1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 static int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!ext4_has_metadata_csum(sb)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147 } 148 149 void ext4_superblock_csum_set(struct super_block *sb) 150 { 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!ext4_has_metadata_csum(sb)) 154 return; 155 156 es->s_checksum = ext4_superblock_csum(sb, es); 157 } 158 159 void *ext4_kvmalloc(size_t size, gfp_t flags) 160 { 161 void *ret; 162 163 ret = kmalloc(size, flags | __GFP_NOWARN); 164 if (!ret) 165 ret = __vmalloc(size, flags, PAGE_KERNEL); 166 return ret; 167 } 168 169 void *ext4_kvzalloc(size_t size, gfp_t flags) 170 { 171 void *ret; 172 173 ret = kzalloc(size, flags | __GFP_NOWARN); 174 if (!ret) 175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 176 return ret; 177 } 178 179 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 180 struct ext4_group_desc *bg) 181 { 182 return le32_to_cpu(bg->bg_block_bitmap_lo) | 183 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 184 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 185 } 186 187 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 188 struct ext4_group_desc *bg) 189 { 190 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 191 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 192 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 193 } 194 195 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 196 struct ext4_group_desc *bg) 197 { 198 return le32_to_cpu(bg->bg_inode_table_lo) | 199 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 200 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 201 } 202 203 __u32 ext4_free_group_clusters(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 209 } 210 211 __u32 ext4_free_inodes_count(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 217 } 218 219 __u32 ext4_used_dirs_count(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 225 } 226 227 __u32 ext4_itable_unused_count(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_itable_unused_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 233 } 234 235 void ext4_block_bitmap_set(struct super_block *sb, 236 struct ext4_group_desc *bg, ext4_fsblk_t blk) 237 { 238 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 239 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 240 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 241 } 242 243 void ext4_inode_bitmap_set(struct super_block *sb, 244 struct ext4_group_desc *bg, ext4_fsblk_t blk) 245 { 246 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 247 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 248 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 249 } 250 251 void ext4_inode_table_set(struct super_block *sb, 252 struct ext4_group_desc *bg, ext4_fsblk_t blk) 253 { 254 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 255 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 256 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 257 } 258 259 void ext4_free_group_clusters_set(struct super_block *sb, 260 struct ext4_group_desc *bg, __u32 count) 261 { 262 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 265 } 266 267 void ext4_free_inodes_set(struct super_block *sb, 268 struct ext4_group_desc *bg, __u32 count) 269 { 270 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 273 } 274 275 void ext4_used_dirs_set(struct super_block *sb, 276 struct ext4_group_desc *bg, __u32 count) 277 { 278 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 281 } 282 283 void ext4_itable_unused_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 289 } 290 291 292 static void __save_error_info(struct super_block *sb, const char *func, 293 unsigned int line) 294 { 295 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 296 297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 298 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 299 es->s_last_error_time = cpu_to_le32(get_seconds()); 300 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 301 es->s_last_error_line = cpu_to_le32(line); 302 if (!es->s_first_error_time) { 303 es->s_first_error_time = es->s_last_error_time; 304 strncpy(es->s_first_error_func, func, 305 sizeof(es->s_first_error_func)); 306 es->s_first_error_line = cpu_to_le32(line); 307 es->s_first_error_ino = es->s_last_error_ino; 308 es->s_first_error_block = es->s_last_error_block; 309 } 310 /* 311 * Start the daily error reporting function if it hasn't been 312 * started already 313 */ 314 if (!es->s_error_count) 315 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 316 le32_add_cpu(&es->s_error_count, 1); 317 } 318 319 static void save_error_info(struct super_block *sb, const char *func, 320 unsigned int line) 321 { 322 __save_error_info(sb, func, line); 323 ext4_commit_super(sb, 1); 324 } 325 326 /* 327 * The del_gendisk() function uninitializes the disk-specific data 328 * structures, including the bdi structure, without telling anyone 329 * else. Once this happens, any attempt to call mark_buffer_dirty() 330 * (for example, by ext4_commit_super), will cause a kernel OOPS. 331 * This is a kludge to prevent these oops until we can put in a proper 332 * hook in del_gendisk() to inform the VFS and file system layers. 333 */ 334 static int block_device_ejected(struct super_block *sb) 335 { 336 struct inode *bd_inode = sb->s_bdev->bd_inode; 337 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 338 339 return bdi->dev == NULL; 340 } 341 342 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 343 { 344 struct super_block *sb = journal->j_private; 345 struct ext4_sb_info *sbi = EXT4_SB(sb); 346 int error = is_journal_aborted(journal); 347 struct ext4_journal_cb_entry *jce; 348 349 BUG_ON(txn->t_state == T_FINISHED); 350 spin_lock(&sbi->s_md_lock); 351 while (!list_empty(&txn->t_private_list)) { 352 jce = list_entry(txn->t_private_list.next, 353 struct ext4_journal_cb_entry, jce_list); 354 list_del_init(&jce->jce_list); 355 spin_unlock(&sbi->s_md_lock); 356 jce->jce_func(sb, jce, error); 357 spin_lock(&sbi->s_md_lock); 358 } 359 spin_unlock(&sbi->s_md_lock); 360 } 361 362 /* Deal with the reporting of failure conditions on a filesystem such as 363 * inconsistencies detected or read IO failures. 364 * 365 * On ext2, we can store the error state of the filesystem in the 366 * superblock. That is not possible on ext4, because we may have other 367 * write ordering constraints on the superblock which prevent us from 368 * writing it out straight away; and given that the journal is about to 369 * be aborted, we can't rely on the current, or future, transactions to 370 * write out the superblock safely. 371 * 372 * We'll just use the jbd2_journal_abort() error code to record an error in 373 * the journal instead. On recovery, the journal will complain about 374 * that error until we've noted it down and cleared it. 375 */ 376 377 static void ext4_handle_error(struct super_block *sb) 378 { 379 if (sb->s_flags & MS_RDONLY) 380 return; 381 382 if (!test_opt(sb, ERRORS_CONT)) { 383 journal_t *journal = EXT4_SB(sb)->s_journal; 384 385 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 386 if (journal) 387 jbd2_journal_abort(journal, -EIO); 388 } 389 if (test_opt(sb, ERRORS_RO)) { 390 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 391 /* 392 * Make sure updated value of ->s_mount_flags will be visible 393 * before ->s_flags update 394 */ 395 smp_wmb(); 396 sb->s_flags |= MS_RDONLY; 397 } 398 if (test_opt(sb, ERRORS_PANIC)) 399 panic("EXT4-fs (device %s): panic forced after error\n", 400 sb->s_id); 401 } 402 403 #define ext4_error_ratelimit(sb) \ 404 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 405 "EXT4-fs error") 406 407 void __ext4_error(struct super_block *sb, const char *function, 408 unsigned int line, const char *fmt, ...) 409 { 410 struct va_format vaf; 411 va_list args; 412 413 if (ext4_error_ratelimit(sb)) { 414 va_start(args, fmt); 415 vaf.fmt = fmt; 416 vaf.va = &args; 417 printk(KERN_CRIT 418 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 419 sb->s_id, function, line, current->comm, &vaf); 420 va_end(args); 421 } 422 save_error_info(sb, function, line); 423 ext4_handle_error(sb); 424 } 425 426 void __ext4_error_inode(struct inode *inode, const char *function, 427 unsigned int line, ext4_fsblk_t block, 428 const char *fmt, ...) 429 { 430 va_list args; 431 struct va_format vaf; 432 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 433 434 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 435 es->s_last_error_block = cpu_to_le64(block); 436 if (ext4_error_ratelimit(inode->i_sb)) { 437 va_start(args, fmt); 438 vaf.fmt = fmt; 439 vaf.va = &args; 440 if (block) 441 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 442 "inode #%lu: block %llu: comm %s: %pV\n", 443 inode->i_sb->s_id, function, line, inode->i_ino, 444 block, current->comm, &vaf); 445 else 446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 447 "inode #%lu: comm %s: %pV\n", 448 inode->i_sb->s_id, function, line, inode->i_ino, 449 current->comm, &vaf); 450 va_end(args); 451 } 452 save_error_info(inode->i_sb, function, line); 453 ext4_handle_error(inode->i_sb); 454 } 455 456 void __ext4_error_file(struct file *file, const char *function, 457 unsigned int line, ext4_fsblk_t block, 458 const char *fmt, ...) 459 { 460 va_list args; 461 struct va_format vaf; 462 struct ext4_super_block *es; 463 struct inode *inode = file_inode(file); 464 char pathname[80], *path; 465 466 es = EXT4_SB(inode->i_sb)->s_es; 467 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 468 if (ext4_error_ratelimit(inode->i_sb)) { 469 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 470 if (IS_ERR(path)) 471 path = "(unknown)"; 472 va_start(args, fmt); 473 vaf.fmt = fmt; 474 vaf.va = &args; 475 if (block) 476 printk(KERN_CRIT 477 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 478 "block %llu: comm %s: path %s: %pV\n", 479 inode->i_sb->s_id, function, line, inode->i_ino, 480 block, current->comm, path, &vaf); 481 else 482 printk(KERN_CRIT 483 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 484 "comm %s: path %s: %pV\n", 485 inode->i_sb->s_id, function, line, inode->i_ino, 486 current->comm, path, &vaf); 487 va_end(args); 488 } 489 save_error_info(inode->i_sb, function, line); 490 ext4_handle_error(inode->i_sb); 491 } 492 493 const char *ext4_decode_error(struct super_block *sb, int errno, 494 char nbuf[16]) 495 { 496 char *errstr = NULL; 497 498 switch (errno) { 499 case -EIO: 500 errstr = "IO failure"; 501 break; 502 case -ENOMEM: 503 errstr = "Out of memory"; 504 break; 505 case -EROFS: 506 if (!sb || (EXT4_SB(sb)->s_journal && 507 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 508 errstr = "Journal has aborted"; 509 else 510 errstr = "Readonly filesystem"; 511 break; 512 default: 513 /* If the caller passed in an extra buffer for unknown 514 * errors, textualise them now. Else we just return 515 * NULL. */ 516 if (nbuf) { 517 /* Check for truncated error codes... */ 518 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 519 errstr = nbuf; 520 } 521 break; 522 } 523 524 return errstr; 525 } 526 527 /* __ext4_std_error decodes expected errors from journaling functions 528 * automatically and invokes the appropriate error response. */ 529 530 void __ext4_std_error(struct super_block *sb, const char *function, 531 unsigned int line, int errno) 532 { 533 char nbuf[16]; 534 const char *errstr; 535 536 /* Special case: if the error is EROFS, and we're not already 537 * inside a transaction, then there's really no point in logging 538 * an error. */ 539 if (errno == -EROFS && journal_current_handle() == NULL && 540 (sb->s_flags & MS_RDONLY)) 541 return; 542 543 if (ext4_error_ratelimit(sb)) { 544 errstr = ext4_decode_error(sb, errno, nbuf); 545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 546 sb->s_id, function, line, errstr); 547 } 548 549 save_error_info(sb, function, line); 550 ext4_handle_error(sb); 551 } 552 553 /* 554 * ext4_abort is a much stronger failure handler than ext4_error. The 555 * abort function may be used to deal with unrecoverable failures such 556 * as journal IO errors or ENOMEM at a critical moment in log management. 557 * 558 * We unconditionally force the filesystem into an ABORT|READONLY state, 559 * unless the error response on the fs has been set to panic in which 560 * case we take the easy way out and panic immediately. 561 */ 562 563 void __ext4_abort(struct super_block *sb, const char *function, 564 unsigned int line, const char *fmt, ...) 565 { 566 va_list args; 567 568 save_error_info(sb, function, line); 569 va_start(args, fmt); 570 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 571 function, line); 572 vprintk(fmt, args); 573 printk("\n"); 574 va_end(args); 575 576 if ((sb->s_flags & MS_RDONLY) == 0) { 577 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 579 /* 580 * Make sure updated value of ->s_mount_flags will be visible 581 * before ->s_flags update 582 */ 583 smp_wmb(); 584 sb->s_flags |= MS_RDONLY; 585 if (EXT4_SB(sb)->s_journal) 586 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 587 save_error_info(sb, function, line); 588 } 589 if (test_opt(sb, ERRORS_PANIC)) 590 panic("EXT4-fs panic from previous error\n"); 591 } 592 593 void __ext4_msg(struct super_block *sb, 594 const char *prefix, const char *fmt, ...) 595 { 596 struct va_format vaf; 597 va_list args; 598 599 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 600 return; 601 602 va_start(args, fmt); 603 vaf.fmt = fmt; 604 vaf.va = &args; 605 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 606 va_end(args); 607 } 608 609 void __ext4_warning(struct super_block *sb, const char *function, 610 unsigned int line, const char *fmt, ...) 611 { 612 struct va_format vaf; 613 va_list args; 614 615 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 616 "EXT4-fs warning")) 617 return; 618 619 va_start(args, fmt); 620 vaf.fmt = fmt; 621 vaf.va = &args; 622 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 623 sb->s_id, function, line, &vaf); 624 va_end(args); 625 } 626 627 void __ext4_grp_locked_error(const char *function, unsigned int line, 628 struct super_block *sb, ext4_group_t grp, 629 unsigned long ino, ext4_fsblk_t block, 630 const char *fmt, ...) 631 __releases(bitlock) 632 __acquires(bitlock) 633 { 634 struct va_format vaf; 635 va_list args; 636 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 637 638 es->s_last_error_ino = cpu_to_le32(ino); 639 es->s_last_error_block = cpu_to_le64(block); 640 __save_error_info(sb, function, line); 641 642 if (ext4_error_ratelimit(sb)) { 643 va_start(args, fmt); 644 vaf.fmt = fmt; 645 vaf.va = &args; 646 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 647 sb->s_id, function, line, grp); 648 if (ino) 649 printk(KERN_CONT "inode %lu: ", ino); 650 if (block) 651 printk(KERN_CONT "block %llu:", 652 (unsigned long long) block); 653 printk(KERN_CONT "%pV\n", &vaf); 654 va_end(args); 655 } 656 657 if (test_opt(sb, ERRORS_CONT)) { 658 ext4_commit_super(sb, 0); 659 return; 660 } 661 662 ext4_unlock_group(sb, grp); 663 ext4_handle_error(sb); 664 /* 665 * We only get here in the ERRORS_RO case; relocking the group 666 * may be dangerous, but nothing bad will happen since the 667 * filesystem will have already been marked read/only and the 668 * journal has been aborted. We return 1 as a hint to callers 669 * who might what to use the return value from 670 * ext4_grp_locked_error() to distinguish between the 671 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 672 * aggressively from the ext4 function in question, with a 673 * more appropriate error code. 674 */ 675 ext4_lock_group(sb, grp); 676 return; 677 } 678 679 void ext4_update_dynamic_rev(struct super_block *sb) 680 { 681 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 682 683 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 684 return; 685 686 ext4_warning(sb, 687 "updating to rev %d because of new feature flag, " 688 "running e2fsck is recommended", 689 EXT4_DYNAMIC_REV); 690 691 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 692 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 693 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 694 /* leave es->s_feature_*compat flags alone */ 695 /* es->s_uuid will be set by e2fsck if empty */ 696 697 /* 698 * The rest of the superblock fields should be zero, and if not it 699 * means they are likely already in use, so leave them alone. We 700 * can leave it up to e2fsck to clean up any inconsistencies there. 701 */ 702 } 703 704 /* 705 * Open the external journal device 706 */ 707 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 708 { 709 struct block_device *bdev; 710 char b[BDEVNAME_SIZE]; 711 712 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 713 if (IS_ERR(bdev)) 714 goto fail; 715 return bdev; 716 717 fail: 718 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 719 __bdevname(dev, b), PTR_ERR(bdev)); 720 return NULL; 721 } 722 723 /* 724 * Release the journal device 725 */ 726 static void ext4_blkdev_put(struct block_device *bdev) 727 { 728 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 729 } 730 731 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 732 { 733 struct block_device *bdev; 734 bdev = sbi->journal_bdev; 735 if (bdev) { 736 ext4_blkdev_put(bdev); 737 sbi->journal_bdev = NULL; 738 } 739 } 740 741 static inline struct inode *orphan_list_entry(struct list_head *l) 742 { 743 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 744 } 745 746 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 747 { 748 struct list_head *l; 749 750 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 751 le32_to_cpu(sbi->s_es->s_last_orphan)); 752 753 printk(KERN_ERR "sb_info orphan list:\n"); 754 list_for_each(l, &sbi->s_orphan) { 755 struct inode *inode = orphan_list_entry(l); 756 printk(KERN_ERR " " 757 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 758 inode->i_sb->s_id, inode->i_ino, inode, 759 inode->i_mode, inode->i_nlink, 760 NEXT_ORPHAN(inode)); 761 } 762 } 763 764 static void ext4_put_super(struct super_block *sb) 765 { 766 struct ext4_sb_info *sbi = EXT4_SB(sb); 767 struct ext4_super_block *es = sbi->s_es; 768 int i, err; 769 770 ext4_unregister_li_request(sb); 771 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 772 773 flush_workqueue(sbi->rsv_conversion_wq); 774 destroy_workqueue(sbi->rsv_conversion_wq); 775 776 if (sbi->s_journal) { 777 err = jbd2_journal_destroy(sbi->s_journal); 778 sbi->s_journal = NULL; 779 if (err < 0) 780 ext4_abort(sb, "Couldn't clean up the journal"); 781 } 782 783 ext4_es_unregister_shrinker(sbi); 784 del_timer_sync(&sbi->s_err_report); 785 ext4_release_system_zone(sb); 786 ext4_mb_release(sb); 787 ext4_ext_release(sb); 788 ext4_xattr_put_super(sb); 789 790 if (!(sb->s_flags & MS_RDONLY)) { 791 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 792 es->s_state = cpu_to_le16(sbi->s_mount_state); 793 } 794 if (!(sb->s_flags & MS_RDONLY)) 795 ext4_commit_super(sb, 1); 796 797 if (sbi->s_proc) { 798 remove_proc_entry("options", sbi->s_proc); 799 remove_proc_entry(sb->s_id, ext4_proc_root); 800 } 801 kobject_del(&sbi->s_kobj); 802 803 for (i = 0; i < sbi->s_gdb_count; i++) 804 brelse(sbi->s_group_desc[i]); 805 kvfree(sbi->s_group_desc); 806 kvfree(sbi->s_flex_groups); 807 percpu_counter_destroy(&sbi->s_freeclusters_counter); 808 percpu_counter_destroy(&sbi->s_freeinodes_counter); 809 percpu_counter_destroy(&sbi->s_dirs_counter); 810 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 811 brelse(sbi->s_sbh); 812 #ifdef CONFIG_QUOTA 813 for (i = 0; i < EXT4_MAXQUOTAS; i++) 814 kfree(sbi->s_qf_names[i]); 815 #endif 816 817 /* Debugging code just in case the in-memory inode orphan list 818 * isn't empty. The on-disk one can be non-empty if we've 819 * detected an error and taken the fs readonly, but the 820 * in-memory list had better be clean by this point. */ 821 if (!list_empty(&sbi->s_orphan)) 822 dump_orphan_list(sb, sbi); 823 J_ASSERT(list_empty(&sbi->s_orphan)); 824 825 invalidate_bdev(sb->s_bdev); 826 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 827 /* 828 * Invalidate the journal device's buffers. We don't want them 829 * floating about in memory - the physical journal device may 830 * hotswapped, and it breaks the `ro-after' testing code. 831 */ 832 sync_blockdev(sbi->journal_bdev); 833 invalidate_bdev(sbi->journal_bdev); 834 ext4_blkdev_remove(sbi); 835 } 836 if (sbi->s_mb_cache) { 837 ext4_xattr_destroy_cache(sbi->s_mb_cache); 838 sbi->s_mb_cache = NULL; 839 } 840 if (sbi->s_mmp_tsk) 841 kthread_stop(sbi->s_mmp_tsk); 842 sb->s_fs_info = NULL; 843 /* 844 * Now that we are completely done shutting down the 845 * superblock, we need to actually destroy the kobject. 846 */ 847 kobject_put(&sbi->s_kobj); 848 wait_for_completion(&sbi->s_kobj_unregister); 849 if (sbi->s_chksum_driver) 850 crypto_free_shash(sbi->s_chksum_driver); 851 kfree(sbi->s_blockgroup_lock); 852 kfree(sbi); 853 } 854 855 static struct kmem_cache *ext4_inode_cachep; 856 857 /* 858 * Called inside transaction, so use GFP_NOFS 859 */ 860 static struct inode *ext4_alloc_inode(struct super_block *sb) 861 { 862 struct ext4_inode_info *ei; 863 864 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 865 if (!ei) 866 return NULL; 867 868 ei->vfs_inode.i_version = 1; 869 spin_lock_init(&ei->i_raw_lock); 870 INIT_LIST_HEAD(&ei->i_prealloc_list); 871 spin_lock_init(&ei->i_prealloc_lock); 872 ext4_es_init_tree(&ei->i_es_tree); 873 rwlock_init(&ei->i_es_lock); 874 INIT_LIST_HEAD(&ei->i_es_list); 875 ei->i_es_all_nr = 0; 876 ei->i_es_shk_nr = 0; 877 ei->i_es_shrink_lblk = 0; 878 ei->i_reserved_data_blocks = 0; 879 ei->i_reserved_meta_blocks = 0; 880 ei->i_allocated_meta_blocks = 0; 881 ei->i_da_metadata_calc_len = 0; 882 ei->i_da_metadata_calc_last_lblock = 0; 883 spin_lock_init(&(ei->i_block_reservation_lock)); 884 #ifdef CONFIG_QUOTA 885 ei->i_reserved_quota = 0; 886 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 887 #endif 888 ei->jinode = NULL; 889 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 890 spin_lock_init(&ei->i_completed_io_lock); 891 ei->i_sync_tid = 0; 892 ei->i_datasync_tid = 0; 893 atomic_set(&ei->i_ioend_count, 0); 894 atomic_set(&ei->i_unwritten, 0); 895 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 896 897 return &ei->vfs_inode; 898 } 899 900 static int ext4_drop_inode(struct inode *inode) 901 { 902 int drop = generic_drop_inode(inode); 903 904 trace_ext4_drop_inode(inode, drop); 905 return drop; 906 } 907 908 static void ext4_i_callback(struct rcu_head *head) 909 { 910 struct inode *inode = container_of(head, struct inode, i_rcu); 911 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 912 } 913 914 static void ext4_destroy_inode(struct inode *inode) 915 { 916 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 917 ext4_msg(inode->i_sb, KERN_ERR, 918 "Inode %lu (%p): orphan list check failed!", 919 inode->i_ino, EXT4_I(inode)); 920 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 921 EXT4_I(inode), sizeof(struct ext4_inode_info), 922 true); 923 dump_stack(); 924 } 925 call_rcu(&inode->i_rcu, ext4_i_callback); 926 } 927 928 static void init_once(void *foo) 929 { 930 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 931 932 INIT_LIST_HEAD(&ei->i_orphan); 933 init_rwsem(&ei->xattr_sem); 934 init_rwsem(&ei->i_data_sem); 935 inode_init_once(&ei->vfs_inode); 936 } 937 938 static int __init init_inodecache(void) 939 { 940 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 941 sizeof(struct ext4_inode_info), 942 0, (SLAB_RECLAIM_ACCOUNT| 943 SLAB_MEM_SPREAD), 944 init_once); 945 if (ext4_inode_cachep == NULL) 946 return -ENOMEM; 947 return 0; 948 } 949 950 static void destroy_inodecache(void) 951 { 952 /* 953 * Make sure all delayed rcu free inodes are flushed before we 954 * destroy cache. 955 */ 956 rcu_barrier(); 957 kmem_cache_destroy(ext4_inode_cachep); 958 } 959 960 void ext4_clear_inode(struct inode *inode) 961 { 962 invalidate_inode_buffers(inode); 963 clear_inode(inode); 964 dquot_drop(inode); 965 ext4_discard_preallocations(inode); 966 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 967 if (EXT4_I(inode)->jinode) { 968 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 969 EXT4_I(inode)->jinode); 970 jbd2_free_inode(EXT4_I(inode)->jinode); 971 EXT4_I(inode)->jinode = NULL; 972 } 973 } 974 975 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 976 u64 ino, u32 generation) 977 { 978 struct inode *inode; 979 980 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 981 return ERR_PTR(-ESTALE); 982 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 983 return ERR_PTR(-ESTALE); 984 985 /* iget isn't really right if the inode is currently unallocated!! 986 * 987 * ext4_read_inode will return a bad_inode if the inode had been 988 * deleted, so we should be safe. 989 * 990 * Currently we don't know the generation for parent directory, so 991 * a generation of 0 means "accept any" 992 */ 993 inode = ext4_iget_normal(sb, ino); 994 if (IS_ERR(inode)) 995 return ERR_CAST(inode); 996 if (generation && inode->i_generation != generation) { 997 iput(inode); 998 return ERR_PTR(-ESTALE); 999 } 1000 1001 return inode; 1002 } 1003 1004 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1005 int fh_len, int fh_type) 1006 { 1007 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1008 ext4_nfs_get_inode); 1009 } 1010 1011 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1012 int fh_len, int fh_type) 1013 { 1014 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1015 ext4_nfs_get_inode); 1016 } 1017 1018 /* 1019 * Try to release metadata pages (indirect blocks, directories) which are 1020 * mapped via the block device. Since these pages could have journal heads 1021 * which would prevent try_to_free_buffers() from freeing them, we must use 1022 * jbd2 layer's try_to_free_buffers() function to release them. 1023 */ 1024 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1025 gfp_t wait) 1026 { 1027 journal_t *journal = EXT4_SB(sb)->s_journal; 1028 1029 WARN_ON(PageChecked(page)); 1030 if (!page_has_buffers(page)) 1031 return 0; 1032 if (journal) 1033 return jbd2_journal_try_to_free_buffers(journal, page, 1034 wait & ~__GFP_WAIT); 1035 return try_to_free_buffers(page); 1036 } 1037 1038 #ifdef CONFIG_QUOTA 1039 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1040 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1041 1042 static int ext4_write_dquot(struct dquot *dquot); 1043 static int ext4_acquire_dquot(struct dquot *dquot); 1044 static int ext4_release_dquot(struct dquot *dquot); 1045 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1046 static int ext4_write_info(struct super_block *sb, int type); 1047 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1048 struct path *path); 1049 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1050 int format_id); 1051 static int ext4_quota_off(struct super_block *sb, int type); 1052 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1053 static int ext4_quota_on_mount(struct super_block *sb, int type); 1054 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1055 size_t len, loff_t off); 1056 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1057 const char *data, size_t len, loff_t off); 1058 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1059 unsigned int flags); 1060 static int ext4_enable_quotas(struct super_block *sb); 1061 1062 static struct dquot **ext4_get_dquots(struct inode *inode) 1063 { 1064 return EXT4_I(inode)->i_dquot; 1065 } 1066 1067 static const struct dquot_operations ext4_quota_operations = { 1068 .get_reserved_space = ext4_get_reserved_space, 1069 .write_dquot = ext4_write_dquot, 1070 .acquire_dquot = ext4_acquire_dquot, 1071 .release_dquot = ext4_release_dquot, 1072 .mark_dirty = ext4_mark_dquot_dirty, 1073 .write_info = ext4_write_info, 1074 .alloc_dquot = dquot_alloc, 1075 .destroy_dquot = dquot_destroy, 1076 }; 1077 1078 static const struct quotactl_ops ext4_qctl_operations = { 1079 .quota_on = ext4_quota_on, 1080 .quota_off = ext4_quota_off, 1081 .quota_sync = dquot_quota_sync, 1082 .get_info = dquot_get_dqinfo, 1083 .set_info = dquot_set_dqinfo, 1084 .get_dqblk = dquot_get_dqblk, 1085 .set_dqblk = dquot_set_dqblk 1086 }; 1087 1088 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1089 .quota_on_meta = ext4_quota_on_sysfile, 1090 .quota_off = ext4_quota_off_sysfile, 1091 .quota_sync = dquot_quota_sync, 1092 .get_info = dquot_get_dqinfo, 1093 .set_info = dquot_set_dqinfo, 1094 .get_dqblk = dquot_get_dqblk, 1095 .set_dqblk = dquot_set_dqblk 1096 }; 1097 #endif 1098 1099 static const struct super_operations ext4_sops = { 1100 .alloc_inode = ext4_alloc_inode, 1101 .destroy_inode = ext4_destroy_inode, 1102 .write_inode = ext4_write_inode, 1103 .dirty_inode = ext4_dirty_inode, 1104 .drop_inode = ext4_drop_inode, 1105 .evict_inode = ext4_evict_inode, 1106 .put_super = ext4_put_super, 1107 .sync_fs = ext4_sync_fs, 1108 .freeze_fs = ext4_freeze, 1109 .unfreeze_fs = ext4_unfreeze, 1110 .statfs = ext4_statfs, 1111 .remount_fs = ext4_remount, 1112 .show_options = ext4_show_options, 1113 #ifdef CONFIG_QUOTA 1114 .quota_read = ext4_quota_read, 1115 .quota_write = ext4_quota_write, 1116 .get_dquots = ext4_get_dquots, 1117 #endif 1118 .bdev_try_to_free_page = bdev_try_to_free_page, 1119 }; 1120 1121 static const struct export_operations ext4_export_ops = { 1122 .fh_to_dentry = ext4_fh_to_dentry, 1123 .fh_to_parent = ext4_fh_to_parent, 1124 .get_parent = ext4_get_parent, 1125 }; 1126 1127 enum { 1128 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1129 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1130 Opt_nouid32, Opt_debug, Opt_removed, 1131 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1132 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1133 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1134 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1135 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1136 Opt_data_err_abort, Opt_data_err_ignore, 1137 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1138 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1139 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1140 Opt_usrquota, Opt_grpquota, Opt_i_version, 1141 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1142 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1143 Opt_inode_readahead_blks, Opt_journal_ioprio, 1144 Opt_dioread_nolock, Opt_dioread_lock, 1145 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1146 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1147 }; 1148 1149 static const match_table_t tokens = { 1150 {Opt_bsd_df, "bsddf"}, 1151 {Opt_minix_df, "minixdf"}, 1152 {Opt_grpid, "grpid"}, 1153 {Opt_grpid, "bsdgroups"}, 1154 {Opt_nogrpid, "nogrpid"}, 1155 {Opt_nogrpid, "sysvgroups"}, 1156 {Opt_resgid, "resgid=%u"}, 1157 {Opt_resuid, "resuid=%u"}, 1158 {Opt_sb, "sb=%u"}, 1159 {Opt_err_cont, "errors=continue"}, 1160 {Opt_err_panic, "errors=panic"}, 1161 {Opt_err_ro, "errors=remount-ro"}, 1162 {Opt_nouid32, "nouid32"}, 1163 {Opt_debug, "debug"}, 1164 {Opt_removed, "oldalloc"}, 1165 {Opt_removed, "orlov"}, 1166 {Opt_user_xattr, "user_xattr"}, 1167 {Opt_nouser_xattr, "nouser_xattr"}, 1168 {Opt_acl, "acl"}, 1169 {Opt_noacl, "noacl"}, 1170 {Opt_noload, "norecovery"}, 1171 {Opt_noload, "noload"}, 1172 {Opt_removed, "nobh"}, 1173 {Opt_removed, "bh"}, 1174 {Opt_commit, "commit=%u"}, 1175 {Opt_min_batch_time, "min_batch_time=%u"}, 1176 {Opt_max_batch_time, "max_batch_time=%u"}, 1177 {Opt_journal_dev, "journal_dev=%u"}, 1178 {Opt_journal_path, "journal_path=%s"}, 1179 {Opt_journal_checksum, "journal_checksum"}, 1180 {Opt_nojournal_checksum, "nojournal_checksum"}, 1181 {Opt_journal_async_commit, "journal_async_commit"}, 1182 {Opt_abort, "abort"}, 1183 {Opt_data_journal, "data=journal"}, 1184 {Opt_data_ordered, "data=ordered"}, 1185 {Opt_data_writeback, "data=writeback"}, 1186 {Opt_data_err_abort, "data_err=abort"}, 1187 {Opt_data_err_ignore, "data_err=ignore"}, 1188 {Opt_offusrjquota, "usrjquota="}, 1189 {Opt_usrjquota, "usrjquota=%s"}, 1190 {Opt_offgrpjquota, "grpjquota="}, 1191 {Opt_grpjquota, "grpjquota=%s"}, 1192 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1193 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1194 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1195 {Opt_grpquota, "grpquota"}, 1196 {Opt_noquota, "noquota"}, 1197 {Opt_quota, "quota"}, 1198 {Opt_usrquota, "usrquota"}, 1199 {Opt_barrier, "barrier=%u"}, 1200 {Opt_barrier, "barrier"}, 1201 {Opt_nobarrier, "nobarrier"}, 1202 {Opt_i_version, "i_version"}, 1203 {Opt_stripe, "stripe=%u"}, 1204 {Opt_delalloc, "delalloc"}, 1205 {Opt_nodelalloc, "nodelalloc"}, 1206 {Opt_removed, "mblk_io_submit"}, 1207 {Opt_removed, "nomblk_io_submit"}, 1208 {Opt_block_validity, "block_validity"}, 1209 {Opt_noblock_validity, "noblock_validity"}, 1210 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1211 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1212 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1213 {Opt_auto_da_alloc, "auto_da_alloc"}, 1214 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1215 {Opt_dioread_nolock, "dioread_nolock"}, 1216 {Opt_dioread_lock, "dioread_lock"}, 1217 {Opt_discard, "discard"}, 1218 {Opt_nodiscard, "nodiscard"}, 1219 {Opt_init_itable, "init_itable=%u"}, 1220 {Opt_init_itable, "init_itable"}, 1221 {Opt_noinit_itable, "noinit_itable"}, 1222 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1223 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1224 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1225 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1226 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1227 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1228 {Opt_err, NULL}, 1229 }; 1230 1231 static ext4_fsblk_t get_sb_block(void **data) 1232 { 1233 ext4_fsblk_t sb_block; 1234 char *options = (char *) *data; 1235 1236 if (!options || strncmp(options, "sb=", 3) != 0) 1237 return 1; /* Default location */ 1238 1239 options += 3; 1240 /* TODO: use simple_strtoll with >32bit ext4 */ 1241 sb_block = simple_strtoul(options, &options, 0); 1242 if (*options && *options != ',') { 1243 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1244 (char *) *data); 1245 return 1; 1246 } 1247 if (*options == ',') 1248 options++; 1249 *data = (void *) options; 1250 1251 return sb_block; 1252 } 1253 1254 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1255 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1256 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1257 1258 #ifdef CONFIG_QUOTA 1259 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1260 { 1261 struct ext4_sb_info *sbi = EXT4_SB(sb); 1262 char *qname; 1263 int ret = -1; 1264 1265 if (sb_any_quota_loaded(sb) && 1266 !sbi->s_qf_names[qtype]) { 1267 ext4_msg(sb, KERN_ERR, 1268 "Cannot change journaled " 1269 "quota options when quota turned on"); 1270 return -1; 1271 } 1272 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1273 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1274 "when QUOTA feature is enabled"); 1275 return -1; 1276 } 1277 qname = match_strdup(args); 1278 if (!qname) { 1279 ext4_msg(sb, KERN_ERR, 1280 "Not enough memory for storing quotafile name"); 1281 return -1; 1282 } 1283 if (sbi->s_qf_names[qtype]) { 1284 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1285 ret = 1; 1286 else 1287 ext4_msg(sb, KERN_ERR, 1288 "%s quota file already specified", 1289 QTYPE2NAME(qtype)); 1290 goto errout; 1291 } 1292 if (strchr(qname, '/')) { 1293 ext4_msg(sb, KERN_ERR, 1294 "quotafile must be on filesystem root"); 1295 goto errout; 1296 } 1297 sbi->s_qf_names[qtype] = qname; 1298 set_opt(sb, QUOTA); 1299 return 1; 1300 errout: 1301 kfree(qname); 1302 return ret; 1303 } 1304 1305 static int clear_qf_name(struct super_block *sb, int qtype) 1306 { 1307 1308 struct ext4_sb_info *sbi = EXT4_SB(sb); 1309 1310 if (sb_any_quota_loaded(sb) && 1311 sbi->s_qf_names[qtype]) { 1312 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1313 " when quota turned on"); 1314 return -1; 1315 } 1316 kfree(sbi->s_qf_names[qtype]); 1317 sbi->s_qf_names[qtype] = NULL; 1318 return 1; 1319 } 1320 #endif 1321 1322 #define MOPT_SET 0x0001 1323 #define MOPT_CLEAR 0x0002 1324 #define MOPT_NOSUPPORT 0x0004 1325 #define MOPT_EXPLICIT 0x0008 1326 #define MOPT_CLEAR_ERR 0x0010 1327 #define MOPT_GTE0 0x0020 1328 #ifdef CONFIG_QUOTA 1329 #define MOPT_Q 0 1330 #define MOPT_QFMT 0x0040 1331 #else 1332 #define MOPT_Q MOPT_NOSUPPORT 1333 #define MOPT_QFMT MOPT_NOSUPPORT 1334 #endif 1335 #define MOPT_DATAJ 0x0080 1336 #define MOPT_NO_EXT2 0x0100 1337 #define MOPT_NO_EXT3 0x0200 1338 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1339 #define MOPT_STRING 0x0400 1340 1341 static const struct mount_opts { 1342 int token; 1343 int mount_opt; 1344 int flags; 1345 } ext4_mount_opts[] = { 1346 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1347 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1348 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1349 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1350 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1351 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1352 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1353 MOPT_EXT4_ONLY | MOPT_SET}, 1354 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1355 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1356 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1357 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1358 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1359 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1360 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1361 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1362 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1363 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1364 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1365 MOPT_EXT4_ONLY | MOPT_SET}, 1366 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1367 EXT4_MOUNT_JOURNAL_CHECKSUM), 1368 MOPT_EXT4_ONLY | MOPT_SET}, 1369 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1370 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1371 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1372 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1373 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1374 MOPT_NO_EXT2 | MOPT_SET}, 1375 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1376 MOPT_NO_EXT2 | MOPT_CLEAR}, 1377 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1378 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1379 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1380 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1381 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1382 {Opt_commit, 0, MOPT_GTE0}, 1383 {Opt_max_batch_time, 0, MOPT_GTE0}, 1384 {Opt_min_batch_time, 0, MOPT_GTE0}, 1385 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1386 {Opt_init_itable, 0, MOPT_GTE0}, 1387 {Opt_stripe, 0, MOPT_GTE0}, 1388 {Opt_resuid, 0, MOPT_GTE0}, 1389 {Opt_resgid, 0, MOPT_GTE0}, 1390 {Opt_journal_dev, 0, MOPT_GTE0}, 1391 {Opt_journal_path, 0, MOPT_STRING}, 1392 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1393 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1394 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1395 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1396 MOPT_NO_EXT2 | MOPT_DATAJ}, 1397 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1398 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1399 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1400 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1401 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1402 #else 1403 {Opt_acl, 0, MOPT_NOSUPPORT}, 1404 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1405 #endif 1406 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1407 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1408 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1409 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1410 MOPT_SET | MOPT_Q}, 1411 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1412 MOPT_SET | MOPT_Q}, 1413 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1414 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1415 {Opt_usrjquota, 0, MOPT_Q}, 1416 {Opt_grpjquota, 0, MOPT_Q}, 1417 {Opt_offusrjquota, 0, MOPT_Q}, 1418 {Opt_offgrpjquota, 0, MOPT_Q}, 1419 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1420 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1421 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1422 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1423 {Opt_err, 0, 0} 1424 }; 1425 1426 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1427 substring_t *args, unsigned long *journal_devnum, 1428 unsigned int *journal_ioprio, int is_remount) 1429 { 1430 struct ext4_sb_info *sbi = EXT4_SB(sb); 1431 const struct mount_opts *m; 1432 kuid_t uid; 1433 kgid_t gid; 1434 int arg = 0; 1435 1436 #ifdef CONFIG_QUOTA 1437 if (token == Opt_usrjquota) 1438 return set_qf_name(sb, USRQUOTA, &args[0]); 1439 else if (token == Opt_grpjquota) 1440 return set_qf_name(sb, GRPQUOTA, &args[0]); 1441 else if (token == Opt_offusrjquota) 1442 return clear_qf_name(sb, USRQUOTA); 1443 else if (token == Opt_offgrpjquota) 1444 return clear_qf_name(sb, GRPQUOTA); 1445 #endif 1446 switch (token) { 1447 case Opt_noacl: 1448 case Opt_nouser_xattr: 1449 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1450 break; 1451 case Opt_sb: 1452 return 1; /* handled by get_sb_block() */ 1453 case Opt_removed: 1454 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1455 return 1; 1456 case Opt_abort: 1457 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1458 return 1; 1459 case Opt_i_version: 1460 sb->s_flags |= MS_I_VERSION; 1461 return 1; 1462 } 1463 1464 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1465 if (token == m->token) 1466 break; 1467 1468 if (m->token == Opt_err) { 1469 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1470 "or missing value", opt); 1471 return -1; 1472 } 1473 1474 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1475 ext4_msg(sb, KERN_ERR, 1476 "Mount option \"%s\" incompatible with ext2", opt); 1477 return -1; 1478 } 1479 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1480 ext4_msg(sb, KERN_ERR, 1481 "Mount option \"%s\" incompatible with ext3", opt); 1482 return -1; 1483 } 1484 1485 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1486 return -1; 1487 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1488 return -1; 1489 if (m->flags & MOPT_EXPLICIT) 1490 set_opt2(sb, EXPLICIT_DELALLOC); 1491 if (m->flags & MOPT_CLEAR_ERR) 1492 clear_opt(sb, ERRORS_MASK); 1493 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1494 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1495 "options when quota turned on"); 1496 return -1; 1497 } 1498 1499 if (m->flags & MOPT_NOSUPPORT) { 1500 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1501 } else if (token == Opt_commit) { 1502 if (arg == 0) 1503 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1504 sbi->s_commit_interval = HZ * arg; 1505 } else if (token == Opt_max_batch_time) { 1506 sbi->s_max_batch_time = arg; 1507 } else if (token == Opt_min_batch_time) { 1508 sbi->s_min_batch_time = arg; 1509 } else if (token == Opt_inode_readahead_blks) { 1510 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1511 ext4_msg(sb, KERN_ERR, 1512 "EXT4-fs: inode_readahead_blks must be " 1513 "0 or a power of 2 smaller than 2^31"); 1514 return -1; 1515 } 1516 sbi->s_inode_readahead_blks = arg; 1517 } else if (token == Opt_init_itable) { 1518 set_opt(sb, INIT_INODE_TABLE); 1519 if (!args->from) 1520 arg = EXT4_DEF_LI_WAIT_MULT; 1521 sbi->s_li_wait_mult = arg; 1522 } else if (token == Opt_max_dir_size_kb) { 1523 sbi->s_max_dir_size_kb = arg; 1524 } else if (token == Opt_stripe) { 1525 sbi->s_stripe = arg; 1526 } else if (token == Opt_resuid) { 1527 uid = make_kuid(current_user_ns(), arg); 1528 if (!uid_valid(uid)) { 1529 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1530 return -1; 1531 } 1532 sbi->s_resuid = uid; 1533 } else if (token == Opt_resgid) { 1534 gid = make_kgid(current_user_ns(), arg); 1535 if (!gid_valid(gid)) { 1536 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1537 return -1; 1538 } 1539 sbi->s_resgid = gid; 1540 } else if (token == Opt_journal_dev) { 1541 if (is_remount) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Cannot specify journal on remount"); 1544 return -1; 1545 } 1546 *journal_devnum = arg; 1547 } else if (token == Opt_journal_path) { 1548 char *journal_path; 1549 struct inode *journal_inode; 1550 struct path path; 1551 int error; 1552 1553 if (is_remount) { 1554 ext4_msg(sb, KERN_ERR, 1555 "Cannot specify journal on remount"); 1556 return -1; 1557 } 1558 journal_path = match_strdup(&args[0]); 1559 if (!journal_path) { 1560 ext4_msg(sb, KERN_ERR, "error: could not dup " 1561 "journal device string"); 1562 return -1; 1563 } 1564 1565 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1566 if (error) { 1567 ext4_msg(sb, KERN_ERR, "error: could not find " 1568 "journal device path: error %d", error); 1569 kfree(journal_path); 1570 return -1; 1571 } 1572 1573 journal_inode = path.dentry->d_inode; 1574 if (!S_ISBLK(journal_inode->i_mode)) { 1575 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1576 "is not a block device", journal_path); 1577 path_put(&path); 1578 kfree(journal_path); 1579 return -1; 1580 } 1581 1582 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1583 path_put(&path); 1584 kfree(journal_path); 1585 } else if (token == Opt_journal_ioprio) { 1586 if (arg > 7) { 1587 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1588 " (must be 0-7)"); 1589 return -1; 1590 } 1591 *journal_ioprio = 1592 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1593 } else if (m->flags & MOPT_DATAJ) { 1594 if (is_remount) { 1595 if (!sbi->s_journal) 1596 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1597 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1598 ext4_msg(sb, KERN_ERR, 1599 "Cannot change data mode on remount"); 1600 return -1; 1601 } 1602 } else { 1603 clear_opt(sb, DATA_FLAGS); 1604 sbi->s_mount_opt |= m->mount_opt; 1605 } 1606 #ifdef CONFIG_QUOTA 1607 } else if (m->flags & MOPT_QFMT) { 1608 if (sb_any_quota_loaded(sb) && 1609 sbi->s_jquota_fmt != m->mount_opt) { 1610 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1611 "quota options when quota turned on"); 1612 return -1; 1613 } 1614 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1615 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1616 ext4_msg(sb, KERN_ERR, 1617 "Cannot set journaled quota options " 1618 "when QUOTA feature is enabled"); 1619 return -1; 1620 } 1621 sbi->s_jquota_fmt = m->mount_opt; 1622 #endif 1623 } else { 1624 if (!args->from) 1625 arg = 1; 1626 if (m->flags & MOPT_CLEAR) 1627 arg = !arg; 1628 else if (unlikely(!(m->flags & MOPT_SET))) { 1629 ext4_msg(sb, KERN_WARNING, 1630 "buggy handling of option %s", opt); 1631 WARN_ON(1); 1632 return -1; 1633 } 1634 if (arg != 0) 1635 sbi->s_mount_opt |= m->mount_opt; 1636 else 1637 sbi->s_mount_opt &= ~m->mount_opt; 1638 } 1639 return 1; 1640 } 1641 1642 static int parse_options(char *options, struct super_block *sb, 1643 unsigned long *journal_devnum, 1644 unsigned int *journal_ioprio, 1645 int is_remount) 1646 { 1647 struct ext4_sb_info *sbi = EXT4_SB(sb); 1648 char *p; 1649 substring_t args[MAX_OPT_ARGS]; 1650 int token; 1651 1652 if (!options) 1653 return 1; 1654 1655 while ((p = strsep(&options, ",")) != NULL) { 1656 if (!*p) 1657 continue; 1658 /* 1659 * Initialize args struct so we know whether arg was 1660 * found; some options take optional arguments. 1661 */ 1662 args[0].to = args[0].from = NULL; 1663 token = match_token(p, tokens, args); 1664 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1665 journal_ioprio, is_remount) < 0) 1666 return 0; 1667 } 1668 #ifdef CONFIG_QUOTA 1669 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1670 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1671 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1672 "feature is enabled"); 1673 return 0; 1674 } 1675 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1676 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1677 clear_opt(sb, USRQUOTA); 1678 1679 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1680 clear_opt(sb, GRPQUOTA); 1681 1682 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1683 ext4_msg(sb, KERN_ERR, "old and new quota " 1684 "format mixing"); 1685 return 0; 1686 } 1687 1688 if (!sbi->s_jquota_fmt) { 1689 ext4_msg(sb, KERN_ERR, "journaled quota format " 1690 "not specified"); 1691 return 0; 1692 } 1693 } 1694 #endif 1695 if (test_opt(sb, DIOREAD_NOLOCK)) { 1696 int blocksize = 1697 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1698 1699 if (blocksize < PAGE_CACHE_SIZE) { 1700 ext4_msg(sb, KERN_ERR, "can't mount with " 1701 "dioread_nolock if block size != PAGE_SIZE"); 1702 return 0; 1703 } 1704 } 1705 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1706 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1707 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1708 "in data=ordered mode"); 1709 return 0; 1710 } 1711 return 1; 1712 } 1713 1714 static inline void ext4_show_quota_options(struct seq_file *seq, 1715 struct super_block *sb) 1716 { 1717 #if defined(CONFIG_QUOTA) 1718 struct ext4_sb_info *sbi = EXT4_SB(sb); 1719 1720 if (sbi->s_jquota_fmt) { 1721 char *fmtname = ""; 1722 1723 switch (sbi->s_jquota_fmt) { 1724 case QFMT_VFS_OLD: 1725 fmtname = "vfsold"; 1726 break; 1727 case QFMT_VFS_V0: 1728 fmtname = "vfsv0"; 1729 break; 1730 case QFMT_VFS_V1: 1731 fmtname = "vfsv1"; 1732 break; 1733 } 1734 seq_printf(seq, ",jqfmt=%s", fmtname); 1735 } 1736 1737 if (sbi->s_qf_names[USRQUOTA]) 1738 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1739 1740 if (sbi->s_qf_names[GRPQUOTA]) 1741 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1742 #endif 1743 } 1744 1745 static const char *token2str(int token) 1746 { 1747 const struct match_token *t; 1748 1749 for (t = tokens; t->token != Opt_err; t++) 1750 if (t->token == token && !strchr(t->pattern, '=')) 1751 break; 1752 return t->pattern; 1753 } 1754 1755 /* 1756 * Show an option if 1757 * - it's set to a non-default value OR 1758 * - if the per-sb default is different from the global default 1759 */ 1760 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1761 int nodefs) 1762 { 1763 struct ext4_sb_info *sbi = EXT4_SB(sb); 1764 struct ext4_super_block *es = sbi->s_es; 1765 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1766 const struct mount_opts *m; 1767 char sep = nodefs ? '\n' : ','; 1768 1769 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1770 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1771 1772 if (sbi->s_sb_block != 1) 1773 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1774 1775 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1776 int want_set = m->flags & MOPT_SET; 1777 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1778 (m->flags & MOPT_CLEAR_ERR)) 1779 continue; 1780 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1781 continue; /* skip if same as the default */ 1782 if ((want_set && 1783 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1784 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1785 continue; /* select Opt_noFoo vs Opt_Foo */ 1786 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1787 } 1788 1789 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1790 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1791 SEQ_OPTS_PRINT("resuid=%u", 1792 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1793 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1794 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1795 SEQ_OPTS_PRINT("resgid=%u", 1796 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1797 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1798 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1799 SEQ_OPTS_PUTS("errors=remount-ro"); 1800 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1801 SEQ_OPTS_PUTS("errors=continue"); 1802 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1803 SEQ_OPTS_PUTS("errors=panic"); 1804 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1805 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1806 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1807 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1808 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1809 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1810 if (sb->s_flags & MS_I_VERSION) 1811 SEQ_OPTS_PUTS("i_version"); 1812 if (nodefs || sbi->s_stripe) 1813 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1814 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1815 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1816 SEQ_OPTS_PUTS("data=journal"); 1817 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1818 SEQ_OPTS_PUTS("data=ordered"); 1819 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1820 SEQ_OPTS_PUTS("data=writeback"); 1821 } 1822 if (nodefs || 1823 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1824 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1825 sbi->s_inode_readahead_blks); 1826 1827 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1828 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1829 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1830 if (nodefs || sbi->s_max_dir_size_kb) 1831 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1832 1833 ext4_show_quota_options(seq, sb); 1834 return 0; 1835 } 1836 1837 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1838 { 1839 return _ext4_show_options(seq, root->d_sb, 0); 1840 } 1841 1842 static int options_seq_show(struct seq_file *seq, void *offset) 1843 { 1844 struct super_block *sb = seq->private; 1845 int rc; 1846 1847 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1848 rc = _ext4_show_options(seq, sb, 1); 1849 seq_puts(seq, "\n"); 1850 return rc; 1851 } 1852 1853 static int options_open_fs(struct inode *inode, struct file *file) 1854 { 1855 return single_open(file, options_seq_show, PDE_DATA(inode)); 1856 } 1857 1858 static const struct file_operations ext4_seq_options_fops = { 1859 .owner = THIS_MODULE, 1860 .open = options_open_fs, 1861 .read = seq_read, 1862 .llseek = seq_lseek, 1863 .release = single_release, 1864 }; 1865 1866 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1867 int read_only) 1868 { 1869 struct ext4_sb_info *sbi = EXT4_SB(sb); 1870 int res = 0; 1871 1872 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1873 ext4_msg(sb, KERN_ERR, "revision level too high, " 1874 "forcing read-only mode"); 1875 res = MS_RDONLY; 1876 } 1877 if (read_only) 1878 goto done; 1879 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1880 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1881 "running e2fsck is recommended"); 1882 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1883 ext4_msg(sb, KERN_WARNING, 1884 "warning: mounting fs with errors, " 1885 "running e2fsck is recommended"); 1886 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1887 le16_to_cpu(es->s_mnt_count) >= 1888 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1889 ext4_msg(sb, KERN_WARNING, 1890 "warning: maximal mount count reached, " 1891 "running e2fsck is recommended"); 1892 else if (le32_to_cpu(es->s_checkinterval) && 1893 (le32_to_cpu(es->s_lastcheck) + 1894 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1895 ext4_msg(sb, KERN_WARNING, 1896 "warning: checktime reached, " 1897 "running e2fsck is recommended"); 1898 if (!sbi->s_journal) 1899 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1900 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1901 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1902 le16_add_cpu(&es->s_mnt_count, 1); 1903 es->s_mtime = cpu_to_le32(get_seconds()); 1904 ext4_update_dynamic_rev(sb); 1905 if (sbi->s_journal) 1906 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1907 1908 ext4_commit_super(sb, 1); 1909 done: 1910 if (test_opt(sb, DEBUG)) 1911 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1912 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1913 sb->s_blocksize, 1914 sbi->s_groups_count, 1915 EXT4_BLOCKS_PER_GROUP(sb), 1916 EXT4_INODES_PER_GROUP(sb), 1917 sbi->s_mount_opt, sbi->s_mount_opt2); 1918 1919 cleancache_init_fs(sb); 1920 return res; 1921 } 1922 1923 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1924 { 1925 struct ext4_sb_info *sbi = EXT4_SB(sb); 1926 struct flex_groups *new_groups; 1927 int size; 1928 1929 if (!sbi->s_log_groups_per_flex) 1930 return 0; 1931 1932 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1933 if (size <= sbi->s_flex_groups_allocated) 1934 return 0; 1935 1936 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1937 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1938 if (!new_groups) { 1939 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1940 size / (int) sizeof(struct flex_groups)); 1941 return -ENOMEM; 1942 } 1943 1944 if (sbi->s_flex_groups) { 1945 memcpy(new_groups, sbi->s_flex_groups, 1946 (sbi->s_flex_groups_allocated * 1947 sizeof(struct flex_groups))); 1948 kvfree(sbi->s_flex_groups); 1949 } 1950 sbi->s_flex_groups = new_groups; 1951 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1952 return 0; 1953 } 1954 1955 static int ext4_fill_flex_info(struct super_block *sb) 1956 { 1957 struct ext4_sb_info *sbi = EXT4_SB(sb); 1958 struct ext4_group_desc *gdp = NULL; 1959 ext4_group_t flex_group; 1960 int i, err; 1961 1962 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1963 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1964 sbi->s_log_groups_per_flex = 0; 1965 return 1; 1966 } 1967 1968 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1969 if (err) 1970 goto failed; 1971 1972 for (i = 0; i < sbi->s_groups_count; i++) { 1973 gdp = ext4_get_group_desc(sb, i, NULL); 1974 1975 flex_group = ext4_flex_group(sbi, i); 1976 atomic_add(ext4_free_inodes_count(sb, gdp), 1977 &sbi->s_flex_groups[flex_group].free_inodes); 1978 atomic64_add(ext4_free_group_clusters(sb, gdp), 1979 &sbi->s_flex_groups[flex_group].free_clusters); 1980 atomic_add(ext4_used_dirs_count(sb, gdp), 1981 &sbi->s_flex_groups[flex_group].used_dirs); 1982 } 1983 1984 return 1; 1985 failed: 1986 return 0; 1987 } 1988 1989 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1990 struct ext4_group_desc *gdp) 1991 { 1992 int offset; 1993 __u16 crc = 0; 1994 __le32 le_group = cpu_to_le32(block_group); 1995 1996 if (ext4_has_metadata_csum(sbi->s_sb)) { 1997 /* Use new metadata_csum algorithm */ 1998 __le16 save_csum; 1999 __u32 csum32; 2000 2001 save_csum = gdp->bg_checksum; 2002 gdp->bg_checksum = 0; 2003 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2004 sizeof(le_group)); 2005 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2006 sbi->s_desc_size); 2007 gdp->bg_checksum = save_csum; 2008 2009 crc = csum32 & 0xFFFF; 2010 goto out; 2011 } 2012 2013 /* old crc16 code */ 2014 if (!(sbi->s_es->s_feature_ro_compat & 2015 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2016 return 0; 2017 2018 offset = offsetof(struct ext4_group_desc, bg_checksum); 2019 2020 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2021 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2022 crc = crc16(crc, (__u8 *)gdp, offset); 2023 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2024 /* for checksum of struct ext4_group_desc do the rest...*/ 2025 if ((sbi->s_es->s_feature_incompat & 2026 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2027 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2028 crc = crc16(crc, (__u8 *)gdp + offset, 2029 le16_to_cpu(sbi->s_es->s_desc_size) - 2030 offset); 2031 2032 out: 2033 return cpu_to_le16(crc); 2034 } 2035 2036 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2037 struct ext4_group_desc *gdp) 2038 { 2039 if (ext4_has_group_desc_csum(sb) && 2040 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2041 block_group, gdp))) 2042 return 0; 2043 2044 return 1; 2045 } 2046 2047 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2048 struct ext4_group_desc *gdp) 2049 { 2050 if (!ext4_has_group_desc_csum(sb)) 2051 return; 2052 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2053 } 2054 2055 /* Called at mount-time, super-block is locked */ 2056 static int ext4_check_descriptors(struct super_block *sb, 2057 ext4_group_t *first_not_zeroed) 2058 { 2059 struct ext4_sb_info *sbi = EXT4_SB(sb); 2060 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2061 ext4_fsblk_t last_block; 2062 ext4_fsblk_t block_bitmap; 2063 ext4_fsblk_t inode_bitmap; 2064 ext4_fsblk_t inode_table; 2065 int flexbg_flag = 0; 2066 ext4_group_t i, grp = sbi->s_groups_count; 2067 2068 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2069 flexbg_flag = 1; 2070 2071 ext4_debug("Checking group descriptors"); 2072 2073 for (i = 0; i < sbi->s_groups_count; i++) { 2074 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2075 2076 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2077 last_block = ext4_blocks_count(sbi->s_es) - 1; 2078 else 2079 last_block = first_block + 2080 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2081 2082 if ((grp == sbi->s_groups_count) && 2083 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2084 grp = i; 2085 2086 block_bitmap = ext4_block_bitmap(sb, gdp); 2087 if (block_bitmap < first_block || block_bitmap > last_block) { 2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2089 "Block bitmap for group %u not in group " 2090 "(block %llu)!", i, block_bitmap); 2091 return 0; 2092 } 2093 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2094 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2095 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2096 "Inode bitmap for group %u not in group " 2097 "(block %llu)!", i, inode_bitmap); 2098 return 0; 2099 } 2100 inode_table = ext4_inode_table(sb, gdp); 2101 if (inode_table < first_block || 2102 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2103 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2104 "Inode table for group %u not in group " 2105 "(block %llu)!", i, inode_table); 2106 return 0; 2107 } 2108 ext4_lock_group(sb, i); 2109 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2110 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2111 "Checksum for group %u failed (%u!=%u)", 2112 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2113 gdp)), le16_to_cpu(gdp->bg_checksum)); 2114 if (!(sb->s_flags & MS_RDONLY)) { 2115 ext4_unlock_group(sb, i); 2116 return 0; 2117 } 2118 } 2119 ext4_unlock_group(sb, i); 2120 if (!flexbg_flag) 2121 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2122 } 2123 if (NULL != first_not_zeroed) 2124 *first_not_zeroed = grp; 2125 return 1; 2126 } 2127 2128 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2129 * the superblock) which were deleted from all directories, but held open by 2130 * a process at the time of a crash. We walk the list and try to delete these 2131 * inodes at recovery time (only with a read-write filesystem). 2132 * 2133 * In order to keep the orphan inode chain consistent during traversal (in 2134 * case of crash during recovery), we link each inode into the superblock 2135 * orphan list_head and handle it the same way as an inode deletion during 2136 * normal operation (which journals the operations for us). 2137 * 2138 * We only do an iget() and an iput() on each inode, which is very safe if we 2139 * accidentally point at an in-use or already deleted inode. The worst that 2140 * can happen in this case is that we get a "bit already cleared" message from 2141 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2142 * e2fsck was run on this filesystem, and it must have already done the orphan 2143 * inode cleanup for us, so we can safely abort without any further action. 2144 */ 2145 static void ext4_orphan_cleanup(struct super_block *sb, 2146 struct ext4_super_block *es) 2147 { 2148 unsigned int s_flags = sb->s_flags; 2149 int nr_orphans = 0, nr_truncates = 0; 2150 #ifdef CONFIG_QUOTA 2151 int i; 2152 #endif 2153 if (!es->s_last_orphan) { 2154 jbd_debug(4, "no orphan inodes to clean up\n"); 2155 return; 2156 } 2157 2158 if (bdev_read_only(sb->s_bdev)) { 2159 ext4_msg(sb, KERN_ERR, "write access " 2160 "unavailable, skipping orphan cleanup"); 2161 return; 2162 } 2163 2164 /* Check if feature set would not allow a r/w mount */ 2165 if (!ext4_feature_set_ok(sb, 0)) { 2166 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2167 "unknown ROCOMPAT features"); 2168 return; 2169 } 2170 2171 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2172 /* don't clear list on RO mount w/ errors */ 2173 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2174 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2175 "clearing orphan list.\n"); 2176 es->s_last_orphan = 0; 2177 } 2178 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2179 return; 2180 } 2181 2182 if (s_flags & MS_RDONLY) { 2183 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2184 sb->s_flags &= ~MS_RDONLY; 2185 } 2186 #ifdef CONFIG_QUOTA 2187 /* Needed for iput() to work correctly and not trash data */ 2188 sb->s_flags |= MS_ACTIVE; 2189 /* Turn on quotas so that they are updated correctly */ 2190 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2191 if (EXT4_SB(sb)->s_qf_names[i]) { 2192 int ret = ext4_quota_on_mount(sb, i); 2193 if (ret < 0) 2194 ext4_msg(sb, KERN_ERR, 2195 "Cannot turn on journaled " 2196 "quota: error %d", ret); 2197 } 2198 } 2199 #endif 2200 2201 while (es->s_last_orphan) { 2202 struct inode *inode; 2203 2204 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2205 if (IS_ERR(inode)) { 2206 es->s_last_orphan = 0; 2207 break; 2208 } 2209 2210 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2211 dquot_initialize(inode); 2212 if (inode->i_nlink) { 2213 if (test_opt(sb, DEBUG)) 2214 ext4_msg(sb, KERN_DEBUG, 2215 "%s: truncating inode %lu to %lld bytes", 2216 __func__, inode->i_ino, inode->i_size); 2217 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2218 inode->i_ino, inode->i_size); 2219 mutex_lock(&inode->i_mutex); 2220 truncate_inode_pages(inode->i_mapping, inode->i_size); 2221 ext4_truncate(inode); 2222 mutex_unlock(&inode->i_mutex); 2223 nr_truncates++; 2224 } else { 2225 if (test_opt(sb, DEBUG)) 2226 ext4_msg(sb, KERN_DEBUG, 2227 "%s: deleting unreferenced inode %lu", 2228 __func__, inode->i_ino); 2229 jbd_debug(2, "deleting unreferenced inode %lu\n", 2230 inode->i_ino); 2231 nr_orphans++; 2232 } 2233 iput(inode); /* The delete magic happens here! */ 2234 } 2235 2236 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2237 2238 if (nr_orphans) 2239 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2240 PLURAL(nr_orphans)); 2241 if (nr_truncates) 2242 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2243 PLURAL(nr_truncates)); 2244 #ifdef CONFIG_QUOTA 2245 /* Turn quotas off */ 2246 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2247 if (sb_dqopt(sb)->files[i]) 2248 dquot_quota_off(sb, i); 2249 } 2250 #endif 2251 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2252 } 2253 2254 /* 2255 * Maximal extent format file size. 2256 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2257 * extent format containers, within a sector_t, and within i_blocks 2258 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2259 * so that won't be a limiting factor. 2260 * 2261 * However there is other limiting factor. We do store extents in the form 2262 * of starting block and length, hence the resulting length of the extent 2263 * covering maximum file size must fit into on-disk format containers as 2264 * well. Given that length is always by 1 unit bigger than max unit (because 2265 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2266 * 2267 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2268 */ 2269 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2270 { 2271 loff_t res; 2272 loff_t upper_limit = MAX_LFS_FILESIZE; 2273 2274 /* small i_blocks in vfs inode? */ 2275 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2276 /* 2277 * CONFIG_LBDAF is not enabled implies the inode 2278 * i_block represent total blocks in 512 bytes 2279 * 32 == size of vfs inode i_blocks * 8 2280 */ 2281 upper_limit = (1LL << 32) - 1; 2282 2283 /* total blocks in file system block size */ 2284 upper_limit >>= (blkbits - 9); 2285 upper_limit <<= blkbits; 2286 } 2287 2288 /* 2289 * 32-bit extent-start container, ee_block. We lower the maxbytes 2290 * by one fs block, so ee_len can cover the extent of maximum file 2291 * size 2292 */ 2293 res = (1LL << 32) - 1; 2294 res <<= blkbits; 2295 2296 /* Sanity check against vm- & vfs- imposed limits */ 2297 if (res > upper_limit) 2298 res = upper_limit; 2299 2300 return res; 2301 } 2302 2303 /* 2304 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2305 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2306 * We need to be 1 filesystem block less than the 2^48 sector limit. 2307 */ 2308 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2309 { 2310 loff_t res = EXT4_NDIR_BLOCKS; 2311 int meta_blocks; 2312 loff_t upper_limit; 2313 /* This is calculated to be the largest file size for a dense, block 2314 * mapped file such that the file's total number of 512-byte sectors, 2315 * including data and all indirect blocks, does not exceed (2^48 - 1). 2316 * 2317 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2318 * number of 512-byte sectors of the file. 2319 */ 2320 2321 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2322 /* 2323 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2324 * the inode i_block field represents total file blocks in 2325 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2326 */ 2327 upper_limit = (1LL << 32) - 1; 2328 2329 /* total blocks in file system block size */ 2330 upper_limit >>= (bits - 9); 2331 2332 } else { 2333 /* 2334 * We use 48 bit ext4_inode i_blocks 2335 * With EXT4_HUGE_FILE_FL set the i_blocks 2336 * represent total number of blocks in 2337 * file system block size 2338 */ 2339 upper_limit = (1LL << 48) - 1; 2340 2341 } 2342 2343 /* indirect blocks */ 2344 meta_blocks = 1; 2345 /* double indirect blocks */ 2346 meta_blocks += 1 + (1LL << (bits-2)); 2347 /* tripple indirect blocks */ 2348 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2349 2350 upper_limit -= meta_blocks; 2351 upper_limit <<= bits; 2352 2353 res += 1LL << (bits-2); 2354 res += 1LL << (2*(bits-2)); 2355 res += 1LL << (3*(bits-2)); 2356 res <<= bits; 2357 if (res > upper_limit) 2358 res = upper_limit; 2359 2360 if (res > MAX_LFS_FILESIZE) 2361 res = MAX_LFS_FILESIZE; 2362 2363 return res; 2364 } 2365 2366 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2367 ext4_fsblk_t logical_sb_block, int nr) 2368 { 2369 struct ext4_sb_info *sbi = EXT4_SB(sb); 2370 ext4_group_t bg, first_meta_bg; 2371 int has_super = 0; 2372 2373 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2374 2375 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2376 nr < first_meta_bg) 2377 return logical_sb_block + nr + 1; 2378 bg = sbi->s_desc_per_block * nr; 2379 if (ext4_bg_has_super(sb, bg)) 2380 has_super = 1; 2381 2382 /* 2383 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2384 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2385 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2386 * compensate. 2387 */ 2388 if (sb->s_blocksize == 1024 && nr == 0 && 2389 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2390 has_super++; 2391 2392 return (has_super + ext4_group_first_block_no(sb, bg)); 2393 } 2394 2395 /** 2396 * ext4_get_stripe_size: Get the stripe size. 2397 * @sbi: In memory super block info 2398 * 2399 * If we have specified it via mount option, then 2400 * use the mount option value. If the value specified at mount time is 2401 * greater than the blocks per group use the super block value. 2402 * If the super block value is greater than blocks per group return 0. 2403 * Allocator needs it be less than blocks per group. 2404 * 2405 */ 2406 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2407 { 2408 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2409 unsigned long stripe_width = 2410 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2411 int ret; 2412 2413 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2414 ret = sbi->s_stripe; 2415 else if (stripe_width <= sbi->s_blocks_per_group) 2416 ret = stripe_width; 2417 else if (stride <= sbi->s_blocks_per_group) 2418 ret = stride; 2419 else 2420 ret = 0; 2421 2422 /* 2423 * If the stripe width is 1, this makes no sense and 2424 * we set it to 0 to turn off stripe handling code. 2425 */ 2426 if (ret <= 1) 2427 ret = 0; 2428 2429 return ret; 2430 } 2431 2432 /* sysfs supprt */ 2433 2434 struct ext4_attr { 2435 struct attribute attr; 2436 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2437 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2438 const char *, size_t); 2439 union { 2440 int offset; 2441 int deprecated_val; 2442 } u; 2443 }; 2444 2445 static int parse_strtoull(const char *buf, 2446 unsigned long long max, unsigned long long *value) 2447 { 2448 int ret; 2449 2450 ret = kstrtoull(skip_spaces(buf), 0, value); 2451 if (!ret && *value > max) 2452 ret = -EINVAL; 2453 return ret; 2454 } 2455 2456 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2457 struct ext4_sb_info *sbi, 2458 char *buf) 2459 { 2460 return snprintf(buf, PAGE_SIZE, "%llu\n", 2461 (s64) EXT4_C2B(sbi, 2462 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2463 } 2464 2465 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2466 struct ext4_sb_info *sbi, char *buf) 2467 { 2468 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2469 2470 if (!sb->s_bdev->bd_part) 2471 return snprintf(buf, PAGE_SIZE, "0\n"); 2472 return snprintf(buf, PAGE_SIZE, "%lu\n", 2473 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2474 sbi->s_sectors_written_start) >> 1); 2475 } 2476 2477 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2478 struct ext4_sb_info *sbi, char *buf) 2479 { 2480 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2481 2482 if (!sb->s_bdev->bd_part) 2483 return snprintf(buf, PAGE_SIZE, "0\n"); 2484 return snprintf(buf, PAGE_SIZE, "%llu\n", 2485 (unsigned long long)(sbi->s_kbytes_written + 2486 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2487 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2488 } 2489 2490 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2491 struct ext4_sb_info *sbi, 2492 const char *buf, size_t count) 2493 { 2494 unsigned long t; 2495 int ret; 2496 2497 ret = kstrtoul(skip_spaces(buf), 0, &t); 2498 if (ret) 2499 return ret; 2500 2501 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2502 return -EINVAL; 2503 2504 sbi->s_inode_readahead_blks = t; 2505 return count; 2506 } 2507 2508 static ssize_t sbi_ui_show(struct ext4_attr *a, 2509 struct ext4_sb_info *sbi, char *buf) 2510 { 2511 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2512 2513 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2514 } 2515 2516 static ssize_t sbi_ui_store(struct ext4_attr *a, 2517 struct ext4_sb_info *sbi, 2518 const char *buf, size_t count) 2519 { 2520 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2521 unsigned long t; 2522 int ret; 2523 2524 ret = kstrtoul(skip_spaces(buf), 0, &t); 2525 if (ret) 2526 return ret; 2527 *ui = t; 2528 return count; 2529 } 2530 2531 static ssize_t es_ui_show(struct ext4_attr *a, 2532 struct ext4_sb_info *sbi, char *buf) 2533 { 2534 2535 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2536 a->u.offset); 2537 2538 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2539 } 2540 2541 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2542 struct ext4_sb_info *sbi, char *buf) 2543 { 2544 return snprintf(buf, PAGE_SIZE, "%llu\n", 2545 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2546 } 2547 2548 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2549 struct ext4_sb_info *sbi, 2550 const char *buf, size_t count) 2551 { 2552 unsigned long long val; 2553 int ret; 2554 2555 if (parse_strtoull(buf, -1ULL, &val)) 2556 return -EINVAL; 2557 ret = ext4_reserve_clusters(sbi, val); 2558 2559 return ret ? ret : count; 2560 } 2561 2562 static ssize_t trigger_test_error(struct ext4_attr *a, 2563 struct ext4_sb_info *sbi, 2564 const char *buf, size_t count) 2565 { 2566 int len = count; 2567 2568 if (!capable(CAP_SYS_ADMIN)) 2569 return -EPERM; 2570 2571 if (len && buf[len-1] == '\n') 2572 len--; 2573 2574 if (len) 2575 ext4_error(sbi->s_sb, "%.*s", len, buf); 2576 return count; 2577 } 2578 2579 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2580 struct ext4_sb_info *sbi, char *buf) 2581 { 2582 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2583 } 2584 2585 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2586 static struct ext4_attr ext4_attr_##_name = { \ 2587 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2588 .show = _show, \ 2589 .store = _store, \ 2590 .u = { \ 2591 .offset = offsetof(struct ext4_sb_info, _elname),\ 2592 }, \ 2593 } 2594 2595 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2596 static struct ext4_attr ext4_attr_##_name = { \ 2597 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2598 .show = _show, \ 2599 .store = _store, \ 2600 .u = { \ 2601 .offset = offsetof(struct ext4_super_block, _elname), \ 2602 }, \ 2603 } 2604 2605 #define EXT4_ATTR(name, mode, show, store) \ 2606 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2607 2608 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2609 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2610 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2611 2612 #define EXT4_RO_ATTR_ES_UI(name, elname) \ 2613 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2614 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2615 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2616 2617 #define ATTR_LIST(name) &ext4_attr_##name.attr 2618 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2619 static struct ext4_attr ext4_attr_##_name = { \ 2620 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2621 .show = sbi_deprecated_show, \ 2622 .u = { \ 2623 .deprecated_val = _val, \ 2624 }, \ 2625 } 2626 2627 EXT4_RO_ATTR(delayed_allocation_blocks); 2628 EXT4_RO_ATTR(session_write_kbytes); 2629 EXT4_RO_ATTR(lifetime_write_kbytes); 2630 EXT4_RW_ATTR(reserved_clusters); 2631 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2632 inode_readahead_blks_store, s_inode_readahead_blks); 2633 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2634 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2635 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2636 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2637 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2638 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2639 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2640 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2641 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2642 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2643 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2644 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2645 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2646 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2647 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2648 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2649 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2650 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2651 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2652 2653 static struct attribute *ext4_attrs[] = { 2654 ATTR_LIST(delayed_allocation_blocks), 2655 ATTR_LIST(session_write_kbytes), 2656 ATTR_LIST(lifetime_write_kbytes), 2657 ATTR_LIST(reserved_clusters), 2658 ATTR_LIST(inode_readahead_blks), 2659 ATTR_LIST(inode_goal), 2660 ATTR_LIST(mb_stats), 2661 ATTR_LIST(mb_max_to_scan), 2662 ATTR_LIST(mb_min_to_scan), 2663 ATTR_LIST(mb_order2_req), 2664 ATTR_LIST(mb_stream_req), 2665 ATTR_LIST(mb_group_prealloc), 2666 ATTR_LIST(max_writeback_mb_bump), 2667 ATTR_LIST(extent_max_zeroout_kb), 2668 ATTR_LIST(trigger_fs_error), 2669 ATTR_LIST(err_ratelimit_interval_ms), 2670 ATTR_LIST(err_ratelimit_burst), 2671 ATTR_LIST(warning_ratelimit_interval_ms), 2672 ATTR_LIST(warning_ratelimit_burst), 2673 ATTR_LIST(msg_ratelimit_interval_ms), 2674 ATTR_LIST(msg_ratelimit_burst), 2675 ATTR_LIST(errors_count), 2676 ATTR_LIST(first_error_time), 2677 ATTR_LIST(last_error_time), 2678 NULL, 2679 }; 2680 2681 /* Features this copy of ext4 supports */ 2682 EXT4_INFO_ATTR(lazy_itable_init); 2683 EXT4_INFO_ATTR(batched_discard); 2684 EXT4_INFO_ATTR(meta_bg_resize); 2685 2686 static struct attribute *ext4_feat_attrs[] = { 2687 ATTR_LIST(lazy_itable_init), 2688 ATTR_LIST(batched_discard), 2689 ATTR_LIST(meta_bg_resize), 2690 NULL, 2691 }; 2692 2693 static ssize_t ext4_attr_show(struct kobject *kobj, 2694 struct attribute *attr, char *buf) 2695 { 2696 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2697 s_kobj); 2698 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2699 2700 return a->show ? a->show(a, sbi, buf) : 0; 2701 } 2702 2703 static ssize_t ext4_attr_store(struct kobject *kobj, 2704 struct attribute *attr, 2705 const char *buf, size_t len) 2706 { 2707 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2708 s_kobj); 2709 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2710 2711 return a->store ? a->store(a, sbi, buf, len) : 0; 2712 } 2713 2714 static void ext4_sb_release(struct kobject *kobj) 2715 { 2716 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2717 s_kobj); 2718 complete(&sbi->s_kobj_unregister); 2719 } 2720 2721 static const struct sysfs_ops ext4_attr_ops = { 2722 .show = ext4_attr_show, 2723 .store = ext4_attr_store, 2724 }; 2725 2726 static struct kobj_type ext4_ktype = { 2727 .default_attrs = ext4_attrs, 2728 .sysfs_ops = &ext4_attr_ops, 2729 .release = ext4_sb_release, 2730 }; 2731 2732 static void ext4_feat_release(struct kobject *kobj) 2733 { 2734 complete(&ext4_feat->f_kobj_unregister); 2735 } 2736 2737 static ssize_t ext4_feat_show(struct kobject *kobj, 2738 struct attribute *attr, char *buf) 2739 { 2740 return snprintf(buf, PAGE_SIZE, "supported\n"); 2741 } 2742 2743 /* 2744 * We can not use ext4_attr_show/store because it relies on the kobject 2745 * being embedded in the ext4_sb_info structure which is definitely not 2746 * true in this case. 2747 */ 2748 static const struct sysfs_ops ext4_feat_ops = { 2749 .show = ext4_feat_show, 2750 .store = NULL, 2751 }; 2752 2753 static struct kobj_type ext4_feat_ktype = { 2754 .default_attrs = ext4_feat_attrs, 2755 .sysfs_ops = &ext4_feat_ops, 2756 .release = ext4_feat_release, 2757 }; 2758 2759 /* 2760 * Check whether this filesystem can be mounted based on 2761 * the features present and the RDONLY/RDWR mount requested. 2762 * Returns 1 if this filesystem can be mounted as requested, 2763 * 0 if it cannot be. 2764 */ 2765 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2766 { 2767 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2768 ext4_msg(sb, KERN_ERR, 2769 "Couldn't mount because of " 2770 "unsupported optional features (%x)", 2771 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2772 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2773 return 0; 2774 } 2775 2776 if (readonly) 2777 return 1; 2778 2779 /* Check that feature set is OK for a read-write mount */ 2780 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2781 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2782 "unsupported optional features (%x)", 2783 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2784 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2785 return 0; 2786 } 2787 /* 2788 * Large file size enabled file system can only be mounted 2789 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2790 */ 2791 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2792 if (sizeof(blkcnt_t) < sizeof(u64)) { 2793 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2794 "cannot be mounted RDWR without " 2795 "CONFIG_LBDAF"); 2796 return 0; 2797 } 2798 } 2799 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2800 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2801 ext4_msg(sb, KERN_ERR, 2802 "Can't support bigalloc feature without " 2803 "extents feature\n"); 2804 return 0; 2805 } 2806 2807 #ifndef CONFIG_QUOTA 2808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2809 !readonly) { 2810 ext4_msg(sb, KERN_ERR, 2811 "Filesystem with quota feature cannot be mounted RDWR " 2812 "without CONFIG_QUOTA"); 2813 return 0; 2814 } 2815 #endif /* CONFIG_QUOTA */ 2816 return 1; 2817 } 2818 2819 /* 2820 * This function is called once a day if we have errors logged 2821 * on the file system 2822 */ 2823 static void print_daily_error_info(unsigned long arg) 2824 { 2825 struct super_block *sb = (struct super_block *) arg; 2826 struct ext4_sb_info *sbi; 2827 struct ext4_super_block *es; 2828 2829 sbi = EXT4_SB(sb); 2830 es = sbi->s_es; 2831 2832 if (es->s_error_count) 2833 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2834 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2835 le32_to_cpu(es->s_error_count)); 2836 if (es->s_first_error_time) { 2837 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2838 sb->s_id, le32_to_cpu(es->s_first_error_time), 2839 (int) sizeof(es->s_first_error_func), 2840 es->s_first_error_func, 2841 le32_to_cpu(es->s_first_error_line)); 2842 if (es->s_first_error_ino) 2843 printk(": inode %u", 2844 le32_to_cpu(es->s_first_error_ino)); 2845 if (es->s_first_error_block) 2846 printk(": block %llu", (unsigned long long) 2847 le64_to_cpu(es->s_first_error_block)); 2848 printk("\n"); 2849 } 2850 if (es->s_last_error_time) { 2851 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2852 sb->s_id, le32_to_cpu(es->s_last_error_time), 2853 (int) sizeof(es->s_last_error_func), 2854 es->s_last_error_func, 2855 le32_to_cpu(es->s_last_error_line)); 2856 if (es->s_last_error_ino) 2857 printk(": inode %u", 2858 le32_to_cpu(es->s_last_error_ino)); 2859 if (es->s_last_error_block) 2860 printk(": block %llu", (unsigned long long) 2861 le64_to_cpu(es->s_last_error_block)); 2862 printk("\n"); 2863 } 2864 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2865 } 2866 2867 /* Find next suitable group and run ext4_init_inode_table */ 2868 static int ext4_run_li_request(struct ext4_li_request *elr) 2869 { 2870 struct ext4_group_desc *gdp = NULL; 2871 ext4_group_t group, ngroups; 2872 struct super_block *sb; 2873 unsigned long timeout = 0; 2874 int ret = 0; 2875 2876 sb = elr->lr_super; 2877 ngroups = EXT4_SB(sb)->s_groups_count; 2878 2879 sb_start_write(sb); 2880 for (group = elr->lr_next_group; group < ngroups; group++) { 2881 gdp = ext4_get_group_desc(sb, group, NULL); 2882 if (!gdp) { 2883 ret = 1; 2884 break; 2885 } 2886 2887 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2888 break; 2889 } 2890 2891 if (group >= ngroups) 2892 ret = 1; 2893 2894 if (!ret) { 2895 timeout = jiffies; 2896 ret = ext4_init_inode_table(sb, group, 2897 elr->lr_timeout ? 0 : 1); 2898 if (elr->lr_timeout == 0) { 2899 timeout = (jiffies - timeout) * 2900 elr->lr_sbi->s_li_wait_mult; 2901 elr->lr_timeout = timeout; 2902 } 2903 elr->lr_next_sched = jiffies + elr->lr_timeout; 2904 elr->lr_next_group = group + 1; 2905 } 2906 sb_end_write(sb); 2907 2908 return ret; 2909 } 2910 2911 /* 2912 * Remove lr_request from the list_request and free the 2913 * request structure. Should be called with li_list_mtx held 2914 */ 2915 static void ext4_remove_li_request(struct ext4_li_request *elr) 2916 { 2917 struct ext4_sb_info *sbi; 2918 2919 if (!elr) 2920 return; 2921 2922 sbi = elr->lr_sbi; 2923 2924 list_del(&elr->lr_request); 2925 sbi->s_li_request = NULL; 2926 kfree(elr); 2927 } 2928 2929 static void ext4_unregister_li_request(struct super_block *sb) 2930 { 2931 mutex_lock(&ext4_li_mtx); 2932 if (!ext4_li_info) { 2933 mutex_unlock(&ext4_li_mtx); 2934 return; 2935 } 2936 2937 mutex_lock(&ext4_li_info->li_list_mtx); 2938 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2939 mutex_unlock(&ext4_li_info->li_list_mtx); 2940 mutex_unlock(&ext4_li_mtx); 2941 } 2942 2943 static struct task_struct *ext4_lazyinit_task; 2944 2945 /* 2946 * This is the function where ext4lazyinit thread lives. It walks 2947 * through the request list searching for next scheduled filesystem. 2948 * When such a fs is found, run the lazy initialization request 2949 * (ext4_rn_li_request) and keep track of the time spend in this 2950 * function. Based on that time we compute next schedule time of 2951 * the request. When walking through the list is complete, compute 2952 * next waking time and put itself into sleep. 2953 */ 2954 static int ext4_lazyinit_thread(void *arg) 2955 { 2956 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2957 struct list_head *pos, *n; 2958 struct ext4_li_request *elr; 2959 unsigned long next_wakeup, cur; 2960 2961 BUG_ON(NULL == eli); 2962 2963 cont_thread: 2964 while (true) { 2965 next_wakeup = MAX_JIFFY_OFFSET; 2966 2967 mutex_lock(&eli->li_list_mtx); 2968 if (list_empty(&eli->li_request_list)) { 2969 mutex_unlock(&eli->li_list_mtx); 2970 goto exit_thread; 2971 } 2972 2973 list_for_each_safe(pos, n, &eli->li_request_list) { 2974 elr = list_entry(pos, struct ext4_li_request, 2975 lr_request); 2976 2977 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2978 if (ext4_run_li_request(elr) != 0) { 2979 /* error, remove the lazy_init job */ 2980 ext4_remove_li_request(elr); 2981 continue; 2982 } 2983 } 2984 2985 if (time_before(elr->lr_next_sched, next_wakeup)) 2986 next_wakeup = elr->lr_next_sched; 2987 } 2988 mutex_unlock(&eli->li_list_mtx); 2989 2990 try_to_freeze(); 2991 2992 cur = jiffies; 2993 if ((time_after_eq(cur, next_wakeup)) || 2994 (MAX_JIFFY_OFFSET == next_wakeup)) { 2995 cond_resched(); 2996 continue; 2997 } 2998 2999 schedule_timeout_interruptible(next_wakeup - cur); 3000 3001 if (kthread_should_stop()) { 3002 ext4_clear_request_list(); 3003 goto exit_thread; 3004 } 3005 } 3006 3007 exit_thread: 3008 /* 3009 * It looks like the request list is empty, but we need 3010 * to check it under the li_list_mtx lock, to prevent any 3011 * additions into it, and of course we should lock ext4_li_mtx 3012 * to atomically free the list and ext4_li_info, because at 3013 * this point another ext4 filesystem could be registering 3014 * new one. 3015 */ 3016 mutex_lock(&ext4_li_mtx); 3017 mutex_lock(&eli->li_list_mtx); 3018 if (!list_empty(&eli->li_request_list)) { 3019 mutex_unlock(&eli->li_list_mtx); 3020 mutex_unlock(&ext4_li_mtx); 3021 goto cont_thread; 3022 } 3023 mutex_unlock(&eli->li_list_mtx); 3024 kfree(ext4_li_info); 3025 ext4_li_info = NULL; 3026 mutex_unlock(&ext4_li_mtx); 3027 3028 return 0; 3029 } 3030 3031 static void ext4_clear_request_list(void) 3032 { 3033 struct list_head *pos, *n; 3034 struct ext4_li_request *elr; 3035 3036 mutex_lock(&ext4_li_info->li_list_mtx); 3037 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3038 elr = list_entry(pos, struct ext4_li_request, 3039 lr_request); 3040 ext4_remove_li_request(elr); 3041 } 3042 mutex_unlock(&ext4_li_info->li_list_mtx); 3043 } 3044 3045 static int ext4_run_lazyinit_thread(void) 3046 { 3047 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3048 ext4_li_info, "ext4lazyinit"); 3049 if (IS_ERR(ext4_lazyinit_task)) { 3050 int err = PTR_ERR(ext4_lazyinit_task); 3051 ext4_clear_request_list(); 3052 kfree(ext4_li_info); 3053 ext4_li_info = NULL; 3054 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3055 "initialization thread\n", 3056 err); 3057 return err; 3058 } 3059 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3060 return 0; 3061 } 3062 3063 /* 3064 * Check whether it make sense to run itable init. thread or not. 3065 * If there is at least one uninitialized inode table, return 3066 * corresponding group number, else the loop goes through all 3067 * groups and return total number of groups. 3068 */ 3069 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3070 { 3071 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3072 struct ext4_group_desc *gdp = NULL; 3073 3074 for (group = 0; group < ngroups; group++) { 3075 gdp = ext4_get_group_desc(sb, group, NULL); 3076 if (!gdp) 3077 continue; 3078 3079 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3080 break; 3081 } 3082 3083 return group; 3084 } 3085 3086 static int ext4_li_info_new(void) 3087 { 3088 struct ext4_lazy_init *eli = NULL; 3089 3090 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3091 if (!eli) 3092 return -ENOMEM; 3093 3094 INIT_LIST_HEAD(&eli->li_request_list); 3095 mutex_init(&eli->li_list_mtx); 3096 3097 eli->li_state |= EXT4_LAZYINIT_QUIT; 3098 3099 ext4_li_info = eli; 3100 3101 return 0; 3102 } 3103 3104 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3105 ext4_group_t start) 3106 { 3107 struct ext4_sb_info *sbi = EXT4_SB(sb); 3108 struct ext4_li_request *elr; 3109 3110 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3111 if (!elr) 3112 return NULL; 3113 3114 elr->lr_super = sb; 3115 elr->lr_sbi = sbi; 3116 elr->lr_next_group = start; 3117 3118 /* 3119 * Randomize first schedule time of the request to 3120 * spread the inode table initialization requests 3121 * better. 3122 */ 3123 elr->lr_next_sched = jiffies + (prandom_u32() % 3124 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3125 return elr; 3126 } 3127 3128 int ext4_register_li_request(struct super_block *sb, 3129 ext4_group_t first_not_zeroed) 3130 { 3131 struct ext4_sb_info *sbi = EXT4_SB(sb); 3132 struct ext4_li_request *elr = NULL; 3133 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3134 int ret = 0; 3135 3136 mutex_lock(&ext4_li_mtx); 3137 if (sbi->s_li_request != NULL) { 3138 /* 3139 * Reset timeout so it can be computed again, because 3140 * s_li_wait_mult might have changed. 3141 */ 3142 sbi->s_li_request->lr_timeout = 0; 3143 goto out; 3144 } 3145 3146 if (first_not_zeroed == ngroups || 3147 (sb->s_flags & MS_RDONLY) || 3148 !test_opt(sb, INIT_INODE_TABLE)) 3149 goto out; 3150 3151 elr = ext4_li_request_new(sb, first_not_zeroed); 3152 if (!elr) { 3153 ret = -ENOMEM; 3154 goto out; 3155 } 3156 3157 if (NULL == ext4_li_info) { 3158 ret = ext4_li_info_new(); 3159 if (ret) 3160 goto out; 3161 } 3162 3163 mutex_lock(&ext4_li_info->li_list_mtx); 3164 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3165 mutex_unlock(&ext4_li_info->li_list_mtx); 3166 3167 sbi->s_li_request = elr; 3168 /* 3169 * set elr to NULL here since it has been inserted to 3170 * the request_list and the removal and free of it is 3171 * handled by ext4_clear_request_list from now on. 3172 */ 3173 elr = NULL; 3174 3175 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3176 ret = ext4_run_lazyinit_thread(); 3177 if (ret) 3178 goto out; 3179 } 3180 out: 3181 mutex_unlock(&ext4_li_mtx); 3182 if (ret) 3183 kfree(elr); 3184 return ret; 3185 } 3186 3187 /* 3188 * We do not need to lock anything since this is called on 3189 * module unload. 3190 */ 3191 static void ext4_destroy_lazyinit_thread(void) 3192 { 3193 /* 3194 * If thread exited earlier 3195 * there's nothing to be done. 3196 */ 3197 if (!ext4_li_info || !ext4_lazyinit_task) 3198 return; 3199 3200 kthread_stop(ext4_lazyinit_task); 3201 } 3202 3203 static int set_journal_csum_feature_set(struct super_block *sb) 3204 { 3205 int ret = 1; 3206 int compat, incompat; 3207 struct ext4_sb_info *sbi = EXT4_SB(sb); 3208 3209 if (ext4_has_metadata_csum(sb)) { 3210 /* journal checksum v3 */ 3211 compat = 0; 3212 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3213 } else { 3214 /* journal checksum v1 */ 3215 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3216 incompat = 0; 3217 } 3218 3219 jbd2_journal_clear_features(sbi->s_journal, 3220 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3221 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3222 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3223 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3224 ret = jbd2_journal_set_features(sbi->s_journal, 3225 compat, 0, 3226 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3227 incompat); 3228 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3229 ret = jbd2_journal_set_features(sbi->s_journal, 3230 compat, 0, 3231 incompat); 3232 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3233 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3234 } else { 3235 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3236 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3237 } 3238 3239 return ret; 3240 } 3241 3242 /* 3243 * Note: calculating the overhead so we can be compatible with 3244 * historical BSD practice is quite difficult in the face of 3245 * clusters/bigalloc. This is because multiple metadata blocks from 3246 * different block group can end up in the same allocation cluster. 3247 * Calculating the exact overhead in the face of clustered allocation 3248 * requires either O(all block bitmaps) in memory or O(number of block 3249 * groups**2) in time. We will still calculate the superblock for 3250 * older file systems --- and if we come across with a bigalloc file 3251 * system with zero in s_overhead_clusters the estimate will be close to 3252 * correct especially for very large cluster sizes --- but for newer 3253 * file systems, it's better to calculate this figure once at mkfs 3254 * time, and store it in the superblock. If the superblock value is 3255 * present (even for non-bigalloc file systems), we will use it. 3256 */ 3257 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3258 char *buf) 3259 { 3260 struct ext4_sb_info *sbi = EXT4_SB(sb); 3261 struct ext4_group_desc *gdp; 3262 ext4_fsblk_t first_block, last_block, b; 3263 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3264 int s, j, count = 0; 3265 3266 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3267 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3268 sbi->s_itb_per_group + 2); 3269 3270 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3271 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3272 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3273 for (i = 0; i < ngroups; i++) { 3274 gdp = ext4_get_group_desc(sb, i, NULL); 3275 b = ext4_block_bitmap(sb, gdp); 3276 if (b >= first_block && b <= last_block) { 3277 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3278 count++; 3279 } 3280 b = ext4_inode_bitmap(sb, gdp); 3281 if (b >= first_block && b <= last_block) { 3282 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3283 count++; 3284 } 3285 b = ext4_inode_table(sb, gdp); 3286 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3287 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3288 int c = EXT4_B2C(sbi, b - first_block); 3289 ext4_set_bit(c, buf); 3290 count++; 3291 } 3292 if (i != grp) 3293 continue; 3294 s = 0; 3295 if (ext4_bg_has_super(sb, grp)) { 3296 ext4_set_bit(s++, buf); 3297 count++; 3298 } 3299 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3300 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3301 count++; 3302 } 3303 } 3304 if (!count) 3305 return 0; 3306 return EXT4_CLUSTERS_PER_GROUP(sb) - 3307 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3308 } 3309 3310 /* 3311 * Compute the overhead and stash it in sbi->s_overhead 3312 */ 3313 int ext4_calculate_overhead(struct super_block *sb) 3314 { 3315 struct ext4_sb_info *sbi = EXT4_SB(sb); 3316 struct ext4_super_block *es = sbi->s_es; 3317 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3318 ext4_fsblk_t overhead = 0; 3319 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3320 3321 if (!buf) 3322 return -ENOMEM; 3323 3324 /* 3325 * Compute the overhead (FS structures). This is constant 3326 * for a given filesystem unless the number of block groups 3327 * changes so we cache the previous value until it does. 3328 */ 3329 3330 /* 3331 * All of the blocks before first_data_block are overhead 3332 */ 3333 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3334 3335 /* 3336 * Add the overhead found in each block group 3337 */ 3338 for (i = 0; i < ngroups; i++) { 3339 int blks; 3340 3341 blks = count_overhead(sb, i, buf); 3342 overhead += blks; 3343 if (blks) 3344 memset(buf, 0, PAGE_SIZE); 3345 cond_resched(); 3346 } 3347 /* Add the internal journal blocks as well */ 3348 if (sbi->s_journal && !sbi->journal_bdev) 3349 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3350 3351 sbi->s_overhead = overhead; 3352 smp_wmb(); 3353 free_page((unsigned long) buf); 3354 return 0; 3355 } 3356 3357 3358 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3359 { 3360 ext4_fsblk_t resv_clusters; 3361 3362 /* 3363 * There's no need to reserve anything when we aren't using extents. 3364 * The space estimates are exact, there are no unwritten extents, 3365 * hole punching doesn't need new metadata... This is needed especially 3366 * to keep ext2/3 backward compatibility. 3367 */ 3368 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3369 return 0; 3370 /* 3371 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3372 * This should cover the situations where we can not afford to run 3373 * out of space like for example punch hole, or converting 3374 * unwritten extents in delalloc path. In most cases such 3375 * allocation would require 1, or 2 blocks, higher numbers are 3376 * very rare. 3377 */ 3378 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3379 EXT4_SB(sb)->s_cluster_bits; 3380 3381 do_div(resv_clusters, 50); 3382 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3383 3384 return resv_clusters; 3385 } 3386 3387 3388 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3389 { 3390 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3391 sbi->s_cluster_bits; 3392 3393 if (count >= clusters) 3394 return -EINVAL; 3395 3396 atomic64_set(&sbi->s_resv_clusters, count); 3397 return 0; 3398 } 3399 3400 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3401 { 3402 char *orig_data = kstrdup(data, GFP_KERNEL); 3403 struct buffer_head *bh; 3404 struct ext4_super_block *es = NULL; 3405 struct ext4_sb_info *sbi; 3406 ext4_fsblk_t block; 3407 ext4_fsblk_t sb_block = get_sb_block(&data); 3408 ext4_fsblk_t logical_sb_block; 3409 unsigned long offset = 0; 3410 unsigned long journal_devnum = 0; 3411 unsigned long def_mount_opts; 3412 struct inode *root; 3413 char *cp; 3414 const char *descr; 3415 int ret = -ENOMEM; 3416 int blocksize, clustersize; 3417 unsigned int db_count; 3418 unsigned int i; 3419 int needs_recovery, has_huge_files, has_bigalloc; 3420 __u64 blocks_count; 3421 int err = 0; 3422 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3423 ext4_group_t first_not_zeroed; 3424 3425 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3426 if (!sbi) 3427 goto out_free_orig; 3428 3429 sbi->s_blockgroup_lock = 3430 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3431 if (!sbi->s_blockgroup_lock) { 3432 kfree(sbi); 3433 goto out_free_orig; 3434 } 3435 sb->s_fs_info = sbi; 3436 sbi->s_sb = sb; 3437 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3438 sbi->s_sb_block = sb_block; 3439 if (sb->s_bdev->bd_part) 3440 sbi->s_sectors_written_start = 3441 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3442 3443 /* Cleanup superblock name */ 3444 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3445 *cp = '!'; 3446 3447 /* -EINVAL is default */ 3448 ret = -EINVAL; 3449 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3450 if (!blocksize) { 3451 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3452 goto out_fail; 3453 } 3454 3455 /* 3456 * The ext4 superblock will not be buffer aligned for other than 1kB 3457 * block sizes. We need to calculate the offset from buffer start. 3458 */ 3459 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3460 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3461 offset = do_div(logical_sb_block, blocksize); 3462 } else { 3463 logical_sb_block = sb_block; 3464 } 3465 3466 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3467 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3468 goto out_fail; 3469 } 3470 /* 3471 * Note: s_es must be initialized as soon as possible because 3472 * some ext4 macro-instructions depend on its value 3473 */ 3474 es = (struct ext4_super_block *) (bh->b_data + offset); 3475 sbi->s_es = es; 3476 sb->s_magic = le16_to_cpu(es->s_magic); 3477 if (sb->s_magic != EXT4_SUPER_MAGIC) 3478 goto cantfind_ext4; 3479 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3480 3481 /* Warn if metadata_csum and gdt_csum are both set. */ 3482 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3483 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3484 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3485 ext4_warning(sb, "metadata_csum and uninit_bg are " 3486 "redundant flags; please run fsck."); 3487 3488 /* Check for a known checksum algorithm */ 3489 if (!ext4_verify_csum_type(sb, es)) { 3490 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3491 "unknown checksum algorithm."); 3492 silent = 1; 3493 goto cantfind_ext4; 3494 } 3495 3496 /* Load the checksum driver */ 3497 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3498 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3499 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3500 if (IS_ERR(sbi->s_chksum_driver)) { 3501 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3502 ret = PTR_ERR(sbi->s_chksum_driver); 3503 sbi->s_chksum_driver = NULL; 3504 goto failed_mount; 3505 } 3506 } 3507 3508 /* Check superblock checksum */ 3509 if (!ext4_superblock_csum_verify(sb, es)) { 3510 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3511 "invalid superblock checksum. Run e2fsck?"); 3512 silent = 1; 3513 goto cantfind_ext4; 3514 } 3515 3516 /* Precompute checksum seed for all metadata */ 3517 if (ext4_has_metadata_csum(sb)) 3518 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3519 sizeof(es->s_uuid)); 3520 3521 /* Set defaults before we parse the mount options */ 3522 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3523 set_opt(sb, INIT_INODE_TABLE); 3524 if (def_mount_opts & EXT4_DEFM_DEBUG) 3525 set_opt(sb, DEBUG); 3526 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3527 set_opt(sb, GRPID); 3528 if (def_mount_opts & EXT4_DEFM_UID16) 3529 set_opt(sb, NO_UID32); 3530 /* xattr user namespace & acls are now defaulted on */ 3531 set_opt(sb, XATTR_USER); 3532 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3533 set_opt(sb, POSIX_ACL); 3534 #endif 3535 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3536 if (ext4_has_metadata_csum(sb)) 3537 set_opt(sb, JOURNAL_CHECKSUM); 3538 3539 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3540 set_opt(sb, JOURNAL_DATA); 3541 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3542 set_opt(sb, ORDERED_DATA); 3543 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3544 set_opt(sb, WRITEBACK_DATA); 3545 3546 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3547 set_opt(sb, ERRORS_PANIC); 3548 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3549 set_opt(sb, ERRORS_CONT); 3550 else 3551 set_opt(sb, ERRORS_RO); 3552 /* block_validity enabled by default; disable with noblock_validity */ 3553 set_opt(sb, BLOCK_VALIDITY); 3554 if (def_mount_opts & EXT4_DEFM_DISCARD) 3555 set_opt(sb, DISCARD); 3556 3557 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3558 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3559 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3560 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3561 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3562 3563 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3564 set_opt(sb, BARRIER); 3565 3566 /* 3567 * enable delayed allocation by default 3568 * Use -o nodelalloc to turn it off 3569 */ 3570 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3571 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3572 set_opt(sb, DELALLOC); 3573 3574 /* 3575 * set default s_li_wait_mult for lazyinit, for the case there is 3576 * no mount option specified. 3577 */ 3578 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3579 3580 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3581 &journal_devnum, &journal_ioprio, 0)) { 3582 ext4_msg(sb, KERN_WARNING, 3583 "failed to parse options in superblock: %s", 3584 sbi->s_es->s_mount_opts); 3585 } 3586 sbi->s_def_mount_opt = sbi->s_mount_opt; 3587 if (!parse_options((char *) data, sb, &journal_devnum, 3588 &journal_ioprio, 0)) 3589 goto failed_mount; 3590 3591 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3592 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3593 "with data=journal disables delayed " 3594 "allocation and O_DIRECT support!\n"); 3595 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3596 ext4_msg(sb, KERN_ERR, "can't mount with " 3597 "both data=journal and delalloc"); 3598 goto failed_mount; 3599 } 3600 if (test_opt(sb, DIOREAD_NOLOCK)) { 3601 ext4_msg(sb, KERN_ERR, "can't mount with " 3602 "both data=journal and dioread_nolock"); 3603 goto failed_mount; 3604 } 3605 if (test_opt(sb, DELALLOC)) 3606 clear_opt(sb, DELALLOC); 3607 } 3608 3609 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3610 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3611 3612 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3613 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3614 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3615 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3616 ext4_msg(sb, KERN_WARNING, 3617 "feature flags set on rev 0 fs, " 3618 "running e2fsck is recommended"); 3619 3620 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3621 set_opt2(sb, HURD_COMPAT); 3622 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3623 EXT4_FEATURE_INCOMPAT_64BIT)) { 3624 ext4_msg(sb, KERN_ERR, 3625 "The Hurd can't support 64-bit file systems"); 3626 goto failed_mount; 3627 } 3628 } 3629 3630 if (IS_EXT2_SB(sb)) { 3631 if (ext2_feature_set_ok(sb)) 3632 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3633 "using the ext4 subsystem"); 3634 else { 3635 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3636 "to feature incompatibilities"); 3637 goto failed_mount; 3638 } 3639 } 3640 3641 if (IS_EXT3_SB(sb)) { 3642 if (ext3_feature_set_ok(sb)) 3643 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3644 "using the ext4 subsystem"); 3645 else { 3646 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3647 "to feature incompatibilities"); 3648 goto failed_mount; 3649 } 3650 } 3651 3652 /* 3653 * Check feature flags regardless of the revision level, since we 3654 * previously didn't change the revision level when setting the flags, 3655 * so there is a chance incompat flags are set on a rev 0 filesystem. 3656 */ 3657 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3658 goto failed_mount; 3659 3660 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3661 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3662 blocksize > EXT4_MAX_BLOCK_SIZE) { 3663 ext4_msg(sb, KERN_ERR, 3664 "Unsupported filesystem blocksize %d", blocksize); 3665 goto failed_mount; 3666 } 3667 3668 if (sb->s_blocksize != blocksize) { 3669 /* Validate the filesystem blocksize */ 3670 if (!sb_set_blocksize(sb, blocksize)) { 3671 ext4_msg(sb, KERN_ERR, "bad block size %d", 3672 blocksize); 3673 goto failed_mount; 3674 } 3675 3676 brelse(bh); 3677 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3678 offset = do_div(logical_sb_block, blocksize); 3679 bh = sb_bread_unmovable(sb, logical_sb_block); 3680 if (!bh) { 3681 ext4_msg(sb, KERN_ERR, 3682 "Can't read superblock on 2nd try"); 3683 goto failed_mount; 3684 } 3685 es = (struct ext4_super_block *)(bh->b_data + offset); 3686 sbi->s_es = es; 3687 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3688 ext4_msg(sb, KERN_ERR, 3689 "Magic mismatch, very weird!"); 3690 goto failed_mount; 3691 } 3692 } 3693 3694 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3695 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3696 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3697 has_huge_files); 3698 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3699 3700 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3701 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3702 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3703 } else { 3704 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3705 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3706 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3707 (!is_power_of_2(sbi->s_inode_size)) || 3708 (sbi->s_inode_size > blocksize)) { 3709 ext4_msg(sb, KERN_ERR, 3710 "unsupported inode size: %d", 3711 sbi->s_inode_size); 3712 goto failed_mount; 3713 } 3714 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3715 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3716 } 3717 3718 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3719 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3720 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3721 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3722 !is_power_of_2(sbi->s_desc_size)) { 3723 ext4_msg(sb, KERN_ERR, 3724 "unsupported descriptor size %lu", 3725 sbi->s_desc_size); 3726 goto failed_mount; 3727 } 3728 } else 3729 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3730 3731 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3732 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3733 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3734 goto cantfind_ext4; 3735 3736 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3737 if (sbi->s_inodes_per_block == 0) 3738 goto cantfind_ext4; 3739 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3740 sbi->s_inodes_per_block; 3741 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3742 sbi->s_sbh = bh; 3743 sbi->s_mount_state = le16_to_cpu(es->s_state); 3744 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3745 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3746 3747 for (i = 0; i < 4; i++) 3748 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3749 sbi->s_def_hash_version = es->s_def_hash_version; 3750 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3751 i = le32_to_cpu(es->s_flags); 3752 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3753 sbi->s_hash_unsigned = 3; 3754 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3755 #ifdef __CHAR_UNSIGNED__ 3756 if (!(sb->s_flags & MS_RDONLY)) 3757 es->s_flags |= 3758 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3759 sbi->s_hash_unsigned = 3; 3760 #else 3761 if (!(sb->s_flags & MS_RDONLY)) 3762 es->s_flags |= 3763 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3764 #endif 3765 } 3766 } 3767 3768 /* Handle clustersize */ 3769 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3770 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3771 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3772 if (has_bigalloc) { 3773 if (clustersize < blocksize) { 3774 ext4_msg(sb, KERN_ERR, 3775 "cluster size (%d) smaller than " 3776 "block size (%d)", clustersize, blocksize); 3777 goto failed_mount; 3778 } 3779 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3780 le32_to_cpu(es->s_log_block_size); 3781 sbi->s_clusters_per_group = 3782 le32_to_cpu(es->s_clusters_per_group); 3783 if (sbi->s_clusters_per_group > blocksize * 8) { 3784 ext4_msg(sb, KERN_ERR, 3785 "#clusters per group too big: %lu", 3786 sbi->s_clusters_per_group); 3787 goto failed_mount; 3788 } 3789 if (sbi->s_blocks_per_group != 3790 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3791 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3792 "clusters per group (%lu) inconsistent", 3793 sbi->s_blocks_per_group, 3794 sbi->s_clusters_per_group); 3795 goto failed_mount; 3796 } 3797 } else { 3798 if (clustersize != blocksize) { 3799 ext4_warning(sb, "fragment/cluster size (%d) != " 3800 "block size (%d)", clustersize, 3801 blocksize); 3802 clustersize = blocksize; 3803 } 3804 if (sbi->s_blocks_per_group > blocksize * 8) { 3805 ext4_msg(sb, KERN_ERR, 3806 "#blocks per group too big: %lu", 3807 sbi->s_blocks_per_group); 3808 goto failed_mount; 3809 } 3810 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3811 sbi->s_cluster_bits = 0; 3812 } 3813 sbi->s_cluster_ratio = clustersize / blocksize; 3814 3815 if (sbi->s_inodes_per_group > blocksize * 8) { 3816 ext4_msg(sb, KERN_ERR, 3817 "#inodes per group too big: %lu", 3818 sbi->s_inodes_per_group); 3819 goto failed_mount; 3820 } 3821 3822 /* Do we have standard group size of clustersize * 8 blocks ? */ 3823 if (sbi->s_blocks_per_group == clustersize << 3) 3824 set_opt2(sb, STD_GROUP_SIZE); 3825 3826 /* 3827 * Test whether we have more sectors than will fit in sector_t, 3828 * and whether the max offset is addressable by the page cache. 3829 */ 3830 err = generic_check_addressable(sb->s_blocksize_bits, 3831 ext4_blocks_count(es)); 3832 if (err) { 3833 ext4_msg(sb, KERN_ERR, "filesystem" 3834 " too large to mount safely on this system"); 3835 if (sizeof(sector_t) < 8) 3836 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3837 goto failed_mount; 3838 } 3839 3840 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3841 goto cantfind_ext4; 3842 3843 /* check blocks count against device size */ 3844 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3845 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3846 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3847 "exceeds size of device (%llu blocks)", 3848 ext4_blocks_count(es), blocks_count); 3849 goto failed_mount; 3850 } 3851 3852 /* 3853 * It makes no sense for the first data block to be beyond the end 3854 * of the filesystem. 3855 */ 3856 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3857 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3858 "block %u is beyond end of filesystem (%llu)", 3859 le32_to_cpu(es->s_first_data_block), 3860 ext4_blocks_count(es)); 3861 goto failed_mount; 3862 } 3863 blocks_count = (ext4_blocks_count(es) - 3864 le32_to_cpu(es->s_first_data_block) + 3865 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3866 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3867 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3868 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3869 "(block count %llu, first data block %u, " 3870 "blocks per group %lu)", sbi->s_groups_count, 3871 ext4_blocks_count(es), 3872 le32_to_cpu(es->s_first_data_block), 3873 EXT4_BLOCKS_PER_GROUP(sb)); 3874 goto failed_mount; 3875 } 3876 sbi->s_groups_count = blocks_count; 3877 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3878 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3879 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3880 EXT4_DESC_PER_BLOCK(sb); 3881 sbi->s_group_desc = ext4_kvmalloc(db_count * 3882 sizeof(struct buffer_head *), 3883 GFP_KERNEL); 3884 if (sbi->s_group_desc == NULL) { 3885 ext4_msg(sb, KERN_ERR, "not enough memory"); 3886 ret = -ENOMEM; 3887 goto failed_mount; 3888 } 3889 3890 if (ext4_proc_root) 3891 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3892 3893 if (sbi->s_proc) 3894 proc_create_data("options", S_IRUGO, sbi->s_proc, 3895 &ext4_seq_options_fops, sb); 3896 3897 bgl_lock_init(sbi->s_blockgroup_lock); 3898 3899 for (i = 0; i < db_count; i++) { 3900 block = descriptor_loc(sb, logical_sb_block, i); 3901 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3902 if (!sbi->s_group_desc[i]) { 3903 ext4_msg(sb, KERN_ERR, 3904 "can't read group descriptor %d", i); 3905 db_count = i; 3906 goto failed_mount2; 3907 } 3908 } 3909 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3910 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3911 goto failed_mount2; 3912 } 3913 3914 sbi->s_gdb_count = db_count; 3915 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3916 spin_lock_init(&sbi->s_next_gen_lock); 3917 3918 init_timer(&sbi->s_err_report); 3919 sbi->s_err_report.function = print_daily_error_info; 3920 sbi->s_err_report.data = (unsigned long) sb; 3921 3922 /* Register extent status tree shrinker */ 3923 if (ext4_es_register_shrinker(sbi)) 3924 goto failed_mount3; 3925 3926 sbi->s_stripe = ext4_get_stripe_size(sbi); 3927 sbi->s_extent_max_zeroout_kb = 32; 3928 3929 /* 3930 * set up enough so that it can read an inode 3931 */ 3932 sb->s_op = &ext4_sops; 3933 sb->s_export_op = &ext4_export_ops; 3934 sb->s_xattr = ext4_xattr_handlers; 3935 #ifdef CONFIG_QUOTA 3936 sb->dq_op = &ext4_quota_operations; 3937 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3938 sb->s_qcop = &ext4_qctl_sysfile_operations; 3939 else 3940 sb->s_qcop = &ext4_qctl_operations; 3941 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 3942 #endif 3943 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3944 3945 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3946 mutex_init(&sbi->s_orphan_lock); 3947 3948 sb->s_root = NULL; 3949 3950 needs_recovery = (es->s_last_orphan != 0 || 3951 EXT4_HAS_INCOMPAT_FEATURE(sb, 3952 EXT4_FEATURE_INCOMPAT_RECOVER)); 3953 3954 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3955 !(sb->s_flags & MS_RDONLY)) 3956 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3957 goto failed_mount3a; 3958 3959 /* 3960 * The first inode we look at is the journal inode. Don't try 3961 * root first: it may be modified in the journal! 3962 */ 3963 if (!test_opt(sb, NOLOAD) && 3964 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3965 if (ext4_load_journal(sb, es, journal_devnum)) 3966 goto failed_mount3a; 3967 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3968 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3969 ext4_msg(sb, KERN_ERR, "required journal recovery " 3970 "suppressed and not mounted read-only"); 3971 goto failed_mount_wq; 3972 } else { 3973 clear_opt(sb, DATA_FLAGS); 3974 sbi->s_journal = NULL; 3975 needs_recovery = 0; 3976 goto no_journal; 3977 } 3978 3979 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3980 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3981 JBD2_FEATURE_INCOMPAT_64BIT)) { 3982 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3983 goto failed_mount_wq; 3984 } 3985 3986 if (!set_journal_csum_feature_set(sb)) { 3987 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3988 "feature set"); 3989 goto failed_mount_wq; 3990 } 3991 3992 /* We have now updated the journal if required, so we can 3993 * validate the data journaling mode. */ 3994 switch (test_opt(sb, DATA_FLAGS)) { 3995 case 0: 3996 /* No mode set, assume a default based on the journal 3997 * capabilities: ORDERED_DATA if the journal can 3998 * cope, else JOURNAL_DATA 3999 */ 4000 if (jbd2_journal_check_available_features 4001 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4002 set_opt(sb, ORDERED_DATA); 4003 else 4004 set_opt(sb, JOURNAL_DATA); 4005 break; 4006 4007 case EXT4_MOUNT_ORDERED_DATA: 4008 case EXT4_MOUNT_WRITEBACK_DATA: 4009 if (!jbd2_journal_check_available_features 4010 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4011 ext4_msg(sb, KERN_ERR, "Journal does not support " 4012 "requested data journaling mode"); 4013 goto failed_mount_wq; 4014 } 4015 default: 4016 break; 4017 } 4018 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4019 4020 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4021 4022 no_journal: 4023 if (ext4_mballoc_ready) { 4024 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4025 if (!sbi->s_mb_cache) { 4026 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4027 goto failed_mount_wq; 4028 } 4029 } 4030 4031 /* 4032 * Get the # of file system overhead blocks from the 4033 * superblock if present. 4034 */ 4035 if (es->s_overhead_clusters) 4036 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4037 else { 4038 err = ext4_calculate_overhead(sb); 4039 if (err) 4040 goto failed_mount_wq; 4041 } 4042 4043 /* 4044 * The maximum number of concurrent works can be high and 4045 * concurrency isn't really necessary. Limit it to 1. 4046 */ 4047 EXT4_SB(sb)->rsv_conversion_wq = 4048 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4049 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4050 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4051 ret = -ENOMEM; 4052 goto failed_mount4; 4053 } 4054 4055 /* 4056 * The jbd2_journal_load will have done any necessary log recovery, 4057 * so we can safely mount the rest of the filesystem now. 4058 */ 4059 4060 root = ext4_iget(sb, EXT4_ROOT_INO); 4061 if (IS_ERR(root)) { 4062 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4063 ret = PTR_ERR(root); 4064 root = NULL; 4065 goto failed_mount4; 4066 } 4067 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4068 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4069 iput(root); 4070 goto failed_mount4; 4071 } 4072 sb->s_root = d_make_root(root); 4073 if (!sb->s_root) { 4074 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4075 ret = -ENOMEM; 4076 goto failed_mount4; 4077 } 4078 4079 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4080 sb->s_flags |= MS_RDONLY; 4081 4082 /* determine the minimum size of new large inodes, if present */ 4083 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4084 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4085 EXT4_GOOD_OLD_INODE_SIZE; 4086 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4087 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4088 if (sbi->s_want_extra_isize < 4089 le16_to_cpu(es->s_want_extra_isize)) 4090 sbi->s_want_extra_isize = 4091 le16_to_cpu(es->s_want_extra_isize); 4092 if (sbi->s_want_extra_isize < 4093 le16_to_cpu(es->s_min_extra_isize)) 4094 sbi->s_want_extra_isize = 4095 le16_to_cpu(es->s_min_extra_isize); 4096 } 4097 } 4098 /* Check if enough inode space is available */ 4099 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4100 sbi->s_inode_size) { 4101 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4102 EXT4_GOOD_OLD_INODE_SIZE; 4103 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4104 "available"); 4105 } 4106 4107 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4108 if (err) { 4109 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4110 "reserved pool", ext4_calculate_resv_clusters(sb)); 4111 goto failed_mount4a; 4112 } 4113 4114 err = ext4_setup_system_zone(sb); 4115 if (err) { 4116 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4117 "zone (%d)", err); 4118 goto failed_mount4a; 4119 } 4120 4121 ext4_ext_init(sb); 4122 err = ext4_mb_init(sb); 4123 if (err) { 4124 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4125 err); 4126 goto failed_mount5; 4127 } 4128 4129 block = ext4_count_free_clusters(sb); 4130 ext4_free_blocks_count_set(sbi->s_es, 4131 EXT4_C2B(sbi, block)); 4132 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4133 GFP_KERNEL); 4134 if (!err) { 4135 unsigned long freei = ext4_count_free_inodes(sb); 4136 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4137 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4138 GFP_KERNEL); 4139 } 4140 if (!err) 4141 err = percpu_counter_init(&sbi->s_dirs_counter, 4142 ext4_count_dirs(sb), GFP_KERNEL); 4143 if (!err) 4144 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4145 GFP_KERNEL); 4146 if (err) { 4147 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4148 goto failed_mount6; 4149 } 4150 4151 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4152 if (!ext4_fill_flex_info(sb)) { 4153 ext4_msg(sb, KERN_ERR, 4154 "unable to initialize " 4155 "flex_bg meta info!"); 4156 goto failed_mount6; 4157 } 4158 4159 err = ext4_register_li_request(sb, first_not_zeroed); 4160 if (err) 4161 goto failed_mount6; 4162 4163 sbi->s_kobj.kset = ext4_kset; 4164 init_completion(&sbi->s_kobj_unregister); 4165 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4166 "%s", sb->s_id); 4167 if (err) 4168 goto failed_mount7; 4169 4170 #ifdef CONFIG_QUOTA 4171 /* Enable quota usage during mount. */ 4172 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4173 !(sb->s_flags & MS_RDONLY)) { 4174 err = ext4_enable_quotas(sb); 4175 if (err) 4176 goto failed_mount8; 4177 } 4178 #endif /* CONFIG_QUOTA */ 4179 4180 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4181 ext4_orphan_cleanup(sb, es); 4182 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4183 if (needs_recovery) { 4184 ext4_msg(sb, KERN_INFO, "recovery complete"); 4185 ext4_mark_recovery_complete(sb, es); 4186 } 4187 if (EXT4_SB(sb)->s_journal) { 4188 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4189 descr = " journalled data mode"; 4190 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4191 descr = " ordered data mode"; 4192 else 4193 descr = " writeback data mode"; 4194 } else 4195 descr = "out journal"; 4196 4197 if (test_opt(sb, DISCARD)) { 4198 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4199 if (!blk_queue_discard(q)) 4200 ext4_msg(sb, KERN_WARNING, 4201 "mounting with \"discard\" option, but " 4202 "the device does not support discard"); 4203 } 4204 4205 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4206 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4207 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4208 4209 if (es->s_error_count) 4210 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4211 4212 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4213 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4214 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4215 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4216 4217 kfree(orig_data); 4218 return 0; 4219 4220 cantfind_ext4: 4221 if (!silent) 4222 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4223 goto failed_mount; 4224 4225 #ifdef CONFIG_QUOTA 4226 failed_mount8: 4227 kobject_del(&sbi->s_kobj); 4228 #endif 4229 failed_mount7: 4230 ext4_unregister_li_request(sb); 4231 failed_mount6: 4232 ext4_mb_release(sb); 4233 if (sbi->s_flex_groups) 4234 kvfree(sbi->s_flex_groups); 4235 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4236 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4237 percpu_counter_destroy(&sbi->s_dirs_counter); 4238 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4239 failed_mount5: 4240 ext4_ext_release(sb); 4241 ext4_release_system_zone(sb); 4242 failed_mount4a: 4243 dput(sb->s_root); 4244 sb->s_root = NULL; 4245 failed_mount4: 4246 ext4_msg(sb, KERN_ERR, "mount failed"); 4247 if (EXT4_SB(sb)->rsv_conversion_wq) 4248 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4249 failed_mount_wq: 4250 if (sbi->s_journal) { 4251 jbd2_journal_destroy(sbi->s_journal); 4252 sbi->s_journal = NULL; 4253 } 4254 failed_mount3a: 4255 ext4_es_unregister_shrinker(sbi); 4256 failed_mount3: 4257 del_timer_sync(&sbi->s_err_report); 4258 if (sbi->s_mmp_tsk) 4259 kthread_stop(sbi->s_mmp_tsk); 4260 failed_mount2: 4261 for (i = 0; i < db_count; i++) 4262 brelse(sbi->s_group_desc[i]); 4263 kvfree(sbi->s_group_desc); 4264 failed_mount: 4265 if (sbi->s_chksum_driver) 4266 crypto_free_shash(sbi->s_chksum_driver); 4267 if (sbi->s_proc) { 4268 remove_proc_entry("options", sbi->s_proc); 4269 remove_proc_entry(sb->s_id, ext4_proc_root); 4270 } 4271 #ifdef CONFIG_QUOTA 4272 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4273 kfree(sbi->s_qf_names[i]); 4274 #endif 4275 ext4_blkdev_remove(sbi); 4276 brelse(bh); 4277 out_fail: 4278 sb->s_fs_info = NULL; 4279 kfree(sbi->s_blockgroup_lock); 4280 kfree(sbi); 4281 out_free_orig: 4282 kfree(orig_data); 4283 return err ? err : ret; 4284 } 4285 4286 /* 4287 * Setup any per-fs journal parameters now. We'll do this both on 4288 * initial mount, once the journal has been initialised but before we've 4289 * done any recovery; and again on any subsequent remount. 4290 */ 4291 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4292 { 4293 struct ext4_sb_info *sbi = EXT4_SB(sb); 4294 4295 journal->j_commit_interval = sbi->s_commit_interval; 4296 journal->j_min_batch_time = sbi->s_min_batch_time; 4297 journal->j_max_batch_time = sbi->s_max_batch_time; 4298 4299 write_lock(&journal->j_state_lock); 4300 if (test_opt(sb, BARRIER)) 4301 journal->j_flags |= JBD2_BARRIER; 4302 else 4303 journal->j_flags &= ~JBD2_BARRIER; 4304 if (test_opt(sb, DATA_ERR_ABORT)) 4305 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4306 else 4307 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4308 write_unlock(&journal->j_state_lock); 4309 } 4310 4311 static journal_t *ext4_get_journal(struct super_block *sb, 4312 unsigned int journal_inum) 4313 { 4314 struct inode *journal_inode; 4315 journal_t *journal; 4316 4317 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4318 4319 /* First, test for the existence of a valid inode on disk. Bad 4320 * things happen if we iget() an unused inode, as the subsequent 4321 * iput() will try to delete it. */ 4322 4323 journal_inode = ext4_iget(sb, journal_inum); 4324 if (IS_ERR(journal_inode)) { 4325 ext4_msg(sb, KERN_ERR, "no journal found"); 4326 return NULL; 4327 } 4328 if (!journal_inode->i_nlink) { 4329 make_bad_inode(journal_inode); 4330 iput(journal_inode); 4331 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4332 return NULL; 4333 } 4334 4335 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4336 journal_inode, journal_inode->i_size); 4337 if (!S_ISREG(journal_inode->i_mode)) { 4338 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4339 iput(journal_inode); 4340 return NULL; 4341 } 4342 4343 journal = jbd2_journal_init_inode(journal_inode); 4344 if (!journal) { 4345 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4346 iput(journal_inode); 4347 return NULL; 4348 } 4349 journal->j_private = sb; 4350 ext4_init_journal_params(sb, journal); 4351 return journal; 4352 } 4353 4354 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4355 dev_t j_dev) 4356 { 4357 struct buffer_head *bh; 4358 journal_t *journal; 4359 ext4_fsblk_t start; 4360 ext4_fsblk_t len; 4361 int hblock, blocksize; 4362 ext4_fsblk_t sb_block; 4363 unsigned long offset; 4364 struct ext4_super_block *es; 4365 struct block_device *bdev; 4366 4367 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4368 4369 bdev = ext4_blkdev_get(j_dev, sb); 4370 if (bdev == NULL) 4371 return NULL; 4372 4373 blocksize = sb->s_blocksize; 4374 hblock = bdev_logical_block_size(bdev); 4375 if (blocksize < hblock) { 4376 ext4_msg(sb, KERN_ERR, 4377 "blocksize too small for journal device"); 4378 goto out_bdev; 4379 } 4380 4381 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4382 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4383 set_blocksize(bdev, blocksize); 4384 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4385 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4386 "external journal"); 4387 goto out_bdev; 4388 } 4389 4390 es = (struct ext4_super_block *) (bh->b_data + offset); 4391 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4392 !(le32_to_cpu(es->s_feature_incompat) & 4393 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4394 ext4_msg(sb, KERN_ERR, "external journal has " 4395 "bad superblock"); 4396 brelse(bh); 4397 goto out_bdev; 4398 } 4399 4400 if ((le32_to_cpu(es->s_feature_ro_compat) & 4401 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4402 es->s_checksum != ext4_superblock_csum(sb, es)) { 4403 ext4_msg(sb, KERN_ERR, "external journal has " 4404 "corrupt superblock"); 4405 brelse(bh); 4406 goto out_bdev; 4407 } 4408 4409 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4410 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4411 brelse(bh); 4412 goto out_bdev; 4413 } 4414 4415 len = ext4_blocks_count(es); 4416 start = sb_block + 1; 4417 brelse(bh); /* we're done with the superblock */ 4418 4419 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4420 start, len, blocksize); 4421 if (!journal) { 4422 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4423 goto out_bdev; 4424 } 4425 journal->j_private = sb; 4426 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4427 wait_on_buffer(journal->j_sb_buffer); 4428 if (!buffer_uptodate(journal->j_sb_buffer)) { 4429 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4430 goto out_journal; 4431 } 4432 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4433 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4434 "user (unsupported) - %d", 4435 be32_to_cpu(journal->j_superblock->s_nr_users)); 4436 goto out_journal; 4437 } 4438 EXT4_SB(sb)->journal_bdev = bdev; 4439 ext4_init_journal_params(sb, journal); 4440 return journal; 4441 4442 out_journal: 4443 jbd2_journal_destroy(journal); 4444 out_bdev: 4445 ext4_blkdev_put(bdev); 4446 return NULL; 4447 } 4448 4449 static int ext4_load_journal(struct super_block *sb, 4450 struct ext4_super_block *es, 4451 unsigned long journal_devnum) 4452 { 4453 journal_t *journal; 4454 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4455 dev_t journal_dev; 4456 int err = 0; 4457 int really_read_only; 4458 4459 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4460 4461 if (journal_devnum && 4462 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4463 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4464 "numbers have changed"); 4465 journal_dev = new_decode_dev(journal_devnum); 4466 } else 4467 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4468 4469 really_read_only = bdev_read_only(sb->s_bdev); 4470 4471 /* 4472 * Are we loading a blank journal or performing recovery after a 4473 * crash? For recovery, we need to check in advance whether we 4474 * can get read-write access to the device. 4475 */ 4476 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4477 if (sb->s_flags & MS_RDONLY) { 4478 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4479 "required on readonly filesystem"); 4480 if (really_read_only) { 4481 ext4_msg(sb, KERN_ERR, "write access " 4482 "unavailable, cannot proceed"); 4483 return -EROFS; 4484 } 4485 ext4_msg(sb, KERN_INFO, "write access will " 4486 "be enabled during recovery"); 4487 } 4488 } 4489 4490 if (journal_inum && journal_dev) { 4491 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4492 "and inode journals!"); 4493 return -EINVAL; 4494 } 4495 4496 if (journal_inum) { 4497 if (!(journal = ext4_get_journal(sb, journal_inum))) 4498 return -EINVAL; 4499 } else { 4500 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4501 return -EINVAL; 4502 } 4503 4504 if (!(journal->j_flags & JBD2_BARRIER)) 4505 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4506 4507 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4508 err = jbd2_journal_wipe(journal, !really_read_only); 4509 if (!err) { 4510 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4511 if (save) 4512 memcpy(save, ((char *) es) + 4513 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4514 err = jbd2_journal_load(journal); 4515 if (save) 4516 memcpy(((char *) es) + EXT4_S_ERR_START, 4517 save, EXT4_S_ERR_LEN); 4518 kfree(save); 4519 } 4520 4521 if (err) { 4522 ext4_msg(sb, KERN_ERR, "error loading journal"); 4523 jbd2_journal_destroy(journal); 4524 return err; 4525 } 4526 4527 EXT4_SB(sb)->s_journal = journal; 4528 ext4_clear_journal_err(sb, es); 4529 4530 if (!really_read_only && journal_devnum && 4531 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4532 es->s_journal_dev = cpu_to_le32(journal_devnum); 4533 4534 /* Make sure we flush the recovery flag to disk. */ 4535 ext4_commit_super(sb, 1); 4536 } 4537 4538 return 0; 4539 } 4540 4541 static int ext4_commit_super(struct super_block *sb, int sync) 4542 { 4543 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4544 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4545 int error = 0; 4546 4547 if (!sbh || block_device_ejected(sb)) 4548 return error; 4549 if (buffer_write_io_error(sbh)) { 4550 /* 4551 * Oh, dear. A previous attempt to write the 4552 * superblock failed. This could happen because the 4553 * USB device was yanked out. Or it could happen to 4554 * be a transient write error and maybe the block will 4555 * be remapped. Nothing we can do but to retry the 4556 * write and hope for the best. 4557 */ 4558 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4559 "superblock detected"); 4560 clear_buffer_write_io_error(sbh); 4561 set_buffer_uptodate(sbh); 4562 } 4563 /* 4564 * If the file system is mounted read-only, don't update the 4565 * superblock write time. This avoids updating the superblock 4566 * write time when we are mounting the root file system 4567 * read/only but we need to replay the journal; at that point, 4568 * for people who are east of GMT and who make their clock 4569 * tick in localtime for Windows bug-for-bug compatibility, 4570 * the clock is set in the future, and this will cause e2fsck 4571 * to complain and force a full file system check. 4572 */ 4573 if (!(sb->s_flags & MS_RDONLY)) 4574 es->s_wtime = cpu_to_le32(get_seconds()); 4575 if (sb->s_bdev->bd_part) 4576 es->s_kbytes_written = 4577 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4578 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4579 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4580 else 4581 es->s_kbytes_written = 4582 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4583 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4584 ext4_free_blocks_count_set(es, 4585 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4586 &EXT4_SB(sb)->s_freeclusters_counter))); 4587 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4588 es->s_free_inodes_count = 4589 cpu_to_le32(percpu_counter_sum_positive( 4590 &EXT4_SB(sb)->s_freeinodes_counter)); 4591 BUFFER_TRACE(sbh, "marking dirty"); 4592 ext4_superblock_csum_set(sb); 4593 mark_buffer_dirty(sbh); 4594 if (sync) { 4595 error = sync_dirty_buffer(sbh); 4596 if (error) 4597 return error; 4598 4599 error = buffer_write_io_error(sbh); 4600 if (error) { 4601 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4602 "superblock"); 4603 clear_buffer_write_io_error(sbh); 4604 set_buffer_uptodate(sbh); 4605 } 4606 } 4607 return error; 4608 } 4609 4610 /* 4611 * Have we just finished recovery? If so, and if we are mounting (or 4612 * remounting) the filesystem readonly, then we will end up with a 4613 * consistent fs on disk. Record that fact. 4614 */ 4615 static void ext4_mark_recovery_complete(struct super_block *sb, 4616 struct ext4_super_block *es) 4617 { 4618 journal_t *journal = EXT4_SB(sb)->s_journal; 4619 4620 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4621 BUG_ON(journal != NULL); 4622 return; 4623 } 4624 jbd2_journal_lock_updates(journal); 4625 if (jbd2_journal_flush(journal) < 0) 4626 goto out; 4627 4628 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4629 sb->s_flags & MS_RDONLY) { 4630 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4631 ext4_commit_super(sb, 1); 4632 } 4633 4634 out: 4635 jbd2_journal_unlock_updates(journal); 4636 } 4637 4638 /* 4639 * If we are mounting (or read-write remounting) a filesystem whose journal 4640 * has recorded an error from a previous lifetime, move that error to the 4641 * main filesystem now. 4642 */ 4643 static void ext4_clear_journal_err(struct super_block *sb, 4644 struct ext4_super_block *es) 4645 { 4646 journal_t *journal; 4647 int j_errno; 4648 const char *errstr; 4649 4650 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4651 4652 journal = EXT4_SB(sb)->s_journal; 4653 4654 /* 4655 * Now check for any error status which may have been recorded in the 4656 * journal by a prior ext4_error() or ext4_abort() 4657 */ 4658 4659 j_errno = jbd2_journal_errno(journal); 4660 if (j_errno) { 4661 char nbuf[16]; 4662 4663 errstr = ext4_decode_error(sb, j_errno, nbuf); 4664 ext4_warning(sb, "Filesystem error recorded " 4665 "from previous mount: %s", errstr); 4666 ext4_warning(sb, "Marking fs in need of filesystem check."); 4667 4668 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4669 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4670 ext4_commit_super(sb, 1); 4671 4672 jbd2_journal_clear_err(journal); 4673 jbd2_journal_update_sb_errno(journal); 4674 } 4675 } 4676 4677 /* 4678 * Force the running and committing transactions to commit, 4679 * and wait on the commit. 4680 */ 4681 int ext4_force_commit(struct super_block *sb) 4682 { 4683 journal_t *journal; 4684 4685 if (sb->s_flags & MS_RDONLY) 4686 return 0; 4687 4688 journal = EXT4_SB(sb)->s_journal; 4689 return ext4_journal_force_commit(journal); 4690 } 4691 4692 static int ext4_sync_fs(struct super_block *sb, int wait) 4693 { 4694 int ret = 0; 4695 tid_t target; 4696 bool needs_barrier = false; 4697 struct ext4_sb_info *sbi = EXT4_SB(sb); 4698 4699 trace_ext4_sync_fs(sb, wait); 4700 flush_workqueue(sbi->rsv_conversion_wq); 4701 /* 4702 * Writeback quota in non-journalled quota case - journalled quota has 4703 * no dirty dquots 4704 */ 4705 dquot_writeback_dquots(sb, -1); 4706 /* 4707 * Data writeback is possible w/o journal transaction, so barrier must 4708 * being sent at the end of the function. But we can skip it if 4709 * transaction_commit will do it for us. 4710 */ 4711 if (sbi->s_journal) { 4712 target = jbd2_get_latest_transaction(sbi->s_journal); 4713 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4714 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4715 needs_barrier = true; 4716 4717 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4718 if (wait) 4719 ret = jbd2_log_wait_commit(sbi->s_journal, 4720 target); 4721 } 4722 } else if (wait && test_opt(sb, BARRIER)) 4723 needs_barrier = true; 4724 if (needs_barrier) { 4725 int err; 4726 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4727 if (!ret) 4728 ret = err; 4729 } 4730 4731 return ret; 4732 } 4733 4734 /* 4735 * LVM calls this function before a (read-only) snapshot is created. This 4736 * gives us a chance to flush the journal completely and mark the fs clean. 4737 * 4738 * Note that only this function cannot bring a filesystem to be in a clean 4739 * state independently. It relies on upper layer to stop all data & metadata 4740 * modifications. 4741 */ 4742 static int ext4_freeze(struct super_block *sb) 4743 { 4744 int error = 0; 4745 journal_t *journal; 4746 4747 if (sb->s_flags & MS_RDONLY) 4748 return 0; 4749 4750 journal = EXT4_SB(sb)->s_journal; 4751 4752 if (journal) { 4753 /* Now we set up the journal barrier. */ 4754 jbd2_journal_lock_updates(journal); 4755 4756 /* 4757 * Don't clear the needs_recovery flag if we failed to 4758 * flush the journal. 4759 */ 4760 error = jbd2_journal_flush(journal); 4761 if (error < 0) 4762 goto out; 4763 } 4764 4765 /* Journal blocked and flushed, clear needs_recovery flag. */ 4766 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4767 error = ext4_commit_super(sb, 1); 4768 out: 4769 if (journal) 4770 /* we rely on upper layer to stop further updates */ 4771 jbd2_journal_unlock_updates(journal); 4772 return error; 4773 } 4774 4775 /* 4776 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4777 * flag here, even though the filesystem is not technically dirty yet. 4778 */ 4779 static int ext4_unfreeze(struct super_block *sb) 4780 { 4781 if (sb->s_flags & MS_RDONLY) 4782 return 0; 4783 4784 /* Reset the needs_recovery flag before the fs is unlocked. */ 4785 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4786 ext4_commit_super(sb, 1); 4787 return 0; 4788 } 4789 4790 /* 4791 * Structure to save mount options for ext4_remount's benefit 4792 */ 4793 struct ext4_mount_options { 4794 unsigned long s_mount_opt; 4795 unsigned long s_mount_opt2; 4796 kuid_t s_resuid; 4797 kgid_t s_resgid; 4798 unsigned long s_commit_interval; 4799 u32 s_min_batch_time, s_max_batch_time; 4800 #ifdef CONFIG_QUOTA 4801 int s_jquota_fmt; 4802 char *s_qf_names[EXT4_MAXQUOTAS]; 4803 #endif 4804 }; 4805 4806 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4807 { 4808 struct ext4_super_block *es; 4809 struct ext4_sb_info *sbi = EXT4_SB(sb); 4810 unsigned long old_sb_flags; 4811 struct ext4_mount_options old_opts; 4812 int enable_quota = 0; 4813 ext4_group_t g; 4814 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4815 int err = 0; 4816 #ifdef CONFIG_QUOTA 4817 int i, j; 4818 #endif 4819 char *orig_data = kstrdup(data, GFP_KERNEL); 4820 4821 /* Store the original options */ 4822 old_sb_flags = sb->s_flags; 4823 old_opts.s_mount_opt = sbi->s_mount_opt; 4824 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4825 old_opts.s_resuid = sbi->s_resuid; 4826 old_opts.s_resgid = sbi->s_resgid; 4827 old_opts.s_commit_interval = sbi->s_commit_interval; 4828 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4829 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4830 #ifdef CONFIG_QUOTA 4831 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4832 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4833 if (sbi->s_qf_names[i]) { 4834 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4835 GFP_KERNEL); 4836 if (!old_opts.s_qf_names[i]) { 4837 for (j = 0; j < i; j++) 4838 kfree(old_opts.s_qf_names[j]); 4839 kfree(orig_data); 4840 return -ENOMEM; 4841 } 4842 } else 4843 old_opts.s_qf_names[i] = NULL; 4844 #endif 4845 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4846 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4847 4848 /* 4849 * Allow the "check" option to be passed as a remount option. 4850 */ 4851 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4852 err = -EINVAL; 4853 goto restore_opts; 4854 } 4855 4856 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4857 test_opt(sb, JOURNAL_CHECKSUM)) { 4858 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4859 "during remount not supported"); 4860 err = -EINVAL; 4861 goto restore_opts; 4862 } 4863 4864 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4865 test_opt(sb, JOURNAL_CHECKSUM)) { 4866 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4867 "during remount not supported"); 4868 err = -EINVAL; 4869 goto restore_opts; 4870 } 4871 4872 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4873 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4874 ext4_msg(sb, KERN_ERR, "can't mount with " 4875 "both data=journal and delalloc"); 4876 err = -EINVAL; 4877 goto restore_opts; 4878 } 4879 if (test_opt(sb, DIOREAD_NOLOCK)) { 4880 ext4_msg(sb, KERN_ERR, "can't mount with " 4881 "both data=journal and dioread_nolock"); 4882 err = -EINVAL; 4883 goto restore_opts; 4884 } 4885 } 4886 4887 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4888 ext4_abort(sb, "Abort forced by user"); 4889 4890 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4891 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4892 4893 es = sbi->s_es; 4894 4895 if (sbi->s_journal) { 4896 ext4_init_journal_params(sb, sbi->s_journal); 4897 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4898 } 4899 4900 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4901 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4902 err = -EROFS; 4903 goto restore_opts; 4904 } 4905 4906 if (*flags & MS_RDONLY) { 4907 err = sync_filesystem(sb); 4908 if (err < 0) 4909 goto restore_opts; 4910 err = dquot_suspend(sb, -1); 4911 if (err < 0) 4912 goto restore_opts; 4913 4914 /* 4915 * First of all, the unconditional stuff we have to do 4916 * to disable replay of the journal when we next remount 4917 */ 4918 sb->s_flags |= MS_RDONLY; 4919 4920 /* 4921 * OK, test if we are remounting a valid rw partition 4922 * readonly, and if so set the rdonly flag and then 4923 * mark the partition as valid again. 4924 */ 4925 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4926 (sbi->s_mount_state & EXT4_VALID_FS)) 4927 es->s_state = cpu_to_le16(sbi->s_mount_state); 4928 4929 if (sbi->s_journal) 4930 ext4_mark_recovery_complete(sb, es); 4931 } else { 4932 /* Make sure we can mount this feature set readwrite */ 4933 if (!ext4_feature_set_ok(sb, 0)) { 4934 err = -EROFS; 4935 goto restore_opts; 4936 } 4937 /* 4938 * Make sure the group descriptor checksums 4939 * are sane. If they aren't, refuse to remount r/w. 4940 */ 4941 for (g = 0; g < sbi->s_groups_count; g++) { 4942 struct ext4_group_desc *gdp = 4943 ext4_get_group_desc(sb, g, NULL); 4944 4945 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4946 ext4_msg(sb, KERN_ERR, 4947 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4948 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4949 le16_to_cpu(gdp->bg_checksum)); 4950 err = -EINVAL; 4951 goto restore_opts; 4952 } 4953 } 4954 4955 /* 4956 * If we have an unprocessed orphan list hanging 4957 * around from a previously readonly bdev mount, 4958 * require a full umount/remount for now. 4959 */ 4960 if (es->s_last_orphan) { 4961 ext4_msg(sb, KERN_WARNING, "Couldn't " 4962 "remount RDWR because of unprocessed " 4963 "orphan inode list. Please " 4964 "umount/remount instead"); 4965 err = -EINVAL; 4966 goto restore_opts; 4967 } 4968 4969 /* 4970 * Mounting a RDONLY partition read-write, so reread 4971 * and store the current valid flag. (It may have 4972 * been changed by e2fsck since we originally mounted 4973 * the partition.) 4974 */ 4975 if (sbi->s_journal) 4976 ext4_clear_journal_err(sb, es); 4977 sbi->s_mount_state = le16_to_cpu(es->s_state); 4978 if (!ext4_setup_super(sb, es, 0)) 4979 sb->s_flags &= ~MS_RDONLY; 4980 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4981 EXT4_FEATURE_INCOMPAT_MMP)) 4982 if (ext4_multi_mount_protect(sb, 4983 le64_to_cpu(es->s_mmp_block))) { 4984 err = -EROFS; 4985 goto restore_opts; 4986 } 4987 enable_quota = 1; 4988 } 4989 } 4990 4991 /* 4992 * Reinitialize lazy itable initialization thread based on 4993 * current settings 4994 */ 4995 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4996 ext4_unregister_li_request(sb); 4997 else { 4998 ext4_group_t first_not_zeroed; 4999 first_not_zeroed = ext4_has_uninit_itable(sb); 5000 ext4_register_li_request(sb, first_not_zeroed); 5001 } 5002 5003 ext4_setup_system_zone(sb); 5004 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5005 ext4_commit_super(sb, 1); 5006 5007 #ifdef CONFIG_QUOTA 5008 /* Release old quota file names */ 5009 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5010 kfree(old_opts.s_qf_names[i]); 5011 if (enable_quota) { 5012 if (sb_any_quota_suspended(sb)) 5013 dquot_resume(sb, -1); 5014 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5015 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5016 err = ext4_enable_quotas(sb); 5017 if (err) 5018 goto restore_opts; 5019 } 5020 } 5021 #endif 5022 5023 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5024 kfree(orig_data); 5025 return 0; 5026 5027 restore_opts: 5028 sb->s_flags = old_sb_flags; 5029 sbi->s_mount_opt = old_opts.s_mount_opt; 5030 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5031 sbi->s_resuid = old_opts.s_resuid; 5032 sbi->s_resgid = old_opts.s_resgid; 5033 sbi->s_commit_interval = old_opts.s_commit_interval; 5034 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5035 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5036 #ifdef CONFIG_QUOTA 5037 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5038 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5039 kfree(sbi->s_qf_names[i]); 5040 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5041 } 5042 #endif 5043 kfree(orig_data); 5044 return err; 5045 } 5046 5047 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5048 { 5049 struct super_block *sb = dentry->d_sb; 5050 struct ext4_sb_info *sbi = EXT4_SB(sb); 5051 struct ext4_super_block *es = sbi->s_es; 5052 ext4_fsblk_t overhead = 0, resv_blocks; 5053 u64 fsid; 5054 s64 bfree; 5055 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5056 5057 if (!test_opt(sb, MINIX_DF)) 5058 overhead = sbi->s_overhead; 5059 5060 buf->f_type = EXT4_SUPER_MAGIC; 5061 buf->f_bsize = sb->s_blocksize; 5062 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5063 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5064 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5065 /* prevent underflow in case that few free space is available */ 5066 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5067 buf->f_bavail = buf->f_bfree - 5068 (ext4_r_blocks_count(es) + resv_blocks); 5069 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5070 buf->f_bavail = 0; 5071 buf->f_files = le32_to_cpu(es->s_inodes_count); 5072 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5073 buf->f_namelen = EXT4_NAME_LEN; 5074 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5075 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5076 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5077 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5078 5079 return 0; 5080 } 5081 5082 /* Helper function for writing quotas on sync - we need to start transaction 5083 * before quota file is locked for write. Otherwise the are possible deadlocks: 5084 * Process 1 Process 2 5085 * ext4_create() quota_sync() 5086 * jbd2_journal_start() write_dquot() 5087 * dquot_initialize() down(dqio_mutex) 5088 * down(dqio_mutex) jbd2_journal_start() 5089 * 5090 */ 5091 5092 #ifdef CONFIG_QUOTA 5093 5094 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5095 { 5096 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5097 } 5098 5099 static int ext4_write_dquot(struct dquot *dquot) 5100 { 5101 int ret, err; 5102 handle_t *handle; 5103 struct inode *inode; 5104 5105 inode = dquot_to_inode(dquot); 5106 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5107 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5108 if (IS_ERR(handle)) 5109 return PTR_ERR(handle); 5110 ret = dquot_commit(dquot); 5111 err = ext4_journal_stop(handle); 5112 if (!ret) 5113 ret = err; 5114 return ret; 5115 } 5116 5117 static int ext4_acquire_dquot(struct dquot *dquot) 5118 { 5119 int ret, err; 5120 handle_t *handle; 5121 5122 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5123 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5124 if (IS_ERR(handle)) 5125 return PTR_ERR(handle); 5126 ret = dquot_acquire(dquot); 5127 err = ext4_journal_stop(handle); 5128 if (!ret) 5129 ret = err; 5130 return ret; 5131 } 5132 5133 static int ext4_release_dquot(struct dquot *dquot) 5134 { 5135 int ret, err; 5136 handle_t *handle; 5137 5138 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5139 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5140 if (IS_ERR(handle)) { 5141 /* Release dquot anyway to avoid endless cycle in dqput() */ 5142 dquot_release(dquot); 5143 return PTR_ERR(handle); 5144 } 5145 ret = dquot_release(dquot); 5146 err = ext4_journal_stop(handle); 5147 if (!ret) 5148 ret = err; 5149 return ret; 5150 } 5151 5152 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5153 { 5154 struct super_block *sb = dquot->dq_sb; 5155 struct ext4_sb_info *sbi = EXT4_SB(sb); 5156 5157 /* Are we journaling quotas? */ 5158 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5159 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5160 dquot_mark_dquot_dirty(dquot); 5161 return ext4_write_dquot(dquot); 5162 } else { 5163 return dquot_mark_dquot_dirty(dquot); 5164 } 5165 } 5166 5167 static int ext4_write_info(struct super_block *sb, int type) 5168 { 5169 int ret, err; 5170 handle_t *handle; 5171 5172 /* Data block + inode block */ 5173 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5174 if (IS_ERR(handle)) 5175 return PTR_ERR(handle); 5176 ret = dquot_commit_info(sb, type); 5177 err = ext4_journal_stop(handle); 5178 if (!ret) 5179 ret = err; 5180 return ret; 5181 } 5182 5183 /* 5184 * Turn on quotas during mount time - we need to find 5185 * the quota file and such... 5186 */ 5187 static int ext4_quota_on_mount(struct super_block *sb, int type) 5188 { 5189 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5190 EXT4_SB(sb)->s_jquota_fmt, type); 5191 } 5192 5193 /* 5194 * Standard function to be called on quota_on 5195 */ 5196 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5197 struct path *path) 5198 { 5199 int err; 5200 5201 if (!test_opt(sb, QUOTA)) 5202 return -EINVAL; 5203 5204 /* Quotafile not on the same filesystem? */ 5205 if (path->dentry->d_sb != sb) 5206 return -EXDEV; 5207 /* Journaling quota? */ 5208 if (EXT4_SB(sb)->s_qf_names[type]) { 5209 /* Quotafile not in fs root? */ 5210 if (path->dentry->d_parent != sb->s_root) 5211 ext4_msg(sb, KERN_WARNING, 5212 "Quota file not on filesystem root. " 5213 "Journaled quota will not work"); 5214 } 5215 5216 /* 5217 * When we journal data on quota file, we have to flush journal to see 5218 * all updates to the file when we bypass pagecache... 5219 */ 5220 if (EXT4_SB(sb)->s_journal && 5221 ext4_should_journal_data(path->dentry->d_inode)) { 5222 /* 5223 * We don't need to lock updates but journal_flush() could 5224 * otherwise be livelocked... 5225 */ 5226 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5227 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5228 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5229 if (err) 5230 return err; 5231 } 5232 5233 return dquot_quota_on(sb, type, format_id, path); 5234 } 5235 5236 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5237 unsigned int flags) 5238 { 5239 int err; 5240 struct inode *qf_inode; 5241 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5242 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5243 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5244 }; 5245 5246 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5247 5248 if (!qf_inums[type]) 5249 return -EPERM; 5250 5251 qf_inode = ext4_iget(sb, qf_inums[type]); 5252 if (IS_ERR(qf_inode)) { 5253 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5254 return PTR_ERR(qf_inode); 5255 } 5256 5257 /* Don't account quota for quota files to avoid recursion */ 5258 qf_inode->i_flags |= S_NOQUOTA; 5259 err = dquot_enable(qf_inode, type, format_id, flags); 5260 iput(qf_inode); 5261 5262 return err; 5263 } 5264 5265 /* Enable usage tracking for all quota types. */ 5266 static int ext4_enable_quotas(struct super_block *sb) 5267 { 5268 int type, err = 0; 5269 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5270 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5271 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5272 }; 5273 5274 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5275 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5276 if (qf_inums[type]) { 5277 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5278 DQUOT_USAGE_ENABLED); 5279 if (err) { 5280 ext4_warning(sb, 5281 "Failed to enable quota tracking " 5282 "(type=%d, err=%d). Please run " 5283 "e2fsck to fix.", type, err); 5284 return err; 5285 } 5286 } 5287 } 5288 return 0; 5289 } 5290 5291 /* 5292 * quota_on function that is used when QUOTA feature is set. 5293 */ 5294 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5295 int format_id) 5296 { 5297 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5298 return -EINVAL; 5299 5300 /* 5301 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5302 */ 5303 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5304 } 5305 5306 static int ext4_quota_off(struct super_block *sb, int type) 5307 { 5308 struct inode *inode = sb_dqopt(sb)->files[type]; 5309 handle_t *handle; 5310 5311 /* Force all delayed allocation blocks to be allocated. 5312 * Caller already holds s_umount sem */ 5313 if (test_opt(sb, DELALLOC)) 5314 sync_filesystem(sb); 5315 5316 if (!inode) 5317 goto out; 5318 5319 /* Update modification times of quota files when userspace can 5320 * start looking at them */ 5321 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5322 if (IS_ERR(handle)) 5323 goto out; 5324 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5325 ext4_mark_inode_dirty(handle, inode); 5326 ext4_journal_stop(handle); 5327 5328 out: 5329 return dquot_quota_off(sb, type); 5330 } 5331 5332 /* 5333 * quota_off function that is used when QUOTA feature is set. 5334 */ 5335 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5336 { 5337 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5338 return -EINVAL; 5339 5340 /* Disable only the limits. */ 5341 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5342 } 5343 5344 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5345 * acquiring the locks... As quota files are never truncated and quota code 5346 * itself serializes the operations (and no one else should touch the files) 5347 * we don't have to be afraid of races */ 5348 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5349 size_t len, loff_t off) 5350 { 5351 struct inode *inode = sb_dqopt(sb)->files[type]; 5352 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5353 int offset = off & (sb->s_blocksize - 1); 5354 int tocopy; 5355 size_t toread; 5356 struct buffer_head *bh; 5357 loff_t i_size = i_size_read(inode); 5358 5359 if (off > i_size) 5360 return 0; 5361 if (off+len > i_size) 5362 len = i_size-off; 5363 toread = len; 5364 while (toread > 0) { 5365 tocopy = sb->s_blocksize - offset < toread ? 5366 sb->s_blocksize - offset : toread; 5367 bh = ext4_bread(NULL, inode, blk, 0); 5368 if (IS_ERR(bh)) 5369 return PTR_ERR(bh); 5370 if (!bh) /* A hole? */ 5371 memset(data, 0, tocopy); 5372 else 5373 memcpy(data, bh->b_data+offset, tocopy); 5374 brelse(bh); 5375 offset = 0; 5376 toread -= tocopy; 5377 data += tocopy; 5378 blk++; 5379 } 5380 return len; 5381 } 5382 5383 /* Write to quotafile (we know the transaction is already started and has 5384 * enough credits) */ 5385 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5386 const char *data, size_t len, loff_t off) 5387 { 5388 struct inode *inode = sb_dqopt(sb)->files[type]; 5389 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5390 int err, offset = off & (sb->s_blocksize - 1); 5391 struct buffer_head *bh; 5392 handle_t *handle = journal_current_handle(); 5393 5394 if (EXT4_SB(sb)->s_journal && !handle) { 5395 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5396 " cancelled because transaction is not started", 5397 (unsigned long long)off, (unsigned long long)len); 5398 return -EIO; 5399 } 5400 /* 5401 * Since we account only one data block in transaction credits, 5402 * then it is impossible to cross a block boundary. 5403 */ 5404 if (sb->s_blocksize - offset < len) { 5405 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5406 " cancelled because not block aligned", 5407 (unsigned long long)off, (unsigned long long)len); 5408 return -EIO; 5409 } 5410 5411 bh = ext4_bread(handle, inode, blk, 1); 5412 if (IS_ERR(bh)) 5413 return PTR_ERR(bh); 5414 if (!bh) 5415 goto out; 5416 BUFFER_TRACE(bh, "get write access"); 5417 err = ext4_journal_get_write_access(handle, bh); 5418 if (err) { 5419 brelse(bh); 5420 return err; 5421 } 5422 lock_buffer(bh); 5423 memcpy(bh->b_data+offset, data, len); 5424 flush_dcache_page(bh->b_page); 5425 unlock_buffer(bh); 5426 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5427 brelse(bh); 5428 out: 5429 if (inode->i_size < off + len) { 5430 i_size_write(inode, off + len); 5431 EXT4_I(inode)->i_disksize = inode->i_size; 5432 ext4_mark_inode_dirty(handle, inode); 5433 } 5434 return len; 5435 } 5436 5437 #endif 5438 5439 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5440 const char *dev_name, void *data) 5441 { 5442 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5443 } 5444 5445 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5446 static inline void register_as_ext2(void) 5447 { 5448 int err = register_filesystem(&ext2_fs_type); 5449 if (err) 5450 printk(KERN_WARNING 5451 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5452 } 5453 5454 static inline void unregister_as_ext2(void) 5455 { 5456 unregister_filesystem(&ext2_fs_type); 5457 } 5458 5459 static inline int ext2_feature_set_ok(struct super_block *sb) 5460 { 5461 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5462 return 0; 5463 if (sb->s_flags & MS_RDONLY) 5464 return 1; 5465 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5466 return 0; 5467 return 1; 5468 } 5469 #else 5470 static inline void register_as_ext2(void) { } 5471 static inline void unregister_as_ext2(void) { } 5472 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5473 #endif 5474 5475 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5476 static inline void register_as_ext3(void) 5477 { 5478 int err = register_filesystem(&ext3_fs_type); 5479 if (err) 5480 printk(KERN_WARNING 5481 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5482 } 5483 5484 static inline void unregister_as_ext3(void) 5485 { 5486 unregister_filesystem(&ext3_fs_type); 5487 } 5488 5489 static inline int ext3_feature_set_ok(struct super_block *sb) 5490 { 5491 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5492 return 0; 5493 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5494 return 0; 5495 if (sb->s_flags & MS_RDONLY) 5496 return 1; 5497 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5498 return 0; 5499 return 1; 5500 } 5501 #else 5502 static inline void register_as_ext3(void) { } 5503 static inline void unregister_as_ext3(void) { } 5504 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5505 #endif 5506 5507 static struct file_system_type ext4_fs_type = { 5508 .owner = THIS_MODULE, 5509 .name = "ext4", 5510 .mount = ext4_mount, 5511 .kill_sb = kill_block_super, 5512 .fs_flags = FS_REQUIRES_DEV, 5513 }; 5514 MODULE_ALIAS_FS("ext4"); 5515 5516 static int __init ext4_init_feat_adverts(void) 5517 { 5518 struct ext4_features *ef; 5519 int ret = -ENOMEM; 5520 5521 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5522 if (!ef) 5523 goto out; 5524 5525 ef->f_kobj.kset = ext4_kset; 5526 init_completion(&ef->f_kobj_unregister); 5527 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5528 "features"); 5529 if (ret) { 5530 kfree(ef); 5531 goto out; 5532 } 5533 5534 ext4_feat = ef; 5535 ret = 0; 5536 out: 5537 return ret; 5538 } 5539 5540 static void ext4_exit_feat_adverts(void) 5541 { 5542 kobject_put(&ext4_feat->f_kobj); 5543 wait_for_completion(&ext4_feat->f_kobj_unregister); 5544 kfree(ext4_feat); 5545 } 5546 5547 /* Shared across all ext4 file systems */ 5548 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5549 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5550 5551 static int __init ext4_init_fs(void) 5552 { 5553 int i, err; 5554 5555 ext4_li_info = NULL; 5556 mutex_init(&ext4_li_mtx); 5557 5558 /* Build-time check for flags consistency */ 5559 ext4_check_flag_values(); 5560 5561 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5562 mutex_init(&ext4__aio_mutex[i]); 5563 init_waitqueue_head(&ext4__ioend_wq[i]); 5564 } 5565 5566 err = ext4_init_es(); 5567 if (err) 5568 return err; 5569 5570 err = ext4_init_pageio(); 5571 if (err) 5572 goto out7; 5573 5574 err = ext4_init_system_zone(); 5575 if (err) 5576 goto out6; 5577 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5578 if (!ext4_kset) { 5579 err = -ENOMEM; 5580 goto out5; 5581 } 5582 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5583 5584 err = ext4_init_feat_adverts(); 5585 if (err) 5586 goto out4; 5587 5588 err = ext4_init_mballoc(); 5589 if (err) 5590 goto out2; 5591 else 5592 ext4_mballoc_ready = 1; 5593 err = init_inodecache(); 5594 if (err) 5595 goto out1; 5596 register_as_ext3(); 5597 register_as_ext2(); 5598 err = register_filesystem(&ext4_fs_type); 5599 if (err) 5600 goto out; 5601 5602 return 0; 5603 out: 5604 unregister_as_ext2(); 5605 unregister_as_ext3(); 5606 destroy_inodecache(); 5607 out1: 5608 ext4_mballoc_ready = 0; 5609 ext4_exit_mballoc(); 5610 out2: 5611 ext4_exit_feat_adverts(); 5612 out4: 5613 if (ext4_proc_root) 5614 remove_proc_entry("fs/ext4", NULL); 5615 kset_unregister(ext4_kset); 5616 out5: 5617 ext4_exit_system_zone(); 5618 out6: 5619 ext4_exit_pageio(); 5620 out7: 5621 ext4_exit_es(); 5622 5623 return err; 5624 } 5625 5626 static void __exit ext4_exit_fs(void) 5627 { 5628 ext4_destroy_lazyinit_thread(); 5629 unregister_as_ext2(); 5630 unregister_as_ext3(); 5631 unregister_filesystem(&ext4_fs_type); 5632 destroy_inodecache(); 5633 ext4_exit_mballoc(); 5634 ext4_exit_feat_adverts(); 5635 remove_proc_entry("fs/ext4", NULL); 5636 kset_unregister(ext4_kset); 5637 ext4_exit_system_zone(); 5638 ext4_exit_pageio(); 5639 ext4_exit_es(); 5640 } 5641 5642 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5643 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5644 MODULE_LICENSE("GPL"); 5645 module_init(ext4_init_fs) 5646 module_exit(ext4_exit_fs) 5647