1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_sem 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_sem 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, int error, 339 __u32 ino, __u64 block, 340 const char *func, unsigned int line) 341 { 342 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 343 int err; 344 345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 346 if (bdev_read_only(sb->s_bdev)) 347 return; 348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 349 ext4_update_tstamp(es, s_last_error_time); 350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 351 es->s_last_error_line = cpu_to_le32(line); 352 es->s_last_error_ino = cpu_to_le32(ino); 353 es->s_last_error_block = cpu_to_le64(block); 354 switch (error) { 355 case EIO: 356 err = EXT4_ERR_EIO; 357 break; 358 case ENOMEM: 359 err = EXT4_ERR_ENOMEM; 360 break; 361 case EFSBADCRC: 362 err = EXT4_ERR_EFSBADCRC; 363 break; 364 case 0: 365 case EFSCORRUPTED: 366 err = EXT4_ERR_EFSCORRUPTED; 367 break; 368 case ENOSPC: 369 err = EXT4_ERR_ENOSPC; 370 break; 371 case ENOKEY: 372 err = EXT4_ERR_ENOKEY; 373 break; 374 case EROFS: 375 err = EXT4_ERR_EROFS; 376 break; 377 case EFBIG: 378 err = EXT4_ERR_EFBIG; 379 break; 380 case EEXIST: 381 err = EXT4_ERR_EEXIST; 382 break; 383 case ERANGE: 384 err = EXT4_ERR_ERANGE; 385 break; 386 case EOVERFLOW: 387 err = EXT4_ERR_EOVERFLOW; 388 break; 389 case EBUSY: 390 err = EXT4_ERR_EBUSY; 391 break; 392 case ENOTDIR: 393 err = EXT4_ERR_ENOTDIR; 394 break; 395 case ENOTEMPTY: 396 err = EXT4_ERR_ENOTEMPTY; 397 break; 398 case ESHUTDOWN: 399 err = EXT4_ERR_ESHUTDOWN; 400 break; 401 case EFAULT: 402 err = EXT4_ERR_EFAULT; 403 break; 404 default: 405 err = EXT4_ERR_UNKNOWN; 406 } 407 es->s_last_error_errcode = err; 408 if (!es->s_first_error_time) { 409 es->s_first_error_time = es->s_last_error_time; 410 es->s_first_error_time_hi = es->s_last_error_time_hi; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 es->s_first_error_errcode = es->s_last_error_errcode; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, int error, 428 __u32 ino, __u64 block, 429 const char *func, unsigned int line) 430 { 431 __save_error_info(sb, error, ino, block, func, line); 432 if (!bdev_read_only(sb->s_bdev)) 433 ext4_commit_super(sb, 1); 434 } 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 static bool system_going_down(void) 476 { 477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 478 || system_state == SYSTEM_RESTART; 479 } 480 481 /* Deal with the reporting of failure conditions on a filesystem such as 482 * inconsistencies detected or read IO failures. 483 * 484 * On ext2, we can store the error state of the filesystem in the 485 * superblock. That is not possible on ext4, because we may have other 486 * write ordering constraints on the superblock which prevent us from 487 * writing it out straight away; and given that the journal is about to 488 * be aborted, we can't rely on the current, or future, transactions to 489 * write out the superblock safely. 490 * 491 * We'll just use the jbd2_journal_abort() error code to record an error in 492 * the journal instead. On recovery, the journal will complain about 493 * that error until we've noted it down and cleared it. 494 */ 495 496 static void ext4_handle_error(struct super_block *sb) 497 { 498 if (test_opt(sb, WARN_ON_ERROR)) 499 WARN_ON_ONCE(1); 500 501 if (sb_rdonly(sb)) 502 return; 503 504 if (!test_opt(sb, ERRORS_CONT)) { 505 journal_t *journal = EXT4_SB(sb)->s_journal; 506 507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 508 if (journal) 509 jbd2_journal_abort(journal, -EIO); 510 } 511 /* 512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 513 * could panic during 'reboot -f' as the underlying device got already 514 * disabled. 515 */ 516 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 518 /* 519 * Make sure updated value of ->s_mount_flags will be visible 520 * before ->s_flags update 521 */ 522 smp_wmb(); 523 sb->s_flags |= SB_RDONLY; 524 } else if (test_opt(sb, ERRORS_PANIC)) { 525 if (EXT4_SB(sb)->s_journal && 526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 527 return; 528 panic("EXT4-fs (device %s): panic forced after error\n", 529 sb->s_id); 530 } 531 } 532 533 #define ext4_error_ratelimit(sb) \ 534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 535 "EXT4-fs error") 536 537 void __ext4_error(struct super_block *sb, const char *function, 538 unsigned int line, int error, __u64 block, 539 const char *fmt, ...) 540 { 541 struct va_format vaf; 542 va_list args; 543 544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 545 return; 546 547 trace_ext4_error(sb, function, line); 548 if (ext4_error_ratelimit(sb)) { 549 va_start(args, fmt); 550 vaf.fmt = fmt; 551 vaf.va = &args; 552 printk(KERN_CRIT 553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 554 sb->s_id, function, line, current->comm, &vaf); 555 va_end(args); 556 } 557 save_error_info(sb, error, 0, block, function, line); 558 ext4_handle_error(sb); 559 } 560 561 void __ext4_error_inode(struct inode *inode, const char *function, 562 unsigned int line, ext4_fsblk_t block, int error, 563 const char *fmt, ...) 564 { 565 va_list args; 566 struct va_format vaf; 567 568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 569 return; 570 571 trace_ext4_error(inode->i_sb, function, line); 572 if (ext4_error_ratelimit(inode->i_sb)) { 573 va_start(args, fmt); 574 vaf.fmt = fmt; 575 vaf.va = &args; 576 if (block) 577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 578 "inode #%lu: block %llu: comm %s: %pV\n", 579 inode->i_sb->s_id, function, line, inode->i_ino, 580 block, current->comm, &vaf); 581 else 582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 583 "inode #%lu: comm %s: %pV\n", 584 inode->i_sb->s_id, function, line, inode->i_ino, 585 current->comm, &vaf); 586 va_end(args); 587 } 588 save_error_info(inode->i_sb, error, inode->i_ino, block, 589 function, line); 590 ext4_handle_error(inode->i_sb); 591 } 592 593 void __ext4_error_file(struct file *file, const char *function, 594 unsigned int line, ext4_fsblk_t block, 595 const char *fmt, ...) 596 { 597 va_list args; 598 struct va_format vaf; 599 struct inode *inode = file_inode(file); 600 char pathname[80], *path; 601 602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 603 return; 604 605 trace_ext4_error(inode->i_sb, function, line); 606 if (ext4_error_ratelimit(inode->i_sb)) { 607 path = file_path(file, pathname, sizeof(pathname)); 608 if (IS_ERR(path)) 609 path = "(unknown)"; 610 va_start(args, fmt); 611 vaf.fmt = fmt; 612 vaf.va = &args; 613 if (block) 614 printk(KERN_CRIT 615 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 616 "block %llu: comm %s: path %s: %pV\n", 617 inode->i_sb->s_id, function, line, inode->i_ino, 618 block, current->comm, path, &vaf); 619 else 620 printk(KERN_CRIT 621 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 622 "comm %s: path %s: %pV\n", 623 inode->i_sb->s_id, function, line, inode->i_ino, 624 current->comm, path, &vaf); 625 va_end(args); 626 } 627 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 628 function, line); 629 ext4_handle_error(inode->i_sb); 630 } 631 632 const char *ext4_decode_error(struct super_block *sb, int errno, 633 char nbuf[16]) 634 { 635 char *errstr = NULL; 636 637 switch (errno) { 638 case -EFSCORRUPTED: 639 errstr = "Corrupt filesystem"; 640 break; 641 case -EFSBADCRC: 642 errstr = "Filesystem failed CRC"; 643 break; 644 case -EIO: 645 errstr = "IO failure"; 646 break; 647 case -ENOMEM: 648 errstr = "Out of memory"; 649 break; 650 case -EROFS: 651 if (!sb || (EXT4_SB(sb)->s_journal && 652 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 653 errstr = "Journal has aborted"; 654 else 655 errstr = "Readonly filesystem"; 656 break; 657 default: 658 /* If the caller passed in an extra buffer for unknown 659 * errors, textualise them now. Else we just return 660 * NULL. */ 661 if (nbuf) { 662 /* Check for truncated error codes... */ 663 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 664 errstr = nbuf; 665 } 666 break; 667 } 668 669 return errstr; 670 } 671 672 /* __ext4_std_error decodes expected errors from journaling functions 673 * automatically and invokes the appropriate error response. */ 674 675 void __ext4_std_error(struct super_block *sb, const char *function, 676 unsigned int line, int errno) 677 { 678 char nbuf[16]; 679 const char *errstr; 680 681 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 682 return; 683 684 /* Special case: if the error is EROFS, and we're not already 685 * inside a transaction, then there's really no point in logging 686 * an error. */ 687 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 688 return; 689 690 if (ext4_error_ratelimit(sb)) { 691 errstr = ext4_decode_error(sb, errno, nbuf); 692 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 693 sb->s_id, function, line, errstr); 694 } 695 696 save_error_info(sb, -errno, 0, 0, function, line); 697 ext4_handle_error(sb); 698 } 699 700 /* 701 * ext4_abort is a much stronger failure handler than ext4_error. The 702 * abort function may be used to deal with unrecoverable failures such 703 * as journal IO errors or ENOMEM at a critical moment in log management. 704 * 705 * We unconditionally force the filesystem into an ABORT|READONLY state, 706 * unless the error response on the fs has been set to panic in which 707 * case we take the easy way out and panic immediately. 708 */ 709 710 void __ext4_abort(struct super_block *sb, const char *function, 711 unsigned int line, int error, const char *fmt, ...) 712 { 713 struct va_format vaf; 714 va_list args; 715 716 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 717 return; 718 719 save_error_info(sb, error, 0, 0, function, line); 720 va_start(args, fmt); 721 vaf.fmt = fmt; 722 vaf.va = &args; 723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 724 sb->s_id, function, line, &vaf); 725 va_end(args); 726 727 if (sb_rdonly(sb) == 0) { 728 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 729 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 730 /* 731 * Make sure updated value of ->s_mount_flags will be visible 732 * before ->s_flags update 733 */ 734 smp_wmb(); 735 sb->s_flags |= SB_RDONLY; 736 if (EXT4_SB(sb)->s_journal) 737 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 738 } 739 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 740 if (EXT4_SB(sb)->s_journal && 741 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 742 return; 743 panic("EXT4-fs panic from previous error\n"); 744 } 745 } 746 747 void __ext4_msg(struct super_block *sb, 748 const char *prefix, const char *fmt, ...) 749 { 750 struct va_format vaf; 751 va_list args; 752 753 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 754 return; 755 756 va_start(args, fmt); 757 vaf.fmt = fmt; 758 vaf.va = &args; 759 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 760 va_end(args); 761 } 762 763 #define ext4_warning_ratelimit(sb) \ 764 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 765 "EXT4-fs warning") 766 767 void __ext4_warning(struct super_block *sb, const char *function, 768 unsigned int line, const char *fmt, ...) 769 { 770 struct va_format vaf; 771 va_list args; 772 773 if (!ext4_warning_ratelimit(sb)) 774 return; 775 776 va_start(args, fmt); 777 vaf.fmt = fmt; 778 vaf.va = &args; 779 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 780 sb->s_id, function, line, &vaf); 781 va_end(args); 782 } 783 784 void __ext4_warning_inode(const struct inode *inode, const char *function, 785 unsigned int line, const char *fmt, ...) 786 { 787 struct va_format vaf; 788 va_list args; 789 790 if (!ext4_warning_ratelimit(inode->i_sb)) 791 return; 792 793 va_start(args, fmt); 794 vaf.fmt = fmt; 795 vaf.va = &args; 796 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 797 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 798 function, line, inode->i_ino, current->comm, &vaf); 799 va_end(args); 800 } 801 802 void __ext4_grp_locked_error(const char *function, unsigned int line, 803 struct super_block *sb, ext4_group_t grp, 804 unsigned long ino, ext4_fsblk_t block, 805 const char *fmt, ...) 806 __releases(bitlock) 807 __acquires(bitlock) 808 { 809 struct va_format vaf; 810 va_list args; 811 812 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 813 return; 814 815 trace_ext4_error(sb, function, line); 816 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 817 818 if (ext4_error_ratelimit(sb)) { 819 va_start(args, fmt); 820 vaf.fmt = fmt; 821 vaf.va = &args; 822 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 823 sb->s_id, function, line, grp); 824 if (ino) 825 printk(KERN_CONT "inode %lu: ", ino); 826 if (block) 827 printk(KERN_CONT "block %llu:", 828 (unsigned long long) block); 829 printk(KERN_CONT "%pV\n", &vaf); 830 va_end(args); 831 } 832 833 if (test_opt(sb, WARN_ON_ERROR)) 834 WARN_ON_ONCE(1); 835 836 if (test_opt(sb, ERRORS_CONT)) { 837 ext4_commit_super(sb, 0); 838 return; 839 } 840 841 ext4_unlock_group(sb, grp); 842 ext4_commit_super(sb, 1); 843 ext4_handle_error(sb); 844 /* 845 * We only get here in the ERRORS_RO case; relocking the group 846 * may be dangerous, but nothing bad will happen since the 847 * filesystem will have already been marked read/only and the 848 * journal has been aborted. We return 1 as a hint to callers 849 * who might what to use the return value from 850 * ext4_grp_locked_error() to distinguish between the 851 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 852 * aggressively from the ext4 function in question, with a 853 * more appropriate error code. 854 */ 855 ext4_lock_group(sb, grp); 856 return; 857 } 858 859 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 860 ext4_group_t group, 861 unsigned int flags) 862 { 863 struct ext4_sb_info *sbi = EXT4_SB(sb); 864 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 865 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 866 int ret; 867 868 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 869 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 870 &grp->bb_state); 871 if (!ret) 872 percpu_counter_sub(&sbi->s_freeclusters_counter, 873 grp->bb_free); 874 } 875 876 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 877 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 878 &grp->bb_state); 879 if (!ret && gdp) { 880 int count; 881 882 count = ext4_free_inodes_count(sb, gdp); 883 percpu_counter_sub(&sbi->s_freeinodes_counter, 884 count); 885 } 886 } 887 } 888 889 void ext4_update_dynamic_rev(struct super_block *sb) 890 { 891 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 892 893 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 894 return; 895 896 ext4_warning(sb, 897 "updating to rev %d because of new feature flag, " 898 "running e2fsck is recommended", 899 EXT4_DYNAMIC_REV); 900 901 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 902 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 903 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 904 /* leave es->s_feature_*compat flags alone */ 905 /* es->s_uuid will be set by e2fsck if empty */ 906 907 /* 908 * The rest of the superblock fields should be zero, and if not it 909 * means they are likely already in use, so leave them alone. We 910 * can leave it up to e2fsck to clean up any inconsistencies there. 911 */ 912 } 913 914 /* 915 * Open the external journal device 916 */ 917 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 918 { 919 struct block_device *bdev; 920 921 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 922 if (IS_ERR(bdev)) 923 goto fail; 924 return bdev; 925 926 fail: 927 ext4_msg(sb, KERN_ERR, 928 "failed to open journal device unknown-block(%u,%u) %ld", 929 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 930 return NULL; 931 } 932 933 /* 934 * Release the journal device 935 */ 936 static void ext4_blkdev_put(struct block_device *bdev) 937 { 938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 939 } 940 941 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 942 { 943 struct block_device *bdev; 944 bdev = sbi->journal_bdev; 945 if (bdev) { 946 ext4_blkdev_put(bdev); 947 sbi->journal_bdev = NULL; 948 } 949 } 950 951 static inline struct inode *orphan_list_entry(struct list_head *l) 952 { 953 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 954 } 955 956 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 957 { 958 struct list_head *l; 959 960 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 961 le32_to_cpu(sbi->s_es->s_last_orphan)); 962 963 printk(KERN_ERR "sb_info orphan list:\n"); 964 list_for_each(l, &sbi->s_orphan) { 965 struct inode *inode = orphan_list_entry(l); 966 printk(KERN_ERR " " 967 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 968 inode->i_sb->s_id, inode->i_ino, inode, 969 inode->i_mode, inode->i_nlink, 970 NEXT_ORPHAN(inode)); 971 } 972 } 973 974 #ifdef CONFIG_QUOTA 975 static int ext4_quota_off(struct super_block *sb, int type); 976 977 static inline void ext4_quota_off_umount(struct super_block *sb) 978 { 979 int type; 980 981 /* Use our quota_off function to clear inode flags etc. */ 982 for (type = 0; type < EXT4_MAXQUOTAS; type++) 983 ext4_quota_off(sb, type); 984 } 985 986 /* 987 * This is a helper function which is used in the mount/remount 988 * codepaths (which holds s_umount) to fetch the quota file name. 989 */ 990 static inline char *get_qf_name(struct super_block *sb, 991 struct ext4_sb_info *sbi, 992 int type) 993 { 994 return rcu_dereference_protected(sbi->s_qf_names[type], 995 lockdep_is_held(&sb->s_umount)); 996 } 997 #else 998 static inline void ext4_quota_off_umount(struct super_block *sb) 999 { 1000 } 1001 #endif 1002 1003 static void ext4_put_super(struct super_block *sb) 1004 { 1005 struct ext4_sb_info *sbi = EXT4_SB(sb); 1006 struct ext4_super_block *es = sbi->s_es; 1007 struct buffer_head **group_desc; 1008 struct flex_groups **flex_groups; 1009 int aborted = 0; 1010 int i, err; 1011 1012 ext4_unregister_li_request(sb); 1013 ext4_quota_off_umount(sb); 1014 1015 destroy_workqueue(sbi->rsv_conversion_wq); 1016 1017 /* 1018 * Unregister sysfs before destroying jbd2 journal. 1019 * Since we could still access attr_journal_task attribute via sysfs 1020 * path which could have sbi->s_journal->j_task as NULL 1021 */ 1022 ext4_unregister_sysfs(sb); 1023 1024 if (sbi->s_journal) { 1025 aborted = is_journal_aborted(sbi->s_journal); 1026 err = jbd2_journal_destroy(sbi->s_journal); 1027 sbi->s_journal = NULL; 1028 if ((err < 0) && !aborted) { 1029 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1030 } 1031 } 1032 1033 ext4_es_unregister_shrinker(sbi); 1034 del_timer_sync(&sbi->s_err_report); 1035 ext4_release_system_zone(sb); 1036 ext4_mb_release(sb); 1037 ext4_ext_release(sb); 1038 1039 if (!sb_rdonly(sb) && !aborted) { 1040 ext4_clear_feature_journal_needs_recovery(sb); 1041 es->s_state = cpu_to_le16(sbi->s_mount_state); 1042 } 1043 if (!sb_rdonly(sb)) 1044 ext4_commit_super(sb, 1); 1045 1046 rcu_read_lock(); 1047 group_desc = rcu_dereference(sbi->s_group_desc); 1048 for (i = 0; i < sbi->s_gdb_count; i++) 1049 brelse(group_desc[i]); 1050 kvfree(group_desc); 1051 flex_groups = rcu_dereference(sbi->s_flex_groups); 1052 if (flex_groups) { 1053 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1054 kvfree(flex_groups[i]); 1055 kvfree(flex_groups); 1056 } 1057 rcu_read_unlock(); 1058 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1059 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1060 percpu_counter_destroy(&sbi->s_dirs_counter); 1061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1062 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1063 #ifdef CONFIG_QUOTA 1064 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1065 kfree(get_qf_name(sb, sbi, i)); 1066 #endif 1067 1068 /* Debugging code just in case the in-memory inode orphan list 1069 * isn't empty. The on-disk one can be non-empty if we've 1070 * detected an error and taken the fs readonly, but the 1071 * in-memory list had better be clean by this point. */ 1072 if (!list_empty(&sbi->s_orphan)) 1073 dump_orphan_list(sb, sbi); 1074 J_ASSERT(list_empty(&sbi->s_orphan)); 1075 1076 sync_blockdev(sb->s_bdev); 1077 invalidate_bdev(sb->s_bdev); 1078 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1079 /* 1080 * Invalidate the journal device's buffers. We don't want them 1081 * floating about in memory - the physical journal device may 1082 * hotswapped, and it breaks the `ro-after' testing code. 1083 */ 1084 sync_blockdev(sbi->journal_bdev); 1085 invalidate_bdev(sbi->journal_bdev); 1086 ext4_blkdev_remove(sbi); 1087 } 1088 1089 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1090 sbi->s_ea_inode_cache = NULL; 1091 1092 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1093 sbi->s_ea_block_cache = NULL; 1094 1095 if (sbi->s_mmp_tsk) 1096 kthread_stop(sbi->s_mmp_tsk); 1097 brelse(sbi->s_sbh); 1098 sb->s_fs_info = NULL; 1099 /* 1100 * Now that we are completely done shutting down the 1101 * superblock, we need to actually destroy the kobject. 1102 */ 1103 kobject_put(&sbi->s_kobj); 1104 wait_for_completion(&sbi->s_kobj_unregister); 1105 if (sbi->s_chksum_driver) 1106 crypto_free_shash(sbi->s_chksum_driver); 1107 kfree(sbi->s_blockgroup_lock); 1108 fs_put_dax(sbi->s_daxdev); 1109 #ifdef CONFIG_UNICODE 1110 utf8_unload(sbi->s_encoding); 1111 #endif 1112 kfree(sbi); 1113 } 1114 1115 static struct kmem_cache *ext4_inode_cachep; 1116 1117 /* 1118 * Called inside transaction, so use GFP_NOFS 1119 */ 1120 static struct inode *ext4_alloc_inode(struct super_block *sb) 1121 { 1122 struct ext4_inode_info *ei; 1123 1124 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1125 if (!ei) 1126 return NULL; 1127 1128 inode_set_iversion(&ei->vfs_inode, 1); 1129 spin_lock_init(&ei->i_raw_lock); 1130 INIT_LIST_HEAD(&ei->i_prealloc_list); 1131 spin_lock_init(&ei->i_prealloc_lock); 1132 ext4_es_init_tree(&ei->i_es_tree); 1133 rwlock_init(&ei->i_es_lock); 1134 INIT_LIST_HEAD(&ei->i_es_list); 1135 ei->i_es_all_nr = 0; 1136 ei->i_es_shk_nr = 0; 1137 ei->i_es_shrink_lblk = 0; 1138 ei->i_reserved_data_blocks = 0; 1139 spin_lock_init(&(ei->i_block_reservation_lock)); 1140 ext4_init_pending_tree(&ei->i_pending_tree); 1141 #ifdef CONFIG_QUOTA 1142 ei->i_reserved_quota = 0; 1143 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1144 #endif 1145 ei->jinode = NULL; 1146 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1147 spin_lock_init(&ei->i_completed_io_lock); 1148 ei->i_sync_tid = 0; 1149 ei->i_datasync_tid = 0; 1150 atomic_set(&ei->i_unwritten, 0); 1151 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1152 return &ei->vfs_inode; 1153 } 1154 1155 static int ext4_drop_inode(struct inode *inode) 1156 { 1157 int drop = generic_drop_inode(inode); 1158 1159 if (!drop) 1160 drop = fscrypt_drop_inode(inode); 1161 1162 trace_ext4_drop_inode(inode, drop); 1163 return drop; 1164 } 1165 1166 static void ext4_free_in_core_inode(struct inode *inode) 1167 { 1168 fscrypt_free_inode(inode); 1169 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1170 } 1171 1172 static void ext4_destroy_inode(struct inode *inode) 1173 { 1174 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1175 ext4_msg(inode->i_sb, KERN_ERR, 1176 "Inode %lu (%p): orphan list check failed!", 1177 inode->i_ino, EXT4_I(inode)); 1178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1179 EXT4_I(inode), sizeof(struct ext4_inode_info), 1180 true); 1181 dump_stack(); 1182 } 1183 } 1184 1185 static void init_once(void *foo) 1186 { 1187 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1188 1189 INIT_LIST_HEAD(&ei->i_orphan); 1190 init_rwsem(&ei->xattr_sem); 1191 init_rwsem(&ei->i_data_sem); 1192 init_rwsem(&ei->i_mmap_sem); 1193 inode_init_once(&ei->vfs_inode); 1194 } 1195 1196 static int __init init_inodecache(void) 1197 { 1198 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1199 sizeof(struct ext4_inode_info), 0, 1200 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1201 SLAB_ACCOUNT), 1202 offsetof(struct ext4_inode_info, i_data), 1203 sizeof_field(struct ext4_inode_info, i_data), 1204 init_once); 1205 if (ext4_inode_cachep == NULL) 1206 return -ENOMEM; 1207 return 0; 1208 } 1209 1210 static void destroy_inodecache(void) 1211 { 1212 /* 1213 * Make sure all delayed rcu free inodes are flushed before we 1214 * destroy cache. 1215 */ 1216 rcu_barrier(); 1217 kmem_cache_destroy(ext4_inode_cachep); 1218 } 1219 1220 void ext4_clear_inode(struct inode *inode) 1221 { 1222 invalidate_inode_buffers(inode); 1223 clear_inode(inode); 1224 ext4_discard_preallocations(inode); 1225 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1226 dquot_drop(inode); 1227 if (EXT4_I(inode)->jinode) { 1228 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1229 EXT4_I(inode)->jinode); 1230 jbd2_free_inode(EXT4_I(inode)->jinode); 1231 EXT4_I(inode)->jinode = NULL; 1232 } 1233 fscrypt_put_encryption_info(inode); 1234 fsverity_cleanup_inode(inode); 1235 } 1236 1237 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1238 u64 ino, u32 generation) 1239 { 1240 struct inode *inode; 1241 1242 /* 1243 * Currently we don't know the generation for parent directory, so 1244 * a generation of 0 means "accept any" 1245 */ 1246 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1247 if (IS_ERR(inode)) 1248 return ERR_CAST(inode); 1249 if (generation && inode->i_generation != generation) { 1250 iput(inode); 1251 return ERR_PTR(-ESTALE); 1252 } 1253 1254 return inode; 1255 } 1256 1257 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1258 int fh_len, int fh_type) 1259 { 1260 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1261 ext4_nfs_get_inode); 1262 } 1263 1264 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1265 int fh_len, int fh_type) 1266 { 1267 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1268 ext4_nfs_get_inode); 1269 } 1270 1271 static int ext4_nfs_commit_metadata(struct inode *inode) 1272 { 1273 struct writeback_control wbc = { 1274 .sync_mode = WB_SYNC_ALL 1275 }; 1276 1277 trace_ext4_nfs_commit_metadata(inode); 1278 return ext4_write_inode(inode, &wbc); 1279 } 1280 1281 /* 1282 * Try to release metadata pages (indirect blocks, directories) which are 1283 * mapped via the block device. Since these pages could have journal heads 1284 * which would prevent try_to_free_buffers() from freeing them, we must use 1285 * jbd2 layer's try_to_free_buffers() function to release them. 1286 */ 1287 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1288 gfp_t wait) 1289 { 1290 journal_t *journal = EXT4_SB(sb)->s_journal; 1291 1292 WARN_ON(PageChecked(page)); 1293 if (!page_has_buffers(page)) 1294 return 0; 1295 if (journal) 1296 return jbd2_journal_try_to_free_buffers(journal, page, 1297 wait & ~__GFP_DIRECT_RECLAIM); 1298 return try_to_free_buffers(page); 1299 } 1300 1301 #ifdef CONFIG_FS_ENCRYPTION 1302 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1303 { 1304 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1305 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1306 } 1307 1308 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1309 void *fs_data) 1310 { 1311 handle_t *handle = fs_data; 1312 int res, res2, credits, retries = 0; 1313 1314 /* 1315 * Encrypting the root directory is not allowed because e2fsck expects 1316 * lost+found to exist and be unencrypted, and encrypting the root 1317 * directory would imply encrypting the lost+found directory as well as 1318 * the filename "lost+found" itself. 1319 */ 1320 if (inode->i_ino == EXT4_ROOT_INO) 1321 return -EPERM; 1322 1323 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1324 return -EINVAL; 1325 1326 res = ext4_convert_inline_data(inode); 1327 if (res) 1328 return res; 1329 1330 /* 1331 * If a journal handle was specified, then the encryption context is 1332 * being set on a new inode via inheritance and is part of a larger 1333 * transaction to create the inode. Otherwise the encryption context is 1334 * being set on an existing inode in its own transaction. Only in the 1335 * latter case should the "retry on ENOSPC" logic be used. 1336 */ 1337 1338 if (handle) { 1339 res = ext4_xattr_set_handle(handle, inode, 1340 EXT4_XATTR_INDEX_ENCRYPTION, 1341 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1342 ctx, len, 0); 1343 if (!res) { 1344 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1345 ext4_clear_inode_state(inode, 1346 EXT4_STATE_MAY_INLINE_DATA); 1347 /* 1348 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1349 * S_DAX may be disabled 1350 */ 1351 ext4_set_inode_flags(inode); 1352 } 1353 return res; 1354 } 1355 1356 res = dquot_initialize(inode); 1357 if (res) 1358 return res; 1359 retry: 1360 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1361 &credits); 1362 if (res) 1363 return res; 1364 1365 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1366 if (IS_ERR(handle)) 1367 return PTR_ERR(handle); 1368 1369 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1370 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1371 ctx, len, 0); 1372 if (!res) { 1373 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1374 /* 1375 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1376 * S_DAX may be disabled 1377 */ 1378 ext4_set_inode_flags(inode); 1379 res = ext4_mark_inode_dirty(handle, inode); 1380 if (res) 1381 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1382 } 1383 res2 = ext4_journal_stop(handle); 1384 1385 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1386 goto retry; 1387 if (!res) 1388 res = res2; 1389 return res; 1390 } 1391 1392 static bool ext4_dummy_context(struct inode *inode) 1393 { 1394 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1395 } 1396 1397 static bool ext4_has_stable_inodes(struct super_block *sb) 1398 { 1399 return ext4_has_feature_stable_inodes(sb); 1400 } 1401 1402 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1403 int *ino_bits_ret, int *lblk_bits_ret) 1404 { 1405 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1406 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1407 } 1408 1409 static const struct fscrypt_operations ext4_cryptops = { 1410 .key_prefix = "ext4:", 1411 .get_context = ext4_get_context, 1412 .set_context = ext4_set_context, 1413 .dummy_context = ext4_dummy_context, 1414 .empty_dir = ext4_empty_dir, 1415 .max_namelen = EXT4_NAME_LEN, 1416 .has_stable_inodes = ext4_has_stable_inodes, 1417 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1418 }; 1419 #endif 1420 1421 #ifdef CONFIG_QUOTA 1422 static const char * const quotatypes[] = INITQFNAMES; 1423 #define QTYPE2NAME(t) (quotatypes[t]) 1424 1425 static int ext4_write_dquot(struct dquot *dquot); 1426 static int ext4_acquire_dquot(struct dquot *dquot); 1427 static int ext4_release_dquot(struct dquot *dquot); 1428 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1429 static int ext4_write_info(struct super_block *sb, int type); 1430 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1431 const struct path *path); 1432 static int ext4_quota_on_mount(struct super_block *sb, int type); 1433 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1434 size_t len, loff_t off); 1435 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1436 const char *data, size_t len, loff_t off); 1437 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1438 unsigned int flags); 1439 static int ext4_enable_quotas(struct super_block *sb); 1440 1441 static struct dquot **ext4_get_dquots(struct inode *inode) 1442 { 1443 return EXT4_I(inode)->i_dquot; 1444 } 1445 1446 static const struct dquot_operations ext4_quota_operations = { 1447 .get_reserved_space = ext4_get_reserved_space, 1448 .write_dquot = ext4_write_dquot, 1449 .acquire_dquot = ext4_acquire_dquot, 1450 .release_dquot = ext4_release_dquot, 1451 .mark_dirty = ext4_mark_dquot_dirty, 1452 .write_info = ext4_write_info, 1453 .alloc_dquot = dquot_alloc, 1454 .destroy_dquot = dquot_destroy, 1455 .get_projid = ext4_get_projid, 1456 .get_inode_usage = ext4_get_inode_usage, 1457 .get_next_id = dquot_get_next_id, 1458 }; 1459 1460 static const struct quotactl_ops ext4_qctl_operations = { 1461 .quota_on = ext4_quota_on, 1462 .quota_off = ext4_quota_off, 1463 .quota_sync = dquot_quota_sync, 1464 .get_state = dquot_get_state, 1465 .set_info = dquot_set_dqinfo, 1466 .get_dqblk = dquot_get_dqblk, 1467 .set_dqblk = dquot_set_dqblk, 1468 .get_nextdqblk = dquot_get_next_dqblk, 1469 }; 1470 #endif 1471 1472 static const struct super_operations ext4_sops = { 1473 .alloc_inode = ext4_alloc_inode, 1474 .free_inode = ext4_free_in_core_inode, 1475 .destroy_inode = ext4_destroy_inode, 1476 .write_inode = ext4_write_inode, 1477 .dirty_inode = ext4_dirty_inode, 1478 .drop_inode = ext4_drop_inode, 1479 .evict_inode = ext4_evict_inode, 1480 .put_super = ext4_put_super, 1481 .sync_fs = ext4_sync_fs, 1482 .freeze_fs = ext4_freeze, 1483 .unfreeze_fs = ext4_unfreeze, 1484 .statfs = ext4_statfs, 1485 .remount_fs = ext4_remount, 1486 .show_options = ext4_show_options, 1487 #ifdef CONFIG_QUOTA 1488 .quota_read = ext4_quota_read, 1489 .quota_write = ext4_quota_write, 1490 .get_dquots = ext4_get_dquots, 1491 #endif 1492 .bdev_try_to_free_page = bdev_try_to_free_page, 1493 }; 1494 1495 static const struct export_operations ext4_export_ops = { 1496 .fh_to_dentry = ext4_fh_to_dentry, 1497 .fh_to_parent = ext4_fh_to_parent, 1498 .get_parent = ext4_get_parent, 1499 .commit_metadata = ext4_nfs_commit_metadata, 1500 }; 1501 1502 enum { 1503 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1504 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1505 Opt_nouid32, Opt_debug, Opt_removed, 1506 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1507 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1508 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1509 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1510 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1511 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1512 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1513 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1514 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1515 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1516 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1517 Opt_nowarn_on_error, Opt_mblk_io_submit, 1518 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1519 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1520 Opt_inode_readahead_blks, Opt_journal_ioprio, 1521 Opt_dioread_nolock, Opt_dioread_lock, 1522 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1523 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1524 }; 1525 1526 static const match_table_t tokens = { 1527 {Opt_bsd_df, "bsddf"}, 1528 {Opt_minix_df, "minixdf"}, 1529 {Opt_grpid, "grpid"}, 1530 {Opt_grpid, "bsdgroups"}, 1531 {Opt_nogrpid, "nogrpid"}, 1532 {Opt_nogrpid, "sysvgroups"}, 1533 {Opt_resgid, "resgid=%u"}, 1534 {Opt_resuid, "resuid=%u"}, 1535 {Opt_sb, "sb=%u"}, 1536 {Opt_err_cont, "errors=continue"}, 1537 {Opt_err_panic, "errors=panic"}, 1538 {Opt_err_ro, "errors=remount-ro"}, 1539 {Opt_nouid32, "nouid32"}, 1540 {Opt_debug, "debug"}, 1541 {Opt_removed, "oldalloc"}, 1542 {Opt_removed, "orlov"}, 1543 {Opt_user_xattr, "user_xattr"}, 1544 {Opt_nouser_xattr, "nouser_xattr"}, 1545 {Opt_acl, "acl"}, 1546 {Opt_noacl, "noacl"}, 1547 {Opt_noload, "norecovery"}, 1548 {Opt_noload, "noload"}, 1549 {Opt_removed, "nobh"}, 1550 {Opt_removed, "bh"}, 1551 {Opt_commit, "commit=%u"}, 1552 {Opt_min_batch_time, "min_batch_time=%u"}, 1553 {Opt_max_batch_time, "max_batch_time=%u"}, 1554 {Opt_journal_dev, "journal_dev=%u"}, 1555 {Opt_journal_path, "journal_path=%s"}, 1556 {Opt_journal_checksum, "journal_checksum"}, 1557 {Opt_nojournal_checksum, "nojournal_checksum"}, 1558 {Opt_journal_async_commit, "journal_async_commit"}, 1559 {Opt_abort, "abort"}, 1560 {Opt_data_journal, "data=journal"}, 1561 {Opt_data_ordered, "data=ordered"}, 1562 {Opt_data_writeback, "data=writeback"}, 1563 {Opt_data_err_abort, "data_err=abort"}, 1564 {Opt_data_err_ignore, "data_err=ignore"}, 1565 {Opt_offusrjquota, "usrjquota="}, 1566 {Opt_usrjquota, "usrjquota=%s"}, 1567 {Opt_offgrpjquota, "grpjquota="}, 1568 {Opt_grpjquota, "grpjquota=%s"}, 1569 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1570 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1571 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1572 {Opt_grpquota, "grpquota"}, 1573 {Opt_noquota, "noquota"}, 1574 {Opt_quota, "quota"}, 1575 {Opt_usrquota, "usrquota"}, 1576 {Opt_prjquota, "prjquota"}, 1577 {Opt_barrier, "barrier=%u"}, 1578 {Opt_barrier, "barrier"}, 1579 {Opt_nobarrier, "nobarrier"}, 1580 {Opt_i_version, "i_version"}, 1581 {Opt_dax, "dax"}, 1582 {Opt_stripe, "stripe=%u"}, 1583 {Opt_delalloc, "delalloc"}, 1584 {Opt_warn_on_error, "warn_on_error"}, 1585 {Opt_nowarn_on_error, "nowarn_on_error"}, 1586 {Opt_lazytime, "lazytime"}, 1587 {Opt_nolazytime, "nolazytime"}, 1588 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1589 {Opt_nodelalloc, "nodelalloc"}, 1590 {Opt_removed, "mblk_io_submit"}, 1591 {Opt_removed, "nomblk_io_submit"}, 1592 {Opt_block_validity, "block_validity"}, 1593 {Opt_noblock_validity, "noblock_validity"}, 1594 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1595 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1596 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1597 {Opt_auto_da_alloc, "auto_da_alloc"}, 1598 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1599 {Opt_dioread_nolock, "dioread_nolock"}, 1600 {Opt_dioread_lock, "nodioread_nolock"}, 1601 {Opt_dioread_lock, "dioread_lock"}, 1602 {Opt_discard, "discard"}, 1603 {Opt_nodiscard, "nodiscard"}, 1604 {Opt_init_itable, "init_itable=%u"}, 1605 {Opt_init_itable, "init_itable"}, 1606 {Opt_noinit_itable, "noinit_itable"}, 1607 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1608 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1609 {Opt_nombcache, "nombcache"}, 1610 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1611 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1612 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1613 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1614 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1615 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1616 {Opt_err, NULL}, 1617 }; 1618 1619 static ext4_fsblk_t get_sb_block(void **data) 1620 { 1621 ext4_fsblk_t sb_block; 1622 char *options = (char *) *data; 1623 1624 if (!options || strncmp(options, "sb=", 3) != 0) 1625 return 1; /* Default location */ 1626 1627 options += 3; 1628 /* TODO: use simple_strtoll with >32bit ext4 */ 1629 sb_block = simple_strtoul(options, &options, 0); 1630 if (*options && *options != ',') { 1631 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1632 (char *) *data); 1633 return 1; 1634 } 1635 if (*options == ',') 1636 options++; 1637 *data = (void *) options; 1638 1639 return sb_block; 1640 } 1641 1642 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1643 static const char deprecated_msg[] = 1644 "Mount option \"%s\" will be removed by %s\n" 1645 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1646 1647 #ifdef CONFIG_QUOTA 1648 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1649 { 1650 struct ext4_sb_info *sbi = EXT4_SB(sb); 1651 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1652 int ret = -1; 1653 1654 if (sb_any_quota_loaded(sb) && !old_qname) { 1655 ext4_msg(sb, KERN_ERR, 1656 "Cannot change journaled " 1657 "quota options when quota turned on"); 1658 return -1; 1659 } 1660 if (ext4_has_feature_quota(sb)) { 1661 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1662 "ignored when QUOTA feature is enabled"); 1663 return 1; 1664 } 1665 qname = match_strdup(args); 1666 if (!qname) { 1667 ext4_msg(sb, KERN_ERR, 1668 "Not enough memory for storing quotafile name"); 1669 return -1; 1670 } 1671 if (old_qname) { 1672 if (strcmp(old_qname, qname) == 0) 1673 ret = 1; 1674 else 1675 ext4_msg(sb, KERN_ERR, 1676 "%s quota file already specified", 1677 QTYPE2NAME(qtype)); 1678 goto errout; 1679 } 1680 if (strchr(qname, '/')) { 1681 ext4_msg(sb, KERN_ERR, 1682 "quotafile must be on filesystem root"); 1683 goto errout; 1684 } 1685 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1686 set_opt(sb, QUOTA); 1687 return 1; 1688 errout: 1689 kfree(qname); 1690 return ret; 1691 } 1692 1693 static int clear_qf_name(struct super_block *sb, int qtype) 1694 { 1695 1696 struct ext4_sb_info *sbi = EXT4_SB(sb); 1697 char *old_qname = get_qf_name(sb, sbi, qtype); 1698 1699 if (sb_any_quota_loaded(sb) && old_qname) { 1700 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1701 " when quota turned on"); 1702 return -1; 1703 } 1704 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1705 synchronize_rcu(); 1706 kfree(old_qname); 1707 return 1; 1708 } 1709 #endif 1710 1711 #define MOPT_SET 0x0001 1712 #define MOPT_CLEAR 0x0002 1713 #define MOPT_NOSUPPORT 0x0004 1714 #define MOPT_EXPLICIT 0x0008 1715 #define MOPT_CLEAR_ERR 0x0010 1716 #define MOPT_GTE0 0x0020 1717 #ifdef CONFIG_QUOTA 1718 #define MOPT_Q 0 1719 #define MOPT_QFMT 0x0040 1720 #else 1721 #define MOPT_Q MOPT_NOSUPPORT 1722 #define MOPT_QFMT MOPT_NOSUPPORT 1723 #endif 1724 #define MOPT_DATAJ 0x0080 1725 #define MOPT_NO_EXT2 0x0100 1726 #define MOPT_NO_EXT3 0x0200 1727 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1728 #define MOPT_STRING 0x0400 1729 1730 static const struct mount_opts { 1731 int token; 1732 int mount_opt; 1733 int flags; 1734 } ext4_mount_opts[] = { 1735 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1736 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1737 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1738 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1739 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1740 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1741 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1742 MOPT_EXT4_ONLY | MOPT_SET}, 1743 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1744 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1745 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1746 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1747 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1748 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1749 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1750 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1751 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1752 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1753 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1754 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1755 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1756 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1757 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1758 EXT4_MOUNT_JOURNAL_CHECKSUM), 1759 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1760 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1761 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1762 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1763 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1764 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1765 MOPT_NO_EXT2}, 1766 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1767 MOPT_NO_EXT2}, 1768 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1769 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1770 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1771 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1772 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1773 {Opt_commit, 0, MOPT_GTE0}, 1774 {Opt_max_batch_time, 0, MOPT_GTE0}, 1775 {Opt_min_batch_time, 0, MOPT_GTE0}, 1776 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1777 {Opt_init_itable, 0, MOPT_GTE0}, 1778 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1779 {Opt_stripe, 0, MOPT_GTE0}, 1780 {Opt_resuid, 0, MOPT_GTE0}, 1781 {Opt_resgid, 0, MOPT_GTE0}, 1782 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1783 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1784 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1785 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1786 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1787 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1788 MOPT_NO_EXT2 | MOPT_DATAJ}, 1789 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1790 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1791 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1792 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1793 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1794 #else 1795 {Opt_acl, 0, MOPT_NOSUPPORT}, 1796 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1797 #endif 1798 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1799 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1800 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1801 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1802 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1803 MOPT_SET | MOPT_Q}, 1804 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1805 MOPT_SET | MOPT_Q}, 1806 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1807 MOPT_SET | MOPT_Q}, 1808 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1809 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1810 MOPT_CLEAR | MOPT_Q}, 1811 {Opt_usrjquota, 0, MOPT_Q}, 1812 {Opt_grpjquota, 0, MOPT_Q}, 1813 {Opt_offusrjquota, 0, MOPT_Q}, 1814 {Opt_offgrpjquota, 0, MOPT_Q}, 1815 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1816 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1817 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1818 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1819 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1820 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1821 {Opt_err, 0, 0} 1822 }; 1823 1824 #ifdef CONFIG_UNICODE 1825 static const struct ext4_sb_encodings { 1826 __u16 magic; 1827 char *name; 1828 char *version; 1829 } ext4_sb_encoding_map[] = { 1830 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1831 }; 1832 1833 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1834 const struct ext4_sb_encodings **encoding, 1835 __u16 *flags) 1836 { 1837 __u16 magic = le16_to_cpu(es->s_encoding); 1838 int i; 1839 1840 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1841 if (magic == ext4_sb_encoding_map[i].magic) 1842 break; 1843 1844 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1845 return -EINVAL; 1846 1847 *encoding = &ext4_sb_encoding_map[i]; 1848 *flags = le16_to_cpu(es->s_encoding_flags); 1849 1850 return 0; 1851 } 1852 #endif 1853 1854 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1855 substring_t *args, unsigned long *journal_devnum, 1856 unsigned int *journal_ioprio, int is_remount) 1857 { 1858 struct ext4_sb_info *sbi = EXT4_SB(sb); 1859 const struct mount_opts *m; 1860 kuid_t uid; 1861 kgid_t gid; 1862 int arg = 0; 1863 1864 #ifdef CONFIG_QUOTA 1865 if (token == Opt_usrjquota) 1866 return set_qf_name(sb, USRQUOTA, &args[0]); 1867 else if (token == Opt_grpjquota) 1868 return set_qf_name(sb, GRPQUOTA, &args[0]); 1869 else if (token == Opt_offusrjquota) 1870 return clear_qf_name(sb, USRQUOTA); 1871 else if (token == Opt_offgrpjquota) 1872 return clear_qf_name(sb, GRPQUOTA); 1873 #endif 1874 switch (token) { 1875 case Opt_noacl: 1876 case Opt_nouser_xattr: 1877 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1878 break; 1879 case Opt_sb: 1880 return 1; /* handled by get_sb_block() */ 1881 case Opt_removed: 1882 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1883 return 1; 1884 case Opt_abort: 1885 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1886 return 1; 1887 case Opt_i_version: 1888 sb->s_flags |= SB_I_VERSION; 1889 return 1; 1890 case Opt_lazytime: 1891 sb->s_flags |= SB_LAZYTIME; 1892 return 1; 1893 case Opt_nolazytime: 1894 sb->s_flags &= ~SB_LAZYTIME; 1895 return 1; 1896 } 1897 1898 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1899 if (token == m->token) 1900 break; 1901 1902 if (m->token == Opt_err) { 1903 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1904 "or missing value", opt); 1905 return -1; 1906 } 1907 1908 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1909 ext4_msg(sb, KERN_ERR, 1910 "Mount option \"%s\" incompatible with ext2", opt); 1911 return -1; 1912 } 1913 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1914 ext4_msg(sb, KERN_ERR, 1915 "Mount option \"%s\" incompatible with ext3", opt); 1916 return -1; 1917 } 1918 1919 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1920 return -1; 1921 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1922 return -1; 1923 if (m->flags & MOPT_EXPLICIT) { 1924 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1925 set_opt2(sb, EXPLICIT_DELALLOC); 1926 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1927 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1928 } else 1929 return -1; 1930 } 1931 if (m->flags & MOPT_CLEAR_ERR) 1932 clear_opt(sb, ERRORS_MASK); 1933 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1934 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1935 "options when quota turned on"); 1936 return -1; 1937 } 1938 1939 if (m->flags & MOPT_NOSUPPORT) { 1940 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1941 } else if (token == Opt_commit) { 1942 if (arg == 0) 1943 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1944 else if (arg > INT_MAX / HZ) { 1945 ext4_msg(sb, KERN_ERR, 1946 "Invalid commit interval %d, " 1947 "must be smaller than %d", 1948 arg, INT_MAX / HZ); 1949 return -1; 1950 } 1951 sbi->s_commit_interval = HZ * arg; 1952 } else if (token == Opt_debug_want_extra_isize) { 1953 if ((arg & 1) || 1954 (arg < 4) || 1955 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 1956 ext4_msg(sb, KERN_ERR, 1957 "Invalid want_extra_isize %d", arg); 1958 return -1; 1959 } 1960 sbi->s_want_extra_isize = arg; 1961 } else if (token == Opt_max_batch_time) { 1962 sbi->s_max_batch_time = arg; 1963 } else if (token == Opt_min_batch_time) { 1964 sbi->s_min_batch_time = arg; 1965 } else if (token == Opt_inode_readahead_blks) { 1966 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1967 ext4_msg(sb, KERN_ERR, 1968 "EXT4-fs: inode_readahead_blks must be " 1969 "0 or a power of 2 smaller than 2^31"); 1970 return -1; 1971 } 1972 sbi->s_inode_readahead_blks = arg; 1973 } else if (token == Opt_init_itable) { 1974 set_opt(sb, INIT_INODE_TABLE); 1975 if (!args->from) 1976 arg = EXT4_DEF_LI_WAIT_MULT; 1977 sbi->s_li_wait_mult = arg; 1978 } else if (token == Opt_max_dir_size_kb) { 1979 sbi->s_max_dir_size_kb = arg; 1980 } else if (token == Opt_stripe) { 1981 sbi->s_stripe = arg; 1982 } else if (token == Opt_resuid) { 1983 uid = make_kuid(current_user_ns(), arg); 1984 if (!uid_valid(uid)) { 1985 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1986 return -1; 1987 } 1988 sbi->s_resuid = uid; 1989 } else if (token == Opt_resgid) { 1990 gid = make_kgid(current_user_ns(), arg); 1991 if (!gid_valid(gid)) { 1992 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1993 return -1; 1994 } 1995 sbi->s_resgid = gid; 1996 } else if (token == Opt_journal_dev) { 1997 if (is_remount) { 1998 ext4_msg(sb, KERN_ERR, 1999 "Cannot specify journal on remount"); 2000 return -1; 2001 } 2002 *journal_devnum = arg; 2003 } else if (token == Opt_journal_path) { 2004 char *journal_path; 2005 struct inode *journal_inode; 2006 struct path path; 2007 int error; 2008 2009 if (is_remount) { 2010 ext4_msg(sb, KERN_ERR, 2011 "Cannot specify journal on remount"); 2012 return -1; 2013 } 2014 journal_path = match_strdup(&args[0]); 2015 if (!journal_path) { 2016 ext4_msg(sb, KERN_ERR, "error: could not dup " 2017 "journal device string"); 2018 return -1; 2019 } 2020 2021 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2022 if (error) { 2023 ext4_msg(sb, KERN_ERR, "error: could not find " 2024 "journal device path: error %d", error); 2025 kfree(journal_path); 2026 return -1; 2027 } 2028 2029 journal_inode = d_inode(path.dentry); 2030 if (!S_ISBLK(journal_inode->i_mode)) { 2031 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2032 "is not a block device", journal_path); 2033 path_put(&path); 2034 kfree(journal_path); 2035 return -1; 2036 } 2037 2038 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2039 path_put(&path); 2040 kfree(journal_path); 2041 } else if (token == Opt_journal_ioprio) { 2042 if (arg > 7) { 2043 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2044 " (must be 0-7)"); 2045 return -1; 2046 } 2047 *journal_ioprio = 2048 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2049 } else if (token == Opt_test_dummy_encryption) { 2050 #ifdef CONFIG_FS_ENCRYPTION 2051 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 2052 ext4_msg(sb, KERN_WARNING, 2053 "Test dummy encryption mode enabled"); 2054 #else 2055 ext4_msg(sb, KERN_WARNING, 2056 "Test dummy encryption mount option ignored"); 2057 #endif 2058 } else if (m->flags & MOPT_DATAJ) { 2059 if (is_remount) { 2060 if (!sbi->s_journal) 2061 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2062 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2063 ext4_msg(sb, KERN_ERR, 2064 "Cannot change data mode on remount"); 2065 return -1; 2066 } 2067 } else { 2068 clear_opt(sb, DATA_FLAGS); 2069 sbi->s_mount_opt |= m->mount_opt; 2070 } 2071 #ifdef CONFIG_QUOTA 2072 } else if (m->flags & MOPT_QFMT) { 2073 if (sb_any_quota_loaded(sb) && 2074 sbi->s_jquota_fmt != m->mount_opt) { 2075 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2076 "quota options when quota turned on"); 2077 return -1; 2078 } 2079 if (ext4_has_feature_quota(sb)) { 2080 ext4_msg(sb, KERN_INFO, 2081 "Quota format mount options ignored " 2082 "when QUOTA feature is enabled"); 2083 return 1; 2084 } 2085 sbi->s_jquota_fmt = m->mount_opt; 2086 #endif 2087 } else if (token == Opt_dax) { 2088 #ifdef CONFIG_FS_DAX 2089 ext4_msg(sb, KERN_WARNING, 2090 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2091 sbi->s_mount_opt |= m->mount_opt; 2092 #else 2093 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2094 return -1; 2095 #endif 2096 } else if (token == Opt_data_err_abort) { 2097 sbi->s_mount_opt |= m->mount_opt; 2098 } else if (token == Opt_data_err_ignore) { 2099 sbi->s_mount_opt &= ~m->mount_opt; 2100 } else { 2101 if (!args->from) 2102 arg = 1; 2103 if (m->flags & MOPT_CLEAR) 2104 arg = !arg; 2105 else if (unlikely(!(m->flags & MOPT_SET))) { 2106 ext4_msg(sb, KERN_WARNING, 2107 "buggy handling of option %s", opt); 2108 WARN_ON(1); 2109 return -1; 2110 } 2111 if (arg != 0) 2112 sbi->s_mount_opt |= m->mount_opt; 2113 else 2114 sbi->s_mount_opt &= ~m->mount_opt; 2115 } 2116 return 1; 2117 } 2118 2119 static int parse_options(char *options, struct super_block *sb, 2120 unsigned long *journal_devnum, 2121 unsigned int *journal_ioprio, 2122 int is_remount) 2123 { 2124 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2125 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2126 substring_t args[MAX_OPT_ARGS]; 2127 int token; 2128 2129 if (!options) 2130 return 1; 2131 2132 while ((p = strsep(&options, ",")) != NULL) { 2133 if (!*p) 2134 continue; 2135 /* 2136 * Initialize args struct so we know whether arg was 2137 * found; some options take optional arguments. 2138 */ 2139 args[0].to = args[0].from = NULL; 2140 token = match_token(p, tokens, args); 2141 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2142 journal_ioprio, is_remount) < 0) 2143 return 0; 2144 } 2145 #ifdef CONFIG_QUOTA 2146 /* 2147 * We do the test below only for project quotas. 'usrquota' and 2148 * 'grpquota' mount options are allowed even without quota feature 2149 * to support legacy quotas in quota files. 2150 */ 2151 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2152 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2153 "Cannot enable project quota enforcement."); 2154 return 0; 2155 } 2156 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2157 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2158 if (usr_qf_name || grp_qf_name) { 2159 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2160 clear_opt(sb, USRQUOTA); 2161 2162 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2163 clear_opt(sb, GRPQUOTA); 2164 2165 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2166 ext4_msg(sb, KERN_ERR, "old and new quota " 2167 "format mixing"); 2168 return 0; 2169 } 2170 2171 if (!sbi->s_jquota_fmt) { 2172 ext4_msg(sb, KERN_ERR, "journaled quota format " 2173 "not specified"); 2174 return 0; 2175 } 2176 } 2177 #endif 2178 if (test_opt(sb, DIOREAD_NOLOCK)) { 2179 int blocksize = 2180 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2181 if (blocksize < PAGE_SIZE) 2182 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2183 "experimental mount option 'dioread_nolock' " 2184 "for blocksize < PAGE_SIZE"); 2185 } 2186 return 1; 2187 } 2188 2189 static inline void ext4_show_quota_options(struct seq_file *seq, 2190 struct super_block *sb) 2191 { 2192 #if defined(CONFIG_QUOTA) 2193 struct ext4_sb_info *sbi = EXT4_SB(sb); 2194 char *usr_qf_name, *grp_qf_name; 2195 2196 if (sbi->s_jquota_fmt) { 2197 char *fmtname = ""; 2198 2199 switch (sbi->s_jquota_fmt) { 2200 case QFMT_VFS_OLD: 2201 fmtname = "vfsold"; 2202 break; 2203 case QFMT_VFS_V0: 2204 fmtname = "vfsv0"; 2205 break; 2206 case QFMT_VFS_V1: 2207 fmtname = "vfsv1"; 2208 break; 2209 } 2210 seq_printf(seq, ",jqfmt=%s", fmtname); 2211 } 2212 2213 rcu_read_lock(); 2214 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2215 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2216 if (usr_qf_name) 2217 seq_show_option(seq, "usrjquota", usr_qf_name); 2218 if (grp_qf_name) 2219 seq_show_option(seq, "grpjquota", grp_qf_name); 2220 rcu_read_unlock(); 2221 #endif 2222 } 2223 2224 static const char *token2str(int token) 2225 { 2226 const struct match_token *t; 2227 2228 for (t = tokens; t->token != Opt_err; t++) 2229 if (t->token == token && !strchr(t->pattern, '=')) 2230 break; 2231 return t->pattern; 2232 } 2233 2234 /* 2235 * Show an option if 2236 * - it's set to a non-default value OR 2237 * - if the per-sb default is different from the global default 2238 */ 2239 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2240 int nodefs) 2241 { 2242 struct ext4_sb_info *sbi = EXT4_SB(sb); 2243 struct ext4_super_block *es = sbi->s_es; 2244 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2245 const struct mount_opts *m; 2246 char sep = nodefs ? '\n' : ','; 2247 2248 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2249 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2250 2251 if (sbi->s_sb_block != 1) 2252 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2253 2254 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2255 int want_set = m->flags & MOPT_SET; 2256 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2257 (m->flags & MOPT_CLEAR_ERR)) 2258 continue; 2259 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2260 continue; /* skip if same as the default */ 2261 if ((want_set && 2262 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2263 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2264 continue; /* select Opt_noFoo vs Opt_Foo */ 2265 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2266 } 2267 2268 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2269 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2270 SEQ_OPTS_PRINT("resuid=%u", 2271 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2272 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2273 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2274 SEQ_OPTS_PRINT("resgid=%u", 2275 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2276 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2277 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2278 SEQ_OPTS_PUTS("errors=remount-ro"); 2279 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2280 SEQ_OPTS_PUTS("errors=continue"); 2281 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2282 SEQ_OPTS_PUTS("errors=panic"); 2283 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2284 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2285 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2286 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2287 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2288 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2289 if (sb->s_flags & SB_I_VERSION) 2290 SEQ_OPTS_PUTS("i_version"); 2291 if (nodefs || sbi->s_stripe) 2292 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2293 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2294 (sbi->s_mount_opt ^ def_mount_opt)) { 2295 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2296 SEQ_OPTS_PUTS("data=journal"); 2297 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2298 SEQ_OPTS_PUTS("data=ordered"); 2299 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2300 SEQ_OPTS_PUTS("data=writeback"); 2301 } 2302 if (nodefs || 2303 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2304 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2305 sbi->s_inode_readahead_blks); 2306 2307 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2308 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2309 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2310 if (nodefs || sbi->s_max_dir_size_kb) 2311 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2312 if (test_opt(sb, DATA_ERR_ABORT)) 2313 SEQ_OPTS_PUTS("data_err=abort"); 2314 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2315 SEQ_OPTS_PUTS("test_dummy_encryption"); 2316 2317 ext4_show_quota_options(seq, sb); 2318 return 0; 2319 } 2320 2321 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2322 { 2323 return _ext4_show_options(seq, root->d_sb, 0); 2324 } 2325 2326 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2327 { 2328 struct super_block *sb = seq->private; 2329 int rc; 2330 2331 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2332 rc = _ext4_show_options(seq, sb, 1); 2333 seq_puts(seq, "\n"); 2334 return rc; 2335 } 2336 2337 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2338 int read_only) 2339 { 2340 struct ext4_sb_info *sbi = EXT4_SB(sb); 2341 int err = 0; 2342 2343 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2344 ext4_msg(sb, KERN_ERR, "revision level too high, " 2345 "forcing read-only mode"); 2346 err = -EROFS; 2347 } 2348 if (read_only) 2349 goto done; 2350 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2351 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2352 "running e2fsck is recommended"); 2353 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2354 ext4_msg(sb, KERN_WARNING, 2355 "warning: mounting fs with errors, " 2356 "running e2fsck is recommended"); 2357 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2358 le16_to_cpu(es->s_mnt_count) >= 2359 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2360 ext4_msg(sb, KERN_WARNING, 2361 "warning: maximal mount count reached, " 2362 "running e2fsck is recommended"); 2363 else if (le32_to_cpu(es->s_checkinterval) && 2364 (ext4_get_tstamp(es, s_lastcheck) + 2365 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2366 ext4_msg(sb, KERN_WARNING, 2367 "warning: checktime reached, " 2368 "running e2fsck is recommended"); 2369 if (!sbi->s_journal) 2370 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2371 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2372 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2373 le16_add_cpu(&es->s_mnt_count, 1); 2374 ext4_update_tstamp(es, s_mtime); 2375 if (sbi->s_journal) 2376 ext4_set_feature_journal_needs_recovery(sb); 2377 2378 err = ext4_commit_super(sb, 1); 2379 done: 2380 if (test_opt(sb, DEBUG)) 2381 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2382 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2383 sb->s_blocksize, 2384 sbi->s_groups_count, 2385 EXT4_BLOCKS_PER_GROUP(sb), 2386 EXT4_INODES_PER_GROUP(sb), 2387 sbi->s_mount_opt, sbi->s_mount_opt2); 2388 2389 cleancache_init_fs(sb); 2390 return err; 2391 } 2392 2393 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2394 { 2395 struct ext4_sb_info *sbi = EXT4_SB(sb); 2396 struct flex_groups **old_groups, **new_groups; 2397 int size, i, j; 2398 2399 if (!sbi->s_log_groups_per_flex) 2400 return 0; 2401 2402 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2403 if (size <= sbi->s_flex_groups_allocated) 2404 return 0; 2405 2406 new_groups = kvzalloc(roundup_pow_of_two(size * 2407 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2408 if (!new_groups) { 2409 ext4_msg(sb, KERN_ERR, 2410 "not enough memory for %d flex group pointers", size); 2411 return -ENOMEM; 2412 } 2413 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2414 new_groups[i] = kvzalloc(roundup_pow_of_two( 2415 sizeof(struct flex_groups)), 2416 GFP_KERNEL); 2417 if (!new_groups[i]) { 2418 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2419 kvfree(new_groups[j]); 2420 kvfree(new_groups); 2421 ext4_msg(sb, KERN_ERR, 2422 "not enough memory for %d flex groups", size); 2423 return -ENOMEM; 2424 } 2425 } 2426 rcu_read_lock(); 2427 old_groups = rcu_dereference(sbi->s_flex_groups); 2428 if (old_groups) 2429 memcpy(new_groups, old_groups, 2430 (sbi->s_flex_groups_allocated * 2431 sizeof(struct flex_groups *))); 2432 rcu_read_unlock(); 2433 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2434 sbi->s_flex_groups_allocated = size; 2435 if (old_groups) 2436 ext4_kvfree_array_rcu(old_groups); 2437 return 0; 2438 } 2439 2440 static int ext4_fill_flex_info(struct super_block *sb) 2441 { 2442 struct ext4_sb_info *sbi = EXT4_SB(sb); 2443 struct ext4_group_desc *gdp = NULL; 2444 struct flex_groups *fg; 2445 ext4_group_t flex_group; 2446 int i, err; 2447 2448 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2449 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2450 sbi->s_log_groups_per_flex = 0; 2451 return 1; 2452 } 2453 2454 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2455 if (err) 2456 goto failed; 2457 2458 for (i = 0; i < sbi->s_groups_count; i++) { 2459 gdp = ext4_get_group_desc(sb, i, NULL); 2460 2461 flex_group = ext4_flex_group(sbi, i); 2462 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2463 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2464 atomic64_add(ext4_free_group_clusters(sb, gdp), 2465 &fg->free_clusters); 2466 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2467 } 2468 2469 return 1; 2470 failed: 2471 return 0; 2472 } 2473 2474 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2475 struct ext4_group_desc *gdp) 2476 { 2477 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2478 __u16 crc = 0; 2479 __le32 le_group = cpu_to_le32(block_group); 2480 struct ext4_sb_info *sbi = EXT4_SB(sb); 2481 2482 if (ext4_has_metadata_csum(sbi->s_sb)) { 2483 /* Use new metadata_csum algorithm */ 2484 __u32 csum32; 2485 __u16 dummy_csum = 0; 2486 2487 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2488 sizeof(le_group)); 2489 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2490 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2491 sizeof(dummy_csum)); 2492 offset += sizeof(dummy_csum); 2493 if (offset < sbi->s_desc_size) 2494 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2495 sbi->s_desc_size - offset); 2496 2497 crc = csum32 & 0xFFFF; 2498 goto out; 2499 } 2500 2501 /* old crc16 code */ 2502 if (!ext4_has_feature_gdt_csum(sb)) 2503 return 0; 2504 2505 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2506 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2507 crc = crc16(crc, (__u8 *)gdp, offset); 2508 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2509 /* for checksum of struct ext4_group_desc do the rest...*/ 2510 if (ext4_has_feature_64bit(sb) && 2511 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2512 crc = crc16(crc, (__u8 *)gdp + offset, 2513 le16_to_cpu(sbi->s_es->s_desc_size) - 2514 offset); 2515 2516 out: 2517 return cpu_to_le16(crc); 2518 } 2519 2520 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2521 struct ext4_group_desc *gdp) 2522 { 2523 if (ext4_has_group_desc_csum(sb) && 2524 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2525 return 0; 2526 2527 return 1; 2528 } 2529 2530 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2531 struct ext4_group_desc *gdp) 2532 { 2533 if (!ext4_has_group_desc_csum(sb)) 2534 return; 2535 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2536 } 2537 2538 /* Called at mount-time, super-block is locked */ 2539 static int ext4_check_descriptors(struct super_block *sb, 2540 ext4_fsblk_t sb_block, 2541 ext4_group_t *first_not_zeroed) 2542 { 2543 struct ext4_sb_info *sbi = EXT4_SB(sb); 2544 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2545 ext4_fsblk_t last_block; 2546 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2547 ext4_fsblk_t block_bitmap; 2548 ext4_fsblk_t inode_bitmap; 2549 ext4_fsblk_t inode_table; 2550 int flexbg_flag = 0; 2551 ext4_group_t i, grp = sbi->s_groups_count; 2552 2553 if (ext4_has_feature_flex_bg(sb)) 2554 flexbg_flag = 1; 2555 2556 ext4_debug("Checking group descriptors"); 2557 2558 for (i = 0; i < sbi->s_groups_count; i++) { 2559 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2560 2561 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2562 last_block = ext4_blocks_count(sbi->s_es) - 1; 2563 else 2564 last_block = first_block + 2565 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2566 2567 if ((grp == sbi->s_groups_count) && 2568 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2569 grp = i; 2570 2571 block_bitmap = ext4_block_bitmap(sb, gdp); 2572 if (block_bitmap == sb_block) { 2573 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2574 "Block bitmap for group %u overlaps " 2575 "superblock", i); 2576 if (!sb_rdonly(sb)) 2577 return 0; 2578 } 2579 if (block_bitmap >= sb_block + 1 && 2580 block_bitmap <= last_bg_block) { 2581 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2582 "Block bitmap for group %u overlaps " 2583 "block group descriptors", i); 2584 if (!sb_rdonly(sb)) 2585 return 0; 2586 } 2587 if (block_bitmap < first_block || block_bitmap > last_block) { 2588 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2589 "Block bitmap for group %u not in group " 2590 "(block %llu)!", i, block_bitmap); 2591 return 0; 2592 } 2593 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2594 if (inode_bitmap == sb_block) { 2595 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2596 "Inode bitmap for group %u overlaps " 2597 "superblock", i); 2598 if (!sb_rdonly(sb)) 2599 return 0; 2600 } 2601 if (inode_bitmap >= sb_block + 1 && 2602 inode_bitmap <= last_bg_block) { 2603 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2604 "Inode bitmap for group %u overlaps " 2605 "block group descriptors", i); 2606 if (!sb_rdonly(sb)) 2607 return 0; 2608 } 2609 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2610 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2611 "Inode bitmap for group %u not in group " 2612 "(block %llu)!", i, inode_bitmap); 2613 return 0; 2614 } 2615 inode_table = ext4_inode_table(sb, gdp); 2616 if (inode_table == sb_block) { 2617 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2618 "Inode table for group %u overlaps " 2619 "superblock", i); 2620 if (!sb_rdonly(sb)) 2621 return 0; 2622 } 2623 if (inode_table >= sb_block + 1 && 2624 inode_table <= last_bg_block) { 2625 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2626 "Inode table for group %u overlaps " 2627 "block group descriptors", i); 2628 if (!sb_rdonly(sb)) 2629 return 0; 2630 } 2631 if (inode_table < first_block || 2632 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2633 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2634 "Inode table for group %u not in group " 2635 "(block %llu)!", i, inode_table); 2636 return 0; 2637 } 2638 ext4_lock_group(sb, i); 2639 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2640 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2641 "Checksum for group %u failed (%u!=%u)", 2642 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2643 gdp)), le16_to_cpu(gdp->bg_checksum)); 2644 if (!sb_rdonly(sb)) { 2645 ext4_unlock_group(sb, i); 2646 return 0; 2647 } 2648 } 2649 ext4_unlock_group(sb, i); 2650 if (!flexbg_flag) 2651 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2652 } 2653 if (NULL != first_not_zeroed) 2654 *first_not_zeroed = grp; 2655 return 1; 2656 } 2657 2658 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2659 * the superblock) which were deleted from all directories, but held open by 2660 * a process at the time of a crash. We walk the list and try to delete these 2661 * inodes at recovery time (only with a read-write filesystem). 2662 * 2663 * In order to keep the orphan inode chain consistent during traversal (in 2664 * case of crash during recovery), we link each inode into the superblock 2665 * orphan list_head and handle it the same way as an inode deletion during 2666 * normal operation (which journals the operations for us). 2667 * 2668 * We only do an iget() and an iput() on each inode, which is very safe if we 2669 * accidentally point at an in-use or already deleted inode. The worst that 2670 * can happen in this case is that we get a "bit already cleared" message from 2671 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2672 * e2fsck was run on this filesystem, and it must have already done the orphan 2673 * inode cleanup for us, so we can safely abort without any further action. 2674 */ 2675 static void ext4_orphan_cleanup(struct super_block *sb, 2676 struct ext4_super_block *es) 2677 { 2678 unsigned int s_flags = sb->s_flags; 2679 int ret, nr_orphans = 0, nr_truncates = 0; 2680 #ifdef CONFIG_QUOTA 2681 int quota_update = 0; 2682 int i; 2683 #endif 2684 if (!es->s_last_orphan) { 2685 jbd_debug(4, "no orphan inodes to clean up\n"); 2686 return; 2687 } 2688 2689 if (bdev_read_only(sb->s_bdev)) { 2690 ext4_msg(sb, KERN_ERR, "write access " 2691 "unavailable, skipping orphan cleanup"); 2692 return; 2693 } 2694 2695 /* Check if feature set would not allow a r/w mount */ 2696 if (!ext4_feature_set_ok(sb, 0)) { 2697 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2698 "unknown ROCOMPAT features"); 2699 return; 2700 } 2701 2702 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2703 /* don't clear list on RO mount w/ errors */ 2704 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2705 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2706 "clearing orphan list.\n"); 2707 es->s_last_orphan = 0; 2708 } 2709 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2710 return; 2711 } 2712 2713 if (s_flags & SB_RDONLY) { 2714 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2715 sb->s_flags &= ~SB_RDONLY; 2716 } 2717 #ifdef CONFIG_QUOTA 2718 /* Needed for iput() to work correctly and not trash data */ 2719 sb->s_flags |= SB_ACTIVE; 2720 2721 /* 2722 * Turn on quotas which were not enabled for read-only mounts if 2723 * filesystem has quota feature, so that they are updated correctly. 2724 */ 2725 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2726 int ret = ext4_enable_quotas(sb); 2727 2728 if (!ret) 2729 quota_update = 1; 2730 else 2731 ext4_msg(sb, KERN_ERR, 2732 "Cannot turn on quotas: error %d", ret); 2733 } 2734 2735 /* Turn on journaled quotas used for old sytle */ 2736 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2737 if (EXT4_SB(sb)->s_qf_names[i]) { 2738 int ret = ext4_quota_on_mount(sb, i); 2739 2740 if (!ret) 2741 quota_update = 1; 2742 else 2743 ext4_msg(sb, KERN_ERR, 2744 "Cannot turn on journaled " 2745 "quota: type %d: error %d", i, ret); 2746 } 2747 } 2748 #endif 2749 2750 while (es->s_last_orphan) { 2751 struct inode *inode; 2752 2753 /* 2754 * We may have encountered an error during cleanup; if 2755 * so, skip the rest. 2756 */ 2757 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2758 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2759 es->s_last_orphan = 0; 2760 break; 2761 } 2762 2763 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2764 if (IS_ERR(inode)) { 2765 es->s_last_orphan = 0; 2766 break; 2767 } 2768 2769 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2770 dquot_initialize(inode); 2771 if (inode->i_nlink) { 2772 if (test_opt(sb, DEBUG)) 2773 ext4_msg(sb, KERN_DEBUG, 2774 "%s: truncating inode %lu to %lld bytes", 2775 __func__, inode->i_ino, inode->i_size); 2776 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2777 inode->i_ino, inode->i_size); 2778 inode_lock(inode); 2779 truncate_inode_pages(inode->i_mapping, inode->i_size); 2780 ret = ext4_truncate(inode); 2781 if (ret) 2782 ext4_std_error(inode->i_sb, ret); 2783 inode_unlock(inode); 2784 nr_truncates++; 2785 } else { 2786 if (test_opt(sb, DEBUG)) 2787 ext4_msg(sb, KERN_DEBUG, 2788 "%s: deleting unreferenced inode %lu", 2789 __func__, inode->i_ino); 2790 jbd_debug(2, "deleting unreferenced inode %lu\n", 2791 inode->i_ino); 2792 nr_orphans++; 2793 } 2794 iput(inode); /* The delete magic happens here! */ 2795 } 2796 2797 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2798 2799 if (nr_orphans) 2800 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2801 PLURAL(nr_orphans)); 2802 if (nr_truncates) 2803 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2804 PLURAL(nr_truncates)); 2805 #ifdef CONFIG_QUOTA 2806 /* Turn off quotas if they were enabled for orphan cleanup */ 2807 if (quota_update) { 2808 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2809 if (sb_dqopt(sb)->files[i]) 2810 dquot_quota_off(sb, i); 2811 } 2812 } 2813 #endif 2814 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2815 } 2816 2817 /* 2818 * Maximal extent format file size. 2819 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2820 * extent format containers, within a sector_t, and within i_blocks 2821 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2822 * so that won't be a limiting factor. 2823 * 2824 * However there is other limiting factor. We do store extents in the form 2825 * of starting block and length, hence the resulting length of the extent 2826 * covering maximum file size must fit into on-disk format containers as 2827 * well. Given that length is always by 1 unit bigger than max unit (because 2828 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2829 * 2830 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2831 */ 2832 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2833 { 2834 loff_t res; 2835 loff_t upper_limit = MAX_LFS_FILESIZE; 2836 2837 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2838 2839 if (!has_huge_files) { 2840 upper_limit = (1LL << 32) - 1; 2841 2842 /* total blocks in file system block size */ 2843 upper_limit >>= (blkbits - 9); 2844 upper_limit <<= blkbits; 2845 } 2846 2847 /* 2848 * 32-bit extent-start container, ee_block. We lower the maxbytes 2849 * by one fs block, so ee_len can cover the extent of maximum file 2850 * size 2851 */ 2852 res = (1LL << 32) - 1; 2853 res <<= blkbits; 2854 2855 /* Sanity check against vm- & vfs- imposed limits */ 2856 if (res > upper_limit) 2857 res = upper_limit; 2858 2859 return res; 2860 } 2861 2862 /* 2863 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2864 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2865 * We need to be 1 filesystem block less than the 2^48 sector limit. 2866 */ 2867 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2868 { 2869 loff_t res = EXT4_NDIR_BLOCKS; 2870 int meta_blocks; 2871 loff_t upper_limit; 2872 /* This is calculated to be the largest file size for a dense, block 2873 * mapped file such that the file's total number of 512-byte sectors, 2874 * including data and all indirect blocks, does not exceed (2^48 - 1). 2875 * 2876 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2877 * number of 512-byte sectors of the file. 2878 */ 2879 2880 if (!has_huge_files) { 2881 /* 2882 * !has_huge_files or implies that the inode i_block field 2883 * represents total file blocks in 2^32 512-byte sectors == 2884 * size of vfs inode i_blocks * 8 2885 */ 2886 upper_limit = (1LL << 32) - 1; 2887 2888 /* total blocks in file system block size */ 2889 upper_limit >>= (bits - 9); 2890 2891 } else { 2892 /* 2893 * We use 48 bit ext4_inode i_blocks 2894 * With EXT4_HUGE_FILE_FL set the i_blocks 2895 * represent total number of blocks in 2896 * file system block size 2897 */ 2898 upper_limit = (1LL << 48) - 1; 2899 2900 } 2901 2902 /* indirect blocks */ 2903 meta_blocks = 1; 2904 /* double indirect blocks */ 2905 meta_blocks += 1 + (1LL << (bits-2)); 2906 /* tripple indirect blocks */ 2907 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2908 2909 upper_limit -= meta_blocks; 2910 upper_limit <<= bits; 2911 2912 res += 1LL << (bits-2); 2913 res += 1LL << (2*(bits-2)); 2914 res += 1LL << (3*(bits-2)); 2915 res <<= bits; 2916 if (res > upper_limit) 2917 res = upper_limit; 2918 2919 if (res > MAX_LFS_FILESIZE) 2920 res = MAX_LFS_FILESIZE; 2921 2922 return res; 2923 } 2924 2925 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2926 ext4_fsblk_t logical_sb_block, int nr) 2927 { 2928 struct ext4_sb_info *sbi = EXT4_SB(sb); 2929 ext4_group_t bg, first_meta_bg; 2930 int has_super = 0; 2931 2932 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2933 2934 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2935 return logical_sb_block + nr + 1; 2936 bg = sbi->s_desc_per_block * nr; 2937 if (ext4_bg_has_super(sb, bg)) 2938 has_super = 1; 2939 2940 /* 2941 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2942 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2943 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2944 * compensate. 2945 */ 2946 if (sb->s_blocksize == 1024 && nr == 0 && 2947 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2948 has_super++; 2949 2950 return (has_super + ext4_group_first_block_no(sb, bg)); 2951 } 2952 2953 /** 2954 * ext4_get_stripe_size: Get the stripe size. 2955 * @sbi: In memory super block info 2956 * 2957 * If we have specified it via mount option, then 2958 * use the mount option value. If the value specified at mount time is 2959 * greater than the blocks per group use the super block value. 2960 * If the super block value is greater than blocks per group return 0. 2961 * Allocator needs it be less than blocks per group. 2962 * 2963 */ 2964 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2965 { 2966 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2967 unsigned long stripe_width = 2968 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2969 int ret; 2970 2971 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2972 ret = sbi->s_stripe; 2973 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2974 ret = stripe_width; 2975 else if (stride && stride <= sbi->s_blocks_per_group) 2976 ret = stride; 2977 else 2978 ret = 0; 2979 2980 /* 2981 * If the stripe width is 1, this makes no sense and 2982 * we set it to 0 to turn off stripe handling code. 2983 */ 2984 if (ret <= 1) 2985 ret = 0; 2986 2987 return ret; 2988 } 2989 2990 /* 2991 * Check whether this filesystem can be mounted based on 2992 * the features present and the RDONLY/RDWR mount requested. 2993 * Returns 1 if this filesystem can be mounted as requested, 2994 * 0 if it cannot be. 2995 */ 2996 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2997 { 2998 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2999 ext4_msg(sb, KERN_ERR, 3000 "Couldn't mount because of " 3001 "unsupported optional features (%x)", 3002 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3003 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3004 return 0; 3005 } 3006 3007 #ifndef CONFIG_UNICODE 3008 if (ext4_has_feature_casefold(sb)) { 3009 ext4_msg(sb, KERN_ERR, 3010 "Filesystem with casefold feature cannot be " 3011 "mounted without CONFIG_UNICODE"); 3012 return 0; 3013 } 3014 #endif 3015 3016 if (readonly) 3017 return 1; 3018 3019 if (ext4_has_feature_readonly(sb)) { 3020 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3021 sb->s_flags |= SB_RDONLY; 3022 return 1; 3023 } 3024 3025 /* Check that feature set is OK for a read-write mount */ 3026 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3027 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3028 "unsupported optional features (%x)", 3029 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3030 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3031 return 0; 3032 } 3033 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3034 ext4_msg(sb, KERN_ERR, 3035 "Can't support bigalloc feature without " 3036 "extents feature\n"); 3037 return 0; 3038 } 3039 3040 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3041 if (!readonly && (ext4_has_feature_quota(sb) || 3042 ext4_has_feature_project(sb))) { 3043 ext4_msg(sb, KERN_ERR, 3044 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3045 return 0; 3046 } 3047 #endif /* CONFIG_QUOTA */ 3048 return 1; 3049 } 3050 3051 /* 3052 * This function is called once a day if we have errors logged 3053 * on the file system 3054 */ 3055 static void print_daily_error_info(struct timer_list *t) 3056 { 3057 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3058 struct super_block *sb = sbi->s_sb; 3059 struct ext4_super_block *es = sbi->s_es; 3060 3061 if (es->s_error_count) 3062 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3063 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3064 le32_to_cpu(es->s_error_count)); 3065 if (es->s_first_error_time) { 3066 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3067 sb->s_id, 3068 ext4_get_tstamp(es, s_first_error_time), 3069 (int) sizeof(es->s_first_error_func), 3070 es->s_first_error_func, 3071 le32_to_cpu(es->s_first_error_line)); 3072 if (es->s_first_error_ino) 3073 printk(KERN_CONT ": inode %u", 3074 le32_to_cpu(es->s_first_error_ino)); 3075 if (es->s_first_error_block) 3076 printk(KERN_CONT ": block %llu", (unsigned long long) 3077 le64_to_cpu(es->s_first_error_block)); 3078 printk(KERN_CONT "\n"); 3079 } 3080 if (es->s_last_error_time) { 3081 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3082 sb->s_id, 3083 ext4_get_tstamp(es, s_last_error_time), 3084 (int) sizeof(es->s_last_error_func), 3085 es->s_last_error_func, 3086 le32_to_cpu(es->s_last_error_line)); 3087 if (es->s_last_error_ino) 3088 printk(KERN_CONT ": inode %u", 3089 le32_to_cpu(es->s_last_error_ino)); 3090 if (es->s_last_error_block) 3091 printk(KERN_CONT ": block %llu", (unsigned long long) 3092 le64_to_cpu(es->s_last_error_block)); 3093 printk(KERN_CONT "\n"); 3094 } 3095 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3096 } 3097 3098 /* Find next suitable group and run ext4_init_inode_table */ 3099 static int ext4_run_li_request(struct ext4_li_request *elr) 3100 { 3101 struct ext4_group_desc *gdp = NULL; 3102 ext4_group_t group, ngroups; 3103 struct super_block *sb; 3104 unsigned long timeout = 0; 3105 int ret = 0; 3106 3107 sb = elr->lr_super; 3108 ngroups = EXT4_SB(sb)->s_groups_count; 3109 3110 for (group = elr->lr_next_group; group < ngroups; group++) { 3111 gdp = ext4_get_group_desc(sb, group, NULL); 3112 if (!gdp) { 3113 ret = 1; 3114 break; 3115 } 3116 3117 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3118 break; 3119 } 3120 3121 if (group >= ngroups) 3122 ret = 1; 3123 3124 if (!ret) { 3125 timeout = jiffies; 3126 ret = ext4_init_inode_table(sb, group, 3127 elr->lr_timeout ? 0 : 1); 3128 if (elr->lr_timeout == 0) { 3129 timeout = (jiffies - timeout) * 3130 elr->lr_sbi->s_li_wait_mult; 3131 elr->lr_timeout = timeout; 3132 } 3133 elr->lr_next_sched = jiffies + elr->lr_timeout; 3134 elr->lr_next_group = group + 1; 3135 } 3136 return ret; 3137 } 3138 3139 /* 3140 * Remove lr_request from the list_request and free the 3141 * request structure. Should be called with li_list_mtx held 3142 */ 3143 static void ext4_remove_li_request(struct ext4_li_request *elr) 3144 { 3145 struct ext4_sb_info *sbi; 3146 3147 if (!elr) 3148 return; 3149 3150 sbi = elr->lr_sbi; 3151 3152 list_del(&elr->lr_request); 3153 sbi->s_li_request = NULL; 3154 kfree(elr); 3155 } 3156 3157 static void ext4_unregister_li_request(struct super_block *sb) 3158 { 3159 mutex_lock(&ext4_li_mtx); 3160 if (!ext4_li_info) { 3161 mutex_unlock(&ext4_li_mtx); 3162 return; 3163 } 3164 3165 mutex_lock(&ext4_li_info->li_list_mtx); 3166 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3167 mutex_unlock(&ext4_li_info->li_list_mtx); 3168 mutex_unlock(&ext4_li_mtx); 3169 } 3170 3171 static struct task_struct *ext4_lazyinit_task; 3172 3173 /* 3174 * This is the function where ext4lazyinit thread lives. It walks 3175 * through the request list searching for next scheduled filesystem. 3176 * When such a fs is found, run the lazy initialization request 3177 * (ext4_rn_li_request) and keep track of the time spend in this 3178 * function. Based on that time we compute next schedule time of 3179 * the request. When walking through the list is complete, compute 3180 * next waking time and put itself into sleep. 3181 */ 3182 static int ext4_lazyinit_thread(void *arg) 3183 { 3184 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3185 struct list_head *pos, *n; 3186 struct ext4_li_request *elr; 3187 unsigned long next_wakeup, cur; 3188 3189 BUG_ON(NULL == eli); 3190 3191 cont_thread: 3192 while (true) { 3193 next_wakeup = MAX_JIFFY_OFFSET; 3194 3195 mutex_lock(&eli->li_list_mtx); 3196 if (list_empty(&eli->li_request_list)) { 3197 mutex_unlock(&eli->li_list_mtx); 3198 goto exit_thread; 3199 } 3200 list_for_each_safe(pos, n, &eli->li_request_list) { 3201 int err = 0; 3202 int progress = 0; 3203 elr = list_entry(pos, struct ext4_li_request, 3204 lr_request); 3205 3206 if (time_before(jiffies, elr->lr_next_sched)) { 3207 if (time_before(elr->lr_next_sched, next_wakeup)) 3208 next_wakeup = elr->lr_next_sched; 3209 continue; 3210 } 3211 if (down_read_trylock(&elr->lr_super->s_umount)) { 3212 if (sb_start_write_trylock(elr->lr_super)) { 3213 progress = 1; 3214 /* 3215 * We hold sb->s_umount, sb can not 3216 * be removed from the list, it is 3217 * now safe to drop li_list_mtx 3218 */ 3219 mutex_unlock(&eli->li_list_mtx); 3220 err = ext4_run_li_request(elr); 3221 sb_end_write(elr->lr_super); 3222 mutex_lock(&eli->li_list_mtx); 3223 n = pos->next; 3224 } 3225 up_read((&elr->lr_super->s_umount)); 3226 } 3227 /* error, remove the lazy_init job */ 3228 if (err) { 3229 ext4_remove_li_request(elr); 3230 continue; 3231 } 3232 if (!progress) { 3233 elr->lr_next_sched = jiffies + 3234 (prandom_u32() 3235 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3236 } 3237 if (time_before(elr->lr_next_sched, next_wakeup)) 3238 next_wakeup = elr->lr_next_sched; 3239 } 3240 mutex_unlock(&eli->li_list_mtx); 3241 3242 try_to_freeze(); 3243 3244 cur = jiffies; 3245 if ((time_after_eq(cur, next_wakeup)) || 3246 (MAX_JIFFY_OFFSET == next_wakeup)) { 3247 cond_resched(); 3248 continue; 3249 } 3250 3251 schedule_timeout_interruptible(next_wakeup - cur); 3252 3253 if (kthread_should_stop()) { 3254 ext4_clear_request_list(); 3255 goto exit_thread; 3256 } 3257 } 3258 3259 exit_thread: 3260 /* 3261 * It looks like the request list is empty, but we need 3262 * to check it under the li_list_mtx lock, to prevent any 3263 * additions into it, and of course we should lock ext4_li_mtx 3264 * to atomically free the list and ext4_li_info, because at 3265 * this point another ext4 filesystem could be registering 3266 * new one. 3267 */ 3268 mutex_lock(&ext4_li_mtx); 3269 mutex_lock(&eli->li_list_mtx); 3270 if (!list_empty(&eli->li_request_list)) { 3271 mutex_unlock(&eli->li_list_mtx); 3272 mutex_unlock(&ext4_li_mtx); 3273 goto cont_thread; 3274 } 3275 mutex_unlock(&eli->li_list_mtx); 3276 kfree(ext4_li_info); 3277 ext4_li_info = NULL; 3278 mutex_unlock(&ext4_li_mtx); 3279 3280 return 0; 3281 } 3282 3283 static void ext4_clear_request_list(void) 3284 { 3285 struct list_head *pos, *n; 3286 struct ext4_li_request *elr; 3287 3288 mutex_lock(&ext4_li_info->li_list_mtx); 3289 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3290 elr = list_entry(pos, struct ext4_li_request, 3291 lr_request); 3292 ext4_remove_li_request(elr); 3293 } 3294 mutex_unlock(&ext4_li_info->li_list_mtx); 3295 } 3296 3297 static int ext4_run_lazyinit_thread(void) 3298 { 3299 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3300 ext4_li_info, "ext4lazyinit"); 3301 if (IS_ERR(ext4_lazyinit_task)) { 3302 int err = PTR_ERR(ext4_lazyinit_task); 3303 ext4_clear_request_list(); 3304 kfree(ext4_li_info); 3305 ext4_li_info = NULL; 3306 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3307 "initialization thread\n", 3308 err); 3309 return err; 3310 } 3311 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3312 return 0; 3313 } 3314 3315 /* 3316 * Check whether it make sense to run itable init. thread or not. 3317 * If there is at least one uninitialized inode table, return 3318 * corresponding group number, else the loop goes through all 3319 * groups and return total number of groups. 3320 */ 3321 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3322 { 3323 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3324 struct ext4_group_desc *gdp = NULL; 3325 3326 if (!ext4_has_group_desc_csum(sb)) 3327 return ngroups; 3328 3329 for (group = 0; group < ngroups; group++) { 3330 gdp = ext4_get_group_desc(sb, group, NULL); 3331 if (!gdp) 3332 continue; 3333 3334 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3335 break; 3336 } 3337 3338 return group; 3339 } 3340 3341 static int ext4_li_info_new(void) 3342 { 3343 struct ext4_lazy_init *eli = NULL; 3344 3345 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3346 if (!eli) 3347 return -ENOMEM; 3348 3349 INIT_LIST_HEAD(&eli->li_request_list); 3350 mutex_init(&eli->li_list_mtx); 3351 3352 eli->li_state |= EXT4_LAZYINIT_QUIT; 3353 3354 ext4_li_info = eli; 3355 3356 return 0; 3357 } 3358 3359 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3360 ext4_group_t start) 3361 { 3362 struct ext4_sb_info *sbi = EXT4_SB(sb); 3363 struct ext4_li_request *elr; 3364 3365 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3366 if (!elr) 3367 return NULL; 3368 3369 elr->lr_super = sb; 3370 elr->lr_sbi = sbi; 3371 elr->lr_next_group = start; 3372 3373 /* 3374 * Randomize first schedule time of the request to 3375 * spread the inode table initialization requests 3376 * better. 3377 */ 3378 elr->lr_next_sched = jiffies + (prandom_u32() % 3379 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3380 return elr; 3381 } 3382 3383 int ext4_register_li_request(struct super_block *sb, 3384 ext4_group_t first_not_zeroed) 3385 { 3386 struct ext4_sb_info *sbi = EXT4_SB(sb); 3387 struct ext4_li_request *elr = NULL; 3388 ext4_group_t ngroups = sbi->s_groups_count; 3389 int ret = 0; 3390 3391 mutex_lock(&ext4_li_mtx); 3392 if (sbi->s_li_request != NULL) { 3393 /* 3394 * Reset timeout so it can be computed again, because 3395 * s_li_wait_mult might have changed. 3396 */ 3397 sbi->s_li_request->lr_timeout = 0; 3398 goto out; 3399 } 3400 3401 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3402 !test_opt(sb, INIT_INODE_TABLE)) 3403 goto out; 3404 3405 elr = ext4_li_request_new(sb, first_not_zeroed); 3406 if (!elr) { 3407 ret = -ENOMEM; 3408 goto out; 3409 } 3410 3411 if (NULL == ext4_li_info) { 3412 ret = ext4_li_info_new(); 3413 if (ret) 3414 goto out; 3415 } 3416 3417 mutex_lock(&ext4_li_info->li_list_mtx); 3418 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3419 mutex_unlock(&ext4_li_info->li_list_mtx); 3420 3421 sbi->s_li_request = elr; 3422 /* 3423 * set elr to NULL here since it has been inserted to 3424 * the request_list and the removal and free of it is 3425 * handled by ext4_clear_request_list from now on. 3426 */ 3427 elr = NULL; 3428 3429 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3430 ret = ext4_run_lazyinit_thread(); 3431 if (ret) 3432 goto out; 3433 } 3434 out: 3435 mutex_unlock(&ext4_li_mtx); 3436 if (ret) 3437 kfree(elr); 3438 return ret; 3439 } 3440 3441 /* 3442 * We do not need to lock anything since this is called on 3443 * module unload. 3444 */ 3445 static void ext4_destroy_lazyinit_thread(void) 3446 { 3447 /* 3448 * If thread exited earlier 3449 * there's nothing to be done. 3450 */ 3451 if (!ext4_li_info || !ext4_lazyinit_task) 3452 return; 3453 3454 kthread_stop(ext4_lazyinit_task); 3455 } 3456 3457 static int set_journal_csum_feature_set(struct super_block *sb) 3458 { 3459 int ret = 1; 3460 int compat, incompat; 3461 struct ext4_sb_info *sbi = EXT4_SB(sb); 3462 3463 if (ext4_has_metadata_csum(sb)) { 3464 /* journal checksum v3 */ 3465 compat = 0; 3466 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3467 } else { 3468 /* journal checksum v1 */ 3469 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3470 incompat = 0; 3471 } 3472 3473 jbd2_journal_clear_features(sbi->s_journal, 3474 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3475 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3476 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3477 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3478 ret = jbd2_journal_set_features(sbi->s_journal, 3479 compat, 0, 3480 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3481 incompat); 3482 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3483 ret = jbd2_journal_set_features(sbi->s_journal, 3484 compat, 0, 3485 incompat); 3486 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3487 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3488 } else { 3489 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3490 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3491 } 3492 3493 return ret; 3494 } 3495 3496 /* 3497 * Note: calculating the overhead so we can be compatible with 3498 * historical BSD practice is quite difficult in the face of 3499 * clusters/bigalloc. This is because multiple metadata blocks from 3500 * different block group can end up in the same allocation cluster. 3501 * Calculating the exact overhead in the face of clustered allocation 3502 * requires either O(all block bitmaps) in memory or O(number of block 3503 * groups**2) in time. We will still calculate the superblock for 3504 * older file systems --- and if we come across with a bigalloc file 3505 * system with zero in s_overhead_clusters the estimate will be close to 3506 * correct especially for very large cluster sizes --- but for newer 3507 * file systems, it's better to calculate this figure once at mkfs 3508 * time, and store it in the superblock. If the superblock value is 3509 * present (even for non-bigalloc file systems), we will use it. 3510 */ 3511 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3512 char *buf) 3513 { 3514 struct ext4_sb_info *sbi = EXT4_SB(sb); 3515 struct ext4_group_desc *gdp; 3516 ext4_fsblk_t first_block, last_block, b; 3517 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3518 int s, j, count = 0; 3519 3520 if (!ext4_has_feature_bigalloc(sb)) 3521 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3522 sbi->s_itb_per_group + 2); 3523 3524 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3525 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3526 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3527 for (i = 0; i < ngroups; i++) { 3528 gdp = ext4_get_group_desc(sb, i, NULL); 3529 b = ext4_block_bitmap(sb, gdp); 3530 if (b >= first_block && b <= last_block) { 3531 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3532 count++; 3533 } 3534 b = ext4_inode_bitmap(sb, gdp); 3535 if (b >= first_block && b <= last_block) { 3536 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3537 count++; 3538 } 3539 b = ext4_inode_table(sb, gdp); 3540 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3541 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3542 int c = EXT4_B2C(sbi, b - first_block); 3543 ext4_set_bit(c, buf); 3544 count++; 3545 } 3546 if (i != grp) 3547 continue; 3548 s = 0; 3549 if (ext4_bg_has_super(sb, grp)) { 3550 ext4_set_bit(s++, buf); 3551 count++; 3552 } 3553 j = ext4_bg_num_gdb(sb, grp); 3554 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3555 ext4_error(sb, "Invalid number of block group " 3556 "descriptor blocks: %d", j); 3557 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3558 } 3559 count += j; 3560 for (; j > 0; j--) 3561 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3562 } 3563 if (!count) 3564 return 0; 3565 return EXT4_CLUSTERS_PER_GROUP(sb) - 3566 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3567 } 3568 3569 /* 3570 * Compute the overhead and stash it in sbi->s_overhead 3571 */ 3572 int ext4_calculate_overhead(struct super_block *sb) 3573 { 3574 struct ext4_sb_info *sbi = EXT4_SB(sb); 3575 struct ext4_super_block *es = sbi->s_es; 3576 struct inode *j_inode; 3577 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3578 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3579 ext4_fsblk_t overhead = 0; 3580 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3581 3582 if (!buf) 3583 return -ENOMEM; 3584 3585 /* 3586 * Compute the overhead (FS structures). This is constant 3587 * for a given filesystem unless the number of block groups 3588 * changes so we cache the previous value until it does. 3589 */ 3590 3591 /* 3592 * All of the blocks before first_data_block are overhead 3593 */ 3594 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3595 3596 /* 3597 * Add the overhead found in each block group 3598 */ 3599 for (i = 0; i < ngroups; i++) { 3600 int blks; 3601 3602 blks = count_overhead(sb, i, buf); 3603 overhead += blks; 3604 if (blks) 3605 memset(buf, 0, PAGE_SIZE); 3606 cond_resched(); 3607 } 3608 3609 /* 3610 * Add the internal journal blocks whether the journal has been 3611 * loaded or not 3612 */ 3613 if (sbi->s_journal && !sbi->journal_bdev) 3614 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3615 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3616 /* j_inum for internal journal is non-zero */ 3617 j_inode = ext4_get_journal_inode(sb, j_inum); 3618 if (j_inode) { 3619 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3620 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3621 iput(j_inode); 3622 } else { 3623 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3624 } 3625 } 3626 sbi->s_overhead = overhead; 3627 smp_wmb(); 3628 free_page((unsigned long) buf); 3629 return 0; 3630 } 3631 3632 static void ext4_set_resv_clusters(struct super_block *sb) 3633 { 3634 ext4_fsblk_t resv_clusters; 3635 struct ext4_sb_info *sbi = EXT4_SB(sb); 3636 3637 /* 3638 * There's no need to reserve anything when we aren't using extents. 3639 * The space estimates are exact, there are no unwritten extents, 3640 * hole punching doesn't need new metadata... This is needed especially 3641 * to keep ext2/3 backward compatibility. 3642 */ 3643 if (!ext4_has_feature_extents(sb)) 3644 return; 3645 /* 3646 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3647 * This should cover the situations where we can not afford to run 3648 * out of space like for example punch hole, or converting 3649 * unwritten extents in delalloc path. In most cases such 3650 * allocation would require 1, or 2 blocks, higher numbers are 3651 * very rare. 3652 */ 3653 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3654 sbi->s_cluster_bits); 3655 3656 do_div(resv_clusters, 50); 3657 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3658 3659 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3660 } 3661 3662 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3663 { 3664 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3665 char *orig_data = kstrdup(data, GFP_KERNEL); 3666 struct buffer_head *bh, **group_desc; 3667 struct ext4_super_block *es = NULL; 3668 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3669 struct flex_groups **flex_groups; 3670 ext4_fsblk_t block; 3671 ext4_fsblk_t sb_block = get_sb_block(&data); 3672 ext4_fsblk_t logical_sb_block; 3673 unsigned long offset = 0; 3674 unsigned long journal_devnum = 0; 3675 unsigned long def_mount_opts; 3676 struct inode *root; 3677 const char *descr; 3678 int ret = -ENOMEM; 3679 int blocksize, clustersize; 3680 unsigned int db_count; 3681 unsigned int i; 3682 int needs_recovery, has_huge_files, has_bigalloc; 3683 __u64 blocks_count; 3684 int err = 0; 3685 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3686 ext4_group_t first_not_zeroed; 3687 3688 if ((data && !orig_data) || !sbi) 3689 goto out_free_base; 3690 3691 sbi->s_daxdev = dax_dev; 3692 sbi->s_blockgroup_lock = 3693 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3694 if (!sbi->s_blockgroup_lock) 3695 goto out_free_base; 3696 3697 sb->s_fs_info = sbi; 3698 sbi->s_sb = sb; 3699 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3700 sbi->s_sb_block = sb_block; 3701 if (sb->s_bdev->bd_part) 3702 sbi->s_sectors_written_start = 3703 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3704 3705 /* Cleanup superblock name */ 3706 strreplace(sb->s_id, '/', '!'); 3707 3708 /* -EINVAL is default */ 3709 ret = -EINVAL; 3710 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3711 if (!blocksize) { 3712 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3713 goto out_fail; 3714 } 3715 3716 /* 3717 * The ext4 superblock will not be buffer aligned for other than 1kB 3718 * block sizes. We need to calculate the offset from buffer start. 3719 */ 3720 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3721 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3722 offset = do_div(logical_sb_block, blocksize); 3723 } else { 3724 logical_sb_block = sb_block; 3725 } 3726 3727 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3728 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3729 goto out_fail; 3730 } 3731 /* 3732 * Note: s_es must be initialized as soon as possible because 3733 * some ext4 macro-instructions depend on its value 3734 */ 3735 es = (struct ext4_super_block *) (bh->b_data + offset); 3736 sbi->s_es = es; 3737 sb->s_magic = le16_to_cpu(es->s_magic); 3738 if (sb->s_magic != EXT4_SUPER_MAGIC) 3739 goto cantfind_ext4; 3740 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3741 3742 /* Warn if metadata_csum and gdt_csum are both set. */ 3743 if (ext4_has_feature_metadata_csum(sb) && 3744 ext4_has_feature_gdt_csum(sb)) 3745 ext4_warning(sb, "metadata_csum and uninit_bg are " 3746 "redundant flags; please run fsck."); 3747 3748 /* Check for a known checksum algorithm */ 3749 if (!ext4_verify_csum_type(sb, es)) { 3750 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3751 "unknown checksum algorithm."); 3752 silent = 1; 3753 goto cantfind_ext4; 3754 } 3755 3756 /* Load the checksum driver */ 3757 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3758 if (IS_ERR(sbi->s_chksum_driver)) { 3759 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3760 ret = PTR_ERR(sbi->s_chksum_driver); 3761 sbi->s_chksum_driver = NULL; 3762 goto failed_mount; 3763 } 3764 3765 /* Check superblock checksum */ 3766 if (!ext4_superblock_csum_verify(sb, es)) { 3767 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3768 "invalid superblock checksum. Run e2fsck?"); 3769 silent = 1; 3770 ret = -EFSBADCRC; 3771 goto cantfind_ext4; 3772 } 3773 3774 /* Precompute checksum seed for all metadata */ 3775 if (ext4_has_feature_csum_seed(sb)) 3776 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3777 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3778 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3779 sizeof(es->s_uuid)); 3780 3781 /* Set defaults before we parse the mount options */ 3782 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3783 set_opt(sb, INIT_INODE_TABLE); 3784 if (def_mount_opts & EXT4_DEFM_DEBUG) 3785 set_opt(sb, DEBUG); 3786 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3787 set_opt(sb, GRPID); 3788 if (def_mount_opts & EXT4_DEFM_UID16) 3789 set_opt(sb, NO_UID32); 3790 /* xattr user namespace & acls are now defaulted on */ 3791 set_opt(sb, XATTR_USER); 3792 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3793 set_opt(sb, POSIX_ACL); 3794 #endif 3795 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3796 if (ext4_has_metadata_csum(sb)) 3797 set_opt(sb, JOURNAL_CHECKSUM); 3798 3799 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3800 set_opt(sb, JOURNAL_DATA); 3801 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3802 set_opt(sb, ORDERED_DATA); 3803 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3804 set_opt(sb, WRITEBACK_DATA); 3805 3806 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3807 set_opt(sb, ERRORS_PANIC); 3808 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3809 set_opt(sb, ERRORS_CONT); 3810 else 3811 set_opt(sb, ERRORS_RO); 3812 /* block_validity enabled by default; disable with noblock_validity */ 3813 set_opt(sb, BLOCK_VALIDITY); 3814 if (def_mount_opts & EXT4_DEFM_DISCARD) 3815 set_opt(sb, DISCARD); 3816 3817 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3818 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3819 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3820 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3821 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3822 3823 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3824 set_opt(sb, BARRIER); 3825 3826 /* 3827 * enable delayed allocation by default 3828 * Use -o nodelalloc to turn it off 3829 */ 3830 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3831 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3832 set_opt(sb, DELALLOC); 3833 3834 /* 3835 * set default s_li_wait_mult for lazyinit, for the case there is 3836 * no mount option specified. 3837 */ 3838 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3839 3840 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3841 3842 if (blocksize == PAGE_SIZE) 3843 set_opt(sb, DIOREAD_NOLOCK); 3844 3845 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3846 blocksize > EXT4_MAX_BLOCK_SIZE) { 3847 ext4_msg(sb, KERN_ERR, 3848 "Unsupported filesystem blocksize %d (%d log_block_size)", 3849 blocksize, le32_to_cpu(es->s_log_block_size)); 3850 goto failed_mount; 3851 } 3852 3853 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3854 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3855 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3856 } else { 3857 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3858 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3859 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3860 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3861 sbi->s_first_ino); 3862 goto failed_mount; 3863 } 3864 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3865 (!is_power_of_2(sbi->s_inode_size)) || 3866 (sbi->s_inode_size > blocksize)) { 3867 ext4_msg(sb, KERN_ERR, 3868 "unsupported inode size: %d", 3869 sbi->s_inode_size); 3870 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3871 goto failed_mount; 3872 } 3873 /* 3874 * i_atime_extra is the last extra field available for 3875 * [acm]times in struct ext4_inode. Checking for that 3876 * field should suffice to ensure we have extra space 3877 * for all three. 3878 */ 3879 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3880 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3881 sb->s_time_gran = 1; 3882 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3883 } else { 3884 sb->s_time_gran = NSEC_PER_SEC; 3885 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3886 } 3887 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3888 } 3889 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3890 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3891 EXT4_GOOD_OLD_INODE_SIZE; 3892 if (ext4_has_feature_extra_isize(sb)) { 3893 unsigned v, max = (sbi->s_inode_size - 3894 EXT4_GOOD_OLD_INODE_SIZE); 3895 3896 v = le16_to_cpu(es->s_want_extra_isize); 3897 if (v > max) { 3898 ext4_msg(sb, KERN_ERR, 3899 "bad s_want_extra_isize: %d", v); 3900 goto failed_mount; 3901 } 3902 if (sbi->s_want_extra_isize < v) 3903 sbi->s_want_extra_isize = v; 3904 3905 v = le16_to_cpu(es->s_min_extra_isize); 3906 if (v > max) { 3907 ext4_msg(sb, KERN_ERR, 3908 "bad s_min_extra_isize: %d", v); 3909 goto failed_mount; 3910 } 3911 if (sbi->s_want_extra_isize < v) 3912 sbi->s_want_extra_isize = v; 3913 } 3914 } 3915 3916 if (sbi->s_es->s_mount_opts[0]) { 3917 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3918 sizeof(sbi->s_es->s_mount_opts), 3919 GFP_KERNEL); 3920 if (!s_mount_opts) 3921 goto failed_mount; 3922 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3923 &journal_ioprio, 0)) { 3924 ext4_msg(sb, KERN_WARNING, 3925 "failed to parse options in superblock: %s", 3926 s_mount_opts); 3927 } 3928 kfree(s_mount_opts); 3929 } 3930 sbi->s_def_mount_opt = sbi->s_mount_opt; 3931 if (!parse_options((char *) data, sb, &journal_devnum, 3932 &journal_ioprio, 0)) 3933 goto failed_mount; 3934 3935 #ifdef CONFIG_UNICODE 3936 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 3937 const struct ext4_sb_encodings *encoding_info; 3938 struct unicode_map *encoding; 3939 __u16 encoding_flags; 3940 3941 if (ext4_has_feature_encrypt(sb)) { 3942 ext4_msg(sb, KERN_ERR, 3943 "Can't mount with encoding and encryption"); 3944 goto failed_mount; 3945 } 3946 3947 if (ext4_sb_read_encoding(es, &encoding_info, 3948 &encoding_flags)) { 3949 ext4_msg(sb, KERN_ERR, 3950 "Encoding requested by superblock is unknown"); 3951 goto failed_mount; 3952 } 3953 3954 encoding = utf8_load(encoding_info->version); 3955 if (IS_ERR(encoding)) { 3956 ext4_msg(sb, KERN_ERR, 3957 "can't mount with superblock charset: %s-%s " 3958 "not supported by the kernel. flags: 0x%x.", 3959 encoding_info->name, encoding_info->version, 3960 encoding_flags); 3961 goto failed_mount; 3962 } 3963 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 3964 "%s-%s with flags 0x%hx", encoding_info->name, 3965 encoding_info->version?:"\b", encoding_flags); 3966 3967 sbi->s_encoding = encoding; 3968 sbi->s_encoding_flags = encoding_flags; 3969 } 3970 #endif 3971 3972 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3973 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 3974 clear_opt(sb, DIOREAD_NOLOCK); 3975 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3976 ext4_msg(sb, KERN_ERR, "can't mount with " 3977 "both data=journal and delalloc"); 3978 goto failed_mount; 3979 } 3980 if (test_opt(sb, DIOREAD_NOLOCK)) { 3981 ext4_msg(sb, KERN_ERR, "can't mount with " 3982 "both data=journal and dioread_nolock"); 3983 goto failed_mount; 3984 } 3985 if (test_opt(sb, DAX)) { 3986 ext4_msg(sb, KERN_ERR, "can't mount with " 3987 "both data=journal and dax"); 3988 goto failed_mount; 3989 } 3990 if (ext4_has_feature_encrypt(sb)) { 3991 ext4_msg(sb, KERN_WARNING, 3992 "encrypted files will use data=ordered " 3993 "instead of data journaling mode"); 3994 } 3995 if (test_opt(sb, DELALLOC)) 3996 clear_opt(sb, DELALLOC); 3997 } else { 3998 sb->s_iflags |= SB_I_CGROUPWB; 3999 } 4000 4001 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4002 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4003 4004 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4005 (ext4_has_compat_features(sb) || 4006 ext4_has_ro_compat_features(sb) || 4007 ext4_has_incompat_features(sb))) 4008 ext4_msg(sb, KERN_WARNING, 4009 "feature flags set on rev 0 fs, " 4010 "running e2fsck is recommended"); 4011 4012 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4013 set_opt2(sb, HURD_COMPAT); 4014 if (ext4_has_feature_64bit(sb)) { 4015 ext4_msg(sb, KERN_ERR, 4016 "The Hurd can't support 64-bit file systems"); 4017 goto failed_mount; 4018 } 4019 4020 /* 4021 * ea_inode feature uses l_i_version field which is not 4022 * available in HURD_COMPAT mode. 4023 */ 4024 if (ext4_has_feature_ea_inode(sb)) { 4025 ext4_msg(sb, KERN_ERR, 4026 "ea_inode feature is not supported for Hurd"); 4027 goto failed_mount; 4028 } 4029 } 4030 4031 if (IS_EXT2_SB(sb)) { 4032 if (ext2_feature_set_ok(sb)) 4033 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4034 "using the ext4 subsystem"); 4035 else { 4036 /* 4037 * If we're probing be silent, if this looks like 4038 * it's actually an ext[34] filesystem. 4039 */ 4040 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4041 goto failed_mount; 4042 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4043 "to feature incompatibilities"); 4044 goto failed_mount; 4045 } 4046 } 4047 4048 if (IS_EXT3_SB(sb)) { 4049 if (ext3_feature_set_ok(sb)) 4050 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4051 "using the ext4 subsystem"); 4052 else { 4053 /* 4054 * If we're probing be silent, if this looks like 4055 * it's actually an ext4 filesystem. 4056 */ 4057 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4058 goto failed_mount; 4059 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4060 "to feature incompatibilities"); 4061 goto failed_mount; 4062 } 4063 } 4064 4065 /* 4066 * Check feature flags regardless of the revision level, since we 4067 * previously didn't change the revision level when setting the flags, 4068 * so there is a chance incompat flags are set on a rev 0 filesystem. 4069 */ 4070 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4071 goto failed_mount; 4072 4073 if (le32_to_cpu(es->s_log_block_size) > 4074 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4075 ext4_msg(sb, KERN_ERR, 4076 "Invalid log block size: %u", 4077 le32_to_cpu(es->s_log_block_size)); 4078 goto failed_mount; 4079 } 4080 if (le32_to_cpu(es->s_log_cluster_size) > 4081 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4082 ext4_msg(sb, KERN_ERR, 4083 "Invalid log cluster size: %u", 4084 le32_to_cpu(es->s_log_cluster_size)); 4085 goto failed_mount; 4086 } 4087 4088 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4089 ext4_msg(sb, KERN_ERR, 4090 "Number of reserved GDT blocks insanely large: %d", 4091 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4092 goto failed_mount; 4093 } 4094 4095 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 4096 if (ext4_has_feature_inline_data(sb)) { 4097 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4098 " that may contain inline data"); 4099 goto failed_mount; 4100 } 4101 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 4102 ext4_msg(sb, KERN_ERR, 4103 "DAX unsupported by block device."); 4104 goto failed_mount; 4105 } 4106 } 4107 4108 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4109 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4110 es->s_encryption_level); 4111 goto failed_mount; 4112 } 4113 4114 if (sb->s_blocksize != blocksize) { 4115 /* Validate the filesystem blocksize */ 4116 if (!sb_set_blocksize(sb, blocksize)) { 4117 ext4_msg(sb, KERN_ERR, "bad block size %d", 4118 blocksize); 4119 goto failed_mount; 4120 } 4121 4122 brelse(bh); 4123 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4124 offset = do_div(logical_sb_block, blocksize); 4125 bh = sb_bread_unmovable(sb, logical_sb_block); 4126 if (!bh) { 4127 ext4_msg(sb, KERN_ERR, 4128 "Can't read superblock on 2nd try"); 4129 goto failed_mount; 4130 } 4131 es = (struct ext4_super_block *)(bh->b_data + offset); 4132 sbi->s_es = es; 4133 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4134 ext4_msg(sb, KERN_ERR, 4135 "Magic mismatch, very weird!"); 4136 goto failed_mount; 4137 } 4138 } 4139 4140 has_huge_files = ext4_has_feature_huge_file(sb); 4141 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4142 has_huge_files); 4143 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4144 4145 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4146 if (ext4_has_feature_64bit(sb)) { 4147 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4148 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4149 !is_power_of_2(sbi->s_desc_size)) { 4150 ext4_msg(sb, KERN_ERR, 4151 "unsupported descriptor size %lu", 4152 sbi->s_desc_size); 4153 goto failed_mount; 4154 } 4155 } else 4156 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4157 4158 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4159 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4160 4161 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4162 if (sbi->s_inodes_per_block == 0) 4163 goto cantfind_ext4; 4164 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4165 sbi->s_inodes_per_group > blocksize * 8) { 4166 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4167 sbi->s_inodes_per_group); 4168 goto failed_mount; 4169 } 4170 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4171 sbi->s_inodes_per_block; 4172 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4173 sbi->s_sbh = bh; 4174 sbi->s_mount_state = le16_to_cpu(es->s_state); 4175 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4176 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4177 4178 for (i = 0; i < 4; i++) 4179 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4180 sbi->s_def_hash_version = es->s_def_hash_version; 4181 if (ext4_has_feature_dir_index(sb)) { 4182 i = le32_to_cpu(es->s_flags); 4183 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4184 sbi->s_hash_unsigned = 3; 4185 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4186 #ifdef __CHAR_UNSIGNED__ 4187 if (!sb_rdonly(sb)) 4188 es->s_flags |= 4189 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4190 sbi->s_hash_unsigned = 3; 4191 #else 4192 if (!sb_rdonly(sb)) 4193 es->s_flags |= 4194 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4195 #endif 4196 } 4197 } 4198 4199 /* Handle clustersize */ 4200 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4201 has_bigalloc = ext4_has_feature_bigalloc(sb); 4202 if (has_bigalloc) { 4203 if (clustersize < blocksize) { 4204 ext4_msg(sb, KERN_ERR, 4205 "cluster size (%d) smaller than " 4206 "block size (%d)", clustersize, blocksize); 4207 goto failed_mount; 4208 } 4209 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4210 le32_to_cpu(es->s_log_block_size); 4211 sbi->s_clusters_per_group = 4212 le32_to_cpu(es->s_clusters_per_group); 4213 if (sbi->s_clusters_per_group > blocksize * 8) { 4214 ext4_msg(sb, KERN_ERR, 4215 "#clusters per group too big: %lu", 4216 sbi->s_clusters_per_group); 4217 goto failed_mount; 4218 } 4219 if (sbi->s_blocks_per_group != 4220 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4221 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4222 "clusters per group (%lu) inconsistent", 4223 sbi->s_blocks_per_group, 4224 sbi->s_clusters_per_group); 4225 goto failed_mount; 4226 } 4227 } else { 4228 if (clustersize != blocksize) { 4229 ext4_msg(sb, KERN_ERR, 4230 "fragment/cluster size (%d) != " 4231 "block size (%d)", clustersize, blocksize); 4232 goto failed_mount; 4233 } 4234 if (sbi->s_blocks_per_group > blocksize * 8) { 4235 ext4_msg(sb, KERN_ERR, 4236 "#blocks per group too big: %lu", 4237 sbi->s_blocks_per_group); 4238 goto failed_mount; 4239 } 4240 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4241 sbi->s_cluster_bits = 0; 4242 } 4243 sbi->s_cluster_ratio = clustersize / blocksize; 4244 4245 /* Do we have standard group size of clustersize * 8 blocks ? */ 4246 if (sbi->s_blocks_per_group == clustersize << 3) 4247 set_opt2(sb, STD_GROUP_SIZE); 4248 4249 /* 4250 * Test whether we have more sectors than will fit in sector_t, 4251 * and whether the max offset is addressable by the page cache. 4252 */ 4253 err = generic_check_addressable(sb->s_blocksize_bits, 4254 ext4_blocks_count(es)); 4255 if (err) { 4256 ext4_msg(sb, KERN_ERR, "filesystem" 4257 " too large to mount safely on this system"); 4258 goto failed_mount; 4259 } 4260 4261 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4262 goto cantfind_ext4; 4263 4264 /* check blocks count against device size */ 4265 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4266 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4267 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4268 "exceeds size of device (%llu blocks)", 4269 ext4_blocks_count(es), blocks_count); 4270 goto failed_mount; 4271 } 4272 4273 /* 4274 * It makes no sense for the first data block to be beyond the end 4275 * of the filesystem. 4276 */ 4277 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4278 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4279 "block %u is beyond end of filesystem (%llu)", 4280 le32_to_cpu(es->s_first_data_block), 4281 ext4_blocks_count(es)); 4282 goto failed_mount; 4283 } 4284 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4285 (sbi->s_cluster_ratio == 1)) { 4286 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4287 "block is 0 with a 1k block and cluster size"); 4288 goto failed_mount; 4289 } 4290 4291 blocks_count = (ext4_blocks_count(es) - 4292 le32_to_cpu(es->s_first_data_block) + 4293 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4294 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4295 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4296 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4297 "(block count %llu, first data block %u, " 4298 "blocks per group %lu)", blocks_count, 4299 ext4_blocks_count(es), 4300 le32_to_cpu(es->s_first_data_block), 4301 EXT4_BLOCKS_PER_GROUP(sb)); 4302 goto failed_mount; 4303 } 4304 sbi->s_groups_count = blocks_count; 4305 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4306 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4307 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4308 le32_to_cpu(es->s_inodes_count)) { 4309 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4310 le32_to_cpu(es->s_inodes_count), 4311 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4312 ret = -EINVAL; 4313 goto failed_mount; 4314 } 4315 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4316 EXT4_DESC_PER_BLOCK(sb); 4317 if (ext4_has_feature_meta_bg(sb)) { 4318 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4319 ext4_msg(sb, KERN_WARNING, 4320 "first meta block group too large: %u " 4321 "(group descriptor block count %u)", 4322 le32_to_cpu(es->s_first_meta_bg), db_count); 4323 goto failed_mount; 4324 } 4325 } 4326 rcu_assign_pointer(sbi->s_group_desc, 4327 kvmalloc_array(db_count, 4328 sizeof(struct buffer_head *), 4329 GFP_KERNEL)); 4330 if (sbi->s_group_desc == NULL) { 4331 ext4_msg(sb, KERN_ERR, "not enough memory"); 4332 ret = -ENOMEM; 4333 goto failed_mount; 4334 } 4335 4336 bgl_lock_init(sbi->s_blockgroup_lock); 4337 4338 /* Pre-read the descriptors into the buffer cache */ 4339 for (i = 0; i < db_count; i++) { 4340 block = descriptor_loc(sb, logical_sb_block, i); 4341 sb_breadahead_unmovable(sb, block); 4342 } 4343 4344 for (i = 0; i < db_count; i++) { 4345 struct buffer_head *bh; 4346 4347 block = descriptor_loc(sb, logical_sb_block, i); 4348 bh = sb_bread_unmovable(sb, block); 4349 if (!bh) { 4350 ext4_msg(sb, KERN_ERR, 4351 "can't read group descriptor %d", i); 4352 db_count = i; 4353 goto failed_mount2; 4354 } 4355 rcu_read_lock(); 4356 rcu_dereference(sbi->s_group_desc)[i] = bh; 4357 rcu_read_unlock(); 4358 } 4359 sbi->s_gdb_count = db_count; 4360 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4361 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4362 ret = -EFSCORRUPTED; 4363 goto failed_mount2; 4364 } 4365 4366 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4367 4368 /* Register extent status tree shrinker */ 4369 if (ext4_es_register_shrinker(sbi)) 4370 goto failed_mount3; 4371 4372 sbi->s_stripe = ext4_get_stripe_size(sbi); 4373 sbi->s_extent_max_zeroout_kb = 32; 4374 4375 /* 4376 * set up enough so that it can read an inode 4377 */ 4378 sb->s_op = &ext4_sops; 4379 sb->s_export_op = &ext4_export_ops; 4380 sb->s_xattr = ext4_xattr_handlers; 4381 #ifdef CONFIG_FS_ENCRYPTION 4382 sb->s_cop = &ext4_cryptops; 4383 #endif 4384 #ifdef CONFIG_FS_VERITY 4385 sb->s_vop = &ext4_verityops; 4386 #endif 4387 #ifdef CONFIG_QUOTA 4388 sb->dq_op = &ext4_quota_operations; 4389 if (ext4_has_feature_quota(sb)) 4390 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4391 else 4392 sb->s_qcop = &ext4_qctl_operations; 4393 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4394 #endif 4395 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4396 4397 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4398 mutex_init(&sbi->s_orphan_lock); 4399 4400 sb->s_root = NULL; 4401 4402 needs_recovery = (es->s_last_orphan != 0 || 4403 ext4_has_feature_journal_needs_recovery(sb)); 4404 4405 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4406 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4407 goto failed_mount3a; 4408 4409 /* 4410 * The first inode we look at is the journal inode. Don't try 4411 * root first: it may be modified in the journal! 4412 */ 4413 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4414 err = ext4_load_journal(sb, es, journal_devnum); 4415 if (err) 4416 goto failed_mount3a; 4417 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4418 ext4_has_feature_journal_needs_recovery(sb)) { 4419 ext4_msg(sb, KERN_ERR, "required journal recovery " 4420 "suppressed and not mounted read-only"); 4421 goto failed_mount_wq; 4422 } else { 4423 /* Nojournal mode, all journal mount options are illegal */ 4424 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4425 ext4_msg(sb, KERN_ERR, "can't mount with " 4426 "journal_checksum, fs mounted w/o journal"); 4427 goto failed_mount_wq; 4428 } 4429 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4430 ext4_msg(sb, KERN_ERR, "can't mount with " 4431 "journal_async_commit, fs mounted w/o journal"); 4432 goto failed_mount_wq; 4433 } 4434 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4435 ext4_msg(sb, KERN_ERR, "can't mount with " 4436 "commit=%lu, fs mounted w/o journal", 4437 sbi->s_commit_interval / HZ); 4438 goto failed_mount_wq; 4439 } 4440 if (EXT4_MOUNT_DATA_FLAGS & 4441 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4442 ext4_msg(sb, KERN_ERR, "can't mount with " 4443 "data=, fs mounted w/o journal"); 4444 goto failed_mount_wq; 4445 } 4446 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4447 clear_opt(sb, JOURNAL_CHECKSUM); 4448 clear_opt(sb, DATA_FLAGS); 4449 sbi->s_journal = NULL; 4450 needs_recovery = 0; 4451 goto no_journal; 4452 } 4453 4454 if (ext4_has_feature_64bit(sb) && 4455 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4456 JBD2_FEATURE_INCOMPAT_64BIT)) { 4457 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4458 goto failed_mount_wq; 4459 } 4460 4461 if (!set_journal_csum_feature_set(sb)) { 4462 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4463 "feature set"); 4464 goto failed_mount_wq; 4465 } 4466 4467 /* We have now updated the journal if required, so we can 4468 * validate the data journaling mode. */ 4469 switch (test_opt(sb, DATA_FLAGS)) { 4470 case 0: 4471 /* No mode set, assume a default based on the journal 4472 * capabilities: ORDERED_DATA if the journal can 4473 * cope, else JOURNAL_DATA 4474 */ 4475 if (jbd2_journal_check_available_features 4476 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4477 set_opt(sb, ORDERED_DATA); 4478 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4479 } else { 4480 set_opt(sb, JOURNAL_DATA); 4481 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4482 } 4483 break; 4484 4485 case EXT4_MOUNT_ORDERED_DATA: 4486 case EXT4_MOUNT_WRITEBACK_DATA: 4487 if (!jbd2_journal_check_available_features 4488 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4489 ext4_msg(sb, KERN_ERR, "Journal does not support " 4490 "requested data journaling mode"); 4491 goto failed_mount_wq; 4492 } 4493 default: 4494 break; 4495 } 4496 4497 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4498 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4499 ext4_msg(sb, KERN_ERR, "can't mount with " 4500 "journal_async_commit in data=ordered mode"); 4501 goto failed_mount_wq; 4502 } 4503 4504 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4505 4506 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4507 4508 no_journal: 4509 if (!test_opt(sb, NO_MBCACHE)) { 4510 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4511 if (!sbi->s_ea_block_cache) { 4512 ext4_msg(sb, KERN_ERR, 4513 "Failed to create ea_block_cache"); 4514 goto failed_mount_wq; 4515 } 4516 4517 if (ext4_has_feature_ea_inode(sb)) { 4518 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4519 if (!sbi->s_ea_inode_cache) { 4520 ext4_msg(sb, KERN_ERR, 4521 "Failed to create ea_inode_cache"); 4522 goto failed_mount_wq; 4523 } 4524 } 4525 } 4526 4527 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4528 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4529 goto failed_mount_wq; 4530 } 4531 4532 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4533 !ext4_has_feature_encrypt(sb)) { 4534 ext4_set_feature_encrypt(sb); 4535 ext4_commit_super(sb, 1); 4536 } 4537 4538 /* 4539 * Get the # of file system overhead blocks from the 4540 * superblock if present. 4541 */ 4542 if (es->s_overhead_clusters) 4543 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4544 else { 4545 err = ext4_calculate_overhead(sb); 4546 if (err) 4547 goto failed_mount_wq; 4548 } 4549 4550 /* 4551 * The maximum number of concurrent works can be high and 4552 * concurrency isn't really necessary. Limit it to 1. 4553 */ 4554 EXT4_SB(sb)->rsv_conversion_wq = 4555 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4556 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4557 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4558 ret = -ENOMEM; 4559 goto failed_mount4; 4560 } 4561 4562 /* 4563 * The jbd2_journal_load will have done any necessary log recovery, 4564 * so we can safely mount the rest of the filesystem now. 4565 */ 4566 4567 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4568 if (IS_ERR(root)) { 4569 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4570 ret = PTR_ERR(root); 4571 root = NULL; 4572 goto failed_mount4; 4573 } 4574 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4575 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4576 iput(root); 4577 goto failed_mount4; 4578 } 4579 4580 #ifdef CONFIG_UNICODE 4581 if (sbi->s_encoding) 4582 sb->s_d_op = &ext4_dentry_ops; 4583 #endif 4584 4585 sb->s_root = d_make_root(root); 4586 if (!sb->s_root) { 4587 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4588 ret = -ENOMEM; 4589 goto failed_mount4; 4590 } 4591 4592 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4593 if (ret == -EROFS) { 4594 sb->s_flags |= SB_RDONLY; 4595 ret = 0; 4596 } else if (ret) 4597 goto failed_mount4a; 4598 4599 ext4_set_resv_clusters(sb); 4600 4601 err = ext4_setup_system_zone(sb); 4602 if (err) { 4603 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4604 "zone (%d)", err); 4605 goto failed_mount4a; 4606 } 4607 4608 ext4_ext_init(sb); 4609 err = ext4_mb_init(sb); 4610 if (err) { 4611 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4612 err); 4613 goto failed_mount5; 4614 } 4615 4616 block = ext4_count_free_clusters(sb); 4617 ext4_free_blocks_count_set(sbi->s_es, 4618 EXT4_C2B(sbi, block)); 4619 ext4_superblock_csum_set(sb); 4620 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4621 GFP_KERNEL); 4622 if (!err) { 4623 unsigned long freei = ext4_count_free_inodes(sb); 4624 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4625 ext4_superblock_csum_set(sb); 4626 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4627 GFP_KERNEL); 4628 } 4629 if (!err) 4630 err = percpu_counter_init(&sbi->s_dirs_counter, 4631 ext4_count_dirs(sb), GFP_KERNEL); 4632 if (!err) 4633 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4634 GFP_KERNEL); 4635 if (!err) 4636 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4637 4638 if (err) { 4639 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4640 goto failed_mount6; 4641 } 4642 4643 if (ext4_has_feature_flex_bg(sb)) 4644 if (!ext4_fill_flex_info(sb)) { 4645 ext4_msg(sb, KERN_ERR, 4646 "unable to initialize " 4647 "flex_bg meta info!"); 4648 goto failed_mount6; 4649 } 4650 4651 err = ext4_register_li_request(sb, first_not_zeroed); 4652 if (err) 4653 goto failed_mount6; 4654 4655 err = ext4_register_sysfs(sb); 4656 if (err) 4657 goto failed_mount7; 4658 4659 #ifdef CONFIG_QUOTA 4660 /* Enable quota usage during mount. */ 4661 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4662 err = ext4_enable_quotas(sb); 4663 if (err) 4664 goto failed_mount8; 4665 } 4666 #endif /* CONFIG_QUOTA */ 4667 4668 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4669 ext4_orphan_cleanup(sb, es); 4670 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4671 if (needs_recovery) { 4672 ext4_msg(sb, KERN_INFO, "recovery complete"); 4673 ext4_mark_recovery_complete(sb, es); 4674 } 4675 if (EXT4_SB(sb)->s_journal) { 4676 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4677 descr = " journalled data mode"; 4678 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4679 descr = " ordered data mode"; 4680 else 4681 descr = " writeback data mode"; 4682 } else 4683 descr = "out journal"; 4684 4685 if (test_opt(sb, DISCARD)) { 4686 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4687 if (!blk_queue_discard(q)) 4688 ext4_msg(sb, KERN_WARNING, 4689 "mounting with \"discard\" option, but " 4690 "the device does not support discard"); 4691 } 4692 4693 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4694 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4695 "Opts: %.*s%s%s", descr, 4696 (int) sizeof(sbi->s_es->s_mount_opts), 4697 sbi->s_es->s_mount_opts, 4698 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4699 4700 if (es->s_error_count) 4701 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4702 4703 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4704 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4705 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4706 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4707 4708 kfree(orig_data); 4709 return 0; 4710 4711 cantfind_ext4: 4712 if (!silent) 4713 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4714 goto failed_mount; 4715 4716 #ifdef CONFIG_QUOTA 4717 failed_mount8: 4718 ext4_unregister_sysfs(sb); 4719 #endif 4720 failed_mount7: 4721 ext4_unregister_li_request(sb); 4722 failed_mount6: 4723 ext4_mb_release(sb); 4724 rcu_read_lock(); 4725 flex_groups = rcu_dereference(sbi->s_flex_groups); 4726 if (flex_groups) { 4727 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4728 kvfree(flex_groups[i]); 4729 kvfree(flex_groups); 4730 } 4731 rcu_read_unlock(); 4732 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4733 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4734 percpu_counter_destroy(&sbi->s_dirs_counter); 4735 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4736 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4737 failed_mount5: 4738 ext4_ext_release(sb); 4739 ext4_release_system_zone(sb); 4740 failed_mount4a: 4741 dput(sb->s_root); 4742 sb->s_root = NULL; 4743 failed_mount4: 4744 ext4_msg(sb, KERN_ERR, "mount failed"); 4745 if (EXT4_SB(sb)->rsv_conversion_wq) 4746 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4747 failed_mount_wq: 4748 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4749 sbi->s_ea_inode_cache = NULL; 4750 4751 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4752 sbi->s_ea_block_cache = NULL; 4753 4754 if (sbi->s_journal) { 4755 jbd2_journal_destroy(sbi->s_journal); 4756 sbi->s_journal = NULL; 4757 } 4758 failed_mount3a: 4759 ext4_es_unregister_shrinker(sbi); 4760 failed_mount3: 4761 del_timer_sync(&sbi->s_err_report); 4762 if (sbi->s_mmp_tsk) 4763 kthread_stop(sbi->s_mmp_tsk); 4764 failed_mount2: 4765 rcu_read_lock(); 4766 group_desc = rcu_dereference(sbi->s_group_desc); 4767 for (i = 0; i < db_count; i++) 4768 brelse(group_desc[i]); 4769 kvfree(group_desc); 4770 rcu_read_unlock(); 4771 failed_mount: 4772 if (sbi->s_chksum_driver) 4773 crypto_free_shash(sbi->s_chksum_driver); 4774 4775 #ifdef CONFIG_UNICODE 4776 utf8_unload(sbi->s_encoding); 4777 #endif 4778 4779 #ifdef CONFIG_QUOTA 4780 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4781 kfree(get_qf_name(sb, sbi, i)); 4782 #endif 4783 ext4_blkdev_remove(sbi); 4784 brelse(bh); 4785 out_fail: 4786 sb->s_fs_info = NULL; 4787 kfree(sbi->s_blockgroup_lock); 4788 out_free_base: 4789 kfree(sbi); 4790 kfree(orig_data); 4791 fs_put_dax(dax_dev); 4792 return err ? err : ret; 4793 } 4794 4795 /* 4796 * Setup any per-fs journal parameters now. We'll do this both on 4797 * initial mount, once the journal has been initialised but before we've 4798 * done any recovery; and again on any subsequent remount. 4799 */ 4800 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4801 { 4802 struct ext4_sb_info *sbi = EXT4_SB(sb); 4803 4804 journal->j_commit_interval = sbi->s_commit_interval; 4805 journal->j_min_batch_time = sbi->s_min_batch_time; 4806 journal->j_max_batch_time = sbi->s_max_batch_time; 4807 4808 write_lock(&journal->j_state_lock); 4809 if (test_opt(sb, BARRIER)) 4810 journal->j_flags |= JBD2_BARRIER; 4811 else 4812 journal->j_flags &= ~JBD2_BARRIER; 4813 if (test_opt(sb, DATA_ERR_ABORT)) 4814 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4815 else 4816 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4817 write_unlock(&journal->j_state_lock); 4818 } 4819 4820 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4821 unsigned int journal_inum) 4822 { 4823 struct inode *journal_inode; 4824 4825 /* 4826 * Test for the existence of a valid inode on disk. Bad things 4827 * happen if we iget() an unused inode, as the subsequent iput() 4828 * will try to delete it. 4829 */ 4830 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4831 if (IS_ERR(journal_inode)) { 4832 ext4_msg(sb, KERN_ERR, "no journal found"); 4833 return NULL; 4834 } 4835 if (!journal_inode->i_nlink) { 4836 make_bad_inode(journal_inode); 4837 iput(journal_inode); 4838 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4839 return NULL; 4840 } 4841 4842 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4843 journal_inode, journal_inode->i_size); 4844 if (!S_ISREG(journal_inode->i_mode)) { 4845 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4846 iput(journal_inode); 4847 return NULL; 4848 } 4849 return journal_inode; 4850 } 4851 4852 static journal_t *ext4_get_journal(struct super_block *sb, 4853 unsigned int journal_inum) 4854 { 4855 struct inode *journal_inode; 4856 journal_t *journal; 4857 4858 BUG_ON(!ext4_has_feature_journal(sb)); 4859 4860 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4861 if (!journal_inode) 4862 return NULL; 4863 4864 journal = jbd2_journal_init_inode(journal_inode); 4865 if (!journal) { 4866 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4867 iput(journal_inode); 4868 return NULL; 4869 } 4870 journal->j_private = sb; 4871 ext4_init_journal_params(sb, journal); 4872 return journal; 4873 } 4874 4875 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4876 dev_t j_dev) 4877 { 4878 struct buffer_head *bh; 4879 journal_t *journal; 4880 ext4_fsblk_t start; 4881 ext4_fsblk_t len; 4882 int hblock, blocksize; 4883 ext4_fsblk_t sb_block; 4884 unsigned long offset; 4885 struct ext4_super_block *es; 4886 struct block_device *bdev; 4887 4888 BUG_ON(!ext4_has_feature_journal(sb)); 4889 4890 bdev = ext4_blkdev_get(j_dev, sb); 4891 if (bdev == NULL) 4892 return NULL; 4893 4894 blocksize = sb->s_blocksize; 4895 hblock = bdev_logical_block_size(bdev); 4896 if (blocksize < hblock) { 4897 ext4_msg(sb, KERN_ERR, 4898 "blocksize too small for journal device"); 4899 goto out_bdev; 4900 } 4901 4902 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4903 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4904 set_blocksize(bdev, blocksize); 4905 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4906 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4907 "external journal"); 4908 goto out_bdev; 4909 } 4910 4911 es = (struct ext4_super_block *) (bh->b_data + offset); 4912 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4913 !(le32_to_cpu(es->s_feature_incompat) & 4914 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4915 ext4_msg(sb, KERN_ERR, "external journal has " 4916 "bad superblock"); 4917 brelse(bh); 4918 goto out_bdev; 4919 } 4920 4921 if ((le32_to_cpu(es->s_feature_ro_compat) & 4922 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4923 es->s_checksum != ext4_superblock_csum(sb, es)) { 4924 ext4_msg(sb, KERN_ERR, "external journal has " 4925 "corrupt superblock"); 4926 brelse(bh); 4927 goto out_bdev; 4928 } 4929 4930 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4931 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4932 brelse(bh); 4933 goto out_bdev; 4934 } 4935 4936 len = ext4_blocks_count(es); 4937 start = sb_block + 1; 4938 brelse(bh); /* we're done with the superblock */ 4939 4940 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4941 start, len, blocksize); 4942 if (!journal) { 4943 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4944 goto out_bdev; 4945 } 4946 journal->j_private = sb; 4947 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4948 wait_on_buffer(journal->j_sb_buffer); 4949 if (!buffer_uptodate(journal->j_sb_buffer)) { 4950 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4951 goto out_journal; 4952 } 4953 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4954 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4955 "user (unsupported) - %d", 4956 be32_to_cpu(journal->j_superblock->s_nr_users)); 4957 goto out_journal; 4958 } 4959 EXT4_SB(sb)->journal_bdev = bdev; 4960 ext4_init_journal_params(sb, journal); 4961 return journal; 4962 4963 out_journal: 4964 jbd2_journal_destroy(journal); 4965 out_bdev: 4966 ext4_blkdev_put(bdev); 4967 return NULL; 4968 } 4969 4970 static int ext4_load_journal(struct super_block *sb, 4971 struct ext4_super_block *es, 4972 unsigned long journal_devnum) 4973 { 4974 journal_t *journal; 4975 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4976 dev_t journal_dev; 4977 int err = 0; 4978 int really_read_only; 4979 4980 BUG_ON(!ext4_has_feature_journal(sb)); 4981 4982 if (journal_devnum && 4983 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4984 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4985 "numbers have changed"); 4986 journal_dev = new_decode_dev(journal_devnum); 4987 } else 4988 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4989 4990 really_read_only = bdev_read_only(sb->s_bdev); 4991 4992 /* 4993 * Are we loading a blank journal or performing recovery after a 4994 * crash? For recovery, we need to check in advance whether we 4995 * can get read-write access to the device. 4996 */ 4997 if (ext4_has_feature_journal_needs_recovery(sb)) { 4998 if (sb_rdonly(sb)) { 4999 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5000 "required on readonly filesystem"); 5001 if (really_read_only) { 5002 ext4_msg(sb, KERN_ERR, "write access " 5003 "unavailable, cannot proceed " 5004 "(try mounting with noload)"); 5005 return -EROFS; 5006 } 5007 ext4_msg(sb, KERN_INFO, "write access will " 5008 "be enabled during recovery"); 5009 } 5010 } 5011 5012 if (journal_inum && journal_dev) { 5013 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 5014 "and inode journals!"); 5015 return -EINVAL; 5016 } 5017 5018 if (journal_inum) { 5019 if (!(journal = ext4_get_journal(sb, journal_inum))) 5020 return -EINVAL; 5021 } else { 5022 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 5023 return -EINVAL; 5024 } 5025 5026 if (!(journal->j_flags & JBD2_BARRIER)) 5027 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5028 5029 if (!ext4_has_feature_journal_needs_recovery(sb)) 5030 err = jbd2_journal_wipe(journal, !really_read_only); 5031 if (!err) { 5032 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5033 if (save) 5034 memcpy(save, ((char *) es) + 5035 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5036 err = jbd2_journal_load(journal); 5037 if (save) 5038 memcpy(((char *) es) + EXT4_S_ERR_START, 5039 save, EXT4_S_ERR_LEN); 5040 kfree(save); 5041 } 5042 5043 if (err) { 5044 ext4_msg(sb, KERN_ERR, "error loading journal"); 5045 jbd2_journal_destroy(journal); 5046 return err; 5047 } 5048 5049 EXT4_SB(sb)->s_journal = journal; 5050 ext4_clear_journal_err(sb, es); 5051 5052 if (!really_read_only && journal_devnum && 5053 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5054 es->s_journal_dev = cpu_to_le32(journal_devnum); 5055 5056 /* Make sure we flush the recovery flag to disk. */ 5057 ext4_commit_super(sb, 1); 5058 } 5059 5060 return 0; 5061 } 5062 5063 static int ext4_commit_super(struct super_block *sb, int sync) 5064 { 5065 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5066 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5067 int error = 0; 5068 5069 if (!sbh || block_device_ejected(sb)) 5070 return error; 5071 5072 /* 5073 * The superblock bh should be mapped, but it might not be if the 5074 * device was hot-removed. Not much we can do but fail the I/O. 5075 */ 5076 if (!buffer_mapped(sbh)) 5077 return error; 5078 5079 /* 5080 * If the file system is mounted read-only, don't update the 5081 * superblock write time. This avoids updating the superblock 5082 * write time when we are mounting the root file system 5083 * read/only but we need to replay the journal; at that point, 5084 * for people who are east of GMT and who make their clock 5085 * tick in localtime for Windows bug-for-bug compatibility, 5086 * the clock is set in the future, and this will cause e2fsck 5087 * to complain and force a full file system check. 5088 */ 5089 if (!(sb->s_flags & SB_RDONLY)) 5090 ext4_update_tstamp(es, s_wtime); 5091 if (sb->s_bdev->bd_part) 5092 es->s_kbytes_written = 5093 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5094 ((part_stat_read(sb->s_bdev->bd_part, 5095 sectors[STAT_WRITE]) - 5096 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5097 else 5098 es->s_kbytes_written = 5099 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5100 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5101 ext4_free_blocks_count_set(es, 5102 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5103 &EXT4_SB(sb)->s_freeclusters_counter))); 5104 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5105 es->s_free_inodes_count = 5106 cpu_to_le32(percpu_counter_sum_positive( 5107 &EXT4_SB(sb)->s_freeinodes_counter)); 5108 BUFFER_TRACE(sbh, "marking dirty"); 5109 ext4_superblock_csum_set(sb); 5110 if (sync) 5111 lock_buffer(sbh); 5112 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5113 /* 5114 * Oh, dear. A previous attempt to write the 5115 * superblock failed. This could happen because the 5116 * USB device was yanked out. Or it could happen to 5117 * be a transient write error and maybe the block will 5118 * be remapped. Nothing we can do but to retry the 5119 * write and hope for the best. 5120 */ 5121 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5122 "superblock detected"); 5123 clear_buffer_write_io_error(sbh); 5124 set_buffer_uptodate(sbh); 5125 } 5126 mark_buffer_dirty(sbh); 5127 if (sync) { 5128 unlock_buffer(sbh); 5129 error = __sync_dirty_buffer(sbh, 5130 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5131 if (buffer_write_io_error(sbh)) { 5132 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5133 "superblock"); 5134 clear_buffer_write_io_error(sbh); 5135 set_buffer_uptodate(sbh); 5136 } 5137 } 5138 return error; 5139 } 5140 5141 /* 5142 * Have we just finished recovery? If so, and if we are mounting (or 5143 * remounting) the filesystem readonly, then we will end up with a 5144 * consistent fs on disk. Record that fact. 5145 */ 5146 static void ext4_mark_recovery_complete(struct super_block *sb, 5147 struct ext4_super_block *es) 5148 { 5149 journal_t *journal = EXT4_SB(sb)->s_journal; 5150 5151 if (!ext4_has_feature_journal(sb)) { 5152 BUG_ON(journal != NULL); 5153 return; 5154 } 5155 jbd2_journal_lock_updates(journal); 5156 if (jbd2_journal_flush(journal) < 0) 5157 goto out; 5158 5159 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5160 ext4_clear_feature_journal_needs_recovery(sb); 5161 ext4_commit_super(sb, 1); 5162 } 5163 5164 out: 5165 jbd2_journal_unlock_updates(journal); 5166 } 5167 5168 /* 5169 * If we are mounting (or read-write remounting) a filesystem whose journal 5170 * has recorded an error from a previous lifetime, move that error to the 5171 * main filesystem now. 5172 */ 5173 static void ext4_clear_journal_err(struct super_block *sb, 5174 struct ext4_super_block *es) 5175 { 5176 journal_t *journal; 5177 int j_errno; 5178 const char *errstr; 5179 5180 BUG_ON(!ext4_has_feature_journal(sb)); 5181 5182 journal = EXT4_SB(sb)->s_journal; 5183 5184 /* 5185 * Now check for any error status which may have been recorded in the 5186 * journal by a prior ext4_error() or ext4_abort() 5187 */ 5188 5189 j_errno = jbd2_journal_errno(journal); 5190 if (j_errno) { 5191 char nbuf[16]; 5192 5193 errstr = ext4_decode_error(sb, j_errno, nbuf); 5194 ext4_warning(sb, "Filesystem error recorded " 5195 "from previous mount: %s", errstr); 5196 ext4_warning(sb, "Marking fs in need of filesystem check."); 5197 5198 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5199 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5200 ext4_commit_super(sb, 1); 5201 5202 jbd2_journal_clear_err(journal); 5203 jbd2_journal_update_sb_errno(journal); 5204 } 5205 } 5206 5207 /* 5208 * Force the running and committing transactions to commit, 5209 * and wait on the commit. 5210 */ 5211 int ext4_force_commit(struct super_block *sb) 5212 { 5213 journal_t *journal; 5214 5215 if (sb_rdonly(sb)) 5216 return 0; 5217 5218 journal = EXT4_SB(sb)->s_journal; 5219 return ext4_journal_force_commit(journal); 5220 } 5221 5222 static int ext4_sync_fs(struct super_block *sb, int wait) 5223 { 5224 int ret = 0; 5225 tid_t target; 5226 bool needs_barrier = false; 5227 struct ext4_sb_info *sbi = EXT4_SB(sb); 5228 5229 if (unlikely(ext4_forced_shutdown(sbi))) 5230 return 0; 5231 5232 trace_ext4_sync_fs(sb, wait); 5233 flush_workqueue(sbi->rsv_conversion_wq); 5234 /* 5235 * Writeback quota in non-journalled quota case - journalled quota has 5236 * no dirty dquots 5237 */ 5238 dquot_writeback_dquots(sb, -1); 5239 /* 5240 * Data writeback is possible w/o journal transaction, so barrier must 5241 * being sent at the end of the function. But we can skip it if 5242 * transaction_commit will do it for us. 5243 */ 5244 if (sbi->s_journal) { 5245 target = jbd2_get_latest_transaction(sbi->s_journal); 5246 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5247 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5248 needs_barrier = true; 5249 5250 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5251 if (wait) 5252 ret = jbd2_log_wait_commit(sbi->s_journal, 5253 target); 5254 } 5255 } else if (wait && test_opt(sb, BARRIER)) 5256 needs_barrier = true; 5257 if (needs_barrier) { 5258 int err; 5259 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5260 if (!ret) 5261 ret = err; 5262 } 5263 5264 return ret; 5265 } 5266 5267 /* 5268 * LVM calls this function before a (read-only) snapshot is created. This 5269 * gives us a chance to flush the journal completely and mark the fs clean. 5270 * 5271 * Note that only this function cannot bring a filesystem to be in a clean 5272 * state independently. It relies on upper layer to stop all data & metadata 5273 * modifications. 5274 */ 5275 static int ext4_freeze(struct super_block *sb) 5276 { 5277 int error = 0; 5278 journal_t *journal; 5279 5280 if (sb_rdonly(sb)) 5281 return 0; 5282 5283 journal = EXT4_SB(sb)->s_journal; 5284 5285 if (journal) { 5286 /* Now we set up the journal barrier. */ 5287 jbd2_journal_lock_updates(journal); 5288 5289 /* 5290 * Don't clear the needs_recovery flag if we failed to 5291 * flush the journal. 5292 */ 5293 error = jbd2_journal_flush(journal); 5294 if (error < 0) 5295 goto out; 5296 5297 /* Journal blocked and flushed, clear needs_recovery flag. */ 5298 ext4_clear_feature_journal_needs_recovery(sb); 5299 } 5300 5301 error = ext4_commit_super(sb, 1); 5302 out: 5303 if (journal) 5304 /* we rely on upper layer to stop further updates */ 5305 jbd2_journal_unlock_updates(journal); 5306 return error; 5307 } 5308 5309 /* 5310 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5311 * flag here, even though the filesystem is not technically dirty yet. 5312 */ 5313 static int ext4_unfreeze(struct super_block *sb) 5314 { 5315 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5316 return 0; 5317 5318 if (EXT4_SB(sb)->s_journal) { 5319 /* Reset the needs_recovery flag before the fs is unlocked. */ 5320 ext4_set_feature_journal_needs_recovery(sb); 5321 } 5322 5323 ext4_commit_super(sb, 1); 5324 return 0; 5325 } 5326 5327 /* 5328 * Structure to save mount options for ext4_remount's benefit 5329 */ 5330 struct ext4_mount_options { 5331 unsigned long s_mount_opt; 5332 unsigned long s_mount_opt2; 5333 kuid_t s_resuid; 5334 kgid_t s_resgid; 5335 unsigned long s_commit_interval; 5336 u32 s_min_batch_time, s_max_batch_time; 5337 #ifdef CONFIG_QUOTA 5338 int s_jquota_fmt; 5339 char *s_qf_names[EXT4_MAXQUOTAS]; 5340 #endif 5341 }; 5342 5343 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5344 { 5345 struct ext4_super_block *es; 5346 struct ext4_sb_info *sbi = EXT4_SB(sb); 5347 unsigned long old_sb_flags; 5348 struct ext4_mount_options old_opts; 5349 int enable_quota = 0; 5350 ext4_group_t g; 5351 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5352 int err = 0; 5353 #ifdef CONFIG_QUOTA 5354 int i, j; 5355 char *to_free[EXT4_MAXQUOTAS]; 5356 #endif 5357 char *orig_data = kstrdup(data, GFP_KERNEL); 5358 5359 if (data && !orig_data) 5360 return -ENOMEM; 5361 5362 /* Store the original options */ 5363 old_sb_flags = sb->s_flags; 5364 old_opts.s_mount_opt = sbi->s_mount_opt; 5365 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5366 old_opts.s_resuid = sbi->s_resuid; 5367 old_opts.s_resgid = sbi->s_resgid; 5368 old_opts.s_commit_interval = sbi->s_commit_interval; 5369 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5370 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5371 #ifdef CONFIG_QUOTA 5372 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5373 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5374 if (sbi->s_qf_names[i]) { 5375 char *qf_name = get_qf_name(sb, sbi, i); 5376 5377 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5378 if (!old_opts.s_qf_names[i]) { 5379 for (j = 0; j < i; j++) 5380 kfree(old_opts.s_qf_names[j]); 5381 kfree(orig_data); 5382 return -ENOMEM; 5383 } 5384 } else 5385 old_opts.s_qf_names[i] = NULL; 5386 #endif 5387 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5388 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5389 5390 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5391 err = -EINVAL; 5392 goto restore_opts; 5393 } 5394 5395 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5396 test_opt(sb, JOURNAL_CHECKSUM)) { 5397 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5398 "during remount not supported; ignoring"); 5399 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5400 } 5401 5402 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5403 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5404 ext4_msg(sb, KERN_ERR, "can't mount with " 5405 "both data=journal and delalloc"); 5406 err = -EINVAL; 5407 goto restore_opts; 5408 } 5409 if (test_opt(sb, DIOREAD_NOLOCK)) { 5410 ext4_msg(sb, KERN_ERR, "can't mount with " 5411 "both data=journal and dioread_nolock"); 5412 err = -EINVAL; 5413 goto restore_opts; 5414 } 5415 if (test_opt(sb, DAX)) { 5416 ext4_msg(sb, KERN_ERR, "can't mount with " 5417 "both data=journal and dax"); 5418 err = -EINVAL; 5419 goto restore_opts; 5420 } 5421 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5422 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5423 ext4_msg(sb, KERN_ERR, "can't mount with " 5424 "journal_async_commit in data=ordered mode"); 5425 err = -EINVAL; 5426 goto restore_opts; 5427 } 5428 } 5429 5430 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5431 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5432 err = -EINVAL; 5433 goto restore_opts; 5434 } 5435 5436 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5437 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5438 "dax flag with busy inodes while remounting"); 5439 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5440 } 5441 5442 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5443 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5444 5445 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5446 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5447 5448 es = sbi->s_es; 5449 5450 if (sbi->s_journal) { 5451 ext4_init_journal_params(sb, sbi->s_journal); 5452 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5453 } 5454 5455 if (*flags & SB_LAZYTIME) 5456 sb->s_flags |= SB_LAZYTIME; 5457 5458 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5459 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5460 err = -EROFS; 5461 goto restore_opts; 5462 } 5463 5464 if (*flags & SB_RDONLY) { 5465 err = sync_filesystem(sb); 5466 if (err < 0) 5467 goto restore_opts; 5468 err = dquot_suspend(sb, -1); 5469 if (err < 0) 5470 goto restore_opts; 5471 5472 /* 5473 * First of all, the unconditional stuff we have to do 5474 * to disable replay of the journal when we next remount 5475 */ 5476 sb->s_flags |= SB_RDONLY; 5477 5478 /* 5479 * OK, test if we are remounting a valid rw partition 5480 * readonly, and if so set the rdonly flag and then 5481 * mark the partition as valid again. 5482 */ 5483 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5484 (sbi->s_mount_state & EXT4_VALID_FS)) 5485 es->s_state = cpu_to_le16(sbi->s_mount_state); 5486 5487 if (sbi->s_journal) 5488 ext4_mark_recovery_complete(sb, es); 5489 if (sbi->s_mmp_tsk) 5490 kthread_stop(sbi->s_mmp_tsk); 5491 } else { 5492 /* Make sure we can mount this feature set readwrite */ 5493 if (ext4_has_feature_readonly(sb) || 5494 !ext4_feature_set_ok(sb, 0)) { 5495 err = -EROFS; 5496 goto restore_opts; 5497 } 5498 /* 5499 * Make sure the group descriptor checksums 5500 * are sane. If they aren't, refuse to remount r/w. 5501 */ 5502 for (g = 0; g < sbi->s_groups_count; g++) { 5503 struct ext4_group_desc *gdp = 5504 ext4_get_group_desc(sb, g, NULL); 5505 5506 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5507 ext4_msg(sb, KERN_ERR, 5508 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5509 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5510 le16_to_cpu(gdp->bg_checksum)); 5511 err = -EFSBADCRC; 5512 goto restore_opts; 5513 } 5514 } 5515 5516 /* 5517 * If we have an unprocessed orphan list hanging 5518 * around from a previously readonly bdev mount, 5519 * require a full umount/remount for now. 5520 */ 5521 if (es->s_last_orphan) { 5522 ext4_msg(sb, KERN_WARNING, "Couldn't " 5523 "remount RDWR because of unprocessed " 5524 "orphan inode list. Please " 5525 "umount/remount instead"); 5526 err = -EINVAL; 5527 goto restore_opts; 5528 } 5529 5530 /* 5531 * Mounting a RDONLY partition read-write, so reread 5532 * and store the current valid flag. (It may have 5533 * been changed by e2fsck since we originally mounted 5534 * the partition.) 5535 */ 5536 if (sbi->s_journal) 5537 ext4_clear_journal_err(sb, es); 5538 sbi->s_mount_state = le16_to_cpu(es->s_state); 5539 5540 err = ext4_setup_super(sb, es, 0); 5541 if (err) 5542 goto restore_opts; 5543 5544 sb->s_flags &= ~SB_RDONLY; 5545 if (ext4_has_feature_mmp(sb)) 5546 if (ext4_multi_mount_protect(sb, 5547 le64_to_cpu(es->s_mmp_block))) { 5548 err = -EROFS; 5549 goto restore_opts; 5550 } 5551 enable_quota = 1; 5552 } 5553 } 5554 5555 /* 5556 * Reinitialize lazy itable initialization thread based on 5557 * current settings 5558 */ 5559 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5560 ext4_unregister_li_request(sb); 5561 else { 5562 ext4_group_t first_not_zeroed; 5563 first_not_zeroed = ext4_has_uninit_itable(sb); 5564 ext4_register_li_request(sb, first_not_zeroed); 5565 } 5566 5567 ext4_setup_system_zone(sb); 5568 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5569 err = ext4_commit_super(sb, 1); 5570 if (err) 5571 goto restore_opts; 5572 } 5573 5574 #ifdef CONFIG_QUOTA 5575 /* Release old quota file names */ 5576 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5577 kfree(old_opts.s_qf_names[i]); 5578 if (enable_quota) { 5579 if (sb_any_quota_suspended(sb)) 5580 dquot_resume(sb, -1); 5581 else if (ext4_has_feature_quota(sb)) { 5582 err = ext4_enable_quotas(sb); 5583 if (err) 5584 goto restore_opts; 5585 } 5586 } 5587 #endif 5588 5589 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5590 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5591 kfree(orig_data); 5592 return 0; 5593 5594 restore_opts: 5595 sb->s_flags = old_sb_flags; 5596 sbi->s_mount_opt = old_opts.s_mount_opt; 5597 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5598 sbi->s_resuid = old_opts.s_resuid; 5599 sbi->s_resgid = old_opts.s_resgid; 5600 sbi->s_commit_interval = old_opts.s_commit_interval; 5601 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5602 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5603 #ifdef CONFIG_QUOTA 5604 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5605 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5606 to_free[i] = get_qf_name(sb, sbi, i); 5607 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5608 } 5609 synchronize_rcu(); 5610 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5611 kfree(to_free[i]); 5612 #endif 5613 kfree(orig_data); 5614 return err; 5615 } 5616 5617 #ifdef CONFIG_QUOTA 5618 static int ext4_statfs_project(struct super_block *sb, 5619 kprojid_t projid, struct kstatfs *buf) 5620 { 5621 struct kqid qid; 5622 struct dquot *dquot; 5623 u64 limit; 5624 u64 curblock; 5625 5626 qid = make_kqid_projid(projid); 5627 dquot = dqget(sb, qid); 5628 if (IS_ERR(dquot)) 5629 return PTR_ERR(dquot); 5630 spin_lock(&dquot->dq_dqb_lock); 5631 5632 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 5633 dquot->dq_dqb.dqb_bhardlimit); 5634 limit >>= sb->s_blocksize_bits; 5635 5636 if (limit && buf->f_blocks > limit) { 5637 curblock = (dquot->dq_dqb.dqb_curspace + 5638 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5639 buf->f_blocks = limit; 5640 buf->f_bfree = buf->f_bavail = 5641 (buf->f_blocks > curblock) ? 5642 (buf->f_blocks - curblock) : 0; 5643 } 5644 5645 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 5646 dquot->dq_dqb.dqb_ihardlimit); 5647 if (limit && buf->f_files > limit) { 5648 buf->f_files = limit; 5649 buf->f_ffree = 5650 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5651 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5652 } 5653 5654 spin_unlock(&dquot->dq_dqb_lock); 5655 dqput(dquot); 5656 return 0; 5657 } 5658 #endif 5659 5660 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5661 { 5662 struct super_block *sb = dentry->d_sb; 5663 struct ext4_sb_info *sbi = EXT4_SB(sb); 5664 struct ext4_super_block *es = sbi->s_es; 5665 ext4_fsblk_t overhead = 0, resv_blocks; 5666 u64 fsid; 5667 s64 bfree; 5668 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5669 5670 if (!test_opt(sb, MINIX_DF)) 5671 overhead = sbi->s_overhead; 5672 5673 buf->f_type = EXT4_SUPER_MAGIC; 5674 buf->f_bsize = sb->s_blocksize; 5675 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5676 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5677 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5678 /* prevent underflow in case that few free space is available */ 5679 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5680 buf->f_bavail = buf->f_bfree - 5681 (ext4_r_blocks_count(es) + resv_blocks); 5682 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5683 buf->f_bavail = 0; 5684 buf->f_files = le32_to_cpu(es->s_inodes_count); 5685 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5686 buf->f_namelen = EXT4_NAME_LEN; 5687 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5688 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5689 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5690 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5691 5692 #ifdef CONFIG_QUOTA 5693 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5694 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5695 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5696 #endif 5697 return 0; 5698 } 5699 5700 5701 #ifdef CONFIG_QUOTA 5702 5703 /* 5704 * Helper functions so that transaction is started before we acquire dqio_sem 5705 * to keep correct lock ordering of transaction > dqio_sem 5706 */ 5707 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5708 { 5709 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5710 } 5711 5712 static int ext4_write_dquot(struct dquot *dquot) 5713 { 5714 int ret, err; 5715 handle_t *handle; 5716 struct inode *inode; 5717 5718 inode = dquot_to_inode(dquot); 5719 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5720 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5721 if (IS_ERR(handle)) 5722 return PTR_ERR(handle); 5723 ret = dquot_commit(dquot); 5724 err = ext4_journal_stop(handle); 5725 if (!ret) 5726 ret = err; 5727 return ret; 5728 } 5729 5730 static int ext4_acquire_dquot(struct dquot *dquot) 5731 { 5732 int ret, err; 5733 handle_t *handle; 5734 5735 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5736 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5737 if (IS_ERR(handle)) 5738 return PTR_ERR(handle); 5739 ret = dquot_acquire(dquot); 5740 err = ext4_journal_stop(handle); 5741 if (!ret) 5742 ret = err; 5743 return ret; 5744 } 5745 5746 static int ext4_release_dquot(struct dquot *dquot) 5747 { 5748 int ret, err; 5749 handle_t *handle; 5750 5751 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5752 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5753 if (IS_ERR(handle)) { 5754 /* Release dquot anyway to avoid endless cycle in dqput() */ 5755 dquot_release(dquot); 5756 return PTR_ERR(handle); 5757 } 5758 ret = dquot_release(dquot); 5759 err = ext4_journal_stop(handle); 5760 if (!ret) 5761 ret = err; 5762 return ret; 5763 } 5764 5765 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5766 { 5767 struct super_block *sb = dquot->dq_sb; 5768 struct ext4_sb_info *sbi = EXT4_SB(sb); 5769 5770 /* Are we journaling quotas? */ 5771 if (ext4_has_feature_quota(sb) || 5772 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5773 dquot_mark_dquot_dirty(dquot); 5774 return ext4_write_dquot(dquot); 5775 } else { 5776 return dquot_mark_dquot_dirty(dquot); 5777 } 5778 } 5779 5780 static int ext4_write_info(struct super_block *sb, int type) 5781 { 5782 int ret, err; 5783 handle_t *handle; 5784 5785 /* Data block + inode block */ 5786 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5787 if (IS_ERR(handle)) 5788 return PTR_ERR(handle); 5789 ret = dquot_commit_info(sb, type); 5790 err = ext4_journal_stop(handle); 5791 if (!ret) 5792 ret = err; 5793 return ret; 5794 } 5795 5796 /* 5797 * Turn on quotas during mount time - we need to find 5798 * the quota file and such... 5799 */ 5800 static int ext4_quota_on_mount(struct super_block *sb, int type) 5801 { 5802 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5803 EXT4_SB(sb)->s_jquota_fmt, type); 5804 } 5805 5806 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5807 { 5808 struct ext4_inode_info *ei = EXT4_I(inode); 5809 5810 /* The first argument of lockdep_set_subclass has to be 5811 * *exactly* the same as the argument to init_rwsem() --- in 5812 * this case, in init_once() --- or lockdep gets unhappy 5813 * because the name of the lock is set using the 5814 * stringification of the argument to init_rwsem(). 5815 */ 5816 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5817 lockdep_set_subclass(&ei->i_data_sem, subclass); 5818 } 5819 5820 /* 5821 * Standard function to be called on quota_on 5822 */ 5823 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5824 const struct path *path) 5825 { 5826 int err; 5827 5828 if (!test_opt(sb, QUOTA)) 5829 return -EINVAL; 5830 5831 /* Quotafile not on the same filesystem? */ 5832 if (path->dentry->d_sb != sb) 5833 return -EXDEV; 5834 /* Journaling quota? */ 5835 if (EXT4_SB(sb)->s_qf_names[type]) { 5836 /* Quotafile not in fs root? */ 5837 if (path->dentry->d_parent != sb->s_root) 5838 ext4_msg(sb, KERN_WARNING, 5839 "Quota file not on filesystem root. " 5840 "Journaled quota will not work"); 5841 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5842 } else { 5843 /* 5844 * Clear the flag just in case mount options changed since 5845 * last time. 5846 */ 5847 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5848 } 5849 5850 /* 5851 * When we journal data on quota file, we have to flush journal to see 5852 * all updates to the file when we bypass pagecache... 5853 */ 5854 if (EXT4_SB(sb)->s_journal && 5855 ext4_should_journal_data(d_inode(path->dentry))) { 5856 /* 5857 * We don't need to lock updates but journal_flush() could 5858 * otherwise be livelocked... 5859 */ 5860 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5861 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5862 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5863 if (err) 5864 return err; 5865 } 5866 5867 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5868 err = dquot_quota_on(sb, type, format_id, path); 5869 if (err) { 5870 lockdep_set_quota_inode(path->dentry->d_inode, 5871 I_DATA_SEM_NORMAL); 5872 } else { 5873 struct inode *inode = d_inode(path->dentry); 5874 handle_t *handle; 5875 5876 /* 5877 * Set inode flags to prevent userspace from messing with quota 5878 * files. If this fails, we return success anyway since quotas 5879 * are already enabled and this is not a hard failure. 5880 */ 5881 inode_lock(inode); 5882 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5883 if (IS_ERR(handle)) 5884 goto unlock_inode; 5885 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5886 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5887 S_NOATIME | S_IMMUTABLE); 5888 ext4_mark_inode_dirty(handle, inode); 5889 ext4_journal_stop(handle); 5890 unlock_inode: 5891 inode_unlock(inode); 5892 } 5893 return err; 5894 } 5895 5896 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5897 unsigned int flags) 5898 { 5899 int err; 5900 struct inode *qf_inode; 5901 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5902 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5903 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5904 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5905 }; 5906 5907 BUG_ON(!ext4_has_feature_quota(sb)); 5908 5909 if (!qf_inums[type]) 5910 return -EPERM; 5911 5912 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5913 if (IS_ERR(qf_inode)) { 5914 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5915 return PTR_ERR(qf_inode); 5916 } 5917 5918 /* Don't account quota for quota files to avoid recursion */ 5919 qf_inode->i_flags |= S_NOQUOTA; 5920 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5921 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 5922 if (err) 5923 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5924 iput(qf_inode); 5925 5926 return err; 5927 } 5928 5929 /* Enable usage tracking for all quota types. */ 5930 static int ext4_enable_quotas(struct super_block *sb) 5931 { 5932 int type, err = 0; 5933 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5934 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5935 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5936 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5937 }; 5938 bool quota_mopt[EXT4_MAXQUOTAS] = { 5939 test_opt(sb, USRQUOTA), 5940 test_opt(sb, GRPQUOTA), 5941 test_opt(sb, PRJQUOTA), 5942 }; 5943 5944 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5945 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5946 if (qf_inums[type]) { 5947 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5948 DQUOT_USAGE_ENABLED | 5949 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5950 if (err) { 5951 ext4_warning(sb, 5952 "Failed to enable quota tracking " 5953 "(type=%d, err=%d). Please run " 5954 "e2fsck to fix.", type, err); 5955 for (type--; type >= 0; type--) 5956 dquot_quota_off(sb, type); 5957 5958 return err; 5959 } 5960 } 5961 } 5962 return 0; 5963 } 5964 5965 static int ext4_quota_off(struct super_block *sb, int type) 5966 { 5967 struct inode *inode = sb_dqopt(sb)->files[type]; 5968 handle_t *handle; 5969 int err; 5970 5971 /* Force all delayed allocation blocks to be allocated. 5972 * Caller already holds s_umount sem */ 5973 if (test_opt(sb, DELALLOC)) 5974 sync_filesystem(sb); 5975 5976 if (!inode || !igrab(inode)) 5977 goto out; 5978 5979 err = dquot_quota_off(sb, type); 5980 if (err || ext4_has_feature_quota(sb)) 5981 goto out_put; 5982 5983 inode_lock(inode); 5984 /* 5985 * Update modification times of quota files when userspace can 5986 * start looking at them. If we fail, we return success anyway since 5987 * this is not a hard failure and quotas are already disabled. 5988 */ 5989 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5990 if (IS_ERR(handle)) 5991 goto out_unlock; 5992 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5993 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5994 inode->i_mtime = inode->i_ctime = current_time(inode); 5995 ext4_mark_inode_dirty(handle, inode); 5996 ext4_journal_stop(handle); 5997 out_unlock: 5998 inode_unlock(inode); 5999 out_put: 6000 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6001 iput(inode); 6002 return err; 6003 out: 6004 return dquot_quota_off(sb, type); 6005 } 6006 6007 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6008 * acquiring the locks... As quota files are never truncated and quota code 6009 * itself serializes the operations (and no one else should touch the files) 6010 * we don't have to be afraid of races */ 6011 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6012 size_t len, loff_t off) 6013 { 6014 struct inode *inode = sb_dqopt(sb)->files[type]; 6015 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6016 int offset = off & (sb->s_blocksize - 1); 6017 int tocopy; 6018 size_t toread; 6019 struct buffer_head *bh; 6020 loff_t i_size = i_size_read(inode); 6021 6022 if (off > i_size) 6023 return 0; 6024 if (off+len > i_size) 6025 len = i_size-off; 6026 toread = len; 6027 while (toread > 0) { 6028 tocopy = sb->s_blocksize - offset < toread ? 6029 sb->s_blocksize - offset : toread; 6030 bh = ext4_bread(NULL, inode, blk, 0); 6031 if (IS_ERR(bh)) 6032 return PTR_ERR(bh); 6033 if (!bh) /* A hole? */ 6034 memset(data, 0, tocopy); 6035 else 6036 memcpy(data, bh->b_data+offset, tocopy); 6037 brelse(bh); 6038 offset = 0; 6039 toread -= tocopy; 6040 data += tocopy; 6041 blk++; 6042 } 6043 return len; 6044 } 6045 6046 /* Write to quotafile (we know the transaction is already started and has 6047 * enough credits) */ 6048 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6049 const char *data, size_t len, loff_t off) 6050 { 6051 struct inode *inode = sb_dqopt(sb)->files[type]; 6052 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6053 int err, offset = off & (sb->s_blocksize - 1); 6054 int retries = 0; 6055 struct buffer_head *bh; 6056 handle_t *handle = journal_current_handle(); 6057 6058 if (EXT4_SB(sb)->s_journal && !handle) { 6059 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6060 " cancelled because transaction is not started", 6061 (unsigned long long)off, (unsigned long long)len); 6062 return -EIO; 6063 } 6064 /* 6065 * Since we account only one data block in transaction credits, 6066 * then it is impossible to cross a block boundary. 6067 */ 6068 if (sb->s_blocksize - offset < len) { 6069 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6070 " cancelled because not block aligned", 6071 (unsigned long long)off, (unsigned long long)len); 6072 return -EIO; 6073 } 6074 6075 do { 6076 bh = ext4_bread(handle, inode, blk, 6077 EXT4_GET_BLOCKS_CREATE | 6078 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6079 } while (PTR_ERR(bh) == -ENOSPC && 6080 ext4_should_retry_alloc(inode->i_sb, &retries)); 6081 if (IS_ERR(bh)) 6082 return PTR_ERR(bh); 6083 if (!bh) 6084 goto out; 6085 BUFFER_TRACE(bh, "get write access"); 6086 err = ext4_journal_get_write_access(handle, bh); 6087 if (err) { 6088 brelse(bh); 6089 return err; 6090 } 6091 lock_buffer(bh); 6092 memcpy(bh->b_data+offset, data, len); 6093 flush_dcache_page(bh->b_page); 6094 unlock_buffer(bh); 6095 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6096 brelse(bh); 6097 out: 6098 if (inode->i_size < off + len) { 6099 i_size_write(inode, off + len); 6100 EXT4_I(inode)->i_disksize = inode->i_size; 6101 ext4_mark_inode_dirty(handle, inode); 6102 } 6103 return len; 6104 } 6105 #endif 6106 6107 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6108 const char *dev_name, void *data) 6109 { 6110 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6111 } 6112 6113 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6114 static inline void register_as_ext2(void) 6115 { 6116 int err = register_filesystem(&ext2_fs_type); 6117 if (err) 6118 printk(KERN_WARNING 6119 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6120 } 6121 6122 static inline void unregister_as_ext2(void) 6123 { 6124 unregister_filesystem(&ext2_fs_type); 6125 } 6126 6127 static inline int ext2_feature_set_ok(struct super_block *sb) 6128 { 6129 if (ext4_has_unknown_ext2_incompat_features(sb)) 6130 return 0; 6131 if (sb_rdonly(sb)) 6132 return 1; 6133 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6134 return 0; 6135 return 1; 6136 } 6137 #else 6138 static inline void register_as_ext2(void) { } 6139 static inline void unregister_as_ext2(void) { } 6140 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6141 #endif 6142 6143 static inline void register_as_ext3(void) 6144 { 6145 int err = register_filesystem(&ext3_fs_type); 6146 if (err) 6147 printk(KERN_WARNING 6148 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6149 } 6150 6151 static inline void unregister_as_ext3(void) 6152 { 6153 unregister_filesystem(&ext3_fs_type); 6154 } 6155 6156 static inline int ext3_feature_set_ok(struct super_block *sb) 6157 { 6158 if (ext4_has_unknown_ext3_incompat_features(sb)) 6159 return 0; 6160 if (!ext4_has_feature_journal(sb)) 6161 return 0; 6162 if (sb_rdonly(sb)) 6163 return 1; 6164 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6165 return 0; 6166 return 1; 6167 } 6168 6169 static struct file_system_type ext4_fs_type = { 6170 .owner = THIS_MODULE, 6171 .name = "ext4", 6172 .mount = ext4_mount, 6173 .kill_sb = kill_block_super, 6174 .fs_flags = FS_REQUIRES_DEV, 6175 }; 6176 MODULE_ALIAS_FS("ext4"); 6177 6178 /* Shared across all ext4 file systems */ 6179 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6180 6181 static int __init ext4_init_fs(void) 6182 { 6183 int i, err; 6184 6185 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6186 ext4_li_info = NULL; 6187 mutex_init(&ext4_li_mtx); 6188 6189 /* Build-time check for flags consistency */ 6190 ext4_check_flag_values(); 6191 6192 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6193 init_waitqueue_head(&ext4__ioend_wq[i]); 6194 6195 err = ext4_init_es(); 6196 if (err) 6197 return err; 6198 6199 err = ext4_init_pending(); 6200 if (err) 6201 goto out7; 6202 6203 err = ext4_init_post_read_processing(); 6204 if (err) 6205 goto out6; 6206 6207 err = ext4_init_pageio(); 6208 if (err) 6209 goto out5; 6210 6211 err = ext4_init_system_zone(); 6212 if (err) 6213 goto out4; 6214 6215 err = ext4_init_sysfs(); 6216 if (err) 6217 goto out3; 6218 6219 err = ext4_init_mballoc(); 6220 if (err) 6221 goto out2; 6222 err = init_inodecache(); 6223 if (err) 6224 goto out1; 6225 register_as_ext3(); 6226 register_as_ext2(); 6227 err = register_filesystem(&ext4_fs_type); 6228 if (err) 6229 goto out; 6230 6231 return 0; 6232 out: 6233 unregister_as_ext2(); 6234 unregister_as_ext3(); 6235 destroy_inodecache(); 6236 out1: 6237 ext4_exit_mballoc(); 6238 out2: 6239 ext4_exit_sysfs(); 6240 out3: 6241 ext4_exit_system_zone(); 6242 out4: 6243 ext4_exit_pageio(); 6244 out5: 6245 ext4_exit_post_read_processing(); 6246 out6: 6247 ext4_exit_pending(); 6248 out7: 6249 ext4_exit_es(); 6250 6251 return err; 6252 } 6253 6254 static void __exit ext4_exit_fs(void) 6255 { 6256 ext4_destroy_lazyinit_thread(); 6257 unregister_as_ext2(); 6258 unregister_as_ext3(); 6259 unregister_filesystem(&ext4_fs_type); 6260 destroy_inodecache(); 6261 ext4_exit_mballoc(); 6262 ext4_exit_sysfs(); 6263 ext4_exit_system_zone(); 6264 ext4_exit_pageio(); 6265 ext4_exit_post_read_processing(); 6266 ext4_exit_es(); 6267 ext4_exit_pending(); 6268 } 6269 6270 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6271 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6272 MODULE_LICENSE("GPL"); 6273 MODULE_SOFTDEP("pre: crc32c"); 6274 module_init(ext4_init_fs) 6275 module_exit(ext4_exit_fs) 6276