1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "mballoc.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ext4.h> 52 53 struct proc_dir_entry *ext4_proc_root; 54 static struct kset *ext4_kset; 55 56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 57 unsigned long journal_devnum); 58 static int ext4_commit_super(struct super_block *sb, int sync); 59 static void ext4_mark_recovery_complete(struct super_block *sb, 60 struct ext4_super_block *es); 61 static void ext4_clear_journal_err(struct super_block *sb, 62 struct ext4_super_block *es); 63 static int ext4_sync_fs(struct super_block *sb, int wait); 64 static const char *ext4_decode_error(struct super_block *sb, int errno, 65 char nbuf[16]); 66 static int ext4_remount(struct super_block *sb, int *flags, char *data); 67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 68 static int ext4_unfreeze(struct super_block *sb); 69 static void ext4_write_super(struct super_block *sb); 70 static int ext4_freeze(struct super_block *sb); 71 72 73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 74 struct ext4_group_desc *bg) 75 { 76 return le32_to_cpu(bg->bg_block_bitmap_lo) | 77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 79 } 80 81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 82 struct ext4_group_desc *bg) 83 { 84 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 87 } 88 89 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 90 struct ext4_group_desc *bg) 91 { 92 return le32_to_cpu(bg->bg_inode_table_lo) | 93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 95 } 96 97 __u32 ext4_free_blks_count(struct super_block *sb, 98 struct ext4_group_desc *bg) 99 { 100 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 103 } 104 105 __u32 ext4_free_inodes_count(struct super_block *sb, 106 struct ext4_group_desc *bg) 107 { 108 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 111 } 112 113 __u32 ext4_used_dirs_count(struct super_block *sb, 114 struct ext4_group_desc *bg) 115 { 116 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 119 } 120 121 __u32 ext4_itable_unused_count(struct super_block *sb, 122 struct ext4_group_desc *bg) 123 { 124 return le16_to_cpu(bg->bg_itable_unused_lo) | 125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 127 } 128 129 void ext4_block_bitmap_set(struct super_block *sb, 130 struct ext4_group_desc *bg, ext4_fsblk_t blk) 131 { 132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 135 } 136 137 void ext4_inode_bitmap_set(struct super_block *sb, 138 struct ext4_group_desc *bg, ext4_fsblk_t blk) 139 { 140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 143 } 144 145 void ext4_inode_table_set(struct super_block *sb, 146 struct ext4_group_desc *bg, ext4_fsblk_t blk) 147 { 148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 151 } 152 153 void ext4_free_blks_set(struct super_block *sb, 154 struct ext4_group_desc *bg, __u32 count) 155 { 156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 159 } 160 161 void ext4_free_inodes_set(struct super_block *sb, 162 struct ext4_group_desc *bg, __u32 count) 163 { 164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 167 } 168 169 void ext4_used_dirs_set(struct super_block *sb, 170 struct ext4_group_desc *bg, __u32 count) 171 { 172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 175 } 176 177 void ext4_itable_unused_set(struct super_block *sb, 178 struct ext4_group_desc *bg, __u32 count) 179 { 180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 183 } 184 185 186 /* Just increment the non-pointer handle value */ 187 static handle_t *ext4_get_nojournal(void) 188 { 189 handle_t *handle = current->journal_info; 190 unsigned long ref_cnt = (unsigned long)handle; 191 192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 193 194 ref_cnt++; 195 handle = (handle_t *)ref_cnt; 196 197 current->journal_info = handle; 198 return handle; 199 } 200 201 202 /* Decrement the non-pointer handle value */ 203 static void ext4_put_nojournal(handle_t *handle) 204 { 205 unsigned long ref_cnt = (unsigned long)handle; 206 207 BUG_ON(ref_cnt == 0); 208 209 ref_cnt--; 210 handle = (handle_t *)ref_cnt; 211 212 current->journal_info = handle; 213 } 214 215 /* 216 * Wrappers for jbd2_journal_start/end. 217 * 218 * The only special thing we need to do here is to make sure that all 219 * journal_end calls result in the superblock being marked dirty, so 220 * that sync() will call the filesystem's write_super callback if 221 * appropriate. 222 */ 223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 224 { 225 journal_t *journal; 226 227 if (sb->s_flags & MS_RDONLY) 228 return ERR_PTR(-EROFS); 229 230 /* Special case here: if the journal has aborted behind our 231 * backs (eg. EIO in the commit thread), then we still need to 232 * take the FS itself readonly cleanly. */ 233 journal = EXT4_SB(sb)->s_journal; 234 if (journal) { 235 if (is_journal_aborted(journal)) { 236 ext4_abort(sb, __func__, "Detected aborted journal"); 237 return ERR_PTR(-EROFS); 238 } 239 return jbd2_journal_start(journal, nblocks); 240 } 241 return ext4_get_nojournal(); 242 } 243 244 /* 245 * The only special thing we need to do here is to make sure that all 246 * jbd2_journal_stop calls result in the superblock being marked dirty, so 247 * that sync() will call the filesystem's write_super callback if 248 * appropriate. 249 */ 250 int __ext4_journal_stop(const char *where, handle_t *handle) 251 { 252 struct super_block *sb; 253 int err; 254 int rc; 255 256 if (!ext4_handle_valid(handle)) { 257 ext4_put_nojournal(handle); 258 return 0; 259 } 260 sb = handle->h_transaction->t_journal->j_private; 261 err = handle->h_err; 262 rc = jbd2_journal_stop(handle); 263 264 if (!err) 265 err = rc; 266 if (err) 267 __ext4_std_error(sb, where, err); 268 return err; 269 } 270 271 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 272 struct buffer_head *bh, handle_t *handle, int err) 273 { 274 char nbuf[16]; 275 const char *errstr = ext4_decode_error(NULL, err, nbuf); 276 277 BUG_ON(!ext4_handle_valid(handle)); 278 279 if (bh) 280 BUFFER_TRACE(bh, "abort"); 281 282 if (!handle->h_err) 283 handle->h_err = err; 284 285 if (is_handle_aborted(handle)) 286 return; 287 288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 289 caller, errstr, err_fn); 290 291 jbd2_journal_abort_handle(handle); 292 } 293 294 /* Deal with the reporting of failure conditions on a filesystem such as 295 * inconsistencies detected or read IO failures. 296 * 297 * On ext2, we can store the error state of the filesystem in the 298 * superblock. That is not possible on ext4, because we may have other 299 * write ordering constraints on the superblock which prevent us from 300 * writing it out straight away; and given that the journal is about to 301 * be aborted, we can't rely on the current, or future, transactions to 302 * write out the superblock safely. 303 * 304 * We'll just use the jbd2_journal_abort() error code to record an error in 305 * the journal instead. On recovery, the journal will compain about 306 * that error until we've noted it down and cleared it. 307 */ 308 309 static void ext4_handle_error(struct super_block *sb) 310 { 311 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 312 313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 315 316 if (sb->s_flags & MS_RDONLY) 317 return; 318 319 if (!test_opt(sb, ERRORS_CONT)) { 320 journal_t *journal = EXT4_SB(sb)->s_journal; 321 322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 323 if (journal) 324 jbd2_journal_abort(journal, -EIO); 325 } 326 if (test_opt(sb, ERRORS_RO)) { 327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 328 sb->s_flags |= MS_RDONLY; 329 } 330 ext4_commit_super(sb, 1); 331 if (test_opt(sb, ERRORS_PANIC)) 332 panic("EXT4-fs (device %s): panic forced after error\n", 333 sb->s_id); 334 } 335 336 void ext4_error(struct super_block *sb, const char *function, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 va_start(args, fmt); 342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 343 vprintk(fmt, args); 344 printk("\n"); 345 va_end(args); 346 347 ext4_handle_error(sb); 348 } 349 350 static const char *ext4_decode_error(struct super_block *sb, int errno, 351 char nbuf[16]) 352 { 353 char *errstr = NULL; 354 355 switch (errno) { 356 case -EIO: 357 errstr = "IO failure"; 358 break; 359 case -ENOMEM: 360 errstr = "Out of memory"; 361 break; 362 case -EROFS: 363 if (!sb || (EXT4_SB(sb)->s_journal && 364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 365 errstr = "Journal has aborted"; 366 else 367 errstr = "Readonly filesystem"; 368 break; 369 default: 370 /* If the caller passed in an extra buffer for unknown 371 * errors, textualise them now. Else we just return 372 * NULL. */ 373 if (nbuf) { 374 /* Check for truncated error codes... */ 375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 376 errstr = nbuf; 377 } 378 break; 379 } 380 381 return errstr; 382 } 383 384 /* __ext4_std_error decodes expected errors from journaling functions 385 * automatically and invokes the appropriate error response. */ 386 387 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 388 { 389 char nbuf[16]; 390 const char *errstr; 391 392 /* Special case: if the error is EROFS, and we're not already 393 * inside a transaction, then there's really no point in logging 394 * an error. */ 395 if (errno == -EROFS && journal_current_handle() == NULL && 396 (sb->s_flags & MS_RDONLY)) 397 return; 398 399 errstr = ext4_decode_error(sb, errno, nbuf); 400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 401 sb->s_id, function, errstr); 402 403 ext4_handle_error(sb); 404 } 405 406 /* 407 * ext4_abort is a much stronger failure handler than ext4_error. The 408 * abort function may be used to deal with unrecoverable failures such 409 * as journal IO errors or ENOMEM at a critical moment in log management. 410 * 411 * We unconditionally force the filesystem into an ABORT|READONLY state, 412 * unless the error response on the fs has been set to panic in which 413 * case we take the easy way out and panic immediately. 414 */ 415 416 void ext4_abort(struct super_block *sb, const char *function, 417 const char *fmt, ...) 418 { 419 va_list args; 420 421 va_start(args, fmt); 422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 423 vprintk(fmt, args); 424 printk("\n"); 425 va_end(args); 426 427 if (test_opt(sb, ERRORS_PANIC)) 428 panic("EXT4-fs panic from previous error\n"); 429 430 if (sb->s_flags & MS_RDONLY) 431 return; 432 433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 435 sb->s_flags |= MS_RDONLY; 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (EXT4_SB(sb)->s_journal) 438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 439 } 440 441 void ext4_msg (struct super_block * sb, const char *prefix, 442 const char *fmt, ...) 443 { 444 va_list args; 445 446 va_start(args, fmt); 447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 448 vprintk(fmt, args); 449 printk("\n"); 450 va_end(args); 451 } 452 453 void ext4_warning(struct super_block *sb, const char *function, 454 const char *fmt, ...) 455 { 456 va_list args; 457 458 va_start(args, fmt); 459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 460 sb->s_id, function); 461 vprintk(fmt, args); 462 printk("\n"); 463 va_end(args); 464 } 465 466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 467 const char *function, const char *fmt, ...) 468 __releases(bitlock) 469 __acquires(bitlock) 470 { 471 va_list args; 472 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 473 474 va_start(args, fmt); 475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 476 vprintk(fmt, args); 477 printk("\n"); 478 va_end(args); 479 480 if (test_opt(sb, ERRORS_CONT)) { 481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 483 ext4_commit_super(sb, 0); 484 return; 485 } 486 ext4_unlock_group(sb, grp); 487 ext4_handle_error(sb); 488 /* 489 * We only get here in the ERRORS_RO case; relocking the group 490 * may be dangerous, but nothing bad will happen since the 491 * filesystem will have already been marked read/only and the 492 * journal has been aborted. We return 1 as a hint to callers 493 * who might what to use the return value from 494 * ext4_grp_locked_error() to distinguish beween the 495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 496 * aggressively from the ext4 function in question, with a 497 * more appropriate error code. 498 */ 499 ext4_lock_group(sb, grp); 500 return; 501 } 502 503 void ext4_update_dynamic_rev(struct super_block *sb) 504 { 505 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 506 507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 508 return; 509 510 ext4_warning(sb, __func__, 511 "updating to rev %d because of new feature flag, " 512 "running e2fsck is recommended", 513 EXT4_DYNAMIC_REV); 514 515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 518 /* leave es->s_feature_*compat flags alone */ 519 /* es->s_uuid will be set by e2fsck if empty */ 520 521 /* 522 * The rest of the superblock fields should be zero, and if not it 523 * means they are likely already in use, so leave them alone. We 524 * can leave it up to e2fsck to clean up any inconsistencies there. 525 */ 526 } 527 528 /* 529 * Open the external journal device 530 */ 531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 532 { 533 struct block_device *bdev; 534 char b[BDEVNAME_SIZE]; 535 536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 537 if (IS_ERR(bdev)) 538 goto fail; 539 return bdev; 540 541 fail: 542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 543 __bdevname(dev, b), PTR_ERR(bdev)); 544 return NULL; 545 } 546 547 /* 548 * Release the journal device 549 */ 550 static int ext4_blkdev_put(struct block_device *bdev) 551 { 552 bd_release(bdev); 553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 554 } 555 556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 557 { 558 struct block_device *bdev; 559 int ret = -ENODEV; 560 561 bdev = sbi->journal_bdev; 562 if (bdev) { 563 ret = ext4_blkdev_put(bdev); 564 sbi->journal_bdev = NULL; 565 } 566 return ret; 567 } 568 569 static inline struct inode *orphan_list_entry(struct list_head *l) 570 { 571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 572 } 573 574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 575 { 576 struct list_head *l; 577 578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 579 le32_to_cpu(sbi->s_es->s_last_orphan)); 580 581 printk(KERN_ERR "sb_info orphan list:\n"); 582 list_for_each(l, &sbi->s_orphan) { 583 struct inode *inode = orphan_list_entry(l); 584 printk(KERN_ERR " " 585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 586 inode->i_sb->s_id, inode->i_ino, inode, 587 inode->i_mode, inode->i_nlink, 588 NEXT_ORPHAN(inode)); 589 } 590 } 591 592 static void ext4_put_super(struct super_block *sb) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 struct ext4_super_block *es = sbi->s_es; 596 int i, err; 597 598 flush_workqueue(sbi->dio_unwritten_wq); 599 destroy_workqueue(sbi->dio_unwritten_wq); 600 601 lock_super(sb); 602 lock_kernel(); 603 if (sb->s_dirt) 604 ext4_commit_super(sb, 1); 605 606 if (sbi->s_journal) { 607 err = jbd2_journal_destroy(sbi->s_journal); 608 sbi->s_journal = NULL; 609 if (err < 0) 610 ext4_abort(sb, __func__, 611 "Couldn't clean up the journal"); 612 } 613 614 ext4_release_system_zone(sb); 615 ext4_mb_release(sb); 616 ext4_ext_release(sb); 617 ext4_xattr_put_super(sb); 618 619 if (!(sb->s_flags & MS_RDONLY)) { 620 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 621 es->s_state = cpu_to_le16(sbi->s_mount_state); 622 ext4_commit_super(sb, 1); 623 } 624 if (sbi->s_proc) { 625 remove_proc_entry(sb->s_id, ext4_proc_root); 626 } 627 kobject_del(&sbi->s_kobj); 628 629 for (i = 0; i < sbi->s_gdb_count; i++) 630 brelse(sbi->s_group_desc[i]); 631 kfree(sbi->s_group_desc); 632 if (is_vmalloc_addr(sbi->s_flex_groups)) 633 vfree(sbi->s_flex_groups); 634 else 635 kfree(sbi->s_flex_groups); 636 percpu_counter_destroy(&sbi->s_freeblocks_counter); 637 percpu_counter_destroy(&sbi->s_freeinodes_counter); 638 percpu_counter_destroy(&sbi->s_dirs_counter); 639 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 640 brelse(sbi->s_sbh); 641 #ifdef CONFIG_QUOTA 642 for (i = 0; i < MAXQUOTAS; i++) 643 kfree(sbi->s_qf_names[i]); 644 #endif 645 646 /* Debugging code just in case the in-memory inode orphan list 647 * isn't empty. The on-disk one can be non-empty if we've 648 * detected an error and taken the fs readonly, but the 649 * in-memory list had better be clean by this point. */ 650 if (!list_empty(&sbi->s_orphan)) 651 dump_orphan_list(sb, sbi); 652 J_ASSERT(list_empty(&sbi->s_orphan)); 653 654 invalidate_bdev(sb->s_bdev); 655 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 656 /* 657 * Invalidate the journal device's buffers. We don't want them 658 * floating about in memory - the physical journal device may 659 * hotswapped, and it breaks the `ro-after' testing code. 660 */ 661 sync_blockdev(sbi->journal_bdev); 662 invalidate_bdev(sbi->journal_bdev); 663 ext4_blkdev_remove(sbi); 664 } 665 sb->s_fs_info = NULL; 666 /* 667 * Now that we are completely done shutting down the 668 * superblock, we need to actually destroy the kobject. 669 */ 670 unlock_kernel(); 671 unlock_super(sb); 672 kobject_put(&sbi->s_kobj); 673 wait_for_completion(&sbi->s_kobj_unregister); 674 kfree(sbi->s_blockgroup_lock); 675 kfree(sbi); 676 } 677 678 static struct kmem_cache *ext4_inode_cachep; 679 680 /* 681 * Called inside transaction, so use GFP_NOFS 682 */ 683 static struct inode *ext4_alloc_inode(struct super_block *sb) 684 { 685 struct ext4_inode_info *ei; 686 687 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 688 if (!ei) 689 return NULL; 690 691 ei->vfs_inode.i_version = 1; 692 ei->vfs_inode.i_data.writeback_index = 0; 693 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 694 INIT_LIST_HEAD(&ei->i_prealloc_list); 695 spin_lock_init(&ei->i_prealloc_lock); 696 /* 697 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 698 * therefore it can be null here. Don't check it, just initialize 699 * jinode. 700 */ 701 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 702 ei->i_reserved_data_blocks = 0; 703 ei->i_reserved_meta_blocks = 0; 704 ei->i_allocated_meta_blocks = 0; 705 ei->i_delalloc_reserved_flag = 0; 706 spin_lock_init(&(ei->i_block_reservation_lock)); 707 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list); 708 ei->cur_aio_dio = NULL; 709 ei->i_sync_tid = 0; 710 ei->i_datasync_tid = 0; 711 712 return &ei->vfs_inode; 713 } 714 715 static void ext4_destroy_inode(struct inode *inode) 716 { 717 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 718 ext4_msg(inode->i_sb, KERN_ERR, 719 "Inode %lu (%p): orphan list check failed!", 720 inode->i_ino, EXT4_I(inode)); 721 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 722 EXT4_I(inode), sizeof(struct ext4_inode_info), 723 true); 724 dump_stack(); 725 } 726 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 727 } 728 729 static void init_once(void *foo) 730 { 731 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 732 733 INIT_LIST_HEAD(&ei->i_orphan); 734 #ifdef CONFIG_EXT4_FS_XATTR 735 init_rwsem(&ei->xattr_sem); 736 #endif 737 init_rwsem(&ei->i_data_sem); 738 inode_init_once(&ei->vfs_inode); 739 } 740 741 static int init_inodecache(void) 742 { 743 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 744 sizeof(struct ext4_inode_info), 745 0, (SLAB_RECLAIM_ACCOUNT| 746 SLAB_MEM_SPREAD), 747 init_once); 748 if (ext4_inode_cachep == NULL) 749 return -ENOMEM; 750 return 0; 751 } 752 753 static void destroy_inodecache(void) 754 { 755 kmem_cache_destroy(ext4_inode_cachep); 756 } 757 758 static void ext4_clear_inode(struct inode *inode) 759 { 760 ext4_discard_preallocations(inode); 761 if (EXT4_JOURNAL(inode)) 762 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 763 &EXT4_I(inode)->jinode); 764 } 765 766 static inline void ext4_show_quota_options(struct seq_file *seq, 767 struct super_block *sb) 768 { 769 #if defined(CONFIG_QUOTA) 770 struct ext4_sb_info *sbi = EXT4_SB(sb); 771 772 if (sbi->s_jquota_fmt) { 773 char *fmtname = ""; 774 775 switch (sbi->s_jquota_fmt) { 776 case QFMT_VFS_OLD: 777 fmtname = "vfsold"; 778 break; 779 case QFMT_VFS_V0: 780 fmtname = "vfsv0"; 781 break; 782 case QFMT_VFS_V1: 783 fmtname = "vfsv1"; 784 break; 785 } 786 seq_printf(seq, ",jqfmt=%s", fmtname); 787 } 788 789 if (sbi->s_qf_names[USRQUOTA]) 790 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 791 792 if (sbi->s_qf_names[GRPQUOTA]) 793 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 794 795 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 796 seq_puts(seq, ",usrquota"); 797 798 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 799 seq_puts(seq, ",grpquota"); 800 #endif 801 } 802 803 /* 804 * Show an option if 805 * - it's set to a non-default value OR 806 * - if the per-sb default is different from the global default 807 */ 808 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 809 { 810 int def_errors; 811 unsigned long def_mount_opts; 812 struct super_block *sb = vfs->mnt_sb; 813 struct ext4_sb_info *sbi = EXT4_SB(sb); 814 struct ext4_super_block *es = sbi->s_es; 815 816 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 817 def_errors = le16_to_cpu(es->s_errors); 818 819 if (sbi->s_sb_block != 1) 820 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 821 if (test_opt(sb, MINIX_DF)) 822 seq_puts(seq, ",minixdf"); 823 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 824 seq_puts(seq, ",grpid"); 825 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 826 seq_puts(seq, ",nogrpid"); 827 if (sbi->s_resuid != EXT4_DEF_RESUID || 828 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 829 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 830 } 831 if (sbi->s_resgid != EXT4_DEF_RESGID || 832 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 833 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 834 } 835 if (test_opt(sb, ERRORS_RO)) { 836 if (def_errors == EXT4_ERRORS_PANIC || 837 def_errors == EXT4_ERRORS_CONTINUE) { 838 seq_puts(seq, ",errors=remount-ro"); 839 } 840 } 841 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 842 seq_puts(seq, ",errors=continue"); 843 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 844 seq_puts(seq, ",errors=panic"); 845 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 846 seq_puts(seq, ",nouid32"); 847 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 848 seq_puts(seq, ",debug"); 849 if (test_opt(sb, OLDALLOC)) 850 seq_puts(seq, ",oldalloc"); 851 #ifdef CONFIG_EXT4_FS_XATTR 852 if (test_opt(sb, XATTR_USER) && 853 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 854 seq_puts(seq, ",user_xattr"); 855 if (!test_opt(sb, XATTR_USER) && 856 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 857 seq_puts(seq, ",nouser_xattr"); 858 } 859 #endif 860 #ifdef CONFIG_EXT4_FS_POSIX_ACL 861 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 862 seq_puts(seq, ",acl"); 863 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 864 seq_puts(seq, ",noacl"); 865 #endif 866 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 867 seq_printf(seq, ",commit=%u", 868 (unsigned) (sbi->s_commit_interval / HZ)); 869 } 870 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 871 seq_printf(seq, ",min_batch_time=%u", 872 (unsigned) sbi->s_min_batch_time); 873 } 874 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 875 seq_printf(seq, ",max_batch_time=%u", 876 (unsigned) sbi->s_min_batch_time); 877 } 878 879 /* 880 * We're changing the default of barrier mount option, so 881 * let's always display its mount state so it's clear what its 882 * status is. 883 */ 884 seq_puts(seq, ",barrier="); 885 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 886 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 887 seq_puts(seq, ",journal_async_commit"); 888 if (test_opt(sb, NOBH)) 889 seq_puts(seq, ",nobh"); 890 if (test_opt(sb, I_VERSION)) 891 seq_puts(seq, ",i_version"); 892 if (!test_opt(sb, DELALLOC)) 893 seq_puts(seq, ",nodelalloc"); 894 895 896 if (sbi->s_stripe) 897 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 898 /* 899 * journal mode get enabled in different ways 900 * So just print the value even if we didn't specify it 901 */ 902 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 903 seq_puts(seq, ",data=journal"); 904 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 905 seq_puts(seq, ",data=ordered"); 906 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 907 seq_puts(seq, ",data=writeback"); 908 909 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 910 seq_printf(seq, ",inode_readahead_blks=%u", 911 sbi->s_inode_readahead_blks); 912 913 if (test_opt(sb, DATA_ERR_ABORT)) 914 seq_puts(seq, ",data_err=abort"); 915 916 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 917 seq_puts(seq, ",noauto_da_alloc"); 918 919 if (test_opt(sb, DISCARD)) 920 seq_puts(seq, ",discard"); 921 922 if (test_opt(sb, NOLOAD)) 923 seq_puts(seq, ",norecovery"); 924 925 ext4_show_quota_options(seq, sb); 926 927 return 0; 928 } 929 930 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 931 u64 ino, u32 generation) 932 { 933 struct inode *inode; 934 935 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 936 return ERR_PTR(-ESTALE); 937 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 938 return ERR_PTR(-ESTALE); 939 940 /* iget isn't really right if the inode is currently unallocated!! 941 * 942 * ext4_read_inode will return a bad_inode if the inode had been 943 * deleted, so we should be safe. 944 * 945 * Currently we don't know the generation for parent directory, so 946 * a generation of 0 means "accept any" 947 */ 948 inode = ext4_iget(sb, ino); 949 if (IS_ERR(inode)) 950 return ERR_CAST(inode); 951 if (generation && inode->i_generation != generation) { 952 iput(inode); 953 return ERR_PTR(-ESTALE); 954 } 955 956 return inode; 957 } 958 959 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 960 int fh_len, int fh_type) 961 { 962 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 963 ext4_nfs_get_inode); 964 } 965 966 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 967 int fh_len, int fh_type) 968 { 969 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 970 ext4_nfs_get_inode); 971 } 972 973 /* 974 * Try to release metadata pages (indirect blocks, directories) which are 975 * mapped via the block device. Since these pages could have journal heads 976 * which would prevent try_to_free_buffers() from freeing them, we must use 977 * jbd2 layer's try_to_free_buffers() function to release them. 978 */ 979 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 980 gfp_t wait) 981 { 982 journal_t *journal = EXT4_SB(sb)->s_journal; 983 984 WARN_ON(PageChecked(page)); 985 if (!page_has_buffers(page)) 986 return 0; 987 if (journal) 988 return jbd2_journal_try_to_free_buffers(journal, page, 989 wait & ~__GFP_WAIT); 990 return try_to_free_buffers(page); 991 } 992 993 #ifdef CONFIG_QUOTA 994 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 995 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 996 997 static int ext4_write_dquot(struct dquot *dquot); 998 static int ext4_acquire_dquot(struct dquot *dquot); 999 static int ext4_release_dquot(struct dquot *dquot); 1000 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1001 static int ext4_write_info(struct super_block *sb, int type); 1002 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1003 char *path, int remount); 1004 static int ext4_quota_on_mount(struct super_block *sb, int type); 1005 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1006 size_t len, loff_t off); 1007 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1008 const char *data, size_t len, loff_t off); 1009 1010 static const struct dquot_operations ext4_quota_operations = { 1011 .initialize = dquot_initialize, 1012 .drop = dquot_drop, 1013 .alloc_space = dquot_alloc_space, 1014 .reserve_space = dquot_reserve_space, 1015 .claim_space = dquot_claim_space, 1016 .release_rsv = dquot_release_reserved_space, 1017 .get_reserved_space = ext4_get_reserved_space, 1018 .alloc_inode = dquot_alloc_inode, 1019 .free_space = dquot_free_space, 1020 .free_inode = dquot_free_inode, 1021 .transfer = dquot_transfer, 1022 .write_dquot = ext4_write_dquot, 1023 .acquire_dquot = ext4_acquire_dquot, 1024 .release_dquot = ext4_release_dquot, 1025 .mark_dirty = ext4_mark_dquot_dirty, 1026 .write_info = ext4_write_info, 1027 .alloc_dquot = dquot_alloc, 1028 .destroy_dquot = dquot_destroy, 1029 }; 1030 1031 static const struct quotactl_ops ext4_qctl_operations = { 1032 .quota_on = ext4_quota_on, 1033 .quota_off = vfs_quota_off, 1034 .quota_sync = vfs_quota_sync, 1035 .get_info = vfs_get_dqinfo, 1036 .set_info = vfs_set_dqinfo, 1037 .get_dqblk = vfs_get_dqblk, 1038 .set_dqblk = vfs_set_dqblk 1039 }; 1040 #endif 1041 1042 static const struct super_operations ext4_sops = { 1043 .alloc_inode = ext4_alloc_inode, 1044 .destroy_inode = ext4_destroy_inode, 1045 .write_inode = ext4_write_inode, 1046 .dirty_inode = ext4_dirty_inode, 1047 .delete_inode = ext4_delete_inode, 1048 .put_super = ext4_put_super, 1049 .sync_fs = ext4_sync_fs, 1050 .freeze_fs = ext4_freeze, 1051 .unfreeze_fs = ext4_unfreeze, 1052 .statfs = ext4_statfs, 1053 .remount_fs = ext4_remount, 1054 .clear_inode = ext4_clear_inode, 1055 .show_options = ext4_show_options, 1056 #ifdef CONFIG_QUOTA 1057 .quota_read = ext4_quota_read, 1058 .quota_write = ext4_quota_write, 1059 #endif 1060 .bdev_try_to_free_page = bdev_try_to_free_page, 1061 }; 1062 1063 static const struct super_operations ext4_nojournal_sops = { 1064 .alloc_inode = ext4_alloc_inode, 1065 .destroy_inode = ext4_destroy_inode, 1066 .write_inode = ext4_write_inode, 1067 .dirty_inode = ext4_dirty_inode, 1068 .delete_inode = ext4_delete_inode, 1069 .write_super = ext4_write_super, 1070 .put_super = ext4_put_super, 1071 .statfs = ext4_statfs, 1072 .remount_fs = ext4_remount, 1073 .clear_inode = ext4_clear_inode, 1074 .show_options = ext4_show_options, 1075 #ifdef CONFIG_QUOTA 1076 .quota_read = ext4_quota_read, 1077 .quota_write = ext4_quota_write, 1078 #endif 1079 .bdev_try_to_free_page = bdev_try_to_free_page, 1080 }; 1081 1082 static const struct export_operations ext4_export_ops = { 1083 .fh_to_dentry = ext4_fh_to_dentry, 1084 .fh_to_parent = ext4_fh_to_parent, 1085 .get_parent = ext4_get_parent, 1086 }; 1087 1088 enum { 1089 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1090 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1091 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1092 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1093 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1094 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1095 Opt_journal_update, Opt_journal_dev, 1096 Opt_journal_checksum, Opt_journal_async_commit, 1097 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1098 Opt_data_err_abort, Opt_data_err_ignore, 1099 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1100 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1101 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1102 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1103 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1104 Opt_block_validity, Opt_noblock_validity, 1105 Opt_inode_readahead_blks, Opt_journal_ioprio, 1106 Opt_discard, Opt_nodiscard, 1107 }; 1108 1109 static const match_table_t tokens = { 1110 {Opt_bsd_df, "bsddf"}, 1111 {Opt_minix_df, "minixdf"}, 1112 {Opt_grpid, "grpid"}, 1113 {Opt_grpid, "bsdgroups"}, 1114 {Opt_nogrpid, "nogrpid"}, 1115 {Opt_nogrpid, "sysvgroups"}, 1116 {Opt_resgid, "resgid=%u"}, 1117 {Opt_resuid, "resuid=%u"}, 1118 {Opt_sb, "sb=%u"}, 1119 {Opt_err_cont, "errors=continue"}, 1120 {Opt_err_panic, "errors=panic"}, 1121 {Opt_err_ro, "errors=remount-ro"}, 1122 {Opt_nouid32, "nouid32"}, 1123 {Opt_debug, "debug"}, 1124 {Opt_oldalloc, "oldalloc"}, 1125 {Opt_orlov, "orlov"}, 1126 {Opt_user_xattr, "user_xattr"}, 1127 {Opt_nouser_xattr, "nouser_xattr"}, 1128 {Opt_acl, "acl"}, 1129 {Opt_noacl, "noacl"}, 1130 {Opt_noload, "noload"}, 1131 {Opt_noload, "norecovery"}, 1132 {Opt_nobh, "nobh"}, 1133 {Opt_bh, "bh"}, 1134 {Opt_commit, "commit=%u"}, 1135 {Opt_min_batch_time, "min_batch_time=%u"}, 1136 {Opt_max_batch_time, "max_batch_time=%u"}, 1137 {Opt_journal_update, "journal=update"}, 1138 {Opt_journal_dev, "journal_dev=%u"}, 1139 {Opt_journal_checksum, "journal_checksum"}, 1140 {Opt_journal_async_commit, "journal_async_commit"}, 1141 {Opt_abort, "abort"}, 1142 {Opt_data_journal, "data=journal"}, 1143 {Opt_data_ordered, "data=ordered"}, 1144 {Opt_data_writeback, "data=writeback"}, 1145 {Opt_data_err_abort, "data_err=abort"}, 1146 {Opt_data_err_ignore, "data_err=ignore"}, 1147 {Opt_offusrjquota, "usrjquota="}, 1148 {Opt_usrjquota, "usrjquota=%s"}, 1149 {Opt_offgrpjquota, "grpjquota="}, 1150 {Opt_grpjquota, "grpjquota=%s"}, 1151 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1152 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1153 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1154 {Opt_grpquota, "grpquota"}, 1155 {Opt_noquota, "noquota"}, 1156 {Opt_quota, "quota"}, 1157 {Opt_usrquota, "usrquota"}, 1158 {Opt_barrier, "barrier=%u"}, 1159 {Opt_barrier, "barrier"}, 1160 {Opt_nobarrier, "nobarrier"}, 1161 {Opt_i_version, "i_version"}, 1162 {Opt_stripe, "stripe=%u"}, 1163 {Opt_resize, "resize"}, 1164 {Opt_delalloc, "delalloc"}, 1165 {Opt_nodelalloc, "nodelalloc"}, 1166 {Opt_block_validity, "block_validity"}, 1167 {Opt_noblock_validity, "noblock_validity"}, 1168 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1169 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1170 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1171 {Opt_auto_da_alloc, "auto_da_alloc"}, 1172 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1173 {Opt_discard, "discard"}, 1174 {Opt_nodiscard, "nodiscard"}, 1175 {Opt_err, NULL}, 1176 }; 1177 1178 static ext4_fsblk_t get_sb_block(void **data) 1179 { 1180 ext4_fsblk_t sb_block; 1181 char *options = (char *) *data; 1182 1183 if (!options || strncmp(options, "sb=", 3) != 0) 1184 return 1; /* Default location */ 1185 1186 options += 3; 1187 /* TODO: use simple_strtoll with >32bit ext4 */ 1188 sb_block = simple_strtoul(options, &options, 0); 1189 if (*options && *options != ',') { 1190 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1191 (char *) *data); 1192 return 1; 1193 } 1194 if (*options == ',') 1195 options++; 1196 *data = (void *) options; 1197 1198 return sb_block; 1199 } 1200 1201 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1202 1203 static int parse_options(char *options, struct super_block *sb, 1204 unsigned long *journal_devnum, 1205 unsigned int *journal_ioprio, 1206 ext4_fsblk_t *n_blocks_count, int is_remount) 1207 { 1208 struct ext4_sb_info *sbi = EXT4_SB(sb); 1209 char *p; 1210 substring_t args[MAX_OPT_ARGS]; 1211 int data_opt = 0; 1212 int option; 1213 #ifdef CONFIG_QUOTA 1214 int qtype, qfmt; 1215 char *qname; 1216 #endif 1217 1218 if (!options) 1219 return 1; 1220 1221 while ((p = strsep(&options, ",")) != NULL) { 1222 int token; 1223 if (!*p) 1224 continue; 1225 1226 token = match_token(p, tokens, args); 1227 switch (token) { 1228 case Opt_bsd_df: 1229 clear_opt(sbi->s_mount_opt, MINIX_DF); 1230 break; 1231 case Opt_minix_df: 1232 set_opt(sbi->s_mount_opt, MINIX_DF); 1233 break; 1234 case Opt_grpid: 1235 set_opt(sbi->s_mount_opt, GRPID); 1236 break; 1237 case Opt_nogrpid: 1238 clear_opt(sbi->s_mount_opt, GRPID); 1239 break; 1240 case Opt_resuid: 1241 if (match_int(&args[0], &option)) 1242 return 0; 1243 sbi->s_resuid = option; 1244 break; 1245 case Opt_resgid: 1246 if (match_int(&args[0], &option)) 1247 return 0; 1248 sbi->s_resgid = option; 1249 break; 1250 case Opt_sb: 1251 /* handled by get_sb_block() instead of here */ 1252 /* *sb_block = match_int(&args[0]); */ 1253 break; 1254 case Opt_err_panic: 1255 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1256 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1257 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1258 break; 1259 case Opt_err_ro: 1260 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1261 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1262 set_opt(sbi->s_mount_opt, ERRORS_RO); 1263 break; 1264 case Opt_err_cont: 1265 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1266 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1267 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1268 break; 1269 case Opt_nouid32: 1270 set_opt(sbi->s_mount_opt, NO_UID32); 1271 break; 1272 case Opt_debug: 1273 set_opt(sbi->s_mount_opt, DEBUG); 1274 break; 1275 case Opt_oldalloc: 1276 set_opt(sbi->s_mount_opt, OLDALLOC); 1277 break; 1278 case Opt_orlov: 1279 clear_opt(sbi->s_mount_opt, OLDALLOC); 1280 break; 1281 #ifdef CONFIG_EXT4_FS_XATTR 1282 case Opt_user_xattr: 1283 set_opt(sbi->s_mount_opt, XATTR_USER); 1284 break; 1285 case Opt_nouser_xattr: 1286 clear_opt(sbi->s_mount_opt, XATTR_USER); 1287 break; 1288 #else 1289 case Opt_user_xattr: 1290 case Opt_nouser_xattr: 1291 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1292 break; 1293 #endif 1294 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1295 case Opt_acl: 1296 set_opt(sbi->s_mount_opt, POSIX_ACL); 1297 break; 1298 case Opt_noacl: 1299 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1300 break; 1301 #else 1302 case Opt_acl: 1303 case Opt_noacl: 1304 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1305 break; 1306 #endif 1307 case Opt_journal_update: 1308 /* @@@ FIXME */ 1309 /* Eventually we will want to be able to create 1310 a journal file here. For now, only allow the 1311 user to specify an existing inode to be the 1312 journal file. */ 1313 if (is_remount) { 1314 ext4_msg(sb, KERN_ERR, 1315 "Cannot specify journal on remount"); 1316 return 0; 1317 } 1318 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1319 break; 1320 case Opt_journal_dev: 1321 if (is_remount) { 1322 ext4_msg(sb, KERN_ERR, 1323 "Cannot specify journal on remount"); 1324 return 0; 1325 } 1326 if (match_int(&args[0], &option)) 1327 return 0; 1328 *journal_devnum = option; 1329 break; 1330 case Opt_journal_checksum: 1331 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1332 break; 1333 case Opt_journal_async_commit: 1334 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1335 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1336 break; 1337 case Opt_noload: 1338 set_opt(sbi->s_mount_opt, NOLOAD); 1339 break; 1340 case Opt_commit: 1341 if (match_int(&args[0], &option)) 1342 return 0; 1343 if (option < 0) 1344 return 0; 1345 if (option == 0) 1346 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1347 sbi->s_commit_interval = HZ * option; 1348 break; 1349 case Opt_max_batch_time: 1350 if (match_int(&args[0], &option)) 1351 return 0; 1352 if (option < 0) 1353 return 0; 1354 if (option == 0) 1355 option = EXT4_DEF_MAX_BATCH_TIME; 1356 sbi->s_max_batch_time = option; 1357 break; 1358 case Opt_min_batch_time: 1359 if (match_int(&args[0], &option)) 1360 return 0; 1361 if (option < 0) 1362 return 0; 1363 sbi->s_min_batch_time = option; 1364 break; 1365 case Opt_data_journal: 1366 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1367 goto datacheck; 1368 case Opt_data_ordered: 1369 data_opt = EXT4_MOUNT_ORDERED_DATA; 1370 goto datacheck; 1371 case Opt_data_writeback: 1372 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1373 datacheck: 1374 if (is_remount) { 1375 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1376 != data_opt) { 1377 ext4_msg(sb, KERN_ERR, 1378 "Cannot change data mode on remount"); 1379 return 0; 1380 } 1381 } else { 1382 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1383 sbi->s_mount_opt |= data_opt; 1384 } 1385 break; 1386 case Opt_data_err_abort: 1387 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1388 break; 1389 case Opt_data_err_ignore: 1390 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1391 break; 1392 #ifdef CONFIG_QUOTA 1393 case Opt_usrjquota: 1394 qtype = USRQUOTA; 1395 goto set_qf_name; 1396 case Opt_grpjquota: 1397 qtype = GRPQUOTA; 1398 set_qf_name: 1399 if (sb_any_quota_loaded(sb) && 1400 !sbi->s_qf_names[qtype]) { 1401 ext4_msg(sb, KERN_ERR, 1402 "Cannot change journaled " 1403 "quota options when quota turned on"); 1404 return 0; 1405 } 1406 qname = match_strdup(&args[0]); 1407 if (!qname) { 1408 ext4_msg(sb, KERN_ERR, 1409 "Not enough memory for " 1410 "storing quotafile name"); 1411 return 0; 1412 } 1413 if (sbi->s_qf_names[qtype] && 1414 strcmp(sbi->s_qf_names[qtype], qname)) { 1415 ext4_msg(sb, KERN_ERR, 1416 "%s quota file already " 1417 "specified", QTYPE2NAME(qtype)); 1418 kfree(qname); 1419 return 0; 1420 } 1421 sbi->s_qf_names[qtype] = qname; 1422 if (strchr(sbi->s_qf_names[qtype], '/')) { 1423 ext4_msg(sb, KERN_ERR, 1424 "quotafile must be on " 1425 "filesystem root"); 1426 kfree(sbi->s_qf_names[qtype]); 1427 sbi->s_qf_names[qtype] = NULL; 1428 return 0; 1429 } 1430 set_opt(sbi->s_mount_opt, QUOTA); 1431 break; 1432 case Opt_offusrjquota: 1433 qtype = USRQUOTA; 1434 goto clear_qf_name; 1435 case Opt_offgrpjquota: 1436 qtype = GRPQUOTA; 1437 clear_qf_name: 1438 if (sb_any_quota_loaded(sb) && 1439 sbi->s_qf_names[qtype]) { 1440 ext4_msg(sb, KERN_ERR, "Cannot change " 1441 "journaled quota options when " 1442 "quota turned on"); 1443 return 0; 1444 } 1445 /* 1446 * The space will be released later when all options 1447 * are confirmed to be correct 1448 */ 1449 sbi->s_qf_names[qtype] = NULL; 1450 break; 1451 case Opt_jqfmt_vfsold: 1452 qfmt = QFMT_VFS_OLD; 1453 goto set_qf_format; 1454 case Opt_jqfmt_vfsv0: 1455 qfmt = QFMT_VFS_V0; 1456 goto set_qf_format; 1457 case Opt_jqfmt_vfsv1: 1458 qfmt = QFMT_VFS_V1; 1459 set_qf_format: 1460 if (sb_any_quota_loaded(sb) && 1461 sbi->s_jquota_fmt != qfmt) { 1462 ext4_msg(sb, KERN_ERR, "Cannot change " 1463 "journaled quota options when " 1464 "quota turned on"); 1465 return 0; 1466 } 1467 sbi->s_jquota_fmt = qfmt; 1468 break; 1469 case Opt_quota: 1470 case Opt_usrquota: 1471 set_opt(sbi->s_mount_opt, QUOTA); 1472 set_opt(sbi->s_mount_opt, USRQUOTA); 1473 break; 1474 case Opt_grpquota: 1475 set_opt(sbi->s_mount_opt, QUOTA); 1476 set_opt(sbi->s_mount_opt, GRPQUOTA); 1477 break; 1478 case Opt_noquota: 1479 if (sb_any_quota_loaded(sb)) { 1480 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1481 "options when quota turned on"); 1482 return 0; 1483 } 1484 clear_opt(sbi->s_mount_opt, QUOTA); 1485 clear_opt(sbi->s_mount_opt, USRQUOTA); 1486 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1487 break; 1488 #else 1489 case Opt_quota: 1490 case Opt_usrquota: 1491 case Opt_grpquota: 1492 ext4_msg(sb, KERN_ERR, 1493 "quota options not supported"); 1494 break; 1495 case Opt_usrjquota: 1496 case Opt_grpjquota: 1497 case Opt_offusrjquota: 1498 case Opt_offgrpjquota: 1499 case Opt_jqfmt_vfsold: 1500 case Opt_jqfmt_vfsv0: 1501 case Opt_jqfmt_vfsv1: 1502 ext4_msg(sb, KERN_ERR, 1503 "journaled quota options not supported"); 1504 break; 1505 case Opt_noquota: 1506 break; 1507 #endif 1508 case Opt_abort: 1509 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1510 break; 1511 case Opt_nobarrier: 1512 clear_opt(sbi->s_mount_opt, BARRIER); 1513 break; 1514 case Opt_barrier: 1515 if (match_int(&args[0], &option)) { 1516 set_opt(sbi->s_mount_opt, BARRIER); 1517 break; 1518 } 1519 if (option) 1520 set_opt(sbi->s_mount_opt, BARRIER); 1521 else 1522 clear_opt(sbi->s_mount_opt, BARRIER); 1523 break; 1524 case Opt_ignore: 1525 break; 1526 case Opt_resize: 1527 if (!is_remount) { 1528 ext4_msg(sb, KERN_ERR, 1529 "resize option only available " 1530 "for remount"); 1531 return 0; 1532 } 1533 if (match_int(&args[0], &option) != 0) 1534 return 0; 1535 *n_blocks_count = option; 1536 break; 1537 case Opt_nobh: 1538 set_opt(sbi->s_mount_opt, NOBH); 1539 break; 1540 case Opt_bh: 1541 clear_opt(sbi->s_mount_opt, NOBH); 1542 break; 1543 case Opt_i_version: 1544 set_opt(sbi->s_mount_opt, I_VERSION); 1545 sb->s_flags |= MS_I_VERSION; 1546 break; 1547 case Opt_nodelalloc: 1548 clear_opt(sbi->s_mount_opt, DELALLOC); 1549 break; 1550 case Opt_stripe: 1551 if (match_int(&args[0], &option)) 1552 return 0; 1553 if (option < 0) 1554 return 0; 1555 sbi->s_stripe = option; 1556 break; 1557 case Opt_delalloc: 1558 set_opt(sbi->s_mount_opt, DELALLOC); 1559 break; 1560 case Opt_block_validity: 1561 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1562 break; 1563 case Opt_noblock_validity: 1564 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1565 break; 1566 case Opt_inode_readahead_blks: 1567 if (match_int(&args[0], &option)) 1568 return 0; 1569 if (option < 0 || option > (1 << 30)) 1570 return 0; 1571 if (!is_power_of_2(option)) { 1572 ext4_msg(sb, KERN_ERR, 1573 "EXT4-fs: inode_readahead_blks" 1574 " must be a power of 2"); 1575 return 0; 1576 } 1577 sbi->s_inode_readahead_blks = option; 1578 break; 1579 case Opt_journal_ioprio: 1580 if (match_int(&args[0], &option)) 1581 return 0; 1582 if (option < 0 || option > 7) 1583 break; 1584 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1585 option); 1586 break; 1587 case Opt_noauto_da_alloc: 1588 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1589 break; 1590 case Opt_auto_da_alloc: 1591 if (match_int(&args[0], &option)) { 1592 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1593 break; 1594 } 1595 if (option) 1596 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1597 else 1598 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1599 break; 1600 case Opt_discard: 1601 set_opt(sbi->s_mount_opt, DISCARD); 1602 break; 1603 case Opt_nodiscard: 1604 clear_opt(sbi->s_mount_opt, DISCARD); 1605 break; 1606 default: 1607 ext4_msg(sb, KERN_ERR, 1608 "Unrecognized mount option \"%s\" " 1609 "or missing value", p); 1610 return 0; 1611 } 1612 } 1613 #ifdef CONFIG_QUOTA 1614 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1615 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1616 sbi->s_qf_names[USRQUOTA]) 1617 clear_opt(sbi->s_mount_opt, USRQUOTA); 1618 1619 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1620 sbi->s_qf_names[GRPQUOTA]) 1621 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1622 1623 if ((sbi->s_qf_names[USRQUOTA] && 1624 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1625 (sbi->s_qf_names[GRPQUOTA] && 1626 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1627 ext4_msg(sb, KERN_ERR, "old and new quota " 1628 "format mixing"); 1629 return 0; 1630 } 1631 1632 if (!sbi->s_jquota_fmt) { 1633 ext4_msg(sb, KERN_ERR, "journaled quota format " 1634 "not specified"); 1635 return 0; 1636 } 1637 } else { 1638 if (sbi->s_jquota_fmt) { 1639 ext4_msg(sb, KERN_ERR, "journaled quota format " 1640 "specified with no journaling " 1641 "enabled"); 1642 return 0; 1643 } 1644 } 1645 #endif 1646 return 1; 1647 } 1648 1649 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1650 int read_only) 1651 { 1652 struct ext4_sb_info *sbi = EXT4_SB(sb); 1653 int res = 0; 1654 1655 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1656 ext4_msg(sb, KERN_ERR, "revision level too high, " 1657 "forcing read-only mode"); 1658 res = MS_RDONLY; 1659 } 1660 if (read_only) 1661 return res; 1662 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1663 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1664 "running e2fsck is recommended"); 1665 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1666 ext4_msg(sb, KERN_WARNING, 1667 "warning: mounting fs with errors, " 1668 "running e2fsck is recommended"); 1669 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1670 le16_to_cpu(es->s_mnt_count) >= 1671 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1672 ext4_msg(sb, KERN_WARNING, 1673 "warning: maximal mount count reached, " 1674 "running e2fsck is recommended"); 1675 else if (le32_to_cpu(es->s_checkinterval) && 1676 (le32_to_cpu(es->s_lastcheck) + 1677 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1678 ext4_msg(sb, KERN_WARNING, 1679 "warning: checktime reached, " 1680 "running e2fsck is recommended"); 1681 if (!sbi->s_journal) 1682 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1683 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1684 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1685 le16_add_cpu(&es->s_mnt_count, 1); 1686 es->s_mtime = cpu_to_le32(get_seconds()); 1687 ext4_update_dynamic_rev(sb); 1688 if (sbi->s_journal) 1689 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1690 1691 ext4_commit_super(sb, 1); 1692 if (test_opt(sb, DEBUG)) 1693 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1694 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1695 sb->s_blocksize, 1696 sbi->s_groups_count, 1697 EXT4_BLOCKS_PER_GROUP(sb), 1698 EXT4_INODES_PER_GROUP(sb), 1699 sbi->s_mount_opt); 1700 1701 return res; 1702 } 1703 1704 static int ext4_fill_flex_info(struct super_block *sb) 1705 { 1706 struct ext4_sb_info *sbi = EXT4_SB(sb); 1707 struct ext4_group_desc *gdp = NULL; 1708 ext4_group_t flex_group_count; 1709 ext4_group_t flex_group; 1710 int groups_per_flex = 0; 1711 size_t size; 1712 int i; 1713 1714 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1715 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1716 1717 if (groups_per_flex < 2) { 1718 sbi->s_log_groups_per_flex = 0; 1719 return 1; 1720 } 1721 1722 /* We allocate both existing and potentially added groups */ 1723 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1724 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1725 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1726 size = flex_group_count * sizeof(struct flex_groups); 1727 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1728 if (sbi->s_flex_groups == NULL) { 1729 sbi->s_flex_groups = vmalloc(size); 1730 if (sbi->s_flex_groups) 1731 memset(sbi->s_flex_groups, 0, size); 1732 } 1733 if (sbi->s_flex_groups == NULL) { 1734 ext4_msg(sb, KERN_ERR, "not enough memory for " 1735 "%u flex groups", flex_group_count); 1736 goto failed; 1737 } 1738 1739 for (i = 0; i < sbi->s_groups_count; i++) { 1740 gdp = ext4_get_group_desc(sb, i, NULL); 1741 1742 flex_group = ext4_flex_group(sbi, i); 1743 atomic_add(ext4_free_inodes_count(sb, gdp), 1744 &sbi->s_flex_groups[flex_group].free_inodes); 1745 atomic_add(ext4_free_blks_count(sb, gdp), 1746 &sbi->s_flex_groups[flex_group].free_blocks); 1747 atomic_add(ext4_used_dirs_count(sb, gdp), 1748 &sbi->s_flex_groups[flex_group].used_dirs); 1749 } 1750 1751 return 1; 1752 failed: 1753 return 0; 1754 } 1755 1756 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1757 struct ext4_group_desc *gdp) 1758 { 1759 __u16 crc = 0; 1760 1761 if (sbi->s_es->s_feature_ro_compat & 1762 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1763 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1764 __le32 le_group = cpu_to_le32(block_group); 1765 1766 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1767 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1768 crc = crc16(crc, (__u8 *)gdp, offset); 1769 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1770 /* for checksum of struct ext4_group_desc do the rest...*/ 1771 if ((sbi->s_es->s_feature_incompat & 1772 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1773 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1774 crc = crc16(crc, (__u8 *)gdp + offset, 1775 le16_to_cpu(sbi->s_es->s_desc_size) - 1776 offset); 1777 } 1778 1779 return cpu_to_le16(crc); 1780 } 1781 1782 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1783 struct ext4_group_desc *gdp) 1784 { 1785 if ((sbi->s_es->s_feature_ro_compat & 1786 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1787 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1788 return 0; 1789 1790 return 1; 1791 } 1792 1793 /* Called at mount-time, super-block is locked */ 1794 static int ext4_check_descriptors(struct super_block *sb) 1795 { 1796 struct ext4_sb_info *sbi = EXT4_SB(sb); 1797 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1798 ext4_fsblk_t last_block; 1799 ext4_fsblk_t block_bitmap; 1800 ext4_fsblk_t inode_bitmap; 1801 ext4_fsblk_t inode_table; 1802 int flexbg_flag = 0; 1803 ext4_group_t i; 1804 1805 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1806 flexbg_flag = 1; 1807 1808 ext4_debug("Checking group descriptors"); 1809 1810 for (i = 0; i < sbi->s_groups_count; i++) { 1811 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1812 1813 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1814 last_block = ext4_blocks_count(sbi->s_es) - 1; 1815 else 1816 last_block = first_block + 1817 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1818 1819 block_bitmap = ext4_block_bitmap(sb, gdp); 1820 if (block_bitmap < first_block || block_bitmap > last_block) { 1821 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1822 "Block bitmap for group %u not in group " 1823 "(block %llu)!", i, block_bitmap); 1824 return 0; 1825 } 1826 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1827 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1828 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1829 "Inode bitmap for group %u not in group " 1830 "(block %llu)!", i, inode_bitmap); 1831 return 0; 1832 } 1833 inode_table = ext4_inode_table(sb, gdp); 1834 if (inode_table < first_block || 1835 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1836 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1837 "Inode table for group %u not in group " 1838 "(block %llu)!", i, inode_table); 1839 return 0; 1840 } 1841 ext4_lock_group(sb, i); 1842 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1843 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1844 "Checksum for group %u failed (%u!=%u)", 1845 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1846 gdp)), le16_to_cpu(gdp->bg_checksum)); 1847 if (!(sb->s_flags & MS_RDONLY)) { 1848 ext4_unlock_group(sb, i); 1849 return 0; 1850 } 1851 } 1852 ext4_unlock_group(sb, i); 1853 if (!flexbg_flag) 1854 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1855 } 1856 1857 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1858 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1859 return 1; 1860 } 1861 1862 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1863 * the superblock) which were deleted from all directories, but held open by 1864 * a process at the time of a crash. We walk the list and try to delete these 1865 * inodes at recovery time (only with a read-write filesystem). 1866 * 1867 * In order to keep the orphan inode chain consistent during traversal (in 1868 * case of crash during recovery), we link each inode into the superblock 1869 * orphan list_head and handle it the same way as an inode deletion during 1870 * normal operation (which journals the operations for us). 1871 * 1872 * We only do an iget() and an iput() on each inode, which is very safe if we 1873 * accidentally point at an in-use or already deleted inode. The worst that 1874 * can happen in this case is that we get a "bit already cleared" message from 1875 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1876 * e2fsck was run on this filesystem, and it must have already done the orphan 1877 * inode cleanup for us, so we can safely abort without any further action. 1878 */ 1879 static void ext4_orphan_cleanup(struct super_block *sb, 1880 struct ext4_super_block *es) 1881 { 1882 unsigned int s_flags = sb->s_flags; 1883 int nr_orphans = 0, nr_truncates = 0; 1884 #ifdef CONFIG_QUOTA 1885 int i; 1886 #endif 1887 if (!es->s_last_orphan) { 1888 jbd_debug(4, "no orphan inodes to clean up\n"); 1889 return; 1890 } 1891 1892 if (bdev_read_only(sb->s_bdev)) { 1893 ext4_msg(sb, KERN_ERR, "write access " 1894 "unavailable, skipping orphan cleanup"); 1895 return; 1896 } 1897 1898 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1899 if (es->s_last_orphan) 1900 jbd_debug(1, "Errors on filesystem, " 1901 "clearing orphan list.\n"); 1902 es->s_last_orphan = 0; 1903 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1904 return; 1905 } 1906 1907 if (s_flags & MS_RDONLY) { 1908 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1909 sb->s_flags &= ~MS_RDONLY; 1910 } 1911 #ifdef CONFIG_QUOTA 1912 /* Needed for iput() to work correctly and not trash data */ 1913 sb->s_flags |= MS_ACTIVE; 1914 /* Turn on quotas so that they are updated correctly */ 1915 for (i = 0; i < MAXQUOTAS; i++) { 1916 if (EXT4_SB(sb)->s_qf_names[i]) { 1917 int ret = ext4_quota_on_mount(sb, i); 1918 if (ret < 0) 1919 ext4_msg(sb, KERN_ERR, 1920 "Cannot turn on journaled " 1921 "quota: error %d", ret); 1922 } 1923 } 1924 #endif 1925 1926 while (es->s_last_orphan) { 1927 struct inode *inode; 1928 1929 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1930 if (IS_ERR(inode)) { 1931 es->s_last_orphan = 0; 1932 break; 1933 } 1934 1935 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1936 vfs_dq_init(inode); 1937 if (inode->i_nlink) { 1938 ext4_msg(sb, KERN_DEBUG, 1939 "%s: truncating inode %lu to %lld bytes", 1940 __func__, inode->i_ino, inode->i_size); 1941 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1942 inode->i_ino, inode->i_size); 1943 ext4_truncate(inode); 1944 nr_truncates++; 1945 } else { 1946 ext4_msg(sb, KERN_DEBUG, 1947 "%s: deleting unreferenced inode %lu", 1948 __func__, inode->i_ino); 1949 jbd_debug(2, "deleting unreferenced inode %lu\n", 1950 inode->i_ino); 1951 nr_orphans++; 1952 } 1953 iput(inode); /* The delete magic happens here! */ 1954 } 1955 1956 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1957 1958 if (nr_orphans) 1959 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1960 PLURAL(nr_orphans)); 1961 if (nr_truncates) 1962 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1963 PLURAL(nr_truncates)); 1964 #ifdef CONFIG_QUOTA 1965 /* Turn quotas off */ 1966 for (i = 0; i < MAXQUOTAS; i++) { 1967 if (sb_dqopt(sb)->files[i]) 1968 vfs_quota_off(sb, i, 0); 1969 } 1970 #endif 1971 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1972 } 1973 1974 /* 1975 * Maximal extent format file size. 1976 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1977 * extent format containers, within a sector_t, and within i_blocks 1978 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1979 * so that won't be a limiting factor. 1980 * 1981 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1982 */ 1983 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1984 { 1985 loff_t res; 1986 loff_t upper_limit = MAX_LFS_FILESIZE; 1987 1988 /* small i_blocks in vfs inode? */ 1989 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1990 /* 1991 * CONFIG_LBDAF is not enabled implies the inode 1992 * i_block represent total blocks in 512 bytes 1993 * 32 == size of vfs inode i_blocks * 8 1994 */ 1995 upper_limit = (1LL << 32) - 1; 1996 1997 /* total blocks in file system block size */ 1998 upper_limit >>= (blkbits - 9); 1999 upper_limit <<= blkbits; 2000 } 2001 2002 /* 32-bit extent-start container, ee_block */ 2003 res = 1LL << 32; 2004 res <<= blkbits; 2005 res -= 1; 2006 2007 /* Sanity check against vm- & vfs- imposed limits */ 2008 if (res > upper_limit) 2009 res = upper_limit; 2010 2011 return res; 2012 } 2013 2014 /* 2015 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2016 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2017 * We need to be 1 filesystem block less than the 2^48 sector limit. 2018 */ 2019 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2020 { 2021 loff_t res = EXT4_NDIR_BLOCKS; 2022 int meta_blocks; 2023 loff_t upper_limit; 2024 /* This is calculated to be the largest file size for a dense, block 2025 * mapped file such that the file's total number of 512-byte sectors, 2026 * including data and all indirect blocks, does not exceed (2^48 - 1). 2027 * 2028 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2029 * number of 512-byte sectors of the file. 2030 */ 2031 2032 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2033 /* 2034 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2035 * the inode i_block field represents total file blocks in 2036 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2037 */ 2038 upper_limit = (1LL << 32) - 1; 2039 2040 /* total blocks in file system block size */ 2041 upper_limit >>= (bits - 9); 2042 2043 } else { 2044 /* 2045 * We use 48 bit ext4_inode i_blocks 2046 * With EXT4_HUGE_FILE_FL set the i_blocks 2047 * represent total number of blocks in 2048 * file system block size 2049 */ 2050 upper_limit = (1LL << 48) - 1; 2051 2052 } 2053 2054 /* indirect blocks */ 2055 meta_blocks = 1; 2056 /* double indirect blocks */ 2057 meta_blocks += 1 + (1LL << (bits-2)); 2058 /* tripple indirect blocks */ 2059 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2060 2061 upper_limit -= meta_blocks; 2062 upper_limit <<= bits; 2063 2064 res += 1LL << (bits-2); 2065 res += 1LL << (2*(bits-2)); 2066 res += 1LL << (3*(bits-2)); 2067 res <<= bits; 2068 if (res > upper_limit) 2069 res = upper_limit; 2070 2071 if (res > MAX_LFS_FILESIZE) 2072 res = MAX_LFS_FILESIZE; 2073 2074 return res; 2075 } 2076 2077 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2078 ext4_fsblk_t logical_sb_block, int nr) 2079 { 2080 struct ext4_sb_info *sbi = EXT4_SB(sb); 2081 ext4_group_t bg, first_meta_bg; 2082 int has_super = 0; 2083 2084 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2085 2086 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2087 nr < first_meta_bg) 2088 return logical_sb_block + nr + 1; 2089 bg = sbi->s_desc_per_block * nr; 2090 if (ext4_bg_has_super(sb, bg)) 2091 has_super = 1; 2092 2093 return (has_super + ext4_group_first_block_no(sb, bg)); 2094 } 2095 2096 /** 2097 * ext4_get_stripe_size: Get the stripe size. 2098 * @sbi: In memory super block info 2099 * 2100 * If we have specified it via mount option, then 2101 * use the mount option value. If the value specified at mount time is 2102 * greater than the blocks per group use the super block value. 2103 * If the super block value is greater than blocks per group return 0. 2104 * Allocator needs it be less than blocks per group. 2105 * 2106 */ 2107 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2108 { 2109 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2110 unsigned long stripe_width = 2111 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2112 2113 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2114 return sbi->s_stripe; 2115 2116 if (stripe_width <= sbi->s_blocks_per_group) 2117 return stripe_width; 2118 2119 if (stride <= sbi->s_blocks_per_group) 2120 return stride; 2121 2122 return 0; 2123 } 2124 2125 /* sysfs supprt */ 2126 2127 struct ext4_attr { 2128 struct attribute attr; 2129 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2130 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2131 const char *, size_t); 2132 int offset; 2133 }; 2134 2135 static int parse_strtoul(const char *buf, 2136 unsigned long max, unsigned long *value) 2137 { 2138 char *endp; 2139 2140 while (*buf && isspace(*buf)) 2141 buf++; 2142 *value = simple_strtoul(buf, &endp, 0); 2143 while (*endp && isspace(*endp)) 2144 endp++; 2145 if (*endp || *value > max) 2146 return -EINVAL; 2147 2148 return 0; 2149 } 2150 2151 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2152 struct ext4_sb_info *sbi, 2153 char *buf) 2154 { 2155 return snprintf(buf, PAGE_SIZE, "%llu\n", 2156 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2157 } 2158 2159 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2160 struct ext4_sb_info *sbi, char *buf) 2161 { 2162 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2163 2164 return snprintf(buf, PAGE_SIZE, "%lu\n", 2165 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2166 sbi->s_sectors_written_start) >> 1); 2167 } 2168 2169 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2170 struct ext4_sb_info *sbi, char *buf) 2171 { 2172 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2173 2174 return snprintf(buf, PAGE_SIZE, "%llu\n", 2175 sbi->s_kbytes_written + 2176 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2177 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2178 } 2179 2180 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2181 struct ext4_sb_info *sbi, 2182 const char *buf, size_t count) 2183 { 2184 unsigned long t; 2185 2186 if (parse_strtoul(buf, 0x40000000, &t)) 2187 return -EINVAL; 2188 2189 if (!is_power_of_2(t)) 2190 return -EINVAL; 2191 2192 sbi->s_inode_readahead_blks = t; 2193 return count; 2194 } 2195 2196 static ssize_t sbi_ui_show(struct ext4_attr *a, 2197 struct ext4_sb_info *sbi, char *buf) 2198 { 2199 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2200 2201 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2202 } 2203 2204 static ssize_t sbi_ui_store(struct ext4_attr *a, 2205 struct ext4_sb_info *sbi, 2206 const char *buf, size_t count) 2207 { 2208 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2209 unsigned long t; 2210 2211 if (parse_strtoul(buf, 0xffffffff, &t)) 2212 return -EINVAL; 2213 *ui = t; 2214 return count; 2215 } 2216 2217 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2218 static struct ext4_attr ext4_attr_##_name = { \ 2219 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2220 .show = _show, \ 2221 .store = _store, \ 2222 .offset = offsetof(struct ext4_sb_info, _elname), \ 2223 } 2224 #define EXT4_ATTR(name, mode, show, store) \ 2225 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2226 2227 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2228 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2229 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2230 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2231 #define ATTR_LIST(name) &ext4_attr_##name.attr 2232 2233 EXT4_RO_ATTR(delayed_allocation_blocks); 2234 EXT4_RO_ATTR(session_write_kbytes); 2235 EXT4_RO_ATTR(lifetime_write_kbytes); 2236 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2237 inode_readahead_blks_store, s_inode_readahead_blks); 2238 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2239 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2240 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2241 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2242 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2243 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2244 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2245 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2246 2247 static struct attribute *ext4_attrs[] = { 2248 ATTR_LIST(delayed_allocation_blocks), 2249 ATTR_LIST(session_write_kbytes), 2250 ATTR_LIST(lifetime_write_kbytes), 2251 ATTR_LIST(inode_readahead_blks), 2252 ATTR_LIST(inode_goal), 2253 ATTR_LIST(mb_stats), 2254 ATTR_LIST(mb_max_to_scan), 2255 ATTR_LIST(mb_min_to_scan), 2256 ATTR_LIST(mb_order2_req), 2257 ATTR_LIST(mb_stream_req), 2258 ATTR_LIST(mb_group_prealloc), 2259 ATTR_LIST(max_writeback_mb_bump), 2260 NULL, 2261 }; 2262 2263 static ssize_t ext4_attr_show(struct kobject *kobj, 2264 struct attribute *attr, char *buf) 2265 { 2266 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2267 s_kobj); 2268 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2269 2270 return a->show ? a->show(a, sbi, buf) : 0; 2271 } 2272 2273 static ssize_t ext4_attr_store(struct kobject *kobj, 2274 struct attribute *attr, 2275 const char *buf, size_t len) 2276 { 2277 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2278 s_kobj); 2279 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2280 2281 return a->store ? a->store(a, sbi, buf, len) : 0; 2282 } 2283 2284 static void ext4_sb_release(struct kobject *kobj) 2285 { 2286 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2287 s_kobj); 2288 complete(&sbi->s_kobj_unregister); 2289 } 2290 2291 2292 static struct sysfs_ops ext4_attr_ops = { 2293 .show = ext4_attr_show, 2294 .store = ext4_attr_store, 2295 }; 2296 2297 static struct kobj_type ext4_ktype = { 2298 .default_attrs = ext4_attrs, 2299 .sysfs_ops = &ext4_attr_ops, 2300 .release = ext4_sb_release, 2301 }; 2302 2303 /* 2304 * Check whether this filesystem can be mounted based on 2305 * the features present and the RDONLY/RDWR mount requested. 2306 * Returns 1 if this filesystem can be mounted as requested, 2307 * 0 if it cannot be. 2308 */ 2309 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2310 { 2311 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2312 ext4_msg(sb, KERN_ERR, 2313 "Couldn't mount because of " 2314 "unsupported optional features (%x)", 2315 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2316 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2317 return 0; 2318 } 2319 2320 if (readonly) 2321 return 1; 2322 2323 /* Check that feature set is OK for a read-write mount */ 2324 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2325 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2326 "unsupported optional features (%x)", 2327 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2328 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2329 return 0; 2330 } 2331 /* 2332 * Large file size enabled file system can only be mounted 2333 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2334 */ 2335 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2336 if (sizeof(blkcnt_t) < sizeof(u64)) { 2337 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2338 "cannot be mounted RDWR without " 2339 "CONFIG_LBDAF"); 2340 return 0; 2341 } 2342 } 2343 return 1; 2344 } 2345 2346 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2347 __releases(kernel_lock) 2348 __acquires(kernel_lock) 2349 { 2350 struct buffer_head *bh; 2351 struct ext4_super_block *es = NULL; 2352 struct ext4_sb_info *sbi; 2353 ext4_fsblk_t block; 2354 ext4_fsblk_t sb_block = get_sb_block(&data); 2355 ext4_fsblk_t logical_sb_block; 2356 unsigned long offset = 0; 2357 unsigned long journal_devnum = 0; 2358 unsigned long def_mount_opts; 2359 struct inode *root; 2360 char *cp; 2361 const char *descr; 2362 int ret = -EINVAL; 2363 int blocksize; 2364 unsigned int db_count; 2365 unsigned int i; 2366 int needs_recovery, has_huge_files; 2367 __u64 blocks_count; 2368 int err; 2369 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2370 2371 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2372 if (!sbi) 2373 return -ENOMEM; 2374 2375 sbi->s_blockgroup_lock = 2376 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2377 if (!sbi->s_blockgroup_lock) { 2378 kfree(sbi); 2379 return -ENOMEM; 2380 } 2381 sb->s_fs_info = sbi; 2382 sbi->s_mount_opt = 0; 2383 sbi->s_resuid = EXT4_DEF_RESUID; 2384 sbi->s_resgid = EXT4_DEF_RESGID; 2385 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2386 sbi->s_sb_block = sb_block; 2387 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2388 sectors[1]); 2389 2390 unlock_kernel(); 2391 2392 /* Cleanup superblock name */ 2393 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2394 *cp = '!'; 2395 2396 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2397 if (!blocksize) { 2398 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2399 goto out_fail; 2400 } 2401 2402 /* 2403 * The ext4 superblock will not be buffer aligned for other than 1kB 2404 * block sizes. We need to calculate the offset from buffer start. 2405 */ 2406 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2407 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2408 offset = do_div(logical_sb_block, blocksize); 2409 } else { 2410 logical_sb_block = sb_block; 2411 } 2412 2413 if (!(bh = sb_bread(sb, logical_sb_block))) { 2414 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2415 goto out_fail; 2416 } 2417 /* 2418 * Note: s_es must be initialized as soon as possible because 2419 * some ext4 macro-instructions depend on its value 2420 */ 2421 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2422 sbi->s_es = es; 2423 sb->s_magic = le16_to_cpu(es->s_magic); 2424 if (sb->s_magic != EXT4_SUPER_MAGIC) 2425 goto cantfind_ext4; 2426 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2427 2428 /* Set defaults before we parse the mount options */ 2429 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2430 if (def_mount_opts & EXT4_DEFM_DEBUG) 2431 set_opt(sbi->s_mount_opt, DEBUG); 2432 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2433 set_opt(sbi->s_mount_opt, GRPID); 2434 if (def_mount_opts & EXT4_DEFM_UID16) 2435 set_opt(sbi->s_mount_opt, NO_UID32); 2436 #ifdef CONFIG_EXT4_FS_XATTR 2437 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2438 set_opt(sbi->s_mount_opt, XATTR_USER); 2439 #endif 2440 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2441 if (def_mount_opts & EXT4_DEFM_ACL) 2442 set_opt(sbi->s_mount_opt, POSIX_ACL); 2443 #endif 2444 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2445 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2446 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2447 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2448 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2449 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2450 2451 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2452 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2453 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2454 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2455 else 2456 set_opt(sbi->s_mount_opt, ERRORS_RO); 2457 2458 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2459 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2460 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2461 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2462 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2463 2464 set_opt(sbi->s_mount_opt, BARRIER); 2465 2466 /* 2467 * enable delayed allocation by default 2468 * Use -o nodelalloc to turn it off 2469 */ 2470 set_opt(sbi->s_mount_opt, DELALLOC); 2471 2472 if (!parse_options((char *) data, sb, &journal_devnum, 2473 &journal_ioprio, NULL, 0)) 2474 goto failed_mount; 2475 2476 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2477 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2478 2479 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2480 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2481 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2482 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2483 ext4_msg(sb, KERN_WARNING, 2484 "feature flags set on rev 0 fs, " 2485 "running e2fsck is recommended"); 2486 2487 /* 2488 * Check feature flags regardless of the revision level, since we 2489 * previously didn't change the revision level when setting the flags, 2490 * so there is a chance incompat flags are set on a rev 0 filesystem. 2491 */ 2492 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 2493 goto failed_mount; 2494 2495 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2496 2497 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2498 blocksize > EXT4_MAX_BLOCK_SIZE) { 2499 ext4_msg(sb, KERN_ERR, 2500 "Unsupported filesystem blocksize %d", blocksize); 2501 goto failed_mount; 2502 } 2503 2504 if (sb->s_blocksize != blocksize) { 2505 /* Validate the filesystem blocksize */ 2506 if (!sb_set_blocksize(sb, blocksize)) { 2507 ext4_msg(sb, KERN_ERR, "bad block size %d", 2508 blocksize); 2509 goto failed_mount; 2510 } 2511 2512 brelse(bh); 2513 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2514 offset = do_div(logical_sb_block, blocksize); 2515 bh = sb_bread(sb, logical_sb_block); 2516 if (!bh) { 2517 ext4_msg(sb, KERN_ERR, 2518 "Can't read superblock on 2nd try"); 2519 goto failed_mount; 2520 } 2521 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2522 sbi->s_es = es; 2523 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2524 ext4_msg(sb, KERN_ERR, 2525 "Magic mismatch, very weird!"); 2526 goto failed_mount; 2527 } 2528 } 2529 2530 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2531 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2532 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2533 has_huge_files); 2534 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2535 2536 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2537 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2538 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2539 } else { 2540 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2541 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2542 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2543 (!is_power_of_2(sbi->s_inode_size)) || 2544 (sbi->s_inode_size > blocksize)) { 2545 ext4_msg(sb, KERN_ERR, 2546 "unsupported inode size: %d", 2547 sbi->s_inode_size); 2548 goto failed_mount; 2549 } 2550 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2551 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2552 } 2553 2554 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2555 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2556 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2557 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2558 !is_power_of_2(sbi->s_desc_size)) { 2559 ext4_msg(sb, KERN_ERR, 2560 "unsupported descriptor size %lu", 2561 sbi->s_desc_size); 2562 goto failed_mount; 2563 } 2564 } else 2565 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2566 2567 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2568 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2569 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2570 goto cantfind_ext4; 2571 2572 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2573 if (sbi->s_inodes_per_block == 0) 2574 goto cantfind_ext4; 2575 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2576 sbi->s_inodes_per_block; 2577 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2578 sbi->s_sbh = bh; 2579 sbi->s_mount_state = le16_to_cpu(es->s_state); 2580 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2581 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2582 2583 for (i = 0; i < 4; i++) 2584 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2585 sbi->s_def_hash_version = es->s_def_hash_version; 2586 i = le32_to_cpu(es->s_flags); 2587 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2588 sbi->s_hash_unsigned = 3; 2589 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2590 #ifdef __CHAR_UNSIGNED__ 2591 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2592 sbi->s_hash_unsigned = 3; 2593 #else 2594 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2595 #endif 2596 sb->s_dirt = 1; 2597 } 2598 2599 if (sbi->s_blocks_per_group > blocksize * 8) { 2600 ext4_msg(sb, KERN_ERR, 2601 "#blocks per group too big: %lu", 2602 sbi->s_blocks_per_group); 2603 goto failed_mount; 2604 } 2605 if (sbi->s_inodes_per_group > blocksize * 8) { 2606 ext4_msg(sb, KERN_ERR, 2607 "#inodes per group too big: %lu", 2608 sbi->s_inodes_per_group); 2609 goto failed_mount; 2610 } 2611 2612 /* 2613 * Test whether we have more sectors than will fit in sector_t, 2614 * and whether the max offset is addressable by the page cache. 2615 */ 2616 if ((ext4_blocks_count(es) > 2617 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) || 2618 (ext4_blocks_count(es) > 2619 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) { 2620 ext4_msg(sb, KERN_ERR, "filesystem" 2621 " too large to mount safely on this system"); 2622 if (sizeof(sector_t) < 8) 2623 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 2624 ret = -EFBIG; 2625 goto failed_mount; 2626 } 2627 2628 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2629 goto cantfind_ext4; 2630 2631 /* check blocks count against device size */ 2632 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2633 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2634 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2635 "exceeds size of device (%llu blocks)", 2636 ext4_blocks_count(es), blocks_count); 2637 goto failed_mount; 2638 } 2639 2640 /* 2641 * It makes no sense for the first data block to be beyond the end 2642 * of the filesystem. 2643 */ 2644 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2645 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2646 "block %u is beyond end of filesystem (%llu)", 2647 le32_to_cpu(es->s_first_data_block), 2648 ext4_blocks_count(es)); 2649 goto failed_mount; 2650 } 2651 blocks_count = (ext4_blocks_count(es) - 2652 le32_to_cpu(es->s_first_data_block) + 2653 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2654 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2655 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2656 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2657 "(block count %llu, first data block %u, " 2658 "blocks per group %lu)", sbi->s_groups_count, 2659 ext4_blocks_count(es), 2660 le32_to_cpu(es->s_first_data_block), 2661 EXT4_BLOCKS_PER_GROUP(sb)); 2662 goto failed_mount; 2663 } 2664 sbi->s_groups_count = blocks_count; 2665 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 2666 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 2667 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2668 EXT4_DESC_PER_BLOCK(sb); 2669 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2670 GFP_KERNEL); 2671 if (sbi->s_group_desc == NULL) { 2672 ext4_msg(sb, KERN_ERR, "not enough memory"); 2673 goto failed_mount; 2674 } 2675 2676 #ifdef CONFIG_PROC_FS 2677 if (ext4_proc_root) 2678 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2679 #endif 2680 2681 bgl_lock_init(sbi->s_blockgroup_lock); 2682 2683 for (i = 0; i < db_count; i++) { 2684 block = descriptor_loc(sb, logical_sb_block, i); 2685 sbi->s_group_desc[i] = sb_bread(sb, block); 2686 if (!sbi->s_group_desc[i]) { 2687 ext4_msg(sb, KERN_ERR, 2688 "can't read group descriptor %d", i); 2689 db_count = i; 2690 goto failed_mount2; 2691 } 2692 } 2693 if (!ext4_check_descriptors(sb)) { 2694 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2695 goto failed_mount2; 2696 } 2697 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2698 if (!ext4_fill_flex_info(sb)) { 2699 ext4_msg(sb, KERN_ERR, 2700 "unable to initialize " 2701 "flex_bg meta info!"); 2702 goto failed_mount2; 2703 } 2704 2705 sbi->s_gdb_count = db_count; 2706 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2707 spin_lock_init(&sbi->s_next_gen_lock); 2708 2709 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2710 ext4_count_free_blocks(sb)); 2711 if (!err) { 2712 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2713 ext4_count_free_inodes(sb)); 2714 } 2715 if (!err) { 2716 err = percpu_counter_init(&sbi->s_dirs_counter, 2717 ext4_count_dirs(sb)); 2718 } 2719 if (!err) { 2720 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2721 } 2722 if (err) { 2723 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2724 goto failed_mount3; 2725 } 2726 2727 sbi->s_stripe = ext4_get_stripe_size(sbi); 2728 sbi->s_max_writeback_mb_bump = 128; 2729 2730 /* 2731 * set up enough so that it can read an inode 2732 */ 2733 if (!test_opt(sb, NOLOAD) && 2734 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2735 sb->s_op = &ext4_sops; 2736 else 2737 sb->s_op = &ext4_nojournal_sops; 2738 sb->s_export_op = &ext4_export_ops; 2739 sb->s_xattr = ext4_xattr_handlers; 2740 #ifdef CONFIG_QUOTA 2741 sb->s_qcop = &ext4_qctl_operations; 2742 sb->dq_op = &ext4_quota_operations; 2743 #endif 2744 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2745 mutex_init(&sbi->s_orphan_lock); 2746 mutex_init(&sbi->s_resize_lock); 2747 2748 sb->s_root = NULL; 2749 2750 needs_recovery = (es->s_last_orphan != 0 || 2751 EXT4_HAS_INCOMPAT_FEATURE(sb, 2752 EXT4_FEATURE_INCOMPAT_RECOVER)); 2753 2754 /* 2755 * The first inode we look at is the journal inode. Don't try 2756 * root first: it may be modified in the journal! 2757 */ 2758 if (!test_opt(sb, NOLOAD) && 2759 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2760 if (ext4_load_journal(sb, es, journal_devnum)) 2761 goto failed_mount3; 2762 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2763 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2764 ext4_msg(sb, KERN_ERR, "required journal recovery " 2765 "suppressed and not mounted read-only"); 2766 goto failed_mount4; 2767 } else { 2768 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2769 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2770 sbi->s_journal = NULL; 2771 needs_recovery = 0; 2772 goto no_journal; 2773 } 2774 2775 if (ext4_blocks_count(es) > 0xffffffffULL && 2776 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2777 JBD2_FEATURE_INCOMPAT_64BIT)) { 2778 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2779 goto failed_mount4; 2780 } 2781 2782 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2783 jbd2_journal_set_features(sbi->s_journal, 2784 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2785 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2786 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2787 jbd2_journal_set_features(sbi->s_journal, 2788 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2789 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2790 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2791 } else { 2792 jbd2_journal_clear_features(sbi->s_journal, 2793 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2794 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2795 } 2796 2797 /* We have now updated the journal if required, so we can 2798 * validate the data journaling mode. */ 2799 switch (test_opt(sb, DATA_FLAGS)) { 2800 case 0: 2801 /* No mode set, assume a default based on the journal 2802 * capabilities: ORDERED_DATA if the journal can 2803 * cope, else JOURNAL_DATA 2804 */ 2805 if (jbd2_journal_check_available_features 2806 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2807 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2808 else 2809 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2810 break; 2811 2812 case EXT4_MOUNT_ORDERED_DATA: 2813 case EXT4_MOUNT_WRITEBACK_DATA: 2814 if (!jbd2_journal_check_available_features 2815 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2816 ext4_msg(sb, KERN_ERR, "Journal does not support " 2817 "requested data journaling mode"); 2818 goto failed_mount4; 2819 } 2820 default: 2821 break; 2822 } 2823 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2824 2825 no_journal: 2826 2827 if (test_opt(sb, NOBH)) { 2828 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2829 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2830 "its supported only with writeback mode"); 2831 clear_opt(sbi->s_mount_opt, NOBH); 2832 } 2833 } 2834 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 2835 if (!EXT4_SB(sb)->dio_unwritten_wq) { 2836 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 2837 goto failed_mount_wq; 2838 } 2839 2840 /* 2841 * The jbd2_journal_load will have done any necessary log recovery, 2842 * so we can safely mount the rest of the filesystem now. 2843 */ 2844 2845 root = ext4_iget(sb, EXT4_ROOT_INO); 2846 if (IS_ERR(root)) { 2847 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2848 ret = PTR_ERR(root); 2849 goto failed_mount4; 2850 } 2851 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2852 iput(root); 2853 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2854 goto failed_mount4; 2855 } 2856 sb->s_root = d_alloc_root(root); 2857 if (!sb->s_root) { 2858 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2859 iput(root); 2860 ret = -ENOMEM; 2861 goto failed_mount4; 2862 } 2863 2864 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2865 2866 /* determine the minimum size of new large inodes, if present */ 2867 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2868 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2869 EXT4_GOOD_OLD_INODE_SIZE; 2870 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2871 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2872 if (sbi->s_want_extra_isize < 2873 le16_to_cpu(es->s_want_extra_isize)) 2874 sbi->s_want_extra_isize = 2875 le16_to_cpu(es->s_want_extra_isize); 2876 if (sbi->s_want_extra_isize < 2877 le16_to_cpu(es->s_min_extra_isize)) 2878 sbi->s_want_extra_isize = 2879 le16_to_cpu(es->s_min_extra_isize); 2880 } 2881 } 2882 /* Check if enough inode space is available */ 2883 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2884 sbi->s_inode_size) { 2885 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2886 EXT4_GOOD_OLD_INODE_SIZE; 2887 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2888 "available"); 2889 } 2890 2891 if (test_opt(sb, DELALLOC) && 2892 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2893 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2894 "requested data journaling mode"); 2895 clear_opt(sbi->s_mount_opt, DELALLOC); 2896 } 2897 2898 err = ext4_setup_system_zone(sb); 2899 if (err) { 2900 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2901 "zone (%d)\n", err); 2902 goto failed_mount4; 2903 } 2904 2905 ext4_ext_init(sb); 2906 err = ext4_mb_init(sb, needs_recovery); 2907 if (err) { 2908 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2909 err); 2910 goto failed_mount4; 2911 } 2912 2913 sbi->s_kobj.kset = ext4_kset; 2914 init_completion(&sbi->s_kobj_unregister); 2915 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2916 "%s", sb->s_id); 2917 if (err) { 2918 ext4_mb_release(sb); 2919 ext4_ext_release(sb); 2920 goto failed_mount4; 2921 }; 2922 2923 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2924 ext4_orphan_cleanup(sb, es); 2925 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2926 if (needs_recovery) { 2927 ext4_msg(sb, KERN_INFO, "recovery complete"); 2928 ext4_mark_recovery_complete(sb, es); 2929 } 2930 if (EXT4_SB(sb)->s_journal) { 2931 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2932 descr = " journalled data mode"; 2933 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2934 descr = " ordered data mode"; 2935 else 2936 descr = " writeback data mode"; 2937 } else 2938 descr = "out journal"; 2939 2940 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2941 2942 lock_kernel(); 2943 return 0; 2944 2945 cantfind_ext4: 2946 if (!silent) 2947 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2948 goto failed_mount; 2949 2950 failed_mount4: 2951 ext4_msg(sb, KERN_ERR, "mount failed"); 2952 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 2953 failed_mount_wq: 2954 ext4_release_system_zone(sb); 2955 if (sbi->s_journal) { 2956 jbd2_journal_destroy(sbi->s_journal); 2957 sbi->s_journal = NULL; 2958 } 2959 failed_mount3: 2960 if (sbi->s_flex_groups) { 2961 if (is_vmalloc_addr(sbi->s_flex_groups)) 2962 vfree(sbi->s_flex_groups); 2963 else 2964 kfree(sbi->s_flex_groups); 2965 } 2966 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2967 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2968 percpu_counter_destroy(&sbi->s_dirs_counter); 2969 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2970 failed_mount2: 2971 for (i = 0; i < db_count; i++) 2972 brelse(sbi->s_group_desc[i]); 2973 kfree(sbi->s_group_desc); 2974 failed_mount: 2975 if (sbi->s_proc) { 2976 remove_proc_entry(sb->s_id, ext4_proc_root); 2977 } 2978 #ifdef CONFIG_QUOTA 2979 for (i = 0; i < MAXQUOTAS; i++) 2980 kfree(sbi->s_qf_names[i]); 2981 #endif 2982 ext4_blkdev_remove(sbi); 2983 brelse(bh); 2984 out_fail: 2985 sb->s_fs_info = NULL; 2986 kfree(sbi->s_blockgroup_lock); 2987 kfree(sbi); 2988 lock_kernel(); 2989 return ret; 2990 } 2991 2992 /* 2993 * Setup any per-fs journal parameters now. We'll do this both on 2994 * initial mount, once the journal has been initialised but before we've 2995 * done any recovery; and again on any subsequent remount. 2996 */ 2997 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2998 { 2999 struct ext4_sb_info *sbi = EXT4_SB(sb); 3000 3001 journal->j_commit_interval = sbi->s_commit_interval; 3002 journal->j_min_batch_time = sbi->s_min_batch_time; 3003 journal->j_max_batch_time = sbi->s_max_batch_time; 3004 3005 spin_lock(&journal->j_state_lock); 3006 if (test_opt(sb, BARRIER)) 3007 journal->j_flags |= JBD2_BARRIER; 3008 else 3009 journal->j_flags &= ~JBD2_BARRIER; 3010 if (test_opt(sb, DATA_ERR_ABORT)) 3011 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3012 else 3013 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3014 spin_unlock(&journal->j_state_lock); 3015 } 3016 3017 static journal_t *ext4_get_journal(struct super_block *sb, 3018 unsigned int journal_inum) 3019 { 3020 struct inode *journal_inode; 3021 journal_t *journal; 3022 3023 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3024 3025 /* First, test for the existence of a valid inode on disk. Bad 3026 * things happen if we iget() an unused inode, as the subsequent 3027 * iput() will try to delete it. */ 3028 3029 journal_inode = ext4_iget(sb, journal_inum); 3030 if (IS_ERR(journal_inode)) { 3031 ext4_msg(sb, KERN_ERR, "no journal found"); 3032 return NULL; 3033 } 3034 if (!journal_inode->i_nlink) { 3035 make_bad_inode(journal_inode); 3036 iput(journal_inode); 3037 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3038 return NULL; 3039 } 3040 3041 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3042 journal_inode, journal_inode->i_size); 3043 if (!S_ISREG(journal_inode->i_mode)) { 3044 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3045 iput(journal_inode); 3046 return NULL; 3047 } 3048 3049 journal = jbd2_journal_init_inode(journal_inode); 3050 if (!journal) { 3051 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3052 iput(journal_inode); 3053 return NULL; 3054 } 3055 journal->j_private = sb; 3056 ext4_init_journal_params(sb, journal); 3057 return journal; 3058 } 3059 3060 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3061 dev_t j_dev) 3062 { 3063 struct buffer_head *bh; 3064 journal_t *journal; 3065 ext4_fsblk_t start; 3066 ext4_fsblk_t len; 3067 int hblock, blocksize; 3068 ext4_fsblk_t sb_block; 3069 unsigned long offset; 3070 struct ext4_super_block *es; 3071 struct block_device *bdev; 3072 3073 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3074 3075 bdev = ext4_blkdev_get(j_dev, sb); 3076 if (bdev == NULL) 3077 return NULL; 3078 3079 if (bd_claim(bdev, sb)) { 3080 ext4_msg(sb, KERN_ERR, 3081 "failed to claim external journal device"); 3082 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3083 return NULL; 3084 } 3085 3086 blocksize = sb->s_blocksize; 3087 hblock = bdev_logical_block_size(bdev); 3088 if (blocksize < hblock) { 3089 ext4_msg(sb, KERN_ERR, 3090 "blocksize too small for journal device"); 3091 goto out_bdev; 3092 } 3093 3094 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3095 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3096 set_blocksize(bdev, blocksize); 3097 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3098 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3099 "external journal"); 3100 goto out_bdev; 3101 } 3102 3103 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3104 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3105 !(le32_to_cpu(es->s_feature_incompat) & 3106 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3107 ext4_msg(sb, KERN_ERR, "external journal has " 3108 "bad superblock"); 3109 brelse(bh); 3110 goto out_bdev; 3111 } 3112 3113 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3114 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3115 brelse(bh); 3116 goto out_bdev; 3117 } 3118 3119 len = ext4_blocks_count(es); 3120 start = sb_block + 1; 3121 brelse(bh); /* we're done with the superblock */ 3122 3123 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3124 start, len, blocksize); 3125 if (!journal) { 3126 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3127 goto out_bdev; 3128 } 3129 journal->j_private = sb; 3130 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3131 wait_on_buffer(journal->j_sb_buffer); 3132 if (!buffer_uptodate(journal->j_sb_buffer)) { 3133 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3134 goto out_journal; 3135 } 3136 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3137 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3138 "user (unsupported) - %d", 3139 be32_to_cpu(journal->j_superblock->s_nr_users)); 3140 goto out_journal; 3141 } 3142 EXT4_SB(sb)->journal_bdev = bdev; 3143 ext4_init_journal_params(sb, journal); 3144 return journal; 3145 3146 out_journal: 3147 jbd2_journal_destroy(journal); 3148 out_bdev: 3149 ext4_blkdev_put(bdev); 3150 return NULL; 3151 } 3152 3153 static int ext4_load_journal(struct super_block *sb, 3154 struct ext4_super_block *es, 3155 unsigned long journal_devnum) 3156 { 3157 journal_t *journal; 3158 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3159 dev_t journal_dev; 3160 int err = 0; 3161 int really_read_only; 3162 3163 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3164 3165 if (journal_devnum && 3166 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3167 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3168 "numbers have changed"); 3169 journal_dev = new_decode_dev(journal_devnum); 3170 } else 3171 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3172 3173 really_read_only = bdev_read_only(sb->s_bdev); 3174 3175 /* 3176 * Are we loading a blank journal or performing recovery after a 3177 * crash? For recovery, we need to check in advance whether we 3178 * can get read-write access to the device. 3179 */ 3180 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3181 if (sb->s_flags & MS_RDONLY) { 3182 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3183 "required on readonly filesystem"); 3184 if (really_read_only) { 3185 ext4_msg(sb, KERN_ERR, "write access " 3186 "unavailable, cannot proceed"); 3187 return -EROFS; 3188 } 3189 ext4_msg(sb, KERN_INFO, "write access will " 3190 "be enabled during recovery"); 3191 } 3192 } 3193 3194 if (journal_inum && journal_dev) { 3195 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3196 "and inode journals!"); 3197 return -EINVAL; 3198 } 3199 3200 if (journal_inum) { 3201 if (!(journal = ext4_get_journal(sb, journal_inum))) 3202 return -EINVAL; 3203 } else { 3204 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3205 return -EINVAL; 3206 } 3207 3208 if (!(journal->j_flags & JBD2_BARRIER)) 3209 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3210 3211 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3212 err = jbd2_journal_update_format(journal); 3213 if (err) { 3214 ext4_msg(sb, KERN_ERR, "error updating journal"); 3215 jbd2_journal_destroy(journal); 3216 return err; 3217 } 3218 } 3219 3220 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3221 err = jbd2_journal_wipe(journal, !really_read_only); 3222 if (!err) 3223 err = jbd2_journal_load(journal); 3224 3225 if (err) { 3226 ext4_msg(sb, KERN_ERR, "error loading journal"); 3227 jbd2_journal_destroy(journal); 3228 return err; 3229 } 3230 3231 EXT4_SB(sb)->s_journal = journal; 3232 ext4_clear_journal_err(sb, es); 3233 3234 if (journal_devnum && 3235 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3236 es->s_journal_dev = cpu_to_le32(journal_devnum); 3237 3238 /* Make sure we flush the recovery flag to disk. */ 3239 ext4_commit_super(sb, 1); 3240 } 3241 3242 return 0; 3243 } 3244 3245 static int ext4_commit_super(struct super_block *sb, int sync) 3246 { 3247 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3248 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3249 int error = 0; 3250 3251 if (!sbh) 3252 return error; 3253 if (buffer_write_io_error(sbh)) { 3254 /* 3255 * Oh, dear. A previous attempt to write the 3256 * superblock failed. This could happen because the 3257 * USB device was yanked out. Or it could happen to 3258 * be a transient write error and maybe the block will 3259 * be remapped. Nothing we can do but to retry the 3260 * write and hope for the best. 3261 */ 3262 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3263 "superblock detected"); 3264 clear_buffer_write_io_error(sbh); 3265 set_buffer_uptodate(sbh); 3266 } 3267 /* 3268 * If the file system is mounted read-only, don't update the 3269 * superblock write time. This avoids updating the superblock 3270 * write time when we are mounting the root file system 3271 * read/only but we need to replay the journal; at that point, 3272 * for people who are east of GMT and who make their clock 3273 * tick in localtime for Windows bug-for-bug compatibility, 3274 * the clock is set in the future, and this will cause e2fsck 3275 * to complain and force a full file system check. 3276 */ 3277 if (!(sb->s_flags & MS_RDONLY)) 3278 es->s_wtime = cpu_to_le32(get_seconds()); 3279 es->s_kbytes_written = 3280 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3281 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3282 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3283 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3284 &EXT4_SB(sb)->s_freeblocks_counter)); 3285 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3286 &EXT4_SB(sb)->s_freeinodes_counter)); 3287 sb->s_dirt = 0; 3288 BUFFER_TRACE(sbh, "marking dirty"); 3289 mark_buffer_dirty(sbh); 3290 if (sync) { 3291 error = sync_dirty_buffer(sbh); 3292 if (error) 3293 return error; 3294 3295 error = buffer_write_io_error(sbh); 3296 if (error) { 3297 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3298 "superblock"); 3299 clear_buffer_write_io_error(sbh); 3300 set_buffer_uptodate(sbh); 3301 } 3302 } 3303 return error; 3304 } 3305 3306 /* 3307 * Have we just finished recovery? If so, and if we are mounting (or 3308 * remounting) the filesystem readonly, then we will end up with a 3309 * consistent fs on disk. Record that fact. 3310 */ 3311 static void ext4_mark_recovery_complete(struct super_block *sb, 3312 struct ext4_super_block *es) 3313 { 3314 journal_t *journal = EXT4_SB(sb)->s_journal; 3315 3316 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3317 BUG_ON(journal != NULL); 3318 return; 3319 } 3320 jbd2_journal_lock_updates(journal); 3321 if (jbd2_journal_flush(journal) < 0) 3322 goto out; 3323 3324 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3325 sb->s_flags & MS_RDONLY) { 3326 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3327 ext4_commit_super(sb, 1); 3328 } 3329 3330 out: 3331 jbd2_journal_unlock_updates(journal); 3332 } 3333 3334 /* 3335 * If we are mounting (or read-write remounting) a filesystem whose journal 3336 * has recorded an error from a previous lifetime, move that error to the 3337 * main filesystem now. 3338 */ 3339 static void ext4_clear_journal_err(struct super_block *sb, 3340 struct ext4_super_block *es) 3341 { 3342 journal_t *journal; 3343 int j_errno; 3344 const char *errstr; 3345 3346 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3347 3348 journal = EXT4_SB(sb)->s_journal; 3349 3350 /* 3351 * Now check for any error status which may have been recorded in the 3352 * journal by a prior ext4_error() or ext4_abort() 3353 */ 3354 3355 j_errno = jbd2_journal_errno(journal); 3356 if (j_errno) { 3357 char nbuf[16]; 3358 3359 errstr = ext4_decode_error(sb, j_errno, nbuf); 3360 ext4_warning(sb, __func__, "Filesystem error recorded " 3361 "from previous mount: %s", errstr); 3362 ext4_warning(sb, __func__, "Marking fs in need of " 3363 "filesystem check."); 3364 3365 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3366 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3367 ext4_commit_super(sb, 1); 3368 3369 jbd2_journal_clear_err(journal); 3370 } 3371 } 3372 3373 /* 3374 * Force the running and committing transactions to commit, 3375 * and wait on the commit. 3376 */ 3377 int ext4_force_commit(struct super_block *sb) 3378 { 3379 journal_t *journal; 3380 int ret = 0; 3381 3382 if (sb->s_flags & MS_RDONLY) 3383 return 0; 3384 3385 journal = EXT4_SB(sb)->s_journal; 3386 if (journal) 3387 ret = ext4_journal_force_commit(journal); 3388 3389 return ret; 3390 } 3391 3392 static void ext4_write_super(struct super_block *sb) 3393 { 3394 lock_super(sb); 3395 ext4_commit_super(sb, 1); 3396 unlock_super(sb); 3397 } 3398 3399 static int ext4_sync_fs(struct super_block *sb, int wait) 3400 { 3401 int ret = 0; 3402 tid_t target; 3403 struct ext4_sb_info *sbi = EXT4_SB(sb); 3404 3405 trace_ext4_sync_fs(sb, wait); 3406 flush_workqueue(sbi->dio_unwritten_wq); 3407 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 3408 if (wait) 3409 jbd2_log_wait_commit(sbi->s_journal, target); 3410 } 3411 return ret; 3412 } 3413 3414 /* 3415 * LVM calls this function before a (read-only) snapshot is created. This 3416 * gives us a chance to flush the journal completely and mark the fs clean. 3417 */ 3418 static int ext4_freeze(struct super_block *sb) 3419 { 3420 int error = 0; 3421 journal_t *journal; 3422 3423 if (sb->s_flags & MS_RDONLY) 3424 return 0; 3425 3426 journal = EXT4_SB(sb)->s_journal; 3427 3428 /* Now we set up the journal barrier. */ 3429 jbd2_journal_lock_updates(journal); 3430 3431 /* 3432 * Don't clear the needs_recovery flag if we failed to flush 3433 * the journal. 3434 */ 3435 error = jbd2_journal_flush(journal); 3436 if (error < 0) { 3437 out: 3438 jbd2_journal_unlock_updates(journal); 3439 return error; 3440 } 3441 3442 /* Journal blocked and flushed, clear needs_recovery flag. */ 3443 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3444 error = ext4_commit_super(sb, 1); 3445 if (error) 3446 goto out; 3447 return 0; 3448 } 3449 3450 /* 3451 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3452 * flag here, even though the filesystem is not technically dirty yet. 3453 */ 3454 static int ext4_unfreeze(struct super_block *sb) 3455 { 3456 if (sb->s_flags & MS_RDONLY) 3457 return 0; 3458 3459 lock_super(sb); 3460 /* Reset the needs_recovery flag before the fs is unlocked. */ 3461 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3462 ext4_commit_super(sb, 1); 3463 unlock_super(sb); 3464 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3465 return 0; 3466 } 3467 3468 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3469 { 3470 struct ext4_super_block *es; 3471 struct ext4_sb_info *sbi = EXT4_SB(sb); 3472 ext4_fsblk_t n_blocks_count = 0; 3473 unsigned long old_sb_flags; 3474 struct ext4_mount_options old_opts; 3475 ext4_group_t g; 3476 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3477 int err; 3478 #ifdef CONFIG_QUOTA 3479 int i; 3480 #endif 3481 3482 lock_kernel(); 3483 3484 /* Store the original options */ 3485 lock_super(sb); 3486 old_sb_flags = sb->s_flags; 3487 old_opts.s_mount_opt = sbi->s_mount_opt; 3488 old_opts.s_resuid = sbi->s_resuid; 3489 old_opts.s_resgid = sbi->s_resgid; 3490 old_opts.s_commit_interval = sbi->s_commit_interval; 3491 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3492 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3493 #ifdef CONFIG_QUOTA 3494 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3495 for (i = 0; i < MAXQUOTAS; i++) 3496 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3497 #endif 3498 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3499 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3500 3501 /* 3502 * Allow the "check" option to be passed as a remount option. 3503 */ 3504 if (!parse_options(data, sb, NULL, &journal_ioprio, 3505 &n_blocks_count, 1)) { 3506 err = -EINVAL; 3507 goto restore_opts; 3508 } 3509 3510 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 3511 ext4_abort(sb, __func__, "Abort forced by user"); 3512 3513 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3514 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3515 3516 es = sbi->s_es; 3517 3518 if (sbi->s_journal) { 3519 ext4_init_journal_params(sb, sbi->s_journal); 3520 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3521 } 3522 3523 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3524 n_blocks_count > ext4_blocks_count(es)) { 3525 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 3526 err = -EROFS; 3527 goto restore_opts; 3528 } 3529 3530 if (*flags & MS_RDONLY) { 3531 /* 3532 * First of all, the unconditional stuff we have to do 3533 * to disable replay of the journal when we next remount 3534 */ 3535 sb->s_flags |= MS_RDONLY; 3536 3537 /* 3538 * OK, test if we are remounting a valid rw partition 3539 * readonly, and if so set the rdonly flag and then 3540 * mark the partition as valid again. 3541 */ 3542 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3543 (sbi->s_mount_state & EXT4_VALID_FS)) 3544 es->s_state = cpu_to_le16(sbi->s_mount_state); 3545 3546 if (sbi->s_journal) 3547 ext4_mark_recovery_complete(sb, es); 3548 } else { 3549 /* Make sure we can mount this feature set readwrite */ 3550 if (!ext4_feature_set_ok(sb, 0)) { 3551 err = -EROFS; 3552 goto restore_opts; 3553 } 3554 /* 3555 * Make sure the group descriptor checksums 3556 * are sane. If they aren't, refuse to remount r/w. 3557 */ 3558 for (g = 0; g < sbi->s_groups_count; g++) { 3559 struct ext4_group_desc *gdp = 3560 ext4_get_group_desc(sb, g, NULL); 3561 3562 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3563 ext4_msg(sb, KERN_ERR, 3564 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3565 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3566 le16_to_cpu(gdp->bg_checksum)); 3567 err = -EINVAL; 3568 goto restore_opts; 3569 } 3570 } 3571 3572 /* 3573 * If we have an unprocessed orphan list hanging 3574 * around from a previously readonly bdev mount, 3575 * require a full umount/remount for now. 3576 */ 3577 if (es->s_last_orphan) { 3578 ext4_msg(sb, KERN_WARNING, "Couldn't " 3579 "remount RDWR because of unprocessed " 3580 "orphan inode list. Please " 3581 "umount/remount instead"); 3582 err = -EINVAL; 3583 goto restore_opts; 3584 } 3585 3586 /* 3587 * Mounting a RDONLY partition read-write, so reread 3588 * and store the current valid flag. (It may have 3589 * been changed by e2fsck since we originally mounted 3590 * the partition.) 3591 */ 3592 if (sbi->s_journal) 3593 ext4_clear_journal_err(sb, es); 3594 sbi->s_mount_state = le16_to_cpu(es->s_state); 3595 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3596 goto restore_opts; 3597 if (!ext4_setup_super(sb, es, 0)) 3598 sb->s_flags &= ~MS_RDONLY; 3599 } 3600 } 3601 ext4_setup_system_zone(sb); 3602 if (sbi->s_journal == NULL) 3603 ext4_commit_super(sb, 1); 3604 3605 #ifdef CONFIG_QUOTA 3606 /* Release old quota file names */ 3607 for (i = 0; i < MAXQUOTAS; i++) 3608 if (old_opts.s_qf_names[i] && 3609 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3610 kfree(old_opts.s_qf_names[i]); 3611 #endif 3612 unlock_super(sb); 3613 unlock_kernel(); 3614 return 0; 3615 3616 restore_opts: 3617 sb->s_flags = old_sb_flags; 3618 sbi->s_mount_opt = old_opts.s_mount_opt; 3619 sbi->s_resuid = old_opts.s_resuid; 3620 sbi->s_resgid = old_opts.s_resgid; 3621 sbi->s_commit_interval = old_opts.s_commit_interval; 3622 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3623 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3624 #ifdef CONFIG_QUOTA 3625 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3626 for (i = 0; i < MAXQUOTAS; i++) { 3627 if (sbi->s_qf_names[i] && 3628 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3629 kfree(sbi->s_qf_names[i]); 3630 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3631 } 3632 #endif 3633 unlock_super(sb); 3634 unlock_kernel(); 3635 return err; 3636 } 3637 3638 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3639 { 3640 struct super_block *sb = dentry->d_sb; 3641 struct ext4_sb_info *sbi = EXT4_SB(sb); 3642 struct ext4_super_block *es = sbi->s_es; 3643 u64 fsid; 3644 3645 if (test_opt(sb, MINIX_DF)) { 3646 sbi->s_overhead_last = 0; 3647 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3648 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3649 ext4_fsblk_t overhead = 0; 3650 3651 /* 3652 * Compute the overhead (FS structures). This is constant 3653 * for a given filesystem unless the number of block groups 3654 * changes so we cache the previous value until it does. 3655 */ 3656 3657 /* 3658 * All of the blocks before first_data_block are 3659 * overhead 3660 */ 3661 overhead = le32_to_cpu(es->s_first_data_block); 3662 3663 /* 3664 * Add the overhead attributed to the superblock and 3665 * block group descriptors. If the sparse superblocks 3666 * feature is turned on, then not all groups have this. 3667 */ 3668 for (i = 0; i < ngroups; i++) { 3669 overhead += ext4_bg_has_super(sb, i) + 3670 ext4_bg_num_gdb(sb, i); 3671 cond_resched(); 3672 } 3673 3674 /* 3675 * Every block group has an inode bitmap, a block 3676 * bitmap, and an inode table. 3677 */ 3678 overhead += ngroups * (2 + sbi->s_itb_per_group); 3679 sbi->s_overhead_last = overhead; 3680 smp_wmb(); 3681 sbi->s_blocks_last = ext4_blocks_count(es); 3682 } 3683 3684 buf->f_type = EXT4_SUPER_MAGIC; 3685 buf->f_bsize = sb->s_blocksize; 3686 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3687 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3688 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3689 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3690 if (buf->f_bfree < ext4_r_blocks_count(es)) 3691 buf->f_bavail = 0; 3692 buf->f_files = le32_to_cpu(es->s_inodes_count); 3693 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3694 buf->f_namelen = EXT4_NAME_LEN; 3695 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3696 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3697 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3698 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3699 3700 return 0; 3701 } 3702 3703 /* Helper function for writing quotas on sync - we need to start transaction 3704 * before quota file is locked for write. Otherwise the are possible deadlocks: 3705 * Process 1 Process 2 3706 * ext4_create() quota_sync() 3707 * jbd2_journal_start() write_dquot() 3708 * vfs_dq_init() down(dqio_mutex) 3709 * down(dqio_mutex) jbd2_journal_start() 3710 * 3711 */ 3712 3713 #ifdef CONFIG_QUOTA 3714 3715 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3716 { 3717 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3718 } 3719 3720 static int ext4_write_dquot(struct dquot *dquot) 3721 { 3722 int ret, err; 3723 handle_t *handle; 3724 struct inode *inode; 3725 3726 inode = dquot_to_inode(dquot); 3727 handle = ext4_journal_start(inode, 3728 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3729 if (IS_ERR(handle)) 3730 return PTR_ERR(handle); 3731 ret = dquot_commit(dquot); 3732 err = ext4_journal_stop(handle); 3733 if (!ret) 3734 ret = err; 3735 return ret; 3736 } 3737 3738 static int ext4_acquire_dquot(struct dquot *dquot) 3739 { 3740 int ret, err; 3741 handle_t *handle; 3742 3743 handle = ext4_journal_start(dquot_to_inode(dquot), 3744 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3745 if (IS_ERR(handle)) 3746 return PTR_ERR(handle); 3747 ret = dquot_acquire(dquot); 3748 err = ext4_journal_stop(handle); 3749 if (!ret) 3750 ret = err; 3751 return ret; 3752 } 3753 3754 static int ext4_release_dquot(struct dquot *dquot) 3755 { 3756 int ret, err; 3757 handle_t *handle; 3758 3759 handle = ext4_journal_start(dquot_to_inode(dquot), 3760 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3761 if (IS_ERR(handle)) { 3762 /* Release dquot anyway to avoid endless cycle in dqput() */ 3763 dquot_release(dquot); 3764 return PTR_ERR(handle); 3765 } 3766 ret = dquot_release(dquot); 3767 err = ext4_journal_stop(handle); 3768 if (!ret) 3769 ret = err; 3770 return ret; 3771 } 3772 3773 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3774 { 3775 /* Are we journaling quotas? */ 3776 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3777 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3778 dquot_mark_dquot_dirty(dquot); 3779 return ext4_write_dquot(dquot); 3780 } else { 3781 return dquot_mark_dquot_dirty(dquot); 3782 } 3783 } 3784 3785 static int ext4_write_info(struct super_block *sb, int type) 3786 { 3787 int ret, err; 3788 handle_t *handle; 3789 3790 /* Data block + inode block */ 3791 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3792 if (IS_ERR(handle)) 3793 return PTR_ERR(handle); 3794 ret = dquot_commit_info(sb, type); 3795 err = ext4_journal_stop(handle); 3796 if (!ret) 3797 ret = err; 3798 return ret; 3799 } 3800 3801 /* 3802 * Turn on quotas during mount time - we need to find 3803 * the quota file and such... 3804 */ 3805 static int ext4_quota_on_mount(struct super_block *sb, int type) 3806 { 3807 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3808 EXT4_SB(sb)->s_jquota_fmt, type); 3809 } 3810 3811 /* 3812 * Standard function to be called on quota_on 3813 */ 3814 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3815 char *name, int remount) 3816 { 3817 int err; 3818 struct path path; 3819 3820 if (!test_opt(sb, QUOTA)) 3821 return -EINVAL; 3822 /* When remounting, no checks are needed and in fact, name is NULL */ 3823 if (remount) 3824 return vfs_quota_on(sb, type, format_id, name, remount); 3825 3826 err = kern_path(name, LOOKUP_FOLLOW, &path); 3827 if (err) 3828 return err; 3829 3830 /* Quotafile not on the same filesystem? */ 3831 if (path.mnt->mnt_sb != sb) { 3832 path_put(&path); 3833 return -EXDEV; 3834 } 3835 /* Journaling quota? */ 3836 if (EXT4_SB(sb)->s_qf_names[type]) { 3837 /* Quotafile not in fs root? */ 3838 if (path.dentry->d_parent != sb->s_root) 3839 ext4_msg(sb, KERN_WARNING, 3840 "Quota file not on filesystem root. " 3841 "Journaled quota will not work"); 3842 } 3843 3844 /* 3845 * When we journal data on quota file, we have to flush journal to see 3846 * all updates to the file when we bypass pagecache... 3847 */ 3848 if (EXT4_SB(sb)->s_journal && 3849 ext4_should_journal_data(path.dentry->d_inode)) { 3850 /* 3851 * We don't need to lock updates but journal_flush() could 3852 * otherwise be livelocked... 3853 */ 3854 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3855 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3856 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3857 if (err) { 3858 path_put(&path); 3859 return err; 3860 } 3861 } 3862 3863 err = vfs_quota_on_path(sb, type, format_id, &path); 3864 path_put(&path); 3865 return err; 3866 } 3867 3868 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3869 * acquiring the locks... As quota files are never truncated and quota code 3870 * itself serializes the operations (and noone else should touch the files) 3871 * we don't have to be afraid of races */ 3872 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3873 size_t len, loff_t off) 3874 { 3875 struct inode *inode = sb_dqopt(sb)->files[type]; 3876 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3877 int err = 0; 3878 int offset = off & (sb->s_blocksize - 1); 3879 int tocopy; 3880 size_t toread; 3881 struct buffer_head *bh; 3882 loff_t i_size = i_size_read(inode); 3883 3884 if (off > i_size) 3885 return 0; 3886 if (off+len > i_size) 3887 len = i_size-off; 3888 toread = len; 3889 while (toread > 0) { 3890 tocopy = sb->s_blocksize - offset < toread ? 3891 sb->s_blocksize - offset : toread; 3892 bh = ext4_bread(NULL, inode, blk, 0, &err); 3893 if (err) 3894 return err; 3895 if (!bh) /* A hole? */ 3896 memset(data, 0, tocopy); 3897 else 3898 memcpy(data, bh->b_data+offset, tocopy); 3899 brelse(bh); 3900 offset = 0; 3901 toread -= tocopy; 3902 data += tocopy; 3903 blk++; 3904 } 3905 return len; 3906 } 3907 3908 /* Write to quotafile (we know the transaction is already started and has 3909 * enough credits) */ 3910 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3911 const char *data, size_t len, loff_t off) 3912 { 3913 struct inode *inode = sb_dqopt(sb)->files[type]; 3914 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3915 int err = 0; 3916 int offset = off & (sb->s_blocksize - 1); 3917 int tocopy; 3918 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3919 size_t towrite = len; 3920 struct buffer_head *bh; 3921 handle_t *handle = journal_current_handle(); 3922 3923 if (EXT4_SB(sb)->s_journal && !handle) { 3924 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3925 " cancelled because transaction is not started", 3926 (unsigned long long)off, (unsigned long long)len); 3927 return -EIO; 3928 } 3929 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3930 while (towrite > 0) { 3931 tocopy = sb->s_blocksize - offset < towrite ? 3932 sb->s_blocksize - offset : towrite; 3933 bh = ext4_bread(handle, inode, blk, 1, &err); 3934 if (!bh) 3935 goto out; 3936 if (journal_quota) { 3937 err = ext4_journal_get_write_access(handle, bh); 3938 if (err) { 3939 brelse(bh); 3940 goto out; 3941 } 3942 } 3943 lock_buffer(bh); 3944 memcpy(bh->b_data+offset, data, tocopy); 3945 flush_dcache_page(bh->b_page); 3946 unlock_buffer(bh); 3947 if (journal_quota) 3948 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3949 else { 3950 /* Always do at least ordered writes for quotas */ 3951 err = ext4_jbd2_file_inode(handle, inode); 3952 mark_buffer_dirty(bh); 3953 } 3954 brelse(bh); 3955 if (err) 3956 goto out; 3957 offset = 0; 3958 towrite -= tocopy; 3959 data += tocopy; 3960 blk++; 3961 } 3962 out: 3963 if (len == towrite) { 3964 mutex_unlock(&inode->i_mutex); 3965 return err; 3966 } 3967 if (inode->i_size < off+len-towrite) { 3968 i_size_write(inode, off+len-towrite); 3969 EXT4_I(inode)->i_disksize = inode->i_size; 3970 } 3971 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3972 ext4_mark_inode_dirty(handle, inode); 3973 mutex_unlock(&inode->i_mutex); 3974 return len - towrite; 3975 } 3976 3977 #endif 3978 3979 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3980 const char *dev_name, void *data, struct vfsmount *mnt) 3981 { 3982 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3983 } 3984 3985 #if !defined(CONTIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 3986 static struct file_system_type ext2_fs_type = { 3987 .owner = THIS_MODULE, 3988 .name = "ext2", 3989 .get_sb = ext4_get_sb, 3990 .kill_sb = kill_block_super, 3991 .fs_flags = FS_REQUIRES_DEV, 3992 }; 3993 3994 static inline void register_as_ext2(void) 3995 { 3996 int err = register_filesystem(&ext2_fs_type); 3997 if (err) 3998 printk(KERN_WARNING 3999 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4000 } 4001 4002 static inline void unregister_as_ext2(void) 4003 { 4004 unregister_filesystem(&ext2_fs_type); 4005 } 4006 #else 4007 static inline void register_as_ext2(void) { } 4008 static inline void unregister_as_ext2(void) { } 4009 #endif 4010 4011 #if !defined(CONTIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4012 static struct file_system_type ext3_fs_type = { 4013 .owner = THIS_MODULE, 4014 .name = "ext3", 4015 .get_sb = ext4_get_sb, 4016 .kill_sb = kill_block_super, 4017 .fs_flags = FS_REQUIRES_DEV, 4018 }; 4019 4020 static inline void register_as_ext3(void) 4021 { 4022 int err = register_filesystem(&ext3_fs_type); 4023 if (err) 4024 printk(KERN_WARNING 4025 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4026 } 4027 4028 static inline void unregister_as_ext3(void) 4029 { 4030 unregister_filesystem(&ext3_fs_type); 4031 } 4032 #else 4033 static inline void register_as_ext3(void) { } 4034 static inline void unregister_as_ext3(void) { } 4035 #endif 4036 4037 static struct file_system_type ext4_fs_type = { 4038 .owner = THIS_MODULE, 4039 .name = "ext4", 4040 .get_sb = ext4_get_sb, 4041 .kill_sb = kill_block_super, 4042 .fs_flags = FS_REQUIRES_DEV, 4043 }; 4044 4045 static int __init init_ext4_fs(void) 4046 { 4047 int err; 4048 4049 err = init_ext4_system_zone(); 4050 if (err) 4051 return err; 4052 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4053 if (!ext4_kset) 4054 goto out4; 4055 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4056 err = init_ext4_mballoc(); 4057 if (err) 4058 goto out3; 4059 4060 err = init_ext4_xattr(); 4061 if (err) 4062 goto out2; 4063 err = init_inodecache(); 4064 if (err) 4065 goto out1; 4066 register_as_ext2(); 4067 register_as_ext3(); 4068 err = register_filesystem(&ext4_fs_type); 4069 if (err) 4070 goto out; 4071 return 0; 4072 out: 4073 unregister_as_ext2(); 4074 unregister_as_ext3(); 4075 destroy_inodecache(); 4076 out1: 4077 exit_ext4_xattr(); 4078 out2: 4079 exit_ext4_mballoc(); 4080 out3: 4081 remove_proc_entry("fs/ext4", NULL); 4082 kset_unregister(ext4_kset); 4083 out4: 4084 exit_ext4_system_zone(); 4085 return err; 4086 } 4087 4088 static void __exit exit_ext4_fs(void) 4089 { 4090 unregister_as_ext2(); 4091 unregister_as_ext3(); 4092 unregister_filesystem(&ext4_fs_type); 4093 destroy_inodecache(); 4094 exit_ext4_xattr(); 4095 exit_ext4_mballoc(); 4096 remove_proc_entry("fs/ext4", NULL); 4097 kset_unregister(ext4_kset); 4098 exit_ext4_system_zone(); 4099 } 4100 4101 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4102 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4103 MODULE_LICENSE("GPL"); 4104 module_init(init_ext4_fs) 4105 module_exit(exit_ext4_fs) 4106