xref: /linux/fs/ext4/super.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 			     unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 					struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 				   struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 				     char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 	.owner		= THIS_MODULE,
89 	.name		= "ext2",
90 	.mount		= ext4_mount,
91 	.kill_sb	= kill_block_super,
92 	.fs_flags	= FS_REQUIRES_DEV,
93 };
94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95 #else
96 #define IS_EXT2_SB(sb) (0)
97 #endif
98 
99 
100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101 static struct file_system_type ext3_fs_type = {
102 	.owner		= THIS_MODULE,
103 	.name		= "ext3",
104 	.mount		= ext4_mount,
105 	.kill_sb	= kill_block_super,
106 	.fs_flags	= FS_REQUIRES_DEV,
107 };
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 #else
110 #define IS_EXT3_SB(sb) (0)
111 #endif
112 
113 void *ext4_kvmalloc(size_t size, gfp_t flags)
114 {
115 	void *ret;
116 
117 	ret = kmalloc(size, flags);
118 	if (!ret)
119 		ret = __vmalloc(size, flags, PAGE_KERNEL);
120 	return ret;
121 }
122 
123 void *ext4_kvzalloc(size_t size, gfp_t flags)
124 {
125 	void *ret;
126 
127 	ret = kzalloc(size, flags);
128 	if (!ret)
129 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
130 	return ret;
131 }
132 
133 void ext4_kvfree(void *ptr)
134 {
135 	if (is_vmalloc_addr(ptr))
136 		vfree(ptr);
137 	else
138 		kfree(ptr);
139 
140 }
141 
142 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
143 			       struct ext4_group_desc *bg)
144 {
145 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
146 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
148 }
149 
150 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
151 			       struct ext4_group_desc *bg)
152 {
153 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
154 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
155 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
156 }
157 
158 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
159 			      struct ext4_group_desc *bg)
160 {
161 	return le32_to_cpu(bg->bg_inode_table_lo) |
162 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
163 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
164 }
165 
166 __u32 ext4_free_blks_count(struct super_block *sb,
167 			      struct ext4_group_desc *bg)
168 {
169 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
170 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
171 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
172 }
173 
174 __u32 ext4_free_inodes_count(struct super_block *sb,
175 			      struct ext4_group_desc *bg)
176 {
177 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
178 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
179 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
180 }
181 
182 __u32 ext4_used_dirs_count(struct super_block *sb,
183 			      struct ext4_group_desc *bg)
184 {
185 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
186 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
187 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
188 }
189 
190 __u32 ext4_itable_unused_count(struct super_block *sb,
191 			      struct ext4_group_desc *bg)
192 {
193 	return le16_to_cpu(bg->bg_itable_unused_lo) |
194 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
196 }
197 
198 void ext4_block_bitmap_set(struct super_block *sb,
199 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
200 {
201 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
202 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
204 }
205 
206 void ext4_inode_bitmap_set(struct super_block *sb,
207 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
208 {
209 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
210 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
211 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
212 }
213 
214 void ext4_inode_table_set(struct super_block *sb,
215 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
216 {
217 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
218 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
219 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
220 }
221 
222 void ext4_free_blks_set(struct super_block *sb,
223 			  struct ext4_group_desc *bg, __u32 count)
224 {
225 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
226 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
227 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
228 }
229 
230 void ext4_free_inodes_set(struct super_block *sb,
231 			  struct ext4_group_desc *bg, __u32 count)
232 {
233 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
234 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
235 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
236 }
237 
238 void ext4_used_dirs_set(struct super_block *sb,
239 			  struct ext4_group_desc *bg, __u32 count)
240 {
241 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
242 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
243 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
244 }
245 
246 void ext4_itable_unused_set(struct super_block *sb,
247 			  struct ext4_group_desc *bg, __u32 count)
248 {
249 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
250 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
252 }
253 
254 
255 /* Just increment the non-pointer handle value */
256 static handle_t *ext4_get_nojournal(void)
257 {
258 	handle_t *handle = current->journal_info;
259 	unsigned long ref_cnt = (unsigned long)handle;
260 
261 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
262 
263 	ref_cnt++;
264 	handle = (handle_t *)ref_cnt;
265 
266 	current->journal_info = handle;
267 	return handle;
268 }
269 
270 
271 /* Decrement the non-pointer handle value */
272 static void ext4_put_nojournal(handle_t *handle)
273 {
274 	unsigned long ref_cnt = (unsigned long)handle;
275 
276 	BUG_ON(ref_cnt == 0);
277 
278 	ref_cnt--;
279 	handle = (handle_t *)ref_cnt;
280 
281 	current->journal_info = handle;
282 }
283 
284 /*
285  * Wrappers for jbd2_journal_start/end.
286  *
287  * The only special thing we need to do here is to make sure that all
288  * journal_end calls result in the superblock being marked dirty, so
289  * that sync() will call the filesystem's write_super callback if
290  * appropriate.
291  *
292  * To avoid j_barrier hold in userspace when a user calls freeze(),
293  * ext4 prevents a new handle from being started by s_frozen, which
294  * is in an upper layer.
295  */
296 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
297 {
298 	journal_t *journal;
299 	handle_t  *handle;
300 
301 	trace_ext4_journal_start(sb, nblocks, _RET_IP_);
302 	if (sb->s_flags & MS_RDONLY)
303 		return ERR_PTR(-EROFS);
304 
305 	journal = EXT4_SB(sb)->s_journal;
306 	handle = ext4_journal_current_handle();
307 
308 	/*
309 	 * If a handle has been started, it should be allowed to
310 	 * finish, otherwise deadlock could happen between freeze
311 	 * and others(e.g. truncate) due to the restart of the
312 	 * journal handle if the filesystem is forzen and active
313 	 * handles are not stopped.
314 	 */
315 	if (!handle)
316 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
317 
318 	if (!journal)
319 		return ext4_get_nojournal();
320 	/*
321 	 * Special case here: if the journal has aborted behind our
322 	 * backs (eg. EIO in the commit thread), then we still need to
323 	 * take the FS itself readonly cleanly.
324 	 */
325 	if (is_journal_aborted(journal)) {
326 		ext4_abort(sb, "Detected aborted journal");
327 		return ERR_PTR(-EROFS);
328 	}
329 	return jbd2_journal_start(journal, nblocks);
330 }
331 
332 /*
333  * The only special thing we need to do here is to make sure that all
334  * jbd2_journal_stop calls result in the superblock being marked dirty, so
335  * that sync() will call the filesystem's write_super callback if
336  * appropriate.
337  */
338 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
339 {
340 	struct super_block *sb;
341 	int err;
342 	int rc;
343 
344 	if (!ext4_handle_valid(handle)) {
345 		ext4_put_nojournal(handle);
346 		return 0;
347 	}
348 	sb = handle->h_transaction->t_journal->j_private;
349 	err = handle->h_err;
350 	rc = jbd2_journal_stop(handle);
351 
352 	if (!err)
353 		err = rc;
354 	if (err)
355 		__ext4_std_error(sb, where, line, err);
356 	return err;
357 }
358 
359 void ext4_journal_abort_handle(const char *caller, unsigned int line,
360 			       const char *err_fn, struct buffer_head *bh,
361 			       handle_t *handle, int err)
362 {
363 	char nbuf[16];
364 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
365 
366 	BUG_ON(!ext4_handle_valid(handle));
367 
368 	if (bh)
369 		BUFFER_TRACE(bh, "abort");
370 
371 	if (!handle->h_err)
372 		handle->h_err = err;
373 
374 	if (is_handle_aborted(handle))
375 		return;
376 
377 	printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
378 	       caller, line, errstr, err_fn);
379 
380 	jbd2_journal_abort_handle(handle);
381 }
382 
383 static void __save_error_info(struct super_block *sb, const char *func,
384 			    unsigned int line)
385 {
386 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
387 
388 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
389 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
390 	es->s_last_error_time = cpu_to_le32(get_seconds());
391 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
392 	es->s_last_error_line = cpu_to_le32(line);
393 	if (!es->s_first_error_time) {
394 		es->s_first_error_time = es->s_last_error_time;
395 		strncpy(es->s_first_error_func, func,
396 			sizeof(es->s_first_error_func));
397 		es->s_first_error_line = cpu_to_le32(line);
398 		es->s_first_error_ino = es->s_last_error_ino;
399 		es->s_first_error_block = es->s_last_error_block;
400 	}
401 	/*
402 	 * Start the daily error reporting function if it hasn't been
403 	 * started already
404 	 */
405 	if (!es->s_error_count)
406 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
407 	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
408 }
409 
410 static void save_error_info(struct super_block *sb, const char *func,
411 			    unsigned int line)
412 {
413 	__save_error_info(sb, func, line);
414 	ext4_commit_super(sb, 1);
415 }
416 
417 
418 /* Deal with the reporting of failure conditions on a filesystem such as
419  * inconsistencies detected or read IO failures.
420  *
421  * On ext2, we can store the error state of the filesystem in the
422  * superblock.  That is not possible on ext4, because we may have other
423  * write ordering constraints on the superblock which prevent us from
424  * writing it out straight away; and given that the journal is about to
425  * be aborted, we can't rely on the current, or future, transactions to
426  * write out the superblock safely.
427  *
428  * We'll just use the jbd2_journal_abort() error code to record an error in
429  * the journal instead.  On recovery, the journal will complain about
430  * that error until we've noted it down and cleared it.
431  */
432 
433 static void ext4_handle_error(struct super_block *sb)
434 {
435 	if (sb->s_flags & MS_RDONLY)
436 		return;
437 
438 	if (!test_opt(sb, ERRORS_CONT)) {
439 		journal_t *journal = EXT4_SB(sb)->s_journal;
440 
441 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
442 		if (journal)
443 			jbd2_journal_abort(journal, -EIO);
444 	}
445 	if (test_opt(sb, ERRORS_RO)) {
446 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
447 		sb->s_flags |= MS_RDONLY;
448 	}
449 	if (test_opt(sb, ERRORS_PANIC))
450 		panic("EXT4-fs (device %s): panic forced after error\n",
451 			sb->s_id);
452 }
453 
454 void __ext4_error(struct super_block *sb, const char *function,
455 		  unsigned int line, const char *fmt, ...)
456 {
457 	struct va_format vaf;
458 	va_list args;
459 
460 	va_start(args, fmt);
461 	vaf.fmt = fmt;
462 	vaf.va = &args;
463 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
464 	       sb->s_id, function, line, current->comm, &vaf);
465 	va_end(args);
466 
467 	ext4_handle_error(sb);
468 }
469 
470 void ext4_error_inode(struct inode *inode, const char *function,
471 		      unsigned int line, ext4_fsblk_t block,
472 		      const char *fmt, ...)
473 {
474 	va_list args;
475 	struct va_format vaf;
476 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
477 
478 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 	es->s_last_error_block = cpu_to_le64(block);
480 	save_error_info(inode->i_sb, function, line);
481 	va_start(args, fmt);
482 	vaf.fmt = fmt;
483 	vaf.va = &args;
484 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
485 	       inode->i_sb->s_id, function, line, inode->i_ino);
486 	if (block)
487 		printk(KERN_CONT "block %llu: ", block);
488 	printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
489 	va_end(args);
490 
491 	ext4_handle_error(inode->i_sb);
492 }
493 
494 void ext4_error_file(struct file *file, const char *function,
495 		     unsigned int line, ext4_fsblk_t block,
496 		     const char *fmt, ...)
497 {
498 	va_list args;
499 	struct va_format vaf;
500 	struct ext4_super_block *es;
501 	struct inode *inode = file->f_dentry->d_inode;
502 	char pathname[80], *path;
503 
504 	es = EXT4_SB(inode->i_sb)->s_es;
505 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
506 	save_error_info(inode->i_sb, function, line);
507 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
508 	if (IS_ERR(path))
509 		path = "(unknown)";
510 	printk(KERN_CRIT
511 	       "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
512 	       inode->i_sb->s_id, function, line, inode->i_ino);
513 	if (block)
514 		printk(KERN_CONT "block %llu: ", block);
515 	va_start(args, fmt);
516 	vaf.fmt = fmt;
517 	vaf.va = &args;
518 	printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
519 	va_end(args);
520 
521 	ext4_handle_error(inode->i_sb);
522 }
523 
524 static const char *ext4_decode_error(struct super_block *sb, int errno,
525 				     char nbuf[16])
526 {
527 	char *errstr = NULL;
528 
529 	switch (errno) {
530 	case -EIO:
531 		errstr = "IO failure";
532 		break;
533 	case -ENOMEM:
534 		errstr = "Out of memory";
535 		break;
536 	case -EROFS:
537 		if (!sb || (EXT4_SB(sb)->s_journal &&
538 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
539 			errstr = "Journal has aborted";
540 		else
541 			errstr = "Readonly filesystem";
542 		break;
543 	default:
544 		/* If the caller passed in an extra buffer for unknown
545 		 * errors, textualise them now.  Else we just return
546 		 * NULL. */
547 		if (nbuf) {
548 			/* Check for truncated error codes... */
549 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
550 				errstr = nbuf;
551 		}
552 		break;
553 	}
554 
555 	return errstr;
556 }
557 
558 /* __ext4_std_error decodes expected errors from journaling functions
559  * automatically and invokes the appropriate error response.  */
560 
561 void __ext4_std_error(struct super_block *sb, const char *function,
562 		      unsigned int line, int errno)
563 {
564 	char nbuf[16];
565 	const char *errstr;
566 
567 	/* Special case: if the error is EROFS, and we're not already
568 	 * inside a transaction, then there's really no point in logging
569 	 * an error. */
570 	if (errno == -EROFS && journal_current_handle() == NULL &&
571 	    (sb->s_flags & MS_RDONLY))
572 		return;
573 
574 	errstr = ext4_decode_error(sb, errno, nbuf);
575 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
576 	       sb->s_id, function, line, errstr);
577 	save_error_info(sb, function, line);
578 
579 	ext4_handle_error(sb);
580 }
581 
582 /*
583  * ext4_abort is a much stronger failure handler than ext4_error.  The
584  * abort function may be used to deal with unrecoverable failures such
585  * as journal IO errors or ENOMEM at a critical moment in log management.
586  *
587  * We unconditionally force the filesystem into an ABORT|READONLY state,
588  * unless the error response on the fs has been set to panic in which
589  * case we take the easy way out and panic immediately.
590  */
591 
592 void __ext4_abort(struct super_block *sb, const char *function,
593 		unsigned int line, const char *fmt, ...)
594 {
595 	va_list args;
596 
597 	save_error_info(sb, function, line);
598 	va_start(args, fmt);
599 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
600 	       function, line);
601 	vprintk(fmt, args);
602 	printk("\n");
603 	va_end(args);
604 
605 	if ((sb->s_flags & MS_RDONLY) == 0) {
606 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
607 		sb->s_flags |= MS_RDONLY;
608 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
609 		if (EXT4_SB(sb)->s_journal)
610 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
611 		save_error_info(sb, function, line);
612 	}
613 	if (test_opt(sb, ERRORS_PANIC))
614 		panic("EXT4-fs panic from previous error\n");
615 }
616 
617 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
618 {
619 	struct va_format vaf;
620 	va_list args;
621 
622 	va_start(args, fmt);
623 	vaf.fmt = fmt;
624 	vaf.va = &args;
625 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
626 	va_end(args);
627 }
628 
629 void __ext4_warning(struct super_block *sb, const char *function,
630 		    unsigned int line, const char *fmt, ...)
631 {
632 	struct va_format vaf;
633 	va_list args;
634 
635 	va_start(args, fmt);
636 	vaf.fmt = fmt;
637 	vaf.va = &args;
638 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
639 	       sb->s_id, function, line, &vaf);
640 	va_end(args);
641 }
642 
643 void __ext4_grp_locked_error(const char *function, unsigned int line,
644 			     struct super_block *sb, ext4_group_t grp,
645 			     unsigned long ino, ext4_fsblk_t block,
646 			     const char *fmt, ...)
647 __releases(bitlock)
648 __acquires(bitlock)
649 {
650 	struct va_format vaf;
651 	va_list args;
652 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
653 
654 	es->s_last_error_ino = cpu_to_le32(ino);
655 	es->s_last_error_block = cpu_to_le64(block);
656 	__save_error_info(sb, function, line);
657 
658 	va_start(args, fmt);
659 
660 	vaf.fmt = fmt;
661 	vaf.va = &args;
662 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
663 	       sb->s_id, function, line, grp);
664 	if (ino)
665 		printk(KERN_CONT "inode %lu: ", ino);
666 	if (block)
667 		printk(KERN_CONT "block %llu:", (unsigned long long) block);
668 	printk(KERN_CONT "%pV\n", &vaf);
669 	va_end(args);
670 
671 	if (test_opt(sb, ERRORS_CONT)) {
672 		ext4_commit_super(sb, 0);
673 		return;
674 	}
675 
676 	ext4_unlock_group(sb, grp);
677 	ext4_handle_error(sb);
678 	/*
679 	 * We only get here in the ERRORS_RO case; relocking the group
680 	 * may be dangerous, but nothing bad will happen since the
681 	 * filesystem will have already been marked read/only and the
682 	 * journal has been aborted.  We return 1 as a hint to callers
683 	 * who might what to use the return value from
684 	 * ext4_grp_locked_error() to distinguish between the
685 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
686 	 * aggressively from the ext4 function in question, with a
687 	 * more appropriate error code.
688 	 */
689 	ext4_lock_group(sb, grp);
690 	return;
691 }
692 
693 void ext4_update_dynamic_rev(struct super_block *sb)
694 {
695 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
696 
697 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
698 		return;
699 
700 	ext4_warning(sb,
701 		     "updating to rev %d because of new feature flag, "
702 		     "running e2fsck is recommended",
703 		     EXT4_DYNAMIC_REV);
704 
705 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
706 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
707 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
708 	/* leave es->s_feature_*compat flags alone */
709 	/* es->s_uuid will be set by e2fsck if empty */
710 
711 	/*
712 	 * The rest of the superblock fields should be zero, and if not it
713 	 * means they are likely already in use, so leave them alone.  We
714 	 * can leave it up to e2fsck to clean up any inconsistencies there.
715 	 */
716 }
717 
718 /*
719  * Open the external journal device
720  */
721 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
722 {
723 	struct block_device *bdev;
724 	char b[BDEVNAME_SIZE];
725 
726 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
727 	if (IS_ERR(bdev))
728 		goto fail;
729 	return bdev;
730 
731 fail:
732 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
733 			__bdevname(dev, b), PTR_ERR(bdev));
734 	return NULL;
735 }
736 
737 /*
738  * Release the journal device
739  */
740 static int ext4_blkdev_put(struct block_device *bdev)
741 {
742 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
743 }
744 
745 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
746 {
747 	struct block_device *bdev;
748 	int ret = -ENODEV;
749 
750 	bdev = sbi->journal_bdev;
751 	if (bdev) {
752 		ret = ext4_blkdev_put(bdev);
753 		sbi->journal_bdev = NULL;
754 	}
755 	return ret;
756 }
757 
758 static inline struct inode *orphan_list_entry(struct list_head *l)
759 {
760 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
761 }
762 
763 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
764 {
765 	struct list_head *l;
766 
767 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
768 		 le32_to_cpu(sbi->s_es->s_last_orphan));
769 
770 	printk(KERN_ERR "sb_info orphan list:\n");
771 	list_for_each(l, &sbi->s_orphan) {
772 		struct inode *inode = orphan_list_entry(l);
773 		printk(KERN_ERR "  "
774 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
775 		       inode->i_sb->s_id, inode->i_ino, inode,
776 		       inode->i_mode, inode->i_nlink,
777 		       NEXT_ORPHAN(inode));
778 	}
779 }
780 
781 static void ext4_put_super(struct super_block *sb)
782 {
783 	struct ext4_sb_info *sbi = EXT4_SB(sb);
784 	struct ext4_super_block *es = sbi->s_es;
785 	int i, err;
786 
787 	ext4_unregister_li_request(sb);
788 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
789 
790 	flush_workqueue(sbi->dio_unwritten_wq);
791 	destroy_workqueue(sbi->dio_unwritten_wq);
792 
793 	lock_super(sb);
794 	if (sb->s_dirt)
795 		ext4_commit_super(sb, 1);
796 
797 	if (sbi->s_journal) {
798 		err = jbd2_journal_destroy(sbi->s_journal);
799 		sbi->s_journal = NULL;
800 		if (err < 0)
801 			ext4_abort(sb, "Couldn't clean up the journal");
802 	}
803 
804 	del_timer(&sbi->s_err_report);
805 	ext4_release_system_zone(sb);
806 	ext4_mb_release(sb);
807 	ext4_ext_release(sb);
808 	ext4_xattr_put_super(sb);
809 
810 	if (!(sb->s_flags & MS_RDONLY)) {
811 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
812 		es->s_state = cpu_to_le16(sbi->s_mount_state);
813 		ext4_commit_super(sb, 1);
814 	}
815 	if (sbi->s_proc) {
816 		remove_proc_entry(sb->s_id, ext4_proc_root);
817 	}
818 	kobject_del(&sbi->s_kobj);
819 
820 	for (i = 0; i < sbi->s_gdb_count; i++)
821 		brelse(sbi->s_group_desc[i]);
822 	ext4_kvfree(sbi->s_group_desc);
823 	ext4_kvfree(sbi->s_flex_groups);
824 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
825 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
826 	percpu_counter_destroy(&sbi->s_dirs_counter);
827 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
828 	brelse(sbi->s_sbh);
829 #ifdef CONFIG_QUOTA
830 	for (i = 0; i < MAXQUOTAS; i++)
831 		kfree(sbi->s_qf_names[i]);
832 #endif
833 
834 	/* Debugging code just in case the in-memory inode orphan list
835 	 * isn't empty.  The on-disk one can be non-empty if we've
836 	 * detected an error and taken the fs readonly, but the
837 	 * in-memory list had better be clean by this point. */
838 	if (!list_empty(&sbi->s_orphan))
839 		dump_orphan_list(sb, sbi);
840 	J_ASSERT(list_empty(&sbi->s_orphan));
841 
842 	invalidate_bdev(sb->s_bdev);
843 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
844 		/*
845 		 * Invalidate the journal device's buffers.  We don't want them
846 		 * floating about in memory - the physical journal device may
847 		 * hotswapped, and it breaks the `ro-after' testing code.
848 		 */
849 		sync_blockdev(sbi->journal_bdev);
850 		invalidate_bdev(sbi->journal_bdev);
851 		ext4_blkdev_remove(sbi);
852 	}
853 	if (sbi->s_mmp_tsk)
854 		kthread_stop(sbi->s_mmp_tsk);
855 	sb->s_fs_info = NULL;
856 	/*
857 	 * Now that we are completely done shutting down the
858 	 * superblock, we need to actually destroy the kobject.
859 	 */
860 	unlock_super(sb);
861 	kobject_put(&sbi->s_kobj);
862 	wait_for_completion(&sbi->s_kobj_unregister);
863 	kfree(sbi->s_blockgroup_lock);
864 	kfree(sbi);
865 }
866 
867 static struct kmem_cache *ext4_inode_cachep;
868 
869 /*
870  * Called inside transaction, so use GFP_NOFS
871  */
872 static struct inode *ext4_alloc_inode(struct super_block *sb)
873 {
874 	struct ext4_inode_info *ei;
875 
876 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
877 	if (!ei)
878 		return NULL;
879 
880 	ei->vfs_inode.i_version = 1;
881 	ei->vfs_inode.i_data.writeback_index = 0;
882 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
883 	INIT_LIST_HEAD(&ei->i_prealloc_list);
884 	spin_lock_init(&ei->i_prealloc_lock);
885 	ei->i_reserved_data_blocks = 0;
886 	ei->i_reserved_meta_blocks = 0;
887 	ei->i_allocated_meta_blocks = 0;
888 	ei->i_da_metadata_calc_len = 0;
889 	spin_lock_init(&(ei->i_block_reservation_lock));
890 #ifdef CONFIG_QUOTA
891 	ei->i_reserved_quota = 0;
892 #endif
893 	ei->jinode = NULL;
894 	INIT_LIST_HEAD(&ei->i_completed_io_list);
895 	spin_lock_init(&ei->i_completed_io_lock);
896 	ei->cur_aio_dio = NULL;
897 	ei->i_sync_tid = 0;
898 	ei->i_datasync_tid = 0;
899 	atomic_set(&ei->i_ioend_count, 0);
900 	atomic_set(&ei->i_aiodio_unwritten, 0);
901 
902 	return &ei->vfs_inode;
903 }
904 
905 static int ext4_drop_inode(struct inode *inode)
906 {
907 	int drop = generic_drop_inode(inode);
908 
909 	trace_ext4_drop_inode(inode, drop);
910 	return drop;
911 }
912 
913 static void ext4_i_callback(struct rcu_head *head)
914 {
915 	struct inode *inode = container_of(head, struct inode, i_rcu);
916 	INIT_LIST_HEAD(&inode->i_dentry);
917 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
918 }
919 
920 static void ext4_destroy_inode(struct inode *inode)
921 {
922 	ext4_ioend_wait(inode);
923 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
924 		ext4_msg(inode->i_sb, KERN_ERR,
925 			 "Inode %lu (%p): orphan list check failed!",
926 			 inode->i_ino, EXT4_I(inode));
927 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
928 				EXT4_I(inode), sizeof(struct ext4_inode_info),
929 				true);
930 		dump_stack();
931 	}
932 	call_rcu(&inode->i_rcu, ext4_i_callback);
933 }
934 
935 static void init_once(void *foo)
936 {
937 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
938 
939 	INIT_LIST_HEAD(&ei->i_orphan);
940 #ifdef CONFIG_EXT4_FS_XATTR
941 	init_rwsem(&ei->xattr_sem);
942 #endif
943 	init_rwsem(&ei->i_data_sem);
944 	inode_init_once(&ei->vfs_inode);
945 }
946 
947 static int init_inodecache(void)
948 {
949 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
950 					     sizeof(struct ext4_inode_info),
951 					     0, (SLAB_RECLAIM_ACCOUNT|
952 						SLAB_MEM_SPREAD),
953 					     init_once);
954 	if (ext4_inode_cachep == NULL)
955 		return -ENOMEM;
956 	return 0;
957 }
958 
959 static void destroy_inodecache(void)
960 {
961 	kmem_cache_destroy(ext4_inode_cachep);
962 }
963 
964 void ext4_clear_inode(struct inode *inode)
965 {
966 	invalidate_inode_buffers(inode);
967 	end_writeback(inode);
968 	dquot_drop(inode);
969 	ext4_discard_preallocations(inode);
970 	if (EXT4_I(inode)->jinode) {
971 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
972 					       EXT4_I(inode)->jinode);
973 		jbd2_free_inode(EXT4_I(inode)->jinode);
974 		EXT4_I(inode)->jinode = NULL;
975 	}
976 }
977 
978 static inline void ext4_show_quota_options(struct seq_file *seq,
979 					   struct super_block *sb)
980 {
981 #if defined(CONFIG_QUOTA)
982 	struct ext4_sb_info *sbi = EXT4_SB(sb);
983 
984 	if (sbi->s_jquota_fmt) {
985 		char *fmtname = "";
986 
987 		switch (sbi->s_jquota_fmt) {
988 		case QFMT_VFS_OLD:
989 			fmtname = "vfsold";
990 			break;
991 		case QFMT_VFS_V0:
992 			fmtname = "vfsv0";
993 			break;
994 		case QFMT_VFS_V1:
995 			fmtname = "vfsv1";
996 			break;
997 		}
998 		seq_printf(seq, ",jqfmt=%s", fmtname);
999 	}
1000 
1001 	if (sbi->s_qf_names[USRQUOTA])
1002 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1003 
1004 	if (sbi->s_qf_names[GRPQUOTA])
1005 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1006 
1007 	if (test_opt(sb, USRQUOTA))
1008 		seq_puts(seq, ",usrquota");
1009 
1010 	if (test_opt(sb, GRPQUOTA))
1011 		seq_puts(seq, ",grpquota");
1012 #endif
1013 }
1014 
1015 /*
1016  * Show an option if
1017  *  - it's set to a non-default value OR
1018  *  - if the per-sb default is different from the global default
1019  */
1020 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
1021 {
1022 	int def_errors;
1023 	unsigned long def_mount_opts;
1024 	struct super_block *sb = vfs->mnt_sb;
1025 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 	struct ext4_super_block *es = sbi->s_es;
1027 
1028 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1029 	def_errors     = le16_to_cpu(es->s_errors);
1030 
1031 	if (sbi->s_sb_block != 1)
1032 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1033 	if (test_opt(sb, MINIX_DF))
1034 		seq_puts(seq, ",minixdf");
1035 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1036 		seq_puts(seq, ",grpid");
1037 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1038 		seq_puts(seq, ",nogrpid");
1039 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
1040 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1041 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1042 	}
1043 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
1044 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1045 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1046 	}
1047 	if (test_opt(sb, ERRORS_RO)) {
1048 		if (def_errors == EXT4_ERRORS_PANIC ||
1049 		    def_errors == EXT4_ERRORS_CONTINUE) {
1050 			seq_puts(seq, ",errors=remount-ro");
1051 		}
1052 	}
1053 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1054 		seq_puts(seq, ",errors=continue");
1055 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1056 		seq_puts(seq, ",errors=panic");
1057 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1058 		seq_puts(seq, ",nouid32");
1059 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1060 		seq_puts(seq, ",debug");
1061 	if (test_opt(sb, OLDALLOC))
1062 		seq_puts(seq, ",oldalloc");
1063 #ifdef CONFIG_EXT4_FS_XATTR
1064 	if (test_opt(sb, XATTR_USER))
1065 		seq_puts(seq, ",user_xattr");
1066 	if (!test_opt(sb, XATTR_USER))
1067 		seq_puts(seq, ",nouser_xattr");
1068 #endif
1069 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1070 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1071 		seq_puts(seq, ",acl");
1072 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1073 		seq_puts(seq, ",noacl");
1074 #endif
1075 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1076 		seq_printf(seq, ",commit=%u",
1077 			   (unsigned) (sbi->s_commit_interval / HZ));
1078 	}
1079 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1080 		seq_printf(seq, ",min_batch_time=%u",
1081 			   (unsigned) sbi->s_min_batch_time);
1082 	}
1083 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1084 		seq_printf(seq, ",max_batch_time=%u",
1085 			   (unsigned) sbi->s_min_batch_time);
1086 	}
1087 
1088 	/*
1089 	 * We're changing the default of barrier mount option, so
1090 	 * let's always display its mount state so it's clear what its
1091 	 * status is.
1092 	 */
1093 	seq_puts(seq, ",barrier=");
1094 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1095 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1096 		seq_puts(seq, ",journal_async_commit");
1097 	else if (test_opt(sb, JOURNAL_CHECKSUM))
1098 		seq_puts(seq, ",journal_checksum");
1099 	if (test_opt(sb, I_VERSION))
1100 		seq_puts(seq, ",i_version");
1101 	if (!test_opt(sb, DELALLOC) &&
1102 	    !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1103 		seq_puts(seq, ",nodelalloc");
1104 
1105 	if (!test_opt(sb, MBLK_IO_SUBMIT))
1106 		seq_puts(seq, ",nomblk_io_submit");
1107 	if (sbi->s_stripe)
1108 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1109 	/*
1110 	 * journal mode get enabled in different ways
1111 	 * So just print the value even if we didn't specify it
1112 	 */
1113 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1114 		seq_puts(seq, ",data=journal");
1115 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1116 		seq_puts(seq, ",data=ordered");
1117 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1118 		seq_puts(seq, ",data=writeback");
1119 
1120 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1121 		seq_printf(seq, ",inode_readahead_blks=%u",
1122 			   sbi->s_inode_readahead_blks);
1123 
1124 	if (test_opt(sb, DATA_ERR_ABORT))
1125 		seq_puts(seq, ",data_err=abort");
1126 
1127 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
1128 		seq_puts(seq, ",noauto_da_alloc");
1129 
1130 	if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1131 		seq_puts(seq, ",discard");
1132 
1133 	if (test_opt(sb, NOLOAD))
1134 		seq_puts(seq, ",norecovery");
1135 
1136 	if (test_opt(sb, DIOREAD_NOLOCK))
1137 		seq_puts(seq, ",dioread_nolock");
1138 
1139 	if (test_opt(sb, BLOCK_VALIDITY) &&
1140 	    !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1141 		seq_puts(seq, ",block_validity");
1142 
1143 	if (!test_opt(sb, INIT_INODE_TABLE))
1144 		seq_puts(seq, ",noinit_inode_table");
1145 	else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1146 		seq_printf(seq, ",init_inode_table=%u",
1147 			   (unsigned) sbi->s_li_wait_mult);
1148 
1149 	ext4_show_quota_options(seq, sb);
1150 
1151 	return 0;
1152 }
1153 
1154 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1155 					u64 ino, u32 generation)
1156 {
1157 	struct inode *inode;
1158 
1159 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1160 		return ERR_PTR(-ESTALE);
1161 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1162 		return ERR_PTR(-ESTALE);
1163 
1164 	/* iget isn't really right if the inode is currently unallocated!!
1165 	 *
1166 	 * ext4_read_inode will return a bad_inode if the inode had been
1167 	 * deleted, so we should be safe.
1168 	 *
1169 	 * Currently we don't know the generation for parent directory, so
1170 	 * a generation of 0 means "accept any"
1171 	 */
1172 	inode = ext4_iget(sb, ino);
1173 	if (IS_ERR(inode))
1174 		return ERR_CAST(inode);
1175 	if (generation && inode->i_generation != generation) {
1176 		iput(inode);
1177 		return ERR_PTR(-ESTALE);
1178 	}
1179 
1180 	return inode;
1181 }
1182 
1183 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1184 					int fh_len, int fh_type)
1185 {
1186 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1187 				    ext4_nfs_get_inode);
1188 }
1189 
1190 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1191 					int fh_len, int fh_type)
1192 {
1193 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1194 				    ext4_nfs_get_inode);
1195 }
1196 
1197 /*
1198  * Try to release metadata pages (indirect blocks, directories) which are
1199  * mapped via the block device.  Since these pages could have journal heads
1200  * which would prevent try_to_free_buffers() from freeing them, we must use
1201  * jbd2 layer's try_to_free_buffers() function to release them.
1202  */
1203 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1204 				 gfp_t wait)
1205 {
1206 	journal_t *journal = EXT4_SB(sb)->s_journal;
1207 
1208 	WARN_ON(PageChecked(page));
1209 	if (!page_has_buffers(page))
1210 		return 0;
1211 	if (journal)
1212 		return jbd2_journal_try_to_free_buffers(journal, page,
1213 							wait & ~__GFP_WAIT);
1214 	return try_to_free_buffers(page);
1215 }
1216 
1217 #ifdef CONFIG_QUOTA
1218 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1219 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1220 
1221 static int ext4_write_dquot(struct dquot *dquot);
1222 static int ext4_acquire_dquot(struct dquot *dquot);
1223 static int ext4_release_dquot(struct dquot *dquot);
1224 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1225 static int ext4_write_info(struct super_block *sb, int type);
1226 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1227 			 struct path *path);
1228 static int ext4_quota_off(struct super_block *sb, int type);
1229 static int ext4_quota_on_mount(struct super_block *sb, int type);
1230 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1231 			       size_t len, loff_t off);
1232 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1233 				const char *data, size_t len, loff_t off);
1234 
1235 static const struct dquot_operations ext4_quota_operations = {
1236 	.get_reserved_space = ext4_get_reserved_space,
1237 	.write_dquot	= ext4_write_dquot,
1238 	.acquire_dquot	= ext4_acquire_dquot,
1239 	.release_dquot	= ext4_release_dquot,
1240 	.mark_dirty	= ext4_mark_dquot_dirty,
1241 	.write_info	= ext4_write_info,
1242 	.alloc_dquot	= dquot_alloc,
1243 	.destroy_dquot	= dquot_destroy,
1244 };
1245 
1246 static const struct quotactl_ops ext4_qctl_operations = {
1247 	.quota_on	= ext4_quota_on,
1248 	.quota_off	= ext4_quota_off,
1249 	.quota_sync	= dquot_quota_sync,
1250 	.get_info	= dquot_get_dqinfo,
1251 	.set_info	= dquot_set_dqinfo,
1252 	.get_dqblk	= dquot_get_dqblk,
1253 	.set_dqblk	= dquot_set_dqblk
1254 };
1255 #endif
1256 
1257 static const struct super_operations ext4_sops = {
1258 	.alloc_inode	= ext4_alloc_inode,
1259 	.destroy_inode	= ext4_destroy_inode,
1260 	.write_inode	= ext4_write_inode,
1261 	.dirty_inode	= ext4_dirty_inode,
1262 	.drop_inode	= ext4_drop_inode,
1263 	.evict_inode	= ext4_evict_inode,
1264 	.put_super	= ext4_put_super,
1265 	.sync_fs	= ext4_sync_fs,
1266 	.freeze_fs	= ext4_freeze,
1267 	.unfreeze_fs	= ext4_unfreeze,
1268 	.statfs		= ext4_statfs,
1269 	.remount_fs	= ext4_remount,
1270 	.show_options	= ext4_show_options,
1271 #ifdef CONFIG_QUOTA
1272 	.quota_read	= ext4_quota_read,
1273 	.quota_write	= ext4_quota_write,
1274 #endif
1275 	.bdev_try_to_free_page = bdev_try_to_free_page,
1276 };
1277 
1278 static const struct super_operations ext4_nojournal_sops = {
1279 	.alloc_inode	= ext4_alloc_inode,
1280 	.destroy_inode	= ext4_destroy_inode,
1281 	.write_inode	= ext4_write_inode,
1282 	.dirty_inode	= ext4_dirty_inode,
1283 	.drop_inode	= ext4_drop_inode,
1284 	.evict_inode	= ext4_evict_inode,
1285 	.write_super	= ext4_write_super,
1286 	.put_super	= ext4_put_super,
1287 	.statfs		= ext4_statfs,
1288 	.remount_fs	= ext4_remount,
1289 	.show_options	= ext4_show_options,
1290 #ifdef CONFIG_QUOTA
1291 	.quota_read	= ext4_quota_read,
1292 	.quota_write	= ext4_quota_write,
1293 #endif
1294 	.bdev_try_to_free_page = bdev_try_to_free_page,
1295 };
1296 
1297 static const struct export_operations ext4_export_ops = {
1298 	.fh_to_dentry = ext4_fh_to_dentry,
1299 	.fh_to_parent = ext4_fh_to_parent,
1300 	.get_parent = ext4_get_parent,
1301 };
1302 
1303 enum {
1304 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1305 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1306 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1307 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1308 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1309 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1310 	Opt_journal_update, Opt_journal_dev,
1311 	Opt_journal_checksum, Opt_journal_async_commit,
1312 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1313 	Opt_data_err_abort, Opt_data_err_ignore,
1314 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1315 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1316 	Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1317 	Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1318 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1319 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1320 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1321 	Opt_dioread_nolock, Opt_dioread_lock,
1322 	Opt_discard, Opt_nodiscard,
1323 	Opt_init_inode_table, Opt_noinit_inode_table,
1324 };
1325 
1326 static const match_table_t tokens = {
1327 	{Opt_bsd_df, "bsddf"},
1328 	{Opt_minix_df, "minixdf"},
1329 	{Opt_grpid, "grpid"},
1330 	{Opt_grpid, "bsdgroups"},
1331 	{Opt_nogrpid, "nogrpid"},
1332 	{Opt_nogrpid, "sysvgroups"},
1333 	{Opt_resgid, "resgid=%u"},
1334 	{Opt_resuid, "resuid=%u"},
1335 	{Opt_sb, "sb=%u"},
1336 	{Opt_err_cont, "errors=continue"},
1337 	{Opt_err_panic, "errors=panic"},
1338 	{Opt_err_ro, "errors=remount-ro"},
1339 	{Opt_nouid32, "nouid32"},
1340 	{Opt_debug, "debug"},
1341 	{Opt_oldalloc, "oldalloc"},
1342 	{Opt_orlov, "orlov"},
1343 	{Opt_user_xattr, "user_xattr"},
1344 	{Opt_nouser_xattr, "nouser_xattr"},
1345 	{Opt_acl, "acl"},
1346 	{Opt_noacl, "noacl"},
1347 	{Opt_noload, "noload"},
1348 	{Opt_noload, "norecovery"},
1349 	{Opt_nobh, "nobh"},
1350 	{Opt_bh, "bh"},
1351 	{Opt_commit, "commit=%u"},
1352 	{Opt_min_batch_time, "min_batch_time=%u"},
1353 	{Opt_max_batch_time, "max_batch_time=%u"},
1354 	{Opt_journal_update, "journal=update"},
1355 	{Opt_journal_dev, "journal_dev=%u"},
1356 	{Opt_journal_checksum, "journal_checksum"},
1357 	{Opt_journal_async_commit, "journal_async_commit"},
1358 	{Opt_abort, "abort"},
1359 	{Opt_data_journal, "data=journal"},
1360 	{Opt_data_ordered, "data=ordered"},
1361 	{Opt_data_writeback, "data=writeback"},
1362 	{Opt_data_err_abort, "data_err=abort"},
1363 	{Opt_data_err_ignore, "data_err=ignore"},
1364 	{Opt_offusrjquota, "usrjquota="},
1365 	{Opt_usrjquota, "usrjquota=%s"},
1366 	{Opt_offgrpjquota, "grpjquota="},
1367 	{Opt_grpjquota, "grpjquota=%s"},
1368 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1369 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1370 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1371 	{Opt_grpquota, "grpquota"},
1372 	{Opt_noquota, "noquota"},
1373 	{Opt_quota, "quota"},
1374 	{Opt_usrquota, "usrquota"},
1375 	{Opt_barrier, "barrier=%u"},
1376 	{Opt_barrier, "barrier"},
1377 	{Opt_nobarrier, "nobarrier"},
1378 	{Opt_i_version, "i_version"},
1379 	{Opt_stripe, "stripe=%u"},
1380 	{Opt_resize, "resize"},
1381 	{Opt_delalloc, "delalloc"},
1382 	{Opt_nodelalloc, "nodelalloc"},
1383 	{Opt_mblk_io_submit, "mblk_io_submit"},
1384 	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1385 	{Opt_block_validity, "block_validity"},
1386 	{Opt_noblock_validity, "noblock_validity"},
1387 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1388 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1389 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1390 	{Opt_auto_da_alloc, "auto_da_alloc"},
1391 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1392 	{Opt_dioread_nolock, "dioread_nolock"},
1393 	{Opt_dioread_lock, "dioread_lock"},
1394 	{Opt_discard, "discard"},
1395 	{Opt_nodiscard, "nodiscard"},
1396 	{Opt_init_inode_table, "init_itable=%u"},
1397 	{Opt_init_inode_table, "init_itable"},
1398 	{Opt_noinit_inode_table, "noinit_itable"},
1399 	{Opt_err, NULL},
1400 };
1401 
1402 static ext4_fsblk_t get_sb_block(void **data)
1403 {
1404 	ext4_fsblk_t	sb_block;
1405 	char		*options = (char *) *data;
1406 
1407 	if (!options || strncmp(options, "sb=", 3) != 0)
1408 		return 1;	/* Default location */
1409 
1410 	options += 3;
1411 	/* TODO: use simple_strtoll with >32bit ext4 */
1412 	sb_block = simple_strtoul(options, &options, 0);
1413 	if (*options && *options != ',') {
1414 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1415 		       (char *) *data);
1416 		return 1;
1417 	}
1418 	if (*options == ',')
1419 		options++;
1420 	*data = (void *) options;
1421 
1422 	return sb_block;
1423 }
1424 
1425 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1426 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1427 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1428 
1429 #ifdef CONFIG_QUOTA
1430 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1431 {
1432 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1433 	char *qname;
1434 
1435 	if (sb_any_quota_loaded(sb) &&
1436 		!sbi->s_qf_names[qtype]) {
1437 		ext4_msg(sb, KERN_ERR,
1438 			"Cannot change journaled "
1439 			"quota options when quota turned on");
1440 		return 0;
1441 	}
1442 	qname = match_strdup(args);
1443 	if (!qname) {
1444 		ext4_msg(sb, KERN_ERR,
1445 			"Not enough memory for storing quotafile name");
1446 		return 0;
1447 	}
1448 	if (sbi->s_qf_names[qtype] &&
1449 		strcmp(sbi->s_qf_names[qtype], qname)) {
1450 		ext4_msg(sb, KERN_ERR,
1451 			"%s quota file already specified", QTYPE2NAME(qtype));
1452 		kfree(qname);
1453 		return 0;
1454 	}
1455 	sbi->s_qf_names[qtype] = qname;
1456 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1457 		ext4_msg(sb, KERN_ERR,
1458 			"quotafile must be on filesystem root");
1459 		kfree(sbi->s_qf_names[qtype]);
1460 		sbi->s_qf_names[qtype] = NULL;
1461 		return 0;
1462 	}
1463 	set_opt(sb, QUOTA);
1464 	return 1;
1465 }
1466 
1467 static int clear_qf_name(struct super_block *sb, int qtype)
1468 {
1469 
1470 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1471 
1472 	if (sb_any_quota_loaded(sb) &&
1473 		sbi->s_qf_names[qtype]) {
1474 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1475 			" when quota turned on");
1476 		return 0;
1477 	}
1478 	/*
1479 	 * The space will be released later when all options are confirmed
1480 	 * to be correct
1481 	 */
1482 	sbi->s_qf_names[qtype] = NULL;
1483 	return 1;
1484 }
1485 #endif
1486 
1487 static int parse_options(char *options, struct super_block *sb,
1488 			 unsigned long *journal_devnum,
1489 			 unsigned int *journal_ioprio,
1490 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1491 {
1492 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1493 	char *p;
1494 	substring_t args[MAX_OPT_ARGS];
1495 	int data_opt = 0;
1496 	int option;
1497 #ifdef CONFIG_QUOTA
1498 	int qfmt;
1499 #endif
1500 
1501 	if (!options)
1502 		return 1;
1503 
1504 	while ((p = strsep(&options, ",")) != NULL) {
1505 		int token;
1506 		if (!*p)
1507 			continue;
1508 
1509 		/*
1510 		 * Initialize args struct so we know whether arg was
1511 		 * found; some options take optional arguments.
1512 		 */
1513 		args[0].to = args[0].from = NULL;
1514 		token = match_token(p, tokens, args);
1515 		switch (token) {
1516 		case Opt_bsd_df:
1517 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1518 			clear_opt(sb, MINIX_DF);
1519 			break;
1520 		case Opt_minix_df:
1521 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1522 			set_opt(sb, MINIX_DF);
1523 
1524 			break;
1525 		case Opt_grpid:
1526 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1527 			set_opt(sb, GRPID);
1528 
1529 			break;
1530 		case Opt_nogrpid:
1531 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1532 			clear_opt(sb, GRPID);
1533 
1534 			break;
1535 		case Opt_resuid:
1536 			if (match_int(&args[0], &option))
1537 				return 0;
1538 			sbi->s_resuid = option;
1539 			break;
1540 		case Opt_resgid:
1541 			if (match_int(&args[0], &option))
1542 				return 0;
1543 			sbi->s_resgid = option;
1544 			break;
1545 		case Opt_sb:
1546 			/* handled by get_sb_block() instead of here */
1547 			/* *sb_block = match_int(&args[0]); */
1548 			break;
1549 		case Opt_err_panic:
1550 			clear_opt(sb, ERRORS_CONT);
1551 			clear_opt(sb, ERRORS_RO);
1552 			set_opt(sb, ERRORS_PANIC);
1553 			break;
1554 		case Opt_err_ro:
1555 			clear_opt(sb, ERRORS_CONT);
1556 			clear_opt(sb, ERRORS_PANIC);
1557 			set_opt(sb, ERRORS_RO);
1558 			break;
1559 		case Opt_err_cont:
1560 			clear_opt(sb, ERRORS_RO);
1561 			clear_opt(sb, ERRORS_PANIC);
1562 			set_opt(sb, ERRORS_CONT);
1563 			break;
1564 		case Opt_nouid32:
1565 			set_opt(sb, NO_UID32);
1566 			break;
1567 		case Opt_debug:
1568 			set_opt(sb, DEBUG);
1569 			break;
1570 		case Opt_oldalloc:
1571 			set_opt(sb, OLDALLOC);
1572 			break;
1573 		case Opt_orlov:
1574 			clear_opt(sb, OLDALLOC);
1575 			break;
1576 #ifdef CONFIG_EXT4_FS_XATTR
1577 		case Opt_user_xattr:
1578 			set_opt(sb, XATTR_USER);
1579 			break;
1580 		case Opt_nouser_xattr:
1581 			clear_opt(sb, XATTR_USER);
1582 			break;
1583 #else
1584 		case Opt_user_xattr:
1585 		case Opt_nouser_xattr:
1586 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1587 			break;
1588 #endif
1589 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1590 		case Opt_acl:
1591 			set_opt(sb, POSIX_ACL);
1592 			break;
1593 		case Opt_noacl:
1594 			clear_opt(sb, POSIX_ACL);
1595 			break;
1596 #else
1597 		case Opt_acl:
1598 		case Opt_noacl:
1599 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1600 			break;
1601 #endif
1602 		case Opt_journal_update:
1603 			/* @@@ FIXME */
1604 			/* Eventually we will want to be able to create
1605 			   a journal file here.  For now, only allow the
1606 			   user to specify an existing inode to be the
1607 			   journal file. */
1608 			if (is_remount) {
1609 				ext4_msg(sb, KERN_ERR,
1610 					 "Cannot specify journal on remount");
1611 				return 0;
1612 			}
1613 			set_opt(sb, UPDATE_JOURNAL);
1614 			break;
1615 		case Opt_journal_dev:
1616 			if (is_remount) {
1617 				ext4_msg(sb, KERN_ERR,
1618 					"Cannot specify journal on remount");
1619 				return 0;
1620 			}
1621 			if (match_int(&args[0], &option))
1622 				return 0;
1623 			*journal_devnum = option;
1624 			break;
1625 		case Opt_journal_checksum:
1626 			set_opt(sb, JOURNAL_CHECKSUM);
1627 			break;
1628 		case Opt_journal_async_commit:
1629 			set_opt(sb, JOURNAL_ASYNC_COMMIT);
1630 			set_opt(sb, JOURNAL_CHECKSUM);
1631 			break;
1632 		case Opt_noload:
1633 			set_opt(sb, NOLOAD);
1634 			break;
1635 		case Opt_commit:
1636 			if (match_int(&args[0], &option))
1637 				return 0;
1638 			if (option < 0)
1639 				return 0;
1640 			if (option == 0)
1641 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1642 			sbi->s_commit_interval = HZ * option;
1643 			break;
1644 		case Opt_max_batch_time:
1645 			if (match_int(&args[0], &option))
1646 				return 0;
1647 			if (option < 0)
1648 				return 0;
1649 			if (option == 0)
1650 				option = EXT4_DEF_MAX_BATCH_TIME;
1651 			sbi->s_max_batch_time = option;
1652 			break;
1653 		case Opt_min_batch_time:
1654 			if (match_int(&args[0], &option))
1655 				return 0;
1656 			if (option < 0)
1657 				return 0;
1658 			sbi->s_min_batch_time = option;
1659 			break;
1660 		case Opt_data_journal:
1661 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1662 			goto datacheck;
1663 		case Opt_data_ordered:
1664 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1665 			goto datacheck;
1666 		case Opt_data_writeback:
1667 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1668 		datacheck:
1669 			if (is_remount) {
1670 				if (test_opt(sb, DATA_FLAGS) != data_opt) {
1671 					ext4_msg(sb, KERN_ERR,
1672 						"Cannot change data mode on remount");
1673 					return 0;
1674 				}
1675 			} else {
1676 				clear_opt(sb, DATA_FLAGS);
1677 				sbi->s_mount_opt |= data_opt;
1678 			}
1679 			break;
1680 		case Opt_data_err_abort:
1681 			set_opt(sb, DATA_ERR_ABORT);
1682 			break;
1683 		case Opt_data_err_ignore:
1684 			clear_opt(sb, DATA_ERR_ABORT);
1685 			break;
1686 #ifdef CONFIG_QUOTA
1687 		case Opt_usrjquota:
1688 			if (!set_qf_name(sb, USRQUOTA, &args[0]))
1689 				return 0;
1690 			break;
1691 		case Opt_grpjquota:
1692 			if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1693 				return 0;
1694 			break;
1695 		case Opt_offusrjquota:
1696 			if (!clear_qf_name(sb, USRQUOTA))
1697 				return 0;
1698 			break;
1699 		case Opt_offgrpjquota:
1700 			if (!clear_qf_name(sb, GRPQUOTA))
1701 				return 0;
1702 			break;
1703 
1704 		case Opt_jqfmt_vfsold:
1705 			qfmt = QFMT_VFS_OLD;
1706 			goto set_qf_format;
1707 		case Opt_jqfmt_vfsv0:
1708 			qfmt = QFMT_VFS_V0;
1709 			goto set_qf_format;
1710 		case Opt_jqfmt_vfsv1:
1711 			qfmt = QFMT_VFS_V1;
1712 set_qf_format:
1713 			if (sb_any_quota_loaded(sb) &&
1714 			    sbi->s_jquota_fmt != qfmt) {
1715 				ext4_msg(sb, KERN_ERR, "Cannot change "
1716 					"journaled quota options when "
1717 					"quota turned on");
1718 				return 0;
1719 			}
1720 			sbi->s_jquota_fmt = qfmt;
1721 			break;
1722 		case Opt_quota:
1723 		case Opt_usrquota:
1724 			set_opt(sb, QUOTA);
1725 			set_opt(sb, USRQUOTA);
1726 			break;
1727 		case Opt_grpquota:
1728 			set_opt(sb, QUOTA);
1729 			set_opt(sb, GRPQUOTA);
1730 			break;
1731 		case Opt_noquota:
1732 			if (sb_any_quota_loaded(sb)) {
1733 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1734 					"options when quota turned on");
1735 				return 0;
1736 			}
1737 			clear_opt(sb, QUOTA);
1738 			clear_opt(sb, USRQUOTA);
1739 			clear_opt(sb, GRPQUOTA);
1740 			break;
1741 #else
1742 		case Opt_quota:
1743 		case Opt_usrquota:
1744 		case Opt_grpquota:
1745 			ext4_msg(sb, KERN_ERR,
1746 				"quota options not supported");
1747 			break;
1748 		case Opt_usrjquota:
1749 		case Opt_grpjquota:
1750 		case Opt_offusrjquota:
1751 		case Opt_offgrpjquota:
1752 		case Opt_jqfmt_vfsold:
1753 		case Opt_jqfmt_vfsv0:
1754 		case Opt_jqfmt_vfsv1:
1755 			ext4_msg(sb, KERN_ERR,
1756 				"journaled quota options not supported");
1757 			break;
1758 		case Opt_noquota:
1759 			break;
1760 #endif
1761 		case Opt_abort:
1762 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1763 			break;
1764 		case Opt_nobarrier:
1765 			clear_opt(sb, BARRIER);
1766 			break;
1767 		case Opt_barrier:
1768 			if (args[0].from) {
1769 				if (match_int(&args[0], &option))
1770 					return 0;
1771 			} else
1772 				option = 1;	/* No argument, default to 1 */
1773 			if (option)
1774 				set_opt(sb, BARRIER);
1775 			else
1776 				clear_opt(sb, BARRIER);
1777 			break;
1778 		case Opt_ignore:
1779 			break;
1780 		case Opt_resize:
1781 			if (!is_remount) {
1782 				ext4_msg(sb, KERN_ERR,
1783 					"resize option only available "
1784 					"for remount");
1785 				return 0;
1786 			}
1787 			if (match_int(&args[0], &option) != 0)
1788 				return 0;
1789 			*n_blocks_count = option;
1790 			break;
1791 		case Opt_nobh:
1792 			ext4_msg(sb, KERN_WARNING,
1793 				 "Ignoring deprecated nobh option");
1794 			break;
1795 		case Opt_bh:
1796 			ext4_msg(sb, KERN_WARNING,
1797 				 "Ignoring deprecated bh option");
1798 			break;
1799 		case Opt_i_version:
1800 			set_opt(sb, I_VERSION);
1801 			sb->s_flags |= MS_I_VERSION;
1802 			break;
1803 		case Opt_nodelalloc:
1804 			clear_opt(sb, DELALLOC);
1805 			break;
1806 		case Opt_mblk_io_submit:
1807 			set_opt(sb, MBLK_IO_SUBMIT);
1808 			break;
1809 		case Opt_nomblk_io_submit:
1810 			clear_opt(sb, MBLK_IO_SUBMIT);
1811 			break;
1812 		case Opt_stripe:
1813 			if (match_int(&args[0], &option))
1814 				return 0;
1815 			if (option < 0)
1816 				return 0;
1817 			sbi->s_stripe = option;
1818 			break;
1819 		case Opt_delalloc:
1820 			set_opt(sb, DELALLOC);
1821 			break;
1822 		case Opt_block_validity:
1823 			set_opt(sb, BLOCK_VALIDITY);
1824 			break;
1825 		case Opt_noblock_validity:
1826 			clear_opt(sb, BLOCK_VALIDITY);
1827 			break;
1828 		case Opt_inode_readahead_blks:
1829 			if (match_int(&args[0], &option))
1830 				return 0;
1831 			if (option < 0 || option > (1 << 30))
1832 				return 0;
1833 			if (option && !is_power_of_2(option)) {
1834 				ext4_msg(sb, KERN_ERR,
1835 					 "EXT4-fs: inode_readahead_blks"
1836 					 " must be a power of 2");
1837 				return 0;
1838 			}
1839 			sbi->s_inode_readahead_blks = option;
1840 			break;
1841 		case Opt_journal_ioprio:
1842 			if (match_int(&args[0], &option))
1843 				return 0;
1844 			if (option < 0 || option > 7)
1845 				break;
1846 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1847 							    option);
1848 			break;
1849 		case Opt_noauto_da_alloc:
1850 			set_opt(sb, NO_AUTO_DA_ALLOC);
1851 			break;
1852 		case Opt_auto_da_alloc:
1853 			if (args[0].from) {
1854 				if (match_int(&args[0], &option))
1855 					return 0;
1856 			} else
1857 				option = 1;	/* No argument, default to 1 */
1858 			if (option)
1859 				clear_opt(sb, NO_AUTO_DA_ALLOC);
1860 			else
1861 				set_opt(sb,NO_AUTO_DA_ALLOC);
1862 			break;
1863 		case Opt_discard:
1864 			set_opt(sb, DISCARD);
1865 			break;
1866 		case Opt_nodiscard:
1867 			clear_opt(sb, DISCARD);
1868 			break;
1869 		case Opt_dioread_nolock:
1870 			set_opt(sb, DIOREAD_NOLOCK);
1871 			break;
1872 		case Opt_dioread_lock:
1873 			clear_opt(sb, DIOREAD_NOLOCK);
1874 			break;
1875 		case Opt_init_inode_table:
1876 			set_opt(sb, INIT_INODE_TABLE);
1877 			if (args[0].from) {
1878 				if (match_int(&args[0], &option))
1879 					return 0;
1880 			} else
1881 				option = EXT4_DEF_LI_WAIT_MULT;
1882 			if (option < 0)
1883 				return 0;
1884 			sbi->s_li_wait_mult = option;
1885 			break;
1886 		case Opt_noinit_inode_table:
1887 			clear_opt(sb, INIT_INODE_TABLE);
1888 			break;
1889 		default:
1890 			ext4_msg(sb, KERN_ERR,
1891 			       "Unrecognized mount option \"%s\" "
1892 			       "or missing value", p);
1893 			return 0;
1894 		}
1895 	}
1896 #ifdef CONFIG_QUOTA
1897 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1898 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1899 			clear_opt(sb, USRQUOTA);
1900 
1901 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1902 			clear_opt(sb, GRPQUOTA);
1903 
1904 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1905 			ext4_msg(sb, KERN_ERR, "old and new quota "
1906 					"format mixing");
1907 			return 0;
1908 		}
1909 
1910 		if (!sbi->s_jquota_fmt) {
1911 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1912 					"not specified");
1913 			return 0;
1914 		}
1915 	} else {
1916 		if (sbi->s_jquota_fmt) {
1917 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1918 					"specified with no journaling "
1919 					"enabled");
1920 			return 0;
1921 		}
1922 	}
1923 #endif
1924 	return 1;
1925 }
1926 
1927 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1928 			    int read_only)
1929 {
1930 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1931 	int res = 0;
1932 
1933 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1934 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1935 			 "forcing read-only mode");
1936 		res = MS_RDONLY;
1937 	}
1938 	if (read_only)
1939 		return res;
1940 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1941 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1942 			 "running e2fsck is recommended");
1943 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1944 		ext4_msg(sb, KERN_WARNING,
1945 			 "warning: mounting fs with errors, "
1946 			 "running e2fsck is recommended");
1947 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1948 		 le16_to_cpu(es->s_mnt_count) >=
1949 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1950 		ext4_msg(sb, KERN_WARNING,
1951 			 "warning: maximal mount count reached, "
1952 			 "running e2fsck is recommended");
1953 	else if (le32_to_cpu(es->s_checkinterval) &&
1954 		(le32_to_cpu(es->s_lastcheck) +
1955 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1956 		ext4_msg(sb, KERN_WARNING,
1957 			 "warning: checktime reached, "
1958 			 "running e2fsck is recommended");
1959 	if (!sbi->s_journal)
1960 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1961 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1962 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1963 	le16_add_cpu(&es->s_mnt_count, 1);
1964 	es->s_mtime = cpu_to_le32(get_seconds());
1965 	ext4_update_dynamic_rev(sb);
1966 	if (sbi->s_journal)
1967 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1968 
1969 	ext4_commit_super(sb, 1);
1970 	if (test_opt(sb, DEBUG))
1971 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1972 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1973 			sb->s_blocksize,
1974 			sbi->s_groups_count,
1975 			EXT4_BLOCKS_PER_GROUP(sb),
1976 			EXT4_INODES_PER_GROUP(sb),
1977 			sbi->s_mount_opt, sbi->s_mount_opt2);
1978 
1979 	cleancache_init_fs(sb);
1980 	return res;
1981 }
1982 
1983 static int ext4_fill_flex_info(struct super_block *sb)
1984 {
1985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 	struct ext4_group_desc *gdp = NULL;
1987 	ext4_group_t flex_group_count;
1988 	ext4_group_t flex_group;
1989 	int groups_per_flex = 0;
1990 	size_t size;
1991 	int i;
1992 
1993 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1994 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1995 
1996 	if (groups_per_flex < 2) {
1997 		sbi->s_log_groups_per_flex = 0;
1998 		return 1;
1999 	}
2000 
2001 	/* We allocate both existing and potentially added groups */
2002 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
2003 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
2004 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
2005 	size = flex_group_count * sizeof(struct flex_groups);
2006 	sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
2007 	if (sbi->s_flex_groups == NULL) {
2008 		ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
2009 			 flex_group_count);
2010 		goto failed;
2011 	}
2012 
2013 	for (i = 0; i < sbi->s_groups_count; i++) {
2014 		gdp = ext4_get_group_desc(sb, i, NULL);
2015 
2016 		flex_group = ext4_flex_group(sbi, i);
2017 		atomic_add(ext4_free_inodes_count(sb, gdp),
2018 			   &sbi->s_flex_groups[flex_group].free_inodes);
2019 		atomic_add(ext4_free_blks_count(sb, gdp),
2020 			   &sbi->s_flex_groups[flex_group].free_blocks);
2021 		atomic_add(ext4_used_dirs_count(sb, gdp),
2022 			   &sbi->s_flex_groups[flex_group].used_dirs);
2023 	}
2024 
2025 	return 1;
2026 failed:
2027 	return 0;
2028 }
2029 
2030 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2031 			    struct ext4_group_desc *gdp)
2032 {
2033 	__u16 crc = 0;
2034 
2035 	if (sbi->s_es->s_feature_ro_compat &
2036 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2037 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
2038 		__le32 le_group = cpu_to_le32(block_group);
2039 
2040 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2041 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2042 		crc = crc16(crc, (__u8 *)gdp, offset);
2043 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
2044 		/* for checksum of struct ext4_group_desc do the rest...*/
2045 		if ((sbi->s_es->s_feature_incompat &
2046 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2047 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2048 			crc = crc16(crc, (__u8 *)gdp + offset,
2049 				    le16_to_cpu(sbi->s_es->s_desc_size) -
2050 					offset);
2051 	}
2052 
2053 	return cpu_to_le16(crc);
2054 }
2055 
2056 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2057 				struct ext4_group_desc *gdp)
2058 {
2059 	if ((sbi->s_es->s_feature_ro_compat &
2060 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2061 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2062 		return 0;
2063 
2064 	return 1;
2065 }
2066 
2067 /* Called at mount-time, super-block is locked */
2068 static int ext4_check_descriptors(struct super_block *sb,
2069 				  ext4_group_t *first_not_zeroed)
2070 {
2071 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2072 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2073 	ext4_fsblk_t last_block;
2074 	ext4_fsblk_t block_bitmap;
2075 	ext4_fsblk_t inode_bitmap;
2076 	ext4_fsblk_t inode_table;
2077 	int flexbg_flag = 0;
2078 	ext4_group_t i, grp = sbi->s_groups_count;
2079 
2080 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2081 		flexbg_flag = 1;
2082 
2083 	ext4_debug("Checking group descriptors");
2084 
2085 	for (i = 0; i < sbi->s_groups_count; i++) {
2086 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2087 
2088 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2089 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2090 		else
2091 			last_block = first_block +
2092 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2093 
2094 		if ((grp == sbi->s_groups_count) &&
2095 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2096 			grp = i;
2097 
2098 		block_bitmap = ext4_block_bitmap(sb, gdp);
2099 		if (block_bitmap < first_block || block_bitmap > last_block) {
2100 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2101 			       "Block bitmap for group %u not in group "
2102 			       "(block %llu)!", i, block_bitmap);
2103 			return 0;
2104 		}
2105 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2106 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2107 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2108 			       "Inode bitmap for group %u not in group "
2109 			       "(block %llu)!", i, inode_bitmap);
2110 			return 0;
2111 		}
2112 		inode_table = ext4_inode_table(sb, gdp);
2113 		if (inode_table < first_block ||
2114 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2115 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2116 			       "Inode table for group %u not in group "
2117 			       "(block %llu)!", i, inode_table);
2118 			return 0;
2119 		}
2120 		ext4_lock_group(sb, i);
2121 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2122 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2123 				 "Checksum for group %u failed (%u!=%u)",
2124 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2125 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2126 			if (!(sb->s_flags & MS_RDONLY)) {
2127 				ext4_unlock_group(sb, i);
2128 				return 0;
2129 			}
2130 		}
2131 		ext4_unlock_group(sb, i);
2132 		if (!flexbg_flag)
2133 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2134 	}
2135 	if (NULL != first_not_zeroed)
2136 		*first_not_zeroed = grp;
2137 
2138 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2139 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2140 	return 1;
2141 }
2142 
2143 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2144  * the superblock) which were deleted from all directories, but held open by
2145  * a process at the time of a crash.  We walk the list and try to delete these
2146  * inodes at recovery time (only with a read-write filesystem).
2147  *
2148  * In order to keep the orphan inode chain consistent during traversal (in
2149  * case of crash during recovery), we link each inode into the superblock
2150  * orphan list_head and handle it the same way as an inode deletion during
2151  * normal operation (which journals the operations for us).
2152  *
2153  * We only do an iget() and an iput() on each inode, which is very safe if we
2154  * accidentally point at an in-use or already deleted inode.  The worst that
2155  * can happen in this case is that we get a "bit already cleared" message from
2156  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2157  * e2fsck was run on this filesystem, and it must have already done the orphan
2158  * inode cleanup for us, so we can safely abort without any further action.
2159  */
2160 static void ext4_orphan_cleanup(struct super_block *sb,
2161 				struct ext4_super_block *es)
2162 {
2163 	unsigned int s_flags = sb->s_flags;
2164 	int nr_orphans = 0, nr_truncates = 0;
2165 #ifdef CONFIG_QUOTA
2166 	int i;
2167 #endif
2168 	if (!es->s_last_orphan) {
2169 		jbd_debug(4, "no orphan inodes to clean up\n");
2170 		return;
2171 	}
2172 
2173 	if (bdev_read_only(sb->s_bdev)) {
2174 		ext4_msg(sb, KERN_ERR, "write access "
2175 			"unavailable, skipping orphan cleanup");
2176 		return;
2177 	}
2178 
2179 	/* Check if feature set would not allow a r/w mount */
2180 	if (!ext4_feature_set_ok(sb, 0)) {
2181 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2182 			 "unknown ROCOMPAT features");
2183 		return;
2184 	}
2185 
2186 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2187 		if (es->s_last_orphan)
2188 			jbd_debug(1, "Errors on filesystem, "
2189 				  "clearing orphan list.\n");
2190 		es->s_last_orphan = 0;
2191 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2192 		return;
2193 	}
2194 
2195 	if (s_flags & MS_RDONLY) {
2196 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2197 		sb->s_flags &= ~MS_RDONLY;
2198 	}
2199 #ifdef CONFIG_QUOTA
2200 	/* Needed for iput() to work correctly and not trash data */
2201 	sb->s_flags |= MS_ACTIVE;
2202 	/* Turn on quotas so that they are updated correctly */
2203 	for (i = 0; i < MAXQUOTAS; i++) {
2204 		if (EXT4_SB(sb)->s_qf_names[i]) {
2205 			int ret = ext4_quota_on_mount(sb, i);
2206 			if (ret < 0)
2207 				ext4_msg(sb, KERN_ERR,
2208 					"Cannot turn on journaled "
2209 					"quota: error %d", ret);
2210 		}
2211 	}
2212 #endif
2213 
2214 	while (es->s_last_orphan) {
2215 		struct inode *inode;
2216 
2217 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2218 		if (IS_ERR(inode)) {
2219 			es->s_last_orphan = 0;
2220 			break;
2221 		}
2222 
2223 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2224 		dquot_initialize(inode);
2225 		if (inode->i_nlink) {
2226 			ext4_msg(sb, KERN_DEBUG,
2227 				"%s: truncating inode %lu to %lld bytes",
2228 				__func__, inode->i_ino, inode->i_size);
2229 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2230 				  inode->i_ino, inode->i_size);
2231 			ext4_truncate(inode);
2232 			nr_truncates++;
2233 		} else {
2234 			ext4_msg(sb, KERN_DEBUG,
2235 				"%s: deleting unreferenced inode %lu",
2236 				__func__, inode->i_ino);
2237 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2238 				  inode->i_ino);
2239 			nr_orphans++;
2240 		}
2241 		iput(inode);  /* The delete magic happens here! */
2242 	}
2243 
2244 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2245 
2246 	if (nr_orphans)
2247 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2248 		       PLURAL(nr_orphans));
2249 	if (nr_truncates)
2250 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2251 		       PLURAL(nr_truncates));
2252 #ifdef CONFIG_QUOTA
2253 	/* Turn quotas off */
2254 	for (i = 0; i < MAXQUOTAS; i++) {
2255 		if (sb_dqopt(sb)->files[i])
2256 			dquot_quota_off(sb, i);
2257 	}
2258 #endif
2259 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2260 }
2261 
2262 /*
2263  * Maximal extent format file size.
2264  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2265  * extent format containers, within a sector_t, and within i_blocks
2266  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2267  * so that won't be a limiting factor.
2268  *
2269  * However there is other limiting factor. We do store extents in the form
2270  * of starting block and length, hence the resulting length of the extent
2271  * covering maximum file size must fit into on-disk format containers as
2272  * well. Given that length is always by 1 unit bigger than max unit (because
2273  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2274  *
2275  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2276  */
2277 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2278 {
2279 	loff_t res;
2280 	loff_t upper_limit = MAX_LFS_FILESIZE;
2281 
2282 	/* small i_blocks in vfs inode? */
2283 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2284 		/*
2285 		 * CONFIG_LBDAF is not enabled implies the inode
2286 		 * i_block represent total blocks in 512 bytes
2287 		 * 32 == size of vfs inode i_blocks * 8
2288 		 */
2289 		upper_limit = (1LL << 32) - 1;
2290 
2291 		/* total blocks in file system block size */
2292 		upper_limit >>= (blkbits - 9);
2293 		upper_limit <<= blkbits;
2294 	}
2295 
2296 	/*
2297 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2298 	 * by one fs block, so ee_len can cover the extent of maximum file
2299 	 * size
2300 	 */
2301 	res = (1LL << 32) - 1;
2302 	res <<= blkbits;
2303 
2304 	/* Sanity check against vm- & vfs- imposed limits */
2305 	if (res > upper_limit)
2306 		res = upper_limit;
2307 
2308 	return res;
2309 }
2310 
2311 /*
2312  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2313  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2314  * We need to be 1 filesystem block less than the 2^48 sector limit.
2315  */
2316 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2317 {
2318 	loff_t res = EXT4_NDIR_BLOCKS;
2319 	int meta_blocks;
2320 	loff_t upper_limit;
2321 	/* This is calculated to be the largest file size for a dense, block
2322 	 * mapped file such that the file's total number of 512-byte sectors,
2323 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2324 	 *
2325 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2326 	 * number of 512-byte sectors of the file.
2327 	 */
2328 
2329 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2330 		/*
2331 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2332 		 * the inode i_block field represents total file blocks in
2333 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2334 		 */
2335 		upper_limit = (1LL << 32) - 1;
2336 
2337 		/* total blocks in file system block size */
2338 		upper_limit >>= (bits - 9);
2339 
2340 	} else {
2341 		/*
2342 		 * We use 48 bit ext4_inode i_blocks
2343 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2344 		 * represent total number of blocks in
2345 		 * file system block size
2346 		 */
2347 		upper_limit = (1LL << 48) - 1;
2348 
2349 	}
2350 
2351 	/* indirect blocks */
2352 	meta_blocks = 1;
2353 	/* double indirect blocks */
2354 	meta_blocks += 1 + (1LL << (bits-2));
2355 	/* tripple indirect blocks */
2356 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2357 
2358 	upper_limit -= meta_blocks;
2359 	upper_limit <<= bits;
2360 
2361 	res += 1LL << (bits-2);
2362 	res += 1LL << (2*(bits-2));
2363 	res += 1LL << (3*(bits-2));
2364 	res <<= bits;
2365 	if (res > upper_limit)
2366 		res = upper_limit;
2367 
2368 	if (res > MAX_LFS_FILESIZE)
2369 		res = MAX_LFS_FILESIZE;
2370 
2371 	return res;
2372 }
2373 
2374 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2375 				   ext4_fsblk_t logical_sb_block, int nr)
2376 {
2377 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2378 	ext4_group_t bg, first_meta_bg;
2379 	int has_super = 0;
2380 
2381 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2382 
2383 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2384 	    nr < first_meta_bg)
2385 		return logical_sb_block + nr + 1;
2386 	bg = sbi->s_desc_per_block * nr;
2387 	if (ext4_bg_has_super(sb, bg))
2388 		has_super = 1;
2389 
2390 	return (has_super + ext4_group_first_block_no(sb, bg));
2391 }
2392 
2393 /**
2394  * ext4_get_stripe_size: Get the stripe size.
2395  * @sbi: In memory super block info
2396  *
2397  * If we have specified it via mount option, then
2398  * use the mount option value. If the value specified at mount time is
2399  * greater than the blocks per group use the super block value.
2400  * If the super block value is greater than blocks per group return 0.
2401  * Allocator needs it be less than blocks per group.
2402  *
2403  */
2404 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2405 {
2406 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2407 	unsigned long stripe_width =
2408 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2409 	int ret;
2410 
2411 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2412 		ret = sbi->s_stripe;
2413 	else if (stripe_width <= sbi->s_blocks_per_group)
2414 		ret = stripe_width;
2415 	else if (stride <= sbi->s_blocks_per_group)
2416 		ret = stride;
2417 	else
2418 		ret = 0;
2419 
2420 	/*
2421 	 * If the stripe width is 1, this makes no sense and
2422 	 * we set it to 0 to turn off stripe handling code.
2423 	 */
2424 	if (ret <= 1)
2425 		ret = 0;
2426 
2427 	return ret;
2428 }
2429 
2430 /* sysfs supprt */
2431 
2432 struct ext4_attr {
2433 	struct attribute attr;
2434 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2435 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2436 			 const char *, size_t);
2437 	int offset;
2438 };
2439 
2440 static int parse_strtoul(const char *buf,
2441 		unsigned long max, unsigned long *value)
2442 {
2443 	char *endp;
2444 
2445 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2446 	endp = skip_spaces(endp);
2447 	if (*endp || *value > max)
2448 		return -EINVAL;
2449 
2450 	return 0;
2451 }
2452 
2453 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2454 					      struct ext4_sb_info *sbi,
2455 					      char *buf)
2456 {
2457 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2458 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2459 }
2460 
2461 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2462 					 struct ext4_sb_info *sbi, char *buf)
2463 {
2464 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2465 
2466 	if (!sb->s_bdev->bd_part)
2467 		return snprintf(buf, PAGE_SIZE, "0\n");
2468 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2469 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2470 			 sbi->s_sectors_written_start) >> 1);
2471 }
2472 
2473 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2474 					  struct ext4_sb_info *sbi, char *buf)
2475 {
2476 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2477 
2478 	if (!sb->s_bdev->bd_part)
2479 		return snprintf(buf, PAGE_SIZE, "0\n");
2480 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2481 			(unsigned long long)(sbi->s_kbytes_written +
2482 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2483 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2484 }
2485 
2486 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2487 				      struct ext4_sb_info *sbi, char *buf)
2488 {
2489 	return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2490 }
2491 
2492 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2493 					struct ext4_sb_info *sbi, char *buf)
2494 {
2495 	return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2496 }
2497 
2498 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2499 					  struct ext4_sb_info *sbi,
2500 					  const char *buf, size_t count)
2501 {
2502 	unsigned long t;
2503 
2504 	if (parse_strtoul(buf, 0x40000000, &t))
2505 		return -EINVAL;
2506 
2507 	if (t && !is_power_of_2(t))
2508 		return -EINVAL;
2509 
2510 	sbi->s_inode_readahead_blks = t;
2511 	return count;
2512 }
2513 
2514 static ssize_t sbi_ui_show(struct ext4_attr *a,
2515 			   struct ext4_sb_info *sbi, char *buf)
2516 {
2517 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2518 
2519 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2520 }
2521 
2522 static ssize_t sbi_ui_store(struct ext4_attr *a,
2523 			    struct ext4_sb_info *sbi,
2524 			    const char *buf, size_t count)
2525 {
2526 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2527 	unsigned long t;
2528 
2529 	if (parse_strtoul(buf, 0xffffffff, &t))
2530 		return -EINVAL;
2531 	*ui = t;
2532 	return count;
2533 }
2534 
2535 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2536 static struct ext4_attr ext4_attr_##_name = {			\
2537 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2538 	.show	= _show,					\
2539 	.store	= _store,					\
2540 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2541 }
2542 #define EXT4_ATTR(name, mode, show, store) \
2543 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2544 
2545 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2546 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2547 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2548 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2549 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2550 #define ATTR_LIST(name) &ext4_attr_##name.attr
2551 
2552 EXT4_RO_ATTR(delayed_allocation_blocks);
2553 EXT4_RO_ATTR(session_write_kbytes);
2554 EXT4_RO_ATTR(lifetime_write_kbytes);
2555 EXT4_RO_ATTR(extent_cache_hits);
2556 EXT4_RO_ATTR(extent_cache_misses);
2557 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2558 		 inode_readahead_blks_store, s_inode_readahead_blks);
2559 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2560 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2561 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2562 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2563 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2564 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2565 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2566 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2567 
2568 static struct attribute *ext4_attrs[] = {
2569 	ATTR_LIST(delayed_allocation_blocks),
2570 	ATTR_LIST(session_write_kbytes),
2571 	ATTR_LIST(lifetime_write_kbytes),
2572 	ATTR_LIST(extent_cache_hits),
2573 	ATTR_LIST(extent_cache_misses),
2574 	ATTR_LIST(inode_readahead_blks),
2575 	ATTR_LIST(inode_goal),
2576 	ATTR_LIST(mb_stats),
2577 	ATTR_LIST(mb_max_to_scan),
2578 	ATTR_LIST(mb_min_to_scan),
2579 	ATTR_LIST(mb_order2_req),
2580 	ATTR_LIST(mb_stream_req),
2581 	ATTR_LIST(mb_group_prealloc),
2582 	ATTR_LIST(max_writeback_mb_bump),
2583 	NULL,
2584 };
2585 
2586 /* Features this copy of ext4 supports */
2587 EXT4_INFO_ATTR(lazy_itable_init);
2588 EXT4_INFO_ATTR(batched_discard);
2589 
2590 static struct attribute *ext4_feat_attrs[] = {
2591 	ATTR_LIST(lazy_itable_init),
2592 	ATTR_LIST(batched_discard),
2593 	NULL,
2594 };
2595 
2596 static ssize_t ext4_attr_show(struct kobject *kobj,
2597 			      struct attribute *attr, char *buf)
2598 {
2599 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2600 						s_kobj);
2601 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2602 
2603 	return a->show ? a->show(a, sbi, buf) : 0;
2604 }
2605 
2606 static ssize_t ext4_attr_store(struct kobject *kobj,
2607 			       struct attribute *attr,
2608 			       const char *buf, size_t len)
2609 {
2610 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2611 						s_kobj);
2612 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2613 
2614 	return a->store ? a->store(a, sbi, buf, len) : 0;
2615 }
2616 
2617 static void ext4_sb_release(struct kobject *kobj)
2618 {
2619 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2620 						s_kobj);
2621 	complete(&sbi->s_kobj_unregister);
2622 }
2623 
2624 static const struct sysfs_ops ext4_attr_ops = {
2625 	.show	= ext4_attr_show,
2626 	.store	= ext4_attr_store,
2627 };
2628 
2629 static struct kobj_type ext4_ktype = {
2630 	.default_attrs	= ext4_attrs,
2631 	.sysfs_ops	= &ext4_attr_ops,
2632 	.release	= ext4_sb_release,
2633 };
2634 
2635 static void ext4_feat_release(struct kobject *kobj)
2636 {
2637 	complete(&ext4_feat->f_kobj_unregister);
2638 }
2639 
2640 static struct kobj_type ext4_feat_ktype = {
2641 	.default_attrs	= ext4_feat_attrs,
2642 	.sysfs_ops	= &ext4_attr_ops,
2643 	.release	= ext4_feat_release,
2644 };
2645 
2646 /*
2647  * Check whether this filesystem can be mounted based on
2648  * the features present and the RDONLY/RDWR mount requested.
2649  * Returns 1 if this filesystem can be mounted as requested,
2650  * 0 if it cannot be.
2651  */
2652 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2653 {
2654 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2655 		ext4_msg(sb, KERN_ERR,
2656 			"Couldn't mount because of "
2657 			"unsupported optional features (%x)",
2658 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2659 			~EXT4_FEATURE_INCOMPAT_SUPP));
2660 		return 0;
2661 	}
2662 
2663 	if (readonly)
2664 		return 1;
2665 
2666 	/* Check that feature set is OK for a read-write mount */
2667 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2668 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2669 			 "unsupported optional features (%x)",
2670 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2671 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2672 		return 0;
2673 	}
2674 	/*
2675 	 * Large file size enabled file system can only be mounted
2676 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2677 	 */
2678 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2679 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2680 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2681 				 "cannot be mounted RDWR without "
2682 				 "CONFIG_LBDAF");
2683 			return 0;
2684 		}
2685 	}
2686 	return 1;
2687 }
2688 
2689 /*
2690  * This function is called once a day if we have errors logged
2691  * on the file system
2692  */
2693 static void print_daily_error_info(unsigned long arg)
2694 {
2695 	struct super_block *sb = (struct super_block *) arg;
2696 	struct ext4_sb_info *sbi;
2697 	struct ext4_super_block *es;
2698 
2699 	sbi = EXT4_SB(sb);
2700 	es = sbi->s_es;
2701 
2702 	if (es->s_error_count)
2703 		ext4_msg(sb, KERN_NOTICE, "error count: %u",
2704 			 le32_to_cpu(es->s_error_count));
2705 	if (es->s_first_error_time) {
2706 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2707 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2708 		       (int) sizeof(es->s_first_error_func),
2709 		       es->s_first_error_func,
2710 		       le32_to_cpu(es->s_first_error_line));
2711 		if (es->s_first_error_ino)
2712 			printk(": inode %u",
2713 			       le32_to_cpu(es->s_first_error_ino));
2714 		if (es->s_first_error_block)
2715 			printk(": block %llu", (unsigned long long)
2716 			       le64_to_cpu(es->s_first_error_block));
2717 		printk("\n");
2718 	}
2719 	if (es->s_last_error_time) {
2720 		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2721 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2722 		       (int) sizeof(es->s_last_error_func),
2723 		       es->s_last_error_func,
2724 		       le32_to_cpu(es->s_last_error_line));
2725 		if (es->s_last_error_ino)
2726 			printk(": inode %u",
2727 			       le32_to_cpu(es->s_last_error_ino));
2728 		if (es->s_last_error_block)
2729 			printk(": block %llu", (unsigned long long)
2730 			       le64_to_cpu(es->s_last_error_block));
2731 		printk("\n");
2732 	}
2733 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2734 }
2735 
2736 /* Find next suitable group and run ext4_init_inode_table */
2737 static int ext4_run_li_request(struct ext4_li_request *elr)
2738 {
2739 	struct ext4_group_desc *gdp = NULL;
2740 	ext4_group_t group, ngroups;
2741 	struct super_block *sb;
2742 	unsigned long timeout = 0;
2743 	int ret = 0;
2744 
2745 	sb = elr->lr_super;
2746 	ngroups = EXT4_SB(sb)->s_groups_count;
2747 
2748 	for (group = elr->lr_next_group; group < ngroups; group++) {
2749 		gdp = ext4_get_group_desc(sb, group, NULL);
2750 		if (!gdp) {
2751 			ret = 1;
2752 			break;
2753 		}
2754 
2755 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2756 			break;
2757 	}
2758 
2759 	if (group == ngroups)
2760 		ret = 1;
2761 
2762 	if (!ret) {
2763 		timeout = jiffies;
2764 		ret = ext4_init_inode_table(sb, group,
2765 					    elr->lr_timeout ? 0 : 1);
2766 		if (elr->lr_timeout == 0) {
2767 			timeout = (jiffies - timeout) *
2768 				  elr->lr_sbi->s_li_wait_mult;
2769 			elr->lr_timeout = timeout;
2770 		}
2771 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2772 		elr->lr_next_group = group + 1;
2773 	}
2774 
2775 	return ret;
2776 }
2777 
2778 /*
2779  * Remove lr_request from the list_request and free the
2780  * request structure. Should be called with li_list_mtx held
2781  */
2782 static void ext4_remove_li_request(struct ext4_li_request *elr)
2783 {
2784 	struct ext4_sb_info *sbi;
2785 
2786 	if (!elr)
2787 		return;
2788 
2789 	sbi = elr->lr_sbi;
2790 
2791 	list_del(&elr->lr_request);
2792 	sbi->s_li_request = NULL;
2793 	kfree(elr);
2794 }
2795 
2796 static void ext4_unregister_li_request(struct super_block *sb)
2797 {
2798 	mutex_lock(&ext4_li_mtx);
2799 	if (!ext4_li_info) {
2800 		mutex_unlock(&ext4_li_mtx);
2801 		return;
2802 	}
2803 
2804 	mutex_lock(&ext4_li_info->li_list_mtx);
2805 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2806 	mutex_unlock(&ext4_li_info->li_list_mtx);
2807 	mutex_unlock(&ext4_li_mtx);
2808 }
2809 
2810 static struct task_struct *ext4_lazyinit_task;
2811 
2812 /*
2813  * This is the function where ext4lazyinit thread lives. It walks
2814  * through the request list searching for next scheduled filesystem.
2815  * When such a fs is found, run the lazy initialization request
2816  * (ext4_rn_li_request) and keep track of the time spend in this
2817  * function. Based on that time we compute next schedule time of
2818  * the request. When walking through the list is complete, compute
2819  * next waking time and put itself into sleep.
2820  */
2821 static int ext4_lazyinit_thread(void *arg)
2822 {
2823 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2824 	struct list_head *pos, *n;
2825 	struct ext4_li_request *elr;
2826 	unsigned long next_wakeup, cur;
2827 
2828 	BUG_ON(NULL == eli);
2829 
2830 cont_thread:
2831 	while (true) {
2832 		next_wakeup = MAX_JIFFY_OFFSET;
2833 
2834 		mutex_lock(&eli->li_list_mtx);
2835 		if (list_empty(&eli->li_request_list)) {
2836 			mutex_unlock(&eli->li_list_mtx);
2837 			goto exit_thread;
2838 		}
2839 
2840 		list_for_each_safe(pos, n, &eli->li_request_list) {
2841 			elr = list_entry(pos, struct ext4_li_request,
2842 					 lr_request);
2843 
2844 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2845 				if (ext4_run_li_request(elr) != 0) {
2846 					/* error, remove the lazy_init job */
2847 					ext4_remove_li_request(elr);
2848 					continue;
2849 				}
2850 			}
2851 
2852 			if (time_before(elr->lr_next_sched, next_wakeup))
2853 				next_wakeup = elr->lr_next_sched;
2854 		}
2855 		mutex_unlock(&eli->li_list_mtx);
2856 
2857 		if (freezing(current))
2858 			refrigerator();
2859 
2860 		cur = jiffies;
2861 		if ((time_after_eq(cur, next_wakeup)) ||
2862 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2863 			cond_resched();
2864 			continue;
2865 		}
2866 
2867 		schedule_timeout_interruptible(next_wakeup - cur);
2868 
2869 		if (kthread_should_stop()) {
2870 			ext4_clear_request_list();
2871 			goto exit_thread;
2872 		}
2873 	}
2874 
2875 exit_thread:
2876 	/*
2877 	 * It looks like the request list is empty, but we need
2878 	 * to check it under the li_list_mtx lock, to prevent any
2879 	 * additions into it, and of course we should lock ext4_li_mtx
2880 	 * to atomically free the list and ext4_li_info, because at
2881 	 * this point another ext4 filesystem could be registering
2882 	 * new one.
2883 	 */
2884 	mutex_lock(&ext4_li_mtx);
2885 	mutex_lock(&eli->li_list_mtx);
2886 	if (!list_empty(&eli->li_request_list)) {
2887 		mutex_unlock(&eli->li_list_mtx);
2888 		mutex_unlock(&ext4_li_mtx);
2889 		goto cont_thread;
2890 	}
2891 	mutex_unlock(&eli->li_list_mtx);
2892 	kfree(ext4_li_info);
2893 	ext4_li_info = NULL;
2894 	mutex_unlock(&ext4_li_mtx);
2895 
2896 	return 0;
2897 }
2898 
2899 static void ext4_clear_request_list(void)
2900 {
2901 	struct list_head *pos, *n;
2902 	struct ext4_li_request *elr;
2903 
2904 	mutex_lock(&ext4_li_info->li_list_mtx);
2905 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2906 		elr = list_entry(pos, struct ext4_li_request,
2907 				 lr_request);
2908 		ext4_remove_li_request(elr);
2909 	}
2910 	mutex_unlock(&ext4_li_info->li_list_mtx);
2911 }
2912 
2913 static int ext4_run_lazyinit_thread(void)
2914 {
2915 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2916 					 ext4_li_info, "ext4lazyinit");
2917 	if (IS_ERR(ext4_lazyinit_task)) {
2918 		int err = PTR_ERR(ext4_lazyinit_task);
2919 		ext4_clear_request_list();
2920 		kfree(ext4_li_info);
2921 		ext4_li_info = NULL;
2922 		printk(KERN_CRIT "EXT4: error %d creating inode table "
2923 				 "initialization thread\n",
2924 				 err);
2925 		return err;
2926 	}
2927 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2928 	return 0;
2929 }
2930 
2931 /*
2932  * Check whether it make sense to run itable init. thread or not.
2933  * If there is at least one uninitialized inode table, return
2934  * corresponding group number, else the loop goes through all
2935  * groups and return total number of groups.
2936  */
2937 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2938 {
2939 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2940 	struct ext4_group_desc *gdp = NULL;
2941 
2942 	for (group = 0; group < ngroups; group++) {
2943 		gdp = ext4_get_group_desc(sb, group, NULL);
2944 		if (!gdp)
2945 			continue;
2946 
2947 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2948 			break;
2949 	}
2950 
2951 	return group;
2952 }
2953 
2954 static int ext4_li_info_new(void)
2955 {
2956 	struct ext4_lazy_init *eli = NULL;
2957 
2958 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2959 	if (!eli)
2960 		return -ENOMEM;
2961 
2962 	INIT_LIST_HEAD(&eli->li_request_list);
2963 	mutex_init(&eli->li_list_mtx);
2964 
2965 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2966 
2967 	ext4_li_info = eli;
2968 
2969 	return 0;
2970 }
2971 
2972 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2973 					    ext4_group_t start)
2974 {
2975 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2976 	struct ext4_li_request *elr;
2977 	unsigned long rnd;
2978 
2979 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2980 	if (!elr)
2981 		return NULL;
2982 
2983 	elr->lr_super = sb;
2984 	elr->lr_sbi = sbi;
2985 	elr->lr_next_group = start;
2986 
2987 	/*
2988 	 * Randomize first schedule time of the request to
2989 	 * spread the inode table initialization requests
2990 	 * better.
2991 	 */
2992 	get_random_bytes(&rnd, sizeof(rnd));
2993 	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2994 			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2995 
2996 	return elr;
2997 }
2998 
2999 static int ext4_register_li_request(struct super_block *sb,
3000 				    ext4_group_t first_not_zeroed)
3001 {
3002 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3003 	struct ext4_li_request *elr;
3004 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3005 	int ret = 0;
3006 
3007 	if (sbi->s_li_request != NULL) {
3008 		/*
3009 		 * Reset timeout so it can be computed again, because
3010 		 * s_li_wait_mult might have changed.
3011 		 */
3012 		sbi->s_li_request->lr_timeout = 0;
3013 		return 0;
3014 	}
3015 
3016 	if (first_not_zeroed == ngroups ||
3017 	    (sb->s_flags & MS_RDONLY) ||
3018 	    !test_opt(sb, INIT_INODE_TABLE))
3019 		return 0;
3020 
3021 	elr = ext4_li_request_new(sb, first_not_zeroed);
3022 	if (!elr)
3023 		return -ENOMEM;
3024 
3025 	mutex_lock(&ext4_li_mtx);
3026 
3027 	if (NULL == ext4_li_info) {
3028 		ret = ext4_li_info_new();
3029 		if (ret)
3030 			goto out;
3031 	}
3032 
3033 	mutex_lock(&ext4_li_info->li_list_mtx);
3034 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3035 	mutex_unlock(&ext4_li_info->li_list_mtx);
3036 
3037 	sbi->s_li_request = elr;
3038 	/*
3039 	 * set elr to NULL here since it has been inserted to
3040 	 * the request_list and the removal and free of it is
3041 	 * handled by ext4_clear_request_list from now on.
3042 	 */
3043 	elr = NULL;
3044 
3045 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3046 		ret = ext4_run_lazyinit_thread();
3047 		if (ret)
3048 			goto out;
3049 	}
3050 out:
3051 	mutex_unlock(&ext4_li_mtx);
3052 	if (ret)
3053 		kfree(elr);
3054 	return ret;
3055 }
3056 
3057 /*
3058  * We do not need to lock anything since this is called on
3059  * module unload.
3060  */
3061 static void ext4_destroy_lazyinit_thread(void)
3062 {
3063 	/*
3064 	 * If thread exited earlier
3065 	 * there's nothing to be done.
3066 	 */
3067 	if (!ext4_li_info || !ext4_lazyinit_task)
3068 		return;
3069 
3070 	kthread_stop(ext4_lazyinit_task);
3071 }
3072 
3073 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3074 				__releases(kernel_lock)
3075 				__acquires(kernel_lock)
3076 {
3077 	char *orig_data = kstrdup(data, GFP_KERNEL);
3078 	struct buffer_head *bh;
3079 	struct ext4_super_block *es = NULL;
3080 	struct ext4_sb_info *sbi;
3081 	ext4_fsblk_t block;
3082 	ext4_fsblk_t sb_block = get_sb_block(&data);
3083 	ext4_fsblk_t logical_sb_block;
3084 	unsigned long offset = 0;
3085 	unsigned long journal_devnum = 0;
3086 	unsigned long def_mount_opts;
3087 	struct inode *root;
3088 	char *cp;
3089 	const char *descr;
3090 	int ret = -ENOMEM;
3091 	int blocksize;
3092 	unsigned int db_count;
3093 	unsigned int i;
3094 	int needs_recovery, has_huge_files;
3095 	__u64 blocks_count;
3096 	int err;
3097 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3098 	ext4_group_t first_not_zeroed;
3099 
3100 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3101 	if (!sbi)
3102 		goto out_free_orig;
3103 
3104 	sbi->s_blockgroup_lock =
3105 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3106 	if (!sbi->s_blockgroup_lock) {
3107 		kfree(sbi);
3108 		goto out_free_orig;
3109 	}
3110 	sb->s_fs_info = sbi;
3111 	sbi->s_mount_opt = 0;
3112 	sbi->s_resuid = EXT4_DEF_RESUID;
3113 	sbi->s_resgid = EXT4_DEF_RESGID;
3114 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3115 	sbi->s_sb_block = sb_block;
3116 	if (sb->s_bdev->bd_part)
3117 		sbi->s_sectors_written_start =
3118 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3119 
3120 	/* Cleanup superblock name */
3121 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3122 		*cp = '!';
3123 
3124 	ret = -EINVAL;
3125 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3126 	if (!blocksize) {
3127 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3128 		goto out_fail;
3129 	}
3130 
3131 	/*
3132 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3133 	 * block sizes.  We need to calculate the offset from buffer start.
3134 	 */
3135 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3136 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3137 		offset = do_div(logical_sb_block, blocksize);
3138 	} else {
3139 		logical_sb_block = sb_block;
3140 	}
3141 
3142 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3143 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3144 		goto out_fail;
3145 	}
3146 	/*
3147 	 * Note: s_es must be initialized as soon as possible because
3148 	 *       some ext4 macro-instructions depend on its value
3149 	 */
3150 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3151 	sbi->s_es = es;
3152 	sb->s_magic = le16_to_cpu(es->s_magic);
3153 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3154 		goto cantfind_ext4;
3155 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3156 
3157 	/* Set defaults before we parse the mount options */
3158 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3159 	set_opt(sb, INIT_INODE_TABLE);
3160 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3161 		set_opt(sb, DEBUG);
3162 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3163 		ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3164 			"2.6.38");
3165 		set_opt(sb, GRPID);
3166 	}
3167 	if (def_mount_opts & EXT4_DEFM_UID16)
3168 		set_opt(sb, NO_UID32);
3169 	/* xattr user namespace & acls are now defaulted on */
3170 #ifdef CONFIG_EXT4_FS_XATTR
3171 	set_opt(sb, XATTR_USER);
3172 #endif
3173 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3174 	set_opt(sb, POSIX_ACL);
3175 #endif
3176 	set_opt(sb, MBLK_IO_SUBMIT);
3177 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3178 		set_opt(sb, JOURNAL_DATA);
3179 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3180 		set_opt(sb, ORDERED_DATA);
3181 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3182 		set_opt(sb, WRITEBACK_DATA);
3183 
3184 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3185 		set_opt(sb, ERRORS_PANIC);
3186 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3187 		set_opt(sb, ERRORS_CONT);
3188 	else
3189 		set_opt(sb, ERRORS_RO);
3190 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3191 		set_opt(sb, BLOCK_VALIDITY);
3192 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3193 		set_opt(sb, DISCARD);
3194 
3195 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3196 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3197 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3198 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3199 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3200 
3201 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3202 		set_opt(sb, BARRIER);
3203 
3204 	/*
3205 	 * enable delayed allocation by default
3206 	 * Use -o nodelalloc to turn it off
3207 	 */
3208 	if (!IS_EXT3_SB(sb) &&
3209 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3210 		set_opt(sb, DELALLOC);
3211 
3212 	/*
3213 	 * set default s_li_wait_mult for lazyinit, for the case there is
3214 	 * no mount option specified.
3215 	 */
3216 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3217 
3218 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3219 			   &journal_devnum, &journal_ioprio, NULL, 0)) {
3220 		ext4_msg(sb, KERN_WARNING,
3221 			 "failed to parse options in superblock: %s",
3222 			 sbi->s_es->s_mount_opts);
3223 	}
3224 	if (!parse_options((char *) data, sb, &journal_devnum,
3225 			   &journal_ioprio, NULL, 0))
3226 		goto failed_mount;
3227 
3228 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3229 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3230 
3231 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3232 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3233 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3234 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3235 		ext4_msg(sb, KERN_WARNING,
3236 		       "feature flags set on rev 0 fs, "
3237 		       "running e2fsck is recommended");
3238 
3239 	if (IS_EXT2_SB(sb)) {
3240 		if (ext2_feature_set_ok(sb))
3241 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3242 				 "using the ext4 subsystem");
3243 		else {
3244 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3245 				 "to feature incompatibilities");
3246 			goto failed_mount;
3247 		}
3248 	}
3249 
3250 	if (IS_EXT3_SB(sb)) {
3251 		if (ext3_feature_set_ok(sb))
3252 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3253 				 "using the ext4 subsystem");
3254 		else {
3255 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3256 				 "to feature incompatibilities");
3257 			goto failed_mount;
3258 		}
3259 	}
3260 
3261 	/*
3262 	 * Check feature flags regardless of the revision level, since we
3263 	 * previously didn't change the revision level when setting the flags,
3264 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3265 	 */
3266 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3267 		goto failed_mount;
3268 
3269 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3270 
3271 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3272 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3273 		ext4_msg(sb, KERN_ERR,
3274 		       "Unsupported filesystem blocksize %d", blocksize);
3275 		goto failed_mount;
3276 	}
3277 
3278 	if (sb->s_blocksize != blocksize) {
3279 		/* Validate the filesystem blocksize */
3280 		if (!sb_set_blocksize(sb, blocksize)) {
3281 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3282 					blocksize);
3283 			goto failed_mount;
3284 		}
3285 
3286 		brelse(bh);
3287 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3288 		offset = do_div(logical_sb_block, blocksize);
3289 		bh = sb_bread(sb, logical_sb_block);
3290 		if (!bh) {
3291 			ext4_msg(sb, KERN_ERR,
3292 			       "Can't read superblock on 2nd try");
3293 			goto failed_mount;
3294 		}
3295 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3296 		sbi->s_es = es;
3297 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3298 			ext4_msg(sb, KERN_ERR,
3299 			       "Magic mismatch, very weird!");
3300 			goto failed_mount;
3301 		}
3302 	}
3303 
3304 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3305 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3306 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3307 						      has_huge_files);
3308 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3309 
3310 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3311 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3312 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3313 	} else {
3314 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3315 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3316 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3317 		    (!is_power_of_2(sbi->s_inode_size)) ||
3318 		    (sbi->s_inode_size > blocksize)) {
3319 			ext4_msg(sb, KERN_ERR,
3320 			       "unsupported inode size: %d",
3321 			       sbi->s_inode_size);
3322 			goto failed_mount;
3323 		}
3324 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3325 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3326 	}
3327 
3328 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3329 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3330 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3331 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3332 		    !is_power_of_2(sbi->s_desc_size)) {
3333 			ext4_msg(sb, KERN_ERR,
3334 			       "unsupported descriptor size %lu",
3335 			       sbi->s_desc_size);
3336 			goto failed_mount;
3337 		}
3338 	} else
3339 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3340 
3341 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3342 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3343 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3344 		goto cantfind_ext4;
3345 
3346 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3347 	if (sbi->s_inodes_per_block == 0)
3348 		goto cantfind_ext4;
3349 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3350 					sbi->s_inodes_per_block;
3351 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3352 	sbi->s_sbh = bh;
3353 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3354 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3355 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3356 
3357 	for (i = 0; i < 4; i++)
3358 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3359 	sbi->s_def_hash_version = es->s_def_hash_version;
3360 	i = le32_to_cpu(es->s_flags);
3361 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3362 		sbi->s_hash_unsigned = 3;
3363 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3364 #ifdef __CHAR_UNSIGNED__
3365 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3366 		sbi->s_hash_unsigned = 3;
3367 #else
3368 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3369 #endif
3370 		sb->s_dirt = 1;
3371 	}
3372 
3373 	if (sbi->s_blocks_per_group > blocksize * 8) {
3374 		ext4_msg(sb, KERN_ERR,
3375 		       "#blocks per group too big: %lu",
3376 		       sbi->s_blocks_per_group);
3377 		goto failed_mount;
3378 	}
3379 	if (sbi->s_inodes_per_group > blocksize * 8) {
3380 		ext4_msg(sb, KERN_ERR,
3381 		       "#inodes per group too big: %lu",
3382 		       sbi->s_inodes_per_group);
3383 		goto failed_mount;
3384 	}
3385 
3386 	/*
3387 	 * Test whether we have more sectors than will fit in sector_t,
3388 	 * and whether the max offset is addressable by the page cache.
3389 	 */
3390 	err = generic_check_addressable(sb->s_blocksize_bits,
3391 					ext4_blocks_count(es));
3392 	if (err) {
3393 		ext4_msg(sb, KERN_ERR, "filesystem"
3394 			 " too large to mount safely on this system");
3395 		if (sizeof(sector_t) < 8)
3396 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3397 		ret = err;
3398 		goto failed_mount;
3399 	}
3400 
3401 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3402 		goto cantfind_ext4;
3403 
3404 	/* check blocks count against device size */
3405 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3406 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3407 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3408 		       "exceeds size of device (%llu blocks)",
3409 		       ext4_blocks_count(es), blocks_count);
3410 		goto failed_mount;
3411 	}
3412 
3413 	/*
3414 	 * It makes no sense for the first data block to be beyond the end
3415 	 * of the filesystem.
3416 	 */
3417 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3418                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3419 			 "block %u is beyond end of filesystem (%llu)",
3420 			 le32_to_cpu(es->s_first_data_block),
3421 			 ext4_blocks_count(es));
3422 		goto failed_mount;
3423 	}
3424 	blocks_count = (ext4_blocks_count(es) -
3425 			le32_to_cpu(es->s_first_data_block) +
3426 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3427 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3428 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3429 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3430 		       "(block count %llu, first data block %u, "
3431 		       "blocks per group %lu)", sbi->s_groups_count,
3432 		       ext4_blocks_count(es),
3433 		       le32_to_cpu(es->s_first_data_block),
3434 		       EXT4_BLOCKS_PER_GROUP(sb));
3435 		goto failed_mount;
3436 	}
3437 	sbi->s_groups_count = blocks_count;
3438 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3439 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3440 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3441 		   EXT4_DESC_PER_BLOCK(sb);
3442 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3443 					  sizeof(struct buffer_head *),
3444 					  GFP_KERNEL);
3445 	if (sbi->s_group_desc == NULL) {
3446 		ext4_msg(sb, KERN_ERR, "not enough memory");
3447 		goto failed_mount;
3448 	}
3449 
3450 #ifdef CONFIG_PROC_FS
3451 	if (ext4_proc_root)
3452 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3453 #endif
3454 
3455 	bgl_lock_init(sbi->s_blockgroup_lock);
3456 
3457 	for (i = 0; i < db_count; i++) {
3458 		block = descriptor_loc(sb, logical_sb_block, i);
3459 		sbi->s_group_desc[i] = sb_bread(sb, block);
3460 		if (!sbi->s_group_desc[i]) {
3461 			ext4_msg(sb, KERN_ERR,
3462 			       "can't read group descriptor %d", i);
3463 			db_count = i;
3464 			goto failed_mount2;
3465 		}
3466 	}
3467 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3468 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3469 		goto failed_mount2;
3470 	}
3471 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3472 		if (!ext4_fill_flex_info(sb)) {
3473 			ext4_msg(sb, KERN_ERR,
3474 			       "unable to initialize "
3475 			       "flex_bg meta info!");
3476 			goto failed_mount2;
3477 		}
3478 
3479 	sbi->s_gdb_count = db_count;
3480 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3481 	spin_lock_init(&sbi->s_next_gen_lock);
3482 
3483 	init_timer(&sbi->s_err_report);
3484 	sbi->s_err_report.function = print_daily_error_info;
3485 	sbi->s_err_report.data = (unsigned long) sb;
3486 
3487 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
3488 			ext4_count_free_blocks(sb));
3489 	if (!err) {
3490 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3491 				ext4_count_free_inodes(sb));
3492 	}
3493 	if (!err) {
3494 		err = percpu_counter_init(&sbi->s_dirs_counter,
3495 				ext4_count_dirs(sb));
3496 	}
3497 	if (!err) {
3498 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3499 	}
3500 	if (err) {
3501 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3502 		goto failed_mount3;
3503 	}
3504 
3505 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3506 	sbi->s_max_writeback_mb_bump = 128;
3507 
3508 	/*
3509 	 * set up enough so that it can read an inode
3510 	 */
3511 	if (!test_opt(sb, NOLOAD) &&
3512 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3513 		sb->s_op = &ext4_sops;
3514 	else
3515 		sb->s_op = &ext4_nojournal_sops;
3516 	sb->s_export_op = &ext4_export_ops;
3517 	sb->s_xattr = ext4_xattr_handlers;
3518 #ifdef CONFIG_QUOTA
3519 	sb->s_qcop = &ext4_qctl_operations;
3520 	sb->dq_op = &ext4_quota_operations;
3521 #endif
3522 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3523 
3524 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3525 	mutex_init(&sbi->s_orphan_lock);
3526 	sbi->s_resize_flags = 0;
3527 
3528 	sb->s_root = NULL;
3529 
3530 	needs_recovery = (es->s_last_orphan != 0 ||
3531 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3532 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3533 
3534 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3535 	    !(sb->s_flags & MS_RDONLY))
3536 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3537 			goto failed_mount3;
3538 
3539 	/*
3540 	 * The first inode we look at is the journal inode.  Don't try
3541 	 * root first: it may be modified in the journal!
3542 	 */
3543 	if (!test_opt(sb, NOLOAD) &&
3544 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3545 		if (ext4_load_journal(sb, es, journal_devnum))
3546 			goto failed_mount3;
3547 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3548 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3549 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3550 		       "suppressed and not mounted read-only");
3551 		goto failed_mount_wq;
3552 	} else {
3553 		clear_opt(sb, DATA_FLAGS);
3554 		sbi->s_journal = NULL;
3555 		needs_recovery = 0;
3556 		goto no_journal;
3557 	}
3558 
3559 	if (ext4_blocks_count(es) > 0xffffffffULL &&
3560 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3561 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3562 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3563 		goto failed_mount_wq;
3564 	}
3565 
3566 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3567 		jbd2_journal_set_features(sbi->s_journal,
3568 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3569 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3570 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3571 		jbd2_journal_set_features(sbi->s_journal,
3572 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3573 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3574 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3575 	} else {
3576 		jbd2_journal_clear_features(sbi->s_journal,
3577 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3578 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3579 	}
3580 
3581 	/* We have now updated the journal if required, so we can
3582 	 * validate the data journaling mode. */
3583 	switch (test_opt(sb, DATA_FLAGS)) {
3584 	case 0:
3585 		/* No mode set, assume a default based on the journal
3586 		 * capabilities: ORDERED_DATA if the journal can
3587 		 * cope, else JOURNAL_DATA
3588 		 */
3589 		if (jbd2_journal_check_available_features
3590 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3591 			set_opt(sb, ORDERED_DATA);
3592 		else
3593 			set_opt(sb, JOURNAL_DATA);
3594 		break;
3595 
3596 	case EXT4_MOUNT_ORDERED_DATA:
3597 	case EXT4_MOUNT_WRITEBACK_DATA:
3598 		if (!jbd2_journal_check_available_features
3599 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3600 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3601 			       "requested data journaling mode");
3602 			goto failed_mount_wq;
3603 		}
3604 	default:
3605 		break;
3606 	}
3607 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3608 
3609 	/*
3610 	 * The journal may have updated the bg summary counts, so we
3611 	 * need to update the global counters.
3612 	 */
3613 	percpu_counter_set(&sbi->s_freeblocks_counter,
3614 			   ext4_count_free_blocks(sb));
3615 	percpu_counter_set(&sbi->s_freeinodes_counter,
3616 			   ext4_count_free_inodes(sb));
3617 	percpu_counter_set(&sbi->s_dirs_counter,
3618 			   ext4_count_dirs(sb));
3619 	percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3620 
3621 no_journal:
3622 	/*
3623 	 * The maximum number of concurrent works can be high and
3624 	 * concurrency isn't really necessary.  Limit it to 1.
3625 	 */
3626 	EXT4_SB(sb)->dio_unwritten_wq =
3627 		alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3628 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3629 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3630 		goto failed_mount_wq;
3631 	}
3632 
3633 	/*
3634 	 * The jbd2_journal_load will have done any necessary log recovery,
3635 	 * so we can safely mount the rest of the filesystem now.
3636 	 */
3637 
3638 	root = ext4_iget(sb, EXT4_ROOT_INO);
3639 	if (IS_ERR(root)) {
3640 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3641 		ret = PTR_ERR(root);
3642 		root = NULL;
3643 		goto failed_mount4;
3644 	}
3645 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3646 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3647 		goto failed_mount4;
3648 	}
3649 	sb->s_root = d_alloc_root(root);
3650 	if (!sb->s_root) {
3651 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3652 		ret = -ENOMEM;
3653 		goto failed_mount4;
3654 	}
3655 
3656 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3657 
3658 	/* determine the minimum size of new large inodes, if present */
3659 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3660 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3661 						     EXT4_GOOD_OLD_INODE_SIZE;
3662 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3663 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3664 			if (sbi->s_want_extra_isize <
3665 			    le16_to_cpu(es->s_want_extra_isize))
3666 				sbi->s_want_extra_isize =
3667 					le16_to_cpu(es->s_want_extra_isize);
3668 			if (sbi->s_want_extra_isize <
3669 			    le16_to_cpu(es->s_min_extra_isize))
3670 				sbi->s_want_extra_isize =
3671 					le16_to_cpu(es->s_min_extra_isize);
3672 		}
3673 	}
3674 	/* Check if enough inode space is available */
3675 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3676 							sbi->s_inode_size) {
3677 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3678 						       EXT4_GOOD_OLD_INODE_SIZE;
3679 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3680 			 "available");
3681 	}
3682 
3683 	if (test_opt(sb, DELALLOC) &&
3684 	    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3685 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3686 			 "requested data journaling mode");
3687 		clear_opt(sb, DELALLOC);
3688 	}
3689 	if (test_opt(sb, DIOREAD_NOLOCK)) {
3690 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3691 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3692 				"option - requested data journaling mode");
3693 			clear_opt(sb, DIOREAD_NOLOCK);
3694 		}
3695 		if (sb->s_blocksize < PAGE_SIZE) {
3696 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3697 				"option - block size is too small");
3698 			clear_opt(sb, DIOREAD_NOLOCK);
3699 		}
3700 	}
3701 
3702 	err = ext4_setup_system_zone(sb);
3703 	if (err) {
3704 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3705 			 "zone (%d)", err);
3706 		goto failed_mount4;
3707 	}
3708 
3709 	ext4_ext_init(sb);
3710 	err = ext4_mb_init(sb, needs_recovery);
3711 	if (err) {
3712 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3713 			 err);
3714 		goto failed_mount4;
3715 	}
3716 
3717 	err = ext4_register_li_request(sb, first_not_zeroed);
3718 	if (err)
3719 		goto failed_mount4;
3720 
3721 	sbi->s_kobj.kset = ext4_kset;
3722 	init_completion(&sbi->s_kobj_unregister);
3723 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3724 				   "%s", sb->s_id);
3725 	if (err) {
3726 		ext4_mb_release(sb);
3727 		ext4_ext_release(sb);
3728 		goto failed_mount4;
3729 	};
3730 
3731 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3732 	ext4_orphan_cleanup(sb, es);
3733 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3734 	if (needs_recovery) {
3735 		ext4_msg(sb, KERN_INFO, "recovery complete");
3736 		ext4_mark_recovery_complete(sb, es);
3737 	}
3738 	if (EXT4_SB(sb)->s_journal) {
3739 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3740 			descr = " journalled data mode";
3741 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3742 			descr = " ordered data mode";
3743 		else
3744 			descr = " writeback data mode";
3745 	} else
3746 		descr = "out journal";
3747 
3748 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3749 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3750 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3751 
3752 	if (es->s_error_count)
3753 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3754 
3755 	kfree(orig_data);
3756 	return 0;
3757 
3758 cantfind_ext4:
3759 	if (!silent)
3760 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3761 	goto failed_mount;
3762 
3763 failed_mount4:
3764 	iput(root);
3765 	sb->s_root = NULL;
3766 	ext4_msg(sb, KERN_ERR, "mount failed");
3767 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3768 failed_mount_wq:
3769 	ext4_release_system_zone(sb);
3770 	if (sbi->s_journal) {
3771 		jbd2_journal_destroy(sbi->s_journal);
3772 		sbi->s_journal = NULL;
3773 	}
3774 failed_mount3:
3775 	del_timer(&sbi->s_err_report);
3776 	if (sbi->s_flex_groups)
3777 		ext4_kvfree(sbi->s_flex_groups);
3778 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
3779 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3780 	percpu_counter_destroy(&sbi->s_dirs_counter);
3781 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3782 	if (sbi->s_mmp_tsk)
3783 		kthread_stop(sbi->s_mmp_tsk);
3784 failed_mount2:
3785 	for (i = 0; i < db_count; i++)
3786 		brelse(sbi->s_group_desc[i]);
3787 	ext4_kvfree(sbi->s_group_desc);
3788 failed_mount:
3789 	if (sbi->s_proc) {
3790 		remove_proc_entry(sb->s_id, ext4_proc_root);
3791 	}
3792 #ifdef CONFIG_QUOTA
3793 	for (i = 0; i < MAXQUOTAS; i++)
3794 		kfree(sbi->s_qf_names[i]);
3795 #endif
3796 	ext4_blkdev_remove(sbi);
3797 	brelse(bh);
3798 out_fail:
3799 	sb->s_fs_info = NULL;
3800 	kfree(sbi->s_blockgroup_lock);
3801 	kfree(sbi);
3802 out_free_orig:
3803 	kfree(orig_data);
3804 	return ret;
3805 }
3806 
3807 /*
3808  * Setup any per-fs journal parameters now.  We'll do this both on
3809  * initial mount, once the journal has been initialised but before we've
3810  * done any recovery; and again on any subsequent remount.
3811  */
3812 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3813 {
3814 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3815 
3816 	journal->j_commit_interval = sbi->s_commit_interval;
3817 	journal->j_min_batch_time = sbi->s_min_batch_time;
3818 	journal->j_max_batch_time = sbi->s_max_batch_time;
3819 
3820 	write_lock(&journal->j_state_lock);
3821 	if (test_opt(sb, BARRIER))
3822 		journal->j_flags |= JBD2_BARRIER;
3823 	else
3824 		journal->j_flags &= ~JBD2_BARRIER;
3825 	if (test_opt(sb, DATA_ERR_ABORT))
3826 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3827 	else
3828 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3829 	write_unlock(&journal->j_state_lock);
3830 }
3831 
3832 static journal_t *ext4_get_journal(struct super_block *sb,
3833 				   unsigned int journal_inum)
3834 {
3835 	struct inode *journal_inode;
3836 	journal_t *journal;
3837 
3838 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3839 
3840 	/* First, test for the existence of a valid inode on disk.  Bad
3841 	 * things happen if we iget() an unused inode, as the subsequent
3842 	 * iput() will try to delete it. */
3843 
3844 	journal_inode = ext4_iget(sb, journal_inum);
3845 	if (IS_ERR(journal_inode)) {
3846 		ext4_msg(sb, KERN_ERR, "no journal found");
3847 		return NULL;
3848 	}
3849 	if (!journal_inode->i_nlink) {
3850 		make_bad_inode(journal_inode);
3851 		iput(journal_inode);
3852 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3853 		return NULL;
3854 	}
3855 
3856 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3857 		  journal_inode, journal_inode->i_size);
3858 	if (!S_ISREG(journal_inode->i_mode)) {
3859 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3860 		iput(journal_inode);
3861 		return NULL;
3862 	}
3863 
3864 	journal = jbd2_journal_init_inode(journal_inode);
3865 	if (!journal) {
3866 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3867 		iput(journal_inode);
3868 		return NULL;
3869 	}
3870 	journal->j_private = sb;
3871 	ext4_init_journal_params(sb, journal);
3872 	return journal;
3873 }
3874 
3875 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3876 				       dev_t j_dev)
3877 {
3878 	struct buffer_head *bh;
3879 	journal_t *journal;
3880 	ext4_fsblk_t start;
3881 	ext4_fsblk_t len;
3882 	int hblock, blocksize;
3883 	ext4_fsblk_t sb_block;
3884 	unsigned long offset;
3885 	struct ext4_super_block *es;
3886 	struct block_device *bdev;
3887 
3888 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3889 
3890 	bdev = ext4_blkdev_get(j_dev, sb);
3891 	if (bdev == NULL)
3892 		return NULL;
3893 
3894 	blocksize = sb->s_blocksize;
3895 	hblock = bdev_logical_block_size(bdev);
3896 	if (blocksize < hblock) {
3897 		ext4_msg(sb, KERN_ERR,
3898 			"blocksize too small for journal device");
3899 		goto out_bdev;
3900 	}
3901 
3902 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3903 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3904 	set_blocksize(bdev, blocksize);
3905 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3906 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3907 		       "external journal");
3908 		goto out_bdev;
3909 	}
3910 
3911 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3912 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3913 	    !(le32_to_cpu(es->s_feature_incompat) &
3914 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3915 		ext4_msg(sb, KERN_ERR, "external journal has "
3916 					"bad superblock");
3917 		brelse(bh);
3918 		goto out_bdev;
3919 	}
3920 
3921 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3922 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3923 		brelse(bh);
3924 		goto out_bdev;
3925 	}
3926 
3927 	len = ext4_blocks_count(es);
3928 	start = sb_block + 1;
3929 	brelse(bh);	/* we're done with the superblock */
3930 
3931 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3932 					start, len, blocksize);
3933 	if (!journal) {
3934 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3935 		goto out_bdev;
3936 	}
3937 	journal->j_private = sb;
3938 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3939 	wait_on_buffer(journal->j_sb_buffer);
3940 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3941 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3942 		goto out_journal;
3943 	}
3944 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3945 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3946 					"user (unsupported) - %d",
3947 			be32_to_cpu(journal->j_superblock->s_nr_users));
3948 		goto out_journal;
3949 	}
3950 	EXT4_SB(sb)->journal_bdev = bdev;
3951 	ext4_init_journal_params(sb, journal);
3952 	return journal;
3953 
3954 out_journal:
3955 	jbd2_journal_destroy(journal);
3956 out_bdev:
3957 	ext4_blkdev_put(bdev);
3958 	return NULL;
3959 }
3960 
3961 static int ext4_load_journal(struct super_block *sb,
3962 			     struct ext4_super_block *es,
3963 			     unsigned long journal_devnum)
3964 {
3965 	journal_t *journal;
3966 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3967 	dev_t journal_dev;
3968 	int err = 0;
3969 	int really_read_only;
3970 
3971 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3972 
3973 	if (journal_devnum &&
3974 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3975 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3976 			"numbers have changed");
3977 		journal_dev = new_decode_dev(journal_devnum);
3978 	} else
3979 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3980 
3981 	really_read_only = bdev_read_only(sb->s_bdev);
3982 
3983 	/*
3984 	 * Are we loading a blank journal or performing recovery after a
3985 	 * crash?  For recovery, we need to check in advance whether we
3986 	 * can get read-write access to the device.
3987 	 */
3988 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3989 		if (sb->s_flags & MS_RDONLY) {
3990 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3991 					"required on readonly filesystem");
3992 			if (really_read_only) {
3993 				ext4_msg(sb, KERN_ERR, "write access "
3994 					"unavailable, cannot proceed");
3995 				return -EROFS;
3996 			}
3997 			ext4_msg(sb, KERN_INFO, "write access will "
3998 			       "be enabled during recovery");
3999 		}
4000 	}
4001 
4002 	if (journal_inum && journal_dev) {
4003 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4004 		       "and inode journals!");
4005 		return -EINVAL;
4006 	}
4007 
4008 	if (journal_inum) {
4009 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4010 			return -EINVAL;
4011 	} else {
4012 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4013 			return -EINVAL;
4014 	}
4015 
4016 	if (!(journal->j_flags & JBD2_BARRIER))
4017 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4018 
4019 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
4020 		err = jbd2_journal_update_format(journal);
4021 		if (err)  {
4022 			ext4_msg(sb, KERN_ERR, "error updating journal");
4023 			jbd2_journal_destroy(journal);
4024 			return err;
4025 		}
4026 	}
4027 
4028 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4029 		err = jbd2_journal_wipe(journal, !really_read_only);
4030 	if (!err) {
4031 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4032 		if (save)
4033 			memcpy(save, ((char *) es) +
4034 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4035 		err = jbd2_journal_load(journal);
4036 		if (save)
4037 			memcpy(((char *) es) + EXT4_S_ERR_START,
4038 			       save, EXT4_S_ERR_LEN);
4039 		kfree(save);
4040 	}
4041 
4042 	if (err) {
4043 		ext4_msg(sb, KERN_ERR, "error loading journal");
4044 		jbd2_journal_destroy(journal);
4045 		return err;
4046 	}
4047 
4048 	EXT4_SB(sb)->s_journal = journal;
4049 	ext4_clear_journal_err(sb, es);
4050 
4051 	if (!really_read_only && journal_devnum &&
4052 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4053 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4054 
4055 		/* Make sure we flush the recovery flag to disk. */
4056 		ext4_commit_super(sb, 1);
4057 	}
4058 
4059 	return 0;
4060 }
4061 
4062 static int ext4_commit_super(struct super_block *sb, int sync)
4063 {
4064 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4065 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4066 	int error = 0;
4067 
4068 	if (!sbh)
4069 		return error;
4070 	if (buffer_write_io_error(sbh)) {
4071 		/*
4072 		 * Oh, dear.  A previous attempt to write the
4073 		 * superblock failed.  This could happen because the
4074 		 * USB device was yanked out.  Or it could happen to
4075 		 * be a transient write error and maybe the block will
4076 		 * be remapped.  Nothing we can do but to retry the
4077 		 * write and hope for the best.
4078 		 */
4079 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4080 		       "superblock detected");
4081 		clear_buffer_write_io_error(sbh);
4082 		set_buffer_uptodate(sbh);
4083 	}
4084 	/*
4085 	 * If the file system is mounted read-only, don't update the
4086 	 * superblock write time.  This avoids updating the superblock
4087 	 * write time when we are mounting the root file system
4088 	 * read/only but we need to replay the journal; at that point,
4089 	 * for people who are east of GMT and who make their clock
4090 	 * tick in localtime for Windows bug-for-bug compatibility,
4091 	 * the clock is set in the future, and this will cause e2fsck
4092 	 * to complain and force a full file system check.
4093 	 */
4094 	if (!(sb->s_flags & MS_RDONLY))
4095 		es->s_wtime = cpu_to_le32(get_seconds());
4096 	if (sb->s_bdev->bd_part)
4097 		es->s_kbytes_written =
4098 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4099 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4100 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4101 	else
4102 		es->s_kbytes_written =
4103 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4104 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4105 					   &EXT4_SB(sb)->s_freeblocks_counter));
4106 	es->s_free_inodes_count =
4107 		cpu_to_le32(percpu_counter_sum_positive(
4108 				&EXT4_SB(sb)->s_freeinodes_counter));
4109 	sb->s_dirt = 0;
4110 	BUFFER_TRACE(sbh, "marking dirty");
4111 	mark_buffer_dirty(sbh);
4112 	if (sync) {
4113 		error = sync_dirty_buffer(sbh);
4114 		if (error)
4115 			return error;
4116 
4117 		error = buffer_write_io_error(sbh);
4118 		if (error) {
4119 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4120 			       "superblock");
4121 			clear_buffer_write_io_error(sbh);
4122 			set_buffer_uptodate(sbh);
4123 		}
4124 	}
4125 	return error;
4126 }
4127 
4128 /*
4129  * Have we just finished recovery?  If so, and if we are mounting (or
4130  * remounting) the filesystem readonly, then we will end up with a
4131  * consistent fs on disk.  Record that fact.
4132  */
4133 static void ext4_mark_recovery_complete(struct super_block *sb,
4134 					struct ext4_super_block *es)
4135 {
4136 	journal_t *journal = EXT4_SB(sb)->s_journal;
4137 
4138 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4139 		BUG_ON(journal != NULL);
4140 		return;
4141 	}
4142 	jbd2_journal_lock_updates(journal);
4143 	if (jbd2_journal_flush(journal) < 0)
4144 		goto out;
4145 
4146 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4147 	    sb->s_flags & MS_RDONLY) {
4148 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4149 		ext4_commit_super(sb, 1);
4150 	}
4151 
4152 out:
4153 	jbd2_journal_unlock_updates(journal);
4154 }
4155 
4156 /*
4157  * If we are mounting (or read-write remounting) a filesystem whose journal
4158  * has recorded an error from a previous lifetime, move that error to the
4159  * main filesystem now.
4160  */
4161 static void ext4_clear_journal_err(struct super_block *sb,
4162 				   struct ext4_super_block *es)
4163 {
4164 	journal_t *journal;
4165 	int j_errno;
4166 	const char *errstr;
4167 
4168 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4169 
4170 	journal = EXT4_SB(sb)->s_journal;
4171 
4172 	/*
4173 	 * Now check for any error status which may have been recorded in the
4174 	 * journal by a prior ext4_error() or ext4_abort()
4175 	 */
4176 
4177 	j_errno = jbd2_journal_errno(journal);
4178 	if (j_errno) {
4179 		char nbuf[16];
4180 
4181 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4182 		ext4_warning(sb, "Filesystem error recorded "
4183 			     "from previous mount: %s", errstr);
4184 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4185 
4186 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4187 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4188 		ext4_commit_super(sb, 1);
4189 
4190 		jbd2_journal_clear_err(journal);
4191 	}
4192 }
4193 
4194 /*
4195  * Force the running and committing transactions to commit,
4196  * and wait on the commit.
4197  */
4198 int ext4_force_commit(struct super_block *sb)
4199 {
4200 	journal_t *journal;
4201 	int ret = 0;
4202 
4203 	if (sb->s_flags & MS_RDONLY)
4204 		return 0;
4205 
4206 	journal = EXT4_SB(sb)->s_journal;
4207 	if (journal) {
4208 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4209 		ret = ext4_journal_force_commit(journal);
4210 	}
4211 
4212 	return ret;
4213 }
4214 
4215 static void ext4_write_super(struct super_block *sb)
4216 {
4217 	lock_super(sb);
4218 	ext4_commit_super(sb, 1);
4219 	unlock_super(sb);
4220 }
4221 
4222 static int ext4_sync_fs(struct super_block *sb, int wait)
4223 {
4224 	int ret = 0;
4225 	tid_t target;
4226 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4227 
4228 	trace_ext4_sync_fs(sb, wait);
4229 	flush_workqueue(sbi->dio_unwritten_wq);
4230 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4231 		if (wait)
4232 			jbd2_log_wait_commit(sbi->s_journal, target);
4233 	}
4234 	return ret;
4235 }
4236 
4237 /*
4238  * LVM calls this function before a (read-only) snapshot is created.  This
4239  * gives us a chance to flush the journal completely and mark the fs clean.
4240  *
4241  * Note that only this function cannot bring a filesystem to be in a clean
4242  * state independently, because ext4 prevents a new handle from being started
4243  * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4244  * the upper layer.
4245  */
4246 static int ext4_freeze(struct super_block *sb)
4247 {
4248 	int error = 0;
4249 	journal_t *journal;
4250 
4251 	if (sb->s_flags & MS_RDONLY)
4252 		return 0;
4253 
4254 	journal = EXT4_SB(sb)->s_journal;
4255 
4256 	/* Now we set up the journal barrier. */
4257 	jbd2_journal_lock_updates(journal);
4258 
4259 	/*
4260 	 * Don't clear the needs_recovery flag if we failed to flush
4261 	 * the journal.
4262 	 */
4263 	error = jbd2_journal_flush(journal);
4264 	if (error < 0)
4265 		goto out;
4266 
4267 	/* Journal blocked and flushed, clear needs_recovery flag. */
4268 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4269 	error = ext4_commit_super(sb, 1);
4270 out:
4271 	/* we rely on s_frozen to stop further updates */
4272 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4273 	return error;
4274 }
4275 
4276 /*
4277  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4278  * flag here, even though the filesystem is not technically dirty yet.
4279  */
4280 static int ext4_unfreeze(struct super_block *sb)
4281 {
4282 	if (sb->s_flags & MS_RDONLY)
4283 		return 0;
4284 
4285 	lock_super(sb);
4286 	/* Reset the needs_recovery flag before the fs is unlocked. */
4287 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4288 	ext4_commit_super(sb, 1);
4289 	unlock_super(sb);
4290 	return 0;
4291 }
4292 
4293 /*
4294  * Structure to save mount options for ext4_remount's benefit
4295  */
4296 struct ext4_mount_options {
4297 	unsigned long s_mount_opt;
4298 	unsigned long s_mount_opt2;
4299 	uid_t s_resuid;
4300 	gid_t s_resgid;
4301 	unsigned long s_commit_interval;
4302 	u32 s_min_batch_time, s_max_batch_time;
4303 #ifdef CONFIG_QUOTA
4304 	int s_jquota_fmt;
4305 	char *s_qf_names[MAXQUOTAS];
4306 #endif
4307 };
4308 
4309 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4310 {
4311 	struct ext4_super_block *es;
4312 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4313 	ext4_fsblk_t n_blocks_count = 0;
4314 	unsigned long old_sb_flags;
4315 	struct ext4_mount_options old_opts;
4316 	int enable_quota = 0;
4317 	ext4_group_t g;
4318 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4319 	int err = 0;
4320 #ifdef CONFIG_QUOTA
4321 	int i;
4322 #endif
4323 	char *orig_data = kstrdup(data, GFP_KERNEL);
4324 
4325 	/* Store the original options */
4326 	lock_super(sb);
4327 	old_sb_flags = sb->s_flags;
4328 	old_opts.s_mount_opt = sbi->s_mount_opt;
4329 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4330 	old_opts.s_resuid = sbi->s_resuid;
4331 	old_opts.s_resgid = sbi->s_resgid;
4332 	old_opts.s_commit_interval = sbi->s_commit_interval;
4333 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4334 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4335 #ifdef CONFIG_QUOTA
4336 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4337 	for (i = 0; i < MAXQUOTAS; i++)
4338 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4339 #endif
4340 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4341 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4342 
4343 	/*
4344 	 * Allow the "check" option to be passed as a remount option.
4345 	 */
4346 	if (!parse_options(data, sb, NULL, &journal_ioprio,
4347 			   &n_blocks_count, 1)) {
4348 		err = -EINVAL;
4349 		goto restore_opts;
4350 	}
4351 
4352 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4353 		ext4_abort(sb, "Abort forced by user");
4354 
4355 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4356 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4357 
4358 	es = sbi->s_es;
4359 
4360 	if (sbi->s_journal) {
4361 		ext4_init_journal_params(sb, sbi->s_journal);
4362 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4363 	}
4364 
4365 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4366 		n_blocks_count > ext4_blocks_count(es)) {
4367 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4368 			err = -EROFS;
4369 			goto restore_opts;
4370 		}
4371 
4372 		if (*flags & MS_RDONLY) {
4373 			err = dquot_suspend(sb, -1);
4374 			if (err < 0)
4375 				goto restore_opts;
4376 
4377 			/*
4378 			 * First of all, the unconditional stuff we have to do
4379 			 * to disable replay of the journal when we next remount
4380 			 */
4381 			sb->s_flags |= MS_RDONLY;
4382 
4383 			/*
4384 			 * OK, test if we are remounting a valid rw partition
4385 			 * readonly, and if so set the rdonly flag and then
4386 			 * mark the partition as valid again.
4387 			 */
4388 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4389 			    (sbi->s_mount_state & EXT4_VALID_FS))
4390 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4391 
4392 			if (sbi->s_journal)
4393 				ext4_mark_recovery_complete(sb, es);
4394 		} else {
4395 			/* Make sure we can mount this feature set readwrite */
4396 			if (!ext4_feature_set_ok(sb, 0)) {
4397 				err = -EROFS;
4398 				goto restore_opts;
4399 			}
4400 			/*
4401 			 * Make sure the group descriptor checksums
4402 			 * are sane.  If they aren't, refuse to remount r/w.
4403 			 */
4404 			for (g = 0; g < sbi->s_groups_count; g++) {
4405 				struct ext4_group_desc *gdp =
4406 					ext4_get_group_desc(sb, g, NULL);
4407 
4408 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4409 					ext4_msg(sb, KERN_ERR,
4410 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4411 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4412 					       le16_to_cpu(gdp->bg_checksum));
4413 					err = -EINVAL;
4414 					goto restore_opts;
4415 				}
4416 			}
4417 
4418 			/*
4419 			 * If we have an unprocessed orphan list hanging
4420 			 * around from a previously readonly bdev mount,
4421 			 * require a full umount/remount for now.
4422 			 */
4423 			if (es->s_last_orphan) {
4424 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4425 				       "remount RDWR because of unprocessed "
4426 				       "orphan inode list.  Please "
4427 				       "umount/remount instead");
4428 				err = -EINVAL;
4429 				goto restore_opts;
4430 			}
4431 
4432 			/*
4433 			 * Mounting a RDONLY partition read-write, so reread
4434 			 * and store the current valid flag.  (It may have
4435 			 * been changed by e2fsck since we originally mounted
4436 			 * the partition.)
4437 			 */
4438 			if (sbi->s_journal)
4439 				ext4_clear_journal_err(sb, es);
4440 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4441 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4442 				goto restore_opts;
4443 			if (!ext4_setup_super(sb, es, 0))
4444 				sb->s_flags &= ~MS_RDONLY;
4445 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4446 						     EXT4_FEATURE_INCOMPAT_MMP))
4447 				if (ext4_multi_mount_protect(sb,
4448 						le64_to_cpu(es->s_mmp_block))) {
4449 					err = -EROFS;
4450 					goto restore_opts;
4451 				}
4452 			enable_quota = 1;
4453 		}
4454 	}
4455 
4456 	/*
4457 	 * Reinitialize lazy itable initialization thread based on
4458 	 * current settings
4459 	 */
4460 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4461 		ext4_unregister_li_request(sb);
4462 	else {
4463 		ext4_group_t first_not_zeroed;
4464 		first_not_zeroed = ext4_has_uninit_itable(sb);
4465 		ext4_register_li_request(sb, first_not_zeroed);
4466 	}
4467 
4468 	ext4_setup_system_zone(sb);
4469 	if (sbi->s_journal == NULL)
4470 		ext4_commit_super(sb, 1);
4471 
4472 #ifdef CONFIG_QUOTA
4473 	/* Release old quota file names */
4474 	for (i = 0; i < MAXQUOTAS; i++)
4475 		if (old_opts.s_qf_names[i] &&
4476 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4477 			kfree(old_opts.s_qf_names[i]);
4478 #endif
4479 	unlock_super(sb);
4480 	if (enable_quota)
4481 		dquot_resume(sb, -1);
4482 
4483 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4484 	kfree(orig_data);
4485 	return 0;
4486 
4487 restore_opts:
4488 	sb->s_flags = old_sb_flags;
4489 	sbi->s_mount_opt = old_opts.s_mount_opt;
4490 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4491 	sbi->s_resuid = old_opts.s_resuid;
4492 	sbi->s_resgid = old_opts.s_resgid;
4493 	sbi->s_commit_interval = old_opts.s_commit_interval;
4494 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4495 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4496 #ifdef CONFIG_QUOTA
4497 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4498 	for (i = 0; i < MAXQUOTAS; i++) {
4499 		if (sbi->s_qf_names[i] &&
4500 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4501 			kfree(sbi->s_qf_names[i]);
4502 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4503 	}
4504 #endif
4505 	unlock_super(sb);
4506 	kfree(orig_data);
4507 	return err;
4508 }
4509 
4510 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4511 {
4512 	struct super_block *sb = dentry->d_sb;
4513 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4514 	struct ext4_super_block *es = sbi->s_es;
4515 	u64 fsid;
4516 	s64 bfree;
4517 
4518 	if (test_opt(sb, MINIX_DF)) {
4519 		sbi->s_overhead_last = 0;
4520 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4521 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4522 		ext4_fsblk_t overhead = 0;
4523 
4524 		/*
4525 		 * Compute the overhead (FS structures).  This is constant
4526 		 * for a given filesystem unless the number of block groups
4527 		 * changes so we cache the previous value until it does.
4528 		 */
4529 
4530 		/*
4531 		 * All of the blocks before first_data_block are
4532 		 * overhead
4533 		 */
4534 		overhead = le32_to_cpu(es->s_first_data_block);
4535 
4536 		/*
4537 		 * Add the overhead attributed to the superblock and
4538 		 * block group descriptors.  If the sparse superblocks
4539 		 * feature is turned on, then not all groups have this.
4540 		 */
4541 		for (i = 0; i < ngroups; i++) {
4542 			overhead += ext4_bg_has_super(sb, i) +
4543 				ext4_bg_num_gdb(sb, i);
4544 			cond_resched();
4545 		}
4546 
4547 		/*
4548 		 * Every block group has an inode bitmap, a block
4549 		 * bitmap, and an inode table.
4550 		 */
4551 		overhead += ngroups * (2 + sbi->s_itb_per_group);
4552 		sbi->s_overhead_last = overhead;
4553 		smp_wmb();
4554 		sbi->s_blocks_last = ext4_blocks_count(es);
4555 	}
4556 
4557 	buf->f_type = EXT4_SUPER_MAGIC;
4558 	buf->f_bsize = sb->s_blocksize;
4559 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4560 	bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4561 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4562 	/* prevent underflow in case that few free space is available */
4563 	buf->f_bfree = max_t(s64, bfree, 0);
4564 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4565 	if (buf->f_bfree < ext4_r_blocks_count(es))
4566 		buf->f_bavail = 0;
4567 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4568 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4569 	buf->f_namelen = EXT4_NAME_LEN;
4570 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4571 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4572 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4573 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4574 
4575 	return 0;
4576 }
4577 
4578 /* Helper function for writing quotas on sync - we need to start transaction
4579  * before quota file is locked for write. Otherwise the are possible deadlocks:
4580  * Process 1                         Process 2
4581  * ext4_create()                     quota_sync()
4582  *   jbd2_journal_start()                  write_dquot()
4583  *   dquot_initialize()                         down(dqio_mutex)
4584  *     down(dqio_mutex)                    jbd2_journal_start()
4585  *
4586  */
4587 
4588 #ifdef CONFIG_QUOTA
4589 
4590 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4591 {
4592 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4593 }
4594 
4595 static int ext4_write_dquot(struct dquot *dquot)
4596 {
4597 	int ret, err;
4598 	handle_t *handle;
4599 	struct inode *inode;
4600 
4601 	inode = dquot_to_inode(dquot);
4602 	handle = ext4_journal_start(inode,
4603 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4604 	if (IS_ERR(handle))
4605 		return PTR_ERR(handle);
4606 	ret = dquot_commit(dquot);
4607 	err = ext4_journal_stop(handle);
4608 	if (!ret)
4609 		ret = err;
4610 	return ret;
4611 }
4612 
4613 static int ext4_acquire_dquot(struct dquot *dquot)
4614 {
4615 	int ret, err;
4616 	handle_t *handle;
4617 
4618 	handle = ext4_journal_start(dquot_to_inode(dquot),
4619 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4620 	if (IS_ERR(handle))
4621 		return PTR_ERR(handle);
4622 	ret = dquot_acquire(dquot);
4623 	err = ext4_journal_stop(handle);
4624 	if (!ret)
4625 		ret = err;
4626 	return ret;
4627 }
4628 
4629 static int ext4_release_dquot(struct dquot *dquot)
4630 {
4631 	int ret, err;
4632 	handle_t *handle;
4633 
4634 	handle = ext4_journal_start(dquot_to_inode(dquot),
4635 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4636 	if (IS_ERR(handle)) {
4637 		/* Release dquot anyway to avoid endless cycle in dqput() */
4638 		dquot_release(dquot);
4639 		return PTR_ERR(handle);
4640 	}
4641 	ret = dquot_release(dquot);
4642 	err = ext4_journal_stop(handle);
4643 	if (!ret)
4644 		ret = err;
4645 	return ret;
4646 }
4647 
4648 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4649 {
4650 	/* Are we journaling quotas? */
4651 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4652 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4653 		dquot_mark_dquot_dirty(dquot);
4654 		return ext4_write_dquot(dquot);
4655 	} else {
4656 		return dquot_mark_dquot_dirty(dquot);
4657 	}
4658 }
4659 
4660 static int ext4_write_info(struct super_block *sb, int type)
4661 {
4662 	int ret, err;
4663 	handle_t *handle;
4664 
4665 	/* Data block + inode block */
4666 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4667 	if (IS_ERR(handle))
4668 		return PTR_ERR(handle);
4669 	ret = dquot_commit_info(sb, type);
4670 	err = ext4_journal_stop(handle);
4671 	if (!ret)
4672 		ret = err;
4673 	return ret;
4674 }
4675 
4676 /*
4677  * Turn on quotas during mount time - we need to find
4678  * the quota file and such...
4679  */
4680 static int ext4_quota_on_mount(struct super_block *sb, int type)
4681 {
4682 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4683 					EXT4_SB(sb)->s_jquota_fmt, type);
4684 }
4685 
4686 /*
4687  * Standard function to be called on quota_on
4688  */
4689 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4690 			 struct path *path)
4691 {
4692 	int err;
4693 
4694 	if (!test_opt(sb, QUOTA))
4695 		return -EINVAL;
4696 
4697 	/* Quotafile not on the same filesystem? */
4698 	if (path->mnt->mnt_sb != sb)
4699 		return -EXDEV;
4700 	/* Journaling quota? */
4701 	if (EXT4_SB(sb)->s_qf_names[type]) {
4702 		/* Quotafile not in fs root? */
4703 		if (path->dentry->d_parent != sb->s_root)
4704 			ext4_msg(sb, KERN_WARNING,
4705 				"Quota file not on filesystem root. "
4706 				"Journaled quota will not work");
4707 	}
4708 
4709 	/*
4710 	 * When we journal data on quota file, we have to flush journal to see
4711 	 * all updates to the file when we bypass pagecache...
4712 	 */
4713 	if (EXT4_SB(sb)->s_journal &&
4714 	    ext4_should_journal_data(path->dentry->d_inode)) {
4715 		/*
4716 		 * We don't need to lock updates but journal_flush() could
4717 		 * otherwise be livelocked...
4718 		 */
4719 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4720 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4721 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4722 		if (err)
4723 			return err;
4724 	}
4725 
4726 	return dquot_quota_on(sb, type, format_id, path);
4727 }
4728 
4729 static int ext4_quota_off(struct super_block *sb, int type)
4730 {
4731 	struct inode *inode = sb_dqopt(sb)->files[type];
4732 	handle_t *handle;
4733 
4734 	/* Force all delayed allocation blocks to be allocated.
4735 	 * Caller already holds s_umount sem */
4736 	if (test_opt(sb, DELALLOC))
4737 		sync_filesystem(sb);
4738 
4739 	if (!inode)
4740 		goto out;
4741 
4742 	/* Update modification times of quota files when userspace can
4743 	 * start looking at them */
4744 	handle = ext4_journal_start(inode, 1);
4745 	if (IS_ERR(handle))
4746 		goto out;
4747 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4748 	ext4_mark_inode_dirty(handle, inode);
4749 	ext4_journal_stop(handle);
4750 
4751 out:
4752 	return dquot_quota_off(sb, type);
4753 }
4754 
4755 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4756  * acquiring the locks... As quota files are never truncated and quota code
4757  * itself serializes the operations (and no one else should touch the files)
4758  * we don't have to be afraid of races */
4759 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4760 			       size_t len, loff_t off)
4761 {
4762 	struct inode *inode = sb_dqopt(sb)->files[type];
4763 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4764 	int err = 0;
4765 	int offset = off & (sb->s_blocksize - 1);
4766 	int tocopy;
4767 	size_t toread;
4768 	struct buffer_head *bh;
4769 	loff_t i_size = i_size_read(inode);
4770 
4771 	if (off > i_size)
4772 		return 0;
4773 	if (off+len > i_size)
4774 		len = i_size-off;
4775 	toread = len;
4776 	while (toread > 0) {
4777 		tocopy = sb->s_blocksize - offset < toread ?
4778 				sb->s_blocksize - offset : toread;
4779 		bh = ext4_bread(NULL, inode, blk, 0, &err);
4780 		if (err)
4781 			return err;
4782 		if (!bh)	/* A hole? */
4783 			memset(data, 0, tocopy);
4784 		else
4785 			memcpy(data, bh->b_data+offset, tocopy);
4786 		brelse(bh);
4787 		offset = 0;
4788 		toread -= tocopy;
4789 		data += tocopy;
4790 		blk++;
4791 	}
4792 	return len;
4793 }
4794 
4795 /* Write to quotafile (we know the transaction is already started and has
4796  * enough credits) */
4797 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4798 				const char *data, size_t len, loff_t off)
4799 {
4800 	struct inode *inode = sb_dqopt(sb)->files[type];
4801 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4802 	int err = 0;
4803 	int offset = off & (sb->s_blocksize - 1);
4804 	struct buffer_head *bh;
4805 	handle_t *handle = journal_current_handle();
4806 
4807 	if (EXT4_SB(sb)->s_journal && !handle) {
4808 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4809 			" cancelled because transaction is not started",
4810 			(unsigned long long)off, (unsigned long long)len);
4811 		return -EIO;
4812 	}
4813 	/*
4814 	 * Since we account only one data block in transaction credits,
4815 	 * then it is impossible to cross a block boundary.
4816 	 */
4817 	if (sb->s_blocksize - offset < len) {
4818 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4819 			" cancelled because not block aligned",
4820 			(unsigned long long)off, (unsigned long long)len);
4821 		return -EIO;
4822 	}
4823 
4824 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4825 	bh = ext4_bread(handle, inode, blk, 1, &err);
4826 	if (!bh)
4827 		goto out;
4828 	err = ext4_journal_get_write_access(handle, bh);
4829 	if (err) {
4830 		brelse(bh);
4831 		goto out;
4832 	}
4833 	lock_buffer(bh);
4834 	memcpy(bh->b_data+offset, data, len);
4835 	flush_dcache_page(bh->b_page);
4836 	unlock_buffer(bh);
4837 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
4838 	brelse(bh);
4839 out:
4840 	if (err) {
4841 		mutex_unlock(&inode->i_mutex);
4842 		return err;
4843 	}
4844 	if (inode->i_size < off + len) {
4845 		i_size_write(inode, off + len);
4846 		EXT4_I(inode)->i_disksize = inode->i_size;
4847 		ext4_mark_inode_dirty(handle, inode);
4848 	}
4849 	mutex_unlock(&inode->i_mutex);
4850 	return len;
4851 }
4852 
4853 #endif
4854 
4855 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4856 		       const char *dev_name, void *data)
4857 {
4858 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4859 }
4860 
4861 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4862 static inline void register_as_ext2(void)
4863 {
4864 	int err = register_filesystem(&ext2_fs_type);
4865 	if (err)
4866 		printk(KERN_WARNING
4867 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4868 }
4869 
4870 static inline void unregister_as_ext2(void)
4871 {
4872 	unregister_filesystem(&ext2_fs_type);
4873 }
4874 
4875 static inline int ext2_feature_set_ok(struct super_block *sb)
4876 {
4877 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4878 		return 0;
4879 	if (sb->s_flags & MS_RDONLY)
4880 		return 1;
4881 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4882 		return 0;
4883 	return 1;
4884 }
4885 MODULE_ALIAS("ext2");
4886 #else
4887 static inline void register_as_ext2(void) { }
4888 static inline void unregister_as_ext2(void) { }
4889 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4890 #endif
4891 
4892 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4893 static inline void register_as_ext3(void)
4894 {
4895 	int err = register_filesystem(&ext3_fs_type);
4896 	if (err)
4897 		printk(KERN_WARNING
4898 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4899 }
4900 
4901 static inline void unregister_as_ext3(void)
4902 {
4903 	unregister_filesystem(&ext3_fs_type);
4904 }
4905 
4906 static inline int ext3_feature_set_ok(struct super_block *sb)
4907 {
4908 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4909 		return 0;
4910 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4911 		return 0;
4912 	if (sb->s_flags & MS_RDONLY)
4913 		return 1;
4914 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4915 		return 0;
4916 	return 1;
4917 }
4918 MODULE_ALIAS("ext3");
4919 #else
4920 static inline void register_as_ext3(void) { }
4921 static inline void unregister_as_ext3(void) { }
4922 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4923 #endif
4924 
4925 static struct file_system_type ext4_fs_type = {
4926 	.owner		= THIS_MODULE,
4927 	.name		= "ext4",
4928 	.mount		= ext4_mount,
4929 	.kill_sb	= kill_block_super,
4930 	.fs_flags	= FS_REQUIRES_DEV,
4931 };
4932 
4933 static int __init ext4_init_feat_adverts(void)
4934 {
4935 	struct ext4_features *ef;
4936 	int ret = -ENOMEM;
4937 
4938 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4939 	if (!ef)
4940 		goto out;
4941 
4942 	ef->f_kobj.kset = ext4_kset;
4943 	init_completion(&ef->f_kobj_unregister);
4944 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4945 				   "features");
4946 	if (ret) {
4947 		kfree(ef);
4948 		goto out;
4949 	}
4950 
4951 	ext4_feat = ef;
4952 	ret = 0;
4953 out:
4954 	return ret;
4955 }
4956 
4957 static void ext4_exit_feat_adverts(void)
4958 {
4959 	kobject_put(&ext4_feat->f_kobj);
4960 	wait_for_completion(&ext4_feat->f_kobj_unregister);
4961 	kfree(ext4_feat);
4962 }
4963 
4964 /* Shared across all ext4 file systems */
4965 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4966 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4967 
4968 static int __init ext4_init_fs(void)
4969 {
4970 	int i, err;
4971 
4972 	ext4_check_flag_values();
4973 
4974 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4975 		mutex_init(&ext4__aio_mutex[i]);
4976 		init_waitqueue_head(&ext4__ioend_wq[i]);
4977 	}
4978 
4979 	err = ext4_init_pageio();
4980 	if (err)
4981 		return err;
4982 	err = ext4_init_system_zone();
4983 	if (err)
4984 		goto out7;
4985 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4986 	if (!ext4_kset)
4987 		goto out6;
4988 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4989 	if (!ext4_proc_root)
4990 		goto out5;
4991 
4992 	err = ext4_init_feat_adverts();
4993 	if (err)
4994 		goto out4;
4995 
4996 	err = ext4_init_mballoc();
4997 	if (err)
4998 		goto out3;
4999 
5000 	err = ext4_init_xattr();
5001 	if (err)
5002 		goto out2;
5003 	err = init_inodecache();
5004 	if (err)
5005 		goto out1;
5006 	register_as_ext3();
5007 	register_as_ext2();
5008 	err = register_filesystem(&ext4_fs_type);
5009 	if (err)
5010 		goto out;
5011 
5012 	ext4_li_info = NULL;
5013 	mutex_init(&ext4_li_mtx);
5014 	return 0;
5015 out:
5016 	unregister_as_ext2();
5017 	unregister_as_ext3();
5018 	destroy_inodecache();
5019 out1:
5020 	ext4_exit_xattr();
5021 out2:
5022 	ext4_exit_mballoc();
5023 out3:
5024 	ext4_exit_feat_adverts();
5025 out4:
5026 	remove_proc_entry("fs/ext4", NULL);
5027 out5:
5028 	kset_unregister(ext4_kset);
5029 out6:
5030 	ext4_exit_system_zone();
5031 out7:
5032 	ext4_exit_pageio();
5033 	return err;
5034 }
5035 
5036 static void __exit ext4_exit_fs(void)
5037 {
5038 	ext4_destroy_lazyinit_thread();
5039 	unregister_as_ext2();
5040 	unregister_as_ext3();
5041 	unregister_filesystem(&ext4_fs_type);
5042 	destroy_inodecache();
5043 	ext4_exit_xattr();
5044 	ext4_exit_mballoc();
5045 	ext4_exit_feat_adverts();
5046 	remove_proc_entry("fs/ext4", NULL);
5047 	kset_unregister(ext4_kset);
5048 	ext4_exit_system_zone();
5049 	ext4_exit_pageio();
5050 }
5051 
5052 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5053 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5054 MODULE_LICENSE("GPL");
5055 module_init(ext4_init_fs)
5056 module_exit(ext4_exit_fs)
5057