1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 static int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!ext4_has_metadata_csum(sb)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147 } 148 149 void ext4_superblock_csum_set(struct super_block *sb) 150 { 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!ext4_has_metadata_csum(sb)) 154 return; 155 156 es->s_checksum = ext4_superblock_csum(sb, es); 157 } 158 159 void *ext4_kvmalloc(size_t size, gfp_t flags) 160 { 161 void *ret; 162 163 ret = kmalloc(size, flags | __GFP_NOWARN); 164 if (!ret) 165 ret = __vmalloc(size, flags, PAGE_KERNEL); 166 return ret; 167 } 168 169 void *ext4_kvzalloc(size_t size, gfp_t flags) 170 { 171 void *ret; 172 173 ret = kzalloc(size, flags | __GFP_NOWARN); 174 if (!ret) 175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 176 return ret; 177 } 178 179 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 180 struct ext4_group_desc *bg) 181 { 182 return le32_to_cpu(bg->bg_block_bitmap_lo) | 183 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 184 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 185 } 186 187 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 188 struct ext4_group_desc *bg) 189 { 190 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 191 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 192 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 193 } 194 195 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 196 struct ext4_group_desc *bg) 197 { 198 return le32_to_cpu(bg->bg_inode_table_lo) | 199 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 200 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 201 } 202 203 __u32 ext4_free_group_clusters(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 209 } 210 211 __u32 ext4_free_inodes_count(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 217 } 218 219 __u32 ext4_used_dirs_count(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 225 } 226 227 __u32 ext4_itable_unused_count(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_itable_unused_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 233 } 234 235 void ext4_block_bitmap_set(struct super_block *sb, 236 struct ext4_group_desc *bg, ext4_fsblk_t blk) 237 { 238 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 239 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 240 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 241 } 242 243 void ext4_inode_bitmap_set(struct super_block *sb, 244 struct ext4_group_desc *bg, ext4_fsblk_t blk) 245 { 246 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 247 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 248 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 249 } 250 251 void ext4_inode_table_set(struct super_block *sb, 252 struct ext4_group_desc *bg, ext4_fsblk_t blk) 253 { 254 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 255 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 256 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 257 } 258 259 void ext4_free_group_clusters_set(struct super_block *sb, 260 struct ext4_group_desc *bg, __u32 count) 261 { 262 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 265 } 266 267 void ext4_free_inodes_set(struct super_block *sb, 268 struct ext4_group_desc *bg, __u32 count) 269 { 270 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 273 } 274 275 void ext4_used_dirs_set(struct super_block *sb, 276 struct ext4_group_desc *bg, __u32 count) 277 { 278 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 281 } 282 283 void ext4_itable_unused_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 289 } 290 291 292 static void __save_error_info(struct super_block *sb, const char *func, 293 unsigned int line) 294 { 295 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 296 297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 298 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 299 es->s_last_error_time = cpu_to_le32(get_seconds()); 300 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 301 es->s_last_error_line = cpu_to_le32(line); 302 if (!es->s_first_error_time) { 303 es->s_first_error_time = es->s_last_error_time; 304 strncpy(es->s_first_error_func, func, 305 sizeof(es->s_first_error_func)); 306 es->s_first_error_line = cpu_to_le32(line); 307 es->s_first_error_ino = es->s_last_error_ino; 308 es->s_first_error_block = es->s_last_error_block; 309 } 310 /* 311 * Start the daily error reporting function if it hasn't been 312 * started already 313 */ 314 if (!es->s_error_count) 315 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 316 le32_add_cpu(&es->s_error_count, 1); 317 } 318 319 static void save_error_info(struct super_block *sb, const char *func, 320 unsigned int line) 321 { 322 __save_error_info(sb, func, line); 323 ext4_commit_super(sb, 1); 324 } 325 326 /* 327 * The del_gendisk() function uninitializes the disk-specific data 328 * structures, including the bdi structure, without telling anyone 329 * else. Once this happens, any attempt to call mark_buffer_dirty() 330 * (for example, by ext4_commit_super), will cause a kernel OOPS. 331 * This is a kludge to prevent these oops until we can put in a proper 332 * hook in del_gendisk() to inform the VFS and file system layers. 333 */ 334 static int block_device_ejected(struct super_block *sb) 335 { 336 struct inode *bd_inode = sb->s_bdev->bd_inode; 337 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 338 339 return bdi->dev == NULL; 340 } 341 342 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 343 { 344 struct super_block *sb = journal->j_private; 345 struct ext4_sb_info *sbi = EXT4_SB(sb); 346 int error = is_journal_aborted(journal); 347 struct ext4_journal_cb_entry *jce; 348 349 BUG_ON(txn->t_state == T_FINISHED); 350 spin_lock(&sbi->s_md_lock); 351 while (!list_empty(&txn->t_private_list)) { 352 jce = list_entry(txn->t_private_list.next, 353 struct ext4_journal_cb_entry, jce_list); 354 list_del_init(&jce->jce_list); 355 spin_unlock(&sbi->s_md_lock); 356 jce->jce_func(sb, jce, error); 357 spin_lock(&sbi->s_md_lock); 358 } 359 spin_unlock(&sbi->s_md_lock); 360 } 361 362 /* Deal with the reporting of failure conditions on a filesystem such as 363 * inconsistencies detected or read IO failures. 364 * 365 * On ext2, we can store the error state of the filesystem in the 366 * superblock. That is not possible on ext4, because we may have other 367 * write ordering constraints on the superblock which prevent us from 368 * writing it out straight away; and given that the journal is about to 369 * be aborted, we can't rely on the current, or future, transactions to 370 * write out the superblock safely. 371 * 372 * We'll just use the jbd2_journal_abort() error code to record an error in 373 * the journal instead. On recovery, the journal will complain about 374 * that error until we've noted it down and cleared it. 375 */ 376 377 static void ext4_handle_error(struct super_block *sb) 378 { 379 if (sb->s_flags & MS_RDONLY) 380 return; 381 382 if (!test_opt(sb, ERRORS_CONT)) { 383 journal_t *journal = EXT4_SB(sb)->s_journal; 384 385 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 386 if (journal) 387 jbd2_journal_abort(journal, -EIO); 388 } 389 if (test_opt(sb, ERRORS_RO)) { 390 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 391 /* 392 * Make sure updated value of ->s_mount_flags will be visible 393 * before ->s_flags update 394 */ 395 smp_wmb(); 396 sb->s_flags |= MS_RDONLY; 397 } 398 if (test_opt(sb, ERRORS_PANIC)) 399 panic("EXT4-fs (device %s): panic forced after error\n", 400 sb->s_id); 401 } 402 403 #define ext4_error_ratelimit(sb) \ 404 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 405 "EXT4-fs error") 406 407 void __ext4_error(struct super_block *sb, const char *function, 408 unsigned int line, const char *fmt, ...) 409 { 410 struct va_format vaf; 411 va_list args; 412 413 if (ext4_error_ratelimit(sb)) { 414 va_start(args, fmt); 415 vaf.fmt = fmt; 416 vaf.va = &args; 417 printk(KERN_CRIT 418 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 419 sb->s_id, function, line, current->comm, &vaf); 420 va_end(args); 421 } 422 save_error_info(sb, function, line); 423 ext4_handle_error(sb); 424 } 425 426 void __ext4_error_inode(struct inode *inode, const char *function, 427 unsigned int line, ext4_fsblk_t block, 428 const char *fmt, ...) 429 { 430 va_list args; 431 struct va_format vaf; 432 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 433 434 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 435 es->s_last_error_block = cpu_to_le64(block); 436 if (ext4_error_ratelimit(inode->i_sb)) { 437 va_start(args, fmt); 438 vaf.fmt = fmt; 439 vaf.va = &args; 440 if (block) 441 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 442 "inode #%lu: block %llu: comm %s: %pV\n", 443 inode->i_sb->s_id, function, line, inode->i_ino, 444 block, current->comm, &vaf); 445 else 446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 447 "inode #%lu: comm %s: %pV\n", 448 inode->i_sb->s_id, function, line, inode->i_ino, 449 current->comm, &vaf); 450 va_end(args); 451 } 452 save_error_info(inode->i_sb, function, line); 453 ext4_handle_error(inode->i_sb); 454 } 455 456 void __ext4_error_file(struct file *file, const char *function, 457 unsigned int line, ext4_fsblk_t block, 458 const char *fmt, ...) 459 { 460 va_list args; 461 struct va_format vaf; 462 struct ext4_super_block *es; 463 struct inode *inode = file_inode(file); 464 char pathname[80], *path; 465 466 es = EXT4_SB(inode->i_sb)->s_es; 467 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 468 if (ext4_error_ratelimit(inode->i_sb)) { 469 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 470 if (IS_ERR(path)) 471 path = "(unknown)"; 472 va_start(args, fmt); 473 vaf.fmt = fmt; 474 vaf.va = &args; 475 if (block) 476 printk(KERN_CRIT 477 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 478 "block %llu: comm %s: path %s: %pV\n", 479 inode->i_sb->s_id, function, line, inode->i_ino, 480 block, current->comm, path, &vaf); 481 else 482 printk(KERN_CRIT 483 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 484 "comm %s: path %s: %pV\n", 485 inode->i_sb->s_id, function, line, inode->i_ino, 486 current->comm, path, &vaf); 487 va_end(args); 488 } 489 save_error_info(inode->i_sb, function, line); 490 ext4_handle_error(inode->i_sb); 491 } 492 493 const char *ext4_decode_error(struct super_block *sb, int errno, 494 char nbuf[16]) 495 { 496 char *errstr = NULL; 497 498 switch (errno) { 499 case -EIO: 500 errstr = "IO failure"; 501 break; 502 case -ENOMEM: 503 errstr = "Out of memory"; 504 break; 505 case -EROFS: 506 if (!sb || (EXT4_SB(sb)->s_journal && 507 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 508 errstr = "Journal has aborted"; 509 else 510 errstr = "Readonly filesystem"; 511 break; 512 default: 513 /* If the caller passed in an extra buffer for unknown 514 * errors, textualise them now. Else we just return 515 * NULL. */ 516 if (nbuf) { 517 /* Check for truncated error codes... */ 518 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 519 errstr = nbuf; 520 } 521 break; 522 } 523 524 return errstr; 525 } 526 527 /* __ext4_std_error decodes expected errors from journaling functions 528 * automatically and invokes the appropriate error response. */ 529 530 void __ext4_std_error(struct super_block *sb, const char *function, 531 unsigned int line, int errno) 532 { 533 char nbuf[16]; 534 const char *errstr; 535 536 /* Special case: if the error is EROFS, and we're not already 537 * inside a transaction, then there's really no point in logging 538 * an error. */ 539 if (errno == -EROFS && journal_current_handle() == NULL && 540 (sb->s_flags & MS_RDONLY)) 541 return; 542 543 if (ext4_error_ratelimit(sb)) { 544 errstr = ext4_decode_error(sb, errno, nbuf); 545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 546 sb->s_id, function, line, errstr); 547 } 548 549 save_error_info(sb, function, line); 550 ext4_handle_error(sb); 551 } 552 553 /* 554 * ext4_abort is a much stronger failure handler than ext4_error. The 555 * abort function may be used to deal with unrecoverable failures such 556 * as journal IO errors or ENOMEM at a critical moment in log management. 557 * 558 * We unconditionally force the filesystem into an ABORT|READONLY state, 559 * unless the error response on the fs has been set to panic in which 560 * case we take the easy way out and panic immediately. 561 */ 562 563 void __ext4_abort(struct super_block *sb, const char *function, 564 unsigned int line, const char *fmt, ...) 565 { 566 va_list args; 567 568 save_error_info(sb, function, line); 569 va_start(args, fmt); 570 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 571 function, line); 572 vprintk(fmt, args); 573 printk("\n"); 574 va_end(args); 575 576 if ((sb->s_flags & MS_RDONLY) == 0) { 577 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 579 /* 580 * Make sure updated value of ->s_mount_flags will be visible 581 * before ->s_flags update 582 */ 583 smp_wmb(); 584 sb->s_flags |= MS_RDONLY; 585 if (EXT4_SB(sb)->s_journal) 586 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 587 save_error_info(sb, function, line); 588 } 589 if (test_opt(sb, ERRORS_PANIC)) 590 panic("EXT4-fs panic from previous error\n"); 591 } 592 593 void __ext4_msg(struct super_block *sb, 594 const char *prefix, const char *fmt, ...) 595 { 596 struct va_format vaf; 597 va_list args; 598 599 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 600 return; 601 602 va_start(args, fmt); 603 vaf.fmt = fmt; 604 vaf.va = &args; 605 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 606 va_end(args); 607 } 608 609 void __ext4_warning(struct super_block *sb, const char *function, 610 unsigned int line, const char *fmt, ...) 611 { 612 struct va_format vaf; 613 va_list args; 614 615 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 616 "EXT4-fs warning")) 617 return; 618 619 va_start(args, fmt); 620 vaf.fmt = fmt; 621 vaf.va = &args; 622 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 623 sb->s_id, function, line, &vaf); 624 va_end(args); 625 } 626 627 void __ext4_grp_locked_error(const char *function, unsigned int line, 628 struct super_block *sb, ext4_group_t grp, 629 unsigned long ino, ext4_fsblk_t block, 630 const char *fmt, ...) 631 __releases(bitlock) 632 __acquires(bitlock) 633 { 634 struct va_format vaf; 635 va_list args; 636 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 637 638 es->s_last_error_ino = cpu_to_le32(ino); 639 es->s_last_error_block = cpu_to_le64(block); 640 __save_error_info(sb, function, line); 641 642 if (ext4_error_ratelimit(sb)) { 643 va_start(args, fmt); 644 vaf.fmt = fmt; 645 vaf.va = &args; 646 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 647 sb->s_id, function, line, grp); 648 if (ino) 649 printk(KERN_CONT "inode %lu: ", ino); 650 if (block) 651 printk(KERN_CONT "block %llu:", 652 (unsigned long long) block); 653 printk(KERN_CONT "%pV\n", &vaf); 654 va_end(args); 655 } 656 657 if (test_opt(sb, ERRORS_CONT)) { 658 ext4_commit_super(sb, 0); 659 return; 660 } 661 662 ext4_unlock_group(sb, grp); 663 ext4_handle_error(sb); 664 /* 665 * We only get here in the ERRORS_RO case; relocking the group 666 * may be dangerous, but nothing bad will happen since the 667 * filesystem will have already been marked read/only and the 668 * journal has been aborted. We return 1 as a hint to callers 669 * who might what to use the return value from 670 * ext4_grp_locked_error() to distinguish between the 671 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 672 * aggressively from the ext4 function in question, with a 673 * more appropriate error code. 674 */ 675 ext4_lock_group(sb, grp); 676 return; 677 } 678 679 void ext4_update_dynamic_rev(struct super_block *sb) 680 { 681 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 682 683 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 684 return; 685 686 ext4_warning(sb, 687 "updating to rev %d because of new feature flag, " 688 "running e2fsck is recommended", 689 EXT4_DYNAMIC_REV); 690 691 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 692 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 693 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 694 /* leave es->s_feature_*compat flags alone */ 695 /* es->s_uuid will be set by e2fsck if empty */ 696 697 /* 698 * The rest of the superblock fields should be zero, and if not it 699 * means they are likely already in use, so leave them alone. We 700 * can leave it up to e2fsck to clean up any inconsistencies there. 701 */ 702 } 703 704 /* 705 * Open the external journal device 706 */ 707 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 708 { 709 struct block_device *bdev; 710 char b[BDEVNAME_SIZE]; 711 712 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 713 if (IS_ERR(bdev)) 714 goto fail; 715 return bdev; 716 717 fail: 718 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 719 __bdevname(dev, b), PTR_ERR(bdev)); 720 return NULL; 721 } 722 723 /* 724 * Release the journal device 725 */ 726 static void ext4_blkdev_put(struct block_device *bdev) 727 { 728 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 729 } 730 731 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 732 { 733 struct block_device *bdev; 734 bdev = sbi->journal_bdev; 735 if (bdev) { 736 ext4_blkdev_put(bdev); 737 sbi->journal_bdev = NULL; 738 } 739 } 740 741 static inline struct inode *orphan_list_entry(struct list_head *l) 742 { 743 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 744 } 745 746 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 747 { 748 struct list_head *l; 749 750 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 751 le32_to_cpu(sbi->s_es->s_last_orphan)); 752 753 printk(KERN_ERR "sb_info orphan list:\n"); 754 list_for_each(l, &sbi->s_orphan) { 755 struct inode *inode = orphan_list_entry(l); 756 printk(KERN_ERR " " 757 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 758 inode->i_sb->s_id, inode->i_ino, inode, 759 inode->i_mode, inode->i_nlink, 760 NEXT_ORPHAN(inode)); 761 } 762 } 763 764 static void ext4_put_super(struct super_block *sb) 765 { 766 struct ext4_sb_info *sbi = EXT4_SB(sb); 767 struct ext4_super_block *es = sbi->s_es; 768 int i, err; 769 770 ext4_unregister_li_request(sb); 771 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 772 773 flush_workqueue(sbi->rsv_conversion_wq); 774 destroy_workqueue(sbi->rsv_conversion_wq); 775 776 if (sbi->s_journal) { 777 err = jbd2_journal_destroy(sbi->s_journal); 778 sbi->s_journal = NULL; 779 if (err < 0) 780 ext4_abort(sb, "Couldn't clean up the journal"); 781 } 782 783 ext4_es_unregister_shrinker(sbi); 784 del_timer_sync(&sbi->s_err_report); 785 ext4_release_system_zone(sb); 786 ext4_mb_release(sb); 787 ext4_ext_release(sb); 788 ext4_xattr_put_super(sb); 789 790 if (!(sb->s_flags & MS_RDONLY)) { 791 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 792 es->s_state = cpu_to_le16(sbi->s_mount_state); 793 } 794 if (!(sb->s_flags & MS_RDONLY)) 795 ext4_commit_super(sb, 1); 796 797 if (sbi->s_proc) { 798 remove_proc_entry("options", sbi->s_proc); 799 remove_proc_entry(sb->s_id, ext4_proc_root); 800 } 801 kobject_del(&sbi->s_kobj); 802 803 for (i = 0; i < sbi->s_gdb_count; i++) 804 brelse(sbi->s_group_desc[i]); 805 kvfree(sbi->s_group_desc); 806 kvfree(sbi->s_flex_groups); 807 percpu_counter_destroy(&sbi->s_freeclusters_counter); 808 percpu_counter_destroy(&sbi->s_freeinodes_counter); 809 percpu_counter_destroy(&sbi->s_dirs_counter); 810 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 811 brelse(sbi->s_sbh); 812 #ifdef CONFIG_QUOTA 813 for (i = 0; i < EXT4_MAXQUOTAS; i++) 814 kfree(sbi->s_qf_names[i]); 815 #endif 816 817 /* Debugging code just in case the in-memory inode orphan list 818 * isn't empty. The on-disk one can be non-empty if we've 819 * detected an error and taken the fs readonly, but the 820 * in-memory list had better be clean by this point. */ 821 if (!list_empty(&sbi->s_orphan)) 822 dump_orphan_list(sb, sbi); 823 J_ASSERT(list_empty(&sbi->s_orphan)); 824 825 invalidate_bdev(sb->s_bdev); 826 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 827 /* 828 * Invalidate the journal device's buffers. We don't want them 829 * floating about in memory - the physical journal device may 830 * hotswapped, and it breaks the `ro-after' testing code. 831 */ 832 sync_blockdev(sbi->journal_bdev); 833 invalidate_bdev(sbi->journal_bdev); 834 ext4_blkdev_remove(sbi); 835 } 836 if (sbi->s_mb_cache) { 837 ext4_xattr_destroy_cache(sbi->s_mb_cache); 838 sbi->s_mb_cache = NULL; 839 } 840 if (sbi->s_mmp_tsk) 841 kthread_stop(sbi->s_mmp_tsk); 842 sb->s_fs_info = NULL; 843 /* 844 * Now that we are completely done shutting down the 845 * superblock, we need to actually destroy the kobject. 846 */ 847 kobject_put(&sbi->s_kobj); 848 wait_for_completion(&sbi->s_kobj_unregister); 849 if (sbi->s_chksum_driver) 850 crypto_free_shash(sbi->s_chksum_driver); 851 kfree(sbi->s_blockgroup_lock); 852 kfree(sbi); 853 } 854 855 static struct kmem_cache *ext4_inode_cachep; 856 857 /* 858 * Called inside transaction, so use GFP_NOFS 859 */ 860 static struct inode *ext4_alloc_inode(struct super_block *sb) 861 { 862 struct ext4_inode_info *ei; 863 864 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 865 if (!ei) 866 return NULL; 867 868 ei->vfs_inode.i_version = 1; 869 spin_lock_init(&ei->i_raw_lock); 870 INIT_LIST_HEAD(&ei->i_prealloc_list); 871 spin_lock_init(&ei->i_prealloc_lock); 872 ext4_es_init_tree(&ei->i_es_tree); 873 rwlock_init(&ei->i_es_lock); 874 INIT_LIST_HEAD(&ei->i_es_list); 875 ei->i_es_all_nr = 0; 876 ei->i_es_shk_nr = 0; 877 ei->i_es_shrink_lblk = 0; 878 ei->i_reserved_data_blocks = 0; 879 ei->i_reserved_meta_blocks = 0; 880 ei->i_allocated_meta_blocks = 0; 881 ei->i_da_metadata_calc_len = 0; 882 ei->i_da_metadata_calc_last_lblock = 0; 883 spin_lock_init(&(ei->i_block_reservation_lock)); 884 #ifdef CONFIG_QUOTA 885 ei->i_reserved_quota = 0; 886 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 887 #endif 888 ei->jinode = NULL; 889 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 890 spin_lock_init(&ei->i_completed_io_lock); 891 ei->i_sync_tid = 0; 892 ei->i_datasync_tid = 0; 893 atomic_set(&ei->i_ioend_count, 0); 894 atomic_set(&ei->i_unwritten, 0); 895 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 896 897 return &ei->vfs_inode; 898 } 899 900 static int ext4_drop_inode(struct inode *inode) 901 { 902 int drop = generic_drop_inode(inode); 903 904 trace_ext4_drop_inode(inode, drop); 905 return drop; 906 } 907 908 static void ext4_i_callback(struct rcu_head *head) 909 { 910 struct inode *inode = container_of(head, struct inode, i_rcu); 911 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 912 } 913 914 static void ext4_destroy_inode(struct inode *inode) 915 { 916 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 917 ext4_msg(inode->i_sb, KERN_ERR, 918 "Inode %lu (%p): orphan list check failed!", 919 inode->i_ino, EXT4_I(inode)); 920 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 921 EXT4_I(inode), sizeof(struct ext4_inode_info), 922 true); 923 dump_stack(); 924 } 925 call_rcu(&inode->i_rcu, ext4_i_callback); 926 } 927 928 static void init_once(void *foo) 929 { 930 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 931 932 INIT_LIST_HEAD(&ei->i_orphan); 933 init_rwsem(&ei->xattr_sem); 934 init_rwsem(&ei->i_data_sem); 935 inode_init_once(&ei->vfs_inode); 936 } 937 938 static int __init init_inodecache(void) 939 { 940 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 941 sizeof(struct ext4_inode_info), 942 0, (SLAB_RECLAIM_ACCOUNT| 943 SLAB_MEM_SPREAD), 944 init_once); 945 if (ext4_inode_cachep == NULL) 946 return -ENOMEM; 947 return 0; 948 } 949 950 static void destroy_inodecache(void) 951 { 952 /* 953 * Make sure all delayed rcu free inodes are flushed before we 954 * destroy cache. 955 */ 956 rcu_barrier(); 957 kmem_cache_destroy(ext4_inode_cachep); 958 } 959 960 void ext4_clear_inode(struct inode *inode) 961 { 962 invalidate_inode_buffers(inode); 963 clear_inode(inode); 964 dquot_drop(inode); 965 ext4_discard_preallocations(inode); 966 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 967 if (EXT4_I(inode)->jinode) { 968 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 969 EXT4_I(inode)->jinode); 970 jbd2_free_inode(EXT4_I(inode)->jinode); 971 EXT4_I(inode)->jinode = NULL; 972 } 973 } 974 975 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 976 u64 ino, u32 generation) 977 { 978 struct inode *inode; 979 980 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 981 return ERR_PTR(-ESTALE); 982 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 983 return ERR_PTR(-ESTALE); 984 985 /* iget isn't really right if the inode is currently unallocated!! 986 * 987 * ext4_read_inode will return a bad_inode if the inode had been 988 * deleted, so we should be safe. 989 * 990 * Currently we don't know the generation for parent directory, so 991 * a generation of 0 means "accept any" 992 */ 993 inode = ext4_iget_normal(sb, ino); 994 if (IS_ERR(inode)) 995 return ERR_CAST(inode); 996 if (generation && inode->i_generation != generation) { 997 iput(inode); 998 return ERR_PTR(-ESTALE); 999 } 1000 1001 return inode; 1002 } 1003 1004 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1005 int fh_len, int fh_type) 1006 { 1007 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1008 ext4_nfs_get_inode); 1009 } 1010 1011 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1012 int fh_len, int fh_type) 1013 { 1014 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1015 ext4_nfs_get_inode); 1016 } 1017 1018 /* 1019 * Try to release metadata pages (indirect blocks, directories) which are 1020 * mapped via the block device. Since these pages could have journal heads 1021 * which would prevent try_to_free_buffers() from freeing them, we must use 1022 * jbd2 layer's try_to_free_buffers() function to release them. 1023 */ 1024 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1025 gfp_t wait) 1026 { 1027 journal_t *journal = EXT4_SB(sb)->s_journal; 1028 1029 WARN_ON(PageChecked(page)); 1030 if (!page_has_buffers(page)) 1031 return 0; 1032 if (journal) 1033 return jbd2_journal_try_to_free_buffers(journal, page, 1034 wait & ~__GFP_WAIT); 1035 return try_to_free_buffers(page); 1036 } 1037 1038 #ifdef CONFIG_QUOTA 1039 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1040 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1041 1042 static int ext4_write_dquot(struct dquot *dquot); 1043 static int ext4_acquire_dquot(struct dquot *dquot); 1044 static int ext4_release_dquot(struct dquot *dquot); 1045 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1046 static int ext4_write_info(struct super_block *sb, int type); 1047 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1048 struct path *path); 1049 static int ext4_quota_off(struct super_block *sb, int type); 1050 static int ext4_quota_on_mount(struct super_block *sb, int type); 1051 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1052 size_t len, loff_t off); 1053 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1054 const char *data, size_t len, loff_t off); 1055 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1056 unsigned int flags); 1057 static int ext4_enable_quotas(struct super_block *sb); 1058 1059 static struct dquot **ext4_get_dquots(struct inode *inode) 1060 { 1061 return EXT4_I(inode)->i_dquot; 1062 } 1063 1064 static const struct dquot_operations ext4_quota_operations = { 1065 .get_reserved_space = ext4_get_reserved_space, 1066 .write_dquot = ext4_write_dquot, 1067 .acquire_dquot = ext4_acquire_dquot, 1068 .release_dquot = ext4_release_dquot, 1069 .mark_dirty = ext4_mark_dquot_dirty, 1070 .write_info = ext4_write_info, 1071 .alloc_dquot = dquot_alloc, 1072 .destroy_dquot = dquot_destroy, 1073 }; 1074 1075 static const struct quotactl_ops ext4_qctl_operations = { 1076 .quota_on = ext4_quota_on, 1077 .quota_off = ext4_quota_off, 1078 .quota_sync = dquot_quota_sync, 1079 .get_info = dquot_get_dqinfo, 1080 .set_info = dquot_set_dqinfo, 1081 .get_dqblk = dquot_get_dqblk, 1082 .set_dqblk = dquot_set_dqblk 1083 }; 1084 #endif 1085 1086 static const struct super_operations ext4_sops = { 1087 .alloc_inode = ext4_alloc_inode, 1088 .destroy_inode = ext4_destroy_inode, 1089 .write_inode = ext4_write_inode, 1090 .dirty_inode = ext4_dirty_inode, 1091 .drop_inode = ext4_drop_inode, 1092 .evict_inode = ext4_evict_inode, 1093 .put_super = ext4_put_super, 1094 .sync_fs = ext4_sync_fs, 1095 .freeze_fs = ext4_freeze, 1096 .unfreeze_fs = ext4_unfreeze, 1097 .statfs = ext4_statfs, 1098 .remount_fs = ext4_remount, 1099 .show_options = ext4_show_options, 1100 #ifdef CONFIG_QUOTA 1101 .quota_read = ext4_quota_read, 1102 .quota_write = ext4_quota_write, 1103 .get_dquots = ext4_get_dquots, 1104 #endif 1105 .bdev_try_to_free_page = bdev_try_to_free_page, 1106 }; 1107 1108 static const struct export_operations ext4_export_ops = { 1109 .fh_to_dentry = ext4_fh_to_dentry, 1110 .fh_to_parent = ext4_fh_to_parent, 1111 .get_parent = ext4_get_parent, 1112 }; 1113 1114 enum { 1115 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1116 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1117 Opt_nouid32, Opt_debug, Opt_removed, 1118 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1119 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1120 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1121 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1122 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1123 Opt_data_err_abort, Opt_data_err_ignore, 1124 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1125 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1126 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1127 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1128 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1129 Opt_lazytime, Opt_nolazytime, 1130 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1131 Opt_inode_readahead_blks, Opt_journal_ioprio, 1132 Opt_dioread_nolock, Opt_dioread_lock, 1133 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1134 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1135 }; 1136 1137 static const match_table_t tokens = { 1138 {Opt_bsd_df, "bsddf"}, 1139 {Opt_minix_df, "minixdf"}, 1140 {Opt_grpid, "grpid"}, 1141 {Opt_grpid, "bsdgroups"}, 1142 {Opt_nogrpid, "nogrpid"}, 1143 {Opt_nogrpid, "sysvgroups"}, 1144 {Opt_resgid, "resgid=%u"}, 1145 {Opt_resuid, "resuid=%u"}, 1146 {Opt_sb, "sb=%u"}, 1147 {Opt_err_cont, "errors=continue"}, 1148 {Opt_err_panic, "errors=panic"}, 1149 {Opt_err_ro, "errors=remount-ro"}, 1150 {Opt_nouid32, "nouid32"}, 1151 {Opt_debug, "debug"}, 1152 {Opt_removed, "oldalloc"}, 1153 {Opt_removed, "orlov"}, 1154 {Opt_user_xattr, "user_xattr"}, 1155 {Opt_nouser_xattr, "nouser_xattr"}, 1156 {Opt_acl, "acl"}, 1157 {Opt_noacl, "noacl"}, 1158 {Opt_noload, "norecovery"}, 1159 {Opt_noload, "noload"}, 1160 {Opt_removed, "nobh"}, 1161 {Opt_removed, "bh"}, 1162 {Opt_commit, "commit=%u"}, 1163 {Opt_min_batch_time, "min_batch_time=%u"}, 1164 {Opt_max_batch_time, "max_batch_time=%u"}, 1165 {Opt_journal_dev, "journal_dev=%u"}, 1166 {Opt_journal_path, "journal_path=%s"}, 1167 {Opt_journal_checksum, "journal_checksum"}, 1168 {Opt_nojournal_checksum, "nojournal_checksum"}, 1169 {Opt_journal_async_commit, "journal_async_commit"}, 1170 {Opt_abort, "abort"}, 1171 {Opt_data_journal, "data=journal"}, 1172 {Opt_data_ordered, "data=ordered"}, 1173 {Opt_data_writeback, "data=writeback"}, 1174 {Opt_data_err_abort, "data_err=abort"}, 1175 {Opt_data_err_ignore, "data_err=ignore"}, 1176 {Opt_offusrjquota, "usrjquota="}, 1177 {Opt_usrjquota, "usrjquota=%s"}, 1178 {Opt_offgrpjquota, "grpjquota="}, 1179 {Opt_grpjquota, "grpjquota=%s"}, 1180 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1181 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1182 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1183 {Opt_grpquota, "grpquota"}, 1184 {Opt_noquota, "noquota"}, 1185 {Opt_quota, "quota"}, 1186 {Opt_usrquota, "usrquota"}, 1187 {Opt_barrier, "barrier=%u"}, 1188 {Opt_barrier, "barrier"}, 1189 {Opt_nobarrier, "nobarrier"}, 1190 {Opt_i_version, "i_version"}, 1191 {Opt_dax, "dax"}, 1192 {Opt_stripe, "stripe=%u"}, 1193 {Opt_delalloc, "delalloc"}, 1194 {Opt_lazytime, "lazytime"}, 1195 {Opt_nolazytime, "nolazytime"}, 1196 {Opt_nodelalloc, "nodelalloc"}, 1197 {Opt_removed, "mblk_io_submit"}, 1198 {Opt_removed, "nomblk_io_submit"}, 1199 {Opt_block_validity, "block_validity"}, 1200 {Opt_noblock_validity, "noblock_validity"}, 1201 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1202 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1203 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1204 {Opt_auto_da_alloc, "auto_da_alloc"}, 1205 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1206 {Opt_dioread_nolock, "dioread_nolock"}, 1207 {Opt_dioread_lock, "dioread_lock"}, 1208 {Opt_discard, "discard"}, 1209 {Opt_nodiscard, "nodiscard"}, 1210 {Opt_init_itable, "init_itable=%u"}, 1211 {Opt_init_itable, "init_itable"}, 1212 {Opt_noinit_itable, "noinit_itable"}, 1213 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1214 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1215 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1216 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1217 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1218 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1219 {Opt_err, NULL}, 1220 }; 1221 1222 static ext4_fsblk_t get_sb_block(void **data) 1223 { 1224 ext4_fsblk_t sb_block; 1225 char *options = (char *) *data; 1226 1227 if (!options || strncmp(options, "sb=", 3) != 0) 1228 return 1; /* Default location */ 1229 1230 options += 3; 1231 /* TODO: use simple_strtoll with >32bit ext4 */ 1232 sb_block = simple_strtoul(options, &options, 0); 1233 if (*options && *options != ',') { 1234 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1235 (char *) *data); 1236 return 1; 1237 } 1238 if (*options == ',') 1239 options++; 1240 *data = (void *) options; 1241 1242 return sb_block; 1243 } 1244 1245 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1246 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1247 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1248 1249 #ifdef CONFIG_QUOTA 1250 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1251 { 1252 struct ext4_sb_info *sbi = EXT4_SB(sb); 1253 char *qname; 1254 int ret = -1; 1255 1256 if (sb_any_quota_loaded(sb) && 1257 !sbi->s_qf_names[qtype]) { 1258 ext4_msg(sb, KERN_ERR, 1259 "Cannot change journaled " 1260 "quota options when quota turned on"); 1261 return -1; 1262 } 1263 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1264 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1265 "when QUOTA feature is enabled"); 1266 return -1; 1267 } 1268 qname = match_strdup(args); 1269 if (!qname) { 1270 ext4_msg(sb, KERN_ERR, 1271 "Not enough memory for storing quotafile name"); 1272 return -1; 1273 } 1274 if (sbi->s_qf_names[qtype]) { 1275 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1276 ret = 1; 1277 else 1278 ext4_msg(sb, KERN_ERR, 1279 "%s quota file already specified", 1280 QTYPE2NAME(qtype)); 1281 goto errout; 1282 } 1283 if (strchr(qname, '/')) { 1284 ext4_msg(sb, KERN_ERR, 1285 "quotafile must be on filesystem root"); 1286 goto errout; 1287 } 1288 sbi->s_qf_names[qtype] = qname; 1289 set_opt(sb, QUOTA); 1290 return 1; 1291 errout: 1292 kfree(qname); 1293 return ret; 1294 } 1295 1296 static int clear_qf_name(struct super_block *sb, int qtype) 1297 { 1298 1299 struct ext4_sb_info *sbi = EXT4_SB(sb); 1300 1301 if (sb_any_quota_loaded(sb) && 1302 sbi->s_qf_names[qtype]) { 1303 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1304 " when quota turned on"); 1305 return -1; 1306 } 1307 kfree(sbi->s_qf_names[qtype]); 1308 sbi->s_qf_names[qtype] = NULL; 1309 return 1; 1310 } 1311 #endif 1312 1313 #define MOPT_SET 0x0001 1314 #define MOPT_CLEAR 0x0002 1315 #define MOPT_NOSUPPORT 0x0004 1316 #define MOPT_EXPLICIT 0x0008 1317 #define MOPT_CLEAR_ERR 0x0010 1318 #define MOPT_GTE0 0x0020 1319 #ifdef CONFIG_QUOTA 1320 #define MOPT_Q 0 1321 #define MOPT_QFMT 0x0040 1322 #else 1323 #define MOPT_Q MOPT_NOSUPPORT 1324 #define MOPT_QFMT MOPT_NOSUPPORT 1325 #endif 1326 #define MOPT_DATAJ 0x0080 1327 #define MOPT_NO_EXT2 0x0100 1328 #define MOPT_NO_EXT3 0x0200 1329 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1330 #define MOPT_STRING 0x0400 1331 1332 static const struct mount_opts { 1333 int token; 1334 int mount_opt; 1335 int flags; 1336 } ext4_mount_opts[] = { 1337 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1338 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1339 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1340 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1341 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1342 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1343 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1344 MOPT_EXT4_ONLY | MOPT_SET}, 1345 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1346 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1347 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1348 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1349 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1350 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1351 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1352 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1353 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1354 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1355 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1356 MOPT_EXT4_ONLY | MOPT_SET}, 1357 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1358 EXT4_MOUNT_JOURNAL_CHECKSUM), 1359 MOPT_EXT4_ONLY | MOPT_SET}, 1360 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1361 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1362 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1363 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1364 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1365 MOPT_NO_EXT2 | MOPT_SET}, 1366 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1367 MOPT_NO_EXT2 | MOPT_CLEAR}, 1368 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1369 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1370 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1371 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1372 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1373 {Opt_commit, 0, MOPT_GTE0}, 1374 {Opt_max_batch_time, 0, MOPT_GTE0}, 1375 {Opt_min_batch_time, 0, MOPT_GTE0}, 1376 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1377 {Opt_init_itable, 0, MOPT_GTE0}, 1378 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1379 {Opt_stripe, 0, MOPT_GTE0}, 1380 {Opt_resuid, 0, MOPT_GTE0}, 1381 {Opt_resgid, 0, MOPT_GTE0}, 1382 {Opt_journal_dev, 0, MOPT_GTE0}, 1383 {Opt_journal_path, 0, MOPT_STRING}, 1384 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1385 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1386 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1387 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1388 MOPT_NO_EXT2 | MOPT_DATAJ}, 1389 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1390 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1391 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1392 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1393 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1394 #else 1395 {Opt_acl, 0, MOPT_NOSUPPORT}, 1396 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1397 #endif 1398 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1399 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1400 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1401 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1402 MOPT_SET | MOPT_Q}, 1403 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1404 MOPT_SET | MOPT_Q}, 1405 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1406 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1407 {Opt_usrjquota, 0, MOPT_Q}, 1408 {Opt_grpjquota, 0, MOPT_Q}, 1409 {Opt_offusrjquota, 0, MOPT_Q}, 1410 {Opt_offgrpjquota, 0, MOPT_Q}, 1411 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1412 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1413 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1414 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1415 {Opt_err, 0, 0} 1416 }; 1417 1418 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1419 substring_t *args, unsigned long *journal_devnum, 1420 unsigned int *journal_ioprio, int is_remount) 1421 { 1422 struct ext4_sb_info *sbi = EXT4_SB(sb); 1423 const struct mount_opts *m; 1424 kuid_t uid; 1425 kgid_t gid; 1426 int arg = 0; 1427 1428 #ifdef CONFIG_QUOTA 1429 if (token == Opt_usrjquota) 1430 return set_qf_name(sb, USRQUOTA, &args[0]); 1431 else if (token == Opt_grpjquota) 1432 return set_qf_name(sb, GRPQUOTA, &args[0]); 1433 else if (token == Opt_offusrjquota) 1434 return clear_qf_name(sb, USRQUOTA); 1435 else if (token == Opt_offgrpjquota) 1436 return clear_qf_name(sb, GRPQUOTA); 1437 #endif 1438 switch (token) { 1439 case Opt_noacl: 1440 case Opt_nouser_xattr: 1441 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1442 break; 1443 case Opt_sb: 1444 return 1; /* handled by get_sb_block() */ 1445 case Opt_removed: 1446 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1447 return 1; 1448 case Opt_abort: 1449 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1450 return 1; 1451 case Opt_i_version: 1452 sb->s_flags |= MS_I_VERSION; 1453 return 1; 1454 case Opt_lazytime: 1455 sb->s_flags |= MS_LAZYTIME; 1456 return 1; 1457 case Opt_nolazytime: 1458 sb->s_flags &= ~MS_LAZYTIME; 1459 return 1; 1460 } 1461 1462 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1463 if (token == m->token) 1464 break; 1465 1466 if (m->token == Opt_err) { 1467 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1468 "or missing value", opt); 1469 return -1; 1470 } 1471 1472 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1473 ext4_msg(sb, KERN_ERR, 1474 "Mount option \"%s\" incompatible with ext2", opt); 1475 return -1; 1476 } 1477 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1478 ext4_msg(sb, KERN_ERR, 1479 "Mount option \"%s\" incompatible with ext3", opt); 1480 return -1; 1481 } 1482 1483 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1484 return -1; 1485 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1486 return -1; 1487 if (m->flags & MOPT_EXPLICIT) 1488 set_opt2(sb, EXPLICIT_DELALLOC); 1489 if (m->flags & MOPT_CLEAR_ERR) 1490 clear_opt(sb, ERRORS_MASK); 1491 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1492 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1493 "options when quota turned on"); 1494 return -1; 1495 } 1496 1497 if (m->flags & MOPT_NOSUPPORT) { 1498 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1499 } else if (token == Opt_commit) { 1500 if (arg == 0) 1501 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1502 sbi->s_commit_interval = HZ * arg; 1503 } else if (token == Opt_max_batch_time) { 1504 sbi->s_max_batch_time = arg; 1505 } else if (token == Opt_min_batch_time) { 1506 sbi->s_min_batch_time = arg; 1507 } else if (token == Opt_inode_readahead_blks) { 1508 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1509 ext4_msg(sb, KERN_ERR, 1510 "EXT4-fs: inode_readahead_blks must be " 1511 "0 or a power of 2 smaller than 2^31"); 1512 return -1; 1513 } 1514 sbi->s_inode_readahead_blks = arg; 1515 } else if (token == Opt_init_itable) { 1516 set_opt(sb, INIT_INODE_TABLE); 1517 if (!args->from) 1518 arg = EXT4_DEF_LI_WAIT_MULT; 1519 sbi->s_li_wait_mult = arg; 1520 } else if (token == Opt_max_dir_size_kb) { 1521 sbi->s_max_dir_size_kb = arg; 1522 } else if (token == Opt_stripe) { 1523 sbi->s_stripe = arg; 1524 } else if (token == Opt_resuid) { 1525 uid = make_kuid(current_user_ns(), arg); 1526 if (!uid_valid(uid)) { 1527 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1528 return -1; 1529 } 1530 sbi->s_resuid = uid; 1531 } else if (token == Opt_resgid) { 1532 gid = make_kgid(current_user_ns(), arg); 1533 if (!gid_valid(gid)) { 1534 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1535 return -1; 1536 } 1537 sbi->s_resgid = gid; 1538 } else if (token == Opt_journal_dev) { 1539 if (is_remount) { 1540 ext4_msg(sb, KERN_ERR, 1541 "Cannot specify journal on remount"); 1542 return -1; 1543 } 1544 *journal_devnum = arg; 1545 } else if (token == Opt_journal_path) { 1546 char *journal_path; 1547 struct inode *journal_inode; 1548 struct path path; 1549 int error; 1550 1551 if (is_remount) { 1552 ext4_msg(sb, KERN_ERR, 1553 "Cannot specify journal on remount"); 1554 return -1; 1555 } 1556 journal_path = match_strdup(&args[0]); 1557 if (!journal_path) { 1558 ext4_msg(sb, KERN_ERR, "error: could not dup " 1559 "journal device string"); 1560 return -1; 1561 } 1562 1563 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1564 if (error) { 1565 ext4_msg(sb, KERN_ERR, "error: could not find " 1566 "journal device path: error %d", error); 1567 kfree(journal_path); 1568 return -1; 1569 } 1570 1571 journal_inode = path.dentry->d_inode; 1572 if (!S_ISBLK(journal_inode->i_mode)) { 1573 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1574 "is not a block device", journal_path); 1575 path_put(&path); 1576 kfree(journal_path); 1577 return -1; 1578 } 1579 1580 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1581 path_put(&path); 1582 kfree(journal_path); 1583 } else if (token == Opt_journal_ioprio) { 1584 if (arg > 7) { 1585 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1586 " (must be 0-7)"); 1587 return -1; 1588 } 1589 *journal_ioprio = 1590 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1591 } else if (m->flags & MOPT_DATAJ) { 1592 if (is_remount) { 1593 if (!sbi->s_journal) 1594 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1595 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1596 ext4_msg(sb, KERN_ERR, 1597 "Cannot change data mode on remount"); 1598 return -1; 1599 } 1600 } else { 1601 clear_opt(sb, DATA_FLAGS); 1602 sbi->s_mount_opt |= m->mount_opt; 1603 } 1604 #ifdef CONFIG_QUOTA 1605 } else if (m->flags & MOPT_QFMT) { 1606 if (sb_any_quota_loaded(sb) && 1607 sbi->s_jquota_fmt != m->mount_opt) { 1608 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1609 "quota options when quota turned on"); 1610 return -1; 1611 } 1612 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1613 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1614 ext4_msg(sb, KERN_ERR, 1615 "Cannot set journaled quota options " 1616 "when QUOTA feature is enabled"); 1617 return -1; 1618 } 1619 sbi->s_jquota_fmt = m->mount_opt; 1620 #endif 1621 #ifndef CONFIG_FS_DAX 1622 } else if (token == Opt_dax) { 1623 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1624 return -1; 1625 #endif 1626 } else { 1627 if (!args->from) 1628 arg = 1; 1629 if (m->flags & MOPT_CLEAR) 1630 arg = !arg; 1631 else if (unlikely(!(m->flags & MOPT_SET))) { 1632 ext4_msg(sb, KERN_WARNING, 1633 "buggy handling of option %s", opt); 1634 WARN_ON(1); 1635 return -1; 1636 } 1637 if (arg != 0) 1638 sbi->s_mount_opt |= m->mount_opt; 1639 else 1640 sbi->s_mount_opt &= ~m->mount_opt; 1641 } 1642 return 1; 1643 } 1644 1645 static int parse_options(char *options, struct super_block *sb, 1646 unsigned long *journal_devnum, 1647 unsigned int *journal_ioprio, 1648 int is_remount) 1649 { 1650 struct ext4_sb_info *sbi = EXT4_SB(sb); 1651 char *p; 1652 substring_t args[MAX_OPT_ARGS]; 1653 int token; 1654 1655 if (!options) 1656 return 1; 1657 1658 while ((p = strsep(&options, ",")) != NULL) { 1659 if (!*p) 1660 continue; 1661 /* 1662 * Initialize args struct so we know whether arg was 1663 * found; some options take optional arguments. 1664 */ 1665 args[0].to = args[0].from = NULL; 1666 token = match_token(p, tokens, args); 1667 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1668 journal_ioprio, is_remount) < 0) 1669 return 0; 1670 } 1671 #ifdef CONFIG_QUOTA 1672 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1673 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1674 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1675 "feature is enabled"); 1676 return 0; 1677 } 1678 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1679 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1680 clear_opt(sb, USRQUOTA); 1681 1682 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1683 clear_opt(sb, GRPQUOTA); 1684 1685 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1686 ext4_msg(sb, KERN_ERR, "old and new quota " 1687 "format mixing"); 1688 return 0; 1689 } 1690 1691 if (!sbi->s_jquota_fmt) { 1692 ext4_msg(sb, KERN_ERR, "journaled quota format " 1693 "not specified"); 1694 return 0; 1695 } 1696 } 1697 #endif 1698 if (test_opt(sb, DIOREAD_NOLOCK)) { 1699 int blocksize = 1700 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1701 1702 if (blocksize < PAGE_CACHE_SIZE) { 1703 ext4_msg(sb, KERN_ERR, "can't mount with " 1704 "dioread_nolock if block size != PAGE_SIZE"); 1705 return 0; 1706 } 1707 } 1708 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1709 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1710 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1711 "in data=ordered mode"); 1712 return 0; 1713 } 1714 return 1; 1715 } 1716 1717 static inline void ext4_show_quota_options(struct seq_file *seq, 1718 struct super_block *sb) 1719 { 1720 #if defined(CONFIG_QUOTA) 1721 struct ext4_sb_info *sbi = EXT4_SB(sb); 1722 1723 if (sbi->s_jquota_fmt) { 1724 char *fmtname = ""; 1725 1726 switch (sbi->s_jquota_fmt) { 1727 case QFMT_VFS_OLD: 1728 fmtname = "vfsold"; 1729 break; 1730 case QFMT_VFS_V0: 1731 fmtname = "vfsv0"; 1732 break; 1733 case QFMT_VFS_V1: 1734 fmtname = "vfsv1"; 1735 break; 1736 } 1737 seq_printf(seq, ",jqfmt=%s", fmtname); 1738 } 1739 1740 if (sbi->s_qf_names[USRQUOTA]) 1741 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1742 1743 if (sbi->s_qf_names[GRPQUOTA]) 1744 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1745 #endif 1746 } 1747 1748 static const char *token2str(int token) 1749 { 1750 const struct match_token *t; 1751 1752 for (t = tokens; t->token != Opt_err; t++) 1753 if (t->token == token && !strchr(t->pattern, '=')) 1754 break; 1755 return t->pattern; 1756 } 1757 1758 /* 1759 * Show an option if 1760 * - it's set to a non-default value OR 1761 * - if the per-sb default is different from the global default 1762 */ 1763 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1764 int nodefs) 1765 { 1766 struct ext4_sb_info *sbi = EXT4_SB(sb); 1767 struct ext4_super_block *es = sbi->s_es; 1768 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1769 const struct mount_opts *m; 1770 char sep = nodefs ? '\n' : ','; 1771 1772 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1773 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1774 1775 if (sbi->s_sb_block != 1) 1776 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1777 1778 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1779 int want_set = m->flags & MOPT_SET; 1780 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1781 (m->flags & MOPT_CLEAR_ERR)) 1782 continue; 1783 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1784 continue; /* skip if same as the default */ 1785 if ((want_set && 1786 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1787 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1788 continue; /* select Opt_noFoo vs Opt_Foo */ 1789 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1790 } 1791 1792 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1793 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1794 SEQ_OPTS_PRINT("resuid=%u", 1795 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1796 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1797 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1798 SEQ_OPTS_PRINT("resgid=%u", 1799 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1800 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1801 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1802 SEQ_OPTS_PUTS("errors=remount-ro"); 1803 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1804 SEQ_OPTS_PUTS("errors=continue"); 1805 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1806 SEQ_OPTS_PUTS("errors=panic"); 1807 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1808 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1809 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1810 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1811 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1812 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1813 if (sb->s_flags & MS_I_VERSION) 1814 SEQ_OPTS_PUTS("i_version"); 1815 if (nodefs || sbi->s_stripe) 1816 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1817 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1818 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1819 SEQ_OPTS_PUTS("data=journal"); 1820 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1821 SEQ_OPTS_PUTS("data=ordered"); 1822 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1823 SEQ_OPTS_PUTS("data=writeback"); 1824 } 1825 if (nodefs || 1826 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1827 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1828 sbi->s_inode_readahead_blks); 1829 1830 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1831 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1832 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1833 if (nodefs || sbi->s_max_dir_size_kb) 1834 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1835 1836 ext4_show_quota_options(seq, sb); 1837 return 0; 1838 } 1839 1840 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1841 { 1842 return _ext4_show_options(seq, root->d_sb, 0); 1843 } 1844 1845 static int options_seq_show(struct seq_file *seq, void *offset) 1846 { 1847 struct super_block *sb = seq->private; 1848 int rc; 1849 1850 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1851 rc = _ext4_show_options(seq, sb, 1); 1852 seq_puts(seq, "\n"); 1853 return rc; 1854 } 1855 1856 static int options_open_fs(struct inode *inode, struct file *file) 1857 { 1858 return single_open(file, options_seq_show, PDE_DATA(inode)); 1859 } 1860 1861 static const struct file_operations ext4_seq_options_fops = { 1862 .owner = THIS_MODULE, 1863 .open = options_open_fs, 1864 .read = seq_read, 1865 .llseek = seq_lseek, 1866 .release = single_release, 1867 }; 1868 1869 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1870 int read_only) 1871 { 1872 struct ext4_sb_info *sbi = EXT4_SB(sb); 1873 int res = 0; 1874 1875 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1876 ext4_msg(sb, KERN_ERR, "revision level too high, " 1877 "forcing read-only mode"); 1878 res = MS_RDONLY; 1879 } 1880 if (read_only) 1881 goto done; 1882 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1883 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1884 "running e2fsck is recommended"); 1885 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1886 ext4_msg(sb, KERN_WARNING, 1887 "warning: mounting fs with errors, " 1888 "running e2fsck is recommended"); 1889 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1890 le16_to_cpu(es->s_mnt_count) >= 1891 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1892 ext4_msg(sb, KERN_WARNING, 1893 "warning: maximal mount count reached, " 1894 "running e2fsck is recommended"); 1895 else if (le32_to_cpu(es->s_checkinterval) && 1896 (le32_to_cpu(es->s_lastcheck) + 1897 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1898 ext4_msg(sb, KERN_WARNING, 1899 "warning: checktime reached, " 1900 "running e2fsck is recommended"); 1901 if (!sbi->s_journal) 1902 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1903 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1904 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1905 le16_add_cpu(&es->s_mnt_count, 1); 1906 es->s_mtime = cpu_to_le32(get_seconds()); 1907 ext4_update_dynamic_rev(sb); 1908 if (sbi->s_journal) 1909 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1910 1911 ext4_commit_super(sb, 1); 1912 done: 1913 if (test_opt(sb, DEBUG)) 1914 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1915 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1916 sb->s_blocksize, 1917 sbi->s_groups_count, 1918 EXT4_BLOCKS_PER_GROUP(sb), 1919 EXT4_INODES_PER_GROUP(sb), 1920 sbi->s_mount_opt, sbi->s_mount_opt2); 1921 1922 cleancache_init_fs(sb); 1923 return res; 1924 } 1925 1926 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1927 { 1928 struct ext4_sb_info *sbi = EXT4_SB(sb); 1929 struct flex_groups *new_groups; 1930 int size; 1931 1932 if (!sbi->s_log_groups_per_flex) 1933 return 0; 1934 1935 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1936 if (size <= sbi->s_flex_groups_allocated) 1937 return 0; 1938 1939 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1940 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1941 if (!new_groups) { 1942 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1943 size / (int) sizeof(struct flex_groups)); 1944 return -ENOMEM; 1945 } 1946 1947 if (sbi->s_flex_groups) { 1948 memcpy(new_groups, sbi->s_flex_groups, 1949 (sbi->s_flex_groups_allocated * 1950 sizeof(struct flex_groups))); 1951 kvfree(sbi->s_flex_groups); 1952 } 1953 sbi->s_flex_groups = new_groups; 1954 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1955 return 0; 1956 } 1957 1958 static int ext4_fill_flex_info(struct super_block *sb) 1959 { 1960 struct ext4_sb_info *sbi = EXT4_SB(sb); 1961 struct ext4_group_desc *gdp = NULL; 1962 ext4_group_t flex_group; 1963 int i, err; 1964 1965 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1966 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1967 sbi->s_log_groups_per_flex = 0; 1968 return 1; 1969 } 1970 1971 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1972 if (err) 1973 goto failed; 1974 1975 for (i = 0; i < sbi->s_groups_count; i++) { 1976 gdp = ext4_get_group_desc(sb, i, NULL); 1977 1978 flex_group = ext4_flex_group(sbi, i); 1979 atomic_add(ext4_free_inodes_count(sb, gdp), 1980 &sbi->s_flex_groups[flex_group].free_inodes); 1981 atomic64_add(ext4_free_group_clusters(sb, gdp), 1982 &sbi->s_flex_groups[flex_group].free_clusters); 1983 atomic_add(ext4_used_dirs_count(sb, gdp), 1984 &sbi->s_flex_groups[flex_group].used_dirs); 1985 } 1986 1987 return 1; 1988 failed: 1989 return 0; 1990 } 1991 1992 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1993 struct ext4_group_desc *gdp) 1994 { 1995 int offset; 1996 __u16 crc = 0; 1997 __le32 le_group = cpu_to_le32(block_group); 1998 1999 if (ext4_has_metadata_csum(sbi->s_sb)) { 2000 /* Use new metadata_csum algorithm */ 2001 __le16 save_csum; 2002 __u32 csum32; 2003 2004 save_csum = gdp->bg_checksum; 2005 gdp->bg_checksum = 0; 2006 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2007 sizeof(le_group)); 2008 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2009 sbi->s_desc_size); 2010 gdp->bg_checksum = save_csum; 2011 2012 crc = csum32 & 0xFFFF; 2013 goto out; 2014 } 2015 2016 /* old crc16 code */ 2017 if (!(sbi->s_es->s_feature_ro_compat & 2018 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2019 return 0; 2020 2021 offset = offsetof(struct ext4_group_desc, bg_checksum); 2022 2023 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2024 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2025 crc = crc16(crc, (__u8 *)gdp, offset); 2026 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2027 /* for checksum of struct ext4_group_desc do the rest...*/ 2028 if ((sbi->s_es->s_feature_incompat & 2029 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2030 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2031 crc = crc16(crc, (__u8 *)gdp + offset, 2032 le16_to_cpu(sbi->s_es->s_desc_size) - 2033 offset); 2034 2035 out: 2036 return cpu_to_le16(crc); 2037 } 2038 2039 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2040 struct ext4_group_desc *gdp) 2041 { 2042 if (ext4_has_group_desc_csum(sb) && 2043 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2044 block_group, gdp))) 2045 return 0; 2046 2047 return 1; 2048 } 2049 2050 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2051 struct ext4_group_desc *gdp) 2052 { 2053 if (!ext4_has_group_desc_csum(sb)) 2054 return; 2055 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2056 } 2057 2058 /* Called at mount-time, super-block is locked */ 2059 static int ext4_check_descriptors(struct super_block *sb, 2060 ext4_group_t *first_not_zeroed) 2061 { 2062 struct ext4_sb_info *sbi = EXT4_SB(sb); 2063 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2064 ext4_fsblk_t last_block; 2065 ext4_fsblk_t block_bitmap; 2066 ext4_fsblk_t inode_bitmap; 2067 ext4_fsblk_t inode_table; 2068 int flexbg_flag = 0; 2069 ext4_group_t i, grp = sbi->s_groups_count; 2070 2071 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2072 flexbg_flag = 1; 2073 2074 ext4_debug("Checking group descriptors"); 2075 2076 for (i = 0; i < sbi->s_groups_count; i++) { 2077 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2078 2079 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2080 last_block = ext4_blocks_count(sbi->s_es) - 1; 2081 else 2082 last_block = first_block + 2083 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2084 2085 if ((grp == sbi->s_groups_count) && 2086 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2087 grp = i; 2088 2089 block_bitmap = ext4_block_bitmap(sb, gdp); 2090 if (block_bitmap < first_block || block_bitmap > last_block) { 2091 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2092 "Block bitmap for group %u not in group " 2093 "(block %llu)!", i, block_bitmap); 2094 return 0; 2095 } 2096 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2097 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2098 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2099 "Inode bitmap for group %u not in group " 2100 "(block %llu)!", i, inode_bitmap); 2101 return 0; 2102 } 2103 inode_table = ext4_inode_table(sb, gdp); 2104 if (inode_table < first_block || 2105 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2106 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2107 "Inode table for group %u not in group " 2108 "(block %llu)!", i, inode_table); 2109 return 0; 2110 } 2111 ext4_lock_group(sb, i); 2112 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2113 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2114 "Checksum for group %u failed (%u!=%u)", 2115 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2116 gdp)), le16_to_cpu(gdp->bg_checksum)); 2117 if (!(sb->s_flags & MS_RDONLY)) { 2118 ext4_unlock_group(sb, i); 2119 return 0; 2120 } 2121 } 2122 ext4_unlock_group(sb, i); 2123 if (!flexbg_flag) 2124 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2125 } 2126 if (NULL != first_not_zeroed) 2127 *first_not_zeroed = grp; 2128 return 1; 2129 } 2130 2131 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2132 * the superblock) which were deleted from all directories, but held open by 2133 * a process at the time of a crash. We walk the list and try to delete these 2134 * inodes at recovery time (only with a read-write filesystem). 2135 * 2136 * In order to keep the orphan inode chain consistent during traversal (in 2137 * case of crash during recovery), we link each inode into the superblock 2138 * orphan list_head and handle it the same way as an inode deletion during 2139 * normal operation (which journals the operations for us). 2140 * 2141 * We only do an iget() and an iput() on each inode, which is very safe if we 2142 * accidentally point at an in-use or already deleted inode. The worst that 2143 * can happen in this case is that we get a "bit already cleared" message from 2144 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2145 * e2fsck was run on this filesystem, and it must have already done the orphan 2146 * inode cleanup for us, so we can safely abort without any further action. 2147 */ 2148 static void ext4_orphan_cleanup(struct super_block *sb, 2149 struct ext4_super_block *es) 2150 { 2151 unsigned int s_flags = sb->s_flags; 2152 int nr_orphans = 0, nr_truncates = 0; 2153 #ifdef CONFIG_QUOTA 2154 int i; 2155 #endif 2156 if (!es->s_last_orphan) { 2157 jbd_debug(4, "no orphan inodes to clean up\n"); 2158 return; 2159 } 2160 2161 if (bdev_read_only(sb->s_bdev)) { 2162 ext4_msg(sb, KERN_ERR, "write access " 2163 "unavailable, skipping orphan cleanup"); 2164 return; 2165 } 2166 2167 /* Check if feature set would not allow a r/w mount */ 2168 if (!ext4_feature_set_ok(sb, 0)) { 2169 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2170 "unknown ROCOMPAT features"); 2171 return; 2172 } 2173 2174 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2175 /* don't clear list on RO mount w/ errors */ 2176 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2177 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2178 "clearing orphan list.\n"); 2179 es->s_last_orphan = 0; 2180 } 2181 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2182 return; 2183 } 2184 2185 if (s_flags & MS_RDONLY) { 2186 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2187 sb->s_flags &= ~MS_RDONLY; 2188 } 2189 #ifdef CONFIG_QUOTA 2190 /* Needed for iput() to work correctly and not trash data */ 2191 sb->s_flags |= MS_ACTIVE; 2192 /* Turn on quotas so that they are updated correctly */ 2193 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2194 if (EXT4_SB(sb)->s_qf_names[i]) { 2195 int ret = ext4_quota_on_mount(sb, i); 2196 if (ret < 0) 2197 ext4_msg(sb, KERN_ERR, 2198 "Cannot turn on journaled " 2199 "quota: error %d", ret); 2200 } 2201 } 2202 #endif 2203 2204 while (es->s_last_orphan) { 2205 struct inode *inode; 2206 2207 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2208 if (IS_ERR(inode)) { 2209 es->s_last_orphan = 0; 2210 break; 2211 } 2212 2213 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2214 dquot_initialize(inode); 2215 if (inode->i_nlink) { 2216 if (test_opt(sb, DEBUG)) 2217 ext4_msg(sb, KERN_DEBUG, 2218 "%s: truncating inode %lu to %lld bytes", 2219 __func__, inode->i_ino, inode->i_size); 2220 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2221 inode->i_ino, inode->i_size); 2222 mutex_lock(&inode->i_mutex); 2223 truncate_inode_pages(inode->i_mapping, inode->i_size); 2224 ext4_truncate(inode); 2225 mutex_unlock(&inode->i_mutex); 2226 nr_truncates++; 2227 } else { 2228 if (test_opt(sb, DEBUG)) 2229 ext4_msg(sb, KERN_DEBUG, 2230 "%s: deleting unreferenced inode %lu", 2231 __func__, inode->i_ino); 2232 jbd_debug(2, "deleting unreferenced inode %lu\n", 2233 inode->i_ino); 2234 nr_orphans++; 2235 } 2236 iput(inode); /* The delete magic happens here! */ 2237 } 2238 2239 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2240 2241 if (nr_orphans) 2242 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2243 PLURAL(nr_orphans)); 2244 if (nr_truncates) 2245 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2246 PLURAL(nr_truncates)); 2247 #ifdef CONFIG_QUOTA 2248 /* Turn quotas off */ 2249 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2250 if (sb_dqopt(sb)->files[i]) 2251 dquot_quota_off(sb, i); 2252 } 2253 #endif 2254 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2255 } 2256 2257 /* 2258 * Maximal extent format file size. 2259 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2260 * extent format containers, within a sector_t, and within i_blocks 2261 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2262 * so that won't be a limiting factor. 2263 * 2264 * However there is other limiting factor. We do store extents in the form 2265 * of starting block and length, hence the resulting length of the extent 2266 * covering maximum file size must fit into on-disk format containers as 2267 * well. Given that length is always by 1 unit bigger than max unit (because 2268 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2269 * 2270 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2271 */ 2272 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2273 { 2274 loff_t res; 2275 loff_t upper_limit = MAX_LFS_FILESIZE; 2276 2277 /* small i_blocks in vfs inode? */ 2278 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2279 /* 2280 * CONFIG_LBDAF is not enabled implies the inode 2281 * i_block represent total blocks in 512 bytes 2282 * 32 == size of vfs inode i_blocks * 8 2283 */ 2284 upper_limit = (1LL << 32) - 1; 2285 2286 /* total blocks in file system block size */ 2287 upper_limit >>= (blkbits - 9); 2288 upper_limit <<= blkbits; 2289 } 2290 2291 /* 2292 * 32-bit extent-start container, ee_block. We lower the maxbytes 2293 * by one fs block, so ee_len can cover the extent of maximum file 2294 * size 2295 */ 2296 res = (1LL << 32) - 1; 2297 res <<= blkbits; 2298 2299 /* Sanity check against vm- & vfs- imposed limits */ 2300 if (res > upper_limit) 2301 res = upper_limit; 2302 2303 return res; 2304 } 2305 2306 /* 2307 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2308 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2309 * We need to be 1 filesystem block less than the 2^48 sector limit. 2310 */ 2311 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2312 { 2313 loff_t res = EXT4_NDIR_BLOCKS; 2314 int meta_blocks; 2315 loff_t upper_limit; 2316 /* This is calculated to be the largest file size for a dense, block 2317 * mapped file such that the file's total number of 512-byte sectors, 2318 * including data and all indirect blocks, does not exceed (2^48 - 1). 2319 * 2320 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2321 * number of 512-byte sectors of the file. 2322 */ 2323 2324 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2325 /* 2326 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2327 * the inode i_block field represents total file blocks in 2328 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2329 */ 2330 upper_limit = (1LL << 32) - 1; 2331 2332 /* total blocks in file system block size */ 2333 upper_limit >>= (bits - 9); 2334 2335 } else { 2336 /* 2337 * We use 48 bit ext4_inode i_blocks 2338 * With EXT4_HUGE_FILE_FL set the i_blocks 2339 * represent total number of blocks in 2340 * file system block size 2341 */ 2342 upper_limit = (1LL << 48) - 1; 2343 2344 } 2345 2346 /* indirect blocks */ 2347 meta_blocks = 1; 2348 /* double indirect blocks */ 2349 meta_blocks += 1 + (1LL << (bits-2)); 2350 /* tripple indirect blocks */ 2351 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2352 2353 upper_limit -= meta_blocks; 2354 upper_limit <<= bits; 2355 2356 res += 1LL << (bits-2); 2357 res += 1LL << (2*(bits-2)); 2358 res += 1LL << (3*(bits-2)); 2359 res <<= bits; 2360 if (res > upper_limit) 2361 res = upper_limit; 2362 2363 if (res > MAX_LFS_FILESIZE) 2364 res = MAX_LFS_FILESIZE; 2365 2366 return res; 2367 } 2368 2369 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2370 ext4_fsblk_t logical_sb_block, int nr) 2371 { 2372 struct ext4_sb_info *sbi = EXT4_SB(sb); 2373 ext4_group_t bg, first_meta_bg; 2374 int has_super = 0; 2375 2376 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2377 2378 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2379 nr < first_meta_bg) 2380 return logical_sb_block + nr + 1; 2381 bg = sbi->s_desc_per_block * nr; 2382 if (ext4_bg_has_super(sb, bg)) 2383 has_super = 1; 2384 2385 /* 2386 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2387 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2388 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2389 * compensate. 2390 */ 2391 if (sb->s_blocksize == 1024 && nr == 0 && 2392 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2393 has_super++; 2394 2395 return (has_super + ext4_group_first_block_no(sb, bg)); 2396 } 2397 2398 /** 2399 * ext4_get_stripe_size: Get the stripe size. 2400 * @sbi: In memory super block info 2401 * 2402 * If we have specified it via mount option, then 2403 * use the mount option value. If the value specified at mount time is 2404 * greater than the blocks per group use the super block value. 2405 * If the super block value is greater than blocks per group return 0. 2406 * Allocator needs it be less than blocks per group. 2407 * 2408 */ 2409 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2410 { 2411 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2412 unsigned long stripe_width = 2413 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2414 int ret; 2415 2416 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2417 ret = sbi->s_stripe; 2418 else if (stripe_width <= sbi->s_blocks_per_group) 2419 ret = stripe_width; 2420 else if (stride <= sbi->s_blocks_per_group) 2421 ret = stride; 2422 else 2423 ret = 0; 2424 2425 /* 2426 * If the stripe width is 1, this makes no sense and 2427 * we set it to 0 to turn off stripe handling code. 2428 */ 2429 if (ret <= 1) 2430 ret = 0; 2431 2432 return ret; 2433 } 2434 2435 /* sysfs supprt */ 2436 2437 struct ext4_attr { 2438 struct attribute attr; 2439 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2440 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2441 const char *, size_t); 2442 union { 2443 int offset; 2444 int deprecated_val; 2445 } u; 2446 }; 2447 2448 static int parse_strtoull(const char *buf, 2449 unsigned long long max, unsigned long long *value) 2450 { 2451 int ret; 2452 2453 ret = kstrtoull(skip_spaces(buf), 0, value); 2454 if (!ret && *value > max) 2455 ret = -EINVAL; 2456 return ret; 2457 } 2458 2459 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2460 struct ext4_sb_info *sbi, 2461 char *buf) 2462 { 2463 return snprintf(buf, PAGE_SIZE, "%llu\n", 2464 (s64) EXT4_C2B(sbi, 2465 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2466 } 2467 2468 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2469 struct ext4_sb_info *sbi, char *buf) 2470 { 2471 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2472 2473 if (!sb->s_bdev->bd_part) 2474 return snprintf(buf, PAGE_SIZE, "0\n"); 2475 return snprintf(buf, PAGE_SIZE, "%lu\n", 2476 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2477 sbi->s_sectors_written_start) >> 1); 2478 } 2479 2480 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2481 struct ext4_sb_info *sbi, char *buf) 2482 { 2483 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2484 2485 if (!sb->s_bdev->bd_part) 2486 return snprintf(buf, PAGE_SIZE, "0\n"); 2487 return snprintf(buf, PAGE_SIZE, "%llu\n", 2488 (unsigned long long)(sbi->s_kbytes_written + 2489 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2490 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2491 } 2492 2493 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2494 struct ext4_sb_info *sbi, 2495 const char *buf, size_t count) 2496 { 2497 unsigned long t; 2498 int ret; 2499 2500 ret = kstrtoul(skip_spaces(buf), 0, &t); 2501 if (ret) 2502 return ret; 2503 2504 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2505 return -EINVAL; 2506 2507 sbi->s_inode_readahead_blks = t; 2508 return count; 2509 } 2510 2511 static ssize_t sbi_ui_show(struct ext4_attr *a, 2512 struct ext4_sb_info *sbi, char *buf) 2513 { 2514 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2515 2516 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2517 } 2518 2519 static ssize_t sbi_ui_store(struct ext4_attr *a, 2520 struct ext4_sb_info *sbi, 2521 const char *buf, size_t count) 2522 { 2523 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2524 unsigned long t; 2525 int ret; 2526 2527 ret = kstrtoul(skip_spaces(buf), 0, &t); 2528 if (ret) 2529 return ret; 2530 *ui = t; 2531 return count; 2532 } 2533 2534 static ssize_t es_ui_show(struct ext4_attr *a, 2535 struct ext4_sb_info *sbi, char *buf) 2536 { 2537 2538 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2539 a->u.offset); 2540 2541 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2542 } 2543 2544 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2545 struct ext4_sb_info *sbi, char *buf) 2546 { 2547 return snprintf(buf, PAGE_SIZE, "%llu\n", 2548 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2549 } 2550 2551 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2552 struct ext4_sb_info *sbi, 2553 const char *buf, size_t count) 2554 { 2555 unsigned long long val; 2556 int ret; 2557 2558 if (parse_strtoull(buf, -1ULL, &val)) 2559 return -EINVAL; 2560 ret = ext4_reserve_clusters(sbi, val); 2561 2562 return ret ? ret : count; 2563 } 2564 2565 static ssize_t trigger_test_error(struct ext4_attr *a, 2566 struct ext4_sb_info *sbi, 2567 const char *buf, size_t count) 2568 { 2569 int len = count; 2570 2571 if (!capable(CAP_SYS_ADMIN)) 2572 return -EPERM; 2573 2574 if (len && buf[len-1] == '\n') 2575 len--; 2576 2577 if (len) 2578 ext4_error(sbi->s_sb, "%.*s", len, buf); 2579 return count; 2580 } 2581 2582 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2583 struct ext4_sb_info *sbi, char *buf) 2584 { 2585 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2586 } 2587 2588 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2589 static struct ext4_attr ext4_attr_##_name = { \ 2590 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2591 .show = _show, \ 2592 .store = _store, \ 2593 .u = { \ 2594 .offset = offsetof(struct ext4_sb_info, _elname),\ 2595 }, \ 2596 } 2597 2598 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2599 static struct ext4_attr ext4_attr_##_name = { \ 2600 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2601 .show = _show, \ 2602 .store = _store, \ 2603 .u = { \ 2604 .offset = offsetof(struct ext4_super_block, _elname), \ 2605 }, \ 2606 } 2607 2608 #define EXT4_ATTR(name, mode, show, store) \ 2609 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2610 2611 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2612 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2613 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2614 2615 #define EXT4_RO_ATTR_ES_UI(name, elname) \ 2616 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2617 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2618 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2619 2620 #define ATTR_LIST(name) &ext4_attr_##name.attr 2621 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2622 static struct ext4_attr ext4_attr_##_name = { \ 2623 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2624 .show = sbi_deprecated_show, \ 2625 .u = { \ 2626 .deprecated_val = _val, \ 2627 }, \ 2628 } 2629 2630 EXT4_RO_ATTR(delayed_allocation_blocks); 2631 EXT4_RO_ATTR(session_write_kbytes); 2632 EXT4_RO_ATTR(lifetime_write_kbytes); 2633 EXT4_RW_ATTR(reserved_clusters); 2634 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2635 inode_readahead_blks_store, s_inode_readahead_blks); 2636 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2637 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2638 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2639 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2640 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2641 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2642 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2643 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2644 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2645 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2646 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2647 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2648 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2649 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2650 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2651 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2652 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2653 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2654 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2655 2656 static struct attribute *ext4_attrs[] = { 2657 ATTR_LIST(delayed_allocation_blocks), 2658 ATTR_LIST(session_write_kbytes), 2659 ATTR_LIST(lifetime_write_kbytes), 2660 ATTR_LIST(reserved_clusters), 2661 ATTR_LIST(inode_readahead_blks), 2662 ATTR_LIST(inode_goal), 2663 ATTR_LIST(mb_stats), 2664 ATTR_LIST(mb_max_to_scan), 2665 ATTR_LIST(mb_min_to_scan), 2666 ATTR_LIST(mb_order2_req), 2667 ATTR_LIST(mb_stream_req), 2668 ATTR_LIST(mb_group_prealloc), 2669 ATTR_LIST(max_writeback_mb_bump), 2670 ATTR_LIST(extent_max_zeroout_kb), 2671 ATTR_LIST(trigger_fs_error), 2672 ATTR_LIST(err_ratelimit_interval_ms), 2673 ATTR_LIST(err_ratelimit_burst), 2674 ATTR_LIST(warning_ratelimit_interval_ms), 2675 ATTR_LIST(warning_ratelimit_burst), 2676 ATTR_LIST(msg_ratelimit_interval_ms), 2677 ATTR_LIST(msg_ratelimit_burst), 2678 ATTR_LIST(errors_count), 2679 ATTR_LIST(first_error_time), 2680 ATTR_LIST(last_error_time), 2681 NULL, 2682 }; 2683 2684 /* Features this copy of ext4 supports */ 2685 EXT4_INFO_ATTR(lazy_itable_init); 2686 EXT4_INFO_ATTR(batched_discard); 2687 EXT4_INFO_ATTR(meta_bg_resize); 2688 2689 static struct attribute *ext4_feat_attrs[] = { 2690 ATTR_LIST(lazy_itable_init), 2691 ATTR_LIST(batched_discard), 2692 ATTR_LIST(meta_bg_resize), 2693 NULL, 2694 }; 2695 2696 static ssize_t ext4_attr_show(struct kobject *kobj, 2697 struct attribute *attr, char *buf) 2698 { 2699 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2700 s_kobj); 2701 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2702 2703 return a->show ? a->show(a, sbi, buf) : 0; 2704 } 2705 2706 static ssize_t ext4_attr_store(struct kobject *kobj, 2707 struct attribute *attr, 2708 const char *buf, size_t len) 2709 { 2710 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2711 s_kobj); 2712 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2713 2714 return a->store ? a->store(a, sbi, buf, len) : 0; 2715 } 2716 2717 static void ext4_sb_release(struct kobject *kobj) 2718 { 2719 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2720 s_kobj); 2721 complete(&sbi->s_kobj_unregister); 2722 } 2723 2724 static const struct sysfs_ops ext4_attr_ops = { 2725 .show = ext4_attr_show, 2726 .store = ext4_attr_store, 2727 }; 2728 2729 static struct kobj_type ext4_ktype = { 2730 .default_attrs = ext4_attrs, 2731 .sysfs_ops = &ext4_attr_ops, 2732 .release = ext4_sb_release, 2733 }; 2734 2735 static void ext4_feat_release(struct kobject *kobj) 2736 { 2737 complete(&ext4_feat->f_kobj_unregister); 2738 } 2739 2740 static ssize_t ext4_feat_show(struct kobject *kobj, 2741 struct attribute *attr, char *buf) 2742 { 2743 return snprintf(buf, PAGE_SIZE, "supported\n"); 2744 } 2745 2746 /* 2747 * We can not use ext4_attr_show/store because it relies on the kobject 2748 * being embedded in the ext4_sb_info structure which is definitely not 2749 * true in this case. 2750 */ 2751 static const struct sysfs_ops ext4_feat_ops = { 2752 .show = ext4_feat_show, 2753 .store = NULL, 2754 }; 2755 2756 static struct kobj_type ext4_feat_ktype = { 2757 .default_attrs = ext4_feat_attrs, 2758 .sysfs_ops = &ext4_feat_ops, 2759 .release = ext4_feat_release, 2760 }; 2761 2762 /* 2763 * Check whether this filesystem can be mounted based on 2764 * the features present and the RDONLY/RDWR mount requested. 2765 * Returns 1 if this filesystem can be mounted as requested, 2766 * 0 if it cannot be. 2767 */ 2768 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2769 { 2770 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2771 ext4_msg(sb, KERN_ERR, 2772 "Couldn't mount because of " 2773 "unsupported optional features (%x)", 2774 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2775 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2776 return 0; 2777 } 2778 2779 if (readonly) 2780 return 1; 2781 2782 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) { 2783 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2784 sb->s_flags |= MS_RDONLY; 2785 return 1; 2786 } 2787 2788 /* Check that feature set is OK for a read-write mount */ 2789 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2790 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2791 "unsupported optional features (%x)", 2792 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2793 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2794 return 0; 2795 } 2796 /* 2797 * Large file size enabled file system can only be mounted 2798 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2799 */ 2800 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2801 if (sizeof(blkcnt_t) < sizeof(u64)) { 2802 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2803 "cannot be mounted RDWR without " 2804 "CONFIG_LBDAF"); 2805 return 0; 2806 } 2807 } 2808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2809 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2810 ext4_msg(sb, KERN_ERR, 2811 "Can't support bigalloc feature without " 2812 "extents feature\n"); 2813 return 0; 2814 } 2815 2816 #ifndef CONFIG_QUOTA 2817 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2818 !readonly) { 2819 ext4_msg(sb, KERN_ERR, 2820 "Filesystem with quota feature cannot be mounted RDWR " 2821 "without CONFIG_QUOTA"); 2822 return 0; 2823 } 2824 #endif /* CONFIG_QUOTA */ 2825 return 1; 2826 } 2827 2828 /* 2829 * This function is called once a day if we have errors logged 2830 * on the file system 2831 */ 2832 static void print_daily_error_info(unsigned long arg) 2833 { 2834 struct super_block *sb = (struct super_block *) arg; 2835 struct ext4_sb_info *sbi; 2836 struct ext4_super_block *es; 2837 2838 sbi = EXT4_SB(sb); 2839 es = sbi->s_es; 2840 2841 if (es->s_error_count) 2842 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2843 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2844 le32_to_cpu(es->s_error_count)); 2845 if (es->s_first_error_time) { 2846 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2847 sb->s_id, le32_to_cpu(es->s_first_error_time), 2848 (int) sizeof(es->s_first_error_func), 2849 es->s_first_error_func, 2850 le32_to_cpu(es->s_first_error_line)); 2851 if (es->s_first_error_ino) 2852 printk(": inode %u", 2853 le32_to_cpu(es->s_first_error_ino)); 2854 if (es->s_first_error_block) 2855 printk(": block %llu", (unsigned long long) 2856 le64_to_cpu(es->s_first_error_block)); 2857 printk("\n"); 2858 } 2859 if (es->s_last_error_time) { 2860 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2861 sb->s_id, le32_to_cpu(es->s_last_error_time), 2862 (int) sizeof(es->s_last_error_func), 2863 es->s_last_error_func, 2864 le32_to_cpu(es->s_last_error_line)); 2865 if (es->s_last_error_ino) 2866 printk(": inode %u", 2867 le32_to_cpu(es->s_last_error_ino)); 2868 if (es->s_last_error_block) 2869 printk(": block %llu", (unsigned long long) 2870 le64_to_cpu(es->s_last_error_block)); 2871 printk("\n"); 2872 } 2873 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2874 } 2875 2876 /* Find next suitable group and run ext4_init_inode_table */ 2877 static int ext4_run_li_request(struct ext4_li_request *elr) 2878 { 2879 struct ext4_group_desc *gdp = NULL; 2880 ext4_group_t group, ngroups; 2881 struct super_block *sb; 2882 unsigned long timeout = 0; 2883 int ret = 0; 2884 2885 sb = elr->lr_super; 2886 ngroups = EXT4_SB(sb)->s_groups_count; 2887 2888 sb_start_write(sb); 2889 for (group = elr->lr_next_group; group < ngroups; group++) { 2890 gdp = ext4_get_group_desc(sb, group, NULL); 2891 if (!gdp) { 2892 ret = 1; 2893 break; 2894 } 2895 2896 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2897 break; 2898 } 2899 2900 if (group >= ngroups) 2901 ret = 1; 2902 2903 if (!ret) { 2904 timeout = jiffies; 2905 ret = ext4_init_inode_table(sb, group, 2906 elr->lr_timeout ? 0 : 1); 2907 if (elr->lr_timeout == 0) { 2908 timeout = (jiffies - timeout) * 2909 elr->lr_sbi->s_li_wait_mult; 2910 elr->lr_timeout = timeout; 2911 } 2912 elr->lr_next_sched = jiffies + elr->lr_timeout; 2913 elr->lr_next_group = group + 1; 2914 } 2915 sb_end_write(sb); 2916 2917 return ret; 2918 } 2919 2920 /* 2921 * Remove lr_request from the list_request and free the 2922 * request structure. Should be called with li_list_mtx held 2923 */ 2924 static void ext4_remove_li_request(struct ext4_li_request *elr) 2925 { 2926 struct ext4_sb_info *sbi; 2927 2928 if (!elr) 2929 return; 2930 2931 sbi = elr->lr_sbi; 2932 2933 list_del(&elr->lr_request); 2934 sbi->s_li_request = NULL; 2935 kfree(elr); 2936 } 2937 2938 static void ext4_unregister_li_request(struct super_block *sb) 2939 { 2940 mutex_lock(&ext4_li_mtx); 2941 if (!ext4_li_info) { 2942 mutex_unlock(&ext4_li_mtx); 2943 return; 2944 } 2945 2946 mutex_lock(&ext4_li_info->li_list_mtx); 2947 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2948 mutex_unlock(&ext4_li_info->li_list_mtx); 2949 mutex_unlock(&ext4_li_mtx); 2950 } 2951 2952 static struct task_struct *ext4_lazyinit_task; 2953 2954 /* 2955 * This is the function where ext4lazyinit thread lives. It walks 2956 * through the request list searching for next scheduled filesystem. 2957 * When such a fs is found, run the lazy initialization request 2958 * (ext4_rn_li_request) and keep track of the time spend in this 2959 * function. Based on that time we compute next schedule time of 2960 * the request. When walking through the list is complete, compute 2961 * next waking time and put itself into sleep. 2962 */ 2963 static int ext4_lazyinit_thread(void *arg) 2964 { 2965 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2966 struct list_head *pos, *n; 2967 struct ext4_li_request *elr; 2968 unsigned long next_wakeup, cur; 2969 2970 BUG_ON(NULL == eli); 2971 2972 cont_thread: 2973 while (true) { 2974 next_wakeup = MAX_JIFFY_OFFSET; 2975 2976 mutex_lock(&eli->li_list_mtx); 2977 if (list_empty(&eli->li_request_list)) { 2978 mutex_unlock(&eli->li_list_mtx); 2979 goto exit_thread; 2980 } 2981 2982 list_for_each_safe(pos, n, &eli->li_request_list) { 2983 elr = list_entry(pos, struct ext4_li_request, 2984 lr_request); 2985 2986 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2987 if (ext4_run_li_request(elr) != 0) { 2988 /* error, remove the lazy_init job */ 2989 ext4_remove_li_request(elr); 2990 continue; 2991 } 2992 } 2993 2994 if (time_before(elr->lr_next_sched, next_wakeup)) 2995 next_wakeup = elr->lr_next_sched; 2996 } 2997 mutex_unlock(&eli->li_list_mtx); 2998 2999 try_to_freeze(); 3000 3001 cur = jiffies; 3002 if ((time_after_eq(cur, next_wakeup)) || 3003 (MAX_JIFFY_OFFSET == next_wakeup)) { 3004 cond_resched(); 3005 continue; 3006 } 3007 3008 schedule_timeout_interruptible(next_wakeup - cur); 3009 3010 if (kthread_should_stop()) { 3011 ext4_clear_request_list(); 3012 goto exit_thread; 3013 } 3014 } 3015 3016 exit_thread: 3017 /* 3018 * It looks like the request list is empty, but we need 3019 * to check it under the li_list_mtx lock, to prevent any 3020 * additions into it, and of course we should lock ext4_li_mtx 3021 * to atomically free the list and ext4_li_info, because at 3022 * this point another ext4 filesystem could be registering 3023 * new one. 3024 */ 3025 mutex_lock(&ext4_li_mtx); 3026 mutex_lock(&eli->li_list_mtx); 3027 if (!list_empty(&eli->li_request_list)) { 3028 mutex_unlock(&eli->li_list_mtx); 3029 mutex_unlock(&ext4_li_mtx); 3030 goto cont_thread; 3031 } 3032 mutex_unlock(&eli->li_list_mtx); 3033 kfree(ext4_li_info); 3034 ext4_li_info = NULL; 3035 mutex_unlock(&ext4_li_mtx); 3036 3037 return 0; 3038 } 3039 3040 static void ext4_clear_request_list(void) 3041 { 3042 struct list_head *pos, *n; 3043 struct ext4_li_request *elr; 3044 3045 mutex_lock(&ext4_li_info->li_list_mtx); 3046 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3047 elr = list_entry(pos, struct ext4_li_request, 3048 lr_request); 3049 ext4_remove_li_request(elr); 3050 } 3051 mutex_unlock(&ext4_li_info->li_list_mtx); 3052 } 3053 3054 static int ext4_run_lazyinit_thread(void) 3055 { 3056 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3057 ext4_li_info, "ext4lazyinit"); 3058 if (IS_ERR(ext4_lazyinit_task)) { 3059 int err = PTR_ERR(ext4_lazyinit_task); 3060 ext4_clear_request_list(); 3061 kfree(ext4_li_info); 3062 ext4_li_info = NULL; 3063 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3064 "initialization thread\n", 3065 err); 3066 return err; 3067 } 3068 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3069 return 0; 3070 } 3071 3072 /* 3073 * Check whether it make sense to run itable init. thread or not. 3074 * If there is at least one uninitialized inode table, return 3075 * corresponding group number, else the loop goes through all 3076 * groups and return total number of groups. 3077 */ 3078 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3079 { 3080 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3081 struct ext4_group_desc *gdp = NULL; 3082 3083 for (group = 0; group < ngroups; group++) { 3084 gdp = ext4_get_group_desc(sb, group, NULL); 3085 if (!gdp) 3086 continue; 3087 3088 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3089 break; 3090 } 3091 3092 return group; 3093 } 3094 3095 static int ext4_li_info_new(void) 3096 { 3097 struct ext4_lazy_init *eli = NULL; 3098 3099 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3100 if (!eli) 3101 return -ENOMEM; 3102 3103 INIT_LIST_HEAD(&eli->li_request_list); 3104 mutex_init(&eli->li_list_mtx); 3105 3106 eli->li_state |= EXT4_LAZYINIT_QUIT; 3107 3108 ext4_li_info = eli; 3109 3110 return 0; 3111 } 3112 3113 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3114 ext4_group_t start) 3115 { 3116 struct ext4_sb_info *sbi = EXT4_SB(sb); 3117 struct ext4_li_request *elr; 3118 3119 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3120 if (!elr) 3121 return NULL; 3122 3123 elr->lr_super = sb; 3124 elr->lr_sbi = sbi; 3125 elr->lr_next_group = start; 3126 3127 /* 3128 * Randomize first schedule time of the request to 3129 * spread the inode table initialization requests 3130 * better. 3131 */ 3132 elr->lr_next_sched = jiffies + (prandom_u32() % 3133 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3134 return elr; 3135 } 3136 3137 int ext4_register_li_request(struct super_block *sb, 3138 ext4_group_t first_not_zeroed) 3139 { 3140 struct ext4_sb_info *sbi = EXT4_SB(sb); 3141 struct ext4_li_request *elr = NULL; 3142 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3143 int ret = 0; 3144 3145 mutex_lock(&ext4_li_mtx); 3146 if (sbi->s_li_request != NULL) { 3147 /* 3148 * Reset timeout so it can be computed again, because 3149 * s_li_wait_mult might have changed. 3150 */ 3151 sbi->s_li_request->lr_timeout = 0; 3152 goto out; 3153 } 3154 3155 if (first_not_zeroed == ngroups || 3156 (sb->s_flags & MS_RDONLY) || 3157 !test_opt(sb, INIT_INODE_TABLE)) 3158 goto out; 3159 3160 elr = ext4_li_request_new(sb, first_not_zeroed); 3161 if (!elr) { 3162 ret = -ENOMEM; 3163 goto out; 3164 } 3165 3166 if (NULL == ext4_li_info) { 3167 ret = ext4_li_info_new(); 3168 if (ret) 3169 goto out; 3170 } 3171 3172 mutex_lock(&ext4_li_info->li_list_mtx); 3173 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3174 mutex_unlock(&ext4_li_info->li_list_mtx); 3175 3176 sbi->s_li_request = elr; 3177 /* 3178 * set elr to NULL here since it has been inserted to 3179 * the request_list and the removal and free of it is 3180 * handled by ext4_clear_request_list from now on. 3181 */ 3182 elr = NULL; 3183 3184 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3185 ret = ext4_run_lazyinit_thread(); 3186 if (ret) 3187 goto out; 3188 } 3189 out: 3190 mutex_unlock(&ext4_li_mtx); 3191 if (ret) 3192 kfree(elr); 3193 return ret; 3194 } 3195 3196 /* 3197 * We do not need to lock anything since this is called on 3198 * module unload. 3199 */ 3200 static void ext4_destroy_lazyinit_thread(void) 3201 { 3202 /* 3203 * If thread exited earlier 3204 * there's nothing to be done. 3205 */ 3206 if (!ext4_li_info || !ext4_lazyinit_task) 3207 return; 3208 3209 kthread_stop(ext4_lazyinit_task); 3210 } 3211 3212 static int set_journal_csum_feature_set(struct super_block *sb) 3213 { 3214 int ret = 1; 3215 int compat, incompat; 3216 struct ext4_sb_info *sbi = EXT4_SB(sb); 3217 3218 if (ext4_has_metadata_csum(sb)) { 3219 /* journal checksum v3 */ 3220 compat = 0; 3221 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3222 } else { 3223 /* journal checksum v1 */ 3224 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3225 incompat = 0; 3226 } 3227 3228 jbd2_journal_clear_features(sbi->s_journal, 3229 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3230 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3231 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3232 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3233 ret = jbd2_journal_set_features(sbi->s_journal, 3234 compat, 0, 3235 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3236 incompat); 3237 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3238 ret = jbd2_journal_set_features(sbi->s_journal, 3239 compat, 0, 3240 incompat); 3241 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3242 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3243 } else { 3244 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3245 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3246 } 3247 3248 return ret; 3249 } 3250 3251 /* 3252 * Note: calculating the overhead so we can be compatible with 3253 * historical BSD practice is quite difficult in the face of 3254 * clusters/bigalloc. This is because multiple metadata blocks from 3255 * different block group can end up in the same allocation cluster. 3256 * Calculating the exact overhead in the face of clustered allocation 3257 * requires either O(all block bitmaps) in memory or O(number of block 3258 * groups**2) in time. We will still calculate the superblock for 3259 * older file systems --- and if we come across with a bigalloc file 3260 * system with zero in s_overhead_clusters the estimate will be close to 3261 * correct especially for very large cluster sizes --- but for newer 3262 * file systems, it's better to calculate this figure once at mkfs 3263 * time, and store it in the superblock. If the superblock value is 3264 * present (even for non-bigalloc file systems), we will use it. 3265 */ 3266 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3267 char *buf) 3268 { 3269 struct ext4_sb_info *sbi = EXT4_SB(sb); 3270 struct ext4_group_desc *gdp; 3271 ext4_fsblk_t first_block, last_block, b; 3272 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3273 int s, j, count = 0; 3274 3275 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3276 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3277 sbi->s_itb_per_group + 2); 3278 3279 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3280 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3281 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3282 for (i = 0; i < ngroups; i++) { 3283 gdp = ext4_get_group_desc(sb, i, NULL); 3284 b = ext4_block_bitmap(sb, gdp); 3285 if (b >= first_block && b <= last_block) { 3286 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3287 count++; 3288 } 3289 b = ext4_inode_bitmap(sb, gdp); 3290 if (b >= first_block && b <= last_block) { 3291 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3292 count++; 3293 } 3294 b = ext4_inode_table(sb, gdp); 3295 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3296 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3297 int c = EXT4_B2C(sbi, b - first_block); 3298 ext4_set_bit(c, buf); 3299 count++; 3300 } 3301 if (i != grp) 3302 continue; 3303 s = 0; 3304 if (ext4_bg_has_super(sb, grp)) { 3305 ext4_set_bit(s++, buf); 3306 count++; 3307 } 3308 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3309 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3310 count++; 3311 } 3312 } 3313 if (!count) 3314 return 0; 3315 return EXT4_CLUSTERS_PER_GROUP(sb) - 3316 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3317 } 3318 3319 /* 3320 * Compute the overhead and stash it in sbi->s_overhead 3321 */ 3322 int ext4_calculate_overhead(struct super_block *sb) 3323 { 3324 struct ext4_sb_info *sbi = EXT4_SB(sb); 3325 struct ext4_super_block *es = sbi->s_es; 3326 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3327 ext4_fsblk_t overhead = 0; 3328 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3329 3330 if (!buf) 3331 return -ENOMEM; 3332 3333 /* 3334 * Compute the overhead (FS structures). This is constant 3335 * for a given filesystem unless the number of block groups 3336 * changes so we cache the previous value until it does. 3337 */ 3338 3339 /* 3340 * All of the blocks before first_data_block are overhead 3341 */ 3342 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3343 3344 /* 3345 * Add the overhead found in each block group 3346 */ 3347 for (i = 0; i < ngroups; i++) { 3348 int blks; 3349 3350 blks = count_overhead(sb, i, buf); 3351 overhead += blks; 3352 if (blks) 3353 memset(buf, 0, PAGE_SIZE); 3354 cond_resched(); 3355 } 3356 /* Add the internal journal blocks as well */ 3357 if (sbi->s_journal && !sbi->journal_bdev) 3358 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3359 3360 sbi->s_overhead = overhead; 3361 smp_wmb(); 3362 free_page((unsigned long) buf); 3363 return 0; 3364 } 3365 3366 3367 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3368 { 3369 ext4_fsblk_t resv_clusters; 3370 3371 /* 3372 * There's no need to reserve anything when we aren't using extents. 3373 * The space estimates are exact, there are no unwritten extents, 3374 * hole punching doesn't need new metadata... This is needed especially 3375 * to keep ext2/3 backward compatibility. 3376 */ 3377 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3378 return 0; 3379 /* 3380 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3381 * This should cover the situations where we can not afford to run 3382 * out of space like for example punch hole, or converting 3383 * unwritten extents in delalloc path. In most cases such 3384 * allocation would require 1, or 2 blocks, higher numbers are 3385 * very rare. 3386 */ 3387 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3388 EXT4_SB(sb)->s_cluster_bits; 3389 3390 do_div(resv_clusters, 50); 3391 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3392 3393 return resv_clusters; 3394 } 3395 3396 3397 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3398 { 3399 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3400 sbi->s_cluster_bits; 3401 3402 if (count >= clusters) 3403 return -EINVAL; 3404 3405 atomic64_set(&sbi->s_resv_clusters, count); 3406 return 0; 3407 } 3408 3409 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3410 { 3411 char *orig_data = kstrdup(data, GFP_KERNEL); 3412 struct buffer_head *bh; 3413 struct ext4_super_block *es = NULL; 3414 struct ext4_sb_info *sbi; 3415 ext4_fsblk_t block; 3416 ext4_fsblk_t sb_block = get_sb_block(&data); 3417 ext4_fsblk_t logical_sb_block; 3418 unsigned long offset = 0; 3419 unsigned long journal_devnum = 0; 3420 unsigned long def_mount_opts; 3421 struct inode *root; 3422 char *cp; 3423 const char *descr; 3424 int ret = -ENOMEM; 3425 int blocksize, clustersize; 3426 unsigned int db_count; 3427 unsigned int i; 3428 int needs_recovery, has_huge_files, has_bigalloc; 3429 __u64 blocks_count; 3430 int err = 0; 3431 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3432 ext4_group_t first_not_zeroed; 3433 3434 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3435 if (!sbi) 3436 goto out_free_orig; 3437 3438 sbi->s_blockgroup_lock = 3439 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3440 if (!sbi->s_blockgroup_lock) { 3441 kfree(sbi); 3442 goto out_free_orig; 3443 } 3444 sb->s_fs_info = sbi; 3445 sbi->s_sb = sb; 3446 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3447 sbi->s_sb_block = sb_block; 3448 if (sb->s_bdev->bd_part) 3449 sbi->s_sectors_written_start = 3450 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3451 3452 /* Cleanup superblock name */ 3453 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3454 *cp = '!'; 3455 3456 /* -EINVAL is default */ 3457 ret = -EINVAL; 3458 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3459 if (!blocksize) { 3460 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3461 goto out_fail; 3462 } 3463 3464 /* 3465 * The ext4 superblock will not be buffer aligned for other than 1kB 3466 * block sizes. We need to calculate the offset from buffer start. 3467 */ 3468 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3469 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3470 offset = do_div(logical_sb_block, blocksize); 3471 } else { 3472 logical_sb_block = sb_block; 3473 } 3474 3475 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3476 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3477 goto out_fail; 3478 } 3479 /* 3480 * Note: s_es must be initialized as soon as possible because 3481 * some ext4 macro-instructions depend on its value 3482 */ 3483 es = (struct ext4_super_block *) (bh->b_data + offset); 3484 sbi->s_es = es; 3485 sb->s_magic = le16_to_cpu(es->s_magic); 3486 if (sb->s_magic != EXT4_SUPER_MAGIC) 3487 goto cantfind_ext4; 3488 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3489 3490 /* Warn if metadata_csum and gdt_csum are both set. */ 3491 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3492 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3493 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3494 ext4_warning(sb, "metadata_csum and uninit_bg are " 3495 "redundant flags; please run fsck."); 3496 3497 /* Check for a known checksum algorithm */ 3498 if (!ext4_verify_csum_type(sb, es)) { 3499 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3500 "unknown checksum algorithm."); 3501 silent = 1; 3502 goto cantfind_ext4; 3503 } 3504 3505 /* Load the checksum driver */ 3506 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3507 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3508 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3509 if (IS_ERR(sbi->s_chksum_driver)) { 3510 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3511 ret = PTR_ERR(sbi->s_chksum_driver); 3512 sbi->s_chksum_driver = NULL; 3513 goto failed_mount; 3514 } 3515 } 3516 3517 /* Check superblock checksum */ 3518 if (!ext4_superblock_csum_verify(sb, es)) { 3519 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3520 "invalid superblock checksum. Run e2fsck?"); 3521 silent = 1; 3522 goto cantfind_ext4; 3523 } 3524 3525 /* Precompute checksum seed for all metadata */ 3526 if (ext4_has_metadata_csum(sb)) 3527 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3528 sizeof(es->s_uuid)); 3529 3530 /* Set defaults before we parse the mount options */ 3531 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3532 set_opt(sb, INIT_INODE_TABLE); 3533 if (def_mount_opts & EXT4_DEFM_DEBUG) 3534 set_opt(sb, DEBUG); 3535 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3536 set_opt(sb, GRPID); 3537 if (def_mount_opts & EXT4_DEFM_UID16) 3538 set_opt(sb, NO_UID32); 3539 /* xattr user namespace & acls are now defaulted on */ 3540 set_opt(sb, XATTR_USER); 3541 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3542 set_opt(sb, POSIX_ACL); 3543 #endif 3544 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3545 if (ext4_has_metadata_csum(sb)) 3546 set_opt(sb, JOURNAL_CHECKSUM); 3547 3548 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3549 set_opt(sb, JOURNAL_DATA); 3550 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3551 set_opt(sb, ORDERED_DATA); 3552 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3553 set_opt(sb, WRITEBACK_DATA); 3554 3555 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3556 set_opt(sb, ERRORS_PANIC); 3557 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3558 set_opt(sb, ERRORS_CONT); 3559 else 3560 set_opt(sb, ERRORS_RO); 3561 /* block_validity enabled by default; disable with noblock_validity */ 3562 set_opt(sb, BLOCK_VALIDITY); 3563 if (def_mount_opts & EXT4_DEFM_DISCARD) 3564 set_opt(sb, DISCARD); 3565 3566 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3567 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3568 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3569 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3570 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3571 3572 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3573 set_opt(sb, BARRIER); 3574 3575 /* 3576 * enable delayed allocation by default 3577 * Use -o nodelalloc to turn it off 3578 */ 3579 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3580 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3581 set_opt(sb, DELALLOC); 3582 3583 /* 3584 * set default s_li_wait_mult for lazyinit, for the case there is 3585 * no mount option specified. 3586 */ 3587 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3588 3589 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3590 &journal_devnum, &journal_ioprio, 0)) { 3591 ext4_msg(sb, KERN_WARNING, 3592 "failed to parse options in superblock: %s", 3593 sbi->s_es->s_mount_opts); 3594 } 3595 sbi->s_def_mount_opt = sbi->s_mount_opt; 3596 if (!parse_options((char *) data, sb, &journal_devnum, 3597 &journal_ioprio, 0)) 3598 goto failed_mount; 3599 3600 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3601 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3602 "with data=journal disables delayed " 3603 "allocation and O_DIRECT support!\n"); 3604 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3605 ext4_msg(sb, KERN_ERR, "can't mount with " 3606 "both data=journal and delalloc"); 3607 goto failed_mount; 3608 } 3609 if (test_opt(sb, DIOREAD_NOLOCK)) { 3610 ext4_msg(sb, KERN_ERR, "can't mount with " 3611 "both data=journal and dioread_nolock"); 3612 goto failed_mount; 3613 } 3614 if (test_opt(sb, DAX)) { 3615 ext4_msg(sb, KERN_ERR, "can't mount with " 3616 "both data=journal and dax"); 3617 goto failed_mount; 3618 } 3619 if (test_opt(sb, DELALLOC)) 3620 clear_opt(sb, DELALLOC); 3621 } 3622 3623 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3624 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3625 3626 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3627 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3628 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3629 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3630 ext4_msg(sb, KERN_WARNING, 3631 "feature flags set on rev 0 fs, " 3632 "running e2fsck is recommended"); 3633 3634 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3635 set_opt2(sb, HURD_COMPAT); 3636 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3637 EXT4_FEATURE_INCOMPAT_64BIT)) { 3638 ext4_msg(sb, KERN_ERR, 3639 "The Hurd can't support 64-bit file systems"); 3640 goto failed_mount; 3641 } 3642 } 3643 3644 if (IS_EXT2_SB(sb)) { 3645 if (ext2_feature_set_ok(sb)) 3646 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3647 "using the ext4 subsystem"); 3648 else { 3649 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3650 "to feature incompatibilities"); 3651 goto failed_mount; 3652 } 3653 } 3654 3655 if (IS_EXT3_SB(sb)) { 3656 if (ext3_feature_set_ok(sb)) 3657 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3658 "using the ext4 subsystem"); 3659 else { 3660 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3661 "to feature incompatibilities"); 3662 goto failed_mount; 3663 } 3664 } 3665 3666 /* 3667 * Check feature flags regardless of the revision level, since we 3668 * previously didn't change the revision level when setting the flags, 3669 * so there is a chance incompat flags are set on a rev 0 filesystem. 3670 */ 3671 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3672 goto failed_mount; 3673 3674 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3675 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3676 blocksize > EXT4_MAX_BLOCK_SIZE) { 3677 ext4_msg(sb, KERN_ERR, 3678 "Unsupported filesystem blocksize %d", blocksize); 3679 goto failed_mount; 3680 } 3681 3682 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3683 if (blocksize != PAGE_SIZE) { 3684 ext4_msg(sb, KERN_ERR, 3685 "error: unsupported blocksize for dax"); 3686 goto failed_mount; 3687 } 3688 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3689 ext4_msg(sb, KERN_ERR, 3690 "error: device does not support dax"); 3691 goto failed_mount; 3692 } 3693 } 3694 3695 if (sb->s_blocksize != blocksize) { 3696 /* Validate the filesystem blocksize */ 3697 if (!sb_set_blocksize(sb, blocksize)) { 3698 ext4_msg(sb, KERN_ERR, "bad block size %d", 3699 blocksize); 3700 goto failed_mount; 3701 } 3702 3703 brelse(bh); 3704 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3705 offset = do_div(logical_sb_block, blocksize); 3706 bh = sb_bread_unmovable(sb, logical_sb_block); 3707 if (!bh) { 3708 ext4_msg(sb, KERN_ERR, 3709 "Can't read superblock on 2nd try"); 3710 goto failed_mount; 3711 } 3712 es = (struct ext4_super_block *)(bh->b_data + offset); 3713 sbi->s_es = es; 3714 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3715 ext4_msg(sb, KERN_ERR, 3716 "Magic mismatch, very weird!"); 3717 goto failed_mount; 3718 } 3719 } 3720 3721 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3722 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3723 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3724 has_huge_files); 3725 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3726 3727 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3728 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3729 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3730 } else { 3731 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3732 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3733 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3734 (!is_power_of_2(sbi->s_inode_size)) || 3735 (sbi->s_inode_size > blocksize)) { 3736 ext4_msg(sb, KERN_ERR, 3737 "unsupported inode size: %d", 3738 sbi->s_inode_size); 3739 goto failed_mount; 3740 } 3741 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3742 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3743 } 3744 3745 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3746 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3747 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3748 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3749 !is_power_of_2(sbi->s_desc_size)) { 3750 ext4_msg(sb, KERN_ERR, 3751 "unsupported descriptor size %lu", 3752 sbi->s_desc_size); 3753 goto failed_mount; 3754 } 3755 } else 3756 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3757 3758 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3759 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3760 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3761 goto cantfind_ext4; 3762 3763 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3764 if (sbi->s_inodes_per_block == 0) 3765 goto cantfind_ext4; 3766 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3767 sbi->s_inodes_per_block; 3768 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3769 sbi->s_sbh = bh; 3770 sbi->s_mount_state = le16_to_cpu(es->s_state); 3771 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3772 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3773 3774 for (i = 0; i < 4; i++) 3775 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3776 sbi->s_def_hash_version = es->s_def_hash_version; 3777 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3778 i = le32_to_cpu(es->s_flags); 3779 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3780 sbi->s_hash_unsigned = 3; 3781 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3782 #ifdef __CHAR_UNSIGNED__ 3783 if (!(sb->s_flags & MS_RDONLY)) 3784 es->s_flags |= 3785 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3786 sbi->s_hash_unsigned = 3; 3787 #else 3788 if (!(sb->s_flags & MS_RDONLY)) 3789 es->s_flags |= 3790 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3791 #endif 3792 } 3793 } 3794 3795 /* Handle clustersize */ 3796 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3797 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3798 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3799 if (has_bigalloc) { 3800 if (clustersize < blocksize) { 3801 ext4_msg(sb, KERN_ERR, 3802 "cluster size (%d) smaller than " 3803 "block size (%d)", clustersize, blocksize); 3804 goto failed_mount; 3805 } 3806 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3807 le32_to_cpu(es->s_log_block_size); 3808 sbi->s_clusters_per_group = 3809 le32_to_cpu(es->s_clusters_per_group); 3810 if (sbi->s_clusters_per_group > blocksize * 8) { 3811 ext4_msg(sb, KERN_ERR, 3812 "#clusters per group too big: %lu", 3813 sbi->s_clusters_per_group); 3814 goto failed_mount; 3815 } 3816 if (sbi->s_blocks_per_group != 3817 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3818 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3819 "clusters per group (%lu) inconsistent", 3820 sbi->s_blocks_per_group, 3821 sbi->s_clusters_per_group); 3822 goto failed_mount; 3823 } 3824 } else { 3825 if (clustersize != blocksize) { 3826 ext4_warning(sb, "fragment/cluster size (%d) != " 3827 "block size (%d)", clustersize, 3828 blocksize); 3829 clustersize = blocksize; 3830 } 3831 if (sbi->s_blocks_per_group > blocksize * 8) { 3832 ext4_msg(sb, KERN_ERR, 3833 "#blocks per group too big: %lu", 3834 sbi->s_blocks_per_group); 3835 goto failed_mount; 3836 } 3837 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3838 sbi->s_cluster_bits = 0; 3839 } 3840 sbi->s_cluster_ratio = clustersize / blocksize; 3841 3842 if (sbi->s_inodes_per_group > blocksize * 8) { 3843 ext4_msg(sb, KERN_ERR, 3844 "#inodes per group too big: %lu", 3845 sbi->s_inodes_per_group); 3846 goto failed_mount; 3847 } 3848 3849 /* Do we have standard group size of clustersize * 8 blocks ? */ 3850 if (sbi->s_blocks_per_group == clustersize << 3) 3851 set_opt2(sb, STD_GROUP_SIZE); 3852 3853 /* 3854 * Test whether we have more sectors than will fit in sector_t, 3855 * and whether the max offset is addressable by the page cache. 3856 */ 3857 err = generic_check_addressable(sb->s_blocksize_bits, 3858 ext4_blocks_count(es)); 3859 if (err) { 3860 ext4_msg(sb, KERN_ERR, "filesystem" 3861 " too large to mount safely on this system"); 3862 if (sizeof(sector_t) < 8) 3863 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3864 goto failed_mount; 3865 } 3866 3867 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3868 goto cantfind_ext4; 3869 3870 /* check blocks count against device size */ 3871 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3872 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3873 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3874 "exceeds size of device (%llu blocks)", 3875 ext4_blocks_count(es), blocks_count); 3876 goto failed_mount; 3877 } 3878 3879 /* 3880 * It makes no sense for the first data block to be beyond the end 3881 * of the filesystem. 3882 */ 3883 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3884 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3885 "block %u is beyond end of filesystem (%llu)", 3886 le32_to_cpu(es->s_first_data_block), 3887 ext4_blocks_count(es)); 3888 goto failed_mount; 3889 } 3890 blocks_count = (ext4_blocks_count(es) - 3891 le32_to_cpu(es->s_first_data_block) + 3892 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3893 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3894 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3895 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3896 "(block count %llu, first data block %u, " 3897 "blocks per group %lu)", sbi->s_groups_count, 3898 ext4_blocks_count(es), 3899 le32_to_cpu(es->s_first_data_block), 3900 EXT4_BLOCKS_PER_GROUP(sb)); 3901 goto failed_mount; 3902 } 3903 sbi->s_groups_count = blocks_count; 3904 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3905 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3906 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3907 EXT4_DESC_PER_BLOCK(sb); 3908 sbi->s_group_desc = ext4_kvmalloc(db_count * 3909 sizeof(struct buffer_head *), 3910 GFP_KERNEL); 3911 if (sbi->s_group_desc == NULL) { 3912 ext4_msg(sb, KERN_ERR, "not enough memory"); 3913 ret = -ENOMEM; 3914 goto failed_mount; 3915 } 3916 3917 if (ext4_proc_root) 3918 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3919 3920 if (sbi->s_proc) 3921 proc_create_data("options", S_IRUGO, sbi->s_proc, 3922 &ext4_seq_options_fops, sb); 3923 3924 bgl_lock_init(sbi->s_blockgroup_lock); 3925 3926 for (i = 0; i < db_count; i++) { 3927 block = descriptor_loc(sb, logical_sb_block, i); 3928 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3929 if (!sbi->s_group_desc[i]) { 3930 ext4_msg(sb, KERN_ERR, 3931 "can't read group descriptor %d", i); 3932 db_count = i; 3933 goto failed_mount2; 3934 } 3935 } 3936 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3937 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3938 goto failed_mount2; 3939 } 3940 3941 sbi->s_gdb_count = db_count; 3942 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3943 spin_lock_init(&sbi->s_next_gen_lock); 3944 3945 setup_timer(&sbi->s_err_report, print_daily_error_info, 3946 (unsigned long) sb); 3947 3948 /* Register extent status tree shrinker */ 3949 if (ext4_es_register_shrinker(sbi)) 3950 goto failed_mount3; 3951 3952 sbi->s_stripe = ext4_get_stripe_size(sbi); 3953 sbi->s_extent_max_zeroout_kb = 32; 3954 3955 /* 3956 * set up enough so that it can read an inode 3957 */ 3958 sb->s_op = &ext4_sops; 3959 sb->s_export_op = &ext4_export_ops; 3960 sb->s_xattr = ext4_xattr_handlers; 3961 #ifdef CONFIG_QUOTA 3962 sb->dq_op = &ext4_quota_operations; 3963 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3964 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3965 else 3966 sb->s_qcop = &ext4_qctl_operations; 3967 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 3968 #endif 3969 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3970 3971 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3972 mutex_init(&sbi->s_orphan_lock); 3973 3974 sb->s_root = NULL; 3975 3976 needs_recovery = (es->s_last_orphan != 0 || 3977 EXT4_HAS_INCOMPAT_FEATURE(sb, 3978 EXT4_FEATURE_INCOMPAT_RECOVER)); 3979 3980 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3981 !(sb->s_flags & MS_RDONLY)) 3982 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3983 goto failed_mount3a; 3984 3985 /* 3986 * The first inode we look at is the journal inode. Don't try 3987 * root first: it may be modified in the journal! 3988 */ 3989 if (!test_opt(sb, NOLOAD) && 3990 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3991 if (ext4_load_journal(sb, es, journal_devnum)) 3992 goto failed_mount3a; 3993 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3994 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3995 ext4_msg(sb, KERN_ERR, "required journal recovery " 3996 "suppressed and not mounted read-only"); 3997 goto failed_mount_wq; 3998 } else { 3999 clear_opt(sb, DATA_FLAGS); 4000 sbi->s_journal = NULL; 4001 needs_recovery = 0; 4002 goto no_journal; 4003 } 4004 4005 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 4006 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4007 JBD2_FEATURE_INCOMPAT_64BIT)) { 4008 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4009 goto failed_mount_wq; 4010 } 4011 4012 if (!set_journal_csum_feature_set(sb)) { 4013 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4014 "feature set"); 4015 goto failed_mount_wq; 4016 } 4017 4018 /* We have now updated the journal if required, so we can 4019 * validate the data journaling mode. */ 4020 switch (test_opt(sb, DATA_FLAGS)) { 4021 case 0: 4022 /* No mode set, assume a default based on the journal 4023 * capabilities: ORDERED_DATA if the journal can 4024 * cope, else JOURNAL_DATA 4025 */ 4026 if (jbd2_journal_check_available_features 4027 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4028 set_opt(sb, ORDERED_DATA); 4029 else 4030 set_opt(sb, JOURNAL_DATA); 4031 break; 4032 4033 case EXT4_MOUNT_ORDERED_DATA: 4034 case EXT4_MOUNT_WRITEBACK_DATA: 4035 if (!jbd2_journal_check_available_features 4036 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4037 ext4_msg(sb, KERN_ERR, "Journal does not support " 4038 "requested data journaling mode"); 4039 goto failed_mount_wq; 4040 } 4041 default: 4042 break; 4043 } 4044 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4045 4046 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4047 4048 no_journal: 4049 if (ext4_mballoc_ready) { 4050 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4051 if (!sbi->s_mb_cache) { 4052 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4053 goto failed_mount_wq; 4054 } 4055 } 4056 4057 /* 4058 * Get the # of file system overhead blocks from the 4059 * superblock if present. 4060 */ 4061 if (es->s_overhead_clusters) 4062 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4063 else { 4064 err = ext4_calculate_overhead(sb); 4065 if (err) 4066 goto failed_mount_wq; 4067 } 4068 4069 /* 4070 * The maximum number of concurrent works can be high and 4071 * concurrency isn't really necessary. Limit it to 1. 4072 */ 4073 EXT4_SB(sb)->rsv_conversion_wq = 4074 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4075 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4076 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4077 ret = -ENOMEM; 4078 goto failed_mount4; 4079 } 4080 4081 /* 4082 * The jbd2_journal_load will have done any necessary log recovery, 4083 * so we can safely mount the rest of the filesystem now. 4084 */ 4085 4086 root = ext4_iget(sb, EXT4_ROOT_INO); 4087 if (IS_ERR(root)) { 4088 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4089 ret = PTR_ERR(root); 4090 root = NULL; 4091 goto failed_mount4; 4092 } 4093 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4094 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4095 iput(root); 4096 goto failed_mount4; 4097 } 4098 sb->s_root = d_make_root(root); 4099 if (!sb->s_root) { 4100 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4101 ret = -ENOMEM; 4102 goto failed_mount4; 4103 } 4104 4105 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4106 sb->s_flags |= MS_RDONLY; 4107 4108 /* determine the minimum size of new large inodes, if present */ 4109 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4110 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4111 EXT4_GOOD_OLD_INODE_SIZE; 4112 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4113 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4114 if (sbi->s_want_extra_isize < 4115 le16_to_cpu(es->s_want_extra_isize)) 4116 sbi->s_want_extra_isize = 4117 le16_to_cpu(es->s_want_extra_isize); 4118 if (sbi->s_want_extra_isize < 4119 le16_to_cpu(es->s_min_extra_isize)) 4120 sbi->s_want_extra_isize = 4121 le16_to_cpu(es->s_min_extra_isize); 4122 } 4123 } 4124 /* Check if enough inode space is available */ 4125 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4126 sbi->s_inode_size) { 4127 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4128 EXT4_GOOD_OLD_INODE_SIZE; 4129 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4130 "available"); 4131 } 4132 4133 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4134 if (err) { 4135 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4136 "reserved pool", ext4_calculate_resv_clusters(sb)); 4137 goto failed_mount4a; 4138 } 4139 4140 err = ext4_setup_system_zone(sb); 4141 if (err) { 4142 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4143 "zone (%d)", err); 4144 goto failed_mount4a; 4145 } 4146 4147 ext4_ext_init(sb); 4148 err = ext4_mb_init(sb); 4149 if (err) { 4150 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4151 err); 4152 goto failed_mount5; 4153 } 4154 4155 block = ext4_count_free_clusters(sb); 4156 ext4_free_blocks_count_set(sbi->s_es, 4157 EXT4_C2B(sbi, block)); 4158 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4159 GFP_KERNEL); 4160 if (!err) { 4161 unsigned long freei = ext4_count_free_inodes(sb); 4162 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4163 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4164 GFP_KERNEL); 4165 } 4166 if (!err) 4167 err = percpu_counter_init(&sbi->s_dirs_counter, 4168 ext4_count_dirs(sb), GFP_KERNEL); 4169 if (!err) 4170 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4171 GFP_KERNEL); 4172 if (err) { 4173 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4174 goto failed_mount6; 4175 } 4176 4177 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4178 if (!ext4_fill_flex_info(sb)) { 4179 ext4_msg(sb, KERN_ERR, 4180 "unable to initialize " 4181 "flex_bg meta info!"); 4182 goto failed_mount6; 4183 } 4184 4185 err = ext4_register_li_request(sb, first_not_zeroed); 4186 if (err) 4187 goto failed_mount6; 4188 4189 sbi->s_kobj.kset = ext4_kset; 4190 init_completion(&sbi->s_kobj_unregister); 4191 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4192 "%s", sb->s_id); 4193 if (err) 4194 goto failed_mount7; 4195 4196 #ifdef CONFIG_QUOTA 4197 /* Enable quota usage during mount. */ 4198 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4199 !(sb->s_flags & MS_RDONLY)) { 4200 err = ext4_enable_quotas(sb); 4201 if (err) 4202 goto failed_mount8; 4203 } 4204 #endif /* CONFIG_QUOTA */ 4205 4206 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4207 ext4_orphan_cleanup(sb, es); 4208 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4209 if (needs_recovery) { 4210 ext4_msg(sb, KERN_INFO, "recovery complete"); 4211 ext4_mark_recovery_complete(sb, es); 4212 } 4213 if (EXT4_SB(sb)->s_journal) { 4214 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4215 descr = " journalled data mode"; 4216 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4217 descr = " ordered data mode"; 4218 else 4219 descr = " writeback data mode"; 4220 } else 4221 descr = "out journal"; 4222 4223 if (test_opt(sb, DISCARD)) { 4224 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4225 if (!blk_queue_discard(q)) 4226 ext4_msg(sb, KERN_WARNING, 4227 "mounting with \"discard\" option, but " 4228 "the device does not support discard"); 4229 } 4230 4231 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4232 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4233 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4234 4235 if (es->s_error_count) 4236 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4237 4238 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4239 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4240 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4241 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4242 4243 kfree(orig_data); 4244 return 0; 4245 4246 cantfind_ext4: 4247 if (!silent) 4248 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4249 goto failed_mount; 4250 4251 #ifdef CONFIG_QUOTA 4252 failed_mount8: 4253 kobject_del(&sbi->s_kobj); 4254 #endif 4255 failed_mount7: 4256 ext4_unregister_li_request(sb); 4257 failed_mount6: 4258 ext4_mb_release(sb); 4259 if (sbi->s_flex_groups) 4260 kvfree(sbi->s_flex_groups); 4261 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4262 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4263 percpu_counter_destroy(&sbi->s_dirs_counter); 4264 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4265 failed_mount5: 4266 ext4_ext_release(sb); 4267 ext4_release_system_zone(sb); 4268 failed_mount4a: 4269 dput(sb->s_root); 4270 sb->s_root = NULL; 4271 failed_mount4: 4272 ext4_msg(sb, KERN_ERR, "mount failed"); 4273 if (EXT4_SB(sb)->rsv_conversion_wq) 4274 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4275 failed_mount_wq: 4276 if (sbi->s_journal) { 4277 jbd2_journal_destroy(sbi->s_journal); 4278 sbi->s_journal = NULL; 4279 } 4280 failed_mount3a: 4281 ext4_es_unregister_shrinker(sbi); 4282 failed_mount3: 4283 del_timer_sync(&sbi->s_err_report); 4284 if (sbi->s_mmp_tsk) 4285 kthread_stop(sbi->s_mmp_tsk); 4286 failed_mount2: 4287 for (i = 0; i < db_count; i++) 4288 brelse(sbi->s_group_desc[i]); 4289 kvfree(sbi->s_group_desc); 4290 failed_mount: 4291 if (sbi->s_chksum_driver) 4292 crypto_free_shash(sbi->s_chksum_driver); 4293 if (sbi->s_proc) { 4294 remove_proc_entry("options", sbi->s_proc); 4295 remove_proc_entry(sb->s_id, ext4_proc_root); 4296 } 4297 #ifdef CONFIG_QUOTA 4298 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4299 kfree(sbi->s_qf_names[i]); 4300 #endif 4301 ext4_blkdev_remove(sbi); 4302 brelse(bh); 4303 out_fail: 4304 sb->s_fs_info = NULL; 4305 kfree(sbi->s_blockgroup_lock); 4306 kfree(sbi); 4307 out_free_orig: 4308 kfree(orig_data); 4309 return err ? err : ret; 4310 } 4311 4312 /* 4313 * Setup any per-fs journal parameters now. We'll do this both on 4314 * initial mount, once the journal has been initialised but before we've 4315 * done any recovery; and again on any subsequent remount. 4316 */ 4317 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4318 { 4319 struct ext4_sb_info *sbi = EXT4_SB(sb); 4320 4321 journal->j_commit_interval = sbi->s_commit_interval; 4322 journal->j_min_batch_time = sbi->s_min_batch_time; 4323 journal->j_max_batch_time = sbi->s_max_batch_time; 4324 4325 write_lock(&journal->j_state_lock); 4326 if (test_opt(sb, BARRIER)) 4327 journal->j_flags |= JBD2_BARRIER; 4328 else 4329 journal->j_flags &= ~JBD2_BARRIER; 4330 if (test_opt(sb, DATA_ERR_ABORT)) 4331 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4332 else 4333 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4334 write_unlock(&journal->j_state_lock); 4335 } 4336 4337 static journal_t *ext4_get_journal(struct super_block *sb, 4338 unsigned int journal_inum) 4339 { 4340 struct inode *journal_inode; 4341 journal_t *journal; 4342 4343 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4344 4345 /* First, test for the existence of a valid inode on disk. Bad 4346 * things happen if we iget() an unused inode, as the subsequent 4347 * iput() will try to delete it. */ 4348 4349 journal_inode = ext4_iget(sb, journal_inum); 4350 if (IS_ERR(journal_inode)) { 4351 ext4_msg(sb, KERN_ERR, "no journal found"); 4352 return NULL; 4353 } 4354 if (!journal_inode->i_nlink) { 4355 make_bad_inode(journal_inode); 4356 iput(journal_inode); 4357 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4358 return NULL; 4359 } 4360 4361 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4362 journal_inode, journal_inode->i_size); 4363 if (!S_ISREG(journal_inode->i_mode)) { 4364 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4365 iput(journal_inode); 4366 return NULL; 4367 } 4368 4369 journal = jbd2_journal_init_inode(journal_inode); 4370 if (!journal) { 4371 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4372 iput(journal_inode); 4373 return NULL; 4374 } 4375 journal->j_private = sb; 4376 ext4_init_journal_params(sb, journal); 4377 return journal; 4378 } 4379 4380 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4381 dev_t j_dev) 4382 { 4383 struct buffer_head *bh; 4384 journal_t *journal; 4385 ext4_fsblk_t start; 4386 ext4_fsblk_t len; 4387 int hblock, blocksize; 4388 ext4_fsblk_t sb_block; 4389 unsigned long offset; 4390 struct ext4_super_block *es; 4391 struct block_device *bdev; 4392 4393 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4394 4395 bdev = ext4_blkdev_get(j_dev, sb); 4396 if (bdev == NULL) 4397 return NULL; 4398 4399 blocksize = sb->s_blocksize; 4400 hblock = bdev_logical_block_size(bdev); 4401 if (blocksize < hblock) { 4402 ext4_msg(sb, KERN_ERR, 4403 "blocksize too small for journal device"); 4404 goto out_bdev; 4405 } 4406 4407 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4408 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4409 set_blocksize(bdev, blocksize); 4410 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4411 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4412 "external journal"); 4413 goto out_bdev; 4414 } 4415 4416 es = (struct ext4_super_block *) (bh->b_data + offset); 4417 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4418 !(le32_to_cpu(es->s_feature_incompat) & 4419 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4420 ext4_msg(sb, KERN_ERR, "external journal has " 4421 "bad superblock"); 4422 brelse(bh); 4423 goto out_bdev; 4424 } 4425 4426 if ((le32_to_cpu(es->s_feature_ro_compat) & 4427 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4428 es->s_checksum != ext4_superblock_csum(sb, es)) { 4429 ext4_msg(sb, KERN_ERR, "external journal has " 4430 "corrupt superblock"); 4431 brelse(bh); 4432 goto out_bdev; 4433 } 4434 4435 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4436 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4437 brelse(bh); 4438 goto out_bdev; 4439 } 4440 4441 len = ext4_blocks_count(es); 4442 start = sb_block + 1; 4443 brelse(bh); /* we're done with the superblock */ 4444 4445 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4446 start, len, blocksize); 4447 if (!journal) { 4448 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4449 goto out_bdev; 4450 } 4451 journal->j_private = sb; 4452 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4453 wait_on_buffer(journal->j_sb_buffer); 4454 if (!buffer_uptodate(journal->j_sb_buffer)) { 4455 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4456 goto out_journal; 4457 } 4458 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4459 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4460 "user (unsupported) - %d", 4461 be32_to_cpu(journal->j_superblock->s_nr_users)); 4462 goto out_journal; 4463 } 4464 EXT4_SB(sb)->journal_bdev = bdev; 4465 ext4_init_journal_params(sb, journal); 4466 return journal; 4467 4468 out_journal: 4469 jbd2_journal_destroy(journal); 4470 out_bdev: 4471 ext4_blkdev_put(bdev); 4472 return NULL; 4473 } 4474 4475 static int ext4_load_journal(struct super_block *sb, 4476 struct ext4_super_block *es, 4477 unsigned long journal_devnum) 4478 { 4479 journal_t *journal; 4480 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4481 dev_t journal_dev; 4482 int err = 0; 4483 int really_read_only; 4484 4485 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4486 4487 if (journal_devnum && 4488 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4489 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4490 "numbers have changed"); 4491 journal_dev = new_decode_dev(journal_devnum); 4492 } else 4493 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4494 4495 really_read_only = bdev_read_only(sb->s_bdev); 4496 4497 /* 4498 * Are we loading a blank journal or performing recovery after a 4499 * crash? For recovery, we need to check in advance whether we 4500 * can get read-write access to the device. 4501 */ 4502 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4503 if (sb->s_flags & MS_RDONLY) { 4504 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4505 "required on readonly filesystem"); 4506 if (really_read_only) { 4507 ext4_msg(sb, KERN_ERR, "write access " 4508 "unavailable, cannot proceed"); 4509 return -EROFS; 4510 } 4511 ext4_msg(sb, KERN_INFO, "write access will " 4512 "be enabled during recovery"); 4513 } 4514 } 4515 4516 if (journal_inum && journal_dev) { 4517 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4518 "and inode journals!"); 4519 return -EINVAL; 4520 } 4521 4522 if (journal_inum) { 4523 if (!(journal = ext4_get_journal(sb, journal_inum))) 4524 return -EINVAL; 4525 } else { 4526 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4527 return -EINVAL; 4528 } 4529 4530 if (!(journal->j_flags & JBD2_BARRIER)) 4531 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4532 4533 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4534 err = jbd2_journal_wipe(journal, !really_read_only); 4535 if (!err) { 4536 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4537 if (save) 4538 memcpy(save, ((char *) es) + 4539 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4540 err = jbd2_journal_load(journal); 4541 if (save) 4542 memcpy(((char *) es) + EXT4_S_ERR_START, 4543 save, EXT4_S_ERR_LEN); 4544 kfree(save); 4545 } 4546 4547 if (err) { 4548 ext4_msg(sb, KERN_ERR, "error loading journal"); 4549 jbd2_journal_destroy(journal); 4550 return err; 4551 } 4552 4553 EXT4_SB(sb)->s_journal = journal; 4554 ext4_clear_journal_err(sb, es); 4555 4556 if (!really_read_only && journal_devnum && 4557 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4558 es->s_journal_dev = cpu_to_le32(journal_devnum); 4559 4560 /* Make sure we flush the recovery flag to disk. */ 4561 ext4_commit_super(sb, 1); 4562 } 4563 4564 return 0; 4565 } 4566 4567 static int ext4_commit_super(struct super_block *sb, int sync) 4568 { 4569 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4570 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4571 int error = 0; 4572 4573 if (!sbh || block_device_ejected(sb)) 4574 return error; 4575 if (buffer_write_io_error(sbh)) { 4576 /* 4577 * Oh, dear. A previous attempt to write the 4578 * superblock failed. This could happen because the 4579 * USB device was yanked out. Or it could happen to 4580 * be a transient write error and maybe the block will 4581 * be remapped. Nothing we can do but to retry the 4582 * write and hope for the best. 4583 */ 4584 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4585 "superblock detected"); 4586 clear_buffer_write_io_error(sbh); 4587 set_buffer_uptodate(sbh); 4588 } 4589 /* 4590 * If the file system is mounted read-only, don't update the 4591 * superblock write time. This avoids updating the superblock 4592 * write time when we are mounting the root file system 4593 * read/only but we need to replay the journal; at that point, 4594 * for people who are east of GMT and who make their clock 4595 * tick in localtime for Windows bug-for-bug compatibility, 4596 * the clock is set in the future, and this will cause e2fsck 4597 * to complain and force a full file system check. 4598 */ 4599 if (!(sb->s_flags & MS_RDONLY)) 4600 es->s_wtime = cpu_to_le32(get_seconds()); 4601 if (sb->s_bdev->bd_part) 4602 es->s_kbytes_written = 4603 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4604 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4605 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4606 else 4607 es->s_kbytes_written = 4608 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4609 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4610 ext4_free_blocks_count_set(es, 4611 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4612 &EXT4_SB(sb)->s_freeclusters_counter))); 4613 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4614 es->s_free_inodes_count = 4615 cpu_to_le32(percpu_counter_sum_positive( 4616 &EXT4_SB(sb)->s_freeinodes_counter)); 4617 BUFFER_TRACE(sbh, "marking dirty"); 4618 ext4_superblock_csum_set(sb); 4619 mark_buffer_dirty(sbh); 4620 if (sync) { 4621 error = sync_dirty_buffer(sbh); 4622 if (error) 4623 return error; 4624 4625 error = buffer_write_io_error(sbh); 4626 if (error) { 4627 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4628 "superblock"); 4629 clear_buffer_write_io_error(sbh); 4630 set_buffer_uptodate(sbh); 4631 } 4632 } 4633 return error; 4634 } 4635 4636 /* 4637 * Have we just finished recovery? If so, and if we are mounting (or 4638 * remounting) the filesystem readonly, then we will end up with a 4639 * consistent fs on disk. Record that fact. 4640 */ 4641 static void ext4_mark_recovery_complete(struct super_block *sb, 4642 struct ext4_super_block *es) 4643 { 4644 journal_t *journal = EXT4_SB(sb)->s_journal; 4645 4646 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4647 BUG_ON(journal != NULL); 4648 return; 4649 } 4650 jbd2_journal_lock_updates(journal); 4651 if (jbd2_journal_flush(journal) < 0) 4652 goto out; 4653 4654 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4655 sb->s_flags & MS_RDONLY) { 4656 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4657 ext4_commit_super(sb, 1); 4658 } 4659 4660 out: 4661 jbd2_journal_unlock_updates(journal); 4662 } 4663 4664 /* 4665 * If we are mounting (or read-write remounting) a filesystem whose journal 4666 * has recorded an error from a previous lifetime, move that error to the 4667 * main filesystem now. 4668 */ 4669 static void ext4_clear_journal_err(struct super_block *sb, 4670 struct ext4_super_block *es) 4671 { 4672 journal_t *journal; 4673 int j_errno; 4674 const char *errstr; 4675 4676 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4677 4678 journal = EXT4_SB(sb)->s_journal; 4679 4680 /* 4681 * Now check for any error status which may have been recorded in the 4682 * journal by a prior ext4_error() or ext4_abort() 4683 */ 4684 4685 j_errno = jbd2_journal_errno(journal); 4686 if (j_errno) { 4687 char nbuf[16]; 4688 4689 errstr = ext4_decode_error(sb, j_errno, nbuf); 4690 ext4_warning(sb, "Filesystem error recorded " 4691 "from previous mount: %s", errstr); 4692 ext4_warning(sb, "Marking fs in need of filesystem check."); 4693 4694 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4695 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4696 ext4_commit_super(sb, 1); 4697 4698 jbd2_journal_clear_err(journal); 4699 jbd2_journal_update_sb_errno(journal); 4700 } 4701 } 4702 4703 /* 4704 * Force the running and committing transactions to commit, 4705 * and wait on the commit. 4706 */ 4707 int ext4_force_commit(struct super_block *sb) 4708 { 4709 journal_t *journal; 4710 4711 if (sb->s_flags & MS_RDONLY) 4712 return 0; 4713 4714 journal = EXT4_SB(sb)->s_journal; 4715 return ext4_journal_force_commit(journal); 4716 } 4717 4718 static int ext4_sync_fs(struct super_block *sb, int wait) 4719 { 4720 int ret = 0; 4721 tid_t target; 4722 bool needs_barrier = false; 4723 struct ext4_sb_info *sbi = EXT4_SB(sb); 4724 4725 trace_ext4_sync_fs(sb, wait); 4726 flush_workqueue(sbi->rsv_conversion_wq); 4727 /* 4728 * Writeback quota in non-journalled quota case - journalled quota has 4729 * no dirty dquots 4730 */ 4731 dquot_writeback_dquots(sb, -1); 4732 /* 4733 * Data writeback is possible w/o journal transaction, so barrier must 4734 * being sent at the end of the function. But we can skip it if 4735 * transaction_commit will do it for us. 4736 */ 4737 if (sbi->s_journal) { 4738 target = jbd2_get_latest_transaction(sbi->s_journal); 4739 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4740 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4741 needs_barrier = true; 4742 4743 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4744 if (wait) 4745 ret = jbd2_log_wait_commit(sbi->s_journal, 4746 target); 4747 } 4748 } else if (wait && test_opt(sb, BARRIER)) 4749 needs_barrier = true; 4750 if (needs_barrier) { 4751 int err; 4752 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4753 if (!ret) 4754 ret = err; 4755 } 4756 4757 return ret; 4758 } 4759 4760 /* 4761 * LVM calls this function before a (read-only) snapshot is created. This 4762 * gives us a chance to flush the journal completely and mark the fs clean. 4763 * 4764 * Note that only this function cannot bring a filesystem to be in a clean 4765 * state independently. It relies on upper layer to stop all data & metadata 4766 * modifications. 4767 */ 4768 static int ext4_freeze(struct super_block *sb) 4769 { 4770 int error = 0; 4771 journal_t *journal; 4772 4773 if (sb->s_flags & MS_RDONLY) 4774 return 0; 4775 4776 journal = EXT4_SB(sb)->s_journal; 4777 4778 if (journal) { 4779 /* Now we set up the journal barrier. */ 4780 jbd2_journal_lock_updates(journal); 4781 4782 /* 4783 * Don't clear the needs_recovery flag if we failed to 4784 * flush the journal. 4785 */ 4786 error = jbd2_journal_flush(journal); 4787 if (error < 0) 4788 goto out; 4789 } 4790 4791 /* Journal blocked and flushed, clear needs_recovery flag. */ 4792 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4793 error = ext4_commit_super(sb, 1); 4794 out: 4795 if (journal) 4796 /* we rely on upper layer to stop further updates */ 4797 jbd2_journal_unlock_updates(journal); 4798 return error; 4799 } 4800 4801 /* 4802 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4803 * flag here, even though the filesystem is not technically dirty yet. 4804 */ 4805 static int ext4_unfreeze(struct super_block *sb) 4806 { 4807 if (sb->s_flags & MS_RDONLY) 4808 return 0; 4809 4810 /* Reset the needs_recovery flag before the fs is unlocked. */ 4811 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4812 ext4_commit_super(sb, 1); 4813 return 0; 4814 } 4815 4816 /* 4817 * Structure to save mount options for ext4_remount's benefit 4818 */ 4819 struct ext4_mount_options { 4820 unsigned long s_mount_opt; 4821 unsigned long s_mount_opt2; 4822 kuid_t s_resuid; 4823 kgid_t s_resgid; 4824 unsigned long s_commit_interval; 4825 u32 s_min_batch_time, s_max_batch_time; 4826 #ifdef CONFIG_QUOTA 4827 int s_jquota_fmt; 4828 char *s_qf_names[EXT4_MAXQUOTAS]; 4829 #endif 4830 }; 4831 4832 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4833 { 4834 struct ext4_super_block *es; 4835 struct ext4_sb_info *sbi = EXT4_SB(sb); 4836 unsigned long old_sb_flags; 4837 struct ext4_mount_options old_opts; 4838 int enable_quota = 0; 4839 ext4_group_t g; 4840 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4841 int err = 0; 4842 #ifdef CONFIG_QUOTA 4843 int i, j; 4844 #endif 4845 char *orig_data = kstrdup(data, GFP_KERNEL); 4846 4847 /* Store the original options */ 4848 old_sb_flags = sb->s_flags; 4849 old_opts.s_mount_opt = sbi->s_mount_opt; 4850 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4851 old_opts.s_resuid = sbi->s_resuid; 4852 old_opts.s_resgid = sbi->s_resgid; 4853 old_opts.s_commit_interval = sbi->s_commit_interval; 4854 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4855 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4856 #ifdef CONFIG_QUOTA 4857 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4858 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4859 if (sbi->s_qf_names[i]) { 4860 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4861 GFP_KERNEL); 4862 if (!old_opts.s_qf_names[i]) { 4863 for (j = 0; j < i; j++) 4864 kfree(old_opts.s_qf_names[j]); 4865 kfree(orig_data); 4866 return -ENOMEM; 4867 } 4868 } else 4869 old_opts.s_qf_names[i] = NULL; 4870 #endif 4871 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4872 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4873 4874 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4875 err = -EINVAL; 4876 goto restore_opts; 4877 } 4878 4879 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4880 test_opt(sb, JOURNAL_CHECKSUM)) { 4881 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4882 "during remount not supported; ignoring"); 4883 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4884 } 4885 4886 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4887 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4888 ext4_msg(sb, KERN_ERR, "can't mount with " 4889 "both data=journal and delalloc"); 4890 err = -EINVAL; 4891 goto restore_opts; 4892 } 4893 if (test_opt(sb, DIOREAD_NOLOCK)) { 4894 ext4_msg(sb, KERN_ERR, "can't mount with " 4895 "both data=journal and dioread_nolock"); 4896 err = -EINVAL; 4897 goto restore_opts; 4898 } 4899 if (test_opt(sb, DAX)) { 4900 ext4_msg(sb, KERN_ERR, "can't mount with " 4901 "both data=journal and dax"); 4902 err = -EINVAL; 4903 goto restore_opts; 4904 } 4905 } 4906 4907 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4908 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4909 "dax flag with busy inodes while remounting"); 4910 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4911 } 4912 4913 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4914 ext4_abort(sb, "Abort forced by user"); 4915 4916 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4917 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4918 4919 es = sbi->s_es; 4920 4921 if (sbi->s_journal) { 4922 ext4_init_journal_params(sb, sbi->s_journal); 4923 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4924 } 4925 4926 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4927 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4928 err = -EROFS; 4929 goto restore_opts; 4930 } 4931 4932 if (*flags & MS_RDONLY) { 4933 err = sync_filesystem(sb); 4934 if (err < 0) 4935 goto restore_opts; 4936 err = dquot_suspend(sb, -1); 4937 if (err < 0) 4938 goto restore_opts; 4939 4940 /* 4941 * First of all, the unconditional stuff we have to do 4942 * to disable replay of the journal when we next remount 4943 */ 4944 sb->s_flags |= MS_RDONLY; 4945 4946 /* 4947 * OK, test if we are remounting a valid rw partition 4948 * readonly, and if so set the rdonly flag and then 4949 * mark the partition as valid again. 4950 */ 4951 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4952 (sbi->s_mount_state & EXT4_VALID_FS)) 4953 es->s_state = cpu_to_le16(sbi->s_mount_state); 4954 4955 if (sbi->s_journal) 4956 ext4_mark_recovery_complete(sb, es); 4957 } else { 4958 /* Make sure we can mount this feature set readwrite */ 4959 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4960 EXT4_FEATURE_RO_COMPAT_READONLY) || 4961 !ext4_feature_set_ok(sb, 0)) { 4962 err = -EROFS; 4963 goto restore_opts; 4964 } 4965 /* 4966 * Make sure the group descriptor checksums 4967 * are sane. If they aren't, refuse to remount r/w. 4968 */ 4969 for (g = 0; g < sbi->s_groups_count; g++) { 4970 struct ext4_group_desc *gdp = 4971 ext4_get_group_desc(sb, g, NULL); 4972 4973 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4974 ext4_msg(sb, KERN_ERR, 4975 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4976 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4977 le16_to_cpu(gdp->bg_checksum)); 4978 err = -EINVAL; 4979 goto restore_opts; 4980 } 4981 } 4982 4983 /* 4984 * If we have an unprocessed orphan list hanging 4985 * around from a previously readonly bdev mount, 4986 * require a full umount/remount for now. 4987 */ 4988 if (es->s_last_orphan) { 4989 ext4_msg(sb, KERN_WARNING, "Couldn't " 4990 "remount RDWR because of unprocessed " 4991 "orphan inode list. Please " 4992 "umount/remount instead"); 4993 err = -EINVAL; 4994 goto restore_opts; 4995 } 4996 4997 /* 4998 * Mounting a RDONLY partition read-write, so reread 4999 * and store the current valid flag. (It may have 5000 * been changed by e2fsck since we originally mounted 5001 * the partition.) 5002 */ 5003 if (sbi->s_journal) 5004 ext4_clear_journal_err(sb, es); 5005 sbi->s_mount_state = le16_to_cpu(es->s_state); 5006 if (!ext4_setup_super(sb, es, 0)) 5007 sb->s_flags &= ~MS_RDONLY; 5008 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 5009 EXT4_FEATURE_INCOMPAT_MMP)) 5010 if (ext4_multi_mount_protect(sb, 5011 le64_to_cpu(es->s_mmp_block))) { 5012 err = -EROFS; 5013 goto restore_opts; 5014 } 5015 enable_quota = 1; 5016 } 5017 } 5018 5019 /* 5020 * Reinitialize lazy itable initialization thread based on 5021 * current settings 5022 */ 5023 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5024 ext4_unregister_li_request(sb); 5025 else { 5026 ext4_group_t first_not_zeroed; 5027 first_not_zeroed = ext4_has_uninit_itable(sb); 5028 ext4_register_li_request(sb, first_not_zeroed); 5029 } 5030 5031 ext4_setup_system_zone(sb); 5032 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5033 ext4_commit_super(sb, 1); 5034 5035 #ifdef CONFIG_QUOTA 5036 /* Release old quota file names */ 5037 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5038 kfree(old_opts.s_qf_names[i]); 5039 if (enable_quota) { 5040 if (sb_any_quota_suspended(sb)) 5041 dquot_resume(sb, -1); 5042 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5043 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5044 err = ext4_enable_quotas(sb); 5045 if (err) 5046 goto restore_opts; 5047 } 5048 } 5049 #endif 5050 5051 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5052 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5053 kfree(orig_data); 5054 return 0; 5055 5056 restore_opts: 5057 sb->s_flags = old_sb_flags; 5058 sbi->s_mount_opt = old_opts.s_mount_opt; 5059 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5060 sbi->s_resuid = old_opts.s_resuid; 5061 sbi->s_resgid = old_opts.s_resgid; 5062 sbi->s_commit_interval = old_opts.s_commit_interval; 5063 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5064 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5065 #ifdef CONFIG_QUOTA 5066 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5067 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5068 kfree(sbi->s_qf_names[i]); 5069 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5070 } 5071 #endif 5072 kfree(orig_data); 5073 return err; 5074 } 5075 5076 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5077 { 5078 struct super_block *sb = dentry->d_sb; 5079 struct ext4_sb_info *sbi = EXT4_SB(sb); 5080 struct ext4_super_block *es = sbi->s_es; 5081 ext4_fsblk_t overhead = 0, resv_blocks; 5082 u64 fsid; 5083 s64 bfree; 5084 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5085 5086 if (!test_opt(sb, MINIX_DF)) 5087 overhead = sbi->s_overhead; 5088 5089 buf->f_type = EXT4_SUPER_MAGIC; 5090 buf->f_bsize = sb->s_blocksize; 5091 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5092 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5093 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5094 /* prevent underflow in case that few free space is available */ 5095 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5096 buf->f_bavail = buf->f_bfree - 5097 (ext4_r_blocks_count(es) + resv_blocks); 5098 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5099 buf->f_bavail = 0; 5100 buf->f_files = le32_to_cpu(es->s_inodes_count); 5101 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5102 buf->f_namelen = EXT4_NAME_LEN; 5103 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5104 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5105 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5106 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5107 5108 return 0; 5109 } 5110 5111 /* Helper function for writing quotas on sync - we need to start transaction 5112 * before quota file is locked for write. Otherwise the are possible deadlocks: 5113 * Process 1 Process 2 5114 * ext4_create() quota_sync() 5115 * jbd2_journal_start() write_dquot() 5116 * dquot_initialize() down(dqio_mutex) 5117 * down(dqio_mutex) jbd2_journal_start() 5118 * 5119 */ 5120 5121 #ifdef CONFIG_QUOTA 5122 5123 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5124 { 5125 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5126 } 5127 5128 static int ext4_write_dquot(struct dquot *dquot) 5129 { 5130 int ret, err; 5131 handle_t *handle; 5132 struct inode *inode; 5133 5134 inode = dquot_to_inode(dquot); 5135 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5136 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5137 if (IS_ERR(handle)) 5138 return PTR_ERR(handle); 5139 ret = dquot_commit(dquot); 5140 err = ext4_journal_stop(handle); 5141 if (!ret) 5142 ret = err; 5143 return ret; 5144 } 5145 5146 static int ext4_acquire_dquot(struct dquot *dquot) 5147 { 5148 int ret, err; 5149 handle_t *handle; 5150 5151 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5152 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5153 if (IS_ERR(handle)) 5154 return PTR_ERR(handle); 5155 ret = dquot_acquire(dquot); 5156 err = ext4_journal_stop(handle); 5157 if (!ret) 5158 ret = err; 5159 return ret; 5160 } 5161 5162 static int ext4_release_dquot(struct dquot *dquot) 5163 { 5164 int ret, err; 5165 handle_t *handle; 5166 5167 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5168 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5169 if (IS_ERR(handle)) { 5170 /* Release dquot anyway to avoid endless cycle in dqput() */ 5171 dquot_release(dquot); 5172 return PTR_ERR(handle); 5173 } 5174 ret = dquot_release(dquot); 5175 err = ext4_journal_stop(handle); 5176 if (!ret) 5177 ret = err; 5178 return ret; 5179 } 5180 5181 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5182 { 5183 struct super_block *sb = dquot->dq_sb; 5184 struct ext4_sb_info *sbi = EXT4_SB(sb); 5185 5186 /* Are we journaling quotas? */ 5187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5188 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5189 dquot_mark_dquot_dirty(dquot); 5190 return ext4_write_dquot(dquot); 5191 } else { 5192 return dquot_mark_dquot_dirty(dquot); 5193 } 5194 } 5195 5196 static int ext4_write_info(struct super_block *sb, int type) 5197 { 5198 int ret, err; 5199 handle_t *handle; 5200 5201 /* Data block + inode block */ 5202 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5203 if (IS_ERR(handle)) 5204 return PTR_ERR(handle); 5205 ret = dquot_commit_info(sb, type); 5206 err = ext4_journal_stop(handle); 5207 if (!ret) 5208 ret = err; 5209 return ret; 5210 } 5211 5212 /* 5213 * Turn on quotas during mount time - we need to find 5214 * the quota file and such... 5215 */ 5216 static int ext4_quota_on_mount(struct super_block *sb, int type) 5217 { 5218 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5219 EXT4_SB(sb)->s_jquota_fmt, type); 5220 } 5221 5222 /* 5223 * Standard function to be called on quota_on 5224 */ 5225 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5226 struct path *path) 5227 { 5228 int err; 5229 5230 if (!test_opt(sb, QUOTA)) 5231 return -EINVAL; 5232 5233 /* Quotafile not on the same filesystem? */ 5234 if (path->dentry->d_sb != sb) 5235 return -EXDEV; 5236 /* Journaling quota? */ 5237 if (EXT4_SB(sb)->s_qf_names[type]) { 5238 /* Quotafile not in fs root? */ 5239 if (path->dentry->d_parent != sb->s_root) 5240 ext4_msg(sb, KERN_WARNING, 5241 "Quota file not on filesystem root. " 5242 "Journaled quota will not work"); 5243 } 5244 5245 /* 5246 * When we journal data on quota file, we have to flush journal to see 5247 * all updates to the file when we bypass pagecache... 5248 */ 5249 if (EXT4_SB(sb)->s_journal && 5250 ext4_should_journal_data(path->dentry->d_inode)) { 5251 /* 5252 * We don't need to lock updates but journal_flush() could 5253 * otherwise be livelocked... 5254 */ 5255 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5256 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5257 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5258 if (err) 5259 return err; 5260 } 5261 5262 return dquot_quota_on(sb, type, format_id, path); 5263 } 5264 5265 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5266 unsigned int flags) 5267 { 5268 int err; 5269 struct inode *qf_inode; 5270 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5271 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5272 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5273 }; 5274 5275 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5276 5277 if (!qf_inums[type]) 5278 return -EPERM; 5279 5280 qf_inode = ext4_iget(sb, qf_inums[type]); 5281 if (IS_ERR(qf_inode)) { 5282 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5283 return PTR_ERR(qf_inode); 5284 } 5285 5286 /* Don't account quota for quota files to avoid recursion */ 5287 qf_inode->i_flags |= S_NOQUOTA; 5288 err = dquot_enable(qf_inode, type, format_id, flags); 5289 iput(qf_inode); 5290 5291 return err; 5292 } 5293 5294 /* Enable usage tracking for all quota types. */ 5295 static int ext4_enable_quotas(struct super_block *sb) 5296 { 5297 int type, err = 0; 5298 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5299 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5300 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5301 }; 5302 5303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5304 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5305 if (qf_inums[type]) { 5306 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5307 DQUOT_USAGE_ENABLED); 5308 if (err) { 5309 ext4_warning(sb, 5310 "Failed to enable quota tracking " 5311 "(type=%d, err=%d). Please run " 5312 "e2fsck to fix.", type, err); 5313 return err; 5314 } 5315 } 5316 } 5317 return 0; 5318 } 5319 5320 static int ext4_quota_off(struct super_block *sb, int type) 5321 { 5322 struct inode *inode = sb_dqopt(sb)->files[type]; 5323 handle_t *handle; 5324 5325 /* Force all delayed allocation blocks to be allocated. 5326 * Caller already holds s_umount sem */ 5327 if (test_opt(sb, DELALLOC)) 5328 sync_filesystem(sb); 5329 5330 if (!inode) 5331 goto out; 5332 5333 /* Update modification times of quota files when userspace can 5334 * start looking at them */ 5335 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5336 if (IS_ERR(handle)) 5337 goto out; 5338 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5339 ext4_mark_inode_dirty(handle, inode); 5340 ext4_journal_stop(handle); 5341 5342 out: 5343 return dquot_quota_off(sb, type); 5344 } 5345 5346 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5347 * acquiring the locks... As quota files are never truncated and quota code 5348 * itself serializes the operations (and no one else should touch the files) 5349 * we don't have to be afraid of races */ 5350 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5351 size_t len, loff_t off) 5352 { 5353 struct inode *inode = sb_dqopt(sb)->files[type]; 5354 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5355 int offset = off & (sb->s_blocksize - 1); 5356 int tocopy; 5357 size_t toread; 5358 struct buffer_head *bh; 5359 loff_t i_size = i_size_read(inode); 5360 5361 if (off > i_size) 5362 return 0; 5363 if (off+len > i_size) 5364 len = i_size-off; 5365 toread = len; 5366 while (toread > 0) { 5367 tocopy = sb->s_blocksize - offset < toread ? 5368 sb->s_blocksize - offset : toread; 5369 bh = ext4_bread(NULL, inode, blk, 0); 5370 if (IS_ERR(bh)) 5371 return PTR_ERR(bh); 5372 if (!bh) /* A hole? */ 5373 memset(data, 0, tocopy); 5374 else 5375 memcpy(data, bh->b_data+offset, tocopy); 5376 brelse(bh); 5377 offset = 0; 5378 toread -= tocopy; 5379 data += tocopy; 5380 blk++; 5381 } 5382 return len; 5383 } 5384 5385 /* Write to quotafile (we know the transaction is already started and has 5386 * enough credits) */ 5387 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5388 const char *data, size_t len, loff_t off) 5389 { 5390 struct inode *inode = sb_dqopt(sb)->files[type]; 5391 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5392 int err, offset = off & (sb->s_blocksize - 1); 5393 struct buffer_head *bh; 5394 handle_t *handle = journal_current_handle(); 5395 5396 if (EXT4_SB(sb)->s_journal && !handle) { 5397 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5398 " cancelled because transaction is not started", 5399 (unsigned long long)off, (unsigned long long)len); 5400 return -EIO; 5401 } 5402 /* 5403 * Since we account only one data block in transaction credits, 5404 * then it is impossible to cross a block boundary. 5405 */ 5406 if (sb->s_blocksize - offset < len) { 5407 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5408 " cancelled because not block aligned", 5409 (unsigned long long)off, (unsigned long long)len); 5410 return -EIO; 5411 } 5412 5413 bh = ext4_bread(handle, inode, blk, 1); 5414 if (IS_ERR(bh)) 5415 return PTR_ERR(bh); 5416 if (!bh) 5417 goto out; 5418 BUFFER_TRACE(bh, "get write access"); 5419 err = ext4_journal_get_write_access(handle, bh); 5420 if (err) { 5421 brelse(bh); 5422 return err; 5423 } 5424 lock_buffer(bh); 5425 memcpy(bh->b_data+offset, data, len); 5426 flush_dcache_page(bh->b_page); 5427 unlock_buffer(bh); 5428 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5429 brelse(bh); 5430 out: 5431 if (inode->i_size < off + len) { 5432 i_size_write(inode, off + len); 5433 EXT4_I(inode)->i_disksize = inode->i_size; 5434 ext4_mark_inode_dirty(handle, inode); 5435 } 5436 return len; 5437 } 5438 5439 #endif 5440 5441 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5442 const char *dev_name, void *data) 5443 { 5444 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5445 } 5446 5447 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5448 static inline void register_as_ext2(void) 5449 { 5450 int err = register_filesystem(&ext2_fs_type); 5451 if (err) 5452 printk(KERN_WARNING 5453 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5454 } 5455 5456 static inline void unregister_as_ext2(void) 5457 { 5458 unregister_filesystem(&ext2_fs_type); 5459 } 5460 5461 static inline int ext2_feature_set_ok(struct super_block *sb) 5462 { 5463 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5464 return 0; 5465 if (sb->s_flags & MS_RDONLY) 5466 return 1; 5467 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5468 return 0; 5469 return 1; 5470 } 5471 #else 5472 static inline void register_as_ext2(void) { } 5473 static inline void unregister_as_ext2(void) { } 5474 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5475 #endif 5476 5477 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5478 static inline void register_as_ext3(void) 5479 { 5480 int err = register_filesystem(&ext3_fs_type); 5481 if (err) 5482 printk(KERN_WARNING 5483 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5484 } 5485 5486 static inline void unregister_as_ext3(void) 5487 { 5488 unregister_filesystem(&ext3_fs_type); 5489 } 5490 5491 static inline int ext3_feature_set_ok(struct super_block *sb) 5492 { 5493 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5494 return 0; 5495 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5496 return 0; 5497 if (sb->s_flags & MS_RDONLY) 5498 return 1; 5499 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5500 return 0; 5501 return 1; 5502 } 5503 #else 5504 static inline void register_as_ext3(void) { } 5505 static inline void unregister_as_ext3(void) { } 5506 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5507 #endif 5508 5509 static struct file_system_type ext4_fs_type = { 5510 .owner = THIS_MODULE, 5511 .name = "ext4", 5512 .mount = ext4_mount, 5513 .kill_sb = kill_block_super, 5514 .fs_flags = FS_REQUIRES_DEV, 5515 }; 5516 MODULE_ALIAS_FS("ext4"); 5517 5518 static int __init ext4_init_feat_adverts(void) 5519 { 5520 struct ext4_features *ef; 5521 int ret = -ENOMEM; 5522 5523 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5524 if (!ef) 5525 goto out; 5526 5527 ef->f_kobj.kset = ext4_kset; 5528 init_completion(&ef->f_kobj_unregister); 5529 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5530 "features"); 5531 if (ret) { 5532 kfree(ef); 5533 goto out; 5534 } 5535 5536 ext4_feat = ef; 5537 ret = 0; 5538 out: 5539 return ret; 5540 } 5541 5542 static void ext4_exit_feat_adverts(void) 5543 { 5544 kobject_put(&ext4_feat->f_kobj); 5545 wait_for_completion(&ext4_feat->f_kobj_unregister); 5546 kfree(ext4_feat); 5547 } 5548 5549 /* Shared across all ext4 file systems */ 5550 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5551 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5552 5553 static int __init ext4_init_fs(void) 5554 { 5555 int i, err; 5556 5557 ext4_li_info = NULL; 5558 mutex_init(&ext4_li_mtx); 5559 5560 /* Build-time check for flags consistency */ 5561 ext4_check_flag_values(); 5562 5563 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5564 mutex_init(&ext4__aio_mutex[i]); 5565 init_waitqueue_head(&ext4__ioend_wq[i]); 5566 } 5567 5568 err = ext4_init_es(); 5569 if (err) 5570 return err; 5571 5572 err = ext4_init_pageio(); 5573 if (err) 5574 goto out7; 5575 5576 err = ext4_init_system_zone(); 5577 if (err) 5578 goto out6; 5579 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5580 if (!ext4_kset) { 5581 err = -ENOMEM; 5582 goto out5; 5583 } 5584 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5585 5586 err = ext4_init_feat_adverts(); 5587 if (err) 5588 goto out4; 5589 5590 err = ext4_init_mballoc(); 5591 if (err) 5592 goto out2; 5593 else 5594 ext4_mballoc_ready = 1; 5595 err = init_inodecache(); 5596 if (err) 5597 goto out1; 5598 register_as_ext3(); 5599 register_as_ext2(); 5600 err = register_filesystem(&ext4_fs_type); 5601 if (err) 5602 goto out; 5603 5604 return 0; 5605 out: 5606 unregister_as_ext2(); 5607 unregister_as_ext3(); 5608 destroy_inodecache(); 5609 out1: 5610 ext4_mballoc_ready = 0; 5611 ext4_exit_mballoc(); 5612 out2: 5613 ext4_exit_feat_adverts(); 5614 out4: 5615 if (ext4_proc_root) 5616 remove_proc_entry("fs/ext4", NULL); 5617 kset_unregister(ext4_kset); 5618 out5: 5619 ext4_exit_system_zone(); 5620 out6: 5621 ext4_exit_pageio(); 5622 out7: 5623 ext4_exit_es(); 5624 5625 return err; 5626 } 5627 5628 static void __exit ext4_exit_fs(void) 5629 { 5630 ext4_destroy_lazyinit_thread(); 5631 unregister_as_ext2(); 5632 unregister_as_ext3(); 5633 unregister_filesystem(&ext4_fs_type); 5634 destroy_inodecache(); 5635 ext4_exit_mballoc(); 5636 ext4_exit_feat_adverts(); 5637 remove_proc_entry("fs/ext4", NULL); 5638 kset_unregister(ext4_kset); 5639 ext4_exit_system_zone(); 5640 ext4_exit_pageio(); 5641 ext4_exit_es(); 5642 } 5643 5644 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5645 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5646 MODULE_LICENSE("GPL"); 5647 module_init(ext4_init_fs) 5648 module_exit(ext4_exit_fs) 5649