1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ, op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 207 { 208 if (trylock_buffer(bh)) { 209 if (wait) 210 return ext4_read_bh(bh, op_flags, NULL); 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 if (wait) { 215 wait_on_buffer(bh); 216 if (buffer_uptodate(bh)) 217 return 0; 218 return -EIO; 219 } 220 return 0; 221 } 222 223 /* 224 * This works like __bread_gfp() except it uses ERR_PTR for error 225 * returns. Currently with sb_bread it's impossible to distinguish 226 * between ENOMEM and EIO situations (since both result in a NULL 227 * return. 228 */ 229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 230 sector_t block, int op_flags, 231 gfp_t gfp) 232 { 233 struct buffer_head *bh; 234 int ret; 235 236 bh = sb_getblk_gfp(sb, block, gfp); 237 if (bh == NULL) 238 return ERR_PTR(-ENOMEM); 239 if (ext4_buffer_uptodate(bh)) 240 return bh; 241 242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 243 if (ret) { 244 put_bh(bh); 245 return ERR_PTR(ret); 246 } 247 return bh; 248 } 249 250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 251 int op_flags) 252 { 253 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 254 } 255 256 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 257 sector_t block) 258 { 259 return __ext4_sb_bread_gfp(sb, block, 0, 0); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 265 266 if (likely(bh)) { 267 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 268 brelse(bh); 269 } 270 } 271 272 static int ext4_verify_csum_type(struct super_block *sb, 273 struct ext4_super_block *es) 274 { 275 if (!ext4_has_feature_metadata_csum(sb)) 276 return 1; 277 278 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 279 } 280 281 __le32 ext4_superblock_csum(struct super_block *sb, 282 struct ext4_super_block *es) 283 { 284 struct ext4_sb_info *sbi = EXT4_SB(sb); 285 int offset = offsetof(struct ext4_super_block, s_checksum); 286 __u32 csum; 287 288 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 289 290 return cpu_to_le32(csum); 291 } 292 293 static int ext4_superblock_csum_verify(struct super_block *sb, 294 struct ext4_super_block *es) 295 { 296 if (!ext4_has_metadata_csum(sb)) 297 return 1; 298 299 return es->s_checksum == ext4_superblock_csum(sb, es); 300 } 301 302 void ext4_superblock_csum_set(struct super_block *sb) 303 { 304 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 305 306 if (!ext4_has_metadata_csum(sb)) 307 return; 308 309 es->s_checksum = ext4_superblock_csum(sb, es); 310 } 311 312 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 313 struct ext4_group_desc *bg) 314 { 315 return le32_to_cpu(bg->bg_block_bitmap_lo) | 316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 317 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 318 } 319 320 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 321 struct ext4_group_desc *bg) 322 { 323 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 325 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 326 } 327 328 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 329 struct ext4_group_desc *bg) 330 { 331 return le32_to_cpu(bg->bg_inode_table_lo) | 332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 334 } 335 336 __u32 ext4_free_group_clusters(struct super_block *sb, 337 struct ext4_group_desc *bg) 338 { 339 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 341 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 342 } 343 344 __u32 ext4_free_inodes_count(struct super_block *sb, 345 struct ext4_group_desc *bg) 346 { 347 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 349 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 350 } 351 352 __u32 ext4_used_dirs_count(struct super_block *sb, 353 struct ext4_group_desc *bg) 354 { 355 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 357 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 358 } 359 360 __u32 ext4_itable_unused_count(struct super_block *sb, 361 struct ext4_group_desc *bg) 362 { 363 return le16_to_cpu(bg->bg_itable_unused_lo) | 364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 365 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 366 } 367 368 void ext4_block_bitmap_set(struct super_block *sb, 369 struct ext4_group_desc *bg, ext4_fsblk_t blk) 370 { 371 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 373 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 374 } 375 376 void ext4_inode_bitmap_set(struct super_block *sb, 377 struct ext4_group_desc *bg, ext4_fsblk_t blk) 378 { 379 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 381 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 382 } 383 384 void ext4_inode_table_set(struct super_block *sb, 385 struct ext4_group_desc *bg, ext4_fsblk_t blk) 386 { 387 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 389 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 390 } 391 392 void ext4_free_group_clusters_set(struct super_block *sb, 393 struct ext4_group_desc *bg, __u32 count) 394 { 395 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 397 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 398 } 399 400 void ext4_free_inodes_set(struct super_block *sb, 401 struct ext4_group_desc *bg, __u32 count) 402 { 403 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 405 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 406 } 407 408 void ext4_used_dirs_set(struct super_block *sb, 409 struct ext4_group_desc *bg, __u32 count) 410 { 411 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 413 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 414 } 415 416 void ext4_itable_unused_set(struct super_block *sb, 417 struct ext4_group_desc *bg, __u32 count) 418 { 419 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 421 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 422 } 423 424 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 425 { 426 now = clamp_val(now, 0, (1ull << 40) - 1); 427 428 *lo = cpu_to_le32(lower_32_bits(now)); 429 *hi = upper_32_bits(now); 430 } 431 432 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 433 { 434 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 435 } 436 #define ext4_update_tstamp(es, tstamp) \ 437 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 438 ktime_get_real_seconds()) 439 #define ext4_get_tstamp(es, tstamp) \ 440 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 441 442 /* 443 * The del_gendisk() function uninitializes the disk-specific data 444 * structures, including the bdi structure, without telling anyone 445 * else. Once this happens, any attempt to call mark_buffer_dirty() 446 * (for example, by ext4_commit_super), will cause a kernel OOPS. 447 * This is a kludge to prevent these oops until we can put in a proper 448 * hook in del_gendisk() to inform the VFS and file system layers. 449 */ 450 static int block_device_ejected(struct super_block *sb) 451 { 452 struct inode *bd_inode = sb->s_bdev->bd_inode; 453 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 454 455 return bdi->dev == NULL; 456 } 457 458 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 459 { 460 struct super_block *sb = journal->j_private; 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 int error = is_journal_aborted(journal); 463 struct ext4_journal_cb_entry *jce; 464 465 BUG_ON(txn->t_state == T_FINISHED); 466 467 ext4_process_freed_data(sb, txn->t_tid); 468 469 spin_lock(&sbi->s_md_lock); 470 while (!list_empty(&txn->t_private_list)) { 471 jce = list_entry(txn->t_private_list.next, 472 struct ext4_journal_cb_entry, jce_list); 473 list_del_init(&jce->jce_list); 474 spin_unlock(&sbi->s_md_lock); 475 jce->jce_func(sb, jce, error); 476 spin_lock(&sbi->s_md_lock); 477 } 478 spin_unlock(&sbi->s_md_lock); 479 } 480 481 /* 482 * This writepage callback for write_cache_pages() 483 * takes care of a few cases after page cleaning. 484 * 485 * write_cache_pages() already checks for dirty pages 486 * and calls clear_page_dirty_for_io(), which we want, 487 * to write protect the pages. 488 * 489 * However, we may have to redirty a page (see below.) 490 */ 491 static int ext4_journalled_writepage_callback(struct page *page, 492 struct writeback_control *wbc, 493 void *data) 494 { 495 transaction_t *transaction = (transaction_t *) data; 496 struct buffer_head *bh, *head; 497 struct journal_head *jh; 498 499 bh = head = page_buffers(page); 500 do { 501 /* 502 * We have to redirty a page in these cases: 503 * 1) If buffer is dirty, it means the page was dirty because it 504 * contains a buffer that needs checkpointing. So the dirty bit 505 * needs to be preserved so that checkpointing writes the buffer 506 * properly. 507 * 2) If buffer is not part of the committing transaction 508 * (we may have just accidentally come across this buffer because 509 * inode range tracking is not exact) or if the currently running 510 * transaction already contains this buffer as well, dirty bit 511 * needs to be preserved so that the buffer gets writeprotected 512 * properly on running transaction's commit. 513 */ 514 jh = bh2jh(bh); 515 if (buffer_dirty(bh) || 516 (jh && (jh->b_transaction != transaction || 517 jh->b_next_transaction))) { 518 redirty_page_for_writepage(wbc, page); 519 goto out; 520 } 521 } while ((bh = bh->b_this_page) != head); 522 523 out: 524 return AOP_WRITEPAGE_ACTIVATE; 525 } 526 527 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 528 { 529 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 530 struct writeback_control wbc = { 531 .sync_mode = WB_SYNC_ALL, 532 .nr_to_write = LONG_MAX, 533 .range_start = jinode->i_dirty_start, 534 .range_end = jinode->i_dirty_end, 535 }; 536 537 return write_cache_pages(mapping, &wbc, 538 ext4_journalled_writepage_callback, 539 jinode->i_transaction); 540 } 541 542 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 543 { 544 int ret; 545 546 if (ext4_should_journal_data(jinode->i_vfs_inode)) 547 ret = ext4_journalled_submit_inode_data_buffers(jinode); 548 else 549 ret = jbd2_journal_submit_inode_data_buffers(jinode); 550 551 return ret; 552 } 553 554 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 555 { 556 int ret = 0; 557 558 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 559 ret = jbd2_journal_finish_inode_data_buffers(jinode); 560 561 return ret; 562 } 563 564 static bool system_going_down(void) 565 { 566 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 567 || system_state == SYSTEM_RESTART; 568 } 569 570 struct ext4_err_translation { 571 int code; 572 int errno; 573 }; 574 575 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 576 577 static struct ext4_err_translation err_translation[] = { 578 EXT4_ERR_TRANSLATE(EIO), 579 EXT4_ERR_TRANSLATE(ENOMEM), 580 EXT4_ERR_TRANSLATE(EFSBADCRC), 581 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 582 EXT4_ERR_TRANSLATE(ENOSPC), 583 EXT4_ERR_TRANSLATE(ENOKEY), 584 EXT4_ERR_TRANSLATE(EROFS), 585 EXT4_ERR_TRANSLATE(EFBIG), 586 EXT4_ERR_TRANSLATE(EEXIST), 587 EXT4_ERR_TRANSLATE(ERANGE), 588 EXT4_ERR_TRANSLATE(EOVERFLOW), 589 EXT4_ERR_TRANSLATE(EBUSY), 590 EXT4_ERR_TRANSLATE(ENOTDIR), 591 EXT4_ERR_TRANSLATE(ENOTEMPTY), 592 EXT4_ERR_TRANSLATE(ESHUTDOWN), 593 EXT4_ERR_TRANSLATE(EFAULT), 594 }; 595 596 static int ext4_errno_to_code(int errno) 597 { 598 int i; 599 600 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 601 if (err_translation[i].errno == errno) 602 return err_translation[i].code; 603 return EXT4_ERR_UNKNOWN; 604 } 605 606 static void save_error_info(struct super_block *sb, int error, 607 __u32 ino, __u64 block, 608 const char *func, unsigned int line) 609 { 610 struct ext4_sb_info *sbi = EXT4_SB(sb); 611 612 /* We default to EFSCORRUPTED error... */ 613 if (error == 0) 614 error = EFSCORRUPTED; 615 616 spin_lock(&sbi->s_error_lock); 617 sbi->s_add_error_count++; 618 sbi->s_last_error_code = error; 619 sbi->s_last_error_line = line; 620 sbi->s_last_error_ino = ino; 621 sbi->s_last_error_block = block; 622 sbi->s_last_error_func = func; 623 sbi->s_last_error_time = ktime_get_real_seconds(); 624 if (!sbi->s_first_error_time) { 625 sbi->s_first_error_code = error; 626 sbi->s_first_error_line = line; 627 sbi->s_first_error_ino = ino; 628 sbi->s_first_error_block = block; 629 sbi->s_first_error_func = func; 630 sbi->s_first_error_time = sbi->s_last_error_time; 631 } 632 spin_unlock(&sbi->s_error_lock); 633 } 634 635 /* Deal with the reporting of failure conditions on a filesystem such as 636 * inconsistencies detected or read IO failures. 637 * 638 * On ext2, we can store the error state of the filesystem in the 639 * superblock. That is not possible on ext4, because we may have other 640 * write ordering constraints on the superblock which prevent us from 641 * writing it out straight away; and given that the journal is about to 642 * be aborted, we can't rely on the current, or future, transactions to 643 * write out the superblock safely. 644 * 645 * We'll just use the jbd2_journal_abort() error code to record an error in 646 * the journal instead. On recovery, the journal will complain about 647 * that error until we've noted it down and cleared it. 648 * 649 * If force_ro is set, we unconditionally force the filesystem into an 650 * ABORT|READONLY state, unless the error response on the fs has been set to 651 * panic in which case we take the easy way out and panic immediately. This is 652 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 653 * at a critical moment in log management. 654 */ 655 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 656 __u32 ino, __u64 block, 657 const char *func, unsigned int line) 658 { 659 journal_t *journal = EXT4_SB(sb)->s_journal; 660 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 661 662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 663 if (test_opt(sb, WARN_ON_ERROR)) 664 WARN_ON_ONCE(1); 665 666 if (!continue_fs && !sb_rdonly(sb)) { 667 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 668 if (journal) 669 jbd2_journal_abort(journal, -EIO); 670 } 671 672 if (!bdev_read_only(sb->s_bdev)) { 673 save_error_info(sb, error, ino, block, func, line); 674 /* 675 * In case the fs should keep running, we need to writeout 676 * superblock through the journal. Due to lock ordering 677 * constraints, it may not be safe to do it right here so we 678 * defer superblock flushing to a workqueue. 679 */ 680 if (continue_fs && journal) 681 schedule_work(&EXT4_SB(sb)->s_error_work); 682 else 683 ext4_commit_super(sb); 684 } 685 686 /* 687 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 688 * could panic during 'reboot -f' as the underlying device got already 689 * disabled. 690 */ 691 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 692 panic("EXT4-fs (device %s): panic forced after error\n", 693 sb->s_id); 694 } 695 696 if (sb_rdonly(sb) || continue_fs) 697 return; 698 699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 700 /* 701 * Make sure updated value of ->s_mount_flags will be visible before 702 * ->s_flags update 703 */ 704 smp_wmb(); 705 sb->s_flags |= SB_RDONLY; 706 } 707 708 static void flush_stashed_error_work(struct work_struct *work) 709 { 710 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 711 s_error_work); 712 journal_t *journal = sbi->s_journal; 713 handle_t *handle; 714 715 /* 716 * If the journal is still running, we have to write out superblock 717 * through the journal to avoid collisions of other journalled sb 718 * updates. 719 * 720 * We use directly jbd2 functions here to avoid recursing back into 721 * ext4 error handling code during handling of previous errors. 722 */ 723 if (!sb_rdonly(sbi->s_sb) && journal) { 724 struct buffer_head *sbh = sbi->s_sbh; 725 handle = jbd2_journal_start(journal, 1); 726 if (IS_ERR(handle)) 727 goto write_directly; 728 if (jbd2_journal_get_write_access(handle, sbh)) { 729 jbd2_journal_stop(handle); 730 goto write_directly; 731 } 732 ext4_update_super(sbi->s_sb); 733 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 734 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 735 "superblock detected"); 736 clear_buffer_write_io_error(sbh); 737 set_buffer_uptodate(sbh); 738 } 739 740 if (jbd2_journal_dirty_metadata(handle, sbh)) { 741 jbd2_journal_stop(handle); 742 goto write_directly; 743 } 744 jbd2_journal_stop(handle); 745 ext4_notify_error_sysfs(sbi); 746 return; 747 } 748 write_directly: 749 /* 750 * Write through journal failed. Write sb directly to get error info 751 * out and hope for the best. 752 */ 753 ext4_commit_super(sbi->s_sb); 754 ext4_notify_error_sysfs(sbi); 755 } 756 757 #define ext4_error_ratelimit(sb) \ 758 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 759 "EXT4-fs error") 760 761 void __ext4_error(struct super_block *sb, const char *function, 762 unsigned int line, bool force_ro, int error, __u64 block, 763 const char *fmt, ...) 764 { 765 struct va_format vaf; 766 va_list args; 767 768 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 769 return; 770 771 trace_ext4_error(sb, function, line); 772 if (ext4_error_ratelimit(sb)) { 773 va_start(args, fmt); 774 vaf.fmt = fmt; 775 vaf.va = &args; 776 printk(KERN_CRIT 777 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 778 sb->s_id, function, line, current->comm, &vaf); 779 va_end(args); 780 } 781 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 782 783 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 784 } 785 786 void __ext4_error_inode(struct inode *inode, const char *function, 787 unsigned int line, ext4_fsblk_t block, int error, 788 const char *fmt, ...) 789 { 790 va_list args; 791 struct va_format vaf; 792 793 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 794 return; 795 796 trace_ext4_error(inode->i_sb, function, line); 797 if (ext4_error_ratelimit(inode->i_sb)) { 798 va_start(args, fmt); 799 vaf.fmt = fmt; 800 vaf.va = &args; 801 if (block) 802 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 803 "inode #%lu: block %llu: comm %s: %pV\n", 804 inode->i_sb->s_id, function, line, inode->i_ino, 805 block, current->comm, &vaf); 806 else 807 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 808 "inode #%lu: comm %s: %pV\n", 809 inode->i_sb->s_id, function, line, inode->i_ino, 810 current->comm, &vaf); 811 va_end(args); 812 } 813 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 814 815 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 816 function, line); 817 } 818 819 void __ext4_error_file(struct file *file, const char *function, 820 unsigned int line, ext4_fsblk_t block, 821 const char *fmt, ...) 822 { 823 va_list args; 824 struct va_format vaf; 825 struct inode *inode = file_inode(file); 826 char pathname[80], *path; 827 828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 829 return; 830 831 trace_ext4_error(inode->i_sb, function, line); 832 if (ext4_error_ratelimit(inode->i_sb)) { 833 path = file_path(file, pathname, sizeof(pathname)); 834 if (IS_ERR(path)) 835 path = "(unknown)"; 836 va_start(args, fmt); 837 vaf.fmt = fmt; 838 vaf.va = &args; 839 if (block) 840 printk(KERN_CRIT 841 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 842 "block %llu: comm %s: path %s: %pV\n", 843 inode->i_sb->s_id, function, line, inode->i_ino, 844 block, current->comm, path, &vaf); 845 else 846 printk(KERN_CRIT 847 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 848 "comm %s: path %s: %pV\n", 849 inode->i_sb->s_id, function, line, inode->i_ino, 850 current->comm, path, &vaf); 851 va_end(args); 852 } 853 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 854 855 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 856 function, line); 857 } 858 859 const char *ext4_decode_error(struct super_block *sb, int errno, 860 char nbuf[16]) 861 { 862 char *errstr = NULL; 863 864 switch (errno) { 865 case -EFSCORRUPTED: 866 errstr = "Corrupt filesystem"; 867 break; 868 case -EFSBADCRC: 869 errstr = "Filesystem failed CRC"; 870 break; 871 case -EIO: 872 errstr = "IO failure"; 873 break; 874 case -ENOMEM: 875 errstr = "Out of memory"; 876 break; 877 case -EROFS: 878 if (!sb || (EXT4_SB(sb)->s_journal && 879 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 880 errstr = "Journal has aborted"; 881 else 882 errstr = "Readonly filesystem"; 883 break; 884 default: 885 /* If the caller passed in an extra buffer for unknown 886 * errors, textualise them now. Else we just return 887 * NULL. */ 888 if (nbuf) { 889 /* Check for truncated error codes... */ 890 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 891 errstr = nbuf; 892 } 893 break; 894 } 895 896 return errstr; 897 } 898 899 /* __ext4_std_error decodes expected errors from journaling functions 900 * automatically and invokes the appropriate error response. */ 901 902 void __ext4_std_error(struct super_block *sb, const char *function, 903 unsigned int line, int errno) 904 { 905 char nbuf[16]; 906 const char *errstr; 907 908 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 909 return; 910 911 /* Special case: if the error is EROFS, and we're not already 912 * inside a transaction, then there's really no point in logging 913 * an error. */ 914 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 915 return; 916 917 if (ext4_error_ratelimit(sb)) { 918 errstr = ext4_decode_error(sb, errno, nbuf); 919 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 920 sb->s_id, function, line, errstr); 921 } 922 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 923 924 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 925 } 926 927 void __ext4_msg(struct super_block *sb, 928 const char *prefix, const char *fmt, ...) 929 { 930 struct va_format vaf; 931 va_list args; 932 933 if (sb) { 934 atomic_inc(&EXT4_SB(sb)->s_msg_count); 935 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 936 "EXT4-fs")) 937 return; 938 } 939 940 va_start(args, fmt); 941 vaf.fmt = fmt; 942 vaf.va = &args; 943 if (sb) 944 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 945 else 946 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 947 va_end(args); 948 } 949 950 static int ext4_warning_ratelimit(struct super_block *sb) 951 { 952 atomic_inc(&EXT4_SB(sb)->s_warning_count); 953 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 954 "EXT4-fs warning"); 955 } 956 957 void __ext4_warning(struct super_block *sb, const char *function, 958 unsigned int line, const char *fmt, ...) 959 { 960 struct va_format vaf; 961 va_list args; 962 963 if (!ext4_warning_ratelimit(sb)) 964 return; 965 966 va_start(args, fmt); 967 vaf.fmt = fmt; 968 vaf.va = &args; 969 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 970 sb->s_id, function, line, &vaf); 971 va_end(args); 972 } 973 974 void __ext4_warning_inode(const struct inode *inode, const char *function, 975 unsigned int line, const char *fmt, ...) 976 { 977 struct va_format vaf; 978 va_list args; 979 980 if (!ext4_warning_ratelimit(inode->i_sb)) 981 return; 982 983 va_start(args, fmt); 984 vaf.fmt = fmt; 985 vaf.va = &args; 986 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 987 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 988 function, line, inode->i_ino, current->comm, &vaf); 989 va_end(args); 990 } 991 992 void __ext4_grp_locked_error(const char *function, unsigned int line, 993 struct super_block *sb, ext4_group_t grp, 994 unsigned long ino, ext4_fsblk_t block, 995 const char *fmt, ...) 996 __releases(bitlock) 997 __acquires(bitlock) 998 { 999 struct va_format vaf; 1000 va_list args; 1001 1002 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 1003 return; 1004 1005 trace_ext4_error(sb, function, line); 1006 if (ext4_error_ratelimit(sb)) { 1007 va_start(args, fmt); 1008 vaf.fmt = fmt; 1009 vaf.va = &args; 1010 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1011 sb->s_id, function, line, grp); 1012 if (ino) 1013 printk(KERN_CONT "inode %lu: ", ino); 1014 if (block) 1015 printk(KERN_CONT "block %llu:", 1016 (unsigned long long) block); 1017 printk(KERN_CONT "%pV\n", &vaf); 1018 va_end(args); 1019 } 1020 1021 if (test_opt(sb, ERRORS_CONT)) { 1022 if (test_opt(sb, WARN_ON_ERROR)) 1023 WARN_ON_ONCE(1); 1024 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1025 if (!bdev_read_only(sb->s_bdev)) { 1026 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1027 line); 1028 schedule_work(&EXT4_SB(sb)->s_error_work); 1029 } 1030 return; 1031 } 1032 ext4_unlock_group(sb, grp); 1033 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1034 /* 1035 * We only get here in the ERRORS_RO case; relocking the group 1036 * may be dangerous, but nothing bad will happen since the 1037 * filesystem will have already been marked read/only and the 1038 * journal has been aborted. We return 1 as a hint to callers 1039 * who might what to use the return value from 1040 * ext4_grp_locked_error() to distinguish between the 1041 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1042 * aggressively from the ext4 function in question, with a 1043 * more appropriate error code. 1044 */ 1045 ext4_lock_group(sb, grp); 1046 return; 1047 } 1048 1049 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1050 ext4_group_t group, 1051 unsigned int flags) 1052 { 1053 struct ext4_sb_info *sbi = EXT4_SB(sb); 1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1055 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1056 int ret; 1057 1058 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1059 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1060 &grp->bb_state); 1061 if (!ret) 1062 percpu_counter_sub(&sbi->s_freeclusters_counter, 1063 grp->bb_free); 1064 } 1065 1066 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1067 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1068 &grp->bb_state); 1069 if (!ret && gdp) { 1070 int count; 1071 1072 count = ext4_free_inodes_count(sb, gdp); 1073 percpu_counter_sub(&sbi->s_freeinodes_counter, 1074 count); 1075 } 1076 } 1077 } 1078 1079 void ext4_update_dynamic_rev(struct super_block *sb) 1080 { 1081 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1082 1083 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1084 return; 1085 1086 ext4_warning(sb, 1087 "updating to rev %d because of new feature flag, " 1088 "running e2fsck is recommended", 1089 EXT4_DYNAMIC_REV); 1090 1091 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1092 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1093 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1094 /* leave es->s_feature_*compat flags alone */ 1095 /* es->s_uuid will be set by e2fsck if empty */ 1096 1097 /* 1098 * The rest of the superblock fields should be zero, and if not it 1099 * means they are likely already in use, so leave them alone. We 1100 * can leave it up to e2fsck to clean up any inconsistencies there. 1101 */ 1102 } 1103 1104 /* 1105 * Open the external journal device 1106 */ 1107 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1108 { 1109 struct block_device *bdev; 1110 1111 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1112 if (IS_ERR(bdev)) 1113 goto fail; 1114 return bdev; 1115 1116 fail: 1117 ext4_msg(sb, KERN_ERR, 1118 "failed to open journal device unknown-block(%u,%u) %ld", 1119 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1120 return NULL; 1121 } 1122 1123 /* 1124 * Release the journal device 1125 */ 1126 static void ext4_blkdev_put(struct block_device *bdev) 1127 { 1128 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1129 } 1130 1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1132 { 1133 struct block_device *bdev; 1134 bdev = sbi->s_journal_bdev; 1135 if (bdev) { 1136 ext4_blkdev_put(bdev); 1137 sbi->s_journal_bdev = NULL; 1138 } 1139 } 1140 1141 static inline struct inode *orphan_list_entry(struct list_head *l) 1142 { 1143 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1144 } 1145 1146 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1147 { 1148 struct list_head *l; 1149 1150 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1151 le32_to_cpu(sbi->s_es->s_last_orphan)); 1152 1153 printk(KERN_ERR "sb_info orphan list:\n"); 1154 list_for_each(l, &sbi->s_orphan) { 1155 struct inode *inode = orphan_list_entry(l); 1156 printk(KERN_ERR " " 1157 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1158 inode->i_sb->s_id, inode->i_ino, inode, 1159 inode->i_mode, inode->i_nlink, 1160 NEXT_ORPHAN(inode)); 1161 } 1162 } 1163 1164 #ifdef CONFIG_QUOTA 1165 static int ext4_quota_off(struct super_block *sb, int type); 1166 1167 static inline void ext4_quota_off_umount(struct super_block *sb) 1168 { 1169 int type; 1170 1171 /* Use our quota_off function to clear inode flags etc. */ 1172 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1173 ext4_quota_off(sb, type); 1174 } 1175 1176 /* 1177 * This is a helper function which is used in the mount/remount 1178 * codepaths (which holds s_umount) to fetch the quota file name. 1179 */ 1180 static inline char *get_qf_name(struct super_block *sb, 1181 struct ext4_sb_info *sbi, 1182 int type) 1183 { 1184 return rcu_dereference_protected(sbi->s_qf_names[type], 1185 lockdep_is_held(&sb->s_umount)); 1186 } 1187 #else 1188 static inline void ext4_quota_off_umount(struct super_block *sb) 1189 { 1190 } 1191 #endif 1192 1193 static void ext4_put_super(struct super_block *sb) 1194 { 1195 struct ext4_sb_info *sbi = EXT4_SB(sb); 1196 struct ext4_super_block *es = sbi->s_es; 1197 struct buffer_head **group_desc; 1198 struct flex_groups **flex_groups; 1199 int aborted = 0; 1200 int i, err; 1201 1202 /* 1203 * Unregister sysfs before destroying jbd2 journal. 1204 * Since we could still access attr_journal_task attribute via sysfs 1205 * path which could have sbi->s_journal->j_task as NULL 1206 * Unregister sysfs before flush sbi->s_error_work. 1207 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1208 * read metadata verify failed then will queue error work. 1209 * flush_stashed_error_work will call start_this_handle may trigger 1210 * BUG_ON. 1211 */ 1212 ext4_unregister_sysfs(sb); 1213 1214 ext4_unregister_li_request(sb); 1215 ext4_quota_off_umount(sb); 1216 1217 flush_work(&sbi->s_error_work); 1218 destroy_workqueue(sbi->rsv_conversion_wq); 1219 ext4_release_orphan_info(sb); 1220 1221 if (sbi->s_journal) { 1222 aborted = is_journal_aborted(sbi->s_journal); 1223 err = jbd2_journal_destroy(sbi->s_journal); 1224 sbi->s_journal = NULL; 1225 if ((err < 0) && !aborted) { 1226 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1227 } 1228 } 1229 1230 ext4_es_unregister_shrinker(sbi); 1231 del_timer_sync(&sbi->s_err_report); 1232 ext4_release_system_zone(sb); 1233 ext4_mb_release(sb); 1234 ext4_ext_release(sb); 1235 1236 if (!sb_rdonly(sb) && !aborted) { 1237 ext4_clear_feature_journal_needs_recovery(sb); 1238 ext4_clear_feature_orphan_present(sb); 1239 es->s_state = cpu_to_le16(sbi->s_mount_state); 1240 } 1241 if (!sb_rdonly(sb)) 1242 ext4_commit_super(sb); 1243 1244 rcu_read_lock(); 1245 group_desc = rcu_dereference(sbi->s_group_desc); 1246 for (i = 0; i < sbi->s_gdb_count; i++) 1247 brelse(group_desc[i]); 1248 kvfree(group_desc); 1249 flex_groups = rcu_dereference(sbi->s_flex_groups); 1250 if (flex_groups) { 1251 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1252 kvfree(flex_groups[i]); 1253 kvfree(flex_groups); 1254 } 1255 rcu_read_unlock(); 1256 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1257 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1258 percpu_counter_destroy(&sbi->s_dirs_counter); 1259 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1260 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1261 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1262 #ifdef CONFIG_QUOTA 1263 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1264 kfree(get_qf_name(sb, sbi, i)); 1265 #endif 1266 1267 /* Debugging code just in case the in-memory inode orphan list 1268 * isn't empty. The on-disk one can be non-empty if we've 1269 * detected an error and taken the fs readonly, but the 1270 * in-memory list had better be clean by this point. */ 1271 if (!list_empty(&sbi->s_orphan)) 1272 dump_orphan_list(sb, sbi); 1273 ASSERT(list_empty(&sbi->s_orphan)); 1274 1275 sync_blockdev(sb->s_bdev); 1276 invalidate_bdev(sb->s_bdev); 1277 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1278 /* 1279 * Invalidate the journal device's buffers. We don't want them 1280 * floating about in memory - the physical journal device may 1281 * hotswapped, and it breaks the `ro-after' testing code. 1282 */ 1283 sync_blockdev(sbi->s_journal_bdev); 1284 invalidate_bdev(sbi->s_journal_bdev); 1285 ext4_blkdev_remove(sbi); 1286 } 1287 1288 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1289 sbi->s_ea_inode_cache = NULL; 1290 1291 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1292 sbi->s_ea_block_cache = NULL; 1293 1294 ext4_stop_mmpd(sbi); 1295 1296 brelse(sbi->s_sbh); 1297 sb->s_fs_info = NULL; 1298 /* 1299 * Now that we are completely done shutting down the 1300 * superblock, we need to actually destroy the kobject. 1301 */ 1302 kobject_put(&sbi->s_kobj); 1303 wait_for_completion(&sbi->s_kobj_unregister); 1304 if (sbi->s_chksum_driver) 1305 crypto_free_shash(sbi->s_chksum_driver); 1306 kfree(sbi->s_blockgroup_lock); 1307 fs_put_dax(sbi->s_daxdev); 1308 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1309 #if IS_ENABLED(CONFIG_UNICODE) 1310 utf8_unload(sb->s_encoding); 1311 #endif 1312 kfree(sbi); 1313 } 1314 1315 static struct kmem_cache *ext4_inode_cachep; 1316 1317 /* 1318 * Called inside transaction, so use GFP_NOFS 1319 */ 1320 static struct inode *ext4_alloc_inode(struct super_block *sb) 1321 { 1322 struct ext4_inode_info *ei; 1323 1324 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1325 if (!ei) 1326 return NULL; 1327 1328 inode_set_iversion(&ei->vfs_inode, 1); 1329 spin_lock_init(&ei->i_raw_lock); 1330 INIT_LIST_HEAD(&ei->i_prealloc_list); 1331 atomic_set(&ei->i_prealloc_active, 0); 1332 spin_lock_init(&ei->i_prealloc_lock); 1333 ext4_es_init_tree(&ei->i_es_tree); 1334 rwlock_init(&ei->i_es_lock); 1335 INIT_LIST_HEAD(&ei->i_es_list); 1336 ei->i_es_all_nr = 0; 1337 ei->i_es_shk_nr = 0; 1338 ei->i_es_shrink_lblk = 0; 1339 ei->i_reserved_data_blocks = 0; 1340 spin_lock_init(&(ei->i_block_reservation_lock)); 1341 ext4_init_pending_tree(&ei->i_pending_tree); 1342 #ifdef CONFIG_QUOTA 1343 ei->i_reserved_quota = 0; 1344 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1345 #endif 1346 ei->jinode = NULL; 1347 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1348 spin_lock_init(&ei->i_completed_io_lock); 1349 ei->i_sync_tid = 0; 1350 ei->i_datasync_tid = 0; 1351 atomic_set(&ei->i_unwritten, 0); 1352 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1353 ext4_fc_init_inode(&ei->vfs_inode); 1354 mutex_init(&ei->i_fc_lock); 1355 return &ei->vfs_inode; 1356 } 1357 1358 static int ext4_drop_inode(struct inode *inode) 1359 { 1360 int drop = generic_drop_inode(inode); 1361 1362 if (!drop) 1363 drop = fscrypt_drop_inode(inode); 1364 1365 trace_ext4_drop_inode(inode, drop); 1366 return drop; 1367 } 1368 1369 static void ext4_free_in_core_inode(struct inode *inode) 1370 { 1371 fscrypt_free_inode(inode); 1372 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1373 pr_warn("%s: inode %ld still in fc list", 1374 __func__, inode->i_ino); 1375 } 1376 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1377 } 1378 1379 static void ext4_destroy_inode(struct inode *inode) 1380 { 1381 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1382 ext4_msg(inode->i_sb, KERN_ERR, 1383 "Inode %lu (%p): orphan list check failed!", 1384 inode->i_ino, EXT4_I(inode)); 1385 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1386 EXT4_I(inode), sizeof(struct ext4_inode_info), 1387 true); 1388 dump_stack(); 1389 } 1390 1391 if (EXT4_I(inode)->i_reserved_data_blocks) 1392 ext4_msg(inode->i_sb, KERN_ERR, 1393 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1394 inode->i_ino, EXT4_I(inode), 1395 EXT4_I(inode)->i_reserved_data_blocks); 1396 } 1397 1398 static void init_once(void *foo) 1399 { 1400 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1401 1402 INIT_LIST_HEAD(&ei->i_orphan); 1403 init_rwsem(&ei->xattr_sem); 1404 init_rwsem(&ei->i_data_sem); 1405 inode_init_once(&ei->vfs_inode); 1406 ext4_fc_init_inode(&ei->vfs_inode); 1407 } 1408 1409 static int __init init_inodecache(void) 1410 { 1411 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1412 sizeof(struct ext4_inode_info), 0, 1413 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1414 SLAB_ACCOUNT), 1415 offsetof(struct ext4_inode_info, i_data), 1416 sizeof_field(struct ext4_inode_info, i_data), 1417 init_once); 1418 if (ext4_inode_cachep == NULL) 1419 return -ENOMEM; 1420 return 0; 1421 } 1422 1423 static void destroy_inodecache(void) 1424 { 1425 /* 1426 * Make sure all delayed rcu free inodes are flushed before we 1427 * destroy cache. 1428 */ 1429 rcu_barrier(); 1430 kmem_cache_destroy(ext4_inode_cachep); 1431 } 1432 1433 void ext4_clear_inode(struct inode *inode) 1434 { 1435 ext4_fc_del(inode); 1436 invalidate_inode_buffers(inode); 1437 clear_inode(inode); 1438 ext4_discard_preallocations(inode, 0); 1439 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1440 dquot_drop(inode); 1441 if (EXT4_I(inode)->jinode) { 1442 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1443 EXT4_I(inode)->jinode); 1444 jbd2_free_inode(EXT4_I(inode)->jinode); 1445 EXT4_I(inode)->jinode = NULL; 1446 } 1447 fscrypt_put_encryption_info(inode); 1448 fsverity_cleanup_inode(inode); 1449 } 1450 1451 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1452 u64 ino, u32 generation) 1453 { 1454 struct inode *inode; 1455 1456 /* 1457 * Currently we don't know the generation for parent directory, so 1458 * a generation of 0 means "accept any" 1459 */ 1460 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1461 if (IS_ERR(inode)) 1462 return ERR_CAST(inode); 1463 if (generation && inode->i_generation != generation) { 1464 iput(inode); 1465 return ERR_PTR(-ESTALE); 1466 } 1467 1468 return inode; 1469 } 1470 1471 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1472 int fh_len, int fh_type) 1473 { 1474 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1475 ext4_nfs_get_inode); 1476 } 1477 1478 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1479 int fh_len, int fh_type) 1480 { 1481 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1482 ext4_nfs_get_inode); 1483 } 1484 1485 static int ext4_nfs_commit_metadata(struct inode *inode) 1486 { 1487 struct writeback_control wbc = { 1488 .sync_mode = WB_SYNC_ALL 1489 }; 1490 1491 trace_ext4_nfs_commit_metadata(inode); 1492 return ext4_write_inode(inode, &wbc); 1493 } 1494 1495 #ifdef CONFIG_FS_ENCRYPTION 1496 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1497 { 1498 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1499 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1500 } 1501 1502 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1503 void *fs_data) 1504 { 1505 handle_t *handle = fs_data; 1506 int res, res2, credits, retries = 0; 1507 1508 /* 1509 * Encrypting the root directory is not allowed because e2fsck expects 1510 * lost+found to exist and be unencrypted, and encrypting the root 1511 * directory would imply encrypting the lost+found directory as well as 1512 * the filename "lost+found" itself. 1513 */ 1514 if (inode->i_ino == EXT4_ROOT_INO) 1515 return -EPERM; 1516 1517 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1518 return -EINVAL; 1519 1520 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1521 return -EOPNOTSUPP; 1522 1523 res = ext4_convert_inline_data(inode); 1524 if (res) 1525 return res; 1526 1527 /* 1528 * If a journal handle was specified, then the encryption context is 1529 * being set on a new inode via inheritance and is part of a larger 1530 * transaction to create the inode. Otherwise the encryption context is 1531 * being set on an existing inode in its own transaction. Only in the 1532 * latter case should the "retry on ENOSPC" logic be used. 1533 */ 1534 1535 if (handle) { 1536 res = ext4_xattr_set_handle(handle, inode, 1537 EXT4_XATTR_INDEX_ENCRYPTION, 1538 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1539 ctx, len, 0); 1540 if (!res) { 1541 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1542 ext4_clear_inode_state(inode, 1543 EXT4_STATE_MAY_INLINE_DATA); 1544 /* 1545 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1546 * S_DAX may be disabled 1547 */ 1548 ext4_set_inode_flags(inode, false); 1549 } 1550 return res; 1551 } 1552 1553 res = dquot_initialize(inode); 1554 if (res) 1555 return res; 1556 retry: 1557 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1558 &credits); 1559 if (res) 1560 return res; 1561 1562 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1563 if (IS_ERR(handle)) 1564 return PTR_ERR(handle); 1565 1566 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1567 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1568 ctx, len, 0); 1569 if (!res) { 1570 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1571 /* 1572 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1573 * S_DAX may be disabled 1574 */ 1575 ext4_set_inode_flags(inode, false); 1576 res = ext4_mark_inode_dirty(handle, inode); 1577 if (res) 1578 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1579 } 1580 res2 = ext4_journal_stop(handle); 1581 1582 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1583 goto retry; 1584 if (!res) 1585 res = res2; 1586 return res; 1587 } 1588 1589 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1590 { 1591 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1592 } 1593 1594 static bool ext4_has_stable_inodes(struct super_block *sb) 1595 { 1596 return ext4_has_feature_stable_inodes(sb); 1597 } 1598 1599 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1600 int *ino_bits_ret, int *lblk_bits_ret) 1601 { 1602 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1603 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1604 } 1605 1606 static const struct fscrypt_operations ext4_cryptops = { 1607 .key_prefix = "ext4:", 1608 .get_context = ext4_get_context, 1609 .set_context = ext4_set_context, 1610 .get_dummy_policy = ext4_get_dummy_policy, 1611 .empty_dir = ext4_empty_dir, 1612 .has_stable_inodes = ext4_has_stable_inodes, 1613 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1614 }; 1615 #endif 1616 1617 #ifdef CONFIG_QUOTA 1618 static const char * const quotatypes[] = INITQFNAMES; 1619 #define QTYPE2NAME(t) (quotatypes[t]) 1620 1621 static int ext4_write_dquot(struct dquot *dquot); 1622 static int ext4_acquire_dquot(struct dquot *dquot); 1623 static int ext4_release_dquot(struct dquot *dquot); 1624 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1625 static int ext4_write_info(struct super_block *sb, int type); 1626 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1627 const struct path *path); 1628 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1629 size_t len, loff_t off); 1630 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1631 const char *data, size_t len, loff_t off); 1632 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1633 unsigned int flags); 1634 1635 static struct dquot **ext4_get_dquots(struct inode *inode) 1636 { 1637 return EXT4_I(inode)->i_dquot; 1638 } 1639 1640 static const struct dquot_operations ext4_quota_operations = { 1641 .get_reserved_space = ext4_get_reserved_space, 1642 .write_dquot = ext4_write_dquot, 1643 .acquire_dquot = ext4_acquire_dquot, 1644 .release_dquot = ext4_release_dquot, 1645 .mark_dirty = ext4_mark_dquot_dirty, 1646 .write_info = ext4_write_info, 1647 .alloc_dquot = dquot_alloc, 1648 .destroy_dquot = dquot_destroy, 1649 .get_projid = ext4_get_projid, 1650 .get_inode_usage = ext4_get_inode_usage, 1651 .get_next_id = dquot_get_next_id, 1652 }; 1653 1654 static const struct quotactl_ops ext4_qctl_operations = { 1655 .quota_on = ext4_quota_on, 1656 .quota_off = ext4_quota_off, 1657 .quota_sync = dquot_quota_sync, 1658 .get_state = dquot_get_state, 1659 .set_info = dquot_set_dqinfo, 1660 .get_dqblk = dquot_get_dqblk, 1661 .set_dqblk = dquot_set_dqblk, 1662 .get_nextdqblk = dquot_get_next_dqblk, 1663 }; 1664 #endif 1665 1666 static const struct super_operations ext4_sops = { 1667 .alloc_inode = ext4_alloc_inode, 1668 .free_inode = ext4_free_in_core_inode, 1669 .destroy_inode = ext4_destroy_inode, 1670 .write_inode = ext4_write_inode, 1671 .dirty_inode = ext4_dirty_inode, 1672 .drop_inode = ext4_drop_inode, 1673 .evict_inode = ext4_evict_inode, 1674 .put_super = ext4_put_super, 1675 .sync_fs = ext4_sync_fs, 1676 .freeze_fs = ext4_freeze, 1677 .unfreeze_fs = ext4_unfreeze, 1678 .statfs = ext4_statfs, 1679 .show_options = ext4_show_options, 1680 #ifdef CONFIG_QUOTA 1681 .quota_read = ext4_quota_read, 1682 .quota_write = ext4_quota_write, 1683 .get_dquots = ext4_get_dquots, 1684 #endif 1685 }; 1686 1687 static const struct export_operations ext4_export_ops = { 1688 .fh_to_dentry = ext4_fh_to_dentry, 1689 .fh_to_parent = ext4_fh_to_parent, 1690 .get_parent = ext4_get_parent, 1691 .commit_metadata = ext4_nfs_commit_metadata, 1692 }; 1693 1694 enum { 1695 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1696 Opt_resgid, Opt_resuid, Opt_sb, 1697 Opt_nouid32, Opt_debug, Opt_removed, 1698 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1699 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1700 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1701 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1702 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1703 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1704 Opt_inlinecrypt, 1705 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1706 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1707 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1708 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1709 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1710 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1711 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1712 Opt_inode_readahead_blks, Opt_journal_ioprio, 1713 Opt_dioread_nolock, Opt_dioread_lock, 1714 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1715 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1716 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1717 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1718 #ifdef CONFIG_EXT4_DEBUG 1719 Opt_fc_debug_max_replay, Opt_fc_debug_force 1720 #endif 1721 }; 1722 1723 static const struct constant_table ext4_param_errors[] = { 1724 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1725 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1726 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1727 {} 1728 }; 1729 1730 static const struct constant_table ext4_param_data[] = { 1731 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1732 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1733 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1734 {} 1735 }; 1736 1737 static const struct constant_table ext4_param_data_err[] = { 1738 {"abort", Opt_data_err_abort}, 1739 {"ignore", Opt_data_err_ignore}, 1740 {} 1741 }; 1742 1743 static const struct constant_table ext4_param_jqfmt[] = { 1744 {"vfsold", QFMT_VFS_OLD}, 1745 {"vfsv0", QFMT_VFS_V0}, 1746 {"vfsv1", QFMT_VFS_V1}, 1747 {} 1748 }; 1749 1750 static const struct constant_table ext4_param_dax[] = { 1751 {"always", Opt_dax_always}, 1752 {"inode", Opt_dax_inode}, 1753 {"never", Opt_dax_never}, 1754 {} 1755 }; 1756 1757 /* String parameter that allows empty argument */ 1758 #define fsparam_string_empty(NAME, OPT) \ 1759 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1760 1761 /* 1762 * Mount option specification 1763 * We don't use fsparam_flag_no because of the way we set the 1764 * options and the way we show them in _ext4_show_options(). To 1765 * keep the changes to a minimum, let's keep the negative options 1766 * separate for now. 1767 */ 1768 static const struct fs_parameter_spec ext4_param_specs[] = { 1769 fsparam_flag ("bsddf", Opt_bsd_df), 1770 fsparam_flag ("minixdf", Opt_minix_df), 1771 fsparam_flag ("grpid", Opt_grpid), 1772 fsparam_flag ("bsdgroups", Opt_grpid), 1773 fsparam_flag ("nogrpid", Opt_nogrpid), 1774 fsparam_flag ("sysvgroups", Opt_nogrpid), 1775 fsparam_u32 ("resgid", Opt_resgid), 1776 fsparam_u32 ("resuid", Opt_resuid), 1777 fsparam_u32 ("sb", Opt_sb), 1778 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1779 fsparam_flag ("nouid32", Opt_nouid32), 1780 fsparam_flag ("debug", Opt_debug), 1781 fsparam_flag ("oldalloc", Opt_removed), 1782 fsparam_flag ("orlov", Opt_removed), 1783 fsparam_flag ("user_xattr", Opt_user_xattr), 1784 fsparam_flag ("nouser_xattr", Opt_nouser_xattr), 1785 fsparam_flag ("acl", Opt_acl), 1786 fsparam_flag ("noacl", Opt_noacl), 1787 fsparam_flag ("norecovery", Opt_noload), 1788 fsparam_flag ("noload", Opt_noload), 1789 fsparam_flag ("bh", Opt_removed), 1790 fsparam_flag ("nobh", Opt_removed), 1791 fsparam_u32 ("commit", Opt_commit), 1792 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1793 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1794 fsparam_u32 ("journal_dev", Opt_journal_dev), 1795 fsparam_bdev ("journal_path", Opt_journal_path), 1796 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1797 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1798 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1799 fsparam_flag ("abort", Opt_abort), 1800 fsparam_enum ("data", Opt_data, ext4_param_data), 1801 fsparam_enum ("data_err", Opt_data_err, 1802 ext4_param_data_err), 1803 fsparam_string_empty 1804 ("usrjquota", Opt_usrjquota), 1805 fsparam_string_empty 1806 ("grpjquota", Opt_grpjquota), 1807 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1808 fsparam_flag ("grpquota", Opt_grpquota), 1809 fsparam_flag ("quota", Opt_quota), 1810 fsparam_flag ("noquota", Opt_noquota), 1811 fsparam_flag ("usrquota", Opt_usrquota), 1812 fsparam_flag ("prjquota", Opt_prjquota), 1813 fsparam_flag ("barrier", Opt_barrier), 1814 fsparam_u32 ("barrier", Opt_barrier), 1815 fsparam_flag ("nobarrier", Opt_nobarrier), 1816 fsparam_flag ("i_version", Opt_i_version), 1817 fsparam_flag ("dax", Opt_dax), 1818 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1819 fsparam_u32 ("stripe", Opt_stripe), 1820 fsparam_flag ("delalloc", Opt_delalloc), 1821 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1822 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1823 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1824 fsparam_u32 ("debug_want_extra_isize", 1825 Opt_debug_want_extra_isize), 1826 fsparam_flag ("mblk_io_submit", Opt_removed), 1827 fsparam_flag ("nomblk_io_submit", Opt_removed), 1828 fsparam_flag ("block_validity", Opt_block_validity), 1829 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1830 fsparam_u32 ("inode_readahead_blks", 1831 Opt_inode_readahead_blks), 1832 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1833 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1834 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1835 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1836 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1837 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1838 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1839 fsparam_flag ("discard", Opt_discard), 1840 fsparam_flag ("nodiscard", Opt_nodiscard), 1841 fsparam_u32 ("init_itable", Opt_init_itable), 1842 fsparam_flag ("init_itable", Opt_init_itable), 1843 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1844 #ifdef CONFIG_EXT4_DEBUG 1845 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1846 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1847 #endif 1848 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1849 fsparam_flag ("test_dummy_encryption", 1850 Opt_test_dummy_encryption), 1851 fsparam_string ("test_dummy_encryption", 1852 Opt_test_dummy_encryption), 1853 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1854 fsparam_flag ("nombcache", Opt_nombcache), 1855 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1856 fsparam_flag ("prefetch_block_bitmaps", 1857 Opt_removed), 1858 fsparam_flag ("no_prefetch_block_bitmaps", 1859 Opt_no_prefetch_block_bitmaps), 1860 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1861 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1862 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1863 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1864 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1865 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1866 {} 1867 }; 1868 1869 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1870 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1871 1872 static const char deprecated_msg[] = 1873 "Mount option \"%s\" will be removed by %s\n" 1874 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1875 1876 #define MOPT_SET 0x0001 1877 #define MOPT_CLEAR 0x0002 1878 #define MOPT_NOSUPPORT 0x0004 1879 #define MOPT_EXPLICIT 0x0008 1880 #ifdef CONFIG_QUOTA 1881 #define MOPT_Q 0 1882 #define MOPT_QFMT 0x0010 1883 #else 1884 #define MOPT_Q MOPT_NOSUPPORT 1885 #define MOPT_QFMT MOPT_NOSUPPORT 1886 #endif 1887 #define MOPT_NO_EXT2 0x0020 1888 #define MOPT_NO_EXT3 0x0040 1889 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1890 #define MOPT_SKIP 0x0080 1891 #define MOPT_2 0x0100 1892 1893 static const struct mount_opts { 1894 int token; 1895 int mount_opt; 1896 int flags; 1897 } ext4_mount_opts[] = { 1898 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1899 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1900 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1901 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1902 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1903 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1904 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1905 MOPT_EXT4_ONLY | MOPT_SET}, 1906 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1907 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1908 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1909 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1910 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1911 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1912 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1913 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1914 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1915 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1916 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1917 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1918 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1919 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1920 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1921 EXT4_MOUNT_JOURNAL_CHECKSUM), 1922 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1923 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1924 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1925 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1926 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1927 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1928 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1929 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1930 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1931 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1932 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1933 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1934 {Opt_data, 0, MOPT_NO_EXT2}, 1935 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1936 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1937 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1938 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1939 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1940 #else 1941 {Opt_acl, 0, MOPT_NOSUPPORT}, 1942 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1943 #endif 1944 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1945 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1946 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1947 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1948 MOPT_SET | MOPT_Q}, 1949 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1950 MOPT_SET | MOPT_Q}, 1951 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1952 MOPT_SET | MOPT_Q}, 1953 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1954 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1955 MOPT_CLEAR | MOPT_Q}, 1956 {Opt_usrjquota, 0, MOPT_Q}, 1957 {Opt_grpjquota, 0, MOPT_Q}, 1958 {Opt_jqfmt, 0, MOPT_QFMT}, 1959 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1960 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1961 MOPT_SET}, 1962 #ifdef CONFIG_EXT4_DEBUG 1963 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1964 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1965 #endif 1966 {Opt_err, 0, 0} 1967 }; 1968 1969 #if IS_ENABLED(CONFIG_UNICODE) 1970 static const struct ext4_sb_encodings { 1971 __u16 magic; 1972 char *name; 1973 unsigned int version; 1974 } ext4_sb_encoding_map[] = { 1975 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1976 }; 1977 1978 static const struct ext4_sb_encodings * 1979 ext4_sb_read_encoding(const struct ext4_super_block *es) 1980 { 1981 __u16 magic = le16_to_cpu(es->s_encoding); 1982 int i; 1983 1984 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1985 if (magic == ext4_sb_encoding_map[i].magic) 1986 return &ext4_sb_encoding_map[i]; 1987 1988 return NULL; 1989 } 1990 #endif 1991 1992 static int ext4_set_test_dummy_encryption(struct super_block *sb, char *arg) 1993 { 1994 #ifdef CONFIG_FS_ENCRYPTION 1995 struct ext4_sb_info *sbi = EXT4_SB(sb); 1996 int err; 1997 1998 err = fscrypt_set_test_dummy_encryption(sb, arg, 1999 &sbi->s_dummy_enc_policy); 2000 if (err) { 2001 ext4_msg(sb, KERN_WARNING, 2002 "Error while setting test dummy encryption [%d]", err); 2003 return err; 2004 } 2005 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2006 #endif 2007 return 0; 2008 } 2009 2010 #define EXT4_SPEC_JQUOTA (1 << 0) 2011 #define EXT4_SPEC_JQFMT (1 << 1) 2012 #define EXT4_SPEC_DATAJ (1 << 2) 2013 #define EXT4_SPEC_SB_BLOCK (1 << 3) 2014 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 2015 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 2016 #define EXT4_SPEC_DUMMY_ENCRYPTION (1 << 6) 2017 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 2018 #define EXT4_SPEC_s_max_batch_time (1 << 8) 2019 #define EXT4_SPEC_s_min_batch_time (1 << 9) 2020 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 2021 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 2022 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 2023 #define EXT4_SPEC_s_stripe (1 << 13) 2024 #define EXT4_SPEC_s_resuid (1 << 14) 2025 #define EXT4_SPEC_s_resgid (1 << 15) 2026 #define EXT4_SPEC_s_commit_interval (1 << 16) 2027 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 2028 #define EXT4_SPEC_s_sb_block (1 << 18) 2029 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 2030 2031 struct ext4_fs_context { 2032 char *s_qf_names[EXT4_MAXQUOTAS]; 2033 char *test_dummy_enc_arg; 2034 int s_jquota_fmt; /* Format of quota to use */ 2035 #ifdef CONFIG_EXT4_DEBUG 2036 int s_fc_debug_max_replay; 2037 #endif 2038 unsigned short qname_spec; 2039 unsigned long vals_s_flags; /* Bits to set in s_flags */ 2040 unsigned long mask_s_flags; /* Bits changed in s_flags */ 2041 unsigned long journal_devnum; 2042 unsigned long s_commit_interval; 2043 unsigned long s_stripe; 2044 unsigned int s_inode_readahead_blks; 2045 unsigned int s_want_extra_isize; 2046 unsigned int s_li_wait_mult; 2047 unsigned int s_max_dir_size_kb; 2048 unsigned int journal_ioprio; 2049 unsigned int vals_s_mount_opt; 2050 unsigned int mask_s_mount_opt; 2051 unsigned int vals_s_mount_opt2; 2052 unsigned int mask_s_mount_opt2; 2053 unsigned long vals_s_mount_flags; 2054 unsigned long mask_s_mount_flags; 2055 unsigned int opt_flags; /* MOPT flags */ 2056 unsigned int spec; 2057 u32 s_max_batch_time; 2058 u32 s_min_batch_time; 2059 kuid_t s_resuid; 2060 kgid_t s_resgid; 2061 ext4_fsblk_t s_sb_block; 2062 }; 2063 2064 static void ext4_fc_free(struct fs_context *fc) 2065 { 2066 struct ext4_fs_context *ctx = fc->fs_private; 2067 int i; 2068 2069 if (!ctx) 2070 return; 2071 2072 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2073 kfree(ctx->s_qf_names[i]); 2074 2075 kfree(ctx->test_dummy_enc_arg); 2076 kfree(ctx); 2077 } 2078 2079 int ext4_init_fs_context(struct fs_context *fc) 2080 { 2081 struct ext4_fs_context *ctx; 2082 2083 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2084 if (!ctx) 2085 return -ENOMEM; 2086 2087 fc->fs_private = ctx; 2088 fc->ops = &ext4_context_ops; 2089 2090 return 0; 2091 } 2092 2093 #ifdef CONFIG_QUOTA 2094 /* 2095 * Note the name of the specified quota file. 2096 */ 2097 static int note_qf_name(struct fs_context *fc, int qtype, 2098 struct fs_parameter *param) 2099 { 2100 struct ext4_fs_context *ctx = fc->fs_private; 2101 char *qname; 2102 2103 if (param->size < 1) { 2104 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2105 return -EINVAL; 2106 } 2107 if (strchr(param->string, '/')) { 2108 ext4_msg(NULL, KERN_ERR, 2109 "quotafile must be on filesystem root"); 2110 return -EINVAL; 2111 } 2112 if (ctx->s_qf_names[qtype]) { 2113 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2114 ext4_msg(NULL, KERN_ERR, 2115 "%s quota file already specified", 2116 QTYPE2NAME(qtype)); 2117 return -EINVAL; 2118 } 2119 return 0; 2120 } 2121 2122 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2123 if (!qname) { 2124 ext4_msg(NULL, KERN_ERR, 2125 "Not enough memory for storing quotafile name"); 2126 return -ENOMEM; 2127 } 2128 ctx->s_qf_names[qtype] = qname; 2129 ctx->qname_spec |= 1 << qtype; 2130 ctx->spec |= EXT4_SPEC_JQUOTA; 2131 return 0; 2132 } 2133 2134 /* 2135 * Clear the name of the specified quota file. 2136 */ 2137 static int unnote_qf_name(struct fs_context *fc, int qtype) 2138 { 2139 struct ext4_fs_context *ctx = fc->fs_private; 2140 2141 if (ctx->s_qf_names[qtype]) 2142 kfree(ctx->s_qf_names[qtype]); 2143 2144 ctx->s_qf_names[qtype] = NULL; 2145 ctx->qname_spec |= 1 << qtype; 2146 ctx->spec |= EXT4_SPEC_JQUOTA; 2147 return 0; 2148 } 2149 #endif 2150 2151 #define EXT4_SET_CTX(name) \ 2152 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2153 unsigned long flag) \ 2154 { \ 2155 ctx->mask_s_##name |= flag; \ 2156 ctx->vals_s_##name |= flag; \ 2157 } 2158 2159 #define EXT4_CLEAR_CTX(name) \ 2160 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2161 unsigned long flag) \ 2162 { \ 2163 ctx->mask_s_##name |= flag; \ 2164 ctx->vals_s_##name &= ~flag; \ 2165 } 2166 2167 #define EXT4_TEST_CTX(name) \ 2168 static inline unsigned long \ 2169 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2170 { \ 2171 return (ctx->vals_s_##name & flag); \ 2172 } 2173 2174 EXT4_SET_CTX(flags); /* set only */ 2175 EXT4_SET_CTX(mount_opt); 2176 EXT4_CLEAR_CTX(mount_opt); 2177 EXT4_TEST_CTX(mount_opt); 2178 EXT4_SET_CTX(mount_opt2); 2179 EXT4_CLEAR_CTX(mount_opt2); 2180 EXT4_TEST_CTX(mount_opt2); 2181 2182 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2183 { 2184 set_bit(bit, &ctx->mask_s_mount_flags); 2185 set_bit(bit, &ctx->vals_s_mount_flags); 2186 } 2187 2188 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2189 { 2190 struct ext4_fs_context *ctx = fc->fs_private; 2191 struct fs_parse_result result; 2192 const struct mount_opts *m; 2193 int is_remount; 2194 kuid_t uid; 2195 kgid_t gid; 2196 int token; 2197 2198 token = fs_parse(fc, ext4_param_specs, param, &result); 2199 if (token < 0) 2200 return token; 2201 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2202 2203 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2204 if (token == m->token) 2205 break; 2206 2207 ctx->opt_flags |= m->flags; 2208 2209 if (m->flags & MOPT_EXPLICIT) { 2210 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2211 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2212 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2213 ctx_set_mount_opt2(ctx, 2214 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2215 } else 2216 return -EINVAL; 2217 } 2218 2219 if (m->flags & MOPT_NOSUPPORT) { 2220 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2221 param->key); 2222 return 0; 2223 } 2224 2225 switch (token) { 2226 #ifdef CONFIG_QUOTA 2227 case Opt_usrjquota: 2228 if (!*param->string) 2229 return unnote_qf_name(fc, USRQUOTA); 2230 else 2231 return note_qf_name(fc, USRQUOTA, param); 2232 case Opt_grpjquota: 2233 if (!*param->string) 2234 return unnote_qf_name(fc, GRPQUOTA); 2235 else 2236 return note_qf_name(fc, GRPQUOTA, param); 2237 #endif 2238 case Opt_noacl: 2239 case Opt_nouser_xattr: 2240 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5"); 2241 break; 2242 case Opt_sb: 2243 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2244 ext4_msg(NULL, KERN_WARNING, 2245 "Ignoring %s option on remount", param->key); 2246 } else { 2247 ctx->s_sb_block = result.uint_32; 2248 ctx->spec |= EXT4_SPEC_s_sb_block; 2249 } 2250 return 0; 2251 case Opt_removed: 2252 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2253 param->key); 2254 return 0; 2255 case Opt_abort: 2256 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2257 return 0; 2258 case Opt_i_version: 2259 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20"); 2260 ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n"); 2261 ctx_set_flags(ctx, SB_I_VERSION); 2262 return 0; 2263 case Opt_inlinecrypt: 2264 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2265 ctx_set_flags(ctx, SB_INLINECRYPT); 2266 #else 2267 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2268 #endif 2269 return 0; 2270 case Opt_errors: 2271 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2272 ctx_set_mount_opt(ctx, result.uint_32); 2273 return 0; 2274 #ifdef CONFIG_QUOTA 2275 case Opt_jqfmt: 2276 ctx->s_jquota_fmt = result.uint_32; 2277 ctx->spec |= EXT4_SPEC_JQFMT; 2278 return 0; 2279 #endif 2280 case Opt_data: 2281 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2282 ctx_set_mount_opt(ctx, result.uint_32); 2283 ctx->spec |= EXT4_SPEC_DATAJ; 2284 return 0; 2285 case Opt_commit: 2286 if (result.uint_32 == 0) 2287 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE; 2288 else if (result.uint_32 > INT_MAX / HZ) { 2289 ext4_msg(NULL, KERN_ERR, 2290 "Invalid commit interval %d, " 2291 "must be smaller than %d", 2292 result.uint_32, INT_MAX / HZ); 2293 return -EINVAL; 2294 } 2295 ctx->s_commit_interval = HZ * result.uint_32; 2296 ctx->spec |= EXT4_SPEC_s_commit_interval; 2297 return 0; 2298 case Opt_debug_want_extra_isize: 2299 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2300 ext4_msg(NULL, KERN_ERR, 2301 "Invalid want_extra_isize %d", result.uint_32); 2302 return -EINVAL; 2303 } 2304 ctx->s_want_extra_isize = result.uint_32; 2305 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2306 return 0; 2307 case Opt_max_batch_time: 2308 ctx->s_max_batch_time = result.uint_32; 2309 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2310 return 0; 2311 case Opt_min_batch_time: 2312 ctx->s_min_batch_time = result.uint_32; 2313 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2314 return 0; 2315 case Opt_inode_readahead_blks: 2316 if (result.uint_32 && 2317 (result.uint_32 > (1 << 30) || 2318 !is_power_of_2(result.uint_32))) { 2319 ext4_msg(NULL, KERN_ERR, 2320 "EXT4-fs: inode_readahead_blks must be " 2321 "0 or a power of 2 smaller than 2^31"); 2322 return -EINVAL; 2323 } 2324 ctx->s_inode_readahead_blks = result.uint_32; 2325 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2326 return 0; 2327 case Opt_init_itable: 2328 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2329 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2330 if (param->type == fs_value_is_string) 2331 ctx->s_li_wait_mult = result.uint_32; 2332 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2333 return 0; 2334 case Opt_max_dir_size_kb: 2335 ctx->s_max_dir_size_kb = result.uint_32; 2336 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2337 return 0; 2338 #ifdef CONFIG_EXT4_DEBUG 2339 case Opt_fc_debug_max_replay: 2340 ctx->s_fc_debug_max_replay = result.uint_32; 2341 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2342 return 0; 2343 #endif 2344 case Opt_stripe: 2345 ctx->s_stripe = result.uint_32; 2346 ctx->spec |= EXT4_SPEC_s_stripe; 2347 return 0; 2348 case Opt_resuid: 2349 uid = make_kuid(current_user_ns(), result.uint_32); 2350 if (!uid_valid(uid)) { 2351 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2352 result.uint_32); 2353 return -EINVAL; 2354 } 2355 ctx->s_resuid = uid; 2356 ctx->spec |= EXT4_SPEC_s_resuid; 2357 return 0; 2358 case Opt_resgid: 2359 gid = make_kgid(current_user_ns(), result.uint_32); 2360 if (!gid_valid(gid)) { 2361 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2362 result.uint_32); 2363 return -EINVAL; 2364 } 2365 ctx->s_resgid = gid; 2366 ctx->spec |= EXT4_SPEC_s_resgid; 2367 return 0; 2368 case Opt_journal_dev: 2369 if (is_remount) { 2370 ext4_msg(NULL, KERN_ERR, 2371 "Cannot specify journal on remount"); 2372 return -EINVAL; 2373 } 2374 ctx->journal_devnum = result.uint_32; 2375 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2376 return 0; 2377 case Opt_journal_path: 2378 { 2379 struct inode *journal_inode; 2380 struct path path; 2381 int error; 2382 2383 if (is_remount) { 2384 ext4_msg(NULL, KERN_ERR, 2385 "Cannot specify journal on remount"); 2386 return -EINVAL; 2387 } 2388 2389 error = fs_lookup_param(fc, param, 1, &path); 2390 if (error) { 2391 ext4_msg(NULL, KERN_ERR, "error: could not find " 2392 "journal device path"); 2393 return -EINVAL; 2394 } 2395 2396 journal_inode = d_inode(path.dentry); 2397 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2398 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2399 path_put(&path); 2400 return 0; 2401 } 2402 case Opt_journal_ioprio: 2403 if (result.uint_32 > 7) { 2404 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2405 " (must be 0-7)"); 2406 return -EINVAL; 2407 } 2408 ctx->journal_ioprio = 2409 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2410 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2411 return 0; 2412 case Opt_test_dummy_encryption: 2413 #ifdef CONFIG_FS_ENCRYPTION 2414 if (param->type == fs_value_is_flag) { 2415 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION; 2416 ctx->test_dummy_enc_arg = NULL; 2417 return 0; 2418 } 2419 if (*param->string && 2420 !(!strcmp(param->string, "v1") || 2421 !strcmp(param->string, "v2"))) { 2422 ext4_msg(NULL, KERN_WARNING, 2423 "Value of option \"%s\" is unrecognized", 2424 param->key); 2425 return -EINVAL; 2426 } 2427 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION; 2428 ctx->test_dummy_enc_arg = kmemdup_nul(param->string, param->size, 2429 GFP_KERNEL); 2430 #else 2431 ext4_msg(NULL, KERN_WARNING, 2432 "Test dummy encryption mount option ignored"); 2433 #endif 2434 return 0; 2435 case Opt_dax: 2436 case Opt_dax_type: 2437 #ifdef CONFIG_FS_DAX 2438 { 2439 int type = (token == Opt_dax) ? 2440 Opt_dax : result.uint_32; 2441 2442 switch (type) { 2443 case Opt_dax: 2444 case Opt_dax_always: 2445 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2446 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2447 break; 2448 case Opt_dax_never: 2449 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2450 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2451 break; 2452 case Opt_dax_inode: 2453 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2454 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2455 /* Strictly for printing options */ 2456 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2457 break; 2458 } 2459 return 0; 2460 } 2461 #else 2462 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2463 return -EINVAL; 2464 #endif 2465 case Opt_data_err: 2466 if (result.uint_32 == Opt_data_err_abort) 2467 ctx_set_mount_opt(ctx, m->mount_opt); 2468 else if (result.uint_32 == Opt_data_err_ignore) 2469 ctx_clear_mount_opt(ctx, m->mount_opt); 2470 return 0; 2471 case Opt_mb_optimize_scan: 2472 if (result.int_32 == 1) { 2473 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2474 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2475 } else if (result.int_32 == 0) { 2476 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2477 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2478 } else { 2479 ext4_msg(NULL, KERN_WARNING, 2480 "mb_optimize_scan should be set to 0 or 1."); 2481 return -EINVAL; 2482 } 2483 return 0; 2484 } 2485 2486 /* 2487 * At this point we should only be getting options requiring MOPT_SET, 2488 * or MOPT_CLEAR. Anything else is a bug 2489 */ 2490 if (m->token == Opt_err) { 2491 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2492 param->key); 2493 WARN_ON(1); 2494 return -EINVAL; 2495 } 2496 2497 else { 2498 unsigned int set = 0; 2499 2500 if ((param->type == fs_value_is_flag) || 2501 result.uint_32 > 0) 2502 set = 1; 2503 2504 if (m->flags & MOPT_CLEAR) 2505 set = !set; 2506 else if (unlikely(!(m->flags & MOPT_SET))) { 2507 ext4_msg(NULL, KERN_WARNING, 2508 "buggy handling of option %s", 2509 param->key); 2510 WARN_ON(1); 2511 return -EINVAL; 2512 } 2513 if (m->flags & MOPT_2) { 2514 if (set != 0) 2515 ctx_set_mount_opt2(ctx, m->mount_opt); 2516 else 2517 ctx_clear_mount_opt2(ctx, m->mount_opt); 2518 } else { 2519 if (set != 0) 2520 ctx_set_mount_opt(ctx, m->mount_opt); 2521 else 2522 ctx_clear_mount_opt(ctx, m->mount_opt); 2523 } 2524 } 2525 2526 return 0; 2527 } 2528 2529 static int parse_options(struct fs_context *fc, char *options) 2530 { 2531 struct fs_parameter param; 2532 int ret; 2533 char *key; 2534 2535 if (!options) 2536 return 0; 2537 2538 while ((key = strsep(&options, ",")) != NULL) { 2539 if (*key) { 2540 size_t v_len = 0; 2541 char *value = strchr(key, '='); 2542 2543 param.type = fs_value_is_flag; 2544 param.string = NULL; 2545 2546 if (value) { 2547 if (value == key) 2548 continue; 2549 2550 *value++ = 0; 2551 v_len = strlen(value); 2552 param.string = kmemdup_nul(value, v_len, 2553 GFP_KERNEL); 2554 if (!param.string) 2555 return -ENOMEM; 2556 param.type = fs_value_is_string; 2557 } 2558 2559 param.key = key; 2560 param.size = v_len; 2561 2562 ret = ext4_parse_param(fc, ¶m); 2563 if (param.string) 2564 kfree(param.string); 2565 if (ret < 0) 2566 return ret; 2567 } 2568 } 2569 2570 ret = ext4_validate_options(fc); 2571 if (ret < 0) 2572 return ret; 2573 2574 return 0; 2575 } 2576 2577 static int parse_apply_sb_mount_options(struct super_block *sb, 2578 struct ext4_fs_context *m_ctx) 2579 { 2580 struct ext4_sb_info *sbi = EXT4_SB(sb); 2581 char *s_mount_opts = NULL; 2582 struct ext4_fs_context *s_ctx = NULL; 2583 struct fs_context *fc = NULL; 2584 int ret = -ENOMEM; 2585 2586 if (!sbi->s_es->s_mount_opts[0]) 2587 return 0; 2588 2589 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2590 sizeof(sbi->s_es->s_mount_opts), 2591 GFP_KERNEL); 2592 if (!s_mount_opts) 2593 return ret; 2594 2595 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2596 if (!fc) 2597 goto out_free; 2598 2599 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2600 if (!s_ctx) 2601 goto out_free; 2602 2603 fc->fs_private = s_ctx; 2604 fc->s_fs_info = sbi; 2605 2606 ret = parse_options(fc, s_mount_opts); 2607 if (ret < 0) 2608 goto parse_failed; 2609 2610 ret = ext4_check_opt_consistency(fc, sb); 2611 if (ret < 0) { 2612 parse_failed: 2613 ext4_msg(sb, KERN_WARNING, 2614 "failed to parse options in superblock: %s", 2615 s_mount_opts); 2616 ret = 0; 2617 goto out_free; 2618 } 2619 2620 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2621 m_ctx->journal_devnum = s_ctx->journal_devnum; 2622 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2623 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2624 2625 ret = ext4_apply_options(fc, sb); 2626 2627 out_free: 2628 kfree(s_ctx); 2629 kfree(fc); 2630 kfree(s_mount_opts); 2631 return ret; 2632 } 2633 2634 static void ext4_apply_quota_options(struct fs_context *fc, 2635 struct super_block *sb) 2636 { 2637 #ifdef CONFIG_QUOTA 2638 bool quota_feature = ext4_has_feature_quota(sb); 2639 struct ext4_fs_context *ctx = fc->fs_private; 2640 struct ext4_sb_info *sbi = EXT4_SB(sb); 2641 char *qname; 2642 int i; 2643 2644 if (quota_feature) 2645 return; 2646 2647 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2648 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2649 if (!(ctx->qname_spec & (1 << i))) 2650 continue; 2651 2652 qname = ctx->s_qf_names[i]; /* May be NULL */ 2653 if (qname) 2654 set_opt(sb, QUOTA); 2655 ctx->s_qf_names[i] = NULL; 2656 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2657 lockdep_is_held(&sb->s_umount)); 2658 if (qname) 2659 kfree_rcu(qname); 2660 } 2661 } 2662 2663 if (ctx->spec & EXT4_SPEC_JQFMT) 2664 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2665 #endif 2666 } 2667 2668 /* 2669 * Check quota settings consistency. 2670 */ 2671 static int ext4_check_quota_consistency(struct fs_context *fc, 2672 struct super_block *sb) 2673 { 2674 #ifdef CONFIG_QUOTA 2675 struct ext4_fs_context *ctx = fc->fs_private; 2676 struct ext4_sb_info *sbi = EXT4_SB(sb); 2677 bool quota_feature = ext4_has_feature_quota(sb); 2678 bool quota_loaded = sb_any_quota_loaded(sb); 2679 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2680 int quota_flags, i; 2681 2682 /* 2683 * We do the test below only for project quotas. 'usrquota' and 2684 * 'grpquota' mount options are allowed even without quota feature 2685 * to support legacy quotas in quota files. 2686 */ 2687 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2688 !ext4_has_feature_project(sb)) { 2689 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2690 "Cannot enable project quota enforcement."); 2691 return -EINVAL; 2692 } 2693 2694 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2695 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2696 if (quota_loaded && 2697 ctx->mask_s_mount_opt & quota_flags && 2698 !ctx_test_mount_opt(ctx, quota_flags)) 2699 goto err_quota_change; 2700 2701 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2702 2703 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2704 if (!(ctx->qname_spec & (1 << i))) 2705 continue; 2706 2707 if (quota_loaded && 2708 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2709 goto err_jquota_change; 2710 2711 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2712 strcmp(get_qf_name(sb, sbi, i), 2713 ctx->s_qf_names[i]) != 0) 2714 goto err_jquota_specified; 2715 } 2716 2717 if (quota_feature) { 2718 ext4_msg(NULL, KERN_INFO, 2719 "Journaled quota options ignored when " 2720 "QUOTA feature is enabled"); 2721 return 0; 2722 } 2723 } 2724 2725 if (ctx->spec & EXT4_SPEC_JQFMT) { 2726 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2727 goto err_jquota_change; 2728 if (quota_feature) { 2729 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2730 "ignored when QUOTA feature is enabled"); 2731 return 0; 2732 } 2733 } 2734 2735 /* Make sure we don't mix old and new quota format */ 2736 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2737 ctx->s_qf_names[USRQUOTA]); 2738 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2739 ctx->s_qf_names[GRPQUOTA]); 2740 2741 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2742 test_opt(sb, USRQUOTA)); 2743 2744 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2745 test_opt(sb, GRPQUOTA)); 2746 2747 if (usr_qf_name) { 2748 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2749 usrquota = false; 2750 } 2751 if (grp_qf_name) { 2752 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2753 grpquota = false; 2754 } 2755 2756 if (usr_qf_name || grp_qf_name) { 2757 if (usrquota || grpquota) { 2758 ext4_msg(NULL, KERN_ERR, "old and new quota " 2759 "format mixing"); 2760 return -EINVAL; 2761 } 2762 2763 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2764 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2765 "not specified"); 2766 return -EINVAL; 2767 } 2768 } 2769 2770 return 0; 2771 2772 err_quota_change: 2773 ext4_msg(NULL, KERN_ERR, 2774 "Cannot change quota options when quota turned on"); 2775 return -EINVAL; 2776 err_jquota_change: 2777 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2778 "options when quota turned on"); 2779 return -EINVAL; 2780 err_jquota_specified: 2781 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2782 QTYPE2NAME(i)); 2783 return -EINVAL; 2784 #else 2785 return 0; 2786 #endif 2787 } 2788 2789 static int ext4_check_opt_consistency(struct fs_context *fc, 2790 struct super_block *sb) 2791 { 2792 struct ext4_fs_context *ctx = fc->fs_private; 2793 struct ext4_sb_info *sbi = fc->s_fs_info; 2794 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2795 2796 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2797 ext4_msg(NULL, KERN_ERR, 2798 "Mount option(s) incompatible with ext2"); 2799 return -EINVAL; 2800 } 2801 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2802 ext4_msg(NULL, KERN_ERR, 2803 "Mount option(s) incompatible with ext3"); 2804 return -EINVAL; 2805 } 2806 2807 if (ctx->s_want_extra_isize > 2808 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2809 ext4_msg(NULL, KERN_ERR, 2810 "Invalid want_extra_isize %d", 2811 ctx->s_want_extra_isize); 2812 return -EINVAL; 2813 } 2814 2815 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2816 int blocksize = 2817 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2818 if (blocksize < PAGE_SIZE) 2819 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2820 "experimental mount option 'dioread_nolock' " 2821 "for blocksize < PAGE_SIZE"); 2822 } 2823 2824 #ifdef CONFIG_FS_ENCRYPTION 2825 /* 2826 * This mount option is just for testing, and it's not worthwhile to 2827 * implement the extra complexity (e.g. RCU protection) that would be 2828 * needed to allow it to be set or changed during remount. We do allow 2829 * it to be specified during remount, but only if there is no change. 2830 */ 2831 if ((ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) && 2832 is_remount && !sbi->s_dummy_enc_policy.policy) { 2833 ext4_msg(NULL, KERN_WARNING, 2834 "Can't set test_dummy_encryption on remount"); 2835 return -1; 2836 } 2837 #endif 2838 2839 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2840 if (!sbi->s_journal) { 2841 ext4_msg(NULL, KERN_WARNING, 2842 "Remounting file system with no journal " 2843 "so ignoring journalled data option"); 2844 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2845 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2846 test_opt(sb, DATA_FLAGS)) { 2847 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2848 "on remount"); 2849 return -EINVAL; 2850 } 2851 } 2852 2853 if (is_remount) { 2854 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2855 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2856 ext4_msg(NULL, KERN_ERR, "can't mount with " 2857 "both data=journal and dax"); 2858 return -EINVAL; 2859 } 2860 2861 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2862 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2863 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2864 fail_dax_change_remount: 2865 ext4_msg(NULL, KERN_ERR, "can't change " 2866 "dax mount option while remounting"); 2867 return -EINVAL; 2868 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2869 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2870 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2871 goto fail_dax_change_remount; 2872 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2873 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2874 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2875 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2876 goto fail_dax_change_remount; 2877 } 2878 } 2879 2880 return ext4_check_quota_consistency(fc, sb); 2881 } 2882 2883 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2884 { 2885 struct ext4_fs_context *ctx = fc->fs_private; 2886 struct ext4_sb_info *sbi = fc->s_fs_info; 2887 int ret = 0; 2888 2889 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2890 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2891 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2892 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2893 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2894 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2895 sb->s_flags &= ~ctx->mask_s_flags; 2896 sb->s_flags |= ctx->vals_s_flags; 2897 2898 /* 2899 * i_version differs from common mount option iversion so we have 2900 * to let vfs know that it was set, otherwise it would get cleared 2901 * on remount 2902 */ 2903 if (ctx->mask_s_flags & SB_I_VERSION) 2904 fc->sb_flags |= SB_I_VERSION; 2905 2906 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2907 APPLY(s_commit_interval); 2908 APPLY(s_stripe); 2909 APPLY(s_max_batch_time); 2910 APPLY(s_min_batch_time); 2911 APPLY(s_want_extra_isize); 2912 APPLY(s_inode_readahead_blks); 2913 APPLY(s_max_dir_size_kb); 2914 APPLY(s_li_wait_mult); 2915 APPLY(s_resgid); 2916 APPLY(s_resuid); 2917 2918 #ifdef CONFIG_EXT4_DEBUG 2919 APPLY(s_fc_debug_max_replay); 2920 #endif 2921 2922 ext4_apply_quota_options(fc, sb); 2923 2924 if (ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) 2925 ret = ext4_set_test_dummy_encryption(sb, ctx->test_dummy_enc_arg); 2926 2927 return ret; 2928 } 2929 2930 2931 static int ext4_validate_options(struct fs_context *fc) 2932 { 2933 #ifdef CONFIG_QUOTA 2934 struct ext4_fs_context *ctx = fc->fs_private; 2935 char *usr_qf_name, *grp_qf_name; 2936 2937 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2938 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2939 2940 if (usr_qf_name || grp_qf_name) { 2941 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2942 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2943 2944 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2945 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2946 2947 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2948 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2949 ext4_msg(NULL, KERN_ERR, "old and new quota " 2950 "format mixing"); 2951 return -EINVAL; 2952 } 2953 } 2954 #endif 2955 return 1; 2956 } 2957 2958 static inline void ext4_show_quota_options(struct seq_file *seq, 2959 struct super_block *sb) 2960 { 2961 #if defined(CONFIG_QUOTA) 2962 struct ext4_sb_info *sbi = EXT4_SB(sb); 2963 char *usr_qf_name, *grp_qf_name; 2964 2965 if (sbi->s_jquota_fmt) { 2966 char *fmtname = ""; 2967 2968 switch (sbi->s_jquota_fmt) { 2969 case QFMT_VFS_OLD: 2970 fmtname = "vfsold"; 2971 break; 2972 case QFMT_VFS_V0: 2973 fmtname = "vfsv0"; 2974 break; 2975 case QFMT_VFS_V1: 2976 fmtname = "vfsv1"; 2977 break; 2978 } 2979 seq_printf(seq, ",jqfmt=%s", fmtname); 2980 } 2981 2982 rcu_read_lock(); 2983 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2984 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2985 if (usr_qf_name) 2986 seq_show_option(seq, "usrjquota", usr_qf_name); 2987 if (grp_qf_name) 2988 seq_show_option(seq, "grpjquota", grp_qf_name); 2989 rcu_read_unlock(); 2990 #endif 2991 } 2992 2993 static const char *token2str(int token) 2994 { 2995 const struct fs_parameter_spec *spec; 2996 2997 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2998 if (spec->opt == token && !spec->type) 2999 break; 3000 return spec->name; 3001 } 3002 3003 /* 3004 * Show an option if 3005 * - it's set to a non-default value OR 3006 * - if the per-sb default is different from the global default 3007 */ 3008 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 3009 int nodefs) 3010 { 3011 struct ext4_sb_info *sbi = EXT4_SB(sb); 3012 struct ext4_super_block *es = sbi->s_es; 3013 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 3014 const struct mount_opts *m; 3015 char sep = nodefs ? '\n' : ','; 3016 3017 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 3018 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 3019 3020 if (sbi->s_sb_block != 1) 3021 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 3022 3023 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 3024 int want_set = m->flags & MOPT_SET; 3025 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 3026 m->flags & MOPT_SKIP) 3027 continue; 3028 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 3029 continue; /* skip if same as the default */ 3030 if ((want_set && 3031 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 3032 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 3033 continue; /* select Opt_noFoo vs Opt_Foo */ 3034 SEQ_OPTS_PRINT("%s", token2str(m->token)); 3035 } 3036 3037 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 3038 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 3039 SEQ_OPTS_PRINT("resuid=%u", 3040 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 3041 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 3042 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 3043 SEQ_OPTS_PRINT("resgid=%u", 3044 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 3045 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 3046 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3047 SEQ_OPTS_PUTS("errors=remount-ro"); 3048 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3049 SEQ_OPTS_PUTS("errors=continue"); 3050 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3051 SEQ_OPTS_PUTS("errors=panic"); 3052 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3053 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3054 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3055 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3056 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3057 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3058 if (sb->s_flags & SB_I_VERSION) 3059 SEQ_OPTS_PUTS("i_version"); 3060 if (nodefs || sbi->s_stripe) 3061 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3062 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3063 (sbi->s_mount_opt ^ def_mount_opt)) { 3064 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3065 SEQ_OPTS_PUTS("data=journal"); 3066 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3067 SEQ_OPTS_PUTS("data=ordered"); 3068 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3069 SEQ_OPTS_PUTS("data=writeback"); 3070 } 3071 if (nodefs || 3072 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3073 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3074 sbi->s_inode_readahead_blks); 3075 3076 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3077 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3078 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3079 if (nodefs || sbi->s_max_dir_size_kb) 3080 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3081 if (test_opt(sb, DATA_ERR_ABORT)) 3082 SEQ_OPTS_PUTS("data_err=abort"); 3083 3084 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3085 3086 if (sb->s_flags & SB_INLINECRYPT) 3087 SEQ_OPTS_PUTS("inlinecrypt"); 3088 3089 if (test_opt(sb, DAX_ALWAYS)) { 3090 if (IS_EXT2_SB(sb)) 3091 SEQ_OPTS_PUTS("dax"); 3092 else 3093 SEQ_OPTS_PUTS("dax=always"); 3094 } else if (test_opt2(sb, DAX_NEVER)) { 3095 SEQ_OPTS_PUTS("dax=never"); 3096 } else if (test_opt2(sb, DAX_INODE)) { 3097 SEQ_OPTS_PUTS("dax=inode"); 3098 } 3099 ext4_show_quota_options(seq, sb); 3100 return 0; 3101 } 3102 3103 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3104 { 3105 return _ext4_show_options(seq, root->d_sb, 0); 3106 } 3107 3108 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3109 { 3110 struct super_block *sb = seq->private; 3111 int rc; 3112 3113 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3114 rc = _ext4_show_options(seq, sb, 1); 3115 seq_puts(seq, "\n"); 3116 return rc; 3117 } 3118 3119 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3120 int read_only) 3121 { 3122 struct ext4_sb_info *sbi = EXT4_SB(sb); 3123 int err = 0; 3124 3125 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3126 ext4_msg(sb, KERN_ERR, "revision level too high, " 3127 "forcing read-only mode"); 3128 err = -EROFS; 3129 goto done; 3130 } 3131 if (read_only) 3132 goto done; 3133 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3134 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3135 "running e2fsck is recommended"); 3136 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3137 ext4_msg(sb, KERN_WARNING, 3138 "warning: mounting fs with errors, " 3139 "running e2fsck is recommended"); 3140 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3141 le16_to_cpu(es->s_mnt_count) >= 3142 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3143 ext4_msg(sb, KERN_WARNING, 3144 "warning: maximal mount count reached, " 3145 "running e2fsck is recommended"); 3146 else if (le32_to_cpu(es->s_checkinterval) && 3147 (ext4_get_tstamp(es, s_lastcheck) + 3148 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3149 ext4_msg(sb, KERN_WARNING, 3150 "warning: checktime reached, " 3151 "running e2fsck is recommended"); 3152 if (!sbi->s_journal) 3153 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3154 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3155 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3156 le16_add_cpu(&es->s_mnt_count, 1); 3157 ext4_update_tstamp(es, s_mtime); 3158 if (sbi->s_journal) { 3159 ext4_set_feature_journal_needs_recovery(sb); 3160 if (ext4_has_feature_orphan_file(sb)) 3161 ext4_set_feature_orphan_present(sb); 3162 } 3163 3164 err = ext4_commit_super(sb); 3165 done: 3166 if (test_opt(sb, DEBUG)) 3167 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3168 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3169 sb->s_blocksize, 3170 sbi->s_groups_count, 3171 EXT4_BLOCKS_PER_GROUP(sb), 3172 EXT4_INODES_PER_GROUP(sb), 3173 sbi->s_mount_opt, sbi->s_mount_opt2); 3174 return err; 3175 } 3176 3177 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3178 { 3179 struct ext4_sb_info *sbi = EXT4_SB(sb); 3180 struct flex_groups **old_groups, **new_groups; 3181 int size, i, j; 3182 3183 if (!sbi->s_log_groups_per_flex) 3184 return 0; 3185 3186 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3187 if (size <= sbi->s_flex_groups_allocated) 3188 return 0; 3189 3190 new_groups = kvzalloc(roundup_pow_of_two(size * 3191 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3192 if (!new_groups) { 3193 ext4_msg(sb, KERN_ERR, 3194 "not enough memory for %d flex group pointers", size); 3195 return -ENOMEM; 3196 } 3197 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3198 new_groups[i] = kvzalloc(roundup_pow_of_two( 3199 sizeof(struct flex_groups)), 3200 GFP_KERNEL); 3201 if (!new_groups[i]) { 3202 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3203 kvfree(new_groups[j]); 3204 kvfree(new_groups); 3205 ext4_msg(sb, KERN_ERR, 3206 "not enough memory for %d flex groups", size); 3207 return -ENOMEM; 3208 } 3209 } 3210 rcu_read_lock(); 3211 old_groups = rcu_dereference(sbi->s_flex_groups); 3212 if (old_groups) 3213 memcpy(new_groups, old_groups, 3214 (sbi->s_flex_groups_allocated * 3215 sizeof(struct flex_groups *))); 3216 rcu_read_unlock(); 3217 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3218 sbi->s_flex_groups_allocated = size; 3219 if (old_groups) 3220 ext4_kvfree_array_rcu(old_groups); 3221 return 0; 3222 } 3223 3224 static int ext4_fill_flex_info(struct super_block *sb) 3225 { 3226 struct ext4_sb_info *sbi = EXT4_SB(sb); 3227 struct ext4_group_desc *gdp = NULL; 3228 struct flex_groups *fg; 3229 ext4_group_t flex_group; 3230 int i, err; 3231 3232 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3233 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3234 sbi->s_log_groups_per_flex = 0; 3235 return 1; 3236 } 3237 3238 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3239 if (err) 3240 goto failed; 3241 3242 for (i = 0; i < sbi->s_groups_count; i++) { 3243 gdp = ext4_get_group_desc(sb, i, NULL); 3244 3245 flex_group = ext4_flex_group(sbi, i); 3246 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3247 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3248 atomic64_add(ext4_free_group_clusters(sb, gdp), 3249 &fg->free_clusters); 3250 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3251 } 3252 3253 return 1; 3254 failed: 3255 return 0; 3256 } 3257 3258 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3259 struct ext4_group_desc *gdp) 3260 { 3261 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3262 __u16 crc = 0; 3263 __le32 le_group = cpu_to_le32(block_group); 3264 struct ext4_sb_info *sbi = EXT4_SB(sb); 3265 3266 if (ext4_has_metadata_csum(sbi->s_sb)) { 3267 /* Use new metadata_csum algorithm */ 3268 __u32 csum32; 3269 __u16 dummy_csum = 0; 3270 3271 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3272 sizeof(le_group)); 3273 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3274 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3275 sizeof(dummy_csum)); 3276 offset += sizeof(dummy_csum); 3277 if (offset < sbi->s_desc_size) 3278 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3279 sbi->s_desc_size - offset); 3280 3281 crc = csum32 & 0xFFFF; 3282 goto out; 3283 } 3284 3285 /* old crc16 code */ 3286 if (!ext4_has_feature_gdt_csum(sb)) 3287 return 0; 3288 3289 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3290 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3291 crc = crc16(crc, (__u8 *)gdp, offset); 3292 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3293 /* for checksum of struct ext4_group_desc do the rest...*/ 3294 if (ext4_has_feature_64bit(sb) && 3295 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 3296 crc = crc16(crc, (__u8 *)gdp + offset, 3297 le16_to_cpu(sbi->s_es->s_desc_size) - 3298 offset); 3299 3300 out: 3301 return cpu_to_le16(crc); 3302 } 3303 3304 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3305 struct ext4_group_desc *gdp) 3306 { 3307 if (ext4_has_group_desc_csum(sb) && 3308 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3309 return 0; 3310 3311 return 1; 3312 } 3313 3314 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3315 struct ext4_group_desc *gdp) 3316 { 3317 if (!ext4_has_group_desc_csum(sb)) 3318 return; 3319 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3320 } 3321 3322 /* Called at mount-time, super-block is locked */ 3323 static int ext4_check_descriptors(struct super_block *sb, 3324 ext4_fsblk_t sb_block, 3325 ext4_group_t *first_not_zeroed) 3326 { 3327 struct ext4_sb_info *sbi = EXT4_SB(sb); 3328 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3329 ext4_fsblk_t last_block; 3330 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3331 ext4_fsblk_t block_bitmap; 3332 ext4_fsblk_t inode_bitmap; 3333 ext4_fsblk_t inode_table; 3334 int flexbg_flag = 0; 3335 ext4_group_t i, grp = sbi->s_groups_count; 3336 3337 if (ext4_has_feature_flex_bg(sb)) 3338 flexbg_flag = 1; 3339 3340 ext4_debug("Checking group descriptors"); 3341 3342 for (i = 0; i < sbi->s_groups_count; i++) { 3343 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3344 3345 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3346 last_block = ext4_blocks_count(sbi->s_es) - 1; 3347 else 3348 last_block = first_block + 3349 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3350 3351 if ((grp == sbi->s_groups_count) && 3352 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3353 grp = i; 3354 3355 block_bitmap = ext4_block_bitmap(sb, gdp); 3356 if (block_bitmap == sb_block) { 3357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3358 "Block bitmap for group %u overlaps " 3359 "superblock", i); 3360 if (!sb_rdonly(sb)) 3361 return 0; 3362 } 3363 if (block_bitmap >= sb_block + 1 && 3364 block_bitmap <= last_bg_block) { 3365 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3366 "Block bitmap for group %u overlaps " 3367 "block group descriptors", i); 3368 if (!sb_rdonly(sb)) 3369 return 0; 3370 } 3371 if (block_bitmap < first_block || block_bitmap > last_block) { 3372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3373 "Block bitmap for group %u not in group " 3374 "(block %llu)!", i, block_bitmap); 3375 return 0; 3376 } 3377 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3378 if (inode_bitmap == sb_block) { 3379 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3380 "Inode bitmap for group %u overlaps " 3381 "superblock", i); 3382 if (!sb_rdonly(sb)) 3383 return 0; 3384 } 3385 if (inode_bitmap >= sb_block + 1 && 3386 inode_bitmap <= last_bg_block) { 3387 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3388 "Inode bitmap for group %u overlaps " 3389 "block group descriptors", i); 3390 if (!sb_rdonly(sb)) 3391 return 0; 3392 } 3393 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3394 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3395 "Inode bitmap for group %u not in group " 3396 "(block %llu)!", i, inode_bitmap); 3397 return 0; 3398 } 3399 inode_table = ext4_inode_table(sb, gdp); 3400 if (inode_table == sb_block) { 3401 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3402 "Inode table for group %u overlaps " 3403 "superblock", i); 3404 if (!sb_rdonly(sb)) 3405 return 0; 3406 } 3407 if (inode_table >= sb_block + 1 && 3408 inode_table <= last_bg_block) { 3409 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3410 "Inode table for group %u overlaps " 3411 "block group descriptors", i); 3412 if (!sb_rdonly(sb)) 3413 return 0; 3414 } 3415 if (inode_table < first_block || 3416 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3417 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3418 "Inode table for group %u not in group " 3419 "(block %llu)!", i, inode_table); 3420 return 0; 3421 } 3422 ext4_lock_group(sb, i); 3423 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3424 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3425 "Checksum for group %u failed (%u!=%u)", 3426 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3427 gdp)), le16_to_cpu(gdp->bg_checksum)); 3428 if (!sb_rdonly(sb)) { 3429 ext4_unlock_group(sb, i); 3430 return 0; 3431 } 3432 } 3433 ext4_unlock_group(sb, i); 3434 if (!flexbg_flag) 3435 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3436 } 3437 if (NULL != first_not_zeroed) 3438 *first_not_zeroed = grp; 3439 return 1; 3440 } 3441 3442 /* 3443 * Maximal extent format file size. 3444 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3445 * extent format containers, within a sector_t, and within i_blocks 3446 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3447 * so that won't be a limiting factor. 3448 * 3449 * However there is other limiting factor. We do store extents in the form 3450 * of starting block and length, hence the resulting length of the extent 3451 * covering maximum file size must fit into on-disk format containers as 3452 * well. Given that length is always by 1 unit bigger than max unit (because 3453 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3454 * 3455 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3456 */ 3457 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3458 { 3459 loff_t res; 3460 loff_t upper_limit = MAX_LFS_FILESIZE; 3461 3462 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3463 3464 if (!has_huge_files) { 3465 upper_limit = (1LL << 32) - 1; 3466 3467 /* total blocks in file system block size */ 3468 upper_limit >>= (blkbits - 9); 3469 upper_limit <<= blkbits; 3470 } 3471 3472 /* 3473 * 32-bit extent-start container, ee_block. We lower the maxbytes 3474 * by one fs block, so ee_len can cover the extent of maximum file 3475 * size 3476 */ 3477 res = (1LL << 32) - 1; 3478 res <<= blkbits; 3479 3480 /* Sanity check against vm- & vfs- imposed limits */ 3481 if (res > upper_limit) 3482 res = upper_limit; 3483 3484 return res; 3485 } 3486 3487 /* 3488 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3489 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3490 * We need to be 1 filesystem block less than the 2^48 sector limit. 3491 */ 3492 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3493 { 3494 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3495 int meta_blocks; 3496 unsigned int ppb = 1 << (bits - 2); 3497 3498 /* 3499 * This is calculated to be the largest file size for a dense, block 3500 * mapped file such that the file's total number of 512-byte sectors, 3501 * including data and all indirect blocks, does not exceed (2^48 - 1). 3502 * 3503 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3504 * number of 512-byte sectors of the file. 3505 */ 3506 if (!has_huge_files) { 3507 /* 3508 * !has_huge_files or implies that the inode i_block field 3509 * represents total file blocks in 2^32 512-byte sectors == 3510 * size of vfs inode i_blocks * 8 3511 */ 3512 upper_limit = (1LL << 32) - 1; 3513 3514 /* total blocks in file system block size */ 3515 upper_limit >>= (bits - 9); 3516 3517 } else { 3518 /* 3519 * We use 48 bit ext4_inode i_blocks 3520 * With EXT4_HUGE_FILE_FL set the i_blocks 3521 * represent total number of blocks in 3522 * file system block size 3523 */ 3524 upper_limit = (1LL << 48) - 1; 3525 3526 } 3527 3528 /* Compute how many blocks we can address by block tree */ 3529 res += ppb; 3530 res += ppb * ppb; 3531 res += ((loff_t)ppb) * ppb * ppb; 3532 /* Compute how many metadata blocks are needed */ 3533 meta_blocks = 1; 3534 meta_blocks += 1 + ppb; 3535 meta_blocks += 1 + ppb + ppb * ppb; 3536 /* Does block tree limit file size? */ 3537 if (res + meta_blocks <= upper_limit) 3538 goto check_lfs; 3539 3540 res = upper_limit; 3541 /* How many metadata blocks are needed for addressing upper_limit? */ 3542 upper_limit -= EXT4_NDIR_BLOCKS; 3543 /* indirect blocks */ 3544 meta_blocks = 1; 3545 upper_limit -= ppb; 3546 /* double indirect blocks */ 3547 if (upper_limit < ppb * ppb) { 3548 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3549 res -= meta_blocks; 3550 goto check_lfs; 3551 } 3552 meta_blocks += 1 + ppb; 3553 upper_limit -= ppb * ppb; 3554 /* tripple indirect blocks for the rest */ 3555 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3556 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3557 res -= meta_blocks; 3558 check_lfs: 3559 res <<= bits; 3560 if (res > MAX_LFS_FILESIZE) 3561 res = MAX_LFS_FILESIZE; 3562 3563 return res; 3564 } 3565 3566 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3567 ext4_fsblk_t logical_sb_block, int nr) 3568 { 3569 struct ext4_sb_info *sbi = EXT4_SB(sb); 3570 ext4_group_t bg, first_meta_bg; 3571 int has_super = 0; 3572 3573 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3574 3575 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3576 return logical_sb_block + nr + 1; 3577 bg = sbi->s_desc_per_block * nr; 3578 if (ext4_bg_has_super(sb, bg)) 3579 has_super = 1; 3580 3581 /* 3582 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3583 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3584 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3585 * compensate. 3586 */ 3587 if (sb->s_blocksize == 1024 && nr == 0 && 3588 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3589 has_super++; 3590 3591 return (has_super + ext4_group_first_block_no(sb, bg)); 3592 } 3593 3594 /** 3595 * ext4_get_stripe_size: Get the stripe size. 3596 * @sbi: In memory super block info 3597 * 3598 * If we have specified it via mount option, then 3599 * use the mount option value. If the value specified at mount time is 3600 * greater than the blocks per group use the super block value. 3601 * If the super block value is greater than blocks per group return 0. 3602 * Allocator needs it be less than blocks per group. 3603 * 3604 */ 3605 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3606 { 3607 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3608 unsigned long stripe_width = 3609 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3610 int ret; 3611 3612 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3613 ret = sbi->s_stripe; 3614 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3615 ret = stripe_width; 3616 else if (stride && stride <= sbi->s_blocks_per_group) 3617 ret = stride; 3618 else 3619 ret = 0; 3620 3621 /* 3622 * If the stripe width is 1, this makes no sense and 3623 * we set it to 0 to turn off stripe handling code. 3624 */ 3625 if (ret <= 1) 3626 ret = 0; 3627 3628 return ret; 3629 } 3630 3631 /* 3632 * Check whether this filesystem can be mounted based on 3633 * the features present and the RDONLY/RDWR mount requested. 3634 * Returns 1 if this filesystem can be mounted as requested, 3635 * 0 if it cannot be. 3636 */ 3637 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3638 { 3639 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3640 ext4_msg(sb, KERN_ERR, 3641 "Couldn't mount because of " 3642 "unsupported optional features (%x)", 3643 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3644 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3645 return 0; 3646 } 3647 3648 #if !IS_ENABLED(CONFIG_UNICODE) 3649 if (ext4_has_feature_casefold(sb)) { 3650 ext4_msg(sb, KERN_ERR, 3651 "Filesystem with casefold feature cannot be " 3652 "mounted without CONFIG_UNICODE"); 3653 return 0; 3654 } 3655 #endif 3656 3657 if (readonly) 3658 return 1; 3659 3660 if (ext4_has_feature_readonly(sb)) { 3661 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3662 sb->s_flags |= SB_RDONLY; 3663 return 1; 3664 } 3665 3666 /* Check that feature set is OK for a read-write mount */ 3667 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3668 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3669 "unsupported optional features (%x)", 3670 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3671 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3672 return 0; 3673 } 3674 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3675 ext4_msg(sb, KERN_ERR, 3676 "Can't support bigalloc feature without " 3677 "extents feature\n"); 3678 return 0; 3679 } 3680 3681 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3682 if (!readonly && (ext4_has_feature_quota(sb) || 3683 ext4_has_feature_project(sb))) { 3684 ext4_msg(sb, KERN_ERR, 3685 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3686 return 0; 3687 } 3688 #endif /* CONFIG_QUOTA */ 3689 return 1; 3690 } 3691 3692 /* 3693 * This function is called once a day if we have errors logged 3694 * on the file system 3695 */ 3696 static void print_daily_error_info(struct timer_list *t) 3697 { 3698 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3699 struct super_block *sb = sbi->s_sb; 3700 struct ext4_super_block *es = sbi->s_es; 3701 3702 if (es->s_error_count) 3703 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3704 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3705 le32_to_cpu(es->s_error_count)); 3706 if (es->s_first_error_time) { 3707 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3708 sb->s_id, 3709 ext4_get_tstamp(es, s_first_error_time), 3710 (int) sizeof(es->s_first_error_func), 3711 es->s_first_error_func, 3712 le32_to_cpu(es->s_first_error_line)); 3713 if (es->s_first_error_ino) 3714 printk(KERN_CONT ": inode %u", 3715 le32_to_cpu(es->s_first_error_ino)); 3716 if (es->s_first_error_block) 3717 printk(KERN_CONT ": block %llu", (unsigned long long) 3718 le64_to_cpu(es->s_first_error_block)); 3719 printk(KERN_CONT "\n"); 3720 } 3721 if (es->s_last_error_time) { 3722 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3723 sb->s_id, 3724 ext4_get_tstamp(es, s_last_error_time), 3725 (int) sizeof(es->s_last_error_func), 3726 es->s_last_error_func, 3727 le32_to_cpu(es->s_last_error_line)); 3728 if (es->s_last_error_ino) 3729 printk(KERN_CONT ": inode %u", 3730 le32_to_cpu(es->s_last_error_ino)); 3731 if (es->s_last_error_block) 3732 printk(KERN_CONT ": block %llu", (unsigned long long) 3733 le64_to_cpu(es->s_last_error_block)); 3734 printk(KERN_CONT "\n"); 3735 } 3736 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3737 } 3738 3739 /* Find next suitable group and run ext4_init_inode_table */ 3740 static int ext4_run_li_request(struct ext4_li_request *elr) 3741 { 3742 struct ext4_group_desc *gdp = NULL; 3743 struct super_block *sb = elr->lr_super; 3744 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3745 ext4_group_t group = elr->lr_next_group; 3746 unsigned int prefetch_ios = 0; 3747 int ret = 0; 3748 u64 start_time; 3749 3750 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3751 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3752 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3753 if (prefetch_ios) 3754 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3755 prefetch_ios); 3756 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3757 prefetch_ios); 3758 if (group >= elr->lr_next_group) { 3759 ret = 1; 3760 if (elr->lr_first_not_zeroed != ngroups && 3761 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3762 elr->lr_next_group = elr->lr_first_not_zeroed; 3763 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3764 ret = 0; 3765 } 3766 } 3767 return ret; 3768 } 3769 3770 for (; group < ngroups; group++) { 3771 gdp = ext4_get_group_desc(sb, group, NULL); 3772 if (!gdp) { 3773 ret = 1; 3774 break; 3775 } 3776 3777 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3778 break; 3779 } 3780 3781 if (group >= ngroups) 3782 ret = 1; 3783 3784 if (!ret) { 3785 start_time = ktime_get_real_ns(); 3786 ret = ext4_init_inode_table(sb, group, 3787 elr->lr_timeout ? 0 : 1); 3788 trace_ext4_lazy_itable_init(sb, group); 3789 if (elr->lr_timeout == 0) { 3790 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3791 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3792 } 3793 elr->lr_next_sched = jiffies + elr->lr_timeout; 3794 elr->lr_next_group = group + 1; 3795 } 3796 return ret; 3797 } 3798 3799 /* 3800 * Remove lr_request from the list_request and free the 3801 * request structure. Should be called with li_list_mtx held 3802 */ 3803 static void ext4_remove_li_request(struct ext4_li_request *elr) 3804 { 3805 if (!elr) 3806 return; 3807 3808 list_del(&elr->lr_request); 3809 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3810 kfree(elr); 3811 } 3812 3813 static void ext4_unregister_li_request(struct super_block *sb) 3814 { 3815 mutex_lock(&ext4_li_mtx); 3816 if (!ext4_li_info) { 3817 mutex_unlock(&ext4_li_mtx); 3818 return; 3819 } 3820 3821 mutex_lock(&ext4_li_info->li_list_mtx); 3822 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3823 mutex_unlock(&ext4_li_info->li_list_mtx); 3824 mutex_unlock(&ext4_li_mtx); 3825 } 3826 3827 static struct task_struct *ext4_lazyinit_task; 3828 3829 /* 3830 * This is the function where ext4lazyinit thread lives. It walks 3831 * through the request list searching for next scheduled filesystem. 3832 * When such a fs is found, run the lazy initialization request 3833 * (ext4_rn_li_request) and keep track of the time spend in this 3834 * function. Based on that time we compute next schedule time of 3835 * the request. When walking through the list is complete, compute 3836 * next waking time and put itself into sleep. 3837 */ 3838 static int ext4_lazyinit_thread(void *arg) 3839 { 3840 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3841 struct list_head *pos, *n; 3842 struct ext4_li_request *elr; 3843 unsigned long next_wakeup, cur; 3844 3845 BUG_ON(NULL == eli); 3846 3847 cont_thread: 3848 while (true) { 3849 next_wakeup = MAX_JIFFY_OFFSET; 3850 3851 mutex_lock(&eli->li_list_mtx); 3852 if (list_empty(&eli->li_request_list)) { 3853 mutex_unlock(&eli->li_list_mtx); 3854 goto exit_thread; 3855 } 3856 list_for_each_safe(pos, n, &eli->li_request_list) { 3857 int err = 0; 3858 int progress = 0; 3859 elr = list_entry(pos, struct ext4_li_request, 3860 lr_request); 3861 3862 if (time_before(jiffies, elr->lr_next_sched)) { 3863 if (time_before(elr->lr_next_sched, next_wakeup)) 3864 next_wakeup = elr->lr_next_sched; 3865 continue; 3866 } 3867 if (down_read_trylock(&elr->lr_super->s_umount)) { 3868 if (sb_start_write_trylock(elr->lr_super)) { 3869 progress = 1; 3870 /* 3871 * We hold sb->s_umount, sb can not 3872 * be removed from the list, it is 3873 * now safe to drop li_list_mtx 3874 */ 3875 mutex_unlock(&eli->li_list_mtx); 3876 err = ext4_run_li_request(elr); 3877 sb_end_write(elr->lr_super); 3878 mutex_lock(&eli->li_list_mtx); 3879 n = pos->next; 3880 } 3881 up_read((&elr->lr_super->s_umount)); 3882 } 3883 /* error, remove the lazy_init job */ 3884 if (err) { 3885 ext4_remove_li_request(elr); 3886 continue; 3887 } 3888 if (!progress) { 3889 elr->lr_next_sched = jiffies + 3890 (prandom_u32() 3891 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3892 } 3893 if (time_before(elr->lr_next_sched, next_wakeup)) 3894 next_wakeup = elr->lr_next_sched; 3895 } 3896 mutex_unlock(&eli->li_list_mtx); 3897 3898 try_to_freeze(); 3899 3900 cur = jiffies; 3901 if ((time_after_eq(cur, next_wakeup)) || 3902 (MAX_JIFFY_OFFSET == next_wakeup)) { 3903 cond_resched(); 3904 continue; 3905 } 3906 3907 schedule_timeout_interruptible(next_wakeup - cur); 3908 3909 if (kthread_should_stop()) { 3910 ext4_clear_request_list(); 3911 goto exit_thread; 3912 } 3913 } 3914 3915 exit_thread: 3916 /* 3917 * It looks like the request list is empty, but we need 3918 * to check it under the li_list_mtx lock, to prevent any 3919 * additions into it, and of course we should lock ext4_li_mtx 3920 * to atomically free the list and ext4_li_info, because at 3921 * this point another ext4 filesystem could be registering 3922 * new one. 3923 */ 3924 mutex_lock(&ext4_li_mtx); 3925 mutex_lock(&eli->li_list_mtx); 3926 if (!list_empty(&eli->li_request_list)) { 3927 mutex_unlock(&eli->li_list_mtx); 3928 mutex_unlock(&ext4_li_mtx); 3929 goto cont_thread; 3930 } 3931 mutex_unlock(&eli->li_list_mtx); 3932 kfree(ext4_li_info); 3933 ext4_li_info = NULL; 3934 mutex_unlock(&ext4_li_mtx); 3935 3936 return 0; 3937 } 3938 3939 static void ext4_clear_request_list(void) 3940 { 3941 struct list_head *pos, *n; 3942 struct ext4_li_request *elr; 3943 3944 mutex_lock(&ext4_li_info->li_list_mtx); 3945 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3946 elr = list_entry(pos, struct ext4_li_request, 3947 lr_request); 3948 ext4_remove_li_request(elr); 3949 } 3950 mutex_unlock(&ext4_li_info->li_list_mtx); 3951 } 3952 3953 static int ext4_run_lazyinit_thread(void) 3954 { 3955 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3956 ext4_li_info, "ext4lazyinit"); 3957 if (IS_ERR(ext4_lazyinit_task)) { 3958 int err = PTR_ERR(ext4_lazyinit_task); 3959 ext4_clear_request_list(); 3960 kfree(ext4_li_info); 3961 ext4_li_info = NULL; 3962 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3963 "initialization thread\n", 3964 err); 3965 return err; 3966 } 3967 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3968 return 0; 3969 } 3970 3971 /* 3972 * Check whether it make sense to run itable init. thread or not. 3973 * If there is at least one uninitialized inode table, return 3974 * corresponding group number, else the loop goes through all 3975 * groups and return total number of groups. 3976 */ 3977 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3978 { 3979 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3980 struct ext4_group_desc *gdp = NULL; 3981 3982 if (!ext4_has_group_desc_csum(sb)) 3983 return ngroups; 3984 3985 for (group = 0; group < ngroups; group++) { 3986 gdp = ext4_get_group_desc(sb, group, NULL); 3987 if (!gdp) 3988 continue; 3989 3990 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3991 break; 3992 } 3993 3994 return group; 3995 } 3996 3997 static int ext4_li_info_new(void) 3998 { 3999 struct ext4_lazy_init *eli = NULL; 4000 4001 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 4002 if (!eli) 4003 return -ENOMEM; 4004 4005 INIT_LIST_HEAD(&eli->li_request_list); 4006 mutex_init(&eli->li_list_mtx); 4007 4008 eli->li_state |= EXT4_LAZYINIT_QUIT; 4009 4010 ext4_li_info = eli; 4011 4012 return 0; 4013 } 4014 4015 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 4016 ext4_group_t start) 4017 { 4018 struct ext4_li_request *elr; 4019 4020 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 4021 if (!elr) 4022 return NULL; 4023 4024 elr->lr_super = sb; 4025 elr->lr_first_not_zeroed = start; 4026 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 4027 elr->lr_mode = EXT4_LI_MODE_ITABLE; 4028 elr->lr_next_group = start; 4029 } else { 4030 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 4031 } 4032 4033 /* 4034 * Randomize first schedule time of the request to 4035 * spread the inode table initialization requests 4036 * better. 4037 */ 4038 elr->lr_next_sched = jiffies + (prandom_u32() % 4039 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 4040 return elr; 4041 } 4042 4043 int ext4_register_li_request(struct super_block *sb, 4044 ext4_group_t first_not_zeroed) 4045 { 4046 struct ext4_sb_info *sbi = EXT4_SB(sb); 4047 struct ext4_li_request *elr = NULL; 4048 ext4_group_t ngroups = sbi->s_groups_count; 4049 int ret = 0; 4050 4051 mutex_lock(&ext4_li_mtx); 4052 if (sbi->s_li_request != NULL) { 4053 /* 4054 * Reset timeout so it can be computed again, because 4055 * s_li_wait_mult might have changed. 4056 */ 4057 sbi->s_li_request->lr_timeout = 0; 4058 goto out; 4059 } 4060 4061 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4062 (first_not_zeroed == ngroups || sb_rdonly(sb) || 4063 !test_opt(sb, INIT_INODE_TABLE))) 4064 goto out; 4065 4066 elr = ext4_li_request_new(sb, first_not_zeroed); 4067 if (!elr) { 4068 ret = -ENOMEM; 4069 goto out; 4070 } 4071 4072 if (NULL == ext4_li_info) { 4073 ret = ext4_li_info_new(); 4074 if (ret) 4075 goto out; 4076 } 4077 4078 mutex_lock(&ext4_li_info->li_list_mtx); 4079 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4080 mutex_unlock(&ext4_li_info->li_list_mtx); 4081 4082 sbi->s_li_request = elr; 4083 /* 4084 * set elr to NULL here since it has been inserted to 4085 * the request_list and the removal and free of it is 4086 * handled by ext4_clear_request_list from now on. 4087 */ 4088 elr = NULL; 4089 4090 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4091 ret = ext4_run_lazyinit_thread(); 4092 if (ret) 4093 goto out; 4094 } 4095 out: 4096 mutex_unlock(&ext4_li_mtx); 4097 if (ret) 4098 kfree(elr); 4099 return ret; 4100 } 4101 4102 /* 4103 * We do not need to lock anything since this is called on 4104 * module unload. 4105 */ 4106 static void ext4_destroy_lazyinit_thread(void) 4107 { 4108 /* 4109 * If thread exited earlier 4110 * there's nothing to be done. 4111 */ 4112 if (!ext4_li_info || !ext4_lazyinit_task) 4113 return; 4114 4115 kthread_stop(ext4_lazyinit_task); 4116 } 4117 4118 static int set_journal_csum_feature_set(struct super_block *sb) 4119 { 4120 int ret = 1; 4121 int compat, incompat; 4122 struct ext4_sb_info *sbi = EXT4_SB(sb); 4123 4124 if (ext4_has_metadata_csum(sb)) { 4125 /* journal checksum v3 */ 4126 compat = 0; 4127 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4128 } else { 4129 /* journal checksum v1 */ 4130 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4131 incompat = 0; 4132 } 4133 4134 jbd2_journal_clear_features(sbi->s_journal, 4135 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4136 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4137 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4138 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4139 ret = jbd2_journal_set_features(sbi->s_journal, 4140 compat, 0, 4141 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4142 incompat); 4143 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4144 ret = jbd2_journal_set_features(sbi->s_journal, 4145 compat, 0, 4146 incompat); 4147 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4148 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4149 } else { 4150 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4151 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4152 } 4153 4154 return ret; 4155 } 4156 4157 /* 4158 * Note: calculating the overhead so we can be compatible with 4159 * historical BSD practice is quite difficult in the face of 4160 * clusters/bigalloc. This is because multiple metadata blocks from 4161 * different block group can end up in the same allocation cluster. 4162 * Calculating the exact overhead in the face of clustered allocation 4163 * requires either O(all block bitmaps) in memory or O(number of block 4164 * groups**2) in time. We will still calculate the superblock for 4165 * older file systems --- and if we come across with a bigalloc file 4166 * system with zero in s_overhead_clusters the estimate will be close to 4167 * correct especially for very large cluster sizes --- but for newer 4168 * file systems, it's better to calculate this figure once at mkfs 4169 * time, and store it in the superblock. If the superblock value is 4170 * present (even for non-bigalloc file systems), we will use it. 4171 */ 4172 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4173 char *buf) 4174 { 4175 struct ext4_sb_info *sbi = EXT4_SB(sb); 4176 struct ext4_group_desc *gdp; 4177 ext4_fsblk_t first_block, last_block, b; 4178 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4179 int s, j, count = 0; 4180 int has_super = ext4_bg_has_super(sb, grp); 4181 4182 if (!ext4_has_feature_bigalloc(sb)) 4183 return (has_super + ext4_bg_num_gdb(sb, grp) + 4184 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4185 sbi->s_itb_per_group + 2); 4186 4187 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4188 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4189 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4190 for (i = 0; i < ngroups; i++) { 4191 gdp = ext4_get_group_desc(sb, i, NULL); 4192 b = ext4_block_bitmap(sb, gdp); 4193 if (b >= first_block && b <= last_block) { 4194 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4195 count++; 4196 } 4197 b = ext4_inode_bitmap(sb, gdp); 4198 if (b >= first_block && b <= last_block) { 4199 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4200 count++; 4201 } 4202 b = ext4_inode_table(sb, gdp); 4203 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4204 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4205 int c = EXT4_B2C(sbi, b - first_block); 4206 ext4_set_bit(c, buf); 4207 count++; 4208 } 4209 if (i != grp) 4210 continue; 4211 s = 0; 4212 if (ext4_bg_has_super(sb, grp)) { 4213 ext4_set_bit(s++, buf); 4214 count++; 4215 } 4216 j = ext4_bg_num_gdb(sb, grp); 4217 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4218 ext4_error(sb, "Invalid number of block group " 4219 "descriptor blocks: %d", j); 4220 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4221 } 4222 count += j; 4223 for (; j > 0; j--) 4224 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4225 } 4226 if (!count) 4227 return 0; 4228 return EXT4_CLUSTERS_PER_GROUP(sb) - 4229 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4230 } 4231 4232 /* 4233 * Compute the overhead and stash it in sbi->s_overhead 4234 */ 4235 int ext4_calculate_overhead(struct super_block *sb) 4236 { 4237 struct ext4_sb_info *sbi = EXT4_SB(sb); 4238 struct ext4_super_block *es = sbi->s_es; 4239 struct inode *j_inode; 4240 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4241 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4242 ext4_fsblk_t overhead = 0; 4243 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4244 4245 if (!buf) 4246 return -ENOMEM; 4247 4248 /* 4249 * Compute the overhead (FS structures). This is constant 4250 * for a given filesystem unless the number of block groups 4251 * changes so we cache the previous value until it does. 4252 */ 4253 4254 /* 4255 * All of the blocks before first_data_block are overhead 4256 */ 4257 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4258 4259 /* 4260 * Add the overhead found in each block group 4261 */ 4262 for (i = 0; i < ngroups; i++) { 4263 int blks; 4264 4265 blks = count_overhead(sb, i, buf); 4266 overhead += blks; 4267 if (blks) 4268 memset(buf, 0, PAGE_SIZE); 4269 cond_resched(); 4270 } 4271 4272 /* 4273 * Add the internal journal blocks whether the journal has been 4274 * loaded or not 4275 */ 4276 if (sbi->s_journal && !sbi->s_journal_bdev) 4277 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4278 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4279 /* j_inum for internal journal is non-zero */ 4280 j_inode = ext4_get_journal_inode(sb, j_inum); 4281 if (j_inode) { 4282 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4283 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4284 iput(j_inode); 4285 } else { 4286 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4287 } 4288 } 4289 sbi->s_overhead = overhead; 4290 smp_wmb(); 4291 free_page((unsigned long) buf); 4292 return 0; 4293 } 4294 4295 static void ext4_set_resv_clusters(struct super_block *sb) 4296 { 4297 ext4_fsblk_t resv_clusters; 4298 struct ext4_sb_info *sbi = EXT4_SB(sb); 4299 4300 /* 4301 * There's no need to reserve anything when we aren't using extents. 4302 * The space estimates are exact, there are no unwritten extents, 4303 * hole punching doesn't need new metadata... This is needed especially 4304 * to keep ext2/3 backward compatibility. 4305 */ 4306 if (!ext4_has_feature_extents(sb)) 4307 return; 4308 /* 4309 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4310 * This should cover the situations where we can not afford to run 4311 * out of space like for example punch hole, or converting 4312 * unwritten extents in delalloc path. In most cases such 4313 * allocation would require 1, or 2 blocks, higher numbers are 4314 * very rare. 4315 */ 4316 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4317 sbi->s_cluster_bits); 4318 4319 do_div(resv_clusters, 50); 4320 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4321 4322 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4323 } 4324 4325 static const char *ext4_quota_mode(struct super_block *sb) 4326 { 4327 #ifdef CONFIG_QUOTA 4328 if (!ext4_quota_capable(sb)) 4329 return "none"; 4330 4331 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4332 return "journalled"; 4333 else 4334 return "writeback"; 4335 #else 4336 return "disabled"; 4337 #endif 4338 } 4339 4340 static void ext4_setup_csum_trigger(struct super_block *sb, 4341 enum ext4_journal_trigger_type type, 4342 void (*trigger)( 4343 struct jbd2_buffer_trigger_type *type, 4344 struct buffer_head *bh, 4345 void *mapped_data, 4346 size_t size)) 4347 { 4348 struct ext4_sb_info *sbi = EXT4_SB(sb); 4349 4350 sbi->s_journal_triggers[type].sb = sb; 4351 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4352 } 4353 4354 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4355 { 4356 if (!sbi) 4357 return; 4358 4359 kfree(sbi->s_blockgroup_lock); 4360 fs_put_dax(sbi->s_daxdev); 4361 kfree(sbi); 4362 } 4363 4364 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4365 { 4366 struct ext4_sb_info *sbi; 4367 4368 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4369 if (!sbi) 4370 return NULL; 4371 4372 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off); 4373 4374 sbi->s_blockgroup_lock = 4375 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4376 4377 if (!sbi->s_blockgroup_lock) 4378 goto err_out; 4379 4380 sb->s_fs_info = sbi; 4381 sbi->s_sb = sb; 4382 return sbi; 4383 err_out: 4384 fs_put_dax(sbi->s_daxdev); 4385 kfree(sbi); 4386 return NULL; 4387 } 4388 4389 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 4390 { 4391 struct buffer_head *bh, **group_desc; 4392 struct ext4_super_block *es = NULL; 4393 struct ext4_sb_info *sbi = EXT4_SB(sb); 4394 struct flex_groups **flex_groups; 4395 ext4_fsblk_t block; 4396 ext4_fsblk_t logical_sb_block; 4397 unsigned long offset = 0; 4398 unsigned long def_mount_opts; 4399 struct inode *root; 4400 int ret = -ENOMEM; 4401 int blocksize, clustersize; 4402 unsigned int db_count; 4403 unsigned int i; 4404 int needs_recovery, has_huge_files; 4405 __u64 blocks_count; 4406 int err = 0; 4407 ext4_group_t first_not_zeroed; 4408 struct ext4_fs_context *ctx = fc->fs_private; 4409 int silent = fc->sb_flags & SB_SILENT; 4410 4411 /* Set defaults for the variables that will be set during parsing */ 4412 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4413 4414 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4415 sbi->s_sectors_written_start = 4416 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4417 4418 /* -EINVAL is default */ 4419 ret = -EINVAL; 4420 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4421 if (!blocksize) { 4422 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4423 goto out_fail; 4424 } 4425 4426 /* 4427 * The ext4 superblock will not be buffer aligned for other than 1kB 4428 * block sizes. We need to calculate the offset from buffer start. 4429 */ 4430 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4431 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4432 offset = do_div(logical_sb_block, blocksize); 4433 } else { 4434 logical_sb_block = sbi->s_sb_block; 4435 } 4436 4437 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4438 if (IS_ERR(bh)) { 4439 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4440 ret = PTR_ERR(bh); 4441 goto out_fail; 4442 } 4443 /* 4444 * Note: s_es must be initialized as soon as possible because 4445 * some ext4 macro-instructions depend on its value 4446 */ 4447 es = (struct ext4_super_block *) (bh->b_data + offset); 4448 sbi->s_es = es; 4449 sb->s_magic = le16_to_cpu(es->s_magic); 4450 if (sb->s_magic != EXT4_SUPER_MAGIC) 4451 goto cantfind_ext4; 4452 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4453 4454 /* Warn if metadata_csum and gdt_csum are both set. */ 4455 if (ext4_has_feature_metadata_csum(sb) && 4456 ext4_has_feature_gdt_csum(sb)) 4457 ext4_warning(sb, "metadata_csum and uninit_bg are " 4458 "redundant flags; please run fsck."); 4459 4460 /* Check for a known checksum algorithm */ 4461 if (!ext4_verify_csum_type(sb, es)) { 4462 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4463 "unknown checksum algorithm."); 4464 silent = 1; 4465 goto cantfind_ext4; 4466 } 4467 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4468 ext4_orphan_file_block_trigger); 4469 4470 /* Load the checksum driver */ 4471 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4472 if (IS_ERR(sbi->s_chksum_driver)) { 4473 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4474 ret = PTR_ERR(sbi->s_chksum_driver); 4475 sbi->s_chksum_driver = NULL; 4476 goto failed_mount; 4477 } 4478 4479 /* Check superblock checksum */ 4480 if (!ext4_superblock_csum_verify(sb, es)) { 4481 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4482 "invalid superblock checksum. Run e2fsck?"); 4483 silent = 1; 4484 ret = -EFSBADCRC; 4485 goto cantfind_ext4; 4486 } 4487 4488 /* Precompute checksum seed for all metadata */ 4489 if (ext4_has_feature_csum_seed(sb)) 4490 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4491 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4492 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4493 sizeof(es->s_uuid)); 4494 4495 /* Set defaults before we parse the mount options */ 4496 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4497 set_opt(sb, INIT_INODE_TABLE); 4498 if (def_mount_opts & EXT4_DEFM_DEBUG) 4499 set_opt(sb, DEBUG); 4500 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4501 set_opt(sb, GRPID); 4502 if (def_mount_opts & EXT4_DEFM_UID16) 4503 set_opt(sb, NO_UID32); 4504 /* xattr user namespace & acls are now defaulted on */ 4505 set_opt(sb, XATTR_USER); 4506 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4507 set_opt(sb, POSIX_ACL); 4508 #endif 4509 if (ext4_has_feature_fast_commit(sb)) 4510 set_opt2(sb, JOURNAL_FAST_COMMIT); 4511 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4512 if (ext4_has_metadata_csum(sb)) 4513 set_opt(sb, JOURNAL_CHECKSUM); 4514 4515 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4516 set_opt(sb, JOURNAL_DATA); 4517 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4518 set_opt(sb, ORDERED_DATA); 4519 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4520 set_opt(sb, WRITEBACK_DATA); 4521 4522 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4523 set_opt(sb, ERRORS_PANIC); 4524 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4525 set_opt(sb, ERRORS_CONT); 4526 else 4527 set_opt(sb, ERRORS_RO); 4528 /* block_validity enabled by default; disable with noblock_validity */ 4529 set_opt(sb, BLOCK_VALIDITY); 4530 if (def_mount_opts & EXT4_DEFM_DISCARD) 4531 set_opt(sb, DISCARD); 4532 4533 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4534 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4535 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4536 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4537 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4538 4539 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4540 set_opt(sb, BARRIER); 4541 4542 /* 4543 * enable delayed allocation by default 4544 * Use -o nodelalloc to turn it off 4545 */ 4546 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4547 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4548 set_opt(sb, DELALLOC); 4549 4550 /* 4551 * set default s_li_wait_mult for lazyinit, for the case there is 4552 * no mount option specified. 4553 */ 4554 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4555 4556 if (le32_to_cpu(es->s_log_block_size) > 4557 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4558 ext4_msg(sb, KERN_ERR, 4559 "Invalid log block size: %u", 4560 le32_to_cpu(es->s_log_block_size)); 4561 goto failed_mount; 4562 } 4563 if (le32_to_cpu(es->s_log_cluster_size) > 4564 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4565 ext4_msg(sb, KERN_ERR, 4566 "Invalid log cluster size: %u", 4567 le32_to_cpu(es->s_log_cluster_size)); 4568 goto failed_mount; 4569 } 4570 4571 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4572 4573 if (blocksize == PAGE_SIZE) 4574 set_opt(sb, DIOREAD_NOLOCK); 4575 4576 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4577 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4578 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4579 } else { 4580 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4581 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4582 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4583 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4584 sbi->s_first_ino); 4585 goto failed_mount; 4586 } 4587 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4588 (!is_power_of_2(sbi->s_inode_size)) || 4589 (sbi->s_inode_size > blocksize)) { 4590 ext4_msg(sb, KERN_ERR, 4591 "unsupported inode size: %d", 4592 sbi->s_inode_size); 4593 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4594 goto failed_mount; 4595 } 4596 /* 4597 * i_atime_extra is the last extra field available for 4598 * [acm]times in struct ext4_inode. Checking for that 4599 * field should suffice to ensure we have extra space 4600 * for all three. 4601 */ 4602 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4603 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4604 sb->s_time_gran = 1; 4605 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4606 } else { 4607 sb->s_time_gran = NSEC_PER_SEC; 4608 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4609 } 4610 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4611 } 4612 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4613 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4614 EXT4_GOOD_OLD_INODE_SIZE; 4615 if (ext4_has_feature_extra_isize(sb)) { 4616 unsigned v, max = (sbi->s_inode_size - 4617 EXT4_GOOD_OLD_INODE_SIZE); 4618 4619 v = le16_to_cpu(es->s_want_extra_isize); 4620 if (v > max) { 4621 ext4_msg(sb, KERN_ERR, 4622 "bad s_want_extra_isize: %d", v); 4623 goto failed_mount; 4624 } 4625 if (sbi->s_want_extra_isize < v) 4626 sbi->s_want_extra_isize = v; 4627 4628 v = le16_to_cpu(es->s_min_extra_isize); 4629 if (v > max) { 4630 ext4_msg(sb, KERN_ERR, 4631 "bad s_min_extra_isize: %d", v); 4632 goto failed_mount; 4633 } 4634 if (sbi->s_want_extra_isize < v) 4635 sbi->s_want_extra_isize = v; 4636 } 4637 } 4638 4639 err = parse_apply_sb_mount_options(sb, ctx); 4640 if (err < 0) 4641 goto failed_mount; 4642 4643 sbi->s_def_mount_opt = sbi->s_mount_opt; 4644 4645 err = ext4_check_opt_consistency(fc, sb); 4646 if (err < 0) 4647 goto failed_mount; 4648 4649 err = ext4_apply_options(fc, sb); 4650 if (err < 0) 4651 goto failed_mount; 4652 4653 #if IS_ENABLED(CONFIG_UNICODE) 4654 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4655 const struct ext4_sb_encodings *encoding_info; 4656 struct unicode_map *encoding; 4657 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4658 4659 encoding_info = ext4_sb_read_encoding(es); 4660 if (!encoding_info) { 4661 ext4_msg(sb, KERN_ERR, 4662 "Encoding requested by superblock is unknown"); 4663 goto failed_mount; 4664 } 4665 4666 encoding = utf8_load(encoding_info->version); 4667 if (IS_ERR(encoding)) { 4668 ext4_msg(sb, KERN_ERR, 4669 "can't mount with superblock charset: %s-%u.%u.%u " 4670 "not supported by the kernel. flags: 0x%x.", 4671 encoding_info->name, 4672 unicode_major(encoding_info->version), 4673 unicode_minor(encoding_info->version), 4674 unicode_rev(encoding_info->version), 4675 encoding_flags); 4676 goto failed_mount; 4677 } 4678 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4679 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4680 unicode_major(encoding_info->version), 4681 unicode_minor(encoding_info->version), 4682 unicode_rev(encoding_info->version), 4683 encoding_flags); 4684 4685 sb->s_encoding = encoding; 4686 sb->s_encoding_flags = encoding_flags; 4687 } 4688 #endif 4689 4690 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4691 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4692 /* can't mount with both data=journal and dioread_nolock. */ 4693 clear_opt(sb, DIOREAD_NOLOCK); 4694 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4695 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4696 ext4_msg(sb, KERN_ERR, "can't mount with " 4697 "both data=journal and delalloc"); 4698 goto failed_mount; 4699 } 4700 if (test_opt(sb, DAX_ALWAYS)) { 4701 ext4_msg(sb, KERN_ERR, "can't mount with " 4702 "both data=journal and dax"); 4703 goto failed_mount; 4704 } 4705 if (ext4_has_feature_encrypt(sb)) { 4706 ext4_msg(sb, KERN_WARNING, 4707 "encrypted files will use data=ordered " 4708 "instead of data journaling mode"); 4709 } 4710 if (test_opt(sb, DELALLOC)) 4711 clear_opt(sb, DELALLOC); 4712 } else { 4713 sb->s_iflags |= SB_I_CGROUPWB; 4714 } 4715 4716 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4717 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4718 4719 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4720 (ext4_has_compat_features(sb) || 4721 ext4_has_ro_compat_features(sb) || 4722 ext4_has_incompat_features(sb))) 4723 ext4_msg(sb, KERN_WARNING, 4724 "feature flags set on rev 0 fs, " 4725 "running e2fsck is recommended"); 4726 4727 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4728 set_opt2(sb, HURD_COMPAT); 4729 if (ext4_has_feature_64bit(sb)) { 4730 ext4_msg(sb, KERN_ERR, 4731 "The Hurd can't support 64-bit file systems"); 4732 goto failed_mount; 4733 } 4734 4735 /* 4736 * ea_inode feature uses l_i_version field which is not 4737 * available in HURD_COMPAT mode. 4738 */ 4739 if (ext4_has_feature_ea_inode(sb)) { 4740 ext4_msg(sb, KERN_ERR, 4741 "ea_inode feature is not supported for Hurd"); 4742 goto failed_mount; 4743 } 4744 } 4745 4746 if (IS_EXT2_SB(sb)) { 4747 if (ext2_feature_set_ok(sb)) 4748 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4749 "using the ext4 subsystem"); 4750 else { 4751 /* 4752 * If we're probing be silent, if this looks like 4753 * it's actually an ext[34] filesystem. 4754 */ 4755 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4756 goto failed_mount; 4757 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4758 "to feature incompatibilities"); 4759 goto failed_mount; 4760 } 4761 } 4762 4763 if (IS_EXT3_SB(sb)) { 4764 if (ext3_feature_set_ok(sb)) 4765 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4766 "using the ext4 subsystem"); 4767 else { 4768 /* 4769 * If we're probing be silent, if this looks like 4770 * it's actually an ext4 filesystem. 4771 */ 4772 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4773 goto failed_mount; 4774 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4775 "to feature incompatibilities"); 4776 goto failed_mount; 4777 } 4778 } 4779 4780 /* 4781 * Check feature flags regardless of the revision level, since we 4782 * previously didn't change the revision level when setting the flags, 4783 * so there is a chance incompat flags are set on a rev 0 filesystem. 4784 */ 4785 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4786 goto failed_mount; 4787 4788 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4789 ext4_msg(sb, KERN_ERR, 4790 "Number of reserved GDT blocks insanely large: %d", 4791 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4792 goto failed_mount; 4793 } 4794 4795 if (sbi->s_daxdev) { 4796 if (blocksize == PAGE_SIZE) 4797 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4798 else 4799 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4800 } 4801 4802 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4803 if (ext4_has_feature_inline_data(sb)) { 4804 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4805 " that may contain inline data"); 4806 goto failed_mount; 4807 } 4808 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4809 ext4_msg(sb, KERN_ERR, 4810 "DAX unsupported by block device."); 4811 goto failed_mount; 4812 } 4813 } 4814 4815 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4816 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4817 es->s_encryption_level); 4818 goto failed_mount; 4819 } 4820 4821 if (sb->s_blocksize != blocksize) { 4822 /* 4823 * bh must be released before kill_bdev(), otherwise 4824 * it won't be freed and its page also. kill_bdev() 4825 * is called by sb_set_blocksize(). 4826 */ 4827 brelse(bh); 4828 /* Validate the filesystem blocksize */ 4829 if (!sb_set_blocksize(sb, blocksize)) { 4830 ext4_msg(sb, KERN_ERR, "bad block size %d", 4831 blocksize); 4832 bh = NULL; 4833 goto failed_mount; 4834 } 4835 4836 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4837 offset = do_div(logical_sb_block, blocksize); 4838 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4839 if (IS_ERR(bh)) { 4840 ext4_msg(sb, KERN_ERR, 4841 "Can't read superblock on 2nd try"); 4842 ret = PTR_ERR(bh); 4843 bh = NULL; 4844 goto failed_mount; 4845 } 4846 es = (struct ext4_super_block *)(bh->b_data + offset); 4847 sbi->s_es = es; 4848 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4849 ext4_msg(sb, KERN_ERR, 4850 "Magic mismatch, very weird!"); 4851 goto failed_mount; 4852 } 4853 } 4854 4855 has_huge_files = ext4_has_feature_huge_file(sb); 4856 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4857 has_huge_files); 4858 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4859 4860 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4861 if (ext4_has_feature_64bit(sb)) { 4862 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4863 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4864 !is_power_of_2(sbi->s_desc_size)) { 4865 ext4_msg(sb, KERN_ERR, 4866 "unsupported descriptor size %lu", 4867 sbi->s_desc_size); 4868 goto failed_mount; 4869 } 4870 } else 4871 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4872 4873 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4874 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4875 4876 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4877 if (sbi->s_inodes_per_block == 0) 4878 goto cantfind_ext4; 4879 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4880 sbi->s_inodes_per_group > blocksize * 8) { 4881 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4882 sbi->s_inodes_per_group); 4883 goto failed_mount; 4884 } 4885 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4886 sbi->s_inodes_per_block; 4887 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4888 sbi->s_sbh = bh; 4889 sbi->s_mount_state = le16_to_cpu(es->s_state); 4890 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4891 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4892 4893 for (i = 0; i < 4; i++) 4894 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4895 sbi->s_def_hash_version = es->s_def_hash_version; 4896 if (ext4_has_feature_dir_index(sb)) { 4897 i = le32_to_cpu(es->s_flags); 4898 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4899 sbi->s_hash_unsigned = 3; 4900 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4901 #ifdef __CHAR_UNSIGNED__ 4902 if (!sb_rdonly(sb)) 4903 es->s_flags |= 4904 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4905 sbi->s_hash_unsigned = 3; 4906 #else 4907 if (!sb_rdonly(sb)) 4908 es->s_flags |= 4909 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4910 #endif 4911 } 4912 } 4913 4914 /* Handle clustersize */ 4915 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4916 if (ext4_has_feature_bigalloc(sb)) { 4917 if (clustersize < blocksize) { 4918 ext4_msg(sb, KERN_ERR, 4919 "cluster size (%d) smaller than " 4920 "block size (%d)", clustersize, blocksize); 4921 goto failed_mount; 4922 } 4923 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4924 le32_to_cpu(es->s_log_block_size); 4925 sbi->s_clusters_per_group = 4926 le32_to_cpu(es->s_clusters_per_group); 4927 if (sbi->s_clusters_per_group > blocksize * 8) { 4928 ext4_msg(sb, KERN_ERR, 4929 "#clusters per group too big: %lu", 4930 sbi->s_clusters_per_group); 4931 goto failed_mount; 4932 } 4933 if (sbi->s_blocks_per_group != 4934 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4935 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4936 "clusters per group (%lu) inconsistent", 4937 sbi->s_blocks_per_group, 4938 sbi->s_clusters_per_group); 4939 goto failed_mount; 4940 } 4941 } else { 4942 if (clustersize != blocksize) { 4943 ext4_msg(sb, KERN_ERR, 4944 "fragment/cluster size (%d) != " 4945 "block size (%d)", clustersize, blocksize); 4946 goto failed_mount; 4947 } 4948 if (sbi->s_blocks_per_group > blocksize * 8) { 4949 ext4_msg(sb, KERN_ERR, 4950 "#blocks per group too big: %lu", 4951 sbi->s_blocks_per_group); 4952 goto failed_mount; 4953 } 4954 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4955 sbi->s_cluster_bits = 0; 4956 } 4957 sbi->s_cluster_ratio = clustersize / blocksize; 4958 4959 /* Do we have standard group size of clustersize * 8 blocks ? */ 4960 if (sbi->s_blocks_per_group == clustersize << 3) 4961 set_opt2(sb, STD_GROUP_SIZE); 4962 4963 /* 4964 * Test whether we have more sectors than will fit in sector_t, 4965 * and whether the max offset is addressable by the page cache. 4966 */ 4967 err = generic_check_addressable(sb->s_blocksize_bits, 4968 ext4_blocks_count(es)); 4969 if (err) { 4970 ext4_msg(sb, KERN_ERR, "filesystem" 4971 " too large to mount safely on this system"); 4972 goto failed_mount; 4973 } 4974 4975 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4976 goto cantfind_ext4; 4977 4978 /* check blocks count against device size */ 4979 blocks_count = sb_bdev_nr_blocks(sb); 4980 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4981 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4982 "exceeds size of device (%llu blocks)", 4983 ext4_blocks_count(es), blocks_count); 4984 goto failed_mount; 4985 } 4986 4987 /* 4988 * It makes no sense for the first data block to be beyond the end 4989 * of the filesystem. 4990 */ 4991 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4992 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4993 "block %u is beyond end of filesystem (%llu)", 4994 le32_to_cpu(es->s_first_data_block), 4995 ext4_blocks_count(es)); 4996 goto failed_mount; 4997 } 4998 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4999 (sbi->s_cluster_ratio == 1)) { 5000 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 5001 "block is 0 with a 1k block and cluster size"); 5002 goto failed_mount; 5003 } 5004 5005 blocks_count = (ext4_blocks_count(es) - 5006 le32_to_cpu(es->s_first_data_block) + 5007 EXT4_BLOCKS_PER_GROUP(sb) - 1); 5008 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 5009 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 5010 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 5011 "(block count %llu, first data block %u, " 5012 "blocks per group %lu)", blocks_count, 5013 ext4_blocks_count(es), 5014 le32_to_cpu(es->s_first_data_block), 5015 EXT4_BLOCKS_PER_GROUP(sb)); 5016 goto failed_mount; 5017 } 5018 sbi->s_groups_count = blocks_count; 5019 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 5020 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 5021 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 5022 le32_to_cpu(es->s_inodes_count)) { 5023 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 5024 le32_to_cpu(es->s_inodes_count), 5025 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 5026 ret = -EINVAL; 5027 goto failed_mount; 5028 } 5029 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 5030 EXT4_DESC_PER_BLOCK(sb); 5031 if (ext4_has_feature_meta_bg(sb)) { 5032 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 5033 ext4_msg(sb, KERN_WARNING, 5034 "first meta block group too large: %u " 5035 "(group descriptor block count %u)", 5036 le32_to_cpu(es->s_first_meta_bg), db_count); 5037 goto failed_mount; 5038 } 5039 } 5040 rcu_assign_pointer(sbi->s_group_desc, 5041 kvmalloc_array(db_count, 5042 sizeof(struct buffer_head *), 5043 GFP_KERNEL)); 5044 if (sbi->s_group_desc == NULL) { 5045 ext4_msg(sb, KERN_ERR, "not enough memory"); 5046 ret = -ENOMEM; 5047 goto failed_mount; 5048 } 5049 5050 bgl_lock_init(sbi->s_blockgroup_lock); 5051 5052 /* Pre-read the descriptors into the buffer cache */ 5053 for (i = 0; i < db_count; i++) { 5054 block = descriptor_loc(sb, logical_sb_block, i); 5055 ext4_sb_breadahead_unmovable(sb, block); 5056 } 5057 5058 for (i = 0; i < db_count; i++) { 5059 struct buffer_head *bh; 5060 5061 block = descriptor_loc(sb, logical_sb_block, i); 5062 bh = ext4_sb_bread_unmovable(sb, block); 5063 if (IS_ERR(bh)) { 5064 ext4_msg(sb, KERN_ERR, 5065 "can't read group descriptor %d", i); 5066 db_count = i; 5067 ret = PTR_ERR(bh); 5068 goto failed_mount2; 5069 } 5070 rcu_read_lock(); 5071 rcu_dereference(sbi->s_group_desc)[i] = bh; 5072 rcu_read_unlock(); 5073 } 5074 sbi->s_gdb_count = db_count; 5075 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 5076 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 5077 ret = -EFSCORRUPTED; 5078 goto failed_mount2; 5079 } 5080 5081 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5082 spin_lock_init(&sbi->s_error_lock); 5083 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5084 5085 /* Register extent status tree shrinker */ 5086 if (ext4_es_register_shrinker(sbi)) 5087 goto failed_mount3; 5088 5089 sbi->s_stripe = ext4_get_stripe_size(sbi); 5090 sbi->s_extent_max_zeroout_kb = 32; 5091 5092 /* 5093 * set up enough so that it can read an inode 5094 */ 5095 sb->s_op = &ext4_sops; 5096 sb->s_export_op = &ext4_export_ops; 5097 sb->s_xattr = ext4_xattr_handlers; 5098 #ifdef CONFIG_FS_ENCRYPTION 5099 sb->s_cop = &ext4_cryptops; 5100 #endif 5101 #ifdef CONFIG_FS_VERITY 5102 sb->s_vop = &ext4_verityops; 5103 #endif 5104 #ifdef CONFIG_QUOTA 5105 sb->dq_op = &ext4_quota_operations; 5106 if (ext4_has_feature_quota(sb)) 5107 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5108 else 5109 sb->s_qcop = &ext4_qctl_operations; 5110 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5111 #endif 5112 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5113 5114 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5115 mutex_init(&sbi->s_orphan_lock); 5116 5117 /* Initialize fast commit stuff */ 5118 atomic_set(&sbi->s_fc_subtid, 0); 5119 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 5120 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 5121 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 5122 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 5123 sbi->s_fc_bytes = 0; 5124 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 5125 sbi->s_fc_ineligible_tid = 0; 5126 spin_lock_init(&sbi->s_fc_lock); 5127 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 5128 sbi->s_fc_replay_state.fc_regions = NULL; 5129 sbi->s_fc_replay_state.fc_regions_size = 0; 5130 sbi->s_fc_replay_state.fc_regions_used = 0; 5131 sbi->s_fc_replay_state.fc_regions_valid = 0; 5132 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 5133 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 5134 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 5135 5136 sb->s_root = NULL; 5137 5138 needs_recovery = (es->s_last_orphan != 0 || 5139 ext4_has_feature_orphan_present(sb) || 5140 ext4_has_feature_journal_needs_recovery(sb)); 5141 5142 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 5143 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 5144 goto failed_mount3a; 5145 5146 /* 5147 * The first inode we look at is the journal inode. Don't try 5148 * root first: it may be modified in the journal! 5149 */ 5150 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5151 err = ext4_load_journal(sb, es, ctx->journal_devnum); 5152 if (err) 5153 goto failed_mount3a; 5154 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5155 ext4_has_feature_journal_needs_recovery(sb)) { 5156 ext4_msg(sb, KERN_ERR, "required journal recovery " 5157 "suppressed and not mounted read-only"); 5158 goto failed_mount_wq; 5159 } else { 5160 /* Nojournal mode, all journal mount options are illegal */ 5161 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5162 ext4_msg(sb, KERN_ERR, "can't mount with " 5163 "journal_checksum, fs mounted w/o journal"); 5164 goto failed_mount_wq; 5165 } 5166 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5167 ext4_msg(sb, KERN_ERR, "can't mount with " 5168 "journal_async_commit, fs mounted w/o journal"); 5169 goto failed_mount_wq; 5170 } 5171 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5172 ext4_msg(sb, KERN_ERR, "can't mount with " 5173 "commit=%lu, fs mounted w/o journal", 5174 sbi->s_commit_interval / HZ); 5175 goto failed_mount_wq; 5176 } 5177 if (EXT4_MOUNT_DATA_FLAGS & 5178 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5179 ext4_msg(sb, KERN_ERR, "can't mount with " 5180 "data=, fs mounted w/o journal"); 5181 goto failed_mount_wq; 5182 } 5183 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5184 clear_opt(sb, JOURNAL_CHECKSUM); 5185 clear_opt(sb, DATA_FLAGS); 5186 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5187 sbi->s_journal = NULL; 5188 needs_recovery = 0; 5189 goto no_journal; 5190 } 5191 5192 if (ext4_has_feature_64bit(sb) && 5193 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 5194 JBD2_FEATURE_INCOMPAT_64BIT)) { 5195 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 5196 goto failed_mount_wq; 5197 } 5198 5199 if (!set_journal_csum_feature_set(sb)) { 5200 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 5201 "feature set"); 5202 goto failed_mount_wq; 5203 } 5204 5205 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 5206 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 5207 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 5208 ext4_msg(sb, KERN_ERR, 5209 "Failed to set fast commit journal feature"); 5210 goto failed_mount_wq; 5211 } 5212 5213 /* We have now updated the journal if required, so we can 5214 * validate the data journaling mode. */ 5215 switch (test_opt(sb, DATA_FLAGS)) { 5216 case 0: 5217 /* No mode set, assume a default based on the journal 5218 * capabilities: ORDERED_DATA if the journal can 5219 * cope, else JOURNAL_DATA 5220 */ 5221 if (jbd2_journal_check_available_features 5222 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 5223 set_opt(sb, ORDERED_DATA); 5224 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 5225 } else { 5226 set_opt(sb, JOURNAL_DATA); 5227 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 5228 } 5229 break; 5230 5231 case EXT4_MOUNT_ORDERED_DATA: 5232 case EXT4_MOUNT_WRITEBACK_DATA: 5233 if (!jbd2_journal_check_available_features 5234 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 5235 ext4_msg(sb, KERN_ERR, "Journal does not support " 5236 "requested data journaling mode"); 5237 goto failed_mount_wq; 5238 } 5239 break; 5240 default: 5241 break; 5242 } 5243 5244 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 5245 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5246 ext4_msg(sb, KERN_ERR, "can't mount with " 5247 "journal_async_commit in data=ordered mode"); 5248 goto failed_mount_wq; 5249 } 5250 5251 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 5252 5253 sbi->s_journal->j_submit_inode_data_buffers = 5254 ext4_journal_submit_inode_data_buffers; 5255 sbi->s_journal->j_finish_inode_data_buffers = 5256 ext4_journal_finish_inode_data_buffers; 5257 5258 no_journal: 5259 if (!test_opt(sb, NO_MBCACHE)) { 5260 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5261 if (!sbi->s_ea_block_cache) { 5262 ext4_msg(sb, KERN_ERR, 5263 "Failed to create ea_block_cache"); 5264 goto failed_mount_wq; 5265 } 5266 5267 if (ext4_has_feature_ea_inode(sb)) { 5268 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5269 if (!sbi->s_ea_inode_cache) { 5270 ext4_msg(sb, KERN_ERR, 5271 "Failed to create ea_inode_cache"); 5272 goto failed_mount_wq; 5273 } 5274 } 5275 } 5276 5277 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 5278 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 5279 goto failed_mount_wq; 5280 } 5281 5282 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 5283 !ext4_has_feature_encrypt(sb)) { 5284 ext4_set_feature_encrypt(sb); 5285 ext4_commit_super(sb); 5286 } 5287 5288 /* 5289 * Get the # of file system overhead blocks from the 5290 * superblock if present. 5291 */ 5292 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5293 /* ignore the precalculated value if it is ridiculous */ 5294 if (sbi->s_overhead > ext4_blocks_count(es)) 5295 sbi->s_overhead = 0; 5296 /* 5297 * If the bigalloc feature is not enabled recalculating the 5298 * overhead doesn't take long, so we might as well just redo 5299 * it to make sure we are using the correct value. 5300 */ 5301 if (!ext4_has_feature_bigalloc(sb)) 5302 sbi->s_overhead = 0; 5303 if (sbi->s_overhead == 0) { 5304 err = ext4_calculate_overhead(sb); 5305 if (err) 5306 goto failed_mount_wq; 5307 } 5308 5309 /* 5310 * The maximum number of concurrent works can be high and 5311 * concurrency isn't really necessary. Limit it to 1. 5312 */ 5313 EXT4_SB(sb)->rsv_conversion_wq = 5314 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5315 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5316 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5317 ret = -ENOMEM; 5318 goto failed_mount4; 5319 } 5320 5321 /* 5322 * The jbd2_journal_load will have done any necessary log recovery, 5323 * so we can safely mount the rest of the filesystem now. 5324 */ 5325 5326 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5327 if (IS_ERR(root)) { 5328 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5329 ret = PTR_ERR(root); 5330 root = NULL; 5331 goto failed_mount4; 5332 } 5333 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5334 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5335 iput(root); 5336 goto failed_mount4; 5337 } 5338 5339 sb->s_root = d_make_root(root); 5340 if (!sb->s_root) { 5341 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5342 ret = -ENOMEM; 5343 goto failed_mount4; 5344 } 5345 5346 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 5347 if (ret == -EROFS) { 5348 sb->s_flags |= SB_RDONLY; 5349 ret = 0; 5350 } else if (ret) 5351 goto failed_mount4a; 5352 5353 ext4_set_resv_clusters(sb); 5354 5355 if (test_opt(sb, BLOCK_VALIDITY)) { 5356 err = ext4_setup_system_zone(sb); 5357 if (err) { 5358 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5359 "zone (%d)", err); 5360 goto failed_mount4a; 5361 } 5362 } 5363 ext4_fc_replay_cleanup(sb); 5364 5365 ext4_ext_init(sb); 5366 5367 /* 5368 * Enable optimize_scan if number of groups is > threshold. This can be 5369 * turned off by passing "mb_optimize_scan=0". This can also be 5370 * turned on forcefully by passing "mb_optimize_scan=1". 5371 */ 5372 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5373 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5374 set_opt2(sb, MB_OPTIMIZE_SCAN); 5375 else 5376 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5377 } 5378 5379 err = ext4_mb_init(sb); 5380 if (err) { 5381 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5382 err); 5383 goto failed_mount5; 5384 } 5385 5386 /* 5387 * We can only set up the journal commit callback once 5388 * mballoc is initialized 5389 */ 5390 if (sbi->s_journal) 5391 sbi->s_journal->j_commit_callback = 5392 ext4_journal_commit_callback; 5393 5394 block = ext4_count_free_clusters(sb); 5395 ext4_free_blocks_count_set(sbi->s_es, 5396 EXT4_C2B(sbi, block)); 5397 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5398 GFP_KERNEL); 5399 if (!err) { 5400 unsigned long freei = ext4_count_free_inodes(sb); 5401 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5402 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5403 GFP_KERNEL); 5404 } 5405 /* 5406 * Update the checksum after updating free space/inode 5407 * counters. Otherwise the superblock can have an incorrect 5408 * checksum in the buffer cache until it is written out and 5409 * e2fsprogs programs trying to open a file system immediately 5410 * after it is mounted can fail. 5411 */ 5412 ext4_superblock_csum_set(sb); 5413 if (!err) 5414 err = percpu_counter_init(&sbi->s_dirs_counter, 5415 ext4_count_dirs(sb), GFP_KERNEL); 5416 if (!err) 5417 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5418 GFP_KERNEL); 5419 if (!err) 5420 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5421 GFP_KERNEL); 5422 if (!err) 5423 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5424 5425 if (err) { 5426 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5427 goto failed_mount6; 5428 } 5429 5430 if (ext4_has_feature_flex_bg(sb)) 5431 if (!ext4_fill_flex_info(sb)) { 5432 ext4_msg(sb, KERN_ERR, 5433 "unable to initialize " 5434 "flex_bg meta info!"); 5435 ret = -ENOMEM; 5436 goto failed_mount6; 5437 } 5438 5439 err = ext4_register_li_request(sb, first_not_zeroed); 5440 if (err) 5441 goto failed_mount6; 5442 5443 err = ext4_register_sysfs(sb); 5444 if (err) 5445 goto failed_mount7; 5446 5447 err = ext4_init_orphan_info(sb); 5448 if (err) 5449 goto failed_mount8; 5450 #ifdef CONFIG_QUOTA 5451 /* Enable quota usage during mount. */ 5452 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5453 err = ext4_enable_quotas(sb); 5454 if (err) 5455 goto failed_mount9; 5456 } 5457 #endif /* CONFIG_QUOTA */ 5458 5459 /* 5460 * Save the original bdev mapping's wb_err value which could be 5461 * used to detect the metadata async write error. 5462 */ 5463 spin_lock_init(&sbi->s_bdev_wb_lock); 5464 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5465 &sbi->s_bdev_wb_err); 5466 sb->s_bdev->bd_super = sb; 5467 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5468 ext4_orphan_cleanup(sb, es); 5469 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5470 if (needs_recovery) { 5471 ext4_msg(sb, KERN_INFO, "recovery complete"); 5472 err = ext4_mark_recovery_complete(sb, es); 5473 if (err) 5474 goto failed_mount9; 5475 } 5476 5477 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5478 ext4_msg(sb, KERN_WARNING, 5479 "mounting with \"discard\" option, but the device does not support discard"); 5480 5481 if (es->s_error_count) 5482 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5483 5484 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5485 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5486 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5487 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5488 atomic_set(&sbi->s_warning_count, 0); 5489 atomic_set(&sbi->s_msg_count, 0); 5490 5491 return 0; 5492 5493 cantfind_ext4: 5494 if (!silent) 5495 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5496 goto failed_mount; 5497 5498 failed_mount9: 5499 ext4_release_orphan_info(sb); 5500 failed_mount8: 5501 ext4_unregister_sysfs(sb); 5502 kobject_put(&sbi->s_kobj); 5503 failed_mount7: 5504 ext4_unregister_li_request(sb); 5505 failed_mount6: 5506 ext4_mb_release(sb); 5507 rcu_read_lock(); 5508 flex_groups = rcu_dereference(sbi->s_flex_groups); 5509 if (flex_groups) { 5510 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5511 kvfree(flex_groups[i]); 5512 kvfree(flex_groups); 5513 } 5514 rcu_read_unlock(); 5515 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5516 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5517 percpu_counter_destroy(&sbi->s_dirs_counter); 5518 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5519 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5520 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5521 failed_mount5: 5522 ext4_ext_release(sb); 5523 ext4_release_system_zone(sb); 5524 failed_mount4a: 5525 dput(sb->s_root); 5526 sb->s_root = NULL; 5527 failed_mount4: 5528 ext4_msg(sb, KERN_ERR, "mount failed"); 5529 if (EXT4_SB(sb)->rsv_conversion_wq) 5530 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5531 failed_mount_wq: 5532 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5533 sbi->s_ea_inode_cache = NULL; 5534 5535 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5536 sbi->s_ea_block_cache = NULL; 5537 5538 if (sbi->s_journal) { 5539 /* flush s_error_work before journal destroy. */ 5540 flush_work(&sbi->s_error_work); 5541 jbd2_journal_destroy(sbi->s_journal); 5542 sbi->s_journal = NULL; 5543 } 5544 failed_mount3a: 5545 ext4_es_unregister_shrinker(sbi); 5546 failed_mount3: 5547 /* flush s_error_work before sbi destroy */ 5548 flush_work(&sbi->s_error_work); 5549 del_timer_sync(&sbi->s_err_report); 5550 ext4_stop_mmpd(sbi); 5551 failed_mount2: 5552 rcu_read_lock(); 5553 group_desc = rcu_dereference(sbi->s_group_desc); 5554 for (i = 0; i < db_count; i++) 5555 brelse(group_desc[i]); 5556 kvfree(group_desc); 5557 rcu_read_unlock(); 5558 failed_mount: 5559 if (sbi->s_chksum_driver) 5560 crypto_free_shash(sbi->s_chksum_driver); 5561 5562 #if IS_ENABLED(CONFIG_UNICODE) 5563 utf8_unload(sb->s_encoding); 5564 #endif 5565 5566 #ifdef CONFIG_QUOTA 5567 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5568 kfree(get_qf_name(sb, sbi, i)); 5569 #endif 5570 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5571 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5572 brelse(bh); 5573 ext4_blkdev_remove(sbi); 5574 out_fail: 5575 sb->s_fs_info = NULL; 5576 return err ? err : ret; 5577 } 5578 5579 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5580 { 5581 struct ext4_fs_context *ctx = fc->fs_private; 5582 struct ext4_sb_info *sbi; 5583 const char *descr; 5584 int ret; 5585 5586 sbi = ext4_alloc_sbi(sb); 5587 if (!sbi) 5588 return -ENOMEM; 5589 5590 fc->s_fs_info = sbi; 5591 5592 /* Cleanup superblock name */ 5593 strreplace(sb->s_id, '/', '!'); 5594 5595 sbi->s_sb_block = 1; /* Default super block location */ 5596 if (ctx->spec & EXT4_SPEC_s_sb_block) 5597 sbi->s_sb_block = ctx->s_sb_block; 5598 5599 ret = __ext4_fill_super(fc, sb); 5600 if (ret < 0) 5601 goto free_sbi; 5602 5603 if (sbi->s_journal) { 5604 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5605 descr = " journalled data mode"; 5606 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5607 descr = " ordered data mode"; 5608 else 5609 descr = " writeback data mode"; 5610 } else 5611 descr = "out journal"; 5612 5613 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5614 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5615 "Quota mode: %s.", descr, ext4_quota_mode(sb)); 5616 5617 /* Update the s_overhead_clusters if necessary */ 5618 ext4_update_overhead(sb); 5619 return 0; 5620 5621 free_sbi: 5622 ext4_free_sbi(sbi); 5623 fc->s_fs_info = NULL; 5624 return ret; 5625 } 5626 5627 static int ext4_get_tree(struct fs_context *fc) 5628 { 5629 return get_tree_bdev(fc, ext4_fill_super); 5630 } 5631 5632 /* 5633 * Setup any per-fs journal parameters now. We'll do this both on 5634 * initial mount, once the journal has been initialised but before we've 5635 * done any recovery; and again on any subsequent remount. 5636 */ 5637 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5638 { 5639 struct ext4_sb_info *sbi = EXT4_SB(sb); 5640 5641 journal->j_commit_interval = sbi->s_commit_interval; 5642 journal->j_min_batch_time = sbi->s_min_batch_time; 5643 journal->j_max_batch_time = sbi->s_max_batch_time; 5644 ext4_fc_init(sb, journal); 5645 5646 write_lock(&journal->j_state_lock); 5647 if (test_opt(sb, BARRIER)) 5648 journal->j_flags |= JBD2_BARRIER; 5649 else 5650 journal->j_flags &= ~JBD2_BARRIER; 5651 if (test_opt(sb, DATA_ERR_ABORT)) 5652 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5653 else 5654 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5655 write_unlock(&journal->j_state_lock); 5656 } 5657 5658 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5659 unsigned int journal_inum) 5660 { 5661 struct inode *journal_inode; 5662 5663 /* 5664 * Test for the existence of a valid inode on disk. Bad things 5665 * happen if we iget() an unused inode, as the subsequent iput() 5666 * will try to delete it. 5667 */ 5668 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5669 if (IS_ERR(journal_inode)) { 5670 ext4_msg(sb, KERN_ERR, "no journal found"); 5671 return NULL; 5672 } 5673 if (!journal_inode->i_nlink) { 5674 make_bad_inode(journal_inode); 5675 iput(journal_inode); 5676 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5677 return NULL; 5678 } 5679 5680 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5681 journal_inode, journal_inode->i_size); 5682 if (!S_ISREG(journal_inode->i_mode)) { 5683 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5684 iput(journal_inode); 5685 return NULL; 5686 } 5687 return journal_inode; 5688 } 5689 5690 static journal_t *ext4_get_journal(struct super_block *sb, 5691 unsigned int journal_inum) 5692 { 5693 struct inode *journal_inode; 5694 journal_t *journal; 5695 5696 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5697 return NULL; 5698 5699 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5700 if (!journal_inode) 5701 return NULL; 5702 5703 journal = jbd2_journal_init_inode(journal_inode); 5704 if (!journal) { 5705 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5706 iput(journal_inode); 5707 return NULL; 5708 } 5709 journal->j_private = sb; 5710 ext4_init_journal_params(sb, journal); 5711 return journal; 5712 } 5713 5714 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5715 dev_t j_dev) 5716 { 5717 struct buffer_head *bh; 5718 journal_t *journal; 5719 ext4_fsblk_t start; 5720 ext4_fsblk_t len; 5721 int hblock, blocksize; 5722 ext4_fsblk_t sb_block; 5723 unsigned long offset; 5724 struct ext4_super_block *es; 5725 struct block_device *bdev; 5726 5727 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5728 return NULL; 5729 5730 bdev = ext4_blkdev_get(j_dev, sb); 5731 if (bdev == NULL) 5732 return NULL; 5733 5734 blocksize = sb->s_blocksize; 5735 hblock = bdev_logical_block_size(bdev); 5736 if (blocksize < hblock) { 5737 ext4_msg(sb, KERN_ERR, 5738 "blocksize too small for journal device"); 5739 goto out_bdev; 5740 } 5741 5742 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5743 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5744 set_blocksize(bdev, blocksize); 5745 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5746 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5747 "external journal"); 5748 goto out_bdev; 5749 } 5750 5751 es = (struct ext4_super_block *) (bh->b_data + offset); 5752 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5753 !(le32_to_cpu(es->s_feature_incompat) & 5754 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5755 ext4_msg(sb, KERN_ERR, "external journal has " 5756 "bad superblock"); 5757 brelse(bh); 5758 goto out_bdev; 5759 } 5760 5761 if ((le32_to_cpu(es->s_feature_ro_compat) & 5762 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5763 es->s_checksum != ext4_superblock_csum(sb, es)) { 5764 ext4_msg(sb, KERN_ERR, "external journal has " 5765 "corrupt superblock"); 5766 brelse(bh); 5767 goto out_bdev; 5768 } 5769 5770 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5771 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5772 brelse(bh); 5773 goto out_bdev; 5774 } 5775 5776 len = ext4_blocks_count(es); 5777 start = sb_block + 1; 5778 brelse(bh); /* we're done with the superblock */ 5779 5780 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5781 start, len, blocksize); 5782 if (!journal) { 5783 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5784 goto out_bdev; 5785 } 5786 journal->j_private = sb; 5787 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5788 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5789 goto out_journal; 5790 } 5791 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5792 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5793 "user (unsupported) - %d", 5794 be32_to_cpu(journal->j_superblock->s_nr_users)); 5795 goto out_journal; 5796 } 5797 EXT4_SB(sb)->s_journal_bdev = bdev; 5798 ext4_init_journal_params(sb, journal); 5799 return journal; 5800 5801 out_journal: 5802 jbd2_journal_destroy(journal); 5803 out_bdev: 5804 ext4_blkdev_put(bdev); 5805 return NULL; 5806 } 5807 5808 static int ext4_load_journal(struct super_block *sb, 5809 struct ext4_super_block *es, 5810 unsigned long journal_devnum) 5811 { 5812 journal_t *journal; 5813 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5814 dev_t journal_dev; 5815 int err = 0; 5816 int really_read_only; 5817 int journal_dev_ro; 5818 5819 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5820 return -EFSCORRUPTED; 5821 5822 if (journal_devnum && 5823 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5824 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5825 "numbers have changed"); 5826 journal_dev = new_decode_dev(journal_devnum); 5827 } else 5828 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5829 5830 if (journal_inum && journal_dev) { 5831 ext4_msg(sb, KERN_ERR, 5832 "filesystem has both journal inode and journal device!"); 5833 return -EINVAL; 5834 } 5835 5836 if (journal_inum) { 5837 journal = ext4_get_journal(sb, journal_inum); 5838 if (!journal) 5839 return -EINVAL; 5840 } else { 5841 journal = ext4_get_dev_journal(sb, journal_dev); 5842 if (!journal) 5843 return -EINVAL; 5844 } 5845 5846 journal_dev_ro = bdev_read_only(journal->j_dev); 5847 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5848 5849 if (journal_dev_ro && !sb_rdonly(sb)) { 5850 ext4_msg(sb, KERN_ERR, 5851 "journal device read-only, try mounting with '-o ro'"); 5852 err = -EROFS; 5853 goto err_out; 5854 } 5855 5856 /* 5857 * Are we loading a blank journal or performing recovery after a 5858 * crash? For recovery, we need to check in advance whether we 5859 * can get read-write access to the device. 5860 */ 5861 if (ext4_has_feature_journal_needs_recovery(sb)) { 5862 if (sb_rdonly(sb)) { 5863 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5864 "required on readonly filesystem"); 5865 if (really_read_only) { 5866 ext4_msg(sb, KERN_ERR, "write access " 5867 "unavailable, cannot proceed " 5868 "(try mounting with noload)"); 5869 err = -EROFS; 5870 goto err_out; 5871 } 5872 ext4_msg(sb, KERN_INFO, "write access will " 5873 "be enabled during recovery"); 5874 } 5875 } 5876 5877 if (!(journal->j_flags & JBD2_BARRIER)) 5878 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5879 5880 if (!ext4_has_feature_journal_needs_recovery(sb)) 5881 err = jbd2_journal_wipe(journal, !really_read_only); 5882 if (!err) { 5883 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5884 if (save) 5885 memcpy(save, ((char *) es) + 5886 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5887 err = jbd2_journal_load(journal); 5888 if (save) 5889 memcpy(((char *) es) + EXT4_S_ERR_START, 5890 save, EXT4_S_ERR_LEN); 5891 kfree(save); 5892 } 5893 5894 if (err) { 5895 ext4_msg(sb, KERN_ERR, "error loading journal"); 5896 goto err_out; 5897 } 5898 5899 EXT4_SB(sb)->s_journal = journal; 5900 err = ext4_clear_journal_err(sb, es); 5901 if (err) { 5902 EXT4_SB(sb)->s_journal = NULL; 5903 jbd2_journal_destroy(journal); 5904 return err; 5905 } 5906 5907 if (!really_read_only && journal_devnum && 5908 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5909 es->s_journal_dev = cpu_to_le32(journal_devnum); 5910 5911 /* Make sure we flush the recovery flag to disk. */ 5912 ext4_commit_super(sb); 5913 } 5914 5915 return 0; 5916 5917 err_out: 5918 jbd2_journal_destroy(journal); 5919 return err; 5920 } 5921 5922 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5923 static void ext4_update_super(struct super_block *sb) 5924 { 5925 struct ext4_sb_info *sbi = EXT4_SB(sb); 5926 struct ext4_super_block *es = sbi->s_es; 5927 struct buffer_head *sbh = sbi->s_sbh; 5928 5929 lock_buffer(sbh); 5930 /* 5931 * If the file system is mounted read-only, don't update the 5932 * superblock write time. This avoids updating the superblock 5933 * write time when we are mounting the root file system 5934 * read/only but we need to replay the journal; at that point, 5935 * for people who are east of GMT and who make their clock 5936 * tick in localtime for Windows bug-for-bug compatibility, 5937 * the clock is set in the future, and this will cause e2fsck 5938 * to complain and force a full file system check. 5939 */ 5940 if (!(sb->s_flags & SB_RDONLY)) 5941 ext4_update_tstamp(es, s_wtime); 5942 es->s_kbytes_written = 5943 cpu_to_le64(sbi->s_kbytes_written + 5944 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5945 sbi->s_sectors_written_start) >> 1)); 5946 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5947 ext4_free_blocks_count_set(es, 5948 EXT4_C2B(sbi, percpu_counter_sum_positive( 5949 &sbi->s_freeclusters_counter))); 5950 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5951 es->s_free_inodes_count = 5952 cpu_to_le32(percpu_counter_sum_positive( 5953 &sbi->s_freeinodes_counter)); 5954 /* Copy error information to the on-disk superblock */ 5955 spin_lock(&sbi->s_error_lock); 5956 if (sbi->s_add_error_count > 0) { 5957 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5958 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5959 __ext4_update_tstamp(&es->s_first_error_time, 5960 &es->s_first_error_time_hi, 5961 sbi->s_first_error_time); 5962 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5963 sizeof(es->s_first_error_func)); 5964 es->s_first_error_line = 5965 cpu_to_le32(sbi->s_first_error_line); 5966 es->s_first_error_ino = 5967 cpu_to_le32(sbi->s_first_error_ino); 5968 es->s_first_error_block = 5969 cpu_to_le64(sbi->s_first_error_block); 5970 es->s_first_error_errcode = 5971 ext4_errno_to_code(sbi->s_first_error_code); 5972 } 5973 __ext4_update_tstamp(&es->s_last_error_time, 5974 &es->s_last_error_time_hi, 5975 sbi->s_last_error_time); 5976 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5977 sizeof(es->s_last_error_func)); 5978 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5979 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5980 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5981 es->s_last_error_errcode = 5982 ext4_errno_to_code(sbi->s_last_error_code); 5983 /* 5984 * Start the daily error reporting function if it hasn't been 5985 * started already 5986 */ 5987 if (!es->s_error_count) 5988 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5989 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5990 sbi->s_add_error_count = 0; 5991 } 5992 spin_unlock(&sbi->s_error_lock); 5993 5994 ext4_superblock_csum_set(sb); 5995 unlock_buffer(sbh); 5996 } 5997 5998 static int ext4_commit_super(struct super_block *sb) 5999 { 6000 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6001 int error = 0; 6002 6003 if (!sbh) 6004 return -EINVAL; 6005 if (block_device_ejected(sb)) 6006 return -ENODEV; 6007 6008 ext4_update_super(sb); 6009 6010 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6011 /* 6012 * Oh, dear. A previous attempt to write the 6013 * superblock failed. This could happen because the 6014 * USB device was yanked out. Or it could happen to 6015 * be a transient write error and maybe the block will 6016 * be remapped. Nothing we can do but to retry the 6017 * write and hope for the best. 6018 */ 6019 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6020 "superblock detected"); 6021 clear_buffer_write_io_error(sbh); 6022 set_buffer_uptodate(sbh); 6023 } 6024 BUFFER_TRACE(sbh, "marking dirty"); 6025 mark_buffer_dirty(sbh); 6026 error = __sync_dirty_buffer(sbh, 6027 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 6028 if (buffer_write_io_error(sbh)) { 6029 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6030 "superblock"); 6031 clear_buffer_write_io_error(sbh); 6032 set_buffer_uptodate(sbh); 6033 } 6034 return error; 6035 } 6036 6037 /* 6038 * Have we just finished recovery? If so, and if we are mounting (or 6039 * remounting) the filesystem readonly, then we will end up with a 6040 * consistent fs on disk. Record that fact. 6041 */ 6042 static int ext4_mark_recovery_complete(struct super_block *sb, 6043 struct ext4_super_block *es) 6044 { 6045 int err; 6046 journal_t *journal = EXT4_SB(sb)->s_journal; 6047 6048 if (!ext4_has_feature_journal(sb)) { 6049 if (journal != NULL) { 6050 ext4_error(sb, "Journal got removed while the fs was " 6051 "mounted!"); 6052 return -EFSCORRUPTED; 6053 } 6054 return 0; 6055 } 6056 jbd2_journal_lock_updates(journal); 6057 err = jbd2_journal_flush(journal, 0); 6058 if (err < 0) 6059 goto out; 6060 6061 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6062 ext4_has_feature_orphan_present(sb))) { 6063 if (!ext4_orphan_file_empty(sb)) { 6064 ext4_error(sb, "Orphan file not empty on read-only fs."); 6065 err = -EFSCORRUPTED; 6066 goto out; 6067 } 6068 ext4_clear_feature_journal_needs_recovery(sb); 6069 ext4_clear_feature_orphan_present(sb); 6070 ext4_commit_super(sb); 6071 } 6072 out: 6073 jbd2_journal_unlock_updates(journal); 6074 return err; 6075 } 6076 6077 /* 6078 * If we are mounting (or read-write remounting) a filesystem whose journal 6079 * has recorded an error from a previous lifetime, move that error to the 6080 * main filesystem now. 6081 */ 6082 static int ext4_clear_journal_err(struct super_block *sb, 6083 struct ext4_super_block *es) 6084 { 6085 journal_t *journal; 6086 int j_errno; 6087 const char *errstr; 6088 6089 if (!ext4_has_feature_journal(sb)) { 6090 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6091 return -EFSCORRUPTED; 6092 } 6093 6094 journal = EXT4_SB(sb)->s_journal; 6095 6096 /* 6097 * Now check for any error status which may have been recorded in the 6098 * journal by a prior ext4_error() or ext4_abort() 6099 */ 6100 6101 j_errno = jbd2_journal_errno(journal); 6102 if (j_errno) { 6103 char nbuf[16]; 6104 6105 errstr = ext4_decode_error(sb, j_errno, nbuf); 6106 ext4_warning(sb, "Filesystem error recorded " 6107 "from previous mount: %s", errstr); 6108 ext4_warning(sb, "Marking fs in need of filesystem check."); 6109 6110 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6111 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6112 ext4_commit_super(sb); 6113 6114 jbd2_journal_clear_err(journal); 6115 jbd2_journal_update_sb_errno(journal); 6116 } 6117 return 0; 6118 } 6119 6120 /* 6121 * Force the running and committing transactions to commit, 6122 * and wait on the commit. 6123 */ 6124 int ext4_force_commit(struct super_block *sb) 6125 { 6126 journal_t *journal; 6127 6128 if (sb_rdonly(sb)) 6129 return 0; 6130 6131 journal = EXT4_SB(sb)->s_journal; 6132 return ext4_journal_force_commit(journal); 6133 } 6134 6135 static int ext4_sync_fs(struct super_block *sb, int wait) 6136 { 6137 int ret = 0; 6138 tid_t target; 6139 bool needs_barrier = false; 6140 struct ext4_sb_info *sbi = EXT4_SB(sb); 6141 6142 if (unlikely(ext4_forced_shutdown(sbi))) 6143 return 0; 6144 6145 trace_ext4_sync_fs(sb, wait); 6146 flush_workqueue(sbi->rsv_conversion_wq); 6147 /* 6148 * Writeback quota in non-journalled quota case - journalled quota has 6149 * no dirty dquots 6150 */ 6151 dquot_writeback_dquots(sb, -1); 6152 /* 6153 * Data writeback is possible w/o journal transaction, so barrier must 6154 * being sent at the end of the function. But we can skip it if 6155 * transaction_commit will do it for us. 6156 */ 6157 if (sbi->s_journal) { 6158 target = jbd2_get_latest_transaction(sbi->s_journal); 6159 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6160 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6161 needs_barrier = true; 6162 6163 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6164 if (wait) 6165 ret = jbd2_log_wait_commit(sbi->s_journal, 6166 target); 6167 } 6168 } else if (wait && test_opt(sb, BARRIER)) 6169 needs_barrier = true; 6170 if (needs_barrier) { 6171 int err; 6172 err = blkdev_issue_flush(sb->s_bdev); 6173 if (!ret) 6174 ret = err; 6175 } 6176 6177 return ret; 6178 } 6179 6180 /* 6181 * LVM calls this function before a (read-only) snapshot is created. This 6182 * gives us a chance to flush the journal completely and mark the fs clean. 6183 * 6184 * Note that only this function cannot bring a filesystem to be in a clean 6185 * state independently. It relies on upper layer to stop all data & metadata 6186 * modifications. 6187 */ 6188 static int ext4_freeze(struct super_block *sb) 6189 { 6190 int error = 0; 6191 journal_t *journal; 6192 6193 if (sb_rdonly(sb)) 6194 return 0; 6195 6196 journal = EXT4_SB(sb)->s_journal; 6197 6198 if (journal) { 6199 /* Now we set up the journal barrier. */ 6200 jbd2_journal_lock_updates(journal); 6201 6202 /* 6203 * Don't clear the needs_recovery flag if we failed to 6204 * flush the journal. 6205 */ 6206 error = jbd2_journal_flush(journal, 0); 6207 if (error < 0) 6208 goto out; 6209 6210 /* Journal blocked and flushed, clear needs_recovery flag. */ 6211 ext4_clear_feature_journal_needs_recovery(sb); 6212 if (ext4_orphan_file_empty(sb)) 6213 ext4_clear_feature_orphan_present(sb); 6214 } 6215 6216 error = ext4_commit_super(sb); 6217 out: 6218 if (journal) 6219 /* we rely on upper layer to stop further updates */ 6220 jbd2_journal_unlock_updates(journal); 6221 return error; 6222 } 6223 6224 /* 6225 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6226 * flag here, even though the filesystem is not technically dirty yet. 6227 */ 6228 static int ext4_unfreeze(struct super_block *sb) 6229 { 6230 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6231 return 0; 6232 6233 if (EXT4_SB(sb)->s_journal) { 6234 /* Reset the needs_recovery flag before the fs is unlocked. */ 6235 ext4_set_feature_journal_needs_recovery(sb); 6236 if (ext4_has_feature_orphan_file(sb)) 6237 ext4_set_feature_orphan_present(sb); 6238 } 6239 6240 ext4_commit_super(sb); 6241 return 0; 6242 } 6243 6244 /* 6245 * Structure to save mount options for ext4_remount's benefit 6246 */ 6247 struct ext4_mount_options { 6248 unsigned long s_mount_opt; 6249 unsigned long s_mount_opt2; 6250 kuid_t s_resuid; 6251 kgid_t s_resgid; 6252 unsigned long s_commit_interval; 6253 u32 s_min_batch_time, s_max_batch_time; 6254 #ifdef CONFIG_QUOTA 6255 int s_jquota_fmt; 6256 char *s_qf_names[EXT4_MAXQUOTAS]; 6257 #endif 6258 }; 6259 6260 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6261 { 6262 struct ext4_fs_context *ctx = fc->fs_private; 6263 struct ext4_super_block *es; 6264 struct ext4_sb_info *sbi = EXT4_SB(sb); 6265 unsigned long old_sb_flags; 6266 struct ext4_mount_options old_opts; 6267 ext4_group_t g; 6268 int err = 0; 6269 #ifdef CONFIG_QUOTA 6270 int enable_quota = 0; 6271 int i, j; 6272 char *to_free[EXT4_MAXQUOTAS]; 6273 #endif 6274 6275 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6276 6277 /* Store the original options */ 6278 old_sb_flags = sb->s_flags; 6279 old_opts.s_mount_opt = sbi->s_mount_opt; 6280 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6281 old_opts.s_resuid = sbi->s_resuid; 6282 old_opts.s_resgid = sbi->s_resgid; 6283 old_opts.s_commit_interval = sbi->s_commit_interval; 6284 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6285 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6286 #ifdef CONFIG_QUOTA 6287 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6288 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6289 if (sbi->s_qf_names[i]) { 6290 char *qf_name = get_qf_name(sb, sbi, i); 6291 6292 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6293 if (!old_opts.s_qf_names[i]) { 6294 for (j = 0; j < i; j++) 6295 kfree(old_opts.s_qf_names[j]); 6296 return -ENOMEM; 6297 } 6298 } else 6299 old_opts.s_qf_names[i] = NULL; 6300 #endif 6301 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6302 ctx->journal_ioprio = 6303 sbi->s_journal->j_task->io_context->ioprio; 6304 6305 ext4_apply_options(fc, sb); 6306 6307 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6308 test_opt(sb, JOURNAL_CHECKSUM)) { 6309 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6310 "during remount not supported; ignoring"); 6311 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6312 } 6313 6314 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6315 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6316 ext4_msg(sb, KERN_ERR, "can't mount with " 6317 "both data=journal and delalloc"); 6318 err = -EINVAL; 6319 goto restore_opts; 6320 } 6321 if (test_opt(sb, DIOREAD_NOLOCK)) { 6322 ext4_msg(sb, KERN_ERR, "can't mount with " 6323 "both data=journal and dioread_nolock"); 6324 err = -EINVAL; 6325 goto restore_opts; 6326 } 6327 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6328 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6329 ext4_msg(sb, KERN_ERR, "can't mount with " 6330 "journal_async_commit in data=ordered mode"); 6331 err = -EINVAL; 6332 goto restore_opts; 6333 } 6334 } 6335 6336 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6337 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6338 err = -EINVAL; 6339 goto restore_opts; 6340 } 6341 6342 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6343 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6344 6345 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6346 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6347 6348 es = sbi->s_es; 6349 6350 if (sbi->s_journal) { 6351 ext4_init_journal_params(sb, sbi->s_journal); 6352 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6353 } 6354 6355 /* Flush outstanding errors before changing fs state */ 6356 flush_work(&sbi->s_error_work); 6357 6358 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6359 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6360 err = -EROFS; 6361 goto restore_opts; 6362 } 6363 6364 if (fc->sb_flags & SB_RDONLY) { 6365 err = sync_filesystem(sb); 6366 if (err < 0) 6367 goto restore_opts; 6368 err = dquot_suspend(sb, -1); 6369 if (err < 0) 6370 goto restore_opts; 6371 6372 /* 6373 * First of all, the unconditional stuff we have to do 6374 * to disable replay of the journal when we next remount 6375 */ 6376 sb->s_flags |= SB_RDONLY; 6377 6378 /* 6379 * OK, test if we are remounting a valid rw partition 6380 * readonly, and if so set the rdonly flag and then 6381 * mark the partition as valid again. 6382 */ 6383 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6384 (sbi->s_mount_state & EXT4_VALID_FS)) 6385 es->s_state = cpu_to_le16(sbi->s_mount_state); 6386 6387 if (sbi->s_journal) { 6388 /* 6389 * We let remount-ro finish even if marking fs 6390 * as clean failed... 6391 */ 6392 ext4_mark_recovery_complete(sb, es); 6393 } 6394 } else { 6395 /* Make sure we can mount this feature set readwrite */ 6396 if (ext4_has_feature_readonly(sb) || 6397 !ext4_feature_set_ok(sb, 0)) { 6398 err = -EROFS; 6399 goto restore_opts; 6400 } 6401 /* 6402 * Make sure the group descriptor checksums 6403 * are sane. If they aren't, refuse to remount r/w. 6404 */ 6405 for (g = 0; g < sbi->s_groups_count; g++) { 6406 struct ext4_group_desc *gdp = 6407 ext4_get_group_desc(sb, g, NULL); 6408 6409 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6410 ext4_msg(sb, KERN_ERR, 6411 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6412 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6413 le16_to_cpu(gdp->bg_checksum)); 6414 err = -EFSBADCRC; 6415 goto restore_opts; 6416 } 6417 } 6418 6419 /* 6420 * If we have an unprocessed orphan list hanging 6421 * around from a previously readonly bdev mount, 6422 * require a full umount/remount for now. 6423 */ 6424 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6425 ext4_msg(sb, KERN_WARNING, "Couldn't " 6426 "remount RDWR because of unprocessed " 6427 "orphan inode list. Please " 6428 "umount/remount instead"); 6429 err = -EINVAL; 6430 goto restore_opts; 6431 } 6432 6433 /* 6434 * Mounting a RDONLY partition read-write, so reread 6435 * and store the current valid flag. (It may have 6436 * been changed by e2fsck since we originally mounted 6437 * the partition.) 6438 */ 6439 if (sbi->s_journal) { 6440 err = ext4_clear_journal_err(sb, es); 6441 if (err) 6442 goto restore_opts; 6443 } 6444 sbi->s_mount_state = le16_to_cpu(es->s_state); 6445 6446 err = ext4_setup_super(sb, es, 0); 6447 if (err) 6448 goto restore_opts; 6449 6450 sb->s_flags &= ~SB_RDONLY; 6451 if (ext4_has_feature_mmp(sb)) 6452 if (ext4_multi_mount_protect(sb, 6453 le64_to_cpu(es->s_mmp_block))) { 6454 err = -EROFS; 6455 goto restore_opts; 6456 } 6457 #ifdef CONFIG_QUOTA 6458 enable_quota = 1; 6459 #endif 6460 } 6461 } 6462 6463 /* 6464 * Reinitialize lazy itable initialization thread based on 6465 * current settings 6466 */ 6467 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6468 ext4_unregister_li_request(sb); 6469 else { 6470 ext4_group_t first_not_zeroed; 6471 first_not_zeroed = ext4_has_uninit_itable(sb); 6472 ext4_register_li_request(sb, first_not_zeroed); 6473 } 6474 6475 /* 6476 * Handle creation of system zone data early because it can fail. 6477 * Releasing of existing data is done when we are sure remount will 6478 * succeed. 6479 */ 6480 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6481 err = ext4_setup_system_zone(sb); 6482 if (err) 6483 goto restore_opts; 6484 } 6485 6486 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6487 err = ext4_commit_super(sb); 6488 if (err) 6489 goto restore_opts; 6490 } 6491 6492 #ifdef CONFIG_QUOTA 6493 /* Release old quota file names */ 6494 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6495 kfree(old_opts.s_qf_names[i]); 6496 if (enable_quota) { 6497 if (sb_any_quota_suspended(sb)) 6498 dquot_resume(sb, -1); 6499 else if (ext4_has_feature_quota(sb)) { 6500 err = ext4_enable_quotas(sb); 6501 if (err) 6502 goto restore_opts; 6503 } 6504 } 6505 #endif 6506 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6507 ext4_release_system_zone(sb); 6508 6509 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6510 ext4_stop_mmpd(sbi); 6511 6512 return 0; 6513 6514 restore_opts: 6515 sb->s_flags = old_sb_flags; 6516 sbi->s_mount_opt = old_opts.s_mount_opt; 6517 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6518 sbi->s_resuid = old_opts.s_resuid; 6519 sbi->s_resgid = old_opts.s_resgid; 6520 sbi->s_commit_interval = old_opts.s_commit_interval; 6521 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6522 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6523 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6524 ext4_release_system_zone(sb); 6525 #ifdef CONFIG_QUOTA 6526 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6527 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6528 to_free[i] = get_qf_name(sb, sbi, i); 6529 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6530 } 6531 synchronize_rcu(); 6532 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6533 kfree(to_free[i]); 6534 #endif 6535 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6536 ext4_stop_mmpd(sbi); 6537 return err; 6538 } 6539 6540 static int ext4_reconfigure(struct fs_context *fc) 6541 { 6542 struct super_block *sb = fc->root->d_sb; 6543 int ret; 6544 6545 fc->s_fs_info = EXT4_SB(sb); 6546 6547 ret = ext4_check_opt_consistency(fc, sb); 6548 if (ret < 0) 6549 return ret; 6550 6551 ret = __ext4_remount(fc, sb); 6552 if (ret < 0) 6553 return ret; 6554 6555 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.", 6556 ext4_quota_mode(sb)); 6557 6558 return 0; 6559 } 6560 6561 #ifdef CONFIG_QUOTA 6562 static int ext4_statfs_project(struct super_block *sb, 6563 kprojid_t projid, struct kstatfs *buf) 6564 { 6565 struct kqid qid; 6566 struct dquot *dquot; 6567 u64 limit; 6568 u64 curblock; 6569 6570 qid = make_kqid_projid(projid); 6571 dquot = dqget(sb, qid); 6572 if (IS_ERR(dquot)) 6573 return PTR_ERR(dquot); 6574 spin_lock(&dquot->dq_dqb_lock); 6575 6576 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6577 dquot->dq_dqb.dqb_bhardlimit); 6578 limit >>= sb->s_blocksize_bits; 6579 6580 if (limit && buf->f_blocks > limit) { 6581 curblock = (dquot->dq_dqb.dqb_curspace + 6582 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6583 buf->f_blocks = limit; 6584 buf->f_bfree = buf->f_bavail = 6585 (buf->f_blocks > curblock) ? 6586 (buf->f_blocks - curblock) : 0; 6587 } 6588 6589 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6590 dquot->dq_dqb.dqb_ihardlimit); 6591 if (limit && buf->f_files > limit) { 6592 buf->f_files = limit; 6593 buf->f_ffree = 6594 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6595 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6596 } 6597 6598 spin_unlock(&dquot->dq_dqb_lock); 6599 dqput(dquot); 6600 return 0; 6601 } 6602 #endif 6603 6604 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6605 { 6606 struct super_block *sb = dentry->d_sb; 6607 struct ext4_sb_info *sbi = EXT4_SB(sb); 6608 struct ext4_super_block *es = sbi->s_es; 6609 ext4_fsblk_t overhead = 0, resv_blocks; 6610 s64 bfree; 6611 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6612 6613 if (!test_opt(sb, MINIX_DF)) 6614 overhead = sbi->s_overhead; 6615 6616 buf->f_type = EXT4_SUPER_MAGIC; 6617 buf->f_bsize = sb->s_blocksize; 6618 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6619 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6620 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6621 /* prevent underflow in case that few free space is available */ 6622 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6623 buf->f_bavail = buf->f_bfree - 6624 (ext4_r_blocks_count(es) + resv_blocks); 6625 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6626 buf->f_bavail = 0; 6627 buf->f_files = le32_to_cpu(es->s_inodes_count); 6628 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6629 buf->f_namelen = EXT4_NAME_LEN; 6630 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6631 6632 #ifdef CONFIG_QUOTA 6633 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6634 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6635 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6636 #endif 6637 return 0; 6638 } 6639 6640 6641 #ifdef CONFIG_QUOTA 6642 6643 /* 6644 * Helper functions so that transaction is started before we acquire dqio_sem 6645 * to keep correct lock ordering of transaction > dqio_sem 6646 */ 6647 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6648 { 6649 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6650 } 6651 6652 static int ext4_write_dquot(struct dquot *dquot) 6653 { 6654 int ret, err; 6655 handle_t *handle; 6656 struct inode *inode; 6657 6658 inode = dquot_to_inode(dquot); 6659 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6660 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6661 if (IS_ERR(handle)) 6662 return PTR_ERR(handle); 6663 ret = dquot_commit(dquot); 6664 err = ext4_journal_stop(handle); 6665 if (!ret) 6666 ret = err; 6667 return ret; 6668 } 6669 6670 static int ext4_acquire_dquot(struct dquot *dquot) 6671 { 6672 int ret, err; 6673 handle_t *handle; 6674 6675 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6676 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6677 if (IS_ERR(handle)) 6678 return PTR_ERR(handle); 6679 ret = dquot_acquire(dquot); 6680 err = ext4_journal_stop(handle); 6681 if (!ret) 6682 ret = err; 6683 return ret; 6684 } 6685 6686 static int ext4_release_dquot(struct dquot *dquot) 6687 { 6688 int ret, err; 6689 handle_t *handle; 6690 6691 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6692 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6693 if (IS_ERR(handle)) { 6694 /* Release dquot anyway to avoid endless cycle in dqput() */ 6695 dquot_release(dquot); 6696 return PTR_ERR(handle); 6697 } 6698 ret = dquot_release(dquot); 6699 err = ext4_journal_stop(handle); 6700 if (!ret) 6701 ret = err; 6702 return ret; 6703 } 6704 6705 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6706 { 6707 struct super_block *sb = dquot->dq_sb; 6708 6709 if (ext4_is_quota_journalled(sb)) { 6710 dquot_mark_dquot_dirty(dquot); 6711 return ext4_write_dquot(dquot); 6712 } else { 6713 return dquot_mark_dquot_dirty(dquot); 6714 } 6715 } 6716 6717 static int ext4_write_info(struct super_block *sb, int type) 6718 { 6719 int ret, err; 6720 handle_t *handle; 6721 6722 /* Data block + inode block */ 6723 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6724 if (IS_ERR(handle)) 6725 return PTR_ERR(handle); 6726 ret = dquot_commit_info(sb, type); 6727 err = ext4_journal_stop(handle); 6728 if (!ret) 6729 ret = err; 6730 return ret; 6731 } 6732 6733 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6734 { 6735 struct ext4_inode_info *ei = EXT4_I(inode); 6736 6737 /* The first argument of lockdep_set_subclass has to be 6738 * *exactly* the same as the argument to init_rwsem() --- in 6739 * this case, in init_once() --- or lockdep gets unhappy 6740 * because the name of the lock is set using the 6741 * stringification of the argument to init_rwsem(). 6742 */ 6743 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6744 lockdep_set_subclass(&ei->i_data_sem, subclass); 6745 } 6746 6747 /* 6748 * Standard function to be called on quota_on 6749 */ 6750 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6751 const struct path *path) 6752 { 6753 int err; 6754 6755 if (!test_opt(sb, QUOTA)) 6756 return -EINVAL; 6757 6758 /* Quotafile not on the same filesystem? */ 6759 if (path->dentry->d_sb != sb) 6760 return -EXDEV; 6761 6762 /* Quota already enabled for this file? */ 6763 if (IS_NOQUOTA(d_inode(path->dentry))) 6764 return -EBUSY; 6765 6766 /* Journaling quota? */ 6767 if (EXT4_SB(sb)->s_qf_names[type]) { 6768 /* Quotafile not in fs root? */ 6769 if (path->dentry->d_parent != sb->s_root) 6770 ext4_msg(sb, KERN_WARNING, 6771 "Quota file not on filesystem root. " 6772 "Journaled quota will not work"); 6773 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6774 } else { 6775 /* 6776 * Clear the flag just in case mount options changed since 6777 * last time. 6778 */ 6779 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6780 } 6781 6782 /* 6783 * When we journal data on quota file, we have to flush journal to see 6784 * all updates to the file when we bypass pagecache... 6785 */ 6786 if (EXT4_SB(sb)->s_journal && 6787 ext4_should_journal_data(d_inode(path->dentry))) { 6788 /* 6789 * We don't need to lock updates but journal_flush() could 6790 * otherwise be livelocked... 6791 */ 6792 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6793 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6794 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6795 if (err) 6796 return err; 6797 } 6798 6799 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6800 err = dquot_quota_on(sb, type, format_id, path); 6801 if (!err) { 6802 struct inode *inode = d_inode(path->dentry); 6803 handle_t *handle; 6804 6805 /* 6806 * Set inode flags to prevent userspace from messing with quota 6807 * files. If this fails, we return success anyway since quotas 6808 * are already enabled and this is not a hard failure. 6809 */ 6810 inode_lock(inode); 6811 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6812 if (IS_ERR(handle)) 6813 goto unlock_inode; 6814 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6815 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6816 S_NOATIME | S_IMMUTABLE); 6817 err = ext4_mark_inode_dirty(handle, inode); 6818 ext4_journal_stop(handle); 6819 unlock_inode: 6820 inode_unlock(inode); 6821 if (err) 6822 dquot_quota_off(sb, type); 6823 } 6824 if (err) 6825 lockdep_set_quota_inode(path->dentry->d_inode, 6826 I_DATA_SEM_NORMAL); 6827 return err; 6828 } 6829 6830 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6831 unsigned int flags) 6832 { 6833 int err; 6834 struct inode *qf_inode; 6835 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6836 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6837 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6838 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6839 }; 6840 6841 BUG_ON(!ext4_has_feature_quota(sb)); 6842 6843 if (!qf_inums[type]) 6844 return -EPERM; 6845 6846 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6847 if (IS_ERR(qf_inode)) { 6848 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6849 return PTR_ERR(qf_inode); 6850 } 6851 6852 /* Don't account quota for quota files to avoid recursion */ 6853 qf_inode->i_flags |= S_NOQUOTA; 6854 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6855 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6856 if (err) 6857 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6858 iput(qf_inode); 6859 6860 return err; 6861 } 6862 6863 /* Enable usage tracking for all quota types. */ 6864 int ext4_enable_quotas(struct super_block *sb) 6865 { 6866 int type, err = 0; 6867 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6868 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6869 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6870 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6871 }; 6872 bool quota_mopt[EXT4_MAXQUOTAS] = { 6873 test_opt(sb, USRQUOTA), 6874 test_opt(sb, GRPQUOTA), 6875 test_opt(sb, PRJQUOTA), 6876 }; 6877 6878 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6879 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6880 if (qf_inums[type]) { 6881 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6882 DQUOT_USAGE_ENABLED | 6883 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6884 if (err) { 6885 ext4_warning(sb, 6886 "Failed to enable quota tracking " 6887 "(type=%d, err=%d). Please run " 6888 "e2fsck to fix.", type, err); 6889 for (type--; type >= 0; type--) { 6890 struct inode *inode; 6891 6892 inode = sb_dqopt(sb)->files[type]; 6893 if (inode) 6894 inode = igrab(inode); 6895 dquot_quota_off(sb, type); 6896 if (inode) { 6897 lockdep_set_quota_inode(inode, 6898 I_DATA_SEM_NORMAL); 6899 iput(inode); 6900 } 6901 } 6902 6903 return err; 6904 } 6905 } 6906 } 6907 return 0; 6908 } 6909 6910 static int ext4_quota_off(struct super_block *sb, int type) 6911 { 6912 struct inode *inode = sb_dqopt(sb)->files[type]; 6913 handle_t *handle; 6914 int err; 6915 6916 /* Force all delayed allocation blocks to be allocated. 6917 * Caller already holds s_umount sem */ 6918 if (test_opt(sb, DELALLOC)) 6919 sync_filesystem(sb); 6920 6921 if (!inode || !igrab(inode)) 6922 goto out; 6923 6924 err = dquot_quota_off(sb, type); 6925 if (err || ext4_has_feature_quota(sb)) 6926 goto out_put; 6927 6928 inode_lock(inode); 6929 /* 6930 * Update modification times of quota files when userspace can 6931 * start looking at them. If we fail, we return success anyway since 6932 * this is not a hard failure and quotas are already disabled. 6933 */ 6934 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6935 if (IS_ERR(handle)) { 6936 err = PTR_ERR(handle); 6937 goto out_unlock; 6938 } 6939 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6940 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6941 inode->i_mtime = inode->i_ctime = current_time(inode); 6942 err = ext4_mark_inode_dirty(handle, inode); 6943 ext4_journal_stop(handle); 6944 out_unlock: 6945 inode_unlock(inode); 6946 out_put: 6947 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6948 iput(inode); 6949 return err; 6950 out: 6951 return dquot_quota_off(sb, type); 6952 } 6953 6954 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6955 * acquiring the locks... As quota files are never truncated and quota code 6956 * itself serializes the operations (and no one else should touch the files) 6957 * we don't have to be afraid of races */ 6958 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6959 size_t len, loff_t off) 6960 { 6961 struct inode *inode = sb_dqopt(sb)->files[type]; 6962 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6963 int offset = off & (sb->s_blocksize - 1); 6964 int tocopy; 6965 size_t toread; 6966 struct buffer_head *bh; 6967 loff_t i_size = i_size_read(inode); 6968 6969 if (off > i_size) 6970 return 0; 6971 if (off+len > i_size) 6972 len = i_size-off; 6973 toread = len; 6974 while (toread > 0) { 6975 tocopy = sb->s_blocksize - offset < toread ? 6976 sb->s_blocksize - offset : toread; 6977 bh = ext4_bread(NULL, inode, blk, 0); 6978 if (IS_ERR(bh)) 6979 return PTR_ERR(bh); 6980 if (!bh) /* A hole? */ 6981 memset(data, 0, tocopy); 6982 else 6983 memcpy(data, bh->b_data+offset, tocopy); 6984 brelse(bh); 6985 offset = 0; 6986 toread -= tocopy; 6987 data += tocopy; 6988 blk++; 6989 } 6990 return len; 6991 } 6992 6993 /* Write to quotafile (we know the transaction is already started and has 6994 * enough credits) */ 6995 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6996 const char *data, size_t len, loff_t off) 6997 { 6998 struct inode *inode = sb_dqopt(sb)->files[type]; 6999 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7000 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7001 int retries = 0; 7002 struct buffer_head *bh; 7003 handle_t *handle = journal_current_handle(); 7004 7005 if (!handle) { 7006 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7007 " cancelled because transaction is not started", 7008 (unsigned long long)off, (unsigned long long)len); 7009 return -EIO; 7010 } 7011 /* 7012 * Since we account only one data block in transaction credits, 7013 * then it is impossible to cross a block boundary. 7014 */ 7015 if (sb->s_blocksize - offset < len) { 7016 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7017 " cancelled because not block aligned", 7018 (unsigned long long)off, (unsigned long long)len); 7019 return -EIO; 7020 } 7021 7022 do { 7023 bh = ext4_bread(handle, inode, blk, 7024 EXT4_GET_BLOCKS_CREATE | 7025 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7026 } while (PTR_ERR(bh) == -ENOSPC && 7027 ext4_should_retry_alloc(inode->i_sb, &retries)); 7028 if (IS_ERR(bh)) 7029 return PTR_ERR(bh); 7030 if (!bh) 7031 goto out; 7032 BUFFER_TRACE(bh, "get write access"); 7033 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7034 if (err) { 7035 brelse(bh); 7036 return err; 7037 } 7038 lock_buffer(bh); 7039 memcpy(bh->b_data+offset, data, len); 7040 flush_dcache_page(bh->b_page); 7041 unlock_buffer(bh); 7042 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7043 brelse(bh); 7044 out: 7045 if (inode->i_size < off + len) { 7046 i_size_write(inode, off + len); 7047 EXT4_I(inode)->i_disksize = inode->i_size; 7048 err2 = ext4_mark_inode_dirty(handle, inode); 7049 if (unlikely(err2 && !err)) 7050 err = err2; 7051 } 7052 return err ? err : len; 7053 } 7054 #endif 7055 7056 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7057 static inline void register_as_ext2(void) 7058 { 7059 int err = register_filesystem(&ext2_fs_type); 7060 if (err) 7061 printk(KERN_WARNING 7062 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7063 } 7064 7065 static inline void unregister_as_ext2(void) 7066 { 7067 unregister_filesystem(&ext2_fs_type); 7068 } 7069 7070 static inline int ext2_feature_set_ok(struct super_block *sb) 7071 { 7072 if (ext4_has_unknown_ext2_incompat_features(sb)) 7073 return 0; 7074 if (sb_rdonly(sb)) 7075 return 1; 7076 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7077 return 0; 7078 return 1; 7079 } 7080 #else 7081 static inline void register_as_ext2(void) { } 7082 static inline void unregister_as_ext2(void) { } 7083 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7084 #endif 7085 7086 static inline void register_as_ext3(void) 7087 { 7088 int err = register_filesystem(&ext3_fs_type); 7089 if (err) 7090 printk(KERN_WARNING 7091 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7092 } 7093 7094 static inline void unregister_as_ext3(void) 7095 { 7096 unregister_filesystem(&ext3_fs_type); 7097 } 7098 7099 static inline int ext3_feature_set_ok(struct super_block *sb) 7100 { 7101 if (ext4_has_unknown_ext3_incompat_features(sb)) 7102 return 0; 7103 if (!ext4_has_feature_journal(sb)) 7104 return 0; 7105 if (sb_rdonly(sb)) 7106 return 1; 7107 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7108 return 0; 7109 return 1; 7110 } 7111 7112 static struct file_system_type ext4_fs_type = { 7113 .owner = THIS_MODULE, 7114 .name = "ext4", 7115 .init_fs_context = ext4_init_fs_context, 7116 .parameters = ext4_param_specs, 7117 .kill_sb = kill_block_super, 7118 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7119 }; 7120 MODULE_ALIAS_FS("ext4"); 7121 7122 /* Shared across all ext4 file systems */ 7123 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7124 7125 static int __init ext4_init_fs(void) 7126 { 7127 int i, err; 7128 7129 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7130 ext4_li_info = NULL; 7131 7132 /* Build-time check for flags consistency */ 7133 ext4_check_flag_values(); 7134 7135 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7136 init_waitqueue_head(&ext4__ioend_wq[i]); 7137 7138 err = ext4_init_es(); 7139 if (err) 7140 return err; 7141 7142 err = ext4_init_pending(); 7143 if (err) 7144 goto out7; 7145 7146 err = ext4_init_post_read_processing(); 7147 if (err) 7148 goto out6; 7149 7150 err = ext4_init_pageio(); 7151 if (err) 7152 goto out5; 7153 7154 err = ext4_init_system_zone(); 7155 if (err) 7156 goto out4; 7157 7158 err = ext4_init_sysfs(); 7159 if (err) 7160 goto out3; 7161 7162 err = ext4_init_mballoc(); 7163 if (err) 7164 goto out2; 7165 err = init_inodecache(); 7166 if (err) 7167 goto out1; 7168 7169 err = ext4_fc_init_dentry_cache(); 7170 if (err) 7171 goto out05; 7172 7173 register_as_ext3(); 7174 register_as_ext2(); 7175 err = register_filesystem(&ext4_fs_type); 7176 if (err) 7177 goto out; 7178 7179 return 0; 7180 out: 7181 unregister_as_ext2(); 7182 unregister_as_ext3(); 7183 ext4_fc_destroy_dentry_cache(); 7184 out05: 7185 destroy_inodecache(); 7186 out1: 7187 ext4_exit_mballoc(); 7188 out2: 7189 ext4_exit_sysfs(); 7190 out3: 7191 ext4_exit_system_zone(); 7192 out4: 7193 ext4_exit_pageio(); 7194 out5: 7195 ext4_exit_post_read_processing(); 7196 out6: 7197 ext4_exit_pending(); 7198 out7: 7199 ext4_exit_es(); 7200 7201 return err; 7202 } 7203 7204 static void __exit ext4_exit_fs(void) 7205 { 7206 ext4_destroy_lazyinit_thread(); 7207 unregister_as_ext2(); 7208 unregister_as_ext3(); 7209 unregister_filesystem(&ext4_fs_type); 7210 ext4_fc_destroy_dentry_cache(); 7211 destroy_inodecache(); 7212 ext4_exit_mballoc(); 7213 ext4_exit_sysfs(); 7214 ext4_exit_system_zone(); 7215 ext4_exit_pageio(); 7216 ext4_exit_post_read_processing(); 7217 ext4_exit_es(); 7218 ext4_exit_pending(); 7219 } 7220 7221 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7222 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7223 MODULE_LICENSE("GPL"); 7224 MODULE_SOFTDEP("pre: crc32c"); 7225 module_init(ext4_init_fs) 7226 module_exit(ext4_exit_fs) 7227