1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ | op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 207 { 208 lock_buffer(bh); 209 if (!wait) { 210 ext4_read_bh_nowait(bh, op_flags, NULL); 211 return 0; 212 } 213 return ext4_read_bh(bh, op_flags, NULL); 214 } 215 216 /* 217 * This works like __bread_gfp() except it uses ERR_PTR for error 218 * returns. Currently with sb_bread it's impossible to distinguish 219 * between ENOMEM and EIO situations (since both result in a NULL 220 * return. 221 */ 222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 223 sector_t block, 224 blk_opf_t op_flags, gfp_t gfp) 225 { 226 struct buffer_head *bh; 227 int ret; 228 229 bh = sb_getblk_gfp(sb, block, gfp); 230 if (bh == NULL) 231 return ERR_PTR(-ENOMEM); 232 if (ext4_buffer_uptodate(bh)) 233 return bh; 234 235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 236 if (ret) { 237 put_bh(bh); 238 return ERR_PTR(ret); 239 } 240 return bh; 241 } 242 243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 244 blk_opf_t op_flags) 245 { 246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 247 } 248 249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 250 sector_t block) 251 { 252 return __ext4_sb_bread_gfp(sb, block, 0, 0); 253 } 254 255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 256 { 257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 258 259 if (likely(bh)) { 260 if (trylock_buffer(bh)) 261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 262 brelse(bh); 263 } 264 } 265 266 static int ext4_verify_csum_type(struct super_block *sb, 267 struct ext4_super_block *es) 268 { 269 if (!ext4_has_feature_metadata_csum(sb)) 270 return 1; 271 272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 273 } 274 275 __le32 ext4_superblock_csum(struct super_block *sb, 276 struct ext4_super_block *es) 277 { 278 struct ext4_sb_info *sbi = EXT4_SB(sb); 279 int offset = offsetof(struct ext4_super_block, s_checksum); 280 __u32 csum; 281 282 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 283 284 return cpu_to_le32(csum); 285 } 286 287 static int ext4_superblock_csum_verify(struct super_block *sb, 288 struct ext4_super_block *es) 289 { 290 if (!ext4_has_metadata_csum(sb)) 291 return 1; 292 293 return es->s_checksum == ext4_superblock_csum(sb, es); 294 } 295 296 void ext4_superblock_csum_set(struct super_block *sb) 297 { 298 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 299 300 if (!ext4_has_metadata_csum(sb)) 301 return; 302 303 es->s_checksum = ext4_superblock_csum(sb, es); 304 } 305 306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 307 struct ext4_group_desc *bg) 308 { 309 return le32_to_cpu(bg->bg_block_bitmap_lo) | 310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 312 } 313 314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_table_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 328 } 329 330 __u32 ext4_free_group_clusters(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 336 } 337 338 __u32 ext4_free_inodes_count(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_used_dirs_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_itable_unused_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_itable_unused_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 360 } 361 362 void ext4_block_bitmap_set(struct super_block *sb, 363 struct ext4_group_desc *bg, ext4_fsblk_t blk) 364 { 365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 368 } 369 370 void ext4_inode_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_table_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_free_group_clusters_set(struct super_block *sb, 387 struct ext4_group_desc *bg, __u32 count) 388 { 389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 392 } 393 394 void ext4_free_inodes_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_used_dirs_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_itable_unused_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 416 } 417 418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 419 { 420 now = clamp_val(now, 0, (1ull << 40) - 1); 421 422 *lo = cpu_to_le32(lower_32_bits(now)); 423 *hi = upper_32_bits(now); 424 } 425 426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 427 { 428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 429 } 430 #define ext4_update_tstamp(es, tstamp) \ 431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 432 ktime_get_real_seconds()) 433 #define ext4_get_tstamp(es, tstamp) \ 434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 /* 476 * This writepage callback for write_cache_pages() 477 * takes care of a few cases after page cleaning. 478 * 479 * write_cache_pages() already checks for dirty pages 480 * and calls clear_page_dirty_for_io(), which we want, 481 * to write protect the pages. 482 * 483 * However, we may have to redirty a page (see below.) 484 */ 485 static int ext4_journalled_writepage_callback(struct folio *folio, 486 struct writeback_control *wbc, 487 void *data) 488 { 489 transaction_t *transaction = (transaction_t *) data; 490 struct buffer_head *bh, *head; 491 struct journal_head *jh; 492 493 bh = head = folio_buffers(folio); 494 do { 495 /* 496 * We have to redirty a page in these cases: 497 * 1) If buffer is dirty, it means the page was dirty because it 498 * contains a buffer that needs checkpointing. So the dirty bit 499 * needs to be preserved so that checkpointing writes the buffer 500 * properly. 501 * 2) If buffer is not part of the committing transaction 502 * (we may have just accidentally come across this buffer because 503 * inode range tracking is not exact) or if the currently running 504 * transaction already contains this buffer as well, dirty bit 505 * needs to be preserved so that the buffer gets writeprotected 506 * properly on running transaction's commit. 507 */ 508 jh = bh2jh(bh); 509 if (buffer_dirty(bh) || 510 (jh && (jh->b_transaction != transaction || 511 jh->b_next_transaction))) { 512 folio_redirty_for_writepage(wbc, folio); 513 goto out; 514 } 515 } while ((bh = bh->b_this_page) != head); 516 517 out: 518 return AOP_WRITEPAGE_ACTIVATE; 519 } 520 521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 522 { 523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 524 struct writeback_control wbc = { 525 .sync_mode = WB_SYNC_ALL, 526 .nr_to_write = LONG_MAX, 527 .range_start = jinode->i_dirty_start, 528 .range_end = jinode->i_dirty_end, 529 }; 530 531 return write_cache_pages(mapping, &wbc, 532 ext4_journalled_writepage_callback, 533 jinode->i_transaction); 534 } 535 536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 537 { 538 int ret; 539 540 if (ext4_should_journal_data(jinode->i_vfs_inode)) 541 ret = ext4_journalled_submit_inode_data_buffers(jinode); 542 else 543 ret = ext4_normal_submit_inode_data_buffers(jinode); 544 return ret; 545 } 546 547 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 548 { 549 int ret = 0; 550 551 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 552 ret = jbd2_journal_finish_inode_data_buffers(jinode); 553 554 return ret; 555 } 556 557 static bool system_going_down(void) 558 { 559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 560 || system_state == SYSTEM_RESTART; 561 } 562 563 struct ext4_err_translation { 564 int code; 565 int errno; 566 }; 567 568 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 569 570 static struct ext4_err_translation err_translation[] = { 571 EXT4_ERR_TRANSLATE(EIO), 572 EXT4_ERR_TRANSLATE(ENOMEM), 573 EXT4_ERR_TRANSLATE(EFSBADCRC), 574 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 575 EXT4_ERR_TRANSLATE(ENOSPC), 576 EXT4_ERR_TRANSLATE(ENOKEY), 577 EXT4_ERR_TRANSLATE(EROFS), 578 EXT4_ERR_TRANSLATE(EFBIG), 579 EXT4_ERR_TRANSLATE(EEXIST), 580 EXT4_ERR_TRANSLATE(ERANGE), 581 EXT4_ERR_TRANSLATE(EOVERFLOW), 582 EXT4_ERR_TRANSLATE(EBUSY), 583 EXT4_ERR_TRANSLATE(ENOTDIR), 584 EXT4_ERR_TRANSLATE(ENOTEMPTY), 585 EXT4_ERR_TRANSLATE(ESHUTDOWN), 586 EXT4_ERR_TRANSLATE(EFAULT), 587 }; 588 589 static int ext4_errno_to_code(int errno) 590 { 591 int i; 592 593 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 594 if (err_translation[i].errno == errno) 595 return err_translation[i].code; 596 return EXT4_ERR_UNKNOWN; 597 } 598 599 static void save_error_info(struct super_block *sb, int error, 600 __u32 ino, __u64 block, 601 const char *func, unsigned int line) 602 { 603 struct ext4_sb_info *sbi = EXT4_SB(sb); 604 605 /* We default to EFSCORRUPTED error... */ 606 if (error == 0) 607 error = EFSCORRUPTED; 608 609 spin_lock(&sbi->s_error_lock); 610 sbi->s_add_error_count++; 611 sbi->s_last_error_code = error; 612 sbi->s_last_error_line = line; 613 sbi->s_last_error_ino = ino; 614 sbi->s_last_error_block = block; 615 sbi->s_last_error_func = func; 616 sbi->s_last_error_time = ktime_get_real_seconds(); 617 if (!sbi->s_first_error_time) { 618 sbi->s_first_error_code = error; 619 sbi->s_first_error_line = line; 620 sbi->s_first_error_ino = ino; 621 sbi->s_first_error_block = block; 622 sbi->s_first_error_func = func; 623 sbi->s_first_error_time = sbi->s_last_error_time; 624 } 625 spin_unlock(&sbi->s_error_lock); 626 } 627 628 /* Deal with the reporting of failure conditions on a filesystem such as 629 * inconsistencies detected or read IO failures. 630 * 631 * On ext2, we can store the error state of the filesystem in the 632 * superblock. That is not possible on ext4, because we may have other 633 * write ordering constraints on the superblock which prevent us from 634 * writing it out straight away; and given that the journal is about to 635 * be aborted, we can't rely on the current, or future, transactions to 636 * write out the superblock safely. 637 * 638 * We'll just use the jbd2_journal_abort() error code to record an error in 639 * the journal instead. On recovery, the journal will complain about 640 * that error until we've noted it down and cleared it. 641 * 642 * If force_ro is set, we unconditionally force the filesystem into an 643 * ABORT|READONLY state, unless the error response on the fs has been set to 644 * panic in which case we take the easy way out and panic immediately. This is 645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 646 * at a critical moment in log management. 647 */ 648 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 649 __u32 ino, __u64 block, 650 const char *func, unsigned int line) 651 { 652 journal_t *journal = EXT4_SB(sb)->s_journal; 653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 654 655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 656 if (test_opt(sb, WARN_ON_ERROR)) 657 WARN_ON_ONCE(1); 658 659 if (!continue_fs && !sb_rdonly(sb)) { 660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 661 if (journal) 662 jbd2_journal_abort(journal, -EIO); 663 } 664 665 if (!bdev_read_only(sb->s_bdev)) { 666 save_error_info(sb, error, ino, block, func, line); 667 /* 668 * In case the fs should keep running, we need to writeout 669 * superblock through the journal. Due to lock ordering 670 * constraints, it may not be safe to do it right here so we 671 * defer superblock flushing to a workqueue. 672 */ 673 if (continue_fs && journal) 674 schedule_work(&EXT4_SB(sb)->s_error_work); 675 else 676 ext4_commit_super(sb); 677 } 678 679 /* 680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 681 * could panic during 'reboot -f' as the underlying device got already 682 * disabled. 683 */ 684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 685 panic("EXT4-fs (device %s): panic forced after error\n", 686 sb->s_id); 687 } 688 689 if (sb_rdonly(sb) || continue_fs) 690 return; 691 692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 693 /* 694 * Make sure updated value of ->s_mount_flags will be visible before 695 * ->s_flags update 696 */ 697 smp_wmb(); 698 sb->s_flags |= SB_RDONLY; 699 } 700 701 static void flush_stashed_error_work(struct work_struct *work) 702 { 703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 704 s_error_work); 705 journal_t *journal = sbi->s_journal; 706 handle_t *handle; 707 708 /* 709 * If the journal is still running, we have to write out superblock 710 * through the journal to avoid collisions of other journalled sb 711 * updates. 712 * 713 * We use directly jbd2 functions here to avoid recursing back into 714 * ext4 error handling code during handling of previous errors. 715 */ 716 if (!sb_rdonly(sbi->s_sb) && journal) { 717 struct buffer_head *sbh = sbi->s_sbh; 718 handle = jbd2_journal_start(journal, 1); 719 if (IS_ERR(handle)) 720 goto write_directly; 721 if (jbd2_journal_get_write_access(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 ext4_update_super(sbi->s_sb); 726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 728 "superblock detected"); 729 clear_buffer_write_io_error(sbh); 730 set_buffer_uptodate(sbh); 731 } 732 733 if (jbd2_journal_dirty_metadata(handle, sbh)) { 734 jbd2_journal_stop(handle); 735 goto write_directly; 736 } 737 jbd2_journal_stop(handle); 738 ext4_notify_error_sysfs(sbi); 739 return; 740 } 741 write_directly: 742 /* 743 * Write through journal failed. Write sb directly to get error info 744 * out and hope for the best. 745 */ 746 ext4_commit_super(sbi->s_sb); 747 ext4_notify_error_sysfs(sbi); 748 } 749 750 #define ext4_error_ratelimit(sb) \ 751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 752 "EXT4-fs error") 753 754 void __ext4_error(struct super_block *sb, const char *function, 755 unsigned int line, bool force_ro, int error, __u64 block, 756 const char *fmt, ...) 757 { 758 struct va_format vaf; 759 va_list args; 760 761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 762 return; 763 764 trace_ext4_error(sb, function, line); 765 if (ext4_error_ratelimit(sb)) { 766 va_start(args, fmt); 767 vaf.fmt = fmt; 768 vaf.va = &args; 769 printk(KERN_CRIT 770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 771 sb->s_id, function, line, current->comm, &vaf); 772 va_end(args); 773 } 774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 775 776 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 777 } 778 779 void __ext4_error_inode(struct inode *inode, const char *function, 780 unsigned int line, ext4_fsblk_t block, int error, 781 const char *fmt, ...) 782 { 783 va_list args; 784 struct va_format vaf; 785 786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 787 return; 788 789 trace_ext4_error(inode->i_sb, function, line); 790 if (ext4_error_ratelimit(inode->i_sb)) { 791 va_start(args, fmt); 792 vaf.fmt = fmt; 793 vaf.va = &args; 794 if (block) 795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 796 "inode #%lu: block %llu: comm %s: %pV\n", 797 inode->i_sb->s_id, function, line, inode->i_ino, 798 block, current->comm, &vaf); 799 else 800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 801 "inode #%lu: comm %s: %pV\n", 802 inode->i_sb->s_id, function, line, inode->i_ino, 803 current->comm, &vaf); 804 va_end(args); 805 } 806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 807 808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 809 function, line); 810 } 811 812 void __ext4_error_file(struct file *file, const char *function, 813 unsigned int line, ext4_fsblk_t block, 814 const char *fmt, ...) 815 { 816 va_list args; 817 struct va_format vaf; 818 struct inode *inode = file_inode(file); 819 char pathname[80], *path; 820 821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 822 return; 823 824 trace_ext4_error(inode->i_sb, function, line); 825 if (ext4_error_ratelimit(inode->i_sb)) { 826 path = file_path(file, pathname, sizeof(pathname)); 827 if (IS_ERR(path)) 828 path = "(unknown)"; 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 if (block) 833 printk(KERN_CRIT 834 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 835 "block %llu: comm %s: path %s: %pV\n", 836 inode->i_sb->s_id, function, line, inode->i_ino, 837 block, current->comm, path, &vaf); 838 else 839 printk(KERN_CRIT 840 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 841 "comm %s: path %s: %pV\n", 842 inode->i_sb->s_id, function, line, inode->i_ino, 843 current->comm, path, &vaf); 844 va_end(args); 845 } 846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 847 848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 849 function, line); 850 } 851 852 const char *ext4_decode_error(struct super_block *sb, int errno, 853 char nbuf[16]) 854 { 855 char *errstr = NULL; 856 857 switch (errno) { 858 case -EFSCORRUPTED: 859 errstr = "Corrupt filesystem"; 860 break; 861 case -EFSBADCRC: 862 errstr = "Filesystem failed CRC"; 863 break; 864 case -EIO: 865 errstr = "IO failure"; 866 break; 867 case -ENOMEM: 868 errstr = "Out of memory"; 869 break; 870 case -EROFS: 871 if (!sb || (EXT4_SB(sb)->s_journal && 872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 873 errstr = "Journal has aborted"; 874 else 875 errstr = "Readonly filesystem"; 876 break; 877 default: 878 /* If the caller passed in an extra buffer for unknown 879 * errors, textualise them now. Else we just return 880 * NULL. */ 881 if (nbuf) { 882 /* Check for truncated error codes... */ 883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 884 errstr = nbuf; 885 } 886 break; 887 } 888 889 return errstr; 890 } 891 892 /* __ext4_std_error decodes expected errors from journaling functions 893 * automatically and invokes the appropriate error response. */ 894 895 void __ext4_std_error(struct super_block *sb, const char *function, 896 unsigned int line, int errno) 897 { 898 char nbuf[16]; 899 const char *errstr; 900 901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 902 return; 903 904 /* Special case: if the error is EROFS, and we're not already 905 * inside a transaction, then there's really no point in logging 906 * an error. */ 907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 908 return; 909 910 if (ext4_error_ratelimit(sb)) { 911 errstr = ext4_decode_error(sb, errno, nbuf); 912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 913 sb->s_id, function, line, errstr); 914 } 915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 916 917 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 918 } 919 920 void __ext4_msg(struct super_block *sb, 921 const char *prefix, const char *fmt, ...) 922 { 923 struct va_format vaf; 924 va_list args; 925 926 if (sb) { 927 atomic_inc(&EXT4_SB(sb)->s_msg_count); 928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 929 "EXT4-fs")) 930 return; 931 } 932 933 va_start(args, fmt); 934 vaf.fmt = fmt; 935 vaf.va = &args; 936 if (sb) 937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 938 else 939 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 940 va_end(args); 941 } 942 943 static int ext4_warning_ratelimit(struct super_block *sb) 944 { 945 atomic_inc(&EXT4_SB(sb)->s_warning_count); 946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 947 "EXT4-fs warning"); 948 } 949 950 void __ext4_warning(struct super_block *sb, const char *function, 951 unsigned int line, const char *fmt, ...) 952 { 953 struct va_format vaf; 954 va_list args; 955 956 if (!ext4_warning_ratelimit(sb)) 957 return; 958 959 va_start(args, fmt); 960 vaf.fmt = fmt; 961 vaf.va = &args; 962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 963 sb->s_id, function, line, &vaf); 964 va_end(args); 965 } 966 967 void __ext4_warning_inode(const struct inode *inode, const char *function, 968 unsigned int line, const char *fmt, ...) 969 { 970 struct va_format vaf; 971 va_list args; 972 973 if (!ext4_warning_ratelimit(inode->i_sb)) 974 return; 975 976 va_start(args, fmt); 977 vaf.fmt = fmt; 978 vaf.va = &args; 979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 981 function, line, inode->i_ino, current->comm, &vaf); 982 va_end(args); 983 } 984 985 void __ext4_grp_locked_error(const char *function, unsigned int line, 986 struct super_block *sb, ext4_group_t grp, 987 unsigned long ino, ext4_fsblk_t block, 988 const char *fmt, ...) 989 __releases(bitlock) 990 __acquires(bitlock) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 996 return; 997 998 trace_ext4_error(sb, function, line); 999 if (ext4_error_ratelimit(sb)) { 1000 va_start(args, fmt); 1001 vaf.fmt = fmt; 1002 vaf.va = &args; 1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1004 sb->s_id, function, line, grp); 1005 if (ino) 1006 printk(KERN_CONT "inode %lu: ", ino); 1007 if (block) 1008 printk(KERN_CONT "block %llu:", 1009 (unsigned long long) block); 1010 printk(KERN_CONT "%pV\n", &vaf); 1011 va_end(args); 1012 } 1013 1014 if (test_opt(sb, ERRORS_CONT)) { 1015 if (test_opt(sb, WARN_ON_ERROR)) 1016 WARN_ON_ONCE(1); 1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1018 if (!bdev_read_only(sb->s_bdev)) { 1019 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1020 line); 1021 schedule_work(&EXT4_SB(sb)->s_error_work); 1022 } 1023 return; 1024 } 1025 ext4_unlock_group(sb, grp); 1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1027 /* 1028 * We only get here in the ERRORS_RO case; relocking the group 1029 * may be dangerous, but nothing bad will happen since the 1030 * filesystem will have already been marked read/only and the 1031 * journal has been aborted. We return 1 as a hint to callers 1032 * who might what to use the return value from 1033 * ext4_grp_locked_error() to distinguish between the 1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1035 * aggressively from the ext4 function in question, with a 1036 * more appropriate error code. 1037 */ 1038 ext4_lock_group(sb, grp); 1039 return; 1040 } 1041 1042 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1043 ext4_group_t group, 1044 unsigned int flags) 1045 { 1046 struct ext4_sb_info *sbi = EXT4_SB(sb); 1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1049 int ret; 1050 1051 if (!grp || !gdp) 1052 return; 1053 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1054 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1055 &grp->bb_state); 1056 if (!ret) 1057 percpu_counter_sub(&sbi->s_freeclusters_counter, 1058 grp->bb_free); 1059 } 1060 1061 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1062 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1063 &grp->bb_state); 1064 if (!ret && gdp) { 1065 int count; 1066 1067 count = ext4_free_inodes_count(sb, gdp); 1068 percpu_counter_sub(&sbi->s_freeinodes_counter, 1069 count); 1070 } 1071 } 1072 } 1073 1074 void ext4_update_dynamic_rev(struct super_block *sb) 1075 { 1076 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1077 1078 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1079 return; 1080 1081 ext4_warning(sb, 1082 "updating to rev %d because of new feature flag, " 1083 "running e2fsck is recommended", 1084 EXT4_DYNAMIC_REV); 1085 1086 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1087 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1088 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1089 /* leave es->s_feature_*compat flags alone */ 1090 /* es->s_uuid will be set by e2fsck if empty */ 1091 1092 /* 1093 * The rest of the superblock fields should be zero, and if not it 1094 * means they are likely already in use, so leave them alone. We 1095 * can leave it up to e2fsck to clean up any inconsistencies there. 1096 */ 1097 } 1098 1099 /* 1100 * Open the external journal device 1101 */ 1102 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1103 { 1104 struct block_device *bdev; 1105 1106 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1107 if (IS_ERR(bdev)) 1108 goto fail; 1109 return bdev; 1110 1111 fail: 1112 ext4_msg(sb, KERN_ERR, 1113 "failed to open journal device unknown-block(%u,%u) %ld", 1114 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1115 return NULL; 1116 } 1117 1118 /* 1119 * Release the journal device 1120 */ 1121 static void ext4_blkdev_put(struct block_device *bdev) 1122 { 1123 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1124 } 1125 1126 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1127 { 1128 struct block_device *bdev; 1129 bdev = sbi->s_journal_bdev; 1130 if (bdev) { 1131 ext4_blkdev_put(bdev); 1132 sbi->s_journal_bdev = NULL; 1133 } 1134 } 1135 1136 static inline struct inode *orphan_list_entry(struct list_head *l) 1137 { 1138 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1139 } 1140 1141 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1142 { 1143 struct list_head *l; 1144 1145 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1146 le32_to_cpu(sbi->s_es->s_last_orphan)); 1147 1148 printk(KERN_ERR "sb_info orphan list:\n"); 1149 list_for_each(l, &sbi->s_orphan) { 1150 struct inode *inode = orphan_list_entry(l); 1151 printk(KERN_ERR " " 1152 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1153 inode->i_sb->s_id, inode->i_ino, inode, 1154 inode->i_mode, inode->i_nlink, 1155 NEXT_ORPHAN(inode)); 1156 } 1157 } 1158 1159 #ifdef CONFIG_QUOTA 1160 static int ext4_quota_off(struct super_block *sb, int type); 1161 1162 static inline void ext4_quota_off_umount(struct super_block *sb) 1163 { 1164 int type; 1165 1166 /* Use our quota_off function to clear inode flags etc. */ 1167 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1168 ext4_quota_off(sb, type); 1169 } 1170 1171 /* 1172 * This is a helper function which is used in the mount/remount 1173 * codepaths (which holds s_umount) to fetch the quota file name. 1174 */ 1175 static inline char *get_qf_name(struct super_block *sb, 1176 struct ext4_sb_info *sbi, 1177 int type) 1178 { 1179 return rcu_dereference_protected(sbi->s_qf_names[type], 1180 lockdep_is_held(&sb->s_umount)); 1181 } 1182 #else 1183 static inline void ext4_quota_off_umount(struct super_block *sb) 1184 { 1185 } 1186 #endif 1187 1188 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1189 { 1190 ext4_fsblk_t block; 1191 int err; 1192 1193 block = ext4_count_free_clusters(sbi->s_sb); 1194 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1195 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1196 GFP_KERNEL); 1197 if (!err) { 1198 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1199 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1200 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1201 GFP_KERNEL); 1202 } 1203 if (!err) 1204 err = percpu_counter_init(&sbi->s_dirs_counter, 1205 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1206 if (!err) 1207 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1208 GFP_KERNEL); 1209 if (!err) 1210 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1211 GFP_KERNEL); 1212 if (!err) 1213 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1214 1215 if (err) 1216 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1217 1218 return err; 1219 } 1220 1221 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1222 { 1223 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1224 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1225 percpu_counter_destroy(&sbi->s_dirs_counter); 1226 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1227 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1228 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1229 } 1230 1231 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1232 { 1233 struct buffer_head **group_desc; 1234 int i; 1235 1236 rcu_read_lock(); 1237 group_desc = rcu_dereference(sbi->s_group_desc); 1238 for (i = 0; i < sbi->s_gdb_count; i++) 1239 brelse(group_desc[i]); 1240 kvfree(group_desc); 1241 rcu_read_unlock(); 1242 } 1243 1244 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1245 { 1246 struct flex_groups **flex_groups; 1247 int i; 1248 1249 rcu_read_lock(); 1250 flex_groups = rcu_dereference(sbi->s_flex_groups); 1251 if (flex_groups) { 1252 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1253 kvfree(flex_groups[i]); 1254 kvfree(flex_groups); 1255 } 1256 rcu_read_unlock(); 1257 } 1258 1259 static void ext4_put_super(struct super_block *sb) 1260 { 1261 struct ext4_sb_info *sbi = EXT4_SB(sb); 1262 struct ext4_super_block *es = sbi->s_es; 1263 int aborted = 0; 1264 int err; 1265 1266 /* 1267 * Unregister sysfs before destroying jbd2 journal. 1268 * Since we could still access attr_journal_task attribute via sysfs 1269 * path which could have sbi->s_journal->j_task as NULL 1270 * Unregister sysfs before flush sbi->s_error_work. 1271 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1272 * read metadata verify failed then will queue error work. 1273 * flush_stashed_error_work will call start_this_handle may trigger 1274 * BUG_ON. 1275 */ 1276 ext4_unregister_sysfs(sb); 1277 1278 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1279 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1280 &sb->s_uuid); 1281 1282 ext4_unregister_li_request(sb); 1283 ext4_quota_off_umount(sb); 1284 1285 flush_work(&sbi->s_error_work); 1286 destroy_workqueue(sbi->rsv_conversion_wq); 1287 ext4_release_orphan_info(sb); 1288 1289 if (sbi->s_journal) { 1290 aborted = is_journal_aborted(sbi->s_journal); 1291 err = jbd2_journal_destroy(sbi->s_journal); 1292 sbi->s_journal = NULL; 1293 if ((err < 0) && !aborted) { 1294 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1295 } 1296 } 1297 1298 ext4_es_unregister_shrinker(sbi); 1299 timer_shutdown_sync(&sbi->s_err_report); 1300 ext4_release_system_zone(sb); 1301 ext4_mb_release(sb); 1302 ext4_ext_release(sb); 1303 1304 if (!sb_rdonly(sb) && !aborted) { 1305 ext4_clear_feature_journal_needs_recovery(sb); 1306 ext4_clear_feature_orphan_present(sb); 1307 es->s_state = cpu_to_le16(sbi->s_mount_state); 1308 } 1309 if (!sb_rdonly(sb)) 1310 ext4_commit_super(sb); 1311 1312 ext4_group_desc_free(sbi); 1313 ext4_flex_groups_free(sbi); 1314 ext4_percpu_param_destroy(sbi); 1315 #ifdef CONFIG_QUOTA 1316 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1317 kfree(get_qf_name(sb, sbi, i)); 1318 #endif 1319 1320 /* Debugging code just in case the in-memory inode orphan list 1321 * isn't empty. The on-disk one can be non-empty if we've 1322 * detected an error and taken the fs readonly, but the 1323 * in-memory list had better be clean by this point. */ 1324 if (!list_empty(&sbi->s_orphan)) 1325 dump_orphan_list(sb, sbi); 1326 ASSERT(list_empty(&sbi->s_orphan)); 1327 1328 sync_blockdev(sb->s_bdev); 1329 invalidate_bdev(sb->s_bdev); 1330 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1331 /* 1332 * Invalidate the journal device's buffers. We don't want them 1333 * floating about in memory - the physical journal device may 1334 * hotswapped, and it breaks the `ro-after' testing code. 1335 */ 1336 sync_blockdev(sbi->s_journal_bdev); 1337 invalidate_bdev(sbi->s_journal_bdev); 1338 ext4_blkdev_remove(sbi); 1339 } 1340 1341 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1342 sbi->s_ea_inode_cache = NULL; 1343 1344 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1345 sbi->s_ea_block_cache = NULL; 1346 1347 ext4_stop_mmpd(sbi); 1348 1349 brelse(sbi->s_sbh); 1350 sb->s_fs_info = NULL; 1351 /* 1352 * Now that we are completely done shutting down the 1353 * superblock, we need to actually destroy the kobject. 1354 */ 1355 kobject_put(&sbi->s_kobj); 1356 wait_for_completion(&sbi->s_kobj_unregister); 1357 if (sbi->s_chksum_driver) 1358 crypto_free_shash(sbi->s_chksum_driver); 1359 kfree(sbi->s_blockgroup_lock); 1360 fs_put_dax(sbi->s_daxdev, NULL); 1361 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1362 #if IS_ENABLED(CONFIG_UNICODE) 1363 utf8_unload(sb->s_encoding); 1364 #endif 1365 kfree(sbi); 1366 } 1367 1368 static struct kmem_cache *ext4_inode_cachep; 1369 1370 /* 1371 * Called inside transaction, so use GFP_NOFS 1372 */ 1373 static struct inode *ext4_alloc_inode(struct super_block *sb) 1374 { 1375 struct ext4_inode_info *ei; 1376 1377 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1378 if (!ei) 1379 return NULL; 1380 1381 inode_set_iversion(&ei->vfs_inode, 1); 1382 ei->i_flags = 0; 1383 spin_lock_init(&ei->i_raw_lock); 1384 ei->i_prealloc_node = RB_ROOT; 1385 atomic_set(&ei->i_prealloc_active, 0); 1386 rwlock_init(&ei->i_prealloc_lock); 1387 ext4_es_init_tree(&ei->i_es_tree); 1388 rwlock_init(&ei->i_es_lock); 1389 INIT_LIST_HEAD(&ei->i_es_list); 1390 ei->i_es_all_nr = 0; 1391 ei->i_es_shk_nr = 0; 1392 ei->i_es_shrink_lblk = 0; 1393 ei->i_reserved_data_blocks = 0; 1394 spin_lock_init(&(ei->i_block_reservation_lock)); 1395 ext4_init_pending_tree(&ei->i_pending_tree); 1396 #ifdef CONFIG_QUOTA 1397 ei->i_reserved_quota = 0; 1398 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1399 #endif 1400 ei->jinode = NULL; 1401 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1402 spin_lock_init(&ei->i_completed_io_lock); 1403 ei->i_sync_tid = 0; 1404 ei->i_datasync_tid = 0; 1405 atomic_set(&ei->i_unwritten, 0); 1406 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1407 ext4_fc_init_inode(&ei->vfs_inode); 1408 mutex_init(&ei->i_fc_lock); 1409 return &ei->vfs_inode; 1410 } 1411 1412 static int ext4_drop_inode(struct inode *inode) 1413 { 1414 int drop = generic_drop_inode(inode); 1415 1416 if (!drop) 1417 drop = fscrypt_drop_inode(inode); 1418 1419 trace_ext4_drop_inode(inode, drop); 1420 return drop; 1421 } 1422 1423 static void ext4_free_in_core_inode(struct inode *inode) 1424 { 1425 fscrypt_free_inode(inode); 1426 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1427 pr_warn("%s: inode %ld still in fc list", 1428 __func__, inode->i_ino); 1429 } 1430 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1431 } 1432 1433 static void ext4_destroy_inode(struct inode *inode) 1434 { 1435 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1436 ext4_msg(inode->i_sb, KERN_ERR, 1437 "Inode %lu (%p): orphan list check failed!", 1438 inode->i_ino, EXT4_I(inode)); 1439 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1440 EXT4_I(inode), sizeof(struct ext4_inode_info), 1441 true); 1442 dump_stack(); 1443 } 1444 1445 if (EXT4_I(inode)->i_reserved_data_blocks) 1446 ext4_msg(inode->i_sb, KERN_ERR, 1447 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1448 inode->i_ino, EXT4_I(inode), 1449 EXT4_I(inode)->i_reserved_data_blocks); 1450 } 1451 1452 static void init_once(void *foo) 1453 { 1454 struct ext4_inode_info *ei = foo; 1455 1456 INIT_LIST_HEAD(&ei->i_orphan); 1457 init_rwsem(&ei->xattr_sem); 1458 init_rwsem(&ei->i_data_sem); 1459 inode_init_once(&ei->vfs_inode); 1460 ext4_fc_init_inode(&ei->vfs_inode); 1461 } 1462 1463 static int __init init_inodecache(void) 1464 { 1465 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1466 sizeof(struct ext4_inode_info), 0, 1467 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1468 SLAB_ACCOUNT), 1469 offsetof(struct ext4_inode_info, i_data), 1470 sizeof_field(struct ext4_inode_info, i_data), 1471 init_once); 1472 if (ext4_inode_cachep == NULL) 1473 return -ENOMEM; 1474 return 0; 1475 } 1476 1477 static void destroy_inodecache(void) 1478 { 1479 /* 1480 * Make sure all delayed rcu free inodes are flushed before we 1481 * destroy cache. 1482 */ 1483 rcu_barrier(); 1484 kmem_cache_destroy(ext4_inode_cachep); 1485 } 1486 1487 void ext4_clear_inode(struct inode *inode) 1488 { 1489 ext4_fc_del(inode); 1490 invalidate_inode_buffers(inode); 1491 clear_inode(inode); 1492 ext4_discard_preallocations(inode, 0); 1493 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1494 dquot_drop(inode); 1495 if (EXT4_I(inode)->jinode) { 1496 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1497 EXT4_I(inode)->jinode); 1498 jbd2_free_inode(EXT4_I(inode)->jinode); 1499 EXT4_I(inode)->jinode = NULL; 1500 } 1501 fscrypt_put_encryption_info(inode); 1502 fsverity_cleanup_inode(inode); 1503 } 1504 1505 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1506 u64 ino, u32 generation) 1507 { 1508 struct inode *inode; 1509 1510 /* 1511 * Currently we don't know the generation for parent directory, so 1512 * a generation of 0 means "accept any" 1513 */ 1514 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1515 if (IS_ERR(inode)) 1516 return ERR_CAST(inode); 1517 if (generation && inode->i_generation != generation) { 1518 iput(inode); 1519 return ERR_PTR(-ESTALE); 1520 } 1521 1522 return inode; 1523 } 1524 1525 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1526 int fh_len, int fh_type) 1527 { 1528 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1529 ext4_nfs_get_inode); 1530 } 1531 1532 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1533 int fh_len, int fh_type) 1534 { 1535 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1536 ext4_nfs_get_inode); 1537 } 1538 1539 static int ext4_nfs_commit_metadata(struct inode *inode) 1540 { 1541 struct writeback_control wbc = { 1542 .sync_mode = WB_SYNC_ALL 1543 }; 1544 1545 trace_ext4_nfs_commit_metadata(inode); 1546 return ext4_write_inode(inode, &wbc); 1547 } 1548 1549 #ifdef CONFIG_QUOTA 1550 static const char * const quotatypes[] = INITQFNAMES; 1551 #define QTYPE2NAME(t) (quotatypes[t]) 1552 1553 static int ext4_write_dquot(struct dquot *dquot); 1554 static int ext4_acquire_dquot(struct dquot *dquot); 1555 static int ext4_release_dquot(struct dquot *dquot); 1556 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1557 static int ext4_write_info(struct super_block *sb, int type); 1558 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1559 const struct path *path); 1560 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1561 size_t len, loff_t off); 1562 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1563 const char *data, size_t len, loff_t off); 1564 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1565 unsigned int flags); 1566 1567 static struct dquot **ext4_get_dquots(struct inode *inode) 1568 { 1569 return EXT4_I(inode)->i_dquot; 1570 } 1571 1572 static const struct dquot_operations ext4_quota_operations = { 1573 .get_reserved_space = ext4_get_reserved_space, 1574 .write_dquot = ext4_write_dquot, 1575 .acquire_dquot = ext4_acquire_dquot, 1576 .release_dquot = ext4_release_dquot, 1577 .mark_dirty = ext4_mark_dquot_dirty, 1578 .write_info = ext4_write_info, 1579 .alloc_dquot = dquot_alloc, 1580 .destroy_dquot = dquot_destroy, 1581 .get_projid = ext4_get_projid, 1582 .get_inode_usage = ext4_get_inode_usage, 1583 .get_next_id = dquot_get_next_id, 1584 }; 1585 1586 static const struct quotactl_ops ext4_qctl_operations = { 1587 .quota_on = ext4_quota_on, 1588 .quota_off = ext4_quota_off, 1589 .quota_sync = dquot_quota_sync, 1590 .get_state = dquot_get_state, 1591 .set_info = dquot_set_dqinfo, 1592 .get_dqblk = dquot_get_dqblk, 1593 .set_dqblk = dquot_set_dqblk, 1594 .get_nextdqblk = dquot_get_next_dqblk, 1595 }; 1596 #endif 1597 1598 static const struct super_operations ext4_sops = { 1599 .alloc_inode = ext4_alloc_inode, 1600 .free_inode = ext4_free_in_core_inode, 1601 .destroy_inode = ext4_destroy_inode, 1602 .write_inode = ext4_write_inode, 1603 .dirty_inode = ext4_dirty_inode, 1604 .drop_inode = ext4_drop_inode, 1605 .evict_inode = ext4_evict_inode, 1606 .put_super = ext4_put_super, 1607 .sync_fs = ext4_sync_fs, 1608 .freeze_fs = ext4_freeze, 1609 .unfreeze_fs = ext4_unfreeze, 1610 .statfs = ext4_statfs, 1611 .show_options = ext4_show_options, 1612 #ifdef CONFIG_QUOTA 1613 .quota_read = ext4_quota_read, 1614 .quota_write = ext4_quota_write, 1615 .get_dquots = ext4_get_dquots, 1616 #endif 1617 }; 1618 1619 static const struct export_operations ext4_export_ops = { 1620 .fh_to_dentry = ext4_fh_to_dentry, 1621 .fh_to_parent = ext4_fh_to_parent, 1622 .get_parent = ext4_get_parent, 1623 .commit_metadata = ext4_nfs_commit_metadata, 1624 }; 1625 1626 enum { 1627 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1628 Opt_resgid, Opt_resuid, Opt_sb, 1629 Opt_nouid32, Opt_debug, Opt_removed, 1630 Opt_user_xattr, Opt_acl, 1631 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1632 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1633 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1634 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1635 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1636 Opt_inlinecrypt, 1637 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1638 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1639 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1640 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1641 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1642 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1643 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1644 Opt_inode_readahead_blks, Opt_journal_ioprio, 1645 Opt_dioread_nolock, Opt_dioread_lock, 1646 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1647 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1648 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1649 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1650 #ifdef CONFIG_EXT4_DEBUG 1651 Opt_fc_debug_max_replay, Opt_fc_debug_force 1652 #endif 1653 }; 1654 1655 static const struct constant_table ext4_param_errors[] = { 1656 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1657 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1658 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1659 {} 1660 }; 1661 1662 static const struct constant_table ext4_param_data[] = { 1663 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1664 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1665 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1666 {} 1667 }; 1668 1669 static const struct constant_table ext4_param_data_err[] = { 1670 {"abort", Opt_data_err_abort}, 1671 {"ignore", Opt_data_err_ignore}, 1672 {} 1673 }; 1674 1675 static const struct constant_table ext4_param_jqfmt[] = { 1676 {"vfsold", QFMT_VFS_OLD}, 1677 {"vfsv0", QFMT_VFS_V0}, 1678 {"vfsv1", QFMT_VFS_V1}, 1679 {} 1680 }; 1681 1682 static const struct constant_table ext4_param_dax[] = { 1683 {"always", Opt_dax_always}, 1684 {"inode", Opt_dax_inode}, 1685 {"never", Opt_dax_never}, 1686 {} 1687 }; 1688 1689 /* String parameter that allows empty argument */ 1690 #define fsparam_string_empty(NAME, OPT) \ 1691 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1692 1693 /* 1694 * Mount option specification 1695 * We don't use fsparam_flag_no because of the way we set the 1696 * options and the way we show them in _ext4_show_options(). To 1697 * keep the changes to a minimum, let's keep the negative options 1698 * separate for now. 1699 */ 1700 static const struct fs_parameter_spec ext4_param_specs[] = { 1701 fsparam_flag ("bsddf", Opt_bsd_df), 1702 fsparam_flag ("minixdf", Opt_minix_df), 1703 fsparam_flag ("grpid", Opt_grpid), 1704 fsparam_flag ("bsdgroups", Opt_grpid), 1705 fsparam_flag ("nogrpid", Opt_nogrpid), 1706 fsparam_flag ("sysvgroups", Opt_nogrpid), 1707 fsparam_u32 ("resgid", Opt_resgid), 1708 fsparam_u32 ("resuid", Opt_resuid), 1709 fsparam_u32 ("sb", Opt_sb), 1710 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1711 fsparam_flag ("nouid32", Opt_nouid32), 1712 fsparam_flag ("debug", Opt_debug), 1713 fsparam_flag ("oldalloc", Opt_removed), 1714 fsparam_flag ("orlov", Opt_removed), 1715 fsparam_flag ("user_xattr", Opt_user_xattr), 1716 fsparam_flag ("acl", Opt_acl), 1717 fsparam_flag ("norecovery", Opt_noload), 1718 fsparam_flag ("noload", Opt_noload), 1719 fsparam_flag ("bh", Opt_removed), 1720 fsparam_flag ("nobh", Opt_removed), 1721 fsparam_u32 ("commit", Opt_commit), 1722 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1723 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1724 fsparam_u32 ("journal_dev", Opt_journal_dev), 1725 fsparam_bdev ("journal_path", Opt_journal_path), 1726 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1727 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1728 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1729 fsparam_flag ("abort", Opt_abort), 1730 fsparam_enum ("data", Opt_data, ext4_param_data), 1731 fsparam_enum ("data_err", Opt_data_err, 1732 ext4_param_data_err), 1733 fsparam_string_empty 1734 ("usrjquota", Opt_usrjquota), 1735 fsparam_string_empty 1736 ("grpjquota", Opt_grpjquota), 1737 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1738 fsparam_flag ("grpquota", Opt_grpquota), 1739 fsparam_flag ("quota", Opt_quota), 1740 fsparam_flag ("noquota", Opt_noquota), 1741 fsparam_flag ("usrquota", Opt_usrquota), 1742 fsparam_flag ("prjquota", Opt_prjquota), 1743 fsparam_flag ("barrier", Opt_barrier), 1744 fsparam_u32 ("barrier", Opt_barrier), 1745 fsparam_flag ("nobarrier", Opt_nobarrier), 1746 fsparam_flag ("i_version", Opt_removed), 1747 fsparam_flag ("dax", Opt_dax), 1748 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1749 fsparam_u32 ("stripe", Opt_stripe), 1750 fsparam_flag ("delalloc", Opt_delalloc), 1751 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1752 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1753 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1754 fsparam_u32 ("debug_want_extra_isize", 1755 Opt_debug_want_extra_isize), 1756 fsparam_flag ("mblk_io_submit", Opt_removed), 1757 fsparam_flag ("nomblk_io_submit", Opt_removed), 1758 fsparam_flag ("block_validity", Opt_block_validity), 1759 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1760 fsparam_u32 ("inode_readahead_blks", 1761 Opt_inode_readahead_blks), 1762 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1763 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1764 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1765 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1766 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1767 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1768 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1769 fsparam_flag ("discard", Opt_discard), 1770 fsparam_flag ("nodiscard", Opt_nodiscard), 1771 fsparam_u32 ("init_itable", Opt_init_itable), 1772 fsparam_flag ("init_itable", Opt_init_itable), 1773 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1774 #ifdef CONFIG_EXT4_DEBUG 1775 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1776 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1777 #endif 1778 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1779 fsparam_flag ("test_dummy_encryption", 1780 Opt_test_dummy_encryption), 1781 fsparam_string ("test_dummy_encryption", 1782 Opt_test_dummy_encryption), 1783 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1784 fsparam_flag ("nombcache", Opt_nombcache), 1785 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1786 fsparam_flag ("prefetch_block_bitmaps", 1787 Opt_removed), 1788 fsparam_flag ("no_prefetch_block_bitmaps", 1789 Opt_no_prefetch_block_bitmaps), 1790 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1791 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1792 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1793 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1794 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1795 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1796 {} 1797 }; 1798 1799 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1800 1801 #define MOPT_SET 0x0001 1802 #define MOPT_CLEAR 0x0002 1803 #define MOPT_NOSUPPORT 0x0004 1804 #define MOPT_EXPLICIT 0x0008 1805 #ifdef CONFIG_QUOTA 1806 #define MOPT_Q 0 1807 #define MOPT_QFMT 0x0010 1808 #else 1809 #define MOPT_Q MOPT_NOSUPPORT 1810 #define MOPT_QFMT MOPT_NOSUPPORT 1811 #endif 1812 #define MOPT_NO_EXT2 0x0020 1813 #define MOPT_NO_EXT3 0x0040 1814 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1815 #define MOPT_SKIP 0x0080 1816 #define MOPT_2 0x0100 1817 1818 static const struct mount_opts { 1819 int token; 1820 int mount_opt; 1821 int flags; 1822 } ext4_mount_opts[] = { 1823 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1824 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1825 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1826 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1827 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1828 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1829 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1830 MOPT_EXT4_ONLY | MOPT_SET}, 1831 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1832 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1833 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1834 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1835 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1836 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1837 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1838 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1839 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1840 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1841 {Opt_commit, 0, MOPT_NO_EXT2}, 1842 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1843 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1844 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1845 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1846 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1847 EXT4_MOUNT_JOURNAL_CHECKSUM), 1848 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1849 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1850 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1851 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1852 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1853 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1854 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1855 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1856 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1857 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1858 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1859 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1860 {Opt_data, 0, MOPT_NO_EXT2}, 1861 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1862 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1863 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1864 #else 1865 {Opt_acl, 0, MOPT_NOSUPPORT}, 1866 #endif 1867 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1868 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1869 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1870 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1871 MOPT_SET | MOPT_Q}, 1872 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1873 MOPT_SET | MOPT_Q}, 1874 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1875 MOPT_SET | MOPT_Q}, 1876 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1877 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1878 MOPT_CLEAR | MOPT_Q}, 1879 {Opt_usrjquota, 0, MOPT_Q}, 1880 {Opt_grpjquota, 0, MOPT_Q}, 1881 {Opt_jqfmt, 0, MOPT_QFMT}, 1882 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1883 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1884 MOPT_SET}, 1885 #ifdef CONFIG_EXT4_DEBUG 1886 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1887 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1888 #endif 1889 {Opt_err, 0, 0} 1890 }; 1891 1892 #if IS_ENABLED(CONFIG_UNICODE) 1893 static const struct ext4_sb_encodings { 1894 __u16 magic; 1895 char *name; 1896 unsigned int version; 1897 } ext4_sb_encoding_map[] = { 1898 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1899 }; 1900 1901 static const struct ext4_sb_encodings * 1902 ext4_sb_read_encoding(const struct ext4_super_block *es) 1903 { 1904 __u16 magic = le16_to_cpu(es->s_encoding); 1905 int i; 1906 1907 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1908 if (magic == ext4_sb_encoding_map[i].magic) 1909 return &ext4_sb_encoding_map[i]; 1910 1911 return NULL; 1912 } 1913 #endif 1914 1915 #define EXT4_SPEC_JQUOTA (1 << 0) 1916 #define EXT4_SPEC_JQFMT (1 << 1) 1917 #define EXT4_SPEC_DATAJ (1 << 2) 1918 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1919 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1920 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1921 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1922 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1923 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1924 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1925 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1926 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1927 #define EXT4_SPEC_s_stripe (1 << 13) 1928 #define EXT4_SPEC_s_resuid (1 << 14) 1929 #define EXT4_SPEC_s_resgid (1 << 15) 1930 #define EXT4_SPEC_s_commit_interval (1 << 16) 1931 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1932 #define EXT4_SPEC_s_sb_block (1 << 18) 1933 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1934 1935 struct ext4_fs_context { 1936 char *s_qf_names[EXT4_MAXQUOTAS]; 1937 struct fscrypt_dummy_policy dummy_enc_policy; 1938 int s_jquota_fmt; /* Format of quota to use */ 1939 #ifdef CONFIG_EXT4_DEBUG 1940 int s_fc_debug_max_replay; 1941 #endif 1942 unsigned short qname_spec; 1943 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1944 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1945 unsigned long journal_devnum; 1946 unsigned long s_commit_interval; 1947 unsigned long s_stripe; 1948 unsigned int s_inode_readahead_blks; 1949 unsigned int s_want_extra_isize; 1950 unsigned int s_li_wait_mult; 1951 unsigned int s_max_dir_size_kb; 1952 unsigned int journal_ioprio; 1953 unsigned int vals_s_mount_opt; 1954 unsigned int mask_s_mount_opt; 1955 unsigned int vals_s_mount_opt2; 1956 unsigned int mask_s_mount_opt2; 1957 unsigned long vals_s_mount_flags; 1958 unsigned long mask_s_mount_flags; 1959 unsigned int opt_flags; /* MOPT flags */ 1960 unsigned int spec; 1961 u32 s_max_batch_time; 1962 u32 s_min_batch_time; 1963 kuid_t s_resuid; 1964 kgid_t s_resgid; 1965 ext4_fsblk_t s_sb_block; 1966 }; 1967 1968 static void ext4_fc_free(struct fs_context *fc) 1969 { 1970 struct ext4_fs_context *ctx = fc->fs_private; 1971 int i; 1972 1973 if (!ctx) 1974 return; 1975 1976 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1977 kfree(ctx->s_qf_names[i]); 1978 1979 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1980 kfree(ctx); 1981 } 1982 1983 int ext4_init_fs_context(struct fs_context *fc) 1984 { 1985 struct ext4_fs_context *ctx; 1986 1987 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1988 if (!ctx) 1989 return -ENOMEM; 1990 1991 fc->fs_private = ctx; 1992 fc->ops = &ext4_context_ops; 1993 1994 return 0; 1995 } 1996 1997 #ifdef CONFIG_QUOTA 1998 /* 1999 * Note the name of the specified quota file. 2000 */ 2001 static int note_qf_name(struct fs_context *fc, int qtype, 2002 struct fs_parameter *param) 2003 { 2004 struct ext4_fs_context *ctx = fc->fs_private; 2005 char *qname; 2006 2007 if (param->size < 1) { 2008 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2009 return -EINVAL; 2010 } 2011 if (strchr(param->string, '/')) { 2012 ext4_msg(NULL, KERN_ERR, 2013 "quotafile must be on filesystem root"); 2014 return -EINVAL; 2015 } 2016 if (ctx->s_qf_names[qtype]) { 2017 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2018 ext4_msg(NULL, KERN_ERR, 2019 "%s quota file already specified", 2020 QTYPE2NAME(qtype)); 2021 return -EINVAL; 2022 } 2023 return 0; 2024 } 2025 2026 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2027 if (!qname) { 2028 ext4_msg(NULL, KERN_ERR, 2029 "Not enough memory for storing quotafile name"); 2030 return -ENOMEM; 2031 } 2032 ctx->s_qf_names[qtype] = qname; 2033 ctx->qname_spec |= 1 << qtype; 2034 ctx->spec |= EXT4_SPEC_JQUOTA; 2035 return 0; 2036 } 2037 2038 /* 2039 * Clear the name of the specified quota file. 2040 */ 2041 static int unnote_qf_name(struct fs_context *fc, int qtype) 2042 { 2043 struct ext4_fs_context *ctx = fc->fs_private; 2044 2045 if (ctx->s_qf_names[qtype]) 2046 kfree(ctx->s_qf_names[qtype]); 2047 2048 ctx->s_qf_names[qtype] = NULL; 2049 ctx->qname_spec |= 1 << qtype; 2050 ctx->spec |= EXT4_SPEC_JQUOTA; 2051 return 0; 2052 } 2053 #endif 2054 2055 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2056 struct ext4_fs_context *ctx) 2057 { 2058 int err; 2059 2060 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2061 ext4_msg(NULL, KERN_WARNING, 2062 "test_dummy_encryption option not supported"); 2063 return -EINVAL; 2064 } 2065 err = fscrypt_parse_test_dummy_encryption(param, 2066 &ctx->dummy_enc_policy); 2067 if (err == -EINVAL) { 2068 ext4_msg(NULL, KERN_WARNING, 2069 "Value of option \"%s\" is unrecognized", param->key); 2070 } else if (err == -EEXIST) { 2071 ext4_msg(NULL, KERN_WARNING, 2072 "Conflicting test_dummy_encryption options"); 2073 return -EINVAL; 2074 } 2075 return err; 2076 } 2077 2078 #define EXT4_SET_CTX(name) \ 2079 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2080 unsigned long flag) \ 2081 { \ 2082 ctx->mask_s_##name |= flag; \ 2083 ctx->vals_s_##name |= flag; \ 2084 } 2085 2086 #define EXT4_CLEAR_CTX(name) \ 2087 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2088 unsigned long flag) \ 2089 { \ 2090 ctx->mask_s_##name |= flag; \ 2091 ctx->vals_s_##name &= ~flag; \ 2092 } 2093 2094 #define EXT4_TEST_CTX(name) \ 2095 static inline unsigned long \ 2096 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2097 { \ 2098 return (ctx->vals_s_##name & flag); \ 2099 } 2100 2101 EXT4_SET_CTX(flags); /* set only */ 2102 EXT4_SET_CTX(mount_opt); 2103 EXT4_CLEAR_CTX(mount_opt); 2104 EXT4_TEST_CTX(mount_opt); 2105 EXT4_SET_CTX(mount_opt2); 2106 EXT4_CLEAR_CTX(mount_opt2); 2107 EXT4_TEST_CTX(mount_opt2); 2108 2109 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2110 { 2111 set_bit(bit, &ctx->mask_s_mount_flags); 2112 set_bit(bit, &ctx->vals_s_mount_flags); 2113 } 2114 2115 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2116 { 2117 struct ext4_fs_context *ctx = fc->fs_private; 2118 struct fs_parse_result result; 2119 const struct mount_opts *m; 2120 int is_remount; 2121 kuid_t uid; 2122 kgid_t gid; 2123 int token; 2124 2125 token = fs_parse(fc, ext4_param_specs, param, &result); 2126 if (token < 0) 2127 return token; 2128 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2129 2130 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2131 if (token == m->token) 2132 break; 2133 2134 ctx->opt_flags |= m->flags; 2135 2136 if (m->flags & MOPT_EXPLICIT) { 2137 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2138 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2139 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2140 ctx_set_mount_opt2(ctx, 2141 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2142 } else 2143 return -EINVAL; 2144 } 2145 2146 if (m->flags & MOPT_NOSUPPORT) { 2147 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2148 param->key); 2149 return 0; 2150 } 2151 2152 switch (token) { 2153 #ifdef CONFIG_QUOTA 2154 case Opt_usrjquota: 2155 if (!*param->string) 2156 return unnote_qf_name(fc, USRQUOTA); 2157 else 2158 return note_qf_name(fc, USRQUOTA, param); 2159 case Opt_grpjquota: 2160 if (!*param->string) 2161 return unnote_qf_name(fc, GRPQUOTA); 2162 else 2163 return note_qf_name(fc, GRPQUOTA, param); 2164 #endif 2165 case Opt_sb: 2166 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2167 ext4_msg(NULL, KERN_WARNING, 2168 "Ignoring %s option on remount", param->key); 2169 } else { 2170 ctx->s_sb_block = result.uint_32; 2171 ctx->spec |= EXT4_SPEC_s_sb_block; 2172 } 2173 return 0; 2174 case Opt_removed: 2175 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2176 param->key); 2177 return 0; 2178 case Opt_abort: 2179 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2180 return 0; 2181 case Opt_inlinecrypt: 2182 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2183 ctx_set_flags(ctx, SB_INLINECRYPT); 2184 #else 2185 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2186 #endif 2187 return 0; 2188 case Opt_errors: 2189 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2190 ctx_set_mount_opt(ctx, result.uint_32); 2191 return 0; 2192 #ifdef CONFIG_QUOTA 2193 case Opt_jqfmt: 2194 ctx->s_jquota_fmt = result.uint_32; 2195 ctx->spec |= EXT4_SPEC_JQFMT; 2196 return 0; 2197 #endif 2198 case Opt_data: 2199 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2200 ctx_set_mount_opt(ctx, result.uint_32); 2201 ctx->spec |= EXT4_SPEC_DATAJ; 2202 return 0; 2203 case Opt_commit: 2204 if (result.uint_32 == 0) 2205 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2206 else if (result.uint_32 > INT_MAX / HZ) { 2207 ext4_msg(NULL, KERN_ERR, 2208 "Invalid commit interval %d, " 2209 "must be smaller than %d", 2210 result.uint_32, INT_MAX / HZ); 2211 return -EINVAL; 2212 } 2213 ctx->s_commit_interval = HZ * result.uint_32; 2214 ctx->spec |= EXT4_SPEC_s_commit_interval; 2215 return 0; 2216 case Opt_debug_want_extra_isize: 2217 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2218 ext4_msg(NULL, KERN_ERR, 2219 "Invalid want_extra_isize %d", result.uint_32); 2220 return -EINVAL; 2221 } 2222 ctx->s_want_extra_isize = result.uint_32; 2223 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2224 return 0; 2225 case Opt_max_batch_time: 2226 ctx->s_max_batch_time = result.uint_32; 2227 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2228 return 0; 2229 case Opt_min_batch_time: 2230 ctx->s_min_batch_time = result.uint_32; 2231 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2232 return 0; 2233 case Opt_inode_readahead_blks: 2234 if (result.uint_32 && 2235 (result.uint_32 > (1 << 30) || 2236 !is_power_of_2(result.uint_32))) { 2237 ext4_msg(NULL, KERN_ERR, 2238 "EXT4-fs: inode_readahead_blks must be " 2239 "0 or a power of 2 smaller than 2^31"); 2240 return -EINVAL; 2241 } 2242 ctx->s_inode_readahead_blks = result.uint_32; 2243 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2244 return 0; 2245 case Opt_init_itable: 2246 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2247 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2248 if (param->type == fs_value_is_string) 2249 ctx->s_li_wait_mult = result.uint_32; 2250 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2251 return 0; 2252 case Opt_max_dir_size_kb: 2253 ctx->s_max_dir_size_kb = result.uint_32; 2254 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2255 return 0; 2256 #ifdef CONFIG_EXT4_DEBUG 2257 case Opt_fc_debug_max_replay: 2258 ctx->s_fc_debug_max_replay = result.uint_32; 2259 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2260 return 0; 2261 #endif 2262 case Opt_stripe: 2263 ctx->s_stripe = result.uint_32; 2264 ctx->spec |= EXT4_SPEC_s_stripe; 2265 return 0; 2266 case Opt_resuid: 2267 uid = make_kuid(current_user_ns(), result.uint_32); 2268 if (!uid_valid(uid)) { 2269 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2270 result.uint_32); 2271 return -EINVAL; 2272 } 2273 ctx->s_resuid = uid; 2274 ctx->spec |= EXT4_SPEC_s_resuid; 2275 return 0; 2276 case Opt_resgid: 2277 gid = make_kgid(current_user_ns(), result.uint_32); 2278 if (!gid_valid(gid)) { 2279 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2280 result.uint_32); 2281 return -EINVAL; 2282 } 2283 ctx->s_resgid = gid; 2284 ctx->spec |= EXT4_SPEC_s_resgid; 2285 return 0; 2286 case Opt_journal_dev: 2287 if (is_remount) { 2288 ext4_msg(NULL, KERN_ERR, 2289 "Cannot specify journal on remount"); 2290 return -EINVAL; 2291 } 2292 ctx->journal_devnum = result.uint_32; 2293 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2294 return 0; 2295 case Opt_journal_path: 2296 { 2297 struct inode *journal_inode; 2298 struct path path; 2299 int error; 2300 2301 if (is_remount) { 2302 ext4_msg(NULL, KERN_ERR, 2303 "Cannot specify journal on remount"); 2304 return -EINVAL; 2305 } 2306 2307 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2308 if (error) { 2309 ext4_msg(NULL, KERN_ERR, "error: could not find " 2310 "journal device path"); 2311 return -EINVAL; 2312 } 2313 2314 journal_inode = d_inode(path.dentry); 2315 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2316 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2317 path_put(&path); 2318 return 0; 2319 } 2320 case Opt_journal_ioprio: 2321 if (result.uint_32 > 7) { 2322 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2323 " (must be 0-7)"); 2324 return -EINVAL; 2325 } 2326 ctx->journal_ioprio = 2327 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2328 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2329 return 0; 2330 case Opt_test_dummy_encryption: 2331 return ext4_parse_test_dummy_encryption(param, ctx); 2332 case Opt_dax: 2333 case Opt_dax_type: 2334 #ifdef CONFIG_FS_DAX 2335 { 2336 int type = (token == Opt_dax) ? 2337 Opt_dax : result.uint_32; 2338 2339 switch (type) { 2340 case Opt_dax: 2341 case Opt_dax_always: 2342 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2343 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2344 break; 2345 case Opt_dax_never: 2346 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2347 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2348 break; 2349 case Opt_dax_inode: 2350 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2351 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2352 /* Strictly for printing options */ 2353 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2354 break; 2355 } 2356 return 0; 2357 } 2358 #else 2359 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2360 return -EINVAL; 2361 #endif 2362 case Opt_data_err: 2363 if (result.uint_32 == Opt_data_err_abort) 2364 ctx_set_mount_opt(ctx, m->mount_opt); 2365 else if (result.uint_32 == Opt_data_err_ignore) 2366 ctx_clear_mount_opt(ctx, m->mount_opt); 2367 return 0; 2368 case Opt_mb_optimize_scan: 2369 if (result.int_32 == 1) { 2370 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2371 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2372 } else if (result.int_32 == 0) { 2373 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2374 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2375 } else { 2376 ext4_msg(NULL, KERN_WARNING, 2377 "mb_optimize_scan should be set to 0 or 1."); 2378 return -EINVAL; 2379 } 2380 return 0; 2381 } 2382 2383 /* 2384 * At this point we should only be getting options requiring MOPT_SET, 2385 * or MOPT_CLEAR. Anything else is a bug 2386 */ 2387 if (m->token == Opt_err) { 2388 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2389 param->key); 2390 WARN_ON(1); 2391 return -EINVAL; 2392 } 2393 2394 else { 2395 unsigned int set = 0; 2396 2397 if ((param->type == fs_value_is_flag) || 2398 result.uint_32 > 0) 2399 set = 1; 2400 2401 if (m->flags & MOPT_CLEAR) 2402 set = !set; 2403 else if (unlikely(!(m->flags & MOPT_SET))) { 2404 ext4_msg(NULL, KERN_WARNING, 2405 "buggy handling of option %s", 2406 param->key); 2407 WARN_ON(1); 2408 return -EINVAL; 2409 } 2410 if (m->flags & MOPT_2) { 2411 if (set != 0) 2412 ctx_set_mount_opt2(ctx, m->mount_opt); 2413 else 2414 ctx_clear_mount_opt2(ctx, m->mount_opt); 2415 } else { 2416 if (set != 0) 2417 ctx_set_mount_opt(ctx, m->mount_opt); 2418 else 2419 ctx_clear_mount_opt(ctx, m->mount_opt); 2420 } 2421 } 2422 2423 return 0; 2424 } 2425 2426 static int parse_options(struct fs_context *fc, char *options) 2427 { 2428 struct fs_parameter param; 2429 int ret; 2430 char *key; 2431 2432 if (!options) 2433 return 0; 2434 2435 while ((key = strsep(&options, ",")) != NULL) { 2436 if (*key) { 2437 size_t v_len = 0; 2438 char *value = strchr(key, '='); 2439 2440 param.type = fs_value_is_flag; 2441 param.string = NULL; 2442 2443 if (value) { 2444 if (value == key) 2445 continue; 2446 2447 *value++ = 0; 2448 v_len = strlen(value); 2449 param.string = kmemdup_nul(value, v_len, 2450 GFP_KERNEL); 2451 if (!param.string) 2452 return -ENOMEM; 2453 param.type = fs_value_is_string; 2454 } 2455 2456 param.key = key; 2457 param.size = v_len; 2458 2459 ret = ext4_parse_param(fc, ¶m); 2460 if (param.string) 2461 kfree(param.string); 2462 if (ret < 0) 2463 return ret; 2464 } 2465 } 2466 2467 ret = ext4_validate_options(fc); 2468 if (ret < 0) 2469 return ret; 2470 2471 return 0; 2472 } 2473 2474 static int parse_apply_sb_mount_options(struct super_block *sb, 2475 struct ext4_fs_context *m_ctx) 2476 { 2477 struct ext4_sb_info *sbi = EXT4_SB(sb); 2478 char *s_mount_opts = NULL; 2479 struct ext4_fs_context *s_ctx = NULL; 2480 struct fs_context *fc = NULL; 2481 int ret = -ENOMEM; 2482 2483 if (!sbi->s_es->s_mount_opts[0]) 2484 return 0; 2485 2486 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2487 sizeof(sbi->s_es->s_mount_opts), 2488 GFP_KERNEL); 2489 if (!s_mount_opts) 2490 return ret; 2491 2492 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2493 if (!fc) 2494 goto out_free; 2495 2496 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2497 if (!s_ctx) 2498 goto out_free; 2499 2500 fc->fs_private = s_ctx; 2501 fc->s_fs_info = sbi; 2502 2503 ret = parse_options(fc, s_mount_opts); 2504 if (ret < 0) 2505 goto parse_failed; 2506 2507 ret = ext4_check_opt_consistency(fc, sb); 2508 if (ret < 0) { 2509 parse_failed: 2510 ext4_msg(sb, KERN_WARNING, 2511 "failed to parse options in superblock: %s", 2512 s_mount_opts); 2513 ret = 0; 2514 goto out_free; 2515 } 2516 2517 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2518 m_ctx->journal_devnum = s_ctx->journal_devnum; 2519 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2520 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2521 2522 ext4_apply_options(fc, sb); 2523 ret = 0; 2524 2525 out_free: 2526 if (fc) { 2527 ext4_fc_free(fc); 2528 kfree(fc); 2529 } 2530 kfree(s_mount_opts); 2531 return ret; 2532 } 2533 2534 static void ext4_apply_quota_options(struct fs_context *fc, 2535 struct super_block *sb) 2536 { 2537 #ifdef CONFIG_QUOTA 2538 bool quota_feature = ext4_has_feature_quota(sb); 2539 struct ext4_fs_context *ctx = fc->fs_private; 2540 struct ext4_sb_info *sbi = EXT4_SB(sb); 2541 char *qname; 2542 int i; 2543 2544 if (quota_feature) 2545 return; 2546 2547 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2548 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2549 if (!(ctx->qname_spec & (1 << i))) 2550 continue; 2551 2552 qname = ctx->s_qf_names[i]; /* May be NULL */ 2553 if (qname) 2554 set_opt(sb, QUOTA); 2555 ctx->s_qf_names[i] = NULL; 2556 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2557 lockdep_is_held(&sb->s_umount)); 2558 if (qname) 2559 kfree_rcu_mightsleep(qname); 2560 } 2561 } 2562 2563 if (ctx->spec & EXT4_SPEC_JQFMT) 2564 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2565 #endif 2566 } 2567 2568 /* 2569 * Check quota settings consistency. 2570 */ 2571 static int ext4_check_quota_consistency(struct fs_context *fc, 2572 struct super_block *sb) 2573 { 2574 #ifdef CONFIG_QUOTA 2575 struct ext4_fs_context *ctx = fc->fs_private; 2576 struct ext4_sb_info *sbi = EXT4_SB(sb); 2577 bool quota_feature = ext4_has_feature_quota(sb); 2578 bool quota_loaded = sb_any_quota_loaded(sb); 2579 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2580 int quota_flags, i; 2581 2582 /* 2583 * We do the test below only for project quotas. 'usrquota' and 2584 * 'grpquota' mount options are allowed even without quota feature 2585 * to support legacy quotas in quota files. 2586 */ 2587 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2588 !ext4_has_feature_project(sb)) { 2589 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2590 "Cannot enable project quota enforcement."); 2591 return -EINVAL; 2592 } 2593 2594 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2595 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2596 if (quota_loaded && 2597 ctx->mask_s_mount_opt & quota_flags && 2598 !ctx_test_mount_opt(ctx, quota_flags)) 2599 goto err_quota_change; 2600 2601 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2602 2603 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2604 if (!(ctx->qname_spec & (1 << i))) 2605 continue; 2606 2607 if (quota_loaded && 2608 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2609 goto err_jquota_change; 2610 2611 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2612 strcmp(get_qf_name(sb, sbi, i), 2613 ctx->s_qf_names[i]) != 0) 2614 goto err_jquota_specified; 2615 } 2616 2617 if (quota_feature) { 2618 ext4_msg(NULL, KERN_INFO, 2619 "Journaled quota options ignored when " 2620 "QUOTA feature is enabled"); 2621 return 0; 2622 } 2623 } 2624 2625 if (ctx->spec & EXT4_SPEC_JQFMT) { 2626 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2627 goto err_jquota_change; 2628 if (quota_feature) { 2629 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2630 "ignored when QUOTA feature is enabled"); 2631 return 0; 2632 } 2633 } 2634 2635 /* Make sure we don't mix old and new quota format */ 2636 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2637 ctx->s_qf_names[USRQUOTA]); 2638 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2639 ctx->s_qf_names[GRPQUOTA]); 2640 2641 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2642 test_opt(sb, USRQUOTA)); 2643 2644 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2645 test_opt(sb, GRPQUOTA)); 2646 2647 if (usr_qf_name) { 2648 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2649 usrquota = false; 2650 } 2651 if (grp_qf_name) { 2652 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2653 grpquota = false; 2654 } 2655 2656 if (usr_qf_name || grp_qf_name) { 2657 if (usrquota || grpquota) { 2658 ext4_msg(NULL, KERN_ERR, "old and new quota " 2659 "format mixing"); 2660 return -EINVAL; 2661 } 2662 2663 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2664 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2665 "not specified"); 2666 return -EINVAL; 2667 } 2668 } 2669 2670 return 0; 2671 2672 err_quota_change: 2673 ext4_msg(NULL, KERN_ERR, 2674 "Cannot change quota options when quota turned on"); 2675 return -EINVAL; 2676 err_jquota_change: 2677 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2678 "options when quota turned on"); 2679 return -EINVAL; 2680 err_jquota_specified: 2681 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2682 QTYPE2NAME(i)); 2683 return -EINVAL; 2684 #else 2685 return 0; 2686 #endif 2687 } 2688 2689 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2690 struct super_block *sb) 2691 { 2692 const struct ext4_fs_context *ctx = fc->fs_private; 2693 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2694 2695 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2696 return 0; 2697 2698 if (!ext4_has_feature_encrypt(sb)) { 2699 ext4_msg(NULL, KERN_WARNING, 2700 "test_dummy_encryption requires encrypt feature"); 2701 return -EINVAL; 2702 } 2703 /* 2704 * This mount option is just for testing, and it's not worthwhile to 2705 * implement the extra complexity (e.g. RCU protection) that would be 2706 * needed to allow it to be set or changed during remount. We do allow 2707 * it to be specified during remount, but only if there is no change. 2708 */ 2709 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2710 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2711 &ctx->dummy_enc_policy)) 2712 return 0; 2713 ext4_msg(NULL, KERN_WARNING, 2714 "Can't set or change test_dummy_encryption on remount"); 2715 return -EINVAL; 2716 } 2717 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2718 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2719 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2720 &ctx->dummy_enc_policy)) 2721 return 0; 2722 ext4_msg(NULL, KERN_WARNING, 2723 "Conflicting test_dummy_encryption options"); 2724 return -EINVAL; 2725 } 2726 return 0; 2727 } 2728 2729 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2730 struct super_block *sb) 2731 { 2732 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2733 /* if already set, it was already verified to be the same */ 2734 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2735 return; 2736 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2737 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2738 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2739 } 2740 2741 static int ext4_check_opt_consistency(struct fs_context *fc, 2742 struct super_block *sb) 2743 { 2744 struct ext4_fs_context *ctx = fc->fs_private; 2745 struct ext4_sb_info *sbi = fc->s_fs_info; 2746 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2747 int err; 2748 2749 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2750 ext4_msg(NULL, KERN_ERR, 2751 "Mount option(s) incompatible with ext2"); 2752 return -EINVAL; 2753 } 2754 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2755 ext4_msg(NULL, KERN_ERR, 2756 "Mount option(s) incompatible with ext3"); 2757 return -EINVAL; 2758 } 2759 2760 if (ctx->s_want_extra_isize > 2761 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2762 ext4_msg(NULL, KERN_ERR, 2763 "Invalid want_extra_isize %d", 2764 ctx->s_want_extra_isize); 2765 return -EINVAL; 2766 } 2767 2768 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2769 int blocksize = 2770 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2771 if (blocksize < PAGE_SIZE) 2772 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2773 "experimental mount option 'dioread_nolock' " 2774 "for blocksize < PAGE_SIZE"); 2775 } 2776 2777 err = ext4_check_test_dummy_encryption(fc, sb); 2778 if (err) 2779 return err; 2780 2781 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2782 if (!sbi->s_journal) { 2783 ext4_msg(NULL, KERN_WARNING, 2784 "Remounting file system with no journal " 2785 "so ignoring journalled data option"); 2786 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2787 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2788 test_opt(sb, DATA_FLAGS)) { 2789 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2790 "on remount"); 2791 return -EINVAL; 2792 } 2793 } 2794 2795 if (is_remount) { 2796 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2797 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2798 ext4_msg(NULL, KERN_ERR, "can't mount with " 2799 "both data=journal and dax"); 2800 return -EINVAL; 2801 } 2802 2803 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2804 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2805 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2806 fail_dax_change_remount: 2807 ext4_msg(NULL, KERN_ERR, "can't change " 2808 "dax mount option while remounting"); 2809 return -EINVAL; 2810 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2811 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2812 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2813 goto fail_dax_change_remount; 2814 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2815 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2816 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2817 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2818 goto fail_dax_change_remount; 2819 } 2820 } 2821 2822 return ext4_check_quota_consistency(fc, sb); 2823 } 2824 2825 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2826 { 2827 struct ext4_fs_context *ctx = fc->fs_private; 2828 struct ext4_sb_info *sbi = fc->s_fs_info; 2829 2830 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2831 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2832 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2833 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2834 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2835 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2836 sb->s_flags &= ~ctx->mask_s_flags; 2837 sb->s_flags |= ctx->vals_s_flags; 2838 2839 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2840 APPLY(s_commit_interval); 2841 APPLY(s_stripe); 2842 APPLY(s_max_batch_time); 2843 APPLY(s_min_batch_time); 2844 APPLY(s_want_extra_isize); 2845 APPLY(s_inode_readahead_blks); 2846 APPLY(s_max_dir_size_kb); 2847 APPLY(s_li_wait_mult); 2848 APPLY(s_resgid); 2849 APPLY(s_resuid); 2850 2851 #ifdef CONFIG_EXT4_DEBUG 2852 APPLY(s_fc_debug_max_replay); 2853 #endif 2854 2855 ext4_apply_quota_options(fc, sb); 2856 ext4_apply_test_dummy_encryption(ctx, sb); 2857 } 2858 2859 2860 static int ext4_validate_options(struct fs_context *fc) 2861 { 2862 #ifdef CONFIG_QUOTA 2863 struct ext4_fs_context *ctx = fc->fs_private; 2864 char *usr_qf_name, *grp_qf_name; 2865 2866 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2867 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2868 2869 if (usr_qf_name || grp_qf_name) { 2870 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2871 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2872 2873 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2874 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2875 2876 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2877 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2878 ext4_msg(NULL, KERN_ERR, "old and new quota " 2879 "format mixing"); 2880 return -EINVAL; 2881 } 2882 } 2883 #endif 2884 return 1; 2885 } 2886 2887 static inline void ext4_show_quota_options(struct seq_file *seq, 2888 struct super_block *sb) 2889 { 2890 #if defined(CONFIG_QUOTA) 2891 struct ext4_sb_info *sbi = EXT4_SB(sb); 2892 char *usr_qf_name, *grp_qf_name; 2893 2894 if (sbi->s_jquota_fmt) { 2895 char *fmtname = ""; 2896 2897 switch (sbi->s_jquota_fmt) { 2898 case QFMT_VFS_OLD: 2899 fmtname = "vfsold"; 2900 break; 2901 case QFMT_VFS_V0: 2902 fmtname = "vfsv0"; 2903 break; 2904 case QFMT_VFS_V1: 2905 fmtname = "vfsv1"; 2906 break; 2907 } 2908 seq_printf(seq, ",jqfmt=%s", fmtname); 2909 } 2910 2911 rcu_read_lock(); 2912 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2913 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2914 if (usr_qf_name) 2915 seq_show_option(seq, "usrjquota", usr_qf_name); 2916 if (grp_qf_name) 2917 seq_show_option(seq, "grpjquota", grp_qf_name); 2918 rcu_read_unlock(); 2919 #endif 2920 } 2921 2922 static const char *token2str(int token) 2923 { 2924 const struct fs_parameter_spec *spec; 2925 2926 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2927 if (spec->opt == token && !spec->type) 2928 break; 2929 return spec->name; 2930 } 2931 2932 /* 2933 * Show an option if 2934 * - it's set to a non-default value OR 2935 * - if the per-sb default is different from the global default 2936 */ 2937 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2938 int nodefs) 2939 { 2940 struct ext4_sb_info *sbi = EXT4_SB(sb); 2941 struct ext4_super_block *es = sbi->s_es; 2942 int def_errors; 2943 const struct mount_opts *m; 2944 char sep = nodefs ? '\n' : ','; 2945 2946 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2947 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2948 2949 if (sbi->s_sb_block != 1) 2950 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2951 2952 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2953 int want_set = m->flags & MOPT_SET; 2954 int opt_2 = m->flags & MOPT_2; 2955 unsigned int mount_opt, def_mount_opt; 2956 2957 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2958 m->flags & MOPT_SKIP) 2959 continue; 2960 2961 if (opt_2) { 2962 mount_opt = sbi->s_mount_opt2; 2963 def_mount_opt = sbi->s_def_mount_opt2; 2964 } else { 2965 mount_opt = sbi->s_mount_opt; 2966 def_mount_opt = sbi->s_def_mount_opt; 2967 } 2968 /* skip if same as the default */ 2969 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2970 continue; 2971 /* select Opt_noFoo vs Opt_Foo */ 2972 if ((want_set && 2973 (mount_opt & m->mount_opt) != m->mount_opt) || 2974 (!want_set && (mount_opt & m->mount_opt))) 2975 continue; 2976 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2977 } 2978 2979 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2980 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2981 SEQ_OPTS_PRINT("resuid=%u", 2982 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2983 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2984 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2985 SEQ_OPTS_PRINT("resgid=%u", 2986 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2987 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2988 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2989 SEQ_OPTS_PUTS("errors=remount-ro"); 2990 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2991 SEQ_OPTS_PUTS("errors=continue"); 2992 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2993 SEQ_OPTS_PUTS("errors=panic"); 2994 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2995 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2996 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2997 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2998 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2999 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3000 if (nodefs || sbi->s_stripe) 3001 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3002 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3003 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3004 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3005 SEQ_OPTS_PUTS("data=journal"); 3006 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3007 SEQ_OPTS_PUTS("data=ordered"); 3008 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3009 SEQ_OPTS_PUTS("data=writeback"); 3010 } 3011 if (nodefs || 3012 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3013 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3014 sbi->s_inode_readahead_blks); 3015 3016 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3017 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3018 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3019 if (nodefs || sbi->s_max_dir_size_kb) 3020 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3021 if (test_opt(sb, DATA_ERR_ABORT)) 3022 SEQ_OPTS_PUTS("data_err=abort"); 3023 3024 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3025 3026 if (sb->s_flags & SB_INLINECRYPT) 3027 SEQ_OPTS_PUTS("inlinecrypt"); 3028 3029 if (test_opt(sb, DAX_ALWAYS)) { 3030 if (IS_EXT2_SB(sb)) 3031 SEQ_OPTS_PUTS("dax"); 3032 else 3033 SEQ_OPTS_PUTS("dax=always"); 3034 } else if (test_opt2(sb, DAX_NEVER)) { 3035 SEQ_OPTS_PUTS("dax=never"); 3036 } else if (test_opt2(sb, DAX_INODE)) { 3037 SEQ_OPTS_PUTS("dax=inode"); 3038 } 3039 3040 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3041 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3042 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3043 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3044 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3045 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3046 } 3047 3048 ext4_show_quota_options(seq, sb); 3049 return 0; 3050 } 3051 3052 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3053 { 3054 return _ext4_show_options(seq, root->d_sb, 0); 3055 } 3056 3057 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3058 { 3059 struct super_block *sb = seq->private; 3060 int rc; 3061 3062 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3063 rc = _ext4_show_options(seq, sb, 1); 3064 seq_puts(seq, "\n"); 3065 return rc; 3066 } 3067 3068 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3069 int read_only) 3070 { 3071 struct ext4_sb_info *sbi = EXT4_SB(sb); 3072 int err = 0; 3073 3074 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3075 ext4_msg(sb, KERN_ERR, "revision level too high, " 3076 "forcing read-only mode"); 3077 err = -EROFS; 3078 goto done; 3079 } 3080 if (read_only) 3081 goto done; 3082 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3083 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3084 "running e2fsck is recommended"); 3085 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3086 ext4_msg(sb, KERN_WARNING, 3087 "warning: mounting fs with errors, " 3088 "running e2fsck is recommended"); 3089 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3090 le16_to_cpu(es->s_mnt_count) >= 3091 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3092 ext4_msg(sb, KERN_WARNING, 3093 "warning: maximal mount count reached, " 3094 "running e2fsck is recommended"); 3095 else if (le32_to_cpu(es->s_checkinterval) && 3096 (ext4_get_tstamp(es, s_lastcheck) + 3097 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3098 ext4_msg(sb, KERN_WARNING, 3099 "warning: checktime reached, " 3100 "running e2fsck is recommended"); 3101 if (!sbi->s_journal) 3102 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3103 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3104 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3105 le16_add_cpu(&es->s_mnt_count, 1); 3106 ext4_update_tstamp(es, s_mtime); 3107 if (sbi->s_journal) { 3108 ext4_set_feature_journal_needs_recovery(sb); 3109 if (ext4_has_feature_orphan_file(sb)) 3110 ext4_set_feature_orphan_present(sb); 3111 } 3112 3113 err = ext4_commit_super(sb); 3114 done: 3115 if (test_opt(sb, DEBUG)) 3116 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3117 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3118 sb->s_blocksize, 3119 sbi->s_groups_count, 3120 EXT4_BLOCKS_PER_GROUP(sb), 3121 EXT4_INODES_PER_GROUP(sb), 3122 sbi->s_mount_opt, sbi->s_mount_opt2); 3123 return err; 3124 } 3125 3126 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3127 { 3128 struct ext4_sb_info *sbi = EXT4_SB(sb); 3129 struct flex_groups **old_groups, **new_groups; 3130 int size, i, j; 3131 3132 if (!sbi->s_log_groups_per_flex) 3133 return 0; 3134 3135 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3136 if (size <= sbi->s_flex_groups_allocated) 3137 return 0; 3138 3139 new_groups = kvzalloc(roundup_pow_of_two(size * 3140 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3141 if (!new_groups) { 3142 ext4_msg(sb, KERN_ERR, 3143 "not enough memory for %d flex group pointers", size); 3144 return -ENOMEM; 3145 } 3146 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3147 new_groups[i] = kvzalloc(roundup_pow_of_two( 3148 sizeof(struct flex_groups)), 3149 GFP_KERNEL); 3150 if (!new_groups[i]) { 3151 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3152 kvfree(new_groups[j]); 3153 kvfree(new_groups); 3154 ext4_msg(sb, KERN_ERR, 3155 "not enough memory for %d flex groups", size); 3156 return -ENOMEM; 3157 } 3158 } 3159 rcu_read_lock(); 3160 old_groups = rcu_dereference(sbi->s_flex_groups); 3161 if (old_groups) 3162 memcpy(new_groups, old_groups, 3163 (sbi->s_flex_groups_allocated * 3164 sizeof(struct flex_groups *))); 3165 rcu_read_unlock(); 3166 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3167 sbi->s_flex_groups_allocated = size; 3168 if (old_groups) 3169 ext4_kvfree_array_rcu(old_groups); 3170 return 0; 3171 } 3172 3173 static int ext4_fill_flex_info(struct super_block *sb) 3174 { 3175 struct ext4_sb_info *sbi = EXT4_SB(sb); 3176 struct ext4_group_desc *gdp = NULL; 3177 struct flex_groups *fg; 3178 ext4_group_t flex_group; 3179 int i, err; 3180 3181 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3182 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3183 sbi->s_log_groups_per_flex = 0; 3184 return 1; 3185 } 3186 3187 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3188 if (err) 3189 goto failed; 3190 3191 for (i = 0; i < sbi->s_groups_count; i++) { 3192 gdp = ext4_get_group_desc(sb, i, NULL); 3193 3194 flex_group = ext4_flex_group(sbi, i); 3195 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3196 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3197 atomic64_add(ext4_free_group_clusters(sb, gdp), 3198 &fg->free_clusters); 3199 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3200 } 3201 3202 return 1; 3203 failed: 3204 return 0; 3205 } 3206 3207 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3208 struct ext4_group_desc *gdp) 3209 { 3210 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3211 __u16 crc = 0; 3212 __le32 le_group = cpu_to_le32(block_group); 3213 struct ext4_sb_info *sbi = EXT4_SB(sb); 3214 3215 if (ext4_has_metadata_csum(sbi->s_sb)) { 3216 /* Use new metadata_csum algorithm */ 3217 __u32 csum32; 3218 __u16 dummy_csum = 0; 3219 3220 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3221 sizeof(le_group)); 3222 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3223 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3224 sizeof(dummy_csum)); 3225 offset += sizeof(dummy_csum); 3226 if (offset < sbi->s_desc_size) 3227 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3228 sbi->s_desc_size - offset); 3229 3230 crc = csum32 & 0xFFFF; 3231 goto out; 3232 } 3233 3234 /* old crc16 code */ 3235 if (!ext4_has_feature_gdt_csum(sb)) 3236 return 0; 3237 3238 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3239 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3240 crc = crc16(crc, (__u8 *)gdp, offset); 3241 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3242 /* for checksum of struct ext4_group_desc do the rest...*/ 3243 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3244 crc = crc16(crc, (__u8 *)gdp + offset, 3245 sbi->s_desc_size - offset); 3246 3247 out: 3248 return cpu_to_le16(crc); 3249 } 3250 3251 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3252 struct ext4_group_desc *gdp) 3253 { 3254 if (ext4_has_group_desc_csum(sb) && 3255 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3256 return 0; 3257 3258 return 1; 3259 } 3260 3261 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3262 struct ext4_group_desc *gdp) 3263 { 3264 if (!ext4_has_group_desc_csum(sb)) 3265 return; 3266 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3267 } 3268 3269 /* Called at mount-time, super-block is locked */ 3270 static int ext4_check_descriptors(struct super_block *sb, 3271 ext4_fsblk_t sb_block, 3272 ext4_group_t *first_not_zeroed) 3273 { 3274 struct ext4_sb_info *sbi = EXT4_SB(sb); 3275 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3276 ext4_fsblk_t last_block; 3277 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3278 ext4_fsblk_t block_bitmap; 3279 ext4_fsblk_t inode_bitmap; 3280 ext4_fsblk_t inode_table; 3281 int flexbg_flag = 0; 3282 ext4_group_t i, grp = sbi->s_groups_count; 3283 3284 if (ext4_has_feature_flex_bg(sb)) 3285 flexbg_flag = 1; 3286 3287 ext4_debug("Checking group descriptors"); 3288 3289 for (i = 0; i < sbi->s_groups_count; i++) { 3290 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3291 3292 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3293 last_block = ext4_blocks_count(sbi->s_es) - 1; 3294 else 3295 last_block = first_block + 3296 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3297 3298 if ((grp == sbi->s_groups_count) && 3299 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3300 grp = i; 3301 3302 block_bitmap = ext4_block_bitmap(sb, gdp); 3303 if (block_bitmap == sb_block) { 3304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3305 "Block bitmap for group %u overlaps " 3306 "superblock", i); 3307 if (!sb_rdonly(sb)) 3308 return 0; 3309 } 3310 if (block_bitmap >= sb_block + 1 && 3311 block_bitmap <= last_bg_block) { 3312 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3313 "Block bitmap for group %u overlaps " 3314 "block group descriptors", i); 3315 if (!sb_rdonly(sb)) 3316 return 0; 3317 } 3318 if (block_bitmap < first_block || block_bitmap > last_block) { 3319 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3320 "Block bitmap for group %u not in group " 3321 "(block %llu)!", i, block_bitmap); 3322 return 0; 3323 } 3324 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3325 if (inode_bitmap == sb_block) { 3326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3327 "Inode bitmap for group %u overlaps " 3328 "superblock", i); 3329 if (!sb_rdonly(sb)) 3330 return 0; 3331 } 3332 if (inode_bitmap >= sb_block + 1 && 3333 inode_bitmap <= last_bg_block) { 3334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3335 "Inode bitmap for group %u overlaps " 3336 "block group descriptors", i); 3337 if (!sb_rdonly(sb)) 3338 return 0; 3339 } 3340 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3342 "Inode bitmap for group %u not in group " 3343 "(block %llu)!", i, inode_bitmap); 3344 return 0; 3345 } 3346 inode_table = ext4_inode_table(sb, gdp); 3347 if (inode_table == sb_block) { 3348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3349 "Inode table for group %u overlaps " 3350 "superblock", i); 3351 if (!sb_rdonly(sb)) 3352 return 0; 3353 } 3354 if (inode_table >= sb_block + 1 && 3355 inode_table <= last_bg_block) { 3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3357 "Inode table for group %u overlaps " 3358 "block group descriptors", i); 3359 if (!sb_rdonly(sb)) 3360 return 0; 3361 } 3362 if (inode_table < first_block || 3363 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3365 "Inode table for group %u not in group " 3366 "(block %llu)!", i, inode_table); 3367 return 0; 3368 } 3369 ext4_lock_group(sb, i); 3370 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3371 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3372 "Checksum for group %u failed (%u!=%u)", 3373 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3374 gdp)), le16_to_cpu(gdp->bg_checksum)); 3375 if (!sb_rdonly(sb)) { 3376 ext4_unlock_group(sb, i); 3377 return 0; 3378 } 3379 } 3380 ext4_unlock_group(sb, i); 3381 if (!flexbg_flag) 3382 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3383 } 3384 if (NULL != first_not_zeroed) 3385 *first_not_zeroed = grp; 3386 return 1; 3387 } 3388 3389 /* 3390 * Maximal extent format file size. 3391 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3392 * extent format containers, within a sector_t, and within i_blocks 3393 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3394 * so that won't be a limiting factor. 3395 * 3396 * However there is other limiting factor. We do store extents in the form 3397 * of starting block and length, hence the resulting length of the extent 3398 * covering maximum file size must fit into on-disk format containers as 3399 * well. Given that length is always by 1 unit bigger than max unit (because 3400 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3401 * 3402 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3403 */ 3404 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3405 { 3406 loff_t res; 3407 loff_t upper_limit = MAX_LFS_FILESIZE; 3408 3409 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3410 3411 if (!has_huge_files) { 3412 upper_limit = (1LL << 32) - 1; 3413 3414 /* total blocks in file system block size */ 3415 upper_limit >>= (blkbits - 9); 3416 upper_limit <<= blkbits; 3417 } 3418 3419 /* 3420 * 32-bit extent-start container, ee_block. We lower the maxbytes 3421 * by one fs block, so ee_len can cover the extent of maximum file 3422 * size 3423 */ 3424 res = (1LL << 32) - 1; 3425 res <<= blkbits; 3426 3427 /* Sanity check against vm- & vfs- imposed limits */ 3428 if (res > upper_limit) 3429 res = upper_limit; 3430 3431 return res; 3432 } 3433 3434 /* 3435 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3436 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3437 * We need to be 1 filesystem block less than the 2^48 sector limit. 3438 */ 3439 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3440 { 3441 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3442 int meta_blocks; 3443 unsigned int ppb = 1 << (bits - 2); 3444 3445 /* 3446 * This is calculated to be the largest file size for a dense, block 3447 * mapped file such that the file's total number of 512-byte sectors, 3448 * including data and all indirect blocks, does not exceed (2^48 - 1). 3449 * 3450 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3451 * number of 512-byte sectors of the file. 3452 */ 3453 if (!has_huge_files) { 3454 /* 3455 * !has_huge_files or implies that the inode i_block field 3456 * represents total file blocks in 2^32 512-byte sectors == 3457 * size of vfs inode i_blocks * 8 3458 */ 3459 upper_limit = (1LL << 32) - 1; 3460 3461 /* total blocks in file system block size */ 3462 upper_limit >>= (bits - 9); 3463 3464 } else { 3465 /* 3466 * We use 48 bit ext4_inode i_blocks 3467 * With EXT4_HUGE_FILE_FL set the i_blocks 3468 * represent total number of blocks in 3469 * file system block size 3470 */ 3471 upper_limit = (1LL << 48) - 1; 3472 3473 } 3474 3475 /* Compute how many blocks we can address by block tree */ 3476 res += ppb; 3477 res += ppb * ppb; 3478 res += ((loff_t)ppb) * ppb * ppb; 3479 /* Compute how many metadata blocks are needed */ 3480 meta_blocks = 1; 3481 meta_blocks += 1 + ppb; 3482 meta_blocks += 1 + ppb + ppb * ppb; 3483 /* Does block tree limit file size? */ 3484 if (res + meta_blocks <= upper_limit) 3485 goto check_lfs; 3486 3487 res = upper_limit; 3488 /* How many metadata blocks are needed for addressing upper_limit? */ 3489 upper_limit -= EXT4_NDIR_BLOCKS; 3490 /* indirect blocks */ 3491 meta_blocks = 1; 3492 upper_limit -= ppb; 3493 /* double indirect blocks */ 3494 if (upper_limit < ppb * ppb) { 3495 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3496 res -= meta_blocks; 3497 goto check_lfs; 3498 } 3499 meta_blocks += 1 + ppb; 3500 upper_limit -= ppb * ppb; 3501 /* tripple indirect blocks for the rest */ 3502 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3503 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3504 res -= meta_blocks; 3505 check_lfs: 3506 res <<= bits; 3507 if (res > MAX_LFS_FILESIZE) 3508 res = MAX_LFS_FILESIZE; 3509 3510 return res; 3511 } 3512 3513 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3514 ext4_fsblk_t logical_sb_block, int nr) 3515 { 3516 struct ext4_sb_info *sbi = EXT4_SB(sb); 3517 ext4_group_t bg, first_meta_bg; 3518 int has_super = 0; 3519 3520 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3521 3522 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3523 return logical_sb_block + nr + 1; 3524 bg = sbi->s_desc_per_block * nr; 3525 if (ext4_bg_has_super(sb, bg)) 3526 has_super = 1; 3527 3528 /* 3529 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3530 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3531 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3532 * compensate. 3533 */ 3534 if (sb->s_blocksize == 1024 && nr == 0 && 3535 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3536 has_super++; 3537 3538 return (has_super + ext4_group_first_block_no(sb, bg)); 3539 } 3540 3541 /** 3542 * ext4_get_stripe_size: Get the stripe size. 3543 * @sbi: In memory super block info 3544 * 3545 * If we have specified it via mount option, then 3546 * use the mount option value. If the value specified at mount time is 3547 * greater than the blocks per group use the super block value. 3548 * If the super block value is greater than blocks per group return 0. 3549 * Allocator needs it be less than blocks per group. 3550 * 3551 */ 3552 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3553 { 3554 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3555 unsigned long stripe_width = 3556 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3557 int ret; 3558 3559 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3560 ret = sbi->s_stripe; 3561 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3562 ret = stripe_width; 3563 else if (stride && stride <= sbi->s_blocks_per_group) 3564 ret = stride; 3565 else 3566 ret = 0; 3567 3568 /* 3569 * If the stripe width is 1, this makes no sense and 3570 * we set it to 0 to turn off stripe handling code. 3571 */ 3572 if (ret <= 1) 3573 ret = 0; 3574 3575 return ret; 3576 } 3577 3578 /* 3579 * Check whether this filesystem can be mounted based on 3580 * the features present and the RDONLY/RDWR mount requested. 3581 * Returns 1 if this filesystem can be mounted as requested, 3582 * 0 if it cannot be. 3583 */ 3584 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3585 { 3586 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3587 ext4_msg(sb, KERN_ERR, 3588 "Couldn't mount because of " 3589 "unsupported optional features (%x)", 3590 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3591 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3592 return 0; 3593 } 3594 3595 #if !IS_ENABLED(CONFIG_UNICODE) 3596 if (ext4_has_feature_casefold(sb)) { 3597 ext4_msg(sb, KERN_ERR, 3598 "Filesystem with casefold feature cannot be " 3599 "mounted without CONFIG_UNICODE"); 3600 return 0; 3601 } 3602 #endif 3603 3604 if (readonly) 3605 return 1; 3606 3607 if (ext4_has_feature_readonly(sb)) { 3608 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3609 sb->s_flags |= SB_RDONLY; 3610 return 1; 3611 } 3612 3613 /* Check that feature set is OK for a read-write mount */ 3614 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3615 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3616 "unsupported optional features (%x)", 3617 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3618 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3619 return 0; 3620 } 3621 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3622 ext4_msg(sb, KERN_ERR, 3623 "Can't support bigalloc feature without " 3624 "extents feature\n"); 3625 return 0; 3626 } 3627 3628 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3629 if (!readonly && (ext4_has_feature_quota(sb) || 3630 ext4_has_feature_project(sb))) { 3631 ext4_msg(sb, KERN_ERR, 3632 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3633 return 0; 3634 } 3635 #endif /* CONFIG_QUOTA */ 3636 return 1; 3637 } 3638 3639 /* 3640 * This function is called once a day if we have errors logged 3641 * on the file system 3642 */ 3643 static void print_daily_error_info(struct timer_list *t) 3644 { 3645 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3646 struct super_block *sb = sbi->s_sb; 3647 struct ext4_super_block *es = sbi->s_es; 3648 3649 if (es->s_error_count) 3650 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3651 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3652 le32_to_cpu(es->s_error_count)); 3653 if (es->s_first_error_time) { 3654 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3655 sb->s_id, 3656 ext4_get_tstamp(es, s_first_error_time), 3657 (int) sizeof(es->s_first_error_func), 3658 es->s_first_error_func, 3659 le32_to_cpu(es->s_first_error_line)); 3660 if (es->s_first_error_ino) 3661 printk(KERN_CONT ": inode %u", 3662 le32_to_cpu(es->s_first_error_ino)); 3663 if (es->s_first_error_block) 3664 printk(KERN_CONT ": block %llu", (unsigned long long) 3665 le64_to_cpu(es->s_first_error_block)); 3666 printk(KERN_CONT "\n"); 3667 } 3668 if (es->s_last_error_time) { 3669 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3670 sb->s_id, 3671 ext4_get_tstamp(es, s_last_error_time), 3672 (int) sizeof(es->s_last_error_func), 3673 es->s_last_error_func, 3674 le32_to_cpu(es->s_last_error_line)); 3675 if (es->s_last_error_ino) 3676 printk(KERN_CONT ": inode %u", 3677 le32_to_cpu(es->s_last_error_ino)); 3678 if (es->s_last_error_block) 3679 printk(KERN_CONT ": block %llu", (unsigned long long) 3680 le64_to_cpu(es->s_last_error_block)); 3681 printk(KERN_CONT "\n"); 3682 } 3683 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3684 } 3685 3686 /* Find next suitable group and run ext4_init_inode_table */ 3687 static int ext4_run_li_request(struct ext4_li_request *elr) 3688 { 3689 struct ext4_group_desc *gdp = NULL; 3690 struct super_block *sb = elr->lr_super; 3691 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3692 ext4_group_t group = elr->lr_next_group; 3693 unsigned int prefetch_ios = 0; 3694 int ret = 0; 3695 u64 start_time; 3696 3697 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3698 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3699 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3700 if (prefetch_ios) 3701 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3702 prefetch_ios); 3703 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3704 prefetch_ios); 3705 if (group >= elr->lr_next_group) { 3706 ret = 1; 3707 if (elr->lr_first_not_zeroed != ngroups && 3708 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3709 elr->lr_next_group = elr->lr_first_not_zeroed; 3710 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3711 ret = 0; 3712 } 3713 } 3714 return ret; 3715 } 3716 3717 for (; group < ngroups; group++) { 3718 gdp = ext4_get_group_desc(sb, group, NULL); 3719 if (!gdp) { 3720 ret = 1; 3721 break; 3722 } 3723 3724 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3725 break; 3726 } 3727 3728 if (group >= ngroups) 3729 ret = 1; 3730 3731 if (!ret) { 3732 start_time = ktime_get_real_ns(); 3733 ret = ext4_init_inode_table(sb, group, 3734 elr->lr_timeout ? 0 : 1); 3735 trace_ext4_lazy_itable_init(sb, group); 3736 if (elr->lr_timeout == 0) { 3737 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3738 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3739 } 3740 elr->lr_next_sched = jiffies + elr->lr_timeout; 3741 elr->lr_next_group = group + 1; 3742 } 3743 return ret; 3744 } 3745 3746 /* 3747 * Remove lr_request from the list_request and free the 3748 * request structure. Should be called with li_list_mtx held 3749 */ 3750 static void ext4_remove_li_request(struct ext4_li_request *elr) 3751 { 3752 if (!elr) 3753 return; 3754 3755 list_del(&elr->lr_request); 3756 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3757 kfree(elr); 3758 } 3759 3760 static void ext4_unregister_li_request(struct super_block *sb) 3761 { 3762 mutex_lock(&ext4_li_mtx); 3763 if (!ext4_li_info) { 3764 mutex_unlock(&ext4_li_mtx); 3765 return; 3766 } 3767 3768 mutex_lock(&ext4_li_info->li_list_mtx); 3769 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3770 mutex_unlock(&ext4_li_info->li_list_mtx); 3771 mutex_unlock(&ext4_li_mtx); 3772 } 3773 3774 static struct task_struct *ext4_lazyinit_task; 3775 3776 /* 3777 * This is the function where ext4lazyinit thread lives. It walks 3778 * through the request list searching for next scheduled filesystem. 3779 * When such a fs is found, run the lazy initialization request 3780 * (ext4_rn_li_request) and keep track of the time spend in this 3781 * function. Based on that time we compute next schedule time of 3782 * the request. When walking through the list is complete, compute 3783 * next waking time and put itself into sleep. 3784 */ 3785 static int ext4_lazyinit_thread(void *arg) 3786 { 3787 struct ext4_lazy_init *eli = arg; 3788 struct list_head *pos, *n; 3789 struct ext4_li_request *elr; 3790 unsigned long next_wakeup, cur; 3791 3792 BUG_ON(NULL == eli); 3793 set_freezable(); 3794 3795 cont_thread: 3796 while (true) { 3797 next_wakeup = MAX_JIFFY_OFFSET; 3798 3799 mutex_lock(&eli->li_list_mtx); 3800 if (list_empty(&eli->li_request_list)) { 3801 mutex_unlock(&eli->li_list_mtx); 3802 goto exit_thread; 3803 } 3804 list_for_each_safe(pos, n, &eli->li_request_list) { 3805 int err = 0; 3806 int progress = 0; 3807 elr = list_entry(pos, struct ext4_li_request, 3808 lr_request); 3809 3810 if (time_before(jiffies, elr->lr_next_sched)) { 3811 if (time_before(elr->lr_next_sched, next_wakeup)) 3812 next_wakeup = elr->lr_next_sched; 3813 continue; 3814 } 3815 if (down_read_trylock(&elr->lr_super->s_umount)) { 3816 if (sb_start_write_trylock(elr->lr_super)) { 3817 progress = 1; 3818 /* 3819 * We hold sb->s_umount, sb can not 3820 * be removed from the list, it is 3821 * now safe to drop li_list_mtx 3822 */ 3823 mutex_unlock(&eli->li_list_mtx); 3824 err = ext4_run_li_request(elr); 3825 sb_end_write(elr->lr_super); 3826 mutex_lock(&eli->li_list_mtx); 3827 n = pos->next; 3828 } 3829 up_read((&elr->lr_super->s_umount)); 3830 } 3831 /* error, remove the lazy_init job */ 3832 if (err) { 3833 ext4_remove_li_request(elr); 3834 continue; 3835 } 3836 if (!progress) { 3837 elr->lr_next_sched = jiffies + 3838 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3839 } 3840 if (time_before(elr->lr_next_sched, next_wakeup)) 3841 next_wakeup = elr->lr_next_sched; 3842 } 3843 mutex_unlock(&eli->li_list_mtx); 3844 3845 try_to_freeze(); 3846 3847 cur = jiffies; 3848 if ((time_after_eq(cur, next_wakeup)) || 3849 (MAX_JIFFY_OFFSET == next_wakeup)) { 3850 cond_resched(); 3851 continue; 3852 } 3853 3854 schedule_timeout_interruptible(next_wakeup - cur); 3855 3856 if (kthread_should_stop()) { 3857 ext4_clear_request_list(); 3858 goto exit_thread; 3859 } 3860 } 3861 3862 exit_thread: 3863 /* 3864 * It looks like the request list is empty, but we need 3865 * to check it under the li_list_mtx lock, to prevent any 3866 * additions into it, and of course we should lock ext4_li_mtx 3867 * to atomically free the list and ext4_li_info, because at 3868 * this point another ext4 filesystem could be registering 3869 * new one. 3870 */ 3871 mutex_lock(&ext4_li_mtx); 3872 mutex_lock(&eli->li_list_mtx); 3873 if (!list_empty(&eli->li_request_list)) { 3874 mutex_unlock(&eli->li_list_mtx); 3875 mutex_unlock(&ext4_li_mtx); 3876 goto cont_thread; 3877 } 3878 mutex_unlock(&eli->li_list_mtx); 3879 kfree(ext4_li_info); 3880 ext4_li_info = NULL; 3881 mutex_unlock(&ext4_li_mtx); 3882 3883 return 0; 3884 } 3885 3886 static void ext4_clear_request_list(void) 3887 { 3888 struct list_head *pos, *n; 3889 struct ext4_li_request *elr; 3890 3891 mutex_lock(&ext4_li_info->li_list_mtx); 3892 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3893 elr = list_entry(pos, struct ext4_li_request, 3894 lr_request); 3895 ext4_remove_li_request(elr); 3896 } 3897 mutex_unlock(&ext4_li_info->li_list_mtx); 3898 } 3899 3900 static int ext4_run_lazyinit_thread(void) 3901 { 3902 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3903 ext4_li_info, "ext4lazyinit"); 3904 if (IS_ERR(ext4_lazyinit_task)) { 3905 int err = PTR_ERR(ext4_lazyinit_task); 3906 ext4_clear_request_list(); 3907 kfree(ext4_li_info); 3908 ext4_li_info = NULL; 3909 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3910 "initialization thread\n", 3911 err); 3912 return err; 3913 } 3914 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3915 return 0; 3916 } 3917 3918 /* 3919 * Check whether it make sense to run itable init. thread or not. 3920 * If there is at least one uninitialized inode table, return 3921 * corresponding group number, else the loop goes through all 3922 * groups and return total number of groups. 3923 */ 3924 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3925 { 3926 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3927 struct ext4_group_desc *gdp = NULL; 3928 3929 if (!ext4_has_group_desc_csum(sb)) 3930 return ngroups; 3931 3932 for (group = 0; group < ngroups; group++) { 3933 gdp = ext4_get_group_desc(sb, group, NULL); 3934 if (!gdp) 3935 continue; 3936 3937 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3938 break; 3939 } 3940 3941 return group; 3942 } 3943 3944 static int ext4_li_info_new(void) 3945 { 3946 struct ext4_lazy_init *eli = NULL; 3947 3948 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3949 if (!eli) 3950 return -ENOMEM; 3951 3952 INIT_LIST_HEAD(&eli->li_request_list); 3953 mutex_init(&eli->li_list_mtx); 3954 3955 eli->li_state |= EXT4_LAZYINIT_QUIT; 3956 3957 ext4_li_info = eli; 3958 3959 return 0; 3960 } 3961 3962 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3963 ext4_group_t start) 3964 { 3965 struct ext4_li_request *elr; 3966 3967 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3968 if (!elr) 3969 return NULL; 3970 3971 elr->lr_super = sb; 3972 elr->lr_first_not_zeroed = start; 3973 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3974 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3975 elr->lr_next_group = start; 3976 } else { 3977 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3978 } 3979 3980 /* 3981 * Randomize first schedule time of the request to 3982 * spread the inode table initialization requests 3983 * better. 3984 */ 3985 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3986 return elr; 3987 } 3988 3989 int ext4_register_li_request(struct super_block *sb, 3990 ext4_group_t first_not_zeroed) 3991 { 3992 struct ext4_sb_info *sbi = EXT4_SB(sb); 3993 struct ext4_li_request *elr = NULL; 3994 ext4_group_t ngroups = sbi->s_groups_count; 3995 int ret = 0; 3996 3997 mutex_lock(&ext4_li_mtx); 3998 if (sbi->s_li_request != NULL) { 3999 /* 4000 * Reset timeout so it can be computed again, because 4001 * s_li_wait_mult might have changed. 4002 */ 4003 sbi->s_li_request->lr_timeout = 0; 4004 goto out; 4005 } 4006 4007 if (sb_rdonly(sb) || 4008 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4009 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4010 goto out; 4011 4012 elr = ext4_li_request_new(sb, first_not_zeroed); 4013 if (!elr) { 4014 ret = -ENOMEM; 4015 goto out; 4016 } 4017 4018 if (NULL == ext4_li_info) { 4019 ret = ext4_li_info_new(); 4020 if (ret) 4021 goto out; 4022 } 4023 4024 mutex_lock(&ext4_li_info->li_list_mtx); 4025 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4026 mutex_unlock(&ext4_li_info->li_list_mtx); 4027 4028 sbi->s_li_request = elr; 4029 /* 4030 * set elr to NULL here since it has been inserted to 4031 * the request_list and the removal and free of it is 4032 * handled by ext4_clear_request_list from now on. 4033 */ 4034 elr = NULL; 4035 4036 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4037 ret = ext4_run_lazyinit_thread(); 4038 if (ret) 4039 goto out; 4040 } 4041 out: 4042 mutex_unlock(&ext4_li_mtx); 4043 if (ret) 4044 kfree(elr); 4045 return ret; 4046 } 4047 4048 /* 4049 * We do not need to lock anything since this is called on 4050 * module unload. 4051 */ 4052 static void ext4_destroy_lazyinit_thread(void) 4053 { 4054 /* 4055 * If thread exited earlier 4056 * there's nothing to be done. 4057 */ 4058 if (!ext4_li_info || !ext4_lazyinit_task) 4059 return; 4060 4061 kthread_stop(ext4_lazyinit_task); 4062 } 4063 4064 static int set_journal_csum_feature_set(struct super_block *sb) 4065 { 4066 int ret = 1; 4067 int compat, incompat; 4068 struct ext4_sb_info *sbi = EXT4_SB(sb); 4069 4070 if (ext4_has_metadata_csum(sb)) { 4071 /* journal checksum v3 */ 4072 compat = 0; 4073 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4074 } else { 4075 /* journal checksum v1 */ 4076 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4077 incompat = 0; 4078 } 4079 4080 jbd2_journal_clear_features(sbi->s_journal, 4081 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4082 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4083 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4084 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4085 ret = jbd2_journal_set_features(sbi->s_journal, 4086 compat, 0, 4087 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4088 incompat); 4089 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4090 ret = jbd2_journal_set_features(sbi->s_journal, 4091 compat, 0, 4092 incompat); 4093 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4094 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4095 } else { 4096 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4097 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4098 } 4099 4100 return ret; 4101 } 4102 4103 /* 4104 * Note: calculating the overhead so we can be compatible with 4105 * historical BSD practice is quite difficult in the face of 4106 * clusters/bigalloc. This is because multiple metadata blocks from 4107 * different block group can end up in the same allocation cluster. 4108 * Calculating the exact overhead in the face of clustered allocation 4109 * requires either O(all block bitmaps) in memory or O(number of block 4110 * groups**2) in time. We will still calculate the superblock for 4111 * older file systems --- and if we come across with a bigalloc file 4112 * system with zero in s_overhead_clusters the estimate will be close to 4113 * correct especially for very large cluster sizes --- but for newer 4114 * file systems, it's better to calculate this figure once at mkfs 4115 * time, and store it in the superblock. If the superblock value is 4116 * present (even for non-bigalloc file systems), we will use it. 4117 */ 4118 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4119 char *buf) 4120 { 4121 struct ext4_sb_info *sbi = EXT4_SB(sb); 4122 struct ext4_group_desc *gdp; 4123 ext4_fsblk_t first_block, last_block, b; 4124 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4125 int s, j, count = 0; 4126 int has_super = ext4_bg_has_super(sb, grp); 4127 4128 if (!ext4_has_feature_bigalloc(sb)) 4129 return (has_super + ext4_bg_num_gdb(sb, grp) + 4130 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4131 sbi->s_itb_per_group + 2); 4132 4133 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4134 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4135 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4136 for (i = 0; i < ngroups; i++) { 4137 gdp = ext4_get_group_desc(sb, i, NULL); 4138 b = ext4_block_bitmap(sb, gdp); 4139 if (b >= first_block && b <= last_block) { 4140 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4141 count++; 4142 } 4143 b = ext4_inode_bitmap(sb, gdp); 4144 if (b >= first_block && b <= last_block) { 4145 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4146 count++; 4147 } 4148 b = ext4_inode_table(sb, gdp); 4149 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4150 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4151 int c = EXT4_B2C(sbi, b - first_block); 4152 ext4_set_bit(c, buf); 4153 count++; 4154 } 4155 if (i != grp) 4156 continue; 4157 s = 0; 4158 if (ext4_bg_has_super(sb, grp)) { 4159 ext4_set_bit(s++, buf); 4160 count++; 4161 } 4162 j = ext4_bg_num_gdb(sb, grp); 4163 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4164 ext4_error(sb, "Invalid number of block group " 4165 "descriptor blocks: %d", j); 4166 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4167 } 4168 count += j; 4169 for (; j > 0; j--) 4170 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4171 } 4172 if (!count) 4173 return 0; 4174 return EXT4_CLUSTERS_PER_GROUP(sb) - 4175 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4176 } 4177 4178 /* 4179 * Compute the overhead and stash it in sbi->s_overhead 4180 */ 4181 int ext4_calculate_overhead(struct super_block *sb) 4182 { 4183 struct ext4_sb_info *sbi = EXT4_SB(sb); 4184 struct ext4_super_block *es = sbi->s_es; 4185 struct inode *j_inode; 4186 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4187 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4188 ext4_fsblk_t overhead = 0; 4189 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4190 4191 if (!buf) 4192 return -ENOMEM; 4193 4194 /* 4195 * Compute the overhead (FS structures). This is constant 4196 * for a given filesystem unless the number of block groups 4197 * changes so we cache the previous value until it does. 4198 */ 4199 4200 /* 4201 * All of the blocks before first_data_block are overhead 4202 */ 4203 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4204 4205 /* 4206 * Add the overhead found in each block group 4207 */ 4208 for (i = 0; i < ngroups; i++) { 4209 int blks; 4210 4211 blks = count_overhead(sb, i, buf); 4212 overhead += blks; 4213 if (blks) 4214 memset(buf, 0, PAGE_SIZE); 4215 cond_resched(); 4216 } 4217 4218 /* 4219 * Add the internal journal blocks whether the journal has been 4220 * loaded or not 4221 */ 4222 if (sbi->s_journal && !sbi->s_journal_bdev) 4223 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4224 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4225 /* j_inum for internal journal is non-zero */ 4226 j_inode = ext4_get_journal_inode(sb, j_inum); 4227 if (j_inode) { 4228 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4229 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4230 iput(j_inode); 4231 } else { 4232 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4233 } 4234 } 4235 sbi->s_overhead = overhead; 4236 smp_wmb(); 4237 free_page((unsigned long) buf); 4238 return 0; 4239 } 4240 4241 static void ext4_set_resv_clusters(struct super_block *sb) 4242 { 4243 ext4_fsblk_t resv_clusters; 4244 struct ext4_sb_info *sbi = EXT4_SB(sb); 4245 4246 /* 4247 * There's no need to reserve anything when we aren't using extents. 4248 * The space estimates are exact, there are no unwritten extents, 4249 * hole punching doesn't need new metadata... This is needed especially 4250 * to keep ext2/3 backward compatibility. 4251 */ 4252 if (!ext4_has_feature_extents(sb)) 4253 return; 4254 /* 4255 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4256 * This should cover the situations where we can not afford to run 4257 * out of space like for example punch hole, or converting 4258 * unwritten extents in delalloc path. In most cases such 4259 * allocation would require 1, or 2 blocks, higher numbers are 4260 * very rare. 4261 */ 4262 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4263 sbi->s_cluster_bits); 4264 4265 do_div(resv_clusters, 50); 4266 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4267 4268 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4269 } 4270 4271 static const char *ext4_quota_mode(struct super_block *sb) 4272 { 4273 #ifdef CONFIG_QUOTA 4274 if (!ext4_quota_capable(sb)) 4275 return "none"; 4276 4277 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4278 return "journalled"; 4279 else 4280 return "writeback"; 4281 #else 4282 return "disabled"; 4283 #endif 4284 } 4285 4286 static void ext4_setup_csum_trigger(struct super_block *sb, 4287 enum ext4_journal_trigger_type type, 4288 void (*trigger)( 4289 struct jbd2_buffer_trigger_type *type, 4290 struct buffer_head *bh, 4291 void *mapped_data, 4292 size_t size)) 4293 { 4294 struct ext4_sb_info *sbi = EXT4_SB(sb); 4295 4296 sbi->s_journal_triggers[type].sb = sb; 4297 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4298 } 4299 4300 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4301 { 4302 if (!sbi) 4303 return; 4304 4305 kfree(sbi->s_blockgroup_lock); 4306 fs_put_dax(sbi->s_daxdev, NULL); 4307 kfree(sbi); 4308 } 4309 4310 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4311 { 4312 struct ext4_sb_info *sbi; 4313 4314 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4315 if (!sbi) 4316 return NULL; 4317 4318 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4319 NULL, NULL); 4320 4321 sbi->s_blockgroup_lock = 4322 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4323 4324 if (!sbi->s_blockgroup_lock) 4325 goto err_out; 4326 4327 sb->s_fs_info = sbi; 4328 sbi->s_sb = sb; 4329 return sbi; 4330 err_out: 4331 fs_put_dax(sbi->s_daxdev, NULL); 4332 kfree(sbi); 4333 return NULL; 4334 } 4335 4336 static void ext4_set_def_opts(struct super_block *sb, 4337 struct ext4_super_block *es) 4338 { 4339 unsigned long def_mount_opts; 4340 4341 /* Set defaults before we parse the mount options */ 4342 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4343 set_opt(sb, INIT_INODE_TABLE); 4344 if (def_mount_opts & EXT4_DEFM_DEBUG) 4345 set_opt(sb, DEBUG); 4346 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4347 set_opt(sb, GRPID); 4348 if (def_mount_opts & EXT4_DEFM_UID16) 4349 set_opt(sb, NO_UID32); 4350 /* xattr user namespace & acls are now defaulted on */ 4351 set_opt(sb, XATTR_USER); 4352 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4353 set_opt(sb, POSIX_ACL); 4354 #endif 4355 if (ext4_has_feature_fast_commit(sb)) 4356 set_opt2(sb, JOURNAL_FAST_COMMIT); 4357 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4358 if (ext4_has_metadata_csum(sb)) 4359 set_opt(sb, JOURNAL_CHECKSUM); 4360 4361 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4362 set_opt(sb, JOURNAL_DATA); 4363 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4364 set_opt(sb, ORDERED_DATA); 4365 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4366 set_opt(sb, WRITEBACK_DATA); 4367 4368 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4369 set_opt(sb, ERRORS_PANIC); 4370 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4371 set_opt(sb, ERRORS_CONT); 4372 else 4373 set_opt(sb, ERRORS_RO); 4374 /* block_validity enabled by default; disable with noblock_validity */ 4375 set_opt(sb, BLOCK_VALIDITY); 4376 if (def_mount_opts & EXT4_DEFM_DISCARD) 4377 set_opt(sb, DISCARD); 4378 4379 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4380 set_opt(sb, BARRIER); 4381 4382 /* 4383 * enable delayed allocation by default 4384 * Use -o nodelalloc to turn it off 4385 */ 4386 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4387 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4388 set_opt(sb, DELALLOC); 4389 4390 if (sb->s_blocksize == PAGE_SIZE) 4391 set_opt(sb, DIOREAD_NOLOCK); 4392 } 4393 4394 static int ext4_handle_clustersize(struct super_block *sb) 4395 { 4396 struct ext4_sb_info *sbi = EXT4_SB(sb); 4397 struct ext4_super_block *es = sbi->s_es; 4398 int clustersize; 4399 4400 /* Handle clustersize */ 4401 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4402 if (ext4_has_feature_bigalloc(sb)) { 4403 if (clustersize < sb->s_blocksize) { 4404 ext4_msg(sb, KERN_ERR, 4405 "cluster size (%d) smaller than " 4406 "block size (%lu)", clustersize, sb->s_blocksize); 4407 return -EINVAL; 4408 } 4409 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4410 le32_to_cpu(es->s_log_block_size); 4411 sbi->s_clusters_per_group = 4412 le32_to_cpu(es->s_clusters_per_group); 4413 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4414 ext4_msg(sb, KERN_ERR, 4415 "#clusters per group too big: %lu", 4416 sbi->s_clusters_per_group); 4417 return -EINVAL; 4418 } 4419 if (sbi->s_blocks_per_group != 4420 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4421 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4422 "clusters per group (%lu) inconsistent", 4423 sbi->s_blocks_per_group, 4424 sbi->s_clusters_per_group); 4425 return -EINVAL; 4426 } 4427 } else { 4428 if (clustersize != sb->s_blocksize) { 4429 ext4_msg(sb, KERN_ERR, 4430 "fragment/cluster size (%d) != " 4431 "block size (%lu)", clustersize, sb->s_blocksize); 4432 return -EINVAL; 4433 } 4434 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4435 ext4_msg(sb, KERN_ERR, 4436 "#blocks per group too big: %lu", 4437 sbi->s_blocks_per_group); 4438 return -EINVAL; 4439 } 4440 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4441 sbi->s_cluster_bits = 0; 4442 } 4443 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4444 4445 /* Do we have standard group size of clustersize * 8 blocks ? */ 4446 if (sbi->s_blocks_per_group == clustersize << 3) 4447 set_opt2(sb, STD_GROUP_SIZE); 4448 4449 return 0; 4450 } 4451 4452 static void ext4_fast_commit_init(struct super_block *sb) 4453 { 4454 struct ext4_sb_info *sbi = EXT4_SB(sb); 4455 4456 /* Initialize fast commit stuff */ 4457 atomic_set(&sbi->s_fc_subtid, 0); 4458 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4459 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4460 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4461 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4462 sbi->s_fc_bytes = 0; 4463 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4464 sbi->s_fc_ineligible_tid = 0; 4465 spin_lock_init(&sbi->s_fc_lock); 4466 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4467 sbi->s_fc_replay_state.fc_regions = NULL; 4468 sbi->s_fc_replay_state.fc_regions_size = 0; 4469 sbi->s_fc_replay_state.fc_regions_used = 0; 4470 sbi->s_fc_replay_state.fc_regions_valid = 0; 4471 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4472 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4473 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4474 } 4475 4476 static int ext4_inode_info_init(struct super_block *sb, 4477 struct ext4_super_block *es) 4478 { 4479 struct ext4_sb_info *sbi = EXT4_SB(sb); 4480 4481 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4482 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4483 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4484 } else { 4485 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4486 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4487 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4488 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4489 sbi->s_first_ino); 4490 return -EINVAL; 4491 } 4492 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4493 (!is_power_of_2(sbi->s_inode_size)) || 4494 (sbi->s_inode_size > sb->s_blocksize)) { 4495 ext4_msg(sb, KERN_ERR, 4496 "unsupported inode size: %d", 4497 sbi->s_inode_size); 4498 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4499 return -EINVAL; 4500 } 4501 /* 4502 * i_atime_extra is the last extra field available for 4503 * [acm]times in struct ext4_inode. Checking for that 4504 * field should suffice to ensure we have extra space 4505 * for all three. 4506 */ 4507 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4508 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4509 sb->s_time_gran = 1; 4510 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4511 } else { 4512 sb->s_time_gran = NSEC_PER_SEC; 4513 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4514 } 4515 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4516 } 4517 4518 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4519 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4520 EXT4_GOOD_OLD_INODE_SIZE; 4521 if (ext4_has_feature_extra_isize(sb)) { 4522 unsigned v, max = (sbi->s_inode_size - 4523 EXT4_GOOD_OLD_INODE_SIZE); 4524 4525 v = le16_to_cpu(es->s_want_extra_isize); 4526 if (v > max) { 4527 ext4_msg(sb, KERN_ERR, 4528 "bad s_want_extra_isize: %d", v); 4529 return -EINVAL; 4530 } 4531 if (sbi->s_want_extra_isize < v) 4532 sbi->s_want_extra_isize = v; 4533 4534 v = le16_to_cpu(es->s_min_extra_isize); 4535 if (v > max) { 4536 ext4_msg(sb, KERN_ERR, 4537 "bad s_min_extra_isize: %d", v); 4538 return -EINVAL; 4539 } 4540 if (sbi->s_want_extra_isize < v) 4541 sbi->s_want_extra_isize = v; 4542 } 4543 } 4544 4545 return 0; 4546 } 4547 4548 #if IS_ENABLED(CONFIG_UNICODE) 4549 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4550 { 4551 const struct ext4_sb_encodings *encoding_info; 4552 struct unicode_map *encoding; 4553 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4554 4555 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4556 return 0; 4557 4558 encoding_info = ext4_sb_read_encoding(es); 4559 if (!encoding_info) { 4560 ext4_msg(sb, KERN_ERR, 4561 "Encoding requested by superblock is unknown"); 4562 return -EINVAL; 4563 } 4564 4565 encoding = utf8_load(encoding_info->version); 4566 if (IS_ERR(encoding)) { 4567 ext4_msg(sb, KERN_ERR, 4568 "can't mount with superblock charset: %s-%u.%u.%u " 4569 "not supported by the kernel. flags: 0x%x.", 4570 encoding_info->name, 4571 unicode_major(encoding_info->version), 4572 unicode_minor(encoding_info->version), 4573 unicode_rev(encoding_info->version), 4574 encoding_flags); 4575 return -EINVAL; 4576 } 4577 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4578 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4579 unicode_major(encoding_info->version), 4580 unicode_minor(encoding_info->version), 4581 unicode_rev(encoding_info->version), 4582 encoding_flags); 4583 4584 sb->s_encoding = encoding; 4585 sb->s_encoding_flags = encoding_flags; 4586 4587 return 0; 4588 } 4589 #else 4590 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4591 { 4592 return 0; 4593 } 4594 #endif 4595 4596 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4597 { 4598 struct ext4_sb_info *sbi = EXT4_SB(sb); 4599 4600 /* Warn if metadata_csum and gdt_csum are both set. */ 4601 if (ext4_has_feature_metadata_csum(sb) && 4602 ext4_has_feature_gdt_csum(sb)) 4603 ext4_warning(sb, "metadata_csum and uninit_bg are " 4604 "redundant flags; please run fsck."); 4605 4606 /* Check for a known checksum algorithm */ 4607 if (!ext4_verify_csum_type(sb, es)) { 4608 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4609 "unknown checksum algorithm."); 4610 return -EINVAL; 4611 } 4612 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4613 ext4_orphan_file_block_trigger); 4614 4615 /* Load the checksum driver */ 4616 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4617 if (IS_ERR(sbi->s_chksum_driver)) { 4618 int ret = PTR_ERR(sbi->s_chksum_driver); 4619 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4620 sbi->s_chksum_driver = NULL; 4621 return ret; 4622 } 4623 4624 /* Check superblock checksum */ 4625 if (!ext4_superblock_csum_verify(sb, es)) { 4626 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4627 "invalid superblock checksum. Run e2fsck?"); 4628 return -EFSBADCRC; 4629 } 4630 4631 /* Precompute checksum seed for all metadata */ 4632 if (ext4_has_feature_csum_seed(sb)) 4633 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4634 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4635 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4636 sizeof(es->s_uuid)); 4637 return 0; 4638 } 4639 4640 static int ext4_check_feature_compatibility(struct super_block *sb, 4641 struct ext4_super_block *es, 4642 int silent) 4643 { 4644 struct ext4_sb_info *sbi = EXT4_SB(sb); 4645 4646 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4647 (ext4_has_compat_features(sb) || 4648 ext4_has_ro_compat_features(sb) || 4649 ext4_has_incompat_features(sb))) 4650 ext4_msg(sb, KERN_WARNING, 4651 "feature flags set on rev 0 fs, " 4652 "running e2fsck is recommended"); 4653 4654 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4655 set_opt2(sb, HURD_COMPAT); 4656 if (ext4_has_feature_64bit(sb)) { 4657 ext4_msg(sb, KERN_ERR, 4658 "The Hurd can't support 64-bit file systems"); 4659 return -EINVAL; 4660 } 4661 4662 /* 4663 * ea_inode feature uses l_i_version field which is not 4664 * available in HURD_COMPAT mode. 4665 */ 4666 if (ext4_has_feature_ea_inode(sb)) { 4667 ext4_msg(sb, KERN_ERR, 4668 "ea_inode feature is not supported for Hurd"); 4669 return -EINVAL; 4670 } 4671 } 4672 4673 if (IS_EXT2_SB(sb)) { 4674 if (ext2_feature_set_ok(sb)) 4675 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4676 "using the ext4 subsystem"); 4677 else { 4678 /* 4679 * If we're probing be silent, if this looks like 4680 * it's actually an ext[34] filesystem. 4681 */ 4682 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4683 return -EINVAL; 4684 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4685 "to feature incompatibilities"); 4686 return -EINVAL; 4687 } 4688 } 4689 4690 if (IS_EXT3_SB(sb)) { 4691 if (ext3_feature_set_ok(sb)) 4692 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4693 "using the ext4 subsystem"); 4694 else { 4695 /* 4696 * If we're probing be silent, if this looks like 4697 * it's actually an ext4 filesystem. 4698 */ 4699 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4700 return -EINVAL; 4701 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4702 "to feature incompatibilities"); 4703 return -EINVAL; 4704 } 4705 } 4706 4707 /* 4708 * Check feature flags regardless of the revision level, since we 4709 * previously didn't change the revision level when setting the flags, 4710 * so there is a chance incompat flags are set on a rev 0 filesystem. 4711 */ 4712 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4713 return -EINVAL; 4714 4715 if (sbi->s_daxdev) { 4716 if (sb->s_blocksize == PAGE_SIZE) 4717 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4718 else 4719 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4720 } 4721 4722 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4723 if (ext4_has_feature_inline_data(sb)) { 4724 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4725 " that may contain inline data"); 4726 return -EINVAL; 4727 } 4728 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4729 ext4_msg(sb, KERN_ERR, 4730 "DAX unsupported by block device."); 4731 return -EINVAL; 4732 } 4733 } 4734 4735 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4736 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4737 es->s_encryption_level); 4738 return -EINVAL; 4739 } 4740 4741 return 0; 4742 } 4743 4744 static int ext4_check_geometry(struct super_block *sb, 4745 struct ext4_super_block *es) 4746 { 4747 struct ext4_sb_info *sbi = EXT4_SB(sb); 4748 __u64 blocks_count; 4749 int err; 4750 4751 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4752 ext4_msg(sb, KERN_ERR, 4753 "Number of reserved GDT blocks insanely large: %d", 4754 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4755 return -EINVAL; 4756 } 4757 /* 4758 * Test whether we have more sectors than will fit in sector_t, 4759 * and whether the max offset is addressable by the page cache. 4760 */ 4761 err = generic_check_addressable(sb->s_blocksize_bits, 4762 ext4_blocks_count(es)); 4763 if (err) { 4764 ext4_msg(sb, KERN_ERR, "filesystem" 4765 " too large to mount safely on this system"); 4766 return err; 4767 } 4768 4769 /* check blocks count against device size */ 4770 blocks_count = sb_bdev_nr_blocks(sb); 4771 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4772 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4773 "exceeds size of device (%llu blocks)", 4774 ext4_blocks_count(es), blocks_count); 4775 return -EINVAL; 4776 } 4777 4778 /* 4779 * It makes no sense for the first data block to be beyond the end 4780 * of the filesystem. 4781 */ 4782 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4783 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4784 "block %u is beyond end of filesystem (%llu)", 4785 le32_to_cpu(es->s_first_data_block), 4786 ext4_blocks_count(es)); 4787 return -EINVAL; 4788 } 4789 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4790 (sbi->s_cluster_ratio == 1)) { 4791 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4792 "block is 0 with a 1k block and cluster size"); 4793 return -EINVAL; 4794 } 4795 4796 blocks_count = (ext4_blocks_count(es) - 4797 le32_to_cpu(es->s_first_data_block) + 4798 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4799 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4800 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4801 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4802 "(block count %llu, first data block %u, " 4803 "blocks per group %lu)", blocks_count, 4804 ext4_blocks_count(es), 4805 le32_to_cpu(es->s_first_data_block), 4806 EXT4_BLOCKS_PER_GROUP(sb)); 4807 return -EINVAL; 4808 } 4809 sbi->s_groups_count = blocks_count; 4810 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4811 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4812 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4813 le32_to_cpu(es->s_inodes_count)) { 4814 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4815 le32_to_cpu(es->s_inodes_count), 4816 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4817 return -EINVAL; 4818 } 4819 4820 return 0; 4821 } 4822 4823 static int ext4_group_desc_init(struct super_block *sb, 4824 struct ext4_super_block *es, 4825 ext4_fsblk_t logical_sb_block, 4826 ext4_group_t *first_not_zeroed) 4827 { 4828 struct ext4_sb_info *sbi = EXT4_SB(sb); 4829 unsigned int db_count; 4830 ext4_fsblk_t block; 4831 int i; 4832 4833 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4834 EXT4_DESC_PER_BLOCK(sb); 4835 if (ext4_has_feature_meta_bg(sb)) { 4836 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4837 ext4_msg(sb, KERN_WARNING, 4838 "first meta block group too large: %u " 4839 "(group descriptor block count %u)", 4840 le32_to_cpu(es->s_first_meta_bg), db_count); 4841 return -EINVAL; 4842 } 4843 } 4844 rcu_assign_pointer(sbi->s_group_desc, 4845 kvmalloc_array(db_count, 4846 sizeof(struct buffer_head *), 4847 GFP_KERNEL)); 4848 if (sbi->s_group_desc == NULL) { 4849 ext4_msg(sb, KERN_ERR, "not enough memory"); 4850 return -ENOMEM; 4851 } 4852 4853 bgl_lock_init(sbi->s_blockgroup_lock); 4854 4855 /* Pre-read the descriptors into the buffer cache */ 4856 for (i = 0; i < db_count; i++) { 4857 block = descriptor_loc(sb, logical_sb_block, i); 4858 ext4_sb_breadahead_unmovable(sb, block); 4859 } 4860 4861 for (i = 0; i < db_count; i++) { 4862 struct buffer_head *bh; 4863 4864 block = descriptor_loc(sb, logical_sb_block, i); 4865 bh = ext4_sb_bread_unmovable(sb, block); 4866 if (IS_ERR(bh)) { 4867 ext4_msg(sb, KERN_ERR, 4868 "can't read group descriptor %d", i); 4869 sbi->s_gdb_count = i; 4870 return PTR_ERR(bh); 4871 } 4872 rcu_read_lock(); 4873 rcu_dereference(sbi->s_group_desc)[i] = bh; 4874 rcu_read_unlock(); 4875 } 4876 sbi->s_gdb_count = db_count; 4877 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4878 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4879 return -EFSCORRUPTED; 4880 } 4881 4882 return 0; 4883 } 4884 4885 static int ext4_load_and_init_journal(struct super_block *sb, 4886 struct ext4_super_block *es, 4887 struct ext4_fs_context *ctx) 4888 { 4889 struct ext4_sb_info *sbi = EXT4_SB(sb); 4890 int err; 4891 4892 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4893 if (err) 4894 return err; 4895 4896 if (ext4_has_feature_64bit(sb) && 4897 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4898 JBD2_FEATURE_INCOMPAT_64BIT)) { 4899 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4900 goto out; 4901 } 4902 4903 if (!set_journal_csum_feature_set(sb)) { 4904 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4905 "feature set"); 4906 goto out; 4907 } 4908 4909 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4910 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4911 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4912 ext4_msg(sb, KERN_ERR, 4913 "Failed to set fast commit journal feature"); 4914 goto out; 4915 } 4916 4917 /* We have now updated the journal if required, so we can 4918 * validate the data journaling mode. */ 4919 switch (test_opt(sb, DATA_FLAGS)) { 4920 case 0: 4921 /* No mode set, assume a default based on the journal 4922 * capabilities: ORDERED_DATA if the journal can 4923 * cope, else JOURNAL_DATA 4924 */ 4925 if (jbd2_journal_check_available_features 4926 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4927 set_opt(sb, ORDERED_DATA); 4928 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4929 } else { 4930 set_opt(sb, JOURNAL_DATA); 4931 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4932 } 4933 break; 4934 4935 case EXT4_MOUNT_ORDERED_DATA: 4936 case EXT4_MOUNT_WRITEBACK_DATA: 4937 if (!jbd2_journal_check_available_features 4938 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4939 ext4_msg(sb, KERN_ERR, "Journal does not support " 4940 "requested data journaling mode"); 4941 goto out; 4942 } 4943 break; 4944 default: 4945 break; 4946 } 4947 4948 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4949 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4950 ext4_msg(sb, KERN_ERR, "can't mount with " 4951 "journal_async_commit in data=ordered mode"); 4952 goto out; 4953 } 4954 4955 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4956 4957 sbi->s_journal->j_submit_inode_data_buffers = 4958 ext4_journal_submit_inode_data_buffers; 4959 sbi->s_journal->j_finish_inode_data_buffers = 4960 ext4_journal_finish_inode_data_buffers; 4961 4962 return 0; 4963 4964 out: 4965 /* flush s_error_work before journal destroy. */ 4966 flush_work(&sbi->s_error_work); 4967 jbd2_journal_destroy(sbi->s_journal); 4968 sbi->s_journal = NULL; 4969 return -EINVAL; 4970 } 4971 4972 static int ext4_check_journal_data_mode(struct super_block *sb) 4973 { 4974 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4975 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4976 "data=journal disables delayed allocation, " 4977 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4978 /* can't mount with both data=journal and dioread_nolock. */ 4979 clear_opt(sb, DIOREAD_NOLOCK); 4980 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4981 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4982 ext4_msg(sb, KERN_ERR, "can't mount with " 4983 "both data=journal and delalloc"); 4984 return -EINVAL; 4985 } 4986 if (test_opt(sb, DAX_ALWAYS)) { 4987 ext4_msg(sb, KERN_ERR, "can't mount with " 4988 "both data=journal and dax"); 4989 return -EINVAL; 4990 } 4991 if (ext4_has_feature_encrypt(sb)) { 4992 ext4_msg(sb, KERN_WARNING, 4993 "encrypted files will use data=ordered " 4994 "instead of data journaling mode"); 4995 } 4996 if (test_opt(sb, DELALLOC)) 4997 clear_opt(sb, DELALLOC); 4998 } else { 4999 sb->s_iflags |= SB_I_CGROUPWB; 5000 } 5001 5002 return 0; 5003 } 5004 5005 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5006 int silent) 5007 { 5008 struct ext4_sb_info *sbi = EXT4_SB(sb); 5009 struct ext4_super_block *es; 5010 ext4_fsblk_t logical_sb_block; 5011 unsigned long offset = 0; 5012 struct buffer_head *bh; 5013 int ret = -EINVAL; 5014 int blocksize; 5015 5016 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5017 if (!blocksize) { 5018 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5019 return -EINVAL; 5020 } 5021 5022 /* 5023 * The ext4 superblock will not be buffer aligned for other than 1kB 5024 * block sizes. We need to calculate the offset from buffer start. 5025 */ 5026 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5027 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5028 offset = do_div(logical_sb_block, blocksize); 5029 } else { 5030 logical_sb_block = sbi->s_sb_block; 5031 } 5032 5033 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5034 if (IS_ERR(bh)) { 5035 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5036 return PTR_ERR(bh); 5037 } 5038 /* 5039 * Note: s_es must be initialized as soon as possible because 5040 * some ext4 macro-instructions depend on its value 5041 */ 5042 es = (struct ext4_super_block *) (bh->b_data + offset); 5043 sbi->s_es = es; 5044 sb->s_magic = le16_to_cpu(es->s_magic); 5045 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5046 if (!silent) 5047 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5048 goto out; 5049 } 5050 5051 if (le32_to_cpu(es->s_log_block_size) > 5052 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5053 ext4_msg(sb, KERN_ERR, 5054 "Invalid log block size: %u", 5055 le32_to_cpu(es->s_log_block_size)); 5056 goto out; 5057 } 5058 if (le32_to_cpu(es->s_log_cluster_size) > 5059 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5060 ext4_msg(sb, KERN_ERR, 5061 "Invalid log cluster size: %u", 5062 le32_to_cpu(es->s_log_cluster_size)); 5063 goto out; 5064 } 5065 5066 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5067 5068 /* 5069 * If the default block size is not the same as the real block size, 5070 * we need to reload it. 5071 */ 5072 if (sb->s_blocksize == blocksize) { 5073 *lsb = logical_sb_block; 5074 sbi->s_sbh = bh; 5075 return 0; 5076 } 5077 5078 /* 5079 * bh must be released before kill_bdev(), otherwise 5080 * it won't be freed and its page also. kill_bdev() 5081 * is called by sb_set_blocksize(). 5082 */ 5083 brelse(bh); 5084 /* Validate the filesystem blocksize */ 5085 if (!sb_set_blocksize(sb, blocksize)) { 5086 ext4_msg(sb, KERN_ERR, "bad block size %d", 5087 blocksize); 5088 bh = NULL; 5089 goto out; 5090 } 5091 5092 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5093 offset = do_div(logical_sb_block, blocksize); 5094 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5095 if (IS_ERR(bh)) { 5096 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5097 ret = PTR_ERR(bh); 5098 bh = NULL; 5099 goto out; 5100 } 5101 es = (struct ext4_super_block *)(bh->b_data + offset); 5102 sbi->s_es = es; 5103 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5104 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5105 goto out; 5106 } 5107 *lsb = logical_sb_block; 5108 sbi->s_sbh = bh; 5109 return 0; 5110 out: 5111 brelse(bh); 5112 return ret; 5113 } 5114 5115 static void ext4_hash_info_init(struct super_block *sb) 5116 { 5117 struct ext4_sb_info *sbi = EXT4_SB(sb); 5118 struct ext4_super_block *es = sbi->s_es; 5119 unsigned int i; 5120 5121 for (i = 0; i < 4; i++) 5122 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5123 5124 sbi->s_def_hash_version = es->s_def_hash_version; 5125 if (ext4_has_feature_dir_index(sb)) { 5126 i = le32_to_cpu(es->s_flags); 5127 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5128 sbi->s_hash_unsigned = 3; 5129 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5130 #ifdef __CHAR_UNSIGNED__ 5131 if (!sb_rdonly(sb)) 5132 es->s_flags |= 5133 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5134 sbi->s_hash_unsigned = 3; 5135 #else 5136 if (!sb_rdonly(sb)) 5137 es->s_flags |= 5138 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5139 #endif 5140 } 5141 } 5142 } 5143 5144 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5145 { 5146 struct ext4_sb_info *sbi = EXT4_SB(sb); 5147 struct ext4_super_block *es = sbi->s_es; 5148 int has_huge_files; 5149 5150 has_huge_files = ext4_has_feature_huge_file(sb); 5151 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5152 has_huge_files); 5153 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5154 5155 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5156 if (ext4_has_feature_64bit(sb)) { 5157 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5158 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5159 !is_power_of_2(sbi->s_desc_size)) { 5160 ext4_msg(sb, KERN_ERR, 5161 "unsupported descriptor size %lu", 5162 sbi->s_desc_size); 5163 return -EINVAL; 5164 } 5165 } else 5166 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5167 5168 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5169 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5170 5171 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5172 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5173 if (!silent) 5174 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5175 return -EINVAL; 5176 } 5177 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5178 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5179 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5180 sbi->s_inodes_per_group); 5181 return -EINVAL; 5182 } 5183 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5184 sbi->s_inodes_per_block; 5185 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5186 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5187 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5188 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5189 5190 return 0; 5191 } 5192 5193 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5194 { 5195 struct ext4_super_block *es = NULL; 5196 struct ext4_sb_info *sbi = EXT4_SB(sb); 5197 ext4_fsblk_t logical_sb_block; 5198 struct inode *root; 5199 int needs_recovery; 5200 int err; 5201 ext4_group_t first_not_zeroed; 5202 struct ext4_fs_context *ctx = fc->fs_private; 5203 int silent = fc->sb_flags & SB_SILENT; 5204 5205 /* Set defaults for the variables that will be set during parsing */ 5206 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5207 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5208 5209 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5210 sbi->s_sectors_written_start = 5211 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5212 5213 err = ext4_load_super(sb, &logical_sb_block, silent); 5214 if (err) 5215 goto out_fail; 5216 5217 es = sbi->s_es; 5218 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5219 5220 err = ext4_init_metadata_csum(sb, es); 5221 if (err) 5222 goto failed_mount; 5223 5224 ext4_set_def_opts(sb, es); 5225 5226 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5227 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5228 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5229 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5230 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5231 5232 /* 5233 * set default s_li_wait_mult for lazyinit, for the case there is 5234 * no mount option specified. 5235 */ 5236 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5237 5238 err = ext4_inode_info_init(sb, es); 5239 if (err) 5240 goto failed_mount; 5241 5242 err = parse_apply_sb_mount_options(sb, ctx); 5243 if (err < 0) 5244 goto failed_mount; 5245 5246 sbi->s_def_mount_opt = sbi->s_mount_opt; 5247 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5248 5249 err = ext4_check_opt_consistency(fc, sb); 5250 if (err < 0) 5251 goto failed_mount; 5252 5253 ext4_apply_options(fc, sb); 5254 5255 err = ext4_encoding_init(sb, es); 5256 if (err) 5257 goto failed_mount; 5258 5259 err = ext4_check_journal_data_mode(sb); 5260 if (err) 5261 goto failed_mount; 5262 5263 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5264 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5265 5266 /* i_version is always enabled now */ 5267 sb->s_flags |= SB_I_VERSION; 5268 5269 err = ext4_check_feature_compatibility(sb, es, silent); 5270 if (err) 5271 goto failed_mount; 5272 5273 err = ext4_block_group_meta_init(sb, silent); 5274 if (err) 5275 goto failed_mount; 5276 5277 ext4_hash_info_init(sb); 5278 5279 err = ext4_handle_clustersize(sb); 5280 if (err) 5281 goto failed_mount; 5282 5283 err = ext4_check_geometry(sb, es); 5284 if (err) 5285 goto failed_mount; 5286 5287 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5288 spin_lock_init(&sbi->s_error_lock); 5289 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5290 5291 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5292 if (err) 5293 goto failed_mount3; 5294 5295 err = ext4_es_register_shrinker(sbi); 5296 if (err) 5297 goto failed_mount3; 5298 5299 sbi->s_stripe = ext4_get_stripe_size(sbi); 5300 sbi->s_extent_max_zeroout_kb = 32; 5301 5302 /* 5303 * set up enough so that it can read an inode 5304 */ 5305 sb->s_op = &ext4_sops; 5306 sb->s_export_op = &ext4_export_ops; 5307 sb->s_xattr = ext4_xattr_handlers; 5308 #ifdef CONFIG_FS_ENCRYPTION 5309 sb->s_cop = &ext4_cryptops; 5310 #endif 5311 #ifdef CONFIG_FS_VERITY 5312 sb->s_vop = &ext4_verityops; 5313 #endif 5314 #ifdef CONFIG_QUOTA 5315 sb->dq_op = &ext4_quota_operations; 5316 if (ext4_has_feature_quota(sb)) 5317 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5318 else 5319 sb->s_qcop = &ext4_qctl_operations; 5320 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5321 #endif 5322 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5323 5324 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5325 mutex_init(&sbi->s_orphan_lock); 5326 5327 ext4_fast_commit_init(sb); 5328 5329 sb->s_root = NULL; 5330 5331 needs_recovery = (es->s_last_orphan != 0 || 5332 ext4_has_feature_orphan_present(sb) || 5333 ext4_has_feature_journal_needs_recovery(sb)); 5334 5335 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5336 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5337 if (err) 5338 goto failed_mount3a; 5339 } 5340 5341 err = -EINVAL; 5342 /* 5343 * The first inode we look at is the journal inode. Don't try 5344 * root first: it may be modified in the journal! 5345 */ 5346 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5347 err = ext4_load_and_init_journal(sb, es, ctx); 5348 if (err) 5349 goto failed_mount3a; 5350 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5351 ext4_has_feature_journal_needs_recovery(sb)) { 5352 ext4_msg(sb, KERN_ERR, "required journal recovery " 5353 "suppressed and not mounted read-only"); 5354 goto failed_mount3a; 5355 } else { 5356 /* Nojournal mode, all journal mount options are illegal */ 5357 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5358 ext4_msg(sb, KERN_ERR, "can't mount with " 5359 "journal_async_commit, fs mounted w/o journal"); 5360 goto failed_mount3a; 5361 } 5362 5363 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5364 ext4_msg(sb, KERN_ERR, "can't mount with " 5365 "journal_checksum, fs mounted w/o journal"); 5366 goto failed_mount3a; 5367 } 5368 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5369 ext4_msg(sb, KERN_ERR, "can't mount with " 5370 "commit=%lu, fs mounted w/o journal", 5371 sbi->s_commit_interval / HZ); 5372 goto failed_mount3a; 5373 } 5374 if (EXT4_MOUNT_DATA_FLAGS & 5375 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5376 ext4_msg(sb, KERN_ERR, "can't mount with " 5377 "data=, fs mounted w/o journal"); 5378 goto failed_mount3a; 5379 } 5380 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5381 clear_opt(sb, JOURNAL_CHECKSUM); 5382 clear_opt(sb, DATA_FLAGS); 5383 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5384 sbi->s_journal = NULL; 5385 needs_recovery = 0; 5386 } 5387 5388 if (!test_opt(sb, NO_MBCACHE)) { 5389 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5390 if (!sbi->s_ea_block_cache) { 5391 ext4_msg(sb, KERN_ERR, 5392 "Failed to create ea_block_cache"); 5393 err = -EINVAL; 5394 goto failed_mount_wq; 5395 } 5396 5397 if (ext4_has_feature_ea_inode(sb)) { 5398 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5399 if (!sbi->s_ea_inode_cache) { 5400 ext4_msg(sb, KERN_ERR, 5401 "Failed to create ea_inode_cache"); 5402 err = -EINVAL; 5403 goto failed_mount_wq; 5404 } 5405 } 5406 } 5407 5408 /* 5409 * Get the # of file system overhead blocks from the 5410 * superblock if present. 5411 */ 5412 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5413 /* ignore the precalculated value if it is ridiculous */ 5414 if (sbi->s_overhead > ext4_blocks_count(es)) 5415 sbi->s_overhead = 0; 5416 /* 5417 * If the bigalloc feature is not enabled recalculating the 5418 * overhead doesn't take long, so we might as well just redo 5419 * it to make sure we are using the correct value. 5420 */ 5421 if (!ext4_has_feature_bigalloc(sb)) 5422 sbi->s_overhead = 0; 5423 if (sbi->s_overhead == 0) { 5424 err = ext4_calculate_overhead(sb); 5425 if (err) 5426 goto failed_mount_wq; 5427 } 5428 5429 /* 5430 * The maximum number of concurrent works can be high and 5431 * concurrency isn't really necessary. Limit it to 1. 5432 */ 5433 EXT4_SB(sb)->rsv_conversion_wq = 5434 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5435 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5436 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5437 err = -ENOMEM; 5438 goto failed_mount4; 5439 } 5440 5441 /* 5442 * The jbd2_journal_load will have done any necessary log recovery, 5443 * so we can safely mount the rest of the filesystem now. 5444 */ 5445 5446 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5447 if (IS_ERR(root)) { 5448 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5449 err = PTR_ERR(root); 5450 root = NULL; 5451 goto failed_mount4; 5452 } 5453 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5454 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5455 iput(root); 5456 err = -EFSCORRUPTED; 5457 goto failed_mount4; 5458 } 5459 5460 sb->s_root = d_make_root(root); 5461 if (!sb->s_root) { 5462 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5463 err = -ENOMEM; 5464 goto failed_mount4; 5465 } 5466 5467 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5468 if (err == -EROFS) { 5469 sb->s_flags |= SB_RDONLY; 5470 } else if (err) 5471 goto failed_mount4a; 5472 5473 ext4_set_resv_clusters(sb); 5474 5475 if (test_opt(sb, BLOCK_VALIDITY)) { 5476 err = ext4_setup_system_zone(sb); 5477 if (err) { 5478 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5479 "zone (%d)", err); 5480 goto failed_mount4a; 5481 } 5482 } 5483 ext4_fc_replay_cleanup(sb); 5484 5485 ext4_ext_init(sb); 5486 5487 /* 5488 * Enable optimize_scan if number of groups is > threshold. This can be 5489 * turned off by passing "mb_optimize_scan=0". This can also be 5490 * turned on forcefully by passing "mb_optimize_scan=1". 5491 */ 5492 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5493 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5494 set_opt2(sb, MB_OPTIMIZE_SCAN); 5495 else 5496 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5497 } 5498 5499 err = ext4_mb_init(sb); 5500 if (err) { 5501 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5502 err); 5503 goto failed_mount5; 5504 } 5505 5506 /* 5507 * We can only set up the journal commit callback once 5508 * mballoc is initialized 5509 */ 5510 if (sbi->s_journal) 5511 sbi->s_journal->j_commit_callback = 5512 ext4_journal_commit_callback; 5513 5514 err = ext4_percpu_param_init(sbi); 5515 if (err) 5516 goto failed_mount6; 5517 5518 if (ext4_has_feature_flex_bg(sb)) 5519 if (!ext4_fill_flex_info(sb)) { 5520 ext4_msg(sb, KERN_ERR, 5521 "unable to initialize " 5522 "flex_bg meta info!"); 5523 err = -ENOMEM; 5524 goto failed_mount6; 5525 } 5526 5527 err = ext4_register_li_request(sb, first_not_zeroed); 5528 if (err) 5529 goto failed_mount6; 5530 5531 err = ext4_register_sysfs(sb); 5532 if (err) 5533 goto failed_mount7; 5534 5535 err = ext4_init_orphan_info(sb); 5536 if (err) 5537 goto failed_mount8; 5538 #ifdef CONFIG_QUOTA 5539 /* Enable quota usage during mount. */ 5540 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5541 err = ext4_enable_quotas(sb); 5542 if (err) 5543 goto failed_mount9; 5544 } 5545 #endif /* CONFIG_QUOTA */ 5546 5547 /* 5548 * Save the original bdev mapping's wb_err value which could be 5549 * used to detect the metadata async write error. 5550 */ 5551 spin_lock_init(&sbi->s_bdev_wb_lock); 5552 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5553 &sbi->s_bdev_wb_err); 5554 sb->s_bdev->bd_super = sb; 5555 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5556 ext4_orphan_cleanup(sb, es); 5557 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5558 /* 5559 * Update the checksum after updating free space/inode counters and 5560 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5561 * checksum in the buffer cache until it is written out and 5562 * e2fsprogs programs trying to open a file system immediately 5563 * after it is mounted can fail. 5564 */ 5565 ext4_superblock_csum_set(sb); 5566 if (needs_recovery) { 5567 ext4_msg(sb, KERN_INFO, "recovery complete"); 5568 err = ext4_mark_recovery_complete(sb, es); 5569 if (err) 5570 goto failed_mount9; 5571 } 5572 5573 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5574 ext4_msg(sb, KERN_WARNING, 5575 "mounting with \"discard\" option, but the device does not support discard"); 5576 5577 if (es->s_error_count) 5578 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5579 5580 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5581 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5582 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5583 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5584 atomic_set(&sbi->s_warning_count, 0); 5585 atomic_set(&sbi->s_msg_count, 0); 5586 5587 return 0; 5588 5589 failed_mount9: 5590 ext4_release_orphan_info(sb); 5591 failed_mount8: 5592 ext4_unregister_sysfs(sb); 5593 kobject_put(&sbi->s_kobj); 5594 failed_mount7: 5595 ext4_unregister_li_request(sb); 5596 failed_mount6: 5597 ext4_mb_release(sb); 5598 ext4_flex_groups_free(sbi); 5599 ext4_percpu_param_destroy(sbi); 5600 failed_mount5: 5601 ext4_ext_release(sb); 5602 ext4_release_system_zone(sb); 5603 failed_mount4a: 5604 dput(sb->s_root); 5605 sb->s_root = NULL; 5606 failed_mount4: 5607 ext4_msg(sb, KERN_ERR, "mount failed"); 5608 if (EXT4_SB(sb)->rsv_conversion_wq) 5609 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5610 failed_mount_wq: 5611 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5612 sbi->s_ea_inode_cache = NULL; 5613 5614 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5615 sbi->s_ea_block_cache = NULL; 5616 5617 if (sbi->s_journal) { 5618 /* flush s_error_work before journal destroy. */ 5619 flush_work(&sbi->s_error_work); 5620 jbd2_journal_destroy(sbi->s_journal); 5621 sbi->s_journal = NULL; 5622 } 5623 failed_mount3a: 5624 ext4_es_unregister_shrinker(sbi); 5625 failed_mount3: 5626 /* flush s_error_work before sbi destroy */ 5627 flush_work(&sbi->s_error_work); 5628 del_timer_sync(&sbi->s_err_report); 5629 ext4_stop_mmpd(sbi); 5630 ext4_group_desc_free(sbi); 5631 failed_mount: 5632 if (sbi->s_chksum_driver) 5633 crypto_free_shash(sbi->s_chksum_driver); 5634 5635 #if IS_ENABLED(CONFIG_UNICODE) 5636 utf8_unload(sb->s_encoding); 5637 #endif 5638 5639 #ifdef CONFIG_QUOTA 5640 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5641 kfree(get_qf_name(sb, sbi, i)); 5642 #endif 5643 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5644 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5645 brelse(sbi->s_sbh); 5646 ext4_blkdev_remove(sbi); 5647 out_fail: 5648 sb->s_fs_info = NULL; 5649 return err; 5650 } 5651 5652 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5653 { 5654 struct ext4_fs_context *ctx = fc->fs_private; 5655 struct ext4_sb_info *sbi; 5656 const char *descr; 5657 int ret; 5658 5659 sbi = ext4_alloc_sbi(sb); 5660 if (!sbi) 5661 return -ENOMEM; 5662 5663 fc->s_fs_info = sbi; 5664 5665 /* Cleanup superblock name */ 5666 strreplace(sb->s_id, '/', '!'); 5667 5668 sbi->s_sb_block = 1; /* Default super block location */ 5669 if (ctx->spec & EXT4_SPEC_s_sb_block) 5670 sbi->s_sb_block = ctx->s_sb_block; 5671 5672 ret = __ext4_fill_super(fc, sb); 5673 if (ret < 0) 5674 goto free_sbi; 5675 5676 if (sbi->s_journal) { 5677 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5678 descr = " journalled data mode"; 5679 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5680 descr = " ordered data mode"; 5681 else 5682 descr = " writeback data mode"; 5683 } else 5684 descr = "out journal"; 5685 5686 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5687 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5688 "Quota mode: %s.", &sb->s_uuid, 5689 sb_rdonly(sb) ? "ro" : "r/w", descr, 5690 ext4_quota_mode(sb)); 5691 5692 /* Update the s_overhead_clusters if necessary */ 5693 ext4_update_overhead(sb, false); 5694 return 0; 5695 5696 free_sbi: 5697 ext4_free_sbi(sbi); 5698 fc->s_fs_info = NULL; 5699 return ret; 5700 } 5701 5702 static int ext4_get_tree(struct fs_context *fc) 5703 { 5704 return get_tree_bdev(fc, ext4_fill_super); 5705 } 5706 5707 /* 5708 * Setup any per-fs journal parameters now. We'll do this both on 5709 * initial mount, once the journal has been initialised but before we've 5710 * done any recovery; and again on any subsequent remount. 5711 */ 5712 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5713 { 5714 struct ext4_sb_info *sbi = EXT4_SB(sb); 5715 5716 journal->j_commit_interval = sbi->s_commit_interval; 5717 journal->j_min_batch_time = sbi->s_min_batch_time; 5718 journal->j_max_batch_time = sbi->s_max_batch_time; 5719 ext4_fc_init(sb, journal); 5720 5721 write_lock(&journal->j_state_lock); 5722 if (test_opt(sb, BARRIER)) 5723 journal->j_flags |= JBD2_BARRIER; 5724 else 5725 journal->j_flags &= ~JBD2_BARRIER; 5726 if (test_opt(sb, DATA_ERR_ABORT)) 5727 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5728 else 5729 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5730 write_unlock(&journal->j_state_lock); 5731 } 5732 5733 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5734 unsigned int journal_inum) 5735 { 5736 struct inode *journal_inode; 5737 5738 /* 5739 * Test for the existence of a valid inode on disk. Bad things 5740 * happen if we iget() an unused inode, as the subsequent iput() 5741 * will try to delete it. 5742 */ 5743 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5744 if (IS_ERR(journal_inode)) { 5745 ext4_msg(sb, KERN_ERR, "no journal found"); 5746 return NULL; 5747 } 5748 if (!journal_inode->i_nlink) { 5749 make_bad_inode(journal_inode); 5750 iput(journal_inode); 5751 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5752 return NULL; 5753 } 5754 5755 ext4_debug("Journal inode found at %p: %lld bytes\n", 5756 journal_inode, journal_inode->i_size); 5757 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5758 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5759 iput(journal_inode); 5760 return NULL; 5761 } 5762 return journal_inode; 5763 } 5764 5765 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5766 { 5767 struct ext4_map_blocks map; 5768 int ret; 5769 5770 if (journal->j_inode == NULL) 5771 return 0; 5772 5773 map.m_lblk = *block; 5774 map.m_len = 1; 5775 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5776 if (ret <= 0) { 5777 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5778 "journal bmap failed: block %llu ret %d\n", 5779 *block, ret); 5780 jbd2_journal_abort(journal, ret ? ret : -EIO); 5781 return ret; 5782 } 5783 *block = map.m_pblk; 5784 return 0; 5785 } 5786 5787 static journal_t *ext4_get_journal(struct super_block *sb, 5788 unsigned int journal_inum) 5789 { 5790 struct inode *journal_inode; 5791 journal_t *journal; 5792 5793 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5794 return NULL; 5795 5796 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5797 if (!journal_inode) 5798 return NULL; 5799 5800 journal = jbd2_journal_init_inode(journal_inode); 5801 if (!journal) { 5802 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5803 iput(journal_inode); 5804 return NULL; 5805 } 5806 journal->j_private = sb; 5807 journal->j_bmap = ext4_journal_bmap; 5808 ext4_init_journal_params(sb, journal); 5809 return journal; 5810 } 5811 5812 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5813 dev_t j_dev) 5814 { 5815 struct buffer_head *bh; 5816 journal_t *journal; 5817 ext4_fsblk_t start; 5818 ext4_fsblk_t len; 5819 int hblock, blocksize; 5820 ext4_fsblk_t sb_block; 5821 unsigned long offset; 5822 struct ext4_super_block *es; 5823 struct block_device *bdev; 5824 5825 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5826 return NULL; 5827 5828 bdev = ext4_blkdev_get(j_dev, sb); 5829 if (bdev == NULL) 5830 return NULL; 5831 5832 blocksize = sb->s_blocksize; 5833 hblock = bdev_logical_block_size(bdev); 5834 if (blocksize < hblock) { 5835 ext4_msg(sb, KERN_ERR, 5836 "blocksize too small for journal device"); 5837 goto out_bdev; 5838 } 5839 5840 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5841 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5842 set_blocksize(bdev, blocksize); 5843 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5844 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5845 "external journal"); 5846 goto out_bdev; 5847 } 5848 5849 es = (struct ext4_super_block *) (bh->b_data + offset); 5850 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5851 !(le32_to_cpu(es->s_feature_incompat) & 5852 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5853 ext4_msg(sb, KERN_ERR, "external journal has " 5854 "bad superblock"); 5855 brelse(bh); 5856 goto out_bdev; 5857 } 5858 5859 if ((le32_to_cpu(es->s_feature_ro_compat) & 5860 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5861 es->s_checksum != ext4_superblock_csum(sb, es)) { 5862 ext4_msg(sb, KERN_ERR, "external journal has " 5863 "corrupt superblock"); 5864 brelse(bh); 5865 goto out_bdev; 5866 } 5867 5868 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5869 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5870 brelse(bh); 5871 goto out_bdev; 5872 } 5873 5874 len = ext4_blocks_count(es); 5875 start = sb_block + 1; 5876 brelse(bh); /* we're done with the superblock */ 5877 5878 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5879 start, len, blocksize); 5880 if (!journal) { 5881 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5882 goto out_bdev; 5883 } 5884 journal->j_private = sb; 5885 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5886 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5887 goto out_journal; 5888 } 5889 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5890 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5891 "user (unsupported) - %d", 5892 be32_to_cpu(journal->j_superblock->s_nr_users)); 5893 goto out_journal; 5894 } 5895 EXT4_SB(sb)->s_journal_bdev = bdev; 5896 ext4_init_journal_params(sb, journal); 5897 return journal; 5898 5899 out_journal: 5900 jbd2_journal_destroy(journal); 5901 out_bdev: 5902 ext4_blkdev_put(bdev); 5903 return NULL; 5904 } 5905 5906 static int ext4_load_journal(struct super_block *sb, 5907 struct ext4_super_block *es, 5908 unsigned long journal_devnum) 5909 { 5910 journal_t *journal; 5911 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5912 dev_t journal_dev; 5913 int err = 0; 5914 int really_read_only; 5915 int journal_dev_ro; 5916 5917 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5918 return -EFSCORRUPTED; 5919 5920 if (journal_devnum && 5921 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5922 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5923 "numbers have changed"); 5924 journal_dev = new_decode_dev(journal_devnum); 5925 } else 5926 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5927 5928 if (journal_inum && journal_dev) { 5929 ext4_msg(sb, KERN_ERR, 5930 "filesystem has both journal inode and journal device!"); 5931 return -EINVAL; 5932 } 5933 5934 if (journal_inum) { 5935 journal = ext4_get_journal(sb, journal_inum); 5936 if (!journal) 5937 return -EINVAL; 5938 } else { 5939 journal = ext4_get_dev_journal(sb, journal_dev); 5940 if (!journal) 5941 return -EINVAL; 5942 } 5943 5944 journal_dev_ro = bdev_read_only(journal->j_dev); 5945 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5946 5947 if (journal_dev_ro && !sb_rdonly(sb)) { 5948 ext4_msg(sb, KERN_ERR, 5949 "journal device read-only, try mounting with '-o ro'"); 5950 err = -EROFS; 5951 goto err_out; 5952 } 5953 5954 /* 5955 * Are we loading a blank journal or performing recovery after a 5956 * crash? For recovery, we need to check in advance whether we 5957 * can get read-write access to the device. 5958 */ 5959 if (ext4_has_feature_journal_needs_recovery(sb)) { 5960 if (sb_rdonly(sb)) { 5961 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5962 "required on readonly filesystem"); 5963 if (really_read_only) { 5964 ext4_msg(sb, KERN_ERR, "write access " 5965 "unavailable, cannot proceed " 5966 "(try mounting with noload)"); 5967 err = -EROFS; 5968 goto err_out; 5969 } 5970 ext4_msg(sb, KERN_INFO, "write access will " 5971 "be enabled during recovery"); 5972 } 5973 } 5974 5975 if (!(journal->j_flags & JBD2_BARRIER)) 5976 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5977 5978 if (!ext4_has_feature_journal_needs_recovery(sb)) 5979 err = jbd2_journal_wipe(journal, !really_read_only); 5980 if (!err) { 5981 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5982 5983 if (save) 5984 memcpy(save, ((char *) es) + 5985 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5986 err = jbd2_journal_load(journal); 5987 if (save) 5988 memcpy(((char *) es) + EXT4_S_ERR_START, 5989 save, EXT4_S_ERR_LEN); 5990 kfree(save); 5991 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 5992 EXT4_ERROR_FS); 5993 /* Write out restored error information to the superblock */ 5994 if (!bdev_read_only(sb->s_bdev)) { 5995 int err2; 5996 err2 = ext4_commit_super(sb); 5997 err = err ? : err2; 5998 } 5999 } 6000 6001 if (err) { 6002 ext4_msg(sb, KERN_ERR, "error loading journal"); 6003 goto err_out; 6004 } 6005 6006 EXT4_SB(sb)->s_journal = journal; 6007 err = ext4_clear_journal_err(sb, es); 6008 if (err) { 6009 EXT4_SB(sb)->s_journal = NULL; 6010 jbd2_journal_destroy(journal); 6011 return err; 6012 } 6013 6014 if (!really_read_only && journal_devnum && 6015 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6016 es->s_journal_dev = cpu_to_le32(journal_devnum); 6017 ext4_commit_super(sb); 6018 } 6019 if (!really_read_only && journal_inum && 6020 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6021 es->s_journal_inum = cpu_to_le32(journal_inum); 6022 ext4_commit_super(sb); 6023 } 6024 6025 return 0; 6026 6027 err_out: 6028 jbd2_journal_destroy(journal); 6029 return err; 6030 } 6031 6032 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6033 static void ext4_update_super(struct super_block *sb) 6034 { 6035 struct ext4_sb_info *sbi = EXT4_SB(sb); 6036 struct ext4_super_block *es = sbi->s_es; 6037 struct buffer_head *sbh = sbi->s_sbh; 6038 6039 lock_buffer(sbh); 6040 /* 6041 * If the file system is mounted read-only, don't update the 6042 * superblock write time. This avoids updating the superblock 6043 * write time when we are mounting the root file system 6044 * read/only but we need to replay the journal; at that point, 6045 * for people who are east of GMT and who make their clock 6046 * tick in localtime for Windows bug-for-bug compatibility, 6047 * the clock is set in the future, and this will cause e2fsck 6048 * to complain and force a full file system check. 6049 */ 6050 if (!(sb->s_flags & SB_RDONLY)) 6051 ext4_update_tstamp(es, s_wtime); 6052 es->s_kbytes_written = 6053 cpu_to_le64(sbi->s_kbytes_written + 6054 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6055 sbi->s_sectors_written_start) >> 1)); 6056 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6057 ext4_free_blocks_count_set(es, 6058 EXT4_C2B(sbi, percpu_counter_sum_positive( 6059 &sbi->s_freeclusters_counter))); 6060 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6061 es->s_free_inodes_count = 6062 cpu_to_le32(percpu_counter_sum_positive( 6063 &sbi->s_freeinodes_counter)); 6064 /* Copy error information to the on-disk superblock */ 6065 spin_lock(&sbi->s_error_lock); 6066 if (sbi->s_add_error_count > 0) { 6067 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6068 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6069 __ext4_update_tstamp(&es->s_first_error_time, 6070 &es->s_first_error_time_hi, 6071 sbi->s_first_error_time); 6072 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6073 sizeof(es->s_first_error_func)); 6074 es->s_first_error_line = 6075 cpu_to_le32(sbi->s_first_error_line); 6076 es->s_first_error_ino = 6077 cpu_to_le32(sbi->s_first_error_ino); 6078 es->s_first_error_block = 6079 cpu_to_le64(sbi->s_first_error_block); 6080 es->s_first_error_errcode = 6081 ext4_errno_to_code(sbi->s_first_error_code); 6082 } 6083 __ext4_update_tstamp(&es->s_last_error_time, 6084 &es->s_last_error_time_hi, 6085 sbi->s_last_error_time); 6086 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6087 sizeof(es->s_last_error_func)); 6088 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6089 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6090 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6091 es->s_last_error_errcode = 6092 ext4_errno_to_code(sbi->s_last_error_code); 6093 /* 6094 * Start the daily error reporting function if it hasn't been 6095 * started already 6096 */ 6097 if (!es->s_error_count) 6098 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6099 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6100 sbi->s_add_error_count = 0; 6101 } 6102 spin_unlock(&sbi->s_error_lock); 6103 6104 ext4_superblock_csum_set(sb); 6105 unlock_buffer(sbh); 6106 } 6107 6108 static int ext4_commit_super(struct super_block *sb) 6109 { 6110 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6111 6112 if (!sbh) 6113 return -EINVAL; 6114 if (block_device_ejected(sb)) 6115 return -ENODEV; 6116 6117 ext4_update_super(sb); 6118 6119 lock_buffer(sbh); 6120 /* Buffer got discarded which means block device got invalidated */ 6121 if (!buffer_mapped(sbh)) { 6122 unlock_buffer(sbh); 6123 return -EIO; 6124 } 6125 6126 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6127 /* 6128 * Oh, dear. A previous attempt to write the 6129 * superblock failed. This could happen because the 6130 * USB device was yanked out. Or it could happen to 6131 * be a transient write error and maybe the block will 6132 * be remapped. Nothing we can do but to retry the 6133 * write and hope for the best. 6134 */ 6135 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6136 "superblock detected"); 6137 clear_buffer_write_io_error(sbh); 6138 set_buffer_uptodate(sbh); 6139 } 6140 get_bh(sbh); 6141 /* Clear potential dirty bit if it was journalled update */ 6142 clear_buffer_dirty(sbh); 6143 sbh->b_end_io = end_buffer_write_sync; 6144 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6145 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6146 wait_on_buffer(sbh); 6147 if (buffer_write_io_error(sbh)) { 6148 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6149 "superblock"); 6150 clear_buffer_write_io_error(sbh); 6151 set_buffer_uptodate(sbh); 6152 return -EIO; 6153 } 6154 return 0; 6155 } 6156 6157 /* 6158 * Have we just finished recovery? If so, and if we are mounting (or 6159 * remounting) the filesystem readonly, then we will end up with a 6160 * consistent fs on disk. Record that fact. 6161 */ 6162 static int ext4_mark_recovery_complete(struct super_block *sb, 6163 struct ext4_super_block *es) 6164 { 6165 int err; 6166 journal_t *journal = EXT4_SB(sb)->s_journal; 6167 6168 if (!ext4_has_feature_journal(sb)) { 6169 if (journal != NULL) { 6170 ext4_error(sb, "Journal got removed while the fs was " 6171 "mounted!"); 6172 return -EFSCORRUPTED; 6173 } 6174 return 0; 6175 } 6176 jbd2_journal_lock_updates(journal); 6177 err = jbd2_journal_flush(journal, 0); 6178 if (err < 0) 6179 goto out; 6180 6181 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6182 ext4_has_feature_orphan_present(sb))) { 6183 if (!ext4_orphan_file_empty(sb)) { 6184 ext4_error(sb, "Orphan file not empty on read-only fs."); 6185 err = -EFSCORRUPTED; 6186 goto out; 6187 } 6188 ext4_clear_feature_journal_needs_recovery(sb); 6189 ext4_clear_feature_orphan_present(sb); 6190 ext4_commit_super(sb); 6191 } 6192 out: 6193 jbd2_journal_unlock_updates(journal); 6194 return err; 6195 } 6196 6197 /* 6198 * If we are mounting (or read-write remounting) a filesystem whose journal 6199 * has recorded an error from a previous lifetime, move that error to the 6200 * main filesystem now. 6201 */ 6202 static int ext4_clear_journal_err(struct super_block *sb, 6203 struct ext4_super_block *es) 6204 { 6205 journal_t *journal; 6206 int j_errno; 6207 const char *errstr; 6208 6209 if (!ext4_has_feature_journal(sb)) { 6210 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6211 return -EFSCORRUPTED; 6212 } 6213 6214 journal = EXT4_SB(sb)->s_journal; 6215 6216 /* 6217 * Now check for any error status which may have been recorded in the 6218 * journal by a prior ext4_error() or ext4_abort() 6219 */ 6220 6221 j_errno = jbd2_journal_errno(journal); 6222 if (j_errno) { 6223 char nbuf[16]; 6224 6225 errstr = ext4_decode_error(sb, j_errno, nbuf); 6226 ext4_warning(sb, "Filesystem error recorded " 6227 "from previous mount: %s", errstr); 6228 6229 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6230 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6231 j_errno = ext4_commit_super(sb); 6232 if (j_errno) 6233 return j_errno; 6234 ext4_warning(sb, "Marked fs in need of filesystem check."); 6235 6236 jbd2_journal_clear_err(journal); 6237 jbd2_journal_update_sb_errno(journal); 6238 } 6239 return 0; 6240 } 6241 6242 /* 6243 * Force the running and committing transactions to commit, 6244 * and wait on the commit. 6245 */ 6246 int ext4_force_commit(struct super_block *sb) 6247 { 6248 journal_t *journal; 6249 6250 if (sb_rdonly(sb)) 6251 return 0; 6252 6253 journal = EXT4_SB(sb)->s_journal; 6254 return ext4_journal_force_commit(journal); 6255 } 6256 6257 static int ext4_sync_fs(struct super_block *sb, int wait) 6258 { 6259 int ret = 0; 6260 tid_t target; 6261 bool needs_barrier = false; 6262 struct ext4_sb_info *sbi = EXT4_SB(sb); 6263 6264 if (unlikely(ext4_forced_shutdown(sbi))) 6265 return 0; 6266 6267 trace_ext4_sync_fs(sb, wait); 6268 flush_workqueue(sbi->rsv_conversion_wq); 6269 /* 6270 * Writeback quota in non-journalled quota case - journalled quota has 6271 * no dirty dquots 6272 */ 6273 dquot_writeback_dquots(sb, -1); 6274 /* 6275 * Data writeback is possible w/o journal transaction, so barrier must 6276 * being sent at the end of the function. But we can skip it if 6277 * transaction_commit will do it for us. 6278 */ 6279 if (sbi->s_journal) { 6280 target = jbd2_get_latest_transaction(sbi->s_journal); 6281 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6282 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6283 needs_barrier = true; 6284 6285 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6286 if (wait) 6287 ret = jbd2_log_wait_commit(sbi->s_journal, 6288 target); 6289 } 6290 } else if (wait && test_opt(sb, BARRIER)) 6291 needs_barrier = true; 6292 if (needs_barrier) { 6293 int err; 6294 err = blkdev_issue_flush(sb->s_bdev); 6295 if (!ret) 6296 ret = err; 6297 } 6298 6299 return ret; 6300 } 6301 6302 /* 6303 * LVM calls this function before a (read-only) snapshot is created. This 6304 * gives us a chance to flush the journal completely and mark the fs clean. 6305 * 6306 * Note that only this function cannot bring a filesystem to be in a clean 6307 * state independently. It relies on upper layer to stop all data & metadata 6308 * modifications. 6309 */ 6310 static int ext4_freeze(struct super_block *sb) 6311 { 6312 int error = 0; 6313 journal_t *journal; 6314 6315 if (sb_rdonly(sb)) 6316 return 0; 6317 6318 journal = EXT4_SB(sb)->s_journal; 6319 6320 if (journal) { 6321 /* Now we set up the journal barrier. */ 6322 jbd2_journal_lock_updates(journal); 6323 6324 /* 6325 * Don't clear the needs_recovery flag if we failed to 6326 * flush the journal. 6327 */ 6328 error = jbd2_journal_flush(journal, 0); 6329 if (error < 0) 6330 goto out; 6331 6332 /* Journal blocked and flushed, clear needs_recovery flag. */ 6333 ext4_clear_feature_journal_needs_recovery(sb); 6334 if (ext4_orphan_file_empty(sb)) 6335 ext4_clear_feature_orphan_present(sb); 6336 } 6337 6338 error = ext4_commit_super(sb); 6339 out: 6340 if (journal) 6341 /* we rely on upper layer to stop further updates */ 6342 jbd2_journal_unlock_updates(journal); 6343 return error; 6344 } 6345 6346 /* 6347 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6348 * flag here, even though the filesystem is not technically dirty yet. 6349 */ 6350 static int ext4_unfreeze(struct super_block *sb) 6351 { 6352 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6353 return 0; 6354 6355 if (EXT4_SB(sb)->s_journal) { 6356 /* Reset the needs_recovery flag before the fs is unlocked. */ 6357 ext4_set_feature_journal_needs_recovery(sb); 6358 if (ext4_has_feature_orphan_file(sb)) 6359 ext4_set_feature_orphan_present(sb); 6360 } 6361 6362 ext4_commit_super(sb); 6363 return 0; 6364 } 6365 6366 /* 6367 * Structure to save mount options for ext4_remount's benefit 6368 */ 6369 struct ext4_mount_options { 6370 unsigned long s_mount_opt; 6371 unsigned long s_mount_opt2; 6372 kuid_t s_resuid; 6373 kgid_t s_resgid; 6374 unsigned long s_commit_interval; 6375 u32 s_min_batch_time, s_max_batch_time; 6376 #ifdef CONFIG_QUOTA 6377 int s_jquota_fmt; 6378 char *s_qf_names[EXT4_MAXQUOTAS]; 6379 #endif 6380 }; 6381 6382 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6383 { 6384 struct ext4_fs_context *ctx = fc->fs_private; 6385 struct ext4_super_block *es; 6386 struct ext4_sb_info *sbi = EXT4_SB(sb); 6387 unsigned long old_sb_flags; 6388 struct ext4_mount_options old_opts; 6389 ext4_group_t g; 6390 int err = 0; 6391 #ifdef CONFIG_QUOTA 6392 int enable_quota = 0; 6393 int i, j; 6394 char *to_free[EXT4_MAXQUOTAS]; 6395 #endif 6396 6397 6398 /* Store the original options */ 6399 old_sb_flags = sb->s_flags; 6400 old_opts.s_mount_opt = sbi->s_mount_opt; 6401 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6402 old_opts.s_resuid = sbi->s_resuid; 6403 old_opts.s_resgid = sbi->s_resgid; 6404 old_opts.s_commit_interval = sbi->s_commit_interval; 6405 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6406 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6407 #ifdef CONFIG_QUOTA 6408 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6409 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6410 if (sbi->s_qf_names[i]) { 6411 char *qf_name = get_qf_name(sb, sbi, i); 6412 6413 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6414 if (!old_opts.s_qf_names[i]) { 6415 for (j = 0; j < i; j++) 6416 kfree(old_opts.s_qf_names[j]); 6417 return -ENOMEM; 6418 } 6419 } else 6420 old_opts.s_qf_names[i] = NULL; 6421 #endif 6422 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6423 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6424 ctx->journal_ioprio = 6425 sbi->s_journal->j_task->io_context->ioprio; 6426 else 6427 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6428 6429 } 6430 6431 ext4_apply_options(fc, sb); 6432 6433 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6434 test_opt(sb, JOURNAL_CHECKSUM)) { 6435 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6436 "during remount not supported; ignoring"); 6437 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6438 } 6439 6440 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6441 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6442 ext4_msg(sb, KERN_ERR, "can't mount with " 6443 "both data=journal and delalloc"); 6444 err = -EINVAL; 6445 goto restore_opts; 6446 } 6447 if (test_opt(sb, DIOREAD_NOLOCK)) { 6448 ext4_msg(sb, KERN_ERR, "can't mount with " 6449 "both data=journal and dioread_nolock"); 6450 err = -EINVAL; 6451 goto restore_opts; 6452 } 6453 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6454 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6455 ext4_msg(sb, KERN_ERR, "can't mount with " 6456 "journal_async_commit in data=ordered mode"); 6457 err = -EINVAL; 6458 goto restore_opts; 6459 } 6460 } 6461 6462 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6463 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6464 err = -EINVAL; 6465 goto restore_opts; 6466 } 6467 6468 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6469 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6470 6471 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6472 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6473 6474 es = sbi->s_es; 6475 6476 if (sbi->s_journal) { 6477 ext4_init_journal_params(sb, sbi->s_journal); 6478 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6479 } 6480 6481 /* Flush outstanding errors before changing fs state */ 6482 flush_work(&sbi->s_error_work); 6483 6484 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6485 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6486 err = -EROFS; 6487 goto restore_opts; 6488 } 6489 6490 if (fc->sb_flags & SB_RDONLY) { 6491 err = sync_filesystem(sb); 6492 if (err < 0) 6493 goto restore_opts; 6494 err = dquot_suspend(sb, -1); 6495 if (err < 0) 6496 goto restore_opts; 6497 6498 /* 6499 * First of all, the unconditional stuff we have to do 6500 * to disable replay of the journal when we next remount 6501 */ 6502 sb->s_flags |= SB_RDONLY; 6503 6504 /* 6505 * OK, test if we are remounting a valid rw partition 6506 * readonly, and if so set the rdonly flag and then 6507 * mark the partition as valid again. 6508 */ 6509 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6510 (sbi->s_mount_state & EXT4_VALID_FS)) 6511 es->s_state = cpu_to_le16(sbi->s_mount_state); 6512 6513 if (sbi->s_journal) { 6514 /* 6515 * We let remount-ro finish even if marking fs 6516 * as clean failed... 6517 */ 6518 ext4_mark_recovery_complete(sb, es); 6519 } 6520 } else { 6521 /* Make sure we can mount this feature set readwrite */ 6522 if (ext4_has_feature_readonly(sb) || 6523 !ext4_feature_set_ok(sb, 0)) { 6524 err = -EROFS; 6525 goto restore_opts; 6526 } 6527 /* 6528 * Make sure the group descriptor checksums 6529 * are sane. If they aren't, refuse to remount r/w. 6530 */ 6531 for (g = 0; g < sbi->s_groups_count; g++) { 6532 struct ext4_group_desc *gdp = 6533 ext4_get_group_desc(sb, g, NULL); 6534 6535 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6536 ext4_msg(sb, KERN_ERR, 6537 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6538 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6539 le16_to_cpu(gdp->bg_checksum)); 6540 err = -EFSBADCRC; 6541 goto restore_opts; 6542 } 6543 } 6544 6545 /* 6546 * If we have an unprocessed orphan list hanging 6547 * around from a previously readonly bdev mount, 6548 * require a full umount/remount for now. 6549 */ 6550 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6551 ext4_msg(sb, KERN_WARNING, "Couldn't " 6552 "remount RDWR because of unprocessed " 6553 "orphan inode list. Please " 6554 "umount/remount instead"); 6555 err = -EINVAL; 6556 goto restore_opts; 6557 } 6558 6559 /* 6560 * Mounting a RDONLY partition read-write, so reread 6561 * and store the current valid flag. (It may have 6562 * been changed by e2fsck since we originally mounted 6563 * the partition.) 6564 */ 6565 if (sbi->s_journal) { 6566 err = ext4_clear_journal_err(sb, es); 6567 if (err) 6568 goto restore_opts; 6569 } 6570 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6571 ~EXT4_FC_REPLAY); 6572 6573 err = ext4_setup_super(sb, es, 0); 6574 if (err) 6575 goto restore_opts; 6576 6577 sb->s_flags &= ~SB_RDONLY; 6578 if (ext4_has_feature_mmp(sb)) { 6579 err = ext4_multi_mount_protect(sb, 6580 le64_to_cpu(es->s_mmp_block)); 6581 if (err) 6582 goto restore_opts; 6583 } 6584 #ifdef CONFIG_QUOTA 6585 enable_quota = 1; 6586 #endif 6587 } 6588 } 6589 6590 /* 6591 * Handle creation of system zone data early because it can fail. 6592 * Releasing of existing data is done when we are sure remount will 6593 * succeed. 6594 */ 6595 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6596 err = ext4_setup_system_zone(sb); 6597 if (err) 6598 goto restore_opts; 6599 } 6600 6601 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6602 err = ext4_commit_super(sb); 6603 if (err) 6604 goto restore_opts; 6605 } 6606 6607 #ifdef CONFIG_QUOTA 6608 if (enable_quota) { 6609 if (sb_any_quota_suspended(sb)) 6610 dquot_resume(sb, -1); 6611 else if (ext4_has_feature_quota(sb)) { 6612 err = ext4_enable_quotas(sb); 6613 if (err) 6614 goto restore_opts; 6615 } 6616 } 6617 /* Release old quota file names */ 6618 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6619 kfree(old_opts.s_qf_names[i]); 6620 #endif 6621 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6622 ext4_release_system_zone(sb); 6623 6624 /* 6625 * Reinitialize lazy itable initialization thread based on 6626 * current settings 6627 */ 6628 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6629 ext4_unregister_li_request(sb); 6630 else { 6631 ext4_group_t first_not_zeroed; 6632 first_not_zeroed = ext4_has_uninit_itable(sb); 6633 ext4_register_li_request(sb, first_not_zeroed); 6634 } 6635 6636 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6637 ext4_stop_mmpd(sbi); 6638 6639 return 0; 6640 6641 restore_opts: 6642 /* 6643 * If there was a failing r/w to ro transition, we may need to 6644 * re-enable quota 6645 */ 6646 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) && 6647 sb_any_quota_suspended(sb)) 6648 dquot_resume(sb, -1); 6649 sb->s_flags = old_sb_flags; 6650 sbi->s_mount_opt = old_opts.s_mount_opt; 6651 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6652 sbi->s_resuid = old_opts.s_resuid; 6653 sbi->s_resgid = old_opts.s_resgid; 6654 sbi->s_commit_interval = old_opts.s_commit_interval; 6655 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6656 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6657 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6658 ext4_release_system_zone(sb); 6659 #ifdef CONFIG_QUOTA 6660 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6661 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6662 to_free[i] = get_qf_name(sb, sbi, i); 6663 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6664 } 6665 synchronize_rcu(); 6666 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6667 kfree(to_free[i]); 6668 #endif 6669 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6670 ext4_stop_mmpd(sbi); 6671 return err; 6672 } 6673 6674 static int ext4_reconfigure(struct fs_context *fc) 6675 { 6676 struct super_block *sb = fc->root->d_sb; 6677 int ret; 6678 6679 fc->s_fs_info = EXT4_SB(sb); 6680 6681 ret = ext4_check_opt_consistency(fc, sb); 6682 if (ret < 0) 6683 return ret; 6684 6685 ret = __ext4_remount(fc, sb); 6686 if (ret < 0) 6687 return ret; 6688 6689 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6690 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6691 ext4_quota_mode(sb)); 6692 6693 return 0; 6694 } 6695 6696 #ifdef CONFIG_QUOTA 6697 static int ext4_statfs_project(struct super_block *sb, 6698 kprojid_t projid, struct kstatfs *buf) 6699 { 6700 struct kqid qid; 6701 struct dquot *dquot; 6702 u64 limit; 6703 u64 curblock; 6704 6705 qid = make_kqid_projid(projid); 6706 dquot = dqget(sb, qid); 6707 if (IS_ERR(dquot)) 6708 return PTR_ERR(dquot); 6709 spin_lock(&dquot->dq_dqb_lock); 6710 6711 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6712 dquot->dq_dqb.dqb_bhardlimit); 6713 limit >>= sb->s_blocksize_bits; 6714 6715 if (limit && buf->f_blocks > limit) { 6716 curblock = (dquot->dq_dqb.dqb_curspace + 6717 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6718 buf->f_blocks = limit; 6719 buf->f_bfree = buf->f_bavail = 6720 (buf->f_blocks > curblock) ? 6721 (buf->f_blocks - curblock) : 0; 6722 } 6723 6724 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6725 dquot->dq_dqb.dqb_ihardlimit); 6726 if (limit && buf->f_files > limit) { 6727 buf->f_files = limit; 6728 buf->f_ffree = 6729 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6730 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6731 } 6732 6733 spin_unlock(&dquot->dq_dqb_lock); 6734 dqput(dquot); 6735 return 0; 6736 } 6737 #endif 6738 6739 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6740 { 6741 struct super_block *sb = dentry->d_sb; 6742 struct ext4_sb_info *sbi = EXT4_SB(sb); 6743 struct ext4_super_block *es = sbi->s_es; 6744 ext4_fsblk_t overhead = 0, resv_blocks; 6745 s64 bfree; 6746 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6747 6748 if (!test_opt(sb, MINIX_DF)) 6749 overhead = sbi->s_overhead; 6750 6751 buf->f_type = EXT4_SUPER_MAGIC; 6752 buf->f_bsize = sb->s_blocksize; 6753 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6754 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6755 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6756 /* prevent underflow in case that few free space is available */ 6757 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6758 buf->f_bavail = buf->f_bfree - 6759 (ext4_r_blocks_count(es) + resv_blocks); 6760 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6761 buf->f_bavail = 0; 6762 buf->f_files = le32_to_cpu(es->s_inodes_count); 6763 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6764 buf->f_namelen = EXT4_NAME_LEN; 6765 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6766 6767 #ifdef CONFIG_QUOTA 6768 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6769 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6770 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6771 #endif 6772 return 0; 6773 } 6774 6775 6776 #ifdef CONFIG_QUOTA 6777 6778 /* 6779 * Helper functions so that transaction is started before we acquire dqio_sem 6780 * to keep correct lock ordering of transaction > dqio_sem 6781 */ 6782 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6783 { 6784 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6785 } 6786 6787 static int ext4_write_dquot(struct dquot *dquot) 6788 { 6789 int ret, err; 6790 handle_t *handle; 6791 struct inode *inode; 6792 6793 inode = dquot_to_inode(dquot); 6794 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6795 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6796 if (IS_ERR(handle)) 6797 return PTR_ERR(handle); 6798 ret = dquot_commit(dquot); 6799 err = ext4_journal_stop(handle); 6800 if (!ret) 6801 ret = err; 6802 return ret; 6803 } 6804 6805 static int ext4_acquire_dquot(struct dquot *dquot) 6806 { 6807 int ret, err; 6808 handle_t *handle; 6809 6810 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6811 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6812 if (IS_ERR(handle)) 6813 return PTR_ERR(handle); 6814 ret = dquot_acquire(dquot); 6815 err = ext4_journal_stop(handle); 6816 if (!ret) 6817 ret = err; 6818 return ret; 6819 } 6820 6821 static int ext4_release_dquot(struct dquot *dquot) 6822 { 6823 int ret, err; 6824 handle_t *handle; 6825 6826 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6827 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6828 if (IS_ERR(handle)) { 6829 /* Release dquot anyway to avoid endless cycle in dqput() */ 6830 dquot_release(dquot); 6831 return PTR_ERR(handle); 6832 } 6833 ret = dquot_release(dquot); 6834 err = ext4_journal_stop(handle); 6835 if (!ret) 6836 ret = err; 6837 return ret; 6838 } 6839 6840 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6841 { 6842 struct super_block *sb = dquot->dq_sb; 6843 6844 if (ext4_is_quota_journalled(sb)) { 6845 dquot_mark_dquot_dirty(dquot); 6846 return ext4_write_dquot(dquot); 6847 } else { 6848 return dquot_mark_dquot_dirty(dquot); 6849 } 6850 } 6851 6852 static int ext4_write_info(struct super_block *sb, int type) 6853 { 6854 int ret, err; 6855 handle_t *handle; 6856 6857 /* Data block + inode block */ 6858 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6859 if (IS_ERR(handle)) 6860 return PTR_ERR(handle); 6861 ret = dquot_commit_info(sb, type); 6862 err = ext4_journal_stop(handle); 6863 if (!ret) 6864 ret = err; 6865 return ret; 6866 } 6867 6868 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6869 { 6870 struct ext4_inode_info *ei = EXT4_I(inode); 6871 6872 /* The first argument of lockdep_set_subclass has to be 6873 * *exactly* the same as the argument to init_rwsem() --- in 6874 * this case, in init_once() --- or lockdep gets unhappy 6875 * because the name of the lock is set using the 6876 * stringification of the argument to init_rwsem(). 6877 */ 6878 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6879 lockdep_set_subclass(&ei->i_data_sem, subclass); 6880 } 6881 6882 /* 6883 * Standard function to be called on quota_on 6884 */ 6885 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6886 const struct path *path) 6887 { 6888 int err; 6889 6890 if (!test_opt(sb, QUOTA)) 6891 return -EINVAL; 6892 6893 /* Quotafile not on the same filesystem? */ 6894 if (path->dentry->d_sb != sb) 6895 return -EXDEV; 6896 6897 /* Quota already enabled for this file? */ 6898 if (IS_NOQUOTA(d_inode(path->dentry))) 6899 return -EBUSY; 6900 6901 /* Journaling quota? */ 6902 if (EXT4_SB(sb)->s_qf_names[type]) { 6903 /* Quotafile not in fs root? */ 6904 if (path->dentry->d_parent != sb->s_root) 6905 ext4_msg(sb, KERN_WARNING, 6906 "Quota file not on filesystem root. " 6907 "Journaled quota will not work"); 6908 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6909 } else { 6910 /* 6911 * Clear the flag just in case mount options changed since 6912 * last time. 6913 */ 6914 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6915 } 6916 6917 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6918 err = dquot_quota_on(sb, type, format_id, path); 6919 if (!err) { 6920 struct inode *inode = d_inode(path->dentry); 6921 handle_t *handle; 6922 6923 /* 6924 * Set inode flags to prevent userspace from messing with quota 6925 * files. If this fails, we return success anyway since quotas 6926 * are already enabled and this is not a hard failure. 6927 */ 6928 inode_lock(inode); 6929 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6930 if (IS_ERR(handle)) 6931 goto unlock_inode; 6932 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6933 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6934 S_NOATIME | S_IMMUTABLE); 6935 err = ext4_mark_inode_dirty(handle, inode); 6936 ext4_journal_stop(handle); 6937 unlock_inode: 6938 inode_unlock(inode); 6939 if (err) 6940 dquot_quota_off(sb, type); 6941 } 6942 if (err) 6943 lockdep_set_quota_inode(path->dentry->d_inode, 6944 I_DATA_SEM_NORMAL); 6945 return err; 6946 } 6947 6948 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 6949 { 6950 switch (type) { 6951 case USRQUOTA: 6952 return qf_inum == EXT4_USR_QUOTA_INO; 6953 case GRPQUOTA: 6954 return qf_inum == EXT4_GRP_QUOTA_INO; 6955 case PRJQUOTA: 6956 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 6957 default: 6958 BUG(); 6959 } 6960 } 6961 6962 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6963 unsigned int flags) 6964 { 6965 int err; 6966 struct inode *qf_inode; 6967 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6968 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6969 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6970 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6971 }; 6972 6973 BUG_ON(!ext4_has_feature_quota(sb)); 6974 6975 if (!qf_inums[type]) 6976 return -EPERM; 6977 6978 if (!ext4_check_quota_inum(type, qf_inums[type])) { 6979 ext4_error(sb, "Bad quota inum: %lu, type: %d", 6980 qf_inums[type], type); 6981 return -EUCLEAN; 6982 } 6983 6984 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6985 if (IS_ERR(qf_inode)) { 6986 ext4_error(sb, "Bad quota inode: %lu, type: %d", 6987 qf_inums[type], type); 6988 return PTR_ERR(qf_inode); 6989 } 6990 6991 /* Don't account quota for quota files to avoid recursion */ 6992 qf_inode->i_flags |= S_NOQUOTA; 6993 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6994 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6995 if (err) 6996 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6997 iput(qf_inode); 6998 6999 return err; 7000 } 7001 7002 /* Enable usage tracking for all quota types. */ 7003 int ext4_enable_quotas(struct super_block *sb) 7004 { 7005 int type, err = 0; 7006 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7007 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7008 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7009 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7010 }; 7011 bool quota_mopt[EXT4_MAXQUOTAS] = { 7012 test_opt(sb, USRQUOTA), 7013 test_opt(sb, GRPQUOTA), 7014 test_opt(sb, PRJQUOTA), 7015 }; 7016 7017 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7018 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7019 if (qf_inums[type]) { 7020 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7021 DQUOT_USAGE_ENABLED | 7022 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7023 if (err) { 7024 ext4_warning(sb, 7025 "Failed to enable quota tracking " 7026 "(type=%d, err=%d, ino=%lu). " 7027 "Please run e2fsck to fix.", type, 7028 err, qf_inums[type]); 7029 for (type--; type >= 0; type--) { 7030 struct inode *inode; 7031 7032 inode = sb_dqopt(sb)->files[type]; 7033 if (inode) 7034 inode = igrab(inode); 7035 dquot_quota_off(sb, type); 7036 if (inode) { 7037 lockdep_set_quota_inode(inode, 7038 I_DATA_SEM_NORMAL); 7039 iput(inode); 7040 } 7041 } 7042 7043 return err; 7044 } 7045 } 7046 } 7047 return 0; 7048 } 7049 7050 static int ext4_quota_off(struct super_block *sb, int type) 7051 { 7052 struct inode *inode = sb_dqopt(sb)->files[type]; 7053 handle_t *handle; 7054 int err; 7055 7056 /* Force all delayed allocation blocks to be allocated. 7057 * Caller already holds s_umount sem */ 7058 if (test_opt(sb, DELALLOC)) 7059 sync_filesystem(sb); 7060 7061 if (!inode || !igrab(inode)) 7062 goto out; 7063 7064 err = dquot_quota_off(sb, type); 7065 if (err || ext4_has_feature_quota(sb)) 7066 goto out_put; 7067 7068 inode_lock(inode); 7069 /* 7070 * Update modification times of quota files when userspace can 7071 * start looking at them. If we fail, we return success anyway since 7072 * this is not a hard failure and quotas are already disabled. 7073 */ 7074 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7075 if (IS_ERR(handle)) { 7076 err = PTR_ERR(handle); 7077 goto out_unlock; 7078 } 7079 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7080 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7081 inode->i_mtime = inode->i_ctime = current_time(inode); 7082 err = ext4_mark_inode_dirty(handle, inode); 7083 ext4_journal_stop(handle); 7084 out_unlock: 7085 inode_unlock(inode); 7086 out_put: 7087 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7088 iput(inode); 7089 return err; 7090 out: 7091 return dquot_quota_off(sb, type); 7092 } 7093 7094 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7095 * acquiring the locks... As quota files are never truncated and quota code 7096 * itself serializes the operations (and no one else should touch the files) 7097 * we don't have to be afraid of races */ 7098 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7099 size_t len, loff_t off) 7100 { 7101 struct inode *inode = sb_dqopt(sb)->files[type]; 7102 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7103 int offset = off & (sb->s_blocksize - 1); 7104 int tocopy; 7105 size_t toread; 7106 struct buffer_head *bh; 7107 loff_t i_size = i_size_read(inode); 7108 7109 if (off > i_size) 7110 return 0; 7111 if (off+len > i_size) 7112 len = i_size-off; 7113 toread = len; 7114 while (toread > 0) { 7115 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7116 bh = ext4_bread(NULL, inode, blk, 0); 7117 if (IS_ERR(bh)) 7118 return PTR_ERR(bh); 7119 if (!bh) /* A hole? */ 7120 memset(data, 0, tocopy); 7121 else 7122 memcpy(data, bh->b_data+offset, tocopy); 7123 brelse(bh); 7124 offset = 0; 7125 toread -= tocopy; 7126 data += tocopy; 7127 blk++; 7128 } 7129 return len; 7130 } 7131 7132 /* Write to quotafile (we know the transaction is already started and has 7133 * enough credits) */ 7134 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7135 const char *data, size_t len, loff_t off) 7136 { 7137 struct inode *inode = sb_dqopt(sb)->files[type]; 7138 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7139 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7140 int retries = 0; 7141 struct buffer_head *bh; 7142 handle_t *handle = journal_current_handle(); 7143 7144 if (!handle) { 7145 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7146 " cancelled because transaction is not started", 7147 (unsigned long long)off, (unsigned long long)len); 7148 return -EIO; 7149 } 7150 /* 7151 * Since we account only one data block in transaction credits, 7152 * then it is impossible to cross a block boundary. 7153 */ 7154 if (sb->s_blocksize - offset < len) { 7155 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7156 " cancelled because not block aligned", 7157 (unsigned long long)off, (unsigned long long)len); 7158 return -EIO; 7159 } 7160 7161 do { 7162 bh = ext4_bread(handle, inode, blk, 7163 EXT4_GET_BLOCKS_CREATE | 7164 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7165 } while (PTR_ERR(bh) == -ENOSPC && 7166 ext4_should_retry_alloc(inode->i_sb, &retries)); 7167 if (IS_ERR(bh)) 7168 return PTR_ERR(bh); 7169 if (!bh) 7170 goto out; 7171 BUFFER_TRACE(bh, "get write access"); 7172 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7173 if (err) { 7174 brelse(bh); 7175 return err; 7176 } 7177 lock_buffer(bh); 7178 memcpy(bh->b_data+offset, data, len); 7179 flush_dcache_page(bh->b_page); 7180 unlock_buffer(bh); 7181 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7182 brelse(bh); 7183 out: 7184 if (inode->i_size < off + len) { 7185 i_size_write(inode, off + len); 7186 EXT4_I(inode)->i_disksize = inode->i_size; 7187 err2 = ext4_mark_inode_dirty(handle, inode); 7188 if (unlikely(err2 && !err)) 7189 err = err2; 7190 } 7191 return err ? err : len; 7192 } 7193 #endif 7194 7195 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7196 static inline void register_as_ext2(void) 7197 { 7198 int err = register_filesystem(&ext2_fs_type); 7199 if (err) 7200 printk(KERN_WARNING 7201 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7202 } 7203 7204 static inline void unregister_as_ext2(void) 7205 { 7206 unregister_filesystem(&ext2_fs_type); 7207 } 7208 7209 static inline int ext2_feature_set_ok(struct super_block *sb) 7210 { 7211 if (ext4_has_unknown_ext2_incompat_features(sb)) 7212 return 0; 7213 if (sb_rdonly(sb)) 7214 return 1; 7215 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7216 return 0; 7217 return 1; 7218 } 7219 #else 7220 static inline void register_as_ext2(void) { } 7221 static inline void unregister_as_ext2(void) { } 7222 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7223 #endif 7224 7225 static inline void register_as_ext3(void) 7226 { 7227 int err = register_filesystem(&ext3_fs_type); 7228 if (err) 7229 printk(KERN_WARNING 7230 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7231 } 7232 7233 static inline void unregister_as_ext3(void) 7234 { 7235 unregister_filesystem(&ext3_fs_type); 7236 } 7237 7238 static inline int ext3_feature_set_ok(struct super_block *sb) 7239 { 7240 if (ext4_has_unknown_ext3_incompat_features(sb)) 7241 return 0; 7242 if (!ext4_has_feature_journal(sb)) 7243 return 0; 7244 if (sb_rdonly(sb)) 7245 return 1; 7246 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7247 return 0; 7248 return 1; 7249 } 7250 7251 static struct file_system_type ext4_fs_type = { 7252 .owner = THIS_MODULE, 7253 .name = "ext4", 7254 .init_fs_context = ext4_init_fs_context, 7255 .parameters = ext4_param_specs, 7256 .kill_sb = kill_block_super, 7257 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7258 }; 7259 MODULE_ALIAS_FS("ext4"); 7260 7261 /* Shared across all ext4 file systems */ 7262 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7263 7264 static int __init ext4_init_fs(void) 7265 { 7266 int i, err; 7267 7268 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7269 ext4_li_info = NULL; 7270 7271 /* Build-time check for flags consistency */ 7272 ext4_check_flag_values(); 7273 7274 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7275 init_waitqueue_head(&ext4__ioend_wq[i]); 7276 7277 err = ext4_init_es(); 7278 if (err) 7279 return err; 7280 7281 err = ext4_init_pending(); 7282 if (err) 7283 goto out7; 7284 7285 err = ext4_init_post_read_processing(); 7286 if (err) 7287 goto out6; 7288 7289 err = ext4_init_pageio(); 7290 if (err) 7291 goto out5; 7292 7293 err = ext4_init_system_zone(); 7294 if (err) 7295 goto out4; 7296 7297 err = ext4_init_sysfs(); 7298 if (err) 7299 goto out3; 7300 7301 err = ext4_init_mballoc(); 7302 if (err) 7303 goto out2; 7304 err = init_inodecache(); 7305 if (err) 7306 goto out1; 7307 7308 err = ext4_fc_init_dentry_cache(); 7309 if (err) 7310 goto out05; 7311 7312 register_as_ext3(); 7313 register_as_ext2(); 7314 err = register_filesystem(&ext4_fs_type); 7315 if (err) 7316 goto out; 7317 7318 return 0; 7319 out: 7320 unregister_as_ext2(); 7321 unregister_as_ext3(); 7322 ext4_fc_destroy_dentry_cache(); 7323 out05: 7324 destroy_inodecache(); 7325 out1: 7326 ext4_exit_mballoc(); 7327 out2: 7328 ext4_exit_sysfs(); 7329 out3: 7330 ext4_exit_system_zone(); 7331 out4: 7332 ext4_exit_pageio(); 7333 out5: 7334 ext4_exit_post_read_processing(); 7335 out6: 7336 ext4_exit_pending(); 7337 out7: 7338 ext4_exit_es(); 7339 7340 return err; 7341 } 7342 7343 static void __exit ext4_exit_fs(void) 7344 { 7345 ext4_destroy_lazyinit_thread(); 7346 unregister_as_ext2(); 7347 unregister_as_ext3(); 7348 unregister_filesystem(&ext4_fs_type); 7349 ext4_fc_destroy_dentry_cache(); 7350 destroy_inodecache(); 7351 ext4_exit_mballoc(); 7352 ext4_exit_sysfs(); 7353 ext4_exit_system_zone(); 7354 ext4_exit_pageio(); 7355 ext4_exit_post_read_processing(); 7356 ext4_exit_es(); 7357 ext4_exit_pending(); 7358 } 7359 7360 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7361 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7362 MODULE_LICENSE("GPL"); 7363 MODULE_SOFTDEP("pre: crc32c"); 7364 module_init(ext4_init_fs) 7365 module_exit(ext4_exit_fs) 7366