1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 static struct inode *ext4_get_journal_inode(struct super_block *sb, 85 unsigned int journal_inum); 86 static int ext4_validate_options(struct fs_context *fc); 87 static int ext4_check_opt_consistency(struct fs_context *fc, 88 struct super_block *sb); 89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 91 static int ext4_get_tree(struct fs_context *fc); 92 static int ext4_reconfigure(struct fs_context *fc); 93 static void ext4_fc_free(struct fs_context *fc); 94 static int ext4_init_fs_context(struct fs_context *fc); 95 static void ext4_kill_sb(struct super_block *sb); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = ext4_kill_sb, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = ext4_kill_sb, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io, bool simu_fail) 164 { 165 if (simu_fail) { 166 clear_buffer_uptodate(bh); 167 unlock_buffer(bh); 168 return; 169 } 170 171 /* 172 * buffer's verified bit is no longer valid after reading from 173 * disk again due to write out error, clear it to make sure we 174 * recheck the buffer contents. 175 */ 176 clear_buffer_verified(bh); 177 178 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 179 get_bh(bh); 180 submit_bh(REQ_OP_READ | op_flags, bh); 181 } 182 183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 184 bh_end_io_t *end_io, bool simu_fail) 185 { 186 BUG_ON(!buffer_locked(bh)); 187 188 if (ext4_buffer_uptodate(bh)) { 189 unlock_buffer(bh); 190 return; 191 } 192 __ext4_read_bh(bh, op_flags, end_io, simu_fail); 193 } 194 195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 196 bh_end_io_t *end_io, bool simu_fail) 197 { 198 BUG_ON(!buffer_locked(bh)); 199 200 if (ext4_buffer_uptodate(bh)) { 201 unlock_buffer(bh); 202 return 0; 203 } 204 205 __ext4_read_bh(bh, op_flags, end_io, simu_fail); 206 207 wait_on_buffer(bh); 208 if (buffer_uptodate(bh)) 209 return 0; 210 return -EIO; 211 } 212 213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 214 { 215 lock_buffer(bh); 216 if (!wait) { 217 ext4_read_bh_nowait(bh, op_flags, NULL, false); 218 return 0; 219 } 220 return ext4_read_bh(bh, op_flags, NULL, false); 221 } 222 223 /* 224 * This works like __bread_gfp() except it uses ERR_PTR for error 225 * returns. Currently with sb_bread it's impossible to distinguish 226 * between ENOMEM and EIO situations (since both result in a NULL 227 * return. 228 */ 229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 230 sector_t block, 231 blk_opf_t op_flags, gfp_t gfp) 232 { 233 struct buffer_head *bh; 234 int ret; 235 236 bh = sb_getblk_gfp(sb, block, gfp); 237 if (bh == NULL) 238 return ERR_PTR(-ENOMEM); 239 if (ext4_buffer_uptodate(bh)) 240 return bh; 241 242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 243 if (ret) { 244 put_bh(bh); 245 return ERR_PTR(ret); 246 } 247 return bh; 248 } 249 250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 251 blk_opf_t op_flags) 252 { 253 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 254 ~__GFP_FS) | __GFP_MOVABLE; 255 256 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 257 } 258 259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 260 sector_t block) 261 { 262 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 263 ~__GFP_FS); 264 265 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 266 } 267 268 struct buffer_head *ext4_sb_bread_nofail(struct super_block *sb, 269 sector_t block) 270 { 271 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 272 ~__GFP_FS) | __GFP_MOVABLE | __GFP_NOFAIL; 273 274 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 275 } 276 277 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 278 { 279 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 280 sb->s_blocksize, GFP_NOWAIT); 281 282 if (likely(bh)) { 283 if (trylock_buffer(bh)) 284 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false); 285 brelse(bh); 286 } 287 } 288 289 static int ext4_verify_csum_type(struct super_block *sb, 290 struct ext4_super_block *es) 291 { 292 if (!ext4_has_feature_metadata_csum(sb)) 293 return 1; 294 295 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 296 } 297 298 __le32 ext4_superblock_csum(struct ext4_super_block *es) 299 { 300 int offset = offsetof(struct ext4_super_block, s_checksum); 301 __u32 csum; 302 303 csum = ext4_chksum(~0, (char *)es, offset); 304 305 return cpu_to_le32(csum); 306 } 307 308 static int ext4_superblock_csum_verify(struct super_block *sb, 309 struct ext4_super_block *es) 310 { 311 if (!ext4_has_feature_metadata_csum(sb)) 312 return 1; 313 314 return es->s_checksum == ext4_superblock_csum(es); 315 } 316 317 void ext4_superblock_csum_set(struct super_block *sb) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 if (!ext4_has_feature_metadata_csum(sb)) 322 return; 323 324 es->s_checksum = ext4_superblock_csum(es); 325 } 326 327 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 328 struct ext4_group_desc *bg) 329 { 330 return le32_to_cpu(bg->bg_block_bitmap_lo) | 331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 332 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 333 } 334 335 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 336 struct ext4_group_desc *bg) 337 { 338 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 340 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 341 } 342 343 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 344 struct ext4_group_desc *bg) 345 { 346 return le32_to_cpu(bg->bg_inode_table_lo) | 347 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 348 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 349 } 350 351 __u32 ext4_free_group_clusters(struct super_block *sb, 352 struct ext4_group_desc *bg) 353 { 354 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 355 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 356 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 357 } 358 359 __u32 ext4_free_inodes_count(struct super_block *sb, 360 struct ext4_group_desc *bg) 361 { 362 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) | 363 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 364 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0); 365 } 366 367 __u32 ext4_used_dirs_count(struct super_block *sb, 368 struct ext4_group_desc *bg) 369 { 370 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 371 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 372 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 373 } 374 375 __u32 ext4_itable_unused_count(struct super_block *sb, 376 struct ext4_group_desc *bg) 377 { 378 return le16_to_cpu(bg->bg_itable_unused_lo) | 379 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 380 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 381 } 382 383 void ext4_block_bitmap_set(struct super_block *sb, 384 struct ext4_group_desc *bg, ext4_fsblk_t blk) 385 { 386 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 388 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 389 } 390 391 void ext4_inode_bitmap_set(struct super_block *sb, 392 struct ext4_group_desc *bg, ext4_fsblk_t blk) 393 { 394 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 396 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 397 } 398 399 void ext4_inode_table_set(struct super_block *sb, 400 struct ext4_group_desc *bg, ext4_fsblk_t blk) 401 { 402 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 403 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 404 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 405 } 406 407 void ext4_free_group_clusters_set(struct super_block *sb, 408 struct ext4_group_desc *bg, __u32 count) 409 { 410 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 411 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 412 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 413 } 414 415 void ext4_free_inodes_set(struct super_block *sb, 416 struct ext4_group_desc *bg, __u32 count) 417 { 418 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count)); 419 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 420 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16)); 421 } 422 423 void ext4_used_dirs_set(struct super_block *sb, 424 struct ext4_group_desc *bg, __u32 count) 425 { 426 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 427 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 428 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 429 } 430 431 void ext4_itable_unused_set(struct super_block *sb, 432 struct ext4_group_desc *bg, __u32 count) 433 { 434 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 435 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 436 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 437 } 438 439 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 440 { 441 now = clamp_val(now, 0, (1ull << 40) - 1); 442 443 *lo = cpu_to_le32(lower_32_bits(now)); 444 *hi = upper_32_bits(now); 445 } 446 447 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 448 { 449 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 450 } 451 #define ext4_update_tstamp(es, tstamp) \ 452 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 453 ktime_get_real_seconds()) 454 #define ext4_get_tstamp(es, tstamp) \ 455 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 456 457 /* 458 * The ext4_maybe_update_superblock() function checks and updates the 459 * superblock if needed. 460 * 461 * This function is designed to update the on-disk superblock only under 462 * certain conditions to prevent excessive disk writes and unnecessary 463 * waking of the disk from sleep. The superblock will be updated if: 464 * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last 465 * superblock update 466 * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the 467 * last superblock update. 468 * 469 * @sb: The superblock 470 */ 471 static void ext4_maybe_update_superblock(struct super_block *sb) 472 { 473 struct ext4_sb_info *sbi = EXT4_SB(sb); 474 struct ext4_super_block *es = sbi->s_es; 475 journal_t *journal = sbi->s_journal; 476 time64_t now; 477 __u64 last_update; 478 __u64 lifetime_write_kbytes; 479 __u64 diff_size; 480 481 if (ext4_emergency_state(sb) || sb_rdonly(sb) || 482 !(sb->s_flags & SB_ACTIVE) || !journal || 483 journal->j_flags & JBD2_UNMOUNT) 484 return; 485 486 now = ktime_get_real_seconds(); 487 last_update = ext4_get_tstamp(es, s_wtime); 488 489 if (likely(now - last_update < sbi->s_sb_update_sec)) 490 return; 491 492 lifetime_write_kbytes = sbi->s_kbytes_written + 493 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 494 sbi->s_sectors_written_start) >> 1); 495 496 /* Get the number of kilobytes not written to disk to account 497 * for statistics and compare with a multiple of 16 MB. This 498 * is used to determine when the next superblock commit should 499 * occur (i.e. not more often than once per 16MB if there was 500 * less written in an hour). 501 */ 502 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 503 504 if (diff_size > sbi->s_sb_update_kb) 505 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 506 } 507 508 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 509 { 510 struct super_block *sb = journal->j_private; 511 512 BUG_ON(txn->t_state == T_FINISHED); 513 514 ext4_process_freed_data(sb, txn->t_tid); 515 ext4_maybe_update_superblock(sb); 516 } 517 518 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode, 519 struct folio *folio) 520 { 521 struct buffer_head *bh, *head; 522 struct journal_head *jh; 523 524 bh = head = folio_buffers(folio); 525 do { 526 /* 527 * We have to redirty a page in these cases: 528 * 1) If buffer is dirty, it means the page was dirty because it 529 * contains a buffer that needs checkpointing. So the dirty bit 530 * needs to be preserved so that checkpointing writes the buffer 531 * properly. 532 * 2) If buffer is not part of the committing transaction 533 * (we may have just accidentally come across this buffer because 534 * inode range tracking is not exact) or if the currently running 535 * transaction already contains this buffer as well, dirty bit 536 * needs to be preserved so that the buffer gets writeprotected 537 * properly on running transaction's commit. 538 */ 539 jh = bh2jh(bh); 540 if (buffer_dirty(bh) || 541 (jh && (jh->b_transaction != jinode->i_transaction || 542 jh->b_next_transaction))) 543 return true; 544 } while ((bh = bh->b_this_page) != head); 545 546 return false; 547 } 548 549 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 550 { 551 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 552 struct writeback_control wbc = { 553 .sync_mode = WB_SYNC_ALL, 554 .nr_to_write = LONG_MAX, 555 .range_start = jinode->i_dirty_start, 556 .range_end = jinode->i_dirty_end, 557 }; 558 struct folio *folio = NULL; 559 int error; 560 561 /* 562 * writeback_iter() already checks for dirty pages and calls 563 * folio_clear_dirty_for_io(), which we want to write protect the 564 * folios. 565 * 566 * However, we may have to redirty a folio sometimes. 567 */ 568 while ((folio = writeback_iter(mapping, &wbc, folio, &error))) { 569 if (ext4_journalled_writepage_needs_redirty(jinode, folio)) 570 folio_redirty_for_writepage(&wbc, folio); 571 folio_unlock(folio); 572 } 573 574 return error; 575 } 576 577 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 578 { 579 int ret; 580 581 if (ext4_should_journal_data(jinode->i_vfs_inode)) 582 ret = ext4_journalled_submit_inode_data_buffers(jinode); 583 else 584 ret = ext4_normal_submit_inode_data_buffers(jinode); 585 return ret; 586 } 587 588 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 589 { 590 int ret = 0; 591 592 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 593 ret = jbd2_journal_finish_inode_data_buffers(jinode); 594 595 return ret; 596 } 597 598 static bool system_going_down(void) 599 { 600 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 601 || system_state == SYSTEM_RESTART; 602 } 603 604 struct ext4_err_translation { 605 int code; 606 int errno; 607 }; 608 609 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 610 611 static struct ext4_err_translation err_translation[] = { 612 EXT4_ERR_TRANSLATE(EIO), 613 EXT4_ERR_TRANSLATE(ENOMEM), 614 EXT4_ERR_TRANSLATE(EFSBADCRC), 615 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 616 EXT4_ERR_TRANSLATE(ENOSPC), 617 EXT4_ERR_TRANSLATE(ENOKEY), 618 EXT4_ERR_TRANSLATE(EROFS), 619 EXT4_ERR_TRANSLATE(EFBIG), 620 EXT4_ERR_TRANSLATE(EEXIST), 621 EXT4_ERR_TRANSLATE(ERANGE), 622 EXT4_ERR_TRANSLATE(EOVERFLOW), 623 EXT4_ERR_TRANSLATE(EBUSY), 624 EXT4_ERR_TRANSLATE(ENOTDIR), 625 EXT4_ERR_TRANSLATE(ENOTEMPTY), 626 EXT4_ERR_TRANSLATE(ESHUTDOWN), 627 EXT4_ERR_TRANSLATE(EFAULT), 628 }; 629 630 static int ext4_errno_to_code(int errno) 631 { 632 int i; 633 634 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 635 if (err_translation[i].errno == errno) 636 return err_translation[i].code; 637 return EXT4_ERR_UNKNOWN; 638 } 639 640 static void save_error_info(struct super_block *sb, int error, 641 __u32 ino, __u64 block, 642 const char *func, unsigned int line) 643 { 644 struct ext4_sb_info *sbi = EXT4_SB(sb); 645 646 /* We default to EFSCORRUPTED error... */ 647 if (error == 0) 648 error = EFSCORRUPTED; 649 650 spin_lock(&sbi->s_error_lock); 651 sbi->s_add_error_count++; 652 sbi->s_last_error_code = error; 653 sbi->s_last_error_line = line; 654 sbi->s_last_error_ino = ino; 655 sbi->s_last_error_block = block; 656 sbi->s_last_error_func = func; 657 sbi->s_last_error_time = ktime_get_real_seconds(); 658 if (!sbi->s_first_error_time) { 659 sbi->s_first_error_code = error; 660 sbi->s_first_error_line = line; 661 sbi->s_first_error_ino = ino; 662 sbi->s_first_error_block = block; 663 sbi->s_first_error_func = func; 664 sbi->s_first_error_time = sbi->s_last_error_time; 665 } 666 spin_unlock(&sbi->s_error_lock); 667 } 668 669 /* Deal with the reporting of failure conditions on a filesystem such as 670 * inconsistencies detected or read IO failures. 671 * 672 * On ext2, we can store the error state of the filesystem in the 673 * superblock. That is not possible on ext4, because we may have other 674 * write ordering constraints on the superblock which prevent us from 675 * writing it out straight away; and given that the journal is about to 676 * be aborted, we can't rely on the current, or future, transactions to 677 * write out the superblock safely. 678 * 679 * We'll just use the jbd2_journal_abort() error code to record an error in 680 * the journal instead. On recovery, the journal will complain about 681 * that error until we've noted it down and cleared it. 682 * 683 * If force_ro is set, we unconditionally force the filesystem into an 684 * ABORT|READONLY state, unless the error response on the fs has been set to 685 * panic in which case we take the easy way out and panic immediately. This is 686 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 687 * at a critical moment in log management. 688 */ 689 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 690 __u32 ino, __u64 block, 691 const char *func, unsigned int line) 692 { 693 journal_t *journal = EXT4_SB(sb)->s_journal; 694 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 695 696 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 697 if (test_opt(sb, WARN_ON_ERROR)) 698 WARN_ON_ONCE(1); 699 700 if (!continue_fs && !ext4_emergency_ro(sb) && journal) 701 jbd2_journal_abort(journal, -EIO); 702 703 if (!bdev_read_only(sb->s_bdev)) { 704 save_error_info(sb, error, ino, block, func, line); 705 /* 706 * In case the fs should keep running, we need to writeout 707 * superblock through the journal. Due to lock ordering 708 * constraints, it may not be safe to do it right here so we 709 * defer superblock flushing to a workqueue. We just need to be 710 * careful when the journal is already shutting down. If we get 711 * here in that case, just update the sb directly as the last 712 * transaction won't commit anyway. 713 */ 714 if (continue_fs && journal && 715 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY)) 716 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 717 else 718 ext4_commit_super(sb); 719 } 720 721 /* 722 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 723 * could panic during 'reboot -f' as the underlying device got already 724 * disabled. 725 */ 726 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 727 panic("EXT4-fs (device %s): panic forced after error\n", 728 sb->s_id); 729 } 730 731 if (ext4_emergency_ro(sb) || continue_fs) 732 return; 733 734 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 735 /* 736 * We don't set SB_RDONLY because that requires sb->s_umount 737 * semaphore and setting it without proper remount procedure is 738 * confusing code such as freeze_super() leading to deadlocks 739 * and other problems. 740 */ 741 set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags); 742 } 743 744 static void update_super_work(struct work_struct *work) 745 { 746 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 747 s_sb_upd_work); 748 journal_t *journal = sbi->s_journal; 749 handle_t *handle; 750 751 /* 752 * If the journal is still running, we have to write out superblock 753 * through the journal to avoid collisions of other journalled sb 754 * updates. 755 * 756 * We use directly jbd2 functions here to avoid recursing back into 757 * ext4 error handling code during handling of previous errors. 758 */ 759 if (!ext4_emergency_state(sbi->s_sb) && 760 !sb_rdonly(sbi->s_sb) && journal) { 761 struct buffer_head *sbh = sbi->s_sbh; 762 bool call_notify_err = false; 763 764 handle = jbd2_journal_start(journal, 1); 765 if (IS_ERR(handle)) 766 goto write_directly; 767 if (jbd2_journal_get_write_access(handle, sbh)) { 768 jbd2_journal_stop(handle); 769 goto write_directly; 770 } 771 772 if (sbi->s_add_error_count > 0) 773 call_notify_err = true; 774 775 ext4_update_super(sbi->s_sb); 776 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 777 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 778 "superblock detected"); 779 clear_buffer_write_io_error(sbh); 780 set_buffer_uptodate(sbh); 781 } 782 783 if (jbd2_journal_dirty_metadata(handle, sbh)) { 784 jbd2_journal_stop(handle); 785 goto write_directly; 786 } 787 jbd2_journal_stop(handle); 788 789 if (call_notify_err) 790 ext4_notify_error_sysfs(sbi); 791 792 return; 793 } 794 write_directly: 795 /* 796 * Write through journal failed. Write sb directly to get error info 797 * out and hope for the best. 798 */ 799 ext4_commit_super(sbi->s_sb); 800 ext4_notify_error_sysfs(sbi); 801 } 802 803 #define ext4_error_ratelimit(sb) \ 804 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 805 "EXT4-fs error") 806 807 void __ext4_error(struct super_block *sb, const char *function, 808 unsigned int line, bool force_ro, int error, __u64 block, 809 const char *fmt, ...) 810 { 811 struct va_format vaf; 812 va_list args; 813 814 if (unlikely(ext4_emergency_state(sb))) 815 return; 816 817 trace_ext4_error(sb, function, line); 818 if (ext4_error_ratelimit(sb)) { 819 va_start(args, fmt); 820 vaf.fmt = fmt; 821 vaf.va = &args; 822 printk(KERN_CRIT 823 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 824 sb->s_id, function, line, current->comm, &vaf); 825 va_end(args); 826 } 827 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 828 829 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 830 } 831 832 void __ext4_error_inode(struct inode *inode, const char *function, 833 unsigned int line, ext4_fsblk_t block, int error, 834 const char *fmt, ...) 835 { 836 va_list args; 837 struct va_format vaf; 838 839 if (unlikely(ext4_emergency_state(inode->i_sb))) 840 return; 841 842 trace_ext4_error(inode->i_sb, function, line); 843 if (ext4_error_ratelimit(inode->i_sb)) { 844 va_start(args, fmt); 845 vaf.fmt = fmt; 846 vaf.va = &args; 847 if (block) 848 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 849 "inode #%lu: block %llu: comm %s: %pV\n", 850 inode->i_sb->s_id, function, line, inode->i_ino, 851 block, current->comm, &vaf); 852 else 853 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 854 "inode #%lu: comm %s: %pV\n", 855 inode->i_sb->s_id, function, line, inode->i_ino, 856 current->comm, &vaf); 857 va_end(args); 858 } 859 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 860 861 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 862 function, line); 863 } 864 865 void __ext4_error_file(struct file *file, const char *function, 866 unsigned int line, ext4_fsblk_t block, 867 const char *fmt, ...) 868 { 869 va_list args; 870 struct va_format vaf; 871 struct inode *inode = file_inode(file); 872 char pathname[80], *path; 873 874 if (unlikely(ext4_emergency_state(inode->i_sb))) 875 return; 876 877 trace_ext4_error(inode->i_sb, function, line); 878 if (ext4_error_ratelimit(inode->i_sb)) { 879 path = file_path(file, pathname, sizeof(pathname)); 880 if (IS_ERR(path)) 881 path = "(unknown)"; 882 va_start(args, fmt); 883 vaf.fmt = fmt; 884 vaf.va = &args; 885 if (block) 886 printk(KERN_CRIT 887 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 888 "block %llu: comm %s: path %s: %pV\n", 889 inode->i_sb->s_id, function, line, inode->i_ino, 890 block, current->comm, path, &vaf); 891 else 892 printk(KERN_CRIT 893 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 894 "comm %s: path %s: %pV\n", 895 inode->i_sb->s_id, function, line, inode->i_ino, 896 current->comm, path, &vaf); 897 va_end(args); 898 } 899 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 900 901 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 902 function, line); 903 } 904 905 const char *ext4_decode_error(struct super_block *sb, int errno, 906 char nbuf[16]) 907 { 908 char *errstr = NULL; 909 910 switch (errno) { 911 case -EFSCORRUPTED: 912 errstr = "Corrupt filesystem"; 913 break; 914 case -EFSBADCRC: 915 errstr = "Filesystem failed CRC"; 916 break; 917 case -EIO: 918 errstr = "IO failure"; 919 break; 920 case -ENOMEM: 921 errstr = "Out of memory"; 922 break; 923 case -EROFS: 924 if (!sb || (EXT4_SB(sb)->s_journal && 925 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 926 errstr = "Journal has aborted"; 927 else 928 errstr = "Readonly filesystem"; 929 break; 930 default: 931 /* If the caller passed in an extra buffer for unknown 932 * errors, textualise them now. Else we just return 933 * NULL. */ 934 if (nbuf) { 935 /* Check for truncated error codes... */ 936 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 937 errstr = nbuf; 938 } 939 break; 940 } 941 942 return errstr; 943 } 944 945 /* __ext4_std_error decodes expected errors from journaling functions 946 * automatically and invokes the appropriate error response. */ 947 948 void __ext4_std_error(struct super_block *sb, const char *function, 949 unsigned int line, int errno) 950 { 951 char nbuf[16]; 952 const char *errstr; 953 954 if (unlikely(ext4_emergency_state(sb))) 955 return; 956 957 /* Special case: if the error is EROFS, and we're not already 958 * inside a transaction, then there's really no point in logging 959 * an error. */ 960 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 961 return; 962 963 if (ext4_error_ratelimit(sb)) { 964 errstr = ext4_decode_error(sb, errno, nbuf); 965 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 966 sb->s_id, function, line, errstr); 967 } 968 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 969 970 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 971 } 972 973 void __ext4_msg(struct super_block *sb, 974 const char *prefix, const char *fmt, ...) 975 { 976 struct va_format vaf; 977 va_list args; 978 979 if (sb) { 980 atomic_inc(&EXT4_SB(sb)->s_msg_count); 981 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 982 "EXT4-fs")) 983 return; 984 } 985 986 va_start(args, fmt); 987 vaf.fmt = fmt; 988 vaf.va = &args; 989 if (sb) 990 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 991 else 992 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 993 va_end(args); 994 } 995 996 static int ext4_warning_ratelimit(struct super_block *sb) 997 { 998 atomic_inc(&EXT4_SB(sb)->s_warning_count); 999 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1000 "EXT4-fs warning"); 1001 } 1002 1003 void __ext4_warning(struct super_block *sb, const char *function, 1004 unsigned int line, const char *fmt, ...) 1005 { 1006 struct va_format vaf; 1007 va_list args; 1008 1009 if (!ext4_warning_ratelimit(sb)) 1010 return; 1011 1012 va_start(args, fmt); 1013 vaf.fmt = fmt; 1014 vaf.va = &args; 1015 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1016 sb->s_id, function, line, &vaf); 1017 va_end(args); 1018 } 1019 1020 void __ext4_warning_inode(const struct inode *inode, const char *function, 1021 unsigned int line, const char *fmt, ...) 1022 { 1023 struct va_format vaf; 1024 va_list args; 1025 1026 if (!ext4_warning_ratelimit(inode->i_sb)) 1027 return; 1028 1029 va_start(args, fmt); 1030 vaf.fmt = fmt; 1031 vaf.va = &args; 1032 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1033 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1034 function, line, inode->i_ino, current->comm, &vaf); 1035 va_end(args); 1036 } 1037 1038 void __ext4_grp_locked_error(const char *function, unsigned int line, 1039 struct super_block *sb, ext4_group_t grp, 1040 unsigned long ino, ext4_fsblk_t block, 1041 const char *fmt, ...) 1042 __releases(bitlock) 1043 __acquires(bitlock) 1044 { 1045 struct va_format vaf; 1046 va_list args; 1047 1048 if (unlikely(ext4_emergency_state(sb))) 1049 return; 1050 1051 trace_ext4_error(sb, function, line); 1052 if (ext4_error_ratelimit(sb)) { 1053 va_start(args, fmt); 1054 vaf.fmt = fmt; 1055 vaf.va = &args; 1056 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1057 sb->s_id, function, line, grp); 1058 if (ino) 1059 printk(KERN_CONT "inode %lu: ", ino); 1060 if (block) 1061 printk(KERN_CONT "block %llu:", 1062 (unsigned long long) block); 1063 printk(KERN_CONT "%pV\n", &vaf); 1064 va_end(args); 1065 } 1066 1067 if (test_opt(sb, ERRORS_CONT)) { 1068 if (test_opt(sb, WARN_ON_ERROR)) 1069 WARN_ON_ONCE(1); 1070 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1071 if (!bdev_read_only(sb->s_bdev)) { 1072 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1073 line); 1074 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1075 } 1076 return; 1077 } 1078 ext4_unlock_group(sb, grp); 1079 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1080 /* 1081 * We only get here in the ERRORS_RO case; relocking the group 1082 * may be dangerous, but nothing bad will happen since the 1083 * filesystem will have already been marked read/only and the 1084 * journal has been aborted. We return 1 as a hint to callers 1085 * who might what to use the return value from 1086 * ext4_grp_locked_error() to distinguish between the 1087 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1088 * aggressively from the ext4 function in question, with a 1089 * more appropriate error code. 1090 */ 1091 ext4_lock_group(sb, grp); 1092 return; 1093 } 1094 1095 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1096 ext4_group_t group, 1097 unsigned int flags) 1098 { 1099 struct ext4_sb_info *sbi = EXT4_SB(sb); 1100 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1101 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1102 int ret; 1103 1104 if (!grp || !gdp) 1105 return; 1106 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1107 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1108 &grp->bb_state); 1109 if (!ret) 1110 percpu_counter_sub(&sbi->s_freeclusters_counter, 1111 grp->bb_free); 1112 } 1113 1114 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1115 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1116 &grp->bb_state); 1117 if (!ret && gdp) { 1118 int count; 1119 1120 count = ext4_free_inodes_count(sb, gdp); 1121 percpu_counter_sub(&sbi->s_freeinodes_counter, 1122 count); 1123 } 1124 } 1125 } 1126 1127 void ext4_update_dynamic_rev(struct super_block *sb) 1128 { 1129 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1130 1131 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1132 return; 1133 1134 ext4_warning(sb, 1135 "updating to rev %d because of new feature flag, " 1136 "running e2fsck is recommended", 1137 EXT4_DYNAMIC_REV); 1138 1139 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1140 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1141 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1142 /* leave es->s_feature_*compat flags alone */ 1143 /* es->s_uuid will be set by e2fsck if empty */ 1144 1145 /* 1146 * The rest of the superblock fields should be zero, and if not it 1147 * means they are likely already in use, so leave them alone. We 1148 * can leave it up to e2fsck to clean up any inconsistencies there. 1149 */ 1150 } 1151 1152 static inline struct inode *orphan_list_entry(struct list_head *l) 1153 { 1154 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1155 } 1156 1157 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1158 { 1159 struct list_head *l; 1160 1161 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1162 le32_to_cpu(sbi->s_es->s_last_orphan)); 1163 1164 printk(KERN_ERR "sb_info orphan list:\n"); 1165 list_for_each(l, &sbi->s_orphan) { 1166 struct inode *inode = orphan_list_entry(l); 1167 printk(KERN_ERR " " 1168 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1169 inode->i_sb->s_id, inode->i_ino, inode, 1170 inode->i_mode, inode->i_nlink, 1171 NEXT_ORPHAN(inode)); 1172 } 1173 } 1174 1175 #ifdef CONFIG_QUOTA 1176 static int ext4_quota_off(struct super_block *sb, int type); 1177 1178 static inline void ext4_quotas_off(struct super_block *sb, int type) 1179 { 1180 BUG_ON(type > EXT4_MAXQUOTAS); 1181 1182 /* Use our quota_off function to clear inode flags etc. */ 1183 for (type--; type >= 0; type--) 1184 ext4_quota_off(sb, type); 1185 } 1186 1187 /* 1188 * This is a helper function which is used in the mount/remount 1189 * codepaths (which holds s_umount) to fetch the quota file name. 1190 */ 1191 static inline char *get_qf_name(struct super_block *sb, 1192 struct ext4_sb_info *sbi, 1193 int type) 1194 { 1195 return rcu_dereference_protected(sbi->s_qf_names[type], 1196 lockdep_is_held(&sb->s_umount)); 1197 } 1198 #else 1199 static inline void ext4_quotas_off(struct super_block *sb, int type) 1200 { 1201 } 1202 #endif 1203 1204 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1205 { 1206 ext4_fsblk_t block; 1207 int err; 1208 1209 block = ext4_count_free_clusters(sbi->s_sb); 1210 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1211 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1212 GFP_KERNEL); 1213 if (!err) { 1214 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1215 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1216 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1217 GFP_KERNEL); 1218 } 1219 if (!err) 1220 err = percpu_counter_init(&sbi->s_dirs_counter, 1221 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1222 if (!err) 1223 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1224 GFP_KERNEL); 1225 if (!err) 1226 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1227 GFP_KERNEL); 1228 if (!err) 1229 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1230 1231 if (err) 1232 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1233 1234 return err; 1235 } 1236 1237 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1238 { 1239 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1240 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1241 percpu_counter_destroy(&sbi->s_dirs_counter); 1242 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1243 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1244 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1245 } 1246 1247 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1248 { 1249 struct buffer_head **group_desc; 1250 int i; 1251 1252 rcu_read_lock(); 1253 group_desc = rcu_dereference(sbi->s_group_desc); 1254 for (i = 0; i < sbi->s_gdb_count; i++) 1255 brelse(group_desc[i]); 1256 kvfree(group_desc); 1257 rcu_read_unlock(); 1258 } 1259 1260 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1261 { 1262 struct flex_groups **flex_groups; 1263 int i; 1264 1265 rcu_read_lock(); 1266 flex_groups = rcu_dereference(sbi->s_flex_groups); 1267 if (flex_groups) { 1268 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1269 kvfree(flex_groups[i]); 1270 kvfree(flex_groups); 1271 } 1272 rcu_read_unlock(); 1273 } 1274 1275 static void ext4_put_super(struct super_block *sb) 1276 { 1277 struct ext4_sb_info *sbi = EXT4_SB(sb); 1278 struct ext4_super_block *es = sbi->s_es; 1279 int aborted = 0; 1280 int err; 1281 1282 /* 1283 * Unregister sysfs before destroying jbd2 journal. 1284 * Since we could still access attr_journal_task attribute via sysfs 1285 * path which could have sbi->s_journal->j_task as NULL 1286 * Unregister sysfs before flush sbi->s_sb_upd_work. 1287 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1288 * read metadata verify failed then will queue error work. 1289 * update_super_work will call start_this_handle may trigger 1290 * BUG_ON. 1291 */ 1292 ext4_unregister_sysfs(sb); 1293 1294 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1295 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1296 &sb->s_uuid); 1297 1298 ext4_unregister_li_request(sb); 1299 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1300 1301 destroy_workqueue(sbi->rsv_conversion_wq); 1302 ext4_release_orphan_info(sb); 1303 1304 if (sbi->s_journal) { 1305 aborted = is_journal_aborted(sbi->s_journal); 1306 err = ext4_journal_destroy(sbi, sbi->s_journal); 1307 if ((err < 0) && !aborted) { 1308 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1309 } 1310 } else 1311 flush_work(&sbi->s_sb_upd_work); 1312 1313 ext4_es_unregister_shrinker(sbi); 1314 timer_shutdown_sync(&sbi->s_err_report); 1315 ext4_release_system_zone(sb); 1316 ext4_mb_release(sb); 1317 ext4_ext_release(sb); 1318 1319 if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) { 1320 if (!aborted) { 1321 ext4_clear_feature_journal_needs_recovery(sb); 1322 ext4_clear_feature_orphan_present(sb); 1323 es->s_state = cpu_to_le16(sbi->s_mount_state); 1324 } 1325 ext4_commit_super(sb); 1326 } 1327 1328 ext4_group_desc_free(sbi); 1329 ext4_flex_groups_free(sbi); 1330 1331 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) && 1332 percpu_counter_sum(&sbi->s_dirtyclusters_counter)); 1333 ext4_percpu_param_destroy(sbi); 1334 #ifdef CONFIG_QUOTA 1335 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1336 kfree(get_qf_name(sb, sbi, i)); 1337 #endif 1338 1339 /* Debugging code just in case the in-memory inode orphan list 1340 * isn't empty. The on-disk one can be non-empty if we've 1341 * detected an error and taken the fs readonly, but the 1342 * in-memory list had better be clean by this point. */ 1343 if (!list_empty(&sbi->s_orphan)) 1344 dump_orphan_list(sb, sbi); 1345 ASSERT(list_empty(&sbi->s_orphan)); 1346 1347 sync_blockdev(sb->s_bdev); 1348 invalidate_bdev(sb->s_bdev); 1349 if (sbi->s_journal_bdev_file) { 1350 /* 1351 * Invalidate the journal device's buffers. We don't want them 1352 * floating about in memory - the physical journal device may 1353 * hotswapped, and it breaks the `ro-after' testing code. 1354 */ 1355 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1356 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1357 } 1358 1359 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1360 sbi->s_ea_inode_cache = NULL; 1361 1362 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1363 sbi->s_ea_block_cache = NULL; 1364 1365 ext4_stop_mmpd(sbi); 1366 1367 brelse(sbi->s_sbh); 1368 sb->s_fs_info = NULL; 1369 /* 1370 * Now that we are completely done shutting down the 1371 * superblock, we need to actually destroy the kobject. 1372 */ 1373 kobject_put(&sbi->s_kobj); 1374 wait_for_completion(&sbi->s_kobj_unregister); 1375 kfree(sbi->s_blockgroup_lock); 1376 fs_put_dax(sbi->s_daxdev, NULL); 1377 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1378 #if IS_ENABLED(CONFIG_UNICODE) 1379 utf8_unload(sb->s_encoding); 1380 #endif 1381 kfree(sbi); 1382 } 1383 1384 static struct kmem_cache *ext4_inode_cachep; 1385 1386 /* 1387 * Called inside transaction, so use GFP_NOFS 1388 */ 1389 static struct inode *ext4_alloc_inode(struct super_block *sb) 1390 { 1391 struct ext4_inode_info *ei; 1392 1393 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1394 if (!ei) 1395 return NULL; 1396 1397 inode_set_iversion(&ei->vfs_inode, 1); 1398 ei->i_flags = 0; 1399 spin_lock_init(&ei->i_raw_lock); 1400 ei->i_prealloc_node = RB_ROOT; 1401 atomic_set(&ei->i_prealloc_active, 0); 1402 rwlock_init(&ei->i_prealloc_lock); 1403 ext4_es_init_tree(&ei->i_es_tree); 1404 rwlock_init(&ei->i_es_lock); 1405 INIT_LIST_HEAD(&ei->i_es_list); 1406 ei->i_es_all_nr = 0; 1407 ei->i_es_shk_nr = 0; 1408 ei->i_es_shrink_lblk = 0; 1409 ei->i_reserved_data_blocks = 0; 1410 spin_lock_init(&(ei->i_block_reservation_lock)); 1411 ext4_init_pending_tree(&ei->i_pending_tree); 1412 #ifdef CONFIG_QUOTA 1413 ei->i_reserved_quota = 0; 1414 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1415 #endif 1416 ei->jinode = NULL; 1417 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1418 spin_lock_init(&ei->i_completed_io_lock); 1419 ei->i_sync_tid = 0; 1420 ei->i_datasync_tid = 0; 1421 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1422 ext4_fc_init_inode(&ei->vfs_inode); 1423 spin_lock_init(&ei->i_fc_lock); 1424 return &ei->vfs_inode; 1425 } 1426 1427 static int ext4_drop_inode(struct inode *inode) 1428 { 1429 int drop = generic_drop_inode(inode); 1430 1431 if (!drop) 1432 drop = fscrypt_drop_inode(inode); 1433 1434 trace_ext4_drop_inode(inode, drop); 1435 return drop; 1436 } 1437 1438 static void ext4_free_in_core_inode(struct inode *inode) 1439 { 1440 fscrypt_free_inode(inode); 1441 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1442 pr_warn("%s: inode %ld still in fc list", 1443 __func__, inode->i_ino); 1444 } 1445 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1446 } 1447 1448 static void ext4_destroy_inode(struct inode *inode) 1449 { 1450 if (ext4_inode_orphan_tracked(inode)) { 1451 ext4_msg(inode->i_sb, KERN_ERR, 1452 "Inode %lu (%p): inode tracked as orphan!", 1453 inode->i_ino, EXT4_I(inode)); 1454 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1455 EXT4_I(inode), sizeof(struct ext4_inode_info), 1456 true); 1457 dump_stack(); 1458 } 1459 1460 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) && 1461 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks)) 1462 ext4_msg(inode->i_sb, KERN_ERR, 1463 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1464 inode->i_ino, EXT4_I(inode), 1465 EXT4_I(inode)->i_reserved_data_blocks); 1466 } 1467 1468 static void ext4_shutdown(struct super_block *sb) 1469 { 1470 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1471 } 1472 1473 static void init_once(void *foo) 1474 { 1475 struct ext4_inode_info *ei = foo; 1476 1477 INIT_LIST_HEAD(&ei->i_orphan); 1478 init_rwsem(&ei->xattr_sem); 1479 init_rwsem(&ei->i_data_sem); 1480 inode_init_once(&ei->vfs_inode); 1481 ext4_fc_init_inode(&ei->vfs_inode); 1482 } 1483 1484 static int __init init_inodecache(void) 1485 { 1486 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1487 sizeof(struct ext4_inode_info), 0, 1488 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1489 offsetof(struct ext4_inode_info, i_data), 1490 sizeof_field(struct ext4_inode_info, i_data), 1491 init_once); 1492 if (ext4_inode_cachep == NULL) 1493 return -ENOMEM; 1494 return 0; 1495 } 1496 1497 static void destroy_inodecache(void) 1498 { 1499 /* 1500 * Make sure all delayed rcu free inodes are flushed before we 1501 * destroy cache. 1502 */ 1503 rcu_barrier(); 1504 kmem_cache_destroy(ext4_inode_cachep); 1505 } 1506 1507 void ext4_clear_inode(struct inode *inode) 1508 { 1509 ext4_fc_del(inode); 1510 invalidate_inode_buffers(inode); 1511 clear_inode(inode); 1512 ext4_discard_preallocations(inode); 1513 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1514 dquot_drop(inode); 1515 if (EXT4_I(inode)->jinode) { 1516 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1517 EXT4_I(inode)->jinode); 1518 jbd2_free_inode(EXT4_I(inode)->jinode); 1519 EXT4_I(inode)->jinode = NULL; 1520 } 1521 fscrypt_put_encryption_info(inode); 1522 fsverity_cleanup_inode(inode); 1523 } 1524 1525 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1526 u64 ino, u32 generation) 1527 { 1528 struct inode *inode; 1529 1530 /* 1531 * Currently we don't know the generation for parent directory, so 1532 * a generation of 0 means "accept any" 1533 */ 1534 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1535 if (IS_ERR(inode)) 1536 return ERR_CAST(inode); 1537 if (generation && inode->i_generation != generation) { 1538 iput(inode); 1539 return ERR_PTR(-ESTALE); 1540 } 1541 1542 return inode; 1543 } 1544 1545 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1546 int fh_len, int fh_type) 1547 { 1548 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1549 ext4_nfs_get_inode); 1550 } 1551 1552 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1553 int fh_len, int fh_type) 1554 { 1555 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1556 ext4_nfs_get_inode); 1557 } 1558 1559 static int ext4_nfs_commit_metadata(struct inode *inode) 1560 { 1561 struct writeback_control wbc = { 1562 .sync_mode = WB_SYNC_ALL 1563 }; 1564 1565 trace_ext4_nfs_commit_metadata(inode); 1566 return ext4_write_inode(inode, &wbc); 1567 } 1568 1569 #ifdef CONFIG_QUOTA 1570 static const char * const quotatypes[] = INITQFNAMES; 1571 #define QTYPE2NAME(t) (quotatypes[t]) 1572 1573 static int ext4_write_dquot(struct dquot *dquot); 1574 static int ext4_acquire_dquot(struct dquot *dquot); 1575 static int ext4_release_dquot(struct dquot *dquot); 1576 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1577 static int ext4_write_info(struct super_block *sb, int type); 1578 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1579 const struct path *path); 1580 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1581 size_t len, loff_t off); 1582 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1583 const char *data, size_t len, loff_t off); 1584 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1585 unsigned int flags); 1586 1587 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1588 { 1589 return EXT4_I(inode)->i_dquot; 1590 } 1591 1592 static const struct dquot_operations ext4_quota_operations = { 1593 .get_reserved_space = ext4_get_reserved_space, 1594 .write_dquot = ext4_write_dquot, 1595 .acquire_dquot = ext4_acquire_dquot, 1596 .release_dquot = ext4_release_dquot, 1597 .mark_dirty = ext4_mark_dquot_dirty, 1598 .write_info = ext4_write_info, 1599 .alloc_dquot = dquot_alloc, 1600 .destroy_dquot = dquot_destroy, 1601 .get_projid = ext4_get_projid, 1602 .get_inode_usage = ext4_get_inode_usage, 1603 .get_next_id = dquot_get_next_id, 1604 }; 1605 1606 static const struct quotactl_ops ext4_qctl_operations = { 1607 .quota_on = ext4_quota_on, 1608 .quota_off = ext4_quota_off, 1609 .quota_sync = dquot_quota_sync, 1610 .get_state = dquot_get_state, 1611 .set_info = dquot_set_dqinfo, 1612 .get_dqblk = dquot_get_dqblk, 1613 .set_dqblk = dquot_set_dqblk, 1614 .get_nextdqblk = dquot_get_next_dqblk, 1615 }; 1616 #endif 1617 1618 static const struct super_operations ext4_sops = { 1619 .alloc_inode = ext4_alloc_inode, 1620 .free_inode = ext4_free_in_core_inode, 1621 .destroy_inode = ext4_destroy_inode, 1622 .write_inode = ext4_write_inode, 1623 .dirty_inode = ext4_dirty_inode, 1624 .drop_inode = ext4_drop_inode, 1625 .evict_inode = ext4_evict_inode, 1626 .put_super = ext4_put_super, 1627 .sync_fs = ext4_sync_fs, 1628 .freeze_fs = ext4_freeze, 1629 .unfreeze_fs = ext4_unfreeze, 1630 .statfs = ext4_statfs, 1631 .show_options = ext4_show_options, 1632 .shutdown = ext4_shutdown, 1633 #ifdef CONFIG_QUOTA 1634 .quota_read = ext4_quota_read, 1635 .quota_write = ext4_quota_write, 1636 .get_dquots = ext4_get_dquots, 1637 #endif 1638 }; 1639 1640 static const struct export_operations ext4_export_ops = { 1641 .encode_fh = generic_encode_ino32_fh, 1642 .fh_to_dentry = ext4_fh_to_dentry, 1643 .fh_to_parent = ext4_fh_to_parent, 1644 .get_parent = ext4_get_parent, 1645 .commit_metadata = ext4_nfs_commit_metadata, 1646 }; 1647 1648 enum { 1649 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1650 Opt_resgid, Opt_resuid, Opt_sb, 1651 Opt_nouid32, Opt_debug, Opt_removed, 1652 Opt_user_xattr, Opt_acl, 1653 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1654 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1655 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1656 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1657 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1658 Opt_inlinecrypt, 1659 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1660 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1661 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1662 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1663 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1664 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1665 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1666 Opt_inode_readahead_blks, Opt_journal_ioprio, 1667 Opt_dioread_nolock, Opt_dioread_lock, 1668 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1669 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1670 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1671 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1672 #ifdef CONFIG_EXT4_DEBUG 1673 Opt_fc_debug_max_replay, Opt_fc_debug_force 1674 #endif 1675 }; 1676 1677 static const struct constant_table ext4_param_errors[] = { 1678 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1679 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1680 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1681 {} 1682 }; 1683 1684 static const struct constant_table ext4_param_data[] = { 1685 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1686 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1687 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1688 {} 1689 }; 1690 1691 static const struct constant_table ext4_param_data_err[] = { 1692 {"abort", Opt_data_err_abort}, 1693 {"ignore", Opt_data_err_ignore}, 1694 {} 1695 }; 1696 1697 static const struct constant_table ext4_param_jqfmt[] = { 1698 {"vfsold", QFMT_VFS_OLD}, 1699 {"vfsv0", QFMT_VFS_V0}, 1700 {"vfsv1", QFMT_VFS_V1}, 1701 {} 1702 }; 1703 1704 static const struct constant_table ext4_param_dax[] = { 1705 {"always", Opt_dax_always}, 1706 {"inode", Opt_dax_inode}, 1707 {"never", Opt_dax_never}, 1708 {} 1709 }; 1710 1711 /* 1712 * Mount option specification 1713 * We don't use fsparam_flag_no because of the way we set the 1714 * options and the way we show them in _ext4_show_options(). To 1715 * keep the changes to a minimum, let's keep the negative options 1716 * separate for now. 1717 */ 1718 static const struct fs_parameter_spec ext4_param_specs[] = { 1719 fsparam_flag ("bsddf", Opt_bsd_df), 1720 fsparam_flag ("minixdf", Opt_minix_df), 1721 fsparam_flag ("grpid", Opt_grpid), 1722 fsparam_flag ("bsdgroups", Opt_grpid), 1723 fsparam_flag ("nogrpid", Opt_nogrpid), 1724 fsparam_flag ("sysvgroups", Opt_nogrpid), 1725 fsparam_gid ("resgid", Opt_resgid), 1726 fsparam_uid ("resuid", Opt_resuid), 1727 fsparam_u32 ("sb", Opt_sb), 1728 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1729 fsparam_flag ("nouid32", Opt_nouid32), 1730 fsparam_flag ("debug", Opt_debug), 1731 fsparam_flag ("oldalloc", Opt_removed), 1732 fsparam_flag ("orlov", Opt_removed), 1733 fsparam_flag ("user_xattr", Opt_user_xattr), 1734 fsparam_flag ("acl", Opt_acl), 1735 fsparam_flag ("norecovery", Opt_noload), 1736 fsparam_flag ("noload", Opt_noload), 1737 fsparam_flag ("bh", Opt_removed), 1738 fsparam_flag ("nobh", Opt_removed), 1739 fsparam_u32 ("commit", Opt_commit), 1740 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1741 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1742 fsparam_u32 ("journal_dev", Opt_journal_dev), 1743 fsparam_bdev ("journal_path", Opt_journal_path), 1744 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1745 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1746 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1747 fsparam_flag ("abort", Opt_abort), 1748 fsparam_enum ("data", Opt_data, ext4_param_data), 1749 fsparam_enum ("data_err", Opt_data_err, 1750 ext4_param_data_err), 1751 fsparam_string_empty 1752 ("usrjquota", Opt_usrjquota), 1753 fsparam_string_empty 1754 ("grpjquota", Opt_grpjquota), 1755 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1756 fsparam_flag ("grpquota", Opt_grpquota), 1757 fsparam_flag ("quota", Opt_quota), 1758 fsparam_flag ("noquota", Opt_noquota), 1759 fsparam_flag ("usrquota", Opt_usrquota), 1760 fsparam_flag ("prjquota", Opt_prjquota), 1761 fsparam_flag ("barrier", Opt_barrier), 1762 fsparam_u32 ("barrier", Opt_barrier), 1763 fsparam_flag ("nobarrier", Opt_nobarrier), 1764 fsparam_flag ("i_version", Opt_removed), 1765 fsparam_flag ("dax", Opt_dax), 1766 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1767 fsparam_u32 ("stripe", Opt_stripe), 1768 fsparam_flag ("delalloc", Opt_delalloc), 1769 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1770 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1771 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1772 fsparam_u32 ("debug_want_extra_isize", 1773 Opt_debug_want_extra_isize), 1774 fsparam_flag ("mblk_io_submit", Opt_removed), 1775 fsparam_flag ("nomblk_io_submit", Opt_removed), 1776 fsparam_flag ("block_validity", Opt_block_validity), 1777 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1778 fsparam_u32 ("inode_readahead_blks", 1779 Opt_inode_readahead_blks), 1780 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1781 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1782 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1783 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1784 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1785 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1786 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1787 fsparam_flag ("discard", Opt_discard), 1788 fsparam_flag ("nodiscard", Opt_nodiscard), 1789 fsparam_u32 ("init_itable", Opt_init_itable), 1790 fsparam_flag ("init_itable", Opt_init_itable), 1791 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1792 #ifdef CONFIG_EXT4_DEBUG 1793 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1794 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1795 #endif 1796 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1797 fsparam_flag ("test_dummy_encryption", 1798 Opt_test_dummy_encryption), 1799 fsparam_string ("test_dummy_encryption", 1800 Opt_test_dummy_encryption), 1801 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1802 fsparam_flag ("nombcache", Opt_nombcache), 1803 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1804 fsparam_flag ("prefetch_block_bitmaps", 1805 Opt_removed), 1806 fsparam_flag ("no_prefetch_block_bitmaps", 1807 Opt_no_prefetch_block_bitmaps), 1808 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1809 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1810 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1811 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1812 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1813 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1814 {} 1815 }; 1816 1817 1818 #define MOPT_SET 0x0001 1819 #define MOPT_CLEAR 0x0002 1820 #define MOPT_NOSUPPORT 0x0004 1821 #define MOPT_EXPLICIT 0x0008 1822 #ifdef CONFIG_QUOTA 1823 #define MOPT_Q 0 1824 #define MOPT_QFMT 0x0010 1825 #else 1826 #define MOPT_Q MOPT_NOSUPPORT 1827 #define MOPT_QFMT MOPT_NOSUPPORT 1828 #endif 1829 #define MOPT_NO_EXT2 0x0020 1830 #define MOPT_NO_EXT3 0x0040 1831 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1832 #define MOPT_SKIP 0x0080 1833 #define MOPT_2 0x0100 1834 1835 static const struct mount_opts { 1836 int token; 1837 int mount_opt; 1838 int flags; 1839 } ext4_mount_opts[] = { 1840 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1841 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1842 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1843 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1844 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1845 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1846 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1847 MOPT_EXT4_ONLY | MOPT_SET}, 1848 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1849 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1850 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1851 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1852 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1853 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1854 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1855 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1856 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1857 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1858 {Opt_commit, 0, MOPT_NO_EXT2}, 1859 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1860 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1861 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1862 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1863 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1864 EXT4_MOUNT_JOURNAL_CHECKSUM), 1865 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1866 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1867 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1868 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1869 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1870 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1871 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1872 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1873 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1874 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1875 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1876 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1877 {Opt_data, 0, MOPT_NO_EXT2}, 1878 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1879 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1880 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1881 #else 1882 {Opt_acl, 0, MOPT_NOSUPPORT}, 1883 #endif 1884 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1885 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1886 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1887 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1888 MOPT_SET | MOPT_Q}, 1889 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1890 MOPT_SET | MOPT_Q}, 1891 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1892 MOPT_SET | MOPT_Q}, 1893 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1894 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1895 MOPT_CLEAR | MOPT_Q}, 1896 {Opt_usrjquota, 0, MOPT_Q}, 1897 {Opt_grpjquota, 0, MOPT_Q}, 1898 {Opt_jqfmt, 0, MOPT_QFMT}, 1899 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1900 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1901 MOPT_SET}, 1902 #ifdef CONFIG_EXT4_DEBUG 1903 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1904 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1905 #endif 1906 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1907 {Opt_err, 0, 0} 1908 }; 1909 1910 #if IS_ENABLED(CONFIG_UNICODE) 1911 static const struct ext4_sb_encodings { 1912 __u16 magic; 1913 char *name; 1914 unsigned int version; 1915 } ext4_sb_encoding_map[] = { 1916 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1917 }; 1918 1919 static const struct ext4_sb_encodings * 1920 ext4_sb_read_encoding(const struct ext4_super_block *es) 1921 { 1922 __u16 magic = le16_to_cpu(es->s_encoding); 1923 int i; 1924 1925 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1926 if (magic == ext4_sb_encoding_map[i].magic) 1927 return &ext4_sb_encoding_map[i]; 1928 1929 return NULL; 1930 } 1931 #endif 1932 1933 #define EXT4_SPEC_JQUOTA (1 << 0) 1934 #define EXT4_SPEC_JQFMT (1 << 1) 1935 #define EXT4_SPEC_DATAJ (1 << 2) 1936 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1937 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1938 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1939 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1940 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1941 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1942 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1943 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1944 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1945 #define EXT4_SPEC_s_stripe (1 << 13) 1946 #define EXT4_SPEC_s_resuid (1 << 14) 1947 #define EXT4_SPEC_s_resgid (1 << 15) 1948 #define EXT4_SPEC_s_commit_interval (1 << 16) 1949 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1950 #define EXT4_SPEC_s_sb_block (1 << 18) 1951 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1952 1953 struct ext4_fs_context { 1954 char *s_qf_names[EXT4_MAXQUOTAS]; 1955 struct fscrypt_dummy_policy dummy_enc_policy; 1956 int s_jquota_fmt; /* Format of quota to use */ 1957 #ifdef CONFIG_EXT4_DEBUG 1958 int s_fc_debug_max_replay; 1959 #endif 1960 unsigned short qname_spec; 1961 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1962 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1963 unsigned long journal_devnum; 1964 unsigned long s_commit_interval; 1965 unsigned long s_stripe; 1966 unsigned int s_inode_readahead_blks; 1967 unsigned int s_want_extra_isize; 1968 unsigned int s_li_wait_mult; 1969 unsigned int s_max_dir_size_kb; 1970 unsigned int journal_ioprio; 1971 unsigned int vals_s_mount_opt; 1972 unsigned int mask_s_mount_opt; 1973 unsigned int vals_s_mount_opt2; 1974 unsigned int mask_s_mount_opt2; 1975 unsigned int opt_flags; /* MOPT flags */ 1976 unsigned int spec; 1977 u32 s_max_batch_time; 1978 u32 s_min_batch_time; 1979 kuid_t s_resuid; 1980 kgid_t s_resgid; 1981 ext4_fsblk_t s_sb_block; 1982 }; 1983 1984 static void ext4_fc_free(struct fs_context *fc) 1985 { 1986 struct ext4_fs_context *ctx = fc->fs_private; 1987 int i; 1988 1989 if (!ctx) 1990 return; 1991 1992 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1993 kfree(ctx->s_qf_names[i]); 1994 1995 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1996 kfree(ctx); 1997 } 1998 1999 int ext4_init_fs_context(struct fs_context *fc) 2000 { 2001 struct ext4_fs_context *ctx; 2002 2003 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2004 if (!ctx) 2005 return -ENOMEM; 2006 2007 fc->fs_private = ctx; 2008 fc->ops = &ext4_context_ops; 2009 2010 /* i_version is always enabled now */ 2011 fc->sb_flags |= SB_I_VERSION; 2012 2013 return 0; 2014 } 2015 2016 #ifdef CONFIG_QUOTA 2017 /* 2018 * Note the name of the specified quota file. 2019 */ 2020 static int note_qf_name(struct fs_context *fc, int qtype, 2021 struct fs_parameter *param) 2022 { 2023 struct ext4_fs_context *ctx = fc->fs_private; 2024 char *qname; 2025 2026 if (param->size < 1) { 2027 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2028 return -EINVAL; 2029 } 2030 if (strchr(param->string, '/')) { 2031 ext4_msg(NULL, KERN_ERR, 2032 "quotafile must be on filesystem root"); 2033 return -EINVAL; 2034 } 2035 if (ctx->s_qf_names[qtype]) { 2036 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2037 ext4_msg(NULL, KERN_ERR, 2038 "%s quota file already specified", 2039 QTYPE2NAME(qtype)); 2040 return -EINVAL; 2041 } 2042 return 0; 2043 } 2044 2045 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2046 if (!qname) { 2047 ext4_msg(NULL, KERN_ERR, 2048 "Not enough memory for storing quotafile name"); 2049 return -ENOMEM; 2050 } 2051 ctx->s_qf_names[qtype] = qname; 2052 ctx->qname_spec |= 1 << qtype; 2053 ctx->spec |= EXT4_SPEC_JQUOTA; 2054 return 0; 2055 } 2056 2057 /* 2058 * Clear the name of the specified quota file. 2059 */ 2060 static int unnote_qf_name(struct fs_context *fc, int qtype) 2061 { 2062 struct ext4_fs_context *ctx = fc->fs_private; 2063 2064 kfree(ctx->s_qf_names[qtype]); 2065 2066 ctx->s_qf_names[qtype] = NULL; 2067 ctx->qname_spec |= 1 << qtype; 2068 ctx->spec |= EXT4_SPEC_JQUOTA; 2069 return 0; 2070 } 2071 #endif 2072 2073 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2074 struct ext4_fs_context *ctx) 2075 { 2076 int err; 2077 2078 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2079 ext4_msg(NULL, KERN_WARNING, 2080 "test_dummy_encryption option not supported"); 2081 return -EINVAL; 2082 } 2083 err = fscrypt_parse_test_dummy_encryption(param, 2084 &ctx->dummy_enc_policy); 2085 if (err == -EINVAL) { 2086 ext4_msg(NULL, KERN_WARNING, 2087 "Value of option \"%s\" is unrecognized", param->key); 2088 } else if (err == -EEXIST) { 2089 ext4_msg(NULL, KERN_WARNING, 2090 "Conflicting test_dummy_encryption options"); 2091 return -EINVAL; 2092 } 2093 return err; 2094 } 2095 2096 #define EXT4_SET_CTX(name) \ 2097 static inline __maybe_unused \ 2098 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2099 { \ 2100 ctx->mask_s_##name |= flag; \ 2101 ctx->vals_s_##name |= flag; \ 2102 } 2103 2104 #define EXT4_CLEAR_CTX(name) \ 2105 static inline __maybe_unused \ 2106 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2107 { \ 2108 ctx->mask_s_##name |= flag; \ 2109 ctx->vals_s_##name &= ~flag; \ 2110 } 2111 2112 #define EXT4_TEST_CTX(name) \ 2113 static inline unsigned long \ 2114 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2115 { \ 2116 return (ctx->vals_s_##name & flag); \ 2117 } 2118 2119 EXT4_SET_CTX(flags); /* set only */ 2120 EXT4_SET_CTX(mount_opt); 2121 EXT4_CLEAR_CTX(mount_opt); 2122 EXT4_TEST_CTX(mount_opt); 2123 EXT4_SET_CTX(mount_opt2); 2124 EXT4_CLEAR_CTX(mount_opt2); 2125 EXT4_TEST_CTX(mount_opt2); 2126 2127 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2128 { 2129 struct ext4_fs_context *ctx = fc->fs_private; 2130 struct fs_parse_result result; 2131 const struct mount_opts *m; 2132 int is_remount; 2133 int token; 2134 2135 token = fs_parse(fc, ext4_param_specs, param, &result); 2136 if (token < 0) 2137 return token; 2138 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2139 2140 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2141 if (token == m->token) 2142 break; 2143 2144 ctx->opt_flags |= m->flags; 2145 2146 if (m->flags & MOPT_EXPLICIT) { 2147 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2148 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2149 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2150 ctx_set_mount_opt2(ctx, 2151 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2152 } else 2153 return -EINVAL; 2154 } 2155 2156 if (m->flags & MOPT_NOSUPPORT) { 2157 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2158 param->key); 2159 return 0; 2160 } 2161 2162 switch (token) { 2163 #ifdef CONFIG_QUOTA 2164 case Opt_usrjquota: 2165 if (!*param->string) 2166 return unnote_qf_name(fc, USRQUOTA); 2167 else 2168 return note_qf_name(fc, USRQUOTA, param); 2169 case Opt_grpjquota: 2170 if (!*param->string) 2171 return unnote_qf_name(fc, GRPQUOTA); 2172 else 2173 return note_qf_name(fc, GRPQUOTA, param); 2174 #endif 2175 case Opt_sb: 2176 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2177 ext4_msg(NULL, KERN_WARNING, 2178 "Ignoring %s option on remount", param->key); 2179 } else { 2180 ctx->s_sb_block = result.uint_32; 2181 ctx->spec |= EXT4_SPEC_s_sb_block; 2182 } 2183 return 0; 2184 case Opt_removed: 2185 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2186 param->key); 2187 return 0; 2188 case Opt_inlinecrypt: 2189 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2190 ctx_set_flags(ctx, SB_INLINECRYPT); 2191 #else 2192 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2193 #endif 2194 return 0; 2195 case Opt_errors: 2196 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2197 ctx_set_mount_opt(ctx, result.uint_32); 2198 return 0; 2199 #ifdef CONFIG_QUOTA 2200 case Opt_jqfmt: 2201 ctx->s_jquota_fmt = result.uint_32; 2202 ctx->spec |= EXT4_SPEC_JQFMT; 2203 return 0; 2204 #endif 2205 case Opt_data: 2206 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2207 ctx_set_mount_opt(ctx, result.uint_32); 2208 ctx->spec |= EXT4_SPEC_DATAJ; 2209 return 0; 2210 case Opt_commit: 2211 if (result.uint_32 == 0) 2212 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2213 else if (result.uint_32 > INT_MAX / HZ) { 2214 ext4_msg(NULL, KERN_ERR, 2215 "Invalid commit interval %d, " 2216 "must be smaller than %d", 2217 result.uint_32, INT_MAX / HZ); 2218 return -EINVAL; 2219 } 2220 ctx->s_commit_interval = HZ * result.uint_32; 2221 ctx->spec |= EXT4_SPEC_s_commit_interval; 2222 return 0; 2223 case Opt_debug_want_extra_isize: 2224 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2225 ext4_msg(NULL, KERN_ERR, 2226 "Invalid want_extra_isize %d", result.uint_32); 2227 return -EINVAL; 2228 } 2229 ctx->s_want_extra_isize = result.uint_32; 2230 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2231 return 0; 2232 case Opt_max_batch_time: 2233 ctx->s_max_batch_time = result.uint_32; 2234 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2235 return 0; 2236 case Opt_min_batch_time: 2237 ctx->s_min_batch_time = result.uint_32; 2238 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2239 return 0; 2240 case Opt_inode_readahead_blks: 2241 if (result.uint_32 && 2242 (result.uint_32 > (1 << 30) || 2243 !is_power_of_2(result.uint_32))) { 2244 ext4_msg(NULL, KERN_ERR, 2245 "EXT4-fs: inode_readahead_blks must be " 2246 "0 or a power of 2 smaller than 2^31"); 2247 return -EINVAL; 2248 } 2249 ctx->s_inode_readahead_blks = result.uint_32; 2250 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2251 return 0; 2252 case Opt_init_itable: 2253 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2254 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2255 if (param->type == fs_value_is_string) 2256 ctx->s_li_wait_mult = result.uint_32; 2257 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2258 return 0; 2259 case Opt_max_dir_size_kb: 2260 ctx->s_max_dir_size_kb = result.uint_32; 2261 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2262 return 0; 2263 #ifdef CONFIG_EXT4_DEBUG 2264 case Opt_fc_debug_max_replay: 2265 ctx->s_fc_debug_max_replay = result.uint_32; 2266 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2267 return 0; 2268 #endif 2269 case Opt_stripe: 2270 ctx->s_stripe = result.uint_32; 2271 ctx->spec |= EXT4_SPEC_s_stripe; 2272 return 0; 2273 case Opt_resuid: 2274 ctx->s_resuid = result.uid; 2275 ctx->spec |= EXT4_SPEC_s_resuid; 2276 return 0; 2277 case Opt_resgid: 2278 ctx->s_resgid = result.gid; 2279 ctx->spec |= EXT4_SPEC_s_resgid; 2280 return 0; 2281 case Opt_journal_dev: 2282 if (is_remount) { 2283 ext4_msg(NULL, KERN_ERR, 2284 "Cannot specify journal on remount"); 2285 return -EINVAL; 2286 } 2287 ctx->journal_devnum = result.uint_32; 2288 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2289 return 0; 2290 case Opt_journal_path: 2291 { 2292 struct inode *journal_inode; 2293 struct path path; 2294 int error; 2295 2296 if (is_remount) { 2297 ext4_msg(NULL, KERN_ERR, 2298 "Cannot specify journal on remount"); 2299 return -EINVAL; 2300 } 2301 2302 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2303 if (error) { 2304 ext4_msg(NULL, KERN_ERR, "error: could not find " 2305 "journal device path"); 2306 return -EINVAL; 2307 } 2308 2309 journal_inode = d_inode(path.dentry); 2310 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2311 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2312 path_put(&path); 2313 return 0; 2314 } 2315 case Opt_journal_ioprio: 2316 if (result.uint_32 > 7) { 2317 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2318 " (must be 0-7)"); 2319 return -EINVAL; 2320 } 2321 ctx->journal_ioprio = 2322 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2323 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2324 return 0; 2325 case Opt_test_dummy_encryption: 2326 return ext4_parse_test_dummy_encryption(param, ctx); 2327 case Opt_dax: 2328 case Opt_dax_type: 2329 #ifdef CONFIG_FS_DAX 2330 { 2331 int type = (token == Opt_dax) ? 2332 Opt_dax : result.uint_32; 2333 2334 switch (type) { 2335 case Opt_dax: 2336 case Opt_dax_always: 2337 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2338 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2339 break; 2340 case Opt_dax_never: 2341 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2342 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2343 break; 2344 case Opt_dax_inode: 2345 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2346 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2347 /* Strictly for printing options */ 2348 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2349 break; 2350 } 2351 return 0; 2352 } 2353 #else 2354 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2355 return -EINVAL; 2356 #endif 2357 case Opt_data_err: 2358 if (result.uint_32 == Opt_data_err_abort) 2359 ctx_set_mount_opt(ctx, m->mount_opt); 2360 else if (result.uint_32 == Opt_data_err_ignore) 2361 ctx_clear_mount_opt(ctx, m->mount_opt); 2362 return 0; 2363 case Opt_mb_optimize_scan: 2364 if (result.int_32 == 1) { 2365 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2366 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2367 } else if (result.int_32 == 0) { 2368 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2369 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2370 } else { 2371 ext4_msg(NULL, KERN_WARNING, 2372 "mb_optimize_scan should be set to 0 or 1."); 2373 return -EINVAL; 2374 } 2375 return 0; 2376 } 2377 2378 /* 2379 * At this point we should only be getting options requiring MOPT_SET, 2380 * or MOPT_CLEAR. Anything else is a bug 2381 */ 2382 if (m->token == Opt_err) { 2383 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2384 param->key); 2385 WARN_ON(1); 2386 return -EINVAL; 2387 } 2388 2389 else { 2390 unsigned int set = 0; 2391 2392 if ((param->type == fs_value_is_flag) || 2393 result.uint_32 > 0) 2394 set = 1; 2395 2396 if (m->flags & MOPT_CLEAR) 2397 set = !set; 2398 else if (unlikely(!(m->flags & MOPT_SET))) { 2399 ext4_msg(NULL, KERN_WARNING, 2400 "buggy handling of option %s", 2401 param->key); 2402 WARN_ON(1); 2403 return -EINVAL; 2404 } 2405 if (m->flags & MOPT_2) { 2406 if (set != 0) 2407 ctx_set_mount_opt2(ctx, m->mount_opt); 2408 else 2409 ctx_clear_mount_opt2(ctx, m->mount_opt); 2410 } else { 2411 if (set != 0) 2412 ctx_set_mount_opt(ctx, m->mount_opt); 2413 else 2414 ctx_clear_mount_opt(ctx, m->mount_opt); 2415 } 2416 } 2417 2418 return 0; 2419 } 2420 2421 static int parse_options(struct fs_context *fc, char *options) 2422 { 2423 struct fs_parameter param; 2424 int ret; 2425 char *key; 2426 2427 if (!options) 2428 return 0; 2429 2430 while ((key = strsep(&options, ",")) != NULL) { 2431 if (*key) { 2432 size_t v_len = 0; 2433 char *value = strchr(key, '='); 2434 2435 param.type = fs_value_is_flag; 2436 param.string = NULL; 2437 2438 if (value) { 2439 if (value == key) 2440 continue; 2441 2442 *value++ = 0; 2443 v_len = strlen(value); 2444 param.string = kmemdup_nul(value, v_len, 2445 GFP_KERNEL); 2446 if (!param.string) 2447 return -ENOMEM; 2448 param.type = fs_value_is_string; 2449 } 2450 2451 param.key = key; 2452 param.size = v_len; 2453 2454 ret = ext4_parse_param(fc, ¶m); 2455 kfree(param.string); 2456 if (ret < 0) 2457 return ret; 2458 } 2459 } 2460 2461 ret = ext4_validate_options(fc); 2462 if (ret < 0) 2463 return ret; 2464 2465 return 0; 2466 } 2467 2468 static int parse_apply_sb_mount_options(struct super_block *sb, 2469 struct ext4_fs_context *m_ctx) 2470 { 2471 struct ext4_sb_info *sbi = EXT4_SB(sb); 2472 char s_mount_opts[65]; 2473 struct ext4_fs_context *s_ctx = NULL; 2474 struct fs_context *fc = NULL; 2475 int ret = -ENOMEM; 2476 2477 if (!sbi->s_es->s_mount_opts[0]) 2478 return 0; 2479 2480 strscpy_pad(s_mount_opts, sbi->s_es->s_mount_opts); 2481 2482 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2483 if (!fc) 2484 return -ENOMEM; 2485 2486 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2487 if (!s_ctx) 2488 goto out_free; 2489 2490 fc->fs_private = s_ctx; 2491 fc->s_fs_info = sbi; 2492 2493 ret = parse_options(fc, s_mount_opts); 2494 if (ret < 0) 2495 goto parse_failed; 2496 2497 ret = ext4_check_opt_consistency(fc, sb); 2498 if (ret < 0) { 2499 parse_failed: 2500 ext4_msg(sb, KERN_WARNING, 2501 "failed to parse options in superblock: %s", 2502 s_mount_opts); 2503 ret = 0; 2504 goto out_free; 2505 } 2506 2507 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2508 m_ctx->journal_devnum = s_ctx->journal_devnum; 2509 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2510 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2511 2512 ext4_apply_options(fc, sb); 2513 ret = 0; 2514 2515 out_free: 2516 ext4_fc_free(fc); 2517 kfree(fc); 2518 return ret; 2519 } 2520 2521 static void ext4_apply_quota_options(struct fs_context *fc, 2522 struct super_block *sb) 2523 { 2524 #ifdef CONFIG_QUOTA 2525 bool quota_feature = ext4_has_feature_quota(sb); 2526 struct ext4_fs_context *ctx = fc->fs_private; 2527 struct ext4_sb_info *sbi = EXT4_SB(sb); 2528 char *qname; 2529 int i; 2530 2531 if (quota_feature) 2532 return; 2533 2534 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2535 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2536 if (!(ctx->qname_spec & (1 << i))) 2537 continue; 2538 2539 qname = ctx->s_qf_names[i]; /* May be NULL */ 2540 if (qname) 2541 set_opt(sb, QUOTA); 2542 ctx->s_qf_names[i] = NULL; 2543 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2544 lockdep_is_held(&sb->s_umount)); 2545 if (qname) 2546 kfree_rcu_mightsleep(qname); 2547 } 2548 } 2549 2550 if (ctx->spec & EXT4_SPEC_JQFMT) 2551 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2552 #endif 2553 } 2554 2555 /* 2556 * Check quota settings consistency. 2557 */ 2558 static int ext4_check_quota_consistency(struct fs_context *fc, 2559 struct super_block *sb) 2560 { 2561 #ifdef CONFIG_QUOTA 2562 struct ext4_fs_context *ctx = fc->fs_private; 2563 struct ext4_sb_info *sbi = EXT4_SB(sb); 2564 bool quota_feature = ext4_has_feature_quota(sb); 2565 bool quota_loaded = sb_any_quota_loaded(sb); 2566 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2567 int quota_flags, i; 2568 2569 /* 2570 * We do the test below only for project quotas. 'usrquota' and 2571 * 'grpquota' mount options are allowed even without quota feature 2572 * to support legacy quotas in quota files. 2573 */ 2574 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2575 !ext4_has_feature_project(sb)) { 2576 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2577 "Cannot enable project quota enforcement."); 2578 return -EINVAL; 2579 } 2580 2581 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2582 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2583 if (quota_loaded && 2584 ctx->mask_s_mount_opt & quota_flags && 2585 !ctx_test_mount_opt(ctx, quota_flags)) 2586 goto err_quota_change; 2587 2588 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2589 2590 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2591 if (!(ctx->qname_spec & (1 << i))) 2592 continue; 2593 2594 if (quota_loaded && 2595 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2596 goto err_jquota_change; 2597 2598 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2599 strcmp(get_qf_name(sb, sbi, i), 2600 ctx->s_qf_names[i]) != 0) 2601 goto err_jquota_specified; 2602 } 2603 2604 if (quota_feature) { 2605 ext4_msg(NULL, KERN_INFO, 2606 "Journaled quota options ignored when " 2607 "QUOTA feature is enabled"); 2608 return 0; 2609 } 2610 } 2611 2612 if (ctx->spec & EXT4_SPEC_JQFMT) { 2613 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2614 goto err_jquota_change; 2615 if (quota_feature) { 2616 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2617 "ignored when QUOTA feature is enabled"); 2618 return 0; 2619 } 2620 } 2621 2622 /* Make sure we don't mix old and new quota format */ 2623 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2624 ctx->s_qf_names[USRQUOTA]); 2625 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2626 ctx->s_qf_names[GRPQUOTA]); 2627 2628 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2629 test_opt(sb, USRQUOTA)); 2630 2631 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2632 test_opt(sb, GRPQUOTA)); 2633 2634 if (usr_qf_name) { 2635 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2636 usrquota = false; 2637 } 2638 if (grp_qf_name) { 2639 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2640 grpquota = false; 2641 } 2642 2643 if (usr_qf_name || grp_qf_name) { 2644 if (usrquota || grpquota) { 2645 ext4_msg(NULL, KERN_ERR, "old and new quota " 2646 "format mixing"); 2647 return -EINVAL; 2648 } 2649 2650 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2651 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2652 "not specified"); 2653 return -EINVAL; 2654 } 2655 } 2656 2657 return 0; 2658 2659 err_quota_change: 2660 ext4_msg(NULL, KERN_ERR, 2661 "Cannot change quota options when quota turned on"); 2662 return -EINVAL; 2663 err_jquota_change: 2664 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2665 "options when quota turned on"); 2666 return -EINVAL; 2667 err_jquota_specified: 2668 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2669 QTYPE2NAME(i)); 2670 return -EINVAL; 2671 #else 2672 return 0; 2673 #endif 2674 } 2675 2676 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2677 struct super_block *sb) 2678 { 2679 const struct ext4_fs_context *ctx = fc->fs_private; 2680 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2681 2682 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2683 return 0; 2684 2685 if (!ext4_has_feature_encrypt(sb)) { 2686 ext4_msg(NULL, KERN_WARNING, 2687 "test_dummy_encryption requires encrypt feature"); 2688 return -EINVAL; 2689 } 2690 /* 2691 * This mount option is just for testing, and it's not worthwhile to 2692 * implement the extra complexity (e.g. RCU protection) that would be 2693 * needed to allow it to be set or changed during remount. We do allow 2694 * it to be specified during remount, but only if there is no change. 2695 */ 2696 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2697 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2698 &ctx->dummy_enc_policy)) 2699 return 0; 2700 ext4_msg(NULL, KERN_WARNING, 2701 "Can't set or change test_dummy_encryption on remount"); 2702 return -EINVAL; 2703 } 2704 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2705 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2706 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2707 &ctx->dummy_enc_policy)) 2708 return 0; 2709 ext4_msg(NULL, KERN_WARNING, 2710 "Conflicting test_dummy_encryption options"); 2711 return -EINVAL; 2712 } 2713 return 0; 2714 } 2715 2716 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2717 struct super_block *sb) 2718 { 2719 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2720 /* if already set, it was already verified to be the same */ 2721 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2722 return; 2723 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2724 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2725 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2726 } 2727 2728 static int ext4_check_opt_consistency(struct fs_context *fc, 2729 struct super_block *sb) 2730 { 2731 struct ext4_fs_context *ctx = fc->fs_private; 2732 struct ext4_sb_info *sbi = fc->s_fs_info; 2733 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2734 int err; 2735 2736 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2737 ext4_msg(NULL, KERN_ERR, 2738 "Mount option(s) incompatible with ext2"); 2739 return -EINVAL; 2740 } 2741 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2742 ext4_msg(NULL, KERN_ERR, 2743 "Mount option(s) incompatible with ext3"); 2744 return -EINVAL; 2745 } 2746 2747 if (ctx->s_want_extra_isize > 2748 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2749 ext4_msg(NULL, KERN_ERR, 2750 "Invalid want_extra_isize %d", 2751 ctx->s_want_extra_isize); 2752 return -EINVAL; 2753 } 2754 2755 err = ext4_check_test_dummy_encryption(fc, sb); 2756 if (err) 2757 return err; 2758 2759 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2760 if (!sbi->s_journal) { 2761 ext4_msg(NULL, KERN_WARNING, 2762 "Remounting file system with no journal " 2763 "so ignoring journalled data option"); 2764 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2765 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2766 test_opt(sb, DATA_FLAGS)) { 2767 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2768 "on remount"); 2769 return -EINVAL; 2770 } 2771 } 2772 2773 if (is_remount) { 2774 if (!sbi->s_journal && 2775 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) { 2776 ext4_msg(NULL, KERN_WARNING, 2777 "Remounting fs w/o journal so ignoring data_err option"); 2778 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT); 2779 } 2780 2781 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2782 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2783 ext4_msg(NULL, KERN_ERR, "can't mount with " 2784 "both data=journal and dax"); 2785 return -EINVAL; 2786 } 2787 2788 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2789 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2790 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2791 fail_dax_change_remount: 2792 ext4_msg(NULL, KERN_ERR, "can't change " 2793 "dax mount option while remounting"); 2794 return -EINVAL; 2795 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2796 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2797 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2798 goto fail_dax_change_remount; 2799 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2800 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2801 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2802 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2803 goto fail_dax_change_remount; 2804 } 2805 } 2806 2807 return ext4_check_quota_consistency(fc, sb); 2808 } 2809 2810 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2811 { 2812 struct ext4_fs_context *ctx = fc->fs_private; 2813 struct ext4_sb_info *sbi = fc->s_fs_info; 2814 2815 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2816 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2817 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2818 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2819 sb->s_flags &= ~ctx->mask_s_flags; 2820 sb->s_flags |= ctx->vals_s_flags; 2821 2822 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2823 APPLY(s_commit_interval); 2824 APPLY(s_stripe); 2825 APPLY(s_max_batch_time); 2826 APPLY(s_min_batch_time); 2827 APPLY(s_want_extra_isize); 2828 APPLY(s_inode_readahead_blks); 2829 APPLY(s_max_dir_size_kb); 2830 APPLY(s_li_wait_mult); 2831 APPLY(s_resgid); 2832 APPLY(s_resuid); 2833 2834 #ifdef CONFIG_EXT4_DEBUG 2835 APPLY(s_fc_debug_max_replay); 2836 #endif 2837 2838 ext4_apply_quota_options(fc, sb); 2839 ext4_apply_test_dummy_encryption(ctx, sb); 2840 } 2841 2842 2843 static int ext4_validate_options(struct fs_context *fc) 2844 { 2845 #ifdef CONFIG_QUOTA 2846 struct ext4_fs_context *ctx = fc->fs_private; 2847 char *usr_qf_name, *grp_qf_name; 2848 2849 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2850 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2851 2852 if (usr_qf_name || grp_qf_name) { 2853 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2854 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2855 2856 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2857 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2858 2859 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2860 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2861 ext4_msg(NULL, KERN_ERR, "old and new quota " 2862 "format mixing"); 2863 return -EINVAL; 2864 } 2865 } 2866 #endif 2867 return 1; 2868 } 2869 2870 static inline void ext4_show_quota_options(struct seq_file *seq, 2871 struct super_block *sb) 2872 { 2873 #if defined(CONFIG_QUOTA) 2874 struct ext4_sb_info *sbi = EXT4_SB(sb); 2875 char *usr_qf_name, *grp_qf_name; 2876 2877 if (sbi->s_jquota_fmt) { 2878 char *fmtname = ""; 2879 2880 switch (sbi->s_jquota_fmt) { 2881 case QFMT_VFS_OLD: 2882 fmtname = "vfsold"; 2883 break; 2884 case QFMT_VFS_V0: 2885 fmtname = "vfsv0"; 2886 break; 2887 case QFMT_VFS_V1: 2888 fmtname = "vfsv1"; 2889 break; 2890 } 2891 seq_printf(seq, ",jqfmt=%s", fmtname); 2892 } 2893 2894 rcu_read_lock(); 2895 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2896 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2897 if (usr_qf_name) 2898 seq_show_option(seq, "usrjquota", usr_qf_name); 2899 if (grp_qf_name) 2900 seq_show_option(seq, "grpjquota", grp_qf_name); 2901 rcu_read_unlock(); 2902 #endif 2903 } 2904 2905 static const char *token2str(int token) 2906 { 2907 const struct fs_parameter_spec *spec; 2908 2909 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2910 if (spec->opt == token && !spec->type) 2911 break; 2912 return spec->name; 2913 } 2914 2915 /* 2916 * Show an option if 2917 * - it's set to a non-default value OR 2918 * - if the per-sb default is different from the global default 2919 */ 2920 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2921 int nodefs) 2922 { 2923 struct ext4_sb_info *sbi = EXT4_SB(sb); 2924 struct ext4_super_block *es = sbi->s_es; 2925 int def_errors; 2926 const struct mount_opts *m; 2927 char sep = nodefs ? '\n' : ','; 2928 2929 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2930 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2931 2932 if (sbi->s_sb_block != 1) 2933 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2934 2935 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2936 int want_set = m->flags & MOPT_SET; 2937 int opt_2 = m->flags & MOPT_2; 2938 unsigned int mount_opt, def_mount_opt; 2939 2940 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2941 m->flags & MOPT_SKIP) 2942 continue; 2943 2944 if (opt_2) { 2945 mount_opt = sbi->s_mount_opt2; 2946 def_mount_opt = sbi->s_def_mount_opt2; 2947 } else { 2948 mount_opt = sbi->s_mount_opt; 2949 def_mount_opt = sbi->s_def_mount_opt; 2950 } 2951 /* skip if same as the default */ 2952 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2953 continue; 2954 /* select Opt_noFoo vs Opt_Foo */ 2955 if ((want_set && 2956 (mount_opt & m->mount_opt) != m->mount_opt) || 2957 (!want_set && (mount_opt & m->mount_opt))) 2958 continue; 2959 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2960 } 2961 2962 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2963 ext4_get_resuid(es) != EXT4_DEF_RESUID) 2964 SEQ_OPTS_PRINT("resuid=%u", 2965 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2966 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2967 ext4_get_resgid(es) != EXT4_DEF_RESGID) 2968 SEQ_OPTS_PRINT("resgid=%u", 2969 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2970 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2971 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2972 SEQ_OPTS_PUTS("errors=remount-ro"); 2973 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2974 SEQ_OPTS_PUTS("errors=continue"); 2975 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2976 SEQ_OPTS_PUTS("errors=panic"); 2977 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2978 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2979 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2980 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2981 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2982 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2983 if (nodefs && sb->s_flags & SB_I_VERSION) 2984 SEQ_OPTS_PUTS("i_version"); 2985 if (nodefs || sbi->s_stripe) 2986 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2987 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2988 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 2989 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2990 SEQ_OPTS_PUTS("data=journal"); 2991 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2992 SEQ_OPTS_PUTS("data=ordered"); 2993 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2994 SEQ_OPTS_PUTS("data=writeback"); 2995 } 2996 if (nodefs || 2997 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2998 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2999 sbi->s_inode_readahead_blks); 3000 3001 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3002 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3003 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3004 if (nodefs || sbi->s_max_dir_size_kb) 3005 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3006 if (test_opt(sb, DATA_ERR_ABORT)) 3007 SEQ_OPTS_PUTS("data_err=abort"); 3008 3009 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3010 3011 if (sb->s_flags & SB_INLINECRYPT) 3012 SEQ_OPTS_PUTS("inlinecrypt"); 3013 3014 if (test_opt(sb, DAX_ALWAYS)) { 3015 if (IS_EXT2_SB(sb)) 3016 SEQ_OPTS_PUTS("dax"); 3017 else 3018 SEQ_OPTS_PUTS("dax=always"); 3019 } else if (test_opt2(sb, DAX_NEVER)) { 3020 SEQ_OPTS_PUTS("dax=never"); 3021 } else if (test_opt2(sb, DAX_INODE)) { 3022 SEQ_OPTS_PUTS("dax=inode"); 3023 } 3024 3025 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3026 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3027 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3028 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3029 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3030 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3031 } 3032 3033 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) 3034 SEQ_OPTS_PUTS("prefetch_block_bitmaps"); 3035 3036 if (ext4_emergency_ro(sb)) 3037 SEQ_OPTS_PUTS("emergency_ro"); 3038 3039 if (ext4_forced_shutdown(sb)) 3040 SEQ_OPTS_PUTS("shutdown"); 3041 3042 ext4_show_quota_options(seq, sb); 3043 return 0; 3044 } 3045 3046 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3047 { 3048 return _ext4_show_options(seq, root->d_sb, 0); 3049 } 3050 3051 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3052 { 3053 struct super_block *sb = seq->private; 3054 int rc; 3055 3056 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3057 rc = _ext4_show_options(seq, sb, 1); 3058 seq_putc(seq, '\n'); 3059 return rc; 3060 } 3061 3062 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3063 int read_only) 3064 { 3065 struct ext4_sb_info *sbi = EXT4_SB(sb); 3066 int err = 0; 3067 3068 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3069 ext4_msg(sb, KERN_ERR, "revision level too high, " 3070 "forcing read-only mode"); 3071 err = -EROFS; 3072 goto done; 3073 } 3074 if (read_only) 3075 goto done; 3076 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3077 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3078 "running e2fsck is recommended"); 3079 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3080 ext4_msg(sb, KERN_WARNING, 3081 "warning: mounting fs with errors, " 3082 "running e2fsck is recommended"); 3083 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3084 le16_to_cpu(es->s_mnt_count) >= 3085 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3086 ext4_msg(sb, KERN_WARNING, 3087 "warning: maximal mount count reached, " 3088 "running e2fsck is recommended"); 3089 else if (le32_to_cpu(es->s_checkinterval) && 3090 (ext4_get_tstamp(es, s_lastcheck) + 3091 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3092 ext4_msg(sb, KERN_WARNING, 3093 "warning: checktime reached, " 3094 "running e2fsck is recommended"); 3095 if (!sbi->s_journal) 3096 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3097 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3098 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3099 le16_add_cpu(&es->s_mnt_count, 1); 3100 ext4_update_tstamp(es, s_mtime); 3101 if (sbi->s_journal) { 3102 ext4_set_feature_journal_needs_recovery(sb); 3103 if (ext4_has_feature_orphan_file(sb)) 3104 ext4_set_feature_orphan_present(sb); 3105 } 3106 3107 err = ext4_commit_super(sb); 3108 done: 3109 if (test_opt(sb, DEBUG)) 3110 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3111 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3112 sb->s_blocksize, 3113 sbi->s_groups_count, 3114 EXT4_BLOCKS_PER_GROUP(sb), 3115 EXT4_INODES_PER_GROUP(sb), 3116 sbi->s_mount_opt, sbi->s_mount_opt2); 3117 return err; 3118 } 3119 3120 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3121 { 3122 struct ext4_sb_info *sbi = EXT4_SB(sb); 3123 struct flex_groups **old_groups, **new_groups; 3124 int size, i, j; 3125 3126 if (!sbi->s_log_groups_per_flex) 3127 return 0; 3128 3129 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3130 if (size <= sbi->s_flex_groups_allocated) 3131 return 0; 3132 3133 new_groups = kvzalloc(roundup_pow_of_two(size * 3134 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3135 if (!new_groups) { 3136 ext4_msg(sb, KERN_ERR, 3137 "not enough memory for %d flex group pointers", size); 3138 return -ENOMEM; 3139 } 3140 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3141 new_groups[i] = kvzalloc(roundup_pow_of_two( 3142 sizeof(struct flex_groups)), 3143 GFP_KERNEL); 3144 if (!new_groups[i]) { 3145 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3146 kvfree(new_groups[j]); 3147 kvfree(new_groups); 3148 ext4_msg(sb, KERN_ERR, 3149 "not enough memory for %d flex groups", size); 3150 return -ENOMEM; 3151 } 3152 } 3153 rcu_read_lock(); 3154 old_groups = rcu_dereference(sbi->s_flex_groups); 3155 if (old_groups) 3156 memcpy(new_groups, old_groups, 3157 (sbi->s_flex_groups_allocated * 3158 sizeof(struct flex_groups *))); 3159 rcu_read_unlock(); 3160 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3161 sbi->s_flex_groups_allocated = size; 3162 if (old_groups) 3163 ext4_kvfree_array_rcu(old_groups); 3164 return 0; 3165 } 3166 3167 static int ext4_fill_flex_info(struct super_block *sb) 3168 { 3169 struct ext4_sb_info *sbi = EXT4_SB(sb); 3170 struct ext4_group_desc *gdp = NULL; 3171 struct flex_groups *fg; 3172 ext4_group_t flex_group; 3173 int i, err; 3174 3175 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3176 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3177 sbi->s_log_groups_per_flex = 0; 3178 return 1; 3179 } 3180 3181 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3182 if (err) 3183 goto failed; 3184 3185 for (i = 0; i < sbi->s_groups_count; i++) { 3186 gdp = ext4_get_group_desc(sb, i, NULL); 3187 3188 flex_group = ext4_flex_group(sbi, i); 3189 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3190 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3191 atomic64_add(ext4_free_group_clusters(sb, gdp), 3192 &fg->free_clusters); 3193 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3194 } 3195 3196 return 1; 3197 failed: 3198 return 0; 3199 } 3200 3201 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3202 struct ext4_group_desc *gdp) 3203 { 3204 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3205 __u16 crc = 0; 3206 __le32 le_group = cpu_to_le32(block_group); 3207 struct ext4_sb_info *sbi = EXT4_SB(sb); 3208 3209 if (ext4_has_feature_metadata_csum(sbi->s_sb)) { 3210 /* Use new metadata_csum algorithm */ 3211 __u32 csum32; 3212 __u16 dummy_csum = 0; 3213 3214 csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group, 3215 sizeof(le_group)); 3216 csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset); 3217 csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum, 3218 sizeof(dummy_csum)); 3219 offset += sizeof(dummy_csum); 3220 if (offset < sbi->s_desc_size) 3221 csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset, 3222 sbi->s_desc_size - offset); 3223 3224 crc = csum32 & 0xFFFF; 3225 goto out; 3226 } 3227 3228 /* old crc16 code */ 3229 if (!ext4_has_feature_gdt_csum(sb)) 3230 return 0; 3231 3232 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3233 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3234 crc = crc16(crc, (__u8 *)gdp, offset); 3235 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3236 /* for checksum of struct ext4_group_desc do the rest...*/ 3237 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3238 crc = crc16(crc, (__u8 *)gdp + offset, 3239 sbi->s_desc_size - offset); 3240 3241 out: 3242 return cpu_to_le16(crc); 3243 } 3244 3245 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3246 struct ext4_group_desc *gdp) 3247 { 3248 if (ext4_has_group_desc_csum(sb) && 3249 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3250 return 0; 3251 3252 return 1; 3253 } 3254 3255 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3256 struct ext4_group_desc *gdp) 3257 { 3258 if (!ext4_has_group_desc_csum(sb)) 3259 return; 3260 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3261 } 3262 3263 /* Called at mount-time, super-block is locked */ 3264 static int ext4_check_descriptors(struct super_block *sb, 3265 ext4_fsblk_t sb_block, 3266 ext4_group_t *first_not_zeroed) 3267 { 3268 struct ext4_sb_info *sbi = EXT4_SB(sb); 3269 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3270 ext4_fsblk_t last_block; 3271 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3272 ext4_fsblk_t block_bitmap; 3273 ext4_fsblk_t inode_bitmap; 3274 ext4_fsblk_t inode_table; 3275 int flexbg_flag = 0; 3276 ext4_group_t i, grp = sbi->s_groups_count; 3277 3278 if (ext4_has_feature_flex_bg(sb)) 3279 flexbg_flag = 1; 3280 3281 ext4_debug("Checking group descriptors"); 3282 3283 for (i = 0; i < sbi->s_groups_count; i++) { 3284 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3285 3286 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3287 last_block = ext4_blocks_count(sbi->s_es) - 1; 3288 else 3289 last_block = first_block + 3290 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3291 3292 if ((grp == sbi->s_groups_count) && 3293 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3294 grp = i; 3295 3296 block_bitmap = ext4_block_bitmap(sb, gdp); 3297 if (block_bitmap == sb_block) { 3298 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3299 "Block bitmap for group %u overlaps " 3300 "superblock", i); 3301 if (!sb_rdonly(sb)) 3302 return 0; 3303 } 3304 if (block_bitmap >= sb_block + 1 && 3305 block_bitmap <= last_bg_block) { 3306 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3307 "Block bitmap for group %u overlaps " 3308 "block group descriptors", i); 3309 if (!sb_rdonly(sb)) 3310 return 0; 3311 } 3312 if (block_bitmap < first_block || block_bitmap > last_block) { 3313 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3314 "Block bitmap for group %u not in group " 3315 "(block %llu)!", i, block_bitmap); 3316 return 0; 3317 } 3318 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3319 if (inode_bitmap == sb_block) { 3320 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3321 "Inode bitmap for group %u overlaps " 3322 "superblock", i); 3323 if (!sb_rdonly(sb)) 3324 return 0; 3325 } 3326 if (inode_bitmap >= sb_block + 1 && 3327 inode_bitmap <= last_bg_block) { 3328 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3329 "Inode bitmap for group %u overlaps " 3330 "block group descriptors", i); 3331 if (!sb_rdonly(sb)) 3332 return 0; 3333 } 3334 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3335 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3336 "Inode bitmap for group %u not in group " 3337 "(block %llu)!", i, inode_bitmap); 3338 return 0; 3339 } 3340 inode_table = ext4_inode_table(sb, gdp); 3341 if (inode_table == sb_block) { 3342 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3343 "Inode table for group %u overlaps " 3344 "superblock", i); 3345 if (!sb_rdonly(sb)) 3346 return 0; 3347 } 3348 if (inode_table >= sb_block + 1 && 3349 inode_table <= last_bg_block) { 3350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3351 "Inode table for group %u overlaps " 3352 "block group descriptors", i); 3353 if (!sb_rdonly(sb)) 3354 return 0; 3355 } 3356 if (inode_table < first_block || 3357 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3358 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3359 "Inode table for group %u not in group " 3360 "(block %llu)!", i, inode_table); 3361 return 0; 3362 } 3363 ext4_lock_group(sb, i); 3364 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3365 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3366 "Checksum for group %u failed (%u!=%u)", 3367 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3368 gdp)), le16_to_cpu(gdp->bg_checksum)); 3369 if (!sb_rdonly(sb)) { 3370 ext4_unlock_group(sb, i); 3371 return 0; 3372 } 3373 } 3374 ext4_unlock_group(sb, i); 3375 if (!flexbg_flag) 3376 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3377 } 3378 if (NULL != first_not_zeroed) 3379 *first_not_zeroed = grp; 3380 return 1; 3381 } 3382 3383 /* 3384 * Maximal extent format file size. 3385 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3386 * extent format containers, within a sector_t, and within i_blocks 3387 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3388 * so that won't be a limiting factor. 3389 * 3390 * However there is other limiting factor. We do store extents in the form 3391 * of starting block and length, hence the resulting length of the extent 3392 * covering maximum file size must fit into on-disk format containers as 3393 * well. Given that length is always by 1 unit bigger than max unit (because 3394 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3395 * 3396 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3397 */ 3398 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3399 { 3400 loff_t res; 3401 loff_t upper_limit = MAX_LFS_FILESIZE; 3402 3403 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3404 3405 if (!has_huge_files) { 3406 upper_limit = (1LL << 32) - 1; 3407 3408 /* total blocks in file system block size */ 3409 upper_limit >>= (blkbits - 9); 3410 upper_limit <<= blkbits; 3411 } 3412 3413 /* 3414 * 32-bit extent-start container, ee_block. We lower the maxbytes 3415 * by one fs block, so ee_len can cover the extent of maximum file 3416 * size 3417 */ 3418 res = (1LL << 32) - 1; 3419 res <<= blkbits; 3420 3421 /* Sanity check against vm- & vfs- imposed limits */ 3422 if (res > upper_limit) 3423 res = upper_limit; 3424 3425 return res; 3426 } 3427 3428 /* 3429 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3430 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3431 * We need to be 1 filesystem block less than the 2^48 sector limit. 3432 */ 3433 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3434 { 3435 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3436 int meta_blocks; 3437 unsigned int ppb = 1 << (bits - 2); 3438 3439 /* 3440 * This is calculated to be the largest file size for a dense, block 3441 * mapped file such that the file's total number of 512-byte sectors, 3442 * including data and all indirect blocks, does not exceed (2^48 - 1). 3443 * 3444 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3445 * number of 512-byte sectors of the file. 3446 */ 3447 if (!has_huge_files) { 3448 /* 3449 * !has_huge_files or implies that the inode i_block field 3450 * represents total file blocks in 2^32 512-byte sectors == 3451 * size of vfs inode i_blocks * 8 3452 */ 3453 upper_limit = (1LL << 32) - 1; 3454 3455 /* total blocks in file system block size */ 3456 upper_limit >>= (bits - 9); 3457 3458 } else { 3459 /* 3460 * We use 48 bit ext4_inode i_blocks 3461 * With EXT4_HUGE_FILE_FL set the i_blocks 3462 * represent total number of blocks in 3463 * file system block size 3464 */ 3465 upper_limit = (1LL << 48) - 1; 3466 3467 } 3468 3469 /* Compute how many blocks we can address by block tree */ 3470 res += ppb; 3471 res += ppb * ppb; 3472 res += ((loff_t)ppb) * ppb * ppb; 3473 /* Compute how many metadata blocks are needed */ 3474 meta_blocks = 1; 3475 meta_blocks += 1 + ppb; 3476 meta_blocks += 1 + ppb + ppb * ppb; 3477 /* Does block tree limit file size? */ 3478 if (res + meta_blocks <= upper_limit) 3479 goto check_lfs; 3480 3481 res = upper_limit; 3482 /* How many metadata blocks are needed for addressing upper_limit? */ 3483 upper_limit -= EXT4_NDIR_BLOCKS; 3484 /* indirect blocks */ 3485 meta_blocks = 1; 3486 upper_limit -= ppb; 3487 /* double indirect blocks */ 3488 if (upper_limit < ppb * ppb) { 3489 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3490 res -= meta_blocks; 3491 goto check_lfs; 3492 } 3493 meta_blocks += 1 + ppb; 3494 upper_limit -= ppb * ppb; 3495 /* tripple indirect blocks for the rest */ 3496 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3497 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3498 res -= meta_blocks; 3499 check_lfs: 3500 res <<= bits; 3501 if (res > MAX_LFS_FILESIZE) 3502 res = MAX_LFS_FILESIZE; 3503 3504 return res; 3505 } 3506 3507 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3508 ext4_fsblk_t logical_sb_block, int nr) 3509 { 3510 struct ext4_sb_info *sbi = EXT4_SB(sb); 3511 ext4_group_t bg, first_meta_bg; 3512 int has_super = 0; 3513 3514 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3515 3516 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3517 return logical_sb_block + nr + 1; 3518 bg = sbi->s_desc_per_block * nr; 3519 if (ext4_bg_has_super(sb, bg)) 3520 has_super = 1; 3521 3522 /* 3523 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3524 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3525 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3526 * compensate. 3527 */ 3528 if (sb->s_blocksize == 1024 && nr == 0 && 3529 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3530 has_super++; 3531 3532 return (has_super + ext4_group_first_block_no(sb, bg)); 3533 } 3534 3535 /** 3536 * ext4_get_stripe_size: Get the stripe size. 3537 * @sbi: In memory super block info 3538 * 3539 * If we have specified it via mount option, then 3540 * use the mount option value. If the value specified at mount time is 3541 * greater than the blocks per group use the super block value. 3542 * If the super block value is greater than blocks per group return 0. 3543 * Allocator needs it be less than blocks per group. 3544 * 3545 */ 3546 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3547 { 3548 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3549 unsigned long stripe_width = 3550 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3551 int ret; 3552 3553 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3554 ret = sbi->s_stripe; 3555 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3556 ret = stripe_width; 3557 else if (stride && stride <= sbi->s_blocks_per_group) 3558 ret = stride; 3559 else 3560 ret = 0; 3561 3562 /* 3563 * If the stripe width is 1, this makes no sense and 3564 * we set it to 0 to turn off stripe handling code. 3565 */ 3566 if (ret <= 1) 3567 ret = 0; 3568 3569 return ret; 3570 } 3571 3572 /* 3573 * Check whether this filesystem can be mounted based on 3574 * the features present and the RDONLY/RDWR mount requested. 3575 * Returns 1 if this filesystem can be mounted as requested, 3576 * 0 if it cannot be. 3577 */ 3578 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3579 { 3580 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3581 ext4_msg(sb, KERN_ERR, 3582 "Couldn't mount because of " 3583 "unsupported optional features (%x)", 3584 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3585 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3586 return 0; 3587 } 3588 3589 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) { 3590 ext4_msg(sb, KERN_ERR, 3591 "Filesystem with casefold feature cannot be " 3592 "mounted without CONFIG_UNICODE"); 3593 return 0; 3594 } 3595 3596 if (readonly) 3597 return 1; 3598 3599 if (ext4_has_feature_readonly(sb)) { 3600 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3601 sb->s_flags |= SB_RDONLY; 3602 return 1; 3603 } 3604 3605 /* Check that feature set is OK for a read-write mount */ 3606 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3607 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3608 "unsupported optional features (%x)", 3609 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3610 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3611 return 0; 3612 } 3613 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3614 ext4_msg(sb, KERN_ERR, 3615 "Can't support bigalloc feature without " 3616 "extents feature\n"); 3617 return 0; 3618 } 3619 3620 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3621 if (!readonly && (ext4_has_feature_quota(sb) || 3622 ext4_has_feature_project(sb))) { 3623 ext4_msg(sb, KERN_ERR, 3624 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3625 return 0; 3626 } 3627 #endif /* CONFIG_QUOTA */ 3628 return 1; 3629 } 3630 3631 /* 3632 * This function is called once a day if we have errors logged 3633 * on the file system 3634 */ 3635 static void print_daily_error_info(struct timer_list *t) 3636 { 3637 struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report); 3638 struct super_block *sb = sbi->s_sb; 3639 struct ext4_super_block *es = sbi->s_es; 3640 3641 if (es->s_error_count) 3642 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3643 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3644 le32_to_cpu(es->s_error_count)); 3645 if (es->s_first_error_time) { 3646 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3647 sb->s_id, 3648 ext4_get_tstamp(es, s_first_error_time), 3649 (int) sizeof(es->s_first_error_func), 3650 es->s_first_error_func, 3651 le32_to_cpu(es->s_first_error_line)); 3652 if (es->s_first_error_ino) 3653 printk(KERN_CONT ": inode %u", 3654 le32_to_cpu(es->s_first_error_ino)); 3655 if (es->s_first_error_block) 3656 printk(KERN_CONT ": block %llu", (unsigned long long) 3657 le64_to_cpu(es->s_first_error_block)); 3658 printk(KERN_CONT "\n"); 3659 } 3660 if (es->s_last_error_time) { 3661 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3662 sb->s_id, 3663 ext4_get_tstamp(es, s_last_error_time), 3664 (int) sizeof(es->s_last_error_func), 3665 es->s_last_error_func, 3666 le32_to_cpu(es->s_last_error_line)); 3667 if (es->s_last_error_ino) 3668 printk(KERN_CONT ": inode %u", 3669 le32_to_cpu(es->s_last_error_ino)); 3670 if (es->s_last_error_block) 3671 printk(KERN_CONT ": block %llu", (unsigned long long) 3672 le64_to_cpu(es->s_last_error_block)); 3673 printk(KERN_CONT "\n"); 3674 } 3675 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3676 } 3677 3678 /* Find next suitable group and run ext4_init_inode_table */ 3679 static int ext4_run_li_request(struct ext4_li_request *elr) 3680 { 3681 struct ext4_group_desc *gdp = NULL; 3682 struct super_block *sb = elr->lr_super; 3683 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3684 ext4_group_t group = elr->lr_next_group; 3685 unsigned int prefetch_ios = 0; 3686 int ret = 0; 3687 int nr = EXT4_SB(sb)->s_mb_prefetch; 3688 u64 start_time; 3689 3690 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3691 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3692 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3693 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3694 if (group >= elr->lr_next_group) { 3695 ret = 1; 3696 if (elr->lr_first_not_zeroed != ngroups && 3697 !ext4_emergency_state(sb) && !sb_rdonly(sb) && 3698 test_opt(sb, INIT_INODE_TABLE)) { 3699 elr->lr_next_group = elr->lr_first_not_zeroed; 3700 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3701 ret = 0; 3702 } 3703 } 3704 return ret; 3705 } 3706 3707 for (; group < ngroups; group++) { 3708 gdp = ext4_get_group_desc(sb, group, NULL); 3709 if (!gdp) { 3710 ret = 1; 3711 break; 3712 } 3713 3714 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3715 break; 3716 } 3717 3718 if (group >= ngroups) 3719 ret = 1; 3720 3721 if (!ret) { 3722 start_time = ktime_get_ns(); 3723 ret = ext4_init_inode_table(sb, group, 3724 elr->lr_timeout ? 0 : 1); 3725 trace_ext4_lazy_itable_init(sb, group); 3726 if (elr->lr_timeout == 0) { 3727 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) * 3728 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3729 } 3730 elr->lr_next_sched = jiffies + elr->lr_timeout; 3731 elr->lr_next_group = group + 1; 3732 } 3733 return ret; 3734 } 3735 3736 /* 3737 * Remove lr_request from the list_request and free the 3738 * request structure. Should be called with li_list_mtx held 3739 */ 3740 static void ext4_remove_li_request(struct ext4_li_request *elr) 3741 { 3742 if (!elr) 3743 return; 3744 3745 list_del(&elr->lr_request); 3746 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3747 kfree(elr); 3748 } 3749 3750 static void ext4_unregister_li_request(struct super_block *sb) 3751 { 3752 mutex_lock(&ext4_li_mtx); 3753 if (!ext4_li_info) { 3754 mutex_unlock(&ext4_li_mtx); 3755 return; 3756 } 3757 3758 mutex_lock(&ext4_li_info->li_list_mtx); 3759 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3760 mutex_unlock(&ext4_li_info->li_list_mtx); 3761 mutex_unlock(&ext4_li_mtx); 3762 } 3763 3764 static struct task_struct *ext4_lazyinit_task; 3765 3766 /* 3767 * This is the function where ext4lazyinit thread lives. It walks 3768 * through the request list searching for next scheduled filesystem. 3769 * When such a fs is found, run the lazy initialization request 3770 * (ext4_rn_li_request) and keep track of the time spend in this 3771 * function. Based on that time we compute next schedule time of 3772 * the request. When walking through the list is complete, compute 3773 * next waking time and put itself into sleep. 3774 */ 3775 static int ext4_lazyinit_thread(void *arg) 3776 { 3777 struct ext4_lazy_init *eli = arg; 3778 struct list_head *pos, *n; 3779 struct ext4_li_request *elr; 3780 unsigned long next_wakeup, cur; 3781 3782 BUG_ON(NULL == eli); 3783 set_freezable(); 3784 3785 cont_thread: 3786 while (true) { 3787 bool next_wakeup_initialized = false; 3788 3789 next_wakeup = 0; 3790 mutex_lock(&eli->li_list_mtx); 3791 if (list_empty(&eli->li_request_list)) { 3792 mutex_unlock(&eli->li_list_mtx); 3793 goto exit_thread; 3794 } 3795 list_for_each_safe(pos, n, &eli->li_request_list) { 3796 int err = 0; 3797 int progress = 0; 3798 elr = list_entry(pos, struct ext4_li_request, 3799 lr_request); 3800 3801 if (time_before(jiffies, elr->lr_next_sched)) { 3802 if (!next_wakeup_initialized || 3803 time_before(elr->lr_next_sched, next_wakeup)) { 3804 next_wakeup = elr->lr_next_sched; 3805 next_wakeup_initialized = true; 3806 } 3807 continue; 3808 } 3809 if (down_read_trylock(&elr->lr_super->s_umount)) { 3810 if (sb_start_write_trylock(elr->lr_super)) { 3811 progress = 1; 3812 /* 3813 * We hold sb->s_umount, sb can not 3814 * be removed from the list, it is 3815 * now safe to drop li_list_mtx 3816 */ 3817 mutex_unlock(&eli->li_list_mtx); 3818 err = ext4_run_li_request(elr); 3819 sb_end_write(elr->lr_super); 3820 mutex_lock(&eli->li_list_mtx); 3821 n = pos->next; 3822 } 3823 up_read((&elr->lr_super->s_umount)); 3824 } 3825 /* error, remove the lazy_init job */ 3826 if (err) { 3827 ext4_remove_li_request(elr); 3828 continue; 3829 } 3830 if (!progress) { 3831 elr->lr_next_sched = jiffies + 3832 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3833 } 3834 if (!next_wakeup_initialized || 3835 time_before(elr->lr_next_sched, next_wakeup)) { 3836 next_wakeup = elr->lr_next_sched; 3837 next_wakeup_initialized = true; 3838 } 3839 } 3840 mutex_unlock(&eli->li_list_mtx); 3841 3842 try_to_freeze(); 3843 3844 cur = jiffies; 3845 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) { 3846 cond_resched(); 3847 continue; 3848 } 3849 3850 schedule_timeout_interruptible(next_wakeup - cur); 3851 3852 if (kthread_should_stop()) { 3853 ext4_clear_request_list(); 3854 goto exit_thread; 3855 } 3856 } 3857 3858 exit_thread: 3859 /* 3860 * It looks like the request list is empty, but we need 3861 * to check it under the li_list_mtx lock, to prevent any 3862 * additions into it, and of course we should lock ext4_li_mtx 3863 * to atomically free the list and ext4_li_info, because at 3864 * this point another ext4 filesystem could be registering 3865 * new one. 3866 */ 3867 mutex_lock(&ext4_li_mtx); 3868 mutex_lock(&eli->li_list_mtx); 3869 if (!list_empty(&eli->li_request_list)) { 3870 mutex_unlock(&eli->li_list_mtx); 3871 mutex_unlock(&ext4_li_mtx); 3872 goto cont_thread; 3873 } 3874 mutex_unlock(&eli->li_list_mtx); 3875 kfree(ext4_li_info); 3876 ext4_li_info = NULL; 3877 mutex_unlock(&ext4_li_mtx); 3878 3879 return 0; 3880 } 3881 3882 static void ext4_clear_request_list(void) 3883 { 3884 struct list_head *pos, *n; 3885 struct ext4_li_request *elr; 3886 3887 mutex_lock(&ext4_li_info->li_list_mtx); 3888 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3889 elr = list_entry(pos, struct ext4_li_request, 3890 lr_request); 3891 ext4_remove_li_request(elr); 3892 } 3893 mutex_unlock(&ext4_li_info->li_list_mtx); 3894 } 3895 3896 static int ext4_run_lazyinit_thread(void) 3897 { 3898 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3899 ext4_li_info, "ext4lazyinit"); 3900 if (IS_ERR(ext4_lazyinit_task)) { 3901 int err = PTR_ERR(ext4_lazyinit_task); 3902 ext4_clear_request_list(); 3903 kfree(ext4_li_info); 3904 ext4_li_info = NULL; 3905 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3906 "initialization thread\n", 3907 err); 3908 return err; 3909 } 3910 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3911 return 0; 3912 } 3913 3914 /* 3915 * Check whether it make sense to run itable init. thread or not. 3916 * If there is at least one uninitialized inode table, return 3917 * corresponding group number, else the loop goes through all 3918 * groups and return total number of groups. 3919 */ 3920 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3921 { 3922 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3923 struct ext4_group_desc *gdp = NULL; 3924 3925 if (!ext4_has_group_desc_csum(sb)) 3926 return ngroups; 3927 3928 for (group = 0; group < ngroups; group++) { 3929 gdp = ext4_get_group_desc(sb, group, NULL); 3930 if (!gdp) 3931 continue; 3932 3933 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3934 break; 3935 } 3936 3937 return group; 3938 } 3939 3940 static int ext4_li_info_new(void) 3941 { 3942 struct ext4_lazy_init *eli = NULL; 3943 3944 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3945 if (!eli) 3946 return -ENOMEM; 3947 3948 INIT_LIST_HEAD(&eli->li_request_list); 3949 mutex_init(&eli->li_list_mtx); 3950 3951 eli->li_state |= EXT4_LAZYINIT_QUIT; 3952 3953 ext4_li_info = eli; 3954 3955 return 0; 3956 } 3957 3958 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3959 ext4_group_t start) 3960 { 3961 struct ext4_li_request *elr; 3962 3963 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3964 if (!elr) 3965 return NULL; 3966 3967 elr->lr_super = sb; 3968 elr->lr_first_not_zeroed = start; 3969 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3970 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3971 elr->lr_next_group = start; 3972 } else { 3973 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3974 } 3975 3976 /* 3977 * Randomize first schedule time of the request to 3978 * spread the inode table initialization requests 3979 * better. 3980 */ 3981 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3982 return elr; 3983 } 3984 3985 int ext4_register_li_request(struct super_block *sb, 3986 ext4_group_t first_not_zeroed) 3987 { 3988 struct ext4_sb_info *sbi = EXT4_SB(sb); 3989 struct ext4_li_request *elr = NULL; 3990 ext4_group_t ngroups = sbi->s_groups_count; 3991 int ret = 0; 3992 3993 mutex_lock(&ext4_li_mtx); 3994 if (sbi->s_li_request != NULL) { 3995 /* 3996 * Reset timeout so it can be computed again, because 3997 * s_li_wait_mult might have changed. 3998 */ 3999 sbi->s_li_request->lr_timeout = 0; 4000 goto out; 4001 } 4002 4003 if (ext4_emergency_state(sb) || sb_rdonly(sb) || 4004 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4005 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4006 goto out; 4007 4008 elr = ext4_li_request_new(sb, first_not_zeroed); 4009 if (!elr) { 4010 ret = -ENOMEM; 4011 goto out; 4012 } 4013 4014 if (NULL == ext4_li_info) { 4015 ret = ext4_li_info_new(); 4016 if (ret) 4017 goto out; 4018 } 4019 4020 mutex_lock(&ext4_li_info->li_list_mtx); 4021 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4022 mutex_unlock(&ext4_li_info->li_list_mtx); 4023 4024 sbi->s_li_request = elr; 4025 /* 4026 * set elr to NULL here since it has been inserted to 4027 * the request_list and the removal and free of it is 4028 * handled by ext4_clear_request_list from now on. 4029 */ 4030 elr = NULL; 4031 4032 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4033 ret = ext4_run_lazyinit_thread(); 4034 if (ret) 4035 goto out; 4036 } 4037 out: 4038 mutex_unlock(&ext4_li_mtx); 4039 if (ret) 4040 kfree(elr); 4041 return ret; 4042 } 4043 4044 /* 4045 * We do not need to lock anything since this is called on 4046 * module unload. 4047 */ 4048 static void ext4_destroy_lazyinit_thread(void) 4049 { 4050 /* 4051 * If thread exited earlier 4052 * there's nothing to be done. 4053 */ 4054 if (!ext4_li_info || !ext4_lazyinit_task) 4055 return; 4056 4057 kthread_stop(ext4_lazyinit_task); 4058 } 4059 4060 static int set_journal_csum_feature_set(struct super_block *sb) 4061 { 4062 int ret = 1; 4063 int compat, incompat; 4064 struct ext4_sb_info *sbi = EXT4_SB(sb); 4065 4066 if (ext4_has_feature_metadata_csum(sb)) { 4067 /* journal checksum v3 */ 4068 compat = 0; 4069 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4070 } else { 4071 /* journal checksum v1 */ 4072 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4073 incompat = 0; 4074 } 4075 4076 jbd2_journal_clear_features(sbi->s_journal, 4077 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4078 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4079 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4080 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4081 ret = jbd2_journal_set_features(sbi->s_journal, 4082 compat, 0, 4083 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4084 incompat); 4085 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4086 ret = jbd2_journal_set_features(sbi->s_journal, 4087 compat, 0, 4088 incompat); 4089 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4090 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4091 } else { 4092 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4093 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4094 } 4095 4096 return ret; 4097 } 4098 4099 /* 4100 * Note: calculating the overhead so we can be compatible with 4101 * historical BSD practice is quite difficult in the face of 4102 * clusters/bigalloc. This is because multiple metadata blocks from 4103 * different block group can end up in the same allocation cluster. 4104 * Calculating the exact overhead in the face of clustered allocation 4105 * requires either O(all block bitmaps) in memory or O(number of block 4106 * groups**2) in time. We will still calculate the superblock for 4107 * older file systems --- and if we come across with a bigalloc file 4108 * system with zero in s_overhead_clusters the estimate will be close to 4109 * correct especially for very large cluster sizes --- but for newer 4110 * file systems, it's better to calculate this figure once at mkfs 4111 * time, and store it in the superblock. If the superblock value is 4112 * present (even for non-bigalloc file systems), we will use it. 4113 */ 4114 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4115 char *buf) 4116 { 4117 struct ext4_sb_info *sbi = EXT4_SB(sb); 4118 struct ext4_group_desc *gdp; 4119 ext4_fsblk_t first_block, last_block, b; 4120 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4121 int s, j, count = 0; 4122 int has_super = ext4_bg_has_super(sb, grp); 4123 4124 if (!ext4_has_feature_bigalloc(sb)) 4125 return (has_super + ext4_bg_num_gdb(sb, grp) + 4126 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4127 sbi->s_itb_per_group + 2); 4128 4129 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4130 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4131 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4132 for (i = 0; i < ngroups; i++) { 4133 gdp = ext4_get_group_desc(sb, i, NULL); 4134 b = ext4_block_bitmap(sb, gdp); 4135 if (b >= first_block && b <= last_block) { 4136 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4137 count++; 4138 } 4139 b = ext4_inode_bitmap(sb, gdp); 4140 if (b >= first_block && b <= last_block) { 4141 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4142 count++; 4143 } 4144 b = ext4_inode_table(sb, gdp); 4145 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4146 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4147 int c = EXT4_B2C(sbi, b - first_block); 4148 ext4_set_bit(c, buf); 4149 count++; 4150 } 4151 if (i != grp) 4152 continue; 4153 s = 0; 4154 if (ext4_bg_has_super(sb, grp)) { 4155 ext4_set_bit(s++, buf); 4156 count++; 4157 } 4158 j = ext4_bg_num_gdb(sb, grp); 4159 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4160 ext4_error(sb, "Invalid number of block group " 4161 "descriptor blocks: %d", j); 4162 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4163 } 4164 count += j; 4165 for (; j > 0; j--) 4166 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4167 } 4168 if (!count) 4169 return 0; 4170 return EXT4_CLUSTERS_PER_GROUP(sb) - 4171 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4172 } 4173 4174 /* 4175 * Compute the overhead and stash it in sbi->s_overhead 4176 */ 4177 int ext4_calculate_overhead(struct super_block *sb) 4178 { 4179 struct ext4_sb_info *sbi = EXT4_SB(sb); 4180 struct ext4_super_block *es = sbi->s_es; 4181 struct inode *j_inode; 4182 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4183 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4184 ext4_fsblk_t overhead = 0; 4185 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4186 4187 if (!buf) 4188 return -ENOMEM; 4189 4190 /* 4191 * Compute the overhead (FS structures). This is constant 4192 * for a given filesystem unless the number of block groups 4193 * changes so we cache the previous value until it does. 4194 */ 4195 4196 /* 4197 * All of the blocks before first_data_block are overhead 4198 */ 4199 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4200 4201 /* 4202 * Add the overhead found in each block group 4203 */ 4204 for (i = 0; i < ngroups; i++) { 4205 int blks; 4206 4207 blks = count_overhead(sb, i, buf); 4208 overhead += blks; 4209 if (blks) 4210 memset(buf, 0, PAGE_SIZE); 4211 cond_resched(); 4212 } 4213 4214 /* 4215 * Add the internal journal blocks whether the journal has been 4216 * loaded or not 4217 */ 4218 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4219 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4220 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4221 /* j_inum for internal journal is non-zero */ 4222 j_inode = ext4_get_journal_inode(sb, j_inum); 4223 if (!IS_ERR(j_inode)) { 4224 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4225 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4226 iput(j_inode); 4227 } else { 4228 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4229 } 4230 } 4231 sbi->s_overhead = overhead; 4232 smp_wmb(); 4233 free_page((unsigned long) buf); 4234 return 0; 4235 } 4236 4237 static void ext4_set_resv_clusters(struct super_block *sb) 4238 { 4239 ext4_fsblk_t resv_clusters; 4240 struct ext4_sb_info *sbi = EXT4_SB(sb); 4241 4242 /* 4243 * There's no need to reserve anything when we aren't using extents. 4244 * The space estimates are exact, there are no unwritten extents, 4245 * hole punching doesn't need new metadata... This is needed especially 4246 * to keep ext2/3 backward compatibility. 4247 */ 4248 if (!ext4_has_feature_extents(sb)) 4249 return; 4250 /* 4251 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4252 * This should cover the situations where we can not afford to run 4253 * out of space like for example punch hole, or converting 4254 * unwritten extents in delalloc path. In most cases such 4255 * allocation would require 1, or 2 blocks, higher numbers are 4256 * very rare. 4257 */ 4258 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4259 sbi->s_cluster_bits); 4260 4261 do_div(resv_clusters, 50); 4262 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4263 4264 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4265 } 4266 4267 static const char *ext4_quota_mode(struct super_block *sb) 4268 { 4269 #ifdef CONFIG_QUOTA 4270 if (!ext4_quota_capable(sb)) 4271 return "none"; 4272 4273 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4274 return "journalled"; 4275 else 4276 return "writeback"; 4277 #else 4278 return "disabled"; 4279 #endif 4280 } 4281 4282 static void ext4_setup_csum_trigger(struct super_block *sb, 4283 enum ext4_journal_trigger_type type, 4284 void (*trigger)( 4285 struct jbd2_buffer_trigger_type *type, 4286 struct buffer_head *bh, 4287 void *mapped_data, 4288 size_t size)) 4289 { 4290 struct ext4_sb_info *sbi = EXT4_SB(sb); 4291 4292 sbi->s_journal_triggers[type].sb = sb; 4293 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4294 } 4295 4296 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4297 { 4298 if (!sbi) 4299 return; 4300 4301 kfree(sbi->s_blockgroup_lock); 4302 fs_put_dax(sbi->s_daxdev, NULL); 4303 kfree(sbi); 4304 } 4305 4306 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4307 { 4308 struct ext4_sb_info *sbi; 4309 4310 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4311 if (!sbi) 4312 return NULL; 4313 4314 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4315 NULL, NULL); 4316 4317 sbi->s_blockgroup_lock = 4318 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4319 4320 if (!sbi->s_blockgroup_lock) 4321 goto err_out; 4322 4323 sb->s_fs_info = sbi; 4324 sbi->s_sb = sb; 4325 return sbi; 4326 err_out: 4327 fs_put_dax(sbi->s_daxdev, NULL); 4328 kfree(sbi); 4329 return NULL; 4330 } 4331 4332 static void ext4_set_def_opts(struct super_block *sb, 4333 struct ext4_super_block *es) 4334 { 4335 unsigned long def_mount_opts; 4336 4337 /* Set defaults before we parse the mount options */ 4338 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4339 set_opt(sb, INIT_INODE_TABLE); 4340 if (def_mount_opts & EXT4_DEFM_DEBUG) 4341 set_opt(sb, DEBUG); 4342 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4343 set_opt(sb, GRPID); 4344 if (def_mount_opts & EXT4_DEFM_UID16) 4345 set_opt(sb, NO_UID32); 4346 /* xattr user namespace & acls are now defaulted on */ 4347 set_opt(sb, XATTR_USER); 4348 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4349 set_opt(sb, POSIX_ACL); 4350 #endif 4351 if (ext4_has_feature_fast_commit(sb)) 4352 set_opt2(sb, JOURNAL_FAST_COMMIT); 4353 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4354 if (ext4_has_feature_metadata_csum(sb)) 4355 set_opt(sb, JOURNAL_CHECKSUM); 4356 4357 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4358 set_opt(sb, JOURNAL_DATA); 4359 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4360 set_opt(sb, ORDERED_DATA); 4361 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4362 set_opt(sb, WRITEBACK_DATA); 4363 4364 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4365 set_opt(sb, ERRORS_PANIC); 4366 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4367 set_opt(sb, ERRORS_CONT); 4368 else 4369 set_opt(sb, ERRORS_RO); 4370 /* block_validity enabled by default; disable with noblock_validity */ 4371 set_opt(sb, BLOCK_VALIDITY); 4372 if (def_mount_opts & EXT4_DEFM_DISCARD) 4373 set_opt(sb, DISCARD); 4374 4375 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4376 set_opt(sb, BARRIER); 4377 4378 /* 4379 * enable delayed allocation by default 4380 * Use -o nodelalloc to turn it off 4381 */ 4382 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4383 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4384 set_opt(sb, DELALLOC); 4385 4386 if (sb->s_blocksize <= PAGE_SIZE) 4387 set_opt(sb, DIOREAD_NOLOCK); 4388 } 4389 4390 static int ext4_handle_clustersize(struct super_block *sb) 4391 { 4392 struct ext4_sb_info *sbi = EXT4_SB(sb); 4393 struct ext4_super_block *es = sbi->s_es; 4394 int clustersize; 4395 4396 /* Handle clustersize */ 4397 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4398 if (ext4_has_feature_bigalloc(sb)) { 4399 if (clustersize < sb->s_blocksize) { 4400 ext4_msg(sb, KERN_ERR, 4401 "cluster size (%d) smaller than " 4402 "block size (%lu)", clustersize, sb->s_blocksize); 4403 return -EINVAL; 4404 } 4405 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4406 le32_to_cpu(es->s_log_block_size); 4407 } else { 4408 if (clustersize != sb->s_blocksize) { 4409 ext4_msg(sb, KERN_ERR, 4410 "fragment/cluster size (%d) != " 4411 "block size (%lu)", clustersize, sb->s_blocksize); 4412 return -EINVAL; 4413 } 4414 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4415 ext4_msg(sb, KERN_ERR, 4416 "#blocks per group too big: %lu", 4417 sbi->s_blocks_per_group); 4418 return -EINVAL; 4419 } 4420 sbi->s_cluster_bits = 0; 4421 } 4422 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4423 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4424 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4425 sbi->s_clusters_per_group); 4426 return -EINVAL; 4427 } 4428 if (sbi->s_blocks_per_group != 4429 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4430 ext4_msg(sb, KERN_ERR, 4431 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4432 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4433 return -EINVAL; 4434 } 4435 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4436 4437 /* Do we have standard group size of clustersize * 8 blocks ? */ 4438 if (sbi->s_blocks_per_group == clustersize << 3) 4439 set_opt2(sb, STD_GROUP_SIZE); 4440 4441 return 0; 4442 } 4443 4444 /* 4445 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units. 4446 * With non-bigalloc filesystem awu will be based upon filesystem blocksize 4447 * & bdev awu units. 4448 * With bigalloc it will be based upon bigalloc cluster size & bdev awu units. 4449 * @sb: super block 4450 */ 4451 static void ext4_atomic_write_init(struct super_block *sb) 4452 { 4453 struct ext4_sb_info *sbi = EXT4_SB(sb); 4454 struct block_device *bdev = sb->s_bdev; 4455 unsigned int clustersize = EXT4_CLUSTER_SIZE(sb); 4456 4457 if (!bdev_can_atomic_write(bdev)) 4458 return; 4459 4460 if (!ext4_has_feature_extents(sb)) 4461 return; 4462 4463 sbi->s_awu_min = max(sb->s_blocksize, 4464 bdev_atomic_write_unit_min_bytes(bdev)); 4465 sbi->s_awu_max = min(clustersize, 4466 bdev_atomic_write_unit_max_bytes(bdev)); 4467 if (sbi->s_awu_min && sbi->s_awu_max && 4468 sbi->s_awu_min <= sbi->s_awu_max) { 4469 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u", 4470 sbi->s_awu_min, sbi->s_awu_max); 4471 } else { 4472 sbi->s_awu_min = 0; 4473 sbi->s_awu_max = 0; 4474 } 4475 } 4476 4477 static void ext4_fast_commit_init(struct super_block *sb) 4478 { 4479 struct ext4_sb_info *sbi = EXT4_SB(sb); 4480 4481 /* Initialize fast commit stuff */ 4482 atomic_set(&sbi->s_fc_subtid, 0); 4483 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4484 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4485 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4486 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4487 sbi->s_fc_bytes = 0; 4488 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4489 sbi->s_fc_ineligible_tid = 0; 4490 mutex_init(&sbi->s_fc_lock); 4491 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4492 sbi->s_fc_replay_state.fc_regions = NULL; 4493 sbi->s_fc_replay_state.fc_regions_size = 0; 4494 sbi->s_fc_replay_state.fc_regions_used = 0; 4495 sbi->s_fc_replay_state.fc_regions_valid = 0; 4496 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4497 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4498 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4499 } 4500 4501 static int ext4_inode_info_init(struct super_block *sb, 4502 struct ext4_super_block *es) 4503 { 4504 struct ext4_sb_info *sbi = EXT4_SB(sb); 4505 4506 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4507 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4508 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4509 } else { 4510 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4511 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4512 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4513 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4514 sbi->s_first_ino); 4515 return -EINVAL; 4516 } 4517 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4518 (!is_power_of_2(sbi->s_inode_size)) || 4519 (sbi->s_inode_size > sb->s_blocksize)) { 4520 ext4_msg(sb, KERN_ERR, 4521 "unsupported inode size: %d", 4522 sbi->s_inode_size); 4523 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4524 return -EINVAL; 4525 } 4526 /* 4527 * i_atime_extra is the last extra field available for 4528 * [acm]times in struct ext4_inode. Checking for that 4529 * field should suffice to ensure we have extra space 4530 * for all three. 4531 */ 4532 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4533 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4534 sb->s_time_gran = 1; 4535 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4536 } else { 4537 sb->s_time_gran = NSEC_PER_SEC; 4538 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4539 } 4540 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4541 } 4542 4543 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4544 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4545 EXT4_GOOD_OLD_INODE_SIZE; 4546 if (ext4_has_feature_extra_isize(sb)) { 4547 unsigned v, max = (sbi->s_inode_size - 4548 EXT4_GOOD_OLD_INODE_SIZE); 4549 4550 v = le16_to_cpu(es->s_want_extra_isize); 4551 if (v > max) { 4552 ext4_msg(sb, KERN_ERR, 4553 "bad s_want_extra_isize: %d", v); 4554 return -EINVAL; 4555 } 4556 if (sbi->s_want_extra_isize < v) 4557 sbi->s_want_extra_isize = v; 4558 4559 v = le16_to_cpu(es->s_min_extra_isize); 4560 if (v > max) { 4561 ext4_msg(sb, KERN_ERR, 4562 "bad s_min_extra_isize: %d", v); 4563 return -EINVAL; 4564 } 4565 if (sbi->s_want_extra_isize < v) 4566 sbi->s_want_extra_isize = v; 4567 } 4568 } 4569 4570 return 0; 4571 } 4572 4573 #if IS_ENABLED(CONFIG_UNICODE) 4574 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4575 { 4576 const struct ext4_sb_encodings *encoding_info; 4577 struct unicode_map *encoding; 4578 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4579 4580 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4581 return 0; 4582 4583 encoding_info = ext4_sb_read_encoding(es); 4584 if (!encoding_info) { 4585 ext4_msg(sb, KERN_ERR, 4586 "Encoding requested by superblock is unknown"); 4587 return -EINVAL; 4588 } 4589 4590 encoding = utf8_load(encoding_info->version); 4591 if (IS_ERR(encoding)) { 4592 ext4_msg(sb, KERN_ERR, 4593 "can't mount with superblock charset: %s-%u.%u.%u " 4594 "not supported by the kernel. flags: 0x%x.", 4595 encoding_info->name, 4596 unicode_major(encoding_info->version), 4597 unicode_minor(encoding_info->version), 4598 unicode_rev(encoding_info->version), 4599 encoding_flags); 4600 return -EINVAL; 4601 } 4602 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4603 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4604 unicode_major(encoding_info->version), 4605 unicode_minor(encoding_info->version), 4606 unicode_rev(encoding_info->version), 4607 encoding_flags); 4608 4609 sb->s_encoding = encoding; 4610 sb->s_encoding_flags = encoding_flags; 4611 4612 return 0; 4613 } 4614 #else 4615 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4616 { 4617 return 0; 4618 } 4619 #endif 4620 4621 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4622 { 4623 struct ext4_sb_info *sbi = EXT4_SB(sb); 4624 4625 /* Warn if metadata_csum and gdt_csum are both set. */ 4626 if (ext4_has_feature_metadata_csum(sb) && 4627 ext4_has_feature_gdt_csum(sb)) 4628 ext4_warning(sb, "metadata_csum and uninit_bg are " 4629 "redundant flags; please run fsck."); 4630 4631 /* Check for a known checksum algorithm */ 4632 if (!ext4_verify_csum_type(sb, es)) { 4633 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4634 "unknown checksum algorithm."); 4635 return -EINVAL; 4636 } 4637 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4638 ext4_orphan_file_block_trigger); 4639 4640 /* Check superblock checksum */ 4641 if (!ext4_superblock_csum_verify(sb, es)) { 4642 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4643 "invalid superblock checksum. Run e2fsck?"); 4644 return -EFSBADCRC; 4645 } 4646 4647 /* Precompute checksum seed for all metadata */ 4648 if (ext4_has_feature_csum_seed(sb)) 4649 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4650 else if (ext4_has_feature_metadata_csum(sb) || 4651 ext4_has_feature_ea_inode(sb)) 4652 sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid, 4653 sizeof(es->s_uuid)); 4654 return 0; 4655 } 4656 4657 static int ext4_check_feature_compatibility(struct super_block *sb, 4658 struct ext4_super_block *es, 4659 int silent) 4660 { 4661 struct ext4_sb_info *sbi = EXT4_SB(sb); 4662 4663 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4664 (ext4_has_compat_features(sb) || 4665 ext4_has_ro_compat_features(sb) || 4666 ext4_has_incompat_features(sb))) 4667 ext4_msg(sb, KERN_WARNING, 4668 "feature flags set on rev 0 fs, " 4669 "running e2fsck is recommended"); 4670 4671 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4672 set_opt2(sb, HURD_COMPAT); 4673 if (ext4_has_feature_64bit(sb)) { 4674 ext4_msg(sb, KERN_ERR, 4675 "The Hurd can't support 64-bit file systems"); 4676 return -EINVAL; 4677 } 4678 4679 /* 4680 * ea_inode feature uses l_i_version field which is not 4681 * available in HURD_COMPAT mode. 4682 */ 4683 if (ext4_has_feature_ea_inode(sb)) { 4684 ext4_msg(sb, KERN_ERR, 4685 "ea_inode feature is not supported for Hurd"); 4686 return -EINVAL; 4687 } 4688 } 4689 4690 if (IS_EXT2_SB(sb)) { 4691 if (ext2_feature_set_ok(sb)) 4692 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4693 "using the ext4 subsystem"); 4694 else { 4695 /* 4696 * If we're probing be silent, if this looks like 4697 * it's actually an ext[34] filesystem. 4698 */ 4699 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4700 return -EINVAL; 4701 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4702 "to feature incompatibilities"); 4703 return -EINVAL; 4704 } 4705 } 4706 4707 if (IS_EXT3_SB(sb)) { 4708 if (ext3_feature_set_ok(sb)) 4709 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4710 "using the ext4 subsystem"); 4711 else { 4712 /* 4713 * If we're probing be silent, if this looks like 4714 * it's actually an ext4 filesystem. 4715 */ 4716 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4717 return -EINVAL; 4718 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4719 "to feature incompatibilities"); 4720 return -EINVAL; 4721 } 4722 } 4723 4724 /* 4725 * Check feature flags regardless of the revision level, since we 4726 * previously didn't change the revision level when setting the flags, 4727 * so there is a chance incompat flags are set on a rev 0 filesystem. 4728 */ 4729 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4730 return -EINVAL; 4731 4732 if (sbi->s_daxdev) { 4733 if (sb->s_blocksize == PAGE_SIZE) 4734 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4735 else 4736 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4737 } 4738 4739 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4740 if (ext4_has_feature_inline_data(sb)) { 4741 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4742 " that may contain inline data"); 4743 return -EINVAL; 4744 } 4745 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4746 ext4_msg(sb, KERN_ERR, 4747 "DAX unsupported by block device."); 4748 return -EINVAL; 4749 } 4750 } 4751 4752 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4753 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4754 es->s_encryption_level); 4755 return -EINVAL; 4756 } 4757 4758 return 0; 4759 } 4760 4761 static int ext4_check_geometry(struct super_block *sb, 4762 struct ext4_super_block *es) 4763 { 4764 struct ext4_sb_info *sbi = EXT4_SB(sb); 4765 __u64 blocks_count; 4766 int err; 4767 4768 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4769 ext4_msg(sb, KERN_ERR, 4770 "Number of reserved GDT blocks insanely large: %d", 4771 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4772 return -EINVAL; 4773 } 4774 /* 4775 * Test whether we have more sectors than will fit in sector_t, 4776 * and whether the max offset is addressable by the page cache. 4777 */ 4778 err = generic_check_addressable(sb->s_blocksize_bits, 4779 ext4_blocks_count(es)); 4780 if (err) { 4781 ext4_msg(sb, KERN_ERR, "filesystem" 4782 " too large to mount safely on this system"); 4783 return err; 4784 } 4785 4786 /* check blocks count against device size */ 4787 blocks_count = sb_bdev_nr_blocks(sb); 4788 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4789 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4790 "exceeds size of device (%llu blocks)", 4791 ext4_blocks_count(es), blocks_count); 4792 return -EINVAL; 4793 } 4794 4795 /* 4796 * It makes no sense for the first data block to be beyond the end 4797 * of the filesystem. 4798 */ 4799 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4800 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4801 "block %u is beyond end of filesystem (%llu)", 4802 le32_to_cpu(es->s_first_data_block), 4803 ext4_blocks_count(es)); 4804 return -EINVAL; 4805 } 4806 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4807 (sbi->s_cluster_ratio == 1)) { 4808 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4809 "block is 0 with a 1k block and cluster size"); 4810 return -EINVAL; 4811 } 4812 4813 blocks_count = (ext4_blocks_count(es) - 4814 le32_to_cpu(es->s_first_data_block) + 4815 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4816 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4817 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4818 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4819 "(block count %llu, first data block %u, " 4820 "blocks per group %lu)", blocks_count, 4821 ext4_blocks_count(es), 4822 le32_to_cpu(es->s_first_data_block), 4823 EXT4_BLOCKS_PER_GROUP(sb)); 4824 return -EINVAL; 4825 } 4826 sbi->s_groups_count = blocks_count; 4827 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4828 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4829 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4830 le32_to_cpu(es->s_inodes_count)) { 4831 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4832 le32_to_cpu(es->s_inodes_count), 4833 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4834 return -EINVAL; 4835 } 4836 4837 return 0; 4838 } 4839 4840 static int ext4_group_desc_init(struct super_block *sb, 4841 struct ext4_super_block *es, 4842 ext4_fsblk_t logical_sb_block, 4843 ext4_group_t *first_not_zeroed) 4844 { 4845 struct ext4_sb_info *sbi = EXT4_SB(sb); 4846 unsigned int db_count; 4847 ext4_fsblk_t block; 4848 int i; 4849 4850 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4851 EXT4_DESC_PER_BLOCK(sb); 4852 if (ext4_has_feature_meta_bg(sb)) { 4853 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4854 ext4_msg(sb, KERN_WARNING, 4855 "first meta block group too large: %u " 4856 "(group descriptor block count %u)", 4857 le32_to_cpu(es->s_first_meta_bg), db_count); 4858 return -EINVAL; 4859 } 4860 } 4861 rcu_assign_pointer(sbi->s_group_desc, 4862 kvmalloc_array(db_count, 4863 sizeof(struct buffer_head *), 4864 GFP_KERNEL)); 4865 if (sbi->s_group_desc == NULL) { 4866 ext4_msg(sb, KERN_ERR, "not enough memory"); 4867 return -ENOMEM; 4868 } 4869 4870 bgl_lock_init(sbi->s_blockgroup_lock); 4871 4872 /* Pre-read the descriptors into the buffer cache */ 4873 for (i = 0; i < db_count; i++) { 4874 block = descriptor_loc(sb, logical_sb_block, i); 4875 ext4_sb_breadahead_unmovable(sb, block); 4876 } 4877 4878 for (i = 0; i < db_count; i++) { 4879 struct buffer_head *bh; 4880 4881 block = descriptor_loc(sb, logical_sb_block, i); 4882 bh = ext4_sb_bread_unmovable(sb, block); 4883 if (IS_ERR(bh)) { 4884 ext4_msg(sb, KERN_ERR, 4885 "can't read group descriptor %d", i); 4886 sbi->s_gdb_count = i; 4887 return PTR_ERR(bh); 4888 } 4889 rcu_read_lock(); 4890 rcu_dereference(sbi->s_group_desc)[i] = bh; 4891 rcu_read_unlock(); 4892 } 4893 sbi->s_gdb_count = db_count; 4894 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4895 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4896 return -EFSCORRUPTED; 4897 } 4898 4899 return 0; 4900 } 4901 4902 static int ext4_load_and_init_journal(struct super_block *sb, 4903 struct ext4_super_block *es, 4904 struct ext4_fs_context *ctx) 4905 { 4906 struct ext4_sb_info *sbi = EXT4_SB(sb); 4907 int err; 4908 4909 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4910 if (err) 4911 return err; 4912 4913 if (ext4_has_feature_64bit(sb) && 4914 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4915 JBD2_FEATURE_INCOMPAT_64BIT)) { 4916 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4917 goto out; 4918 } 4919 4920 if (!set_journal_csum_feature_set(sb)) { 4921 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4922 "feature set"); 4923 goto out; 4924 } 4925 4926 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4927 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4928 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4929 ext4_msg(sb, KERN_ERR, 4930 "Failed to set fast commit journal feature"); 4931 goto out; 4932 } 4933 4934 /* We have now updated the journal if required, so we can 4935 * validate the data journaling mode. */ 4936 switch (test_opt(sb, DATA_FLAGS)) { 4937 case 0: 4938 /* No mode set, assume a default based on the journal 4939 * capabilities: ORDERED_DATA if the journal can 4940 * cope, else JOURNAL_DATA 4941 */ 4942 if (jbd2_journal_check_available_features 4943 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4944 set_opt(sb, ORDERED_DATA); 4945 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4946 } else { 4947 set_opt(sb, JOURNAL_DATA); 4948 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4949 } 4950 break; 4951 4952 case EXT4_MOUNT_ORDERED_DATA: 4953 case EXT4_MOUNT_WRITEBACK_DATA: 4954 if (!jbd2_journal_check_available_features 4955 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4956 ext4_msg(sb, KERN_ERR, "Journal does not support " 4957 "requested data journaling mode"); 4958 goto out; 4959 } 4960 break; 4961 default: 4962 break; 4963 } 4964 4965 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4966 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4967 ext4_msg(sb, KERN_ERR, "can't mount with " 4968 "journal_async_commit in data=ordered mode"); 4969 goto out; 4970 } 4971 4972 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4973 4974 sbi->s_journal->j_submit_inode_data_buffers = 4975 ext4_journal_submit_inode_data_buffers; 4976 sbi->s_journal->j_finish_inode_data_buffers = 4977 ext4_journal_finish_inode_data_buffers; 4978 4979 return 0; 4980 4981 out: 4982 ext4_journal_destroy(sbi, sbi->s_journal); 4983 return -EINVAL; 4984 } 4985 4986 static int ext4_check_journal_data_mode(struct super_block *sb) 4987 { 4988 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4989 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4990 "data=journal disables delayed allocation, " 4991 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4992 /* can't mount with both data=journal and dioread_nolock. */ 4993 clear_opt(sb, DIOREAD_NOLOCK); 4994 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4995 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4996 ext4_msg(sb, KERN_ERR, "can't mount with " 4997 "both data=journal and delalloc"); 4998 return -EINVAL; 4999 } 5000 if (test_opt(sb, DAX_ALWAYS)) { 5001 ext4_msg(sb, KERN_ERR, "can't mount with " 5002 "both data=journal and dax"); 5003 return -EINVAL; 5004 } 5005 if (ext4_has_feature_encrypt(sb)) { 5006 ext4_msg(sb, KERN_WARNING, 5007 "encrypted files will use data=ordered " 5008 "instead of data journaling mode"); 5009 } 5010 if (test_opt(sb, DELALLOC)) 5011 clear_opt(sb, DELALLOC); 5012 } else { 5013 sb->s_iflags |= SB_I_CGROUPWB; 5014 } 5015 5016 return 0; 5017 } 5018 5019 static const char *ext4_has_journal_option(struct super_block *sb) 5020 { 5021 struct ext4_sb_info *sbi = EXT4_SB(sb); 5022 5023 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 5024 return "journal_async_commit"; 5025 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) 5026 return "journal_checksum"; 5027 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 5028 return "commit="; 5029 if (EXT4_MOUNT_DATA_FLAGS & 5030 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) 5031 return "data="; 5032 if (test_opt(sb, DATA_ERR_ABORT)) 5033 return "data_err=abort"; 5034 return NULL; 5035 } 5036 5037 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5038 int silent) 5039 { 5040 struct ext4_sb_info *sbi = EXT4_SB(sb); 5041 struct ext4_super_block *es; 5042 ext4_fsblk_t logical_sb_block; 5043 unsigned long offset = 0; 5044 struct buffer_head *bh; 5045 int ret = -EINVAL; 5046 int blocksize; 5047 5048 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5049 if (!blocksize) { 5050 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5051 return -EINVAL; 5052 } 5053 5054 /* 5055 * The ext4 superblock will not be buffer aligned for other than 1kB 5056 * block sizes. We need to calculate the offset from buffer start. 5057 */ 5058 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5059 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5060 offset = do_div(logical_sb_block, blocksize); 5061 } else { 5062 logical_sb_block = sbi->s_sb_block; 5063 } 5064 5065 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5066 if (IS_ERR(bh)) { 5067 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5068 return PTR_ERR(bh); 5069 } 5070 /* 5071 * Note: s_es must be initialized as soon as possible because 5072 * some ext4 macro-instructions depend on its value 5073 */ 5074 es = (struct ext4_super_block *) (bh->b_data + offset); 5075 sbi->s_es = es; 5076 sb->s_magic = le16_to_cpu(es->s_magic); 5077 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5078 if (!silent) 5079 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5080 goto out; 5081 } 5082 5083 if (le32_to_cpu(es->s_log_block_size) > 5084 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5085 ext4_msg(sb, KERN_ERR, 5086 "Invalid log block size: %u", 5087 le32_to_cpu(es->s_log_block_size)); 5088 goto out; 5089 } 5090 if (le32_to_cpu(es->s_log_cluster_size) > 5091 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5092 ext4_msg(sb, KERN_ERR, 5093 "Invalid log cluster size: %u", 5094 le32_to_cpu(es->s_log_cluster_size)); 5095 goto out; 5096 } 5097 5098 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5099 5100 /* 5101 * If the default block size is not the same as the real block size, 5102 * we need to reload it. 5103 */ 5104 if (sb->s_blocksize == blocksize) { 5105 *lsb = logical_sb_block; 5106 sbi->s_sbh = bh; 5107 return 0; 5108 } 5109 5110 /* 5111 * bh must be released before kill_bdev(), otherwise 5112 * it won't be freed and its page also. kill_bdev() 5113 * is called by sb_set_blocksize(). 5114 */ 5115 brelse(bh); 5116 /* Validate the filesystem blocksize */ 5117 if (!sb_set_blocksize(sb, blocksize)) { 5118 ext4_msg(sb, KERN_ERR, "bad block size %d", 5119 blocksize); 5120 bh = NULL; 5121 goto out; 5122 } 5123 5124 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5125 offset = do_div(logical_sb_block, blocksize); 5126 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5127 if (IS_ERR(bh)) { 5128 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5129 ret = PTR_ERR(bh); 5130 bh = NULL; 5131 goto out; 5132 } 5133 es = (struct ext4_super_block *)(bh->b_data + offset); 5134 sbi->s_es = es; 5135 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5136 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5137 goto out; 5138 } 5139 *lsb = logical_sb_block; 5140 sbi->s_sbh = bh; 5141 return 0; 5142 out: 5143 brelse(bh); 5144 return ret; 5145 } 5146 5147 static int ext4_hash_info_init(struct super_block *sb) 5148 { 5149 struct ext4_sb_info *sbi = EXT4_SB(sb); 5150 struct ext4_super_block *es = sbi->s_es; 5151 unsigned int i; 5152 5153 sbi->s_def_hash_version = es->s_def_hash_version; 5154 5155 if (sbi->s_def_hash_version > DX_HASH_LAST) { 5156 ext4_msg(sb, KERN_ERR, 5157 "Invalid default hash set in the superblock"); 5158 return -EINVAL; 5159 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) { 5160 ext4_msg(sb, KERN_ERR, 5161 "SIPHASH is not a valid default hash value"); 5162 return -EINVAL; 5163 } 5164 5165 for (i = 0; i < 4; i++) 5166 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5167 5168 if (ext4_has_feature_dir_index(sb)) { 5169 i = le32_to_cpu(es->s_flags); 5170 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5171 sbi->s_hash_unsigned = 3; 5172 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5173 #ifdef __CHAR_UNSIGNED__ 5174 if (!sb_rdonly(sb)) 5175 es->s_flags |= 5176 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5177 sbi->s_hash_unsigned = 3; 5178 #else 5179 if (!sb_rdonly(sb)) 5180 es->s_flags |= 5181 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5182 #endif 5183 } 5184 } 5185 return 0; 5186 } 5187 5188 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5189 { 5190 struct ext4_sb_info *sbi = EXT4_SB(sb); 5191 struct ext4_super_block *es = sbi->s_es; 5192 int has_huge_files; 5193 5194 has_huge_files = ext4_has_feature_huge_file(sb); 5195 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5196 has_huge_files); 5197 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5198 5199 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5200 if (ext4_has_feature_64bit(sb)) { 5201 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5202 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5203 !is_power_of_2(sbi->s_desc_size)) { 5204 ext4_msg(sb, KERN_ERR, 5205 "unsupported descriptor size %lu", 5206 sbi->s_desc_size); 5207 return -EINVAL; 5208 } 5209 } else 5210 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5211 5212 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5213 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5214 5215 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5216 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5217 if (!silent) 5218 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5219 return -EINVAL; 5220 } 5221 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5222 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5223 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5224 sbi->s_inodes_per_group); 5225 return -EINVAL; 5226 } 5227 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5228 sbi->s_inodes_per_block; 5229 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5230 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5231 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5232 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5233 5234 return 0; 5235 } 5236 5237 /* 5238 * It's hard to get stripe aligned blocks if stripe is not aligned with 5239 * cluster, just disable stripe and alert user to simplify code and avoid 5240 * stripe aligned allocation which will rarely succeed. 5241 */ 5242 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe) 5243 { 5244 struct ext4_sb_info *sbi = EXT4_SB(sb); 5245 return (stripe > 0 && sbi->s_cluster_ratio > 1 && 5246 stripe % sbi->s_cluster_ratio != 0); 5247 } 5248 5249 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5250 { 5251 struct ext4_super_block *es = NULL; 5252 struct ext4_sb_info *sbi = EXT4_SB(sb); 5253 ext4_fsblk_t logical_sb_block; 5254 struct inode *root; 5255 int needs_recovery; 5256 int err; 5257 ext4_group_t first_not_zeroed; 5258 struct ext4_fs_context *ctx = fc->fs_private; 5259 int silent = fc->sb_flags & SB_SILENT; 5260 5261 /* Set defaults for the variables that will be set during parsing */ 5262 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5263 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; 5264 5265 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5266 sbi->s_sectors_written_start = 5267 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5268 5269 err = ext4_load_super(sb, &logical_sb_block, silent); 5270 if (err) 5271 goto out_fail; 5272 5273 es = sbi->s_es; 5274 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5275 5276 err = ext4_init_metadata_csum(sb, es); 5277 if (err) 5278 goto failed_mount; 5279 5280 ext4_set_def_opts(sb, es); 5281 5282 sbi->s_resuid = make_kuid(&init_user_ns, ext4_get_resuid(es)); 5283 sbi->s_resgid = make_kgid(&init_user_ns, ext4_get_resuid(es)); 5284 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5285 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5286 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5287 sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB; 5288 sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC; 5289 5290 /* 5291 * set default s_li_wait_mult for lazyinit, for the case there is 5292 * no mount option specified. 5293 */ 5294 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5295 5296 err = ext4_inode_info_init(sb, es); 5297 if (err) 5298 goto failed_mount; 5299 5300 err = parse_apply_sb_mount_options(sb, ctx); 5301 if (err < 0) 5302 goto failed_mount; 5303 5304 sbi->s_def_mount_opt = sbi->s_mount_opt; 5305 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5306 5307 err = ext4_check_opt_consistency(fc, sb); 5308 if (err < 0) 5309 goto failed_mount; 5310 5311 ext4_apply_options(fc, sb); 5312 5313 err = ext4_encoding_init(sb, es); 5314 if (err) 5315 goto failed_mount; 5316 5317 err = ext4_check_journal_data_mode(sb); 5318 if (err) 5319 goto failed_mount; 5320 5321 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5322 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5323 5324 /* HSM events are allowed by default. */ 5325 sb->s_iflags |= SB_I_ALLOW_HSM; 5326 5327 err = ext4_check_feature_compatibility(sb, es, silent); 5328 if (err) 5329 goto failed_mount; 5330 5331 err = ext4_block_group_meta_init(sb, silent); 5332 if (err) 5333 goto failed_mount; 5334 5335 err = ext4_hash_info_init(sb); 5336 if (err) 5337 goto failed_mount; 5338 5339 err = ext4_handle_clustersize(sb); 5340 if (err) 5341 goto failed_mount; 5342 5343 err = ext4_check_geometry(sb, es); 5344 if (err) 5345 goto failed_mount; 5346 5347 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5348 spin_lock_init(&sbi->s_error_lock); 5349 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5350 5351 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5352 if (err) 5353 goto failed_mount3; 5354 5355 err = ext4_es_register_shrinker(sbi); 5356 if (err) 5357 goto failed_mount3; 5358 5359 sbi->s_stripe = ext4_get_stripe_size(sbi); 5360 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) { 5361 ext4_msg(sb, KERN_WARNING, 5362 "stripe (%lu) is not aligned with cluster size (%u), " 5363 "stripe is disabled", 5364 sbi->s_stripe, sbi->s_cluster_ratio); 5365 sbi->s_stripe = 0; 5366 } 5367 sbi->s_extent_max_zeroout_kb = 32; 5368 5369 /* 5370 * set up enough so that it can read an inode 5371 */ 5372 sb->s_op = &ext4_sops; 5373 sb->s_export_op = &ext4_export_ops; 5374 sb->s_xattr = ext4_xattr_handlers; 5375 #ifdef CONFIG_FS_ENCRYPTION 5376 sb->s_cop = &ext4_cryptops; 5377 #endif 5378 #ifdef CONFIG_FS_VERITY 5379 sb->s_vop = &ext4_verityops; 5380 #endif 5381 #ifdef CONFIG_QUOTA 5382 sb->dq_op = &ext4_quota_operations; 5383 if (ext4_has_feature_quota(sb)) 5384 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5385 else 5386 sb->s_qcop = &ext4_qctl_operations; 5387 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5388 #endif 5389 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5390 super_set_sysfs_name_bdev(sb); 5391 5392 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5393 mutex_init(&sbi->s_orphan_lock); 5394 5395 spin_lock_init(&sbi->s_bdev_wb_lock); 5396 5397 ext4_atomic_write_init(sb); 5398 ext4_fast_commit_init(sb); 5399 5400 sb->s_root = NULL; 5401 5402 needs_recovery = (es->s_last_orphan != 0 || 5403 ext4_has_feature_orphan_present(sb) || 5404 ext4_has_feature_journal_needs_recovery(sb)); 5405 5406 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5407 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5408 if (err) 5409 goto failed_mount3a; 5410 } 5411 5412 err = -EINVAL; 5413 /* 5414 * The first inode we look at is the journal inode. Don't try 5415 * root first: it may be modified in the journal! 5416 */ 5417 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5418 err = ext4_load_and_init_journal(sb, es, ctx); 5419 if (err) 5420 goto failed_mount3a; 5421 if (bdev_read_only(sb->s_bdev)) 5422 needs_recovery = 0; 5423 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5424 ext4_has_feature_journal_needs_recovery(sb)) { 5425 ext4_msg(sb, KERN_ERR, "required journal recovery " 5426 "suppressed and not mounted read-only"); 5427 goto failed_mount3a; 5428 } else { 5429 const char *journal_option; 5430 5431 /* Nojournal mode, all journal mount options are illegal */ 5432 journal_option = ext4_has_journal_option(sb); 5433 if (journal_option != NULL) { 5434 ext4_msg(sb, KERN_ERR, 5435 "can't mount with %s, fs mounted w/o journal", 5436 journal_option); 5437 goto failed_mount3a; 5438 } 5439 5440 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5441 clear_opt(sb, JOURNAL_CHECKSUM); 5442 clear_opt(sb, DATA_FLAGS); 5443 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5444 sbi->s_journal = NULL; 5445 needs_recovery = 0; 5446 } 5447 5448 if (!test_opt(sb, NO_MBCACHE)) { 5449 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5450 if (!sbi->s_ea_block_cache) { 5451 ext4_msg(sb, KERN_ERR, 5452 "Failed to create ea_block_cache"); 5453 err = -EINVAL; 5454 goto failed_mount_wq; 5455 } 5456 5457 if (ext4_has_feature_ea_inode(sb)) { 5458 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5459 if (!sbi->s_ea_inode_cache) { 5460 ext4_msg(sb, KERN_ERR, 5461 "Failed to create ea_inode_cache"); 5462 err = -EINVAL; 5463 goto failed_mount_wq; 5464 } 5465 } 5466 } 5467 5468 /* 5469 * Get the # of file system overhead blocks from the 5470 * superblock if present. 5471 */ 5472 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5473 /* ignore the precalculated value if it is ridiculous */ 5474 if (sbi->s_overhead > ext4_blocks_count(es)) 5475 sbi->s_overhead = 0; 5476 /* 5477 * If the bigalloc feature is not enabled recalculating the 5478 * overhead doesn't take long, so we might as well just redo 5479 * it to make sure we are using the correct value. 5480 */ 5481 if (!ext4_has_feature_bigalloc(sb)) 5482 sbi->s_overhead = 0; 5483 if (sbi->s_overhead == 0) { 5484 err = ext4_calculate_overhead(sb); 5485 if (err) 5486 goto failed_mount_wq; 5487 } 5488 5489 /* 5490 * The maximum number of concurrent works can be high and 5491 * concurrency isn't really necessary. Limit it to 1. 5492 */ 5493 EXT4_SB(sb)->rsv_conversion_wq = 5494 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5495 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5496 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5497 err = -ENOMEM; 5498 goto failed_mount4; 5499 } 5500 5501 /* 5502 * The jbd2_journal_load will have done any necessary log recovery, 5503 * so we can safely mount the rest of the filesystem now. 5504 */ 5505 5506 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5507 if (IS_ERR(root)) { 5508 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5509 err = PTR_ERR(root); 5510 root = NULL; 5511 goto failed_mount4; 5512 } 5513 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5514 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5515 iput(root); 5516 err = -EFSCORRUPTED; 5517 goto failed_mount4; 5518 } 5519 5520 generic_set_sb_d_ops(sb); 5521 sb->s_root = d_make_root(root); 5522 if (!sb->s_root) { 5523 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5524 err = -ENOMEM; 5525 goto failed_mount4; 5526 } 5527 5528 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5529 if (err == -EROFS) { 5530 sb->s_flags |= SB_RDONLY; 5531 } else if (err) 5532 goto failed_mount4a; 5533 5534 ext4_set_resv_clusters(sb); 5535 5536 if (test_opt(sb, BLOCK_VALIDITY)) { 5537 err = ext4_setup_system_zone(sb); 5538 if (err) { 5539 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5540 "zone (%d)", err); 5541 goto failed_mount4a; 5542 } 5543 } 5544 ext4_fc_replay_cleanup(sb); 5545 5546 ext4_ext_init(sb); 5547 5548 /* 5549 * Enable optimize_scan if number of groups is > threshold. This can be 5550 * turned off by passing "mb_optimize_scan=0". This can also be 5551 * turned on forcefully by passing "mb_optimize_scan=1". 5552 */ 5553 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5554 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5555 set_opt2(sb, MB_OPTIMIZE_SCAN); 5556 else 5557 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5558 } 5559 5560 err = ext4_mb_init(sb); 5561 if (err) { 5562 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5563 err); 5564 goto failed_mount5; 5565 } 5566 5567 /* 5568 * We can only set up the journal commit callback once 5569 * mballoc is initialized 5570 */ 5571 if (sbi->s_journal) 5572 sbi->s_journal->j_commit_callback = 5573 ext4_journal_commit_callback; 5574 5575 err = ext4_percpu_param_init(sbi); 5576 if (err) 5577 goto failed_mount6; 5578 5579 if (ext4_has_feature_flex_bg(sb)) 5580 if (!ext4_fill_flex_info(sb)) { 5581 ext4_msg(sb, KERN_ERR, 5582 "unable to initialize " 5583 "flex_bg meta info!"); 5584 err = -ENOMEM; 5585 goto failed_mount6; 5586 } 5587 5588 err = ext4_register_li_request(sb, first_not_zeroed); 5589 if (err) 5590 goto failed_mount6; 5591 5592 err = ext4_init_orphan_info(sb); 5593 if (err) 5594 goto failed_mount7; 5595 #ifdef CONFIG_QUOTA 5596 /* Enable quota usage during mount. */ 5597 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5598 err = ext4_enable_quotas(sb); 5599 if (err) 5600 goto failed_mount8; 5601 } 5602 #endif /* CONFIG_QUOTA */ 5603 5604 /* 5605 * Save the original bdev mapping's wb_err value which could be 5606 * used to detect the metadata async write error. 5607 */ 5608 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err, 5609 &sbi->s_bdev_wb_err); 5610 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5611 ext4_orphan_cleanup(sb, es); 5612 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5613 /* 5614 * Update the checksum after updating free space/inode counters and 5615 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5616 * checksum in the buffer cache until it is written out and 5617 * e2fsprogs programs trying to open a file system immediately 5618 * after it is mounted can fail. 5619 */ 5620 ext4_superblock_csum_set(sb); 5621 if (needs_recovery) { 5622 ext4_msg(sb, KERN_INFO, "recovery complete"); 5623 err = ext4_mark_recovery_complete(sb, es); 5624 if (err) 5625 goto failed_mount9; 5626 } 5627 5628 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) { 5629 ext4_msg(sb, KERN_WARNING, 5630 "mounting with \"discard\" option, but the device does not support discard"); 5631 clear_opt(sb, DISCARD); 5632 } 5633 5634 if (es->s_error_count) 5635 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5636 5637 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5638 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5639 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5640 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5641 atomic_set(&sbi->s_warning_count, 0); 5642 atomic_set(&sbi->s_msg_count, 0); 5643 5644 /* Register sysfs after all initializations are complete. */ 5645 err = ext4_register_sysfs(sb); 5646 if (err) 5647 goto failed_mount9; 5648 5649 return 0; 5650 5651 failed_mount9: 5652 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5653 failed_mount8: __maybe_unused 5654 ext4_release_orphan_info(sb); 5655 failed_mount7: 5656 ext4_unregister_li_request(sb); 5657 failed_mount6: 5658 ext4_mb_release(sb); 5659 ext4_flex_groups_free(sbi); 5660 ext4_percpu_param_destroy(sbi); 5661 failed_mount5: 5662 ext4_ext_release(sb); 5663 ext4_release_system_zone(sb); 5664 failed_mount4a: 5665 dput(sb->s_root); 5666 sb->s_root = NULL; 5667 failed_mount4: 5668 ext4_msg(sb, KERN_ERR, "mount failed"); 5669 if (EXT4_SB(sb)->rsv_conversion_wq) 5670 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5671 failed_mount_wq: 5672 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5673 sbi->s_ea_inode_cache = NULL; 5674 5675 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5676 sbi->s_ea_block_cache = NULL; 5677 5678 if (sbi->s_journal) { 5679 ext4_journal_destroy(sbi, sbi->s_journal); 5680 } 5681 failed_mount3a: 5682 ext4_es_unregister_shrinker(sbi); 5683 failed_mount3: 5684 /* flush s_sb_upd_work before sbi destroy */ 5685 flush_work(&sbi->s_sb_upd_work); 5686 ext4_stop_mmpd(sbi); 5687 timer_delete_sync(&sbi->s_err_report); 5688 ext4_group_desc_free(sbi); 5689 failed_mount: 5690 #if IS_ENABLED(CONFIG_UNICODE) 5691 utf8_unload(sb->s_encoding); 5692 #endif 5693 5694 #ifdef CONFIG_QUOTA 5695 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5696 kfree(get_qf_name(sb, sbi, i)); 5697 #endif 5698 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5699 brelse(sbi->s_sbh); 5700 if (sbi->s_journal_bdev_file) { 5701 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5702 bdev_fput(sbi->s_journal_bdev_file); 5703 } 5704 out_fail: 5705 invalidate_bdev(sb->s_bdev); 5706 sb->s_fs_info = NULL; 5707 return err; 5708 } 5709 5710 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5711 { 5712 struct ext4_fs_context *ctx = fc->fs_private; 5713 struct ext4_sb_info *sbi; 5714 const char *descr; 5715 int ret; 5716 5717 sbi = ext4_alloc_sbi(sb); 5718 if (!sbi) 5719 return -ENOMEM; 5720 5721 fc->s_fs_info = sbi; 5722 5723 /* Cleanup superblock name */ 5724 strreplace(sb->s_id, '/', '!'); 5725 5726 sbi->s_sb_block = 1; /* Default super block location */ 5727 if (ctx->spec & EXT4_SPEC_s_sb_block) 5728 sbi->s_sb_block = ctx->s_sb_block; 5729 5730 ret = __ext4_fill_super(fc, sb); 5731 if (ret < 0) 5732 goto free_sbi; 5733 5734 if (sbi->s_journal) { 5735 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5736 descr = " journalled data mode"; 5737 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5738 descr = " ordered data mode"; 5739 else 5740 descr = " writeback data mode"; 5741 } else 5742 descr = "out journal"; 5743 5744 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5745 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5746 "Quota mode: %s.", &sb->s_uuid, 5747 sb_rdonly(sb) ? "ro" : "r/w", descr, 5748 ext4_quota_mode(sb)); 5749 5750 /* Update the s_overhead_clusters if necessary */ 5751 ext4_update_overhead(sb, false); 5752 return 0; 5753 5754 free_sbi: 5755 ext4_free_sbi(sbi); 5756 fc->s_fs_info = NULL; 5757 return ret; 5758 } 5759 5760 static int ext4_get_tree(struct fs_context *fc) 5761 { 5762 return get_tree_bdev(fc, ext4_fill_super); 5763 } 5764 5765 /* 5766 * Setup any per-fs journal parameters now. We'll do this both on 5767 * initial mount, once the journal has been initialised but before we've 5768 * done any recovery; and again on any subsequent remount. 5769 */ 5770 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5771 { 5772 struct ext4_sb_info *sbi = EXT4_SB(sb); 5773 5774 journal->j_commit_interval = sbi->s_commit_interval; 5775 journal->j_min_batch_time = sbi->s_min_batch_time; 5776 journal->j_max_batch_time = sbi->s_max_batch_time; 5777 ext4_fc_init(sb, journal); 5778 5779 write_lock(&journal->j_state_lock); 5780 if (test_opt(sb, BARRIER)) 5781 journal->j_flags |= JBD2_BARRIER; 5782 else 5783 journal->j_flags &= ~JBD2_BARRIER; 5784 /* 5785 * Always enable journal cycle record option, letting the journal 5786 * records log transactions continuously between each mount. 5787 */ 5788 journal->j_flags |= JBD2_CYCLE_RECORD; 5789 write_unlock(&journal->j_state_lock); 5790 } 5791 5792 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5793 unsigned int journal_inum) 5794 { 5795 struct inode *journal_inode; 5796 5797 /* 5798 * Test for the existence of a valid inode on disk. Bad things 5799 * happen if we iget() an unused inode, as the subsequent iput() 5800 * will try to delete it. 5801 */ 5802 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5803 if (IS_ERR(journal_inode)) { 5804 ext4_msg(sb, KERN_ERR, "no journal found"); 5805 return ERR_CAST(journal_inode); 5806 } 5807 if (!journal_inode->i_nlink) { 5808 make_bad_inode(journal_inode); 5809 iput(journal_inode); 5810 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5811 return ERR_PTR(-EFSCORRUPTED); 5812 } 5813 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5814 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5815 iput(journal_inode); 5816 return ERR_PTR(-EFSCORRUPTED); 5817 } 5818 5819 ext4_debug("Journal inode found at %p: %lld bytes\n", 5820 journal_inode, journal_inode->i_size); 5821 return journal_inode; 5822 } 5823 5824 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5825 { 5826 struct ext4_map_blocks map; 5827 int ret; 5828 5829 if (journal->j_inode == NULL) 5830 return 0; 5831 5832 map.m_lblk = *block; 5833 map.m_len = 1; 5834 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5835 if (ret <= 0) { 5836 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5837 "journal bmap failed: block %llu ret %d\n", 5838 *block, ret); 5839 jbd2_journal_abort(journal, ret ? ret : -EIO); 5840 return ret; 5841 } 5842 *block = map.m_pblk; 5843 return 0; 5844 } 5845 5846 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5847 unsigned int journal_inum) 5848 { 5849 struct inode *journal_inode; 5850 journal_t *journal; 5851 5852 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5853 if (IS_ERR(journal_inode)) 5854 return ERR_CAST(journal_inode); 5855 5856 journal = jbd2_journal_init_inode(journal_inode); 5857 if (IS_ERR(journal)) { 5858 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5859 iput(journal_inode); 5860 return ERR_CAST(journal); 5861 } 5862 journal->j_private = sb; 5863 journal->j_bmap = ext4_journal_bmap; 5864 ext4_init_journal_params(sb, journal); 5865 return journal; 5866 } 5867 5868 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5869 dev_t j_dev, ext4_fsblk_t *j_start, 5870 ext4_fsblk_t *j_len) 5871 { 5872 struct buffer_head *bh; 5873 struct block_device *bdev; 5874 struct file *bdev_file; 5875 int hblock, blocksize; 5876 ext4_fsblk_t sb_block; 5877 unsigned long offset; 5878 struct ext4_super_block *es; 5879 int errno; 5880 5881 bdev_file = bdev_file_open_by_dev(j_dev, 5882 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5883 sb, &fs_holder_ops); 5884 if (IS_ERR(bdev_file)) { 5885 ext4_msg(sb, KERN_ERR, 5886 "failed to open journal device unknown-block(%u,%u) %ld", 5887 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5888 return bdev_file; 5889 } 5890 5891 bdev = file_bdev(bdev_file); 5892 blocksize = sb->s_blocksize; 5893 hblock = bdev_logical_block_size(bdev); 5894 if (blocksize < hblock) { 5895 ext4_msg(sb, KERN_ERR, 5896 "blocksize too small for journal device"); 5897 errno = -EINVAL; 5898 goto out_bdev; 5899 } 5900 5901 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5902 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5903 set_blocksize(bdev_file, blocksize); 5904 bh = __bread(bdev, sb_block, blocksize); 5905 if (!bh) { 5906 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5907 "external journal"); 5908 errno = -EINVAL; 5909 goto out_bdev; 5910 } 5911 5912 es = (struct ext4_super_block *) (bh->b_data + offset); 5913 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5914 !(le32_to_cpu(es->s_feature_incompat) & 5915 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5916 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5917 errno = -EFSCORRUPTED; 5918 goto out_bh; 5919 } 5920 5921 if ((le32_to_cpu(es->s_feature_ro_compat) & 5922 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5923 es->s_checksum != ext4_superblock_csum(es)) { 5924 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5925 errno = -EFSCORRUPTED; 5926 goto out_bh; 5927 } 5928 5929 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5930 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5931 errno = -EFSCORRUPTED; 5932 goto out_bh; 5933 } 5934 5935 *j_start = sb_block + 1; 5936 *j_len = ext4_blocks_count(es); 5937 brelse(bh); 5938 return bdev_file; 5939 5940 out_bh: 5941 brelse(bh); 5942 out_bdev: 5943 bdev_fput(bdev_file); 5944 return ERR_PTR(errno); 5945 } 5946 5947 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5948 dev_t j_dev) 5949 { 5950 journal_t *journal; 5951 ext4_fsblk_t j_start; 5952 ext4_fsblk_t j_len; 5953 struct file *bdev_file; 5954 int errno = 0; 5955 5956 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5957 if (IS_ERR(bdev_file)) 5958 return ERR_CAST(bdev_file); 5959 5960 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5961 j_len, sb->s_blocksize); 5962 if (IS_ERR(journal)) { 5963 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5964 errno = PTR_ERR(journal); 5965 goto out_bdev; 5966 } 5967 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5968 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5969 "user (unsupported) - %d", 5970 be32_to_cpu(journal->j_superblock->s_nr_users)); 5971 errno = -EINVAL; 5972 goto out_journal; 5973 } 5974 journal->j_private = sb; 5975 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5976 ext4_init_journal_params(sb, journal); 5977 return journal; 5978 5979 out_journal: 5980 ext4_journal_destroy(EXT4_SB(sb), journal); 5981 out_bdev: 5982 bdev_fput(bdev_file); 5983 return ERR_PTR(errno); 5984 } 5985 5986 static int ext4_load_journal(struct super_block *sb, 5987 struct ext4_super_block *es, 5988 unsigned long journal_devnum) 5989 { 5990 journal_t *journal; 5991 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5992 dev_t journal_dev; 5993 int err = 0; 5994 int really_read_only; 5995 int journal_dev_ro; 5996 5997 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5998 return -EFSCORRUPTED; 5999 6000 if (journal_devnum && 6001 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6002 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 6003 "numbers have changed"); 6004 journal_dev = new_decode_dev(journal_devnum); 6005 } else 6006 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 6007 6008 if (journal_inum && journal_dev) { 6009 ext4_msg(sb, KERN_ERR, 6010 "filesystem has both journal inode and journal device!"); 6011 return -EINVAL; 6012 } 6013 6014 if (journal_inum) { 6015 journal = ext4_open_inode_journal(sb, journal_inum); 6016 if (IS_ERR(journal)) 6017 return PTR_ERR(journal); 6018 } else { 6019 journal = ext4_open_dev_journal(sb, journal_dev); 6020 if (IS_ERR(journal)) 6021 return PTR_ERR(journal); 6022 } 6023 6024 journal_dev_ro = bdev_read_only(journal->j_dev); 6025 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 6026 6027 if (journal_dev_ro && !sb_rdonly(sb)) { 6028 ext4_msg(sb, KERN_ERR, 6029 "journal device read-only, try mounting with '-o ro'"); 6030 err = -EROFS; 6031 goto err_out; 6032 } 6033 6034 /* 6035 * Are we loading a blank journal or performing recovery after a 6036 * crash? For recovery, we need to check in advance whether we 6037 * can get read-write access to the device. 6038 */ 6039 if (ext4_has_feature_journal_needs_recovery(sb)) { 6040 if (sb_rdonly(sb)) { 6041 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6042 "required on readonly filesystem"); 6043 if (really_read_only) { 6044 ext4_msg(sb, KERN_ERR, "write access " 6045 "unavailable, cannot proceed " 6046 "(try mounting with noload)"); 6047 err = -EROFS; 6048 goto err_out; 6049 } 6050 ext4_msg(sb, KERN_INFO, "write access will " 6051 "be enabled during recovery"); 6052 } 6053 } 6054 6055 if (!(journal->j_flags & JBD2_BARRIER)) 6056 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6057 6058 if (!ext4_has_feature_journal_needs_recovery(sb)) 6059 err = jbd2_journal_wipe(journal, !really_read_only); 6060 if (!err) { 6061 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6062 __le16 orig_state; 6063 bool changed = false; 6064 6065 if (save) 6066 memcpy(save, ((char *) es) + 6067 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6068 err = jbd2_journal_load(journal); 6069 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6070 save, EXT4_S_ERR_LEN)) { 6071 memcpy(((char *) es) + EXT4_S_ERR_START, 6072 save, EXT4_S_ERR_LEN); 6073 changed = true; 6074 } 6075 kfree(save); 6076 orig_state = es->s_state; 6077 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6078 EXT4_ERROR_FS); 6079 if (orig_state != es->s_state) 6080 changed = true; 6081 /* Write out restored error information to the superblock */ 6082 if (changed && !really_read_only) { 6083 int err2; 6084 err2 = ext4_commit_super(sb); 6085 err = err ? : err2; 6086 } 6087 } 6088 6089 if (err) { 6090 ext4_msg(sb, KERN_ERR, "error loading journal"); 6091 goto err_out; 6092 } 6093 6094 EXT4_SB(sb)->s_journal = journal; 6095 err = ext4_clear_journal_err(sb, es); 6096 if (err) { 6097 ext4_journal_destroy(EXT4_SB(sb), journal); 6098 return err; 6099 } 6100 6101 if (!really_read_only && journal_devnum && 6102 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6103 es->s_journal_dev = cpu_to_le32(journal_devnum); 6104 ext4_commit_super(sb); 6105 } 6106 if (!really_read_only && journal_inum && 6107 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6108 es->s_journal_inum = cpu_to_le32(journal_inum); 6109 ext4_commit_super(sb); 6110 } 6111 6112 return 0; 6113 6114 err_out: 6115 ext4_journal_destroy(EXT4_SB(sb), journal); 6116 return err; 6117 } 6118 6119 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6120 static void ext4_update_super(struct super_block *sb) 6121 { 6122 struct ext4_sb_info *sbi = EXT4_SB(sb); 6123 struct ext4_super_block *es = sbi->s_es; 6124 struct buffer_head *sbh = sbi->s_sbh; 6125 6126 lock_buffer(sbh); 6127 /* 6128 * If the file system is mounted read-only, don't update the 6129 * superblock write time. This avoids updating the superblock 6130 * write time when we are mounting the root file system 6131 * read/only but we need to replay the journal; at that point, 6132 * for people who are east of GMT and who make their clock 6133 * tick in localtime for Windows bug-for-bug compatibility, 6134 * the clock is set in the future, and this will cause e2fsck 6135 * to complain and force a full file system check. 6136 */ 6137 if (!sb_rdonly(sb)) 6138 ext4_update_tstamp(es, s_wtime); 6139 es->s_kbytes_written = 6140 cpu_to_le64(sbi->s_kbytes_written + 6141 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6142 sbi->s_sectors_written_start) >> 1)); 6143 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6144 ext4_free_blocks_count_set(es, 6145 EXT4_C2B(sbi, percpu_counter_sum_positive( 6146 &sbi->s_freeclusters_counter))); 6147 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6148 es->s_free_inodes_count = 6149 cpu_to_le32(percpu_counter_sum_positive( 6150 &sbi->s_freeinodes_counter)); 6151 /* Copy error information to the on-disk superblock */ 6152 spin_lock(&sbi->s_error_lock); 6153 if (sbi->s_add_error_count > 0) { 6154 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6155 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6156 __ext4_update_tstamp(&es->s_first_error_time, 6157 &es->s_first_error_time_hi, 6158 sbi->s_first_error_time); 6159 strtomem_pad(es->s_first_error_func, 6160 sbi->s_first_error_func, 0); 6161 es->s_first_error_line = 6162 cpu_to_le32(sbi->s_first_error_line); 6163 es->s_first_error_ino = 6164 cpu_to_le32(sbi->s_first_error_ino); 6165 es->s_first_error_block = 6166 cpu_to_le64(sbi->s_first_error_block); 6167 es->s_first_error_errcode = 6168 ext4_errno_to_code(sbi->s_first_error_code); 6169 } 6170 __ext4_update_tstamp(&es->s_last_error_time, 6171 &es->s_last_error_time_hi, 6172 sbi->s_last_error_time); 6173 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0); 6174 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6175 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6176 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6177 es->s_last_error_errcode = 6178 ext4_errno_to_code(sbi->s_last_error_code); 6179 /* 6180 * Start the daily error reporting function if it hasn't been 6181 * started already 6182 */ 6183 if (!es->s_error_count) 6184 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6185 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6186 sbi->s_add_error_count = 0; 6187 } 6188 spin_unlock(&sbi->s_error_lock); 6189 6190 ext4_superblock_csum_set(sb); 6191 unlock_buffer(sbh); 6192 } 6193 6194 static int ext4_commit_super(struct super_block *sb) 6195 { 6196 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6197 6198 if (!sbh) 6199 return -EINVAL; 6200 6201 ext4_update_super(sb); 6202 6203 lock_buffer(sbh); 6204 /* Buffer got discarded which means block device got invalidated */ 6205 if (!buffer_mapped(sbh)) { 6206 unlock_buffer(sbh); 6207 return -EIO; 6208 } 6209 6210 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6211 /* 6212 * Oh, dear. A previous attempt to write the 6213 * superblock failed. This could happen because the 6214 * USB device was yanked out. Or it could happen to 6215 * be a transient write error and maybe the block will 6216 * be remapped. Nothing we can do but to retry the 6217 * write and hope for the best. 6218 */ 6219 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6220 "superblock detected"); 6221 clear_buffer_write_io_error(sbh); 6222 set_buffer_uptodate(sbh); 6223 } 6224 get_bh(sbh); 6225 /* Clear potential dirty bit if it was journalled update */ 6226 clear_buffer_dirty(sbh); 6227 sbh->b_end_io = end_buffer_write_sync; 6228 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6229 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6230 wait_on_buffer(sbh); 6231 if (buffer_write_io_error(sbh)) { 6232 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6233 "superblock"); 6234 clear_buffer_write_io_error(sbh); 6235 set_buffer_uptodate(sbh); 6236 return -EIO; 6237 } 6238 return 0; 6239 } 6240 6241 /* 6242 * Have we just finished recovery? If so, and if we are mounting (or 6243 * remounting) the filesystem readonly, then we will end up with a 6244 * consistent fs on disk. Record that fact. 6245 */ 6246 static int ext4_mark_recovery_complete(struct super_block *sb, 6247 struct ext4_super_block *es) 6248 { 6249 int err; 6250 journal_t *journal = EXT4_SB(sb)->s_journal; 6251 6252 if (!ext4_has_feature_journal(sb)) { 6253 if (journal != NULL) { 6254 ext4_error(sb, "Journal got removed while the fs was " 6255 "mounted!"); 6256 return -EFSCORRUPTED; 6257 } 6258 return 0; 6259 } 6260 jbd2_journal_lock_updates(journal); 6261 err = jbd2_journal_flush(journal, 0); 6262 if (err < 0) 6263 goto out; 6264 6265 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6266 ext4_has_feature_orphan_present(sb))) { 6267 if (!ext4_orphan_file_empty(sb)) { 6268 ext4_error(sb, "Orphan file not empty on read-only fs."); 6269 err = -EFSCORRUPTED; 6270 goto out; 6271 } 6272 ext4_clear_feature_journal_needs_recovery(sb); 6273 ext4_clear_feature_orphan_present(sb); 6274 ext4_commit_super(sb); 6275 } 6276 out: 6277 jbd2_journal_unlock_updates(journal); 6278 return err; 6279 } 6280 6281 /* 6282 * If we are mounting (or read-write remounting) a filesystem whose journal 6283 * has recorded an error from a previous lifetime, move that error to the 6284 * main filesystem now. 6285 */ 6286 static int ext4_clear_journal_err(struct super_block *sb, 6287 struct ext4_super_block *es) 6288 { 6289 journal_t *journal; 6290 int j_errno; 6291 const char *errstr; 6292 6293 if (!ext4_has_feature_journal(sb)) { 6294 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6295 return -EFSCORRUPTED; 6296 } 6297 6298 journal = EXT4_SB(sb)->s_journal; 6299 6300 /* 6301 * Now check for any error status which may have been recorded in the 6302 * journal by a prior ext4_error() or ext4_abort() 6303 */ 6304 6305 j_errno = jbd2_journal_errno(journal); 6306 if (j_errno) { 6307 char nbuf[16]; 6308 6309 errstr = ext4_decode_error(sb, j_errno, nbuf); 6310 ext4_warning(sb, "Filesystem error recorded " 6311 "from previous mount: %s", errstr); 6312 6313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6315 j_errno = ext4_commit_super(sb); 6316 if (j_errno) 6317 return j_errno; 6318 ext4_warning(sb, "Marked fs in need of filesystem check."); 6319 6320 jbd2_journal_clear_err(journal); 6321 jbd2_journal_update_sb_errno(journal); 6322 } 6323 return 0; 6324 } 6325 6326 /* 6327 * Force the running and committing transactions to commit, 6328 * and wait on the commit. 6329 */ 6330 int ext4_force_commit(struct super_block *sb) 6331 { 6332 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6333 } 6334 6335 static int ext4_sync_fs(struct super_block *sb, int wait) 6336 { 6337 int ret = 0; 6338 tid_t target; 6339 bool needs_barrier = false; 6340 struct ext4_sb_info *sbi = EXT4_SB(sb); 6341 6342 ret = ext4_emergency_state(sb); 6343 if (unlikely(ret)) 6344 return ret; 6345 6346 trace_ext4_sync_fs(sb, wait); 6347 flush_workqueue(sbi->rsv_conversion_wq); 6348 /* 6349 * Writeback quota in non-journalled quota case - journalled quota has 6350 * no dirty dquots 6351 */ 6352 dquot_writeback_dquots(sb, -1); 6353 /* 6354 * Data writeback is possible w/o journal transaction, so barrier must 6355 * being sent at the end of the function. But we can skip it if 6356 * transaction_commit will do it for us. 6357 */ 6358 if (sbi->s_journal) { 6359 target = jbd2_get_latest_transaction(sbi->s_journal); 6360 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6361 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6362 needs_barrier = true; 6363 6364 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6365 if (wait) 6366 ret = jbd2_log_wait_commit(sbi->s_journal, 6367 target); 6368 } 6369 } else if (wait && test_opt(sb, BARRIER)) 6370 needs_barrier = true; 6371 if (needs_barrier) { 6372 int err; 6373 err = blkdev_issue_flush(sb->s_bdev); 6374 if (!ret) 6375 ret = err; 6376 } 6377 6378 return ret; 6379 } 6380 6381 /* 6382 * LVM calls this function before a (read-only) snapshot is created. This 6383 * gives us a chance to flush the journal completely and mark the fs clean. 6384 * 6385 * Note that only this function cannot bring a filesystem to be in a clean 6386 * state independently. It relies on upper layer to stop all data & metadata 6387 * modifications. 6388 */ 6389 static int ext4_freeze(struct super_block *sb) 6390 { 6391 int error = 0; 6392 journal_t *journal = EXT4_SB(sb)->s_journal; 6393 6394 if (journal) { 6395 /* Now we set up the journal barrier. */ 6396 jbd2_journal_lock_updates(journal); 6397 6398 /* 6399 * Don't clear the needs_recovery flag if we failed to 6400 * flush the journal. 6401 */ 6402 error = jbd2_journal_flush(journal, 0); 6403 if (error < 0) 6404 goto out; 6405 6406 /* Journal blocked and flushed, clear needs_recovery flag. */ 6407 ext4_clear_feature_journal_needs_recovery(sb); 6408 if (ext4_orphan_file_empty(sb)) 6409 ext4_clear_feature_orphan_present(sb); 6410 } 6411 6412 error = ext4_commit_super(sb); 6413 out: 6414 if (journal) 6415 /* we rely on upper layer to stop further updates */ 6416 jbd2_journal_unlock_updates(journal); 6417 return error; 6418 } 6419 6420 /* 6421 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6422 * flag here, even though the filesystem is not technically dirty yet. 6423 */ 6424 static int ext4_unfreeze(struct super_block *sb) 6425 { 6426 if (ext4_emergency_state(sb)) 6427 return 0; 6428 6429 if (EXT4_SB(sb)->s_journal) { 6430 /* Reset the needs_recovery flag before the fs is unlocked. */ 6431 ext4_set_feature_journal_needs_recovery(sb); 6432 if (ext4_has_feature_orphan_file(sb)) 6433 ext4_set_feature_orphan_present(sb); 6434 } 6435 6436 ext4_commit_super(sb); 6437 return 0; 6438 } 6439 6440 /* 6441 * Structure to save mount options for ext4_remount's benefit 6442 */ 6443 struct ext4_mount_options { 6444 unsigned long s_mount_opt; 6445 unsigned long s_mount_opt2; 6446 kuid_t s_resuid; 6447 kgid_t s_resgid; 6448 unsigned long s_commit_interval; 6449 u32 s_min_batch_time, s_max_batch_time; 6450 #ifdef CONFIG_QUOTA 6451 int s_jquota_fmt; 6452 char *s_qf_names[EXT4_MAXQUOTAS]; 6453 #endif 6454 }; 6455 6456 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6457 { 6458 struct ext4_fs_context *ctx = fc->fs_private; 6459 struct ext4_super_block *es; 6460 struct ext4_sb_info *sbi = EXT4_SB(sb); 6461 unsigned long old_sb_flags; 6462 struct ext4_mount_options old_opts; 6463 ext4_group_t g; 6464 int err = 0; 6465 int alloc_ctx; 6466 #ifdef CONFIG_QUOTA 6467 int enable_quota = 0; 6468 int i, j; 6469 char *to_free[EXT4_MAXQUOTAS]; 6470 #endif 6471 6472 6473 /* Store the original options */ 6474 old_sb_flags = sb->s_flags; 6475 old_opts.s_mount_opt = sbi->s_mount_opt; 6476 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6477 old_opts.s_resuid = sbi->s_resuid; 6478 old_opts.s_resgid = sbi->s_resgid; 6479 old_opts.s_commit_interval = sbi->s_commit_interval; 6480 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6481 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6482 #ifdef CONFIG_QUOTA 6483 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6484 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6485 if (sbi->s_qf_names[i]) { 6486 char *qf_name = get_qf_name(sb, sbi, i); 6487 6488 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6489 if (!old_opts.s_qf_names[i]) { 6490 for (j = 0; j < i; j++) 6491 kfree(old_opts.s_qf_names[j]); 6492 return -ENOMEM; 6493 } 6494 } else 6495 old_opts.s_qf_names[i] = NULL; 6496 #endif 6497 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6498 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6499 ctx->journal_ioprio = 6500 sbi->s_journal->j_task->io_context->ioprio; 6501 else 6502 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; 6503 6504 } 6505 6506 if ((ctx->spec & EXT4_SPEC_s_stripe) && 6507 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) { 6508 ext4_msg(sb, KERN_WARNING, 6509 "stripe (%lu) is not aligned with cluster size (%u), " 6510 "stripe is disabled", 6511 ctx->s_stripe, sbi->s_cluster_ratio); 6512 ctx->s_stripe = 0; 6513 } 6514 6515 /* 6516 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6517 * two calls to ext4_should_dioread_nolock() to return inconsistent 6518 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6519 * here s_writepages_rwsem to avoid race between writepages ops and 6520 * remount. 6521 */ 6522 alloc_ctx = ext4_writepages_down_write(sb); 6523 ext4_apply_options(fc, sb); 6524 ext4_writepages_up_write(sb, alloc_ctx); 6525 6526 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6527 test_opt(sb, JOURNAL_CHECKSUM)) { 6528 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6529 "during remount not supported; ignoring"); 6530 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6531 } 6532 6533 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6534 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6535 ext4_msg(sb, KERN_ERR, "can't mount with " 6536 "both data=journal and delalloc"); 6537 err = -EINVAL; 6538 goto restore_opts; 6539 } 6540 if (test_opt(sb, DIOREAD_NOLOCK)) { 6541 ext4_msg(sb, KERN_ERR, "can't mount with " 6542 "both data=journal and dioread_nolock"); 6543 err = -EINVAL; 6544 goto restore_opts; 6545 } 6546 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6547 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6548 ext4_msg(sb, KERN_ERR, "can't mount with " 6549 "journal_async_commit in data=ordered mode"); 6550 err = -EINVAL; 6551 goto restore_opts; 6552 } 6553 } 6554 6555 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6556 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6557 err = -EINVAL; 6558 goto restore_opts; 6559 } 6560 6561 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) && 6562 !test_opt(sb, DELALLOC)) { 6563 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount"); 6564 err = -EINVAL; 6565 goto restore_opts; 6566 } 6567 6568 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6569 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6570 6571 es = sbi->s_es; 6572 6573 if (sbi->s_journal) { 6574 ext4_init_journal_params(sb, sbi->s_journal); 6575 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6576 } 6577 6578 /* Flush outstanding errors before changing fs state */ 6579 flush_work(&sbi->s_sb_upd_work); 6580 6581 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6582 if (ext4_emergency_state(sb)) { 6583 err = -EROFS; 6584 goto restore_opts; 6585 } 6586 6587 if (fc->sb_flags & SB_RDONLY) { 6588 err = sync_filesystem(sb); 6589 if (err < 0) 6590 goto restore_opts; 6591 err = dquot_suspend(sb, -1); 6592 if (err < 0) 6593 goto restore_opts; 6594 6595 /* 6596 * First of all, the unconditional stuff we have to do 6597 * to disable replay of the journal when we next remount 6598 */ 6599 sb->s_flags |= SB_RDONLY; 6600 6601 /* 6602 * OK, test if we are remounting a valid rw partition 6603 * readonly, and if so set the rdonly flag and then 6604 * mark the partition as valid again. 6605 */ 6606 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6607 (sbi->s_mount_state & EXT4_VALID_FS)) 6608 es->s_state = cpu_to_le16(sbi->s_mount_state); 6609 6610 if (sbi->s_journal) { 6611 /* 6612 * We let remount-ro finish even if marking fs 6613 * as clean failed... 6614 */ 6615 ext4_mark_recovery_complete(sb, es); 6616 } 6617 } else { 6618 /* Make sure we can mount this feature set readwrite */ 6619 if (ext4_has_feature_readonly(sb) || 6620 !ext4_feature_set_ok(sb, 0)) { 6621 err = -EROFS; 6622 goto restore_opts; 6623 } 6624 /* 6625 * Make sure the group descriptor checksums 6626 * are sane. If they aren't, refuse to remount r/w. 6627 */ 6628 for (g = 0; g < sbi->s_groups_count; g++) { 6629 struct ext4_group_desc *gdp = 6630 ext4_get_group_desc(sb, g, NULL); 6631 6632 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6633 ext4_msg(sb, KERN_ERR, 6634 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6635 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6636 le16_to_cpu(gdp->bg_checksum)); 6637 err = -EFSBADCRC; 6638 goto restore_opts; 6639 } 6640 } 6641 6642 /* 6643 * If we have an unprocessed orphan list hanging 6644 * around from a previously readonly bdev mount, 6645 * require a full umount/remount for now. 6646 */ 6647 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6648 ext4_msg(sb, KERN_WARNING, "Couldn't " 6649 "remount RDWR because of unprocessed " 6650 "orphan inode list. Please " 6651 "umount/remount instead"); 6652 err = -EINVAL; 6653 goto restore_opts; 6654 } 6655 6656 /* 6657 * Mounting a RDONLY partition read-write, so reread 6658 * and store the current valid flag. (It may have 6659 * been changed by e2fsck since we originally mounted 6660 * the partition.) 6661 */ 6662 if (sbi->s_journal) { 6663 err = ext4_clear_journal_err(sb, es); 6664 if (err) 6665 goto restore_opts; 6666 } 6667 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6668 ~EXT4_FC_REPLAY); 6669 6670 err = ext4_setup_super(sb, es, 0); 6671 if (err) 6672 goto restore_opts; 6673 6674 sb->s_flags &= ~SB_RDONLY; 6675 if (ext4_has_feature_mmp(sb)) { 6676 err = ext4_multi_mount_protect(sb, 6677 le64_to_cpu(es->s_mmp_block)); 6678 if (err) 6679 goto restore_opts; 6680 } 6681 #ifdef CONFIG_QUOTA 6682 enable_quota = 1; 6683 #endif 6684 } 6685 } 6686 6687 /* 6688 * Handle creation of system zone data early because it can fail. 6689 * Releasing of existing data is done when we are sure remount will 6690 * succeed. 6691 */ 6692 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6693 err = ext4_setup_system_zone(sb); 6694 if (err) 6695 goto restore_opts; 6696 } 6697 6698 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6699 err = ext4_commit_super(sb); 6700 if (err) 6701 goto restore_opts; 6702 } 6703 6704 #ifdef CONFIG_QUOTA 6705 if (enable_quota) { 6706 if (sb_any_quota_suspended(sb)) 6707 dquot_resume(sb, -1); 6708 else if (ext4_has_feature_quota(sb)) { 6709 err = ext4_enable_quotas(sb); 6710 if (err) 6711 goto restore_opts; 6712 } 6713 } 6714 /* Release old quota file names */ 6715 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6716 kfree(old_opts.s_qf_names[i]); 6717 #endif 6718 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6719 ext4_release_system_zone(sb); 6720 6721 /* 6722 * Reinitialize lazy itable initialization thread based on 6723 * current settings 6724 */ 6725 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6726 ext4_unregister_li_request(sb); 6727 else { 6728 ext4_group_t first_not_zeroed; 6729 first_not_zeroed = ext4_has_uninit_itable(sb); 6730 ext4_register_li_request(sb, first_not_zeroed); 6731 } 6732 6733 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6734 ext4_stop_mmpd(sbi); 6735 6736 /* 6737 * Handle aborting the filesystem as the last thing during remount to 6738 * avoid obsure errors during remount when some option changes fail to 6739 * apply due to shutdown filesystem. 6740 */ 6741 if (test_opt2(sb, ABORT)) 6742 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6743 6744 return 0; 6745 6746 restore_opts: 6747 /* 6748 * If there was a failing r/w to ro transition, we may need to 6749 * re-enable quota 6750 */ 6751 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6752 sb_any_quota_suspended(sb)) 6753 dquot_resume(sb, -1); 6754 6755 alloc_ctx = ext4_writepages_down_write(sb); 6756 sb->s_flags = old_sb_flags; 6757 sbi->s_mount_opt = old_opts.s_mount_opt; 6758 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6759 sbi->s_resuid = old_opts.s_resuid; 6760 sbi->s_resgid = old_opts.s_resgid; 6761 sbi->s_commit_interval = old_opts.s_commit_interval; 6762 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6763 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6764 ext4_writepages_up_write(sb, alloc_ctx); 6765 6766 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6767 ext4_release_system_zone(sb); 6768 #ifdef CONFIG_QUOTA 6769 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6770 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6771 to_free[i] = get_qf_name(sb, sbi, i); 6772 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6773 } 6774 synchronize_rcu(); 6775 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6776 kfree(to_free[i]); 6777 #endif 6778 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6779 ext4_stop_mmpd(sbi); 6780 return err; 6781 } 6782 6783 static int ext4_reconfigure(struct fs_context *fc) 6784 { 6785 struct super_block *sb = fc->root->d_sb; 6786 int ret; 6787 bool old_ro = sb_rdonly(sb); 6788 6789 fc->s_fs_info = EXT4_SB(sb); 6790 6791 ret = ext4_check_opt_consistency(fc, sb); 6792 if (ret < 0) 6793 return ret; 6794 6795 ret = __ext4_remount(fc, sb); 6796 if (ret < 0) 6797 return ret; 6798 6799 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.", 6800 &sb->s_uuid, 6801 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : ""); 6802 6803 return 0; 6804 } 6805 6806 #ifdef CONFIG_QUOTA 6807 static int ext4_statfs_project(struct super_block *sb, 6808 kprojid_t projid, struct kstatfs *buf) 6809 { 6810 struct kqid qid; 6811 struct dquot *dquot; 6812 u64 limit; 6813 u64 curblock; 6814 6815 qid = make_kqid_projid(projid); 6816 dquot = dqget(sb, qid); 6817 if (IS_ERR(dquot)) 6818 return PTR_ERR(dquot); 6819 spin_lock(&dquot->dq_dqb_lock); 6820 6821 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6822 dquot->dq_dqb.dqb_bhardlimit); 6823 limit >>= sb->s_blocksize_bits; 6824 6825 if (limit) { 6826 uint64_t remaining = 0; 6827 6828 curblock = (dquot->dq_dqb.dqb_curspace + 6829 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6830 if (limit > curblock) 6831 remaining = limit - curblock; 6832 6833 buf->f_blocks = min(buf->f_blocks, limit); 6834 buf->f_bfree = min(buf->f_bfree, remaining); 6835 buf->f_bavail = min(buf->f_bavail, remaining); 6836 } 6837 6838 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6839 dquot->dq_dqb.dqb_ihardlimit); 6840 if (limit) { 6841 uint64_t remaining = 0; 6842 6843 if (limit > dquot->dq_dqb.dqb_curinodes) 6844 remaining = limit - dquot->dq_dqb.dqb_curinodes; 6845 6846 buf->f_files = min(buf->f_files, limit); 6847 buf->f_ffree = min(buf->f_ffree, remaining); 6848 } 6849 6850 spin_unlock(&dquot->dq_dqb_lock); 6851 dqput(dquot); 6852 return 0; 6853 } 6854 #endif 6855 6856 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6857 { 6858 struct super_block *sb = dentry->d_sb; 6859 struct ext4_sb_info *sbi = EXT4_SB(sb); 6860 struct ext4_super_block *es = sbi->s_es; 6861 ext4_fsblk_t overhead = 0, resv_blocks; 6862 s64 bfree; 6863 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6864 6865 if (!test_opt(sb, MINIX_DF)) 6866 overhead = sbi->s_overhead; 6867 6868 buf->f_type = EXT4_SUPER_MAGIC; 6869 buf->f_bsize = sb->s_blocksize; 6870 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6871 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6872 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6873 /* prevent underflow in case that few free space is available */ 6874 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6875 buf->f_bavail = buf->f_bfree - 6876 (ext4_r_blocks_count(es) + resv_blocks); 6877 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6878 buf->f_bavail = 0; 6879 buf->f_files = le32_to_cpu(es->s_inodes_count); 6880 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6881 buf->f_namelen = EXT4_NAME_LEN; 6882 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6883 6884 #ifdef CONFIG_QUOTA 6885 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6886 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6887 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6888 #endif 6889 return 0; 6890 } 6891 6892 6893 #ifdef CONFIG_QUOTA 6894 6895 /* 6896 * Helper functions so that transaction is started before we acquire dqio_sem 6897 * to keep correct lock ordering of transaction > dqio_sem 6898 */ 6899 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6900 { 6901 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6902 } 6903 6904 static int ext4_write_dquot(struct dquot *dquot) 6905 { 6906 int ret, err; 6907 handle_t *handle; 6908 struct inode *inode; 6909 6910 inode = dquot_to_inode(dquot); 6911 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6912 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6913 if (IS_ERR(handle)) 6914 return PTR_ERR(handle); 6915 ret = dquot_commit(dquot); 6916 if (ret < 0) 6917 ext4_error_err(dquot->dq_sb, -ret, 6918 "Failed to commit dquot type %d", 6919 dquot->dq_id.type); 6920 err = ext4_journal_stop(handle); 6921 if (!ret) 6922 ret = err; 6923 return ret; 6924 } 6925 6926 static int ext4_acquire_dquot(struct dquot *dquot) 6927 { 6928 int ret, err; 6929 handle_t *handle; 6930 6931 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6932 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6933 if (IS_ERR(handle)) 6934 return PTR_ERR(handle); 6935 ret = dquot_acquire(dquot); 6936 if (ret < 0) 6937 ext4_error_err(dquot->dq_sb, -ret, 6938 "Failed to acquire dquot type %d", 6939 dquot->dq_id.type); 6940 err = ext4_journal_stop(handle); 6941 if (!ret) 6942 ret = err; 6943 return ret; 6944 } 6945 6946 static int ext4_release_dquot(struct dquot *dquot) 6947 { 6948 int ret, err; 6949 handle_t *handle; 6950 bool freeze_protected = false; 6951 6952 /* 6953 * Trying to sb_start_intwrite() in a running transaction 6954 * can result in a deadlock. Further, running transactions 6955 * are already protected from freezing. 6956 */ 6957 if (!ext4_journal_current_handle()) { 6958 sb_start_intwrite(dquot->dq_sb); 6959 freeze_protected = true; 6960 } 6961 6962 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6963 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6964 if (IS_ERR(handle)) { 6965 /* Release dquot anyway to avoid endless cycle in dqput() */ 6966 dquot_release(dquot); 6967 if (freeze_protected) 6968 sb_end_intwrite(dquot->dq_sb); 6969 return PTR_ERR(handle); 6970 } 6971 ret = dquot_release(dquot); 6972 if (ret < 0) 6973 ext4_error_err(dquot->dq_sb, -ret, 6974 "Failed to release dquot type %d", 6975 dquot->dq_id.type); 6976 err = ext4_journal_stop(handle); 6977 if (!ret) 6978 ret = err; 6979 6980 if (freeze_protected) 6981 sb_end_intwrite(dquot->dq_sb); 6982 6983 return ret; 6984 } 6985 6986 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6987 { 6988 struct super_block *sb = dquot->dq_sb; 6989 6990 if (ext4_is_quota_journalled(sb)) { 6991 dquot_mark_dquot_dirty(dquot); 6992 return ext4_write_dquot(dquot); 6993 } else { 6994 return dquot_mark_dquot_dirty(dquot); 6995 } 6996 } 6997 6998 static int ext4_write_info(struct super_block *sb, int type) 6999 { 7000 int ret, err; 7001 handle_t *handle; 7002 7003 /* Data block + inode block */ 7004 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 7005 if (IS_ERR(handle)) 7006 return PTR_ERR(handle); 7007 ret = dquot_commit_info(sb, type); 7008 err = ext4_journal_stop(handle); 7009 if (!ret) 7010 ret = err; 7011 return ret; 7012 } 7013 7014 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 7015 { 7016 struct ext4_inode_info *ei = EXT4_I(inode); 7017 7018 /* The first argument of lockdep_set_subclass has to be 7019 * *exactly* the same as the argument to init_rwsem() --- in 7020 * this case, in init_once() --- or lockdep gets unhappy 7021 * because the name of the lock is set using the 7022 * stringification of the argument to init_rwsem(). 7023 */ 7024 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 7025 lockdep_set_subclass(&ei->i_data_sem, subclass); 7026 } 7027 7028 /* 7029 * Standard function to be called on quota_on 7030 */ 7031 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 7032 const struct path *path) 7033 { 7034 int err; 7035 7036 if (!test_opt(sb, QUOTA)) 7037 return -EINVAL; 7038 7039 /* Quotafile not on the same filesystem? */ 7040 if (path->dentry->d_sb != sb) 7041 return -EXDEV; 7042 7043 /* Quota already enabled for this file? */ 7044 if (IS_NOQUOTA(d_inode(path->dentry))) 7045 return -EBUSY; 7046 7047 /* Journaling quota? */ 7048 if (EXT4_SB(sb)->s_qf_names[type]) { 7049 /* Quotafile not in fs root? */ 7050 if (path->dentry->d_parent != sb->s_root) 7051 ext4_msg(sb, KERN_WARNING, 7052 "Quota file not on filesystem root. " 7053 "Journaled quota will not work"); 7054 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 7055 } else { 7056 /* 7057 * Clear the flag just in case mount options changed since 7058 * last time. 7059 */ 7060 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 7061 } 7062 7063 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 7064 err = dquot_quota_on(sb, type, format_id, path); 7065 if (!err) { 7066 struct inode *inode = d_inode(path->dentry); 7067 handle_t *handle; 7068 7069 /* 7070 * Set inode flags to prevent userspace from messing with quota 7071 * files. If this fails, we return success anyway since quotas 7072 * are already enabled and this is not a hard failure. 7073 */ 7074 inode_lock(inode); 7075 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7076 if (IS_ERR(handle)) 7077 goto unlock_inode; 7078 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7079 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7080 S_NOATIME | S_IMMUTABLE); 7081 err = ext4_mark_inode_dirty(handle, inode); 7082 ext4_journal_stop(handle); 7083 unlock_inode: 7084 inode_unlock(inode); 7085 if (err) 7086 dquot_quota_off(sb, type); 7087 } 7088 if (err) 7089 lockdep_set_quota_inode(path->dentry->d_inode, 7090 I_DATA_SEM_NORMAL); 7091 return err; 7092 } 7093 7094 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7095 { 7096 switch (type) { 7097 case USRQUOTA: 7098 return qf_inum == EXT4_USR_QUOTA_INO; 7099 case GRPQUOTA: 7100 return qf_inum == EXT4_GRP_QUOTA_INO; 7101 case PRJQUOTA: 7102 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7103 default: 7104 BUG(); 7105 } 7106 } 7107 7108 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7109 unsigned int flags) 7110 { 7111 int err; 7112 struct inode *qf_inode; 7113 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7114 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7115 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7116 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7117 }; 7118 7119 BUG_ON(!ext4_has_feature_quota(sb)); 7120 7121 if (!qf_inums[type]) 7122 return -EPERM; 7123 7124 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7125 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7126 qf_inums[type], type); 7127 return -EUCLEAN; 7128 } 7129 7130 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7131 if (IS_ERR(qf_inode)) { 7132 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7133 qf_inums[type], type); 7134 return PTR_ERR(qf_inode); 7135 } 7136 7137 /* Don't account quota for quota files to avoid recursion */ 7138 qf_inode->i_flags |= S_NOQUOTA; 7139 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7140 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7141 if (err) 7142 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7143 iput(qf_inode); 7144 7145 return err; 7146 } 7147 7148 /* Enable usage tracking for all quota types. */ 7149 int ext4_enable_quotas(struct super_block *sb) 7150 { 7151 int type, err = 0; 7152 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7153 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7154 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7155 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7156 }; 7157 bool quota_mopt[EXT4_MAXQUOTAS] = { 7158 test_opt(sb, USRQUOTA), 7159 test_opt(sb, GRPQUOTA), 7160 test_opt(sb, PRJQUOTA), 7161 }; 7162 7163 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7164 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7165 if (qf_inums[type]) { 7166 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7167 DQUOT_USAGE_ENABLED | 7168 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7169 if (err) { 7170 ext4_warning(sb, 7171 "Failed to enable quota tracking " 7172 "(type=%d, err=%d, ino=%lu). " 7173 "Please run e2fsck to fix.", type, 7174 err, qf_inums[type]); 7175 7176 ext4_quotas_off(sb, type); 7177 return err; 7178 } 7179 } 7180 } 7181 return 0; 7182 } 7183 7184 static int ext4_quota_off(struct super_block *sb, int type) 7185 { 7186 struct inode *inode = sb_dqopt(sb)->files[type]; 7187 handle_t *handle; 7188 int err; 7189 7190 /* Force all delayed allocation blocks to be allocated. 7191 * Caller already holds s_umount sem */ 7192 if (test_opt(sb, DELALLOC)) 7193 sync_filesystem(sb); 7194 7195 if (!inode || !igrab(inode)) 7196 goto out; 7197 7198 err = dquot_quota_off(sb, type); 7199 if (err || ext4_has_feature_quota(sb)) 7200 goto out_put; 7201 /* 7202 * When the filesystem was remounted read-only first, we cannot cleanup 7203 * inode flags here. Bad luck but people should be using QUOTA feature 7204 * these days anyway. 7205 */ 7206 if (sb_rdonly(sb)) 7207 goto out_put; 7208 7209 inode_lock(inode); 7210 /* 7211 * Update modification times of quota files when userspace can 7212 * start looking at them. If we fail, we return success anyway since 7213 * this is not a hard failure and quotas are already disabled. 7214 */ 7215 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7216 if (IS_ERR(handle)) { 7217 err = PTR_ERR(handle); 7218 goto out_unlock; 7219 } 7220 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7221 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7222 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7223 err = ext4_mark_inode_dirty(handle, inode); 7224 ext4_journal_stop(handle); 7225 out_unlock: 7226 inode_unlock(inode); 7227 out_put: 7228 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7229 iput(inode); 7230 return err; 7231 out: 7232 return dquot_quota_off(sb, type); 7233 } 7234 7235 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7236 * acquiring the locks... As quota files are never truncated and quota code 7237 * itself serializes the operations (and no one else should touch the files) 7238 * we don't have to be afraid of races */ 7239 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7240 size_t len, loff_t off) 7241 { 7242 struct inode *inode = sb_dqopt(sb)->files[type]; 7243 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7244 int offset = off & (sb->s_blocksize - 1); 7245 int tocopy; 7246 size_t toread; 7247 struct buffer_head *bh; 7248 loff_t i_size = i_size_read(inode); 7249 7250 if (off > i_size) 7251 return 0; 7252 if (off+len > i_size) 7253 len = i_size-off; 7254 toread = len; 7255 while (toread > 0) { 7256 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7257 bh = ext4_bread(NULL, inode, blk, 0); 7258 if (IS_ERR(bh)) 7259 return PTR_ERR(bh); 7260 if (!bh) /* A hole? */ 7261 memset(data, 0, tocopy); 7262 else 7263 memcpy(data, bh->b_data+offset, tocopy); 7264 brelse(bh); 7265 offset = 0; 7266 toread -= tocopy; 7267 data += tocopy; 7268 blk++; 7269 } 7270 return len; 7271 } 7272 7273 /* Write to quotafile (we know the transaction is already started and has 7274 * enough credits) */ 7275 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7276 const char *data, size_t len, loff_t off) 7277 { 7278 struct inode *inode = sb_dqopt(sb)->files[type]; 7279 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7280 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7281 int retries = 0; 7282 struct buffer_head *bh; 7283 handle_t *handle = journal_current_handle(); 7284 7285 if (!handle) { 7286 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7287 " cancelled because transaction is not started", 7288 (unsigned long long)off, (unsigned long long)len); 7289 return -EIO; 7290 } 7291 /* 7292 * Since we account only one data block in transaction credits, 7293 * then it is impossible to cross a block boundary. 7294 */ 7295 if (sb->s_blocksize - offset < len) { 7296 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7297 " cancelled because not block aligned", 7298 (unsigned long long)off, (unsigned long long)len); 7299 return -EIO; 7300 } 7301 7302 do { 7303 bh = ext4_bread(handle, inode, blk, 7304 EXT4_GET_BLOCKS_CREATE | 7305 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7306 } while (PTR_ERR(bh) == -ENOSPC && 7307 ext4_should_retry_alloc(inode->i_sb, &retries)); 7308 if (IS_ERR(bh)) 7309 return PTR_ERR(bh); 7310 if (!bh) 7311 goto out; 7312 BUFFER_TRACE(bh, "get write access"); 7313 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7314 if (err) { 7315 brelse(bh); 7316 return err; 7317 } 7318 lock_buffer(bh); 7319 memcpy(bh->b_data+offset, data, len); 7320 flush_dcache_folio(bh->b_folio); 7321 unlock_buffer(bh); 7322 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7323 brelse(bh); 7324 out: 7325 if (inode->i_size < off + len) { 7326 i_size_write(inode, off + len); 7327 EXT4_I(inode)->i_disksize = inode->i_size; 7328 err2 = ext4_mark_inode_dirty(handle, inode); 7329 if (unlikely(err2 && !err)) 7330 err = err2; 7331 } 7332 return err ? err : len; 7333 } 7334 #endif 7335 7336 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7337 static inline void register_as_ext2(void) 7338 { 7339 int err = register_filesystem(&ext2_fs_type); 7340 if (err) 7341 printk(KERN_WARNING 7342 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7343 } 7344 7345 static inline void unregister_as_ext2(void) 7346 { 7347 unregister_filesystem(&ext2_fs_type); 7348 } 7349 7350 static inline int ext2_feature_set_ok(struct super_block *sb) 7351 { 7352 if (ext4_has_unknown_ext2_incompat_features(sb)) 7353 return 0; 7354 if (sb_rdonly(sb)) 7355 return 1; 7356 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7357 return 0; 7358 return 1; 7359 } 7360 #else 7361 static inline void register_as_ext2(void) { } 7362 static inline void unregister_as_ext2(void) { } 7363 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7364 #endif 7365 7366 static inline void register_as_ext3(void) 7367 { 7368 int err = register_filesystem(&ext3_fs_type); 7369 if (err) 7370 printk(KERN_WARNING 7371 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7372 } 7373 7374 static inline void unregister_as_ext3(void) 7375 { 7376 unregister_filesystem(&ext3_fs_type); 7377 } 7378 7379 static inline int ext3_feature_set_ok(struct super_block *sb) 7380 { 7381 if (ext4_has_unknown_ext3_incompat_features(sb)) 7382 return 0; 7383 if (!ext4_has_feature_journal(sb)) 7384 return 0; 7385 if (sb_rdonly(sb)) 7386 return 1; 7387 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7388 return 0; 7389 return 1; 7390 } 7391 7392 static void ext4_kill_sb(struct super_block *sb) 7393 { 7394 struct ext4_sb_info *sbi = EXT4_SB(sb); 7395 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7396 7397 kill_block_super(sb); 7398 7399 if (bdev_file) 7400 bdev_fput(bdev_file); 7401 } 7402 7403 static struct file_system_type ext4_fs_type = { 7404 .owner = THIS_MODULE, 7405 .name = "ext4", 7406 .init_fs_context = ext4_init_fs_context, 7407 .parameters = ext4_param_specs, 7408 .kill_sb = ext4_kill_sb, 7409 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME, 7410 }; 7411 MODULE_ALIAS_FS("ext4"); 7412 7413 static int __init ext4_init_fs(void) 7414 { 7415 int err; 7416 7417 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7418 ext4_li_info = NULL; 7419 7420 /* Build-time check for flags consistency */ 7421 ext4_check_flag_values(); 7422 7423 err = ext4_init_es(); 7424 if (err) 7425 return err; 7426 7427 err = ext4_init_pending(); 7428 if (err) 7429 goto out7; 7430 7431 err = ext4_init_post_read_processing(); 7432 if (err) 7433 goto out6; 7434 7435 err = ext4_init_pageio(); 7436 if (err) 7437 goto out5; 7438 7439 err = ext4_init_system_zone(); 7440 if (err) 7441 goto out4; 7442 7443 err = ext4_init_sysfs(); 7444 if (err) 7445 goto out3; 7446 7447 err = ext4_init_mballoc(); 7448 if (err) 7449 goto out2; 7450 err = init_inodecache(); 7451 if (err) 7452 goto out1; 7453 7454 err = ext4_fc_init_dentry_cache(); 7455 if (err) 7456 goto out05; 7457 7458 register_as_ext3(); 7459 register_as_ext2(); 7460 err = register_filesystem(&ext4_fs_type); 7461 if (err) 7462 goto out; 7463 7464 return 0; 7465 out: 7466 unregister_as_ext2(); 7467 unregister_as_ext3(); 7468 ext4_fc_destroy_dentry_cache(); 7469 out05: 7470 destroy_inodecache(); 7471 out1: 7472 ext4_exit_mballoc(); 7473 out2: 7474 ext4_exit_sysfs(); 7475 out3: 7476 ext4_exit_system_zone(); 7477 out4: 7478 ext4_exit_pageio(); 7479 out5: 7480 ext4_exit_post_read_processing(); 7481 out6: 7482 ext4_exit_pending(); 7483 out7: 7484 ext4_exit_es(); 7485 7486 return err; 7487 } 7488 7489 static void __exit ext4_exit_fs(void) 7490 { 7491 ext4_destroy_lazyinit_thread(); 7492 unregister_as_ext2(); 7493 unregister_as_ext3(); 7494 unregister_filesystem(&ext4_fs_type); 7495 ext4_fc_destroy_dentry_cache(); 7496 destroy_inodecache(); 7497 ext4_exit_mballoc(); 7498 ext4_exit_sysfs(); 7499 ext4_exit_system_zone(); 7500 ext4_exit_pageio(); 7501 ext4_exit_post_read_processing(); 7502 ext4_exit_es(); 7503 ext4_exit_pending(); 7504 } 7505 7506 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7507 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7508 MODULE_LICENSE("GPL"); 7509 module_init(ext4_init_fs) 7510 module_exit(ext4_exit_fs) 7511