1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ | op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 207 { 208 lock_buffer(bh); 209 if (!wait) { 210 ext4_read_bh_nowait(bh, op_flags, NULL); 211 return 0; 212 } 213 return ext4_read_bh(bh, op_flags, NULL); 214 } 215 216 /* 217 * This works like __bread_gfp() except it uses ERR_PTR for error 218 * returns. Currently with sb_bread it's impossible to distinguish 219 * between ENOMEM and EIO situations (since both result in a NULL 220 * return. 221 */ 222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 223 sector_t block, 224 blk_opf_t op_flags, gfp_t gfp) 225 { 226 struct buffer_head *bh; 227 int ret; 228 229 bh = sb_getblk_gfp(sb, block, gfp); 230 if (bh == NULL) 231 return ERR_PTR(-ENOMEM); 232 if (ext4_buffer_uptodate(bh)) 233 return bh; 234 235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 236 if (ret) { 237 put_bh(bh); 238 return ERR_PTR(ret); 239 } 240 return bh; 241 } 242 243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 244 blk_opf_t op_flags) 245 { 246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 247 } 248 249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 250 sector_t block) 251 { 252 return __ext4_sb_bread_gfp(sb, block, 0, 0); 253 } 254 255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 256 { 257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 258 259 if (likely(bh)) { 260 if (trylock_buffer(bh)) 261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 262 brelse(bh); 263 } 264 } 265 266 static int ext4_verify_csum_type(struct super_block *sb, 267 struct ext4_super_block *es) 268 { 269 if (!ext4_has_feature_metadata_csum(sb)) 270 return 1; 271 272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 273 } 274 275 __le32 ext4_superblock_csum(struct super_block *sb, 276 struct ext4_super_block *es) 277 { 278 struct ext4_sb_info *sbi = EXT4_SB(sb); 279 int offset = offsetof(struct ext4_super_block, s_checksum); 280 __u32 csum; 281 282 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 283 284 return cpu_to_le32(csum); 285 } 286 287 static int ext4_superblock_csum_verify(struct super_block *sb, 288 struct ext4_super_block *es) 289 { 290 if (!ext4_has_metadata_csum(sb)) 291 return 1; 292 293 return es->s_checksum == ext4_superblock_csum(sb, es); 294 } 295 296 void ext4_superblock_csum_set(struct super_block *sb) 297 { 298 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 299 300 if (!ext4_has_metadata_csum(sb)) 301 return; 302 303 es->s_checksum = ext4_superblock_csum(sb, es); 304 } 305 306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 307 struct ext4_group_desc *bg) 308 { 309 return le32_to_cpu(bg->bg_block_bitmap_lo) | 310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 312 } 313 314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_table_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 328 } 329 330 __u32 ext4_free_group_clusters(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 336 } 337 338 __u32 ext4_free_inodes_count(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_used_dirs_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_itable_unused_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_itable_unused_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 360 } 361 362 void ext4_block_bitmap_set(struct super_block *sb, 363 struct ext4_group_desc *bg, ext4_fsblk_t blk) 364 { 365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 368 } 369 370 void ext4_inode_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_table_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_free_group_clusters_set(struct super_block *sb, 387 struct ext4_group_desc *bg, __u32 count) 388 { 389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 392 } 393 394 void ext4_free_inodes_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_used_dirs_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_itable_unused_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 416 } 417 418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 419 { 420 now = clamp_val(now, 0, (1ull << 40) - 1); 421 422 *lo = cpu_to_le32(lower_32_bits(now)); 423 *hi = upper_32_bits(now); 424 } 425 426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 427 { 428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 429 } 430 #define ext4_update_tstamp(es, tstamp) \ 431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 432 ktime_get_real_seconds()) 433 #define ext4_get_tstamp(es, tstamp) \ 434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 /* 476 * This writepage callback for write_cache_pages() 477 * takes care of a few cases after page cleaning. 478 * 479 * write_cache_pages() already checks for dirty pages 480 * and calls clear_page_dirty_for_io(), which we want, 481 * to write protect the pages. 482 * 483 * However, we may have to redirty a page (see below.) 484 */ 485 static int ext4_journalled_writepage_callback(struct page *page, 486 struct writeback_control *wbc, 487 void *data) 488 { 489 transaction_t *transaction = (transaction_t *) data; 490 struct buffer_head *bh, *head; 491 struct journal_head *jh; 492 493 bh = head = page_buffers(page); 494 do { 495 /* 496 * We have to redirty a page in these cases: 497 * 1) If buffer is dirty, it means the page was dirty because it 498 * contains a buffer that needs checkpointing. So the dirty bit 499 * needs to be preserved so that checkpointing writes the buffer 500 * properly. 501 * 2) If buffer is not part of the committing transaction 502 * (we may have just accidentally come across this buffer because 503 * inode range tracking is not exact) or if the currently running 504 * transaction already contains this buffer as well, dirty bit 505 * needs to be preserved so that the buffer gets writeprotected 506 * properly on running transaction's commit. 507 */ 508 jh = bh2jh(bh); 509 if (buffer_dirty(bh) || 510 (jh && (jh->b_transaction != transaction || 511 jh->b_next_transaction))) { 512 redirty_page_for_writepage(wbc, page); 513 goto out; 514 } 515 } while ((bh = bh->b_this_page) != head); 516 517 out: 518 return AOP_WRITEPAGE_ACTIVATE; 519 } 520 521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 522 { 523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 524 struct writeback_control wbc = { 525 .sync_mode = WB_SYNC_ALL, 526 .nr_to_write = LONG_MAX, 527 .range_start = jinode->i_dirty_start, 528 .range_end = jinode->i_dirty_end, 529 }; 530 531 return write_cache_pages(mapping, &wbc, 532 ext4_journalled_writepage_callback, 533 jinode->i_transaction); 534 } 535 536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 537 { 538 int ret; 539 540 if (ext4_should_journal_data(jinode->i_vfs_inode)) 541 ret = ext4_journalled_submit_inode_data_buffers(jinode); 542 else 543 ret = jbd2_journal_submit_inode_data_buffers(jinode); 544 545 return ret; 546 } 547 548 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 549 { 550 int ret = 0; 551 552 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 553 ret = jbd2_journal_finish_inode_data_buffers(jinode); 554 555 return ret; 556 } 557 558 static bool system_going_down(void) 559 { 560 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 561 || system_state == SYSTEM_RESTART; 562 } 563 564 struct ext4_err_translation { 565 int code; 566 int errno; 567 }; 568 569 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 570 571 static struct ext4_err_translation err_translation[] = { 572 EXT4_ERR_TRANSLATE(EIO), 573 EXT4_ERR_TRANSLATE(ENOMEM), 574 EXT4_ERR_TRANSLATE(EFSBADCRC), 575 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 576 EXT4_ERR_TRANSLATE(ENOSPC), 577 EXT4_ERR_TRANSLATE(ENOKEY), 578 EXT4_ERR_TRANSLATE(EROFS), 579 EXT4_ERR_TRANSLATE(EFBIG), 580 EXT4_ERR_TRANSLATE(EEXIST), 581 EXT4_ERR_TRANSLATE(ERANGE), 582 EXT4_ERR_TRANSLATE(EOVERFLOW), 583 EXT4_ERR_TRANSLATE(EBUSY), 584 EXT4_ERR_TRANSLATE(ENOTDIR), 585 EXT4_ERR_TRANSLATE(ENOTEMPTY), 586 EXT4_ERR_TRANSLATE(ESHUTDOWN), 587 EXT4_ERR_TRANSLATE(EFAULT), 588 }; 589 590 static int ext4_errno_to_code(int errno) 591 { 592 int i; 593 594 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 595 if (err_translation[i].errno == errno) 596 return err_translation[i].code; 597 return EXT4_ERR_UNKNOWN; 598 } 599 600 static void save_error_info(struct super_block *sb, int error, 601 __u32 ino, __u64 block, 602 const char *func, unsigned int line) 603 { 604 struct ext4_sb_info *sbi = EXT4_SB(sb); 605 606 /* We default to EFSCORRUPTED error... */ 607 if (error == 0) 608 error = EFSCORRUPTED; 609 610 spin_lock(&sbi->s_error_lock); 611 sbi->s_add_error_count++; 612 sbi->s_last_error_code = error; 613 sbi->s_last_error_line = line; 614 sbi->s_last_error_ino = ino; 615 sbi->s_last_error_block = block; 616 sbi->s_last_error_func = func; 617 sbi->s_last_error_time = ktime_get_real_seconds(); 618 if (!sbi->s_first_error_time) { 619 sbi->s_first_error_code = error; 620 sbi->s_first_error_line = line; 621 sbi->s_first_error_ino = ino; 622 sbi->s_first_error_block = block; 623 sbi->s_first_error_func = func; 624 sbi->s_first_error_time = sbi->s_last_error_time; 625 } 626 spin_unlock(&sbi->s_error_lock); 627 } 628 629 /* Deal with the reporting of failure conditions on a filesystem such as 630 * inconsistencies detected or read IO failures. 631 * 632 * On ext2, we can store the error state of the filesystem in the 633 * superblock. That is not possible on ext4, because we may have other 634 * write ordering constraints on the superblock which prevent us from 635 * writing it out straight away; and given that the journal is about to 636 * be aborted, we can't rely on the current, or future, transactions to 637 * write out the superblock safely. 638 * 639 * We'll just use the jbd2_journal_abort() error code to record an error in 640 * the journal instead. On recovery, the journal will complain about 641 * that error until we've noted it down and cleared it. 642 * 643 * If force_ro is set, we unconditionally force the filesystem into an 644 * ABORT|READONLY state, unless the error response on the fs has been set to 645 * panic in which case we take the easy way out and panic immediately. This is 646 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 647 * at a critical moment in log management. 648 */ 649 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 650 __u32 ino, __u64 block, 651 const char *func, unsigned int line) 652 { 653 journal_t *journal = EXT4_SB(sb)->s_journal; 654 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 655 656 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 657 if (test_opt(sb, WARN_ON_ERROR)) 658 WARN_ON_ONCE(1); 659 660 if (!continue_fs && !sb_rdonly(sb)) { 661 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 662 if (journal) 663 jbd2_journal_abort(journal, -EIO); 664 } 665 666 if (!bdev_read_only(sb->s_bdev)) { 667 save_error_info(sb, error, ino, block, func, line); 668 /* 669 * In case the fs should keep running, we need to writeout 670 * superblock through the journal. Due to lock ordering 671 * constraints, it may not be safe to do it right here so we 672 * defer superblock flushing to a workqueue. 673 */ 674 if (continue_fs && journal) 675 schedule_work(&EXT4_SB(sb)->s_error_work); 676 else 677 ext4_commit_super(sb); 678 } 679 680 /* 681 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 682 * could panic during 'reboot -f' as the underlying device got already 683 * disabled. 684 */ 685 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 686 panic("EXT4-fs (device %s): panic forced after error\n", 687 sb->s_id); 688 } 689 690 if (sb_rdonly(sb) || continue_fs) 691 return; 692 693 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 694 /* 695 * Make sure updated value of ->s_mount_flags will be visible before 696 * ->s_flags update 697 */ 698 smp_wmb(); 699 sb->s_flags |= SB_RDONLY; 700 } 701 702 static void flush_stashed_error_work(struct work_struct *work) 703 { 704 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 705 s_error_work); 706 journal_t *journal = sbi->s_journal; 707 handle_t *handle; 708 709 /* 710 * If the journal is still running, we have to write out superblock 711 * through the journal to avoid collisions of other journalled sb 712 * updates. 713 * 714 * We use directly jbd2 functions here to avoid recursing back into 715 * ext4 error handling code during handling of previous errors. 716 */ 717 if (!sb_rdonly(sbi->s_sb) && journal) { 718 struct buffer_head *sbh = sbi->s_sbh; 719 handle = jbd2_journal_start(journal, 1); 720 if (IS_ERR(handle)) 721 goto write_directly; 722 if (jbd2_journal_get_write_access(handle, sbh)) { 723 jbd2_journal_stop(handle); 724 goto write_directly; 725 } 726 ext4_update_super(sbi->s_sb); 727 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 728 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 729 "superblock detected"); 730 clear_buffer_write_io_error(sbh); 731 set_buffer_uptodate(sbh); 732 } 733 734 if (jbd2_journal_dirty_metadata(handle, sbh)) { 735 jbd2_journal_stop(handle); 736 goto write_directly; 737 } 738 jbd2_journal_stop(handle); 739 ext4_notify_error_sysfs(sbi); 740 return; 741 } 742 write_directly: 743 /* 744 * Write through journal failed. Write sb directly to get error info 745 * out and hope for the best. 746 */ 747 ext4_commit_super(sbi->s_sb); 748 ext4_notify_error_sysfs(sbi); 749 } 750 751 #define ext4_error_ratelimit(sb) \ 752 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 753 "EXT4-fs error") 754 755 void __ext4_error(struct super_block *sb, const char *function, 756 unsigned int line, bool force_ro, int error, __u64 block, 757 const char *fmt, ...) 758 { 759 struct va_format vaf; 760 va_list args; 761 762 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 763 return; 764 765 trace_ext4_error(sb, function, line); 766 if (ext4_error_ratelimit(sb)) { 767 va_start(args, fmt); 768 vaf.fmt = fmt; 769 vaf.va = &args; 770 printk(KERN_CRIT 771 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 772 sb->s_id, function, line, current->comm, &vaf); 773 va_end(args); 774 } 775 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 776 777 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 778 } 779 780 void __ext4_error_inode(struct inode *inode, const char *function, 781 unsigned int line, ext4_fsblk_t block, int error, 782 const char *fmt, ...) 783 { 784 va_list args; 785 struct va_format vaf; 786 787 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 788 return; 789 790 trace_ext4_error(inode->i_sb, function, line); 791 if (ext4_error_ratelimit(inode->i_sb)) { 792 va_start(args, fmt); 793 vaf.fmt = fmt; 794 vaf.va = &args; 795 if (block) 796 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 797 "inode #%lu: block %llu: comm %s: %pV\n", 798 inode->i_sb->s_id, function, line, inode->i_ino, 799 block, current->comm, &vaf); 800 else 801 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 802 "inode #%lu: comm %s: %pV\n", 803 inode->i_sb->s_id, function, line, inode->i_ino, 804 current->comm, &vaf); 805 va_end(args); 806 } 807 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 808 809 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 810 function, line); 811 } 812 813 void __ext4_error_file(struct file *file, const char *function, 814 unsigned int line, ext4_fsblk_t block, 815 const char *fmt, ...) 816 { 817 va_list args; 818 struct va_format vaf; 819 struct inode *inode = file_inode(file); 820 char pathname[80], *path; 821 822 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 823 return; 824 825 trace_ext4_error(inode->i_sb, function, line); 826 if (ext4_error_ratelimit(inode->i_sb)) { 827 path = file_path(file, pathname, sizeof(pathname)); 828 if (IS_ERR(path)) 829 path = "(unknown)"; 830 va_start(args, fmt); 831 vaf.fmt = fmt; 832 vaf.va = &args; 833 if (block) 834 printk(KERN_CRIT 835 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 836 "block %llu: comm %s: path %s: %pV\n", 837 inode->i_sb->s_id, function, line, inode->i_ino, 838 block, current->comm, path, &vaf); 839 else 840 printk(KERN_CRIT 841 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 842 "comm %s: path %s: %pV\n", 843 inode->i_sb->s_id, function, line, inode->i_ino, 844 current->comm, path, &vaf); 845 va_end(args); 846 } 847 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 848 849 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 850 function, line); 851 } 852 853 const char *ext4_decode_error(struct super_block *sb, int errno, 854 char nbuf[16]) 855 { 856 char *errstr = NULL; 857 858 switch (errno) { 859 case -EFSCORRUPTED: 860 errstr = "Corrupt filesystem"; 861 break; 862 case -EFSBADCRC: 863 errstr = "Filesystem failed CRC"; 864 break; 865 case -EIO: 866 errstr = "IO failure"; 867 break; 868 case -ENOMEM: 869 errstr = "Out of memory"; 870 break; 871 case -EROFS: 872 if (!sb || (EXT4_SB(sb)->s_journal && 873 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 874 errstr = "Journal has aborted"; 875 else 876 errstr = "Readonly filesystem"; 877 break; 878 default: 879 /* If the caller passed in an extra buffer for unknown 880 * errors, textualise them now. Else we just return 881 * NULL. */ 882 if (nbuf) { 883 /* Check for truncated error codes... */ 884 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 885 errstr = nbuf; 886 } 887 break; 888 } 889 890 return errstr; 891 } 892 893 /* __ext4_std_error decodes expected errors from journaling functions 894 * automatically and invokes the appropriate error response. */ 895 896 void __ext4_std_error(struct super_block *sb, const char *function, 897 unsigned int line, int errno) 898 { 899 char nbuf[16]; 900 const char *errstr; 901 902 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 903 return; 904 905 /* Special case: if the error is EROFS, and we're not already 906 * inside a transaction, then there's really no point in logging 907 * an error. */ 908 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 909 return; 910 911 if (ext4_error_ratelimit(sb)) { 912 errstr = ext4_decode_error(sb, errno, nbuf); 913 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 914 sb->s_id, function, line, errstr); 915 } 916 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 917 918 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 919 } 920 921 void __ext4_msg(struct super_block *sb, 922 const char *prefix, const char *fmt, ...) 923 { 924 struct va_format vaf; 925 va_list args; 926 927 if (sb) { 928 atomic_inc(&EXT4_SB(sb)->s_msg_count); 929 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 930 "EXT4-fs")) 931 return; 932 } 933 934 va_start(args, fmt); 935 vaf.fmt = fmt; 936 vaf.va = &args; 937 if (sb) 938 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 939 else 940 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 941 va_end(args); 942 } 943 944 static int ext4_warning_ratelimit(struct super_block *sb) 945 { 946 atomic_inc(&EXT4_SB(sb)->s_warning_count); 947 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 948 "EXT4-fs warning"); 949 } 950 951 void __ext4_warning(struct super_block *sb, const char *function, 952 unsigned int line, const char *fmt, ...) 953 { 954 struct va_format vaf; 955 va_list args; 956 957 if (!ext4_warning_ratelimit(sb)) 958 return; 959 960 va_start(args, fmt); 961 vaf.fmt = fmt; 962 vaf.va = &args; 963 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 964 sb->s_id, function, line, &vaf); 965 va_end(args); 966 } 967 968 void __ext4_warning_inode(const struct inode *inode, const char *function, 969 unsigned int line, const char *fmt, ...) 970 { 971 struct va_format vaf; 972 va_list args; 973 974 if (!ext4_warning_ratelimit(inode->i_sb)) 975 return; 976 977 va_start(args, fmt); 978 vaf.fmt = fmt; 979 vaf.va = &args; 980 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 981 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 982 function, line, inode->i_ino, current->comm, &vaf); 983 va_end(args); 984 } 985 986 void __ext4_grp_locked_error(const char *function, unsigned int line, 987 struct super_block *sb, ext4_group_t grp, 988 unsigned long ino, ext4_fsblk_t block, 989 const char *fmt, ...) 990 __releases(bitlock) 991 __acquires(bitlock) 992 { 993 struct va_format vaf; 994 va_list args; 995 996 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 997 return; 998 999 trace_ext4_error(sb, function, line); 1000 if (ext4_error_ratelimit(sb)) { 1001 va_start(args, fmt); 1002 vaf.fmt = fmt; 1003 vaf.va = &args; 1004 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1005 sb->s_id, function, line, grp); 1006 if (ino) 1007 printk(KERN_CONT "inode %lu: ", ino); 1008 if (block) 1009 printk(KERN_CONT "block %llu:", 1010 (unsigned long long) block); 1011 printk(KERN_CONT "%pV\n", &vaf); 1012 va_end(args); 1013 } 1014 1015 if (test_opt(sb, ERRORS_CONT)) { 1016 if (test_opt(sb, WARN_ON_ERROR)) 1017 WARN_ON_ONCE(1); 1018 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1019 if (!bdev_read_only(sb->s_bdev)) { 1020 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1021 line); 1022 schedule_work(&EXT4_SB(sb)->s_error_work); 1023 } 1024 return; 1025 } 1026 ext4_unlock_group(sb, grp); 1027 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1028 /* 1029 * We only get here in the ERRORS_RO case; relocking the group 1030 * may be dangerous, but nothing bad will happen since the 1031 * filesystem will have already been marked read/only and the 1032 * journal has been aborted. We return 1 as a hint to callers 1033 * who might what to use the return value from 1034 * ext4_grp_locked_error() to distinguish between the 1035 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1036 * aggressively from the ext4 function in question, with a 1037 * more appropriate error code. 1038 */ 1039 ext4_lock_group(sb, grp); 1040 return; 1041 } 1042 1043 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1044 ext4_group_t group, 1045 unsigned int flags) 1046 { 1047 struct ext4_sb_info *sbi = EXT4_SB(sb); 1048 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1049 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1050 int ret; 1051 1052 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1053 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1054 &grp->bb_state); 1055 if (!ret) 1056 percpu_counter_sub(&sbi->s_freeclusters_counter, 1057 grp->bb_free); 1058 } 1059 1060 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1061 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1062 &grp->bb_state); 1063 if (!ret && gdp) { 1064 int count; 1065 1066 count = ext4_free_inodes_count(sb, gdp); 1067 percpu_counter_sub(&sbi->s_freeinodes_counter, 1068 count); 1069 } 1070 } 1071 } 1072 1073 void ext4_update_dynamic_rev(struct super_block *sb) 1074 { 1075 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1076 1077 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1078 return; 1079 1080 ext4_warning(sb, 1081 "updating to rev %d because of new feature flag, " 1082 "running e2fsck is recommended", 1083 EXT4_DYNAMIC_REV); 1084 1085 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1086 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1087 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1088 /* leave es->s_feature_*compat flags alone */ 1089 /* es->s_uuid will be set by e2fsck if empty */ 1090 1091 /* 1092 * The rest of the superblock fields should be zero, and if not it 1093 * means they are likely already in use, so leave them alone. We 1094 * can leave it up to e2fsck to clean up any inconsistencies there. 1095 */ 1096 } 1097 1098 /* 1099 * Open the external journal device 1100 */ 1101 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1102 { 1103 struct block_device *bdev; 1104 1105 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1106 if (IS_ERR(bdev)) 1107 goto fail; 1108 return bdev; 1109 1110 fail: 1111 ext4_msg(sb, KERN_ERR, 1112 "failed to open journal device unknown-block(%u,%u) %ld", 1113 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1114 return NULL; 1115 } 1116 1117 /* 1118 * Release the journal device 1119 */ 1120 static void ext4_blkdev_put(struct block_device *bdev) 1121 { 1122 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1123 } 1124 1125 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1126 { 1127 struct block_device *bdev; 1128 bdev = sbi->s_journal_bdev; 1129 if (bdev) { 1130 ext4_blkdev_put(bdev); 1131 sbi->s_journal_bdev = NULL; 1132 } 1133 } 1134 1135 static inline struct inode *orphan_list_entry(struct list_head *l) 1136 { 1137 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1138 } 1139 1140 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1141 { 1142 struct list_head *l; 1143 1144 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1145 le32_to_cpu(sbi->s_es->s_last_orphan)); 1146 1147 printk(KERN_ERR "sb_info orphan list:\n"); 1148 list_for_each(l, &sbi->s_orphan) { 1149 struct inode *inode = orphan_list_entry(l); 1150 printk(KERN_ERR " " 1151 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1152 inode->i_sb->s_id, inode->i_ino, inode, 1153 inode->i_mode, inode->i_nlink, 1154 NEXT_ORPHAN(inode)); 1155 } 1156 } 1157 1158 #ifdef CONFIG_QUOTA 1159 static int ext4_quota_off(struct super_block *sb, int type); 1160 1161 static inline void ext4_quota_off_umount(struct super_block *sb) 1162 { 1163 int type; 1164 1165 /* Use our quota_off function to clear inode flags etc. */ 1166 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1167 ext4_quota_off(sb, type); 1168 } 1169 1170 /* 1171 * This is a helper function which is used in the mount/remount 1172 * codepaths (which holds s_umount) to fetch the quota file name. 1173 */ 1174 static inline char *get_qf_name(struct super_block *sb, 1175 struct ext4_sb_info *sbi, 1176 int type) 1177 { 1178 return rcu_dereference_protected(sbi->s_qf_names[type], 1179 lockdep_is_held(&sb->s_umount)); 1180 } 1181 #else 1182 static inline void ext4_quota_off_umount(struct super_block *sb) 1183 { 1184 } 1185 #endif 1186 1187 static void ext4_put_super(struct super_block *sb) 1188 { 1189 struct ext4_sb_info *sbi = EXT4_SB(sb); 1190 struct ext4_super_block *es = sbi->s_es; 1191 struct buffer_head **group_desc; 1192 struct flex_groups **flex_groups; 1193 int aborted = 0; 1194 int i, err; 1195 1196 /* 1197 * Unregister sysfs before destroying jbd2 journal. 1198 * Since we could still access attr_journal_task attribute via sysfs 1199 * path which could have sbi->s_journal->j_task as NULL 1200 * Unregister sysfs before flush sbi->s_error_work. 1201 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1202 * read metadata verify failed then will queue error work. 1203 * flush_stashed_error_work will call start_this_handle may trigger 1204 * BUG_ON. 1205 */ 1206 ext4_unregister_sysfs(sb); 1207 1208 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1209 ext4_msg(sb, KERN_INFO, "unmounting filesystem."); 1210 1211 ext4_unregister_li_request(sb); 1212 ext4_quota_off_umount(sb); 1213 1214 flush_work(&sbi->s_error_work); 1215 destroy_workqueue(sbi->rsv_conversion_wq); 1216 ext4_release_orphan_info(sb); 1217 1218 if (sbi->s_journal) { 1219 aborted = is_journal_aborted(sbi->s_journal); 1220 err = jbd2_journal_destroy(sbi->s_journal); 1221 sbi->s_journal = NULL; 1222 if ((err < 0) && !aborted) { 1223 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1224 } 1225 } 1226 1227 ext4_es_unregister_shrinker(sbi); 1228 del_timer_sync(&sbi->s_err_report); 1229 ext4_release_system_zone(sb); 1230 ext4_mb_release(sb); 1231 ext4_ext_release(sb); 1232 1233 if (!sb_rdonly(sb) && !aborted) { 1234 ext4_clear_feature_journal_needs_recovery(sb); 1235 ext4_clear_feature_orphan_present(sb); 1236 es->s_state = cpu_to_le16(sbi->s_mount_state); 1237 } 1238 if (!sb_rdonly(sb)) 1239 ext4_commit_super(sb); 1240 1241 rcu_read_lock(); 1242 group_desc = rcu_dereference(sbi->s_group_desc); 1243 for (i = 0; i < sbi->s_gdb_count; i++) 1244 brelse(group_desc[i]); 1245 kvfree(group_desc); 1246 flex_groups = rcu_dereference(sbi->s_flex_groups); 1247 if (flex_groups) { 1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1249 kvfree(flex_groups[i]); 1250 kvfree(flex_groups); 1251 } 1252 rcu_read_unlock(); 1253 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1254 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1255 percpu_counter_destroy(&sbi->s_dirs_counter); 1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1258 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1259 #ifdef CONFIG_QUOTA 1260 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1261 kfree(get_qf_name(sb, sbi, i)); 1262 #endif 1263 1264 /* Debugging code just in case the in-memory inode orphan list 1265 * isn't empty. The on-disk one can be non-empty if we've 1266 * detected an error and taken the fs readonly, but the 1267 * in-memory list had better be clean by this point. */ 1268 if (!list_empty(&sbi->s_orphan)) 1269 dump_orphan_list(sb, sbi); 1270 ASSERT(list_empty(&sbi->s_orphan)); 1271 1272 sync_blockdev(sb->s_bdev); 1273 invalidate_bdev(sb->s_bdev); 1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1275 /* 1276 * Invalidate the journal device's buffers. We don't want them 1277 * floating about in memory - the physical journal device may 1278 * hotswapped, and it breaks the `ro-after' testing code. 1279 */ 1280 sync_blockdev(sbi->s_journal_bdev); 1281 invalidate_bdev(sbi->s_journal_bdev); 1282 ext4_blkdev_remove(sbi); 1283 } 1284 1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1286 sbi->s_ea_inode_cache = NULL; 1287 1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1289 sbi->s_ea_block_cache = NULL; 1290 1291 ext4_stop_mmpd(sbi); 1292 1293 brelse(sbi->s_sbh); 1294 sb->s_fs_info = NULL; 1295 /* 1296 * Now that we are completely done shutting down the 1297 * superblock, we need to actually destroy the kobject. 1298 */ 1299 kobject_put(&sbi->s_kobj); 1300 wait_for_completion(&sbi->s_kobj_unregister); 1301 if (sbi->s_chksum_driver) 1302 crypto_free_shash(sbi->s_chksum_driver); 1303 kfree(sbi->s_blockgroup_lock); 1304 fs_put_dax(sbi->s_daxdev, NULL); 1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1306 #if IS_ENABLED(CONFIG_UNICODE) 1307 utf8_unload(sb->s_encoding); 1308 #endif 1309 kfree(sbi); 1310 } 1311 1312 static struct kmem_cache *ext4_inode_cachep; 1313 1314 /* 1315 * Called inside transaction, so use GFP_NOFS 1316 */ 1317 static struct inode *ext4_alloc_inode(struct super_block *sb) 1318 { 1319 struct ext4_inode_info *ei; 1320 1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1322 if (!ei) 1323 return NULL; 1324 1325 inode_set_iversion(&ei->vfs_inode, 1); 1326 spin_lock_init(&ei->i_raw_lock); 1327 INIT_LIST_HEAD(&ei->i_prealloc_list); 1328 atomic_set(&ei->i_prealloc_active, 0); 1329 spin_lock_init(&ei->i_prealloc_lock); 1330 ext4_es_init_tree(&ei->i_es_tree); 1331 rwlock_init(&ei->i_es_lock); 1332 INIT_LIST_HEAD(&ei->i_es_list); 1333 ei->i_es_all_nr = 0; 1334 ei->i_es_shk_nr = 0; 1335 ei->i_es_shrink_lblk = 0; 1336 ei->i_reserved_data_blocks = 0; 1337 spin_lock_init(&(ei->i_block_reservation_lock)); 1338 ext4_init_pending_tree(&ei->i_pending_tree); 1339 #ifdef CONFIG_QUOTA 1340 ei->i_reserved_quota = 0; 1341 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1342 #endif 1343 ei->jinode = NULL; 1344 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1345 spin_lock_init(&ei->i_completed_io_lock); 1346 ei->i_sync_tid = 0; 1347 ei->i_datasync_tid = 0; 1348 atomic_set(&ei->i_unwritten, 0); 1349 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1350 ext4_fc_init_inode(&ei->vfs_inode); 1351 mutex_init(&ei->i_fc_lock); 1352 return &ei->vfs_inode; 1353 } 1354 1355 static int ext4_drop_inode(struct inode *inode) 1356 { 1357 int drop = generic_drop_inode(inode); 1358 1359 if (!drop) 1360 drop = fscrypt_drop_inode(inode); 1361 1362 trace_ext4_drop_inode(inode, drop); 1363 return drop; 1364 } 1365 1366 static void ext4_free_in_core_inode(struct inode *inode) 1367 { 1368 fscrypt_free_inode(inode); 1369 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1370 pr_warn("%s: inode %ld still in fc list", 1371 __func__, inode->i_ino); 1372 } 1373 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1374 } 1375 1376 static void ext4_destroy_inode(struct inode *inode) 1377 { 1378 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1379 ext4_msg(inode->i_sb, KERN_ERR, 1380 "Inode %lu (%p): orphan list check failed!", 1381 inode->i_ino, EXT4_I(inode)); 1382 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1383 EXT4_I(inode), sizeof(struct ext4_inode_info), 1384 true); 1385 dump_stack(); 1386 } 1387 1388 if (EXT4_I(inode)->i_reserved_data_blocks) 1389 ext4_msg(inode->i_sb, KERN_ERR, 1390 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1391 inode->i_ino, EXT4_I(inode), 1392 EXT4_I(inode)->i_reserved_data_blocks); 1393 } 1394 1395 static void init_once(void *foo) 1396 { 1397 struct ext4_inode_info *ei = foo; 1398 1399 INIT_LIST_HEAD(&ei->i_orphan); 1400 init_rwsem(&ei->xattr_sem); 1401 init_rwsem(&ei->i_data_sem); 1402 inode_init_once(&ei->vfs_inode); 1403 ext4_fc_init_inode(&ei->vfs_inode); 1404 } 1405 1406 static int __init init_inodecache(void) 1407 { 1408 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1409 sizeof(struct ext4_inode_info), 0, 1410 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1411 SLAB_ACCOUNT), 1412 offsetof(struct ext4_inode_info, i_data), 1413 sizeof_field(struct ext4_inode_info, i_data), 1414 init_once); 1415 if (ext4_inode_cachep == NULL) 1416 return -ENOMEM; 1417 return 0; 1418 } 1419 1420 static void destroy_inodecache(void) 1421 { 1422 /* 1423 * Make sure all delayed rcu free inodes are flushed before we 1424 * destroy cache. 1425 */ 1426 rcu_barrier(); 1427 kmem_cache_destroy(ext4_inode_cachep); 1428 } 1429 1430 void ext4_clear_inode(struct inode *inode) 1431 { 1432 ext4_fc_del(inode); 1433 invalidate_inode_buffers(inode); 1434 clear_inode(inode); 1435 ext4_discard_preallocations(inode, 0); 1436 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1437 dquot_drop(inode); 1438 if (EXT4_I(inode)->jinode) { 1439 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1440 EXT4_I(inode)->jinode); 1441 jbd2_free_inode(EXT4_I(inode)->jinode); 1442 EXT4_I(inode)->jinode = NULL; 1443 } 1444 fscrypt_put_encryption_info(inode); 1445 fsverity_cleanup_inode(inode); 1446 } 1447 1448 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1449 u64 ino, u32 generation) 1450 { 1451 struct inode *inode; 1452 1453 /* 1454 * Currently we don't know the generation for parent directory, so 1455 * a generation of 0 means "accept any" 1456 */ 1457 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1458 if (IS_ERR(inode)) 1459 return ERR_CAST(inode); 1460 if (generation && inode->i_generation != generation) { 1461 iput(inode); 1462 return ERR_PTR(-ESTALE); 1463 } 1464 1465 return inode; 1466 } 1467 1468 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1469 int fh_len, int fh_type) 1470 { 1471 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1472 ext4_nfs_get_inode); 1473 } 1474 1475 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1476 int fh_len, int fh_type) 1477 { 1478 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1479 ext4_nfs_get_inode); 1480 } 1481 1482 static int ext4_nfs_commit_metadata(struct inode *inode) 1483 { 1484 struct writeback_control wbc = { 1485 .sync_mode = WB_SYNC_ALL 1486 }; 1487 1488 trace_ext4_nfs_commit_metadata(inode); 1489 return ext4_write_inode(inode, &wbc); 1490 } 1491 1492 #ifdef CONFIG_QUOTA 1493 static const char * const quotatypes[] = INITQFNAMES; 1494 #define QTYPE2NAME(t) (quotatypes[t]) 1495 1496 static int ext4_write_dquot(struct dquot *dquot); 1497 static int ext4_acquire_dquot(struct dquot *dquot); 1498 static int ext4_release_dquot(struct dquot *dquot); 1499 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1500 static int ext4_write_info(struct super_block *sb, int type); 1501 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1502 const struct path *path); 1503 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1504 size_t len, loff_t off); 1505 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1506 const char *data, size_t len, loff_t off); 1507 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1508 unsigned int flags); 1509 1510 static struct dquot **ext4_get_dquots(struct inode *inode) 1511 { 1512 return EXT4_I(inode)->i_dquot; 1513 } 1514 1515 static const struct dquot_operations ext4_quota_operations = { 1516 .get_reserved_space = ext4_get_reserved_space, 1517 .write_dquot = ext4_write_dquot, 1518 .acquire_dquot = ext4_acquire_dquot, 1519 .release_dquot = ext4_release_dquot, 1520 .mark_dirty = ext4_mark_dquot_dirty, 1521 .write_info = ext4_write_info, 1522 .alloc_dquot = dquot_alloc, 1523 .destroy_dquot = dquot_destroy, 1524 .get_projid = ext4_get_projid, 1525 .get_inode_usage = ext4_get_inode_usage, 1526 .get_next_id = dquot_get_next_id, 1527 }; 1528 1529 static const struct quotactl_ops ext4_qctl_operations = { 1530 .quota_on = ext4_quota_on, 1531 .quota_off = ext4_quota_off, 1532 .quota_sync = dquot_quota_sync, 1533 .get_state = dquot_get_state, 1534 .set_info = dquot_set_dqinfo, 1535 .get_dqblk = dquot_get_dqblk, 1536 .set_dqblk = dquot_set_dqblk, 1537 .get_nextdqblk = dquot_get_next_dqblk, 1538 }; 1539 #endif 1540 1541 static const struct super_operations ext4_sops = { 1542 .alloc_inode = ext4_alloc_inode, 1543 .free_inode = ext4_free_in_core_inode, 1544 .destroy_inode = ext4_destroy_inode, 1545 .write_inode = ext4_write_inode, 1546 .dirty_inode = ext4_dirty_inode, 1547 .drop_inode = ext4_drop_inode, 1548 .evict_inode = ext4_evict_inode, 1549 .put_super = ext4_put_super, 1550 .sync_fs = ext4_sync_fs, 1551 .freeze_fs = ext4_freeze, 1552 .unfreeze_fs = ext4_unfreeze, 1553 .statfs = ext4_statfs, 1554 .show_options = ext4_show_options, 1555 #ifdef CONFIG_QUOTA 1556 .quota_read = ext4_quota_read, 1557 .quota_write = ext4_quota_write, 1558 .get_dquots = ext4_get_dquots, 1559 #endif 1560 }; 1561 1562 static const struct export_operations ext4_export_ops = { 1563 .fh_to_dentry = ext4_fh_to_dentry, 1564 .fh_to_parent = ext4_fh_to_parent, 1565 .get_parent = ext4_get_parent, 1566 .commit_metadata = ext4_nfs_commit_metadata, 1567 }; 1568 1569 enum { 1570 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1571 Opt_resgid, Opt_resuid, Opt_sb, 1572 Opt_nouid32, Opt_debug, Opt_removed, 1573 Opt_user_xattr, Opt_acl, 1574 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1575 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1576 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1577 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1578 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1579 Opt_inlinecrypt, 1580 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1581 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1582 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1583 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1584 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1585 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1586 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1587 Opt_inode_readahead_blks, Opt_journal_ioprio, 1588 Opt_dioread_nolock, Opt_dioread_lock, 1589 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1590 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1591 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1592 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1593 #ifdef CONFIG_EXT4_DEBUG 1594 Opt_fc_debug_max_replay, Opt_fc_debug_force 1595 #endif 1596 }; 1597 1598 static const struct constant_table ext4_param_errors[] = { 1599 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1600 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1601 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1602 {} 1603 }; 1604 1605 static const struct constant_table ext4_param_data[] = { 1606 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1607 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1608 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1609 {} 1610 }; 1611 1612 static const struct constant_table ext4_param_data_err[] = { 1613 {"abort", Opt_data_err_abort}, 1614 {"ignore", Opt_data_err_ignore}, 1615 {} 1616 }; 1617 1618 static const struct constant_table ext4_param_jqfmt[] = { 1619 {"vfsold", QFMT_VFS_OLD}, 1620 {"vfsv0", QFMT_VFS_V0}, 1621 {"vfsv1", QFMT_VFS_V1}, 1622 {} 1623 }; 1624 1625 static const struct constant_table ext4_param_dax[] = { 1626 {"always", Opt_dax_always}, 1627 {"inode", Opt_dax_inode}, 1628 {"never", Opt_dax_never}, 1629 {} 1630 }; 1631 1632 /* String parameter that allows empty argument */ 1633 #define fsparam_string_empty(NAME, OPT) \ 1634 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1635 1636 /* 1637 * Mount option specification 1638 * We don't use fsparam_flag_no because of the way we set the 1639 * options and the way we show them in _ext4_show_options(). To 1640 * keep the changes to a minimum, let's keep the negative options 1641 * separate for now. 1642 */ 1643 static const struct fs_parameter_spec ext4_param_specs[] = { 1644 fsparam_flag ("bsddf", Opt_bsd_df), 1645 fsparam_flag ("minixdf", Opt_minix_df), 1646 fsparam_flag ("grpid", Opt_grpid), 1647 fsparam_flag ("bsdgroups", Opt_grpid), 1648 fsparam_flag ("nogrpid", Opt_nogrpid), 1649 fsparam_flag ("sysvgroups", Opt_nogrpid), 1650 fsparam_u32 ("resgid", Opt_resgid), 1651 fsparam_u32 ("resuid", Opt_resuid), 1652 fsparam_u32 ("sb", Opt_sb), 1653 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1654 fsparam_flag ("nouid32", Opt_nouid32), 1655 fsparam_flag ("debug", Opt_debug), 1656 fsparam_flag ("oldalloc", Opt_removed), 1657 fsparam_flag ("orlov", Opt_removed), 1658 fsparam_flag ("user_xattr", Opt_user_xattr), 1659 fsparam_flag ("acl", Opt_acl), 1660 fsparam_flag ("norecovery", Opt_noload), 1661 fsparam_flag ("noload", Opt_noload), 1662 fsparam_flag ("bh", Opt_removed), 1663 fsparam_flag ("nobh", Opt_removed), 1664 fsparam_u32 ("commit", Opt_commit), 1665 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1666 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1667 fsparam_u32 ("journal_dev", Opt_journal_dev), 1668 fsparam_bdev ("journal_path", Opt_journal_path), 1669 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1670 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1671 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1672 fsparam_flag ("abort", Opt_abort), 1673 fsparam_enum ("data", Opt_data, ext4_param_data), 1674 fsparam_enum ("data_err", Opt_data_err, 1675 ext4_param_data_err), 1676 fsparam_string_empty 1677 ("usrjquota", Opt_usrjquota), 1678 fsparam_string_empty 1679 ("grpjquota", Opt_grpjquota), 1680 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1681 fsparam_flag ("grpquota", Opt_grpquota), 1682 fsparam_flag ("quota", Opt_quota), 1683 fsparam_flag ("noquota", Opt_noquota), 1684 fsparam_flag ("usrquota", Opt_usrquota), 1685 fsparam_flag ("prjquota", Opt_prjquota), 1686 fsparam_flag ("barrier", Opt_barrier), 1687 fsparam_u32 ("barrier", Opt_barrier), 1688 fsparam_flag ("nobarrier", Opt_nobarrier), 1689 fsparam_flag ("i_version", Opt_removed), 1690 fsparam_flag ("dax", Opt_dax), 1691 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1692 fsparam_u32 ("stripe", Opt_stripe), 1693 fsparam_flag ("delalloc", Opt_delalloc), 1694 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1695 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1696 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1697 fsparam_u32 ("debug_want_extra_isize", 1698 Opt_debug_want_extra_isize), 1699 fsparam_flag ("mblk_io_submit", Opt_removed), 1700 fsparam_flag ("nomblk_io_submit", Opt_removed), 1701 fsparam_flag ("block_validity", Opt_block_validity), 1702 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1703 fsparam_u32 ("inode_readahead_blks", 1704 Opt_inode_readahead_blks), 1705 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1706 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1707 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1708 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1709 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1710 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1711 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1712 fsparam_flag ("discard", Opt_discard), 1713 fsparam_flag ("nodiscard", Opt_nodiscard), 1714 fsparam_u32 ("init_itable", Opt_init_itable), 1715 fsparam_flag ("init_itable", Opt_init_itable), 1716 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1717 #ifdef CONFIG_EXT4_DEBUG 1718 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1719 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1720 #endif 1721 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1722 fsparam_flag ("test_dummy_encryption", 1723 Opt_test_dummy_encryption), 1724 fsparam_string ("test_dummy_encryption", 1725 Opt_test_dummy_encryption), 1726 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1727 fsparam_flag ("nombcache", Opt_nombcache), 1728 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1729 fsparam_flag ("prefetch_block_bitmaps", 1730 Opt_removed), 1731 fsparam_flag ("no_prefetch_block_bitmaps", 1732 Opt_no_prefetch_block_bitmaps), 1733 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1734 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1735 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1736 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1737 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1738 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1739 {} 1740 }; 1741 1742 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1743 1744 static const char deprecated_msg[] = 1745 "Mount option \"%s\" will be removed by %s\n" 1746 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1747 1748 #define MOPT_SET 0x0001 1749 #define MOPT_CLEAR 0x0002 1750 #define MOPT_NOSUPPORT 0x0004 1751 #define MOPT_EXPLICIT 0x0008 1752 #ifdef CONFIG_QUOTA 1753 #define MOPT_Q 0 1754 #define MOPT_QFMT 0x0010 1755 #else 1756 #define MOPT_Q MOPT_NOSUPPORT 1757 #define MOPT_QFMT MOPT_NOSUPPORT 1758 #endif 1759 #define MOPT_NO_EXT2 0x0020 1760 #define MOPT_NO_EXT3 0x0040 1761 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1762 #define MOPT_SKIP 0x0080 1763 #define MOPT_2 0x0100 1764 1765 static const struct mount_opts { 1766 int token; 1767 int mount_opt; 1768 int flags; 1769 } ext4_mount_opts[] = { 1770 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1771 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1772 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1773 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1774 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1775 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1776 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1777 MOPT_EXT4_ONLY | MOPT_SET}, 1778 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1779 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1780 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1781 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1782 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1783 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1784 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1785 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1786 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1787 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1788 {Opt_commit, 0, MOPT_NO_EXT2}, 1789 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1790 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1791 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1792 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1793 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1794 EXT4_MOUNT_JOURNAL_CHECKSUM), 1795 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1796 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1797 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1798 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1799 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1800 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1801 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1802 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1803 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1804 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1805 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1806 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1807 {Opt_data, 0, MOPT_NO_EXT2}, 1808 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1809 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1810 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1811 #else 1812 {Opt_acl, 0, MOPT_NOSUPPORT}, 1813 #endif 1814 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1815 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1816 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1817 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1818 MOPT_SET | MOPT_Q}, 1819 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1820 MOPT_SET | MOPT_Q}, 1821 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1822 MOPT_SET | MOPT_Q}, 1823 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1824 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1825 MOPT_CLEAR | MOPT_Q}, 1826 {Opt_usrjquota, 0, MOPT_Q}, 1827 {Opt_grpjquota, 0, MOPT_Q}, 1828 {Opt_jqfmt, 0, MOPT_QFMT}, 1829 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1830 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1831 MOPT_SET}, 1832 #ifdef CONFIG_EXT4_DEBUG 1833 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1834 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1835 #endif 1836 {Opt_err, 0, 0} 1837 }; 1838 1839 #if IS_ENABLED(CONFIG_UNICODE) 1840 static const struct ext4_sb_encodings { 1841 __u16 magic; 1842 char *name; 1843 unsigned int version; 1844 } ext4_sb_encoding_map[] = { 1845 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1846 }; 1847 1848 static const struct ext4_sb_encodings * 1849 ext4_sb_read_encoding(const struct ext4_super_block *es) 1850 { 1851 __u16 magic = le16_to_cpu(es->s_encoding); 1852 int i; 1853 1854 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1855 if (magic == ext4_sb_encoding_map[i].magic) 1856 return &ext4_sb_encoding_map[i]; 1857 1858 return NULL; 1859 } 1860 #endif 1861 1862 #define EXT4_SPEC_JQUOTA (1 << 0) 1863 #define EXT4_SPEC_JQFMT (1 << 1) 1864 #define EXT4_SPEC_DATAJ (1 << 2) 1865 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1866 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1867 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1868 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1869 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1870 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1871 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1872 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1873 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1874 #define EXT4_SPEC_s_stripe (1 << 13) 1875 #define EXT4_SPEC_s_resuid (1 << 14) 1876 #define EXT4_SPEC_s_resgid (1 << 15) 1877 #define EXT4_SPEC_s_commit_interval (1 << 16) 1878 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1879 #define EXT4_SPEC_s_sb_block (1 << 18) 1880 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1881 1882 struct ext4_fs_context { 1883 char *s_qf_names[EXT4_MAXQUOTAS]; 1884 struct fscrypt_dummy_policy dummy_enc_policy; 1885 int s_jquota_fmt; /* Format of quota to use */ 1886 #ifdef CONFIG_EXT4_DEBUG 1887 int s_fc_debug_max_replay; 1888 #endif 1889 unsigned short qname_spec; 1890 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1891 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1892 unsigned long journal_devnum; 1893 unsigned long s_commit_interval; 1894 unsigned long s_stripe; 1895 unsigned int s_inode_readahead_blks; 1896 unsigned int s_want_extra_isize; 1897 unsigned int s_li_wait_mult; 1898 unsigned int s_max_dir_size_kb; 1899 unsigned int journal_ioprio; 1900 unsigned int vals_s_mount_opt; 1901 unsigned int mask_s_mount_opt; 1902 unsigned int vals_s_mount_opt2; 1903 unsigned int mask_s_mount_opt2; 1904 unsigned long vals_s_mount_flags; 1905 unsigned long mask_s_mount_flags; 1906 unsigned int opt_flags; /* MOPT flags */ 1907 unsigned int spec; 1908 u32 s_max_batch_time; 1909 u32 s_min_batch_time; 1910 kuid_t s_resuid; 1911 kgid_t s_resgid; 1912 ext4_fsblk_t s_sb_block; 1913 }; 1914 1915 static void ext4_fc_free(struct fs_context *fc) 1916 { 1917 struct ext4_fs_context *ctx = fc->fs_private; 1918 int i; 1919 1920 if (!ctx) 1921 return; 1922 1923 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1924 kfree(ctx->s_qf_names[i]); 1925 1926 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1927 kfree(ctx); 1928 } 1929 1930 int ext4_init_fs_context(struct fs_context *fc) 1931 { 1932 struct ext4_fs_context *ctx; 1933 1934 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1935 if (!ctx) 1936 return -ENOMEM; 1937 1938 fc->fs_private = ctx; 1939 fc->ops = &ext4_context_ops; 1940 1941 return 0; 1942 } 1943 1944 #ifdef CONFIG_QUOTA 1945 /* 1946 * Note the name of the specified quota file. 1947 */ 1948 static int note_qf_name(struct fs_context *fc, int qtype, 1949 struct fs_parameter *param) 1950 { 1951 struct ext4_fs_context *ctx = fc->fs_private; 1952 char *qname; 1953 1954 if (param->size < 1) { 1955 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 1956 return -EINVAL; 1957 } 1958 if (strchr(param->string, '/')) { 1959 ext4_msg(NULL, KERN_ERR, 1960 "quotafile must be on filesystem root"); 1961 return -EINVAL; 1962 } 1963 if (ctx->s_qf_names[qtype]) { 1964 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 1965 ext4_msg(NULL, KERN_ERR, 1966 "%s quota file already specified", 1967 QTYPE2NAME(qtype)); 1968 return -EINVAL; 1969 } 1970 return 0; 1971 } 1972 1973 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 1974 if (!qname) { 1975 ext4_msg(NULL, KERN_ERR, 1976 "Not enough memory for storing quotafile name"); 1977 return -ENOMEM; 1978 } 1979 ctx->s_qf_names[qtype] = qname; 1980 ctx->qname_spec |= 1 << qtype; 1981 ctx->spec |= EXT4_SPEC_JQUOTA; 1982 return 0; 1983 } 1984 1985 /* 1986 * Clear the name of the specified quota file. 1987 */ 1988 static int unnote_qf_name(struct fs_context *fc, int qtype) 1989 { 1990 struct ext4_fs_context *ctx = fc->fs_private; 1991 1992 if (ctx->s_qf_names[qtype]) 1993 kfree(ctx->s_qf_names[qtype]); 1994 1995 ctx->s_qf_names[qtype] = NULL; 1996 ctx->qname_spec |= 1 << qtype; 1997 ctx->spec |= EXT4_SPEC_JQUOTA; 1998 return 0; 1999 } 2000 #endif 2001 2002 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2003 struct ext4_fs_context *ctx) 2004 { 2005 int err; 2006 2007 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2008 ext4_msg(NULL, KERN_WARNING, 2009 "test_dummy_encryption option not supported"); 2010 return -EINVAL; 2011 } 2012 err = fscrypt_parse_test_dummy_encryption(param, 2013 &ctx->dummy_enc_policy); 2014 if (err == -EINVAL) { 2015 ext4_msg(NULL, KERN_WARNING, 2016 "Value of option \"%s\" is unrecognized", param->key); 2017 } else if (err == -EEXIST) { 2018 ext4_msg(NULL, KERN_WARNING, 2019 "Conflicting test_dummy_encryption options"); 2020 return -EINVAL; 2021 } 2022 return err; 2023 } 2024 2025 #define EXT4_SET_CTX(name) \ 2026 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2027 unsigned long flag) \ 2028 { \ 2029 ctx->mask_s_##name |= flag; \ 2030 ctx->vals_s_##name |= flag; \ 2031 } 2032 2033 #define EXT4_CLEAR_CTX(name) \ 2034 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2035 unsigned long flag) \ 2036 { \ 2037 ctx->mask_s_##name |= flag; \ 2038 ctx->vals_s_##name &= ~flag; \ 2039 } 2040 2041 #define EXT4_TEST_CTX(name) \ 2042 static inline unsigned long \ 2043 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2044 { \ 2045 return (ctx->vals_s_##name & flag); \ 2046 } 2047 2048 EXT4_SET_CTX(flags); /* set only */ 2049 EXT4_SET_CTX(mount_opt); 2050 EXT4_CLEAR_CTX(mount_opt); 2051 EXT4_TEST_CTX(mount_opt); 2052 EXT4_SET_CTX(mount_opt2); 2053 EXT4_CLEAR_CTX(mount_opt2); 2054 EXT4_TEST_CTX(mount_opt2); 2055 2056 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2057 { 2058 set_bit(bit, &ctx->mask_s_mount_flags); 2059 set_bit(bit, &ctx->vals_s_mount_flags); 2060 } 2061 2062 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2063 { 2064 struct ext4_fs_context *ctx = fc->fs_private; 2065 struct fs_parse_result result; 2066 const struct mount_opts *m; 2067 int is_remount; 2068 kuid_t uid; 2069 kgid_t gid; 2070 int token; 2071 2072 token = fs_parse(fc, ext4_param_specs, param, &result); 2073 if (token < 0) 2074 return token; 2075 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2076 2077 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2078 if (token == m->token) 2079 break; 2080 2081 ctx->opt_flags |= m->flags; 2082 2083 if (m->flags & MOPT_EXPLICIT) { 2084 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2085 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2086 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2087 ctx_set_mount_opt2(ctx, 2088 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2089 } else 2090 return -EINVAL; 2091 } 2092 2093 if (m->flags & MOPT_NOSUPPORT) { 2094 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2095 param->key); 2096 return 0; 2097 } 2098 2099 switch (token) { 2100 #ifdef CONFIG_QUOTA 2101 case Opt_usrjquota: 2102 if (!*param->string) 2103 return unnote_qf_name(fc, USRQUOTA); 2104 else 2105 return note_qf_name(fc, USRQUOTA, param); 2106 case Opt_grpjquota: 2107 if (!*param->string) 2108 return unnote_qf_name(fc, GRPQUOTA); 2109 else 2110 return note_qf_name(fc, GRPQUOTA, param); 2111 #endif 2112 case Opt_sb: 2113 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2114 ext4_msg(NULL, KERN_WARNING, 2115 "Ignoring %s option on remount", param->key); 2116 } else { 2117 ctx->s_sb_block = result.uint_32; 2118 ctx->spec |= EXT4_SPEC_s_sb_block; 2119 } 2120 return 0; 2121 case Opt_removed: 2122 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2123 param->key); 2124 return 0; 2125 case Opt_abort: 2126 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2127 return 0; 2128 case Opt_inlinecrypt: 2129 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2130 ctx_set_flags(ctx, SB_INLINECRYPT); 2131 #else 2132 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2133 #endif 2134 return 0; 2135 case Opt_errors: 2136 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2137 ctx_set_mount_opt(ctx, result.uint_32); 2138 return 0; 2139 #ifdef CONFIG_QUOTA 2140 case Opt_jqfmt: 2141 ctx->s_jquota_fmt = result.uint_32; 2142 ctx->spec |= EXT4_SPEC_JQFMT; 2143 return 0; 2144 #endif 2145 case Opt_data: 2146 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2147 ctx_set_mount_opt(ctx, result.uint_32); 2148 ctx->spec |= EXT4_SPEC_DATAJ; 2149 return 0; 2150 case Opt_commit: 2151 if (result.uint_32 == 0) 2152 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE; 2153 else if (result.uint_32 > INT_MAX / HZ) { 2154 ext4_msg(NULL, KERN_ERR, 2155 "Invalid commit interval %d, " 2156 "must be smaller than %d", 2157 result.uint_32, INT_MAX / HZ); 2158 return -EINVAL; 2159 } 2160 ctx->s_commit_interval = HZ * result.uint_32; 2161 ctx->spec |= EXT4_SPEC_s_commit_interval; 2162 return 0; 2163 case Opt_debug_want_extra_isize: 2164 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2165 ext4_msg(NULL, KERN_ERR, 2166 "Invalid want_extra_isize %d", result.uint_32); 2167 return -EINVAL; 2168 } 2169 ctx->s_want_extra_isize = result.uint_32; 2170 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2171 return 0; 2172 case Opt_max_batch_time: 2173 ctx->s_max_batch_time = result.uint_32; 2174 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2175 return 0; 2176 case Opt_min_batch_time: 2177 ctx->s_min_batch_time = result.uint_32; 2178 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2179 return 0; 2180 case Opt_inode_readahead_blks: 2181 if (result.uint_32 && 2182 (result.uint_32 > (1 << 30) || 2183 !is_power_of_2(result.uint_32))) { 2184 ext4_msg(NULL, KERN_ERR, 2185 "EXT4-fs: inode_readahead_blks must be " 2186 "0 or a power of 2 smaller than 2^31"); 2187 return -EINVAL; 2188 } 2189 ctx->s_inode_readahead_blks = result.uint_32; 2190 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2191 return 0; 2192 case Opt_init_itable: 2193 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2194 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2195 if (param->type == fs_value_is_string) 2196 ctx->s_li_wait_mult = result.uint_32; 2197 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2198 return 0; 2199 case Opt_max_dir_size_kb: 2200 ctx->s_max_dir_size_kb = result.uint_32; 2201 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2202 return 0; 2203 #ifdef CONFIG_EXT4_DEBUG 2204 case Opt_fc_debug_max_replay: 2205 ctx->s_fc_debug_max_replay = result.uint_32; 2206 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2207 return 0; 2208 #endif 2209 case Opt_stripe: 2210 ctx->s_stripe = result.uint_32; 2211 ctx->spec |= EXT4_SPEC_s_stripe; 2212 return 0; 2213 case Opt_resuid: 2214 uid = make_kuid(current_user_ns(), result.uint_32); 2215 if (!uid_valid(uid)) { 2216 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2217 result.uint_32); 2218 return -EINVAL; 2219 } 2220 ctx->s_resuid = uid; 2221 ctx->spec |= EXT4_SPEC_s_resuid; 2222 return 0; 2223 case Opt_resgid: 2224 gid = make_kgid(current_user_ns(), result.uint_32); 2225 if (!gid_valid(gid)) { 2226 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2227 result.uint_32); 2228 return -EINVAL; 2229 } 2230 ctx->s_resgid = gid; 2231 ctx->spec |= EXT4_SPEC_s_resgid; 2232 return 0; 2233 case Opt_journal_dev: 2234 if (is_remount) { 2235 ext4_msg(NULL, KERN_ERR, 2236 "Cannot specify journal on remount"); 2237 return -EINVAL; 2238 } 2239 ctx->journal_devnum = result.uint_32; 2240 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2241 return 0; 2242 case Opt_journal_path: 2243 { 2244 struct inode *journal_inode; 2245 struct path path; 2246 int error; 2247 2248 if (is_remount) { 2249 ext4_msg(NULL, KERN_ERR, 2250 "Cannot specify journal on remount"); 2251 return -EINVAL; 2252 } 2253 2254 error = fs_lookup_param(fc, param, 1, &path); 2255 if (error) { 2256 ext4_msg(NULL, KERN_ERR, "error: could not find " 2257 "journal device path"); 2258 return -EINVAL; 2259 } 2260 2261 journal_inode = d_inode(path.dentry); 2262 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2263 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2264 path_put(&path); 2265 return 0; 2266 } 2267 case Opt_journal_ioprio: 2268 if (result.uint_32 > 7) { 2269 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2270 " (must be 0-7)"); 2271 return -EINVAL; 2272 } 2273 ctx->journal_ioprio = 2274 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2275 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2276 return 0; 2277 case Opt_test_dummy_encryption: 2278 return ext4_parse_test_dummy_encryption(param, ctx); 2279 case Opt_dax: 2280 case Opt_dax_type: 2281 #ifdef CONFIG_FS_DAX 2282 { 2283 int type = (token == Opt_dax) ? 2284 Opt_dax : result.uint_32; 2285 2286 switch (type) { 2287 case Opt_dax: 2288 case Opt_dax_always: 2289 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2290 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2291 break; 2292 case Opt_dax_never: 2293 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2294 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2295 break; 2296 case Opt_dax_inode: 2297 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2298 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2299 /* Strictly for printing options */ 2300 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2301 break; 2302 } 2303 return 0; 2304 } 2305 #else 2306 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2307 return -EINVAL; 2308 #endif 2309 case Opt_data_err: 2310 if (result.uint_32 == Opt_data_err_abort) 2311 ctx_set_mount_opt(ctx, m->mount_opt); 2312 else if (result.uint_32 == Opt_data_err_ignore) 2313 ctx_clear_mount_opt(ctx, m->mount_opt); 2314 return 0; 2315 case Opt_mb_optimize_scan: 2316 if (result.int_32 == 1) { 2317 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2318 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2319 } else if (result.int_32 == 0) { 2320 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2321 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2322 } else { 2323 ext4_msg(NULL, KERN_WARNING, 2324 "mb_optimize_scan should be set to 0 or 1."); 2325 return -EINVAL; 2326 } 2327 return 0; 2328 } 2329 2330 /* 2331 * At this point we should only be getting options requiring MOPT_SET, 2332 * or MOPT_CLEAR. Anything else is a bug 2333 */ 2334 if (m->token == Opt_err) { 2335 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2336 param->key); 2337 WARN_ON(1); 2338 return -EINVAL; 2339 } 2340 2341 else { 2342 unsigned int set = 0; 2343 2344 if ((param->type == fs_value_is_flag) || 2345 result.uint_32 > 0) 2346 set = 1; 2347 2348 if (m->flags & MOPT_CLEAR) 2349 set = !set; 2350 else if (unlikely(!(m->flags & MOPT_SET))) { 2351 ext4_msg(NULL, KERN_WARNING, 2352 "buggy handling of option %s", 2353 param->key); 2354 WARN_ON(1); 2355 return -EINVAL; 2356 } 2357 if (m->flags & MOPT_2) { 2358 if (set != 0) 2359 ctx_set_mount_opt2(ctx, m->mount_opt); 2360 else 2361 ctx_clear_mount_opt2(ctx, m->mount_opt); 2362 } else { 2363 if (set != 0) 2364 ctx_set_mount_opt(ctx, m->mount_opt); 2365 else 2366 ctx_clear_mount_opt(ctx, m->mount_opt); 2367 } 2368 } 2369 2370 return 0; 2371 } 2372 2373 static int parse_options(struct fs_context *fc, char *options) 2374 { 2375 struct fs_parameter param; 2376 int ret; 2377 char *key; 2378 2379 if (!options) 2380 return 0; 2381 2382 while ((key = strsep(&options, ",")) != NULL) { 2383 if (*key) { 2384 size_t v_len = 0; 2385 char *value = strchr(key, '='); 2386 2387 param.type = fs_value_is_flag; 2388 param.string = NULL; 2389 2390 if (value) { 2391 if (value == key) 2392 continue; 2393 2394 *value++ = 0; 2395 v_len = strlen(value); 2396 param.string = kmemdup_nul(value, v_len, 2397 GFP_KERNEL); 2398 if (!param.string) 2399 return -ENOMEM; 2400 param.type = fs_value_is_string; 2401 } 2402 2403 param.key = key; 2404 param.size = v_len; 2405 2406 ret = ext4_parse_param(fc, ¶m); 2407 if (param.string) 2408 kfree(param.string); 2409 if (ret < 0) 2410 return ret; 2411 } 2412 } 2413 2414 ret = ext4_validate_options(fc); 2415 if (ret < 0) 2416 return ret; 2417 2418 return 0; 2419 } 2420 2421 static int parse_apply_sb_mount_options(struct super_block *sb, 2422 struct ext4_fs_context *m_ctx) 2423 { 2424 struct ext4_sb_info *sbi = EXT4_SB(sb); 2425 char *s_mount_opts = NULL; 2426 struct ext4_fs_context *s_ctx = NULL; 2427 struct fs_context *fc = NULL; 2428 int ret = -ENOMEM; 2429 2430 if (!sbi->s_es->s_mount_opts[0]) 2431 return 0; 2432 2433 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2434 sizeof(sbi->s_es->s_mount_opts), 2435 GFP_KERNEL); 2436 if (!s_mount_opts) 2437 return ret; 2438 2439 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2440 if (!fc) 2441 goto out_free; 2442 2443 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2444 if (!s_ctx) 2445 goto out_free; 2446 2447 fc->fs_private = s_ctx; 2448 fc->s_fs_info = sbi; 2449 2450 ret = parse_options(fc, s_mount_opts); 2451 if (ret < 0) 2452 goto parse_failed; 2453 2454 ret = ext4_check_opt_consistency(fc, sb); 2455 if (ret < 0) { 2456 parse_failed: 2457 ext4_msg(sb, KERN_WARNING, 2458 "failed to parse options in superblock: %s", 2459 s_mount_opts); 2460 ret = 0; 2461 goto out_free; 2462 } 2463 2464 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2465 m_ctx->journal_devnum = s_ctx->journal_devnum; 2466 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2467 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2468 2469 ext4_apply_options(fc, sb); 2470 ret = 0; 2471 2472 out_free: 2473 if (fc) { 2474 ext4_fc_free(fc); 2475 kfree(fc); 2476 } 2477 kfree(s_mount_opts); 2478 return ret; 2479 } 2480 2481 static void ext4_apply_quota_options(struct fs_context *fc, 2482 struct super_block *sb) 2483 { 2484 #ifdef CONFIG_QUOTA 2485 bool quota_feature = ext4_has_feature_quota(sb); 2486 struct ext4_fs_context *ctx = fc->fs_private; 2487 struct ext4_sb_info *sbi = EXT4_SB(sb); 2488 char *qname; 2489 int i; 2490 2491 if (quota_feature) 2492 return; 2493 2494 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2495 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2496 if (!(ctx->qname_spec & (1 << i))) 2497 continue; 2498 2499 qname = ctx->s_qf_names[i]; /* May be NULL */ 2500 if (qname) 2501 set_opt(sb, QUOTA); 2502 ctx->s_qf_names[i] = NULL; 2503 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2504 lockdep_is_held(&sb->s_umount)); 2505 if (qname) 2506 kfree_rcu(qname); 2507 } 2508 } 2509 2510 if (ctx->spec & EXT4_SPEC_JQFMT) 2511 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2512 #endif 2513 } 2514 2515 /* 2516 * Check quota settings consistency. 2517 */ 2518 static int ext4_check_quota_consistency(struct fs_context *fc, 2519 struct super_block *sb) 2520 { 2521 #ifdef CONFIG_QUOTA 2522 struct ext4_fs_context *ctx = fc->fs_private; 2523 struct ext4_sb_info *sbi = EXT4_SB(sb); 2524 bool quota_feature = ext4_has_feature_quota(sb); 2525 bool quota_loaded = sb_any_quota_loaded(sb); 2526 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2527 int quota_flags, i; 2528 2529 /* 2530 * We do the test below only for project quotas. 'usrquota' and 2531 * 'grpquota' mount options are allowed even without quota feature 2532 * to support legacy quotas in quota files. 2533 */ 2534 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2535 !ext4_has_feature_project(sb)) { 2536 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2537 "Cannot enable project quota enforcement."); 2538 return -EINVAL; 2539 } 2540 2541 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2542 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2543 if (quota_loaded && 2544 ctx->mask_s_mount_opt & quota_flags && 2545 !ctx_test_mount_opt(ctx, quota_flags)) 2546 goto err_quota_change; 2547 2548 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2549 2550 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2551 if (!(ctx->qname_spec & (1 << i))) 2552 continue; 2553 2554 if (quota_loaded && 2555 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2556 goto err_jquota_change; 2557 2558 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2559 strcmp(get_qf_name(sb, sbi, i), 2560 ctx->s_qf_names[i]) != 0) 2561 goto err_jquota_specified; 2562 } 2563 2564 if (quota_feature) { 2565 ext4_msg(NULL, KERN_INFO, 2566 "Journaled quota options ignored when " 2567 "QUOTA feature is enabled"); 2568 return 0; 2569 } 2570 } 2571 2572 if (ctx->spec & EXT4_SPEC_JQFMT) { 2573 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2574 goto err_jquota_change; 2575 if (quota_feature) { 2576 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2577 "ignored when QUOTA feature is enabled"); 2578 return 0; 2579 } 2580 } 2581 2582 /* Make sure we don't mix old and new quota format */ 2583 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2584 ctx->s_qf_names[USRQUOTA]); 2585 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2586 ctx->s_qf_names[GRPQUOTA]); 2587 2588 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2589 test_opt(sb, USRQUOTA)); 2590 2591 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2592 test_opt(sb, GRPQUOTA)); 2593 2594 if (usr_qf_name) { 2595 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2596 usrquota = false; 2597 } 2598 if (grp_qf_name) { 2599 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2600 grpquota = false; 2601 } 2602 2603 if (usr_qf_name || grp_qf_name) { 2604 if (usrquota || grpquota) { 2605 ext4_msg(NULL, KERN_ERR, "old and new quota " 2606 "format mixing"); 2607 return -EINVAL; 2608 } 2609 2610 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2611 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2612 "not specified"); 2613 return -EINVAL; 2614 } 2615 } 2616 2617 return 0; 2618 2619 err_quota_change: 2620 ext4_msg(NULL, KERN_ERR, 2621 "Cannot change quota options when quota turned on"); 2622 return -EINVAL; 2623 err_jquota_change: 2624 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2625 "options when quota turned on"); 2626 return -EINVAL; 2627 err_jquota_specified: 2628 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2629 QTYPE2NAME(i)); 2630 return -EINVAL; 2631 #else 2632 return 0; 2633 #endif 2634 } 2635 2636 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2637 struct super_block *sb) 2638 { 2639 const struct ext4_fs_context *ctx = fc->fs_private; 2640 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2641 int err; 2642 2643 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2644 return 0; 2645 2646 if (!ext4_has_feature_encrypt(sb)) { 2647 ext4_msg(NULL, KERN_WARNING, 2648 "test_dummy_encryption requires encrypt feature"); 2649 return -EINVAL; 2650 } 2651 /* 2652 * This mount option is just for testing, and it's not worthwhile to 2653 * implement the extra complexity (e.g. RCU protection) that would be 2654 * needed to allow it to be set or changed during remount. We do allow 2655 * it to be specified during remount, but only if there is no change. 2656 */ 2657 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2658 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2659 &ctx->dummy_enc_policy)) 2660 return 0; 2661 ext4_msg(NULL, KERN_WARNING, 2662 "Can't set or change test_dummy_encryption on remount"); 2663 return -EINVAL; 2664 } 2665 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2666 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2667 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2668 &ctx->dummy_enc_policy)) 2669 return 0; 2670 ext4_msg(NULL, KERN_WARNING, 2671 "Conflicting test_dummy_encryption options"); 2672 return -EINVAL; 2673 } 2674 /* 2675 * fscrypt_add_test_dummy_key() technically changes the super_block, so 2676 * technically it should be delayed until ext4_apply_options() like the 2677 * other changes. But since we never get here for remounts (see above), 2678 * and this is the last chance to report errors, we do it here. 2679 */ 2680 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy); 2681 if (err) 2682 ext4_msg(NULL, KERN_WARNING, 2683 "Error adding test dummy encryption key [%d]", err); 2684 return err; 2685 } 2686 2687 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2688 struct super_block *sb) 2689 { 2690 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2691 /* if already set, it was already verified to be the same */ 2692 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2693 return; 2694 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2695 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2696 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2697 } 2698 2699 static int ext4_check_opt_consistency(struct fs_context *fc, 2700 struct super_block *sb) 2701 { 2702 struct ext4_fs_context *ctx = fc->fs_private; 2703 struct ext4_sb_info *sbi = fc->s_fs_info; 2704 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2705 int err; 2706 2707 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2708 ext4_msg(NULL, KERN_ERR, 2709 "Mount option(s) incompatible with ext2"); 2710 return -EINVAL; 2711 } 2712 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2713 ext4_msg(NULL, KERN_ERR, 2714 "Mount option(s) incompatible with ext3"); 2715 return -EINVAL; 2716 } 2717 2718 if (ctx->s_want_extra_isize > 2719 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2720 ext4_msg(NULL, KERN_ERR, 2721 "Invalid want_extra_isize %d", 2722 ctx->s_want_extra_isize); 2723 return -EINVAL; 2724 } 2725 2726 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2727 int blocksize = 2728 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2729 if (blocksize < PAGE_SIZE) 2730 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2731 "experimental mount option 'dioread_nolock' " 2732 "for blocksize < PAGE_SIZE"); 2733 } 2734 2735 err = ext4_check_test_dummy_encryption(fc, sb); 2736 if (err) 2737 return err; 2738 2739 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2740 if (!sbi->s_journal) { 2741 ext4_msg(NULL, KERN_WARNING, 2742 "Remounting file system with no journal " 2743 "so ignoring journalled data option"); 2744 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2745 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2746 test_opt(sb, DATA_FLAGS)) { 2747 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2748 "on remount"); 2749 return -EINVAL; 2750 } 2751 } 2752 2753 if (is_remount) { 2754 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2755 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2756 ext4_msg(NULL, KERN_ERR, "can't mount with " 2757 "both data=journal and dax"); 2758 return -EINVAL; 2759 } 2760 2761 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2762 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2763 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2764 fail_dax_change_remount: 2765 ext4_msg(NULL, KERN_ERR, "can't change " 2766 "dax mount option while remounting"); 2767 return -EINVAL; 2768 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2769 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2770 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2771 goto fail_dax_change_remount; 2772 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2773 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2774 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2775 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2776 goto fail_dax_change_remount; 2777 } 2778 } 2779 2780 return ext4_check_quota_consistency(fc, sb); 2781 } 2782 2783 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2784 { 2785 struct ext4_fs_context *ctx = fc->fs_private; 2786 struct ext4_sb_info *sbi = fc->s_fs_info; 2787 2788 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2789 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2790 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2791 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2792 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2793 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2794 sb->s_flags &= ~ctx->mask_s_flags; 2795 sb->s_flags |= ctx->vals_s_flags; 2796 2797 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2798 APPLY(s_commit_interval); 2799 APPLY(s_stripe); 2800 APPLY(s_max_batch_time); 2801 APPLY(s_min_batch_time); 2802 APPLY(s_want_extra_isize); 2803 APPLY(s_inode_readahead_blks); 2804 APPLY(s_max_dir_size_kb); 2805 APPLY(s_li_wait_mult); 2806 APPLY(s_resgid); 2807 APPLY(s_resuid); 2808 2809 #ifdef CONFIG_EXT4_DEBUG 2810 APPLY(s_fc_debug_max_replay); 2811 #endif 2812 2813 ext4_apply_quota_options(fc, sb); 2814 ext4_apply_test_dummy_encryption(ctx, sb); 2815 } 2816 2817 2818 static int ext4_validate_options(struct fs_context *fc) 2819 { 2820 #ifdef CONFIG_QUOTA 2821 struct ext4_fs_context *ctx = fc->fs_private; 2822 char *usr_qf_name, *grp_qf_name; 2823 2824 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2825 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2826 2827 if (usr_qf_name || grp_qf_name) { 2828 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2829 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2830 2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2832 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2833 2834 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2835 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2836 ext4_msg(NULL, KERN_ERR, "old and new quota " 2837 "format mixing"); 2838 return -EINVAL; 2839 } 2840 } 2841 #endif 2842 return 1; 2843 } 2844 2845 static inline void ext4_show_quota_options(struct seq_file *seq, 2846 struct super_block *sb) 2847 { 2848 #if defined(CONFIG_QUOTA) 2849 struct ext4_sb_info *sbi = EXT4_SB(sb); 2850 char *usr_qf_name, *grp_qf_name; 2851 2852 if (sbi->s_jquota_fmt) { 2853 char *fmtname = ""; 2854 2855 switch (sbi->s_jquota_fmt) { 2856 case QFMT_VFS_OLD: 2857 fmtname = "vfsold"; 2858 break; 2859 case QFMT_VFS_V0: 2860 fmtname = "vfsv0"; 2861 break; 2862 case QFMT_VFS_V1: 2863 fmtname = "vfsv1"; 2864 break; 2865 } 2866 seq_printf(seq, ",jqfmt=%s", fmtname); 2867 } 2868 2869 rcu_read_lock(); 2870 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2871 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2872 if (usr_qf_name) 2873 seq_show_option(seq, "usrjquota", usr_qf_name); 2874 if (grp_qf_name) 2875 seq_show_option(seq, "grpjquota", grp_qf_name); 2876 rcu_read_unlock(); 2877 #endif 2878 } 2879 2880 static const char *token2str(int token) 2881 { 2882 const struct fs_parameter_spec *spec; 2883 2884 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2885 if (spec->opt == token && !spec->type) 2886 break; 2887 return spec->name; 2888 } 2889 2890 /* 2891 * Show an option if 2892 * - it's set to a non-default value OR 2893 * - if the per-sb default is different from the global default 2894 */ 2895 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2896 int nodefs) 2897 { 2898 struct ext4_sb_info *sbi = EXT4_SB(sb); 2899 struct ext4_super_block *es = sbi->s_es; 2900 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2901 const struct mount_opts *m; 2902 char sep = nodefs ? '\n' : ','; 2903 2904 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2905 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2906 2907 if (sbi->s_sb_block != 1) 2908 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2909 2910 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2911 int want_set = m->flags & MOPT_SET; 2912 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2913 m->flags & MOPT_SKIP) 2914 continue; 2915 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2916 continue; /* skip if same as the default */ 2917 if ((want_set && 2918 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2919 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2920 continue; /* select Opt_noFoo vs Opt_Foo */ 2921 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2922 } 2923 2924 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2925 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2926 SEQ_OPTS_PRINT("resuid=%u", 2927 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2928 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2929 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2930 SEQ_OPTS_PRINT("resgid=%u", 2931 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2932 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2933 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2934 SEQ_OPTS_PUTS("errors=remount-ro"); 2935 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2936 SEQ_OPTS_PUTS("errors=continue"); 2937 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2938 SEQ_OPTS_PUTS("errors=panic"); 2939 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2940 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2941 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2942 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2943 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2944 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2945 if (nodefs || sbi->s_stripe) 2946 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2947 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2948 (sbi->s_mount_opt ^ def_mount_opt)) { 2949 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2950 SEQ_OPTS_PUTS("data=journal"); 2951 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2952 SEQ_OPTS_PUTS("data=ordered"); 2953 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2954 SEQ_OPTS_PUTS("data=writeback"); 2955 } 2956 if (nodefs || 2957 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2958 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2959 sbi->s_inode_readahead_blks); 2960 2961 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2962 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2963 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2964 if (nodefs || sbi->s_max_dir_size_kb) 2965 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2966 if (test_opt(sb, DATA_ERR_ABORT)) 2967 SEQ_OPTS_PUTS("data_err=abort"); 2968 2969 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2970 2971 if (sb->s_flags & SB_INLINECRYPT) 2972 SEQ_OPTS_PUTS("inlinecrypt"); 2973 2974 if (test_opt(sb, DAX_ALWAYS)) { 2975 if (IS_EXT2_SB(sb)) 2976 SEQ_OPTS_PUTS("dax"); 2977 else 2978 SEQ_OPTS_PUTS("dax=always"); 2979 } else if (test_opt2(sb, DAX_NEVER)) { 2980 SEQ_OPTS_PUTS("dax=never"); 2981 } else if (test_opt2(sb, DAX_INODE)) { 2982 SEQ_OPTS_PUTS("dax=inode"); 2983 } 2984 2985 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 2986 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 2987 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 2988 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 2989 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 2990 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 2991 } 2992 2993 ext4_show_quota_options(seq, sb); 2994 return 0; 2995 } 2996 2997 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2998 { 2999 return _ext4_show_options(seq, root->d_sb, 0); 3000 } 3001 3002 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3003 { 3004 struct super_block *sb = seq->private; 3005 int rc; 3006 3007 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3008 rc = _ext4_show_options(seq, sb, 1); 3009 seq_puts(seq, "\n"); 3010 return rc; 3011 } 3012 3013 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3014 int read_only) 3015 { 3016 struct ext4_sb_info *sbi = EXT4_SB(sb); 3017 int err = 0; 3018 3019 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3020 ext4_msg(sb, KERN_ERR, "revision level too high, " 3021 "forcing read-only mode"); 3022 err = -EROFS; 3023 goto done; 3024 } 3025 if (read_only) 3026 goto done; 3027 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3028 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3029 "running e2fsck is recommended"); 3030 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3031 ext4_msg(sb, KERN_WARNING, 3032 "warning: mounting fs with errors, " 3033 "running e2fsck is recommended"); 3034 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3035 le16_to_cpu(es->s_mnt_count) >= 3036 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3037 ext4_msg(sb, KERN_WARNING, 3038 "warning: maximal mount count reached, " 3039 "running e2fsck is recommended"); 3040 else if (le32_to_cpu(es->s_checkinterval) && 3041 (ext4_get_tstamp(es, s_lastcheck) + 3042 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3043 ext4_msg(sb, KERN_WARNING, 3044 "warning: checktime reached, " 3045 "running e2fsck is recommended"); 3046 if (!sbi->s_journal) 3047 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3048 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3049 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3050 le16_add_cpu(&es->s_mnt_count, 1); 3051 ext4_update_tstamp(es, s_mtime); 3052 if (sbi->s_journal) { 3053 ext4_set_feature_journal_needs_recovery(sb); 3054 if (ext4_has_feature_orphan_file(sb)) 3055 ext4_set_feature_orphan_present(sb); 3056 } 3057 3058 err = ext4_commit_super(sb); 3059 done: 3060 if (test_opt(sb, DEBUG)) 3061 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3062 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3063 sb->s_blocksize, 3064 sbi->s_groups_count, 3065 EXT4_BLOCKS_PER_GROUP(sb), 3066 EXT4_INODES_PER_GROUP(sb), 3067 sbi->s_mount_opt, sbi->s_mount_opt2); 3068 return err; 3069 } 3070 3071 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3072 { 3073 struct ext4_sb_info *sbi = EXT4_SB(sb); 3074 struct flex_groups **old_groups, **new_groups; 3075 int size, i, j; 3076 3077 if (!sbi->s_log_groups_per_flex) 3078 return 0; 3079 3080 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3081 if (size <= sbi->s_flex_groups_allocated) 3082 return 0; 3083 3084 new_groups = kvzalloc(roundup_pow_of_two(size * 3085 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3086 if (!new_groups) { 3087 ext4_msg(sb, KERN_ERR, 3088 "not enough memory for %d flex group pointers", size); 3089 return -ENOMEM; 3090 } 3091 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3092 new_groups[i] = kvzalloc(roundup_pow_of_two( 3093 sizeof(struct flex_groups)), 3094 GFP_KERNEL); 3095 if (!new_groups[i]) { 3096 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3097 kvfree(new_groups[j]); 3098 kvfree(new_groups); 3099 ext4_msg(sb, KERN_ERR, 3100 "not enough memory for %d flex groups", size); 3101 return -ENOMEM; 3102 } 3103 } 3104 rcu_read_lock(); 3105 old_groups = rcu_dereference(sbi->s_flex_groups); 3106 if (old_groups) 3107 memcpy(new_groups, old_groups, 3108 (sbi->s_flex_groups_allocated * 3109 sizeof(struct flex_groups *))); 3110 rcu_read_unlock(); 3111 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3112 sbi->s_flex_groups_allocated = size; 3113 if (old_groups) 3114 ext4_kvfree_array_rcu(old_groups); 3115 return 0; 3116 } 3117 3118 static int ext4_fill_flex_info(struct super_block *sb) 3119 { 3120 struct ext4_sb_info *sbi = EXT4_SB(sb); 3121 struct ext4_group_desc *gdp = NULL; 3122 struct flex_groups *fg; 3123 ext4_group_t flex_group; 3124 int i, err; 3125 3126 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3127 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3128 sbi->s_log_groups_per_flex = 0; 3129 return 1; 3130 } 3131 3132 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3133 if (err) 3134 goto failed; 3135 3136 for (i = 0; i < sbi->s_groups_count; i++) { 3137 gdp = ext4_get_group_desc(sb, i, NULL); 3138 3139 flex_group = ext4_flex_group(sbi, i); 3140 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3141 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3142 atomic64_add(ext4_free_group_clusters(sb, gdp), 3143 &fg->free_clusters); 3144 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3145 } 3146 3147 return 1; 3148 failed: 3149 return 0; 3150 } 3151 3152 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3153 struct ext4_group_desc *gdp) 3154 { 3155 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3156 __u16 crc = 0; 3157 __le32 le_group = cpu_to_le32(block_group); 3158 struct ext4_sb_info *sbi = EXT4_SB(sb); 3159 3160 if (ext4_has_metadata_csum(sbi->s_sb)) { 3161 /* Use new metadata_csum algorithm */ 3162 __u32 csum32; 3163 __u16 dummy_csum = 0; 3164 3165 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3166 sizeof(le_group)); 3167 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3168 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3169 sizeof(dummy_csum)); 3170 offset += sizeof(dummy_csum); 3171 if (offset < sbi->s_desc_size) 3172 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3173 sbi->s_desc_size - offset); 3174 3175 crc = csum32 & 0xFFFF; 3176 goto out; 3177 } 3178 3179 /* old crc16 code */ 3180 if (!ext4_has_feature_gdt_csum(sb)) 3181 return 0; 3182 3183 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3184 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3185 crc = crc16(crc, (__u8 *)gdp, offset); 3186 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3187 /* for checksum of struct ext4_group_desc do the rest...*/ 3188 if (ext4_has_feature_64bit(sb) && 3189 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 3190 crc = crc16(crc, (__u8 *)gdp + offset, 3191 le16_to_cpu(sbi->s_es->s_desc_size) - 3192 offset); 3193 3194 out: 3195 return cpu_to_le16(crc); 3196 } 3197 3198 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3199 struct ext4_group_desc *gdp) 3200 { 3201 if (ext4_has_group_desc_csum(sb) && 3202 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3203 return 0; 3204 3205 return 1; 3206 } 3207 3208 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3209 struct ext4_group_desc *gdp) 3210 { 3211 if (!ext4_has_group_desc_csum(sb)) 3212 return; 3213 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3214 } 3215 3216 /* Called at mount-time, super-block is locked */ 3217 static int ext4_check_descriptors(struct super_block *sb, 3218 ext4_fsblk_t sb_block, 3219 ext4_group_t *first_not_zeroed) 3220 { 3221 struct ext4_sb_info *sbi = EXT4_SB(sb); 3222 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3223 ext4_fsblk_t last_block; 3224 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3225 ext4_fsblk_t block_bitmap; 3226 ext4_fsblk_t inode_bitmap; 3227 ext4_fsblk_t inode_table; 3228 int flexbg_flag = 0; 3229 ext4_group_t i, grp = sbi->s_groups_count; 3230 3231 if (ext4_has_feature_flex_bg(sb)) 3232 flexbg_flag = 1; 3233 3234 ext4_debug("Checking group descriptors"); 3235 3236 for (i = 0; i < sbi->s_groups_count; i++) { 3237 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3238 3239 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3240 last_block = ext4_blocks_count(sbi->s_es) - 1; 3241 else 3242 last_block = first_block + 3243 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3244 3245 if ((grp == sbi->s_groups_count) && 3246 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3247 grp = i; 3248 3249 block_bitmap = ext4_block_bitmap(sb, gdp); 3250 if (block_bitmap == sb_block) { 3251 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3252 "Block bitmap for group %u overlaps " 3253 "superblock", i); 3254 if (!sb_rdonly(sb)) 3255 return 0; 3256 } 3257 if (block_bitmap >= sb_block + 1 && 3258 block_bitmap <= last_bg_block) { 3259 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3260 "Block bitmap for group %u overlaps " 3261 "block group descriptors", i); 3262 if (!sb_rdonly(sb)) 3263 return 0; 3264 } 3265 if (block_bitmap < first_block || block_bitmap > last_block) { 3266 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3267 "Block bitmap for group %u not in group " 3268 "(block %llu)!", i, block_bitmap); 3269 return 0; 3270 } 3271 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3272 if (inode_bitmap == sb_block) { 3273 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3274 "Inode bitmap for group %u overlaps " 3275 "superblock", i); 3276 if (!sb_rdonly(sb)) 3277 return 0; 3278 } 3279 if (inode_bitmap >= sb_block + 1 && 3280 inode_bitmap <= last_bg_block) { 3281 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3282 "Inode bitmap for group %u overlaps " 3283 "block group descriptors", i); 3284 if (!sb_rdonly(sb)) 3285 return 0; 3286 } 3287 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3288 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3289 "Inode bitmap for group %u not in group " 3290 "(block %llu)!", i, inode_bitmap); 3291 return 0; 3292 } 3293 inode_table = ext4_inode_table(sb, gdp); 3294 if (inode_table == sb_block) { 3295 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3296 "Inode table for group %u overlaps " 3297 "superblock", i); 3298 if (!sb_rdonly(sb)) 3299 return 0; 3300 } 3301 if (inode_table >= sb_block + 1 && 3302 inode_table <= last_bg_block) { 3303 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3304 "Inode table for group %u overlaps " 3305 "block group descriptors", i); 3306 if (!sb_rdonly(sb)) 3307 return 0; 3308 } 3309 if (inode_table < first_block || 3310 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3311 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3312 "Inode table for group %u not in group " 3313 "(block %llu)!", i, inode_table); 3314 return 0; 3315 } 3316 ext4_lock_group(sb, i); 3317 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3318 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3319 "Checksum for group %u failed (%u!=%u)", 3320 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3321 gdp)), le16_to_cpu(gdp->bg_checksum)); 3322 if (!sb_rdonly(sb)) { 3323 ext4_unlock_group(sb, i); 3324 return 0; 3325 } 3326 } 3327 ext4_unlock_group(sb, i); 3328 if (!flexbg_flag) 3329 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3330 } 3331 if (NULL != first_not_zeroed) 3332 *first_not_zeroed = grp; 3333 return 1; 3334 } 3335 3336 /* 3337 * Maximal extent format file size. 3338 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3339 * extent format containers, within a sector_t, and within i_blocks 3340 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3341 * so that won't be a limiting factor. 3342 * 3343 * However there is other limiting factor. We do store extents in the form 3344 * of starting block and length, hence the resulting length of the extent 3345 * covering maximum file size must fit into on-disk format containers as 3346 * well. Given that length is always by 1 unit bigger than max unit (because 3347 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3348 * 3349 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3350 */ 3351 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3352 { 3353 loff_t res; 3354 loff_t upper_limit = MAX_LFS_FILESIZE; 3355 3356 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3357 3358 if (!has_huge_files) { 3359 upper_limit = (1LL << 32) - 1; 3360 3361 /* total blocks in file system block size */ 3362 upper_limit >>= (blkbits - 9); 3363 upper_limit <<= blkbits; 3364 } 3365 3366 /* 3367 * 32-bit extent-start container, ee_block. We lower the maxbytes 3368 * by one fs block, so ee_len can cover the extent of maximum file 3369 * size 3370 */ 3371 res = (1LL << 32) - 1; 3372 res <<= blkbits; 3373 3374 /* Sanity check against vm- & vfs- imposed limits */ 3375 if (res > upper_limit) 3376 res = upper_limit; 3377 3378 return res; 3379 } 3380 3381 /* 3382 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3383 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3384 * We need to be 1 filesystem block less than the 2^48 sector limit. 3385 */ 3386 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3387 { 3388 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3389 int meta_blocks; 3390 unsigned int ppb = 1 << (bits - 2); 3391 3392 /* 3393 * This is calculated to be the largest file size for a dense, block 3394 * mapped file such that the file's total number of 512-byte sectors, 3395 * including data and all indirect blocks, does not exceed (2^48 - 1). 3396 * 3397 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3398 * number of 512-byte sectors of the file. 3399 */ 3400 if (!has_huge_files) { 3401 /* 3402 * !has_huge_files or implies that the inode i_block field 3403 * represents total file blocks in 2^32 512-byte sectors == 3404 * size of vfs inode i_blocks * 8 3405 */ 3406 upper_limit = (1LL << 32) - 1; 3407 3408 /* total blocks in file system block size */ 3409 upper_limit >>= (bits - 9); 3410 3411 } else { 3412 /* 3413 * We use 48 bit ext4_inode i_blocks 3414 * With EXT4_HUGE_FILE_FL set the i_blocks 3415 * represent total number of blocks in 3416 * file system block size 3417 */ 3418 upper_limit = (1LL << 48) - 1; 3419 3420 } 3421 3422 /* Compute how many blocks we can address by block tree */ 3423 res += ppb; 3424 res += ppb * ppb; 3425 res += ((loff_t)ppb) * ppb * ppb; 3426 /* Compute how many metadata blocks are needed */ 3427 meta_blocks = 1; 3428 meta_blocks += 1 + ppb; 3429 meta_blocks += 1 + ppb + ppb * ppb; 3430 /* Does block tree limit file size? */ 3431 if (res + meta_blocks <= upper_limit) 3432 goto check_lfs; 3433 3434 res = upper_limit; 3435 /* How many metadata blocks are needed for addressing upper_limit? */ 3436 upper_limit -= EXT4_NDIR_BLOCKS; 3437 /* indirect blocks */ 3438 meta_blocks = 1; 3439 upper_limit -= ppb; 3440 /* double indirect blocks */ 3441 if (upper_limit < ppb * ppb) { 3442 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3443 res -= meta_blocks; 3444 goto check_lfs; 3445 } 3446 meta_blocks += 1 + ppb; 3447 upper_limit -= ppb * ppb; 3448 /* tripple indirect blocks for the rest */ 3449 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3450 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3451 res -= meta_blocks; 3452 check_lfs: 3453 res <<= bits; 3454 if (res > MAX_LFS_FILESIZE) 3455 res = MAX_LFS_FILESIZE; 3456 3457 return res; 3458 } 3459 3460 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3461 ext4_fsblk_t logical_sb_block, int nr) 3462 { 3463 struct ext4_sb_info *sbi = EXT4_SB(sb); 3464 ext4_group_t bg, first_meta_bg; 3465 int has_super = 0; 3466 3467 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3468 3469 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3470 return logical_sb_block + nr + 1; 3471 bg = sbi->s_desc_per_block * nr; 3472 if (ext4_bg_has_super(sb, bg)) 3473 has_super = 1; 3474 3475 /* 3476 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3477 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3478 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3479 * compensate. 3480 */ 3481 if (sb->s_blocksize == 1024 && nr == 0 && 3482 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3483 has_super++; 3484 3485 return (has_super + ext4_group_first_block_no(sb, bg)); 3486 } 3487 3488 /** 3489 * ext4_get_stripe_size: Get the stripe size. 3490 * @sbi: In memory super block info 3491 * 3492 * If we have specified it via mount option, then 3493 * use the mount option value. If the value specified at mount time is 3494 * greater than the blocks per group use the super block value. 3495 * If the super block value is greater than blocks per group return 0. 3496 * Allocator needs it be less than blocks per group. 3497 * 3498 */ 3499 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3500 { 3501 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3502 unsigned long stripe_width = 3503 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3504 int ret; 3505 3506 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3507 ret = sbi->s_stripe; 3508 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3509 ret = stripe_width; 3510 else if (stride && stride <= sbi->s_blocks_per_group) 3511 ret = stride; 3512 else 3513 ret = 0; 3514 3515 /* 3516 * If the stripe width is 1, this makes no sense and 3517 * we set it to 0 to turn off stripe handling code. 3518 */ 3519 if (ret <= 1) 3520 ret = 0; 3521 3522 return ret; 3523 } 3524 3525 /* 3526 * Check whether this filesystem can be mounted based on 3527 * the features present and the RDONLY/RDWR mount requested. 3528 * Returns 1 if this filesystem can be mounted as requested, 3529 * 0 if it cannot be. 3530 */ 3531 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3532 { 3533 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3534 ext4_msg(sb, KERN_ERR, 3535 "Couldn't mount because of " 3536 "unsupported optional features (%x)", 3537 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3538 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3539 return 0; 3540 } 3541 3542 #if !IS_ENABLED(CONFIG_UNICODE) 3543 if (ext4_has_feature_casefold(sb)) { 3544 ext4_msg(sb, KERN_ERR, 3545 "Filesystem with casefold feature cannot be " 3546 "mounted without CONFIG_UNICODE"); 3547 return 0; 3548 } 3549 #endif 3550 3551 if (readonly) 3552 return 1; 3553 3554 if (ext4_has_feature_readonly(sb)) { 3555 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3556 sb->s_flags |= SB_RDONLY; 3557 return 1; 3558 } 3559 3560 /* Check that feature set is OK for a read-write mount */ 3561 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3562 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3563 "unsupported optional features (%x)", 3564 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3565 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3566 return 0; 3567 } 3568 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3569 ext4_msg(sb, KERN_ERR, 3570 "Can't support bigalloc feature without " 3571 "extents feature\n"); 3572 return 0; 3573 } 3574 3575 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3576 if (!readonly && (ext4_has_feature_quota(sb) || 3577 ext4_has_feature_project(sb))) { 3578 ext4_msg(sb, KERN_ERR, 3579 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3580 return 0; 3581 } 3582 #endif /* CONFIG_QUOTA */ 3583 return 1; 3584 } 3585 3586 /* 3587 * This function is called once a day if we have errors logged 3588 * on the file system 3589 */ 3590 static void print_daily_error_info(struct timer_list *t) 3591 { 3592 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3593 struct super_block *sb = sbi->s_sb; 3594 struct ext4_super_block *es = sbi->s_es; 3595 3596 if (es->s_error_count) 3597 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3598 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3599 le32_to_cpu(es->s_error_count)); 3600 if (es->s_first_error_time) { 3601 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3602 sb->s_id, 3603 ext4_get_tstamp(es, s_first_error_time), 3604 (int) sizeof(es->s_first_error_func), 3605 es->s_first_error_func, 3606 le32_to_cpu(es->s_first_error_line)); 3607 if (es->s_first_error_ino) 3608 printk(KERN_CONT ": inode %u", 3609 le32_to_cpu(es->s_first_error_ino)); 3610 if (es->s_first_error_block) 3611 printk(KERN_CONT ": block %llu", (unsigned long long) 3612 le64_to_cpu(es->s_first_error_block)); 3613 printk(KERN_CONT "\n"); 3614 } 3615 if (es->s_last_error_time) { 3616 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3617 sb->s_id, 3618 ext4_get_tstamp(es, s_last_error_time), 3619 (int) sizeof(es->s_last_error_func), 3620 es->s_last_error_func, 3621 le32_to_cpu(es->s_last_error_line)); 3622 if (es->s_last_error_ino) 3623 printk(KERN_CONT ": inode %u", 3624 le32_to_cpu(es->s_last_error_ino)); 3625 if (es->s_last_error_block) 3626 printk(KERN_CONT ": block %llu", (unsigned long long) 3627 le64_to_cpu(es->s_last_error_block)); 3628 printk(KERN_CONT "\n"); 3629 } 3630 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3631 } 3632 3633 /* Find next suitable group and run ext4_init_inode_table */ 3634 static int ext4_run_li_request(struct ext4_li_request *elr) 3635 { 3636 struct ext4_group_desc *gdp = NULL; 3637 struct super_block *sb = elr->lr_super; 3638 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3639 ext4_group_t group = elr->lr_next_group; 3640 unsigned int prefetch_ios = 0; 3641 int ret = 0; 3642 u64 start_time; 3643 3644 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3645 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3646 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3647 if (prefetch_ios) 3648 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3649 prefetch_ios); 3650 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3651 prefetch_ios); 3652 if (group >= elr->lr_next_group) { 3653 ret = 1; 3654 if (elr->lr_first_not_zeroed != ngroups && 3655 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3656 elr->lr_next_group = elr->lr_first_not_zeroed; 3657 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3658 ret = 0; 3659 } 3660 } 3661 return ret; 3662 } 3663 3664 for (; group < ngroups; group++) { 3665 gdp = ext4_get_group_desc(sb, group, NULL); 3666 if (!gdp) { 3667 ret = 1; 3668 break; 3669 } 3670 3671 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3672 break; 3673 } 3674 3675 if (group >= ngroups) 3676 ret = 1; 3677 3678 if (!ret) { 3679 start_time = ktime_get_real_ns(); 3680 ret = ext4_init_inode_table(sb, group, 3681 elr->lr_timeout ? 0 : 1); 3682 trace_ext4_lazy_itable_init(sb, group); 3683 if (elr->lr_timeout == 0) { 3684 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3685 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3686 } 3687 elr->lr_next_sched = jiffies + elr->lr_timeout; 3688 elr->lr_next_group = group + 1; 3689 } 3690 return ret; 3691 } 3692 3693 /* 3694 * Remove lr_request from the list_request and free the 3695 * request structure. Should be called with li_list_mtx held 3696 */ 3697 static void ext4_remove_li_request(struct ext4_li_request *elr) 3698 { 3699 if (!elr) 3700 return; 3701 3702 list_del(&elr->lr_request); 3703 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3704 kfree(elr); 3705 } 3706 3707 static void ext4_unregister_li_request(struct super_block *sb) 3708 { 3709 mutex_lock(&ext4_li_mtx); 3710 if (!ext4_li_info) { 3711 mutex_unlock(&ext4_li_mtx); 3712 return; 3713 } 3714 3715 mutex_lock(&ext4_li_info->li_list_mtx); 3716 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3717 mutex_unlock(&ext4_li_info->li_list_mtx); 3718 mutex_unlock(&ext4_li_mtx); 3719 } 3720 3721 static struct task_struct *ext4_lazyinit_task; 3722 3723 /* 3724 * This is the function where ext4lazyinit thread lives. It walks 3725 * through the request list searching for next scheduled filesystem. 3726 * When such a fs is found, run the lazy initialization request 3727 * (ext4_rn_li_request) and keep track of the time spend in this 3728 * function. Based on that time we compute next schedule time of 3729 * the request. When walking through the list is complete, compute 3730 * next waking time and put itself into sleep. 3731 */ 3732 static int ext4_lazyinit_thread(void *arg) 3733 { 3734 struct ext4_lazy_init *eli = arg; 3735 struct list_head *pos, *n; 3736 struct ext4_li_request *elr; 3737 unsigned long next_wakeup, cur; 3738 3739 BUG_ON(NULL == eli); 3740 set_freezable(); 3741 3742 cont_thread: 3743 while (true) { 3744 next_wakeup = MAX_JIFFY_OFFSET; 3745 3746 mutex_lock(&eli->li_list_mtx); 3747 if (list_empty(&eli->li_request_list)) { 3748 mutex_unlock(&eli->li_list_mtx); 3749 goto exit_thread; 3750 } 3751 list_for_each_safe(pos, n, &eli->li_request_list) { 3752 int err = 0; 3753 int progress = 0; 3754 elr = list_entry(pos, struct ext4_li_request, 3755 lr_request); 3756 3757 if (time_before(jiffies, elr->lr_next_sched)) { 3758 if (time_before(elr->lr_next_sched, next_wakeup)) 3759 next_wakeup = elr->lr_next_sched; 3760 continue; 3761 } 3762 if (down_read_trylock(&elr->lr_super->s_umount)) { 3763 if (sb_start_write_trylock(elr->lr_super)) { 3764 progress = 1; 3765 /* 3766 * We hold sb->s_umount, sb can not 3767 * be removed from the list, it is 3768 * now safe to drop li_list_mtx 3769 */ 3770 mutex_unlock(&eli->li_list_mtx); 3771 err = ext4_run_li_request(elr); 3772 sb_end_write(elr->lr_super); 3773 mutex_lock(&eli->li_list_mtx); 3774 n = pos->next; 3775 } 3776 up_read((&elr->lr_super->s_umount)); 3777 } 3778 /* error, remove the lazy_init job */ 3779 if (err) { 3780 ext4_remove_li_request(elr); 3781 continue; 3782 } 3783 if (!progress) { 3784 elr->lr_next_sched = jiffies + 3785 (prandom_u32() 3786 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3787 } 3788 if (time_before(elr->lr_next_sched, next_wakeup)) 3789 next_wakeup = elr->lr_next_sched; 3790 } 3791 mutex_unlock(&eli->li_list_mtx); 3792 3793 try_to_freeze(); 3794 3795 cur = jiffies; 3796 if ((time_after_eq(cur, next_wakeup)) || 3797 (MAX_JIFFY_OFFSET == next_wakeup)) { 3798 cond_resched(); 3799 continue; 3800 } 3801 3802 schedule_timeout_interruptible(next_wakeup - cur); 3803 3804 if (kthread_should_stop()) { 3805 ext4_clear_request_list(); 3806 goto exit_thread; 3807 } 3808 } 3809 3810 exit_thread: 3811 /* 3812 * It looks like the request list is empty, but we need 3813 * to check it under the li_list_mtx lock, to prevent any 3814 * additions into it, and of course we should lock ext4_li_mtx 3815 * to atomically free the list and ext4_li_info, because at 3816 * this point another ext4 filesystem could be registering 3817 * new one. 3818 */ 3819 mutex_lock(&ext4_li_mtx); 3820 mutex_lock(&eli->li_list_mtx); 3821 if (!list_empty(&eli->li_request_list)) { 3822 mutex_unlock(&eli->li_list_mtx); 3823 mutex_unlock(&ext4_li_mtx); 3824 goto cont_thread; 3825 } 3826 mutex_unlock(&eli->li_list_mtx); 3827 kfree(ext4_li_info); 3828 ext4_li_info = NULL; 3829 mutex_unlock(&ext4_li_mtx); 3830 3831 return 0; 3832 } 3833 3834 static void ext4_clear_request_list(void) 3835 { 3836 struct list_head *pos, *n; 3837 struct ext4_li_request *elr; 3838 3839 mutex_lock(&ext4_li_info->li_list_mtx); 3840 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3841 elr = list_entry(pos, struct ext4_li_request, 3842 lr_request); 3843 ext4_remove_li_request(elr); 3844 } 3845 mutex_unlock(&ext4_li_info->li_list_mtx); 3846 } 3847 3848 static int ext4_run_lazyinit_thread(void) 3849 { 3850 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3851 ext4_li_info, "ext4lazyinit"); 3852 if (IS_ERR(ext4_lazyinit_task)) { 3853 int err = PTR_ERR(ext4_lazyinit_task); 3854 ext4_clear_request_list(); 3855 kfree(ext4_li_info); 3856 ext4_li_info = NULL; 3857 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3858 "initialization thread\n", 3859 err); 3860 return err; 3861 } 3862 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3863 return 0; 3864 } 3865 3866 /* 3867 * Check whether it make sense to run itable init. thread or not. 3868 * If there is at least one uninitialized inode table, return 3869 * corresponding group number, else the loop goes through all 3870 * groups and return total number of groups. 3871 */ 3872 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3873 { 3874 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3875 struct ext4_group_desc *gdp = NULL; 3876 3877 if (!ext4_has_group_desc_csum(sb)) 3878 return ngroups; 3879 3880 for (group = 0; group < ngroups; group++) { 3881 gdp = ext4_get_group_desc(sb, group, NULL); 3882 if (!gdp) 3883 continue; 3884 3885 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3886 break; 3887 } 3888 3889 return group; 3890 } 3891 3892 static int ext4_li_info_new(void) 3893 { 3894 struct ext4_lazy_init *eli = NULL; 3895 3896 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3897 if (!eli) 3898 return -ENOMEM; 3899 3900 INIT_LIST_HEAD(&eli->li_request_list); 3901 mutex_init(&eli->li_list_mtx); 3902 3903 eli->li_state |= EXT4_LAZYINIT_QUIT; 3904 3905 ext4_li_info = eli; 3906 3907 return 0; 3908 } 3909 3910 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3911 ext4_group_t start) 3912 { 3913 struct ext4_li_request *elr; 3914 3915 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3916 if (!elr) 3917 return NULL; 3918 3919 elr->lr_super = sb; 3920 elr->lr_first_not_zeroed = start; 3921 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3922 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3923 elr->lr_next_group = start; 3924 } else { 3925 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3926 } 3927 3928 /* 3929 * Randomize first schedule time of the request to 3930 * spread the inode table initialization requests 3931 * better. 3932 */ 3933 elr->lr_next_sched = jiffies + (prandom_u32() % 3934 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3935 return elr; 3936 } 3937 3938 int ext4_register_li_request(struct super_block *sb, 3939 ext4_group_t first_not_zeroed) 3940 { 3941 struct ext4_sb_info *sbi = EXT4_SB(sb); 3942 struct ext4_li_request *elr = NULL; 3943 ext4_group_t ngroups = sbi->s_groups_count; 3944 int ret = 0; 3945 3946 mutex_lock(&ext4_li_mtx); 3947 if (sbi->s_li_request != NULL) { 3948 /* 3949 * Reset timeout so it can be computed again, because 3950 * s_li_wait_mult might have changed. 3951 */ 3952 sbi->s_li_request->lr_timeout = 0; 3953 goto out; 3954 } 3955 3956 if (sb_rdonly(sb) || 3957 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3958 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 3959 goto out; 3960 3961 elr = ext4_li_request_new(sb, first_not_zeroed); 3962 if (!elr) { 3963 ret = -ENOMEM; 3964 goto out; 3965 } 3966 3967 if (NULL == ext4_li_info) { 3968 ret = ext4_li_info_new(); 3969 if (ret) 3970 goto out; 3971 } 3972 3973 mutex_lock(&ext4_li_info->li_list_mtx); 3974 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3975 mutex_unlock(&ext4_li_info->li_list_mtx); 3976 3977 sbi->s_li_request = elr; 3978 /* 3979 * set elr to NULL here since it has been inserted to 3980 * the request_list and the removal and free of it is 3981 * handled by ext4_clear_request_list from now on. 3982 */ 3983 elr = NULL; 3984 3985 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3986 ret = ext4_run_lazyinit_thread(); 3987 if (ret) 3988 goto out; 3989 } 3990 out: 3991 mutex_unlock(&ext4_li_mtx); 3992 if (ret) 3993 kfree(elr); 3994 return ret; 3995 } 3996 3997 /* 3998 * We do not need to lock anything since this is called on 3999 * module unload. 4000 */ 4001 static void ext4_destroy_lazyinit_thread(void) 4002 { 4003 /* 4004 * If thread exited earlier 4005 * there's nothing to be done. 4006 */ 4007 if (!ext4_li_info || !ext4_lazyinit_task) 4008 return; 4009 4010 kthread_stop(ext4_lazyinit_task); 4011 } 4012 4013 static int set_journal_csum_feature_set(struct super_block *sb) 4014 { 4015 int ret = 1; 4016 int compat, incompat; 4017 struct ext4_sb_info *sbi = EXT4_SB(sb); 4018 4019 if (ext4_has_metadata_csum(sb)) { 4020 /* journal checksum v3 */ 4021 compat = 0; 4022 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4023 } else { 4024 /* journal checksum v1 */ 4025 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4026 incompat = 0; 4027 } 4028 4029 jbd2_journal_clear_features(sbi->s_journal, 4030 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4031 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4032 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4033 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4034 ret = jbd2_journal_set_features(sbi->s_journal, 4035 compat, 0, 4036 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4037 incompat); 4038 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4039 ret = jbd2_journal_set_features(sbi->s_journal, 4040 compat, 0, 4041 incompat); 4042 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4043 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4044 } else { 4045 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4046 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4047 } 4048 4049 return ret; 4050 } 4051 4052 /* 4053 * Note: calculating the overhead so we can be compatible with 4054 * historical BSD practice is quite difficult in the face of 4055 * clusters/bigalloc. This is because multiple metadata blocks from 4056 * different block group can end up in the same allocation cluster. 4057 * Calculating the exact overhead in the face of clustered allocation 4058 * requires either O(all block bitmaps) in memory or O(number of block 4059 * groups**2) in time. We will still calculate the superblock for 4060 * older file systems --- and if we come across with a bigalloc file 4061 * system with zero in s_overhead_clusters the estimate will be close to 4062 * correct especially for very large cluster sizes --- but for newer 4063 * file systems, it's better to calculate this figure once at mkfs 4064 * time, and store it in the superblock. If the superblock value is 4065 * present (even for non-bigalloc file systems), we will use it. 4066 */ 4067 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4068 char *buf) 4069 { 4070 struct ext4_sb_info *sbi = EXT4_SB(sb); 4071 struct ext4_group_desc *gdp; 4072 ext4_fsblk_t first_block, last_block, b; 4073 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4074 int s, j, count = 0; 4075 int has_super = ext4_bg_has_super(sb, grp); 4076 4077 if (!ext4_has_feature_bigalloc(sb)) 4078 return (has_super + ext4_bg_num_gdb(sb, grp) + 4079 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4080 sbi->s_itb_per_group + 2); 4081 4082 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4083 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4084 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4085 for (i = 0; i < ngroups; i++) { 4086 gdp = ext4_get_group_desc(sb, i, NULL); 4087 b = ext4_block_bitmap(sb, gdp); 4088 if (b >= first_block && b <= last_block) { 4089 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4090 count++; 4091 } 4092 b = ext4_inode_bitmap(sb, gdp); 4093 if (b >= first_block && b <= last_block) { 4094 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4095 count++; 4096 } 4097 b = ext4_inode_table(sb, gdp); 4098 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4099 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4100 int c = EXT4_B2C(sbi, b - first_block); 4101 ext4_set_bit(c, buf); 4102 count++; 4103 } 4104 if (i != grp) 4105 continue; 4106 s = 0; 4107 if (ext4_bg_has_super(sb, grp)) { 4108 ext4_set_bit(s++, buf); 4109 count++; 4110 } 4111 j = ext4_bg_num_gdb(sb, grp); 4112 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4113 ext4_error(sb, "Invalid number of block group " 4114 "descriptor blocks: %d", j); 4115 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4116 } 4117 count += j; 4118 for (; j > 0; j--) 4119 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4120 } 4121 if (!count) 4122 return 0; 4123 return EXT4_CLUSTERS_PER_GROUP(sb) - 4124 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4125 } 4126 4127 /* 4128 * Compute the overhead and stash it in sbi->s_overhead 4129 */ 4130 int ext4_calculate_overhead(struct super_block *sb) 4131 { 4132 struct ext4_sb_info *sbi = EXT4_SB(sb); 4133 struct ext4_super_block *es = sbi->s_es; 4134 struct inode *j_inode; 4135 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4136 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4137 ext4_fsblk_t overhead = 0; 4138 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4139 4140 if (!buf) 4141 return -ENOMEM; 4142 4143 /* 4144 * Compute the overhead (FS structures). This is constant 4145 * for a given filesystem unless the number of block groups 4146 * changes so we cache the previous value until it does. 4147 */ 4148 4149 /* 4150 * All of the blocks before first_data_block are overhead 4151 */ 4152 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4153 4154 /* 4155 * Add the overhead found in each block group 4156 */ 4157 for (i = 0; i < ngroups; i++) { 4158 int blks; 4159 4160 blks = count_overhead(sb, i, buf); 4161 overhead += blks; 4162 if (blks) 4163 memset(buf, 0, PAGE_SIZE); 4164 cond_resched(); 4165 } 4166 4167 /* 4168 * Add the internal journal blocks whether the journal has been 4169 * loaded or not 4170 */ 4171 if (sbi->s_journal && !sbi->s_journal_bdev) 4172 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4173 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4174 /* j_inum for internal journal is non-zero */ 4175 j_inode = ext4_get_journal_inode(sb, j_inum); 4176 if (j_inode) { 4177 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4178 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4179 iput(j_inode); 4180 } else { 4181 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4182 } 4183 } 4184 sbi->s_overhead = overhead; 4185 smp_wmb(); 4186 free_page((unsigned long) buf); 4187 return 0; 4188 } 4189 4190 static void ext4_set_resv_clusters(struct super_block *sb) 4191 { 4192 ext4_fsblk_t resv_clusters; 4193 struct ext4_sb_info *sbi = EXT4_SB(sb); 4194 4195 /* 4196 * There's no need to reserve anything when we aren't using extents. 4197 * The space estimates are exact, there are no unwritten extents, 4198 * hole punching doesn't need new metadata... This is needed especially 4199 * to keep ext2/3 backward compatibility. 4200 */ 4201 if (!ext4_has_feature_extents(sb)) 4202 return; 4203 /* 4204 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4205 * This should cover the situations where we can not afford to run 4206 * out of space like for example punch hole, or converting 4207 * unwritten extents in delalloc path. In most cases such 4208 * allocation would require 1, or 2 blocks, higher numbers are 4209 * very rare. 4210 */ 4211 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4212 sbi->s_cluster_bits); 4213 4214 do_div(resv_clusters, 50); 4215 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4216 4217 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4218 } 4219 4220 static const char *ext4_quota_mode(struct super_block *sb) 4221 { 4222 #ifdef CONFIG_QUOTA 4223 if (!ext4_quota_capable(sb)) 4224 return "none"; 4225 4226 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4227 return "journalled"; 4228 else 4229 return "writeback"; 4230 #else 4231 return "disabled"; 4232 #endif 4233 } 4234 4235 static void ext4_setup_csum_trigger(struct super_block *sb, 4236 enum ext4_journal_trigger_type type, 4237 void (*trigger)( 4238 struct jbd2_buffer_trigger_type *type, 4239 struct buffer_head *bh, 4240 void *mapped_data, 4241 size_t size)) 4242 { 4243 struct ext4_sb_info *sbi = EXT4_SB(sb); 4244 4245 sbi->s_journal_triggers[type].sb = sb; 4246 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4247 } 4248 4249 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4250 { 4251 if (!sbi) 4252 return; 4253 4254 kfree(sbi->s_blockgroup_lock); 4255 fs_put_dax(sbi->s_daxdev, NULL); 4256 kfree(sbi); 4257 } 4258 4259 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4260 { 4261 struct ext4_sb_info *sbi; 4262 4263 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4264 if (!sbi) 4265 return NULL; 4266 4267 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4268 NULL, NULL); 4269 4270 sbi->s_blockgroup_lock = 4271 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4272 4273 if (!sbi->s_blockgroup_lock) 4274 goto err_out; 4275 4276 sb->s_fs_info = sbi; 4277 sbi->s_sb = sb; 4278 return sbi; 4279 err_out: 4280 fs_put_dax(sbi->s_daxdev, NULL); 4281 kfree(sbi); 4282 return NULL; 4283 } 4284 4285 static void ext4_set_def_opts(struct super_block *sb, 4286 struct ext4_super_block *es) 4287 { 4288 unsigned long def_mount_opts; 4289 4290 /* Set defaults before we parse the mount options */ 4291 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4292 set_opt(sb, INIT_INODE_TABLE); 4293 if (def_mount_opts & EXT4_DEFM_DEBUG) 4294 set_opt(sb, DEBUG); 4295 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4296 set_opt(sb, GRPID); 4297 if (def_mount_opts & EXT4_DEFM_UID16) 4298 set_opt(sb, NO_UID32); 4299 /* xattr user namespace & acls are now defaulted on */ 4300 set_opt(sb, XATTR_USER); 4301 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4302 set_opt(sb, POSIX_ACL); 4303 #endif 4304 if (ext4_has_feature_fast_commit(sb)) 4305 set_opt2(sb, JOURNAL_FAST_COMMIT); 4306 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4307 if (ext4_has_metadata_csum(sb)) 4308 set_opt(sb, JOURNAL_CHECKSUM); 4309 4310 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4311 set_opt(sb, JOURNAL_DATA); 4312 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4313 set_opt(sb, ORDERED_DATA); 4314 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4315 set_opt(sb, WRITEBACK_DATA); 4316 4317 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4318 set_opt(sb, ERRORS_PANIC); 4319 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4320 set_opt(sb, ERRORS_CONT); 4321 else 4322 set_opt(sb, ERRORS_RO); 4323 /* block_validity enabled by default; disable with noblock_validity */ 4324 set_opt(sb, BLOCK_VALIDITY); 4325 if (def_mount_opts & EXT4_DEFM_DISCARD) 4326 set_opt(sb, DISCARD); 4327 4328 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4329 set_opt(sb, BARRIER); 4330 4331 /* 4332 * enable delayed allocation by default 4333 * Use -o nodelalloc to turn it off 4334 */ 4335 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4336 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4337 set_opt(sb, DELALLOC); 4338 4339 if (sb->s_blocksize == PAGE_SIZE) 4340 set_opt(sb, DIOREAD_NOLOCK); 4341 } 4342 4343 static int ext4_handle_clustersize(struct super_block *sb) 4344 { 4345 struct ext4_sb_info *sbi = EXT4_SB(sb); 4346 struct ext4_super_block *es = sbi->s_es; 4347 int clustersize; 4348 4349 /* Handle clustersize */ 4350 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4351 if (ext4_has_feature_bigalloc(sb)) { 4352 if (clustersize < sb->s_blocksize) { 4353 ext4_msg(sb, KERN_ERR, 4354 "cluster size (%d) smaller than " 4355 "block size (%lu)", clustersize, sb->s_blocksize); 4356 return -EINVAL; 4357 } 4358 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4359 le32_to_cpu(es->s_log_block_size); 4360 sbi->s_clusters_per_group = 4361 le32_to_cpu(es->s_clusters_per_group); 4362 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4363 ext4_msg(sb, KERN_ERR, 4364 "#clusters per group too big: %lu", 4365 sbi->s_clusters_per_group); 4366 return -EINVAL; 4367 } 4368 if (sbi->s_blocks_per_group != 4369 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4370 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4371 "clusters per group (%lu) inconsistent", 4372 sbi->s_blocks_per_group, 4373 sbi->s_clusters_per_group); 4374 return -EINVAL; 4375 } 4376 } else { 4377 if (clustersize != sb->s_blocksize) { 4378 ext4_msg(sb, KERN_ERR, 4379 "fragment/cluster size (%d) != " 4380 "block size (%lu)", clustersize, sb->s_blocksize); 4381 return -EINVAL; 4382 } 4383 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4384 ext4_msg(sb, KERN_ERR, 4385 "#blocks per group too big: %lu", 4386 sbi->s_blocks_per_group); 4387 return -EINVAL; 4388 } 4389 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4390 sbi->s_cluster_bits = 0; 4391 } 4392 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4393 4394 /* Do we have standard group size of clustersize * 8 blocks ? */ 4395 if (sbi->s_blocks_per_group == clustersize << 3) 4396 set_opt2(sb, STD_GROUP_SIZE); 4397 4398 return 0; 4399 } 4400 4401 static void ext4_fast_commit_init(struct super_block *sb) 4402 { 4403 struct ext4_sb_info *sbi = EXT4_SB(sb); 4404 4405 /* Initialize fast commit stuff */ 4406 atomic_set(&sbi->s_fc_subtid, 0); 4407 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4408 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4409 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4410 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4411 sbi->s_fc_bytes = 0; 4412 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4413 sbi->s_fc_ineligible_tid = 0; 4414 spin_lock_init(&sbi->s_fc_lock); 4415 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4416 sbi->s_fc_replay_state.fc_regions = NULL; 4417 sbi->s_fc_replay_state.fc_regions_size = 0; 4418 sbi->s_fc_replay_state.fc_regions_used = 0; 4419 sbi->s_fc_replay_state.fc_regions_valid = 0; 4420 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4421 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4422 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4423 } 4424 4425 static int ext4_inode_info_init(struct super_block *sb, 4426 struct ext4_super_block *es) 4427 { 4428 struct ext4_sb_info *sbi = EXT4_SB(sb); 4429 4430 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4431 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4432 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4433 } else { 4434 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4435 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4436 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4437 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4438 sbi->s_first_ino); 4439 return -EINVAL; 4440 } 4441 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4442 (!is_power_of_2(sbi->s_inode_size)) || 4443 (sbi->s_inode_size > sb->s_blocksize)) { 4444 ext4_msg(sb, KERN_ERR, 4445 "unsupported inode size: %d", 4446 sbi->s_inode_size); 4447 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4448 return -EINVAL; 4449 } 4450 /* 4451 * i_atime_extra is the last extra field available for 4452 * [acm]times in struct ext4_inode. Checking for that 4453 * field should suffice to ensure we have extra space 4454 * for all three. 4455 */ 4456 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4457 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4458 sb->s_time_gran = 1; 4459 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4460 } else { 4461 sb->s_time_gran = NSEC_PER_SEC; 4462 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4463 } 4464 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4465 } 4466 4467 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4468 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4469 EXT4_GOOD_OLD_INODE_SIZE; 4470 if (ext4_has_feature_extra_isize(sb)) { 4471 unsigned v, max = (sbi->s_inode_size - 4472 EXT4_GOOD_OLD_INODE_SIZE); 4473 4474 v = le16_to_cpu(es->s_want_extra_isize); 4475 if (v > max) { 4476 ext4_msg(sb, KERN_ERR, 4477 "bad s_want_extra_isize: %d", v); 4478 return -EINVAL; 4479 } 4480 if (sbi->s_want_extra_isize < v) 4481 sbi->s_want_extra_isize = v; 4482 4483 v = le16_to_cpu(es->s_min_extra_isize); 4484 if (v > max) { 4485 ext4_msg(sb, KERN_ERR, 4486 "bad s_min_extra_isize: %d", v); 4487 return -EINVAL; 4488 } 4489 if (sbi->s_want_extra_isize < v) 4490 sbi->s_want_extra_isize = v; 4491 } 4492 } 4493 4494 return 0; 4495 } 4496 4497 #if IS_ENABLED(CONFIG_UNICODE) 4498 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4499 { 4500 const struct ext4_sb_encodings *encoding_info; 4501 struct unicode_map *encoding; 4502 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4503 4504 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4505 return 0; 4506 4507 encoding_info = ext4_sb_read_encoding(es); 4508 if (!encoding_info) { 4509 ext4_msg(sb, KERN_ERR, 4510 "Encoding requested by superblock is unknown"); 4511 return -EINVAL; 4512 } 4513 4514 encoding = utf8_load(encoding_info->version); 4515 if (IS_ERR(encoding)) { 4516 ext4_msg(sb, KERN_ERR, 4517 "can't mount with superblock charset: %s-%u.%u.%u " 4518 "not supported by the kernel. flags: 0x%x.", 4519 encoding_info->name, 4520 unicode_major(encoding_info->version), 4521 unicode_minor(encoding_info->version), 4522 unicode_rev(encoding_info->version), 4523 encoding_flags); 4524 return -EINVAL; 4525 } 4526 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4527 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4528 unicode_major(encoding_info->version), 4529 unicode_minor(encoding_info->version), 4530 unicode_rev(encoding_info->version), 4531 encoding_flags); 4532 4533 sb->s_encoding = encoding; 4534 sb->s_encoding_flags = encoding_flags; 4535 4536 return 0; 4537 } 4538 #else 4539 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4540 { 4541 return 0; 4542 } 4543 #endif 4544 4545 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4546 { 4547 struct ext4_sb_info *sbi = EXT4_SB(sb); 4548 4549 /* Warn if metadata_csum and gdt_csum are both set. */ 4550 if (ext4_has_feature_metadata_csum(sb) && 4551 ext4_has_feature_gdt_csum(sb)) 4552 ext4_warning(sb, "metadata_csum and uninit_bg are " 4553 "redundant flags; please run fsck."); 4554 4555 /* Check for a known checksum algorithm */ 4556 if (!ext4_verify_csum_type(sb, es)) { 4557 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4558 "unknown checksum algorithm."); 4559 return -EINVAL; 4560 } 4561 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4562 ext4_orphan_file_block_trigger); 4563 4564 /* Load the checksum driver */ 4565 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4566 if (IS_ERR(sbi->s_chksum_driver)) { 4567 int ret = PTR_ERR(sbi->s_chksum_driver); 4568 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4569 sbi->s_chksum_driver = NULL; 4570 return ret; 4571 } 4572 4573 /* Check superblock checksum */ 4574 if (!ext4_superblock_csum_verify(sb, es)) { 4575 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4576 "invalid superblock checksum. Run e2fsck?"); 4577 return -EFSBADCRC; 4578 } 4579 4580 /* Precompute checksum seed for all metadata */ 4581 if (ext4_has_feature_csum_seed(sb)) 4582 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4583 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4584 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4585 sizeof(es->s_uuid)); 4586 return 0; 4587 } 4588 4589 static int ext4_check_feature_compatibility(struct super_block *sb, 4590 struct ext4_super_block *es, 4591 int silent) 4592 { 4593 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4594 (ext4_has_compat_features(sb) || 4595 ext4_has_ro_compat_features(sb) || 4596 ext4_has_incompat_features(sb))) 4597 ext4_msg(sb, KERN_WARNING, 4598 "feature flags set on rev 0 fs, " 4599 "running e2fsck is recommended"); 4600 4601 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4602 set_opt2(sb, HURD_COMPAT); 4603 if (ext4_has_feature_64bit(sb)) { 4604 ext4_msg(sb, KERN_ERR, 4605 "The Hurd can't support 64-bit file systems"); 4606 return -EINVAL; 4607 } 4608 4609 /* 4610 * ea_inode feature uses l_i_version field which is not 4611 * available in HURD_COMPAT mode. 4612 */ 4613 if (ext4_has_feature_ea_inode(sb)) { 4614 ext4_msg(sb, KERN_ERR, 4615 "ea_inode feature is not supported for Hurd"); 4616 return -EINVAL; 4617 } 4618 } 4619 4620 if (IS_EXT2_SB(sb)) { 4621 if (ext2_feature_set_ok(sb)) 4622 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4623 "using the ext4 subsystem"); 4624 else { 4625 /* 4626 * If we're probing be silent, if this looks like 4627 * it's actually an ext[34] filesystem. 4628 */ 4629 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4630 return -EINVAL; 4631 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4632 "to feature incompatibilities"); 4633 return -EINVAL; 4634 } 4635 } 4636 4637 if (IS_EXT3_SB(sb)) { 4638 if (ext3_feature_set_ok(sb)) 4639 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4640 "using the ext4 subsystem"); 4641 else { 4642 /* 4643 * If we're probing be silent, if this looks like 4644 * it's actually an ext4 filesystem. 4645 */ 4646 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4647 return -EINVAL; 4648 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4649 "to feature incompatibilities"); 4650 return -EINVAL; 4651 } 4652 } 4653 4654 /* 4655 * Check feature flags regardless of the revision level, since we 4656 * previously didn't change the revision level when setting the flags, 4657 * so there is a chance incompat flags are set on a rev 0 filesystem. 4658 */ 4659 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4660 return -EINVAL; 4661 4662 return 0; 4663 } 4664 4665 static int ext4_geometry_check(struct super_block *sb, 4666 struct ext4_super_block *es) 4667 { 4668 struct ext4_sb_info *sbi = EXT4_SB(sb); 4669 __u64 blocks_count; 4670 4671 /* check blocks count against device size */ 4672 blocks_count = sb_bdev_nr_blocks(sb); 4673 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4674 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4675 "exceeds size of device (%llu blocks)", 4676 ext4_blocks_count(es), blocks_count); 4677 return -EINVAL; 4678 } 4679 4680 /* 4681 * It makes no sense for the first data block to be beyond the end 4682 * of the filesystem. 4683 */ 4684 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4685 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4686 "block %u is beyond end of filesystem (%llu)", 4687 le32_to_cpu(es->s_first_data_block), 4688 ext4_blocks_count(es)); 4689 return -EINVAL; 4690 } 4691 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4692 (sbi->s_cluster_ratio == 1)) { 4693 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4694 "block is 0 with a 1k block and cluster size"); 4695 return -EINVAL; 4696 } 4697 4698 blocks_count = (ext4_blocks_count(es) - 4699 le32_to_cpu(es->s_first_data_block) + 4700 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4701 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4702 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4703 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4704 "(block count %llu, first data block %u, " 4705 "blocks per group %lu)", blocks_count, 4706 ext4_blocks_count(es), 4707 le32_to_cpu(es->s_first_data_block), 4708 EXT4_BLOCKS_PER_GROUP(sb)); 4709 return -EINVAL; 4710 } 4711 sbi->s_groups_count = blocks_count; 4712 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4713 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4714 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4715 le32_to_cpu(es->s_inodes_count)) { 4716 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4717 le32_to_cpu(es->s_inodes_count), 4718 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4719 return -EINVAL; 4720 } 4721 4722 return 0; 4723 } 4724 4725 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 4726 { 4727 struct buffer_head **group_desc; 4728 int i; 4729 4730 rcu_read_lock(); 4731 group_desc = rcu_dereference(sbi->s_group_desc); 4732 for (i = 0; i < sbi->s_gdb_count; i++) 4733 brelse(group_desc[i]); 4734 kvfree(group_desc); 4735 rcu_read_unlock(); 4736 } 4737 4738 static int ext4_group_desc_init(struct super_block *sb, 4739 struct ext4_super_block *es, 4740 ext4_fsblk_t logical_sb_block, 4741 ext4_group_t *first_not_zeroed) 4742 { 4743 struct ext4_sb_info *sbi = EXT4_SB(sb); 4744 unsigned int db_count; 4745 ext4_fsblk_t block; 4746 int ret; 4747 int i; 4748 4749 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4750 EXT4_DESC_PER_BLOCK(sb); 4751 if (ext4_has_feature_meta_bg(sb)) { 4752 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4753 ext4_msg(sb, KERN_WARNING, 4754 "first meta block group too large: %u " 4755 "(group descriptor block count %u)", 4756 le32_to_cpu(es->s_first_meta_bg), db_count); 4757 return -EINVAL; 4758 } 4759 } 4760 rcu_assign_pointer(sbi->s_group_desc, 4761 kvmalloc_array(db_count, 4762 sizeof(struct buffer_head *), 4763 GFP_KERNEL)); 4764 if (sbi->s_group_desc == NULL) { 4765 ext4_msg(sb, KERN_ERR, "not enough memory"); 4766 return -ENOMEM; 4767 } 4768 4769 bgl_lock_init(sbi->s_blockgroup_lock); 4770 4771 /* Pre-read the descriptors into the buffer cache */ 4772 for (i = 0; i < db_count; i++) { 4773 block = descriptor_loc(sb, logical_sb_block, i); 4774 ext4_sb_breadahead_unmovable(sb, block); 4775 } 4776 4777 for (i = 0; i < db_count; i++) { 4778 struct buffer_head *bh; 4779 4780 block = descriptor_loc(sb, logical_sb_block, i); 4781 bh = ext4_sb_bread_unmovable(sb, block); 4782 if (IS_ERR(bh)) { 4783 ext4_msg(sb, KERN_ERR, 4784 "can't read group descriptor %d", i); 4785 sbi->s_gdb_count = i; 4786 ret = PTR_ERR(bh); 4787 goto out; 4788 } 4789 rcu_read_lock(); 4790 rcu_dereference(sbi->s_group_desc)[i] = bh; 4791 rcu_read_unlock(); 4792 } 4793 sbi->s_gdb_count = db_count; 4794 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4795 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4796 ret = -EFSCORRUPTED; 4797 goto out; 4798 } 4799 return 0; 4800 out: 4801 ext4_group_desc_free(sbi); 4802 return ret; 4803 } 4804 4805 static int ext4_load_and_init_journal(struct super_block *sb, 4806 struct ext4_super_block *es, 4807 struct ext4_fs_context *ctx) 4808 { 4809 struct ext4_sb_info *sbi = EXT4_SB(sb); 4810 int err; 4811 4812 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4813 if (err) 4814 return err; 4815 4816 if (ext4_has_feature_64bit(sb) && 4817 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4818 JBD2_FEATURE_INCOMPAT_64BIT)) { 4819 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4820 goto out; 4821 } 4822 4823 if (!set_journal_csum_feature_set(sb)) { 4824 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4825 "feature set"); 4826 goto out; 4827 } 4828 4829 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4830 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4831 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4832 ext4_msg(sb, KERN_ERR, 4833 "Failed to set fast commit journal feature"); 4834 goto out; 4835 } 4836 4837 /* We have now updated the journal if required, so we can 4838 * validate the data journaling mode. */ 4839 switch (test_opt(sb, DATA_FLAGS)) { 4840 case 0: 4841 /* No mode set, assume a default based on the journal 4842 * capabilities: ORDERED_DATA if the journal can 4843 * cope, else JOURNAL_DATA 4844 */ 4845 if (jbd2_journal_check_available_features 4846 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4847 set_opt(sb, ORDERED_DATA); 4848 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4849 } else { 4850 set_opt(sb, JOURNAL_DATA); 4851 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4852 } 4853 break; 4854 4855 case EXT4_MOUNT_ORDERED_DATA: 4856 case EXT4_MOUNT_WRITEBACK_DATA: 4857 if (!jbd2_journal_check_available_features 4858 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4859 ext4_msg(sb, KERN_ERR, "Journal does not support " 4860 "requested data journaling mode"); 4861 goto out; 4862 } 4863 break; 4864 default: 4865 break; 4866 } 4867 4868 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4869 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4870 ext4_msg(sb, KERN_ERR, "can't mount with " 4871 "journal_async_commit in data=ordered mode"); 4872 goto out; 4873 } 4874 4875 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4876 4877 sbi->s_journal->j_submit_inode_data_buffers = 4878 ext4_journal_submit_inode_data_buffers; 4879 sbi->s_journal->j_finish_inode_data_buffers = 4880 ext4_journal_finish_inode_data_buffers; 4881 4882 return 0; 4883 4884 out: 4885 /* flush s_error_work before journal destroy. */ 4886 flush_work(&sbi->s_error_work); 4887 jbd2_journal_destroy(sbi->s_journal); 4888 sbi->s_journal = NULL; 4889 return err; 4890 } 4891 4892 static int ext4_journal_data_mode_check(struct super_block *sb) 4893 { 4894 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4895 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4896 "data=journal disables delayed allocation, " 4897 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4898 /* can't mount with both data=journal and dioread_nolock. */ 4899 clear_opt(sb, DIOREAD_NOLOCK); 4900 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4901 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4902 ext4_msg(sb, KERN_ERR, "can't mount with " 4903 "both data=journal and delalloc"); 4904 return -EINVAL; 4905 } 4906 if (test_opt(sb, DAX_ALWAYS)) { 4907 ext4_msg(sb, KERN_ERR, "can't mount with " 4908 "both data=journal and dax"); 4909 return -EINVAL; 4910 } 4911 if (ext4_has_feature_encrypt(sb)) { 4912 ext4_msg(sb, KERN_WARNING, 4913 "encrypted files will use data=ordered " 4914 "instead of data journaling mode"); 4915 } 4916 if (test_opt(sb, DELALLOC)) 4917 clear_opt(sb, DELALLOC); 4918 } else { 4919 sb->s_iflags |= SB_I_CGROUPWB; 4920 } 4921 4922 return 0; 4923 } 4924 4925 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 4926 int silent) 4927 { 4928 struct ext4_sb_info *sbi = EXT4_SB(sb); 4929 struct ext4_super_block *es; 4930 ext4_fsblk_t logical_sb_block; 4931 unsigned long offset = 0; 4932 struct buffer_head *bh; 4933 int ret = -EINVAL; 4934 int blocksize; 4935 4936 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4937 if (!blocksize) { 4938 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4939 return -EINVAL; 4940 } 4941 4942 /* 4943 * The ext4 superblock will not be buffer aligned for other than 1kB 4944 * block sizes. We need to calculate the offset from buffer start. 4945 */ 4946 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4947 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4948 offset = do_div(logical_sb_block, blocksize); 4949 } else { 4950 logical_sb_block = sbi->s_sb_block; 4951 } 4952 4953 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4954 if (IS_ERR(bh)) { 4955 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4956 return PTR_ERR(bh); 4957 } 4958 /* 4959 * Note: s_es must be initialized as soon as possible because 4960 * some ext4 macro-instructions depend on its value 4961 */ 4962 es = (struct ext4_super_block *) (bh->b_data + offset); 4963 sbi->s_es = es; 4964 sb->s_magic = le16_to_cpu(es->s_magic); 4965 if (sb->s_magic != EXT4_SUPER_MAGIC) { 4966 if (!silent) 4967 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4968 goto out; 4969 } 4970 4971 if (le32_to_cpu(es->s_log_block_size) > 4972 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4973 ext4_msg(sb, KERN_ERR, 4974 "Invalid log block size: %u", 4975 le32_to_cpu(es->s_log_block_size)); 4976 goto out; 4977 } 4978 if (le32_to_cpu(es->s_log_cluster_size) > 4979 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4980 ext4_msg(sb, KERN_ERR, 4981 "Invalid log cluster size: %u", 4982 le32_to_cpu(es->s_log_cluster_size)); 4983 goto out; 4984 } 4985 4986 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4987 4988 /* 4989 * If the default block size is not the same as the real block size, 4990 * we need to reload it. 4991 */ 4992 if (sb->s_blocksize == blocksize) { 4993 *lsb = logical_sb_block; 4994 sbi->s_sbh = bh; 4995 return 0; 4996 } 4997 4998 /* 4999 * bh must be released before kill_bdev(), otherwise 5000 * it won't be freed and its page also. kill_bdev() 5001 * is called by sb_set_blocksize(). 5002 */ 5003 brelse(bh); 5004 /* Validate the filesystem blocksize */ 5005 if (!sb_set_blocksize(sb, blocksize)) { 5006 ext4_msg(sb, KERN_ERR, "bad block size %d", 5007 blocksize); 5008 bh = NULL; 5009 goto out; 5010 } 5011 5012 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5013 offset = do_div(logical_sb_block, blocksize); 5014 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5015 if (IS_ERR(bh)) { 5016 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5017 ret = PTR_ERR(bh); 5018 bh = NULL; 5019 goto out; 5020 } 5021 es = (struct ext4_super_block *)(bh->b_data + offset); 5022 sbi->s_es = es; 5023 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5024 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5025 goto out; 5026 } 5027 *lsb = logical_sb_block; 5028 sbi->s_sbh = bh; 5029 return 0; 5030 out: 5031 brelse(bh); 5032 return ret; 5033 } 5034 5035 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5036 { 5037 struct ext4_super_block *es = NULL; 5038 struct ext4_sb_info *sbi = EXT4_SB(sb); 5039 struct flex_groups **flex_groups; 5040 ext4_fsblk_t block; 5041 ext4_fsblk_t logical_sb_block; 5042 struct inode *root; 5043 int ret = -ENOMEM; 5044 unsigned int i; 5045 int needs_recovery, has_huge_files; 5046 int err = 0; 5047 ext4_group_t first_not_zeroed; 5048 struct ext4_fs_context *ctx = fc->fs_private; 5049 int silent = fc->sb_flags & SB_SILENT; 5050 5051 /* Set defaults for the variables that will be set during parsing */ 5052 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5053 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5054 5055 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5056 sbi->s_sectors_written_start = 5057 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5058 5059 /* -EINVAL is default */ 5060 ret = -EINVAL; 5061 err = ext4_load_super(sb, &logical_sb_block, silent); 5062 if (err) 5063 goto out_fail; 5064 5065 es = sbi->s_es; 5066 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5067 5068 err = ext4_init_metadata_csum(sb, es); 5069 if (err) 5070 goto failed_mount; 5071 5072 ext4_set_def_opts(sb, es); 5073 5074 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5075 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5076 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5077 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5078 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5079 5080 /* 5081 * set default s_li_wait_mult for lazyinit, for the case there is 5082 * no mount option specified. 5083 */ 5084 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5085 5086 if (ext4_inode_info_init(sb, es)) 5087 goto failed_mount; 5088 5089 err = parse_apply_sb_mount_options(sb, ctx); 5090 if (err < 0) 5091 goto failed_mount; 5092 5093 sbi->s_def_mount_opt = sbi->s_mount_opt; 5094 5095 err = ext4_check_opt_consistency(fc, sb); 5096 if (err < 0) 5097 goto failed_mount; 5098 5099 ext4_apply_options(fc, sb); 5100 5101 if (ext4_encoding_init(sb, es)) 5102 goto failed_mount; 5103 5104 if (ext4_journal_data_mode_check(sb)) 5105 goto failed_mount; 5106 5107 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5108 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5109 5110 /* i_version is always enabled now */ 5111 sb->s_flags |= SB_I_VERSION; 5112 5113 if (ext4_check_feature_compatibility(sb, es, silent)) 5114 goto failed_mount; 5115 5116 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 5117 ext4_msg(sb, KERN_ERR, 5118 "Number of reserved GDT blocks insanely large: %d", 5119 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 5120 goto failed_mount; 5121 } 5122 5123 if (sbi->s_daxdev) { 5124 if (sb->s_blocksize == PAGE_SIZE) 5125 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 5126 else 5127 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 5128 } 5129 5130 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 5131 if (ext4_has_feature_inline_data(sb)) { 5132 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 5133 " that may contain inline data"); 5134 goto failed_mount; 5135 } 5136 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 5137 ext4_msg(sb, KERN_ERR, 5138 "DAX unsupported by block device."); 5139 goto failed_mount; 5140 } 5141 } 5142 5143 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 5144 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 5145 es->s_encryption_level); 5146 goto failed_mount; 5147 } 5148 5149 has_huge_files = ext4_has_feature_huge_file(sb); 5150 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5151 has_huge_files); 5152 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5153 5154 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5155 if (ext4_has_feature_64bit(sb)) { 5156 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5157 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5158 !is_power_of_2(sbi->s_desc_size)) { 5159 ext4_msg(sb, KERN_ERR, 5160 "unsupported descriptor size %lu", 5161 sbi->s_desc_size); 5162 goto failed_mount; 5163 } 5164 } else 5165 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5166 5167 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5168 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5169 5170 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5171 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5172 if (!silent) 5173 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5174 goto failed_mount; 5175 } 5176 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5177 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5178 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5179 sbi->s_inodes_per_group); 5180 goto failed_mount; 5181 } 5182 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5183 sbi->s_inodes_per_block; 5184 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5185 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5186 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5187 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5188 5189 for (i = 0; i < 4; i++) 5190 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5191 sbi->s_def_hash_version = es->s_def_hash_version; 5192 if (ext4_has_feature_dir_index(sb)) { 5193 i = le32_to_cpu(es->s_flags); 5194 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5195 sbi->s_hash_unsigned = 3; 5196 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5197 #ifdef __CHAR_UNSIGNED__ 5198 if (!sb_rdonly(sb)) 5199 es->s_flags |= 5200 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5201 sbi->s_hash_unsigned = 3; 5202 #else 5203 if (!sb_rdonly(sb)) 5204 es->s_flags |= 5205 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5206 #endif 5207 } 5208 } 5209 5210 if (ext4_handle_clustersize(sb)) 5211 goto failed_mount; 5212 5213 /* 5214 * Test whether we have more sectors than will fit in sector_t, 5215 * and whether the max offset is addressable by the page cache. 5216 */ 5217 err = generic_check_addressable(sb->s_blocksize_bits, 5218 ext4_blocks_count(es)); 5219 if (err) { 5220 ext4_msg(sb, KERN_ERR, "filesystem" 5221 " too large to mount safely on this system"); 5222 goto failed_mount; 5223 } 5224 5225 if (ext4_geometry_check(sb, es)) 5226 goto failed_mount; 5227 5228 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5229 if (err) 5230 goto failed_mount; 5231 5232 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5233 spin_lock_init(&sbi->s_error_lock); 5234 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5235 5236 /* Register extent status tree shrinker */ 5237 if (ext4_es_register_shrinker(sbi)) 5238 goto failed_mount3; 5239 5240 sbi->s_stripe = ext4_get_stripe_size(sbi); 5241 sbi->s_extent_max_zeroout_kb = 32; 5242 5243 /* 5244 * set up enough so that it can read an inode 5245 */ 5246 sb->s_op = &ext4_sops; 5247 sb->s_export_op = &ext4_export_ops; 5248 sb->s_xattr = ext4_xattr_handlers; 5249 #ifdef CONFIG_FS_ENCRYPTION 5250 sb->s_cop = &ext4_cryptops; 5251 #endif 5252 #ifdef CONFIG_FS_VERITY 5253 sb->s_vop = &ext4_verityops; 5254 #endif 5255 #ifdef CONFIG_QUOTA 5256 sb->dq_op = &ext4_quota_operations; 5257 if (ext4_has_feature_quota(sb)) 5258 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5259 else 5260 sb->s_qcop = &ext4_qctl_operations; 5261 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5262 #endif 5263 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5264 5265 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5266 mutex_init(&sbi->s_orphan_lock); 5267 5268 ext4_fast_commit_init(sb); 5269 5270 sb->s_root = NULL; 5271 5272 needs_recovery = (es->s_last_orphan != 0 || 5273 ext4_has_feature_orphan_present(sb) || 5274 ext4_has_feature_journal_needs_recovery(sb)); 5275 5276 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 5277 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 5278 goto failed_mount3a; 5279 5280 /* 5281 * The first inode we look at is the journal inode. Don't try 5282 * root first: it may be modified in the journal! 5283 */ 5284 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5285 err = ext4_load_and_init_journal(sb, es, ctx); 5286 if (err) 5287 goto failed_mount3a; 5288 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5289 ext4_has_feature_journal_needs_recovery(sb)) { 5290 ext4_msg(sb, KERN_ERR, "required journal recovery " 5291 "suppressed and not mounted read-only"); 5292 goto failed_mount3a; 5293 } else { 5294 /* Nojournal mode, all journal mount options are illegal */ 5295 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5296 ext4_msg(sb, KERN_ERR, "can't mount with " 5297 "journal_checksum, fs mounted w/o journal"); 5298 goto failed_mount3a; 5299 } 5300 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5301 ext4_msg(sb, KERN_ERR, "can't mount with " 5302 "journal_async_commit, fs mounted w/o journal"); 5303 goto failed_mount3a; 5304 } 5305 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5306 ext4_msg(sb, KERN_ERR, "can't mount with " 5307 "commit=%lu, fs mounted w/o journal", 5308 sbi->s_commit_interval / HZ); 5309 goto failed_mount3a; 5310 } 5311 if (EXT4_MOUNT_DATA_FLAGS & 5312 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5313 ext4_msg(sb, KERN_ERR, "can't mount with " 5314 "data=, fs mounted w/o journal"); 5315 goto failed_mount3a; 5316 } 5317 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5318 clear_opt(sb, JOURNAL_CHECKSUM); 5319 clear_opt(sb, DATA_FLAGS); 5320 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5321 sbi->s_journal = NULL; 5322 needs_recovery = 0; 5323 } 5324 5325 if (!test_opt(sb, NO_MBCACHE)) { 5326 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5327 if (!sbi->s_ea_block_cache) { 5328 ext4_msg(sb, KERN_ERR, 5329 "Failed to create ea_block_cache"); 5330 goto failed_mount_wq; 5331 } 5332 5333 if (ext4_has_feature_ea_inode(sb)) { 5334 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5335 if (!sbi->s_ea_inode_cache) { 5336 ext4_msg(sb, KERN_ERR, 5337 "Failed to create ea_inode_cache"); 5338 goto failed_mount_wq; 5339 } 5340 } 5341 } 5342 5343 if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) { 5344 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 5345 goto failed_mount_wq; 5346 } 5347 5348 /* 5349 * Get the # of file system overhead blocks from the 5350 * superblock if present. 5351 */ 5352 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5353 /* ignore the precalculated value if it is ridiculous */ 5354 if (sbi->s_overhead > ext4_blocks_count(es)) 5355 sbi->s_overhead = 0; 5356 /* 5357 * If the bigalloc feature is not enabled recalculating the 5358 * overhead doesn't take long, so we might as well just redo 5359 * it to make sure we are using the correct value. 5360 */ 5361 if (!ext4_has_feature_bigalloc(sb)) 5362 sbi->s_overhead = 0; 5363 if (sbi->s_overhead == 0) { 5364 err = ext4_calculate_overhead(sb); 5365 if (err) 5366 goto failed_mount_wq; 5367 } 5368 5369 /* 5370 * The maximum number of concurrent works can be high and 5371 * concurrency isn't really necessary. Limit it to 1. 5372 */ 5373 EXT4_SB(sb)->rsv_conversion_wq = 5374 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5375 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5376 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5377 ret = -ENOMEM; 5378 goto failed_mount4; 5379 } 5380 5381 /* 5382 * The jbd2_journal_load will have done any necessary log recovery, 5383 * so we can safely mount the rest of the filesystem now. 5384 */ 5385 5386 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5387 if (IS_ERR(root)) { 5388 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5389 ret = PTR_ERR(root); 5390 root = NULL; 5391 goto failed_mount4; 5392 } 5393 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5394 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5395 iput(root); 5396 goto failed_mount4; 5397 } 5398 5399 sb->s_root = d_make_root(root); 5400 if (!sb->s_root) { 5401 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5402 ret = -ENOMEM; 5403 goto failed_mount4; 5404 } 5405 5406 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 5407 if (ret == -EROFS) { 5408 sb->s_flags |= SB_RDONLY; 5409 ret = 0; 5410 } else if (ret) 5411 goto failed_mount4a; 5412 5413 ext4_set_resv_clusters(sb); 5414 5415 if (test_opt(sb, BLOCK_VALIDITY)) { 5416 err = ext4_setup_system_zone(sb); 5417 if (err) { 5418 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5419 "zone (%d)", err); 5420 goto failed_mount4a; 5421 } 5422 } 5423 ext4_fc_replay_cleanup(sb); 5424 5425 ext4_ext_init(sb); 5426 5427 /* 5428 * Enable optimize_scan if number of groups is > threshold. This can be 5429 * turned off by passing "mb_optimize_scan=0". This can also be 5430 * turned on forcefully by passing "mb_optimize_scan=1". 5431 */ 5432 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5433 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5434 set_opt2(sb, MB_OPTIMIZE_SCAN); 5435 else 5436 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5437 } 5438 5439 err = ext4_mb_init(sb); 5440 if (err) { 5441 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5442 err); 5443 goto failed_mount5; 5444 } 5445 5446 /* 5447 * We can only set up the journal commit callback once 5448 * mballoc is initialized 5449 */ 5450 if (sbi->s_journal) 5451 sbi->s_journal->j_commit_callback = 5452 ext4_journal_commit_callback; 5453 5454 block = ext4_count_free_clusters(sb); 5455 ext4_free_blocks_count_set(sbi->s_es, 5456 EXT4_C2B(sbi, block)); 5457 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5458 GFP_KERNEL); 5459 if (!err) { 5460 unsigned long freei = ext4_count_free_inodes(sb); 5461 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5462 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5463 GFP_KERNEL); 5464 } 5465 if (!err) 5466 err = percpu_counter_init(&sbi->s_dirs_counter, 5467 ext4_count_dirs(sb), GFP_KERNEL); 5468 if (!err) 5469 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5470 GFP_KERNEL); 5471 if (!err) 5472 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5473 GFP_KERNEL); 5474 if (!err) 5475 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5476 5477 if (err) { 5478 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5479 goto failed_mount6; 5480 } 5481 5482 if (ext4_has_feature_flex_bg(sb)) 5483 if (!ext4_fill_flex_info(sb)) { 5484 ext4_msg(sb, KERN_ERR, 5485 "unable to initialize " 5486 "flex_bg meta info!"); 5487 ret = -ENOMEM; 5488 goto failed_mount6; 5489 } 5490 5491 err = ext4_register_li_request(sb, first_not_zeroed); 5492 if (err) 5493 goto failed_mount6; 5494 5495 err = ext4_register_sysfs(sb); 5496 if (err) 5497 goto failed_mount7; 5498 5499 err = ext4_init_orphan_info(sb); 5500 if (err) 5501 goto failed_mount8; 5502 #ifdef CONFIG_QUOTA 5503 /* Enable quota usage during mount. */ 5504 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5505 err = ext4_enable_quotas(sb); 5506 if (err) 5507 goto failed_mount9; 5508 } 5509 #endif /* CONFIG_QUOTA */ 5510 5511 /* 5512 * Save the original bdev mapping's wb_err value which could be 5513 * used to detect the metadata async write error. 5514 */ 5515 spin_lock_init(&sbi->s_bdev_wb_lock); 5516 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5517 &sbi->s_bdev_wb_err); 5518 sb->s_bdev->bd_super = sb; 5519 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5520 ext4_orphan_cleanup(sb, es); 5521 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5522 /* 5523 * Update the checksum after updating free space/inode counters and 5524 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5525 * checksum in the buffer cache until it is written out and 5526 * e2fsprogs programs trying to open a file system immediately 5527 * after it is mounted can fail. 5528 */ 5529 ext4_superblock_csum_set(sb); 5530 if (needs_recovery) { 5531 ext4_msg(sb, KERN_INFO, "recovery complete"); 5532 err = ext4_mark_recovery_complete(sb, es); 5533 if (err) 5534 goto failed_mount9; 5535 } 5536 5537 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5538 ext4_msg(sb, KERN_WARNING, 5539 "mounting with \"discard\" option, but the device does not support discard"); 5540 5541 if (es->s_error_count) 5542 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5543 5544 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5545 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5546 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5547 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5548 atomic_set(&sbi->s_warning_count, 0); 5549 atomic_set(&sbi->s_msg_count, 0); 5550 5551 return 0; 5552 5553 failed_mount9: 5554 ext4_release_orphan_info(sb); 5555 failed_mount8: 5556 ext4_unregister_sysfs(sb); 5557 kobject_put(&sbi->s_kobj); 5558 failed_mount7: 5559 ext4_unregister_li_request(sb); 5560 failed_mount6: 5561 ext4_mb_release(sb); 5562 rcu_read_lock(); 5563 flex_groups = rcu_dereference(sbi->s_flex_groups); 5564 if (flex_groups) { 5565 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5566 kvfree(flex_groups[i]); 5567 kvfree(flex_groups); 5568 } 5569 rcu_read_unlock(); 5570 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5571 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5572 percpu_counter_destroy(&sbi->s_dirs_counter); 5573 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5574 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5575 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5576 failed_mount5: 5577 ext4_ext_release(sb); 5578 ext4_release_system_zone(sb); 5579 failed_mount4a: 5580 dput(sb->s_root); 5581 sb->s_root = NULL; 5582 failed_mount4: 5583 ext4_msg(sb, KERN_ERR, "mount failed"); 5584 if (EXT4_SB(sb)->rsv_conversion_wq) 5585 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5586 failed_mount_wq: 5587 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5588 sbi->s_ea_inode_cache = NULL; 5589 5590 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5591 sbi->s_ea_block_cache = NULL; 5592 5593 if (sbi->s_journal) { 5594 /* flush s_error_work before journal destroy. */ 5595 flush_work(&sbi->s_error_work); 5596 jbd2_journal_destroy(sbi->s_journal); 5597 sbi->s_journal = NULL; 5598 } 5599 failed_mount3a: 5600 ext4_es_unregister_shrinker(sbi); 5601 failed_mount3: 5602 /* flush s_error_work before sbi destroy */ 5603 flush_work(&sbi->s_error_work); 5604 del_timer_sync(&sbi->s_err_report); 5605 ext4_stop_mmpd(sbi); 5606 ext4_group_desc_free(sbi); 5607 failed_mount: 5608 if (sbi->s_chksum_driver) 5609 crypto_free_shash(sbi->s_chksum_driver); 5610 5611 #if IS_ENABLED(CONFIG_UNICODE) 5612 utf8_unload(sb->s_encoding); 5613 #endif 5614 5615 #ifdef CONFIG_QUOTA 5616 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5617 kfree(get_qf_name(sb, sbi, i)); 5618 #endif 5619 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5620 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5621 brelse(sbi->s_sbh); 5622 ext4_blkdev_remove(sbi); 5623 out_fail: 5624 sb->s_fs_info = NULL; 5625 return err ? err : ret; 5626 } 5627 5628 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5629 { 5630 struct ext4_fs_context *ctx = fc->fs_private; 5631 struct ext4_sb_info *sbi; 5632 const char *descr; 5633 int ret; 5634 5635 sbi = ext4_alloc_sbi(sb); 5636 if (!sbi) 5637 return -ENOMEM; 5638 5639 fc->s_fs_info = sbi; 5640 5641 /* Cleanup superblock name */ 5642 strreplace(sb->s_id, '/', '!'); 5643 5644 sbi->s_sb_block = 1; /* Default super block location */ 5645 if (ctx->spec & EXT4_SPEC_s_sb_block) 5646 sbi->s_sb_block = ctx->s_sb_block; 5647 5648 ret = __ext4_fill_super(fc, sb); 5649 if (ret < 0) 5650 goto free_sbi; 5651 5652 if (sbi->s_journal) { 5653 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5654 descr = " journalled data mode"; 5655 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5656 descr = " ordered data mode"; 5657 else 5658 descr = " writeback data mode"; 5659 } else 5660 descr = "out journal"; 5661 5662 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5663 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5664 "Quota mode: %s.", descr, ext4_quota_mode(sb)); 5665 5666 /* Update the s_overhead_clusters if necessary */ 5667 ext4_update_overhead(sb, false); 5668 return 0; 5669 5670 free_sbi: 5671 ext4_free_sbi(sbi); 5672 fc->s_fs_info = NULL; 5673 return ret; 5674 } 5675 5676 static int ext4_get_tree(struct fs_context *fc) 5677 { 5678 return get_tree_bdev(fc, ext4_fill_super); 5679 } 5680 5681 /* 5682 * Setup any per-fs journal parameters now. We'll do this both on 5683 * initial mount, once the journal has been initialised but before we've 5684 * done any recovery; and again on any subsequent remount. 5685 */ 5686 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5687 { 5688 struct ext4_sb_info *sbi = EXT4_SB(sb); 5689 5690 journal->j_commit_interval = sbi->s_commit_interval; 5691 journal->j_min_batch_time = sbi->s_min_batch_time; 5692 journal->j_max_batch_time = sbi->s_max_batch_time; 5693 ext4_fc_init(sb, journal); 5694 5695 write_lock(&journal->j_state_lock); 5696 if (test_opt(sb, BARRIER)) 5697 journal->j_flags |= JBD2_BARRIER; 5698 else 5699 journal->j_flags &= ~JBD2_BARRIER; 5700 if (test_opt(sb, DATA_ERR_ABORT)) 5701 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5702 else 5703 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5704 write_unlock(&journal->j_state_lock); 5705 } 5706 5707 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5708 unsigned int journal_inum) 5709 { 5710 struct inode *journal_inode; 5711 5712 /* 5713 * Test for the existence of a valid inode on disk. Bad things 5714 * happen if we iget() an unused inode, as the subsequent iput() 5715 * will try to delete it. 5716 */ 5717 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5718 if (IS_ERR(journal_inode)) { 5719 ext4_msg(sb, KERN_ERR, "no journal found"); 5720 return NULL; 5721 } 5722 if (!journal_inode->i_nlink) { 5723 make_bad_inode(journal_inode); 5724 iput(journal_inode); 5725 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5726 return NULL; 5727 } 5728 5729 ext4_debug("Journal inode found at %p: %lld bytes\n", 5730 journal_inode, journal_inode->i_size); 5731 if (!S_ISREG(journal_inode->i_mode)) { 5732 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5733 iput(journal_inode); 5734 return NULL; 5735 } 5736 return journal_inode; 5737 } 5738 5739 static journal_t *ext4_get_journal(struct super_block *sb, 5740 unsigned int journal_inum) 5741 { 5742 struct inode *journal_inode; 5743 journal_t *journal; 5744 5745 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5746 return NULL; 5747 5748 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5749 if (!journal_inode) 5750 return NULL; 5751 5752 journal = jbd2_journal_init_inode(journal_inode); 5753 if (!journal) { 5754 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5755 iput(journal_inode); 5756 return NULL; 5757 } 5758 journal->j_private = sb; 5759 ext4_init_journal_params(sb, journal); 5760 return journal; 5761 } 5762 5763 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5764 dev_t j_dev) 5765 { 5766 struct buffer_head *bh; 5767 journal_t *journal; 5768 ext4_fsblk_t start; 5769 ext4_fsblk_t len; 5770 int hblock, blocksize; 5771 ext4_fsblk_t sb_block; 5772 unsigned long offset; 5773 struct ext4_super_block *es; 5774 struct block_device *bdev; 5775 5776 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5777 return NULL; 5778 5779 bdev = ext4_blkdev_get(j_dev, sb); 5780 if (bdev == NULL) 5781 return NULL; 5782 5783 blocksize = sb->s_blocksize; 5784 hblock = bdev_logical_block_size(bdev); 5785 if (blocksize < hblock) { 5786 ext4_msg(sb, KERN_ERR, 5787 "blocksize too small for journal device"); 5788 goto out_bdev; 5789 } 5790 5791 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5792 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5793 set_blocksize(bdev, blocksize); 5794 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5795 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5796 "external journal"); 5797 goto out_bdev; 5798 } 5799 5800 es = (struct ext4_super_block *) (bh->b_data + offset); 5801 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5802 !(le32_to_cpu(es->s_feature_incompat) & 5803 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5804 ext4_msg(sb, KERN_ERR, "external journal has " 5805 "bad superblock"); 5806 brelse(bh); 5807 goto out_bdev; 5808 } 5809 5810 if ((le32_to_cpu(es->s_feature_ro_compat) & 5811 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5812 es->s_checksum != ext4_superblock_csum(sb, es)) { 5813 ext4_msg(sb, KERN_ERR, "external journal has " 5814 "corrupt superblock"); 5815 brelse(bh); 5816 goto out_bdev; 5817 } 5818 5819 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5820 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5821 brelse(bh); 5822 goto out_bdev; 5823 } 5824 5825 len = ext4_blocks_count(es); 5826 start = sb_block + 1; 5827 brelse(bh); /* we're done with the superblock */ 5828 5829 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5830 start, len, blocksize); 5831 if (!journal) { 5832 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5833 goto out_bdev; 5834 } 5835 journal->j_private = sb; 5836 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5837 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5838 goto out_journal; 5839 } 5840 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5841 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5842 "user (unsupported) - %d", 5843 be32_to_cpu(journal->j_superblock->s_nr_users)); 5844 goto out_journal; 5845 } 5846 EXT4_SB(sb)->s_journal_bdev = bdev; 5847 ext4_init_journal_params(sb, journal); 5848 return journal; 5849 5850 out_journal: 5851 jbd2_journal_destroy(journal); 5852 out_bdev: 5853 ext4_blkdev_put(bdev); 5854 return NULL; 5855 } 5856 5857 static int ext4_load_journal(struct super_block *sb, 5858 struct ext4_super_block *es, 5859 unsigned long journal_devnum) 5860 { 5861 journal_t *journal; 5862 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5863 dev_t journal_dev; 5864 int err = 0; 5865 int really_read_only; 5866 int journal_dev_ro; 5867 5868 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5869 return -EFSCORRUPTED; 5870 5871 if (journal_devnum && 5872 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5873 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5874 "numbers have changed"); 5875 journal_dev = new_decode_dev(journal_devnum); 5876 } else 5877 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5878 5879 if (journal_inum && journal_dev) { 5880 ext4_msg(sb, KERN_ERR, 5881 "filesystem has both journal inode and journal device!"); 5882 return -EINVAL; 5883 } 5884 5885 if (journal_inum) { 5886 journal = ext4_get_journal(sb, journal_inum); 5887 if (!journal) 5888 return -EINVAL; 5889 } else { 5890 journal = ext4_get_dev_journal(sb, journal_dev); 5891 if (!journal) 5892 return -EINVAL; 5893 } 5894 5895 journal_dev_ro = bdev_read_only(journal->j_dev); 5896 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5897 5898 if (journal_dev_ro && !sb_rdonly(sb)) { 5899 ext4_msg(sb, KERN_ERR, 5900 "journal device read-only, try mounting with '-o ro'"); 5901 err = -EROFS; 5902 goto err_out; 5903 } 5904 5905 /* 5906 * Are we loading a blank journal or performing recovery after a 5907 * crash? For recovery, we need to check in advance whether we 5908 * can get read-write access to the device. 5909 */ 5910 if (ext4_has_feature_journal_needs_recovery(sb)) { 5911 if (sb_rdonly(sb)) { 5912 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5913 "required on readonly filesystem"); 5914 if (really_read_only) { 5915 ext4_msg(sb, KERN_ERR, "write access " 5916 "unavailable, cannot proceed " 5917 "(try mounting with noload)"); 5918 err = -EROFS; 5919 goto err_out; 5920 } 5921 ext4_msg(sb, KERN_INFO, "write access will " 5922 "be enabled during recovery"); 5923 } 5924 } 5925 5926 if (!(journal->j_flags & JBD2_BARRIER)) 5927 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5928 5929 if (!ext4_has_feature_journal_needs_recovery(sb)) 5930 err = jbd2_journal_wipe(journal, !really_read_only); 5931 if (!err) { 5932 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5933 if (save) 5934 memcpy(save, ((char *) es) + 5935 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5936 err = jbd2_journal_load(journal); 5937 if (save) 5938 memcpy(((char *) es) + EXT4_S_ERR_START, 5939 save, EXT4_S_ERR_LEN); 5940 kfree(save); 5941 } 5942 5943 if (err) { 5944 ext4_msg(sb, KERN_ERR, "error loading journal"); 5945 goto err_out; 5946 } 5947 5948 EXT4_SB(sb)->s_journal = journal; 5949 err = ext4_clear_journal_err(sb, es); 5950 if (err) { 5951 EXT4_SB(sb)->s_journal = NULL; 5952 jbd2_journal_destroy(journal); 5953 return err; 5954 } 5955 5956 if (!really_read_only && journal_devnum && 5957 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5958 es->s_journal_dev = cpu_to_le32(journal_devnum); 5959 5960 /* Make sure we flush the recovery flag to disk. */ 5961 ext4_commit_super(sb); 5962 } 5963 5964 return 0; 5965 5966 err_out: 5967 jbd2_journal_destroy(journal); 5968 return err; 5969 } 5970 5971 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5972 static void ext4_update_super(struct super_block *sb) 5973 { 5974 struct ext4_sb_info *sbi = EXT4_SB(sb); 5975 struct ext4_super_block *es = sbi->s_es; 5976 struct buffer_head *sbh = sbi->s_sbh; 5977 5978 lock_buffer(sbh); 5979 /* 5980 * If the file system is mounted read-only, don't update the 5981 * superblock write time. This avoids updating the superblock 5982 * write time when we are mounting the root file system 5983 * read/only but we need to replay the journal; at that point, 5984 * for people who are east of GMT and who make their clock 5985 * tick in localtime for Windows bug-for-bug compatibility, 5986 * the clock is set in the future, and this will cause e2fsck 5987 * to complain and force a full file system check. 5988 */ 5989 if (!(sb->s_flags & SB_RDONLY)) 5990 ext4_update_tstamp(es, s_wtime); 5991 es->s_kbytes_written = 5992 cpu_to_le64(sbi->s_kbytes_written + 5993 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5994 sbi->s_sectors_written_start) >> 1)); 5995 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5996 ext4_free_blocks_count_set(es, 5997 EXT4_C2B(sbi, percpu_counter_sum_positive( 5998 &sbi->s_freeclusters_counter))); 5999 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6000 es->s_free_inodes_count = 6001 cpu_to_le32(percpu_counter_sum_positive( 6002 &sbi->s_freeinodes_counter)); 6003 /* Copy error information to the on-disk superblock */ 6004 spin_lock(&sbi->s_error_lock); 6005 if (sbi->s_add_error_count > 0) { 6006 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6007 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6008 __ext4_update_tstamp(&es->s_first_error_time, 6009 &es->s_first_error_time_hi, 6010 sbi->s_first_error_time); 6011 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6012 sizeof(es->s_first_error_func)); 6013 es->s_first_error_line = 6014 cpu_to_le32(sbi->s_first_error_line); 6015 es->s_first_error_ino = 6016 cpu_to_le32(sbi->s_first_error_ino); 6017 es->s_first_error_block = 6018 cpu_to_le64(sbi->s_first_error_block); 6019 es->s_first_error_errcode = 6020 ext4_errno_to_code(sbi->s_first_error_code); 6021 } 6022 __ext4_update_tstamp(&es->s_last_error_time, 6023 &es->s_last_error_time_hi, 6024 sbi->s_last_error_time); 6025 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6026 sizeof(es->s_last_error_func)); 6027 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6028 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6029 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6030 es->s_last_error_errcode = 6031 ext4_errno_to_code(sbi->s_last_error_code); 6032 /* 6033 * Start the daily error reporting function if it hasn't been 6034 * started already 6035 */ 6036 if (!es->s_error_count) 6037 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6038 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6039 sbi->s_add_error_count = 0; 6040 } 6041 spin_unlock(&sbi->s_error_lock); 6042 6043 ext4_superblock_csum_set(sb); 6044 unlock_buffer(sbh); 6045 } 6046 6047 static int ext4_commit_super(struct super_block *sb) 6048 { 6049 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6050 6051 if (!sbh) 6052 return -EINVAL; 6053 if (block_device_ejected(sb)) 6054 return -ENODEV; 6055 6056 ext4_update_super(sb); 6057 6058 lock_buffer(sbh); 6059 /* Buffer got discarded which means block device got invalidated */ 6060 if (!buffer_mapped(sbh)) { 6061 unlock_buffer(sbh); 6062 return -EIO; 6063 } 6064 6065 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6066 /* 6067 * Oh, dear. A previous attempt to write the 6068 * superblock failed. This could happen because the 6069 * USB device was yanked out. Or it could happen to 6070 * be a transient write error and maybe the block will 6071 * be remapped. Nothing we can do but to retry the 6072 * write and hope for the best. 6073 */ 6074 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6075 "superblock detected"); 6076 clear_buffer_write_io_error(sbh); 6077 set_buffer_uptodate(sbh); 6078 } 6079 get_bh(sbh); 6080 /* Clear potential dirty bit if it was journalled update */ 6081 clear_buffer_dirty(sbh); 6082 sbh->b_end_io = end_buffer_write_sync; 6083 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6084 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6085 wait_on_buffer(sbh); 6086 if (buffer_write_io_error(sbh)) { 6087 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6088 "superblock"); 6089 clear_buffer_write_io_error(sbh); 6090 set_buffer_uptodate(sbh); 6091 return -EIO; 6092 } 6093 return 0; 6094 } 6095 6096 /* 6097 * Have we just finished recovery? If so, and if we are mounting (or 6098 * remounting) the filesystem readonly, then we will end up with a 6099 * consistent fs on disk. Record that fact. 6100 */ 6101 static int ext4_mark_recovery_complete(struct super_block *sb, 6102 struct ext4_super_block *es) 6103 { 6104 int err; 6105 journal_t *journal = EXT4_SB(sb)->s_journal; 6106 6107 if (!ext4_has_feature_journal(sb)) { 6108 if (journal != NULL) { 6109 ext4_error(sb, "Journal got removed while the fs was " 6110 "mounted!"); 6111 return -EFSCORRUPTED; 6112 } 6113 return 0; 6114 } 6115 jbd2_journal_lock_updates(journal); 6116 err = jbd2_journal_flush(journal, 0); 6117 if (err < 0) 6118 goto out; 6119 6120 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6121 ext4_has_feature_orphan_present(sb))) { 6122 if (!ext4_orphan_file_empty(sb)) { 6123 ext4_error(sb, "Orphan file not empty on read-only fs."); 6124 err = -EFSCORRUPTED; 6125 goto out; 6126 } 6127 ext4_clear_feature_journal_needs_recovery(sb); 6128 ext4_clear_feature_orphan_present(sb); 6129 ext4_commit_super(sb); 6130 } 6131 out: 6132 jbd2_journal_unlock_updates(journal); 6133 return err; 6134 } 6135 6136 /* 6137 * If we are mounting (or read-write remounting) a filesystem whose journal 6138 * has recorded an error from a previous lifetime, move that error to the 6139 * main filesystem now. 6140 */ 6141 static int ext4_clear_journal_err(struct super_block *sb, 6142 struct ext4_super_block *es) 6143 { 6144 journal_t *journal; 6145 int j_errno; 6146 const char *errstr; 6147 6148 if (!ext4_has_feature_journal(sb)) { 6149 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6150 return -EFSCORRUPTED; 6151 } 6152 6153 journal = EXT4_SB(sb)->s_journal; 6154 6155 /* 6156 * Now check for any error status which may have been recorded in the 6157 * journal by a prior ext4_error() or ext4_abort() 6158 */ 6159 6160 j_errno = jbd2_journal_errno(journal); 6161 if (j_errno) { 6162 char nbuf[16]; 6163 6164 errstr = ext4_decode_error(sb, j_errno, nbuf); 6165 ext4_warning(sb, "Filesystem error recorded " 6166 "from previous mount: %s", errstr); 6167 ext4_warning(sb, "Marking fs in need of filesystem check."); 6168 6169 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6170 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6171 ext4_commit_super(sb); 6172 6173 jbd2_journal_clear_err(journal); 6174 jbd2_journal_update_sb_errno(journal); 6175 } 6176 return 0; 6177 } 6178 6179 /* 6180 * Force the running and committing transactions to commit, 6181 * and wait on the commit. 6182 */ 6183 int ext4_force_commit(struct super_block *sb) 6184 { 6185 journal_t *journal; 6186 6187 if (sb_rdonly(sb)) 6188 return 0; 6189 6190 journal = EXT4_SB(sb)->s_journal; 6191 return ext4_journal_force_commit(journal); 6192 } 6193 6194 static int ext4_sync_fs(struct super_block *sb, int wait) 6195 { 6196 int ret = 0; 6197 tid_t target; 6198 bool needs_barrier = false; 6199 struct ext4_sb_info *sbi = EXT4_SB(sb); 6200 6201 if (unlikely(ext4_forced_shutdown(sbi))) 6202 return 0; 6203 6204 trace_ext4_sync_fs(sb, wait); 6205 flush_workqueue(sbi->rsv_conversion_wq); 6206 /* 6207 * Writeback quota in non-journalled quota case - journalled quota has 6208 * no dirty dquots 6209 */ 6210 dquot_writeback_dquots(sb, -1); 6211 /* 6212 * Data writeback is possible w/o journal transaction, so barrier must 6213 * being sent at the end of the function. But we can skip it if 6214 * transaction_commit will do it for us. 6215 */ 6216 if (sbi->s_journal) { 6217 target = jbd2_get_latest_transaction(sbi->s_journal); 6218 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6219 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6220 needs_barrier = true; 6221 6222 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6223 if (wait) 6224 ret = jbd2_log_wait_commit(sbi->s_journal, 6225 target); 6226 } 6227 } else if (wait && test_opt(sb, BARRIER)) 6228 needs_barrier = true; 6229 if (needs_barrier) { 6230 int err; 6231 err = blkdev_issue_flush(sb->s_bdev); 6232 if (!ret) 6233 ret = err; 6234 } 6235 6236 return ret; 6237 } 6238 6239 /* 6240 * LVM calls this function before a (read-only) snapshot is created. This 6241 * gives us a chance to flush the journal completely and mark the fs clean. 6242 * 6243 * Note that only this function cannot bring a filesystem to be in a clean 6244 * state independently. It relies on upper layer to stop all data & metadata 6245 * modifications. 6246 */ 6247 static int ext4_freeze(struct super_block *sb) 6248 { 6249 int error = 0; 6250 journal_t *journal; 6251 6252 if (sb_rdonly(sb)) 6253 return 0; 6254 6255 journal = EXT4_SB(sb)->s_journal; 6256 6257 if (journal) { 6258 /* Now we set up the journal barrier. */ 6259 jbd2_journal_lock_updates(journal); 6260 6261 /* 6262 * Don't clear the needs_recovery flag if we failed to 6263 * flush the journal. 6264 */ 6265 error = jbd2_journal_flush(journal, 0); 6266 if (error < 0) 6267 goto out; 6268 6269 /* Journal blocked and flushed, clear needs_recovery flag. */ 6270 ext4_clear_feature_journal_needs_recovery(sb); 6271 if (ext4_orphan_file_empty(sb)) 6272 ext4_clear_feature_orphan_present(sb); 6273 } 6274 6275 error = ext4_commit_super(sb); 6276 out: 6277 if (journal) 6278 /* we rely on upper layer to stop further updates */ 6279 jbd2_journal_unlock_updates(journal); 6280 return error; 6281 } 6282 6283 /* 6284 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6285 * flag here, even though the filesystem is not technically dirty yet. 6286 */ 6287 static int ext4_unfreeze(struct super_block *sb) 6288 { 6289 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6290 return 0; 6291 6292 if (EXT4_SB(sb)->s_journal) { 6293 /* Reset the needs_recovery flag before the fs is unlocked. */ 6294 ext4_set_feature_journal_needs_recovery(sb); 6295 if (ext4_has_feature_orphan_file(sb)) 6296 ext4_set_feature_orphan_present(sb); 6297 } 6298 6299 ext4_commit_super(sb); 6300 return 0; 6301 } 6302 6303 /* 6304 * Structure to save mount options for ext4_remount's benefit 6305 */ 6306 struct ext4_mount_options { 6307 unsigned long s_mount_opt; 6308 unsigned long s_mount_opt2; 6309 kuid_t s_resuid; 6310 kgid_t s_resgid; 6311 unsigned long s_commit_interval; 6312 u32 s_min_batch_time, s_max_batch_time; 6313 #ifdef CONFIG_QUOTA 6314 int s_jquota_fmt; 6315 char *s_qf_names[EXT4_MAXQUOTAS]; 6316 #endif 6317 }; 6318 6319 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6320 { 6321 struct ext4_fs_context *ctx = fc->fs_private; 6322 struct ext4_super_block *es; 6323 struct ext4_sb_info *sbi = EXT4_SB(sb); 6324 unsigned long old_sb_flags; 6325 struct ext4_mount_options old_opts; 6326 ext4_group_t g; 6327 int err = 0; 6328 #ifdef CONFIG_QUOTA 6329 int enable_quota = 0; 6330 int i, j; 6331 char *to_free[EXT4_MAXQUOTAS]; 6332 #endif 6333 6334 6335 /* Store the original options */ 6336 old_sb_flags = sb->s_flags; 6337 old_opts.s_mount_opt = sbi->s_mount_opt; 6338 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6339 old_opts.s_resuid = sbi->s_resuid; 6340 old_opts.s_resgid = sbi->s_resgid; 6341 old_opts.s_commit_interval = sbi->s_commit_interval; 6342 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6343 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6344 #ifdef CONFIG_QUOTA 6345 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6346 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6347 if (sbi->s_qf_names[i]) { 6348 char *qf_name = get_qf_name(sb, sbi, i); 6349 6350 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6351 if (!old_opts.s_qf_names[i]) { 6352 for (j = 0; j < i; j++) 6353 kfree(old_opts.s_qf_names[j]); 6354 return -ENOMEM; 6355 } 6356 } else 6357 old_opts.s_qf_names[i] = NULL; 6358 #endif 6359 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6360 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6361 ctx->journal_ioprio = 6362 sbi->s_journal->j_task->io_context->ioprio; 6363 else 6364 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6365 6366 } 6367 6368 ext4_apply_options(fc, sb); 6369 6370 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6371 test_opt(sb, JOURNAL_CHECKSUM)) { 6372 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6373 "during remount not supported; ignoring"); 6374 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6375 } 6376 6377 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6378 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6379 ext4_msg(sb, KERN_ERR, "can't mount with " 6380 "both data=journal and delalloc"); 6381 err = -EINVAL; 6382 goto restore_opts; 6383 } 6384 if (test_opt(sb, DIOREAD_NOLOCK)) { 6385 ext4_msg(sb, KERN_ERR, "can't mount with " 6386 "both data=journal and dioread_nolock"); 6387 err = -EINVAL; 6388 goto restore_opts; 6389 } 6390 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6391 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6392 ext4_msg(sb, KERN_ERR, "can't mount with " 6393 "journal_async_commit in data=ordered mode"); 6394 err = -EINVAL; 6395 goto restore_opts; 6396 } 6397 } 6398 6399 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6400 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6401 err = -EINVAL; 6402 goto restore_opts; 6403 } 6404 6405 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6406 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6407 6408 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6409 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6410 6411 es = sbi->s_es; 6412 6413 if (sbi->s_journal) { 6414 ext4_init_journal_params(sb, sbi->s_journal); 6415 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6416 } 6417 6418 /* Flush outstanding errors before changing fs state */ 6419 flush_work(&sbi->s_error_work); 6420 6421 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6422 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6423 err = -EROFS; 6424 goto restore_opts; 6425 } 6426 6427 if (fc->sb_flags & SB_RDONLY) { 6428 err = sync_filesystem(sb); 6429 if (err < 0) 6430 goto restore_opts; 6431 err = dquot_suspend(sb, -1); 6432 if (err < 0) 6433 goto restore_opts; 6434 6435 /* 6436 * First of all, the unconditional stuff we have to do 6437 * to disable replay of the journal when we next remount 6438 */ 6439 sb->s_flags |= SB_RDONLY; 6440 6441 /* 6442 * OK, test if we are remounting a valid rw partition 6443 * readonly, and if so set the rdonly flag and then 6444 * mark the partition as valid again. 6445 */ 6446 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6447 (sbi->s_mount_state & EXT4_VALID_FS)) 6448 es->s_state = cpu_to_le16(sbi->s_mount_state); 6449 6450 if (sbi->s_journal) { 6451 /* 6452 * We let remount-ro finish even if marking fs 6453 * as clean failed... 6454 */ 6455 ext4_mark_recovery_complete(sb, es); 6456 } 6457 } else { 6458 /* Make sure we can mount this feature set readwrite */ 6459 if (ext4_has_feature_readonly(sb) || 6460 !ext4_feature_set_ok(sb, 0)) { 6461 err = -EROFS; 6462 goto restore_opts; 6463 } 6464 /* 6465 * Make sure the group descriptor checksums 6466 * are sane. If they aren't, refuse to remount r/w. 6467 */ 6468 for (g = 0; g < sbi->s_groups_count; g++) { 6469 struct ext4_group_desc *gdp = 6470 ext4_get_group_desc(sb, g, NULL); 6471 6472 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6473 ext4_msg(sb, KERN_ERR, 6474 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6475 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6476 le16_to_cpu(gdp->bg_checksum)); 6477 err = -EFSBADCRC; 6478 goto restore_opts; 6479 } 6480 } 6481 6482 /* 6483 * If we have an unprocessed orphan list hanging 6484 * around from a previously readonly bdev mount, 6485 * require a full umount/remount for now. 6486 */ 6487 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6488 ext4_msg(sb, KERN_WARNING, "Couldn't " 6489 "remount RDWR because of unprocessed " 6490 "orphan inode list. Please " 6491 "umount/remount instead"); 6492 err = -EINVAL; 6493 goto restore_opts; 6494 } 6495 6496 /* 6497 * Mounting a RDONLY partition read-write, so reread 6498 * and store the current valid flag. (It may have 6499 * been changed by e2fsck since we originally mounted 6500 * the partition.) 6501 */ 6502 if (sbi->s_journal) { 6503 err = ext4_clear_journal_err(sb, es); 6504 if (err) 6505 goto restore_opts; 6506 } 6507 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6508 ~EXT4_FC_REPLAY); 6509 6510 err = ext4_setup_super(sb, es, 0); 6511 if (err) 6512 goto restore_opts; 6513 6514 sb->s_flags &= ~SB_RDONLY; 6515 if (ext4_has_feature_mmp(sb)) 6516 if (ext4_multi_mount_protect(sb, 6517 le64_to_cpu(es->s_mmp_block))) { 6518 err = -EROFS; 6519 goto restore_opts; 6520 } 6521 #ifdef CONFIG_QUOTA 6522 enable_quota = 1; 6523 #endif 6524 } 6525 } 6526 6527 /* 6528 * Reinitialize lazy itable initialization thread based on 6529 * current settings 6530 */ 6531 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6532 ext4_unregister_li_request(sb); 6533 else { 6534 ext4_group_t first_not_zeroed; 6535 first_not_zeroed = ext4_has_uninit_itable(sb); 6536 ext4_register_li_request(sb, first_not_zeroed); 6537 } 6538 6539 /* 6540 * Handle creation of system zone data early because it can fail. 6541 * Releasing of existing data is done when we are sure remount will 6542 * succeed. 6543 */ 6544 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6545 err = ext4_setup_system_zone(sb); 6546 if (err) 6547 goto restore_opts; 6548 } 6549 6550 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6551 err = ext4_commit_super(sb); 6552 if (err) 6553 goto restore_opts; 6554 } 6555 6556 #ifdef CONFIG_QUOTA 6557 /* Release old quota file names */ 6558 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6559 kfree(old_opts.s_qf_names[i]); 6560 if (enable_quota) { 6561 if (sb_any_quota_suspended(sb)) 6562 dquot_resume(sb, -1); 6563 else if (ext4_has_feature_quota(sb)) { 6564 err = ext4_enable_quotas(sb); 6565 if (err) 6566 goto restore_opts; 6567 } 6568 } 6569 #endif 6570 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6571 ext4_release_system_zone(sb); 6572 6573 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6574 ext4_stop_mmpd(sbi); 6575 6576 return 0; 6577 6578 restore_opts: 6579 sb->s_flags = old_sb_flags; 6580 sbi->s_mount_opt = old_opts.s_mount_opt; 6581 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6582 sbi->s_resuid = old_opts.s_resuid; 6583 sbi->s_resgid = old_opts.s_resgid; 6584 sbi->s_commit_interval = old_opts.s_commit_interval; 6585 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6586 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6587 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6588 ext4_release_system_zone(sb); 6589 #ifdef CONFIG_QUOTA 6590 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6591 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6592 to_free[i] = get_qf_name(sb, sbi, i); 6593 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6594 } 6595 synchronize_rcu(); 6596 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6597 kfree(to_free[i]); 6598 #endif 6599 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6600 ext4_stop_mmpd(sbi); 6601 return err; 6602 } 6603 6604 static int ext4_reconfigure(struct fs_context *fc) 6605 { 6606 struct super_block *sb = fc->root->d_sb; 6607 int ret; 6608 6609 fc->s_fs_info = EXT4_SB(sb); 6610 6611 ret = ext4_check_opt_consistency(fc, sb); 6612 if (ret < 0) 6613 return ret; 6614 6615 ret = __ext4_remount(fc, sb); 6616 if (ret < 0) 6617 return ret; 6618 6619 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.", 6620 ext4_quota_mode(sb)); 6621 6622 return 0; 6623 } 6624 6625 #ifdef CONFIG_QUOTA 6626 static int ext4_statfs_project(struct super_block *sb, 6627 kprojid_t projid, struct kstatfs *buf) 6628 { 6629 struct kqid qid; 6630 struct dquot *dquot; 6631 u64 limit; 6632 u64 curblock; 6633 6634 qid = make_kqid_projid(projid); 6635 dquot = dqget(sb, qid); 6636 if (IS_ERR(dquot)) 6637 return PTR_ERR(dquot); 6638 spin_lock(&dquot->dq_dqb_lock); 6639 6640 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6641 dquot->dq_dqb.dqb_bhardlimit); 6642 limit >>= sb->s_blocksize_bits; 6643 6644 if (limit && buf->f_blocks > limit) { 6645 curblock = (dquot->dq_dqb.dqb_curspace + 6646 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6647 buf->f_blocks = limit; 6648 buf->f_bfree = buf->f_bavail = 6649 (buf->f_blocks > curblock) ? 6650 (buf->f_blocks - curblock) : 0; 6651 } 6652 6653 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6654 dquot->dq_dqb.dqb_ihardlimit); 6655 if (limit && buf->f_files > limit) { 6656 buf->f_files = limit; 6657 buf->f_ffree = 6658 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6659 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6660 } 6661 6662 spin_unlock(&dquot->dq_dqb_lock); 6663 dqput(dquot); 6664 return 0; 6665 } 6666 #endif 6667 6668 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6669 { 6670 struct super_block *sb = dentry->d_sb; 6671 struct ext4_sb_info *sbi = EXT4_SB(sb); 6672 struct ext4_super_block *es = sbi->s_es; 6673 ext4_fsblk_t overhead = 0, resv_blocks; 6674 s64 bfree; 6675 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6676 6677 if (!test_opt(sb, MINIX_DF)) 6678 overhead = sbi->s_overhead; 6679 6680 buf->f_type = EXT4_SUPER_MAGIC; 6681 buf->f_bsize = sb->s_blocksize; 6682 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6683 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6684 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6685 /* prevent underflow in case that few free space is available */ 6686 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6687 buf->f_bavail = buf->f_bfree - 6688 (ext4_r_blocks_count(es) + resv_blocks); 6689 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6690 buf->f_bavail = 0; 6691 buf->f_files = le32_to_cpu(es->s_inodes_count); 6692 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6693 buf->f_namelen = EXT4_NAME_LEN; 6694 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6695 6696 #ifdef CONFIG_QUOTA 6697 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6698 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6699 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6700 #endif 6701 return 0; 6702 } 6703 6704 6705 #ifdef CONFIG_QUOTA 6706 6707 /* 6708 * Helper functions so that transaction is started before we acquire dqio_sem 6709 * to keep correct lock ordering of transaction > dqio_sem 6710 */ 6711 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6712 { 6713 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6714 } 6715 6716 static int ext4_write_dquot(struct dquot *dquot) 6717 { 6718 int ret, err; 6719 handle_t *handle; 6720 struct inode *inode; 6721 6722 inode = dquot_to_inode(dquot); 6723 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6724 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6725 if (IS_ERR(handle)) 6726 return PTR_ERR(handle); 6727 ret = dquot_commit(dquot); 6728 err = ext4_journal_stop(handle); 6729 if (!ret) 6730 ret = err; 6731 return ret; 6732 } 6733 6734 static int ext4_acquire_dquot(struct dquot *dquot) 6735 { 6736 int ret, err; 6737 handle_t *handle; 6738 6739 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6740 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6741 if (IS_ERR(handle)) 6742 return PTR_ERR(handle); 6743 ret = dquot_acquire(dquot); 6744 err = ext4_journal_stop(handle); 6745 if (!ret) 6746 ret = err; 6747 return ret; 6748 } 6749 6750 static int ext4_release_dquot(struct dquot *dquot) 6751 { 6752 int ret, err; 6753 handle_t *handle; 6754 6755 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6756 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6757 if (IS_ERR(handle)) { 6758 /* Release dquot anyway to avoid endless cycle in dqput() */ 6759 dquot_release(dquot); 6760 return PTR_ERR(handle); 6761 } 6762 ret = dquot_release(dquot); 6763 err = ext4_journal_stop(handle); 6764 if (!ret) 6765 ret = err; 6766 return ret; 6767 } 6768 6769 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6770 { 6771 struct super_block *sb = dquot->dq_sb; 6772 6773 if (ext4_is_quota_journalled(sb)) { 6774 dquot_mark_dquot_dirty(dquot); 6775 return ext4_write_dquot(dquot); 6776 } else { 6777 return dquot_mark_dquot_dirty(dquot); 6778 } 6779 } 6780 6781 static int ext4_write_info(struct super_block *sb, int type) 6782 { 6783 int ret, err; 6784 handle_t *handle; 6785 6786 /* Data block + inode block */ 6787 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6788 if (IS_ERR(handle)) 6789 return PTR_ERR(handle); 6790 ret = dquot_commit_info(sb, type); 6791 err = ext4_journal_stop(handle); 6792 if (!ret) 6793 ret = err; 6794 return ret; 6795 } 6796 6797 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6798 { 6799 struct ext4_inode_info *ei = EXT4_I(inode); 6800 6801 /* The first argument of lockdep_set_subclass has to be 6802 * *exactly* the same as the argument to init_rwsem() --- in 6803 * this case, in init_once() --- or lockdep gets unhappy 6804 * because the name of the lock is set using the 6805 * stringification of the argument to init_rwsem(). 6806 */ 6807 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6808 lockdep_set_subclass(&ei->i_data_sem, subclass); 6809 } 6810 6811 /* 6812 * Standard function to be called on quota_on 6813 */ 6814 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6815 const struct path *path) 6816 { 6817 int err; 6818 6819 if (!test_opt(sb, QUOTA)) 6820 return -EINVAL; 6821 6822 /* Quotafile not on the same filesystem? */ 6823 if (path->dentry->d_sb != sb) 6824 return -EXDEV; 6825 6826 /* Quota already enabled for this file? */ 6827 if (IS_NOQUOTA(d_inode(path->dentry))) 6828 return -EBUSY; 6829 6830 /* Journaling quota? */ 6831 if (EXT4_SB(sb)->s_qf_names[type]) { 6832 /* Quotafile not in fs root? */ 6833 if (path->dentry->d_parent != sb->s_root) 6834 ext4_msg(sb, KERN_WARNING, 6835 "Quota file not on filesystem root. " 6836 "Journaled quota will not work"); 6837 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6838 } else { 6839 /* 6840 * Clear the flag just in case mount options changed since 6841 * last time. 6842 */ 6843 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6844 } 6845 6846 /* 6847 * When we journal data on quota file, we have to flush journal to see 6848 * all updates to the file when we bypass pagecache... 6849 */ 6850 if (EXT4_SB(sb)->s_journal && 6851 ext4_should_journal_data(d_inode(path->dentry))) { 6852 /* 6853 * We don't need to lock updates but journal_flush() could 6854 * otherwise be livelocked... 6855 */ 6856 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6857 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6858 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6859 if (err) 6860 return err; 6861 } 6862 6863 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6864 err = dquot_quota_on(sb, type, format_id, path); 6865 if (!err) { 6866 struct inode *inode = d_inode(path->dentry); 6867 handle_t *handle; 6868 6869 /* 6870 * Set inode flags to prevent userspace from messing with quota 6871 * files. If this fails, we return success anyway since quotas 6872 * are already enabled and this is not a hard failure. 6873 */ 6874 inode_lock(inode); 6875 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6876 if (IS_ERR(handle)) 6877 goto unlock_inode; 6878 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6879 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6880 S_NOATIME | S_IMMUTABLE); 6881 err = ext4_mark_inode_dirty(handle, inode); 6882 ext4_journal_stop(handle); 6883 unlock_inode: 6884 inode_unlock(inode); 6885 if (err) 6886 dquot_quota_off(sb, type); 6887 } 6888 if (err) 6889 lockdep_set_quota_inode(path->dentry->d_inode, 6890 I_DATA_SEM_NORMAL); 6891 return err; 6892 } 6893 6894 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6895 unsigned int flags) 6896 { 6897 int err; 6898 struct inode *qf_inode; 6899 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6900 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6901 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6902 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6903 }; 6904 6905 BUG_ON(!ext4_has_feature_quota(sb)); 6906 6907 if (!qf_inums[type]) 6908 return -EPERM; 6909 6910 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6911 if (IS_ERR(qf_inode)) { 6912 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6913 return PTR_ERR(qf_inode); 6914 } 6915 6916 /* Don't account quota for quota files to avoid recursion */ 6917 qf_inode->i_flags |= S_NOQUOTA; 6918 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6919 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6920 if (err) 6921 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6922 iput(qf_inode); 6923 6924 return err; 6925 } 6926 6927 /* Enable usage tracking for all quota types. */ 6928 int ext4_enable_quotas(struct super_block *sb) 6929 { 6930 int type, err = 0; 6931 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6932 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6933 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6934 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6935 }; 6936 bool quota_mopt[EXT4_MAXQUOTAS] = { 6937 test_opt(sb, USRQUOTA), 6938 test_opt(sb, GRPQUOTA), 6939 test_opt(sb, PRJQUOTA), 6940 }; 6941 6942 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6943 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6944 if (qf_inums[type]) { 6945 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6946 DQUOT_USAGE_ENABLED | 6947 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6948 if (err) { 6949 ext4_warning(sb, 6950 "Failed to enable quota tracking " 6951 "(type=%d, err=%d). Please run " 6952 "e2fsck to fix.", type, err); 6953 for (type--; type >= 0; type--) { 6954 struct inode *inode; 6955 6956 inode = sb_dqopt(sb)->files[type]; 6957 if (inode) 6958 inode = igrab(inode); 6959 dquot_quota_off(sb, type); 6960 if (inode) { 6961 lockdep_set_quota_inode(inode, 6962 I_DATA_SEM_NORMAL); 6963 iput(inode); 6964 } 6965 } 6966 6967 return err; 6968 } 6969 } 6970 } 6971 return 0; 6972 } 6973 6974 static int ext4_quota_off(struct super_block *sb, int type) 6975 { 6976 struct inode *inode = sb_dqopt(sb)->files[type]; 6977 handle_t *handle; 6978 int err; 6979 6980 /* Force all delayed allocation blocks to be allocated. 6981 * Caller already holds s_umount sem */ 6982 if (test_opt(sb, DELALLOC)) 6983 sync_filesystem(sb); 6984 6985 if (!inode || !igrab(inode)) 6986 goto out; 6987 6988 err = dquot_quota_off(sb, type); 6989 if (err || ext4_has_feature_quota(sb)) 6990 goto out_put; 6991 6992 inode_lock(inode); 6993 /* 6994 * Update modification times of quota files when userspace can 6995 * start looking at them. If we fail, we return success anyway since 6996 * this is not a hard failure and quotas are already disabled. 6997 */ 6998 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6999 if (IS_ERR(handle)) { 7000 err = PTR_ERR(handle); 7001 goto out_unlock; 7002 } 7003 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7004 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7005 inode->i_mtime = inode->i_ctime = current_time(inode); 7006 err = ext4_mark_inode_dirty(handle, inode); 7007 ext4_journal_stop(handle); 7008 out_unlock: 7009 inode_unlock(inode); 7010 out_put: 7011 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7012 iput(inode); 7013 return err; 7014 out: 7015 return dquot_quota_off(sb, type); 7016 } 7017 7018 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7019 * acquiring the locks... As quota files are never truncated and quota code 7020 * itself serializes the operations (and no one else should touch the files) 7021 * we don't have to be afraid of races */ 7022 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7023 size_t len, loff_t off) 7024 { 7025 struct inode *inode = sb_dqopt(sb)->files[type]; 7026 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7027 int offset = off & (sb->s_blocksize - 1); 7028 int tocopy; 7029 size_t toread; 7030 struct buffer_head *bh; 7031 loff_t i_size = i_size_read(inode); 7032 7033 if (off > i_size) 7034 return 0; 7035 if (off+len > i_size) 7036 len = i_size-off; 7037 toread = len; 7038 while (toread > 0) { 7039 tocopy = sb->s_blocksize - offset < toread ? 7040 sb->s_blocksize - offset : toread; 7041 bh = ext4_bread(NULL, inode, blk, 0); 7042 if (IS_ERR(bh)) 7043 return PTR_ERR(bh); 7044 if (!bh) /* A hole? */ 7045 memset(data, 0, tocopy); 7046 else 7047 memcpy(data, bh->b_data+offset, tocopy); 7048 brelse(bh); 7049 offset = 0; 7050 toread -= tocopy; 7051 data += tocopy; 7052 blk++; 7053 } 7054 return len; 7055 } 7056 7057 /* Write to quotafile (we know the transaction is already started and has 7058 * enough credits) */ 7059 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7060 const char *data, size_t len, loff_t off) 7061 { 7062 struct inode *inode = sb_dqopt(sb)->files[type]; 7063 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7064 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7065 int retries = 0; 7066 struct buffer_head *bh; 7067 handle_t *handle = journal_current_handle(); 7068 7069 if (!handle) { 7070 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7071 " cancelled because transaction is not started", 7072 (unsigned long long)off, (unsigned long long)len); 7073 return -EIO; 7074 } 7075 /* 7076 * Since we account only one data block in transaction credits, 7077 * then it is impossible to cross a block boundary. 7078 */ 7079 if (sb->s_blocksize - offset < len) { 7080 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7081 " cancelled because not block aligned", 7082 (unsigned long long)off, (unsigned long long)len); 7083 return -EIO; 7084 } 7085 7086 do { 7087 bh = ext4_bread(handle, inode, blk, 7088 EXT4_GET_BLOCKS_CREATE | 7089 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7090 } while (PTR_ERR(bh) == -ENOSPC && 7091 ext4_should_retry_alloc(inode->i_sb, &retries)); 7092 if (IS_ERR(bh)) 7093 return PTR_ERR(bh); 7094 if (!bh) 7095 goto out; 7096 BUFFER_TRACE(bh, "get write access"); 7097 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7098 if (err) { 7099 brelse(bh); 7100 return err; 7101 } 7102 lock_buffer(bh); 7103 memcpy(bh->b_data+offset, data, len); 7104 flush_dcache_page(bh->b_page); 7105 unlock_buffer(bh); 7106 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7107 brelse(bh); 7108 out: 7109 if (inode->i_size < off + len) { 7110 i_size_write(inode, off + len); 7111 EXT4_I(inode)->i_disksize = inode->i_size; 7112 err2 = ext4_mark_inode_dirty(handle, inode); 7113 if (unlikely(err2 && !err)) 7114 err = err2; 7115 } 7116 return err ? err : len; 7117 } 7118 #endif 7119 7120 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7121 static inline void register_as_ext2(void) 7122 { 7123 int err = register_filesystem(&ext2_fs_type); 7124 if (err) 7125 printk(KERN_WARNING 7126 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7127 } 7128 7129 static inline void unregister_as_ext2(void) 7130 { 7131 unregister_filesystem(&ext2_fs_type); 7132 } 7133 7134 static inline int ext2_feature_set_ok(struct super_block *sb) 7135 { 7136 if (ext4_has_unknown_ext2_incompat_features(sb)) 7137 return 0; 7138 if (sb_rdonly(sb)) 7139 return 1; 7140 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7141 return 0; 7142 return 1; 7143 } 7144 #else 7145 static inline void register_as_ext2(void) { } 7146 static inline void unregister_as_ext2(void) { } 7147 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7148 #endif 7149 7150 static inline void register_as_ext3(void) 7151 { 7152 int err = register_filesystem(&ext3_fs_type); 7153 if (err) 7154 printk(KERN_WARNING 7155 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7156 } 7157 7158 static inline void unregister_as_ext3(void) 7159 { 7160 unregister_filesystem(&ext3_fs_type); 7161 } 7162 7163 static inline int ext3_feature_set_ok(struct super_block *sb) 7164 { 7165 if (ext4_has_unknown_ext3_incompat_features(sb)) 7166 return 0; 7167 if (!ext4_has_feature_journal(sb)) 7168 return 0; 7169 if (sb_rdonly(sb)) 7170 return 1; 7171 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7172 return 0; 7173 return 1; 7174 } 7175 7176 static struct file_system_type ext4_fs_type = { 7177 .owner = THIS_MODULE, 7178 .name = "ext4", 7179 .init_fs_context = ext4_init_fs_context, 7180 .parameters = ext4_param_specs, 7181 .kill_sb = kill_block_super, 7182 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7183 }; 7184 MODULE_ALIAS_FS("ext4"); 7185 7186 /* Shared across all ext4 file systems */ 7187 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7188 7189 static int __init ext4_init_fs(void) 7190 { 7191 int i, err; 7192 7193 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7194 ext4_li_info = NULL; 7195 7196 /* Build-time check for flags consistency */ 7197 ext4_check_flag_values(); 7198 7199 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7200 init_waitqueue_head(&ext4__ioend_wq[i]); 7201 7202 err = ext4_init_es(); 7203 if (err) 7204 return err; 7205 7206 err = ext4_init_pending(); 7207 if (err) 7208 goto out7; 7209 7210 err = ext4_init_post_read_processing(); 7211 if (err) 7212 goto out6; 7213 7214 err = ext4_init_pageio(); 7215 if (err) 7216 goto out5; 7217 7218 err = ext4_init_system_zone(); 7219 if (err) 7220 goto out4; 7221 7222 err = ext4_init_sysfs(); 7223 if (err) 7224 goto out3; 7225 7226 err = ext4_init_mballoc(); 7227 if (err) 7228 goto out2; 7229 err = init_inodecache(); 7230 if (err) 7231 goto out1; 7232 7233 err = ext4_fc_init_dentry_cache(); 7234 if (err) 7235 goto out05; 7236 7237 register_as_ext3(); 7238 register_as_ext2(); 7239 err = register_filesystem(&ext4_fs_type); 7240 if (err) 7241 goto out; 7242 7243 return 0; 7244 out: 7245 unregister_as_ext2(); 7246 unregister_as_ext3(); 7247 ext4_fc_destroy_dentry_cache(); 7248 out05: 7249 destroy_inodecache(); 7250 out1: 7251 ext4_exit_mballoc(); 7252 out2: 7253 ext4_exit_sysfs(); 7254 out3: 7255 ext4_exit_system_zone(); 7256 out4: 7257 ext4_exit_pageio(); 7258 out5: 7259 ext4_exit_post_read_processing(); 7260 out6: 7261 ext4_exit_pending(); 7262 out7: 7263 ext4_exit_es(); 7264 7265 return err; 7266 } 7267 7268 static void __exit ext4_exit_fs(void) 7269 { 7270 ext4_destroy_lazyinit_thread(); 7271 unregister_as_ext2(); 7272 unregister_as_ext3(); 7273 unregister_filesystem(&ext4_fs_type); 7274 ext4_fc_destroy_dentry_cache(); 7275 destroy_inodecache(); 7276 ext4_exit_mballoc(); 7277 ext4_exit_sysfs(); 7278 ext4_exit_system_zone(); 7279 ext4_exit_pageio(); 7280 ext4_exit_post_read_processing(); 7281 ext4_exit_es(); 7282 ext4_exit_pending(); 7283 } 7284 7285 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7286 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7287 MODULE_LICENSE("GPL"); 7288 MODULE_SOFTDEP("pre: crc32c"); 7289 module_init(ext4_init_fs) 7290 module_exit(ext4_exit_fs) 7291