xref: /linux/fs/ext4/super.c (revision 34c3f1e346e7b2b8a420b1ea341b341525baf92b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 					    unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 				      struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97 
98 /*
99  * Lock ordering
100  *
101  * page fault path:
102  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103  *   -> page lock -> i_data_sem (rw)
104  *
105  * buffered write path:
106  * sb_start_write -> i_mutex -> mmap_lock
107  * sb_start_write -> i_mutex -> transaction start -> page lock ->
108  *   i_data_sem (rw)
109  *
110  * truncate:
111  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112  *   page lock
113  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114  *   i_data_sem (rw)
115  *
116  * direct IO:
117  * sb_start_write -> i_mutex -> mmap_lock
118  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119  *
120  * writepages:
121  * transaction start -> page lock(s) -> i_data_sem (rw)
122  */
123 
124 static const struct fs_context_operations ext4_context_ops = {
125 	.parse_param	= ext4_parse_param,
126 	.get_tree	= ext4_get_tree,
127 	.reconfigure	= ext4_reconfigure,
128 	.free		= ext4_fc_free,
129 };
130 
131 
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 	.owner			= THIS_MODULE,
135 	.name			= "ext2",
136 	.init_fs_context	= ext4_init_fs_context,
137 	.parameters		= ext4_param_specs,
138 	.kill_sb		= ext4_kill_sb,
139 	.fs_flags		= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147 
148 
149 static struct file_system_type ext3_fs_type = {
150 	.owner			= THIS_MODULE,
151 	.name			= "ext3",
152 	.init_fs_context	= ext4_init_fs_context,
153 	.parameters		= ext4_param_specs,
154 	.kill_sb		= ext4_kill_sb,
155 	.fs_flags		= FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160 
161 
162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 				  bh_end_io_t *end_io, bool simu_fail)
164 {
165 	if (simu_fail) {
166 		clear_buffer_uptodate(bh);
167 		unlock_buffer(bh);
168 		return;
169 	}
170 
171 	/*
172 	 * buffer's verified bit is no longer valid after reading from
173 	 * disk again due to write out error, clear it to make sure we
174 	 * recheck the buffer contents.
175 	 */
176 	clear_buffer_verified(bh);
177 
178 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 	get_bh(bh);
180 	submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182 
183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 			 bh_end_io_t *end_io, bool simu_fail)
185 {
186 	BUG_ON(!buffer_locked(bh));
187 
188 	if (ext4_buffer_uptodate(bh)) {
189 		unlock_buffer(bh);
190 		return;
191 	}
192 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194 
195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 		 bh_end_io_t *end_io, bool simu_fail)
197 {
198 	BUG_ON(!buffer_locked(bh));
199 
200 	if (ext4_buffer_uptodate(bh)) {
201 		unlock_buffer(bh);
202 		return 0;
203 	}
204 
205 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
206 
207 	wait_on_buffer(bh);
208 	if (buffer_uptodate(bh))
209 		return 0;
210 	return -EIO;
211 }
212 
213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 	lock_buffer(bh);
216 	if (!wait) {
217 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 		return 0;
219 	}
220 	return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222 
223 /*
224  * This works like __bread_gfp() except it uses ERR_PTR for error
225  * returns.  Currently with sb_bread it's impossible to distinguish
226  * between ENOMEM and EIO situations (since both result in a NULL
227  * return.
228  */
229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 					       sector_t block,
231 					       blk_opf_t op_flags, gfp_t gfp)
232 {
233 	struct buffer_head *bh;
234 	int ret;
235 
236 	bh = sb_getblk_gfp(sb, block, gfp);
237 	if (bh == NULL)
238 		return ERR_PTR(-ENOMEM);
239 	if (ext4_buffer_uptodate(bh))
240 		return bh;
241 
242 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 	if (ret) {
244 		put_bh(bh);
245 		return ERR_PTR(ret);
246 	}
247 	return bh;
248 }
249 
250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 				   blk_opf_t op_flags)
252 {
253 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 			~__GFP_FS) | __GFP_MOVABLE;
255 
256 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258 
259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 					    sector_t block)
261 {
262 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 			~__GFP_FS);
264 
265 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267 
268 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
269 {
270 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
271 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
272 
273 	if (likely(bh)) {
274 		if (trylock_buffer(bh))
275 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
276 		brelse(bh);
277 	}
278 }
279 
280 static int ext4_verify_csum_type(struct super_block *sb,
281 				 struct ext4_super_block *es)
282 {
283 	if (!ext4_has_feature_metadata_csum(sb))
284 		return 1;
285 
286 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
287 }
288 
289 __le32 ext4_superblock_csum(struct ext4_super_block *es)
290 {
291 	int offset = offsetof(struct ext4_super_block, s_checksum);
292 	__u32 csum;
293 
294 	csum = ext4_chksum(~0, (char *)es, offset);
295 
296 	return cpu_to_le32(csum);
297 }
298 
299 static int ext4_superblock_csum_verify(struct super_block *sb,
300 				       struct ext4_super_block *es)
301 {
302 	if (!ext4_has_feature_metadata_csum(sb))
303 		return 1;
304 
305 	return es->s_checksum == ext4_superblock_csum(es);
306 }
307 
308 void ext4_superblock_csum_set(struct super_block *sb)
309 {
310 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
311 
312 	if (!ext4_has_feature_metadata_csum(sb))
313 		return;
314 
315 	es->s_checksum = ext4_superblock_csum(es);
316 }
317 
318 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
319 			       struct ext4_group_desc *bg)
320 {
321 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
322 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
323 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
324 }
325 
326 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
327 			       struct ext4_group_desc *bg)
328 {
329 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
330 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
331 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
332 }
333 
334 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
335 			      struct ext4_group_desc *bg)
336 {
337 	return le32_to_cpu(bg->bg_inode_table_lo) |
338 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
339 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
340 }
341 
342 __u32 ext4_free_group_clusters(struct super_block *sb,
343 			       struct ext4_group_desc *bg)
344 {
345 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
346 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
347 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
348 }
349 
350 __u32 ext4_free_inodes_count(struct super_block *sb,
351 			      struct ext4_group_desc *bg)
352 {
353 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
354 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
355 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
356 }
357 
358 __u32 ext4_used_dirs_count(struct super_block *sb,
359 			      struct ext4_group_desc *bg)
360 {
361 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
362 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
363 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
364 }
365 
366 __u32 ext4_itable_unused_count(struct super_block *sb,
367 			      struct ext4_group_desc *bg)
368 {
369 	return le16_to_cpu(bg->bg_itable_unused_lo) |
370 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
371 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
372 }
373 
374 void ext4_block_bitmap_set(struct super_block *sb,
375 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
376 {
377 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
378 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
379 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
380 }
381 
382 void ext4_inode_bitmap_set(struct super_block *sb,
383 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
384 {
385 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
386 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
387 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
388 }
389 
390 void ext4_inode_table_set(struct super_block *sb,
391 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
392 {
393 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
394 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
395 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
396 }
397 
398 void ext4_free_group_clusters_set(struct super_block *sb,
399 				  struct ext4_group_desc *bg, __u32 count)
400 {
401 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
402 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
403 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
404 }
405 
406 void ext4_free_inodes_set(struct super_block *sb,
407 			  struct ext4_group_desc *bg, __u32 count)
408 {
409 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
410 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
411 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
412 }
413 
414 void ext4_used_dirs_set(struct super_block *sb,
415 			  struct ext4_group_desc *bg, __u32 count)
416 {
417 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
418 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
419 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
420 }
421 
422 void ext4_itable_unused_set(struct super_block *sb,
423 			  struct ext4_group_desc *bg, __u32 count)
424 {
425 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
426 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
427 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
428 }
429 
430 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
431 {
432 	now = clamp_val(now, 0, (1ull << 40) - 1);
433 
434 	*lo = cpu_to_le32(lower_32_bits(now));
435 	*hi = upper_32_bits(now);
436 }
437 
438 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
439 {
440 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
441 }
442 #define ext4_update_tstamp(es, tstamp) \
443 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
444 			     ktime_get_real_seconds())
445 #define ext4_get_tstamp(es, tstamp) \
446 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
447 
448 /*
449  * The ext4_maybe_update_superblock() function checks and updates the
450  * superblock if needed.
451  *
452  * This function is designed to update the on-disk superblock only under
453  * certain conditions to prevent excessive disk writes and unnecessary
454  * waking of the disk from sleep. The superblock will be updated if:
455  * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
456  *    superblock update
457  * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
458  *    last superblock update.
459  *
460  * @sb: The superblock
461  */
462 static void ext4_maybe_update_superblock(struct super_block *sb)
463 {
464 	struct ext4_sb_info *sbi = EXT4_SB(sb);
465 	struct ext4_super_block *es = sbi->s_es;
466 	journal_t *journal = sbi->s_journal;
467 	time64_t now;
468 	__u64 last_update;
469 	__u64 lifetime_write_kbytes;
470 	__u64 diff_size;
471 
472 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
473 	    !(sb->s_flags & SB_ACTIVE) || !journal ||
474 	    journal->j_flags & JBD2_UNMOUNT)
475 		return;
476 
477 	now = ktime_get_real_seconds();
478 	last_update = ext4_get_tstamp(es, s_wtime);
479 
480 	if (likely(now - last_update < sbi->s_sb_update_sec))
481 		return;
482 
483 	lifetime_write_kbytes = sbi->s_kbytes_written +
484 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
485 		  sbi->s_sectors_written_start) >> 1);
486 
487 	/* Get the number of kilobytes not written to disk to account
488 	 * for statistics and compare with a multiple of 16 MB. This
489 	 * is used to determine when the next superblock commit should
490 	 * occur (i.e. not more often than once per 16MB if there was
491 	 * less written in an hour).
492 	 */
493 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
494 
495 	if (diff_size > sbi->s_sb_update_kb)
496 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
497 }
498 
499 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
500 {
501 	struct super_block		*sb = journal->j_private;
502 
503 	BUG_ON(txn->t_state == T_FINISHED);
504 
505 	ext4_process_freed_data(sb, txn->t_tid);
506 	ext4_maybe_update_superblock(sb);
507 }
508 
509 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
510 		struct folio *folio)
511 {
512 	struct buffer_head *bh, *head;
513 	struct journal_head *jh;
514 
515 	bh = head = folio_buffers(folio);
516 	do {
517 		/*
518 		 * We have to redirty a page in these cases:
519 		 * 1) If buffer is dirty, it means the page was dirty because it
520 		 * contains a buffer that needs checkpointing. So the dirty bit
521 		 * needs to be preserved so that checkpointing writes the buffer
522 		 * properly.
523 		 * 2) If buffer is not part of the committing transaction
524 		 * (we may have just accidentally come across this buffer because
525 		 * inode range tracking is not exact) or if the currently running
526 		 * transaction already contains this buffer as well, dirty bit
527 		 * needs to be preserved so that the buffer gets writeprotected
528 		 * properly on running transaction's commit.
529 		 */
530 		jh = bh2jh(bh);
531 		if (buffer_dirty(bh) ||
532 		    (jh && (jh->b_transaction != jinode->i_transaction ||
533 			    jh->b_next_transaction)))
534 			return true;
535 	} while ((bh = bh->b_this_page) != head);
536 
537 	return false;
538 }
539 
540 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
541 {
542 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
543 	struct writeback_control wbc = {
544 		.sync_mode =  WB_SYNC_ALL,
545 		.nr_to_write = LONG_MAX,
546 		.range_start = jinode->i_dirty_start,
547 		.range_end = jinode->i_dirty_end,
548         };
549 	struct folio *folio = NULL;
550 	int error;
551 
552 	/*
553 	 * writeback_iter() already checks for dirty pages and calls
554 	 * folio_clear_dirty_for_io(), which we want to write protect the
555 	 * folios.
556 	 *
557 	 * However, we may have to redirty a folio sometimes.
558 	 */
559 	while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
560 		if (ext4_journalled_writepage_needs_redirty(jinode, folio))
561 			folio_redirty_for_writepage(&wbc, folio);
562 		folio_unlock(folio);
563 	}
564 
565 	return error;
566 }
567 
568 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
569 {
570 	int ret;
571 
572 	if (ext4_should_journal_data(jinode->i_vfs_inode))
573 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
574 	else
575 		ret = ext4_normal_submit_inode_data_buffers(jinode);
576 	return ret;
577 }
578 
579 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
580 {
581 	int ret = 0;
582 
583 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
584 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
585 
586 	return ret;
587 }
588 
589 static bool system_going_down(void)
590 {
591 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
592 		|| system_state == SYSTEM_RESTART;
593 }
594 
595 struct ext4_err_translation {
596 	int code;
597 	int errno;
598 };
599 
600 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
601 
602 static struct ext4_err_translation err_translation[] = {
603 	EXT4_ERR_TRANSLATE(EIO),
604 	EXT4_ERR_TRANSLATE(ENOMEM),
605 	EXT4_ERR_TRANSLATE(EFSBADCRC),
606 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
607 	EXT4_ERR_TRANSLATE(ENOSPC),
608 	EXT4_ERR_TRANSLATE(ENOKEY),
609 	EXT4_ERR_TRANSLATE(EROFS),
610 	EXT4_ERR_TRANSLATE(EFBIG),
611 	EXT4_ERR_TRANSLATE(EEXIST),
612 	EXT4_ERR_TRANSLATE(ERANGE),
613 	EXT4_ERR_TRANSLATE(EOVERFLOW),
614 	EXT4_ERR_TRANSLATE(EBUSY),
615 	EXT4_ERR_TRANSLATE(ENOTDIR),
616 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
617 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
618 	EXT4_ERR_TRANSLATE(EFAULT),
619 };
620 
621 static int ext4_errno_to_code(int errno)
622 {
623 	int i;
624 
625 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
626 		if (err_translation[i].errno == errno)
627 			return err_translation[i].code;
628 	return EXT4_ERR_UNKNOWN;
629 }
630 
631 static void save_error_info(struct super_block *sb, int error,
632 			    __u32 ino, __u64 block,
633 			    const char *func, unsigned int line)
634 {
635 	struct ext4_sb_info *sbi = EXT4_SB(sb);
636 
637 	/* We default to EFSCORRUPTED error... */
638 	if (error == 0)
639 		error = EFSCORRUPTED;
640 
641 	spin_lock(&sbi->s_error_lock);
642 	sbi->s_add_error_count++;
643 	sbi->s_last_error_code = error;
644 	sbi->s_last_error_line = line;
645 	sbi->s_last_error_ino = ino;
646 	sbi->s_last_error_block = block;
647 	sbi->s_last_error_func = func;
648 	sbi->s_last_error_time = ktime_get_real_seconds();
649 	if (!sbi->s_first_error_time) {
650 		sbi->s_first_error_code = error;
651 		sbi->s_first_error_line = line;
652 		sbi->s_first_error_ino = ino;
653 		sbi->s_first_error_block = block;
654 		sbi->s_first_error_func = func;
655 		sbi->s_first_error_time = sbi->s_last_error_time;
656 	}
657 	spin_unlock(&sbi->s_error_lock);
658 }
659 
660 /* Deal with the reporting of failure conditions on a filesystem such as
661  * inconsistencies detected or read IO failures.
662  *
663  * On ext2, we can store the error state of the filesystem in the
664  * superblock.  That is not possible on ext4, because we may have other
665  * write ordering constraints on the superblock which prevent us from
666  * writing it out straight away; and given that the journal is about to
667  * be aborted, we can't rely on the current, or future, transactions to
668  * write out the superblock safely.
669  *
670  * We'll just use the jbd2_journal_abort() error code to record an error in
671  * the journal instead.  On recovery, the journal will complain about
672  * that error until we've noted it down and cleared it.
673  *
674  * If force_ro is set, we unconditionally force the filesystem into an
675  * ABORT|READONLY state, unless the error response on the fs has been set to
676  * panic in which case we take the easy way out and panic immediately. This is
677  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
678  * at a critical moment in log management.
679  */
680 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
681 			      __u32 ino, __u64 block,
682 			      const char *func, unsigned int line)
683 {
684 	journal_t *journal = EXT4_SB(sb)->s_journal;
685 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
686 
687 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
688 	if (test_opt(sb, WARN_ON_ERROR))
689 		WARN_ON_ONCE(1);
690 
691 	if (!continue_fs && !ext4_emergency_ro(sb) && journal)
692 		jbd2_journal_abort(journal, -EIO);
693 
694 	if (!bdev_read_only(sb->s_bdev)) {
695 		save_error_info(sb, error, ino, block, func, line);
696 		/*
697 		 * In case the fs should keep running, we need to writeout
698 		 * superblock through the journal. Due to lock ordering
699 		 * constraints, it may not be safe to do it right here so we
700 		 * defer superblock flushing to a workqueue. We just need to be
701 		 * careful when the journal is already shutting down. If we get
702 		 * here in that case, just update the sb directly as the last
703 		 * transaction won't commit anyway.
704 		 */
705 		if (continue_fs && journal &&
706 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
707 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
708 		else
709 			ext4_commit_super(sb);
710 	}
711 
712 	/*
713 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
714 	 * could panic during 'reboot -f' as the underlying device got already
715 	 * disabled.
716 	 */
717 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
718 		panic("EXT4-fs (device %s): panic forced after error\n",
719 			sb->s_id);
720 	}
721 
722 	if (ext4_emergency_ro(sb) || continue_fs)
723 		return;
724 
725 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
726 	/*
727 	 * We don't set SB_RDONLY because that requires sb->s_umount
728 	 * semaphore and setting it without proper remount procedure is
729 	 * confusing code such as freeze_super() leading to deadlocks
730 	 * and other problems.
731 	 */
732 	set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
733 }
734 
735 static void update_super_work(struct work_struct *work)
736 {
737 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
738 						s_sb_upd_work);
739 	journal_t *journal = sbi->s_journal;
740 	handle_t *handle;
741 
742 	/*
743 	 * If the journal is still running, we have to write out superblock
744 	 * through the journal to avoid collisions of other journalled sb
745 	 * updates.
746 	 *
747 	 * We use directly jbd2 functions here to avoid recursing back into
748 	 * ext4 error handling code during handling of previous errors.
749 	 */
750 	if (!ext4_emergency_state(sbi->s_sb) &&
751 	    !sb_rdonly(sbi->s_sb) && journal) {
752 		struct buffer_head *sbh = sbi->s_sbh;
753 		bool call_notify_err = false;
754 
755 		handle = jbd2_journal_start(journal, 1);
756 		if (IS_ERR(handle))
757 			goto write_directly;
758 		if (jbd2_journal_get_write_access(handle, sbh)) {
759 			jbd2_journal_stop(handle);
760 			goto write_directly;
761 		}
762 
763 		if (sbi->s_add_error_count > 0)
764 			call_notify_err = true;
765 
766 		ext4_update_super(sbi->s_sb);
767 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
768 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
769 				 "superblock detected");
770 			clear_buffer_write_io_error(sbh);
771 			set_buffer_uptodate(sbh);
772 		}
773 
774 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
775 			jbd2_journal_stop(handle);
776 			goto write_directly;
777 		}
778 		jbd2_journal_stop(handle);
779 
780 		if (call_notify_err)
781 			ext4_notify_error_sysfs(sbi);
782 
783 		return;
784 	}
785 write_directly:
786 	/*
787 	 * Write through journal failed. Write sb directly to get error info
788 	 * out and hope for the best.
789 	 */
790 	ext4_commit_super(sbi->s_sb);
791 	ext4_notify_error_sysfs(sbi);
792 }
793 
794 #define ext4_error_ratelimit(sb)					\
795 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
796 			     "EXT4-fs error")
797 
798 void __ext4_error(struct super_block *sb, const char *function,
799 		  unsigned int line, bool force_ro, int error, __u64 block,
800 		  const char *fmt, ...)
801 {
802 	struct va_format vaf;
803 	va_list args;
804 
805 	if (unlikely(ext4_emergency_state(sb)))
806 		return;
807 
808 	trace_ext4_error(sb, function, line);
809 	if (ext4_error_ratelimit(sb)) {
810 		va_start(args, fmt);
811 		vaf.fmt = fmt;
812 		vaf.va = &args;
813 		printk(KERN_CRIT
814 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
815 		       sb->s_id, function, line, current->comm, &vaf);
816 		va_end(args);
817 	}
818 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
819 
820 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
821 }
822 
823 void __ext4_error_inode(struct inode *inode, const char *function,
824 			unsigned int line, ext4_fsblk_t block, int error,
825 			const char *fmt, ...)
826 {
827 	va_list args;
828 	struct va_format vaf;
829 
830 	if (unlikely(ext4_emergency_state(inode->i_sb)))
831 		return;
832 
833 	trace_ext4_error(inode->i_sb, function, line);
834 	if (ext4_error_ratelimit(inode->i_sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		if (block)
839 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
840 			       "inode #%lu: block %llu: comm %s: %pV\n",
841 			       inode->i_sb->s_id, function, line, inode->i_ino,
842 			       block, current->comm, &vaf);
843 		else
844 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
845 			       "inode #%lu: comm %s: %pV\n",
846 			       inode->i_sb->s_id, function, line, inode->i_ino,
847 			       current->comm, &vaf);
848 		va_end(args);
849 	}
850 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
851 
852 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
853 			  function, line);
854 }
855 
856 void __ext4_error_file(struct file *file, const char *function,
857 		       unsigned int line, ext4_fsblk_t block,
858 		       const char *fmt, ...)
859 {
860 	va_list args;
861 	struct va_format vaf;
862 	struct inode *inode = file_inode(file);
863 	char pathname[80], *path;
864 
865 	if (unlikely(ext4_emergency_state(inode->i_sb)))
866 		return;
867 
868 	trace_ext4_error(inode->i_sb, function, line);
869 	if (ext4_error_ratelimit(inode->i_sb)) {
870 		path = file_path(file, pathname, sizeof(pathname));
871 		if (IS_ERR(path))
872 			path = "(unknown)";
873 		va_start(args, fmt);
874 		vaf.fmt = fmt;
875 		vaf.va = &args;
876 		if (block)
877 			printk(KERN_CRIT
878 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
879 			       "block %llu: comm %s: path %s: %pV\n",
880 			       inode->i_sb->s_id, function, line, inode->i_ino,
881 			       block, current->comm, path, &vaf);
882 		else
883 			printk(KERN_CRIT
884 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
885 			       "comm %s: path %s: %pV\n",
886 			       inode->i_sb->s_id, function, line, inode->i_ino,
887 			       current->comm, path, &vaf);
888 		va_end(args);
889 	}
890 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
891 
892 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
893 			  function, line);
894 }
895 
896 const char *ext4_decode_error(struct super_block *sb, int errno,
897 			      char nbuf[16])
898 {
899 	char *errstr = NULL;
900 
901 	switch (errno) {
902 	case -EFSCORRUPTED:
903 		errstr = "Corrupt filesystem";
904 		break;
905 	case -EFSBADCRC:
906 		errstr = "Filesystem failed CRC";
907 		break;
908 	case -EIO:
909 		errstr = "IO failure";
910 		break;
911 	case -ENOMEM:
912 		errstr = "Out of memory";
913 		break;
914 	case -EROFS:
915 		if (!sb || (EXT4_SB(sb)->s_journal &&
916 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
917 			errstr = "Journal has aborted";
918 		else
919 			errstr = "Readonly filesystem";
920 		break;
921 	default:
922 		/* If the caller passed in an extra buffer for unknown
923 		 * errors, textualise them now.  Else we just return
924 		 * NULL. */
925 		if (nbuf) {
926 			/* Check for truncated error codes... */
927 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
928 				errstr = nbuf;
929 		}
930 		break;
931 	}
932 
933 	return errstr;
934 }
935 
936 /* __ext4_std_error decodes expected errors from journaling functions
937  * automatically and invokes the appropriate error response.  */
938 
939 void __ext4_std_error(struct super_block *sb, const char *function,
940 		      unsigned int line, int errno)
941 {
942 	char nbuf[16];
943 	const char *errstr;
944 
945 	if (unlikely(ext4_emergency_state(sb)))
946 		return;
947 
948 	/* Special case: if the error is EROFS, and we're not already
949 	 * inside a transaction, then there's really no point in logging
950 	 * an error. */
951 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
952 		return;
953 
954 	if (ext4_error_ratelimit(sb)) {
955 		errstr = ext4_decode_error(sb, errno, nbuf);
956 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
957 		       sb->s_id, function, line, errstr);
958 	}
959 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
960 
961 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
962 }
963 
964 void __ext4_msg(struct super_block *sb,
965 		const char *prefix, const char *fmt, ...)
966 {
967 	struct va_format vaf;
968 	va_list args;
969 
970 	if (sb) {
971 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
972 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
973 				  "EXT4-fs"))
974 			return;
975 	}
976 
977 	va_start(args, fmt);
978 	vaf.fmt = fmt;
979 	vaf.va = &args;
980 	if (sb)
981 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
982 	else
983 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
984 	va_end(args);
985 }
986 
987 static int ext4_warning_ratelimit(struct super_block *sb)
988 {
989 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
990 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
991 			    "EXT4-fs warning");
992 }
993 
994 void __ext4_warning(struct super_block *sb, const char *function,
995 		    unsigned int line, const char *fmt, ...)
996 {
997 	struct va_format vaf;
998 	va_list args;
999 
1000 	if (!ext4_warning_ratelimit(sb))
1001 		return;
1002 
1003 	va_start(args, fmt);
1004 	vaf.fmt = fmt;
1005 	vaf.va = &args;
1006 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1007 	       sb->s_id, function, line, &vaf);
1008 	va_end(args);
1009 }
1010 
1011 void __ext4_warning_inode(const struct inode *inode, const char *function,
1012 			  unsigned int line, const char *fmt, ...)
1013 {
1014 	struct va_format vaf;
1015 	va_list args;
1016 
1017 	if (!ext4_warning_ratelimit(inode->i_sb))
1018 		return;
1019 
1020 	va_start(args, fmt);
1021 	vaf.fmt = fmt;
1022 	vaf.va = &args;
1023 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1024 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1025 	       function, line, inode->i_ino, current->comm, &vaf);
1026 	va_end(args);
1027 }
1028 
1029 void __ext4_grp_locked_error(const char *function, unsigned int line,
1030 			     struct super_block *sb, ext4_group_t grp,
1031 			     unsigned long ino, ext4_fsblk_t block,
1032 			     const char *fmt, ...)
1033 __releases(bitlock)
1034 __acquires(bitlock)
1035 {
1036 	struct va_format vaf;
1037 	va_list args;
1038 
1039 	if (unlikely(ext4_emergency_state(sb)))
1040 		return;
1041 
1042 	trace_ext4_error(sb, function, line);
1043 	if (ext4_error_ratelimit(sb)) {
1044 		va_start(args, fmt);
1045 		vaf.fmt = fmt;
1046 		vaf.va = &args;
1047 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1048 		       sb->s_id, function, line, grp);
1049 		if (ino)
1050 			printk(KERN_CONT "inode %lu: ", ino);
1051 		if (block)
1052 			printk(KERN_CONT "block %llu:",
1053 			       (unsigned long long) block);
1054 		printk(KERN_CONT "%pV\n", &vaf);
1055 		va_end(args);
1056 	}
1057 
1058 	if (test_opt(sb, ERRORS_CONT)) {
1059 		if (test_opt(sb, WARN_ON_ERROR))
1060 			WARN_ON_ONCE(1);
1061 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1062 		if (!bdev_read_only(sb->s_bdev)) {
1063 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1064 					line);
1065 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1066 		}
1067 		return;
1068 	}
1069 	ext4_unlock_group(sb, grp);
1070 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1071 	/*
1072 	 * We only get here in the ERRORS_RO case; relocking the group
1073 	 * may be dangerous, but nothing bad will happen since the
1074 	 * filesystem will have already been marked read/only and the
1075 	 * journal has been aborted.  We return 1 as a hint to callers
1076 	 * who might what to use the return value from
1077 	 * ext4_grp_locked_error() to distinguish between the
1078 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1079 	 * aggressively from the ext4 function in question, with a
1080 	 * more appropriate error code.
1081 	 */
1082 	ext4_lock_group(sb, grp);
1083 	return;
1084 }
1085 
1086 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1087 				     ext4_group_t group,
1088 				     unsigned int flags)
1089 {
1090 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1091 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1092 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1093 	int ret;
1094 
1095 	if (!grp || !gdp)
1096 		return;
1097 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1098 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1099 					    &grp->bb_state);
1100 		if (!ret)
1101 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1102 					   grp->bb_free);
1103 	}
1104 
1105 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1106 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1107 					    &grp->bb_state);
1108 		if (!ret && gdp) {
1109 			int count;
1110 
1111 			count = ext4_free_inodes_count(sb, gdp);
1112 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1113 					   count);
1114 		}
1115 	}
1116 }
1117 
1118 void ext4_update_dynamic_rev(struct super_block *sb)
1119 {
1120 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1121 
1122 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1123 		return;
1124 
1125 	ext4_warning(sb,
1126 		     "updating to rev %d because of new feature flag, "
1127 		     "running e2fsck is recommended",
1128 		     EXT4_DYNAMIC_REV);
1129 
1130 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1131 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1132 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1133 	/* leave es->s_feature_*compat flags alone */
1134 	/* es->s_uuid will be set by e2fsck if empty */
1135 
1136 	/*
1137 	 * The rest of the superblock fields should be zero, and if not it
1138 	 * means they are likely already in use, so leave them alone.  We
1139 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1140 	 */
1141 }
1142 
1143 static inline struct inode *orphan_list_entry(struct list_head *l)
1144 {
1145 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1146 }
1147 
1148 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1149 {
1150 	struct list_head *l;
1151 
1152 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1153 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1154 
1155 	printk(KERN_ERR "sb_info orphan list:\n");
1156 	list_for_each(l, &sbi->s_orphan) {
1157 		struct inode *inode = orphan_list_entry(l);
1158 		printk(KERN_ERR "  "
1159 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1160 		       inode->i_sb->s_id, inode->i_ino, inode,
1161 		       inode->i_mode, inode->i_nlink,
1162 		       NEXT_ORPHAN(inode));
1163 	}
1164 }
1165 
1166 #ifdef CONFIG_QUOTA
1167 static int ext4_quota_off(struct super_block *sb, int type);
1168 
1169 static inline void ext4_quotas_off(struct super_block *sb, int type)
1170 {
1171 	BUG_ON(type > EXT4_MAXQUOTAS);
1172 
1173 	/* Use our quota_off function to clear inode flags etc. */
1174 	for (type--; type >= 0; type--)
1175 		ext4_quota_off(sb, type);
1176 }
1177 
1178 /*
1179  * This is a helper function which is used in the mount/remount
1180  * codepaths (which holds s_umount) to fetch the quota file name.
1181  */
1182 static inline char *get_qf_name(struct super_block *sb,
1183 				struct ext4_sb_info *sbi,
1184 				int type)
1185 {
1186 	return rcu_dereference_protected(sbi->s_qf_names[type],
1187 					 lockdep_is_held(&sb->s_umount));
1188 }
1189 #else
1190 static inline void ext4_quotas_off(struct super_block *sb, int type)
1191 {
1192 }
1193 #endif
1194 
1195 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1196 {
1197 	ext4_fsblk_t block;
1198 	int err;
1199 
1200 	block = ext4_count_free_clusters(sbi->s_sb);
1201 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1202 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1203 				  GFP_KERNEL);
1204 	if (!err) {
1205 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1206 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1207 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1208 					  GFP_KERNEL);
1209 	}
1210 	if (!err)
1211 		err = percpu_counter_init(&sbi->s_dirs_counter,
1212 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1213 	if (!err)
1214 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1215 					  GFP_KERNEL);
1216 	if (!err)
1217 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1218 					  GFP_KERNEL);
1219 	if (!err)
1220 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1221 
1222 	if (err)
1223 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1224 
1225 	return err;
1226 }
1227 
1228 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1229 {
1230 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1231 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1232 	percpu_counter_destroy(&sbi->s_dirs_counter);
1233 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1234 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1235 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1236 }
1237 
1238 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1239 {
1240 	struct buffer_head **group_desc;
1241 	int i;
1242 
1243 	rcu_read_lock();
1244 	group_desc = rcu_dereference(sbi->s_group_desc);
1245 	for (i = 0; i < sbi->s_gdb_count; i++)
1246 		brelse(group_desc[i]);
1247 	kvfree(group_desc);
1248 	rcu_read_unlock();
1249 }
1250 
1251 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1252 {
1253 	struct flex_groups **flex_groups;
1254 	int i;
1255 
1256 	rcu_read_lock();
1257 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1258 	if (flex_groups) {
1259 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1260 			kvfree(flex_groups[i]);
1261 		kvfree(flex_groups);
1262 	}
1263 	rcu_read_unlock();
1264 }
1265 
1266 static void ext4_put_super(struct super_block *sb)
1267 {
1268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1269 	struct ext4_super_block *es = sbi->s_es;
1270 	int aborted = 0;
1271 	int err;
1272 
1273 	/*
1274 	 * Unregister sysfs before destroying jbd2 journal.
1275 	 * Since we could still access attr_journal_task attribute via sysfs
1276 	 * path which could have sbi->s_journal->j_task as NULL
1277 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1278 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1279 	 * read metadata verify failed then will queue error work.
1280 	 * update_super_work will call start_this_handle may trigger
1281 	 * BUG_ON.
1282 	 */
1283 	ext4_unregister_sysfs(sb);
1284 
1285 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1286 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1287 			 &sb->s_uuid);
1288 
1289 	ext4_unregister_li_request(sb);
1290 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1291 
1292 	destroy_workqueue(sbi->rsv_conversion_wq);
1293 	ext4_release_orphan_info(sb);
1294 
1295 	if (sbi->s_journal) {
1296 		aborted = is_journal_aborted(sbi->s_journal);
1297 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1298 		if ((err < 0) && !aborted) {
1299 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1300 		}
1301 	} else
1302 		flush_work(&sbi->s_sb_upd_work);
1303 
1304 	ext4_es_unregister_shrinker(sbi);
1305 	timer_shutdown_sync(&sbi->s_err_report);
1306 	ext4_release_system_zone(sb);
1307 	ext4_mb_release(sb);
1308 	ext4_ext_release(sb);
1309 
1310 	if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1311 		if (!aborted) {
1312 			ext4_clear_feature_journal_needs_recovery(sb);
1313 			ext4_clear_feature_orphan_present(sb);
1314 			es->s_state = cpu_to_le16(sbi->s_mount_state);
1315 		}
1316 		ext4_commit_super(sb);
1317 	}
1318 
1319 	ext4_group_desc_free(sbi);
1320 	ext4_flex_groups_free(sbi);
1321 
1322 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1323 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1324 	ext4_percpu_param_destroy(sbi);
1325 #ifdef CONFIG_QUOTA
1326 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1327 		kfree(get_qf_name(sb, sbi, i));
1328 #endif
1329 
1330 	/* Debugging code just in case the in-memory inode orphan list
1331 	 * isn't empty.  The on-disk one can be non-empty if we've
1332 	 * detected an error and taken the fs readonly, but the
1333 	 * in-memory list had better be clean by this point. */
1334 	if (!list_empty(&sbi->s_orphan))
1335 		dump_orphan_list(sb, sbi);
1336 	ASSERT(list_empty(&sbi->s_orphan));
1337 
1338 	sync_blockdev(sb->s_bdev);
1339 	invalidate_bdev(sb->s_bdev);
1340 	if (sbi->s_journal_bdev_file) {
1341 		/*
1342 		 * Invalidate the journal device's buffers.  We don't want them
1343 		 * floating about in memory - the physical journal device may
1344 		 * hotswapped, and it breaks the `ro-after' testing code.
1345 		 */
1346 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1347 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1348 	}
1349 
1350 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1351 	sbi->s_ea_inode_cache = NULL;
1352 
1353 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1354 	sbi->s_ea_block_cache = NULL;
1355 
1356 	ext4_stop_mmpd(sbi);
1357 
1358 	brelse(sbi->s_sbh);
1359 	sb->s_fs_info = NULL;
1360 	/*
1361 	 * Now that we are completely done shutting down the
1362 	 * superblock, we need to actually destroy the kobject.
1363 	 */
1364 	kobject_put(&sbi->s_kobj);
1365 	wait_for_completion(&sbi->s_kobj_unregister);
1366 	kfree(sbi->s_blockgroup_lock);
1367 	fs_put_dax(sbi->s_daxdev, NULL);
1368 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1369 #if IS_ENABLED(CONFIG_UNICODE)
1370 	utf8_unload(sb->s_encoding);
1371 #endif
1372 	kfree(sbi);
1373 }
1374 
1375 static struct kmem_cache *ext4_inode_cachep;
1376 
1377 /*
1378  * Called inside transaction, so use GFP_NOFS
1379  */
1380 static struct inode *ext4_alloc_inode(struct super_block *sb)
1381 {
1382 	struct ext4_inode_info *ei;
1383 
1384 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1385 	if (!ei)
1386 		return NULL;
1387 
1388 	inode_set_iversion(&ei->vfs_inode, 1);
1389 	ei->i_flags = 0;
1390 	spin_lock_init(&ei->i_raw_lock);
1391 	ei->i_prealloc_node = RB_ROOT;
1392 	atomic_set(&ei->i_prealloc_active, 0);
1393 	rwlock_init(&ei->i_prealloc_lock);
1394 	ext4_es_init_tree(&ei->i_es_tree);
1395 	rwlock_init(&ei->i_es_lock);
1396 	INIT_LIST_HEAD(&ei->i_es_list);
1397 	ei->i_es_all_nr = 0;
1398 	ei->i_es_shk_nr = 0;
1399 	ei->i_es_shrink_lblk = 0;
1400 	ei->i_reserved_data_blocks = 0;
1401 	spin_lock_init(&(ei->i_block_reservation_lock));
1402 	ext4_init_pending_tree(&ei->i_pending_tree);
1403 #ifdef CONFIG_QUOTA
1404 	ei->i_reserved_quota = 0;
1405 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1406 #endif
1407 	ei->jinode = NULL;
1408 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1409 	spin_lock_init(&ei->i_completed_io_lock);
1410 	ei->i_sync_tid = 0;
1411 	ei->i_datasync_tid = 0;
1412 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1413 	ext4_fc_init_inode(&ei->vfs_inode);
1414 	spin_lock_init(&ei->i_fc_lock);
1415 	return &ei->vfs_inode;
1416 }
1417 
1418 static int ext4_drop_inode(struct inode *inode)
1419 {
1420 	int drop = generic_drop_inode(inode);
1421 
1422 	if (!drop)
1423 		drop = fscrypt_drop_inode(inode);
1424 
1425 	trace_ext4_drop_inode(inode, drop);
1426 	return drop;
1427 }
1428 
1429 static void ext4_free_in_core_inode(struct inode *inode)
1430 {
1431 	fscrypt_free_inode(inode);
1432 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1433 		pr_warn("%s: inode %ld still in fc list",
1434 			__func__, inode->i_ino);
1435 	}
1436 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1437 }
1438 
1439 static void ext4_destroy_inode(struct inode *inode)
1440 {
1441 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1442 		ext4_msg(inode->i_sb, KERN_ERR,
1443 			 "Inode %lu (%p): orphan list check failed!",
1444 			 inode->i_ino, EXT4_I(inode));
1445 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1446 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1447 				true);
1448 		dump_stack();
1449 	}
1450 
1451 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1452 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1453 		ext4_msg(inode->i_sb, KERN_ERR,
1454 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1455 			 inode->i_ino, EXT4_I(inode),
1456 			 EXT4_I(inode)->i_reserved_data_blocks);
1457 }
1458 
1459 static void ext4_shutdown(struct super_block *sb)
1460 {
1461        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1462 }
1463 
1464 static void init_once(void *foo)
1465 {
1466 	struct ext4_inode_info *ei = foo;
1467 
1468 	INIT_LIST_HEAD(&ei->i_orphan);
1469 	init_rwsem(&ei->xattr_sem);
1470 	init_rwsem(&ei->i_data_sem);
1471 	inode_init_once(&ei->vfs_inode);
1472 	ext4_fc_init_inode(&ei->vfs_inode);
1473 #ifdef CONFIG_FS_ENCRYPTION
1474 	ei->i_crypt_info = NULL;
1475 #endif
1476 #ifdef CONFIG_FS_VERITY
1477 	ei->i_verity_info = NULL;
1478 #endif
1479 }
1480 
1481 static int __init init_inodecache(void)
1482 {
1483 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1484 				sizeof(struct ext4_inode_info), 0,
1485 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1486 				offsetof(struct ext4_inode_info, i_data),
1487 				sizeof_field(struct ext4_inode_info, i_data),
1488 				init_once);
1489 	if (ext4_inode_cachep == NULL)
1490 		return -ENOMEM;
1491 	return 0;
1492 }
1493 
1494 static void destroy_inodecache(void)
1495 {
1496 	/*
1497 	 * Make sure all delayed rcu free inodes are flushed before we
1498 	 * destroy cache.
1499 	 */
1500 	rcu_barrier();
1501 	kmem_cache_destroy(ext4_inode_cachep);
1502 }
1503 
1504 void ext4_clear_inode(struct inode *inode)
1505 {
1506 	ext4_fc_del(inode);
1507 	invalidate_inode_buffers(inode);
1508 	clear_inode(inode);
1509 	ext4_discard_preallocations(inode);
1510 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1511 	dquot_drop(inode);
1512 	if (EXT4_I(inode)->jinode) {
1513 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1514 					       EXT4_I(inode)->jinode);
1515 		jbd2_free_inode(EXT4_I(inode)->jinode);
1516 		EXT4_I(inode)->jinode = NULL;
1517 	}
1518 	fscrypt_put_encryption_info(inode);
1519 	fsverity_cleanup_inode(inode);
1520 }
1521 
1522 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1523 					u64 ino, u32 generation)
1524 {
1525 	struct inode *inode;
1526 
1527 	/*
1528 	 * Currently we don't know the generation for parent directory, so
1529 	 * a generation of 0 means "accept any"
1530 	 */
1531 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1532 	if (IS_ERR(inode))
1533 		return ERR_CAST(inode);
1534 	if (generation && inode->i_generation != generation) {
1535 		iput(inode);
1536 		return ERR_PTR(-ESTALE);
1537 	}
1538 
1539 	return inode;
1540 }
1541 
1542 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1543 					int fh_len, int fh_type)
1544 {
1545 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1546 				    ext4_nfs_get_inode);
1547 }
1548 
1549 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1550 					int fh_len, int fh_type)
1551 {
1552 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1553 				    ext4_nfs_get_inode);
1554 }
1555 
1556 static int ext4_nfs_commit_metadata(struct inode *inode)
1557 {
1558 	struct writeback_control wbc = {
1559 		.sync_mode = WB_SYNC_ALL
1560 	};
1561 
1562 	trace_ext4_nfs_commit_metadata(inode);
1563 	return ext4_write_inode(inode, &wbc);
1564 }
1565 
1566 #ifdef CONFIG_QUOTA
1567 static const char * const quotatypes[] = INITQFNAMES;
1568 #define QTYPE2NAME(t) (quotatypes[t])
1569 
1570 static int ext4_write_dquot(struct dquot *dquot);
1571 static int ext4_acquire_dquot(struct dquot *dquot);
1572 static int ext4_release_dquot(struct dquot *dquot);
1573 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1574 static int ext4_write_info(struct super_block *sb, int type);
1575 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1576 			 const struct path *path);
1577 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1578 			       size_t len, loff_t off);
1579 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1580 				const char *data, size_t len, loff_t off);
1581 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1582 			     unsigned int flags);
1583 
1584 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1585 {
1586 	return EXT4_I(inode)->i_dquot;
1587 }
1588 
1589 static const struct dquot_operations ext4_quota_operations = {
1590 	.get_reserved_space	= ext4_get_reserved_space,
1591 	.write_dquot		= ext4_write_dquot,
1592 	.acquire_dquot		= ext4_acquire_dquot,
1593 	.release_dquot		= ext4_release_dquot,
1594 	.mark_dirty		= ext4_mark_dquot_dirty,
1595 	.write_info		= ext4_write_info,
1596 	.alloc_dquot		= dquot_alloc,
1597 	.destroy_dquot		= dquot_destroy,
1598 	.get_projid		= ext4_get_projid,
1599 	.get_inode_usage	= ext4_get_inode_usage,
1600 	.get_next_id		= dquot_get_next_id,
1601 };
1602 
1603 static const struct quotactl_ops ext4_qctl_operations = {
1604 	.quota_on	= ext4_quota_on,
1605 	.quota_off	= ext4_quota_off,
1606 	.quota_sync	= dquot_quota_sync,
1607 	.get_state	= dquot_get_state,
1608 	.set_info	= dquot_set_dqinfo,
1609 	.get_dqblk	= dquot_get_dqblk,
1610 	.set_dqblk	= dquot_set_dqblk,
1611 	.get_nextdqblk	= dquot_get_next_dqblk,
1612 };
1613 #endif
1614 
1615 static const struct super_operations ext4_sops = {
1616 	.alloc_inode	= ext4_alloc_inode,
1617 	.free_inode	= ext4_free_in_core_inode,
1618 	.destroy_inode	= ext4_destroy_inode,
1619 	.write_inode	= ext4_write_inode,
1620 	.dirty_inode	= ext4_dirty_inode,
1621 	.drop_inode	= ext4_drop_inode,
1622 	.evict_inode	= ext4_evict_inode,
1623 	.put_super	= ext4_put_super,
1624 	.sync_fs	= ext4_sync_fs,
1625 	.freeze_fs	= ext4_freeze,
1626 	.unfreeze_fs	= ext4_unfreeze,
1627 	.statfs		= ext4_statfs,
1628 	.show_options	= ext4_show_options,
1629 	.shutdown	= ext4_shutdown,
1630 #ifdef CONFIG_QUOTA
1631 	.quota_read	= ext4_quota_read,
1632 	.quota_write	= ext4_quota_write,
1633 	.get_dquots	= ext4_get_dquots,
1634 #endif
1635 };
1636 
1637 static const struct export_operations ext4_export_ops = {
1638 	.encode_fh = generic_encode_ino32_fh,
1639 	.fh_to_dentry = ext4_fh_to_dentry,
1640 	.fh_to_parent = ext4_fh_to_parent,
1641 	.get_parent = ext4_get_parent,
1642 	.commit_metadata = ext4_nfs_commit_metadata,
1643 };
1644 
1645 enum {
1646 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1647 	Opt_resgid, Opt_resuid, Opt_sb,
1648 	Opt_nouid32, Opt_debug, Opt_removed,
1649 	Opt_user_xattr, Opt_acl,
1650 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1651 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1652 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1653 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1654 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1655 	Opt_inlinecrypt,
1656 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1657 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1658 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1659 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1660 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1661 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1662 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1663 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1664 	Opt_dioread_nolock, Opt_dioread_lock,
1665 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1666 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1667 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1668 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1669 #ifdef CONFIG_EXT4_DEBUG
1670 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1671 #endif
1672 };
1673 
1674 static const struct constant_table ext4_param_errors[] = {
1675 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1676 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1677 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1678 	{}
1679 };
1680 
1681 static const struct constant_table ext4_param_data[] = {
1682 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1683 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1684 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1685 	{}
1686 };
1687 
1688 static const struct constant_table ext4_param_data_err[] = {
1689 	{"abort",	Opt_data_err_abort},
1690 	{"ignore",	Opt_data_err_ignore},
1691 	{}
1692 };
1693 
1694 static const struct constant_table ext4_param_jqfmt[] = {
1695 	{"vfsold",	QFMT_VFS_OLD},
1696 	{"vfsv0",	QFMT_VFS_V0},
1697 	{"vfsv1",	QFMT_VFS_V1},
1698 	{}
1699 };
1700 
1701 static const struct constant_table ext4_param_dax[] = {
1702 	{"always",	Opt_dax_always},
1703 	{"inode",	Opt_dax_inode},
1704 	{"never",	Opt_dax_never},
1705 	{}
1706 };
1707 
1708 /*
1709  * Mount option specification
1710  * We don't use fsparam_flag_no because of the way we set the
1711  * options and the way we show them in _ext4_show_options(). To
1712  * keep the changes to a minimum, let's keep the negative options
1713  * separate for now.
1714  */
1715 static const struct fs_parameter_spec ext4_param_specs[] = {
1716 	fsparam_flag	("bsddf",		Opt_bsd_df),
1717 	fsparam_flag	("minixdf",		Opt_minix_df),
1718 	fsparam_flag	("grpid",		Opt_grpid),
1719 	fsparam_flag	("bsdgroups",		Opt_grpid),
1720 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1721 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1722 	fsparam_gid	("resgid",		Opt_resgid),
1723 	fsparam_uid	("resuid",		Opt_resuid),
1724 	fsparam_u32	("sb",			Opt_sb),
1725 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1726 	fsparam_flag	("nouid32",		Opt_nouid32),
1727 	fsparam_flag	("debug",		Opt_debug),
1728 	fsparam_flag	("oldalloc",		Opt_removed),
1729 	fsparam_flag	("orlov",		Opt_removed),
1730 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1731 	fsparam_flag	("acl",			Opt_acl),
1732 	fsparam_flag	("norecovery",		Opt_noload),
1733 	fsparam_flag	("noload",		Opt_noload),
1734 	fsparam_flag	("bh",			Opt_removed),
1735 	fsparam_flag	("nobh",		Opt_removed),
1736 	fsparam_u32	("commit",		Opt_commit),
1737 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1738 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1739 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1740 	fsparam_bdev	("journal_path",	Opt_journal_path),
1741 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1742 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1743 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1744 	fsparam_flag	("abort",		Opt_abort),
1745 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1746 	fsparam_enum	("data_err",		Opt_data_err,
1747 						ext4_param_data_err),
1748 	fsparam_string_empty
1749 			("usrjquota",		Opt_usrjquota),
1750 	fsparam_string_empty
1751 			("grpjquota",		Opt_grpjquota),
1752 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1753 	fsparam_flag	("grpquota",		Opt_grpquota),
1754 	fsparam_flag	("quota",		Opt_quota),
1755 	fsparam_flag	("noquota",		Opt_noquota),
1756 	fsparam_flag	("usrquota",		Opt_usrquota),
1757 	fsparam_flag	("prjquota",		Opt_prjquota),
1758 	fsparam_flag	("barrier",		Opt_barrier),
1759 	fsparam_u32	("barrier",		Opt_barrier),
1760 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1761 	fsparam_flag	("i_version",		Opt_removed),
1762 	fsparam_flag	("dax",			Opt_dax),
1763 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1764 	fsparam_u32	("stripe",		Opt_stripe),
1765 	fsparam_flag	("delalloc",		Opt_delalloc),
1766 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1767 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1768 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1769 	fsparam_u32	("debug_want_extra_isize",
1770 						Opt_debug_want_extra_isize),
1771 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1772 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1773 	fsparam_flag	("block_validity",	Opt_block_validity),
1774 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1775 	fsparam_u32	("inode_readahead_blks",
1776 						Opt_inode_readahead_blks),
1777 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1778 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1779 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1780 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1781 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1782 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1783 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1784 	fsparam_flag	("discard",		Opt_discard),
1785 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1786 	fsparam_u32	("init_itable",		Opt_init_itable),
1787 	fsparam_flag	("init_itable",		Opt_init_itable),
1788 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1789 #ifdef CONFIG_EXT4_DEBUG
1790 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1791 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1792 #endif
1793 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1794 	fsparam_flag	("test_dummy_encryption",
1795 						Opt_test_dummy_encryption),
1796 	fsparam_string	("test_dummy_encryption",
1797 						Opt_test_dummy_encryption),
1798 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1799 	fsparam_flag	("nombcache",		Opt_nombcache),
1800 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1801 	fsparam_flag	("prefetch_block_bitmaps",
1802 						Opt_removed),
1803 	fsparam_flag	("no_prefetch_block_bitmaps",
1804 						Opt_no_prefetch_block_bitmaps),
1805 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1806 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1807 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1808 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1809 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1810 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1811 	{}
1812 };
1813 
1814 
1815 #define MOPT_SET	0x0001
1816 #define MOPT_CLEAR	0x0002
1817 #define MOPT_NOSUPPORT	0x0004
1818 #define MOPT_EXPLICIT	0x0008
1819 #ifdef CONFIG_QUOTA
1820 #define MOPT_Q		0
1821 #define MOPT_QFMT	0x0010
1822 #else
1823 #define MOPT_Q		MOPT_NOSUPPORT
1824 #define MOPT_QFMT	MOPT_NOSUPPORT
1825 #endif
1826 #define MOPT_NO_EXT2	0x0020
1827 #define MOPT_NO_EXT3	0x0040
1828 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1829 #define MOPT_SKIP	0x0080
1830 #define	MOPT_2		0x0100
1831 
1832 static const struct mount_opts {
1833 	int	token;
1834 	int	mount_opt;
1835 	int	flags;
1836 } ext4_mount_opts[] = {
1837 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1838 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1839 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1840 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1841 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1842 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1843 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1844 	 MOPT_EXT4_ONLY | MOPT_SET},
1845 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1846 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1847 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1848 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1849 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1850 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1851 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1852 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1853 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1854 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1855 	{Opt_commit, 0, MOPT_NO_EXT2},
1856 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1857 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1858 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1859 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1860 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1861 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1862 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1863 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1864 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1865 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1866 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1867 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1868 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1869 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1870 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1871 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1872 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1873 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1874 	{Opt_data, 0, MOPT_NO_EXT2},
1875 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1876 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1877 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1878 #else
1879 	{Opt_acl, 0, MOPT_NOSUPPORT},
1880 #endif
1881 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1882 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1883 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1884 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1885 							MOPT_SET | MOPT_Q},
1886 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1887 							MOPT_SET | MOPT_Q},
1888 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1889 							MOPT_SET | MOPT_Q},
1890 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1891 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1892 							MOPT_CLEAR | MOPT_Q},
1893 	{Opt_usrjquota, 0, MOPT_Q},
1894 	{Opt_grpjquota, 0, MOPT_Q},
1895 	{Opt_jqfmt, 0, MOPT_QFMT},
1896 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1897 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1898 	 MOPT_SET},
1899 #ifdef CONFIG_EXT4_DEBUG
1900 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1901 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1902 #endif
1903 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1904 	{Opt_err, 0, 0}
1905 };
1906 
1907 #if IS_ENABLED(CONFIG_UNICODE)
1908 static const struct ext4_sb_encodings {
1909 	__u16 magic;
1910 	char *name;
1911 	unsigned int version;
1912 } ext4_sb_encoding_map[] = {
1913 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1914 };
1915 
1916 static const struct ext4_sb_encodings *
1917 ext4_sb_read_encoding(const struct ext4_super_block *es)
1918 {
1919 	__u16 magic = le16_to_cpu(es->s_encoding);
1920 	int i;
1921 
1922 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1923 		if (magic == ext4_sb_encoding_map[i].magic)
1924 			return &ext4_sb_encoding_map[i];
1925 
1926 	return NULL;
1927 }
1928 #endif
1929 
1930 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1931 #define EXT4_SPEC_JQFMT				(1 <<  1)
1932 #define EXT4_SPEC_DATAJ				(1 <<  2)
1933 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1934 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1935 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1936 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1937 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1938 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1939 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1940 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1941 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1942 #define EXT4_SPEC_s_stripe			(1 << 13)
1943 #define EXT4_SPEC_s_resuid			(1 << 14)
1944 #define EXT4_SPEC_s_resgid			(1 << 15)
1945 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1946 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1947 #define EXT4_SPEC_s_sb_block			(1 << 18)
1948 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1949 
1950 struct ext4_fs_context {
1951 	char		*s_qf_names[EXT4_MAXQUOTAS];
1952 	struct fscrypt_dummy_policy dummy_enc_policy;
1953 	int		s_jquota_fmt;	/* Format of quota to use */
1954 #ifdef CONFIG_EXT4_DEBUG
1955 	int s_fc_debug_max_replay;
1956 #endif
1957 	unsigned short	qname_spec;
1958 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1959 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1960 	unsigned long	journal_devnum;
1961 	unsigned long	s_commit_interval;
1962 	unsigned long	s_stripe;
1963 	unsigned int	s_inode_readahead_blks;
1964 	unsigned int	s_want_extra_isize;
1965 	unsigned int	s_li_wait_mult;
1966 	unsigned int	s_max_dir_size_kb;
1967 	unsigned int	journal_ioprio;
1968 	unsigned int	vals_s_mount_opt;
1969 	unsigned int	mask_s_mount_opt;
1970 	unsigned int	vals_s_mount_opt2;
1971 	unsigned int	mask_s_mount_opt2;
1972 	unsigned int	opt_flags;	/* MOPT flags */
1973 	unsigned int	spec;
1974 	u32		s_max_batch_time;
1975 	u32		s_min_batch_time;
1976 	kuid_t		s_resuid;
1977 	kgid_t		s_resgid;
1978 	ext4_fsblk_t	s_sb_block;
1979 };
1980 
1981 static void ext4_fc_free(struct fs_context *fc)
1982 {
1983 	struct ext4_fs_context *ctx = fc->fs_private;
1984 	int i;
1985 
1986 	if (!ctx)
1987 		return;
1988 
1989 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1990 		kfree(ctx->s_qf_names[i]);
1991 
1992 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1993 	kfree(ctx);
1994 }
1995 
1996 int ext4_init_fs_context(struct fs_context *fc)
1997 {
1998 	struct ext4_fs_context *ctx;
1999 
2000 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2001 	if (!ctx)
2002 		return -ENOMEM;
2003 
2004 	fc->fs_private = ctx;
2005 	fc->ops = &ext4_context_ops;
2006 
2007 	return 0;
2008 }
2009 
2010 #ifdef CONFIG_QUOTA
2011 /*
2012  * Note the name of the specified quota file.
2013  */
2014 static int note_qf_name(struct fs_context *fc, int qtype,
2015 		       struct fs_parameter *param)
2016 {
2017 	struct ext4_fs_context *ctx = fc->fs_private;
2018 	char *qname;
2019 
2020 	if (param->size < 1) {
2021 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2022 		return -EINVAL;
2023 	}
2024 	if (strchr(param->string, '/')) {
2025 		ext4_msg(NULL, KERN_ERR,
2026 			 "quotafile must be on filesystem root");
2027 		return -EINVAL;
2028 	}
2029 	if (ctx->s_qf_names[qtype]) {
2030 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2031 			ext4_msg(NULL, KERN_ERR,
2032 				 "%s quota file already specified",
2033 				 QTYPE2NAME(qtype));
2034 			return -EINVAL;
2035 		}
2036 		return 0;
2037 	}
2038 
2039 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2040 	if (!qname) {
2041 		ext4_msg(NULL, KERN_ERR,
2042 			 "Not enough memory for storing quotafile name");
2043 		return -ENOMEM;
2044 	}
2045 	ctx->s_qf_names[qtype] = qname;
2046 	ctx->qname_spec |= 1 << qtype;
2047 	ctx->spec |= EXT4_SPEC_JQUOTA;
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Clear the name of the specified quota file.
2053  */
2054 static int unnote_qf_name(struct fs_context *fc, int qtype)
2055 {
2056 	struct ext4_fs_context *ctx = fc->fs_private;
2057 
2058 	kfree(ctx->s_qf_names[qtype]);
2059 
2060 	ctx->s_qf_names[qtype] = NULL;
2061 	ctx->qname_spec |= 1 << qtype;
2062 	ctx->spec |= EXT4_SPEC_JQUOTA;
2063 	return 0;
2064 }
2065 #endif
2066 
2067 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2068 					    struct ext4_fs_context *ctx)
2069 {
2070 	int err;
2071 
2072 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2073 		ext4_msg(NULL, KERN_WARNING,
2074 			 "test_dummy_encryption option not supported");
2075 		return -EINVAL;
2076 	}
2077 	err = fscrypt_parse_test_dummy_encryption(param,
2078 						  &ctx->dummy_enc_policy);
2079 	if (err == -EINVAL) {
2080 		ext4_msg(NULL, KERN_WARNING,
2081 			 "Value of option \"%s\" is unrecognized", param->key);
2082 	} else if (err == -EEXIST) {
2083 		ext4_msg(NULL, KERN_WARNING,
2084 			 "Conflicting test_dummy_encryption options");
2085 		return -EINVAL;
2086 	}
2087 	return err;
2088 }
2089 
2090 #define EXT4_SET_CTX(name)						\
2091 static inline __maybe_unused						\
2092 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2093 {									\
2094 	ctx->mask_s_##name |= flag;					\
2095 	ctx->vals_s_##name |= flag;					\
2096 }
2097 
2098 #define EXT4_CLEAR_CTX(name)						\
2099 static inline __maybe_unused						\
2100 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2101 {									\
2102 	ctx->mask_s_##name |= flag;					\
2103 	ctx->vals_s_##name &= ~flag;					\
2104 }
2105 
2106 #define EXT4_TEST_CTX(name)						\
2107 static inline unsigned long						\
2108 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2109 {									\
2110 	return (ctx->vals_s_##name & flag);				\
2111 }
2112 
2113 EXT4_SET_CTX(flags); /* set only */
2114 EXT4_SET_CTX(mount_opt);
2115 EXT4_CLEAR_CTX(mount_opt);
2116 EXT4_TEST_CTX(mount_opt);
2117 EXT4_SET_CTX(mount_opt2);
2118 EXT4_CLEAR_CTX(mount_opt2);
2119 EXT4_TEST_CTX(mount_opt2);
2120 
2121 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2122 {
2123 	struct ext4_fs_context *ctx = fc->fs_private;
2124 	struct fs_parse_result result;
2125 	const struct mount_opts *m;
2126 	int is_remount;
2127 	int token;
2128 
2129 	token = fs_parse(fc, ext4_param_specs, param, &result);
2130 	if (token < 0)
2131 		return token;
2132 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2133 
2134 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2135 		if (token == m->token)
2136 			break;
2137 
2138 	ctx->opt_flags |= m->flags;
2139 
2140 	if (m->flags & MOPT_EXPLICIT) {
2141 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2142 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2143 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2144 			ctx_set_mount_opt2(ctx,
2145 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2146 		} else
2147 			return -EINVAL;
2148 	}
2149 
2150 	if (m->flags & MOPT_NOSUPPORT) {
2151 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2152 			 param->key);
2153 		return 0;
2154 	}
2155 
2156 	switch (token) {
2157 #ifdef CONFIG_QUOTA
2158 	case Opt_usrjquota:
2159 		if (!*param->string)
2160 			return unnote_qf_name(fc, USRQUOTA);
2161 		else
2162 			return note_qf_name(fc, USRQUOTA, param);
2163 	case Opt_grpjquota:
2164 		if (!*param->string)
2165 			return unnote_qf_name(fc, GRPQUOTA);
2166 		else
2167 			return note_qf_name(fc, GRPQUOTA, param);
2168 #endif
2169 	case Opt_sb:
2170 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2171 			ext4_msg(NULL, KERN_WARNING,
2172 				 "Ignoring %s option on remount", param->key);
2173 		} else {
2174 			ctx->s_sb_block = result.uint_32;
2175 			ctx->spec |= EXT4_SPEC_s_sb_block;
2176 		}
2177 		return 0;
2178 	case Opt_removed:
2179 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2180 			 param->key);
2181 		return 0;
2182 	case Opt_inlinecrypt:
2183 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2184 		ctx_set_flags(ctx, SB_INLINECRYPT);
2185 #else
2186 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2187 #endif
2188 		return 0;
2189 	case Opt_errors:
2190 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2191 		ctx_set_mount_opt(ctx, result.uint_32);
2192 		return 0;
2193 #ifdef CONFIG_QUOTA
2194 	case Opt_jqfmt:
2195 		ctx->s_jquota_fmt = result.uint_32;
2196 		ctx->spec |= EXT4_SPEC_JQFMT;
2197 		return 0;
2198 #endif
2199 	case Opt_data:
2200 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2201 		ctx_set_mount_opt(ctx, result.uint_32);
2202 		ctx->spec |= EXT4_SPEC_DATAJ;
2203 		return 0;
2204 	case Opt_commit:
2205 		if (result.uint_32 == 0)
2206 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2207 		else if (result.uint_32 > INT_MAX / HZ) {
2208 			ext4_msg(NULL, KERN_ERR,
2209 				 "Invalid commit interval %d, "
2210 				 "must be smaller than %d",
2211 				 result.uint_32, INT_MAX / HZ);
2212 			return -EINVAL;
2213 		}
2214 		ctx->s_commit_interval = HZ * result.uint_32;
2215 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2216 		return 0;
2217 	case Opt_debug_want_extra_isize:
2218 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2219 			ext4_msg(NULL, KERN_ERR,
2220 				 "Invalid want_extra_isize %d", result.uint_32);
2221 			return -EINVAL;
2222 		}
2223 		ctx->s_want_extra_isize = result.uint_32;
2224 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2225 		return 0;
2226 	case Opt_max_batch_time:
2227 		ctx->s_max_batch_time = result.uint_32;
2228 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2229 		return 0;
2230 	case Opt_min_batch_time:
2231 		ctx->s_min_batch_time = result.uint_32;
2232 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2233 		return 0;
2234 	case Opt_inode_readahead_blks:
2235 		if (result.uint_32 &&
2236 		    (result.uint_32 > (1 << 30) ||
2237 		     !is_power_of_2(result.uint_32))) {
2238 			ext4_msg(NULL, KERN_ERR,
2239 				 "EXT4-fs: inode_readahead_blks must be "
2240 				 "0 or a power of 2 smaller than 2^31");
2241 			return -EINVAL;
2242 		}
2243 		ctx->s_inode_readahead_blks = result.uint_32;
2244 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2245 		return 0;
2246 	case Opt_init_itable:
2247 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2248 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2249 		if (param->type == fs_value_is_string)
2250 			ctx->s_li_wait_mult = result.uint_32;
2251 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2252 		return 0;
2253 	case Opt_max_dir_size_kb:
2254 		ctx->s_max_dir_size_kb = result.uint_32;
2255 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2256 		return 0;
2257 #ifdef CONFIG_EXT4_DEBUG
2258 	case Opt_fc_debug_max_replay:
2259 		ctx->s_fc_debug_max_replay = result.uint_32;
2260 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2261 		return 0;
2262 #endif
2263 	case Opt_stripe:
2264 		ctx->s_stripe = result.uint_32;
2265 		ctx->spec |= EXT4_SPEC_s_stripe;
2266 		return 0;
2267 	case Opt_resuid:
2268 		ctx->s_resuid = result.uid;
2269 		ctx->spec |= EXT4_SPEC_s_resuid;
2270 		return 0;
2271 	case Opt_resgid:
2272 		ctx->s_resgid = result.gid;
2273 		ctx->spec |= EXT4_SPEC_s_resgid;
2274 		return 0;
2275 	case Opt_journal_dev:
2276 		if (is_remount) {
2277 			ext4_msg(NULL, KERN_ERR,
2278 				 "Cannot specify journal on remount");
2279 			return -EINVAL;
2280 		}
2281 		ctx->journal_devnum = result.uint_32;
2282 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2283 		return 0;
2284 	case Opt_journal_path:
2285 	{
2286 		struct inode *journal_inode;
2287 		struct path path;
2288 		int error;
2289 
2290 		if (is_remount) {
2291 			ext4_msg(NULL, KERN_ERR,
2292 				 "Cannot specify journal on remount");
2293 			return -EINVAL;
2294 		}
2295 
2296 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2297 		if (error) {
2298 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2299 				 "journal device path");
2300 			return -EINVAL;
2301 		}
2302 
2303 		journal_inode = d_inode(path.dentry);
2304 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2305 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2306 		path_put(&path);
2307 		return 0;
2308 	}
2309 	case Opt_journal_ioprio:
2310 		if (result.uint_32 > 7) {
2311 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2312 				 " (must be 0-7)");
2313 			return -EINVAL;
2314 		}
2315 		ctx->journal_ioprio =
2316 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2317 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2318 		return 0;
2319 	case Opt_test_dummy_encryption:
2320 		return ext4_parse_test_dummy_encryption(param, ctx);
2321 	case Opt_dax:
2322 	case Opt_dax_type:
2323 #ifdef CONFIG_FS_DAX
2324 	{
2325 		int type = (token == Opt_dax) ?
2326 			   Opt_dax : result.uint_32;
2327 
2328 		switch (type) {
2329 		case Opt_dax:
2330 		case Opt_dax_always:
2331 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2332 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2333 			break;
2334 		case Opt_dax_never:
2335 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2336 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2337 			break;
2338 		case Opt_dax_inode:
2339 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2340 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2341 			/* Strictly for printing options */
2342 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2343 			break;
2344 		}
2345 		return 0;
2346 	}
2347 #else
2348 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2349 		return -EINVAL;
2350 #endif
2351 	case Opt_data_err:
2352 		if (result.uint_32 == Opt_data_err_abort)
2353 			ctx_set_mount_opt(ctx, m->mount_opt);
2354 		else if (result.uint_32 == Opt_data_err_ignore)
2355 			ctx_clear_mount_opt(ctx, m->mount_opt);
2356 		return 0;
2357 	case Opt_mb_optimize_scan:
2358 		if (result.int_32 == 1) {
2359 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2360 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2361 		} else if (result.int_32 == 0) {
2362 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2363 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2364 		} else {
2365 			ext4_msg(NULL, KERN_WARNING,
2366 				 "mb_optimize_scan should be set to 0 or 1.");
2367 			return -EINVAL;
2368 		}
2369 		return 0;
2370 	}
2371 
2372 	/*
2373 	 * At this point we should only be getting options requiring MOPT_SET,
2374 	 * or MOPT_CLEAR. Anything else is a bug
2375 	 */
2376 	if (m->token == Opt_err) {
2377 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2378 			 param->key);
2379 		WARN_ON(1);
2380 		return -EINVAL;
2381 	}
2382 
2383 	else {
2384 		unsigned int set = 0;
2385 
2386 		if ((param->type == fs_value_is_flag) ||
2387 		    result.uint_32 > 0)
2388 			set = 1;
2389 
2390 		if (m->flags & MOPT_CLEAR)
2391 			set = !set;
2392 		else if (unlikely(!(m->flags & MOPT_SET))) {
2393 			ext4_msg(NULL, KERN_WARNING,
2394 				 "buggy handling of option %s",
2395 				 param->key);
2396 			WARN_ON(1);
2397 			return -EINVAL;
2398 		}
2399 		if (m->flags & MOPT_2) {
2400 			if (set != 0)
2401 				ctx_set_mount_opt2(ctx, m->mount_opt);
2402 			else
2403 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2404 		} else {
2405 			if (set != 0)
2406 				ctx_set_mount_opt(ctx, m->mount_opt);
2407 			else
2408 				ctx_clear_mount_opt(ctx, m->mount_opt);
2409 		}
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 static int parse_options(struct fs_context *fc, char *options)
2416 {
2417 	struct fs_parameter param;
2418 	int ret;
2419 	char *key;
2420 
2421 	if (!options)
2422 		return 0;
2423 
2424 	while ((key = strsep(&options, ",")) != NULL) {
2425 		if (*key) {
2426 			size_t v_len = 0;
2427 			char *value = strchr(key, '=');
2428 
2429 			param.type = fs_value_is_flag;
2430 			param.string = NULL;
2431 
2432 			if (value) {
2433 				if (value == key)
2434 					continue;
2435 
2436 				*value++ = 0;
2437 				v_len = strlen(value);
2438 				param.string = kmemdup_nul(value, v_len,
2439 							   GFP_KERNEL);
2440 				if (!param.string)
2441 					return -ENOMEM;
2442 				param.type = fs_value_is_string;
2443 			}
2444 
2445 			param.key = key;
2446 			param.size = v_len;
2447 
2448 			ret = ext4_parse_param(fc, &param);
2449 			kfree(param.string);
2450 			if (ret < 0)
2451 				return ret;
2452 		}
2453 	}
2454 
2455 	ret = ext4_validate_options(fc);
2456 	if (ret < 0)
2457 		return ret;
2458 
2459 	return 0;
2460 }
2461 
2462 static int parse_apply_sb_mount_options(struct super_block *sb,
2463 					struct ext4_fs_context *m_ctx)
2464 {
2465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2466 	char *s_mount_opts = NULL;
2467 	struct ext4_fs_context *s_ctx = NULL;
2468 	struct fs_context *fc = NULL;
2469 	int ret = -ENOMEM;
2470 
2471 	if (!sbi->s_es->s_mount_opts[0])
2472 		return 0;
2473 
2474 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2475 				sizeof(sbi->s_es->s_mount_opts),
2476 				GFP_KERNEL);
2477 	if (!s_mount_opts)
2478 		return ret;
2479 
2480 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2481 	if (!fc)
2482 		goto out_free;
2483 
2484 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2485 	if (!s_ctx)
2486 		goto out_free;
2487 
2488 	fc->fs_private = s_ctx;
2489 	fc->s_fs_info = sbi;
2490 
2491 	ret = parse_options(fc, s_mount_opts);
2492 	if (ret < 0)
2493 		goto parse_failed;
2494 
2495 	ret = ext4_check_opt_consistency(fc, sb);
2496 	if (ret < 0) {
2497 parse_failed:
2498 		ext4_msg(sb, KERN_WARNING,
2499 			 "failed to parse options in superblock: %s",
2500 			 s_mount_opts);
2501 		ret = 0;
2502 		goto out_free;
2503 	}
2504 
2505 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2506 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2507 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2508 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2509 
2510 	ext4_apply_options(fc, sb);
2511 	ret = 0;
2512 
2513 out_free:
2514 	if (fc) {
2515 		ext4_fc_free(fc);
2516 		kfree(fc);
2517 	}
2518 	kfree(s_mount_opts);
2519 	return ret;
2520 }
2521 
2522 static void ext4_apply_quota_options(struct fs_context *fc,
2523 				     struct super_block *sb)
2524 {
2525 #ifdef CONFIG_QUOTA
2526 	bool quota_feature = ext4_has_feature_quota(sb);
2527 	struct ext4_fs_context *ctx = fc->fs_private;
2528 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2529 	char *qname;
2530 	int i;
2531 
2532 	if (quota_feature)
2533 		return;
2534 
2535 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2536 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2537 			if (!(ctx->qname_spec & (1 << i)))
2538 				continue;
2539 
2540 			qname = ctx->s_qf_names[i]; /* May be NULL */
2541 			if (qname)
2542 				set_opt(sb, QUOTA);
2543 			ctx->s_qf_names[i] = NULL;
2544 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2545 						lockdep_is_held(&sb->s_umount));
2546 			if (qname)
2547 				kfree_rcu_mightsleep(qname);
2548 		}
2549 	}
2550 
2551 	if (ctx->spec & EXT4_SPEC_JQFMT)
2552 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2553 #endif
2554 }
2555 
2556 /*
2557  * Check quota settings consistency.
2558  */
2559 static int ext4_check_quota_consistency(struct fs_context *fc,
2560 					struct super_block *sb)
2561 {
2562 #ifdef CONFIG_QUOTA
2563 	struct ext4_fs_context *ctx = fc->fs_private;
2564 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2565 	bool quota_feature = ext4_has_feature_quota(sb);
2566 	bool quota_loaded = sb_any_quota_loaded(sb);
2567 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2568 	int quota_flags, i;
2569 
2570 	/*
2571 	 * We do the test below only for project quotas. 'usrquota' and
2572 	 * 'grpquota' mount options are allowed even without quota feature
2573 	 * to support legacy quotas in quota files.
2574 	 */
2575 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2576 	    !ext4_has_feature_project(sb)) {
2577 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2578 			 "Cannot enable project quota enforcement.");
2579 		return -EINVAL;
2580 	}
2581 
2582 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2583 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2584 	if (quota_loaded &&
2585 	    ctx->mask_s_mount_opt & quota_flags &&
2586 	    !ctx_test_mount_opt(ctx, quota_flags))
2587 		goto err_quota_change;
2588 
2589 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2590 
2591 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2592 			if (!(ctx->qname_spec & (1 << i)))
2593 				continue;
2594 
2595 			if (quota_loaded &&
2596 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2597 				goto err_jquota_change;
2598 
2599 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2600 			    strcmp(get_qf_name(sb, sbi, i),
2601 				   ctx->s_qf_names[i]) != 0)
2602 				goto err_jquota_specified;
2603 		}
2604 
2605 		if (quota_feature) {
2606 			ext4_msg(NULL, KERN_INFO,
2607 				 "Journaled quota options ignored when "
2608 				 "QUOTA feature is enabled");
2609 			return 0;
2610 		}
2611 	}
2612 
2613 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2614 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2615 			goto err_jquota_change;
2616 		if (quota_feature) {
2617 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2618 				 "ignored when QUOTA feature is enabled");
2619 			return 0;
2620 		}
2621 	}
2622 
2623 	/* Make sure we don't mix old and new quota format */
2624 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2625 		       ctx->s_qf_names[USRQUOTA]);
2626 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2627 		       ctx->s_qf_names[GRPQUOTA]);
2628 
2629 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2630 		    test_opt(sb, USRQUOTA));
2631 
2632 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2633 		    test_opt(sb, GRPQUOTA));
2634 
2635 	if (usr_qf_name) {
2636 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2637 		usrquota = false;
2638 	}
2639 	if (grp_qf_name) {
2640 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2641 		grpquota = false;
2642 	}
2643 
2644 	if (usr_qf_name || grp_qf_name) {
2645 		if (usrquota || grpquota) {
2646 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2647 				 "format mixing");
2648 			return -EINVAL;
2649 		}
2650 
2651 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2652 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2653 				 "not specified");
2654 			return -EINVAL;
2655 		}
2656 	}
2657 
2658 	return 0;
2659 
2660 err_quota_change:
2661 	ext4_msg(NULL, KERN_ERR,
2662 		 "Cannot change quota options when quota turned on");
2663 	return -EINVAL;
2664 err_jquota_change:
2665 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2666 		 "options when quota turned on");
2667 	return -EINVAL;
2668 err_jquota_specified:
2669 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2670 		 QTYPE2NAME(i));
2671 	return -EINVAL;
2672 #else
2673 	return 0;
2674 #endif
2675 }
2676 
2677 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2678 					    struct super_block *sb)
2679 {
2680 	const struct ext4_fs_context *ctx = fc->fs_private;
2681 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2682 
2683 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2684 		return 0;
2685 
2686 	if (!ext4_has_feature_encrypt(sb)) {
2687 		ext4_msg(NULL, KERN_WARNING,
2688 			 "test_dummy_encryption requires encrypt feature");
2689 		return -EINVAL;
2690 	}
2691 	/*
2692 	 * This mount option is just for testing, and it's not worthwhile to
2693 	 * implement the extra complexity (e.g. RCU protection) that would be
2694 	 * needed to allow it to be set or changed during remount.  We do allow
2695 	 * it to be specified during remount, but only if there is no change.
2696 	 */
2697 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2698 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2699 						 &ctx->dummy_enc_policy))
2700 			return 0;
2701 		ext4_msg(NULL, KERN_WARNING,
2702 			 "Can't set or change test_dummy_encryption on remount");
2703 		return -EINVAL;
2704 	}
2705 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2706 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2707 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2708 						 &ctx->dummy_enc_policy))
2709 			return 0;
2710 		ext4_msg(NULL, KERN_WARNING,
2711 			 "Conflicting test_dummy_encryption options");
2712 		return -EINVAL;
2713 	}
2714 	return 0;
2715 }
2716 
2717 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2718 					     struct super_block *sb)
2719 {
2720 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2721 	    /* if already set, it was already verified to be the same */
2722 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2723 		return;
2724 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2725 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2726 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2727 }
2728 
2729 static int ext4_check_opt_consistency(struct fs_context *fc,
2730 				      struct super_block *sb)
2731 {
2732 	struct ext4_fs_context *ctx = fc->fs_private;
2733 	struct ext4_sb_info *sbi = fc->s_fs_info;
2734 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2735 	int err;
2736 
2737 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2738 		ext4_msg(NULL, KERN_ERR,
2739 			 "Mount option(s) incompatible with ext2");
2740 		return -EINVAL;
2741 	}
2742 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2743 		ext4_msg(NULL, KERN_ERR,
2744 			 "Mount option(s) incompatible with ext3");
2745 		return -EINVAL;
2746 	}
2747 
2748 	if (ctx->s_want_extra_isize >
2749 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2750 		ext4_msg(NULL, KERN_ERR,
2751 			 "Invalid want_extra_isize %d",
2752 			 ctx->s_want_extra_isize);
2753 		return -EINVAL;
2754 	}
2755 
2756 	err = ext4_check_test_dummy_encryption(fc, sb);
2757 	if (err)
2758 		return err;
2759 
2760 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2761 		if (!sbi->s_journal) {
2762 			ext4_msg(NULL, KERN_WARNING,
2763 				 "Remounting file system with no journal "
2764 				 "so ignoring journalled data option");
2765 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2766 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2767 			   test_opt(sb, DATA_FLAGS)) {
2768 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2769 				 "on remount");
2770 			return -EINVAL;
2771 		}
2772 	}
2773 
2774 	if (is_remount) {
2775 		if (!sbi->s_journal &&
2776 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2777 			ext4_msg(NULL, KERN_WARNING,
2778 				 "Remounting fs w/o journal so ignoring data_err option");
2779 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2780 		}
2781 
2782 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2783 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2784 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2785 				 "both data=journal and dax");
2786 			return -EINVAL;
2787 		}
2788 
2789 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2790 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2791 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2792 fail_dax_change_remount:
2793 			ext4_msg(NULL, KERN_ERR, "can't change "
2794 				 "dax mount option while remounting");
2795 			return -EINVAL;
2796 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2797 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2798 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2799 			goto fail_dax_change_remount;
2800 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2801 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2802 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2803 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2804 			goto fail_dax_change_remount;
2805 		}
2806 	}
2807 
2808 	return ext4_check_quota_consistency(fc, sb);
2809 }
2810 
2811 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2812 {
2813 	struct ext4_fs_context *ctx = fc->fs_private;
2814 	struct ext4_sb_info *sbi = fc->s_fs_info;
2815 
2816 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2817 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2818 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2819 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2820 	sb->s_flags &= ~ctx->mask_s_flags;
2821 	sb->s_flags |= ctx->vals_s_flags;
2822 
2823 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2824 	APPLY(s_commit_interval);
2825 	APPLY(s_stripe);
2826 	APPLY(s_max_batch_time);
2827 	APPLY(s_min_batch_time);
2828 	APPLY(s_want_extra_isize);
2829 	APPLY(s_inode_readahead_blks);
2830 	APPLY(s_max_dir_size_kb);
2831 	APPLY(s_li_wait_mult);
2832 	APPLY(s_resgid);
2833 	APPLY(s_resuid);
2834 
2835 #ifdef CONFIG_EXT4_DEBUG
2836 	APPLY(s_fc_debug_max_replay);
2837 #endif
2838 
2839 	ext4_apply_quota_options(fc, sb);
2840 	ext4_apply_test_dummy_encryption(ctx, sb);
2841 }
2842 
2843 
2844 static int ext4_validate_options(struct fs_context *fc)
2845 {
2846 #ifdef CONFIG_QUOTA
2847 	struct ext4_fs_context *ctx = fc->fs_private;
2848 	char *usr_qf_name, *grp_qf_name;
2849 
2850 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2851 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2852 
2853 	if (usr_qf_name || grp_qf_name) {
2854 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2855 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2856 
2857 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2858 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2859 
2860 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2861 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2862 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2863 				 "format mixing");
2864 			return -EINVAL;
2865 		}
2866 	}
2867 #endif
2868 	return 1;
2869 }
2870 
2871 static inline void ext4_show_quota_options(struct seq_file *seq,
2872 					   struct super_block *sb)
2873 {
2874 #if defined(CONFIG_QUOTA)
2875 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2876 	char *usr_qf_name, *grp_qf_name;
2877 
2878 	if (sbi->s_jquota_fmt) {
2879 		char *fmtname = "";
2880 
2881 		switch (sbi->s_jquota_fmt) {
2882 		case QFMT_VFS_OLD:
2883 			fmtname = "vfsold";
2884 			break;
2885 		case QFMT_VFS_V0:
2886 			fmtname = "vfsv0";
2887 			break;
2888 		case QFMT_VFS_V1:
2889 			fmtname = "vfsv1";
2890 			break;
2891 		}
2892 		seq_printf(seq, ",jqfmt=%s", fmtname);
2893 	}
2894 
2895 	rcu_read_lock();
2896 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2897 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2898 	if (usr_qf_name)
2899 		seq_show_option(seq, "usrjquota", usr_qf_name);
2900 	if (grp_qf_name)
2901 		seq_show_option(seq, "grpjquota", grp_qf_name);
2902 	rcu_read_unlock();
2903 #endif
2904 }
2905 
2906 static const char *token2str(int token)
2907 {
2908 	const struct fs_parameter_spec *spec;
2909 
2910 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2911 		if (spec->opt == token && !spec->type)
2912 			break;
2913 	return spec->name;
2914 }
2915 
2916 /*
2917  * Show an option if
2918  *  - it's set to a non-default value OR
2919  *  - if the per-sb default is different from the global default
2920  */
2921 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2922 			      int nodefs)
2923 {
2924 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2925 	struct ext4_super_block *es = sbi->s_es;
2926 	int def_errors;
2927 	const struct mount_opts *m;
2928 	char sep = nodefs ? '\n' : ',';
2929 
2930 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2931 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2932 
2933 	if (sbi->s_sb_block != 1)
2934 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2935 
2936 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2937 		int want_set = m->flags & MOPT_SET;
2938 		int opt_2 = m->flags & MOPT_2;
2939 		unsigned int mount_opt, def_mount_opt;
2940 
2941 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2942 		    m->flags & MOPT_SKIP)
2943 			continue;
2944 
2945 		if (opt_2) {
2946 			mount_opt = sbi->s_mount_opt2;
2947 			def_mount_opt = sbi->s_def_mount_opt2;
2948 		} else {
2949 			mount_opt = sbi->s_mount_opt;
2950 			def_mount_opt = sbi->s_def_mount_opt;
2951 		}
2952 		/* skip if same as the default */
2953 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2954 			continue;
2955 		/* select Opt_noFoo vs Opt_Foo */
2956 		if ((want_set &&
2957 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2958 		    (!want_set && (mount_opt & m->mount_opt)))
2959 			continue;
2960 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2961 	}
2962 
2963 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2964 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2965 		SEQ_OPTS_PRINT("resuid=%u",
2966 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2967 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2968 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2969 		SEQ_OPTS_PRINT("resgid=%u",
2970 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2971 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2972 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2973 		SEQ_OPTS_PUTS("errors=remount-ro");
2974 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2975 		SEQ_OPTS_PUTS("errors=continue");
2976 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2977 		SEQ_OPTS_PUTS("errors=panic");
2978 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2979 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2980 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2981 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2982 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2983 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2984 	if (nodefs || sbi->s_stripe)
2985 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2986 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2987 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2988 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2989 			SEQ_OPTS_PUTS("data=journal");
2990 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2991 			SEQ_OPTS_PUTS("data=ordered");
2992 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2993 			SEQ_OPTS_PUTS("data=writeback");
2994 	}
2995 	if (nodefs ||
2996 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2997 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2998 			       sbi->s_inode_readahead_blks);
2999 
3000 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3001 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3002 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3003 	if (nodefs || sbi->s_max_dir_size_kb)
3004 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3005 	if (test_opt(sb, DATA_ERR_ABORT))
3006 		SEQ_OPTS_PUTS("data_err=abort");
3007 
3008 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3009 
3010 	if (sb->s_flags & SB_INLINECRYPT)
3011 		SEQ_OPTS_PUTS("inlinecrypt");
3012 
3013 	if (test_opt(sb, DAX_ALWAYS)) {
3014 		if (IS_EXT2_SB(sb))
3015 			SEQ_OPTS_PUTS("dax");
3016 		else
3017 			SEQ_OPTS_PUTS("dax=always");
3018 	} else if (test_opt2(sb, DAX_NEVER)) {
3019 		SEQ_OPTS_PUTS("dax=never");
3020 	} else if (test_opt2(sb, DAX_INODE)) {
3021 		SEQ_OPTS_PUTS("dax=inode");
3022 	}
3023 
3024 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3025 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3026 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3027 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3028 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3029 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3030 	}
3031 
3032 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3033 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3034 
3035 	if (ext4_emergency_ro(sb))
3036 		SEQ_OPTS_PUTS("emergency_ro");
3037 
3038 	if (ext4_forced_shutdown(sb))
3039 		SEQ_OPTS_PUTS("shutdown");
3040 
3041 	ext4_show_quota_options(seq, sb);
3042 	return 0;
3043 }
3044 
3045 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3046 {
3047 	return _ext4_show_options(seq, root->d_sb, 0);
3048 }
3049 
3050 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3051 {
3052 	struct super_block *sb = seq->private;
3053 	int rc;
3054 
3055 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3056 	rc = _ext4_show_options(seq, sb, 1);
3057 	seq_putc(seq, '\n');
3058 	return rc;
3059 }
3060 
3061 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3062 			    int read_only)
3063 {
3064 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3065 	int err = 0;
3066 
3067 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3068 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3069 			 "forcing read-only mode");
3070 		err = -EROFS;
3071 		goto done;
3072 	}
3073 	if (read_only)
3074 		goto done;
3075 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3076 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3077 			 "running e2fsck is recommended");
3078 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3079 		ext4_msg(sb, KERN_WARNING,
3080 			 "warning: mounting fs with errors, "
3081 			 "running e2fsck is recommended");
3082 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3083 		 le16_to_cpu(es->s_mnt_count) >=
3084 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3085 		ext4_msg(sb, KERN_WARNING,
3086 			 "warning: maximal mount count reached, "
3087 			 "running e2fsck is recommended");
3088 	else if (le32_to_cpu(es->s_checkinterval) &&
3089 		 (ext4_get_tstamp(es, s_lastcheck) +
3090 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3091 		ext4_msg(sb, KERN_WARNING,
3092 			 "warning: checktime reached, "
3093 			 "running e2fsck is recommended");
3094 	if (!sbi->s_journal)
3095 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3096 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3097 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3098 	le16_add_cpu(&es->s_mnt_count, 1);
3099 	ext4_update_tstamp(es, s_mtime);
3100 	if (sbi->s_journal) {
3101 		ext4_set_feature_journal_needs_recovery(sb);
3102 		if (ext4_has_feature_orphan_file(sb))
3103 			ext4_set_feature_orphan_present(sb);
3104 	}
3105 
3106 	err = ext4_commit_super(sb);
3107 done:
3108 	if (test_opt(sb, DEBUG))
3109 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3110 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3111 			sb->s_blocksize,
3112 			sbi->s_groups_count,
3113 			EXT4_BLOCKS_PER_GROUP(sb),
3114 			EXT4_INODES_PER_GROUP(sb),
3115 			sbi->s_mount_opt, sbi->s_mount_opt2);
3116 	return err;
3117 }
3118 
3119 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3120 {
3121 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3122 	struct flex_groups **old_groups, **new_groups;
3123 	int size, i, j;
3124 
3125 	if (!sbi->s_log_groups_per_flex)
3126 		return 0;
3127 
3128 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3129 	if (size <= sbi->s_flex_groups_allocated)
3130 		return 0;
3131 
3132 	new_groups = kvzalloc(roundup_pow_of_two(size *
3133 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3134 	if (!new_groups) {
3135 		ext4_msg(sb, KERN_ERR,
3136 			 "not enough memory for %d flex group pointers", size);
3137 		return -ENOMEM;
3138 	}
3139 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3140 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3141 					 sizeof(struct flex_groups)),
3142 					 GFP_KERNEL);
3143 		if (!new_groups[i]) {
3144 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3145 				kvfree(new_groups[j]);
3146 			kvfree(new_groups);
3147 			ext4_msg(sb, KERN_ERR,
3148 				 "not enough memory for %d flex groups", size);
3149 			return -ENOMEM;
3150 		}
3151 	}
3152 	rcu_read_lock();
3153 	old_groups = rcu_dereference(sbi->s_flex_groups);
3154 	if (old_groups)
3155 		memcpy(new_groups, old_groups,
3156 		       (sbi->s_flex_groups_allocated *
3157 			sizeof(struct flex_groups *)));
3158 	rcu_read_unlock();
3159 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3160 	sbi->s_flex_groups_allocated = size;
3161 	if (old_groups)
3162 		ext4_kvfree_array_rcu(old_groups);
3163 	return 0;
3164 }
3165 
3166 static int ext4_fill_flex_info(struct super_block *sb)
3167 {
3168 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3169 	struct ext4_group_desc *gdp = NULL;
3170 	struct flex_groups *fg;
3171 	ext4_group_t flex_group;
3172 	int i, err;
3173 
3174 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3175 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3176 		sbi->s_log_groups_per_flex = 0;
3177 		return 1;
3178 	}
3179 
3180 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3181 	if (err)
3182 		goto failed;
3183 
3184 	for (i = 0; i < sbi->s_groups_count; i++) {
3185 		gdp = ext4_get_group_desc(sb, i, NULL);
3186 
3187 		flex_group = ext4_flex_group(sbi, i);
3188 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3189 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3190 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3191 			     &fg->free_clusters);
3192 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3193 	}
3194 
3195 	return 1;
3196 failed:
3197 	return 0;
3198 }
3199 
3200 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3201 				   struct ext4_group_desc *gdp)
3202 {
3203 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3204 	__u16 crc = 0;
3205 	__le32 le_group = cpu_to_le32(block_group);
3206 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3207 
3208 	if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3209 		/* Use new metadata_csum algorithm */
3210 		__u32 csum32;
3211 		__u16 dummy_csum = 0;
3212 
3213 		csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3214 				     sizeof(le_group));
3215 		csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3216 		csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3217 				     sizeof(dummy_csum));
3218 		offset += sizeof(dummy_csum);
3219 		if (offset < sbi->s_desc_size)
3220 			csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3221 					     sbi->s_desc_size - offset);
3222 
3223 		crc = csum32 & 0xFFFF;
3224 		goto out;
3225 	}
3226 
3227 	/* old crc16 code */
3228 	if (!ext4_has_feature_gdt_csum(sb))
3229 		return 0;
3230 
3231 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3232 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3233 	crc = crc16(crc, (__u8 *)gdp, offset);
3234 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3235 	/* for checksum of struct ext4_group_desc do the rest...*/
3236 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3237 		crc = crc16(crc, (__u8 *)gdp + offset,
3238 			    sbi->s_desc_size - offset);
3239 
3240 out:
3241 	return cpu_to_le16(crc);
3242 }
3243 
3244 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3245 				struct ext4_group_desc *gdp)
3246 {
3247 	if (ext4_has_group_desc_csum(sb) &&
3248 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3249 		return 0;
3250 
3251 	return 1;
3252 }
3253 
3254 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3255 			      struct ext4_group_desc *gdp)
3256 {
3257 	if (!ext4_has_group_desc_csum(sb))
3258 		return;
3259 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3260 }
3261 
3262 /* Called at mount-time, super-block is locked */
3263 static int ext4_check_descriptors(struct super_block *sb,
3264 				  ext4_fsblk_t sb_block,
3265 				  ext4_group_t *first_not_zeroed)
3266 {
3267 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3268 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3269 	ext4_fsblk_t last_block;
3270 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3271 	ext4_fsblk_t block_bitmap;
3272 	ext4_fsblk_t inode_bitmap;
3273 	ext4_fsblk_t inode_table;
3274 	int flexbg_flag = 0;
3275 	ext4_group_t i, grp = sbi->s_groups_count;
3276 
3277 	if (ext4_has_feature_flex_bg(sb))
3278 		flexbg_flag = 1;
3279 
3280 	ext4_debug("Checking group descriptors");
3281 
3282 	for (i = 0; i < sbi->s_groups_count; i++) {
3283 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3284 
3285 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3286 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3287 		else
3288 			last_block = first_block +
3289 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3290 
3291 		if ((grp == sbi->s_groups_count) &&
3292 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3293 			grp = i;
3294 
3295 		block_bitmap = ext4_block_bitmap(sb, gdp);
3296 		if (block_bitmap == sb_block) {
3297 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3298 				 "Block bitmap for group %u overlaps "
3299 				 "superblock", i);
3300 			if (!sb_rdonly(sb))
3301 				return 0;
3302 		}
3303 		if (block_bitmap >= sb_block + 1 &&
3304 		    block_bitmap <= last_bg_block) {
3305 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3306 				 "Block bitmap for group %u overlaps "
3307 				 "block group descriptors", i);
3308 			if (!sb_rdonly(sb))
3309 				return 0;
3310 		}
3311 		if (block_bitmap < first_block || block_bitmap > last_block) {
3312 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3313 			       "Block bitmap for group %u not in group "
3314 			       "(block %llu)!", i, block_bitmap);
3315 			return 0;
3316 		}
3317 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3318 		if (inode_bitmap == sb_block) {
3319 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3320 				 "Inode bitmap for group %u overlaps "
3321 				 "superblock", i);
3322 			if (!sb_rdonly(sb))
3323 				return 0;
3324 		}
3325 		if (inode_bitmap >= sb_block + 1 &&
3326 		    inode_bitmap <= last_bg_block) {
3327 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3328 				 "Inode bitmap for group %u overlaps "
3329 				 "block group descriptors", i);
3330 			if (!sb_rdonly(sb))
3331 				return 0;
3332 		}
3333 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3334 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3335 			       "Inode bitmap for group %u not in group "
3336 			       "(block %llu)!", i, inode_bitmap);
3337 			return 0;
3338 		}
3339 		inode_table = ext4_inode_table(sb, gdp);
3340 		if (inode_table == sb_block) {
3341 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3342 				 "Inode table for group %u overlaps "
3343 				 "superblock", i);
3344 			if (!sb_rdonly(sb))
3345 				return 0;
3346 		}
3347 		if (inode_table >= sb_block + 1 &&
3348 		    inode_table <= last_bg_block) {
3349 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3350 				 "Inode table for group %u overlaps "
3351 				 "block group descriptors", i);
3352 			if (!sb_rdonly(sb))
3353 				return 0;
3354 		}
3355 		if (inode_table < first_block ||
3356 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3357 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3358 			       "Inode table for group %u not in group "
3359 			       "(block %llu)!", i, inode_table);
3360 			return 0;
3361 		}
3362 		ext4_lock_group(sb, i);
3363 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3364 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365 				 "Checksum for group %u failed (%u!=%u)",
3366 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3367 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3368 			if (!sb_rdonly(sb)) {
3369 				ext4_unlock_group(sb, i);
3370 				return 0;
3371 			}
3372 		}
3373 		ext4_unlock_group(sb, i);
3374 		if (!flexbg_flag)
3375 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3376 	}
3377 	if (NULL != first_not_zeroed)
3378 		*first_not_zeroed = grp;
3379 	return 1;
3380 }
3381 
3382 /*
3383  * Maximal extent format file size.
3384  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3385  * extent format containers, within a sector_t, and within i_blocks
3386  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3387  * so that won't be a limiting factor.
3388  *
3389  * However there is other limiting factor. We do store extents in the form
3390  * of starting block and length, hence the resulting length of the extent
3391  * covering maximum file size must fit into on-disk format containers as
3392  * well. Given that length is always by 1 unit bigger than max unit (because
3393  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3394  *
3395  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3396  */
3397 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3398 {
3399 	loff_t res;
3400 	loff_t upper_limit = MAX_LFS_FILESIZE;
3401 
3402 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3403 
3404 	if (!has_huge_files) {
3405 		upper_limit = (1LL << 32) - 1;
3406 
3407 		/* total blocks in file system block size */
3408 		upper_limit >>= (blkbits - 9);
3409 		upper_limit <<= blkbits;
3410 	}
3411 
3412 	/*
3413 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3414 	 * by one fs block, so ee_len can cover the extent of maximum file
3415 	 * size
3416 	 */
3417 	res = (1LL << 32) - 1;
3418 	res <<= blkbits;
3419 
3420 	/* Sanity check against vm- & vfs- imposed limits */
3421 	if (res > upper_limit)
3422 		res = upper_limit;
3423 
3424 	return res;
3425 }
3426 
3427 /*
3428  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3429  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3430  * We need to be 1 filesystem block less than the 2^48 sector limit.
3431  */
3432 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3433 {
3434 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3435 	int meta_blocks;
3436 	unsigned int ppb = 1 << (bits - 2);
3437 
3438 	/*
3439 	 * This is calculated to be the largest file size for a dense, block
3440 	 * mapped file such that the file's total number of 512-byte sectors,
3441 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3442 	 *
3443 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3444 	 * number of 512-byte sectors of the file.
3445 	 */
3446 	if (!has_huge_files) {
3447 		/*
3448 		 * !has_huge_files or implies that the inode i_block field
3449 		 * represents total file blocks in 2^32 512-byte sectors ==
3450 		 * size of vfs inode i_blocks * 8
3451 		 */
3452 		upper_limit = (1LL << 32) - 1;
3453 
3454 		/* total blocks in file system block size */
3455 		upper_limit >>= (bits - 9);
3456 
3457 	} else {
3458 		/*
3459 		 * We use 48 bit ext4_inode i_blocks
3460 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3461 		 * represent total number of blocks in
3462 		 * file system block size
3463 		 */
3464 		upper_limit = (1LL << 48) - 1;
3465 
3466 	}
3467 
3468 	/* Compute how many blocks we can address by block tree */
3469 	res += ppb;
3470 	res += ppb * ppb;
3471 	res += ((loff_t)ppb) * ppb * ppb;
3472 	/* Compute how many metadata blocks are needed */
3473 	meta_blocks = 1;
3474 	meta_blocks += 1 + ppb;
3475 	meta_blocks += 1 + ppb + ppb * ppb;
3476 	/* Does block tree limit file size? */
3477 	if (res + meta_blocks <= upper_limit)
3478 		goto check_lfs;
3479 
3480 	res = upper_limit;
3481 	/* How many metadata blocks are needed for addressing upper_limit? */
3482 	upper_limit -= EXT4_NDIR_BLOCKS;
3483 	/* indirect blocks */
3484 	meta_blocks = 1;
3485 	upper_limit -= ppb;
3486 	/* double indirect blocks */
3487 	if (upper_limit < ppb * ppb) {
3488 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3489 		res -= meta_blocks;
3490 		goto check_lfs;
3491 	}
3492 	meta_blocks += 1 + ppb;
3493 	upper_limit -= ppb * ppb;
3494 	/* tripple indirect blocks for the rest */
3495 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3496 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3497 	res -= meta_blocks;
3498 check_lfs:
3499 	res <<= bits;
3500 	if (res > MAX_LFS_FILESIZE)
3501 		res = MAX_LFS_FILESIZE;
3502 
3503 	return res;
3504 }
3505 
3506 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3507 				   ext4_fsblk_t logical_sb_block, int nr)
3508 {
3509 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3510 	ext4_group_t bg, first_meta_bg;
3511 	int has_super = 0;
3512 
3513 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3514 
3515 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3516 		return logical_sb_block + nr + 1;
3517 	bg = sbi->s_desc_per_block * nr;
3518 	if (ext4_bg_has_super(sb, bg))
3519 		has_super = 1;
3520 
3521 	/*
3522 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3523 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3524 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3525 	 * compensate.
3526 	 */
3527 	if (sb->s_blocksize == 1024 && nr == 0 &&
3528 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3529 		has_super++;
3530 
3531 	return (has_super + ext4_group_first_block_no(sb, bg));
3532 }
3533 
3534 /**
3535  * ext4_get_stripe_size: Get the stripe size.
3536  * @sbi: In memory super block info
3537  *
3538  * If we have specified it via mount option, then
3539  * use the mount option value. If the value specified at mount time is
3540  * greater than the blocks per group use the super block value.
3541  * If the super block value is greater than blocks per group return 0.
3542  * Allocator needs it be less than blocks per group.
3543  *
3544  */
3545 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3546 {
3547 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3548 	unsigned long stripe_width =
3549 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3550 	int ret;
3551 
3552 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3553 		ret = sbi->s_stripe;
3554 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3555 		ret = stripe_width;
3556 	else if (stride && stride <= sbi->s_blocks_per_group)
3557 		ret = stride;
3558 	else
3559 		ret = 0;
3560 
3561 	/*
3562 	 * If the stripe width is 1, this makes no sense and
3563 	 * we set it to 0 to turn off stripe handling code.
3564 	 */
3565 	if (ret <= 1)
3566 		ret = 0;
3567 
3568 	return ret;
3569 }
3570 
3571 /*
3572  * Check whether this filesystem can be mounted based on
3573  * the features present and the RDONLY/RDWR mount requested.
3574  * Returns 1 if this filesystem can be mounted as requested,
3575  * 0 if it cannot be.
3576  */
3577 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3578 {
3579 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3580 		ext4_msg(sb, KERN_ERR,
3581 			"Couldn't mount because of "
3582 			"unsupported optional features (%x)",
3583 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3584 			~EXT4_FEATURE_INCOMPAT_SUPP));
3585 		return 0;
3586 	}
3587 
3588 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3589 		ext4_msg(sb, KERN_ERR,
3590 			 "Filesystem with casefold feature cannot be "
3591 			 "mounted without CONFIG_UNICODE");
3592 		return 0;
3593 	}
3594 
3595 	if (readonly)
3596 		return 1;
3597 
3598 	if (ext4_has_feature_readonly(sb)) {
3599 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3600 		sb->s_flags |= SB_RDONLY;
3601 		return 1;
3602 	}
3603 
3604 	/* Check that feature set is OK for a read-write mount */
3605 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3606 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3607 			 "unsupported optional features (%x)",
3608 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3609 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3610 		return 0;
3611 	}
3612 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3613 		ext4_msg(sb, KERN_ERR,
3614 			 "Can't support bigalloc feature without "
3615 			 "extents feature\n");
3616 		return 0;
3617 	}
3618 
3619 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3620 	if (!readonly && (ext4_has_feature_quota(sb) ||
3621 			  ext4_has_feature_project(sb))) {
3622 		ext4_msg(sb, KERN_ERR,
3623 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3624 		return 0;
3625 	}
3626 #endif  /* CONFIG_QUOTA */
3627 	return 1;
3628 }
3629 
3630 /*
3631  * This function is called once a day if we have errors logged
3632  * on the file system
3633  */
3634 static void print_daily_error_info(struct timer_list *t)
3635 {
3636 	struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3637 	struct super_block *sb = sbi->s_sb;
3638 	struct ext4_super_block *es = sbi->s_es;
3639 
3640 	if (es->s_error_count)
3641 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3642 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3643 			 le32_to_cpu(es->s_error_count));
3644 	if (es->s_first_error_time) {
3645 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3646 		       sb->s_id,
3647 		       ext4_get_tstamp(es, s_first_error_time),
3648 		       (int) sizeof(es->s_first_error_func),
3649 		       es->s_first_error_func,
3650 		       le32_to_cpu(es->s_first_error_line));
3651 		if (es->s_first_error_ino)
3652 			printk(KERN_CONT ": inode %u",
3653 			       le32_to_cpu(es->s_first_error_ino));
3654 		if (es->s_first_error_block)
3655 			printk(KERN_CONT ": block %llu", (unsigned long long)
3656 			       le64_to_cpu(es->s_first_error_block));
3657 		printk(KERN_CONT "\n");
3658 	}
3659 	if (es->s_last_error_time) {
3660 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3661 		       sb->s_id,
3662 		       ext4_get_tstamp(es, s_last_error_time),
3663 		       (int) sizeof(es->s_last_error_func),
3664 		       es->s_last_error_func,
3665 		       le32_to_cpu(es->s_last_error_line));
3666 		if (es->s_last_error_ino)
3667 			printk(KERN_CONT ": inode %u",
3668 			       le32_to_cpu(es->s_last_error_ino));
3669 		if (es->s_last_error_block)
3670 			printk(KERN_CONT ": block %llu", (unsigned long long)
3671 			       le64_to_cpu(es->s_last_error_block));
3672 		printk(KERN_CONT "\n");
3673 	}
3674 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3675 }
3676 
3677 /* Find next suitable group and run ext4_init_inode_table */
3678 static int ext4_run_li_request(struct ext4_li_request *elr)
3679 {
3680 	struct ext4_group_desc *gdp = NULL;
3681 	struct super_block *sb = elr->lr_super;
3682 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3683 	ext4_group_t group = elr->lr_next_group;
3684 	unsigned int prefetch_ios = 0;
3685 	int ret = 0;
3686 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3687 	u64 start_time;
3688 
3689 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3690 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3691 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3692 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3693 		if (group >= elr->lr_next_group) {
3694 			ret = 1;
3695 			if (elr->lr_first_not_zeroed != ngroups &&
3696 			    !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3697 			    test_opt(sb, INIT_INODE_TABLE)) {
3698 				elr->lr_next_group = elr->lr_first_not_zeroed;
3699 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3700 				ret = 0;
3701 			}
3702 		}
3703 		return ret;
3704 	}
3705 
3706 	for (; group < ngroups; group++) {
3707 		gdp = ext4_get_group_desc(sb, group, NULL);
3708 		if (!gdp) {
3709 			ret = 1;
3710 			break;
3711 		}
3712 
3713 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3714 			break;
3715 	}
3716 
3717 	if (group >= ngroups)
3718 		ret = 1;
3719 
3720 	if (!ret) {
3721 		start_time = ktime_get_ns();
3722 		ret = ext4_init_inode_table(sb, group,
3723 					    elr->lr_timeout ? 0 : 1);
3724 		trace_ext4_lazy_itable_init(sb, group);
3725 		if (elr->lr_timeout == 0) {
3726 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3727 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3728 		}
3729 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3730 		elr->lr_next_group = group + 1;
3731 	}
3732 	return ret;
3733 }
3734 
3735 /*
3736  * Remove lr_request from the list_request and free the
3737  * request structure. Should be called with li_list_mtx held
3738  */
3739 static void ext4_remove_li_request(struct ext4_li_request *elr)
3740 {
3741 	if (!elr)
3742 		return;
3743 
3744 	list_del(&elr->lr_request);
3745 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3746 	kfree(elr);
3747 }
3748 
3749 static void ext4_unregister_li_request(struct super_block *sb)
3750 {
3751 	mutex_lock(&ext4_li_mtx);
3752 	if (!ext4_li_info) {
3753 		mutex_unlock(&ext4_li_mtx);
3754 		return;
3755 	}
3756 
3757 	mutex_lock(&ext4_li_info->li_list_mtx);
3758 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3759 	mutex_unlock(&ext4_li_info->li_list_mtx);
3760 	mutex_unlock(&ext4_li_mtx);
3761 }
3762 
3763 static struct task_struct *ext4_lazyinit_task;
3764 
3765 /*
3766  * This is the function where ext4lazyinit thread lives. It walks
3767  * through the request list searching for next scheduled filesystem.
3768  * When such a fs is found, run the lazy initialization request
3769  * (ext4_rn_li_request) and keep track of the time spend in this
3770  * function. Based on that time we compute next schedule time of
3771  * the request. When walking through the list is complete, compute
3772  * next waking time and put itself into sleep.
3773  */
3774 static int ext4_lazyinit_thread(void *arg)
3775 {
3776 	struct ext4_lazy_init *eli = arg;
3777 	struct list_head *pos, *n;
3778 	struct ext4_li_request *elr;
3779 	unsigned long next_wakeup, cur;
3780 
3781 	BUG_ON(NULL == eli);
3782 	set_freezable();
3783 
3784 cont_thread:
3785 	while (true) {
3786 		bool next_wakeup_initialized = false;
3787 
3788 		next_wakeup = 0;
3789 		mutex_lock(&eli->li_list_mtx);
3790 		if (list_empty(&eli->li_request_list)) {
3791 			mutex_unlock(&eli->li_list_mtx);
3792 			goto exit_thread;
3793 		}
3794 		list_for_each_safe(pos, n, &eli->li_request_list) {
3795 			int err = 0;
3796 			int progress = 0;
3797 			elr = list_entry(pos, struct ext4_li_request,
3798 					 lr_request);
3799 
3800 			if (time_before(jiffies, elr->lr_next_sched)) {
3801 				if (!next_wakeup_initialized ||
3802 				    time_before(elr->lr_next_sched, next_wakeup)) {
3803 					next_wakeup = elr->lr_next_sched;
3804 					next_wakeup_initialized = true;
3805 				}
3806 				continue;
3807 			}
3808 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3809 				if (sb_start_write_trylock(elr->lr_super)) {
3810 					progress = 1;
3811 					/*
3812 					 * We hold sb->s_umount, sb can not
3813 					 * be removed from the list, it is
3814 					 * now safe to drop li_list_mtx
3815 					 */
3816 					mutex_unlock(&eli->li_list_mtx);
3817 					err = ext4_run_li_request(elr);
3818 					sb_end_write(elr->lr_super);
3819 					mutex_lock(&eli->li_list_mtx);
3820 					n = pos->next;
3821 				}
3822 				up_read((&elr->lr_super->s_umount));
3823 			}
3824 			/* error, remove the lazy_init job */
3825 			if (err) {
3826 				ext4_remove_li_request(elr);
3827 				continue;
3828 			}
3829 			if (!progress) {
3830 				elr->lr_next_sched = jiffies +
3831 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3832 			}
3833 			if (!next_wakeup_initialized ||
3834 			    time_before(elr->lr_next_sched, next_wakeup)) {
3835 				next_wakeup = elr->lr_next_sched;
3836 				next_wakeup_initialized = true;
3837 			}
3838 		}
3839 		mutex_unlock(&eli->li_list_mtx);
3840 
3841 		try_to_freeze();
3842 
3843 		cur = jiffies;
3844 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3845 			cond_resched();
3846 			continue;
3847 		}
3848 
3849 		schedule_timeout_interruptible(next_wakeup - cur);
3850 
3851 		if (kthread_should_stop()) {
3852 			ext4_clear_request_list();
3853 			goto exit_thread;
3854 		}
3855 	}
3856 
3857 exit_thread:
3858 	/*
3859 	 * It looks like the request list is empty, but we need
3860 	 * to check it under the li_list_mtx lock, to prevent any
3861 	 * additions into it, and of course we should lock ext4_li_mtx
3862 	 * to atomically free the list and ext4_li_info, because at
3863 	 * this point another ext4 filesystem could be registering
3864 	 * new one.
3865 	 */
3866 	mutex_lock(&ext4_li_mtx);
3867 	mutex_lock(&eli->li_list_mtx);
3868 	if (!list_empty(&eli->li_request_list)) {
3869 		mutex_unlock(&eli->li_list_mtx);
3870 		mutex_unlock(&ext4_li_mtx);
3871 		goto cont_thread;
3872 	}
3873 	mutex_unlock(&eli->li_list_mtx);
3874 	kfree(ext4_li_info);
3875 	ext4_li_info = NULL;
3876 	mutex_unlock(&ext4_li_mtx);
3877 
3878 	return 0;
3879 }
3880 
3881 static void ext4_clear_request_list(void)
3882 {
3883 	struct list_head *pos, *n;
3884 	struct ext4_li_request *elr;
3885 
3886 	mutex_lock(&ext4_li_info->li_list_mtx);
3887 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3888 		elr = list_entry(pos, struct ext4_li_request,
3889 				 lr_request);
3890 		ext4_remove_li_request(elr);
3891 	}
3892 	mutex_unlock(&ext4_li_info->li_list_mtx);
3893 }
3894 
3895 static int ext4_run_lazyinit_thread(void)
3896 {
3897 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3898 					 ext4_li_info, "ext4lazyinit");
3899 	if (IS_ERR(ext4_lazyinit_task)) {
3900 		int err = PTR_ERR(ext4_lazyinit_task);
3901 		ext4_clear_request_list();
3902 		kfree(ext4_li_info);
3903 		ext4_li_info = NULL;
3904 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3905 				 "initialization thread\n",
3906 				 err);
3907 		return err;
3908 	}
3909 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3910 	return 0;
3911 }
3912 
3913 /*
3914  * Check whether it make sense to run itable init. thread or not.
3915  * If there is at least one uninitialized inode table, return
3916  * corresponding group number, else the loop goes through all
3917  * groups and return total number of groups.
3918  */
3919 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3920 {
3921 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3922 	struct ext4_group_desc *gdp = NULL;
3923 
3924 	if (!ext4_has_group_desc_csum(sb))
3925 		return ngroups;
3926 
3927 	for (group = 0; group < ngroups; group++) {
3928 		gdp = ext4_get_group_desc(sb, group, NULL);
3929 		if (!gdp)
3930 			continue;
3931 
3932 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3933 			break;
3934 	}
3935 
3936 	return group;
3937 }
3938 
3939 static int ext4_li_info_new(void)
3940 {
3941 	struct ext4_lazy_init *eli = NULL;
3942 
3943 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3944 	if (!eli)
3945 		return -ENOMEM;
3946 
3947 	INIT_LIST_HEAD(&eli->li_request_list);
3948 	mutex_init(&eli->li_list_mtx);
3949 
3950 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3951 
3952 	ext4_li_info = eli;
3953 
3954 	return 0;
3955 }
3956 
3957 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3958 					    ext4_group_t start)
3959 {
3960 	struct ext4_li_request *elr;
3961 
3962 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3963 	if (!elr)
3964 		return NULL;
3965 
3966 	elr->lr_super = sb;
3967 	elr->lr_first_not_zeroed = start;
3968 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3969 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3970 		elr->lr_next_group = start;
3971 	} else {
3972 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3973 	}
3974 
3975 	/*
3976 	 * Randomize first schedule time of the request to
3977 	 * spread the inode table initialization requests
3978 	 * better.
3979 	 */
3980 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3981 	return elr;
3982 }
3983 
3984 int ext4_register_li_request(struct super_block *sb,
3985 			     ext4_group_t first_not_zeroed)
3986 {
3987 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3988 	struct ext4_li_request *elr = NULL;
3989 	ext4_group_t ngroups = sbi->s_groups_count;
3990 	int ret = 0;
3991 
3992 	mutex_lock(&ext4_li_mtx);
3993 	if (sbi->s_li_request != NULL) {
3994 		/*
3995 		 * Reset timeout so it can be computed again, because
3996 		 * s_li_wait_mult might have changed.
3997 		 */
3998 		sbi->s_li_request->lr_timeout = 0;
3999 		goto out;
4000 	}
4001 
4002 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4003 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4004 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4005 		goto out;
4006 
4007 	elr = ext4_li_request_new(sb, first_not_zeroed);
4008 	if (!elr) {
4009 		ret = -ENOMEM;
4010 		goto out;
4011 	}
4012 
4013 	if (NULL == ext4_li_info) {
4014 		ret = ext4_li_info_new();
4015 		if (ret)
4016 			goto out;
4017 	}
4018 
4019 	mutex_lock(&ext4_li_info->li_list_mtx);
4020 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4021 	mutex_unlock(&ext4_li_info->li_list_mtx);
4022 
4023 	sbi->s_li_request = elr;
4024 	/*
4025 	 * set elr to NULL here since it has been inserted to
4026 	 * the request_list and the removal and free of it is
4027 	 * handled by ext4_clear_request_list from now on.
4028 	 */
4029 	elr = NULL;
4030 
4031 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4032 		ret = ext4_run_lazyinit_thread();
4033 		if (ret)
4034 			goto out;
4035 	}
4036 out:
4037 	mutex_unlock(&ext4_li_mtx);
4038 	if (ret)
4039 		kfree(elr);
4040 	return ret;
4041 }
4042 
4043 /*
4044  * We do not need to lock anything since this is called on
4045  * module unload.
4046  */
4047 static void ext4_destroy_lazyinit_thread(void)
4048 {
4049 	/*
4050 	 * If thread exited earlier
4051 	 * there's nothing to be done.
4052 	 */
4053 	if (!ext4_li_info || !ext4_lazyinit_task)
4054 		return;
4055 
4056 	kthread_stop(ext4_lazyinit_task);
4057 }
4058 
4059 static int set_journal_csum_feature_set(struct super_block *sb)
4060 {
4061 	int ret = 1;
4062 	int compat, incompat;
4063 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4064 
4065 	if (ext4_has_feature_metadata_csum(sb)) {
4066 		/* journal checksum v3 */
4067 		compat = 0;
4068 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4069 	} else {
4070 		/* journal checksum v1 */
4071 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4072 		incompat = 0;
4073 	}
4074 
4075 	jbd2_journal_clear_features(sbi->s_journal,
4076 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4077 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4078 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4079 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4080 		ret = jbd2_journal_set_features(sbi->s_journal,
4081 				compat, 0,
4082 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4083 				incompat);
4084 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4085 		ret = jbd2_journal_set_features(sbi->s_journal,
4086 				compat, 0,
4087 				incompat);
4088 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4089 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4090 	} else {
4091 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4092 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4093 	}
4094 
4095 	return ret;
4096 }
4097 
4098 /*
4099  * Note: calculating the overhead so we can be compatible with
4100  * historical BSD practice is quite difficult in the face of
4101  * clusters/bigalloc.  This is because multiple metadata blocks from
4102  * different block group can end up in the same allocation cluster.
4103  * Calculating the exact overhead in the face of clustered allocation
4104  * requires either O(all block bitmaps) in memory or O(number of block
4105  * groups**2) in time.  We will still calculate the superblock for
4106  * older file systems --- and if we come across with a bigalloc file
4107  * system with zero in s_overhead_clusters the estimate will be close to
4108  * correct especially for very large cluster sizes --- but for newer
4109  * file systems, it's better to calculate this figure once at mkfs
4110  * time, and store it in the superblock.  If the superblock value is
4111  * present (even for non-bigalloc file systems), we will use it.
4112  */
4113 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4114 			  char *buf)
4115 {
4116 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4117 	struct ext4_group_desc	*gdp;
4118 	ext4_fsblk_t		first_block, last_block, b;
4119 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4120 	int			s, j, count = 0;
4121 	int			has_super = ext4_bg_has_super(sb, grp);
4122 
4123 	if (!ext4_has_feature_bigalloc(sb))
4124 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4125 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4126 			sbi->s_itb_per_group + 2);
4127 
4128 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4129 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4130 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4131 	for (i = 0; i < ngroups; i++) {
4132 		gdp = ext4_get_group_desc(sb, i, NULL);
4133 		b = ext4_block_bitmap(sb, gdp);
4134 		if (b >= first_block && b <= last_block) {
4135 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4136 			count++;
4137 		}
4138 		b = ext4_inode_bitmap(sb, gdp);
4139 		if (b >= first_block && b <= last_block) {
4140 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4141 			count++;
4142 		}
4143 		b = ext4_inode_table(sb, gdp);
4144 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4145 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4146 				int c = EXT4_B2C(sbi, b - first_block);
4147 				ext4_set_bit(c, buf);
4148 				count++;
4149 			}
4150 		if (i != grp)
4151 			continue;
4152 		s = 0;
4153 		if (ext4_bg_has_super(sb, grp)) {
4154 			ext4_set_bit(s++, buf);
4155 			count++;
4156 		}
4157 		j = ext4_bg_num_gdb(sb, grp);
4158 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4159 			ext4_error(sb, "Invalid number of block group "
4160 				   "descriptor blocks: %d", j);
4161 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4162 		}
4163 		count += j;
4164 		for (; j > 0; j--)
4165 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4166 	}
4167 	if (!count)
4168 		return 0;
4169 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4170 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4171 }
4172 
4173 /*
4174  * Compute the overhead and stash it in sbi->s_overhead
4175  */
4176 int ext4_calculate_overhead(struct super_block *sb)
4177 {
4178 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4179 	struct ext4_super_block *es = sbi->s_es;
4180 	struct inode *j_inode;
4181 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4182 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4183 	ext4_fsblk_t overhead = 0;
4184 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4185 
4186 	if (!buf)
4187 		return -ENOMEM;
4188 
4189 	/*
4190 	 * Compute the overhead (FS structures).  This is constant
4191 	 * for a given filesystem unless the number of block groups
4192 	 * changes so we cache the previous value until it does.
4193 	 */
4194 
4195 	/*
4196 	 * All of the blocks before first_data_block are overhead
4197 	 */
4198 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4199 
4200 	/*
4201 	 * Add the overhead found in each block group
4202 	 */
4203 	for (i = 0; i < ngroups; i++) {
4204 		int blks;
4205 
4206 		blks = count_overhead(sb, i, buf);
4207 		overhead += blks;
4208 		if (blks)
4209 			memset(buf, 0, PAGE_SIZE);
4210 		cond_resched();
4211 	}
4212 
4213 	/*
4214 	 * Add the internal journal blocks whether the journal has been
4215 	 * loaded or not
4216 	 */
4217 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4218 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4219 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4220 		/* j_inum for internal journal is non-zero */
4221 		j_inode = ext4_get_journal_inode(sb, j_inum);
4222 		if (!IS_ERR(j_inode)) {
4223 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4224 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4225 			iput(j_inode);
4226 		} else {
4227 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4228 		}
4229 	}
4230 	sbi->s_overhead = overhead;
4231 	smp_wmb();
4232 	free_page((unsigned long) buf);
4233 	return 0;
4234 }
4235 
4236 static void ext4_set_resv_clusters(struct super_block *sb)
4237 {
4238 	ext4_fsblk_t resv_clusters;
4239 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4240 
4241 	/*
4242 	 * There's no need to reserve anything when we aren't using extents.
4243 	 * The space estimates are exact, there are no unwritten extents,
4244 	 * hole punching doesn't need new metadata... This is needed especially
4245 	 * to keep ext2/3 backward compatibility.
4246 	 */
4247 	if (!ext4_has_feature_extents(sb))
4248 		return;
4249 	/*
4250 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4251 	 * This should cover the situations where we can not afford to run
4252 	 * out of space like for example punch hole, or converting
4253 	 * unwritten extents in delalloc path. In most cases such
4254 	 * allocation would require 1, or 2 blocks, higher numbers are
4255 	 * very rare.
4256 	 */
4257 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4258 			 sbi->s_cluster_bits);
4259 
4260 	do_div(resv_clusters, 50);
4261 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4262 
4263 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4264 }
4265 
4266 static const char *ext4_quota_mode(struct super_block *sb)
4267 {
4268 #ifdef CONFIG_QUOTA
4269 	if (!ext4_quota_capable(sb))
4270 		return "none";
4271 
4272 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4273 		return "journalled";
4274 	else
4275 		return "writeback";
4276 #else
4277 	return "disabled";
4278 #endif
4279 }
4280 
4281 static void ext4_setup_csum_trigger(struct super_block *sb,
4282 				    enum ext4_journal_trigger_type type,
4283 				    void (*trigger)(
4284 					struct jbd2_buffer_trigger_type *type,
4285 					struct buffer_head *bh,
4286 					void *mapped_data,
4287 					size_t size))
4288 {
4289 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4290 
4291 	sbi->s_journal_triggers[type].sb = sb;
4292 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4293 }
4294 
4295 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4296 {
4297 	if (!sbi)
4298 		return;
4299 
4300 	kfree(sbi->s_blockgroup_lock);
4301 	fs_put_dax(sbi->s_daxdev, NULL);
4302 	kfree(sbi);
4303 }
4304 
4305 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4306 {
4307 	struct ext4_sb_info *sbi;
4308 
4309 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4310 	if (!sbi)
4311 		return NULL;
4312 
4313 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4314 					   NULL, NULL);
4315 
4316 	sbi->s_blockgroup_lock =
4317 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4318 
4319 	if (!sbi->s_blockgroup_lock)
4320 		goto err_out;
4321 
4322 	sb->s_fs_info = sbi;
4323 	sbi->s_sb = sb;
4324 	return sbi;
4325 err_out:
4326 	fs_put_dax(sbi->s_daxdev, NULL);
4327 	kfree(sbi);
4328 	return NULL;
4329 }
4330 
4331 static void ext4_set_def_opts(struct super_block *sb,
4332 			      struct ext4_super_block *es)
4333 {
4334 	unsigned long def_mount_opts;
4335 
4336 	/* Set defaults before we parse the mount options */
4337 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4338 	set_opt(sb, INIT_INODE_TABLE);
4339 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4340 		set_opt(sb, DEBUG);
4341 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4342 		set_opt(sb, GRPID);
4343 	if (def_mount_opts & EXT4_DEFM_UID16)
4344 		set_opt(sb, NO_UID32);
4345 	/* xattr user namespace & acls are now defaulted on */
4346 	set_opt(sb, XATTR_USER);
4347 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4348 	set_opt(sb, POSIX_ACL);
4349 #endif
4350 	if (ext4_has_feature_fast_commit(sb))
4351 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4352 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4353 	if (ext4_has_feature_metadata_csum(sb))
4354 		set_opt(sb, JOURNAL_CHECKSUM);
4355 
4356 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4357 		set_opt(sb, JOURNAL_DATA);
4358 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4359 		set_opt(sb, ORDERED_DATA);
4360 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4361 		set_opt(sb, WRITEBACK_DATA);
4362 
4363 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4364 		set_opt(sb, ERRORS_PANIC);
4365 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4366 		set_opt(sb, ERRORS_CONT);
4367 	else
4368 		set_opt(sb, ERRORS_RO);
4369 	/* block_validity enabled by default; disable with noblock_validity */
4370 	set_opt(sb, BLOCK_VALIDITY);
4371 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4372 		set_opt(sb, DISCARD);
4373 
4374 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4375 		set_opt(sb, BARRIER);
4376 
4377 	/*
4378 	 * enable delayed allocation by default
4379 	 * Use -o nodelalloc to turn it off
4380 	 */
4381 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4382 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4383 		set_opt(sb, DELALLOC);
4384 
4385 	if (sb->s_blocksize <= PAGE_SIZE)
4386 		set_opt(sb, DIOREAD_NOLOCK);
4387 }
4388 
4389 static int ext4_handle_clustersize(struct super_block *sb)
4390 {
4391 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4392 	struct ext4_super_block *es = sbi->s_es;
4393 	int clustersize;
4394 
4395 	/* Handle clustersize */
4396 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4397 	if (ext4_has_feature_bigalloc(sb)) {
4398 		if (clustersize < sb->s_blocksize) {
4399 			ext4_msg(sb, KERN_ERR,
4400 				 "cluster size (%d) smaller than "
4401 				 "block size (%lu)", clustersize, sb->s_blocksize);
4402 			return -EINVAL;
4403 		}
4404 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4405 			le32_to_cpu(es->s_log_block_size);
4406 	} else {
4407 		if (clustersize != sb->s_blocksize) {
4408 			ext4_msg(sb, KERN_ERR,
4409 				 "fragment/cluster size (%d) != "
4410 				 "block size (%lu)", clustersize, sb->s_blocksize);
4411 			return -EINVAL;
4412 		}
4413 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4414 			ext4_msg(sb, KERN_ERR,
4415 				 "#blocks per group too big: %lu",
4416 				 sbi->s_blocks_per_group);
4417 			return -EINVAL;
4418 		}
4419 		sbi->s_cluster_bits = 0;
4420 	}
4421 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4422 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4423 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4424 			 sbi->s_clusters_per_group);
4425 		return -EINVAL;
4426 	}
4427 	if (sbi->s_blocks_per_group !=
4428 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4429 		ext4_msg(sb, KERN_ERR,
4430 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4431 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4432 		return -EINVAL;
4433 	}
4434 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4435 
4436 	/* Do we have standard group size of clustersize * 8 blocks ? */
4437 	if (sbi->s_blocks_per_group == clustersize << 3)
4438 		set_opt2(sb, STD_GROUP_SIZE);
4439 
4440 	return 0;
4441 }
4442 
4443 /*
4444  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4445  * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4446  * & bdev awu units.
4447  * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4448  * @sb: super block
4449  */
4450 static void ext4_atomic_write_init(struct super_block *sb)
4451 {
4452 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4453 	struct block_device *bdev = sb->s_bdev;
4454 	unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4455 
4456 	if (!bdev_can_atomic_write(bdev))
4457 		return;
4458 
4459 	if (!ext4_has_feature_extents(sb))
4460 		return;
4461 
4462 	sbi->s_awu_min = max(sb->s_blocksize,
4463 			      bdev_atomic_write_unit_min_bytes(bdev));
4464 	sbi->s_awu_max = min(clustersize,
4465 			      bdev_atomic_write_unit_max_bytes(bdev));
4466 	if (sbi->s_awu_min && sbi->s_awu_max &&
4467 	    sbi->s_awu_min <= sbi->s_awu_max) {
4468 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4469 			 sbi->s_awu_min, sbi->s_awu_max);
4470 	} else {
4471 		sbi->s_awu_min = 0;
4472 		sbi->s_awu_max = 0;
4473 	}
4474 }
4475 
4476 static void ext4_fast_commit_init(struct super_block *sb)
4477 {
4478 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4479 
4480 	/* Initialize fast commit stuff */
4481 	atomic_set(&sbi->s_fc_subtid, 0);
4482 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4483 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4484 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4485 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4486 	sbi->s_fc_bytes = 0;
4487 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4488 	sbi->s_fc_ineligible_tid = 0;
4489 	mutex_init(&sbi->s_fc_lock);
4490 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4491 	sbi->s_fc_replay_state.fc_regions = NULL;
4492 	sbi->s_fc_replay_state.fc_regions_size = 0;
4493 	sbi->s_fc_replay_state.fc_regions_used = 0;
4494 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4495 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4496 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4497 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4498 }
4499 
4500 static int ext4_inode_info_init(struct super_block *sb,
4501 				struct ext4_super_block *es)
4502 {
4503 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4504 
4505 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4506 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4507 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4508 	} else {
4509 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4510 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4511 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4512 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4513 				 sbi->s_first_ino);
4514 			return -EINVAL;
4515 		}
4516 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4517 		    (!is_power_of_2(sbi->s_inode_size)) ||
4518 		    (sbi->s_inode_size > sb->s_blocksize)) {
4519 			ext4_msg(sb, KERN_ERR,
4520 			       "unsupported inode size: %d",
4521 			       sbi->s_inode_size);
4522 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4523 			return -EINVAL;
4524 		}
4525 		/*
4526 		 * i_atime_extra is the last extra field available for
4527 		 * [acm]times in struct ext4_inode. Checking for that
4528 		 * field should suffice to ensure we have extra space
4529 		 * for all three.
4530 		 */
4531 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4532 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4533 			sb->s_time_gran = 1;
4534 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4535 		} else {
4536 			sb->s_time_gran = NSEC_PER_SEC;
4537 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4538 		}
4539 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4540 	}
4541 
4542 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4543 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4544 			EXT4_GOOD_OLD_INODE_SIZE;
4545 		if (ext4_has_feature_extra_isize(sb)) {
4546 			unsigned v, max = (sbi->s_inode_size -
4547 					   EXT4_GOOD_OLD_INODE_SIZE);
4548 
4549 			v = le16_to_cpu(es->s_want_extra_isize);
4550 			if (v > max) {
4551 				ext4_msg(sb, KERN_ERR,
4552 					 "bad s_want_extra_isize: %d", v);
4553 				return -EINVAL;
4554 			}
4555 			if (sbi->s_want_extra_isize < v)
4556 				sbi->s_want_extra_isize = v;
4557 
4558 			v = le16_to_cpu(es->s_min_extra_isize);
4559 			if (v > max) {
4560 				ext4_msg(sb, KERN_ERR,
4561 					 "bad s_min_extra_isize: %d", v);
4562 				return -EINVAL;
4563 			}
4564 			if (sbi->s_want_extra_isize < v)
4565 				sbi->s_want_extra_isize = v;
4566 		}
4567 	}
4568 
4569 	return 0;
4570 }
4571 
4572 #if IS_ENABLED(CONFIG_UNICODE)
4573 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4574 {
4575 	const struct ext4_sb_encodings *encoding_info;
4576 	struct unicode_map *encoding;
4577 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4578 
4579 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4580 		return 0;
4581 
4582 	encoding_info = ext4_sb_read_encoding(es);
4583 	if (!encoding_info) {
4584 		ext4_msg(sb, KERN_ERR,
4585 			"Encoding requested by superblock is unknown");
4586 		return -EINVAL;
4587 	}
4588 
4589 	encoding = utf8_load(encoding_info->version);
4590 	if (IS_ERR(encoding)) {
4591 		ext4_msg(sb, KERN_ERR,
4592 			"can't mount with superblock charset: %s-%u.%u.%u "
4593 			"not supported by the kernel. flags: 0x%x.",
4594 			encoding_info->name,
4595 			unicode_major(encoding_info->version),
4596 			unicode_minor(encoding_info->version),
4597 			unicode_rev(encoding_info->version),
4598 			encoding_flags);
4599 		return -EINVAL;
4600 	}
4601 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4602 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4603 		unicode_major(encoding_info->version),
4604 		unicode_minor(encoding_info->version),
4605 		unicode_rev(encoding_info->version),
4606 		encoding_flags);
4607 
4608 	sb->s_encoding = encoding;
4609 	sb->s_encoding_flags = encoding_flags;
4610 
4611 	return 0;
4612 }
4613 #else
4614 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4615 {
4616 	return 0;
4617 }
4618 #endif
4619 
4620 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4621 {
4622 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4623 
4624 	/* Warn if metadata_csum and gdt_csum are both set. */
4625 	if (ext4_has_feature_metadata_csum(sb) &&
4626 	    ext4_has_feature_gdt_csum(sb))
4627 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4628 			     "redundant flags; please run fsck.");
4629 
4630 	/* Check for a known checksum algorithm */
4631 	if (!ext4_verify_csum_type(sb, es)) {
4632 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4633 			 "unknown checksum algorithm.");
4634 		return -EINVAL;
4635 	}
4636 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4637 				ext4_orphan_file_block_trigger);
4638 
4639 	/* Check superblock checksum */
4640 	if (!ext4_superblock_csum_verify(sb, es)) {
4641 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4642 			 "invalid superblock checksum.  Run e2fsck?");
4643 		return -EFSBADCRC;
4644 	}
4645 
4646 	/* Precompute checksum seed for all metadata */
4647 	if (ext4_has_feature_csum_seed(sb))
4648 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4649 	else if (ext4_has_feature_metadata_csum(sb) ||
4650 		 ext4_has_feature_ea_inode(sb))
4651 		sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4652 					       sizeof(es->s_uuid));
4653 	return 0;
4654 }
4655 
4656 static int ext4_check_feature_compatibility(struct super_block *sb,
4657 					    struct ext4_super_block *es,
4658 					    int silent)
4659 {
4660 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4661 
4662 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4663 	    (ext4_has_compat_features(sb) ||
4664 	     ext4_has_ro_compat_features(sb) ||
4665 	     ext4_has_incompat_features(sb)))
4666 		ext4_msg(sb, KERN_WARNING,
4667 		       "feature flags set on rev 0 fs, "
4668 		       "running e2fsck is recommended");
4669 
4670 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4671 		set_opt2(sb, HURD_COMPAT);
4672 		if (ext4_has_feature_64bit(sb)) {
4673 			ext4_msg(sb, KERN_ERR,
4674 				 "The Hurd can't support 64-bit file systems");
4675 			return -EINVAL;
4676 		}
4677 
4678 		/*
4679 		 * ea_inode feature uses l_i_version field which is not
4680 		 * available in HURD_COMPAT mode.
4681 		 */
4682 		if (ext4_has_feature_ea_inode(sb)) {
4683 			ext4_msg(sb, KERN_ERR,
4684 				 "ea_inode feature is not supported for Hurd");
4685 			return -EINVAL;
4686 		}
4687 	}
4688 
4689 	if (IS_EXT2_SB(sb)) {
4690 		if (ext2_feature_set_ok(sb))
4691 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4692 				 "using the ext4 subsystem");
4693 		else {
4694 			/*
4695 			 * If we're probing be silent, if this looks like
4696 			 * it's actually an ext[34] filesystem.
4697 			 */
4698 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4699 				return -EINVAL;
4700 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4701 				 "to feature incompatibilities");
4702 			return -EINVAL;
4703 		}
4704 	}
4705 
4706 	if (IS_EXT3_SB(sb)) {
4707 		if (ext3_feature_set_ok(sb))
4708 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4709 				 "using the ext4 subsystem");
4710 		else {
4711 			/*
4712 			 * If we're probing be silent, if this looks like
4713 			 * it's actually an ext4 filesystem.
4714 			 */
4715 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4716 				return -EINVAL;
4717 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4718 				 "to feature incompatibilities");
4719 			return -EINVAL;
4720 		}
4721 	}
4722 
4723 	/*
4724 	 * Check feature flags regardless of the revision level, since we
4725 	 * previously didn't change the revision level when setting the flags,
4726 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4727 	 */
4728 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4729 		return -EINVAL;
4730 
4731 	if (sbi->s_daxdev) {
4732 		if (sb->s_blocksize == PAGE_SIZE)
4733 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4734 		else
4735 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4736 	}
4737 
4738 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4739 		if (ext4_has_feature_inline_data(sb)) {
4740 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4741 					" that may contain inline data");
4742 			return -EINVAL;
4743 		}
4744 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4745 			ext4_msg(sb, KERN_ERR,
4746 				"DAX unsupported by block device.");
4747 			return -EINVAL;
4748 		}
4749 	}
4750 
4751 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4752 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4753 			 es->s_encryption_level);
4754 		return -EINVAL;
4755 	}
4756 
4757 	return 0;
4758 }
4759 
4760 static int ext4_check_geometry(struct super_block *sb,
4761 			       struct ext4_super_block *es)
4762 {
4763 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4764 	__u64 blocks_count;
4765 	int err;
4766 
4767 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4768 		ext4_msg(sb, KERN_ERR,
4769 			 "Number of reserved GDT blocks insanely large: %d",
4770 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4771 		return -EINVAL;
4772 	}
4773 	/*
4774 	 * Test whether we have more sectors than will fit in sector_t,
4775 	 * and whether the max offset is addressable by the page cache.
4776 	 */
4777 	err = generic_check_addressable(sb->s_blocksize_bits,
4778 					ext4_blocks_count(es));
4779 	if (err) {
4780 		ext4_msg(sb, KERN_ERR, "filesystem"
4781 			 " too large to mount safely on this system");
4782 		return err;
4783 	}
4784 
4785 	/* check blocks count against device size */
4786 	blocks_count = sb_bdev_nr_blocks(sb);
4787 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4788 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4789 		       "exceeds size of device (%llu blocks)",
4790 		       ext4_blocks_count(es), blocks_count);
4791 		return -EINVAL;
4792 	}
4793 
4794 	/*
4795 	 * It makes no sense for the first data block to be beyond the end
4796 	 * of the filesystem.
4797 	 */
4798 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4799 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4800 			 "block %u is beyond end of filesystem (%llu)",
4801 			 le32_to_cpu(es->s_first_data_block),
4802 			 ext4_blocks_count(es));
4803 		return -EINVAL;
4804 	}
4805 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4806 	    (sbi->s_cluster_ratio == 1)) {
4807 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4808 			 "block is 0 with a 1k block and cluster size");
4809 		return -EINVAL;
4810 	}
4811 
4812 	blocks_count = (ext4_blocks_count(es) -
4813 			le32_to_cpu(es->s_first_data_block) +
4814 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4815 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4816 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4817 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4818 		       "(block count %llu, first data block %u, "
4819 		       "blocks per group %lu)", blocks_count,
4820 		       ext4_blocks_count(es),
4821 		       le32_to_cpu(es->s_first_data_block),
4822 		       EXT4_BLOCKS_PER_GROUP(sb));
4823 		return -EINVAL;
4824 	}
4825 	sbi->s_groups_count = blocks_count;
4826 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4827 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4828 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4829 	    le32_to_cpu(es->s_inodes_count)) {
4830 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4831 			 le32_to_cpu(es->s_inodes_count),
4832 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4833 		return -EINVAL;
4834 	}
4835 
4836 	return 0;
4837 }
4838 
4839 static int ext4_group_desc_init(struct super_block *sb,
4840 				struct ext4_super_block *es,
4841 				ext4_fsblk_t logical_sb_block,
4842 				ext4_group_t *first_not_zeroed)
4843 {
4844 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4845 	unsigned int db_count;
4846 	ext4_fsblk_t block;
4847 	int i;
4848 
4849 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4850 		   EXT4_DESC_PER_BLOCK(sb);
4851 	if (ext4_has_feature_meta_bg(sb)) {
4852 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4853 			ext4_msg(sb, KERN_WARNING,
4854 				 "first meta block group too large: %u "
4855 				 "(group descriptor block count %u)",
4856 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4857 			return -EINVAL;
4858 		}
4859 	}
4860 	rcu_assign_pointer(sbi->s_group_desc,
4861 			   kvmalloc_array(db_count,
4862 					  sizeof(struct buffer_head *),
4863 					  GFP_KERNEL));
4864 	if (sbi->s_group_desc == NULL) {
4865 		ext4_msg(sb, KERN_ERR, "not enough memory");
4866 		return -ENOMEM;
4867 	}
4868 
4869 	bgl_lock_init(sbi->s_blockgroup_lock);
4870 
4871 	/* Pre-read the descriptors into the buffer cache */
4872 	for (i = 0; i < db_count; i++) {
4873 		block = descriptor_loc(sb, logical_sb_block, i);
4874 		ext4_sb_breadahead_unmovable(sb, block);
4875 	}
4876 
4877 	for (i = 0; i < db_count; i++) {
4878 		struct buffer_head *bh;
4879 
4880 		block = descriptor_loc(sb, logical_sb_block, i);
4881 		bh = ext4_sb_bread_unmovable(sb, block);
4882 		if (IS_ERR(bh)) {
4883 			ext4_msg(sb, KERN_ERR,
4884 			       "can't read group descriptor %d", i);
4885 			sbi->s_gdb_count = i;
4886 			return PTR_ERR(bh);
4887 		}
4888 		rcu_read_lock();
4889 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4890 		rcu_read_unlock();
4891 	}
4892 	sbi->s_gdb_count = db_count;
4893 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4894 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4895 		return -EFSCORRUPTED;
4896 	}
4897 
4898 	return 0;
4899 }
4900 
4901 static int ext4_load_and_init_journal(struct super_block *sb,
4902 				      struct ext4_super_block *es,
4903 				      struct ext4_fs_context *ctx)
4904 {
4905 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4906 	int err;
4907 
4908 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4909 	if (err)
4910 		return err;
4911 
4912 	if (ext4_has_feature_64bit(sb) &&
4913 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4914 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4915 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4916 		goto out;
4917 	}
4918 
4919 	if (!set_journal_csum_feature_set(sb)) {
4920 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4921 			 "feature set");
4922 		goto out;
4923 	}
4924 
4925 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4926 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4927 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4928 		ext4_msg(sb, KERN_ERR,
4929 			"Failed to set fast commit journal feature");
4930 		goto out;
4931 	}
4932 
4933 	/* We have now updated the journal if required, so we can
4934 	 * validate the data journaling mode. */
4935 	switch (test_opt(sb, DATA_FLAGS)) {
4936 	case 0:
4937 		/* No mode set, assume a default based on the journal
4938 		 * capabilities: ORDERED_DATA if the journal can
4939 		 * cope, else JOURNAL_DATA
4940 		 */
4941 		if (jbd2_journal_check_available_features
4942 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4943 			set_opt(sb, ORDERED_DATA);
4944 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4945 		} else {
4946 			set_opt(sb, JOURNAL_DATA);
4947 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4948 		}
4949 		break;
4950 
4951 	case EXT4_MOUNT_ORDERED_DATA:
4952 	case EXT4_MOUNT_WRITEBACK_DATA:
4953 		if (!jbd2_journal_check_available_features
4954 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4955 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4956 			       "requested data journaling mode");
4957 			goto out;
4958 		}
4959 		break;
4960 	default:
4961 		break;
4962 	}
4963 
4964 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4965 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4966 		ext4_msg(sb, KERN_ERR, "can't mount with "
4967 			"journal_async_commit in data=ordered mode");
4968 		goto out;
4969 	}
4970 
4971 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4972 
4973 	sbi->s_journal->j_submit_inode_data_buffers =
4974 		ext4_journal_submit_inode_data_buffers;
4975 	sbi->s_journal->j_finish_inode_data_buffers =
4976 		ext4_journal_finish_inode_data_buffers;
4977 
4978 	return 0;
4979 
4980 out:
4981 	ext4_journal_destroy(sbi, sbi->s_journal);
4982 	return -EINVAL;
4983 }
4984 
4985 static int ext4_check_journal_data_mode(struct super_block *sb)
4986 {
4987 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4988 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4989 			    "data=journal disables delayed allocation, "
4990 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4991 		/* can't mount with both data=journal and dioread_nolock. */
4992 		clear_opt(sb, DIOREAD_NOLOCK);
4993 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4994 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4995 			ext4_msg(sb, KERN_ERR, "can't mount with "
4996 				 "both data=journal and delalloc");
4997 			return -EINVAL;
4998 		}
4999 		if (test_opt(sb, DAX_ALWAYS)) {
5000 			ext4_msg(sb, KERN_ERR, "can't mount with "
5001 				 "both data=journal and dax");
5002 			return -EINVAL;
5003 		}
5004 		if (ext4_has_feature_encrypt(sb)) {
5005 			ext4_msg(sb, KERN_WARNING,
5006 				 "encrypted files will use data=ordered "
5007 				 "instead of data journaling mode");
5008 		}
5009 		if (test_opt(sb, DELALLOC))
5010 			clear_opt(sb, DELALLOC);
5011 	} else {
5012 		sb->s_iflags |= SB_I_CGROUPWB;
5013 	}
5014 
5015 	return 0;
5016 }
5017 
5018 static const char *ext4_has_journal_option(struct super_block *sb)
5019 {
5020 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5021 
5022 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5023 		return "journal_async_commit";
5024 	if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5025 		return "journal_checksum";
5026 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5027 		return "commit=";
5028 	if (EXT4_MOUNT_DATA_FLAGS &
5029 	    (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5030 		return "data=";
5031 	if (test_opt(sb, DATA_ERR_ABORT))
5032 		return "data_err=abort";
5033 	return NULL;
5034 }
5035 
5036 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5037 			   int silent)
5038 {
5039 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5040 	struct ext4_super_block *es;
5041 	ext4_fsblk_t logical_sb_block;
5042 	unsigned long offset = 0;
5043 	struct buffer_head *bh;
5044 	int ret = -EINVAL;
5045 	int blocksize;
5046 
5047 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5048 	if (!blocksize) {
5049 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5050 		return -EINVAL;
5051 	}
5052 
5053 	/*
5054 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5055 	 * block sizes.  We need to calculate the offset from buffer start.
5056 	 */
5057 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5058 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5059 		offset = do_div(logical_sb_block, blocksize);
5060 	} else {
5061 		logical_sb_block = sbi->s_sb_block;
5062 	}
5063 
5064 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5065 	if (IS_ERR(bh)) {
5066 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5067 		return PTR_ERR(bh);
5068 	}
5069 	/*
5070 	 * Note: s_es must be initialized as soon as possible because
5071 	 *       some ext4 macro-instructions depend on its value
5072 	 */
5073 	es = (struct ext4_super_block *) (bh->b_data + offset);
5074 	sbi->s_es = es;
5075 	sb->s_magic = le16_to_cpu(es->s_magic);
5076 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5077 		if (!silent)
5078 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5079 		goto out;
5080 	}
5081 
5082 	if (le32_to_cpu(es->s_log_block_size) >
5083 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5084 		ext4_msg(sb, KERN_ERR,
5085 			 "Invalid log block size: %u",
5086 			 le32_to_cpu(es->s_log_block_size));
5087 		goto out;
5088 	}
5089 	if (le32_to_cpu(es->s_log_cluster_size) >
5090 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5091 		ext4_msg(sb, KERN_ERR,
5092 			 "Invalid log cluster size: %u",
5093 			 le32_to_cpu(es->s_log_cluster_size));
5094 		goto out;
5095 	}
5096 
5097 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5098 
5099 	/*
5100 	 * If the default block size is not the same as the real block size,
5101 	 * we need to reload it.
5102 	 */
5103 	if (sb->s_blocksize == blocksize) {
5104 		*lsb = logical_sb_block;
5105 		sbi->s_sbh = bh;
5106 		return 0;
5107 	}
5108 
5109 	/*
5110 	 * bh must be released before kill_bdev(), otherwise
5111 	 * it won't be freed and its page also. kill_bdev()
5112 	 * is called by sb_set_blocksize().
5113 	 */
5114 	brelse(bh);
5115 	/* Validate the filesystem blocksize */
5116 	if (!sb_set_blocksize(sb, blocksize)) {
5117 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5118 				blocksize);
5119 		bh = NULL;
5120 		goto out;
5121 	}
5122 
5123 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5124 	offset = do_div(logical_sb_block, blocksize);
5125 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5126 	if (IS_ERR(bh)) {
5127 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5128 		ret = PTR_ERR(bh);
5129 		bh = NULL;
5130 		goto out;
5131 	}
5132 	es = (struct ext4_super_block *)(bh->b_data + offset);
5133 	sbi->s_es = es;
5134 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5135 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5136 		goto out;
5137 	}
5138 	*lsb = logical_sb_block;
5139 	sbi->s_sbh = bh;
5140 	return 0;
5141 out:
5142 	brelse(bh);
5143 	return ret;
5144 }
5145 
5146 static int ext4_hash_info_init(struct super_block *sb)
5147 {
5148 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5149 	struct ext4_super_block *es = sbi->s_es;
5150 	unsigned int i;
5151 
5152 	sbi->s_def_hash_version = es->s_def_hash_version;
5153 
5154 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5155 		ext4_msg(sb, KERN_ERR,
5156 			 "Invalid default hash set in the superblock");
5157 		return -EINVAL;
5158 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5159 		ext4_msg(sb, KERN_ERR,
5160 			 "SIPHASH is not a valid default hash value");
5161 		return -EINVAL;
5162 	}
5163 
5164 	for (i = 0; i < 4; i++)
5165 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5166 
5167 	if (ext4_has_feature_dir_index(sb)) {
5168 		i = le32_to_cpu(es->s_flags);
5169 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5170 			sbi->s_hash_unsigned = 3;
5171 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5172 #ifdef __CHAR_UNSIGNED__
5173 			if (!sb_rdonly(sb))
5174 				es->s_flags |=
5175 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5176 			sbi->s_hash_unsigned = 3;
5177 #else
5178 			if (!sb_rdonly(sb))
5179 				es->s_flags |=
5180 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5181 #endif
5182 		}
5183 	}
5184 	return 0;
5185 }
5186 
5187 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5188 {
5189 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5190 	struct ext4_super_block *es = sbi->s_es;
5191 	int has_huge_files;
5192 
5193 	has_huge_files = ext4_has_feature_huge_file(sb);
5194 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5195 						      has_huge_files);
5196 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5197 
5198 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5199 	if (ext4_has_feature_64bit(sb)) {
5200 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5201 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5202 		    !is_power_of_2(sbi->s_desc_size)) {
5203 			ext4_msg(sb, KERN_ERR,
5204 			       "unsupported descriptor size %lu",
5205 			       sbi->s_desc_size);
5206 			return -EINVAL;
5207 		}
5208 	} else
5209 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5210 
5211 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5212 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5213 
5214 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5215 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5216 		if (!silent)
5217 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5218 		return -EINVAL;
5219 	}
5220 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5221 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5222 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5223 			 sbi->s_inodes_per_group);
5224 		return -EINVAL;
5225 	}
5226 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5227 					sbi->s_inodes_per_block;
5228 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5229 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5230 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5231 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5232 
5233 	return 0;
5234 }
5235 
5236 /*
5237  * It's hard to get stripe aligned blocks if stripe is not aligned with
5238  * cluster, just disable stripe and alert user to simplify code and avoid
5239  * stripe aligned allocation which will rarely succeed.
5240  */
5241 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5242 {
5243 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5244 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5245 		stripe % sbi->s_cluster_ratio != 0);
5246 }
5247 
5248 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5249 {
5250 	struct ext4_super_block *es = NULL;
5251 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5252 	ext4_fsblk_t logical_sb_block;
5253 	struct inode *root;
5254 	int needs_recovery;
5255 	int err;
5256 	ext4_group_t first_not_zeroed;
5257 	struct ext4_fs_context *ctx = fc->fs_private;
5258 	int silent = fc->sb_flags & SB_SILENT;
5259 
5260 	/* Set defaults for the variables that will be set during parsing */
5261 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5262 		ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5263 
5264 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5265 	sbi->s_sectors_written_start =
5266 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5267 
5268 	err = ext4_load_super(sb, &logical_sb_block, silent);
5269 	if (err)
5270 		goto out_fail;
5271 
5272 	es = sbi->s_es;
5273 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5274 
5275 	err = ext4_init_metadata_csum(sb, es);
5276 	if (err)
5277 		goto failed_mount;
5278 
5279 	ext4_set_def_opts(sb, es);
5280 
5281 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5282 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5283 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5284 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5285 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5286 	sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5287 	sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5288 
5289 	/*
5290 	 * set default s_li_wait_mult for lazyinit, for the case there is
5291 	 * no mount option specified.
5292 	 */
5293 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5294 
5295 	err = ext4_inode_info_init(sb, es);
5296 	if (err)
5297 		goto failed_mount;
5298 
5299 	err = parse_apply_sb_mount_options(sb, ctx);
5300 	if (err < 0)
5301 		goto failed_mount;
5302 
5303 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5304 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5305 
5306 	err = ext4_check_opt_consistency(fc, sb);
5307 	if (err < 0)
5308 		goto failed_mount;
5309 
5310 	ext4_apply_options(fc, sb);
5311 
5312 	err = ext4_encoding_init(sb, es);
5313 	if (err)
5314 		goto failed_mount;
5315 
5316 	err = ext4_check_journal_data_mode(sb);
5317 	if (err)
5318 		goto failed_mount;
5319 
5320 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5321 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5322 
5323 	/* i_version is always enabled now */
5324 	sb->s_flags |= SB_I_VERSION;
5325 
5326 	/* HSM events are allowed by default. */
5327 	sb->s_iflags |= SB_I_ALLOW_HSM;
5328 
5329 	err = ext4_check_feature_compatibility(sb, es, silent);
5330 	if (err)
5331 		goto failed_mount;
5332 
5333 	err = ext4_block_group_meta_init(sb, silent);
5334 	if (err)
5335 		goto failed_mount;
5336 
5337 	err = ext4_hash_info_init(sb);
5338 	if (err)
5339 		goto failed_mount;
5340 
5341 	err = ext4_handle_clustersize(sb);
5342 	if (err)
5343 		goto failed_mount;
5344 
5345 	err = ext4_check_geometry(sb, es);
5346 	if (err)
5347 		goto failed_mount;
5348 
5349 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5350 	spin_lock_init(&sbi->s_error_lock);
5351 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5352 
5353 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5354 	if (err)
5355 		goto failed_mount3;
5356 
5357 	err = ext4_es_register_shrinker(sbi);
5358 	if (err)
5359 		goto failed_mount3;
5360 
5361 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5362 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5363 		ext4_msg(sb, KERN_WARNING,
5364 			 "stripe (%lu) is not aligned with cluster size (%u), "
5365 			 "stripe is disabled",
5366 			 sbi->s_stripe, sbi->s_cluster_ratio);
5367 		sbi->s_stripe = 0;
5368 	}
5369 	sbi->s_extent_max_zeroout_kb = 32;
5370 
5371 	/*
5372 	 * set up enough so that it can read an inode
5373 	 */
5374 	sb->s_op = &ext4_sops;
5375 	sb->s_export_op = &ext4_export_ops;
5376 	sb->s_xattr = ext4_xattr_handlers;
5377 #ifdef CONFIG_FS_ENCRYPTION
5378 	sb->s_cop = &ext4_cryptops;
5379 #endif
5380 #ifdef CONFIG_FS_VERITY
5381 	sb->s_vop = &ext4_verityops;
5382 #endif
5383 #ifdef CONFIG_QUOTA
5384 	sb->dq_op = &ext4_quota_operations;
5385 	if (ext4_has_feature_quota(sb))
5386 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5387 	else
5388 		sb->s_qcop = &ext4_qctl_operations;
5389 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5390 #endif
5391 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5392 	super_set_sysfs_name_bdev(sb);
5393 
5394 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5395 	mutex_init(&sbi->s_orphan_lock);
5396 
5397 	spin_lock_init(&sbi->s_bdev_wb_lock);
5398 
5399 	ext4_atomic_write_init(sb);
5400 	ext4_fast_commit_init(sb);
5401 
5402 	sb->s_root = NULL;
5403 
5404 	needs_recovery = (es->s_last_orphan != 0 ||
5405 			  ext4_has_feature_orphan_present(sb) ||
5406 			  ext4_has_feature_journal_needs_recovery(sb));
5407 
5408 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5409 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5410 		if (err)
5411 			goto failed_mount3a;
5412 	}
5413 
5414 	err = -EINVAL;
5415 	/*
5416 	 * The first inode we look at is the journal inode.  Don't try
5417 	 * root first: it may be modified in the journal!
5418 	 */
5419 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5420 		err = ext4_load_and_init_journal(sb, es, ctx);
5421 		if (err)
5422 			goto failed_mount3a;
5423 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5424 		   ext4_has_feature_journal_needs_recovery(sb)) {
5425 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5426 		       "suppressed and not mounted read-only");
5427 		goto failed_mount3a;
5428 	} else {
5429 		const char *journal_option;
5430 
5431 		/* Nojournal mode, all journal mount options are illegal */
5432 		journal_option = ext4_has_journal_option(sb);
5433 		if (journal_option != NULL) {
5434 			ext4_msg(sb, KERN_ERR,
5435 				 "can't mount with %s, fs mounted w/o journal",
5436 				 journal_option);
5437 			goto failed_mount3a;
5438 		}
5439 
5440 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5441 		clear_opt(sb, JOURNAL_CHECKSUM);
5442 		clear_opt(sb, DATA_FLAGS);
5443 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5444 		sbi->s_journal = NULL;
5445 		needs_recovery = 0;
5446 	}
5447 
5448 	if (!test_opt(sb, NO_MBCACHE)) {
5449 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5450 		if (!sbi->s_ea_block_cache) {
5451 			ext4_msg(sb, KERN_ERR,
5452 				 "Failed to create ea_block_cache");
5453 			err = -EINVAL;
5454 			goto failed_mount_wq;
5455 		}
5456 
5457 		if (ext4_has_feature_ea_inode(sb)) {
5458 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5459 			if (!sbi->s_ea_inode_cache) {
5460 				ext4_msg(sb, KERN_ERR,
5461 					 "Failed to create ea_inode_cache");
5462 				err = -EINVAL;
5463 				goto failed_mount_wq;
5464 			}
5465 		}
5466 	}
5467 
5468 	/*
5469 	 * Get the # of file system overhead blocks from the
5470 	 * superblock if present.
5471 	 */
5472 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5473 	/* ignore the precalculated value if it is ridiculous */
5474 	if (sbi->s_overhead > ext4_blocks_count(es))
5475 		sbi->s_overhead = 0;
5476 	/*
5477 	 * If the bigalloc feature is not enabled recalculating the
5478 	 * overhead doesn't take long, so we might as well just redo
5479 	 * it to make sure we are using the correct value.
5480 	 */
5481 	if (!ext4_has_feature_bigalloc(sb))
5482 		sbi->s_overhead = 0;
5483 	if (sbi->s_overhead == 0) {
5484 		err = ext4_calculate_overhead(sb);
5485 		if (err)
5486 			goto failed_mount_wq;
5487 	}
5488 
5489 	/*
5490 	 * The maximum number of concurrent works can be high and
5491 	 * concurrency isn't really necessary.  Limit it to 1.
5492 	 */
5493 	EXT4_SB(sb)->rsv_conversion_wq =
5494 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5495 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5496 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5497 		err = -ENOMEM;
5498 		goto failed_mount4;
5499 	}
5500 
5501 	/*
5502 	 * The jbd2_journal_load will have done any necessary log recovery,
5503 	 * so we can safely mount the rest of the filesystem now.
5504 	 */
5505 
5506 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5507 	if (IS_ERR(root)) {
5508 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5509 		err = PTR_ERR(root);
5510 		root = NULL;
5511 		goto failed_mount4;
5512 	}
5513 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5514 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5515 		iput(root);
5516 		err = -EFSCORRUPTED;
5517 		goto failed_mount4;
5518 	}
5519 
5520 	generic_set_sb_d_ops(sb);
5521 	sb->s_root = d_make_root(root);
5522 	if (!sb->s_root) {
5523 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5524 		err = -ENOMEM;
5525 		goto failed_mount4;
5526 	}
5527 
5528 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5529 	if (err == -EROFS) {
5530 		sb->s_flags |= SB_RDONLY;
5531 	} else if (err)
5532 		goto failed_mount4a;
5533 
5534 	ext4_set_resv_clusters(sb);
5535 
5536 	if (test_opt(sb, BLOCK_VALIDITY)) {
5537 		err = ext4_setup_system_zone(sb);
5538 		if (err) {
5539 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5540 				 "zone (%d)", err);
5541 			goto failed_mount4a;
5542 		}
5543 	}
5544 	ext4_fc_replay_cleanup(sb);
5545 
5546 	ext4_ext_init(sb);
5547 
5548 	/*
5549 	 * Enable optimize_scan if number of groups is > threshold. This can be
5550 	 * turned off by passing "mb_optimize_scan=0". This can also be
5551 	 * turned on forcefully by passing "mb_optimize_scan=1".
5552 	 */
5553 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5554 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5555 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5556 		else
5557 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5558 	}
5559 
5560 	err = ext4_mb_init(sb);
5561 	if (err) {
5562 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5563 			 err);
5564 		goto failed_mount5;
5565 	}
5566 
5567 	/*
5568 	 * We can only set up the journal commit callback once
5569 	 * mballoc is initialized
5570 	 */
5571 	if (sbi->s_journal)
5572 		sbi->s_journal->j_commit_callback =
5573 			ext4_journal_commit_callback;
5574 
5575 	err = ext4_percpu_param_init(sbi);
5576 	if (err)
5577 		goto failed_mount6;
5578 
5579 	if (ext4_has_feature_flex_bg(sb))
5580 		if (!ext4_fill_flex_info(sb)) {
5581 			ext4_msg(sb, KERN_ERR,
5582 			       "unable to initialize "
5583 			       "flex_bg meta info!");
5584 			err = -ENOMEM;
5585 			goto failed_mount6;
5586 		}
5587 
5588 	err = ext4_register_li_request(sb, first_not_zeroed);
5589 	if (err)
5590 		goto failed_mount6;
5591 
5592 	err = ext4_init_orphan_info(sb);
5593 	if (err)
5594 		goto failed_mount7;
5595 #ifdef CONFIG_QUOTA
5596 	/* Enable quota usage during mount. */
5597 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5598 		err = ext4_enable_quotas(sb);
5599 		if (err)
5600 			goto failed_mount8;
5601 	}
5602 #endif  /* CONFIG_QUOTA */
5603 
5604 	/*
5605 	 * Save the original bdev mapping's wb_err value which could be
5606 	 * used to detect the metadata async write error.
5607 	 */
5608 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5609 				 &sbi->s_bdev_wb_err);
5610 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5611 	ext4_orphan_cleanup(sb, es);
5612 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5613 	/*
5614 	 * Update the checksum after updating free space/inode counters and
5615 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5616 	 * checksum in the buffer cache until it is written out and
5617 	 * e2fsprogs programs trying to open a file system immediately
5618 	 * after it is mounted can fail.
5619 	 */
5620 	ext4_superblock_csum_set(sb);
5621 	if (needs_recovery) {
5622 		ext4_msg(sb, KERN_INFO, "recovery complete");
5623 		err = ext4_mark_recovery_complete(sb, es);
5624 		if (err)
5625 			goto failed_mount9;
5626 	}
5627 
5628 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5629 		ext4_msg(sb, KERN_WARNING,
5630 			 "mounting with \"discard\" option, but the device does not support discard");
5631 		clear_opt(sb, DISCARD);
5632 	}
5633 
5634 	if (es->s_error_count)
5635 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5636 
5637 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5638 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5639 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5640 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5641 	atomic_set(&sbi->s_warning_count, 0);
5642 	atomic_set(&sbi->s_msg_count, 0);
5643 
5644 	/* Register sysfs after all initializations are complete. */
5645 	err = ext4_register_sysfs(sb);
5646 	if (err)
5647 		goto failed_mount9;
5648 
5649 	return 0;
5650 
5651 failed_mount9:
5652 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5653 failed_mount8: __maybe_unused
5654 	ext4_release_orphan_info(sb);
5655 failed_mount7:
5656 	ext4_unregister_li_request(sb);
5657 failed_mount6:
5658 	ext4_mb_release(sb);
5659 	ext4_flex_groups_free(sbi);
5660 	ext4_percpu_param_destroy(sbi);
5661 failed_mount5:
5662 	ext4_ext_release(sb);
5663 	ext4_release_system_zone(sb);
5664 failed_mount4a:
5665 	dput(sb->s_root);
5666 	sb->s_root = NULL;
5667 failed_mount4:
5668 	ext4_msg(sb, KERN_ERR, "mount failed");
5669 	if (EXT4_SB(sb)->rsv_conversion_wq)
5670 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5671 failed_mount_wq:
5672 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5673 	sbi->s_ea_inode_cache = NULL;
5674 
5675 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5676 	sbi->s_ea_block_cache = NULL;
5677 
5678 	if (sbi->s_journal) {
5679 		ext4_journal_destroy(sbi, sbi->s_journal);
5680 	}
5681 failed_mount3a:
5682 	ext4_es_unregister_shrinker(sbi);
5683 failed_mount3:
5684 	/* flush s_sb_upd_work before sbi destroy */
5685 	flush_work(&sbi->s_sb_upd_work);
5686 	ext4_stop_mmpd(sbi);
5687 	timer_delete_sync(&sbi->s_err_report);
5688 	ext4_group_desc_free(sbi);
5689 failed_mount:
5690 #if IS_ENABLED(CONFIG_UNICODE)
5691 	utf8_unload(sb->s_encoding);
5692 #endif
5693 
5694 #ifdef CONFIG_QUOTA
5695 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5696 		kfree(get_qf_name(sb, sbi, i));
5697 #endif
5698 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5699 	brelse(sbi->s_sbh);
5700 	if (sbi->s_journal_bdev_file) {
5701 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5702 		bdev_fput(sbi->s_journal_bdev_file);
5703 	}
5704 out_fail:
5705 	invalidate_bdev(sb->s_bdev);
5706 	sb->s_fs_info = NULL;
5707 	return err;
5708 }
5709 
5710 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5711 {
5712 	struct ext4_fs_context *ctx = fc->fs_private;
5713 	struct ext4_sb_info *sbi;
5714 	const char *descr;
5715 	int ret;
5716 
5717 	sbi = ext4_alloc_sbi(sb);
5718 	if (!sbi)
5719 		return -ENOMEM;
5720 
5721 	fc->s_fs_info = sbi;
5722 
5723 	/* Cleanup superblock name */
5724 	strreplace(sb->s_id, '/', '!');
5725 
5726 	sbi->s_sb_block = 1;	/* Default super block location */
5727 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5728 		sbi->s_sb_block = ctx->s_sb_block;
5729 
5730 	ret = __ext4_fill_super(fc, sb);
5731 	if (ret < 0)
5732 		goto free_sbi;
5733 
5734 	if (sbi->s_journal) {
5735 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5736 			descr = " journalled data mode";
5737 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5738 			descr = " ordered data mode";
5739 		else
5740 			descr = " writeback data mode";
5741 	} else
5742 		descr = "out journal";
5743 
5744 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5745 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5746 			 "Quota mode: %s.", &sb->s_uuid,
5747 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5748 			 ext4_quota_mode(sb));
5749 
5750 	/* Update the s_overhead_clusters if necessary */
5751 	ext4_update_overhead(sb, false);
5752 	return 0;
5753 
5754 free_sbi:
5755 	ext4_free_sbi(sbi);
5756 	fc->s_fs_info = NULL;
5757 	return ret;
5758 }
5759 
5760 static int ext4_get_tree(struct fs_context *fc)
5761 {
5762 	return get_tree_bdev(fc, ext4_fill_super);
5763 }
5764 
5765 /*
5766  * Setup any per-fs journal parameters now.  We'll do this both on
5767  * initial mount, once the journal has been initialised but before we've
5768  * done any recovery; and again on any subsequent remount.
5769  */
5770 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5771 {
5772 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5773 
5774 	journal->j_commit_interval = sbi->s_commit_interval;
5775 	journal->j_min_batch_time = sbi->s_min_batch_time;
5776 	journal->j_max_batch_time = sbi->s_max_batch_time;
5777 	ext4_fc_init(sb, journal);
5778 
5779 	write_lock(&journal->j_state_lock);
5780 	if (test_opt(sb, BARRIER))
5781 		journal->j_flags |= JBD2_BARRIER;
5782 	else
5783 		journal->j_flags &= ~JBD2_BARRIER;
5784 	/*
5785 	 * Always enable journal cycle record option, letting the journal
5786 	 * records log transactions continuously between each mount.
5787 	 */
5788 	journal->j_flags |= JBD2_CYCLE_RECORD;
5789 	write_unlock(&journal->j_state_lock);
5790 }
5791 
5792 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5793 					     unsigned int journal_inum)
5794 {
5795 	struct inode *journal_inode;
5796 
5797 	/*
5798 	 * Test for the existence of a valid inode on disk.  Bad things
5799 	 * happen if we iget() an unused inode, as the subsequent iput()
5800 	 * will try to delete it.
5801 	 */
5802 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5803 	if (IS_ERR(journal_inode)) {
5804 		ext4_msg(sb, KERN_ERR, "no journal found");
5805 		return ERR_CAST(journal_inode);
5806 	}
5807 	if (!journal_inode->i_nlink) {
5808 		make_bad_inode(journal_inode);
5809 		iput(journal_inode);
5810 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5811 		return ERR_PTR(-EFSCORRUPTED);
5812 	}
5813 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5814 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5815 		iput(journal_inode);
5816 		return ERR_PTR(-EFSCORRUPTED);
5817 	}
5818 
5819 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5820 		  journal_inode, journal_inode->i_size);
5821 	return journal_inode;
5822 }
5823 
5824 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5825 {
5826 	struct ext4_map_blocks map;
5827 	int ret;
5828 
5829 	if (journal->j_inode == NULL)
5830 		return 0;
5831 
5832 	map.m_lblk = *block;
5833 	map.m_len = 1;
5834 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5835 	if (ret <= 0) {
5836 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5837 			 "journal bmap failed: block %llu ret %d\n",
5838 			 *block, ret);
5839 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5840 		return ret;
5841 	}
5842 	*block = map.m_pblk;
5843 	return 0;
5844 }
5845 
5846 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5847 					  unsigned int journal_inum)
5848 {
5849 	struct inode *journal_inode;
5850 	journal_t *journal;
5851 
5852 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5853 	if (IS_ERR(journal_inode))
5854 		return ERR_CAST(journal_inode);
5855 
5856 	journal = jbd2_journal_init_inode(journal_inode);
5857 	if (IS_ERR(journal)) {
5858 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5859 		iput(journal_inode);
5860 		return ERR_CAST(journal);
5861 	}
5862 	journal->j_private = sb;
5863 	journal->j_bmap = ext4_journal_bmap;
5864 	ext4_init_journal_params(sb, journal);
5865 	return journal;
5866 }
5867 
5868 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5869 					dev_t j_dev, ext4_fsblk_t *j_start,
5870 					ext4_fsblk_t *j_len)
5871 {
5872 	struct buffer_head *bh;
5873 	struct block_device *bdev;
5874 	struct file *bdev_file;
5875 	int hblock, blocksize;
5876 	ext4_fsblk_t sb_block;
5877 	unsigned long offset;
5878 	struct ext4_super_block *es;
5879 	int errno;
5880 
5881 	bdev_file = bdev_file_open_by_dev(j_dev,
5882 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5883 		sb, &fs_holder_ops);
5884 	if (IS_ERR(bdev_file)) {
5885 		ext4_msg(sb, KERN_ERR,
5886 			 "failed to open journal device unknown-block(%u,%u) %ld",
5887 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5888 		return bdev_file;
5889 	}
5890 
5891 	bdev = file_bdev(bdev_file);
5892 	blocksize = sb->s_blocksize;
5893 	hblock = bdev_logical_block_size(bdev);
5894 	if (blocksize < hblock) {
5895 		ext4_msg(sb, KERN_ERR,
5896 			"blocksize too small for journal device");
5897 		errno = -EINVAL;
5898 		goto out_bdev;
5899 	}
5900 
5901 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5902 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5903 	set_blocksize(bdev_file, blocksize);
5904 	bh = __bread(bdev, sb_block, blocksize);
5905 	if (!bh) {
5906 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5907 		       "external journal");
5908 		errno = -EINVAL;
5909 		goto out_bdev;
5910 	}
5911 
5912 	es = (struct ext4_super_block *) (bh->b_data + offset);
5913 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5914 	    !(le32_to_cpu(es->s_feature_incompat) &
5915 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5916 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5917 		errno = -EFSCORRUPTED;
5918 		goto out_bh;
5919 	}
5920 
5921 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5922 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5923 	    es->s_checksum != ext4_superblock_csum(es)) {
5924 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5925 		errno = -EFSCORRUPTED;
5926 		goto out_bh;
5927 	}
5928 
5929 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5930 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5931 		errno = -EFSCORRUPTED;
5932 		goto out_bh;
5933 	}
5934 
5935 	*j_start = sb_block + 1;
5936 	*j_len = ext4_blocks_count(es);
5937 	brelse(bh);
5938 	return bdev_file;
5939 
5940 out_bh:
5941 	brelse(bh);
5942 out_bdev:
5943 	bdev_fput(bdev_file);
5944 	return ERR_PTR(errno);
5945 }
5946 
5947 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5948 					dev_t j_dev)
5949 {
5950 	journal_t *journal;
5951 	ext4_fsblk_t j_start;
5952 	ext4_fsblk_t j_len;
5953 	struct file *bdev_file;
5954 	int errno = 0;
5955 
5956 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5957 	if (IS_ERR(bdev_file))
5958 		return ERR_CAST(bdev_file);
5959 
5960 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5961 					j_len, sb->s_blocksize);
5962 	if (IS_ERR(journal)) {
5963 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5964 		errno = PTR_ERR(journal);
5965 		goto out_bdev;
5966 	}
5967 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5968 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5969 					"user (unsupported) - %d",
5970 			be32_to_cpu(journal->j_superblock->s_nr_users));
5971 		errno = -EINVAL;
5972 		goto out_journal;
5973 	}
5974 	journal->j_private = sb;
5975 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5976 	ext4_init_journal_params(sb, journal);
5977 	return journal;
5978 
5979 out_journal:
5980 	ext4_journal_destroy(EXT4_SB(sb), journal);
5981 out_bdev:
5982 	bdev_fput(bdev_file);
5983 	return ERR_PTR(errno);
5984 }
5985 
5986 static int ext4_load_journal(struct super_block *sb,
5987 			     struct ext4_super_block *es,
5988 			     unsigned long journal_devnum)
5989 {
5990 	journal_t *journal;
5991 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5992 	dev_t journal_dev;
5993 	int err = 0;
5994 	int really_read_only;
5995 	int journal_dev_ro;
5996 
5997 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5998 		return -EFSCORRUPTED;
5999 
6000 	if (journal_devnum &&
6001 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6002 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6003 			"numbers have changed");
6004 		journal_dev = new_decode_dev(journal_devnum);
6005 	} else
6006 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6007 
6008 	if (journal_inum && journal_dev) {
6009 		ext4_msg(sb, KERN_ERR,
6010 			 "filesystem has both journal inode and journal device!");
6011 		return -EINVAL;
6012 	}
6013 
6014 	if (journal_inum) {
6015 		journal = ext4_open_inode_journal(sb, journal_inum);
6016 		if (IS_ERR(journal))
6017 			return PTR_ERR(journal);
6018 	} else {
6019 		journal = ext4_open_dev_journal(sb, journal_dev);
6020 		if (IS_ERR(journal))
6021 			return PTR_ERR(journal);
6022 	}
6023 
6024 	journal_dev_ro = bdev_read_only(journal->j_dev);
6025 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6026 
6027 	if (journal_dev_ro && !sb_rdonly(sb)) {
6028 		ext4_msg(sb, KERN_ERR,
6029 			 "journal device read-only, try mounting with '-o ro'");
6030 		err = -EROFS;
6031 		goto err_out;
6032 	}
6033 
6034 	/*
6035 	 * Are we loading a blank journal or performing recovery after a
6036 	 * crash?  For recovery, we need to check in advance whether we
6037 	 * can get read-write access to the device.
6038 	 */
6039 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6040 		if (sb_rdonly(sb)) {
6041 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6042 					"required on readonly filesystem");
6043 			if (really_read_only) {
6044 				ext4_msg(sb, KERN_ERR, "write access "
6045 					"unavailable, cannot proceed "
6046 					"(try mounting with noload)");
6047 				err = -EROFS;
6048 				goto err_out;
6049 			}
6050 			ext4_msg(sb, KERN_INFO, "write access will "
6051 			       "be enabled during recovery");
6052 		}
6053 	}
6054 
6055 	if (!(journal->j_flags & JBD2_BARRIER))
6056 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6057 
6058 	if (!ext4_has_feature_journal_needs_recovery(sb))
6059 		err = jbd2_journal_wipe(journal, !really_read_only);
6060 	if (!err) {
6061 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6062 		__le16 orig_state;
6063 		bool changed = false;
6064 
6065 		if (save)
6066 			memcpy(save, ((char *) es) +
6067 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6068 		err = jbd2_journal_load(journal);
6069 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6070 				   save, EXT4_S_ERR_LEN)) {
6071 			memcpy(((char *) es) + EXT4_S_ERR_START,
6072 			       save, EXT4_S_ERR_LEN);
6073 			changed = true;
6074 		}
6075 		kfree(save);
6076 		orig_state = es->s_state;
6077 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6078 					   EXT4_ERROR_FS);
6079 		if (orig_state != es->s_state)
6080 			changed = true;
6081 		/* Write out restored error information to the superblock */
6082 		if (changed && !really_read_only) {
6083 			int err2;
6084 			err2 = ext4_commit_super(sb);
6085 			err = err ? : err2;
6086 		}
6087 	}
6088 
6089 	if (err) {
6090 		ext4_msg(sb, KERN_ERR, "error loading journal");
6091 		goto err_out;
6092 	}
6093 
6094 	EXT4_SB(sb)->s_journal = journal;
6095 	err = ext4_clear_journal_err(sb, es);
6096 	if (err) {
6097 		ext4_journal_destroy(EXT4_SB(sb), journal);
6098 		return err;
6099 	}
6100 
6101 	if (!really_read_only && journal_devnum &&
6102 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6103 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6104 		ext4_commit_super(sb);
6105 	}
6106 	if (!really_read_only && journal_inum &&
6107 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6108 		es->s_journal_inum = cpu_to_le32(journal_inum);
6109 		ext4_commit_super(sb);
6110 	}
6111 
6112 	return 0;
6113 
6114 err_out:
6115 	ext4_journal_destroy(EXT4_SB(sb), journal);
6116 	return err;
6117 }
6118 
6119 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6120 static void ext4_update_super(struct super_block *sb)
6121 {
6122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6123 	struct ext4_super_block *es = sbi->s_es;
6124 	struct buffer_head *sbh = sbi->s_sbh;
6125 
6126 	lock_buffer(sbh);
6127 	/*
6128 	 * If the file system is mounted read-only, don't update the
6129 	 * superblock write time.  This avoids updating the superblock
6130 	 * write time when we are mounting the root file system
6131 	 * read/only but we need to replay the journal; at that point,
6132 	 * for people who are east of GMT and who make their clock
6133 	 * tick in localtime for Windows bug-for-bug compatibility,
6134 	 * the clock is set in the future, and this will cause e2fsck
6135 	 * to complain and force a full file system check.
6136 	 */
6137 	if (!sb_rdonly(sb))
6138 		ext4_update_tstamp(es, s_wtime);
6139 	es->s_kbytes_written =
6140 		cpu_to_le64(sbi->s_kbytes_written +
6141 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6142 		      sbi->s_sectors_written_start) >> 1));
6143 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6144 		ext4_free_blocks_count_set(es,
6145 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6146 				&sbi->s_freeclusters_counter)));
6147 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6148 		es->s_free_inodes_count =
6149 			cpu_to_le32(percpu_counter_sum_positive(
6150 				&sbi->s_freeinodes_counter));
6151 	/* Copy error information to the on-disk superblock */
6152 	spin_lock(&sbi->s_error_lock);
6153 	if (sbi->s_add_error_count > 0) {
6154 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6155 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6156 			__ext4_update_tstamp(&es->s_first_error_time,
6157 					     &es->s_first_error_time_hi,
6158 					     sbi->s_first_error_time);
6159 			strtomem_pad(es->s_first_error_func,
6160 				     sbi->s_first_error_func, 0);
6161 			es->s_first_error_line =
6162 				cpu_to_le32(sbi->s_first_error_line);
6163 			es->s_first_error_ino =
6164 				cpu_to_le32(sbi->s_first_error_ino);
6165 			es->s_first_error_block =
6166 				cpu_to_le64(sbi->s_first_error_block);
6167 			es->s_first_error_errcode =
6168 				ext4_errno_to_code(sbi->s_first_error_code);
6169 		}
6170 		__ext4_update_tstamp(&es->s_last_error_time,
6171 				     &es->s_last_error_time_hi,
6172 				     sbi->s_last_error_time);
6173 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6174 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6175 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6176 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6177 		es->s_last_error_errcode =
6178 				ext4_errno_to_code(sbi->s_last_error_code);
6179 		/*
6180 		 * Start the daily error reporting function if it hasn't been
6181 		 * started already
6182 		 */
6183 		if (!es->s_error_count)
6184 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6185 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6186 		sbi->s_add_error_count = 0;
6187 	}
6188 	spin_unlock(&sbi->s_error_lock);
6189 
6190 	ext4_superblock_csum_set(sb);
6191 	unlock_buffer(sbh);
6192 }
6193 
6194 static int ext4_commit_super(struct super_block *sb)
6195 {
6196 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6197 
6198 	if (!sbh)
6199 		return -EINVAL;
6200 
6201 	ext4_update_super(sb);
6202 
6203 	lock_buffer(sbh);
6204 	/* Buffer got discarded which means block device got invalidated */
6205 	if (!buffer_mapped(sbh)) {
6206 		unlock_buffer(sbh);
6207 		return -EIO;
6208 	}
6209 
6210 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6211 		/*
6212 		 * Oh, dear.  A previous attempt to write the
6213 		 * superblock failed.  This could happen because the
6214 		 * USB device was yanked out.  Or it could happen to
6215 		 * be a transient write error and maybe the block will
6216 		 * be remapped.  Nothing we can do but to retry the
6217 		 * write and hope for the best.
6218 		 */
6219 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6220 		       "superblock detected");
6221 		clear_buffer_write_io_error(sbh);
6222 		set_buffer_uptodate(sbh);
6223 	}
6224 	get_bh(sbh);
6225 	/* Clear potential dirty bit if it was journalled update */
6226 	clear_buffer_dirty(sbh);
6227 	sbh->b_end_io = end_buffer_write_sync;
6228 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6229 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6230 	wait_on_buffer(sbh);
6231 	if (buffer_write_io_error(sbh)) {
6232 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6233 		       "superblock");
6234 		clear_buffer_write_io_error(sbh);
6235 		set_buffer_uptodate(sbh);
6236 		return -EIO;
6237 	}
6238 	return 0;
6239 }
6240 
6241 /*
6242  * Have we just finished recovery?  If so, and if we are mounting (or
6243  * remounting) the filesystem readonly, then we will end up with a
6244  * consistent fs on disk.  Record that fact.
6245  */
6246 static int ext4_mark_recovery_complete(struct super_block *sb,
6247 				       struct ext4_super_block *es)
6248 {
6249 	int err;
6250 	journal_t *journal = EXT4_SB(sb)->s_journal;
6251 
6252 	if (!ext4_has_feature_journal(sb)) {
6253 		if (journal != NULL) {
6254 			ext4_error(sb, "Journal got removed while the fs was "
6255 				   "mounted!");
6256 			return -EFSCORRUPTED;
6257 		}
6258 		return 0;
6259 	}
6260 	jbd2_journal_lock_updates(journal);
6261 	err = jbd2_journal_flush(journal, 0);
6262 	if (err < 0)
6263 		goto out;
6264 
6265 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6266 	    ext4_has_feature_orphan_present(sb))) {
6267 		if (!ext4_orphan_file_empty(sb)) {
6268 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6269 			err = -EFSCORRUPTED;
6270 			goto out;
6271 		}
6272 		ext4_clear_feature_journal_needs_recovery(sb);
6273 		ext4_clear_feature_orphan_present(sb);
6274 		ext4_commit_super(sb);
6275 	}
6276 out:
6277 	jbd2_journal_unlock_updates(journal);
6278 	return err;
6279 }
6280 
6281 /*
6282  * If we are mounting (or read-write remounting) a filesystem whose journal
6283  * has recorded an error from a previous lifetime, move that error to the
6284  * main filesystem now.
6285  */
6286 static int ext4_clear_journal_err(struct super_block *sb,
6287 				   struct ext4_super_block *es)
6288 {
6289 	journal_t *journal;
6290 	int j_errno;
6291 	const char *errstr;
6292 
6293 	if (!ext4_has_feature_journal(sb)) {
6294 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6295 		return -EFSCORRUPTED;
6296 	}
6297 
6298 	journal = EXT4_SB(sb)->s_journal;
6299 
6300 	/*
6301 	 * Now check for any error status which may have been recorded in the
6302 	 * journal by a prior ext4_error() or ext4_abort()
6303 	 */
6304 
6305 	j_errno = jbd2_journal_errno(journal);
6306 	if (j_errno) {
6307 		char nbuf[16];
6308 
6309 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6310 		ext4_warning(sb, "Filesystem error recorded "
6311 			     "from previous mount: %s", errstr);
6312 
6313 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6314 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6315 		j_errno = ext4_commit_super(sb);
6316 		if (j_errno)
6317 			return j_errno;
6318 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6319 
6320 		jbd2_journal_clear_err(journal);
6321 		jbd2_journal_update_sb_errno(journal);
6322 	}
6323 	return 0;
6324 }
6325 
6326 /*
6327  * Force the running and committing transactions to commit,
6328  * and wait on the commit.
6329  */
6330 int ext4_force_commit(struct super_block *sb)
6331 {
6332 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6333 }
6334 
6335 static int ext4_sync_fs(struct super_block *sb, int wait)
6336 {
6337 	int ret = 0;
6338 	tid_t target;
6339 	bool needs_barrier = false;
6340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6341 
6342 	ret = ext4_emergency_state(sb);
6343 	if (unlikely(ret))
6344 		return ret;
6345 
6346 	trace_ext4_sync_fs(sb, wait);
6347 	flush_workqueue(sbi->rsv_conversion_wq);
6348 	/*
6349 	 * Writeback quota in non-journalled quota case - journalled quota has
6350 	 * no dirty dquots
6351 	 */
6352 	dquot_writeback_dquots(sb, -1);
6353 	/*
6354 	 * Data writeback is possible w/o journal transaction, so barrier must
6355 	 * being sent at the end of the function. But we can skip it if
6356 	 * transaction_commit will do it for us.
6357 	 */
6358 	if (sbi->s_journal) {
6359 		target = jbd2_get_latest_transaction(sbi->s_journal);
6360 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6361 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6362 			needs_barrier = true;
6363 
6364 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6365 			if (wait)
6366 				ret = jbd2_log_wait_commit(sbi->s_journal,
6367 							   target);
6368 		}
6369 	} else if (wait && test_opt(sb, BARRIER))
6370 		needs_barrier = true;
6371 	if (needs_barrier) {
6372 		int err;
6373 		err = blkdev_issue_flush(sb->s_bdev);
6374 		if (!ret)
6375 			ret = err;
6376 	}
6377 
6378 	return ret;
6379 }
6380 
6381 /*
6382  * LVM calls this function before a (read-only) snapshot is created.  This
6383  * gives us a chance to flush the journal completely and mark the fs clean.
6384  *
6385  * Note that only this function cannot bring a filesystem to be in a clean
6386  * state independently. It relies on upper layer to stop all data & metadata
6387  * modifications.
6388  */
6389 static int ext4_freeze(struct super_block *sb)
6390 {
6391 	int error = 0;
6392 	journal_t *journal = EXT4_SB(sb)->s_journal;
6393 
6394 	if (journal) {
6395 		/* Now we set up the journal barrier. */
6396 		jbd2_journal_lock_updates(journal);
6397 
6398 		/*
6399 		 * Don't clear the needs_recovery flag if we failed to
6400 		 * flush the journal.
6401 		 */
6402 		error = jbd2_journal_flush(journal, 0);
6403 		if (error < 0)
6404 			goto out;
6405 
6406 		/* Journal blocked and flushed, clear needs_recovery flag. */
6407 		ext4_clear_feature_journal_needs_recovery(sb);
6408 		if (ext4_orphan_file_empty(sb))
6409 			ext4_clear_feature_orphan_present(sb);
6410 	}
6411 
6412 	error = ext4_commit_super(sb);
6413 out:
6414 	if (journal)
6415 		/* we rely on upper layer to stop further updates */
6416 		jbd2_journal_unlock_updates(journal);
6417 	return error;
6418 }
6419 
6420 /*
6421  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6422  * flag here, even though the filesystem is not technically dirty yet.
6423  */
6424 static int ext4_unfreeze(struct super_block *sb)
6425 {
6426 	if (ext4_emergency_state(sb))
6427 		return 0;
6428 
6429 	if (EXT4_SB(sb)->s_journal) {
6430 		/* Reset the needs_recovery flag before the fs is unlocked. */
6431 		ext4_set_feature_journal_needs_recovery(sb);
6432 		if (ext4_has_feature_orphan_file(sb))
6433 			ext4_set_feature_orphan_present(sb);
6434 	}
6435 
6436 	ext4_commit_super(sb);
6437 	return 0;
6438 }
6439 
6440 /*
6441  * Structure to save mount options for ext4_remount's benefit
6442  */
6443 struct ext4_mount_options {
6444 	unsigned long s_mount_opt;
6445 	unsigned long s_mount_opt2;
6446 	kuid_t s_resuid;
6447 	kgid_t s_resgid;
6448 	unsigned long s_commit_interval;
6449 	u32 s_min_batch_time, s_max_batch_time;
6450 #ifdef CONFIG_QUOTA
6451 	int s_jquota_fmt;
6452 	char *s_qf_names[EXT4_MAXQUOTAS];
6453 #endif
6454 };
6455 
6456 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6457 {
6458 	struct ext4_fs_context *ctx = fc->fs_private;
6459 	struct ext4_super_block *es;
6460 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6461 	unsigned long old_sb_flags;
6462 	struct ext4_mount_options old_opts;
6463 	ext4_group_t g;
6464 	int err = 0;
6465 	int alloc_ctx;
6466 #ifdef CONFIG_QUOTA
6467 	int enable_quota = 0;
6468 	int i, j;
6469 	char *to_free[EXT4_MAXQUOTAS];
6470 #endif
6471 
6472 
6473 	/* Store the original options */
6474 	old_sb_flags = sb->s_flags;
6475 	old_opts.s_mount_opt = sbi->s_mount_opt;
6476 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6477 	old_opts.s_resuid = sbi->s_resuid;
6478 	old_opts.s_resgid = sbi->s_resgid;
6479 	old_opts.s_commit_interval = sbi->s_commit_interval;
6480 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6481 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6482 #ifdef CONFIG_QUOTA
6483 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6484 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6485 		if (sbi->s_qf_names[i]) {
6486 			char *qf_name = get_qf_name(sb, sbi, i);
6487 
6488 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6489 			if (!old_opts.s_qf_names[i]) {
6490 				for (j = 0; j < i; j++)
6491 					kfree(old_opts.s_qf_names[j]);
6492 				return -ENOMEM;
6493 			}
6494 		} else
6495 			old_opts.s_qf_names[i] = NULL;
6496 #endif
6497 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6498 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6499 			ctx->journal_ioprio =
6500 				sbi->s_journal->j_task->io_context->ioprio;
6501 		else
6502 			ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6503 
6504 	}
6505 
6506 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6507 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6508 		ext4_msg(sb, KERN_WARNING,
6509 			 "stripe (%lu) is not aligned with cluster size (%u), "
6510 			 "stripe is disabled",
6511 			 ctx->s_stripe, sbi->s_cluster_ratio);
6512 		ctx->s_stripe = 0;
6513 	}
6514 
6515 	/*
6516 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6517 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6518 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6519 	 * here s_writepages_rwsem to avoid race between writepages ops and
6520 	 * remount.
6521 	 */
6522 	alloc_ctx = ext4_writepages_down_write(sb);
6523 	ext4_apply_options(fc, sb);
6524 	ext4_writepages_up_write(sb, alloc_ctx);
6525 
6526 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6527 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6528 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6529 			 "during remount not supported; ignoring");
6530 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6531 	}
6532 
6533 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6534 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6535 			ext4_msg(sb, KERN_ERR, "can't mount with "
6536 				 "both data=journal and delalloc");
6537 			err = -EINVAL;
6538 			goto restore_opts;
6539 		}
6540 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6541 			ext4_msg(sb, KERN_ERR, "can't mount with "
6542 				 "both data=journal and dioread_nolock");
6543 			err = -EINVAL;
6544 			goto restore_opts;
6545 		}
6546 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6547 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6548 			ext4_msg(sb, KERN_ERR, "can't mount with "
6549 				"journal_async_commit in data=ordered mode");
6550 			err = -EINVAL;
6551 			goto restore_opts;
6552 		}
6553 	}
6554 
6555 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6556 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6557 		err = -EINVAL;
6558 		goto restore_opts;
6559 	}
6560 
6561 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6562 	    !test_opt(sb, DELALLOC)) {
6563 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6564 		err = -EINVAL;
6565 		goto restore_opts;
6566 	}
6567 
6568 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6569 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6570 
6571 	es = sbi->s_es;
6572 
6573 	if (sbi->s_journal) {
6574 		ext4_init_journal_params(sb, sbi->s_journal);
6575 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6576 	}
6577 
6578 	/* Flush outstanding errors before changing fs state */
6579 	flush_work(&sbi->s_sb_upd_work);
6580 
6581 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6582 		if (ext4_emergency_state(sb)) {
6583 			err = -EROFS;
6584 			goto restore_opts;
6585 		}
6586 
6587 		if (fc->sb_flags & SB_RDONLY) {
6588 			err = sync_filesystem(sb);
6589 			if (err < 0)
6590 				goto restore_opts;
6591 			err = dquot_suspend(sb, -1);
6592 			if (err < 0)
6593 				goto restore_opts;
6594 
6595 			/*
6596 			 * First of all, the unconditional stuff we have to do
6597 			 * to disable replay of the journal when we next remount
6598 			 */
6599 			sb->s_flags |= SB_RDONLY;
6600 
6601 			/*
6602 			 * OK, test if we are remounting a valid rw partition
6603 			 * readonly, and if so set the rdonly flag and then
6604 			 * mark the partition as valid again.
6605 			 */
6606 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6607 			    (sbi->s_mount_state & EXT4_VALID_FS))
6608 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6609 
6610 			if (sbi->s_journal) {
6611 				/*
6612 				 * We let remount-ro finish even if marking fs
6613 				 * as clean failed...
6614 				 */
6615 				ext4_mark_recovery_complete(sb, es);
6616 			}
6617 		} else {
6618 			/* Make sure we can mount this feature set readwrite */
6619 			if (ext4_has_feature_readonly(sb) ||
6620 			    !ext4_feature_set_ok(sb, 0)) {
6621 				err = -EROFS;
6622 				goto restore_opts;
6623 			}
6624 			/*
6625 			 * Make sure the group descriptor checksums
6626 			 * are sane.  If they aren't, refuse to remount r/w.
6627 			 */
6628 			for (g = 0; g < sbi->s_groups_count; g++) {
6629 				struct ext4_group_desc *gdp =
6630 					ext4_get_group_desc(sb, g, NULL);
6631 
6632 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6633 					ext4_msg(sb, KERN_ERR,
6634 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6635 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6636 					       le16_to_cpu(gdp->bg_checksum));
6637 					err = -EFSBADCRC;
6638 					goto restore_opts;
6639 				}
6640 			}
6641 
6642 			/*
6643 			 * If we have an unprocessed orphan list hanging
6644 			 * around from a previously readonly bdev mount,
6645 			 * require a full umount/remount for now.
6646 			 */
6647 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6648 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6649 				       "remount RDWR because of unprocessed "
6650 				       "orphan inode list.  Please "
6651 				       "umount/remount instead");
6652 				err = -EINVAL;
6653 				goto restore_opts;
6654 			}
6655 
6656 			/*
6657 			 * Mounting a RDONLY partition read-write, so reread
6658 			 * and store the current valid flag.  (It may have
6659 			 * been changed by e2fsck since we originally mounted
6660 			 * the partition.)
6661 			 */
6662 			if (sbi->s_journal) {
6663 				err = ext4_clear_journal_err(sb, es);
6664 				if (err)
6665 					goto restore_opts;
6666 			}
6667 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6668 					      ~EXT4_FC_REPLAY);
6669 
6670 			err = ext4_setup_super(sb, es, 0);
6671 			if (err)
6672 				goto restore_opts;
6673 
6674 			sb->s_flags &= ~SB_RDONLY;
6675 			if (ext4_has_feature_mmp(sb)) {
6676 				err = ext4_multi_mount_protect(sb,
6677 						le64_to_cpu(es->s_mmp_block));
6678 				if (err)
6679 					goto restore_opts;
6680 			}
6681 #ifdef CONFIG_QUOTA
6682 			enable_quota = 1;
6683 #endif
6684 		}
6685 	}
6686 
6687 	/*
6688 	 * Handle creation of system zone data early because it can fail.
6689 	 * Releasing of existing data is done when we are sure remount will
6690 	 * succeed.
6691 	 */
6692 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6693 		err = ext4_setup_system_zone(sb);
6694 		if (err)
6695 			goto restore_opts;
6696 	}
6697 
6698 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6699 		err = ext4_commit_super(sb);
6700 		if (err)
6701 			goto restore_opts;
6702 	}
6703 
6704 #ifdef CONFIG_QUOTA
6705 	if (enable_quota) {
6706 		if (sb_any_quota_suspended(sb))
6707 			dquot_resume(sb, -1);
6708 		else if (ext4_has_feature_quota(sb)) {
6709 			err = ext4_enable_quotas(sb);
6710 			if (err)
6711 				goto restore_opts;
6712 		}
6713 	}
6714 	/* Release old quota file names */
6715 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6716 		kfree(old_opts.s_qf_names[i]);
6717 #endif
6718 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6719 		ext4_release_system_zone(sb);
6720 
6721 	/*
6722 	 * Reinitialize lazy itable initialization thread based on
6723 	 * current settings
6724 	 */
6725 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6726 		ext4_unregister_li_request(sb);
6727 	else {
6728 		ext4_group_t first_not_zeroed;
6729 		first_not_zeroed = ext4_has_uninit_itable(sb);
6730 		ext4_register_li_request(sb, first_not_zeroed);
6731 	}
6732 
6733 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6734 		ext4_stop_mmpd(sbi);
6735 
6736 	/*
6737 	 * Handle aborting the filesystem as the last thing during remount to
6738 	 * avoid obsure errors during remount when some option changes fail to
6739 	 * apply due to shutdown filesystem.
6740 	 */
6741 	if (test_opt2(sb, ABORT))
6742 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6743 
6744 	return 0;
6745 
6746 restore_opts:
6747 	/*
6748 	 * If there was a failing r/w to ro transition, we may need to
6749 	 * re-enable quota
6750 	 */
6751 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6752 	    sb_any_quota_suspended(sb))
6753 		dquot_resume(sb, -1);
6754 
6755 	alloc_ctx = ext4_writepages_down_write(sb);
6756 	sb->s_flags = old_sb_flags;
6757 	sbi->s_mount_opt = old_opts.s_mount_opt;
6758 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6759 	sbi->s_resuid = old_opts.s_resuid;
6760 	sbi->s_resgid = old_opts.s_resgid;
6761 	sbi->s_commit_interval = old_opts.s_commit_interval;
6762 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6763 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6764 	ext4_writepages_up_write(sb, alloc_ctx);
6765 
6766 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6767 		ext4_release_system_zone(sb);
6768 #ifdef CONFIG_QUOTA
6769 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6770 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6771 		to_free[i] = get_qf_name(sb, sbi, i);
6772 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6773 	}
6774 	synchronize_rcu();
6775 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6776 		kfree(to_free[i]);
6777 #endif
6778 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6779 		ext4_stop_mmpd(sbi);
6780 	return err;
6781 }
6782 
6783 static int ext4_reconfigure(struct fs_context *fc)
6784 {
6785 	struct super_block *sb = fc->root->d_sb;
6786 	int ret;
6787 	bool old_ro = sb_rdonly(sb);
6788 
6789 	fc->s_fs_info = EXT4_SB(sb);
6790 
6791 	ret = ext4_check_opt_consistency(fc, sb);
6792 	if (ret < 0)
6793 		return ret;
6794 
6795 	ret = __ext4_remount(fc, sb);
6796 	if (ret < 0)
6797 		return ret;
6798 
6799 	ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6800 		 &sb->s_uuid,
6801 		 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6802 
6803 	return 0;
6804 }
6805 
6806 #ifdef CONFIG_QUOTA
6807 static int ext4_statfs_project(struct super_block *sb,
6808 			       kprojid_t projid, struct kstatfs *buf)
6809 {
6810 	struct kqid qid;
6811 	struct dquot *dquot;
6812 	u64 limit;
6813 	u64 curblock;
6814 
6815 	qid = make_kqid_projid(projid);
6816 	dquot = dqget(sb, qid);
6817 	if (IS_ERR(dquot))
6818 		return PTR_ERR(dquot);
6819 	spin_lock(&dquot->dq_dqb_lock);
6820 
6821 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6822 			     dquot->dq_dqb.dqb_bhardlimit);
6823 	limit >>= sb->s_blocksize_bits;
6824 
6825 	if (limit) {
6826 		uint64_t	remaining = 0;
6827 
6828 		curblock = (dquot->dq_dqb.dqb_curspace +
6829 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6830 		if (limit > curblock)
6831 			remaining = limit - curblock;
6832 
6833 		buf->f_blocks = min(buf->f_blocks, limit);
6834 		buf->f_bfree = min(buf->f_bfree, remaining);
6835 		buf->f_bavail = min(buf->f_bavail, remaining);
6836 	}
6837 
6838 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6839 			     dquot->dq_dqb.dqb_ihardlimit);
6840 	if (limit) {
6841 		uint64_t	remaining = 0;
6842 
6843 		if (limit > dquot->dq_dqb.dqb_curinodes)
6844 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
6845 
6846 		buf->f_files = min(buf->f_files, limit);
6847 		buf->f_ffree = min(buf->f_ffree, remaining);
6848 	}
6849 
6850 	spin_unlock(&dquot->dq_dqb_lock);
6851 	dqput(dquot);
6852 	return 0;
6853 }
6854 #endif
6855 
6856 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6857 {
6858 	struct super_block *sb = dentry->d_sb;
6859 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6860 	struct ext4_super_block *es = sbi->s_es;
6861 	ext4_fsblk_t overhead = 0, resv_blocks;
6862 	s64 bfree;
6863 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6864 
6865 	if (!test_opt(sb, MINIX_DF))
6866 		overhead = sbi->s_overhead;
6867 
6868 	buf->f_type = EXT4_SUPER_MAGIC;
6869 	buf->f_bsize = sb->s_blocksize;
6870 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6871 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6872 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6873 	/* prevent underflow in case that few free space is available */
6874 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6875 	buf->f_bavail = buf->f_bfree -
6876 			(ext4_r_blocks_count(es) + resv_blocks);
6877 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6878 		buf->f_bavail = 0;
6879 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6880 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6881 	buf->f_namelen = EXT4_NAME_LEN;
6882 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6883 
6884 #ifdef CONFIG_QUOTA
6885 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6886 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6887 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6888 #endif
6889 	return 0;
6890 }
6891 
6892 
6893 #ifdef CONFIG_QUOTA
6894 
6895 /*
6896  * Helper functions so that transaction is started before we acquire dqio_sem
6897  * to keep correct lock ordering of transaction > dqio_sem
6898  */
6899 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6900 {
6901 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6902 }
6903 
6904 static int ext4_write_dquot(struct dquot *dquot)
6905 {
6906 	int ret, err;
6907 	handle_t *handle;
6908 	struct inode *inode;
6909 
6910 	inode = dquot_to_inode(dquot);
6911 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6912 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6913 	if (IS_ERR(handle))
6914 		return PTR_ERR(handle);
6915 	ret = dquot_commit(dquot);
6916 	if (ret < 0)
6917 		ext4_error_err(dquot->dq_sb, -ret,
6918 			       "Failed to commit dquot type %d",
6919 			       dquot->dq_id.type);
6920 	err = ext4_journal_stop(handle);
6921 	if (!ret)
6922 		ret = err;
6923 	return ret;
6924 }
6925 
6926 static int ext4_acquire_dquot(struct dquot *dquot)
6927 {
6928 	int ret, err;
6929 	handle_t *handle;
6930 
6931 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6932 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6933 	if (IS_ERR(handle))
6934 		return PTR_ERR(handle);
6935 	ret = dquot_acquire(dquot);
6936 	if (ret < 0)
6937 		ext4_error_err(dquot->dq_sb, -ret,
6938 			      "Failed to acquire dquot type %d",
6939 			      dquot->dq_id.type);
6940 	err = ext4_journal_stop(handle);
6941 	if (!ret)
6942 		ret = err;
6943 	return ret;
6944 }
6945 
6946 static int ext4_release_dquot(struct dquot *dquot)
6947 {
6948 	int ret, err;
6949 	handle_t *handle;
6950 	bool freeze_protected = false;
6951 
6952 	/*
6953 	 * Trying to sb_start_intwrite() in a running transaction
6954 	 * can result in a deadlock. Further, running transactions
6955 	 * are already protected from freezing.
6956 	 */
6957 	if (!ext4_journal_current_handle()) {
6958 		sb_start_intwrite(dquot->dq_sb);
6959 		freeze_protected = true;
6960 	}
6961 
6962 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6963 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6964 	if (IS_ERR(handle)) {
6965 		/* Release dquot anyway to avoid endless cycle in dqput() */
6966 		dquot_release(dquot);
6967 		if (freeze_protected)
6968 			sb_end_intwrite(dquot->dq_sb);
6969 		return PTR_ERR(handle);
6970 	}
6971 	ret = dquot_release(dquot);
6972 	if (ret < 0)
6973 		ext4_error_err(dquot->dq_sb, -ret,
6974 			       "Failed to release dquot type %d",
6975 			       dquot->dq_id.type);
6976 	err = ext4_journal_stop(handle);
6977 	if (!ret)
6978 		ret = err;
6979 
6980 	if (freeze_protected)
6981 		sb_end_intwrite(dquot->dq_sb);
6982 
6983 	return ret;
6984 }
6985 
6986 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6987 {
6988 	struct super_block *sb = dquot->dq_sb;
6989 
6990 	if (ext4_is_quota_journalled(sb)) {
6991 		dquot_mark_dquot_dirty(dquot);
6992 		return ext4_write_dquot(dquot);
6993 	} else {
6994 		return dquot_mark_dquot_dirty(dquot);
6995 	}
6996 }
6997 
6998 static int ext4_write_info(struct super_block *sb, int type)
6999 {
7000 	int ret, err;
7001 	handle_t *handle;
7002 
7003 	/* Data block + inode block */
7004 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7005 	if (IS_ERR(handle))
7006 		return PTR_ERR(handle);
7007 	ret = dquot_commit_info(sb, type);
7008 	err = ext4_journal_stop(handle);
7009 	if (!ret)
7010 		ret = err;
7011 	return ret;
7012 }
7013 
7014 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7015 {
7016 	struct ext4_inode_info *ei = EXT4_I(inode);
7017 
7018 	/* The first argument of lockdep_set_subclass has to be
7019 	 * *exactly* the same as the argument to init_rwsem() --- in
7020 	 * this case, in init_once() --- or lockdep gets unhappy
7021 	 * because the name of the lock is set using the
7022 	 * stringification of the argument to init_rwsem().
7023 	 */
7024 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7025 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7026 }
7027 
7028 /*
7029  * Standard function to be called on quota_on
7030  */
7031 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7032 			 const struct path *path)
7033 {
7034 	int err;
7035 
7036 	if (!test_opt(sb, QUOTA))
7037 		return -EINVAL;
7038 
7039 	/* Quotafile not on the same filesystem? */
7040 	if (path->dentry->d_sb != sb)
7041 		return -EXDEV;
7042 
7043 	/* Quota already enabled for this file? */
7044 	if (IS_NOQUOTA(d_inode(path->dentry)))
7045 		return -EBUSY;
7046 
7047 	/* Journaling quota? */
7048 	if (EXT4_SB(sb)->s_qf_names[type]) {
7049 		/* Quotafile not in fs root? */
7050 		if (path->dentry->d_parent != sb->s_root)
7051 			ext4_msg(sb, KERN_WARNING,
7052 				"Quota file not on filesystem root. "
7053 				"Journaled quota will not work");
7054 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7055 	} else {
7056 		/*
7057 		 * Clear the flag just in case mount options changed since
7058 		 * last time.
7059 		 */
7060 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7061 	}
7062 
7063 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7064 	err = dquot_quota_on(sb, type, format_id, path);
7065 	if (!err) {
7066 		struct inode *inode = d_inode(path->dentry);
7067 		handle_t *handle;
7068 
7069 		/*
7070 		 * Set inode flags to prevent userspace from messing with quota
7071 		 * files. If this fails, we return success anyway since quotas
7072 		 * are already enabled and this is not a hard failure.
7073 		 */
7074 		inode_lock(inode);
7075 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7076 		if (IS_ERR(handle))
7077 			goto unlock_inode;
7078 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7079 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7080 				S_NOATIME | S_IMMUTABLE);
7081 		err = ext4_mark_inode_dirty(handle, inode);
7082 		ext4_journal_stop(handle);
7083 	unlock_inode:
7084 		inode_unlock(inode);
7085 		if (err)
7086 			dquot_quota_off(sb, type);
7087 	}
7088 	if (err)
7089 		lockdep_set_quota_inode(path->dentry->d_inode,
7090 					     I_DATA_SEM_NORMAL);
7091 	return err;
7092 }
7093 
7094 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7095 {
7096 	switch (type) {
7097 	case USRQUOTA:
7098 		return qf_inum == EXT4_USR_QUOTA_INO;
7099 	case GRPQUOTA:
7100 		return qf_inum == EXT4_GRP_QUOTA_INO;
7101 	case PRJQUOTA:
7102 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7103 	default:
7104 		BUG();
7105 	}
7106 }
7107 
7108 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7109 			     unsigned int flags)
7110 {
7111 	int err;
7112 	struct inode *qf_inode;
7113 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7114 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7115 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7116 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7117 	};
7118 
7119 	BUG_ON(!ext4_has_feature_quota(sb));
7120 
7121 	if (!qf_inums[type])
7122 		return -EPERM;
7123 
7124 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7125 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7126 				qf_inums[type], type);
7127 		return -EUCLEAN;
7128 	}
7129 
7130 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7131 	if (IS_ERR(qf_inode)) {
7132 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7133 				qf_inums[type], type);
7134 		return PTR_ERR(qf_inode);
7135 	}
7136 
7137 	/* Don't account quota for quota files to avoid recursion */
7138 	qf_inode->i_flags |= S_NOQUOTA;
7139 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7140 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7141 	if (err)
7142 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7143 	iput(qf_inode);
7144 
7145 	return err;
7146 }
7147 
7148 /* Enable usage tracking for all quota types. */
7149 int ext4_enable_quotas(struct super_block *sb)
7150 {
7151 	int type, err = 0;
7152 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7153 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7154 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7155 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7156 	};
7157 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7158 		test_opt(sb, USRQUOTA),
7159 		test_opt(sb, GRPQUOTA),
7160 		test_opt(sb, PRJQUOTA),
7161 	};
7162 
7163 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7164 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7165 		if (qf_inums[type]) {
7166 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7167 				DQUOT_USAGE_ENABLED |
7168 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7169 			if (err) {
7170 				ext4_warning(sb,
7171 					"Failed to enable quota tracking "
7172 					"(type=%d, err=%d, ino=%lu). "
7173 					"Please run e2fsck to fix.", type,
7174 					err, qf_inums[type]);
7175 
7176 				ext4_quotas_off(sb, type);
7177 				return err;
7178 			}
7179 		}
7180 	}
7181 	return 0;
7182 }
7183 
7184 static int ext4_quota_off(struct super_block *sb, int type)
7185 {
7186 	struct inode *inode = sb_dqopt(sb)->files[type];
7187 	handle_t *handle;
7188 	int err;
7189 
7190 	/* Force all delayed allocation blocks to be allocated.
7191 	 * Caller already holds s_umount sem */
7192 	if (test_opt(sb, DELALLOC))
7193 		sync_filesystem(sb);
7194 
7195 	if (!inode || !igrab(inode))
7196 		goto out;
7197 
7198 	err = dquot_quota_off(sb, type);
7199 	if (err || ext4_has_feature_quota(sb))
7200 		goto out_put;
7201 	/*
7202 	 * When the filesystem was remounted read-only first, we cannot cleanup
7203 	 * inode flags here. Bad luck but people should be using QUOTA feature
7204 	 * these days anyway.
7205 	 */
7206 	if (sb_rdonly(sb))
7207 		goto out_put;
7208 
7209 	inode_lock(inode);
7210 	/*
7211 	 * Update modification times of quota files when userspace can
7212 	 * start looking at them. If we fail, we return success anyway since
7213 	 * this is not a hard failure and quotas are already disabled.
7214 	 */
7215 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7216 	if (IS_ERR(handle)) {
7217 		err = PTR_ERR(handle);
7218 		goto out_unlock;
7219 	}
7220 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7221 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7222 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7223 	err = ext4_mark_inode_dirty(handle, inode);
7224 	ext4_journal_stop(handle);
7225 out_unlock:
7226 	inode_unlock(inode);
7227 out_put:
7228 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7229 	iput(inode);
7230 	return err;
7231 out:
7232 	return dquot_quota_off(sb, type);
7233 }
7234 
7235 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7236  * acquiring the locks... As quota files are never truncated and quota code
7237  * itself serializes the operations (and no one else should touch the files)
7238  * we don't have to be afraid of races */
7239 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7240 			       size_t len, loff_t off)
7241 {
7242 	struct inode *inode = sb_dqopt(sb)->files[type];
7243 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7244 	int offset = off & (sb->s_blocksize - 1);
7245 	int tocopy;
7246 	size_t toread;
7247 	struct buffer_head *bh;
7248 	loff_t i_size = i_size_read(inode);
7249 
7250 	if (off > i_size)
7251 		return 0;
7252 	if (off+len > i_size)
7253 		len = i_size-off;
7254 	toread = len;
7255 	while (toread > 0) {
7256 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7257 		bh = ext4_bread(NULL, inode, blk, 0);
7258 		if (IS_ERR(bh))
7259 			return PTR_ERR(bh);
7260 		if (!bh)	/* A hole? */
7261 			memset(data, 0, tocopy);
7262 		else
7263 			memcpy(data, bh->b_data+offset, tocopy);
7264 		brelse(bh);
7265 		offset = 0;
7266 		toread -= tocopy;
7267 		data += tocopy;
7268 		blk++;
7269 	}
7270 	return len;
7271 }
7272 
7273 /* Write to quotafile (we know the transaction is already started and has
7274  * enough credits) */
7275 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7276 				const char *data, size_t len, loff_t off)
7277 {
7278 	struct inode *inode = sb_dqopt(sb)->files[type];
7279 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7280 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7281 	int retries = 0;
7282 	struct buffer_head *bh;
7283 	handle_t *handle = journal_current_handle();
7284 
7285 	if (!handle) {
7286 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7287 			" cancelled because transaction is not started",
7288 			(unsigned long long)off, (unsigned long long)len);
7289 		return -EIO;
7290 	}
7291 	/*
7292 	 * Since we account only one data block in transaction credits,
7293 	 * then it is impossible to cross a block boundary.
7294 	 */
7295 	if (sb->s_blocksize - offset < len) {
7296 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7297 			" cancelled because not block aligned",
7298 			(unsigned long long)off, (unsigned long long)len);
7299 		return -EIO;
7300 	}
7301 
7302 	do {
7303 		bh = ext4_bread(handle, inode, blk,
7304 				EXT4_GET_BLOCKS_CREATE |
7305 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7306 	} while (PTR_ERR(bh) == -ENOSPC &&
7307 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7308 	if (IS_ERR(bh))
7309 		return PTR_ERR(bh);
7310 	if (!bh)
7311 		goto out;
7312 	BUFFER_TRACE(bh, "get write access");
7313 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7314 	if (err) {
7315 		brelse(bh);
7316 		return err;
7317 	}
7318 	lock_buffer(bh);
7319 	memcpy(bh->b_data+offset, data, len);
7320 	flush_dcache_folio(bh->b_folio);
7321 	unlock_buffer(bh);
7322 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7323 	brelse(bh);
7324 out:
7325 	if (inode->i_size < off + len) {
7326 		i_size_write(inode, off + len);
7327 		EXT4_I(inode)->i_disksize = inode->i_size;
7328 		err2 = ext4_mark_inode_dirty(handle, inode);
7329 		if (unlikely(err2 && !err))
7330 			err = err2;
7331 	}
7332 	return err ? err : len;
7333 }
7334 #endif
7335 
7336 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7337 static inline void register_as_ext2(void)
7338 {
7339 	int err = register_filesystem(&ext2_fs_type);
7340 	if (err)
7341 		printk(KERN_WARNING
7342 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7343 }
7344 
7345 static inline void unregister_as_ext2(void)
7346 {
7347 	unregister_filesystem(&ext2_fs_type);
7348 }
7349 
7350 static inline int ext2_feature_set_ok(struct super_block *sb)
7351 {
7352 	if (ext4_has_unknown_ext2_incompat_features(sb))
7353 		return 0;
7354 	if (sb_rdonly(sb))
7355 		return 1;
7356 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7357 		return 0;
7358 	return 1;
7359 }
7360 #else
7361 static inline void register_as_ext2(void) { }
7362 static inline void unregister_as_ext2(void) { }
7363 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7364 #endif
7365 
7366 static inline void register_as_ext3(void)
7367 {
7368 	int err = register_filesystem(&ext3_fs_type);
7369 	if (err)
7370 		printk(KERN_WARNING
7371 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7372 }
7373 
7374 static inline void unregister_as_ext3(void)
7375 {
7376 	unregister_filesystem(&ext3_fs_type);
7377 }
7378 
7379 static inline int ext3_feature_set_ok(struct super_block *sb)
7380 {
7381 	if (ext4_has_unknown_ext3_incompat_features(sb))
7382 		return 0;
7383 	if (!ext4_has_feature_journal(sb))
7384 		return 0;
7385 	if (sb_rdonly(sb))
7386 		return 1;
7387 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7388 		return 0;
7389 	return 1;
7390 }
7391 
7392 static void ext4_kill_sb(struct super_block *sb)
7393 {
7394 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7395 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7396 
7397 	kill_block_super(sb);
7398 
7399 	if (bdev_file)
7400 		bdev_fput(bdev_file);
7401 }
7402 
7403 static struct file_system_type ext4_fs_type = {
7404 	.owner			= THIS_MODULE,
7405 	.name			= "ext4",
7406 	.init_fs_context	= ext4_init_fs_context,
7407 	.parameters		= ext4_param_specs,
7408 	.kill_sb		= ext4_kill_sb,
7409 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7410 };
7411 MODULE_ALIAS_FS("ext4");
7412 
7413 static int __init ext4_init_fs(void)
7414 {
7415 	int err;
7416 
7417 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7418 	ext4_li_info = NULL;
7419 
7420 	/* Build-time check for flags consistency */
7421 	ext4_check_flag_values();
7422 
7423 	err = ext4_init_es();
7424 	if (err)
7425 		return err;
7426 
7427 	err = ext4_init_pending();
7428 	if (err)
7429 		goto out7;
7430 
7431 	err = ext4_init_post_read_processing();
7432 	if (err)
7433 		goto out6;
7434 
7435 	err = ext4_init_pageio();
7436 	if (err)
7437 		goto out5;
7438 
7439 	err = ext4_init_system_zone();
7440 	if (err)
7441 		goto out4;
7442 
7443 	err = ext4_init_sysfs();
7444 	if (err)
7445 		goto out3;
7446 
7447 	err = ext4_init_mballoc();
7448 	if (err)
7449 		goto out2;
7450 	err = init_inodecache();
7451 	if (err)
7452 		goto out1;
7453 
7454 	err = ext4_fc_init_dentry_cache();
7455 	if (err)
7456 		goto out05;
7457 
7458 	register_as_ext3();
7459 	register_as_ext2();
7460 	err = register_filesystem(&ext4_fs_type);
7461 	if (err)
7462 		goto out;
7463 
7464 	return 0;
7465 out:
7466 	unregister_as_ext2();
7467 	unregister_as_ext3();
7468 	ext4_fc_destroy_dentry_cache();
7469 out05:
7470 	destroy_inodecache();
7471 out1:
7472 	ext4_exit_mballoc();
7473 out2:
7474 	ext4_exit_sysfs();
7475 out3:
7476 	ext4_exit_system_zone();
7477 out4:
7478 	ext4_exit_pageio();
7479 out5:
7480 	ext4_exit_post_read_processing();
7481 out6:
7482 	ext4_exit_pending();
7483 out7:
7484 	ext4_exit_es();
7485 
7486 	return err;
7487 }
7488 
7489 static void __exit ext4_exit_fs(void)
7490 {
7491 	ext4_destroy_lazyinit_thread();
7492 	unregister_as_ext2();
7493 	unregister_as_ext3();
7494 	unregister_filesystem(&ext4_fs_type);
7495 	ext4_fc_destroy_dentry_cache();
7496 	destroy_inodecache();
7497 	ext4_exit_mballoc();
7498 	ext4_exit_sysfs();
7499 	ext4_exit_system_zone();
7500 	ext4_exit_pageio();
7501 	ext4_exit_post_read_processing();
7502 	ext4_exit_es();
7503 	ext4_exit_pending();
7504 }
7505 
7506 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7507 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7508 MODULE_LICENSE("GPL");
7509 module_init(ext4_init_fs)
7510 module_exit(ext4_exit_fs)
7511