sb)
2872 {
2873 #if defined(CONFIG_QUOTA)
2874 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2875 	char *usr_qf_name, *grp_qf_name;
2876 
2877 	if (sbi->s_jquota_fmt) {
2878 		char *fmtname = "";
2879 
2880 		switch (sbi->s_jquota_fmt) {
2881 		case QFMT_VFS_OLD:
2882 			fmtname = "vfsold";
2883 			break;
2884 		case QFMT_VFS_V0:
2885 			fmtname = "vfsv0";
2886 			break;
2887 		case QFMT_VFS_V1:
2888 			fmtname = "vfsv1";
2889 			break;
2890 		}
2891 		seq_printf(seq, ",jqfmt=%s", fmtname);
2892 	}
2893 
2894 	rcu_read_lock();
2895 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2896 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2897 	if (usr_qf_name)
2898 		seq_show_option(seq, "usrjquota", usr_qf_name);
2899 	if (grp_qf_name)
2900 		seq_show_option(seq, "grpjquota", grp_qf_name);
2901 	rcu_read_unlock();
2902 #endif
2903 }
2904 
2905 static const char *token2str(int token)
2906 {
2907 	const struct fs_parameter_spec *spec;
2908 
2909 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2910 		if (spec->opt == token && !spec->type)
2911 			break;
2912 	return spec->name;
2913 }
2914 
2915 /*
2916  * Show an option if
2917  *  - it's set to a non-default value OR
2918  *  - if the per-sb default is different from the global default
2919  */
2920 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2921 			      int nodefs)
2922 {
2923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2924 	struct ext4_super_block *es = sbi->s_es;
2925 	int def_errors;
2926 	const struct mount_opts *m;
2927 	char sep = nodefs ? '\n' : ',';
2928 
2929 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2930 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2931 
2932 	if (sbi->s_sb_block != 1)
2933 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2934 
2935 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2936 		int want_set = m->flags & MOPT_SET;
2937 		int opt_2 = m->flags & MOPT_2;
2938 		unsigned int mount_opt, def_mount_opt;
2939 
2940 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2941 		    m->flags & MOPT_SKIP)
2942 			continue;
2943 
2944 		if (opt_2) {
2945 			mount_opt = sbi->s_mount_opt2;
2946 			def_mount_opt = sbi->s_def_mount_opt2;
2947 		} else {
2948 			mount_opt = sbi->s_mount_opt;
2949 			def_mount_opt = sbi->s_def_mount_opt;
2950 		}
2951 		/* skip if same as the default */
2952 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2953 			continue;
2954 		/* select Opt_noFoo vs Opt_Foo */
2955 		if ((want_set &&
2956 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2957 		    (!want_set && (mount_opt & m->mount_opt)))
2958 			continue;
2959 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2960 	}
2961 
2962 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2963 	    ext4_get_resuid(es) != EXT4_DEF_RESUID)
2964 		SEQ_OPTS_PRINT("resuid=%u",
2965 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2966 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2967 	    ext4_get_resgid(es) != EXT4_DEF_RESGID)
2968 		SEQ_OPTS_PRINT("resgid=%u",
2969 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2970 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2971 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2972 		SEQ_OPTS_PUTS("errors=remount-ro");
2973 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2974 		SEQ_OPTS_PUTS("errors=continue");
2975 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2976 		SEQ_OPTS_PUTS("errors=panic");
2977 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2978 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2979 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2980 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2981 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2982 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2983 	if (nodefs && sb->s_flags & SB_I_VERSION)
2984 		SEQ_OPTS_PUTS("i_version");
2985 	if (nodefs || sbi->s_stripe)
2986 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2987 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2988 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2989 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2990 			SEQ_OPTS_PUTS("data=journal");
2991 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2992 			SEQ_OPTS_PUTS("data=ordered");
2993 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2994 			SEQ_OPTS_PUTS("data=writeback");
2995 	}
2996 	if (nodefs ||
2997 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2998 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2999 			       sbi->s_inode_readahead_blks);
3000 
3001 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3002 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3003 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3004 	if (nodefs || sbi->s_max_dir_size_kb)
3005 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3006 	if (test_opt(sb, DATA_ERR_ABORT))
3007 		SEQ_OPTS_PUTS("data_err=abort");
3008 
3009 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3010 
3011 	if (sb->s_flags & SB_INLINECRYPT)
3012 		SEQ_OPTS_PUTS("inlinecrypt");
3013 
3014 	if (test_opt(sb, DAX_ALWAYS)) {
3015 		if (IS_EXT2_SB(sb))
3016 			SEQ_OPTS_PUTS("dax");
3017 		else
3018 			SEQ_OPTS_PUTS("dax=always");
3019 	} else if (test_opt2(sb, DAX_NEVER)) {
3020 		SEQ_OPTS_PUTS("dax=never");
3021 	} else if (test_opt2(sb, DAX_INODE)) {
3022 		SEQ_OPTS_PUTS("dax=inode");
3023 	}
3024 
3025 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3026 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3027 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3028 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3029 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3030 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3031 	}
3032 
3033 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3034 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3035 
3036 	if (ext4_emergency_ro(sb))
3037 		SEQ_OPTS_PUTS("emergency_ro");
3038 
3039 	if (ext4_forced_shutdown(sb))
3040 		SEQ_OPTS_PUTS("shutdown");
3041 
3042 	ext4_show_quota_options(seq, sb);
3043 	return 0;
3044 }
3045 
3046 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3047 {
3048 	return _ext4_show_options(seq, root->d_sb, 0);
3049 }
3050 
3051 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3052 {
3053 	struct super_block *sb = seq->private;
3054 	int rc;
3055 
3056 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3057 	rc = _ext4_show_options(seq, sb, 1);
3058 	seq_putc(seq, '\n');
3059 	return rc;
3060 }
3061 
3062 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3063 			    int read_only)
3064 {
3065 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3066 	int err = 0;
3067 
3068 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3069 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3070 			 "forcing read-only mode");
3071 		err = -EROFS;
3072 		goto done;
3073 	}
3074 	if (read_only)
3075 		goto done;
3076 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3077 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3078 			 "running e2fsck is recommended");
3079 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3080 		ext4_msg(sb, KERN_WARNING,
3081 			 "warning: mounting fs with errors, "
3082 			 "running e2fsck is recommended");
3083 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3084 		 le16_to_cpu(es->s_mnt_count) >=
3085 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3086 		ext4_msg(sb, KERN_WARNING,
3087 			 "warning: maximal mount count reached, "
3088 			 "running e2fsck is recommended");
3089 	else if (le32_to_cpu(es->s_checkinterval) &&
3090 		 (ext4_get_tstamp(es, s_lastcheck) +
3091 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3092 		ext4_msg(sb, KERN_WARNING,
3093 			 "warning: checktime reached, "
3094 			 "running e2fsck is recommended");
3095 	if (!sbi->s_journal)
3096 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3097 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3098 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3099 	le16_add_cpu(&es->s_mnt_count, 1);
3100 	ext4_update_tstamp(es, s_mtime);
3101 	if (sbi->s_journal) {
3102 		ext4_set_feature_journal_needs_recovery(sb);
3103 		if (ext4_has_feature_orphan_file(sb))
3104 			ext4_set_feature_orphan_present(sb);
3105 	}
3106 
3107 	err = ext4_commit_super(sb);
3108 done:
3109 	if (test_opt(sb, DEBUG))
3110 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3111 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3112 			sb->s_blocksize,
3113 			sbi->s_groups_count,
3114 			EXT4_BLOCKS_PER_GROUP(sb),
3115 			EXT4_INODES_PER_GROUP(sb),
3116 			sbi->s_mount_opt, sbi->s_mount_opt2);
3117 	return err;
3118 }
3119 
3120 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3121 {
3122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3123 	struct flex_groups **old_groups, **new_groups;
3124 	int size, i, j;
3125 
3126 	if (!sbi->s_log_groups_per_flex)
3127 		return 0;
3128 
3129 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3130 	if (size <= sbi->s_flex_groups_allocated)
3131 		return 0;
3132 
3133 	new_groups = kvzalloc(roundup_pow_of_two(size *
3134 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3135 	if (!new_groups) {
3136 		ext4_msg(sb, KERN_ERR,
3137 			 "not enough memory for %d flex group pointers", size);
3138 		return -ENOMEM;
3139 	}
3140 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3141 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3142 					 sizeof(struct flex_groups)),
3143 					 GFP_KERNEL);
3144 		if (!new_groups[i]) {
3145 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3146 				kvfree(new_groups[j]);
3147 			kvfree(new_groups);
3148 			ext4_msg(sb, KERN_ERR,
3149 				 "not enough memory for %d flex groups", size);
3150 			return -ENOMEM;
3151 		}
3152 	}
3153 	rcu_read_lock();
3154 	old_groups = rcu_dereference(sbi->s_flex_groups);
3155 	if (old_groups)
3156 		memcpy(new_groups, old_groups,
3157 		       (sbi->s_flex_groups_allocated *
3158 			sizeof(struct flex_groups *)));
3159 	rcu_read_unlock();
3160 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3161 	sbi->s_flex_groups_allocated = size;
3162 	if (old_groups)
3163 		ext4_kvfree_array_rcu(old_groups);
3164 	return 0;
3165 }
3166 
3167 static int ext4_fill_flex_info(struct super_block *sb)
3168 {
3169 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3170 	struct ext4_group_desc *gdp = NULL;
3171 	struct flex_groups *fg;
3172 	ext4_group_t flex_group;
3173 	int i, err;
3174 
3175 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3176 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3177 		sbi->s_log_groups_per_flex = 0;
3178 		return 1;
3179 	}
3180 
3181 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3182 	if (err)
3183 		goto failed;
3184 
3185 	for (i = 0; i < sbi->s_groups_count; i++) {
3186 		gdp = ext4_get_group_desc(sb, i, NULL);
3187 
3188 		flex_group = ext4_flex_group(sbi, i);
3189 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3190 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3191 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3192 			     &fg->free_clusters);
3193 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3194 	}
3195 
3196 	return 1;
3197 failed:
3198 	return 0;
3199 }
3200 
3201 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3202 				   struct ext4_group_desc *gdp)
3203 {
3204 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3205 	__u16 crc = 0;
3206 	__le32 le_group = cpu_to_le32(block_group);
3207 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3208 
3209 	if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3210 		/* Use new metadata_csum algorithm */
3211 		__u32 csum32;
3212 		__u16 dummy_csum = 0;
3213 
3214 		csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3215 				     sizeof(le_group));
3216 		csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3217 		csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3218 				     sizeof(dummy_csum));
3219 		offset += sizeof(dummy_csum);
3220 		if (offset < sbi->s_desc_size)
3221 			csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3222 					     sbi->s_desc_size - offset);
3223 
3224 		crc = csum32 & 0xFFFF;
3225 		goto out;
3226 	}
3227 
3228 	/* old crc16 code */
3229 	if (!ext4_has_feature_gdt_csum(sb))
3230 		return 0;
3231 
3232 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3233 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3234 	crc = crc16(crc, (__u8 *)gdp, offset);
3235 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3236 	/* for checksum of struct ext4_group_desc do the rest...*/
3237 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3238 		crc = crc16(crc, (__u8 *)gdp + offset,
3239 			    sbi->s_desc_size - offset);
3240 
3241 out:
3242 	return cpu_to_le16(crc);
3243 }
3244 
3245 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3246 				struct ext4_group_desc *gdp)
3247 {
3248 	if (ext4_has_group_desc_csum(sb) &&
3249 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3250 		return 0;
3251 
3252 	return 1;
3253 }
3254 
3255 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3256 			      struct ext4_group_desc *gdp)
3257 {
3258 	if (!ext4_has_group_desc_csum(sb))
3259 		return;
3260 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3261 }
3262 
3263 /* Called at mount-time, super-block is locked */
3264 static int ext4_check_descriptors(struct super_block *sb,
3265 				  ext4_fsblk_t sb_block,
3266 				  ext4_group_t *first_not_zeroed)
3267 {
3268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3269 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3270 	ext4_fsblk_t last_block;
3271 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3272 	ext4_fsblk_t block_bitmap;
3273 	ext4_fsblk_t inode_bitmap;
3274 	ext4_fsblk_t inode_table;
3275 	int flexbg_flag = 0;
3276 	ext4_group_t i, grp = sbi->s_groups_count;
3277 
3278 	if (ext4_has_feature_flex_bg(sb))
3279 		flexbg_flag = 1;
3280 
3281 	ext4_debug("Checking group descriptors");
3282 
3283 	for (i = 0; i < sbi->s_groups_count; i++) {
3284 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3285 
3286 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3287 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3288 		else
3289 			last_block = first_block +
3290 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3291 
3292 		if ((grp == sbi->s_groups_count) &&
3293 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3294 			grp = i;
3295 
3296 		block_bitmap = ext4_block_bitmap(sb, gdp);
3297 		if (block_bitmap == sb_block) {
3298 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3299 				 "Block bitmap for group %u overlaps "
3300 				 "superblock", i);
3301 			if (!sb_rdonly(sb))
3302 				return 0;
3303 		}
3304 		if (block_bitmap >= sb_block + 1 &&
3305 		    block_bitmap <= last_bg_block) {
3306 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3307 				 "Block bitmap for group %u overlaps "
3308 				 "block group descriptors", i);
3309 			if (!sb_rdonly(sb))
3310 				return 0;
3311 		}
3312 		if (block_bitmap < first_block || block_bitmap > last_block) {
3313 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3314 			       "Block bitmap for group %u not in group "
3315 			       "(block %llu)!", i, block_bitmap);
3316 			return 0;
3317 		}
3318 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3319 		if (inode_bitmap == sb_block) {
3320 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3321 				 "Inode bitmap for group %u overlaps "
3322 				 "superblock", i);
3323 			if (!sb_rdonly(sb))
3324 				return 0;
3325 		}
3326 		if (inode_bitmap >= sb_block + 1 &&
3327 		    inode_bitmap <= last_bg_block) {
3328 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3329 				 "Inode bitmap for group %u overlaps "
3330 				 "block group descriptors", i);
3331 			if (!sb_rdonly(sb))
3332 				return 0;
3333 		}
3334 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3335 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3336 			       "Inode bitmap for group %u not in group "
3337 			       "(block %llu)!", i, inode_bitmap);
3338 			return 0;
3339 		}
3340 		inode_table = ext4_inode_table(sb, gdp);
3341 		if (inode_table == sb_block) {
3342 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3343 				 "Inode table for group %u overlaps "
3344 				 "superblock", i);
3345 			if (!sb_rdonly(sb))
3346 				return 0;
3347 		}
3348 		if (inode_table >= sb_block + 1 &&
3349 		    inode_table <= last_bg_block) {
3350 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3351 				 "Inode table for group %u overlaps "
3352 				 "block group descriptors", i);
3353 			if (!sb_rdonly(sb))
3354 				return 0;
3355 		}
3356 		if (inode_table < first_block ||
3357 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3358 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359 			       "Inode table for group %u not in group "
3360 			       "(block %llu)!", i, inode_table);
3361 			return 0;
3362 		}
3363 		ext4_lock_group(sb, i);
3364 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3365 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3366 				 "Checksum for group %u failed (%u!=%u)",
3367 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3368 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3369 			if (!sb_rdonly(sb)) {
3370 				ext4_unlock_group(sb, i);
3371 				return 0;
3372 			}
3373 		}
3374 		ext4_unlock_group(sb, i);
3375 		if (!flexbg_flag)
3376 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3377 	}
3378 	if (NULL != first_not_zeroed)
3379 		*first_not_zeroed = grp;
3380 	return 1;
3381 }
3382 
3383 /*
3384  * Maximal extent format file size.
3385  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3386  * extent format containers, within a sector_t, and within i_blocks
3387  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3388  * so that won't be a limiting factor.
3389  *
3390  * However there is other limiting factor. We do store extents in the form
3391  * of starting block and length, hence the resulting length of the extent
3392  * covering maximum file size must fit into on-disk format containers as
3393  * well. Given that length is always by 1 unit bigger than max unit (because
3394  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3395  *
3396  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3397  */
3398 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3399 {
3400 	loff_t res;
3401 	loff_t upper_limit = MAX_LFS_FILESIZE;
3402 
3403 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3404 
3405 	if (!has_huge_files) {
3406 		upper_limit = (1LL << 32) - 1;
3407 
3408 		/* total blocks in file system block size */
3409 		upper_limit >>= (blkbits - 9);
3410 		upper_limit <<= blkbits;
3411 	}
3412 
3413 	/*
3414 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3415 	 * by one fs block, so ee_len can cover the extent of maximum file
3416 	 * size
3417 	 */
3418 	res = (1LL << 32) - 1;
3419 	res <<= blkbits;
3420 
3421 	/* Sanity check against vm- & vfs- imposed limits */
3422 	if (res > upper_limit)
3423 		res = upper_limit;
3424 
3425 	return res;
3426 }
3427 
3428 /*
3429  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3430  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3431  * We need to be 1 filesystem block less than the 2^48 sector limit.
3432  */
3433 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3434 {
3435 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3436 	int meta_blocks;
3437 	unsigned int ppb = 1 << (bits - 2);
3438 
3439 	/*
3440 	 * This is calculated to be the largest file size for a dense, block
3441 	 * mapped file such that the file's total number of 512-byte sectors,
3442 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3443 	 *
3444 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3445 	 * number of 512-byte sectors of the file.
3446 	 */
3447 	if (!has_huge_files) {
3448 		/*
3449 		 * !has_huge_files or implies that the inode i_block field
3450 		 * represents total file blocks in 2^32 512-byte sectors ==
3451 		 * size of vfs inode i_blocks * 8
3452 		 */
3453 		upper_limit = (1LL << 32) - 1;
3454 
3455 		/* total blocks in file system block size */
3456 		upper_limit >>= (bits - 9);
3457 
3458 	} else {
3459 		/*
3460 		 * We use 48 bit ext4_inode i_blocks
3461 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3462 		 * represent total number of blocks in
3463 		 * file system block size
3464 		 */
3465 		upper_limit = (1LL << 48) - 1;
3466 
3467 	}
3468 
3469 	/* Compute how many blocks we can address by block tree */
3470 	res += ppb;
3471 	res += ppb * ppb;
3472 	res += ((loff_t)ppb) * ppb * ppb;
3473 	/* Compute how many metadata blocks are needed */
3474 	meta_blocks = 1;
3475 	meta_blocks += 1 + ppb;
3476 	meta_blocks += 1 + ppb + ppb * ppb;
3477 	/* Does block tree limit file size? */
3478 	if (res + meta_blocks <= upper_limit)
3479 		goto check_lfs;
3480 
3481 	res = upper_limit;
3482 	/* How many metadata blocks are needed for addressing upper_limit? */
3483 	upper_limit -= EXT4_NDIR_BLOCKS;
3484 	/* indirect blocks */
3485 	meta_blocks = 1;
3486 	upper_limit -= ppb;
3487 	/* double indirect blocks */
3488 	if (upper_limit < ppb * ppb) {
3489 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3490 		res -= meta_blocks;
3491 		goto check_lfs;
3492 	}
3493 	meta_blocks += 1 + ppb;
3494 	upper_limit -= ppb * ppb;
3495 	/* tripple indirect blocks for the rest */
3496 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3497 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3498 	res -= meta_blocks;
3499 check_lfs:
3500 	res <<= bits;
3501 	if (res > MAX_LFS_FILESIZE)
3502 		res = MAX_LFS_FILESIZE;
3503 
3504 	return res;
3505 }
3506 
3507 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3508 				   ext4_fsblk_t logical_sb_block, int nr)
3509 {
3510 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3511 	ext4_group_t bg, first_meta_bg;
3512 	int has_super = 0;
3513 
3514 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3515 
3516 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3517 		return logical_sb_block + nr + 1;
3518 	bg = sbi->s_desc_per_block * nr;
3519 	if (ext4_bg_has_super(sb, bg))
3520 		has_super = 1;
3521 
3522 	/*
3523 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3524 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3525 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3526 	 * compensate.
3527 	 */
3528 	if (sb->s_blocksize == 1024 && nr == 0 &&
3529 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3530 		has_super++;
3531 
3532 	return (has_super + ext4_group_first_block_no(sb, bg));
3533 }
3534 
3535 /**
3536  * ext4_get_stripe_size: Get the stripe size.
3537  * @sbi: In memory super block info
3538  *
3539  * If we have specified it via mount option, then
3540  * use the mount option value. If the value specified at mount time is
3541  * greater than the blocks per group use the super block value.
3542  * If the super block value is greater than blocks per group return 0.
3543  * Allocator needs it be less than blocks per group.
3544  *
3545  */
3546 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3547 {
3548 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3549 	unsigned long stripe_width =
3550 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3551 	int ret;
3552 
3553 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3554 		ret = sbi->s_stripe;
3555 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3556 		ret = stripe_width;
3557 	else if (stride && stride <= sbi->s_blocks_per_group)
3558 		ret = stride;
3559 	else
3560 		ret = 0;
3561 
3562 	/*
3563 	 * If the stripe width is 1, this makes no sense and
3564 	 * we set it to 0 to turn off stripe handling code.
3565 	 */
3566 	if (ret <= 1)
3567 		ret = 0;
3568 
3569 	return ret;
3570 }
3571 
3572 /*
3573  * Check whether this filesystem can be mounted based on
3574  * the features present and the RDONLY/RDWR mount requested.
3575  * Returns 1 if this filesystem can be mounted as requested,
3576  * 0 if it cannot be.
3577  */
3578 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3579 {
3580 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3581 		ext4_msg(sb, KERN_ERR,
3582 			"Couldn't mount because of "
3583 			"unsupported optional features (%x)",
3584 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3585 			~EXT4_FEATURE_INCOMPAT_SUPP));
3586 		return 0;
3587 	}
3588 
3589 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3590 		ext4_msg(sb, KERN_ERR,
3591 			 "Filesystem with casefold feature cannot be "
3592 			 "mounted without CONFIG_UNICODE");
3593 		return 0;
3594 	}
3595 
3596 	if (readonly)
3597 		return 1;
3598 
3599 	if (ext4_has_feature_readonly(sb)) {
3600 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3601 		sb->s_flags |= SB_RDONLY;
3602 		return 1;
3603 	}
3604 
3605 	/* Check that feature set is OK for a read-write mount */
3606 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3607 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3608 			 "unsupported optional features (%x)",
3609 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3610 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3611 		return 0;
3612 	}
3613 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3614 		ext4_msg(sb, KERN_ERR,
3615 			 "Can't support bigalloc feature without "
3616 			 "extents feature\n");
3617 		return 0;
3618 	}
3619 
3620 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3621 	if (!readonly && (ext4_has_feature_quota(sb) ||
3622 			  ext4_has_feature_project(sb))) {
3623 		ext4_msg(sb, KERN_ERR,
3624 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3625 		return 0;
3626 	}
3627 #endif  /* CONFIG_QUOTA */
3628 	return 1;
3629 }
3630 
3631 /*
3632  * This function is called once a day if we have errors logged
3633  * on the file system
3634  */
3635 static void print_daily_error_info(struct timer_list *t)
3636 {
3637 	struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3638 	struct super_block *sb = sbi->s_sb;
3639 	struct ext4_super_block *es = sbi->s_es;
3640 
3641 	if (es->s_error_count)
3642 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3643 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3644 			 le32_to_cpu(es->s_error_count));
3645 	if (es->s_first_error_time) {
3646 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3647 		       sb->s_id,
3648 		       ext4_get_tstamp(es, s_first_error_time),
3649 		       (int) sizeof(es->s_first_error_func),
3650 		       es->s_first_error_func,
3651 		       le32_to_cpu(es->s_first_error_line));
3652 		if (es->s_first_error_ino)
3653 			printk(KERN_CONT ": inode %u",
3654 			       le32_to_cpu(es->s_first_error_ino));
3655 		if (es->s_first_error_block)
3656 			printk(KERN_CONT ": block %llu", (unsigned long long)
3657 			       le64_to_cpu(es->s_first_error_block));
3658 		printk(KERN_CONT "\n");
3659 	}
3660 	if (es->s_last_error_time) {
3661 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3662 		       sb->s_id,
3663 		       ext4_get_tstamp(es, s_last_error_time),
3664 		       (int) sizeof(es->s_last_error_func),
3665 		       es->s_last_error_func,
3666 		       le32_to_cpu(es->s_last_error_line));
3667 		if (es->s_last_error_ino)
3668 			printk(KERN_CONT ": inode %u",
3669 			       le32_to_cpu(es->s_last_error_ino));
3670 		if (es->s_last_error_block)
3671 			printk(KERN_CONT ": block %llu", (unsigned long long)
3672 			       le64_to_cpu(es->s_last_error_block));
3673 		printk(KERN_CONT "\n");
3674 	}
3675 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3676 }
3677 
3678 /* Find next suitable group and run ext4_init_inode_table */
3679 static int ext4_run_li_request(struct ext4_li_request *elr)
3680 {
3681 	struct ext4_group_desc *gdp = NULL;
3682 	struct super_block *sb = elr->lr_super;
3683 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3684 	ext4_group_t group = elr->lr_next_group;
3685 	unsigned int prefetch_ios = 0;
3686 	int ret = 0;
3687 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3688 	u64 start_time;
3689 
3690 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3691 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3692 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3693 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3694 		if (group >= elr->lr_next_group) {
3695 			ret = 1;
3696 			if (elr->lr_first_not_zeroed != ngroups &&
3697 			    !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3698 			    test_opt(sb, INIT_INODE_TABLE)) {
3699 				elr->lr_next_group = elr->lr_first_not_zeroed;
3700 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3701 				ret = 0;
3702 			}
3703 		}
3704 		return ret;
3705 	}
3706 
3707 	for (; group < ngroups; group++) {
3708 		gdp = ext4_get_group_desc(sb, group, NULL);
3709 		if (!gdp) {
3710 			ret = 1;
3711 			break;
3712 		}
3713 
3714 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3715 			break;
3716 	}
3717 
3718 	if (group >= ngroups)
3719 		ret = 1;
3720 
3721 	if (!ret) {
3722 		start_time = ktime_get_ns();
3723 		ret = ext4_init_inode_table(sb, group,
3724 					    elr->lr_timeout ? 0 : 1);
3725 		trace_ext4_lazy_itable_init(sb, group);
3726 		if (elr->lr_timeout == 0) {
3727 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3728 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3729 		}
3730 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3731 		elr->lr_next_group = group + 1;
3732 	}
3733 	return ret;
3734 }
3735 
3736 /*
3737  * Remove lr_request from the list_request and free the
3738  * request structure. Should be called with li_list_mtx held
3739  */
3740 static void ext4_remove_li_request(struct ext4_li_request *elr)
3741 {
3742 	if (!elr)
3743 		return;
3744 
3745 	list_del(&elr->lr_request);
3746 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3747 	kfree(elr);
3748 }
3749 
3750 static void ext4_unregister_li_request(struct super_block *sb)
3751 {
3752 	mutex_lock(&ext4_li_mtx);
3753 	if (!ext4_li_info) {
3754 		mutex_unlock(&ext4_li_mtx);
3755 		return;
3756 	}
3757 
3758 	mutex_lock(&ext4_li_info->li_list_mtx);
3759 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3760 	mutex_unlock(&ext4_li_info->li_list_mtx);
3761 	mutex_unlock(&ext4_li_mtx);
3762 }
3763 
3764 static struct task_struct *ext4_lazyinit_task;
3765 
3766 /*
3767  * This is the function where ext4lazyinit thread lives. It walks
3768  * through the request list searching for next scheduled filesystem.
3769  * When such a fs is found, run the lazy initialization request
3770  * (ext4_rn_li_request) and keep track of the time spend in this
3771  * function. Based on that time we compute next schedule time of
3772  * the request. When walking through the list is complete, compute
3773  * next waking time and put itself into sleep.
3774  */
3775 static int ext4_lazyinit_thread(void *arg)
3776 {
3777 	struct ext4_lazy_init *eli = arg;
3778 	struct list_head *pos, *n;
3779 	struct ext4_li_request *elr;
3780 	unsigned long next_wakeup, cur;
3781 
3782 	BUG_ON(NULL == eli);
3783 	set_freezable();
3784 
3785 cont_thread:
3786 	while (true) {
3787 		bool next_wakeup_initialized = false;
3788 
3789 		next_wakeup = 0;
3790 		mutex_lock(&eli->li_list_mtx);
3791 		if (list_empty(&eli->li_request_list)) {
3792 			mutex_unlock(&eli->li_list_mtx);
3793 			goto exit_thread;
3794 		}
3795 		list_for_each_safe(pos, n, &eli->li_request_list) {
3796 			int err = 0;
3797 			int progress = 0;
3798 			elr = list_entry(pos, struct ext4_li_request,
3799 					 lr_request);
3800 
3801 			if (time_before(jiffies, elr->lr_next_sched)) {
3802 				if (!next_wakeup_initialized ||
3803 				    time_before(elr->lr_next_sched, next_wakeup)) {
3804 					next_wakeup = elr->lr_next_sched;
3805 					next_wakeup_initialized = true;
3806 				}
3807 				continue;
3808 			}
3809 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3810 				if (sb_start_write_trylock(elr->lr_super)) {
3811 					progress = 1;
3812 					/*
3813 					 * We hold sb->s_umount, sb can not
3814 					 * be removed from the list, it is
3815 					 * now safe to drop li_list_mtx
3816 					 */
3817 					mutex_unlock(&eli->li_list_mtx);
3818 					err = ext4_run_li_request(elr);
3819 					sb_end_write(elr->lr_super);
3820 					mutex_lock(&eli->li_list_mtx);
3821 					n = pos->next;
3822 				}
3823 				up_read((&elr->lr_super->s_umount));
3824 			}
3825 			/* error, remove the lazy_init job */
3826 			if (err) {
3827 				ext4_remove_li_request(elr);
3828 				continue;
3829 			}
3830 			if (!progress) {
3831 				elr->lr_next_sched = jiffies +
3832 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3833 			}
3834 			if (!next_wakeup_initialized ||
3835 			    time_before(elr->lr_next_sched, next_wakeup)) {
3836 				next_wakeup = elr->lr_next_sched;
3837 				next_wakeup_initialized = true;
3838 			}
3839 		}
3840 		mutex_unlock(&eli->li_list_mtx);
3841 
3842 		try_to_freeze();
3843 
3844 		cur = jiffies;
3845 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3846 			cond_resched();
3847 			continue;
3848 		}
3849 
3850 		schedule_timeout_interruptible(next_wakeup - cur);
3851 
3852 		if (kthread_should_stop()) {
3853 			ext4_clear_request_list();
3854 			goto exit_thread;
3855 		}
3856 	}
3857 
3858 exit_thread:
3859 	/*
3860 	 * It looks like the request list is empty, but we need
3861 	 * to check it under the li_list_mtx lock, to prevent any
3862 	 * additions into it, and of course we should lock ext4_li_mtx
3863 	 * to atomically free the list and ext4_li_info, because at
3864 	 * this point another ext4 filesystem could be registering
3865 	 * new one.
3866 	 */
3867 	mutex_lock(&ext4_li_mtx);
3868 	mutex_lock(&eli->li_list_mtx);
3869 	if (!list_empty(&eli->li_request_list)) {
3870 		mutex_unlock(&eli->li_list_mtx);
3871 		mutex_unlock(&ext4_li_mtx);
3872 		goto cont_thread;
3873 	}
3874 	mutex_unlock(&eli->li_list_mtx);
3875 	kfree(ext4_li_info);
3876 	ext4_li_info = NULL;
3877 	mutex_unlock(&ext4_li_mtx);
3878 
3879 	return 0;
3880 }
3881 
3882 static void ext4_clear_request_list(void)
3883 {
3884 	struct list_head *pos, *n;
3885 	struct ext4_li_request *elr;
3886 
3887 	mutex_lock(&ext4_li_info->li_list_mtx);
3888 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3889 		elr = list_entry(pos, struct ext4_li_request,
3890 				 lr_request);
3891 		ext4_remove_li_request(elr);
3892 	}
3893 	mutex_unlock(&ext4_li_info->li_list_mtx);
3894 }
3895 
3896 static int ext4_run_lazyinit_thread(void)
3897 {
3898 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3899 					 ext4_li_info, "ext4lazyinit");
3900 	if (IS_ERR(ext4_lazyinit_task)) {
3901 		int err = PTR_ERR(ext4_lazyinit_task);
3902 		ext4_clear_request_list();
3903 		kfree(ext4_li_info);
3904 		ext4_li_info = NULL;
3905 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3906 				 "initialization thread\n",
3907 				 err);
3908 		return err;
3909 	}
3910 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3911 	return 0;
3912 }
3913 
3914 /*
3915  * Check whether it make sense to run itable init. thread or not.
3916  * If there is at least one uninitialized inode table, return
3917  * corresponding group number, else the loop goes through all
3918  * groups and return total number of groups.
3919  */
3920 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3921 {
3922 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3923 	struct ext4_group_desc *gdp = NULL;
3924 
3925 	if (!ext4_has_group_desc_csum(sb))
3926 		return ngroups;
3927 
3928 	for (group = 0; group < ngroups; group++) {
3929 		gdp = ext4_get_group_desc(sb, group, NULL);
3930 		if (!gdp)
3931 			continue;
3932 
3933 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3934 			break;
3935 	}
3936 
3937 	return group;
3938 }
3939 
3940 static int ext4_li_info_new(void)
3941 {
3942 	struct ext4_lazy_init *eli = NULL;
3943 
3944 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3945 	if (!eli)
3946 		return -ENOMEM;
3947 
3948 	INIT_LIST_HEAD(&eli->li_request_list);
3949 	mutex_init(&eli->li_list_mtx);
3950 
3951 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3952 
3953 	ext4_li_info = eli;
3954 
3955 	return 0;
3956 }
3957 
3958 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3959 					    ext4_group_t start)
3960 {
3961 	struct ext4_li_request *elr;
3962 
3963 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3964 	if (!elr)
3965 		return NULL;
3966 
3967 	elr->lr_super = sb;
3968 	elr->lr_first_not_zeroed = start;
3969 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3970 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3971 		elr->lr_next_group = start;
3972 	} else {
3973 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3974 	}
3975 
3976 	/*
3977 	 * Randomize first schedule time of the request to
3978 	 * spread the inode table initialization requests
3979 	 * better.
3980 	 */
3981 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3982 	return elr;
3983 }
3984 
3985 int ext4_register_li_request(struct super_block *sb,
3986 			     ext4_group_t first_not_zeroed)
3987 {
3988 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3989 	struct ext4_li_request *elr = NULL;
3990 	ext4_group_t ngroups = sbi->s_groups_count;
3991 	int ret = 0;
3992 
3993 	mutex_lock(&ext4_li_mtx);
3994 	if (sbi->s_li_request != NULL) {
3995 		/*
3996 		 * Reset timeout so it can be computed again, because
3997 		 * s_li_wait_mult might have changed.
3998 		 */
3999 		sbi->s_li_request->lr_timeout = 0;
4000 		goto out;
4001 	}
4002 
4003 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4004 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4005 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4006 		goto out;
4007 
4008 	elr = ext4_li_request_new(sb, first_not_zeroed);
4009 	if (!elr) {
4010 		ret = -ENOMEM;
4011 		goto out;
4012 	}
4013 
4014 	if (NULL == ext4_li_info) {
4015 		ret = ext4_li_info_new();
4016 		if (ret)
4017 			goto out;
4018 	}
4019 
4020 	mutex_lock(&ext4_li_info->li_list_mtx);
4021 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4022 	mutex_unlock(&ext4_li_info->li_list_mtx);
4023 
4024 	sbi->s_li_request = elr;
4025 	/*
4026 	 * set elr to NULL here since it has been inserted to
4027 	 * the request_list and the removal and free of it is
4028 	 * handled by ext4_clear_request_list from now on.
4029 	 */
4030 	elr = NULL;
4031 
4032 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4033 		ret = ext4_run_lazyinit_thread();
4034 		if (ret)
4035 			goto out;
4036 	}
4037 out:
4038 	mutex_unlock(&ext4_li_mtx);
4039 	if (ret)
4040 		kfree(elr);
4041 	return ret;
4042 }
4043 
4044 /*
4045  * We do not need to lock anything since this is called on
4046  * module unload.
4047  */
4048 static void ext4_destroy_lazyinit_thread(void)
4049 {
4050 	/*
4051 	 * If thread exited earlier
4052 	 * there's nothing to be done.
4053 	 */
4054 	if (!ext4_li_info || !ext4_lazyinit_task)
4055 		return;
4056 
4057 	kthread_stop(ext4_lazyinit_task);
4058 }
4059 
4060 static int set_journal_csum_feature_set(struct super_block *sb)
4061 {
4062 	int ret = 1;
4063 	int compat, incompat;
4064 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4065 
4066 	if (ext4_has_feature_metadata_csum(sb)) {
4067 		/* journal checksum v3 */
4068 		compat = 0;
4069 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4070 	} else {
4071 		/* journal checksum v1 */
4072 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4073 		incompat = 0;
4074 	}
4075 
4076 	jbd2_journal_clear_features(sbi->s_journal,
4077 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4078 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4079 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4080 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4081 		ret = jbd2_journal_set_features(sbi->s_journal,
4082 				compat, 0,
4083 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4084 				incompat);
4085 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4086 		ret = jbd2_journal_set_features(sbi->s_journal,
4087 				compat, 0,
4088 				incompat);
4089 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4090 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4091 	} else {
4092 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4093 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4094 	}
4095 
4096 	return ret;
4097 }
4098 
4099 /*
4100  * Note: calculating the overhead so we can be compatible with
4101  * historical BSD practice is quite difficult in the face of
4102  * clusters/bigalloc.  This is because multiple metadata blocks from
4103  * different block group can end up in the same allocation cluster.
4104  * Calculating the exact overhead in the face of clustered allocation
4105  * requires either O(all block bitmaps) in memory or O(number of block
4106  * groups**2) in time.  We will still calculate the superblock for
4107  * older file systems --- and if we come across with a bigalloc file
4108  * system with zero in s_overhead_clusters the estimate will be close to
4109  * correct especially for very large cluster sizes --- but for newer
4110  * file systems, it's better to calculate this figure once at mkfs
4111  * time, and store it in the superblock.  If the superblock value is
4112  * present (even for non-bigalloc file systems), we will use it.
4113  */
4114 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4115 			  char *buf)
4116 {
4117 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4118 	struct ext4_group_desc	*gdp;
4119 	ext4_fsblk_t		first_block, last_block, b;
4120 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4121 	int			s, j, count = 0;
4122 	int			has_super = ext4_bg_has_super(sb, grp);
4123 
4124 	if (!ext4_has_feature_bigalloc(sb))
4125 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4126 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4127 			sbi->s_itb_per_group + 2);
4128 
4129 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4130 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4131 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4132 	for (i = 0; i < ngroups; i++) {
4133 		gdp = ext4_get_group_desc(sb, i, NULL);
4134 		b = ext4_block_bitmap(sb, gdp);
4135 		if (b >= first_block && b <= last_block) {
4136 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4137 			count++;
4138 		}
4139 		b = ext4_inode_bitmap(sb, gdp);
4140 		if (b >= first_block && b <= last_block) {
4141 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4142 			count++;
4143 		}
4144 		b = ext4_inode_table(sb, gdp);
4145 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4146 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4147 				int c = EXT4_B2C(sbi, b - first_block);
4148 				ext4_set_bit(c, buf);
4149 				count++;
4150 			}
4151 		if (i != grp)
4152 			continue;
4153 		s = 0;
4154 		if (ext4_bg_has_super(sb, grp)) {
4155 			ext4_set_bit(s++, buf);
4156 			count++;
4157 		}
4158 		j = ext4_bg_num_gdb(sb, grp);
4159 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4160 			ext4_error(sb, "Invalid number of block group "
4161 				   "descriptor blocks: %d", j);
4162 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4163 		}
4164 		count += j;
4165 		for (; j > 0; j--)
4166 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4167 	}
4168 	if (!count)
4169 		return 0;
4170 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4171 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4172 }
4173 
4174 /*
4175  * Compute the overhead and stash it in sbi->s_overhead
4176  */
4177 int ext4_calculate_overhead(struct super_block *sb)
4178 {
4179 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4180 	struct ext4_super_block *es = sbi->s_es;
4181 	struct inode *j_inode;
4182 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4183 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4184 	ext4_fsblk_t overhead = 0;
4185 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4186 
4187 	if (!buf)
4188 		return -ENOMEM;
4189 
4190 	/*
4191 	 * Compute the overhead (FS structures).  This is constant
4192 	 * for a given filesystem unless the number of block groups
4193 	 * changes so we cache the previous value until it does.
4194 	 */
4195 
4196 	/*
4197 	 * All of the blocks before first_data_block are overhead
4198 	 */
4199 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4200 
4201 	/*
4202 	 * Add the overhead found in each block group
4203 	 */
4204 	for (i = 0; i < ngroups; i++) {
4205 		int blks;
4206 
4207 		blks = count_overhead(sb, i, buf);
4208 		overhead += blks;
4209 		if (blks)
4210 			memset(buf, 0, PAGE_SIZE);
4211 		cond_resched();
4212 	}
4213 
4214 	/*
4215 	 * Add the internal journal blocks whether the journal has been
4216 	 * loaded or not
4217 	 */
4218 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4219 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4220 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4221 		/* j_inum for internal journal is non-zero */
4222 		j_inode = ext4_get_journal_inode(sb, j_inum);
4223 		if (!IS_ERR(j_inode)) {
4224 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4225 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4226 			iput(j_inode);
4227 		} else {
4228 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4229 		}
4230 	}
4231 	sbi->s_overhead = overhead;
4232 	smp_wmb();
4233 	free_page((unsigned long) buf);
4234 	return 0;
4235 }
4236 
4237 static void ext4_set_resv_clusters(struct super_block *sb)
4238 {
4239 	ext4_fsblk_t resv_clusters;
4240 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4241 
4242 	/*
4243 	 * There's no need to reserve anything when we aren't using extents.
4244 	 * The space estimates are exact, there are no unwritten extents,
4245 	 * hole punching doesn't need new metadata... This is needed especially
4246 	 * to keep ext2/3 backward compatibility.
4247 	 */
4248 	if (!ext4_has_feature_extents(sb))
4249 		return;
4250 	/*
4251 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4252 	 * This should cover the situations where we can not afford to run
4253 	 * out of space like for example punch hole, or converting
4254 	 * unwritten extents in delalloc path. In most cases such
4255 	 * allocation would require 1, or 2 blocks, higher numbers are
4256 	 * very rare.
4257 	 */
4258 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4259 			 sbi->s_cluster_bits);
4260 
4261 	do_div(resv_clusters, 50);
4262 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4263 
4264 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4265 }
4266 
4267 static const char *ext4_quota_mode(struct super_block *sb)
4268 {
4269 #ifdef CONFIG_QUOTA
4270 	if (!ext4_quota_capable(sb))
4271 		return "none";
4272 
4273 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4274 		return "journalled";
4275 	else
4276 		return "writeback";
4277 #else
4278 	return "disabled";
4279 #endif
4280 }
4281 
4282 static void ext4_setup_csum_trigger(struct super_block *sb,
4283 				    enum ext4_journal_trigger_type type,
4284 				    void (*trigger)(
4285 					struct jbd2_buffer_trigger_type *type,
4286 					struct buffer_head *bh,
4287 					void *mapped_data,
4288 					size_t size))
4289 {
4290 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4291 
4292 	sbi->s_journal_triggers[type].sb = sb;
4293 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4294 }
4295 
4296 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4297 {
4298 	if (!sbi)
4299 		return;
4300 
4301 	kfree(sbi->s_blockgroup_lock);
4302 	fs_put_dax(sbi->s_daxdev, NULL);
4303 	kfree(sbi);
4304 }
4305 
4306 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4307 {
4308 	struct ext4_sb_info *sbi;
4309 
4310 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4311 	if (!sbi)
4312 		return NULL;
4313 
4314 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4315 					   NULL, NULL);
4316 
4317 	sbi->s_blockgroup_lock =
4318 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4319 
4320 	if (!sbi->s_blockgroup_lock)
4321 		goto err_out;
4322 
4323 	sb->s_fs_info = sbi;
4324 	sbi->s_sb = sb;
4325 	return sbi;
4326 err_out:
4327 	fs_put_dax(sbi->s_daxdev, NULL);
4328 	kfree(sbi);
4329 	return NULL;
4330 }
4331 
4332 static void ext4_set_def_opts(struct super_block *sb,
4333 			      struct ext4_super_block *es)
4334 {
4335 	unsigned long def_mount_opts;
4336 
4337 	/* Set defaults before we parse the mount options */
4338 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4339 	set_opt(sb, INIT_INODE_TABLE);
4340 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4341 		set_opt(sb, DEBUG);
4342 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4343 		set_opt(sb, GRPID);
4344 	if (def_mount_opts & EXT4_DEFM_UID16)
4345 		set_opt(sb, NO_UID32);
4346 	/* xattr user namespace & acls are now defaulted on */
4347 	set_opt(sb, XATTR_USER);
4348 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4349 	set_opt(sb, POSIX_ACL);
4350 #endif
4351 	if (ext4_has_feature_fast_commit(sb))
4352 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4353 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4354 	if (ext4_has_feature_metadata_csum(sb))
4355 		set_opt(sb, JOURNAL_CHECKSUM);
4356 
4357 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4358 		set_opt(sb, JOURNAL_DATA);
4359 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4360 		set_opt(sb, ORDERED_DATA);
4361 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4362 		set_opt(sb, WRITEBACK_DATA);
4363 
4364 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4365 		set_opt(sb, ERRORS_PANIC);
4366 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4367 		set_opt(sb, ERRORS_CONT);
4368 	else
4369 		set_opt(sb, ERRORS_RO);
4370 	/* block_validity enabled by default; disable with noblock_validity */
4371 	set_opt(sb, BLOCK_VALIDITY);
4372 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4373 		set_opt(sb, DISCARD);
4374 
4375 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4376 		set_opt(sb, BARRIER);
4377 
4378 	/*
4379 	 * enable delayed allocation by default
4380 	 * Use -o nodelalloc to turn it off
4381 	 */
4382 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4383 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4384 		set_opt(sb, DELALLOC);
4385 
4386 	if (sb->s_blocksize <= PAGE_SIZE)
4387 		set_opt(sb, DIOREAD_NOLOCK);
4388 }
4389 
4390 static int ext4_handle_clustersize(struct super_block *sb)
4391 {
4392 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4393 	struct ext4_super_block *es = sbi->s_es;
4394 	int clustersize;
4395 
4396 	/* Handle clustersize */
4397 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4398 	if (ext4_has_feature_bigalloc(sb)) {
4399 		if (clustersize < sb->s_blocksize) {
4400 			ext4_msg(sb, KERN_ERR,
4401 				 "cluster size (%d) smaller than "
4402 				 "block size (%lu)", clustersize, sb->s_blocksize);
4403 			return -EINVAL;
4404 		}
4405 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4406 			le32_to_cpu(es->s_log_block_size);
4407 	} else {
4408 		if (clustersize != sb->s_blocksize) {
4409 			ext4_msg(sb, KERN_ERR,
4410 				 "fragment/cluster size (%d) != "
4411 				 "block size (%lu)", clustersize, sb->s_blocksize);
4412 			return -EINVAL;
4413 		}
4414 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4415 			ext4_msg(sb, KERN_ERR,
4416 				 "#blocks per group too big: %lu",
4417 				 sbi->s_blocks_per_group);
4418 			return -EINVAL;
4419 		}
4420 		sbi->s_cluster_bits = 0;
4421 	}
4422 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4423 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4424 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4425 			 sbi->s_clusters_per_group);
4426 		return -EINVAL;
4427 	}
4428 	if (sbi->s_blocks_per_group !=
4429 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4430 		ext4_msg(sb, KERN_ERR,
4431 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4432 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4433 		return -EINVAL;
4434 	}
4435 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4436 
4437 	/* Do we have standard group size of clustersize * 8 blocks ? */
4438 	if (sbi->s_blocks_per_group == clustersize << 3)
4439 		set_opt2(sb, STD_GROUP_SIZE);
4440 
4441 	return 0;
4442 }
4443 
4444 /*
4445  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4446  * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4447  * & bdev awu units.
4448  * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4449  * @sb: super block
4450  */
4451 static void ext4_atomic_write_init(struct super_block *sb)
4452 {
4453 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4454 	struct block_device *bdev = sb->s_bdev;
4455 	unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4456 
4457 	if (!bdev_can_atomic_write(bdev))
4458 		return;
4459 
4460 	if (!ext4_has_feature_extents(sb))
4461 		return;
4462 
4463 	sbi->s_awu_min = max(sb->s_blocksize,
4464 			      bdev_atomic_write_unit_min_bytes(bdev));
4465 	sbi->s_awu_max = min(clustersize,
4466 			      bdev_atomic_write_unit_max_bytes(bdev));
4467 	if (sbi->s_awu_min && sbi->s_awu_max &&
4468 	    sbi->s_awu_min <= sbi->s_awu_max) {
4469 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4470 			 sbi->s_awu_min, sbi->s_awu_max);
4471 	} else {
4472 		sbi->s_awu_min = 0;
4473 		sbi->s_awu_max = 0;
4474 	}
4475 }
4476 
4477 static void ext4_fast_commit_init(struct super_block *sb)
4478 {
4479 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4480 
4481 	/* Initialize fast commit stuff */
4482 	atomic_set(&sbi->s_fc_subtid, 0);
4483 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4484 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4485 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4486 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4487 	sbi->s_fc_bytes = 0;
4488 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4489 	sbi->s_fc_ineligible_tid = 0;
4490 	mutex_init(&sbi->s_fc_lock);
4491 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4492 	sbi->s_fc_replay_state.fc_regions = NULL;
4493 	sbi->s_fc_replay_state.fc_regions_size = 0;
4494 	sbi->s_fc_replay_state.fc_regions_used = 0;
4495 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4496 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4497 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4498 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4499 }
4500 
4501 static int ext4_inode_info_init(struct super_block *sb,
4502 				struct ext4_super_block *es)
4503 {
4504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4505 
4506 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4507 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4508 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4509 	} else {
4510 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4511 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4512 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4513 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4514 				 sbi->s_first_ino);
4515 			return -EINVAL;
4516 		}
4517 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4518 		    (!is_power_of_2(sbi->s_inode_size)) ||
4519 		    (sbi->s_inode_size > sb->s_blocksize)) {
4520 			ext4_msg(sb, KERN_ERR,
4521 			       "unsupported inode size: %d",
4522 			       sbi->s_inode_size);
4523 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4524 			return -EINVAL;
4525 		}
4526 		/*
4527 		 * i_atime_extra is the last extra field available for
4528 		 * [acm]times in struct ext4_inode. Checking for that
4529 		 * field should suffice to ensure we have extra space
4530 		 * for all three.
4531 		 */
4532 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4533 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4534 			sb->s_time_gran = 1;
4535 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4536 		} else {
4537 			sb->s_time_gran = NSEC_PER_SEC;
4538 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4539 		}
4540 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4541 	}
4542 
4543 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4544 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4545 			EXT4_GOOD_OLD_INODE_SIZE;
4546 		if (ext4_has_feature_extra_isize(sb)) {
4547 			unsigned v, max = (sbi->s_inode_size -
4548 					   EXT4_GOOD_OLD_INODE_SIZE);
4549 
4550 			v = le16_to_cpu(es->s_want_extra_isize);
4551 			if (v > max) {
4552 				ext4_msg(sb, KERN_ERR,
4553 					 "bad s_want_extra_isize: %d", v);
4554 				return -EINVAL;
4555 			}
4556 			if (sbi->s_want_extra_isize < v)
4557 				sbi->s_want_extra_isize = v;
4558 
4559 			v = le16_to_cpu(es->s_min_extra_isize);
4560 			if (v > max) {
4561 				ext4_msg(sb, KERN_ERR,
4562 					 "bad s_min_extra_isize: %d", v);
4563 				return -EINVAL;
4564 			}
4565 			if (sbi->s_want_extra_isize < v)
4566 				sbi->s_want_extra_isize = v;
4567 		}
4568 	}
4569 
4570 	return 0;
4571 }
4572 
4573 #if IS_ENABLED(CONFIG_UNICODE)
4574 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4575 {
4576 	const struct ext4_sb_encodings *encoding_info;
4577 	struct unicode_map *encoding;
4578 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4579 
4580 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4581 		return 0;
4582 
4583 	encoding_info = ext4_sb_read_encoding(es);
4584 	if (!encoding_info) {
4585 		ext4_msg(sb, KERN_ERR,
4586 			"Encoding requested by superblock is unknown");
4587 		return -EINVAL;
4588 	}
4589 
4590 	encoding = utf8_load(encoding_info->version);
4591 	if (IS_ERR(encoding)) {
4592 		ext4_msg(sb, KERN_ERR,
4593 			"can't mount with superblock charset: %s-%u.%u.%u "
4594 			"not supported by the kernel. flags: 0x%x.",
4595 			encoding_info->name,
4596 			unicode_major(encoding_info->version),
4597 			unicode_minor(encoding_info->version),
4598 			unicode_rev(encoding_info->version),
4599 			encoding_flags);
4600 		return -EINVAL;
4601 	}
4602 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4603 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4604 		unicode_major(encoding_info->version),
4605 		unicode_minor(encoding_info->version),
4606 		unicode_rev(encoding_info->version),
4607 		encoding_flags);
4608 
4609 	sb->s_encoding = encoding;
4610 	sb->s_encoding_flags = encoding_flags;
4611 
4612 	return 0;
4613 }
4614 #else
4615 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4616 {
4617 	return 0;
4618 }
4619 #endif
4620 
4621 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4622 {
4623 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4624 
4625 	/* Warn if metadata_csum and gdt_csum are both set. */
4626 	if (ext4_has_feature_metadata_csum(sb) &&
4627 	    ext4_has_feature_gdt_csum(sb))
4628 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4629 			     "redundant flags; please run fsck.");
4630 
4631 	/* Check for a known checksum algorithm */
4632 	if (!ext4_verify_csum_type(sb, es)) {
4633 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4634 			 "unknown checksum algorithm.");
4635 		return -EINVAL;
4636 	}
4637 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4638 				ext4_orphan_file_block_trigger);
4639 
4640 	/* Check superblock checksum */
4641 	if (!ext4_superblock_csum_verify(sb, es)) {
4642 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4643 			 "invalid superblock checksum.  Run e2fsck?");
4644 		return -EFSBADCRC;
4645 	}
4646 
4647 	/* Precompute checksum seed for all metadata */
4648 	if (ext4_has_feature_csum_seed(sb))
4649 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4650 	else if (ext4_has_feature_metadata_csum(sb) ||
4651 		 ext4_has_feature_ea_inode(sb))
4652 		sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4653 					       sizeof(es->s_uuid));
4654 	return 0;
4655 }
4656 
4657 static int ext4_check_feature_compatibility(struct super_block *sb,
4658 					    struct ext4_super_block *es,
4659 					    int silent)
4660 {
4661 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4662 
4663 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4664 	    (ext4_has_compat_features(sb) ||
4665 	     ext4_has_ro_compat_features(sb) ||
4666 	     ext4_has_incompat_features(sb)))
4667 		ext4_msg(sb, KERN_WARNING,
4668 		       "feature flags set on rev 0 fs, "
4669 		       "running e2fsck is recommended");
4670 
4671 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4672 		set_opt2(sb, HURD_COMPAT);
4673 		if (ext4_has_feature_64bit(sb)) {
4674 			ext4_msg(sb, KERN_ERR,
4675 				 "The Hurd can't support 64-bit file systems");
4676 			return -EINVAL;
4677 		}
4678 
4679 		/*
4680 		 * ea_inode feature uses l_i_version field which is not
4681 		 * available in HURD_COMPAT mode.
4682 		 */
4683 		if (ext4_has_feature_ea_inode(sb)) {
4684 			ext4_msg(sb, KERN_ERR,
4685 				 "ea_inode feature is not supported for Hurd");
4686 			return -EINVAL;
4687 		}
4688 	}
4689 
4690 	if (IS_EXT2_SB(sb)) {
4691 		if (ext2_feature_set_ok(sb))
4692 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4693 				 "using the ext4 subsystem");
4694 		else {
4695 			/*
4696 			 * If we're probing be silent, if this looks like
4697 			 * it's actually an ext[34] filesystem.
4698 			 */
4699 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4700 				return -EINVAL;
4701 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4702 				 "to feature incompatibilities");
4703 			return -EINVAL;
4704 		}
4705 	}
4706 
4707 	if (IS_EXT3_SB(sb)) {
4708 		if (ext3_feature_set_ok(sb))
4709 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4710 				 "using the ext4 subsystem");
4711 		else {
4712 			/*
4713 			 * If we're probing be silent, if this looks like
4714 			 * it's actually an ext4 filesystem.
4715 			 */
4716 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4717 				return -EINVAL;
4718 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4719 				 "to feature incompatibilities");
4720 			return -EINVAL;
4721 		}
4722 	}
4723 
4724 	/*
4725 	 * Check feature flags regardless of the revision level, since we
4726 	 * previously didn't change the revision level when setting the flags,
4727 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4728 	 */
4729 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4730 		return -EINVAL;
4731 
4732 	if (sbi->s_daxdev) {
4733 		if (sb->s_blocksize == PAGE_SIZE)
4734 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4735 		else
4736 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4737 	}
4738 
4739 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4740 		if (ext4_has_feature_inline_data(sb)) {
4741 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4742 					" that may contain inline data");
4743 			return -EINVAL;
4744 		}
4745 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4746 			ext4_msg(sb, KERN_ERR,
4747 				"DAX unsupported by block device.");
4748 			return -EINVAL;
4749 		}
4750 	}
4751 
4752 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4753 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4754 			 es->s_encryption_level);
4755 		return -EINVAL;
4756 	}
4757 
4758 	return 0;
4759 }
4760 
4761 static int ext4_check_geometry(struct super_block *sb,
4762 			       struct ext4_super_block *es)
4763 {
4764 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4765 	__u64 blocks_count;
4766 	int err;
4767 
4768 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4769 		ext4_msg(sb, KERN_ERR,
4770 			 "Number of reserved GDT blocks insanely large: %d",
4771 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4772 		return -EINVAL;
4773 	}
4774 	/*
4775 	 * Test whether we have more sectors than will fit in sector_t,
4776 	 * and whether the max offset is addressable by the page cache.
4777 	 */
4778 	err = generic_check_addressable(sb->s_blocksize_bits,
4779 					ext4_blocks_count(es));
4780 	if (err) {
4781 		ext4_msg(sb, KERN_ERR, "filesystem"
4782 			 " too large to mount safely on this system");
4783 		return err;
4784 	}
4785 
4786 	/* check blocks count against device size */
4787 	blocks_count = sb_bdev_nr_blocks(sb);
4788 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4789 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4790 		       "exceeds size of device (%llu blocks)",
4791 		       ext4_blocks_count(es), blocks_count);
4792 		return -EINVAL;
4793 	}
4794 
4795 	/*
4796 	 * It makes no sense for the first data block to be beyond the end
4797 	 * of the filesystem.
4798 	 */
4799 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4800 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4801 			 "block %u is beyond end of filesystem (%llu)",
4802 			 le32_to_cpu(es->s_first_data_block),
4803 			 ext4_blocks_count(es));
4804 		return -EINVAL;
4805 	}
4806 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4807 	    (sbi->s_cluster_ratio == 1)) {
4808 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4809 			 "block is 0 with a 1k block and cluster size");
4810 		return -EINVAL;
4811 	}
4812 
4813 	blocks_count = (ext4_blocks_count(es) -
4814 			le32_to_cpu(es->s_first_data_block) +
4815 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4816 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4817 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4818 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4819 		       "(block count %llu, first data block %u, "
4820 		       "blocks per group %lu)", blocks_count,
4821 		       ext4_blocks_count(es),
4822 		       le32_to_cpu(es->s_first_data_block),
4823 		       EXT4_BLOCKS_PER_GROUP(sb));
4824 		return -EINVAL;
4825 	}
4826 	sbi->s_groups_count = blocks_count;
4827 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4828 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4829 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4830 	    le32_to_cpu(es->s_inodes_count)) {
4831 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4832 			 le32_to_cpu(es->s_inodes_count),
4833 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4834 		return -EINVAL;
4835 	}
4836 
4837 	return 0;
4838 }
4839 
4840 static int ext4_group_desc_init(struct super_block *sb,
4841 				struct ext4_super_block *es,
4842 				ext4_fsblk_t logical_sb_block,
4843 				ext4_group_t *first_not_zeroed)
4844 {
4845 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4846 	unsigned int db_count;
4847 	ext4_fsblk_t block;
4848 	int i;
4849 
4850 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4851 		   EXT4_DESC_PER_BLOCK(sb);
4852 	if (ext4_has_feature_meta_bg(sb)) {
4853 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4854 			ext4_msg(sb, KERN_WARNING,
4855 				 "first meta block group too large: %u "
4856 				 "(group descriptor block count %u)",
4857 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4858 			return -EINVAL;
4859 		}
4860 	}
4861 	rcu_assign_pointer(sbi->s_group_desc,
4862 			   kvmalloc_array(db_count,
4863 					  sizeof(struct buffer_head *),
4864 					  GFP_KERNEL));
4865 	if (sbi->s_group_desc == NULL) {
4866 		ext4_msg(sb, KERN_ERR, "not enough memory");
4867 		return -ENOMEM;
4868 	}
4869 
4870 	bgl_lock_init(sbi->s_blockgroup_lock);
4871 
4872 	/* Pre-read the descriptors into the buffer cache */
4873 	for (i = 0; i < db_count; i++) {
4874 		block = descriptor_loc(sb, logical_sb_block, i);
4875 		ext4_sb_breadahead_unmovable(sb, block);
4876 	}
4877 
4878 	for (i = 0; i < db_count; i++) {
4879 		struct buffer_head *bh;
4880 
4881 		block = descriptor_loc(sb, logical_sb_block, i);
4882 		bh = ext4_sb_bread_unmovable(sb, block);
4883 		if (IS_ERR(bh)) {
4884 			ext4_msg(sb, KERN_ERR,
4885 			       "can't read group descriptor %d", i);
4886 			sbi->s_gdb_count = i;
4887 			return PTR_ERR(bh);
4888 		}
4889 		rcu_read_lock();
4890 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4891 		rcu_read_unlock();
4892 	}
4893 	sbi->s_gdb_count = db_count;
4894 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4895 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4896 		return -EFSCORRUPTED;
4897 	}
4898 
4899 	return 0;
4900 }
4901 
4902 static int ext4_load_and_init_journal(struct super_block *sb,
4903 				      struct ext4_super_block *es,
4904 				      struct ext4_fs_context *ctx)
4905 {
4906 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4907 	int err;
4908 
4909 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4910 	if (err)
4911 		return err;
4912 
4913 	if (ext4_has_feature_64bit(sb) &&
4914 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4915 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4916 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4917 		goto out;
4918 	}
4919 
4920 	if (!set_journal_csum_feature_set(sb)) {
4921 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4922 			 "feature set");
4923 		goto out;
4924 	}
4925 
4926 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4927 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4928 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4929 		ext4_msg(sb, KERN_ERR,
4930 			"Failed to set fast commit journal feature");
4931 		goto out;
4932 	}
4933 
4934 	/* We have now updated the journal if required, so we can
4935 	 * validate the data journaling mode. */
4936 	switch (test_opt(sb, DATA_FLAGS)) {
4937 	case 0:
4938 		/* No mode set, assume a default based on the journal
4939 		 * capabilities: ORDERED_DATA if the journal can
4940 		 * cope, else JOURNAL_DATA
4941 		 */
4942 		if (jbd2_journal_check_available_features
4943 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4944 			set_opt(sb, ORDERED_DATA);
4945 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4946 		} else {
4947 			set_opt(sb, JOURNAL_DATA);
4948 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4949 		}
4950 		break;
4951 
4952 	case EXT4_MOUNT_ORDERED_DATA:
4953 	case EXT4_MOUNT_WRITEBACK_DATA:
4954 		if (!jbd2_journal_check_available_features
4955 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4956 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4957 			       "requested data journaling mode");
4958 			goto out;
4959 		}
4960 		break;
4961 	default:
4962 		break;
4963 	}
4964 
4965 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4966 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4967 		ext4_msg(sb, KERN_ERR, "can't mount with "
4968 			"journal_async_commit in data=ordered mode");
4969 		goto out;
4970 	}
4971 
4972 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4973 
4974 	sbi->s_journal->j_submit_inode_data_buffers =
4975 		ext4_journal_submit_inode_data_buffers;
4976 	sbi->s_journal->j_finish_inode_data_buffers =
4977 		ext4_journal_finish_inode_data_buffers;
4978 
4979 	return 0;
4980 
4981 out:
4982 	ext4_journal_destroy(sbi, sbi->s_journal);
4983 	return -EINVAL;
4984 }
4985 
4986 static int ext4_check_journal_data_mode(struct super_block *sb)
4987 {
4988 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4989 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4990 			    "data=journal disables delayed allocation, "
4991 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4992 		/* can't mount with both data=journal and dioread_nolock. */
4993 		clear_opt(sb, DIOREAD_NOLOCK);
4994 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4995 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4996 			ext4_msg(sb, KERN_ERR, "can't mount with "
4997 				 "both data=journal and delalloc");
4998 			return -EINVAL;
4999 		}
5000 		if (test_opt(sb, DAX_ALWAYS)) {
5001 			ext4_msg(sb, KERN_ERR, "can't mount with "
5002 				 "both data=journal and dax");
5003 			return -EINVAL;
5004 		}
5005 		if (ext4_has_feature_encrypt(sb)) {
5006 			ext4_msg(sb, KERN_WARNING,
5007 				 "encrypted files will use data=ordered "
5008 				 "instead of data journaling mode");
5009 		}
5010 		if (test_opt(sb, DELALLOC))
5011 			clear_opt(sb, DELALLOC);
5012 	} else {
5013 		sb->s_iflags |= SB_I_CGROUPWB;
5014 	}
5015 
5016 	return 0;
5017 }
5018 
5019 static const char *ext4_has_journal_option(struct super_block *sb)
5020 {
5021 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5022 
5023 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5024 		return "journal_async_commit";
5025 	if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5026 		return "journal_checksum";
5027 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5028 		return "commit=";
5029 	if (EXT4_MOUNT_DATA_FLAGS &
5030 	    (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5031 		return "data=";
5032 	if (test_opt(sb, DATA_ERR_ABORT))
5033 		return "data_err=abort";
5034 	return NULL;
5035 }
5036 
5037 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5038 			   int silent)
5039 {
5040 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5041 	struct ext4_super_block *es;
5042 	ext4_fsblk_t logical_sb_block;
5043 	unsigned long offset = 0;
5044 	struct buffer_head *bh;
5045 	int ret = -EINVAL;
5046 	int blocksize;
5047 
5048 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5049 	if (!blocksize) {
5050 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5051 		return -EINVAL;
5052 	}
5053 
5054 	/*
5055 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5056 	 * block sizes.  We need to calculate the offset from buffer start.
5057 	 */
5058 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5059 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5060 		offset = do_div(logical_sb_block, blocksize);
5061 	} else {
5062 		logical_sb_block = sbi->s_sb_block;
5063 	}
5064 
5065 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5066 	if (IS_ERR(bh)) {
5067 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5068 		return PTR_ERR(bh);
5069 	}
5070 	/*
5071 	 * Note: s_es must be initialized as soon as possible because
5072 	 *       some ext4 macro-instructions depend on its value
5073 	 */
5074 	es = (struct ext4_super_block *) (bh->b_data + offset);
5075 	sbi->s_es = es;
5076 	sb->s_magic = le16_to_cpu(es->s_magic);
5077 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5078 		if (!silent)
5079 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5080 		goto out;
5081 	}
5082 
5083 	if (le32_to_cpu(es->s_log_block_size) >
5084 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5085 		ext4_msg(sb, KERN_ERR,
5086 			 "Invalid log block size: %u",
5087 			 le32_to_cpu(es->s_log_block_size));
5088 		goto out;
5089 	}
5090 	if (le32_to_cpu(es->s_log_cluster_size) >
5091 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5092 		ext4_msg(sb, KERN_ERR,
5093 			 "Invalid log cluster size: %u",
5094 			 le32_to_cpu(es->s_log_cluster_size));
5095 		goto out;
5096 	}
5097 
5098 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5099 
5100 	/*
5101 	 * If the default block size is not the same as the real block size,
5102 	 * we need to reload it.
5103 	 */
5104 	if (sb->s_blocksize == blocksize) {
5105 		*lsb = logical_sb_block;
5106 		sbi->s_sbh = bh;
5107 		return 0;
5108 	}
5109 
5110 	/*
5111 	 * bh must be released before kill_bdev(), otherwise
5112 	 * it won't be freed and its page also. kill_bdev()
5113 	 * is called by sb_set_blocksize().
5114 	 */
5115 	brelse(bh);
5116 	/* Validate the filesystem blocksize */
5117 	if (!sb_set_blocksize(sb, blocksize)) {
5118 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5119 				blocksize);
5120 		bh = NULL;
5121 		goto out;
5122 	}
5123 
5124 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5125 	offset = do_div(logical_sb_block, blocksize);
5126 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5127 	if (IS_ERR(bh)) {
5128 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5129 		ret = PTR_ERR(bh);
5130 		bh = NULL;
5131 		goto out;
5132 	}
5133 	es = (struct ext4_super_block *)(bh->b_data + offset);
5134 	sbi->s_es = es;
5135 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5136 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5137 		goto out;
5138 	}
5139 	*lsb = logical_sb_block;
5140 	sbi->s_sbh = bh;
5141 	return 0;
5142 out:
5143 	brelse(bh);
5144 	return ret;
5145 }
5146 
5147 static int ext4_hash_info_init(struct super_block *sb)
5148 {
5149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5150 	struct ext4_super_block *es = sbi->s_es;
5151 	unsigned int i;
5152 
5153 	sbi->s_def_hash_version = es->s_def_hash_version;
5154 
5155 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5156 		ext4_msg(sb, KERN_ERR,
5157 			 "Invalid default hash set in the superblock");
5158 		return -EINVAL;
5159 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5160 		ext4_msg(sb, KERN_ERR,
5161 			 "SIPHASH is not a valid default hash value");
5162 		return -EINVAL;
5163 	}
5164 
5165 	for (i = 0; i < 4; i++)
5166 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5167 
5168 	if (ext4_has_feature_dir_index(sb)) {
5169 		i = le32_to_cpu(es->s_flags);
5170 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5171 			sbi->s_hash_unsigned = 3;
5172 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5173 #ifdef __CHAR_UNSIGNED__
5174 			if (!sb_rdonly(sb))
5175 				es->s_flags |=
5176 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5177 			sbi->s_hash_unsigned = 3;
5178 #else
5179 			if (!sb_rdonly(sb))
5180 				es->s_flags |=
5181 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5182 #endif
5183 		}
5184 	}
5185 	return 0;
5186 }
5187 
5188 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5189 {
5190 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5191 	struct ext4_super_block *es = sbi->s_es;
5192 	int has_huge_files;
5193 
5194 	has_huge_files = ext4_has_feature_huge_file(sb);
5195 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5196 						      has_huge_files);
5197 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5198 
5199 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5200 	if (ext4_has_feature_64bit(sb)) {
5201 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5202 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5203 		    !is_power_of_2(sbi->s_desc_size)) {
5204 			ext4_msg(sb, KERN_ERR,
5205 			       "unsupported descriptor size %lu",
5206 			       sbi->s_desc_size);
5207 			return -EINVAL;
5208 		}
5209 	} else
5210 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5211 
5212 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5213 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5214 
5215 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5216 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5217 		if (!silent)
5218 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5219 		return -EINVAL;
5220 	}
5221 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5222 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5223 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5224 			 sbi->s_inodes_per_group);
5225 		return -EINVAL;
5226 	}
5227 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5228 					sbi->s_inodes_per_block;
5229 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5230 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5231 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5232 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5233 
5234 	return 0;
5235 }
5236 
5237 /*
5238  * It's hard to get stripe aligned blocks if stripe is not aligned with
5239  * cluster, just disable stripe and alert user to simplify code and avoid
5240  * stripe aligned allocation which will rarely succeed.
5241  */
5242 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5243 {
5244 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5245 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5246 		stripe % sbi->s_cluster_ratio != 0);
5247 }
5248 
5249 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5250 {
5251 	struct ext4_super_block *es = NULL;
5252 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5253 	ext4_fsblk_t logical_sb_block;
5254 	struct inode *root;
5255 	int needs_recovery;
5256 	int err;
5257 	ext4_group_t first_not_zeroed;
5258 	struct ext4_fs_context *ctx = fc->fs_private;
5259 	int silent = fc->sb_flags & SB_SILENT;
5260 
5261 	/* Set defaults for the variables that will be set during parsing */
5262 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5263 		ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5264 
5265 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5266 	sbi->s_sectors_written_start =
5267 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5268 
5269 	err = ext4_load_super(sb, &logical_sb_block, silent);
5270 	if (err)
5271 		goto out_fail;
5272 
5273 	es = sbi->s_es;
5274 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5275 
5276 	err = ext4_init_metadata_csum(sb, es);
5277 	if (err)
5278 		goto failed_mount;
5279 
5280 	ext4_set_def_opts(sb, es);
5281 
5282 	sbi->s_resuid = make_kuid(&init_user_ns, ext4_get_resuid(es));
5283 	sbi->s_resgid = make_kgid(&init_user_ns, ext4_get_resuid(es));
5284 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5285 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5286 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5287 	sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5288 	sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5289 
5290 	/*
5291 	 * set default s_li_wait_mult for lazyinit, for the case there is
5292 	 * no mount option specified.
5293 	 */
5294 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5295 
5296 	err = ext4_inode_info_init(sb, es);
5297 	if (err)
5298 		goto failed_mount;
5299 
5300 	err = parse_apply_sb_mount_options(sb, ctx);
5301 	if (err < 0)
5302 		goto failed_mount;
5303 
5304 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5305 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5306 
5307 	err = ext4_check_opt_consistency(fc, sb);
5308 	if (err < 0)
5309 		goto failed_mount;
5310 
5311 	ext4_apply_options(fc, sb);
5312 
5313 	err = ext4_encoding_init(sb, es);
5314 	if (err)
5315 		goto failed_mount;
5316 
5317 	err = ext4_check_journal_data_mode(sb);
5318 	if (err)
5319 		goto failed_mount;
5320 
5321 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5322 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5323 
5324 	/* HSM events are allowed by default. */
5325 	sb->s_iflags |= SB_I_ALLOW_HSM;
5326 
5327 	err = ext4_check_feature_compatibility(sb, es, silent);
5328 	if (err)
5329 		goto failed_mount;
5330 
5331 	err = ext4_block_group_meta_init(sb, silent);
5332 	if (err)
5333 		goto failed_mount;
5334 
5335 	err = ext4_hash_info_init(sb);
5336 	if (err)
5337 		goto failed_mount;
5338 
5339 	err = ext4_handle_clustersize(sb);
5340 	if (err)
5341 		goto failed_mount;
5342 
5343 	err = ext4_check_geometry(sb, es);
5344 	if (err)
5345 		goto failed_mount;
5346 
5347 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5348 	spin_lock_init(&sbi->s_error_lock);
5349 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5350 
5351 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5352 	if (err)
5353 		goto failed_mount3;
5354 
5355 	err = ext4_es_register_shrinker(sbi);
5356 	if (err)
5357 		goto failed_mount3;
5358 
5359 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5360 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5361 		ext4_msg(sb, KERN_WARNING,
5362 			 "stripe (%lu) is not aligned with cluster size (%u), "
5363 			 "stripe is disabled",
5364 			 sbi->s_stripe, sbi->s_cluster_ratio);
5365 		sbi->s_stripe = 0;
5366 	}
5367 	sbi->s_extent_max_zeroout_kb = 32;
5368 
5369 	/*
5370 	 * set up enough so that it can read an inode
5371 	 */
5372 	sb->s_op = &ext4_sops;
5373 	sb->s_export_op = &ext4_export_ops;
5374 	sb->s_xattr = ext4_xattr_handlers;
5375 #ifdef CONFIG_FS_ENCRYPTION
5376 	sb->s_cop = &ext4_cryptops;
5377 #endif
5378 #ifdef CONFIG_FS_VERITY
5379 	sb->s_vop = &ext4_verityops;
5380 #endif
5381 #ifdef CONFIG_QUOTA
5382 	sb->dq_op = &ext4_quota_operations;
5383 	if (ext4_has_feature_quota(sb))
5384 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5385 	else
5386 		sb->s_qcop = &ext4_qctl_operations;
5387 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5388 #endif
5389 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5390 	super_set_sysfs_name_bdev(sb);
5391 
5392 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5393 	mutex_init(&sbi->s_orphan_lock);
5394 
5395 	spin_lock_init(&sbi->s_bdev_wb_lock);
5396 
5397 	ext4_atomic_write_init(sb);
5398 	ext4_fast_commit_init(sb);
5399 
5400 	sb->s_root = NULL;
5401 
5402 	needs_recovery = (es->s_last_orphan != 0 ||
5403 			  ext4_has_feature_orphan_present(sb) ||
5404 			  ext4_has_feature_journal_needs_recovery(sb));
5405 
5406 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5407 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5408 		if (err)
5409 			goto failed_mount3a;
5410 	}
5411 
5412 	err = -EINVAL;
5413 	/*
5414 	 * The first inode we look at is the journal inode.  Don't try
5415 	 * root first: it may be modified in the journal!
5416 	 */
5417 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5418 		err = ext4_load_and_init_journal(sb, es, ctx);
5419 		if (err)
5420 			goto failed_mount3a;
5421 		if (bdev_read_only(sb->s_bdev))
5422 		    needs_recovery = 0;
5423 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5424 		   ext4_has_feature_journal_needs_recovery(sb)) {
5425 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5426 		       "suppressed and not mounted read-only");
5427 		goto failed_mount3a;
5428 	} else {
5429 		const char *journal_option;
5430 
5431 		/* Nojournal mode, all journal mount options are illegal */
5432 		journal_option = ext4_has_journal_option(sb);
5433 		if (journal_option != NULL) {
5434 			ext4_msg(sb, KERN_ERR,
5435 				 "can't mount with %s, fs mounted w/o journal",
5436 				 journal_option);
5437 			goto failed_mount3a;
5438 		}
5439 
5440 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5441 		clear_opt(sb, JOURNAL_CHECKSUM);
5442 		clear_opt(sb, DATA_FLAGS);
5443 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5444 		sbi->s_journal = NULL;
5445 		needs_recovery = 0;
5446 	}
5447 
5448 	if (!test_opt(sb, NO_MBCACHE)) {
5449 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5450 		if (!sbi->s_ea_block_cache) {
5451 			ext4_msg(sb, KERN_ERR,
5452 				 "Failed to create ea_block_cache");
5453 			err = -EINVAL;
5454 			goto failed_mount_wq;
5455 		}
5456 
5457 		if (ext4_has_feature_ea_inode(sb)) {
5458 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5459 			if (!sbi->s_ea_inode_cache) {
5460 				ext4_msg(sb, KERN_ERR,
5461 					 "Failed to create ea_inode_cache");
5462 				err = -EINVAL;
5463 				goto failed_mount_wq;
5464 			}
5465 		}
5466 	}
5467 
5468 	/*
5469 	 * Get the # of file system overhead blocks from the
5470 	 * superblock if present.
5471 	 */
5472 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5473 	/* ignore the precalculated value if it is ridiculous */
5474 	if (sbi->s_overhead > ext4_blocks_count(es))
5475 		sbi->s_overhead = 0;
5476 	/*
5477 	 * If the bigalloc feature is not enabled recalculating the
5478 	 * overhead doesn't take long, so we might as well just redo
5479 	 * it to make sure we are using the correct value.
5480 	 */
5481 	if (!ext4_has_feature_bigalloc(sb))
5482 		sbi->s_overhead = 0;
5483 	if (sbi->s_overhead == 0) {
5484 		err = ext4_calculate_overhead(sb);
5485 		if (err)
5486 			goto failed_mount_wq;
5487 	}
5488 
5489 	/*
5490 	 * The maximum number of concurrent works can be high and
5491 	 * concurrency isn't really necessary.  Limit it to 1.
5492 	 */
5493 	EXT4_SB(sb)->rsv_conversion_wq =
5494 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5495 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5496 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5497 		err = -ENOMEM;
5498 		goto failed_mount4;
5499 	}
5500 
5501 	/*
5502 	 * The jbd2_journal_load will have done any necessary log recovery,
5503 	 * so we can safely mount the rest of the filesystem now.
5504 	 */
5505 
5506 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5507 	if (IS_ERR(root)) {
5508 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5509 		err = PTR_ERR(root);
5510 		root = NULL;
5511 		goto failed_mount4;
5512 	}
5513 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5514 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5515 		iput(root);
5516 		err = -EFSCORRUPTED;
5517 		goto failed_mount4;
5518 	}
5519 
5520 	generic_set_sb_d_ops(sb);
5521 	sb->s_root = d_make_root(root);
5522 	if (!sb->s_root) {
5523 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5524 		err = -ENOMEM;
5525 		goto failed_mount4;
5526 	}
5527 
5528 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5529 	if (err == -EROFS) {
5530 		sb->s_flags |= SB_RDONLY;
5531 	} else if (err)
5532 		goto failed_mount4a;
5533 
5534 	ext4_set_resv_clusters(sb);
5535 
5536 	if (test_opt(sb, BLOCK_VALIDITY)) {
5537 		err = ext4_setup_system_zone(sb);
5538 		if (err) {
5539 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5540 				 "zone (%d)", err);
5541 			goto failed_mount4a;
5542 		}
5543 	}
5544 	ext4_fc_replay_cleanup(sb);
5545 
5546 	ext4_ext_init(sb);
5547 
5548 	/*
5549 	 * Enable optimize_scan if number of groups is > threshold. This can be
5550 	 * turned off by passing "mb_optimize_scan=0". This can also be
5551 	 * turned on forcefully by passing "mb_optimize_scan=1".
5552 	 */
5553 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5554 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5555 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5556 		else
5557 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5558 	}
5559 
5560 	err = ext4_mb_init(sb);
5561 	if (err) {
5562 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5563 			 err);
5564 		goto failed_mount5;
5565 	}
5566 
5567 	/*
5568 	 * We can only set up the journal commit callback once
5569 	 * mballoc is initialized
5570 	 */
5571 	if (sbi->s_journal)
5572 		sbi->s_journal->j_commit_callback =
5573 			ext4_journal_commit_callback;
5574 
5575 	err = ext4_percpu_param_init(sbi);
5576 	if (err)
5577 		goto failed_mount6;
5578 
5579 	if (ext4_has_feature_flex_bg(sb))
5580 		if (!ext4_fill_flex_info(sb)) {
5581 			ext4_msg(sb, KERN_ERR,
5582 			       "unable to initialize "
5583 			       "flex_bg meta info!");
5584 			err = -ENOMEM;
5585 			goto failed_mount6;
5586 		}
5587 
5588 	err = ext4_register_li_request(sb, first_not_zeroed);
5589 	if (err)
5590 		goto failed_mount6;
5591 
5592 	err = ext4_init_orphan_info(sb);
5593 	if (err)
5594 		goto failed_mount7;
5595 #ifdef CONFIG_QUOTA
5596 	/* Enable quota usage during mount. */
5597 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5598 		err = ext4_enable_quotas(sb);
5599 		if (err)
5600 			goto failed_mount8;
5601 	}
5602 #endif  /* CONFIG_QUOTA */
5603 
5604 	/*
5605 	 * Save the original bdev mapping's wb_err value which could be
5606 	 * used to detect the metadata async write error.
5607 	 */
5608 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5609 				 &sbi->s_bdev_wb_err);
5610 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5611 	ext4_orphan_cleanup(sb, es);
5612 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5613 	/*
5614 	 * Update the checksum after updating free space/inode counters and
5615 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5616 	 * checksum in the buffer cache until it is written out and
5617 	 * e2fsprogs programs trying to open a file system immediately
5618 	 * after it is mounted can fail.
5619 	 */
5620 	ext4_superblock_csum_set(sb);
5621 	if (needs_recovery) {
5622 		ext4_msg(sb, KERN_INFO, "recovery complete");
5623 		err = ext4_mark_recovery_complete(sb, es);
5624 		if (err)
5625 			goto failed_mount9;
5626 	}
5627 
5628 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5629 		ext4_msg(sb, KERN_WARNING,
5630 			 "mounting with \"discard\" option, but the device does not support discard");
5631 		clear_opt(sb, DISCARD);
5632 	}
5633 
5634 	if (es->s_error_count)
5635 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5636 
5637 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5638 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5639 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5640 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5641 	atomic_set(&sbi->s_warning_count, 0);
5642 	atomic_set(&sbi->s_msg_count, 0);
5643 
5644 	/* Register sysfs after all initializations are complete. */
5645 	err = ext4_register_sysfs(sb);
5646 	if (err)
5647 		goto failed_mount9;
5648 
5649 	return 0;
5650 
5651 failed_mount9:
5652 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5653 failed_mount8: __maybe_unused
5654 	ext4_release_orphan_info(sb);
5655 failed_mount7:
5656 	ext4_unregister_li_request(sb);
5657 failed_mount6:
5658 	ext4_mb_release(sb);
5659 	ext4_flex_groups_free(sbi);
5660 	ext4_percpu_param_destroy(sbi);
5661 failed_mount5:
5662 	ext4_ext_release(sb);
5663 	ext4_release_system_zone(sb);
5664 failed_mount4a:
5665 	dput(sb->s_root);
5666 	sb->s_root = NULL;
5667 failed_mount4:
5668 	ext4_msg(sb, KERN_ERR, "mount failed");
5669 	if (EXT4_SB(sb)->rsv_conversion_wq)
5670 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5671 failed_mount_wq:
5672 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5673 	sbi->s_ea_inode_cache = NULL;
5674 
5675 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5676 	sbi->s_ea_block_cache = NULL;
5677 
5678 	if (sbi->s_journal) {
5679 		ext4_journal_destroy(sbi, sbi->s_journal);
5680 	}
5681 failed_mount3a:
5682 	ext4_es_unregister_shrinker(sbi);
5683 failed_mount3:
5684 	/* flush s_sb_upd_work before sbi destroy */
5685 	flush_work(&sbi->s_sb_upd_work);
5686 	ext4_stop_mmpd(sbi);
5687 	timer_delete_sync(&sbi->s_err_report);
5688 	ext4_group_desc_free(sbi);
5689 failed_mount:
5690 #if IS_ENABLED(CONFIG_UNICODE)
5691 	utf8_unload(sb->s_encoding);
5692 #endif
5693 
5694 #ifdef CONFIG_QUOTA
5695 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5696 		kfree(get_qf_name(sb, sbi, i));
5697 #endif
5698 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5699 	brelse(sbi->s_sbh);
5700 	if (sbi->s_journal_bdev_file) {
5701 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5702 		bdev_fput(sbi->s_journal_bdev_file);
5703 	}
5704 out_fail:
5705 	invalidate_bdev(sb->s_bdev);
5706 	sb->s_fs_info = NULL;
5707 	return err;
5708 }
5709 
5710 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5711 {
5712 	struct ext4_fs_context *ctx = fc->fs_private;
5713 	struct ext4_sb_info *sbi;
5714 	const char *descr;
5715 	int ret;
5716 
5717 	sbi = ext4_alloc_sbi(sb);
5718 	if (!sbi)
5719 		return -ENOMEM;
5720 
5721 	fc->s_fs_info = sbi;
5722 
5723 	/* Cleanup superblock name */
5724 	strreplace(sb->s_id, '/', '!');
5725 
5726 	sbi->s_sb_block = 1;	/* Default super block location */
5727 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5728 		sbi->s_sb_block = ctx->s_sb_block;
5729 
5730 	ret = __ext4_fill_super(fc, sb);
5731 	if (ret < 0)
5732 		goto free_sbi;
5733 
5734 	if (sbi->s_journal) {
5735 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5736 			descr = " journalled data mode";
5737 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5738 			descr = " ordered data mode";
5739 		else
5740 			descr = " writeback data mode";
5741 	} else
5742 		descr = "out journal";
5743 
5744 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5745 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5746 			 "Quota mode: %s.", &sb->s_uuid,
5747 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5748 			 ext4_quota_mode(sb));
5749 
5750 	/* Update the s_overhead_clusters if necessary */
5751 	ext4_update_overhead(sb, false);
5752 	return 0;
5753 
5754 free_sbi:
5755 	ext4_free_sbi(sbi);
5756 	fc->s_fs_info = NULL;
5757 	return ret;
5758 }
5759 
5760 static int ext4_get_tree(struct fs_context *fc)
5761 {
5762 	return get_tree_bdev(fc, ext4_fill_super);
5763 }
5764 
5765 /*
5766  * Setup any per-fs journal parameters now.  We'll do this both on
5767  * initial mount, once the journal has been initialised but before we've
5768  * done any recovery; and again on any subsequent remount.
5769  */
5770 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5771 {
5772 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5773 
5774 	journal->j_commit_interval = sbi->s_commit_interval;
5775 	journal->j_min_batch_time = sbi->s_min_batch_time;
5776 	journal->j_max_batch_time = sbi->s_max_batch_time;
5777 	ext4_fc_init(sb, journal);
5778 
5779 	write_lock(&journal->j_state_lock);
5780 	if (test_opt(sb, BARRIER))
5781 		journal->j_flags |= JBD2_BARRIER;
5782 	else
5783 		journal->j_flags &= ~JBD2_BARRIER;
5784 	/*
5785 	 * Always enable journal cycle record option, letting the journal
5786 	 * records log transactions continuously between each mount.
5787 	 */
5788 	journal->j_flags |= JBD2_CYCLE_RECORD;
5789 	write_unlock(&journal->j_state_lock);
5790 }
5791 
5792 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5793 					     unsigned int journal_inum)
5794 {
5795 	struct inode *journal_inode;
5796 
5797 	/*
5798 	 * Test for the existence of a valid inode on disk.  Bad things
5799 	 * happen if we iget() an unused inode, as the subsequent iput()
5800 	 * will try to delete it.
5801 	 */
5802 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5803 	if (IS_ERR(journal_inode)) {
5804 		ext4_msg(sb, KERN_ERR, "no journal found");
5805 		return ERR_CAST(journal_inode);
5806 	}
5807 	if (!journal_inode->i_nlink) {
5808 		make_bad_inode(journal_inode);
5809 		iput(journal_inode);
5810 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5811 		return ERR_PTR(-EFSCORRUPTED);
5812 	}
5813 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5814 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5815 		iput(journal_inode);
5816 		return ERR_PTR(-EFSCORRUPTED);
5817 	}
5818 
5819 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5820 		  journal_inode, journal_inode->i_size);
5821 	return journal_inode;
5822 }
5823 
5824 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5825 {
5826 	struct ext4_map_blocks map;
5827 	int ret;
5828 
5829 	if (journal->j_inode == NULL)
5830 		return 0;
5831 
5832 	map.m_lblk = *block;
5833 	map.m_len = 1;
5834 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5835 	if (ret <= 0) {
5836 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5837 			 "journal bmap failed: block %llu ret %d\n",
5838 			 *block, ret);
5839 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5840 		return ret;
5841 	}
5842 	*block = map.m_pblk;
5843 	return 0;
5844 }
5845 
5846 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5847 					  unsigned int journal_inum)
5848 {
5849 	struct inode *journal_inode;
5850 	journal_t *journal;
5851 
5852 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5853 	if (IS_ERR(journal_inode))
5854 		return ERR_CAST(journal_inode);
5855 
5856 	journal = jbd2_journal_init_inode(journal_inode);
5857 	if (IS_ERR(journal)) {
5858 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5859 		iput(journal_inode);
5860 		return ERR_CAST(journal);
5861 	}
5862 	journal->j_private = sb;
5863 	journal->j_bmap = ext4_journal_bmap;
5864 	ext4_init_journal_params(sb, journal);
5865 	return journal;
5866 }
5867 
5868 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5869 					dev_t j_dev, ext4_fsblk_t *j_start,
5870 					ext4_fsblk_t *j_len)
5871 {
5872 	struct buffer_head *bh;
5873 	struct block_device *bdev;
5874 	struct file *bdev_file;
5875 	int hblock, blocksize;
5876 	ext4_fsblk_t sb_block;
5877 	unsigned long offset;
5878 	struct ext4_super_block *es;
5879 	int errno;
5880 
5881 	bdev_file = bdev_file_open_by_dev(j_dev,
5882 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5883 		sb, &fs_holder_ops);
5884 	if (IS_ERR(bdev_file)) {
5885 		ext4_msg(sb, KERN_ERR,
5886 			 "failed to open journal device unknown-block(%u,%u) %ld",
5887 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5888 		return bdev_file;
5889 	}
5890 
5891 	bdev = file_bdev(bdev_file);
5892 	blocksize = sb->s_blocksize;
5893 	hblock = bdev_logical_block_size(bdev);
5894 	if (blocksize < hblock) {
5895 		ext4_msg(sb, KERN_ERR,
5896 			"blocksize too small for journal device");
5897 		errno = -EINVAL;
5898 		goto out_bdev;
5899 	}
5900 
5901 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5902 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5903 	set_blocksize(bdev_file, blocksize);
5904 	bh = __bread(bdev, sb_block, blocksize);
5905 	if (!bh) {
5906 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5907 		       "external journal");
5908 		errno = -EINVAL;
5909 		goto out_bdev;
5910 	}
5911 
5912 	es = (struct ext4_super_block *) (bh->b_data + offset);
5913 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5914 	    !(le32_to_cpu(es->s_feature_incompat) &
5915 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5916 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5917 		errno = -EFSCORRUPTED;
5918 		goto out_bh;
5919 	}
5920 
5921 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5922 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5923 	    es->s_checksum != ext4_superblock_csum(es)) {
5924 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5925 		errno = -EFSCORRUPTED;
5926 		goto out_bh;
5927 	}
5928 
5929 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5930 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5931 		errno = -EFSCORRUPTED;
5932 		goto out_bh;
5933 	}
5934 
5935 	*j_start = sb_block + 1;
5936 	*j_len = ext4_blocks_count(es);
5937 	brelse(bh);
5938 	return bdev_file;
5939 
5940 out_bh:
5941 	brelse(bh);
5942 out_bdev:
5943 	bdev_fput(bdev_file);
5944 	return ERR_PTR(errno);
5945 }
5946 
5947 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5948 					dev_t j_dev)
5949 {
5950 	journal_t *journal;
5951 	ext4_fsblk_t j_start;
5952 	ext4_fsblk_t j_len;
5953 	struct file *bdev_file;
5954 	int errno = 0;
5955 
5956 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5957 	if (IS_ERR(bdev_file))
5958 		return ERR_CAST(bdev_file);
5959 
5960 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5961 					j_len, sb->s_blocksize);
5962 	if (IS_ERR(journal)) {
5963 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5964 		errno = PTR_ERR(journal);
5965 		goto out_bdev;
5966 	}
5967 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5968 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5969 					"user (unsupported) - %d",
5970 			be32_to_cpu(journal->j_superblock->s_nr_users));
5971 		errno = -EINVAL;
5972 		goto out_journal;
5973 	}
5974 	journal->j_private = sb;
5975 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5976 	ext4_init_journal_params(sb, journal);
5977 	return journal;
5978 
5979 out_journal:
5980 	ext4_journal_destroy(EXT4_SB(sb), journal);
5981 out_bdev:
5982 	bdev_fput(bdev_file);
5983 	return ERR_PTR(errno);
5984 }
5985 
5986 static int ext4_load_journal(struct super_block *sb,
5987 			     struct ext4_super_block *es,
5988 			     unsigned long journal_devnum)
5989 {
5990 	journal_t *journal;
5991 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5992 	dev_t journal_dev;
5993 	int err = 0;
5994 	int really_read_only;
5995 	int journal_dev_ro;
5996 
5997 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5998 		return -EFSCORRUPTED;
5999 
6000 	if (journal_devnum &&
6001 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6002 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6003 			"numbers have changed");
6004 		journal_dev = new_decode_dev(journal_devnum);
6005 	} else
6006 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6007 
6008 	if (journal_inum && journal_dev) {
6009 		ext4_msg(sb, KERN_ERR,
6010 			 "filesystem has both journal inode and journal device!");
6011 		return -EINVAL;
6012 	}
6013 
6014 	if (journal_inum) {
6015 		journal = ext4_open_inode_journal(sb, journal_inum);
6016 		if (IS_ERR(journal))
6017 			return PTR_ERR(journal);
6018 	} else {
6019 		journal = ext4_open_dev_journal(sb, journal_dev);
6020 		if (IS_ERR(journal))
6021 			return PTR_ERR(journal);
6022 	}
6023 
6024 	journal_dev_ro = bdev_read_only(journal->j_dev);
6025 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6026 
6027 	if (journal_dev_ro && !sb_rdonly(sb)) {
6028 		ext4_msg(sb, KERN_ERR,
6029 			 "journal device read-only, try mounting with '-o ro'");
6030 		err = -EROFS;
6031 		goto err_out;
6032 	}
6033 
6034 	/*
6035 	 * Are we loading a blank journal or performing recovery after a
6036 	 * crash?  For recovery, we need to check in advance whether we
6037 	 * can get read-write access to the device.
6038 	 */
6039 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6040 		if (sb_rdonly(sb)) {
6041 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6042 					"required on readonly filesystem");
6043 			if (really_read_only) {
6044 				ext4_msg(sb, KERN_ERR, "write access "
6045 					"unavailable, cannot proceed "
6046 					"(try mounting with noload)");
6047 				err = -EROFS;
6048 				goto err_out;
6049 			}
6050 			ext4_msg(sb, KERN_INFO, "write access will "
6051 			       "be enabled during recovery");
6052 		}
6053 	}
6054 
6055 	if (!(journal->j_flags & JBD2_BARRIER))
6056 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6057 
6058 	if (!ext4_has_feature_journal_needs_recovery(sb))
6059 		err = jbd2_journal_wipe(journal, !really_read_only);
6060 	if (!err) {
6061 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6062 		__le16 orig_state;
6063 		bool changed = false;
6064 
6065 		if (save)
6066 			memcpy(save, ((char *) es) +
6067 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6068 		err = jbd2_journal_load(journal);
6069 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6070 				   save, EXT4_S_ERR_LEN)) {
6071 			memcpy(((char *) es) + EXT4_S_ERR_START,
6072 			       save, EXT4_S_ERR_LEN);
6073 			changed = true;
6074 		}
6075 		kfree(save);
6076 		orig_state = es->s_state;
6077 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6078 					   EXT4_ERROR_FS);
6079 		if (orig_state != es->s_state)
6080 			changed = true;
6081 		/* Write out restored error information to the superblock */
6082 		if (changed && !really_read_only) {
6083 			int err2;
6084 			err2 = ext4_commit_super(sb);
6085 			err = err ? : err2;
6086 		}
6087 	}
6088 
6089 	if (err) {
6090 		ext4_msg(sb, KERN_ERR, "error loading journal");
6091 		goto err_out;
6092 	}
6093 
6094 	EXT4_SB(sb)->s_journal = journal;
6095 	err = ext4_clear_journal_err(sb, es);
6096 	if (err) {
6097 		ext4_journal_destroy(EXT4_SB(sb), journal);
6098 		return err;
6099 	}
6100 
6101 	if (!really_read_only && journal_devnum &&
6102 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6103 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6104 		ext4_commit_super(sb);
6105 	}
6106 	if (!really_read_only && journal_inum &&
6107 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6108 		es->s_journal_inum = cpu_to_le32(journal_inum);
6109 		ext4_commit_super(sb);
6110 	}
6111 
6112 	return 0;
6113 
6114 err_out:
6115 	ext4_journal_destroy(EXT4_SB(sb), journal);
6116 	return err;
6117 }
6118 
6119 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6120 static void ext4_update_super(struct super_block *sb)
6121 {
6122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6123 	struct ext4_super_block *es = sbi->s_es;
6124 	struct buffer_head *sbh = sbi->s_sbh;
6125 
6126 	lock_buffer(sbh);
6127 	/*
6128 	 * If the file system is mounted read-only, don't update the
6129 	 * superblock write time.  This avoids updating the superblock
6130 	 * write time when we are mounting the root file system
6131 	 * read/only but we need to replay the journal; at that point,
6132 	 * for people who are east of GMT and who make their clock
6133 	 * tick in localtime for Windows bug-for-bug compatibility,
6134 	 * the clock is set in the future, and this will cause e2fsck
6135 	 * to complain and force a full file system check.
6136 	 */
6137 	if (!sb_rdonly(sb))
6138 		ext4_update_tstamp(es, s_wtime);
6139 	es->s_kbytes_written =
6140 		cpu_to_le64(sbi->s_kbytes_written +
6141 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6142 		      sbi->s_sectors_written_start) >> 1));
6143 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6144 		ext4_free_blocks_count_set(es,
6145 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6146 				&sbi->s_freeclusters_counter)));
6147 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6148 		es->s_free_inodes_count =
6149 			cpu_to_le32(percpu_counter_sum_positive(
6150 				&sbi->s_freeinodes_counter));
6151 	/* Copy error information to the on-disk superblock */
6152 	spin_lock(&sbi->s_error_lock);
6153 	if (sbi->s_add_error_count > 0) {
6154 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6155 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6156 			__ext4_update_tstamp(&es->s_first_error_time,
6157 					     &es->s_first_error_time_hi,
6158 					     sbi->s_first_error_time);
6159 			strtomem_pad(es->s_first_error_func,
6160 				     sbi->s_first_error_func, 0);
6161 			es->s_first_error_line =
6162 				cpu_to_le32(sbi->s_first_error_line);
6163 			es->s_first_error_ino =
6164 				cpu_to_le32(sbi->s_first_error_ino);
6165 			es->s_first_error_block =
6166 				cpu_to_le64(sbi->s_first_error_block);
6167 			es->s_first_error_errcode =
6168 				ext4_errno_to_code(sbi->s_first_error_code);
6169 		}
6170 		__ext4_update_tstamp(&es->s_last_error_time,
6171 				     &es->s_last_error_time_hi,
6172 				     sbi->s_last_error_time);
6173 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6174 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6175 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6176 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6177 		es->s_last_error_errcode =
6178 				ext4_errno_to_code(sbi->s_last_error_code);
6179 		/*
6180 		 * Start the daily error reporting function if it hasn't been
6181 		 * started already
6182 		 */
6183 		if (!es->s_error_count)
6184 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6185 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6186 		sbi->s_add_error_count = 0;
6187 	}
6188 	spin_unlock(&sbi->s_error_lock);
6189 
6190 	ext4_superblock_csum_set(sb);
6191 	unlock_buffer(sbh);
6192 }
6193 
6194 static int ext4_commit_super(struct super_block *sb)
6195 {
6196 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6197 
6198 	if (!sbh)
6199 		return -EINVAL;
6200 
6201 	ext4_update_super(sb);
6202 
6203 	lock_buffer(sbh);
6204 	/* Buffer got discarded which means block device got invalidated */
6205 	if (!buffer_mapped(sbh)) {
6206 		unlock_buffer(sbh);
6207 		return -EIO;
6208 	}
6209 
6210 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6211 		/*
6212 		 * Oh, dear.  A previous attempt to write the
6213 		 * superblock failed.  This could happen because the
6214 		 * USB device was yanked out.  Or it could happen to
6215 		 * be a transient write error and maybe the block will
6216 		 * be remapped.  Nothing we can do but to retry the
6217 		 * write and hope for the best.
6218 		 */
6219 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6220 		       "superblock detected");
6221 		clear_buffer_write_io_error(sbh);
6222 		set_buffer_uptodate(sbh);
6223 	}
6224 	get_bh(sbh);
6225 	/* Clear potential dirty bit if it was journalled update */
6226 	clear_buffer_dirty(sbh);
6227 	sbh->b_end_io = end_buffer_write_sync;
6228 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6229 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6230 	wait_on_buffer(sbh);
6231 	if (buffer_write_io_error(sbh)) {
6232 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6233 		       "superblock");
6234 		clear_buffer_write_io_error(sbh);
6235 		set_buffer_uptodate(sbh);
6236 		return -EIO;
6237 	}
6238 	return 0;
6239 }
6240 
6241 /*
6242  * Have we just finished recovery?  If so, and if we are mounting (or
6243  * remounting) the filesystem readonly, then we will end up with a
6244  * consistent fs on disk.  Record that fact.
6245  */
6246 static int ext4_mark_recovery_complete(struct super_block *sb,
6247 				       struct ext4_super_block *es)
6248 {
6249 	int err;
6250 	journal_t *journal = EXT4_SB(sb)->s_journal;
6251 
6252 	if (!ext4_has_feature_journal(sb)) {
6253 		if (journal != NULL) {
6254 			ext4_error(sb, "Journal got removed while the fs was "
6255 				   "mounted!");
6256 			return -EFSCORRUPTED;
6257 		}
6258 		return 0;
6259 	}
6260 	jbd2_journal_lock_updates(journal);
6261 	err = jbd2_journal_flush(journal, 0);
6262 	if (err < 0)
6263 		goto out;
6264 
6265 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6266 	    ext4_has_feature_orphan_present(sb))) {
6267 		if (!ext4_orphan_file_empty(sb)) {
6268 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6269 			err = -EFSCORRUPTED;
6270 			goto out;
6271 		}
6272 		ext4_clear_feature_journal_needs_recovery(sb);
6273 		ext4_clear_feature_orphan_present(sb);
6274 		ext4_commit_super(sb);
6275 	}
6276 out:
6277 	jbd2_journal_unlock_updates(journal);
6278 	return err;
6279 }
6280 
6281 /*
6282  * If we are mounting (or read-write remounting) a filesystem whose journal
6283  * has recorded an error from a previous lifetime, move that error to the
6284  * main filesystem now.
6285  */
6286 static int ext4_clear_journal_err(struct super_block *sb,
6287 				   struct ext4_super_block *es)
6288 {
6289 	journal_t *journal;
6290 	int j_errno;
6291 	const char *errstr;
6292 
6293 	if (!ext4_has_feature_journal(sb)) {
6294 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6295 		return -EFSCORRUPTED;
6296 	}
6297 
6298 	journal = EXT4_SB(sb)->s_journal;
6299 
6300 	/*
6301 	 * Now check for any error status which may have been recorded in the
6302 	 * journal by a prior ext4_error() or ext4_abort()
6303 	 */
6304 
6305 	j_errno = jbd2_journal_errno(journal);
6306 	if (j_errno) {
6307 		char nbuf[16];
6308 
6309 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6310 		ext4_warning(sb, "Filesystem error recorded "
6311 			     "from previous mount: %s", errstr);
6312 
6313 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6314 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6315 		j_errno = ext4_commit_super(sb);
6316 		if (j_errno)
6317 			return j_errno;
6318 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6319 
6320 		jbd2_journal_clear_err(journal);
6321 		jbd2_journal_update_sb_errno(journal);
6322 	}
6323 	return 0;
6324 }
6325 
6326 /*
6327  * Force the running and committing transactions to commit,
6328  * and wait on the commit.
6329  */
6330 int ext4_force_commit(struct super_block *sb)
6331 {
6332 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6333 }
6334 
6335 static int ext4_sync_fs(struct super_block *sb, int wait)
6336 {
6337 	int ret = 0;
6338 	tid_t target;
6339 	bool needs_barrier = false;
6340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6341 
6342 	ret = ext4_emergency_state(sb);
6343 	if (unlikely(ret))
6344 		return ret;
6345 
6346 	trace_ext4_sync_fs(sb, wait);
6347 	flush_workqueue(sbi->rsv_conversion_wq);
6348 	/*
6349 	 * Writeback quota in non-journalled quota case - journalled quota has
6350 	 * no dirty dquots
6351 	 */
6352 	dquot_writeback_dquots(sb, -1);
6353 	/*
6354 	 * Data writeback is possible w/o journal transaction, so barrier must
6355 	 * being sent at the end of the function. But we can skip it if
6356 	 * transaction_commit will do it for us.
6357 	 */
6358 	if (sbi->s_journal) {
6359 		target = jbd2_get_latest_transaction(sbi->s_journal);
6360 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6361 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6362 			needs_barrier = true;
6363 
6364 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6365 			if (wait)
6366 				ret = jbd2_log_wait_commit(sbi->s_journal,
6367 							   target);
6368 		}
6369 	} else if (wait && test_opt(sb, BARRIER))
6370 		needs_barrier = true;
6371 	if (needs_barrier) {
6372 		int err;
6373 		err = blkdev_issue_flush(sb->s_bdev);
6374 		if (!ret)
6375 			ret = err;
6376 	}
6377 
6378 	return ret;
6379 }
6380 
6381 /*
6382  * LVM calls this function before a (read-only) snapshot is created.  This
6383  * gives us a chance to flush the journal completely and mark the fs clean.
6384  *
6385  * Note that only this function cannot bring a filesystem to be in a clean
6386  * state independently. It relies on upper layer to stop all data & metadata
6387  * modifications.
6388  */
6389 static int ext4_freeze(struct super_block *sb)
6390 {
6391 	int error = 0;
6392 	journal_t *journal = EXT4_SB(sb)->s_journal;
6393 
6394 	if (journal) {
6395 		/* Now we set up the journal barrier. */
6396 		jbd2_journal_lock_updates(journal);
6397 
6398 		/*
6399 		 * Don't clear the needs_recovery flag if we failed to
6400 		 * flush the journal.
6401 		 */
6402 		error = jbd2_journal_flush(journal, 0);
6403 		if (error < 0)
6404 			goto out;
6405 
6406 		/* Journal blocked and flushed, clear needs_recovery flag. */
6407 		ext4_clear_feature_journal_needs_recovery(sb);
6408 		if (ext4_orphan_file_empty(sb))
6409 			ext4_clear_feature_orphan_present(sb);
6410 	}
6411 
6412 	error = ext4_commit_super(sb);
6413 out:
6414 	if (journal)
6415 		/* we rely on upper layer to stop further updates */
6416 		jbd2_journal_unlock_updates(journal);
6417 	return error;
6418 }
6419 
6420 /*
6421  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6422  * flag here, even though the filesystem is not technically dirty yet.
6423  */
6424 static int ext4_unfreeze(struct super_block *sb)
6425 {
6426 	if (ext4_emergency_state(sb))
6427 		return 0;
6428 
6429 	if (EXT4_SB(sb)->s_journal) {
6430 		/* Reset the needs_recovery flag before the fs is unlocked. */
6431 		ext4_set_feature_journal_needs_recovery(sb);
6432 		if (ext4_has_feature_orphan_file(sb))
6433 			ext4_set_feature_orphan_present(sb);
6434 	}
6435 
6436 	ext4_commit_super(sb);
6437 	return 0;
6438 }
6439 
6440 /*
6441  * Structure to save mount options for ext4_remount's benefit
6442  */
6443 struct ext4_mount_options {
6444 	unsigned long s_mount_opt;
6445 	unsigned long s_mount_opt2;
6446 	kuid_t s_resuid;
6447 	kgid_t s_resgid;
6448 	unsigned long s_commit_interval;
6449 	u32 s_min_batch_time, s_max_batch_time;
6450 #ifdef CONFIG_QUOTA
6451 	int s_jquota_fmt;
6452 	char *s_qf_names[EXT4_MAXQUOTAS];
6453 #endif
6454 };
6455 
6456 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6457 {
6458 	struct ext4_fs_context *ctx = fc->fs_private;
6459 	struct ext4_super_block *es;
6460 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6461 	unsigned long old_sb_flags;
6462 	struct ext4_mount_options old_opts;
6463 	ext4_group_t g;
6464 	int err = 0;
6465 	int alloc_ctx;
6466 #ifdef CONFIG_QUOTA
6467 	int enable_quota = 0;
6468 	int i, j;
6469 	char *to_free[EXT4_MAXQUOTAS];
6470 #endif
6471 
6472 
6473 	/* Store the original options */
6474 	old_sb_flags = sb->s_flags;
6475 	old_opts.s_mount_opt = sbi->s_mount_opt;
6476 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6477 	old_opts.s_resuid = sbi->s_resuid;
6478 	old_opts.s_resgid = sbi->s_resgid;
6479 	old_opts.s_commit_interval = sbi->s_commit_interval;
6480 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6481 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6482 #ifdef CONFIG_QUOTA
6483 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6484 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6485 		if (sbi->s_qf_names[i]) {
6486 			char *qf_name = get_qf_name(sb, sbi, i);
6487 
6488 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6489 			if (!old_opts.s_qf_names[i]) {
6490 				for (j = 0; j < i; j++)
6491 					kfree(old_opts.s_qf_names[j]);
6492 				return -ENOMEM;
6493 			}
6494 		} else
6495 			old_opts.s_qf_names[i] = NULL;
6496 #endif
6497 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6498 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6499 			ctx->journal_ioprio =
6500 				sbi->s_journal->j_task->io_context->ioprio;
6501 		else
6502 			ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6503 
6504 	}
6505 
6506 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6507 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6508 		ext4_msg(sb, KERN_WARNING,
6509 			 "stripe (%lu) is not aligned with cluster size (%u), "
6510 			 "stripe is disabled",
6511 			 ctx->s_stripe, sbi->s_cluster_ratio);
6512 		ctx->s_stripe = 0;
6513 	}
6514 
6515 	/*
6516 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6517 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6518 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6519 	 * here s_writepages_rwsem to avoid race between writepages ops and
6520 	 * remount.
6521 	 */
6522 	alloc_ctx = ext4_writepages_down_write(sb);
6523 	ext4_apply_options(fc, sb);
6524 	ext4_writepages_up_write(sb, alloc_ctx);
6525 
6526 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6527 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6528 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6529 			 "during remount not supported; ignoring");
6530 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6531 	}
6532 
6533 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6534 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6535 			ext4_msg(sb, KERN_ERR, "can't mount with "
6536 				 "both data=journal and delalloc");
6537 			err = -EINVAL;
6538 			goto restore_opts;
6539 		}
6540 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6541 			ext4_msg(sb, KERN_ERR, "can't mount with "
6542 				 "both data=journal and dioread_nolock");
6543 			err = -EINVAL;
6544 			goto restore_opts;
6545 		}
6546 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6547 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6548 			ext4_msg(sb, KERN_ERR, "can't mount with "
6549 				"journal_async_commit in data=ordered mode");
6550 			err = -EINVAL;
6551 			goto restore_opts;
6552 		}
6553 	}
6554 
6555 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6556 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6557 		err = -EINVAL;
6558 		goto restore_opts;
6559 	}
6560 
6561 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6562 	    !test_opt(sb, DELALLOC)) {
6563 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6564 		err = -EINVAL;
6565 		goto restore_opts;
6566 	}
6567 
6568 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6569 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6570 
6571 	es = sbi->s_es;
6572 
6573 	if (sbi->s_journal) {
6574 		ext4_init_journal_params(sb, sbi->s_journal);
6575 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6576 	}
6577 
6578 	/* Flush outstanding errors before changing fs state */
6579 	flush_work(&sbi->s_sb_upd_work);
6580 
6581 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6582 		if (ext4_emergency_state(sb)) {
6583 			err = -EROFS;
6584 			goto restore_opts;
6585 		}
6586 
6587 		if (fc->sb_flags & SB_RDONLY) {
6588 			err = sync_filesystem(sb);
6589 			if (err < 0)
6590 				goto restore_opts;
6591 			err = dquot_suspend(sb, -1);
6592 			if (err < 0)
6593 				goto restore_opts;
6594 
6595 			/*
6596 			 * First of all, the unconditional stuff we have to do
6597 			 * to disable replay of the journal when we next remount
6598 			 */
6599 			sb->s_flags |= SB_RDONLY;
6600 
6601 			/*
6602 			 * OK, test if we are remounting a valid rw partition
6603 			 * readonly, and if so set the rdonly flag and then
6604 			 * mark the partition as valid again.
6605 			 */
6606 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6607 			    (sbi->s_mount_state & EXT4_VALID_FS))
6608 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6609 
6610 			if (sbi->s_journal) {
6611 				/*
6612 				 * We let remount-ro finish even if marking fs
6613 				 * as clean failed...
6614 				 */
6615 				ext4_mark_recovery_complete(sb, es);
6616 			}
6617 		} else {
6618 			/* Make sure we can mount this feature set readwrite */
6619 			if (ext4_has_feature_readonly(sb) ||
6620 			    !ext4_feature_set_ok(sb, 0)) {
6621 				err = -EROFS;
6622 				goto restore_opts;
6623 			}
6624 			/*
6625 			 * Make sure the group descriptor checksums
6626 			 * are sane.  If they aren't, refuse to remount r/w.
6627 			 */
6628 			for (g = 0; g < sbi->s_groups_count; g++) {
6629 				struct ext4_group_desc *gdp =
6630 					ext4_get_group_desc(sb, g, NULL);
6631 
6632 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6633 					ext4_msg(sb, KERN_ERR,
6634 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6635 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6636 					       le16_to_cpu(gdp->bg_checksum));
6637 					err = -EFSBADCRC;
6638 					goto restore_opts;
6639 				}
6640 			}
6641 
6642 			/*
6643 			 * If we have an unprocessed orphan list hanging
6644 			 * around from a previously readonly bdev mount,
6645 			 * require a full umount/remount for now.
6646 			 */
6647 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6648 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6649 				       "remount RDWR because of unprocessed "
6650 				       "orphan inode list.  Please "
6651 				       "umount/remount instead");
6652 				err = -EINVAL;
6653 				goto restore_opts;
6654 			}
6655 
6656 			/*
6657 			 * Mounting a RDONLY partition read-write, so reread
6658 			 * and store the current valid flag.  (It may have
6659 			 * been changed by e2fsck since we originally mounted
6660 			 * the partition.)
6661 			 */
6662 			if (sbi->s_journal) {
6663 				err = ext4_clear_journal_err(sb, es);
6664 				if (err)
6665 					goto restore_opts;
6666 			}
6667 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6668 					      ~EXT4_FC_REPLAY);
6669 
6670 			err = ext4_setup_super(sb, es, 0);
6671 			if (err)
6672 				goto restore_opts;
6673 
6674 			sb->s_flags &= ~SB_RDONLY;
6675 			if (ext4_has_feature_mmp(sb)) {
6676 				err = ext4_multi_mount_protect(sb,
6677 						le64_to_cpu(es->s_mmp_block));
6678 				if (err)
6679 					goto restore_opts;
6680 			}
6681 #ifdef CONFIG_QUOTA
6682 			enable_quota = 1;
6683 #endif
6684 		}
6685 	}
6686 
6687 	/*
6688 	 * Handle creation of system zone data early because it can fail.
6689 	 * Releasing of existing data is done when we are sure remount will
6690 	 * succeed.
6691 	 */
6692 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6693 		err = ext4_setup_system_zone(sb);
6694 		if (err)
6695 			goto restore_opts;
6696 	}
6697 
6698 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6699 		err = ext4_commit_super(sb);
6700 		if (err)
6701 			goto restore_opts;
6702 	}
6703 
6704 #ifdef CONFIG_QUOTA
6705 	if (enable_quota) {
6706 		if (sb_any_quota_suspended(sb))
6707 			dquot_resume(sb, -1);
6708 		else if (ext4_has_feature_quota(sb)) {
6709 			err = ext4_enable_quotas(sb);
6710 			if (err)
6711 				goto restore_opts;
6712 		}
6713 	}
6714 	/* Release old quota file names */
6715 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6716 		kfree(old_opts.s_qf_names[i]);
6717 #endif
6718 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6719 		ext4_release_system_zone(sb);
6720 
6721 	/*
6722 	 * Reinitialize lazy itable initialization thread based on
6723 	 * current settings
6724 	 */
6725 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6726 		ext4_unregister_li_request(sb);
6727 	else {
6728 		ext4_group_t first_not_zeroed;
6729 		first_not_zeroed = ext4_has_uninit_itable(sb);
6730 		ext4_register_li_request(sb, first_not_zeroed);
6731 	}
6732 
6733 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6734 		ext4_stop_mmpd(sbi);
6735 
6736 	/*
6737 	 * Handle aborting the filesystem as the last thing during remount to
6738 	 * avoid obsure errors during remount when some option changes fail to
6739 	 * apply due to shutdown filesystem.
6740 	 */
6741 	if (test_opt2(sb, ABORT))
6742 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6743 
6744 	return 0;
6745 
6746 restore_opts:
6747 	/*
6748 	 * If there was a failing r/w to ro transition, we may need to
6749 	 * re-enable quota
6750 	 */
6751 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6752 	    sb_any_quota_suspended(sb))
6753 		dquot_resume(sb, -1);
6754 
6755 	alloc_ctx = ext4_writepages_down_write(sb);
6756 	sb->s_flags = old_sb_flags;
6757 	sbi->s_mount_opt = old_opts.s_mount_opt;
6758 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6759 	sbi->s_resuid = old_opts.s_resuid;
6760 	sbi->s_resgid = old_opts.s_resgid;
6761 	sbi->s_commit_interval = old_opts.s_commit_interval;
6762 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6763 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6764 	ext4_writepages_up_write(sb, alloc_ctx);
6765 
6766 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6767 		ext4_release_system_zone(sb);
6768 #ifdef CONFIG_QUOTA
6769 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6770 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6771 		to_free[i] = get_qf_name(sb, sbi, i);
6772 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6773 	}
6774 	synchronize_rcu();
6775 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6776 		kfree(to_free[i]);
6777 #endif
6778 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6779 		ext4_stop_mmpd(sbi);
6780 	return err;
6781 }
6782 
6783 static int ext4_reconfigure(struct fs_context *fc)
6784 {
6785 	struct super_block *sb = fc->root->d_sb;
6786 	int ret;
6787 	bool old_ro = sb_rdonly(sb);
6788 
6789 	fc->s_fs_info = EXT4_SB(sb);
6790 
6791 	ret = ext4_check_opt_consistency(fc, sb);
6792 	if (ret < 0)
6793 		return ret;
6794 
6795 	ret = __ext4_remount(fc, sb);
6796 	if (ret < 0)
6797 		return ret;
6798 
6799 	ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6800 		 &sb->s_uuid,
6801 		 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6802 
6803 	return 0;
6804 }
6805 
6806 #ifdef CONFIG_QUOTA
6807 static int ext4_statfs_project(struct super_block *sb,
6808 			       kprojid_t projid, struct kstatfs *buf)
6809 {
6810 	struct kqid qid;
6811 	struct dquot *dquot;
6812 	u64 limit;
6813 	u64 curblock;
6814 
6815 	qid = make_kqid_projid(projid);
6816 	dquot = dqget(sb, qid);
6817 	if (IS_ERR(dquot))
6818 		return PTR_ERR(dquot);
6819 	spin_lock(&dquot->dq_dqb_lock);
6820 
6821 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6822 			     dquot->dq_dqb.dqb_bhardlimit);
6823 	limit >>= sb->s_blocksize_bits;
6824 
6825 	if (limit) {
6826 		uint64_t	remaining = 0;
6827 
6828 		curblock = (dquot->dq_dqb.dqb_curspace +
6829 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6830 		if (limit > curblock)
6831 			remaining = limit - curblock;
6832 
6833 		buf->f_blocks = min(buf->f_blocks, limit);
6834 		buf->f_bfree = min(buf->f_bfree, remaining);
6835 		buf->f_bavail = min(buf->f_bavail, remaining);
6836 	}
6837 
6838 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6839 			     dquot->dq_dqb.dqb_ihardlimit);
6840 	if (limit) {
6841 		uint64_t	remaining = 0;
6842 
6843 		if (limit > dquot->dq_dqb.dqb_curinodes)
6844 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
6845 
6846 		buf->f_files = min(buf->f_files, limit);
6847 		buf->f_ffree = min(buf->f_ffree, remaining);
6848 	}
6849 
6850 	spin_unlock(&dquot->dq_dqb_lock);
6851 	dqput(dquot);
6852 	return 0;
6853 }
6854 #endif
6855 
6856 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6857 {
6858 	struct super_block *sb = dentry->d_sb;
6859 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6860 	struct ext4_super_block *es = sbi->s_es;
6861 	ext4_fsblk_t overhead = 0, resv_blocks;
6862 	s64 bfree;
6863 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6864 
6865 	if (!test_opt(sb, MINIX_DF))
6866 		overhead = sbi->s_overhead;
6867 
6868 	buf->f_type = EXT4_SUPER_MAGIC;
6869 	buf->f_bsize = sb->s_blocksize;
6870 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6871 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6872 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6873 	/* prevent underflow in case that few free space is available */
6874 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6875 	buf->f_bavail = buf->f_bfree -
6876 			(ext4_r_blocks_count(es) + resv_blocks);
6877 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6878 		buf->f_bavail = 0;
6879 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6880 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6881 	buf->f_namelen = EXT4_NAME_LEN;
6882 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6883 
6884 #ifdef CONFIG_QUOTA
6885 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6886 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6887 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6888 #endif
6889 	return 0;
6890 }
6891 
6892 
6893 #ifdef CONFIG_QUOTA
6894 
6895 /*
6896  * Helper functions so that transaction is started before we acquire dqio_sem
6897  * to keep correct lock ordering of transaction > dqio_sem
6898  */
6899 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6900 {
6901 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6902 }
6903 
6904 static int ext4_write_dquot(struct dquot *dquot)
6905 {
6906 	int ret, err;
6907 	handle_t *handle;
6908 	struct inode *inode;
6909 
6910 	inode = dquot_to_inode(dquot);
6911 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6912 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6913 	if (IS_ERR(handle))
6914 		return PTR_ERR(handle);
6915 	ret = dquot_commit(dquot);
6916 	if (ret < 0)
6917 		ext4_error_err(dquot->dq_sb, -ret,
6918 			       "Failed to commit dquot type %d",
6919 			       dquot->dq_id.type);
6920 	err = ext4_journal_stop(handle);
6921 	if (!ret)
6922 		ret = err;
6923 	return ret;
6924 }
6925 
6926 static int ext4_acquire_dquot(struct dquot *dquot)
6927 {
6928 	int ret, err;
6929 	handle_t *handle;
6930 
6931 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6932 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6933 	if (IS_ERR(handle))
6934 		return PTR_ERR(handle);
6935 	ret = dquot_acquire(dquot);
6936 	if (ret < 0)
6937 		ext4_error_err(dquot->dq_sb, -ret,
6938 			      "Failed to acquire dquot type %d",
6939 			      dquot->dq_id.type);
6940 	err = ext4_journal_stop(handle);
6941 	if (!ret)
6942 		ret = err;
6943 	return ret;
6944 }
6945 
6946 static int ext4_release_dquot(struct dquot *dquot)
6947 {
6948 	int ret, err;
6949 	handle_t *handle;
6950 	bool freeze_protected = false;
6951 
6952 	/*
6953 	 * Trying to sb_start_intwrite() in a running transaction
6954 	 * can result in a deadlock. Further, running transactions
6955 	 * are already protected from freezing.
6956 	 */
6957 	if (!ext4_journal_current_handle()) {
6958 		sb_start_intwrite(dquot->dq_sb);
6959 		freeze_protected = true;
6960 	}
6961 
6962 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6963 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6964 	if (IS_ERR(handle)) {
6965 		/* Release dquot anyway to avoid endless cycle in dqput() */
6966 		dquot_release(dquot);
6967 		if (freeze_protected)
6968 			sb_end_intwrite(dquot->dq_sb);
6969 		return PTR_ERR(handle);
6970 	}
6971 	ret = dquot_release(dquot);
6972 	if (ret < 0)
6973 		ext4_error_err(dquot->dq_sb, -ret,
6974 			       "Failed to release dquot type %d",
6975 			       dquot->dq_id.type);
6976 	err = ext4_journal_stop(handle);
6977 	if (!ret)
6978 		ret = err;
6979 
6980 	if (freeze_protected)
6981 		sb_end_intwrite(dquot->dq_sb);
6982 
6983 	return ret;
6984 }
6985 
6986 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6987 {
6988 	struct super_block *sb = dquot->dq_sb;
6989 
6990 	if (ext4_is_quota_journalled(sb)) {
6991 		dquot_mark_dquot_dirty(dquot);
6992 		return ext4_write_dquot(dquot);
6993 	} else {
6994 		return dquot_mark_dquot_dirty(dquot);
6995 	}
6996 }
6997 
6998 static int ext4_write_info(struct super_block *sb, int type)
6999 {
7000 	int ret, err;
7001 	handle_t *handle;
7002 
7003 	/* Data block + inode block */
7004 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7005 	if (IS_ERR(handle))
7006 		return PTR_ERR(handle);
7007 	ret = dquot_commit_info(sb, type);
7008 	err = ext4_journal_stop(handle);
7009 	if (!ret)
7010 		ret = err;
7011 	return ret;
7012 }
7013 
7014 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7015 {
7016 	struct ext4_inode_info *ei = EXT4_I(inode);
7017 
7018 	/* The first argument of lockdep_set_subclass has to be
7019 	 * *exactly* the same as the argument to init_rwsem() --- in
7020 	 * this case, in init_once() --- or lockdep gets unhappy
7021 	 * because the name of the lock is set using the
7022 	 * stringification of the argument to init_rwsem().
7023 	 */
7024 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7025 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7026 }
7027 
7028 /*
7029  * Standard function to be called on quota_on
7030  */
7031 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7032 			 const struct path *path)
7033 {
7034 	int err;
7035 
7036 	if (!test_opt(sb, QUOTA))
7037 		return -EINVAL;
7038 
7039 	/* Quotafile not on the same filesystem? */
7040 	if (path->dentry->d_sb != sb)
7041 		return -EXDEV;
7042 
7043 	/* Quota already enabled for this file? */
7044 	if (IS_NOQUOTA(d_inode(path->dentry)))
7045 		return -EBUSY;
7046 
7047 	/* Journaling quota? */
7048 	if (EXT4_SB(sb)->s_qf_names[type]) {
7049 		/* Quotafile not in fs root? */
7050 		if (path->dentry->d_parent != sb->s_root)
7051 			ext4_msg(sb, KERN_WARNING,
7052 				"Quota file not on filesystem root. "
7053 				"Journaled quota will not work");
7054 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7055 	} else {
7056 		/*
7057 		 * Clear the flag just in case mount options changed since
7058 		 * last time.
7059 		 */
7060 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7061 	}
7062 
7063 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7064 	err = dquot_quota_on(sb, type, format_id, path);
7065 	if (!err) {
7066 		struct inode *inode = d_inode(path->dentry);
7067 		handle_t *handle;
7068 
7069 		/*
7070 		 * Set inode flags to prevent userspace from messing with quota
7071 		 * files. If this fails, we return success anyway since quotas
7072 		 * are already enabled and this is not a hard failure.
7073 		 */
7074 		inode_lock(inode);
7075 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7076 		if (IS_ERR(handle))
7077 			goto unlock_inode;
7078 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7079 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7080 				S_NOATIME | S_IMMUTABLE);
7081 		err = ext4_mark_inode_dirty(handle, inode);
7082 		ext4_journal_stop(handle);
7083 	unlock_inode:
7084 		inode_unlock(inode);
7085 		if (err)
7086 			dquot_quota_off(sb, type);
7087 	}
7088 	if (err)
7089 		lockdep_set_quota_inode(path->dentry->d_inode,
7090 					     I_DATA_SEM_NORMAL);
7091 	return err;
7092 }
7093 
7094 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7095 {
7096 	switch (type) {
7097 	case USRQUOTA:
7098 		return qf_inum == EXT4_USR_QUOTA_INO;
7099 	case GRPQUOTA:
7100 		return qf_inum == EXT4_GRP_QUOTA_INO;
7101 	case PRJQUOTA:
7102 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7103 	default:
7104 		BUG();
7105 	}
7106 }
7107 
7108 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7109 			     unsigned int flags)
7110 {
7111 	int err;
7112 	struct inode *qf_inode;
7113 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7114 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7115 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7116 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7117 	};
7118 
7119 	BUG_ON(!ext4_has_feature_quota(sb));
7120 
7121 	if (!qf_inums[type])
7122 		return -EPERM;
7123 
7124 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7125 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7126 				qf_inums[type], type);
7127 		return -EUCLEAN;
7128 	}
7129 
7130 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7131 	if (IS_ERR(qf_inode)) {
7132 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7133 				qf_inums[type], type);
7134 		return PTR_ERR(qf_inode);
7135 	}
7136 
7137 	/* Don't account quota for quota files to avoid recursion */
7138 	qf_inode->i_flags |= S_NOQUOTA;
7139 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7140 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7141 	if (err)
7142 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7143 	iput(qf_inode);
7144 
7145 	return err;
7146 }
7147 
7148 /* Enable usage tracking for all quota types. */
7149 int ext4_enable_quotas(struct super_block *sb)
7150 {
7151 	int type, err = 0;
7152 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7153 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7154 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7155 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7156 	};
7157 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7158 		test_opt(sb, USRQUOTA),
7159 		test_opt(sb, GRPQUOTA),
7160 		test_opt(sb, PRJQUOTA),
7161 	};
7162 
7163 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7164 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7165 		if (qf_inums[type]) {
7166 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7167 				DQUOT_USAGE_ENABLED |
7168 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7169 			if (err) {
7170 				ext4_warning(sb,
7171 					"Failed to enable quota tracking "
7172 					"(type=%d, err=%d, ino=%lu). "
7173 					"Please run e2fsck to fix.", type,
7174 					err, qf_inums[type]);
7175 
7176 				ext4_quotas_off(sb, type);
7177 				return err;
7178 			}
7179 		}
7180 	}
7181 	return 0;
7182 }
7183 
7184 static int ext4_quota_off(struct super_block *sb, int type)
7185 {
7186 	struct inode *inode = sb_dqopt(sb)->files[type];
7187 	handle_t *handle;
7188 	int err;
7189 
7190 	/* Force all delayed allocation blocks to be allocated.
7191 	 * Caller already holds s_umount sem */
7192 	if (test_opt(sb, DELALLOC))
7193 		sync_filesystem(sb);
7194 
7195 	if (!inode || !igrab(inode))
7196 		goto out;
7197 
7198 	err = dquot_quota_off(sb, type);
7199 	if (err || ext4_has_feature_quota(sb))
7200 		goto out_put;
7201 	/*
7202 	 * When the filesystem was remounted read-only first, we cannot cleanup
7203 	 * inode flags here. Bad luck but people should be using QUOTA feature
7204 	 * these days anyway.
7205 	 */
7206 	if (sb_rdonly(sb))
7207 		goto out_put;
7208 
7209 	inode_lock(inode);
7210 	/*
7211 	 * Update modification times of quota files when userspace can
7212 	 * start looking at them. If we fail, we return success anyway since
7213 	 * this is not a hard failure and quotas are already disabled.
7214 	 */
7215 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7216 	if (IS_ERR(handle)) {
7217 		err = PTR_ERR(handle);
7218 		goto out_unlock;
7219 	}
7220 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7221 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7222 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7223 	err = ext4_mark_inode_dirty(handle, inode);
7224 	ext4_journal_stop(handle);
7225 out_unlock:
7226 	inode_unlock(inode);
7227 out_put:
7228 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7229 	iput(inode);
7230 	return err;
7231 out:
7232 	return dquot_quota_off(sb, type);
7233 }
7234 
7235 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7236  * acquiring the locks... As quota files are never truncated and quota code
7237  * itself serializes the operations (and no one else should touch the files)
7238  * we don't have to be afraid of races */
7239 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7240 			       size_t len, loff_t off)
7241 {
7242 	struct inode *inode = sb_dqopt(sb)->files[type];
7243 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7244 	int offset = off & (sb->s_blocksize - 1);
7245 	int tocopy;
7246 	size_t toread;
7247 	struct buffer_head *bh;
7248 	loff_t i_size = i_size_read(inode);
7249 
7250 	if (off > i_size)
7251 		return 0;
7252 	if (off+len > i_size)
7253 		len = i_size-off;
7254 	toread = len;
7255 	while (toread > 0) {
7256 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7257 		bh = ext4_bread(NULL, inode, blk, 0);
7258 		if (IS_ERR(bh))
7259 			return PTR_ERR(bh);
7260 		if (!bh)	/* A hole? */
7261 			memset(data, 0, tocopy);
7262 		else
7263 			memcpy(data, bh->b_data+offset, tocopy);
7264 		brelse(bh);
7265 		offset = 0;
7266 		toread -= tocopy;
7267 		data += tocopy;
7268 		blk++;
7269 	}
7270 	return len;
7271 }
7272 
7273 /* Write to quotafile (we know the transaction is already started and has
7274  * enough credits) */
7275 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7276 				const char *data, size_t len, loff_t off)
7277 {
7278 	struct inode *inode = sb_dqopt(sb)->files[type];
7279 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7280 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7281 	int retries = 0;
7282 	struct buffer_head *bh;
7283 	handle_t *handle = journal_current_handle();
7284 
7285 	if (!handle) {
7286 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7287 			" cancelled because transaction is not started",
7288 			(unsigned long long)off, (unsigned long long)len);
7289 		return -EIO;
7290 	}
7291 	/*
7292 	 * Since we account only one data block in transaction credits,
7293 	 * then it is impossible to cross a block boundary.
7294 	 */
7295 	if (sb->s_blocksize - offset < len) {
7296 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7297 			" cancelled because not block aligned",
7298 			(unsigned long long)off, (unsigned long long)len);
7299 		return -EIO;
7300 	}
7301 
7302 	do {
7303 		bh = ext4_bread(handle, inode, blk,
7304 				EXT4_GET_BLOCKS_CREATE |
7305 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7306 	} while (PTR_ERR(bh) == -ENOSPC &&
7307 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7308 	if (IS_ERR(bh))
7309 		return PTR_ERR(bh);
7310 	if (!bh)
7311 		goto out;
7312 	BUFFER_TRACE(bh, "get write access");
7313 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7314 	if (err) {
7315 		brelse(bh);
7316 		return err;
7317 	}
7318 	lock_buffer(bh);
7319 	memcpy(bh->b_data+offset, data, len);
7320 	flush_dcache_folio(bh->b_folio);
7321 	unlock_buffer(bh);
7322 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7323 	brelse(bh);
7324 out:
7325 	if (inode->i_size < off + len) {
7326 		i_size_write(inode, off + len);
7327 		EXT4_I(inode)->i_disksize = inode->i_size;
7328 		err2 = ext4_mark_inode_dirty(handle, inode);
7329 		if (unlikely(err2 && !err))
7330 			err = err2;
7331 	}
7332 	return err ? err : len;
7333 }
7334 #endif
7335 
7336 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7337 static inline void register_as_ext2(void)
7338 {
7339 	int err = register_filesystem(&ext2_fs_type);
7340 	if (err)
7341 		printk(KERN_WARNING
7342 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7343 }
7344 
7345 static inline void unregister_as_ext2(void)
7346 {
7347 	unregister_filesystem(&ext2_fs_type);
7348 }
7349 
7350 static inline int ext2_feature_set_ok(struct super_block *sb)
7351 {
7352 	if (ext4_has_unknown_ext2_incompat_features(sb))
7353 		return 0;
7354 	if (sb_rdonly(sb))
7355 		return 1;
7356 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7357 		return 0;
7358 	return 1;
7359 }
7360 #else
7361 static inline void register_as_ext2(void) { }
7362 static inline void unregister_as_ext2(void) { }
7363 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7364 #endif
7365 
7366 static inline void register_as_ext3(void)
7367 {
7368 	int err = register_filesystem(&ext3_fs_type);
7369 	if (err)
7370 		printk(KERN_WARNING
7371 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7372 }
7373 
7374 static inline void unregister_as_ext3(void)
7375 {
7376 	unregister_filesystem(&ext3_fs_type);
7377 }
7378 
7379 static inline int ext3_feature_set_ok(struct super_block *sb)
7380 {
7381 	if (ext4_has_unknown_ext3_incompat_features(sb))
7382 		return 0;
7383 	if (!ext4_has_feature_journal(sb))
7384 		return 0;
7385 	if (sb_rdonly(sb))
7386 		return 1;
7387 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7388 		return 0;
7389 	return 1;
7390 }
7391 
7392 static void ext4_kill_sb(struct super_block *sb)
7393 {
7394 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7395 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7396 
7397 	kill_block_super(sb);
7398 
7399 	if (bdev_file)
7400 		bdev_fput(bdev_file);
7401 }
7402 
7403 static struct file_system_type ext4_fs_type = {
7404 	.owner			= THIS_MODULE,
7405 	.name			= "ext4",
7406 	.init_fs_context	= ext4_init_fs_context,
7407 	.parameters		= ext4_param_specs,
7408 	.kill_sb		= ext4_kill_sb,
7409 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7410 };
7411 MODULE_ALIAS_FS("ext4");
7412 
7413 static int __init ext4_init_fs(void)
7414 {
7415 	int err;
7416 
7417 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7418 	ext4_li_info = NULL;
7419 
7420 	/* Build-time check for flags consistency */
7421 	ext4_check_flag_values();
7422 
7423 	err = ext4_init_es();
7424 	if (err)
7425 		return err;
7426 
7427 	err = ext4_init_pending();
7428 	if (err)
7429 		goto out7;
7430 
7431 	err = ext4_init_post_read_processing();
7432 	if (err)
7433 		goto out6;
7434 
7435 	err = ext4_init_pageio();
7436 	if (err)
7437 		goto out5;
7438 
7439 	err = ext4_init_system_zone();
7440 	if (err)
7441 		goto out4;
7442 
7443 	err = ext4_init_sysfs();
7444 	if (err)
7445 		goto out3;
7446 
7447 	err = ext4_init_mballoc();
7448 	if (err)
7449 		goto out2;
7450 	err = init_inodecache();
7451 	if (err)
7452 		goto out1;
7453 
7454 	err = ext4_fc_init_dentry_cache();
7455 	if (err)
7456 		goto out05;
7457 
7458 	register_as_ext3();
7459 	register_as_ext2();
7460 	err = register_filesystem(&ext4_fs_type);
7461 	if (err)
7462 		goto out;
7463 
7464 	return 0;
7465 out:
7466 	unregister_as_ext2();
7467 	unregister_as_ext3();
7468 	ext4_fc_destroy_dentry_cache();
7469 out05:
7470 	destroy_inodecache();
7471 out1:
7472 	ext4_exit_mballoc();
7473 out2:
7474 	ext4_exit_sysfs();
7475 out3:
7476 	ext4_exit_system_zone();
7477 out4:
7478 	ext4_exit_pageio();
7479 out5:
7480 	ext4_exit_post_read_processing();
7481 out6:
7482 	ext4_exit_pending();
7483 out7:
7484 	ext4_exit_es();
7485 
7486 	return err;
7487 }
7488 
7489 static void __exit ext4_exit_fs(void)
7490 {
7491 	ext4_destroy_lazyinit_thread();
7492 	unregister_as_ext2();
7493 	unregister_as_ext3();
7494 	unregister_filesystem(&ext4_fs_type);
7495 	ext4_fc_destroy_dentry_cache();
7496 	destroy_inodecache();
7497 	ext4_exit_mballoc();
7498 	ext4_exit_sysfs();
7499 	ext4_exit_system_zone();
7500 	ext4_exit_pageio();
7501 	ext4_exit_post_read_processing();
7502 	ext4_exit_es();
7503 	ext4_exit_pending();
7504 }
7505 
7506 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7507 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7508 MODULE_LICENSE("GPL");
7509 module_init(ext4_init_fs)
7510 module_exit(ext4_exit_fs)
7511