1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 static struct inode *ext4_get_journal_inode(struct super_block *sb, 85 unsigned int journal_inum); 86 static int ext4_validate_options(struct fs_context *fc); 87 static int ext4_check_opt_consistency(struct fs_context *fc, 88 struct super_block *sb); 89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 91 static int ext4_get_tree(struct fs_context *fc); 92 static int ext4_reconfigure(struct fs_context *fc); 93 static void ext4_fc_free(struct fs_context *fc); 94 static int ext4_init_fs_context(struct fs_context *fc); 95 static void ext4_kill_sb(struct super_block *sb); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = ext4_kill_sb, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = ext4_kill_sb, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io, bool simu_fail) 164 { 165 if (simu_fail) { 166 clear_buffer_uptodate(bh); 167 unlock_buffer(bh); 168 return; 169 } 170 171 /* 172 * buffer's verified bit is no longer valid after reading from 173 * disk again due to write out error, clear it to make sure we 174 * recheck the buffer contents. 175 */ 176 clear_buffer_verified(bh); 177 178 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 179 get_bh(bh); 180 submit_bh(REQ_OP_READ | op_flags, bh); 181 } 182 183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 184 bh_end_io_t *end_io, bool simu_fail) 185 { 186 BUG_ON(!buffer_locked(bh)); 187 188 if (ext4_buffer_uptodate(bh)) { 189 unlock_buffer(bh); 190 return; 191 } 192 __ext4_read_bh(bh, op_flags, end_io, simu_fail); 193 } 194 195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 196 bh_end_io_t *end_io, bool simu_fail) 197 { 198 BUG_ON(!buffer_locked(bh)); 199 200 if (ext4_buffer_uptodate(bh)) { 201 unlock_buffer(bh); 202 return 0; 203 } 204 205 __ext4_read_bh(bh, op_flags, end_io, simu_fail); 206 207 wait_on_buffer(bh); 208 if (buffer_uptodate(bh)) 209 return 0; 210 return -EIO; 211 } 212 213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 214 { 215 lock_buffer(bh); 216 if (!wait) { 217 ext4_read_bh_nowait(bh, op_flags, NULL, false); 218 return 0; 219 } 220 return ext4_read_bh(bh, op_flags, NULL, false); 221 } 222 223 /* 224 * This works like __bread_gfp() except it uses ERR_PTR for error 225 * returns. Currently with sb_bread it's impossible to distinguish 226 * between ENOMEM and EIO situations (since both result in a NULL 227 * return. 228 */ 229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 230 sector_t block, 231 blk_opf_t op_flags, gfp_t gfp) 232 { 233 struct buffer_head *bh; 234 int ret; 235 236 bh = sb_getblk_gfp(sb, block, gfp); 237 if (bh == NULL) 238 return ERR_PTR(-ENOMEM); 239 if (ext4_buffer_uptodate(bh)) 240 return bh; 241 242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 243 if (ret) { 244 put_bh(bh); 245 return ERR_PTR(ret); 246 } 247 return bh; 248 } 249 250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 251 blk_opf_t op_flags) 252 { 253 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 254 ~__GFP_FS) | __GFP_MOVABLE; 255 256 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 257 } 258 259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 260 sector_t block) 261 { 262 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 263 ~__GFP_FS); 264 265 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 266 } 267 268 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 269 { 270 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 271 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 272 273 if (likely(bh)) { 274 if (trylock_buffer(bh)) 275 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false); 276 brelse(bh); 277 } 278 } 279 280 static int ext4_verify_csum_type(struct super_block *sb, 281 struct ext4_super_block *es) 282 { 283 if (!ext4_has_feature_metadata_csum(sb)) 284 return 1; 285 286 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 287 } 288 289 __le32 ext4_superblock_csum(struct ext4_super_block *es) 290 { 291 int offset = offsetof(struct ext4_super_block, s_checksum); 292 __u32 csum; 293 294 csum = ext4_chksum(~0, (char *)es, offset); 295 296 return cpu_to_le32(csum); 297 } 298 299 static int ext4_superblock_csum_verify(struct super_block *sb, 300 struct ext4_super_block *es) 301 { 302 if (!ext4_has_feature_metadata_csum(sb)) 303 return 1; 304 305 return es->s_checksum == ext4_superblock_csum(es); 306 } 307 308 void ext4_superblock_csum_set(struct super_block *sb) 309 { 310 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 311 312 if (!ext4_has_feature_metadata_csum(sb)) 313 return; 314 315 es->s_checksum = ext4_superblock_csum(es); 316 } 317 318 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 319 struct ext4_group_desc *bg) 320 { 321 return le32_to_cpu(bg->bg_block_bitmap_lo) | 322 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 323 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 324 } 325 326 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 327 struct ext4_group_desc *bg) 328 { 329 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 330 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 331 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 332 } 333 334 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 335 struct ext4_group_desc *bg) 336 { 337 return le32_to_cpu(bg->bg_inode_table_lo) | 338 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 339 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 340 } 341 342 __u32 ext4_free_group_clusters(struct super_block *sb, 343 struct ext4_group_desc *bg) 344 { 345 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 346 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 347 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 348 } 349 350 __u32 ext4_free_inodes_count(struct super_block *sb, 351 struct ext4_group_desc *bg) 352 { 353 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) | 354 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 355 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0); 356 } 357 358 __u32 ext4_used_dirs_count(struct super_block *sb, 359 struct ext4_group_desc *bg) 360 { 361 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 362 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 363 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 364 } 365 366 __u32 ext4_itable_unused_count(struct super_block *sb, 367 struct ext4_group_desc *bg) 368 { 369 return le16_to_cpu(bg->bg_itable_unused_lo) | 370 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 371 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 372 } 373 374 void ext4_block_bitmap_set(struct super_block *sb, 375 struct ext4_group_desc *bg, ext4_fsblk_t blk) 376 { 377 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 378 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 379 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 380 } 381 382 void ext4_inode_bitmap_set(struct super_block *sb, 383 struct ext4_group_desc *bg, ext4_fsblk_t blk) 384 { 385 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 386 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 387 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 388 } 389 390 void ext4_inode_table_set(struct super_block *sb, 391 struct ext4_group_desc *bg, ext4_fsblk_t blk) 392 { 393 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 394 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 395 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 396 } 397 398 void ext4_free_group_clusters_set(struct super_block *sb, 399 struct ext4_group_desc *bg, __u32 count) 400 { 401 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 402 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 403 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 404 } 405 406 void ext4_free_inodes_set(struct super_block *sb, 407 struct ext4_group_desc *bg, __u32 count) 408 { 409 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count)); 410 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 411 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16)); 412 } 413 414 void ext4_used_dirs_set(struct super_block *sb, 415 struct ext4_group_desc *bg, __u32 count) 416 { 417 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 418 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 419 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 420 } 421 422 void ext4_itable_unused_set(struct super_block *sb, 423 struct ext4_group_desc *bg, __u32 count) 424 { 425 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 426 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 427 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 428 } 429 430 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 431 { 432 now = clamp_val(now, 0, (1ull << 40) - 1); 433 434 *lo = cpu_to_le32(lower_32_bits(now)); 435 *hi = upper_32_bits(now); 436 } 437 438 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 439 { 440 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 441 } 442 #define ext4_update_tstamp(es, tstamp) \ 443 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 444 ktime_get_real_seconds()) 445 #define ext4_get_tstamp(es, tstamp) \ 446 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 447 448 /* 449 * The ext4_maybe_update_superblock() function checks and updates the 450 * superblock if needed. 451 * 452 * This function is designed to update the on-disk superblock only under 453 * certain conditions to prevent excessive disk writes and unnecessary 454 * waking of the disk from sleep. The superblock will be updated if: 455 * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last 456 * superblock update 457 * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the 458 * last superblock update. 459 * 460 * @sb: The superblock 461 */ 462 static void ext4_maybe_update_superblock(struct super_block *sb) 463 { 464 struct ext4_sb_info *sbi = EXT4_SB(sb); 465 struct ext4_super_block *es = sbi->s_es; 466 journal_t *journal = sbi->s_journal; 467 time64_t now; 468 __u64 last_update; 469 __u64 lifetime_write_kbytes; 470 __u64 diff_size; 471 472 if (ext4_emergency_state(sb) || sb_rdonly(sb) || 473 !(sb->s_flags & SB_ACTIVE) || !journal || 474 journal->j_flags & JBD2_UNMOUNT) 475 return; 476 477 now = ktime_get_real_seconds(); 478 last_update = ext4_get_tstamp(es, s_wtime); 479 480 if (likely(now - last_update < sbi->s_sb_update_sec)) 481 return; 482 483 lifetime_write_kbytes = sbi->s_kbytes_written + 484 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 485 sbi->s_sectors_written_start) >> 1); 486 487 /* Get the number of kilobytes not written to disk to account 488 * for statistics and compare with a multiple of 16 MB. This 489 * is used to determine when the next superblock commit should 490 * occur (i.e. not more often than once per 16MB if there was 491 * less written in an hour). 492 */ 493 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 494 495 if (diff_size > sbi->s_sb_update_kb) 496 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 497 } 498 499 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 500 { 501 struct super_block *sb = journal->j_private; 502 503 BUG_ON(txn->t_state == T_FINISHED); 504 505 ext4_process_freed_data(sb, txn->t_tid); 506 ext4_maybe_update_superblock(sb); 507 } 508 509 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode, 510 struct folio *folio) 511 { 512 struct buffer_head *bh, *head; 513 struct journal_head *jh; 514 515 bh = head = folio_buffers(folio); 516 do { 517 /* 518 * We have to redirty a page in these cases: 519 * 1) If buffer is dirty, it means the page was dirty because it 520 * contains a buffer that needs checkpointing. So the dirty bit 521 * needs to be preserved so that checkpointing writes the buffer 522 * properly. 523 * 2) If buffer is not part of the committing transaction 524 * (we may have just accidentally come across this buffer because 525 * inode range tracking is not exact) or if the currently running 526 * transaction already contains this buffer as well, dirty bit 527 * needs to be preserved so that the buffer gets writeprotected 528 * properly on running transaction's commit. 529 */ 530 jh = bh2jh(bh); 531 if (buffer_dirty(bh) || 532 (jh && (jh->b_transaction != jinode->i_transaction || 533 jh->b_next_transaction))) 534 return true; 535 } while ((bh = bh->b_this_page) != head); 536 537 return false; 538 } 539 540 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 541 { 542 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 543 struct writeback_control wbc = { 544 .sync_mode = WB_SYNC_ALL, 545 .nr_to_write = LONG_MAX, 546 .range_start = jinode->i_dirty_start, 547 .range_end = jinode->i_dirty_end, 548 }; 549 struct folio *folio = NULL; 550 int error; 551 552 /* 553 * writeback_iter() already checks for dirty pages and calls 554 * folio_clear_dirty_for_io(), which we want to write protect the 555 * folios. 556 * 557 * However, we may have to redirty a folio sometimes. 558 */ 559 while ((folio = writeback_iter(mapping, &wbc, folio, &error))) { 560 if (ext4_journalled_writepage_needs_redirty(jinode, folio)) 561 folio_redirty_for_writepage(&wbc, folio); 562 folio_unlock(folio); 563 } 564 565 return error; 566 } 567 568 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 569 { 570 int ret; 571 572 if (ext4_should_journal_data(jinode->i_vfs_inode)) 573 ret = ext4_journalled_submit_inode_data_buffers(jinode); 574 else 575 ret = ext4_normal_submit_inode_data_buffers(jinode); 576 return ret; 577 } 578 579 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 580 { 581 int ret = 0; 582 583 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 584 ret = jbd2_journal_finish_inode_data_buffers(jinode); 585 586 return ret; 587 } 588 589 static bool system_going_down(void) 590 { 591 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 592 || system_state == SYSTEM_RESTART; 593 } 594 595 struct ext4_err_translation { 596 int code; 597 int errno; 598 }; 599 600 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 601 602 static struct ext4_err_translation err_translation[] = { 603 EXT4_ERR_TRANSLATE(EIO), 604 EXT4_ERR_TRANSLATE(ENOMEM), 605 EXT4_ERR_TRANSLATE(EFSBADCRC), 606 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 607 EXT4_ERR_TRANSLATE(ENOSPC), 608 EXT4_ERR_TRANSLATE(ENOKEY), 609 EXT4_ERR_TRANSLATE(EROFS), 610 EXT4_ERR_TRANSLATE(EFBIG), 611 EXT4_ERR_TRANSLATE(EEXIST), 612 EXT4_ERR_TRANSLATE(ERANGE), 613 EXT4_ERR_TRANSLATE(EOVERFLOW), 614 EXT4_ERR_TRANSLATE(EBUSY), 615 EXT4_ERR_TRANSLATE(ENOTDIR), 616 EXT4_ERR_TRANSLATE(ENOTEMPTY), 617 EXT4_ERR_TRANSLATE(ESHUTDOWN), 618 EXT4_ERR_TRANSLATE(EFAULT), 619 }; 620 621 static int ext4_errno_to_code(int errno) 622 { 623 int i; 624 625 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 626 if (err_translation[i].errno == errno) 627 return err_translation[i].code; 628 return EXT4_ERR_UNKNOWN; 629 } 630 631 static void save_error_info(struct super_block *sb, int error, 632 __u32 ino, __u64 block, 633 const char *func, unsigned int line) 634 { 635 struct ext4_sb_info *sbi = EXT4_SB(sb); 636 637 /* We default to EFSCORRUPTED error... */ 638 if (error == 0) 639 error = EFSCORRUPTED; 640 641 spin_lock(&sbi->s_error_lock); 642 sbi->s_add_error_count++; 643 sbi->s_last_error_code = error; 644 sbi->s_last_error_line = line; 645 sbi->s_last_error_ino = ino; 646 sbi->s_last_error_block = block; 647 sbi->s_last_error_func = func; 648 sbi->s_last_error_time = ktime_get_real_seconds(); 649 if (!sbi->s_first_error_time) { 650 sbi->s_first_error_code = error; 651 sbi->s_first_error_line = line; 652 sbi->s_first_error_ino = ino; 653 sbi->s_first_error_block = block; 654 sbi->s_first_error_func = func; 655 sbi->s_first_error_time = sbi->s_last_error_time; 656 } 657 spin_unlock(&sbi->s_error_lock); 658 } 659 660 /* Deal with the reporting of failure conditions on a filesystem such as 661 * inconsistencies detected or read IO failures. 662 * 663 * On ext2, we can store the error state of the filesystem in the 664 * superblock. That is not possible on ext4, because we may have other 665 * write ordering constraints on the superblock which prevent us from 666 * writing it out straight away; and given that the journal is about to 667 * be aborted, we can't rely on the current, or future, transactions to 668 * write out the superblock safely. 669 * 670 * We'll just use the jbd2_journal_abort() error code to record an error in 671 * the journal instead. On recovery, the journal will complain about 672 * that error until we've noted it down and cleared it. 673 * 674 * If force_ro is set, we unconditionally force the filesystem into an 675 * ABORT|READONLY state, unless the error response on the fs has been set to 676 * panic in which case we take the easy way out and panic immediately. This is 677 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 678 * at a critical moment in log management. 679 */ 680 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 681 __u32 ino, __u64 block, 682 const char *func, unsigned int line) 683 { 684 journal_t *journal = EXT4_SB(sb)->s_journal; 685 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 686 687 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 688 if (test_opt(sb, WARN_ON_ERROR)) 689 WARN_ON_ONCE(1); 690 691 if (!continue_fs && !ext4_emergency_ro(sb) && journal) 692 jbd2_journal_abort(journal, -EIO); 693 694 if (!bdev_read_only(sb->s_bdev)) { 695 save_error_info(sb, error, ino, block, func, line); 696 /* 697 * In case the fs should keep running, we need to writeout 698 * superblock through the journal. Due to lock ordering 699 * constraints, it may not be safe to do it right here so we 700 * defer superblock flushing to a workqueue. We just need to be 701 * careful when the journal is already shutting down. If we get 702 * here in that case, just update the sb directly as the last 703 * transaction won't commit anyway. 704 */ 705 if (continue_fs && journal && 706 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY)) 707 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 708 else 709 ext4_commit_super(sb); 710 } 711 712 /* 713 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 714 * could panic during 'reboot -f' as the underlying device got already 715 * disabled. 716 */ 717 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 718 panic("EXT4-fs (device %s): panic forced after error\n", 719 sb->s_id); 720 } 721 722 if (ext4_emergency_ro(sb) || continue_fs) 723 return; 724 725 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 726 /* 727 * We don't set SB_RDONLY because that requires sb->s_umount 728 * semaphore and setting it without proper remount procedure is 729 * confusing code such as freeze_super() leading to deadlocks 730 * and other problems. 731 */ 732 set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags); 733 } 734 735 static void update_super_work(struct work_struct *work) 736 { 737 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 738 s_sb_upd_work); 739 journal_t *journal = sbi->s_journal; 740 handle_t *handle; 741 742 /* 743 * If the journal is still running, we have to write out superblock 744 * through the journal to avoid collisions of other journalled sb 745 * updates. 746 * 747 * We use directly jbd2 functions here to avoid recursing back into 748 * ext4 error handling code during handling of previous errors. 749 */ 750 if (!ext4_emergency_state(sbi->s_sb) && 751 !sb_rdonly(sbi->s_sb) && journal) { 752 struct buffer_head *sbh = sbi->s_sbh; 753 bool call_notify_err = false; 754 755 handle = jbd2_journal_start(journal, 1); 756 if (IS_ERR(handle)) 757 goto write_directly; 758 if (jbd2_journal_get_write_access(handle, sbh)) { 759 jbd2_journal_stop(handle); 760 goto write_directly; 761 } 762 763 if (sbi->s_add_error_count > 0) 764 call_notify_err = true; 765 766 ext4_update_super(sbi->s_sb); 767 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 768 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 769 "superblock detected"); 770 clear_buffer_write_io_error(sbh); 771 set_buffer_uptodate(sbh); 772 } 773 774 if (jbd2_journal_dirty_metadata(handle, sbh)) { 775 jbd2_journal_stop(handle); 776 goto write_directly; 777 } 778 jbd2_journal_stop(handle); 779 780 if (call_notify_err) 781 ext4_notify_error_sysfs(sbi); 782 783 return; 784 } 785 write_directly: 786 /* 787 * Write through journal failed. Write sb directly to get error info 788 * out and hope for the best. 789 */ 790 ext4_commit_super(sbi->s_sb); 791 ext4_notify_error_sysfs(sbi); 792 } 793 794 #define ext4_error_ratelimit(sb) \ 795 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 796 "EXT4-fs error") 797 798 void __ext4_error(struct super_block *sb, const char *function, 799 unsigned int line, bool force_ro, int error, __u64 block, 800 const char *fmt, ...) 801 { 802 struct va_format vaf; 803 va_list args; 804 805 if (unlikely(ext4_emergency_state(sb))) 806 return; 807 808 trace_ext4_error(sb, function, line); 809 if (ext4_error_ratelimit(sb)) { 810 va_start(args, fmt); 811 vaf.fmt = fmt; 812 vaf.va = &args; 813 printk(KERN_CRIT 814 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 815 sb->s_id, function, line, current->comm, &vaf); 816 va_end(args); 817 } 818 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 819 820 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 821 } 822 823 void __ext4_error_inode(struct inode *inode, const char *function, 824 unsigned int line, ext4_fsblk_t block, int error, 825 const char *fmt, ...) 826 { 827 va_list args; 828 struct va_format vaf; 829 830 if (unlikely(ext4_emergency_state(inode->i_sb))) 831 return; 832 833 trace_ext4_error(inode->i_sb, function, line); 834 if (ext4_error_ratelimit(inode->i_sb)) { 835 va_start(args, fmt); 836 vaf.fmt = fmt; 837 vaf.va = &args; 838 if (block) 839 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 840 "inode #%lu: block %llu: comm %s: %pV\n", 841 inode->i_sb->s_id, function, line, inode->i_ino, 842 block, current->comm, &vaf); 843 else 844 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 845 "inode #%lu: comm %s: %pV\n", 846 inode->i_sb->s_id, function, line, inode->i_ino, 847 current->comm, &vaf); 848 va_end(args); 849 } 850 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 851 852 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 853 function, line); 854 } 855 856 void __ext4_error_file(struct file *file, const char *function, 857 unsigned int line, ext4_fsblk_t block, 858 const char *fmt, ...) 859 { 860 va_list args; 861 struct va_format vaf; 862 struct inode *inode = file_inode(file); 863 char pathname[80], *path; 864 865 if (unlikely(ext4_emergency_state(inode->i_sb))) 866 return; 867 868 trace_ext4_error(inode->i_sb, function, line); 869 if (ext4_error_ratelimit(inode->i_sb)) { 870 path = file_path(file, pathname, sizeof(pathname)); 871 if (IS_ERR(path)) 872 path = "(unknown)"; 873 va_start(args, fmt); 874 vaf.fmt = fmt; 875 vaf.va = &args; 876 if (block) 877 printk(KERN_CRIT 878 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 879 "block %llu: comm %s: path %s: %pV\n", 880 inode->i_sb->s_id, function, line, inode->i_ino, 881 block, current->comm, path, &vaf); 882 else 883 printk(KERN_CRIT 884 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 885 "comm %s: path %s: %pV\n", 886 inode->i_sb->s_id, function, line, inode->i_ino, 887 current->comm, path, &vaf); 888 va_end(args); 889 } 890 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 891 892 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 893 function, line); 894 } 895 896 const char *ext4_decode_error(struct super_block *sb, int errno, 897 char nbuf[16]) 898 { 899 char *errstr = NULL; 900 901 switch (errno) { 902 case -EFSCORRUPTED: 903 errstr = "Corrupt filesystem"; 904 break; 905 case -EFSBADCRC: 906 errstr = "Filesystem failed CRC"; 907 break; 908 case -EIO: 909 errstr = "IO failure"; 910 break; 911 case -ENOMEM: 912 errstr = "Out of memory"; 913 break; 914 case -EROFS: 915 if (!sb || (EXT4_SB(sb)->s_journal && 916 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 917 errstr = "Journal has aborted"; 918 else 919 errstr = "Readonly filesystem"; 920 break; 921 default: 922 /* If the caller passed in an extra buffer for unknown 923 * errors, textualise them now. Else we just return 924 * NULL. */ 925 if (nbuf) { 926 /* Check for truncated error codes... */ 927 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 928 errstr = nbuf; 929 } 930 break; 931 } 932 933 return errstr; 934 } 935 936 /* __ext4_std_error decodes expected errors from journaling functions 937 * automatically and invokes the appropriate error response. */ 938 939 void __ext4_std_error(struct super_block *sb, const char *function, 940 unsigned int line, int errno) 941 { 942 char nbuf[16]; 943 const char *errstr; 944 945 if (unlikely(ext4_emergency_state(sb))) 946 return; 947 948 /* Special case: if the error is EROFS, and we're not already 949 * inside a transaction, then there's really no point in logging 950 * an error. */ 951 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 952 return; 953 954 if (ext4_error_ratelimit(sb)) { 955 errstr = ext4_decode_error(sb, errno, nbuf); 956 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 957 sb->s_id, function, line, errstr); 958 } 959 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 960 961 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 962 } 963 964 void __ext4_msg(struct super_block *sb, 965 const char *prefix, const char *fmt, ...) 966 { 967 struct va_format vaf; 968 va_list args; 969 970 if (sb) { 971 atomic_inc(&EXT4_SB(sb)->s_msg_count); 972 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 973 "EXT4-fs")) 974 return; 975 } 976 977 va_start(args, fmt); 978 vaf.fmt = fmt; 979 vaf.va = &args; 980 if (sb) 981 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 982 else 983 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 984 va_end(args); 985 } 986 987 static int ext4_warning_ratelimit(struct super_block *sb) 988 { 989 atomic_inc(&EXT4_SB(sb)->s_warning_count); 990 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 991 "EXT4-fs warning"); 992 } 993 994 void __ext4_warning(struct super_block *sb, const char *function, 995 unsigned int line, const char *fmt, ...) 996 { 997 struct va_format vaf; 998 va_list args; 999 1000 if (!ext4_warning_ratelimit(sb)) 1001 return; 1002 1003 va_start(args, fmt); 1004 vaf.fmt = fmt; 1005 vaf.va = &args; 1006 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1007 sb->s_id, function, line, &vaf); 1008 va_end(args); 1009 } 1010 1011 void __ext4_warning_inode(const struct inode *inode, const char *function, 1012 unsigned int line, const char *fmt, ...) 1013 { 1014 struct va_format vaf; 1015 va_list args; 1016 1017 if (!ext4_warning_ratelimit(inode->i_sb)) 1018 return; 1019 1020 va_start(args, fmt); 1021 vaf.fmt = fmt; 1022 vaf.va = &args; 1023 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1024 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1025 function, line, inode->i_ino, current->comm, &vaf); 1026 va_end(args); 1027 } 1028 1029 void __ext4_grp_locked_error(const char *function, unsigned int line, 1030 struct super_block *sb, ext4_group_t grp, 1031 unsigned long ino, ext4_fsblk_t block, 1032 const char *fmt, ...) 1033 __releases(bitlock) 1034 __acquires(bitlock) 1035 { 1036 struct va_format vaf; 1037 va_list args; 1038 1039 if (unlikely(ext4_emergency_state(sb))) 1040 return; 1041 1042 trace_ext4_error(sb, function, line); 1043 if (ext4_error_ratelimit(sb)) { 1044 va_start(args, fmt); 1045 vaf.fmt = fmt; 1046 vaf.va = &args; 1047 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1048 sb->s_id, function, line, grp); 1049 if (ino) 1050 printk(KERN_CONT "inode %lu: ", ino); 1051 if (block) 1052 printk(KERN_CONT "block %llu:", 1053 (unsigned long long) block); 1054 printk(KERN_CONT "%pV\n", &vaf); 1055 va_end(args); 1056 } 1057 1058 if (test_opt(sb, ERRORS_CONT)) { 1059 if (test_opt(sb, WARN_ON_ERROR)) 1060 WARN_ON_ONCE(1); 1061 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1062 if (!bdev_read_only(sb->s_bdev)) { 1063 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1064 line); 1065 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1066 } 1067 return; 1068 } 1069 ext4_unlock_group(sb, grp); 1070 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1071 /* 1072 * We only get here in the ERRORS_RO case; relocking the group 1073 * may be dangerous, but nothing bad will happen since the 1074 * filesystem will have already been marked read/only and the 1075 * journal has been aborted. We return 1 as a hint to callers 1076 * who might what to use the return value from 1077 * ext4_grp_locked_error() to distinguish between the 1078 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1079 * aggressively from the ext4 function in question, with a 1080 * more appropriate error code. 1081 */ 1082 ext4_lock_group(sb, grp); 1083 return; 1084 } 1085 1086 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1087 ext4_group_t group, 1088 unsigned int flags) 1089 { 1090 struct ext4_sb_info *sbi = EXT4_SB(sb); 1091 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1092 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1093 int ret; 1094 1095 if (!grp || !gdp) 1096 return; 1097 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1098 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1099 &grp->bb_state); 1100 if (!ret) 1101 percpu_counter_sub(&sbi->s_freeclusters_counter, 1102 grp->bb_free); 1103 } 1104 1105 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1106 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1107 &grp->bb_state); 1108 if (!ret && gdp) { 1109 int count; 1110 1111 count = ext4_free_inodes_count(sb, gdp); 1112 percpu_counter_sub(&sbi->s_freeinodes_counter, 1113 count); 1114 } 1115 } 1116 } 1117 1118 void ext4_update_dynamic_rev(struct super_block *sb) 1119 { 1120 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1121 1122 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1123 return; 1124 1125 ext4_warning(sb, 1126 "updating to rev %d because of new feature flag, " 1127 "running e2fsck is recommended", 1128 EXT4_DYNAMIC_REV); 1129 1130 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1131 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1132 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1133 /* leave es->s_feature_*compat flags alone */ 1134 /* es->s_uuid will be set by e2fsck if empty */ 1135 1136 /* 1137 * The rest of the superblock fields should be zero, and if not it 1138 * means they are likely already in use, so leave them alone. We 1139 * can leave it up to e2fsck to clean up any inconsistencies there. 1140 */ 1141 } 1142 1143 static inline struct inode *orphan_list_entry(struct list_head *l) 1144 { 1145 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1146 } 1147 1148 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1149 { 1150 struct list_head *l; 1151 1152 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1153 le32_to_cpu(sbi->s_es->s_last_orphan)); 1154 1155 printk(KERN_ERR "sb_info orphan list:\n"); 1156 list_for_each(l, &sbi->s_orphan) { 1157 struct inode *inode = orphan_list_entry(l); 1158 printk(KERN_ERR " " 1159 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1160 inode->i_sb->s_id, inode->i_ino, inode, 1161 inode->i_mode, inode->i_nlink, 1162 NEXT_ORPHAN(inode)); 1163 } 1164 } 1165 1166 #ifdef CONFIG_QUOTA 1167 static int ext4_quota_off(struct super_block *sb, int type); 1168 1169 static inline void ext4_quotas_off(struct super_block *sb, int type) 1170 { 1171 BUG_ON(type > EXT4_MAXQUOTAS); 1172 1173 /* Use our quota_off function to clear inode flags etc. */ 1174 for (type--; type >= 0; type--) 1175 ext4_quota_off(sb, type); 1176 } 1177 1178 /* 1179 * This is a helper function which is used in the mount/remount 1180 * codepaths (which holds s_umount) to fetch the quota file name. 1181 */ 1182 static inline char *get_qf_name(struct super_block *sb, 1183 struct ext4_sb_info *sbi, 1184 int type) 1185 { 1186 return rcu_dereference_protected(sbi->s_qf_names[type], 1187 lockdep_is_held(&sb->s_umount)); 1188 } 1189 #else 1190 static inline void ext4_quotas_off(struct super_block *sb, int type) 1191 { 1192 } 1193 #endif 1194 1195 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1196 { 1197 ext4_fsblk_t block; 1198 int err; 1199 1200 block = ext4_count_free_clusters(sbi->s_sb); 1201 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1202 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1203 GFP_KERNEL); 1204 if (!err) { 1205 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1206 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1207 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1208 GFP_KERNEL); 1209 } 1210 if (!err) 1211 err = percpu_counter_init(&sbi->s_dirs_counter, 1212 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1213 if (!err) 1214 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1215 GFP_KERNEL); 1216 if (!err) 1217 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1218 GFP_KERNEL); 1219 if (!err) 1220 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1221 1222 if (err) 1223 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1224 1225 return err; 1226 } 1227 1228 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1229 { 1230 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1231 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1232 percpu_counter_destroy(&sbi->s_dirs_counter); 1233 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1234 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1235 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1236 } 1237 1238 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1239 { 1240 struct buffer_head **group_desc; 1241 int i; 1242 1243 rcu_read_lock(); 1244 group_desc = rcu_dereference(sbi->s_group_desc); 1245 for (i = 0; i < sbi->s_gdb_count; i++) 1246 brelse(group_desc[i]); 1247 kvfree(group_desc); 1248 rcu_read_unlock(); 1249 } 1250 1251 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1252 { 1253 struct flex_groups **flex_groups; 1254 int i; 1255 1256 rcu_read_lock(); 1257 flex_groups = rcu_dereference(sbi->s_flex_groups); 1258 if (flex_groups) { 1259 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1260 kvfree(flex_groups[i]); 1261 kvfree(flex_groups); 1262 } 1263 rcu_read_unlock(); 1264 } 1265 1266 static void ext4_put_super(struct super_block *sb) 1267 { 1268 struct ext4_sb_info *sbi = EXT4_SB(sb); 1269 struct ext4_super_block *es = sbi->s_es; 1270 int aborted = 0; 1271 int err; 1272 1273 /* 1274 * Unregister sysfs before destroying jbd2 journal. 1275 * Since we could still access attr_journal_task attribute via sysfs 1276 * path which could have sbi->s_journal->j_task as NULL 1277 * Unregister sysfs before flush sbi->s_sb_upd_work. 1278 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1279 * read metadata verify failed then will queue error work. 1280 * update_super_work will call start_this_handle may trigger 1281 * BUG_ON. 1282 */ 1283 ext4_unregister_sysfs(sb); 1284 1285 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1286 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1287 &sb->s_uuid); 1288 1289 ext4_unregister_li_request(sb); 1290 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1291 1292 destroy_workqueue(sbi->rsv_conversion_wq); 1293 ext4_release_orphan_info(sb); 1294 1295 if (sbi->s_journal) { 1296 aborted = is_journal_aborted(sbi->s_journal); 1297 err = ext4_journal_destroy(sbi, sbi->s_journal); 1298 if ((err < 0) && !aborted) { 1299 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1300 } 1301 } else 1302 flush_work(&sbi->s_sb_upd_work); 1303 1304 ext4_es_unregister_shrinker(sbi); 1305 timer_shutdown_sync(&sbi->s_err_report); 1306 ext4_release_system_zone(sb); 1307 ext4_mb_release(sb); 1308 ext4_ext_release(sb); 1309 1310 if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) { 1311 if (!aborted) { 1312 ext4_clear_feature_journal_needs_recovery(sb); 1313 ext4_clear_feature_orphan_present(sb); 1314 es->s_state = cpu_to_le16(sbi->s_mount_state); 1315 } 1316 ext4_commit_super(sb); 1317 } 1318 1319 ext4_group_desc_free(sbi); 1320 ext4_flex_groups_free(sbi); 1321 1322 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) && 1323 percpu_counter_sum(&sbi->s_dirtyclusters_counter)); 1324 ext4_percpu_param_destroy(sbi); 1325 #ifdef CONFIG_QUOTA 1326 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1327 kfree(get_qf_name(sb, sbi, i)); 1328 #endif 1329 1330 /* Debugging code just in case the in-memory inode orphan list 1331 * isn't empty. The on-disk one can be non-empty if we've 1332 * detected an error and taken the fs readonly, but the 1333 * in-memory list had better be clean by this point. */ 1334 if (!list_empty(&sbi->s_orphan)) 1335 dump_orphan_list(sb, sbi); 1336 ASSERT(list_empty(&sbi->s_orphan)); 1337 1338 sync_blockdev(sb->s_bdev); 1339 invalidate_bdev(sb->s_bdev); 1340 if (sbi->s_journal_bdev_file) { 1341 /* 1342 * Invalidate the journal device's buffers. We don't want them 1343 * floating about in memory - the physical journal device may 1344 * hotswapped, and it breaks the `ro-after' testing code. 1345 */ 1346 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1347 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1348 } 1349 1350 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1351 sbi->s_ea_inode_cache = NULL; 1352 1353 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1354 sbi->s_ea_block_cache = NULL; 1355 1356 ext4_stop_mmpd(sbi); 1357 1358 brelse(sbi->s_sbh); 1359 sb->s_fs_info = NULL; 1360 /* 1361 * Now that we are completely done shutting down the 1362 * superblock, we need to actually destroy the kobject. 1363 */ 1364 kobject_put(&sbi->s_kobj); 1365 wait_for_completion(&sbi->s_kobj_unregister); 1366 kfree(sbi->s_blockgroup_lock); 1367 fs_put_dax(sbi->s_daxdev, NULL); 1368 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1369 #if IS_ENABLED(CONFIG_UNICODE) 1370 utf8_unload(sb->s_encoding); 1371 #endif 1372 kfree(sbi); 1373 } 1374 1375 static struct kmem_cache *ext4_inode_cachep; 1376 1377 /* 1378 * Called inside transaction, so use GFP_NOFS 1379 */ 1380 static struct inode *ext4_alloc_inode(struct super_block *sb) 1381 { 1382 struct ext4_inode_info *ei; 1383 1384 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1385 if (!ei) 1386 return NULL; 1387 1388 inode_set_iversion(&ei->vfs_inode, 1); 1389 ei->i_flags = 0; 1390 spin_lock_init(&ei->i_raw_lock); 1391 ei->i_prealloc_node = RB_ROOT; 1392 atomic_set(&ei->i_prealloc_active, 0); 1393 rwlock_init(&ei->i_prealloc_lock); 1394 ext4_es_init_tree(&ei->i_es_tree); 1395 rwlock_init(&ei->i_es_lock); 1396 INIT_LIST_HEAD(&ei->i_es_list); 1397 ei->i_es_all_nr = 0; 1398 ei->i_es_shk_nr = 0; 1399 ei->i_es_shrink_lblk = 0; 1400 ei->i_reserved_data_blocks = 0; 1401 spin_lock_init(&(ei->i_block_reservation_lock)); 1402 ext4_init_pending_tree(&ei->i_pending_tree); 1403 #ifdef CONFIG_QUOTA 1404 ei->i_reserved_quota = 0; 1405 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1406 #endif 1407 ei->jinode = NULL; 1408 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1409 spin_lock_init(&ei->i_completed_io_lock); 1410 ei->i_sync_tid = 0; 1411 ei->i_datasync_tid = 0; 1412 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1413 ext4_fc_init_inode(&ei->vfs_inode); 1414 spin_lock_init(&ei->i_fc_lock); 1415 return &ei->vfs_inode; 1416 } 1417 1418 static int ext4_drop_inode(struct inode *inode) 1419 { 1420 int drop = generic_drop_inode(inode); 1421 1422 if (!drop) 1423 drop = fscrypt_drop_inode(inode); 1424 1425 trace_ext4_drop_inode(inode, drop); 1426 return drop; 1427 } 1428 1429 static void ext4_free_in_core_inode(struct inode *inode) 1430 { 1431 fscrypt_free_inode(inode); 1432 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1433 pr_warn("%s: inode %ld still in fc list", 1434 __func__, inode->i_ino); 1435 } 1436 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1437 } 1438 1439 static void ext4_destroy_inode(struct inode *inode) 1440 { 1441 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1442 ext4_msg(inode->i_sb, KERN_ERR, 1443 "Inode %lu (%p): orphan list check failed!", 1444 inode->i_ino, EXT4_I(inode)); 1445 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1446 EXT4_I(inode), sizeof(struct ext4_inode_info), 1447 true); 1448 dump_stack(); 1449 } 1450 1451 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) && 1452 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks)) 1453 ext4_msg(inode->i_sb, KERN_ERR, 1454 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1455 inode->i_ino, EXT4_I(inode), 1456 EXT4_I(inode)->i_reserved_data_blocks); 1457 } 1458 1459 static void ext4_shutdown(struct super_block *sb) 1460 { 1461 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1462 } 1463 1464 static void init_once(void *foo) 1465 { 1466 struct ext4_inode_info *ei = foo; 1467 1468 INIT_LIST_HEAD(&ei->i_orphan); 1469 init_rwsem(&ei->xattr_sem); 1470 init_rwsem(&ei->i_data_sem); 1471 inode_init_once(&ei->vfs_inode); 1472 ext4_fc_init_inode(&ei->vfs_inode); 1473 } 1474 1475 static int __init init_inodecache(void) 1476 { 1477 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1478 sizeof(struct ext4_inode_info), 0, 1479 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1480 offsetof(struct ext4_inode_info, i_data), 1481 sizeof_field(struct ext4_inode_info, i_data), 1482 init_once); 1483 if (ext4_inode_cachep == NULL) 1484 return -ENOMEM; 1485 return 0; 1486 } 1487 1488 static void destroy_inodecache(void) 1489 { 1490 /* 1491 * Make sure all delayed rcu free inodes are flushed before we 1492 * destroy cache. 1493 */ 1494 rcu_barrier(); 1495 kmem_cache_destroy(ext4_inode_cachep); 1496 } 1497 1498 void ext4_clear_inode(struct inode *inode) 1499 { 1500 ext4_fc_del(inode); 1501 invalidate_inode_buffers(inode); 1502 clear_inode(inode); 1503 ext4_discard_preallocations(inode); 1504 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1505 dquot_drop(inode); 1506 if (EXT4_I(inode)->jinode) { 1507 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1508 EXT4_I(inode)->jinode); 1509 jbd2_free_inode(EXT4_I(inode)->jinode); 1510 EXT4_I(inode)->jinode = NULL; 1511 } 1512 fscrypt_put_encryption_info(inode); 1513 fsverity_cleanup_inode(inode); 1514 } 1515 1516 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1517 u64 ino, u32 generation) 1518 { 1519 struct inode *inode; 1520 1521 /* 1522 * Currently we don't know the generation for parent directory, so 1523 * a generation of 0 means "accept any" 1524 */ 1525 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1526 if (IS_ERR(inode)) 1527 return ERR_CAST(inode); 1528 if (generation && inode->i_generation != generation) { 1529 iput(inode); 1530 return ERR_PTR(-ESTALE); 1531 } 1532 1533 return inode; 1534 } 1535 1536 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1537 int fh_len, int fh_type) 1538 { 1539 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1540 ext4_nfs_get_inode); 1541 } 1542 1543 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1544 int fh_len, int fh_type) 1545 { 1546 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1547 ext4_nfs_get_inode); 1548 } 1549 1550 static int ext4_nfs_commit_metadata(struct inode *inode) 1551 { 1552 struct writeback_control wbc = { 1553 .sync_mode = WB_SYNC_ALL 1554 }; 1555 1556 trace_ext4_nfs_commit_metadata(inode); 1557 return ext4_write_inode(inode, &wbc); 1558 } 1559 1560 #ifdef CONFIG_QUOTA 1561 static const char * const quotatypes[] = INITQFNAMES; 1562 #define QTYPE2NAME(t) (quotatypes[t]) 1563 1564 static int ext4_write_dquot(struct dquot *dquot); 1565 static int ext4_acquire_dquot(struct dquot *dquot); 1566 static int ext4_release_dquot(struct dquot *dquot); 1567 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1568 static int ext4_write_info(struct super_block *sb, int type); 1569 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1570 const struct path *path); 1571 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1572 size_t len, loff_t off); 1573 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1574 const char *data, size_t len, loff_t off); 1575 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1576 unsigned int flags); 1577 1578 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1579 { 1580 return EXT4_I(inode)->i_dquot; 1581 } 1582 1583 static const struct dquot_operations ext4_quota_operations = { 1584 .get_reserved_space = ext4_get_reserved_space, 1585 .write_dquot = ext4_write_dquot, 1586 .acquire_dquot = ext4_acquire_dquot, 1587 .release_dquot = ext4_release_dquot, 1588 .mark_dirty = ext4_mark_dquot_dirty, 1589 .write_info = ext4_write_info, 1590 .alloc_dquot = dquot_alloc, 1591 .destroy_dquot = dquot_destroy, 1592 .get_projid = ext4_get_projid, 1593 .get_inode_usage = ext4_get_inode_usage, 1594 .get_next_id = dquot_get_next_id, 1595 }; 1596 1597 static const struct quotactl_ops ext4_qctl_operations = { 1598 .quota_on = ext4_quota_on, 1599 .quota_off = ext4_quota_off, 1600 .quota_sync = dquot_quota_sync, 1601 .get_state = dquot_get_state, 1602 .set_info = dquot_set_dqinfo, 1603 .get_dqblk = dquot_get_dqblk, 1604 .set_dqblk = dquot_set_dqblk, 1605 .get_nextdqblk = dquot_get_next_dqblk, 1606 }; 1607 #endif 1608 1609 static const struct super_operations ext4_sops = { 1610 .alloc_inode = ext4_alloc_inode, 1611 .free_inode = ext4_free_in_core_inode, 1612 .destroy_inode = ext4_destroy_inode, 1613 .write_inode = ext4_write_inode, 1614 .dirty_inode = ext4_dirty_inode, 1615 .drop_inode = ext4_drop_inode, 1616 .evict_inode = ext4_evict_inode, 1617 .put_super = ext4_put_super, 1618 .sync_fs = ext4_sync_fs, 1619 .freeze_fs = ext4_freeze, 1620 .unfreeze_fs = ext4_unfreeze, 1621 .statfs = ext4_statfs, 1622 .show_options = ext4_show_options, 1623 .shutdown = ext4_shutdown, 1624 #ifdef CONFIG_QUOTA 1625 .quota_read = ext4_quota_read, 1626 .quota_write = ext4_quota_write, 1627 .get_dquots = ext4_get_dquots, 1628 #endif 1629 }; 1630 1631 static const struct export_operations ext4_export_ops = { 1632 .encode_fh = generic_encode_ino32_fh, 1633 .fh_to_dentry = ext4_fh_to_dentry, 1634 .fh_to_parent = ext4_fh_to_parent, 1635 .get_parent = ext4_get_parent, 1636 .commit_metadata = ext4_nfs_commit_metadata, 1637 }; 1638 1639 enum { 1640 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1641 Opt_resgid, Opt_resuid, Opt_sb, 1642 Opt_nouid32, Opt_debug, Opt_removed, 1643 Opt_user_xattr, Opt_acl, 1644 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1645 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1646 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1647 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1648 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1649 Opt_inlinecrypt, 1650 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1651 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1652 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1653 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1654 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1655 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1656 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1657 Opt_inode_readahead_blks, Opt_journal_ioprio, 1658 Opt_dioread_nolock, Opt_dioread_lock, 1659 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1660 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1661 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1662 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1663 #ifdef CONFIG_EXT4_DEBUG 1664 Opt_fc_debug_max_replay, Opt_fc_debug_force 1665 #endif 1666 }; 1667 1668 static const struct constant_table ext4_param_errors[] = { 1669 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1670 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1671 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1672 {} 1673 }; 1674 1675 static const struct constant_table ext4_param_data[] = { 1676 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1677 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1678 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1679 {} 1680 }; 1681 1682 static const struct constant_table ext4_param_data_err[] = { 1683 {"abort", Opt_data_err_abort}, 1684 {"ignore", Opt_data_err_ignore}, 1685 {} 1686 }; 1687 1688 static const struct constant_table ext4_param_jqfmt[] = { 1689 {"vfsold", QFMT_VFS_OLD}, 1690 {"vfsv0", QFMT_VFS_V0}, 1691 {"vfsv1", QFMT_VFS_V1}, 1692 {} 1693 }; 1694 1695 static const struct constant_table ext4_param_dax[] = { 1696 {"always", Opt_dax_always}, 1697 {"inode", Opt_dax_inode}, 1698 {"never", Opt_dax_never}, 1699 {} 1700 }; 1701 1702 /* 1703 * Mount option specification 1704 * We don't use fsparam_flag_no because of the way we set the 1705 * options and the way we show them in _ext4_show_options(). To 1706 * keep the changes to a minimum, let's keep the negative options 1707 * separate for now. 1708 */ 1709 static const struct fs_parameter_spec ext4_param_specs[] = { 1710 fsparam_flag ("bsddf", Opt_bsd_df), 1711 fsparam_flag ("minixdf", Opt_minix_df), 1712 fsparam_flag ("grpid", Opt_grpid), 1713 fsparam_flag ("bsdgroups", Opt_grpid), 1714 fsparam_flag ("nogrpid", Opt_nogrpid), 1715 fsparam_flag ("sysvgroups", Opt_nogrpid), 1716 fsparam_gid ("resgid", Opt_resgid), 1717 fsparam_uid ("resuid", Opt_resuid), 1718 fsparam_u32 ("sb", Opt_sb), 1719 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1720 fsparam_flag ("nouid32", Opt_nouid32), 1721 fsparam_flag ("debug", Opt_debug), 1722 fsparam_flag ("oldalloc", Opt_removed), 1723 fsparam_flag ("orlov", Opt_removed), 1724 fsparam_flag ("user_xattr", Opt_user_xattr), 1725 fsparam_flag ("acl", Opt_acl), 1726 fsparam_flag ("norecovery", Opt_noload), 1727 fsparam_flag ("noload", Opt_noload), 1728 fsparam_flag ("bh", Opt_removed), 1729 fsparam_flag ("nobh", Opt_removed), 1730 fsparam_u32 ("commit", Opt_commit), 1731 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1732 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1733 fsparam_u32 ("journal_dev", Opt_journal_dev), 1734 fsparam_bdev ("journal_path", Opt_journal_path), 1735 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1736 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1737 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1738 fsparam_flag ("abort", Opt_abort), 1739 fsparam_enum ("data", Opt_data, ext4_param_data), 1740 fsparam_enum ("data_err", Opt_data_err, 1741 ext4_param_data_err), 1742 fsparam_string_empty 1743 ("usrjquota", Opt_usrjquota), 1744 fsparam_string_empty 1745 ("grpjquota", Opt_grpjquota), 1746 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1747 fsparam_flag ("grpquota", Opt_grpquota), 1748 fsparam_flag ("quota", Opt_quota), 1749 fsparam_flag ("noquota", Opt_noquota), 1750 fsparam_flag ("usrquota", Opt_usrquota), 1751 fsparam_flag ("prjquota", Opt_prjquota), 1752 fsparam_flag ("barrier", Opt_barrier), 1753 fsparam_u32 ("barrier", Opt_barrier), 1754 fsparam_flag ("nobarrier", Opt_nobarrier), 1755 fsparam_flag ("i_version", Opt_removed), 1756 fsparam_flag ("dax", Opt_dax), 1757 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1758 fsparam_u32 ("stripe", Opt_stripe), 1759 fsparam_flag ("delalloc", Opt_delalloc), 1760 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1761 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1762 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1763 fsparam_u32 ("debug_want_extra_isize", 1764 Opt_debug_want_extra_isize), 1765 fsparam_flag ("mblk_io_submit", Opt_removed), 1766 fsparam_flag ("nomblk_io_submit", Opt_removed), 1767 fsparam_flag ("block_validity", Opt_block_validity), 1768 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1769 fsparam_u32 ("inode_readahead_blks", 1770 Opt_inode_readahead_blks), 1771 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1772 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1773 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1774 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1775 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1776 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1777 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1778 fsparam_flag ("discard", Opt_discard), 1779 fsparam_flag ("nodiscard", Opt_nodiscard), 1780 fsparam_u32 ("init_itable", Opt_init_itable), 1781 fsparam_flag ("init_itable", Opt_init_itable), 1782 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1783 #ifdef CONFIG_EXT4_DEBUG 1784 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1785 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1786 #endif 1787 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1788 fsparam_flag ("test_dummy_encryption", 1789 Opt_test_dummy_encryption), 1790 fsparam_string ("test_dummy_encryption", 1791 Opt_test_dummy_encryption), 1792 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1793 fsparam_flag ("nombcache", Opt_nombcache), 1794 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1795 fsparam_flag ("prefetch_block_bitmaps", 1796 Opt_removed), 1797 fsparam_flag ("no_prefetch_block_bitmaps", 1798 Opt_no_prefetch_block_bitmaps), 1799 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1800 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1801 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1802 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1803 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1804 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1805 {} 1806 }; 1807 1808 1809 #define MOPT_SET 0x0001 1810 #define MOPT_CLEAR 0x0002 1811 #define MOPT_NOSUPPORT 0x0004 1812 #define MOPT_EXPLICIT 0x0008 1813 #ifdef CONFIG_QUOTA 1814 #define MOPT_Q 0 1815 #define MOPT_QFMT 0x0010 1816 #else 1817 #define MOPT_Q MOPT_NOSUPPORT 1818 #define MOPT_QFMT MOPT_NOSUPPORT 1819 #endif 1820 #define MOPT_NO_EXT2 0x0020 1821 #define MOPT_NO_EXT3 0x0040 1822 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1823 #define MOPT_SKIP 0x0080 1824 #define MOPT_2 0x0100 1825 1826 static const struct mount_opts { 1827 int token; 1828 int mount_opt; 1829 int flags; 1830 } ext4_mount_opts[] = { 1831 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1832 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1833 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1834 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1835 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1836 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1837 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1838 MOPT_EXT4_ONLY | MOPT_SET}, 1839 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1840 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1841 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1842 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1843 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1844 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1845 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1846 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1847 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1848 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1849 {Opt_commit, 0, MOPT_NO_EXT2}, 1850 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1851 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1852 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1853 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1854 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1855 EXT4_MOUNT_JOURNAL_CHECKSUM), 1856 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1857 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1858 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1859 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1860 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1861 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1862 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1863 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1864 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1865 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1866 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1867 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1868 {Opt_data, 0, MOPT_NO_EXT2}, 1869 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1870 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1871 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1872 #else 1873 {Opt_acl, 0, MOPT_NOSUPPORT}, 1874 #endif 1875 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1876 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1877 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1878 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1879 MOPT_SET | MOPT_Q}, 1880 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1881 MOPT_SET | MOPT_Q}, 1882 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1883 MOPT_SET | MOPT_Q}, 1884 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1885 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1886 MOPT_CLEAR | MOPT_Q}, 1887 {Opt_usrjquota, 0, MOPT_Q}, 1888 {Opt_grpjquota, 0, MOPT_Q}, 1889 {Opt_jqfmt, 0, MOPT_QFMT}, 1890 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1891 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1892 MOPT_SET}, 1893 #ifdef CONFIG_EXT4_DEBUG 1894 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1895 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1896 #endif 1897 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1898 {Opt_err, 0, 0} 1899 }; 1900 1901 #if IS_ENABLED(CONFIG_UNICODE) 1902 static const struct ext4_sb_encodings { 1903 __u16 magic; 1904 char *name; 1905 unsigned int version; 1906 } ext4_sb_encoding_map[] = { 1907 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1908 }; 1909 1910 static const struct ext4_sb_encodings * 1911 ext4_sb_read_encoding(const struct ext4_super_block *es) 1912 { 1913 __u16 magic = le16_to_cpu(es->s_encoding); 1914 int i; 1915 1916 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1917 if (magic == ext4_sb_encoding_map[i].magic) 1918 return &ext4_sb_encoding_map[i]; 1919 1920 return NULL; 1921 } 1922 #endif 1923 1924 #define EXT4_SPEC_JQUOTA (1 << 0) 1925 #define EXT4_SPEC_JQFMT (1 << 1) 1926 #define EXT4_SPEC_DATAJ (1 << 2) 1927 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1928 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1929 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1930 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1931 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1932 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1933 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1934 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1935 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1936 #define EXT4_SPEC_s_stripe (1 << 13) 1937 #define EXT4_SPEC_s_resuid (1 << 14) 1938 #define EXT4_SPEC_s_resgid (1 << 15) 1939 #define EXT4_SPEC_s_commit_interval (1 << 16) 1940 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1941 #define EXT4_SPEC_s_sb_block (1 << 18) 1942 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1943 1944 struct ext4_fs_context { 1945 char *s_qf_names[EXT4_MAXQUOTAS]; 1946 struct fscrypt_dummy_policy dummy_enc_policy; 1947 int s_jquota_fmt; /* Format of quota to use */ 1948 #ifdef CONFIG_EXT4_DEBUG 1949 int s_fc_debug_max_replay; 1950 #endif 1951 unsigned short qname_spec; 1952 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1953 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1954 unsigned long journal_devnum; 1955 unsigned long s_commit_interval; 1956 unsigned long s_stripe; 1957 unsigned int s_inode_readahead_blks; 1958 unsigned int s_want_extra_isize; 1959 unsigned int s_li_wait_mult; 1960 unsigned int s_max_dir_size_kb; 1961 unsigned int journal_ioprio; 1962 unsigned int vals_s_mount_opt; 1963 unsigned int mask_s_mount_opt; 1964 unsigned int vals_s_mount_opt2; 1965 unsigned int mask_s_mount_opt2; 1966 unsigned int opt_flags; /* MOPT flags */ 1967 unsigned int spec; 1968 u32 s_max_batch_time; 1969 u32 s_min_batch_time; 1970 kuid_t s_resuid; 1971 kgid_t s_resgid; 1972 ext4_fsblk_t s_sb_block; 1973 }; 1974 1975 static void ext4_fc_free(struct fs_context *fc) 1976 { 1977 struct ext4_fs_context *ctx = fc->fs_private; 1978 int i; 1979 1980 if (!ctx) 1981 return; 1982 1983 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1984 kfree(ctx->s_qf_names[i]); 1985 1986 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1987 kfree(ctx); 1988 } 1989 1990 int ext4_init_fs_context(struct fs_context *fc) 1991 { 1992 struct ext4_fs_context *ctx; 1993 1994 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1995 if (!ctx) 1996 return -ENOMEM; 1997 1998 fc->fs_private = ctx; 1999 fc->ops = &ext4_context_ops; 2000 2001 return 0; 2002 } 2003 2004 #ifdef CONFIG_QUOTA 2005 /* 2006 * Note the name of the specified quota file. 2007 */ 2008 static int note_qf_name(struct fs_context *fc, int qtype, 2009 struct fs_parameter *param) 2010 { 2011 struct ext4_fs_context *ctx = fc->fs_private; 2012 char *qname; 2013 2014 if (param->size < 1) { 2015 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2016 return -EINVAL; 2017 } 2018 if (strchr(param->string, '/')) { 2019 ext4_msg(NULL, KERN_ERR, 2020 "quotafile must be on filesystem root"); 2021 return -EINVAL; 2022 } 2023 if (ctx->s_qf_names[qtype]) { 2024 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2025 ext4_msg(NULL, KERN_ERR, 2026 "%s quota file already specified", 2027 QTYPE2NAME(qtype)); 2028 return -EINVAL; 2029 } 2030 return 0; 2031 } 2032 2033 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2034 if (!qname) { 2035 ext4_msg(NULL, KERN_ERR, 2036 "Not enough memory for storing quotafile name"); 2037 return -ENOMEM; 2038 } 2039 ctx->s_qf_names[qtype] = qname; 2040 ctx->qname_spec |= 1 << qtype; 2041 ctx->spec |= EXT4_SPEC_JQUOTA; 2042 return 0; 2043 } 2044 2045 /* 2046 * Clear the name of the specified quota file. 2047 */ 2048 static int unnote_qf_name(struct fs_context *fc, int qtype) 2049 { 2050 struct ext4_fs_context *ctx = fc->fs_private; 2051 2052 kfree(ctx->s_qf_names[qtype]); 2053 2054 ctx->s_qf_names[qtype] = NULL; 2055 ctx->qname_spec |= 1 << qtype; 2056 ctx->spec |= EXT4_SPEC_JQUOTA; 2057 return 0; 2058 } 2059 #endif 2060 2061 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2062 struct ext4_fs_context *ctx) 2063 { 2064 int err; 2065 2066 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2067 ext4_msg(NULL, KERN_WARNING, 2068 "test_dummy_encryption option not supported"); 2069 return -EINVAL; 2070 } 2071 err = fscrypt_parse_test_dummy_encryption(param, 2072 &ctx->dummy_enc_policy); 2073 if (err == -EINVAL) { 2074 ext4_msg(NULL, KERN_WARNING, 2075 "Value of option \"%s\" is unrecognized", param->key); 2076 } else if (err == -EEXIST) { 2077 ext4_msg(NULL, KERN_WARNING, 2078 "Conflicting test_dummy_encryption options"); 2079 return -EINVAL; 2080 } 2081 return err; 2082 } 2083 2084 #define EXT4_SET_CTX(name) \ 2085 static inline __maybe_unused \ 2086 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2087 { \ 2088 ctx->mask_s_##name |= flag; \ 2089 ctx->vals_s_##name |= flag; \ 2090 } 2091 2092 #define EXT4_CLEAR_CTX(name) \ 2093 static inline __maybe_unused \ 2094 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2095 { \ 2096 ctx->mask_s_##name |= flag; \ 2097 ctx->vals_s_##name &= ~flag; \ 2098 } 2099 2100 #define EXT4_TEST_CTX(name) \ 2101 static inline unsigned long \ 2102 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2103 { \ 2104 return (ctx->vals_s_##name & flag); \ 2105 } 2106 2107 EXT4_SET_CTX(flags); /* set only */ 2108 EXT4_SET_CTX(mount_opt); 2109 EXT4_CLEAR_CTX(mount_opt); 2110 EXT4_TEST_CTX(mount_opt); 2111 EXT4_SET_CTX(mount_opt2); 2112 EXT4_CLEAR_CTX(mount_opt2); 2113 EXT4_TEST_CTX(mount_opt2); 2114 2115 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2116 { 2117 struct ext4_fs_context *ctx = fc->fs_private; 2118 struct fs_parse_result result; 2119 const struct mount_opts *m; 2120 int is_remount; 2121 int token; 2122 2123 token = fs_parse(fc, ext4_param_specs, param, &result); 2124 if (token < 0) 2125 return token; 2126 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2127 2128 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2129 if (token == m->token) 2130 break; 2131 2132 ctx->opt_flags |= m->flags; 2133 2134 if (m->flags & MOPT_EXPLICIT) { 2135 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2136 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2137 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2138 ctx_set_mount_opt2(ctx, 2139 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2140 } else 2141 return -EINVAL; 2142 } 2143 2144 if (m->flags & MOPT_NOSUPPORT) { 2145 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2146 param->key); 2147 return 0; 2148 } 2149 2150 switch (token) { 2151 #ifdef CONFIG_QUOTA 2152 case Opt_usrjquota: 2153 if (!*param->string) 2154 return unnote_qf_name(fc, USRQUOTA); 2155 else 2156 return note_qf_name(fc, USRQUOTA, param); 2157 case Opt_grpjquota: 2158 if (!*param->string) 2159 return unnote_qf_name(fc, GRPQUOTA); 2160 else 2161 return note_qf_name(fc, GRPQUOTA, param); 2162 #endif 2163 case Opt_sb: 2164 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2165 ext4_msg(NULL, KERN_WARNING, 2166 "Ignoring %s option on remount", param->key); 2167 } else { 2168 ctx->s_sb_block = result.uint_32; 2169 ctx->spec |= EXT4_SPEC_s_sb_block; 2170 } 2171 return 0; 2172 case Opt_removed: 2173 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2174 param->key); 2175 return 0; 2176 case Opt_inlinecrypt: 2177 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2178 ctx_set_flags(ctx, SB_INLINECRYPT); 2179 #else 2180 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2181 #endif 2182 return 0; 2183 case Opt_errors: 2184 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2185 ctx_set_mount_opt(ctx, result.uint_32); 2186 return 0; 2187 #ifdef CONFIG_QUOTA 2188 case Opt_jqfmt: 2189 ctx->s_jquota_fmt = result.uint_32; 2190 ctx->spec |= EXT4_SPEC_JQFMT; 2191 return 0; 2192 #endif 2193 case Opt_data: 2194 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2195 ctx_set_mount_opt(ctx, result.uint_32); 2196 ctx->spec |= EXT4_SPEC_DATAJ; 2197 return 0; 2198 case Opt_commit: 2199 if (result.uint_32 == 0) 2200 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2201 else if (result.uint_32 > INT_MAX / HZ) { 2202 ext4_msg(NULL, KERN_ERR, 2203 "Invalid commit interval %d, " 2204 "must be smaller than %d", 2205 result.uint_32, INT_MAX / HZ); 2206 return -EINVAL; 2207 } 2208 ctx->s_commit_interval = HZ * result.uint_32; 2209 ctx->spec |= EXT4_SPEC_s_commit_interval; 2210 return 0; 2211 case Opt_debug_want_extra_isize: 2212 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2213 ext4_msg(NULL, KERN_ERR, 2214 "Invalid want_extra_isize %d", result.uint_32); 2215 return -EINVAL; 2216 } 2217 ctx->s_want_extra_isize = result.uint_32; 2218 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2219 return 0; 2220 case Opt_max_batch_time: 2221 ctx->s_max_batch_time = result.uint_32; 2222 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2223 return 0; 2224 case Opt_min_batch_time: 2225 ctx->s_min_batch_time = result.uint_32; 2226 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2227 return 0; 2228 case Opt_inode_readahead_blks: 2229 if (result.uint_32 && 2230 (result.uint_32 > (1 << 30) || 2231 !is_power_of_2(result.uint_32))) { 2232 ext4_msg(NULL, KERN_ERR, 2233 "EXT4-fs: inode_readahead_blks must be " 2234 "0 or a power of 2 smaller than 2^31"); 2235 return -EINVAL; 2236 } 2237 ctx->s_inode_readahead_blks = result.uint_32; 2238 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2239 return 0; 2240 case Opt_init_itable: 2241 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2242 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2243 if (param->type == fs_value_is_string) 2244 ctx->s_li_wait_mult = result.uint_32; 2245 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2246 return 0; 2247 case Opt_max_dir_size_kb: 2248 ctx->s_max_dir_size_kb = result.uint_32; 2249 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2250 return 0; 2251 #ifdef CONFIG_EXT4_DEBUG 2252 case Opt_fc_debug_max_replay: 2253 ctx->s_fc_debug_max_replay = result.uint_32; 2254 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2255 return 0; 2256 #endif 2257 case Opt_stripe: 2258 ctx->s_stripe = result.uint_32; 2259 ctx->spec |= EXT4_SPEC_s_stripe; 2260 return 0; 2261 case Opt_resuid: 2262 ctx->s_resuid = result.uid; 2263 ctx->spec |= EXT4_SPEC_s_resuid; 2264 return 0; 2265 case Opt_resgid: 2266 ctx->s_resgid = result.gid; 2267 ctx->spec |= EXT4_SPEC_s_resgid; 2268 return 0; 2269 case Opt_journal_dev: 2270 if (is_remount) { 2271 ext4_msg(NULL, KERN_ERR, 2272 "Cannot specify journal on remount"); 2273 return -EINVAL; 2274 } 2275 ctx->journal_devnum = result.uint_32; 2276 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2277 return 0; 2278 case Opt_journal_path: 2279 { 2280 struct inode *journal_inode; 2281 struct path path; 2282 int error; 2283 2284 if (is_remount) { 2285 ext4_msg(NULL, KERN_ERR, 2286 "Cannot specify journal on remount"); 2287 return -EINVAL; 2288 } 2289 2290 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2291 if (error) { 2292 ext4_msg(NULL, KERN_ERR, "error: could not find " 2293 "journal device path"); 2294 return -EINVAL; 2295 } 2296 2297 journal_inode = d_inode(path.dentry); 2298 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2299 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2300 path_put(&path); 2301 return 0; 2302 } 2303 case Opt_journal_ioprio: 2304 if (result.uint_32 > 7) { 2305 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2306 " (must be 0-7)"); 2307 return -EINVAL; 2308 } 2309 ctx->journal_ioprio = 2310 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2311 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2312 return 0; 2313 case Opt_test_dummy_encryption: 2314 return ext4_parse_test_dummy_encryption(param, ctx); 2315 case Opt_dax: 2316 case Opt_dax_type: 2317 #ifdef CONFIG_FS_DAX 2318 { 2319 int type = (token == Opt_dax) ? 2320 Opt_dax : result.uint_32; 2321 2322 switch (type) { 2323 case Opt_dax: 2324 case Opt_dax_always: 2325 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2326 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2327 break; 2328 case Opt_dax_never: 2329 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2330 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2331 break; 2332 case Opt_dax_inode: 2333 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2334 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2335 /* Strictly for printing options */ 2336 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2337 break; 2338 } 2339 return 0; 2340 } 2341 #else 2342 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2343 return -EINVAL; 2344 #endif 2345 case Opt_data_err: 2346 if (result.uint_32 == Opt_data_err_abort) 2347 ctx_set_mount_opt(ctx, m->mount_opt); 2348 else if (result.uint_32 == Opt_data_err_ignore) 2349 ctx_clear_mount_opt(ctx, m->mount_opt); 2350 return 0; 2351 case Opt_mb_optimize_scan: 2352 if (result.int_32 == 1) { 2353 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2354 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2355 } else if (result.int_32 == 0) { 2356 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2357 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2358 } else { 2359 ext4_msg(NULL, KERN_WARNING, 2360 "mb_optimize_scan should be set to 0 or 1."); 2361 return -EINVAL; 2362 } 2363 return 0; 2364 } 2365 2366 /* 2367 * At this point we should only be getting options requiring MOPT_SET, 2368 * or MOPT_CLEAR. Anything else is a bug 2369 */ 2370 if (m->token == Opt_err) { 2371 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2372 param->key); 2373 WARN_ON(1); 2374 return -EINVAL; 2375 } 2376 2377 else { 2378 unsigned int set = 0; 2379 2380 if ((param->type == fs_value_is_flag) || 2381 result.uint_32 > 0) 2382 set = 1; 2383 2384 if (m->flags & MOPT_CLEAR) 2385 set = !set; 2386 else if (unlikely(!(m->flags & MOPT_SET))) { 2387 ext4_msg(NULL, KERN_WARNING, 2388 "buggy handling of option %s", 2389 param->key); 2390 WARN_ON(1); 2391 return -EINVAL; 2392 } 2393 if (m->flags & MOPT_2) { 2394 if (set != 0) 2395 ctx_set_mount_opt2(ctx, m->mount_opt); 2396 else 2397 ctx_clear_mount_opt2(ctx, m->mount_opt); 2398 } else { 2399 if (set != 0) 2400 ctx_set_mount_opt(ctx, m->mount_opt); 2401 else 2402 ctx_clear_mount_opt(ctx, m->mount_opt); 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 2409 static int parse_options(struct fs_context *fc, char *options) 2410 { 2411 struct fs_parameter param; 2412 int ret; 2413 char *key; 2414 2415 if (!options) 2416 return 0; 2417 2418 while ((key = strsep(&options, ",")) != NULL) { 2419 if (*key) { 2420 size_t v_len = 0; 2421 char *value = strchr(key, '='); 2422 2423 param.type = fs_value_is_flag; 2424 param.string = NULL; 2425 2426 if (value) { 2427 if (value == key) 2428 continue; 2429 2430 *value++ = 0; 2431 v_len = strlen(value); 2432 param.string = kmemdup_nul(value, v_len, 2433 GFP_KERNEL); 2434 if (!param.string) 2435 return -ENOMEM; 2436 param.type = fs_value_is_string; 2437 } 2438 2439 param.key = key; 2440 param.size = v_len; 2441 2442 ret = ext4_parse_param(fc, ¶m); 2443 kfree(param.string); 2444 if (ret < 0) 2445 return ret; 2446 } 2447 } 2448 2449 ret = ext4_validate_options(fc); 2450 if (ret < 0) 2451 return ret; 2452 2453 return 0; 2454 } 2455 2456 static int parse_apply_sb_mount_options(struct super_block *sb, 2457 struct ext4_fs_context *m_ctx) 2458 { 2459 struct ext4_sb_info *sbi = EXT4_SB(sb); 2460 char *s_mount_opts = NULL; 2461 struct ext4_fs_context *s_ctx = NULL; 2462 struct fs_context *fc = NULL; 2463 int ret = -ENOMEM; 2464 2465 if (!sbi->s_es->s_mount_opts[0]) 2466 return 0; 2467 2468 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2469 sizeof(sbi->s_es->s_mount_opts), 2470 GFP_KERNEL); 2471 if (!s_mount_opts) 2472 return ret; 2473 2474 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2475 if (!fc) 2476 goto out_free; 2477 2478 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2479 if (!s_ctx) 2480 goto out_free; 2481 2482 fc->fs_private = s_ctx; 2483 fc->s_fs_info = sbi; 2484 2485 ret = parse_options(fc, s_mount_opts); 2486 if (ret < 0) 2487 goto parse_failed; 2488 2489 ret = ext4_check_opt_consistency(fc, sb); 2490 if (ret < 0) { 2491 parse_failed: 2492 ext4_msg(sb, KERN_WARNING, 2493 "failed to parse options in superblock: %s", 2494 s_mount_opts); 2495 ret = 0; 2496 goto out_free; 2497 } 2498 2499 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2500 m_ctx->journal_devnum = s_ctx->journal_devnum; 2501 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2502 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2503 2504 ext4_apply_options(fc, sb); 2505 ret = 0; 2506 2507 out_free: 2508 if (fc) { 2509 ext4_fc_free(fc); 2510 kfree(fc); 2511 } 2512 kfree(s_mount_opts); 2513 return ret; 2514 } 2515 2516 static void ext4_apply_quota_options(struct fs_context *fc, 2517 struct super_block *sb) 2518 { 2519 #ifdef CONFIG_QUOTA 2520 bool quota_feature = ext4_has_feature_quota(sb); 2521 struct ext4_fs_context *ctx = fc->fs_private; 2522 struct ext4_sb_info *sbi = EXT4_SB(sb); 2523 char *qname; 2524 int i; 2525 2526 if (quota_feature) 2527 return; 2528 2529 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2530 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2531 if (!(ctx->qname_spec & (1 << i))) 2532 continue; 2533 2534 qname = ctx->s_qf_names[i]; /* May be NULL */ 2535 if (qname) 2536 set_opt(sb, QUOTA); 2537 ctx->s_qf_names[i] = NULL; 2538 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2539 lockdep_is_held(&sb->s_umount)); 2540 if (qname) 2541 kfree_rcu_mightsleep(qname); 2542 } 2543 } 2544 2545 if (ctx->spec & EXT4_SPEC_JQFMT) 2546 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2547 #endif 2548 } 2549 2550 /* 2551 * Check quota settings consistency. 2552 */ 2553 static int ext4_check_quota_consistency(struct fs_context *fc, 2554 struct super_block *sb) 2555 { 2556 #ifdef CONFIG_QUOTA 2557 struct ext4_fs_context *ctx = fc->fs_private; 2558 struct ext4_sb_info *sbi = EXT4_SB(sb); 2559 bool quota_feature = ext4_has_feature_quota(sb); 2560 bool quota_loaded = sb_any_quota_loaded(sb); 2561 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2562 int quota_flags, i; 2563 2564 /* 2565 * We do the test below only for project quotas. 'usrquota' and 2566 * 'grpquota' mount options are allowed even without quota feature 2567 * to support legacy quotas in quota files. 2568 */ 2569 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2570 !ext4_has_feature_project(sb)) { 2571 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2572 "Cannot enable project quota enforcement."); 2573 return -EINVAL; 2574 } 2575 2576 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2577 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2578 if (quota_loaded && 2579 ctx->mask_s_mount_opt & quota_flags && 2580 !ctx_test_mount_opt(ctx, quota_flags)) 2581 goto err_quota_change; 2582 2583 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2584 2585 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2586 if (!(ctx->qname_spec & (1 << i))) 2587 continue; 2588 2589 if (quota_loaded && 2590 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2591 goto err_jquota_change; 2592 2593 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2594 strcmp(get_qf_name(sb, sbi, i), 2595 ctx->s_qf_names[i]) != 0) 2596 goto err_jquota_specified; 2597 } 2598 2599 if (quota_feature) { 2600 ext4_msg(NULL, KERN_INFO, 2601 "Journaled quota options ignored when " 2602 "QUOTA feature is enabled"); 2603 return 0; 2604 } 2605 } 2606 2607 if (ctx->spec & EXT4_SPEC_JQFMT) { 2608 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2609 goto err_jquota_change; 2610 if (quota_feature) { 2611 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2612 "ignored when QUOTA feature is enabled"); 2613 return 0; 2614 } 2615 } 2616 2617 /* Make sure we don't mix old and new quota format */ 2618 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2619 ctx->s_qf_names[USRQUOTA]); 2620 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2621 ctx->s_qf_names[GRPQUOTA]); 2622 2623 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2624 test_opt(sb, USRQUOTA)); 2625 2626 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2627 test_opt(sb, GRPQUOTA)); 2628 2629 if (usr_qf_name) { 2630 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2631 usrquota = false; 2632 } 2633 if (grp_qf_name) { 2634 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2635 grpquota = false; 2636 } 2637 2638 if (usr_qf_name || grp_qf_name) { 2639 if (usrquota || grpquota) { 2640 ext4_msg(NULL, KERN_ERR, "old and new quota " 2641 "format mixing"); 2642 return -EINVAL; 2643 } 2644 2645 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2646 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2647 "not specified"); 2648 return -EINVAL; 2649 } 2650 } 2651 2652 return 0; 2653 2654 err_quota_change: 2655 ext4_msg(NULL, KERN_ERR, 2656 "Cannot change quota options when quota turned on"); 2657 return -EINVAL; 2658 err_jquota_change: 2659 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2660 "options when quota turned on"); 2661 return -EINVAL; 2662 err_jquota_specified: 2663 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2664 QTYPE2NAME(i)); 2665 return -EINVAL; 2666 #else 2667 return 0; 2668 #endif 2669 } 2670 2671 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2672 struct super_block *sb) 2673 { 2674 const struct ext4_fs_context *ctx = fc->fs_private; 2675 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2676 2677 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2678 return 0; 2679 2680 if (!ext4_has_feature_encrypt(sb)) { 2681 ext4_msg(NULL, KERN_WARNING, 2682 "test_dummy_encryption requires encrypt feature"); 2683 return -EINVAL; 2684 } 2685 /* 2686 * This mount option is just for testing, and it's not worthwhile to 2687 * implement the extra complexity (e.g. RCU protection) that would be 2688 * needed to allow it to be set or changed during remount. We do allow 2689 * it to be specified during remount, but only if there is no change. 2690 */ 2691 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2692 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2693 &ctx->dummy_enc_policy)) 2694 return 0; 2695 ext4_msg(NULL, KERN_WARNING, 2696 "Can't set or change test_dummy_encryption on remount"); 2697 return -EINVAL; 2698 } 2699 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2700 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2701 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2702 &ctx->dummy_enc_policy)) 2703 return 0; 2704 ext4_msg(NULL, KERN_WARNING, 2705 "Conflicting test_dummy_encryption options"); 2706 return -EINVAL; 2707 } 2708 return 0; 2709 } 2710 2711 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2712 struct super_block *sb) 2713 { 2714 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2715 /* if already set, it was already verified to be the same */ 2716 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2717 return; 2718 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2719 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2720 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2721 } 2722 2723 static int ext4_check_opt_consistency(struct fs_context *fc, 2724 struct super_block *sb) 2725 { 2726 struct ext4_fs_context *ctx = fc->fs_private; 2727 struct ext4_sb_info *sbi = fc->s_fs_info; 2728 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2729 int err; 2730 2731 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2732 ext4_msg(NULL, KERN_ERR, 2733 "Mount option(s) incompatible with ext2"); 2734 return -EINVAL; 2735 } 2736 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2737 ext4_msg(NULL, KERN_ERR, 2738 "Mount option(s) incompatible with ext3"); 2739 return -EINVAL; 2740 } 2741 2742 if (ctx->s_want_extra_isize > 2743 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2744 ext4_msg(NULL, KERN_ERR, 2745 "Invalid want_extra_isize %d", 2746 ctx->s_want_extra_isize); 2747 return -EINVAL; 2748 } 2749 2750 err = ext4_check_test_dummy_encryption(fc, sb); 2751 if (err) 2752 return err; 2753 2754 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2755 if (!sbi->s_journal) { 2756 ext4_msg(NULL, KERN_WARNING, 2757 "Remounting file system with no journal " 2758 "so ignoring journalled data option"); 2759 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2760 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2761 test_opt(sb, DATA_FLAGS)) { 2762 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2763 "on remount"); 2764 return -EINVAL; 2765 } 2766 } 2767 2768 if (is_remount) { 2769 if (!sbi->s_journal && 2770 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) { 2771 ext4_msg(NULL, KERN_WARNING, 2772 "Remounting fs w/o journal so ignoring data_err option"); 2773 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT); 2774 } 2775 2776 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2777 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2778 ext4_msg(NULL, KERN_ERR, "can't mount with " 2779 "both data=journal and dax"); 2780 return -EINVAL; 2781 } 2782 2783 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2784 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2785 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2786 fail_dax_change_remount: 2787 ext4_msg(NULL, KERN_ERR, "can't change " 2788 "dax mount option while remounting"); 2789 return -EINVAL; 2790 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2791 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2792 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2793 goto fail_dax_change_remount; 2794 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2795 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2796 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2797 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2798 goto fail_dax_change_remount; 2799 } 2800 } 2801 2802 return ext4_check_quota_consistency(fc, sb); 2803 } 2804 2805 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2806 { 2807 struct ext4_fs_context *ctx = fc->fs_private; 2808 struct ext4_sb_info *sbi = fc->s_fs_info; 2809 2810 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2811 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2812 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2813 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2814 sb->s_flags &= ~ctx->mask_s_flags; 2815 sb->s_flags |= ctx->vals_s_flags; 2816 2817 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2818 APPLY(s_commit_interval); 2819 APPLY(s_stripe); 2820 APPLY(s_max_batch_time); 2821 APPLY(s_min_batch_time); 2822 APPLY(s_want_extra_isize); 2823 APPLY(s_inode_readahead_blks); 2824 APPLY(s_max_dir_size_kb); 2825 APPLY(s_li_wait_mult); 2826 APPLY(s_resgid); 2827 APPLY(s_resuid); 2828 2829 #ifdef CONFIG_EXT4_DEBUG 2830 APPLY(s_fc_debug_max_replay); 2831 #endif 2832 2833 ext4_apply_quota_options(fc, sb); 2834 ext4_apply_test_dummy_encryption(ctx, sb); 2835 } 2836 2837 2838 static int ext4_validate_options(struct fs_context *fc) 2839 { 2840 #ifdef CONFIG_QUOTA 2841 struct ext4_fs_context *ctx = fc->fs_private; 2842 char *usr_qf_name, *grp_qf_name; 2843 2844 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2845 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2846 2847 if (usr_qf_name || grp_qf_name) { 2848 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2849 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2850 2851 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2852 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2853 2854 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2855 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2856 ext4_msg(NULL, KERN_ERR, "old and new quota " 2857 "format mixing"); 2858 return -EINVAL; 2859 } 2860 } 2861 #endif 2862 return 1; 2863 } 2864 2865 static inline void ext4_show_quota_options(struct seq_file *seq, 2866 struct super_block *sb) 2867 { 2868 #if defined(CONFIG_QUOTA) 2869 struct ext4_sb_info *sbi = EXT4_SB(sb); 2870 char *usr_qf_name, *grp_qf_name; 2871 2872 if (sbi->s_jquota_fmt) { 2873 char *fmtname = ""; 2874 2875 switch (sbi->s_jquota_fmt) { 2876 case QFMT_VFS_OLD: 2877 fmtname = "vfsold"; 2878 break; 2879 case QFMT_VFS_V0: 2880 fmtname = "vfsv0"; 2881 break; 2882 case QFMT_VFS_V1: 2883 fmtname = "vfsv1"; 2884 break; 2885 } 2886 seq_printf(seq, ",jqfmt=%s", fmtname); 2887 } 2888 2889 rcu_read_lock(); 2890 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2891 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2892 if (usr_qf_name) 2893 seq_show_option(seq, "usrjquota", usr_qf_name); 2894 if (grp_qf_name) 2895 seq_show_option(seq, "grpjquota", grp_qf_name); 2896 rcu_read_unlock(); 2897 #endif 2898 } 2899 2900 static const char *token2str(int token) 2901 { 2902 const struct fs_parameter_spec *spec; 2903 2904 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2905 if (spec->opt == token && !spec->type) 2906 break; 2907 return spec->name; 2908 } 2909 2910 /* 2911 * Show an option if 2912 * - it's set to a non-default value OR 2913 * - if the per-sb default is different from the global default 2914 */ 2915 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2916 int nodefs) 2917 { 2918 struct ext4_sb_info *sbi = EXT4_SB(sb); 2919 struct ext4_super_block *es = sbi->s_es; 2920 int def_errors; 2921 const struct mount_opts *m; 2922 char sep = nodefs ? '\n' : ','; 2923 2924 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2925 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2926 2927 if (sbi->s_sb_block != 1) 2928 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2929 2930 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2931 int want_set = m->flags & MOPT_SET; 2932 int opt_2 = m->flags & MOPT_2; 2933 unsigned int mount_opt, def_mount_opt; 2934 2935 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2936 m->flags & MOPT_SKIP) 2937 continue; 2938 2939 if (opt_2) { 2940 mount_opt = sbi->s_mount_opt2; 2941 def_mount_opt = sbi->s_def_mount_opt2; 2942 } else { 2943 mount_opt = sbi->s_mount_opt; 2944 def_mount_opt = sbi->s_def_mount_opt; 2945 } 2946 /* skip if same as the default */ 2947 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2948 continue; 2949 /* select Opt_noFoo vs Opt_Foo */ 2950 if ((want_set && 2951 (mount_opt & m->mount_opt) != m->mount_opt) || 2952 (!want_set && (mount_opt & m->mount_opt))) 2953 continue; 2954 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2955 } 2956 2957 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2958 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2959 SEQ_OPTS_PRINT("resuid=%u", 2960 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2961 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2962 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2963 SEQ_OPTS_PRINT("resgid=%u", 2964 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2965 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2966 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2967 SEQ_OPTS_PUTS("errors=remount-ro"); 2968 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2969 SEQ_OPTS_PUTS("errors=continue"); 2970 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2971 SEQ_OPTS_PUTS("errors=panic"); 2972 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2973 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2974 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2975 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2976 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2977 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2978 if (nodefs || sbi->s_stripe) 2979 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2980 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2981 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 2982 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2983 SEQ_OPTS_PUTS("data=journal"); 2984 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2985 SEQ_OPTS_PUTS("data=ordered"); 2986 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2987 SEQ_OPTS_PUTS("data=writeback"); 2988 } 2989 if (nodefs || 2990 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2991 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2992 sbi->s_inode_readahead_blks); 2993 2994 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2995 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2996 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2997 if (nodefs || sbi->s_max_dir_size_kb) 2998 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2999 if (test_opt(sb, DATA_ERR_ABORT)) 3000 SEQ_OPTS_PUTS("data_err=abort"); 3001 3002 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3003 3004 if (sb->s_flags & SB_INLINECRYPT) 3005 SEQ_OPTS_PUTS("inlinecrypt"); 3006 3007 if (test_opt(sb, DAX_ALWAYS)) { 3008 if (IS_EXT2_SB(sb)) 3009 SEQ_OPTS_PUTS("dax"); 3010 else 3011 SEQ_OPTS_PUTS("dax=always"); 3012 } else if (test_opt2(sb, DAX_NEVER)) { 3013 SEQ_OPTS_PUTS("dax=never"); 3014 } else if (test_opt2(sb, DAX_INODE)) { 3015 SEQ_OPTS_PUTS("dax=inode"); 3016 } 3017 3018 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3019 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3020 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3021 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3022 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3023 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3024 } 3025 3026 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) 3027 SEQ_OPTS_PUTS("prefetch_block_bitmaps"); 3028 3029 if (ext4_emergency_ro(sb)) 3030 SEQ_OPTS_PUTS("emergency_ro"); 3031 3032 if (ext4_forced_shutdown(sb)) 3033 SEQ_OPTS_PUTS("shutdown"); 3034 3035 ext4_show_quota_options(seq, sb); 3036 return 0; 3037 } 3038 3039 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3040 { 3041 return _ext4_show_options(seq, root->d_sb, 0); 3042 } 3043 3044 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3045 { 3046 struct super_block *sb = seq->private; 3047 int rc; 3048 3049 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3050 rc = _ext4_show_options(seq, sb, 1); 3051 seq_putc(seq, '\n'); 3052 return rc; 3053 } 3054 3055 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3056 int read_only) 3057 { 3058 struct ext4_sb_info *sbi = EXT4_SB(sb); 3059 int err = 0; 3060 3061 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3062 ext4_msg(sb, KERN_ERR, "revision level too high, " 3063 "forcing read-only mode"); 3064 err = -EROFS; 3065 goto done; 3066 } 3067 if (read_only) 3068 goto done; 3069 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3070 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3071 "running e2fsck is recommended"); 3072 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3073 ext4_msg(sb, KERN_WARNING, 3074 "warning: mounting fs with errors, " 3075 "running e2fsck is recommended"); 3076 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3077 le16_to_cpu(es->s_mnt_count) >= 3078 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3079 ext4_msg(sb, KERN_WARNING, 3080 "warning: maximal mount count reached, " 3081 "running e2fsck is recommended"); 3082 else if (le32_to_cpu(es->s_checkinterval) && 3083 (ext4_get_tstamp(es, s_lastcheck) + 3084 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3085 ext4_msg(sb, KERN_WARNING, 3086 "warning: checktime reached, " 3087 "running e2fsck is recommended"); 3088 if (!sbi->s_journal) 3089 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3090 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3091 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3092 le16_add_cpu(&es->s_mnt_count, 1); 3093 ext4_update_tstamp(es, s_mtime); 3094 if (sbi->s_journal) { 3095 ext4_set_feature_journal_needs_recovery(sb); 3096 if (ext4_has_feature_orphan_file(sb)) 3097 ext4_set_feature_orphan_present(sb); 3098 } 3099 3100 err = ext4_commit_super(sb); 3101 done: 3102 if (test_opt(sb, DEBUG)) 3103 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3104 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3105 sb->s_blocksize, 3106 sbi->s_groups_count, 3107 EXT4_BLOCKS_PER_GROUP(sb), 3108 EXT4_INODES_PER_GROUP(sb), 3109 sbi->s_mount_opt, sbi->s_mount_opt2); 3110 return err; 3111 } 3112 3113 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3114 { 3115 struct ext4_sb_info *sbi = EXT4_SB(sb); 3116 struct flex_groups **old_groups, **new_groups; 3117 int size, i, j; 3118 3119 if (!sbi->s_log_groups_per_flex) 3120 return 0; 3121 3122 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3123 if (size <= sbi->s_flex_groups_allocated) 3124 return 0; 3125 3126 new_groups = kvzalloc(roundup_pow_of_two(size * 3127 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3128 if (!new_groups) { 3129 ext4_msg(sb, KERN_ERR, 3130 "not enough memory for %d flex group pointers", size); 3131 return -ENOMEM; 3132 } 3133 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3134 new_groups[i] = kvzalloc(roundup_pow_of_two( 3135 sizeof(struct flex_groups)), 3136 GFP_KERNEL); 3137 if (!new_groups[i]) { 3138 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3139 kvfree(new_groups[j]); 3140 kvfree(new_groups); 3141 ext4_msg(sb, KERN_ERR, 3142 "not enough memory for %d flex groups", size); 3143 return -ENOMEM; 3144 } 3145 } 3146 rcu_read_lock(); 3147 old_groups = rcu_dereference(sbi->s_flex_groups); 3148 if (old_groups) 3149 memcpy(new_groups, old_groups, 3150 (sbi->s_flex_groups_allocated * 3151 sizeof(struct flex_groups *))); 3152 rcu_read_unlock(); 3153 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3154 sbi->s_flex_groups_allocated = size; 3155 if (old_groups) 3156 ext4_kvfree_array_rcu(old_groups); 3157 return 0; 3158 } 3159 3160 static int ext4_fill_flex_info(struct super_block *sb) 3161 { 3162 struct ext4_sb_info *sbi = EXT4_SB(sb); 3163 struct ext4_group_desc *gdp = NULL; 3164 struct flex_groups *fg; 3165 ext4_group_t flex_group; 3166 int i, err; 3167 3168 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3169 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3170 sbi->s_log_groups_per_flex = 0; 3171 return 1; 3172 } 3173 3174 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3175 if (err) 3176 goto failed; 3177 3178 for (i = 0; i < sbi->s_groups_count; i++) { 3179 gdp = ext4_get_group_desc(sb, i, NULL); 3180 3181 flex_group = ext4_flex_group(sbi, i); 3182 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3183 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3184 atomic64_add(ext4_free_group_clusters(sb, gdp), 3185 &fg->free_clusters); 3186 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3187 } 3188 3189 return 1; 3190 failed: 3191 return 0; 3192 } 3193 3194 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3195 struct ext4_group_desc *gdp) 3196 { 3197 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3198 __u16 crc = 0; 3199 __le32 le_group = cpu_to_le32(block_group); 3200 struct ext4_sb_info *sbi = EXT4_SB(sb); 3201 3202 if (ext4_has_feature_metadata_csum(sbi->s_sb)) { 3203 /* Use new metadata_csum algorithm */ 3204 __u32 csum32; 3205 __u16 dummy_csum = 0; 3206 3207 csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group, 3208 sizeof(le_group)); 3209 csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset); 3210 csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum, 3211 sizeof(dummy_csum)); 3212 offset += sizeof(dummy_csum); 3213 if (offset < sbi->s_desc_size) 3214 csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset, 3215 sbi->s_desc_size - offset); 3216 3217 crc = csum32 & 0xFFFF; 3218 goto out; 3219 } 3220 3221 /* old crc16 code */ 3222 if (!ext4_has_feature_gdt_csum(sb)) 3223 return 0; 3224 3225 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3226 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3227 crc = crc16(crc, (__u8 *)gdp, offset); 3228 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3229 /* for checksum of struct ext4_group_desc do the rest...*/ 3230 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3231 crc = crc16(crc, (__u8 *)gdp + offset, 3232 sbi->s_desc_size - offset); 3233 3234 out: 3235 return cpu_to_le16(crc); 3236 } 3237 3238 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3239 struct ext4_group_desc *gdp) 3240 { 3241 if (ext4_has_group_desc_csum(sb) && 3242 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3243 return 0; 3244 3245 return 1; 3246 } 3247 3248 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3249 struct ext4_group_desc *gdp) 3250 { 3251 if (!ext4_has_group_desc_csum(sb)) 3252 return; 3253 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3254 } 3255 3256 /* Called at mount-time, super-block is locked */ 3257 static int ext4_check_descriptors(struct super_block *sb, 3258 ext4_fsblk_t sb_block, 3259 ext4_group_t *first_not_zeroed) 3260 { 3261 struct ext4_sb_info *sbi = EXT4_SB(sb); 3262 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3263 ext4_fsblk_t last_block; 3264 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3265 ext4_fsblk_t block_bitmap; 3266 ext4_fsblk_t inode_bitmap; 3267 ext4_fsblk_t inode_table; 3268 int flexbg_flag = 0; 3269 ext4_group_t i, grp = sbi->s_groups_count; 3270 3271 if (ext4_has_feature_flex_bg(sb)) 3272 flexbg_flag = 1; 3273 3274 ext4_debug("Checking group descriptors"); 3275 3276 for (i = 0; i < sbi->s_groups_count; i++) { 3277 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3278 3279 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3280 last_block = ext4_blocks_count(sbi->s_es) - 1; 3281 else 3282 last_block = first_block + 3283 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3284 3285 if ((grp == sbi->s_groups_count) && 3286 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3287 grp = i; 3288 3289 block_bitmap = ext4_block_bitmap(sb, gdp); 3290 if (block_bitmap == sb_block) { 3291 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3292 "Block bitmap for group %u overlaps " 3293 "superblock", i); 3294 if (!sb_rdonly(sb)) 3295 return 0; 3296 } 3297 if (block_bitmap >= sb_block + 1 && 3298 block_bitmap <= last_bg_block) { 3299 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3300 "Block bitmap for group %u overlaps " 3301 "block group descriptors", i); 3302 if (!sb_rdonly(sb)) 3303 return 0; 3304 } 3305 if (block_bitmap < first_block || block_bitmap > last_block) { 3306 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3307 "Block bitmap for group %u not in group " 3308 "(block %llu)!", i, block_bitmap); 3309 return 0; 3310 } 3311 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3312 if (inode_bitmap == sb_block) { 3313 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3314 "Inode bitmap for group %u overlaps " 3315 "superblock", i); 3316 if (!sb_rdonly(sb)) 3317 return 0; 3318 } 3319 if (inode_bitmap >= sb_block + 1 && 3320 inode_bitmap <= last_bg_block) { 3321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3322 "Inode bitmap for group %u overlaps " 3323 "block group descriptors", i); 3324 if (!sb_rdonly(sb)) 3325 return 0; 3326 } 3327 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3328 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3329 "Inode bitmap for group %u not in group " 3330 "(block %llu)!", i, inode_bitmap); 3331 return 0; 3332 } 3333 inode_table = ext4_inode_table(sb, gdp); 3334 if (inode_table == sb_block) { 3335 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3336 "Inode table for group %u overlaps " 3337 "superblock", i); 3338 if (!sb_rdonly(sb)) 3339 return 0; 3340 } 3341 if (inode_table >= sb_block + 1 && 3342 inode_table <= last_bg_block) { 3343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3344 "Inode table for group %u overlaps " 3345 "block group descriptors", i); 3346 if (!sb_rdonly(sb)) 3347 return 0; 3348 } 3349 if (inode_table < first_block || 3350 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3352 "Inode table for group %u not in group " 3353 "(block %llu)!", i, inode_table); 3354 return 0; 3355 } 3356 ext4_lock_group(sb, i); 3357 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3358 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3359 "Checksum for group %u failed (%u!=%u)", 3360 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3361 gdp)), le16_to_cpu(gdp->bg_checksum)); 3362 if (!sb_rdonly(sb)) { 3363 ext4_unlock_group(sb, i); 3364 return 0; 3365 } 3366 } 3367 ext4_unlock_group(sb, i); 3368 if (!flexbg_flag) 3369 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3370 } 3371 if (NULL != first_not_zeroed) 3372 *first_not_zeroed = grp; 3373 return 1; 3374 } 3375 3376 /* 3377 * Maximal extent format file size. 3378 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3379 * extent format containers, within a sector_t, and within i_blocks 3380 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3381 * so that won't be a limiting factor. 3382 * 3383 * However there is other limiting factor. We do store extents in the form 3384 * of starting block and length, hence the resulting length of the extent 3385 * covering maximum file size must fit into on-disk format containers as 3386 * well. Given that length is always by 1 unit bigger than max unit (because 3387 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3388 * 3389 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3390 */ 3391 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3392 { 3393 loff_t res; 3394 loff_t upper_limit = MAX_LFS_FILESIZE; 3395 3396 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3397 3398 if (!has_huge_files) { 3399 upper_limit = (1LL << 32) - 1; 3400 3401 /* total blocks in file system block size */ 3402 upper_limit >>= (blkbits - 9); 3403 upper_limit <<= blkbits; 3404 } 3405 3406 /* 3407 * 32-bit extent-start container, ee_block. We lower the maxbytes 3408 * by one fs block, so ee_len can cover the extent of maximum file 3409 * size 3410 */ 3411 res = (1LL << 32) - 1; 3412 res <<= blkbits; 3413 3414 /* Sanity check against vm- & vfs- imposed limits */ 3415 if (res > upper_limit) 3416 res = upper_limit; 3417 3418 return res; 3419 } 3420 3421 /* 3422 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3423 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3424 * We need to be 1 filesystem block less than the 2^48 sector limit. 3425 */ 3426 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3427 { 3428 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3429 int meta_blocks; 3430 unsigned int ppb = 1 << (bits - 2); 3431 3432 /* 3433 * This is calculated to be the largest file size for a dense, block 3434 * mapped file such that the file's total number of 512-byte sectors, 3435 * including data and all indirect blocks, does not exceed (2^48 - 1). 3436 * 3437 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3438 * number of 512-byte sectors of the file. 3439 */ 3440 if (!has_huge_files) { 3441 /* 3442 * !has_huge_files or implies that the inode i_block field 3443 * represents total file blocks in 2^32 512-byte sectors == 3444 * size of vfs inode i_blocks * 8 3445 */ 3446 upper_limit = (1LL << 32) - 1; 3447 3448 /* total blocks in file system block size */ 3449 upper_limit >>= (bits - 9); 3450 3451 } else { 3452 /* 3453 * We use 48 bit ext4_inode i_blocks 3454 * With EXT4_HUGE_FILE_FL set the i_blocks 3455 * represent total number of blocks in 3456 * file system block size 3457 */ 3458 upper_limit = (1LL << 48) - 1; 3459 3460 } 3461 3462 /* Compute how many blocks we can address by block tree */ 3463 res += ppb; 3464 res += ppb * ppb; 3465 res += ((loff_t)ppb) * ppb * ppb; 3466 /* Compute how many metadata blocks are needed */ 3467 meta_blocks = 1; 3468 meta_blocks += 1 + ppb; 3469 meta_blocks += 1 + ppb + ppb * ppb; 3470 /* Does block tree limit file size? */ 3471 if (res + meta_blocks <= upper_limit) 3472 goto check_lfs; 3473 3474 res = upper_limit; 3475 /* How many metadata blocks are needed for addressing upper_limit? */ 3476 upper_limit -= EXT4_NDIR_BLOCKS; 3477 /* indirect blocks */ 3478 meta_blocks = 1; 3479 upper_limit -= ppb; 3480 /* double indirect blocks */ 3481 if (upper_limit < ppb * ppb) { 3482 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3483 res -= meta_blocks; 3484 goto check_lfs; 3485 } 3486 meta_blocks += 1 + ppb; 3487 upper_limit -= ppb * ppb; 3488 /* tripple indirect blocks for the rest */ 3489 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3490 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3491 res -= meta_blocks; 3492 check_lfs: 3493 res <<= bits; 3494 if (res > MAX_LFS_FILESIZE) 3495 res = MAX_LFS_FILESIZE; 3496 3497 return res; 3498 } 3499 3500 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3501 ext4_fsblk_t logical_sb_block, int nr) 3502 { 3503 struct ext4_sb_info *sbi = EXT4_SB(sb); 3504 ext4_group_t bg, first_meta_bg; 3505 int has_super = 0; 3506 3507 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3508 3509 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3510 return logical_sb_block + nr + 1; 3511 bg = sbi->s_desc_per_block * nr; 3512 if (ext4_bg_has_super(sb, bg)) 3513 has_super = 1; 3514 3515 /* 3516 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3517 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3518 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3519 * compensate. 3520 */ 3521 if (sb->s_blocksize == 1024 && nr == 0 && 3522 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3523 has_super++; 3524 3525 return (has_super + ext4_group_first_block_no(sb, bg)); 3526 } 3527 3528 /** 3529 * ext4_get_stripe_size: Get the stripe size. 3530 * @sbi: In memory super block info 3531 * 3532 * If we have specified it via mount option, then 3533 * use the mount option value. If the value specified at mount time is 3534 * greater than the blocks per group use the super block value. 3535 * If the super block value is greater than blocks per group return 0. 3536 * Allocator needs it be less than blocks per group. 3537 * 3538 */ 3539 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3540 { 3541 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3542 unsigned long stripe_width = 3543 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3544 int ret; 3545 3546 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3547 ret = sbi->s_stripe; 3548 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3549 ret = stripe_width; 3550 else if (stride && stride <= sbi->s_blocks_per_group) 3551 ret = stride; 3552 else 3553 ret = 0; 3554 3555 /* 3556 * If the stripe width is 1, this makes no sense and 3557 * we set it to 0 to turn off stripe handling code. 3558 */ 3559 if (ret <= 1) 3560 ret = 0; 3561 3562 return ret; 3563 } 3564 3565 /* 3566 * Check whether this filesystem can be mounted based on 3567 * the features present and the RDONLY/RDWR mount requested. 3568 * Returns 1 if this filesystem can be mounted as requested, 3569 * 0 if it cannot be. 3570 */ 3571 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3572 { 3573 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3574 ext4_msg(sb, KERN_ERR, 3575 "Couldn't mount because of " 3576 "unsupported optional features (%x)", 3577 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3578 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3579 return 0; 3580 } 3581 3582 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) { 3583 ext4_msg(sb, KERN_ERR, 3584 "Filesystem with casefold feature cannot be " 3585 "mounted without CONFIG_UNICODE"); 3586 return 0; 3587 } 3588 3589 if (readonly) 3590 return 1; 3591 3592 if (ext4_has_feature_readonly(sb)) { 3593 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3594 sb->s_flags |= SB_RDONLY; 3595 return 1; 3596 } 3597 3598 /* Check that feature set is OK for a read-write mount */ 3599 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3600 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3601 "unsupported optional features (%x)", 3602 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3603 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3604 return 0; 3605 } 3606 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3607 ext4_msg(sb, KERN_ERR, 3608 "Can't support bigalloc feature without " 3609 "extents feature\n"); 3610 return 0; 3611 } 3612 3613 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3614 if (!readonly && (ext4_has_feature_quota(sb) || 3615 ext4_has_feature_project(sb))) { 3616 ext4_msg(sb, KERN_ERR, 3617 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3618 return 0; 3619 } 3620 #endif /* CONFIG_QUOTA */ 3621 return 1; 3622 } 3623 3624 /* 3625 * This function is called once a day if we have errors logged 3626 * on the file system 3627 */ 3628 static void print_daily_error_info(struct timer_list *t) 3629 { 3630 struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report); 3631 struct super_block *sb = sbi->s_sb; 3632 struct ext4_super_block *es = sbi->s_es; 3633 3634 if (es->s_error_count) 3635 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3636 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3637 le32_to_cpu(es->s_error_count)); 3638 if (es->s_first_error_time) { 3639 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3640 sb->s_id, 3641 ext4_get_tstamp(es, s_first_error_time), 3642 (int) sizeof(es->s_first_error_func), 3643 es->s_first_error_func, 3644 le32_to_cpu(es->s_first_error_line)); 3645 if (es->s_first_error_ino) 3646 printk(KERN_CONT ": inode %u", 3647 le32_to_cpu(es->s_first_error_ino)); 3648 if (es->s_first_error_block) 3649 printk(KERN_CONT ": block %llu", (unsigned long long) 3650 le64_to_cpu(es->s_first_error_block)); 3651 printk(KERN_CONT "\n"); 3652 } 3653 if (es->s_last_error_time) { 3654 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3655 sb->s_id, 3656 ext4_get_tstamp(es, s_last_error_time), 3657 (int) sizeof(es->s_last_error_func), 3658 es->s_last_error_func, 3659 le32_to_cpu(es->s_last_error_line)); 3660 if (es->s_last_error_ino) 3661 printk(KERN_CONT ": inode %u", 3662 le32_to_cpu(es->s_last_error_ino)); 3663 if (es->s_last_error_block) 3664 printk(KERN_CONT ": block %llu", (unsigned long long) 3665 le64_to_cpu(es->s_last_error_block)); 3666 printk(KERN_CONT "\n"); 3667 } 3668 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3669 } 3670 3671 /* Find next suitable group and run ext4_init_inode_table */ 3672 static int ext4_run_li_request(struct ext4_li_request *elr) 3673 { 3674 struct ext4_group_desc *gdp = NULL; 3675 struct super_block *sb = elr->lr_super; 3676 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3677 ext4_group_t group = elr->lr_next_group; 3678 unsigned int prefetch_ios = 0; 3679 int ret = 0; 3680 int nr = EXT4_SB(sb)->s_mb_prefetch; 3681 u64 start_time; 3682 3683 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3684 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3685 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3686 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3687 if (group >= elr->lr_next_group) { 3688 ret = 1; 3689 if (elr->lr_first_not_zeroed != ngroups && 3690 !ext4_emergency_state(sb) && !sb_rdonly(sb) && 3691 test_opt(sb, INIT_INODE_TABLE)) { 3692 elr->lr_next_group = elr->lr_first_not_zeroed; 3693 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3694 ret = 0; 3695 } 3696 } 3697 return ret; 3698 } 3699 3700 for (; group < ngroups; group++) { 3701 gdp = ext4_get_group_desc(sb, group, NULL); 3702 if (!gdp) { 3703 ret = 1; 3704 break; 3705 } 3706 3707 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3708 break; 3709 } 3710 3711 if (group >= ngroups) 3712 ret = 1; 3713 3714 if (!ret) { 3715 start_time = ktime_get_ns(); 3716 ret = ext4_init_inode_table(sb, group, 3717 elr->lr_timeout ? 0 : 1); 3718 trace_ext4_lazy_itable_init(sb, group); 3719 if (elr->lr_timeout == 0) { 3720 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) * 3721 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3722 } 3723 elr->lr_next_sched = jiffies + elr->lr_timeout; 3724 elr->lr_next_group = group + 1; 3725 } 3726 return ret; 3727 } 3728 3729 /* 3730 * Remove lr_request from the list_request and free the 3731 * request structure. Should be called with li_list_mtx held 3732 */ 3733 static void ext4_remove_li_request(struct ext4_li_request *elr) 3734 { 3735 if (!elr) 3736 return; 3737 3738 list_del(&elr->lr_request); 3739 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3740 kfree(elr); 3741 } 3742 3743 static void ext4_unregister_li_request(struct super_block *sb) 3744 { 3745 mutex_lock(&ext4_li_mtx); 3746 if (!ext4_li_info) { 3747 mutex_unlock(&ext4_li_mtx); 3748 return; 3749 } 3750 3751 mutex_lock(&ext4_li_info->li_list_mtx); 3752 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3753 mutex_unlock(&ext4_li_info->li_list_mtx); 3754 mutex_unlock(&ext4_li_mtx); 3755 } 3756 3757 static struct task_struct *ext4_lazyinit_task; 3758 3759 /* 3760 * This is the function where ext4lazyinit thread lives. It walks 3761 * through the request list searching for next scheduled filesystem. 3762 * When such a fs is found, run the lazy initialization request 3763 * (ext4_rn_li_request) and keep track of the time spend in this 3764 * function. Based on that time we compute next schedule time of 3765 * the request. When walking through the list is complete, compute 3766 * next waking time and put itself into sleep. 3767 */ 3768 static int ext4_lazyinit_thread(void *arg) 3769 { 3770 struct ext4_lazy_init *eli = arg; 3771 struct list_head *pos, *n; 3772 struct ext4_li_request *elr; 3773 unsigned long next_wakeup, cur; 3774 3775 BUG_ON(NULL == eli); 3776 set_freezable(); 3777 3778 cont_thread: 3779 while (true) { 3780 bool next_wakeup_initialized = false; 3781 3782 next_wakeup = 0; 3783 mutex_lock(&eli->li_list_mtx); 3784 if (list_empty(&eli->li_request_list)) { 3785 mutex_unlock(&eli->li_list_mtx); 3786 goto exit_thread; 3787 } 3788 list_for_each_safe(pos, n, &eli->li_request_list) { 3789 int err = 0; 3790 int progress = 0; 3791 elr = list_entry(pos, struct ext4_li_request, 3792 lr_request); 3793 3794 if (time_before(jiffies, elr->lr_next_sched)) { 3795 if (!next_wakeup_initialized || 3796 time_before(elr->lr_next_sched, next_wakeup)) { 3797 next_wakeup = elr->lr_next_sched; 3798 next_wakeup_initialized = true; 3799 } 3800 continue; 3801 } 3802 if (down_read_trylock(&elr->lr_super->s_umount)) { 3803 if (sb_start_write_trylock(elr->lr_super)) { 3804 progress = 1; 3805 /* 3806 * We hold sb->s_umount, sb can not 3807 * be removed from the list, it is 3808 * now safe to drop li_list_mtx 3809 */ 3810 mutex_unlock(&eli->li_list_mtx); 3811 err = ext4_run_li_request(elr); 3812 sb_end_write(elr->lr_super); 3813 mutex_lock(&eli->li_list_mtx); 3814 n = pos->next; 3815 } 3816 up_read((&elr->lr_super->s_umount)); 3817 } 3818 /* error, remove the lazy_init job */ 3819 if (err) { 3820 ext4_remove_li_request(elr); 3821 continue; 3822 } 3823 if (!progress) { 3824 elr->lr_next_sched = jiffies + 3825 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3826 } 3827 if (!next_wakeup_initialized || 3828 time_before(elr->lr_next_sched, next_wakeup)) { 3829 next_wakeup = elr->lr_next_sched; 3830 next_wakeup_initialized = true; 3831 } 3832 } 3833 mutex_unlock(&eli->li_list_mtx); 3834 3835 try_to_freeze(); 3836 3837 cur = jiffies; 3838 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) { 3839 cond_resched(); 3840 continue; 3841 } 3842 3843 schedule_timeout_interruptible(next_wakeup - cur); 3844 3845 if (kthread_should_stop()) { 3846 ext4_clear_request_list(); 3847 goto exit_thread; 3848 } 3849 } 3850 3851 exit_thread: 3852 /* 3853 * It looks like the request list is empty, but we need 3854 * to check it under the li_list_mtx lock, to prevent any 3855 * additions into it, and of course we should lock ext4_li_mtx 3856 * to atomically free the list and ext4_li_info, because at 3857 * this point another ext4 filesystem could be registering 3858 * new one. 3859 */ 3860 mutex_lock(&ext4_li_mtx); 3861 mutex_lock(&eli->li_list_mtx); 3862 if (!list_empty(&eli->li_request_list)) { 3863 mutex_unlock(&eli->li_list_mtx); 3864 mutex_unlock(&ext4_li_mtx); 3865 goto cont_thread; 3866 } 3867 mutex_unlock(&eli->li_list_mtx); 3868 kfree(ext4_li_info); 3869 ext4_li_info = NULL; 3870 mutex_unlock(&ext4_li_mtx); 3871 3872 return 0; 3873 } 3874 3875 static void ext4_clear_request_list(void) 3876 { 3877 struct list_head *pos, *n; 3878 struct ext4_li_request *elr; 3879 3880 mutex_lock(&ext4_li_info->li_list_mtx); 3881 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3882 elr = list_entry(pos, struct ext4_li_request, 3883 lr_request); 3884 ext4_remove_li_request(elr); 3885 } 3886 mutex_unlock(&ext4_li_info->li_list_mtx); 3887 } 3888 3889 static int ext4_run_lazyinit_thread(void) 3890 { 3891 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3892 ext4_li_info, "ext4lazyinit"); 3893 if (IS_ERR(ext4_lazyinit_task)) { 3894 int err = PTR_ERR(ext4_lazyinit_task); 3895 ext4_clear_request_list(); 3896 kfree(ext4_li_info); 3897 ext4_li_info = NULL; 3898 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3899 "initialization thread\n", 3900 err); 3901 return err; 3902 } 3903 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3904 return 0; 3905 } 3906 3907 /* 3908 * Check whether it make sense to run itable init. thread or not. 3909 * If there is at least one uninitialized inode table, return 3910 * corresponding group number, else the loop goes through all 3911 * groups and return total number of groups. 3912 */ 3913 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3914 { 3915 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3916 struct ext4_group_desc *gdp = NULL; 3917 3918 if (!ext4_has_group_desc_csum(sb)) 3919 return ngroups; 3920 3921 for (group = 0; group < ngroups; group++) { 3922 gdp = ext4_get_group_desc(sb, group, NULL); 3923 if (!gdp) 3924 continue; 3925 3926 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3927 break; 3928 } 3929 3930 return group; 3931 } 3932 3933 static int ext4_li_info_new(void) 3934 { 3935 struct ext4_lazy_init *eli = NULL; 3936 3937 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3938 if (!eli) 3939 return -ENOMEM; 3940 3941 INIT_LIST_HEAD(&eli->li_request_list); 3942 mutex_init(&eli->li_list_mtx); 3943 3944 eli->li_state |= EXT4_LAZYINIT_QUIT; 3945 3946 ext4_li_info = eli; 3947 3948 return 0; 3949 } 3950 3951 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3952 ext4_group_t start) 3953 { 3954 struct ext4_li_request *elr; 3955 3956 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3957 if (!elr) 3958 return NULL; 3959 3960 elr->lr_super = sb; 3961 elr->lr_first_not_zeroed = start; 3962 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3963 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3964 elr->lr_next_group = start; 3965 } else { 3966 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3967 } 3968 3969 /* 3970 * Randomize first schedule time of the request to 3971 * spread the inode table initialization requests 3972 * better. 3973 */ 3974 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3975 return elr; 3976 } 3977 3978 int ext4_register_li_request(struct super_block *sb, 3979 ext4_group_t first_not_zeroed) 3980 { 3981 struct ext4_sb_info *sbi = EXT4_SB(sb); 3982 struct ext4_li_request *elr = NULL; 3983 ext4_group_t ngroups = sbi->s_groups_count; 3984 int ret = 0; 3985 3986 mutex_lock(&ext4_li_mtx); 3987 if (sbi->s_li_request != NULL) { 3988 /* 3989 * Reset timeout so it can be computed again, because 3990 * s_li_wait_mult might have changed. 3991 */ 3992 sbi->s_li_request->lr_timeout = 0; 3993 goto out; 3994 } 3995 3996 if (ext4_emergency_state(sb) || sb_rdonly(sb) || 3997 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3998 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 3999 goto out; 4000 4001 elr = ext4_li_request_new(sb, first_not_zeroed); 4002 if (!elr) { 4003 ret = -ENOMEM; 4004 goto out; 4005 } 4006 4007 if (NULL == ext4_li_info) { 4008 ret = ext4_li_info_new(); 4009 if (ret) 4010 goto out; 4011 } 4012 4013 mutex_lock(&ext4_li_info->li_list_mtx); 4014 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4015 mutex_unlock(&ext4_li_info->li_list_mtx); 4016 4017 sbi->s_li_request = elr; 4018 /* 4019 * set elr to NULL here since it has been inserted to 4020 * the request_list and the removal and free of it is 4021 * handled by ext4_clear_request_list from now on. 4022 */ 4023 elr = NULL; 4024 4025 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4026 ret = ext4_run_lazyinit_thread(); 4027 if (ret) 4028 goto out; 4029 } 4030 out: 4031 mutex_unlock(&ext4_li_mtx); 4032 if (ret) 4033 kfree(elr); 4034 return ret; 4035 } 4036 4037 /* 4038 * We do not need to lock anything since this is called on 4039 * module unload. 4040 */ 4041 static void ext4_destroy_lazyinit_thread(void) 4042 { 4043 /* 4044 * If thread exited earlier 4045 * there's nothing to be done. 4046 */ 4047 if (!ext4_li_info || !ext4_lazyinit_task) 4048 return; 4049 4050 kthread_stop(ext4_lazyinit_task); 4051 } 4052 4053 static int set_journal_csum_feature_set(struct super_block *sb) 4054 { 4055 int ret = 1; 4056 int compat, incompat; 4057 struct ext4_sb_info *sbi = EXT4_SB(sb); 4058 4059 if (ext4_has_feature_metadata_csum(sb)) { 4060 /* journal checksum v3 */ 4061 compat = 0; 4062 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4063 } else { 4064 /* journal checksum v1 */ 4065 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4066 incompat = 0; 4067 } 4068 4069 jbd2_journal_clear_features(sbi->s_journal, 4070 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4071 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4072 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4073 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4074 ret = jbd2_journal_set_features(sbi->s_journal, 4075 compat, 0, 4076 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4077 incompat); 4078 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4079 ret = jbd2_journal_set_features(sbi->s_journal, 4080 compat, 0, 4081 incompat); 4082 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4083 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4084 } else { 4085 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4086 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4087 } 4088 4089 return ret; 4090 } 4091 4092 /* 4093 * Note: calculating the overhead so we can be compatible with 4094 * historical BSD practice is quite difficult in the face of 4095 * clusters/bigalloc. This is because multiple metadata blocks from 4096 * different block group can end up in the same allocation cluster. 4097 * Calculating the exact overhead in the face of clustered allocation 4098 * requires either O(all block bitmaps) in memory or O(number of block 4099 * groups**2) in time. We will still calculate the superblock for 4100 * older file systems --- and if we come across with a bigalloc file 4101 * system with zero in s_overhead_clusters the estimate will be close to 4102 * correct especially for very large cluster sizes --- but for newer 4103 * file systems, it's better to calculate this figure once at mkfs 4104 * time, and store it in the superblock. If the superblock value is 4105 * present (even for non-bigalloc file systems), we will use it. 4106 */ 4107 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4108 char *buf) 4109 { 4110 struct ext4_sb_info *sbi = EXT4_SB(sb); 4111 struct ext4_group_desc *gdp; 4112 ext4_fsblk_t first_block, last_block, b; 4113 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4114 int s, j, count = 0; 4115 int has_super = ext4_bg_has_super(sb, grp); 4116 4117 if (!ext4_has_feature_bigalloc(sb)) 4118 return (has_super + ext4_bg_num_gdb(sb, grp) + 4119 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4120 sbi->s_itb_per_group + 2); 4121 4122 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4123 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4124 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4125 for (i = 0; i < ngroups; i++) { 4126 gdp = ext4_get_group_desc(sb, i, NULL); 4127 b = ext4_block_bitmap(sb, gdp); 4128 if (b >= first_block && b <= last_block) { 4129 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4130 count++; 4131 } 4132 b = ext4_inode_bitmap(sb, gdp); 4133 if (b >= first_block && b <= last_block) { 4134 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4135 count++; 4136 } 4137 b = ext4_inode_table(sb, gdp); 4138 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4139 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4140 int c = EXT4_B2C(sbi, b - first_block); 4141 ext4_set_bit(c, buf); 4142 count++; 4143 } 4144 if (i != grp) 4145 continue; 4146 s = 0; 4147 if (ext4_bg_has_super(sb, grp)) { 4148 ext4_set_bit(s++, buf); 4149 count++; 4150 } 4151 j = ext4_bg_num_gdb(sb, grp); 4152 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4153 ext4_error(sb, "Invalid number of block group " 4154 "descriptor blocks: %d", j); 4155 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4156 } 4157 count += j; 4158 for (; j > 0; j--) 4159 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4160 } 4161 if (!count) 4162 return 0; 4163 return EXT4_CLUSTERS_PER_GROUP(sb) - 4164 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4165 } 4166 4167 /* 4168 * Compute the overhead and stash it in sbi->s_overhead 4169 */ 4170 int ext4_calculate_overhead(struct super_block *sb) 4171 { 4172 struct ext4_sb_info *sbi = EXT4_SB(sb); 4173 struct ext4_super_block *es = sbi->s_es; 4174 struct inode *j_inode; 4175 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4176 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4177 ext4_fsblk_t overhead = 0; 4178 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4179 4180 if (!buf) 4181 return -ENOMEM; 4182 4183 /* 4184 * Compute the overhead (FS structures). This is constant 4185 * for a given filesystem unless the number of block groups 4186 * changes so we cache the previous value until it does. 4187 */ 4188 4189 /* 4190 * All of the blocks before first_data_block are overhead 4191 */ 4192 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4193 4194 /* 4195 * Add the overhead found in each block group 4196 */ 4197 for (i = 0; i < ngroups; i++) { 4198 int blks; 4199 4200 blks = count_overhead(sb, i, buf); 4201 overhead += blks; 4202 if (blks) 4203 memset(buf, 0, PAGE_SIZE); 4204 cond_resched(); 4205 } 4206 4207 /* 4208 * Add the internal journal blocks whether the journal has been 4209 * loaded or not 4210 */ 4211 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4212 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4213 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4214 /* j_inum for internal journal is non-zero */ 4215 j_inode = ext4_get_journal_inode(sb, j_inum); 4216 if (!IS_ERR(j_inode)) { 4217 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4218 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4219 iput(j_inode); 4220 } else { 4221 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4222 } 4223 } 4224 sbi->s_overhead = overhead; 4225 smp_wmb(); 4226 free_page((unsigned long) buf); 4227 return 0; 4228 } 4229 4230 static void ext4_set_resv_clusters(struct super_block *sb) 4231 { 4232 ext4_fsblk_t resv_clusters; 4233 struct ext4_sb_info *sbi = EXT4_SB(sb); 4234 4235 /* 4236 * There's no need to reserve anything when we aren't using extents. 4237 * The space estimates are exact, there are no unwritten extents, 4238 * hole punching doesn't need new metadata... This is needed especially 4239 * to keep ext2/3 backward compatibility. 4240 */ 4241 if (!ext4_has_feature_extents(sb)) 4242 return; 4243 /* 4244 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4245 * This should cover the situations where we can not afford to run 4246 * out of space like for example punch hole, or converting 4247 * unwritten extents in delalloc path. In most cases such 4248 * allocation would require 1, or 2 blocks, higher numbers are 4249 * very rare. 4250 */ 4251 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4252 sbi->s_cluster_bits); 4253 4254 do_div(resv_clusters, 50); 4255 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4256 4257 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4258 } 4259 4260 static const char *ext4_quota_mode(struct super_block *sb) 4261 { 4262 #ifdef CONFIG_QUOTA 4263 if (!ext4_quota_capable(sb)) 4264 return "none"; 4265 4266 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4267 return "journalled"; 4268 else 4269 return "writeback"; 4270 #else 4271 return "disabled"; 4272 #endif 4273 } 4274 4275 static void ext4_setup_csum_trigger(struct super_block *sb, 4276 enum ext4_journal_trigger_type type, 4277 void (*trigger)( 4278 struct jbd2_buffer_trigger_type *type, 4279 struct buffer_head *bh, 4280 void *mapped_data, 4281 size_t size)) 4282 { 4283 struct ext4_sb_info *sbi = EXT4_SB(sb); 4284 4285 sbi->s_journal_triggers[type].sb = sb; 4286 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4287 } 4288 4289 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4290 { 4291 if (!sbi) 4292 return; 4293 4294 kfree(sbi->s_blockgroup_lock); 4295 fs_put_dax(sbi->s_daxdev, NULL); 4296 kfree(sbi); 4297 } 4298 4299 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4300 { 4301 struct ext4_sb_info *sbi; 4302 4303 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4304 if (!sbi) 4305 return NULL; 4306 4307 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4308 NULL, NULL); 4309 4310 sbi->s_blockgroup_lock = 4311 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4312 4313 if (!sbi->s_blockgroup_lock) 4314 goto err_out; 4315 4316 sb->s_fs_info = sbi; 4317 sbi->s_sb = sb; 4318 return sbi; 4319 err_out: 4320 fs_put_dax(sbi->s_daxdev, NULL); 4321 kfree(sbi); 4322 return NULL; 4323 } 4324 4325 static void ext4_set_def_opts(struct super_block *sb, 4326 struct ext4_super_block *es) 4327 { 4328 unsigned long def_mount_opts; 4329 4330 /* Set defaults before we parse the mount options */ 4331 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4332 set_opt(sb, INIT_INODE_TABLE); 4333 if (def_mount_opts & EXT4_DEFM_DEBUG) 4334 set_opt(sb, DEBUG); 4335 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4336 set_opt(sb, GRPID); 4337 if (def_mount_opts & EXT4_DEFM_UID16) 4338 set_opt(sb, NO_UID32); 4339 /* xattr user namespace & acls are now defaulted on */ 4340 set_opt(sb, XATTR_USER); 4341 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4342 set_opt(sb, POSIX_ACL); 4343 #endif 4344 if (ext4_has_feature_fast_commit(sb)) 4345 set_opt2(sb, JOURNAL_FAST_COMMIT); 4346 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4347 if (ext4_has_feature_metadata_csum(sb)) 4348 set_opt(sb, JOURNAL_CHECKSUM); 4349 4350 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4351 set_opt(sb, JOURNAL_DATA); 4352 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4353 set_opt(sb, ORDERED_DATA); 4354 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4355 set_opt(sb, WRITEBACK_DATA); 4356 4357 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4358 set_opt(sb, ERRORS_PANIC); 4359 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4360 set_opt(sb, ERRORS_CONT); 4361 else 4362 set_opt(sb, ERRORS_RO); 4363 /* block_validity enabled by default; disable with noblock_validity */ 4364 set_opt(sb, BLOCK_VALIDITY); 4365 if (def_mount_opts & EXT4_DEFM_DISCARD) 4366 set_opt(sb, DISCARD); 4367 4368 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4369 set_opt(sb, BARRIER); 4370 4371 /* 4372 * enable delayed allocation by default 4373 * Use -o nodelalloc to turn it off 4374 */ 4375 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4376 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4377 set_opt(sb, DELALLOC); 4378 4379 if (sb->s_blocksize <= PAGE_SIZE) 4380 set_opt(sb, DIOREAD_NOLOCK); 4381 } 4382 4383 static int ext4_handle_clustersize(struct super_block *sb) 4384 { 4385 struct ext4_sb_info *sbi = EXT4_SB(sb); 4386 struct ext4_super_block *es = sbi->s_es; 4387 int clustersize; 4388 4389 /* Handle clustersize */ 4390 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4391 if (ext4_has_feature_bigalloc(sb)) { 4392 if (clustersize < sb->s_blocksize) { 4393 ext4_msg(sb, KERN_ERR, 4394 "cluster size (%d) smaller than " 4395 "block size (%lu)", clustersize, sb->s_blocksize); 4396 return -EINVAL; 4397 } 4398 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4399 le32_to_cpu(es->s_log_block_size); 4400 } else { 4401 if (clustersize != sb->s_blocksize) { 4402 ext4_msg(sb, KERN_ERR, 4403 "fragment/cluster size (%d) != " 4404 "block size (%lu)", clustersize, sb->s_blocksize); 4405 return -EINVAL; 4406 } 4407 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4408 ext4_msg(sb, KERN_ERR, 4409 "#blocks per group too big: %lu", 4410 sbi->s_blocks_per_group); 4411 return -EINVAL; 4412 } 4413 sbi->s_cluster_bits = 0; 4414 } 4415 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4416 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4417 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4418 sbi->s_clusters_per_group); 4419 return -EINVAL; 4420 } 4421 if (sbi->s_blocks_per_group != 4422 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4423 ext4_msg(sb, KERN_ERR, 4424 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4425 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4426 return -EINVAL; 4427 } 4428 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4429 4430 /* Do we have standard group size of clustersize * 8 blocks ? */ 4431 if (sbi->s_blocks_per_group == clustersize << 3) 4432 set_opt2(sb, STD_GROUP_SIZE); 4433 4434 return 0; 4435 } 4436 4437 /* 4438 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units. 4439 * With non-bigalloc filesystem awu will be based upon filesystem blocksize 4440 * & bdev awu units. 4441 * With bigalloc it will be based upon bigalloc cluster size & bdev awu units. 4442 * @sb: super block 4443 */ 4444 static void ext4_atomic_write_init(struct super_block *sb) 4445 { 4446 struct ext4_sb_info *sbi = EXT4_SB(sb); 4447 struct block_device *bdev = sb->s_bdev; 4448 unsigned int clustersize = EXT4_CLUSTER_SIZE(sb); 4449 4450 if (!bdev_can_atomic_write(bdev)) 4451 return; 4452 4453 if (!ext4_has_feature_extents(sb)) 4454 return; 4455 4456 sbi->s_awu_min = max(sb->s_blocksize, 4457 bdev_atomic_write_unit_min_bytes(bdev)); 4458 sbi->s_awu_max = min(clustersize, 4459 bdev_atomic_write_unit_max_bytes(bdev)); 4460 if (sbi->s_awu_min && sbi->s_awu_max && 4461 sbi->s_awu_min <= sbi->s_awu_max) { 4462 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u", 4463 sbi->s_awu_min, sbi->s_awu_max); 4464 } else { 4465 sbi->s_awu_min = 0; 4466 sbi->s_awu_max = 0; 4467 } 4468 } 4469 4470 static void ext4_fast_commit_init(struct super_block *sb) 4471 { 4472 struct ext4_sb_info *sbi = EXT4_SB(sb); 4473 4474 /* Initialize fast commit stuff */ 4475 atomic_set(&sbi->s_fc_subtid, 0); 4476 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4477 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4478 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4479 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4480 sbi->s_fc_bytes = 0; 4481 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4482 sbi->s_fc_ineligible_tid = 0; 4483 mutex_init(&sbi->s_fc_lock); 4484 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4485 sbi->s_fc_replay_state.fc_regions = NULL; 4486 sbi->s_fc_replay_state.fc_regions_size = 0; 4487 sbi->s_fc_replay_state.fc_regions_used = 0; 4488 sbi->s_fc_replay_state.fc_regions_valid = 0; 4489 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4490 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4491 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4492 } 4493 4494 static int ext4_inode_info_init(struct super_block *sb, 4495 struct ext4_super_block *es) 4496 { 4497 struct ext4_sb_info *sbi = EXT4_SB(sb); 4498 4499 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4500 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4501 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4502 } else { 4503 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4504 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4505 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4506 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4507 sbi->s_first_ino); 4508 return -EINVAL; 4509 } 4510 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4511 (!is_power_of_2(sbi->s_inode_size)) || 4512 (sbi->s_inode_size > sb->s_blocksize)) { 4513 ext4_msg(sb, KERN_ERR, 4514 "unsupported inode size: %d", 4515 sbi->s_inode_size); 4516 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4517 return -EINVAL; 4518 } 4519 /* 4520 * i_atime_extra is the last extra field available for 4521 * [acm]times in struct ext4_inode. Checking for that 4522 * field should suffice to ensure we have extra space 4523 * for all three. 4524 */ 4525 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4526 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4527 sb->s_time_gran = 1; 4528 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4529 } else { 4530 sb->s_time_gran = NSEC_PER_SEC; 4531 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4532 } 4533 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4534 } 4535 4536 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4537 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4538 EXT4_GOOD_OLD_INODE_SIZE; 4539 if (ext4_has_feature_extra_isize(sb)) { 4540 unsigned v, max = (sbi->s_inode_size - 4541 EXT4_GOOD_OLD_INODE_SIZE); 4542 4543 v = le16_to_cpu(es->s_want_extra_isize); 4544 if (v > max) { 4545 ext4_msg(sb, KERN_ERR, 4546 "bad s_want_extra_isize: %d", v); 4547 return -EINVAL; 4548 } 4549 if (sbi->s_want_extra_isize < v) 4550 sbi->s_want_extra_isize = v; 4551 4552 v = le16_to_cpu(es->s_min_extra_isize); 4553 if (v > max) { 4554 ext4_msg(sb, KERN_ERR, 4555 "bad s_min_extra_isize: %d", v); 4556 return -EINVAL; 4557 } 4558 if (sbi->s_want_extra_isize < v) 4559 sbi->s_want_extra_isize = v; 4560 } 4561 } 4562 4563 return 0; 4564 } 4565 4566 #if IS_ENABLED(CONFIG_UNICODE) 4567 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4568 { 4569 const struct ext4_sb_encodings *encoding_info; 4570 struct unicode_map *encoding; 4571 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4572 4573 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4574 return 0; 4575 4576 encoding_info = ext4_sb_read_encoding(es); 4577 if (!encoding_info) { 4578 ext4_msg(sb, KERN_ERR, 4579 "Encoding requested by superblock is unknown"); 4580 return -EINVAL; 4581 } 4582 4583 encoding = utf8_load(encoding_info->version); 4584 if (IS_ERR(encoding)) { 4585 ext4_msg(sb, KERN_ERR, 4586 "can't mount with superblock charset: %s-%u.%u.%u " 4587 "not supported by the kernel. flags: 0x%x.", 4588 encoding_info->name, 4589 unicode_major(encoding_info->version), 4590 unicode_minor(encoding_info->version), 4591 unicode_rev(encoding_info->version), 4592 encoding_flags); 4593 return -EINVAL; 4594 } 4595 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4596 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4597 unicode_major(encoding_info->version), 4598 unicode_minor(encoding_info->version), 4599 unicode_rev(encoding_info->version), 4600 encoding_flags); 4601 4602 sb->s_encoding = encoding; 4603 sb->s_encoding_flags = encoding_flags; 4604 4605 return 0; 4606 } 4607 #else 4608 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4609 { 4610 return 0; 4611 } 4612 #endif 4613 4614 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4615 { 4616 struct ext4_sb_info *sbi = EXT4_SB(sb); 4617 4618 /* Warn if metadata_csum and gdt_csum are both set. */ 4619 if (ext4_has_feature_metadata_csum(sb) && 4620 ext4_has_feature_gdt_csum(sb)) 4621 ext4_warning(sb, "metadata_csum and uninit_bg are " 4622 "redundant flags; please run fsck."); 4623 4624 /* Check for a known checksum algorithm */ 4625 if (!ext4_verify_csum_type(sb, es)) { 4626 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4627 "unknown checksum algorithm."); 4628 return -EINVAL; 4629 } 4630 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4631 ext4_orphan_file_block_trigger); 4632 4633 /* Check superblock checksum */ 4634 if (!ext4_superblock_csum_verify(sb, es)) { 4635 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4636 "invalid superblock checksum. Run e2fsck?"); 4637 return -EFSBADCRC; 4638 } 4639 4640 /* Precompute checksum seed for all metadata */ 4641 if (ext4_has_feature_csum_seed(sb)) 4642 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4643 else if (ext4_has_feature_metadata_csum(sb) || 4644 ext4_has_feature_ea_inode(sb)) 4645 sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid, 4646 sizeof(es->s_uuid)); 4647 return 0; 4648 } 4649 4650 static int ext4_check_feature_compatibility(struct super_block *sb, 4651 struct ext4_super_block *es, 4652 int silent) 4653 { 4654 struct ext4_sb_info *sbi = EXT4_SB(sb); 4655 4656 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4657 (ext4_has_compat_features(sb) || 4658 ext4_has_ro_compat_features(sb) || 4659 ext4_has_incompat_features(sb))) 4660 ext4_msg(sb, KERN_WARNING, 4661 "feature flags set on rev 0 fs, " 4662 "running e2fsck is recommended"); 4663 4664 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4665 set_opt2(sb, HURD_COMPAT); 4666 if (ext4_has_feature_64bit(sb)) { 4667 ext4_msg(sb, KERN_ERR, 4668 "The Hurd can't support 64-bit file systems"); 4669 return -EINVAL; 4670 } 4671 4672 /* 4673 * ea_inode feature uses l_i_version field which is not 4674 * available in HURD_COMPAT mode. 4675 */ 4676 if (ext4_has_feature_ea_inode(sb)) { 4677 ext4_msg(sb, KERN_ERR, 4678 "ea_inode feature is not supported for Hurd"); 4679 return -EINVAL; 4680 } 4681 } 4682 4683 if (IS_EXT2_SB(sb)) { 4684 if (ext2_feature_set_ok(sb)) 4685 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4686 "using the ext4 subsystem"); 4687 else { 4688 /* 4689 * If we're probing be silent, if this looks like 4690 * it's actually an ext[34] filesystem. 4691 */ 4692 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4693 return -EINVAL; 4694 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4695 "to feature incompatibilities"); 4696 return -EINVAL; 4697 } 4698 } 4699 4700 if (IS_EXT3_SB(sb)) { 4701 if (ext3_feature_set_ok(sb)) 4702 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4703 "using the ext4 subsystem"); 4704 else { 4705 /* 4706 * If we're probing be silent, if this looks like 4707 * it's actually an ext4 filesystem. 4708 */ 4709 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4710 return -EINVAL; 4711 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4712 "to feature incompatibilities"); 4713 return -EINVAL; 4714 } 4715 } 4716 4717 /* 4718 * Check feature flags regardless of the revision level, since we 4719 * previously didn't change the revision level when setting the flags, 4720 * so there is a chance incompat flags are set on a rev 0 filesystem. 4721 */ 4722 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4723 return -EINVAL; 4724 4725 if (sbi->s_daxdev) { 4726 if (sb->s_blocksize == PAGE_SIZE) 4727 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4728 else 4729 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4730 } 4731 4732 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4733 if (ext4_has_feature_inline_data(sb)) { 4734 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4735 " that may contain inline data"); 4736 return -EINVAL; 4737 } 4738 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4739 ext4_msg(sb, KERN_ERR, 4740 "DAX unsupported by block device."); 4741 return -EINVAL; 4742 } 4743 } 4744 4745 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4746 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4747 es->s_encryption_level); 4748 return -EINVAL; 4749 } 4750 4751 return 0; 4752 } 4753 4754 static int ext4_check_geometry(struct super_block *sb, 4755 struct ext4_super_block *es) 4756 { 4757 struct ext4_sb_info *sbi = EXT4_SB(sb); 4758 __u64 blocks_count; 4759 int err; 4760 4761 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4762 ext4_msg(sb, KERN_ERR, 4763 "Number of reserved GDT blocks insanely large: %d", 4764 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4765 return -EINVAL; 4766 } 4767 /* 4768 * Test whether we have more sectors than will fit in sector_t, 4769 * and whether the max offset is addressable by the page cache. 4770 */ 4771 err = generic_check_addressable(sb->s_blocksize_bits, 4772 ext4_blocks_count(es)); 4773 if (err) { 4774 ext4_msg(sb, KERN_ERR, "filesystem" 4775 " too large to mount safely on this system"); 4776 return err; 4777 } 4778 4779 /* check blocks count against device size */ 4780 blocks_count = sb_bdev_nr_blocks(sb); 4781 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4782 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4783 "exceeds size of device (%llu blocks)", 4784 ext4_blocks_count(es), blocks_count); 4785 return -EINVAL; 4786 } 4787 4788 /* 4789 * It makes no sense for the first data block to be beyond the end 4790 * of the filesystem. 4791 */ 4792 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4793 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4794 "block %u is beyond end of filesystem (%llu)", 4795 le32_to_cpu(es->s_first_data_block), 4796 ext4_blocks_count(es)); 4797 return -EINVAL; 4798 } 4799 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4800 (sbi->s_cluster_ratio == 1)) { 4801 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4802 "block is 0 with a 1k block and cluster size"); 4803 return -EINVAL; 4804 } 4805 4806 blocks_count = (ext4_blocks_count(es) - 4807 le32_to_cpu(es->s_first_data_block) + 4808 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4809 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4810 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4811 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4812 "(block count %llu, first data block %u, " 4813 "blocks per group %lu)", blocks_count, 4814 ext4_blocks_count(es), 4815 le32_to_cpu(es->s_first_data_block), 4816 EXT4_BLOCKS_PER_GROUP(sb)); 4817 return -EINVAL; 4818 } 4819 sbi->s_groups_count = blocks_count; 4820 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4821 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4822 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4823 le32_to_cpu(es->s_inodes_count)) { 4824 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4825 le32_to_cpu(es->s_inodes_count), 4826 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4827 return -EINVAL; 4828 } 4829 4830 return 0; 4831 } 4832 4833 static int ext4_group_desc_init(struct super_block *sb, 4834 struct ext4_super_block *es, 4835 ext4_fsblk_t logical_sb_block, 4836 ext4_group_t *first_not_zeroed) 4837 { 4838 struct ext4_sb_info *sbi = EXT4_SB(sb); 4839 unsigned int db_count; 4840 ext4_fsblk_t block; 4841 int i; 4842 4843 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4844 EXT4_DESC_PER_BLOCK(sb); 4845 if (ext4_has_feature_meta_bg(sb)) { 4846 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4847 ext4_msg(sb, KERN_WARNING, 4848 "first meta block group too large: %u " 4849 "(group descriptor block count %u)", 4850 le32_to_cpu(es->s_first_meta_bg), db_count); 4851 return -EINVAL; 4852 } 4853 } 4854 rcu_assign_pointer(sbi->s_group_desc, 4855 kvmalloc_array(db_count, 4856 sizeof(struct buffer_head *), 4857 GFP_KERNEL)); 4858 if (sbi->s_group_desc == NULL) { 4859 ext4_msg(sb, KERN_ERR, "not enough memory"); 4860 return -ENOMEM; 4861 } 4862 4863 bgl_lock_init(sbi->s_blockgroup_lock); 4864 4865 /* Pre-read the descriptors into the buffer cache */ 4866 for (i = 0; i < db_count; i++) { 4867 block = descriptor_loc(sb, logical_sb_block, i); 4868 ext4_sb_breadahead_unmovable(sb, block); 4869 } 4870 4871 for (i = 0; i < db_count; i++) { 4872 struct buffer_head *bh; 4873 4874 block = descriptor_loc(sb, logical_sb_block, i); 4875 bh = ext4_sb_bread_unmovable(sb, block); 4876 if (IS_ERR(bh)) { 4877 ext4_msg(sb, KERN_ERR, 4878 "can't read group descriptor %d", i); 4879 sbi->s_gdb_count = i; 4880 return PTR_ERR(bh); 4881 } 4882 rcu_read_lock(); 4883 rcu_dereference(sbi->s_group_desc)[i] = bh; 4884 rcu_read_unlock(); 4885 } 4886 sbi->s_gdb_count = db_count; 4887 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4888 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4889 return -EFSCORRUPTED; 4890 } 4891 4892 return 0; 4893 } 4894 4895 static int ext4_load_and_init_journal(struct super_block *sb, 4896 struct ext4_super_block *es, 4897 struct ext4_fs_context *ctx) 4898 { 4899 struct ext4_sb_info *sbi = EXT4_SB(sb); 4900 int err; 4901 4902 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4903 if (err) 4904 return err; 4905 4906 if (ext4_has_feature_64bit(sb) && 4907 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4908 JBD2_FEATURE_INCOMPAT_64BIT)) { 4909 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4910 goto out; 4911 } 4912 4913 if (!set_journal_csum_feature_set(sb)) { 4914 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4915 "feature set"); 4916 goto out; 4917 } 4918 4919 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4920 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4921 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4922 ext4_msg(sb, KERN_ERR, 4923 "Failed to set fast commit journal feature"); 4924 goto out; 4925 } 4926 4927 /* We have now updated the journal if required, so we can 4928 * validate the data journaling mode. */ 4929 switch (test_opt(sb, DATA_FLAGS)) { 4930 case 0: 4931 /* No mode set, assume a default based on the journal 4932 * capabilities: ORDERED_DATA if the journal can 4933 * cope, else JOURNAL_DATA 4934 */ 4935 if (jbd2_journal_check_available_features 4936 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4937 set_opt(sb, ORDERED_DATA); 4938 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4939 } else { 4940 set_opt(sb, JOURNAL_DATA); 4941 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4942 } 4943 break; 4944 4945 case EXT4_MOUNT_ORDERED_DATA: 4946 case EXT4_MOUNT_WRITEBACK_DATA: 4947 if (!jbd2_journal_check_available_features 4948 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4949 ext4_msg(sb, KERN_ERR, "Journal does not support " 4950 "requested data journaling mode"); 4951 goto out; 4952 } 4953 break; 4954 default: 4955 break; 4956 } 4957 4958 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4959 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4960 ext4_msg(sb, KERN_ERR, "can't mount with " 4961 "journal_async_commit in data=ordered mode"); 4962 goto out; 4963 } 4964 4965 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4966 4967 sbi->s_journal->j_submit_inode_data_buffers = 4968 ext4_journal_submit_inode_data_buffers; 4969 sbi->s_journal->j_finish_inode_data_buffers = 4970 ext4_journal_finish_inode_data_buffers; 4971 4972 return 0; 4973 4974 out: 4975 ext4_journal_destroy(sbi, sbi->s_journal); 4976 return -EINVAL; 4977 } 4978 4979 static int ext4_check_journal_data_mode(struct super_block *sb) 4980 { 4981 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4982 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4983 "data=journal disables delayed allocation, " 4984 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4985 /* can't mount with both data=journal and dioread_nolock. */ 4986 clear_opt(sb, DIOREAD_NOLOCK); 4987 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4988 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4989 ext4_msg(sb, KERN_ERR, "can't mount with " 4990 "both data=journal and delalloc"); 4991 return -EINVAL; 4992 } 4993 if (test_opt(sb, DAX_ALWAYS)) { 4994 ext4_msg(sb, KERN_ERR, "can't mount with " 4995 "both data=journal and dax"); 4996 return -EINVAL; 4997 } 4998 if (ext4_has_feature_encrypt(sb)) { 4999 ext4_msg(sb, KERN_WARNING, 5000 "encrypted files will use data=ordered " 5001 "instead of data journaling mode"); 5002 } 5003 if (test_opt(sb, DELALLOC)) 5004 clear_opt(sb, DELALLOC); 5005 } else { 5006 sb->s_iflags |= SB_I_CGROUPWB; 5007 } 5008 5009 return 0; 5010 } 5011 5012 static const char *ext4_has_journal_option(struct super_block *sb) 5013 { 5014 struct ext4_sb_info *sbi = EXT4_SB(sb); 5015 5016 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 5017 return "journal_async_commit"; 5018 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) 5019 return "journal_checksum"; 5020 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 5021 return "commit="; 5022 if (EXT4_MOUNT_DATA_FLAGS & 5023 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) 5024 return "data="; 5025 if (test_opt(sb, DATA_ERR_ABORT)) 5026 return "data_err=abort"; 5027 return NULL; 5028 } 5029 5030 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5031 int silent) 5032 { 5033 struct ext4_sb_info *sbi = EXT4_SB(sb); 5034 struct ext4_super_block *es; 5035 ext4_fsblk_t logical_sb_block; 5036 unsigned long offset = 0; 5037 struct buffer_head *bh; 5038 int ret = -EINVAL; 5039 int blocksize; 5040 5041 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5042 if (!blocksize) { 5043 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5044 return -EINVAL; 5045 } 5046 5047 /* 5048 * The ext4 superblock will not be buffer aligned for other than 1kB 5049 * block sizes. We need to calculate the offset from buffer start. 5050 */ 5051 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5052 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5053 offset = do_div(logical_sb_block, blocksize); 5054 } else { 5055 logical_sb_block = sbi->s_sb_block; 5056 } 5057 5058 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5059 if (IS_ERR(bh)) { 5060 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5061 return PTR_ERR(bh); 5062 } 5063 /* 5064 * Note: s_es must be initialized as soon as possible because 5065 * some ext4 macro-instructions depend on its value 5066 */ 5067 es = (struct ext4_super_block *) (bh->b_data + offset); 5068 sbi->s_es = es; 5069 sb->s_magic = le16_to_cpu(es->s_magic); 5070 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5071 if (!silent) 5072 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5073 goto out; 5074 } 5075 5076 if (le32_to_cpu(es->s_log_block_size) > 5077 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5078 ext4_msg(sb, KERN_ERR, 5079 "Invalid log block size: %u", 5080 le32_to_cpu(es->s_log_block_size)); 5081 goto out; 5082 } 5083 if (le32_to_cpu(es->s_log_cluster_size) > 5084 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5085 ext4_msg(sb, KERN_ERR, 5086 "Invalid log cluster size: %u", 5087 le32_to_cpu(es->s_log_cluster_size)); 5088 goto out; 5089 } 5090 5091 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5092 5093 /* 5094 * If the default block size is not the same as the real block size, 5095 * we need to reload it. 5096 */ 5097 if (sb->s_blocksize == blocksize) { 5098 *lsb = logical_sb_block; 5099 sbi->s_sbh = bh; 5100 return 0; 5101 } 5102 5103 /* 5104 * bh must be released before kill_bdev(), otherwise 5105 * it won't be freed and its page also. kill_bdev() 5106 * is called by sb_set_blocksize(). 5107 */ 5108 brelse(bh); 5109 /* Validate the filesystem blocksize */ 5110 if (!sb_set_blocksize(sb, blocksize)) { 5111 ext4_msg(sb, KERN_ERR, "bad block size %d", 5112 blocksize); 5113 bh = NULL; 5114 goto out; 5115 } 5116 5117 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5118 offset = do_div(logical_sb_block, blocksize); 5119 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5120 if (IS_ERR(bh)) { 5121 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5122 ret = PTR_ERR(bh); 5123 bh = NULL; 5124 goto out; 5125 } 5126 es = (struct ext4_super_block *)(bh->b_data + offset); 5127 sbi->s_es = es; 5128 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5129 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5130 goto out; 5131 } 5132 *lsb = logical_sb_block; 5133 sbi->s_sbh = bh; 5134 return 0; 5135 out: 5136 brelse(bh); 5137 return ret; 5138 } 5139 5140 static int ext4_hash_info_init(struct super_block *sb) 5141 { 5142 struct ext4_sb_info *sbi = EXT4_SB(sb); 5143 struct ext4_super_block *es = sbi->s_es; 5144 unsigned int i; 5145 5146 sbi->s_def_hash_version = es->s_def_hash_version; 5147 5148 if (sbi->s_def_hash_version > DX_HASH_LAST) { 5149 ext4_msg(sb, KERN_ERR, 5150 "Invalid default hash set in the superblock"); 5151 return -EINVAL; 5152 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) { 5153 ext4_msg(sb, KERN_ERR, 5154 "SIPHASH is not a valid default hash value"); 5155 return -EINVAL; 5156 } 5157 5158 for (i = 0; i < 4; i++) 5159 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5160 5161 if (ext4_has_feature_dir_index(sb)) { 5162 i = le32_to_cpu(es->s_flags); 5163 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5164 sbi->s_hash_unsigned = 3; 5165 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5166 #ifdef __CHAR_UNSIGNED__ 5167 if (!sb_rdonly(sb)) 5168 es->s_flags |= 5169 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5170 sbi->s_hash_unsigned = 3; 5171 #else 5172 if (!sb_rdonly(sb)) 5173 es->s_flags |= 5174 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5175 #endif 5176 } 5177 } 5178 return 0; 5179 } 5180 5181 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5182 { 5183 struct ext4_sb_info *sbi = EXT4_SB(sb); 5184 struct ext4_super_block *es = sbi->s_es; 5185 int has_huge_files; 5186 5187 has_huge_files = ext4_has_feature_huge_file(sb); 5188 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5189 has_huge_files); 5190 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5191 5192 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5193 if (ext4_has_feature_64bit(sb)) { 5194 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5195 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5196 !is_power_of_2(sbi->s_desc_size)) { 5197 ext4_msg(sb, KERN_ERR, 5198 "unsupported descriptor size %lu", 5199 sbi->s_desc_size); 5200 return -EINVAL; 5201 } 5202 } else 5203 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5204 5205 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5206 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5207 5208 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5209 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5210 if (!silent) 5211 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5212 return -EINVAL; 5213 } 5214 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5215 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5216 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5217 sbi->s_inodes_per_group); 5218 return -EINVAL; 5219 } 5220 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5221 sbi->s_inodes_per_block; 5222 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5223 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5224 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5225 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5226 5227 return 0; 5228 } 5229 5230 /* 5231 * It's hard to get stripe aligned blocks if stripe is not aligned with 5232 * cluster, just disable stripe and alert user to simplify code and avoid 5233 * stripe aligned allocation which will rarely succeed. 5234 */ 5235 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe) 5236 { 5237 struct ext4_sb_info *sbi = EXT4_SB(sb); 5238 return (stripe > 0 && sbi->s_cluster_ratio > 1 && 5239 stripe % sbi->s_cluster_ratio != 0); 5240 } 5241 5242 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5243 { 5244 struct ext4_super_block *es = NULL; 5245 struct ext4_sb_info *sbi = EXT4_SB(sb); 5246 ext4_fsblk_t logical_sb_block; 5247 struct inode *root; 5248 int needs_recovery; 5249 int err; 5250 ext4_group_t first_not_zeroed; 5251 struct ext4_fs_context *ctx = fc->fs_private; 5252 int silent = fc->sb_flags & SB_SILENT; 5253 5254 /* Set defaults for the variables that will be set during parsing */ 5255 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5256 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; 5257 5258 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5259 sbi->s_sectors_written_start = 5260 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5261 5262 err = ext4_load_super(sb, &logical_sb_block, silent); 5263 if (err) 5264 goto out_fail; 5265 5266 es = sbi->s_es; 5267 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5268 5269 err = ext4_init_metadata_csum(sb, es); 5270 if (err) 5271 goto failed_mount; 5272 5273 ext4_set_def_opts(sb, es); 5274 5275 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5276 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5277 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5278 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5279 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5280 sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB; 5281 sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC; 5282 5283 /* 5284 * set default s_li_wait_mult for lazyinit, for the case there is 5285 * no mount option specified. 5286 */ 5287 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5288 5289 err = ext4_inode_info_init(sb, es); 5290 if (err) 5291 goto failed_mount; 5292 5293 err = parse_apply_sb_mount_options(sb, ctx); 5294 if (err < 0) 5295 goto failed_mount; 5296 5297 sbi->s_def_mount_opt = sbi->s_mount_opt; 5298 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5299 5300 err = ext4_check_opt_consistency(fc, sb); 5301 if (err < 0) 5302 goto failed_mount; 5303 5304 ext4_apply_options(fc, sb); 5305 5306 err = ext4_encoding_init(sb, es); 5307 if (err) 5308 goto failed_mount; 5309 5310 err = ext4_check_journal_data_mode(sb); 5311 if (err) 5312 goto failed_mount; 5313 5314 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5315 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5316 5317 /* i_version is always enabled now */ 5318 sb->s_flags |= SB_I_VERSION; 5319 5320 /* HSM events are allowed by default. */ 5321 sb->s_iflags |= SB_I_ALLOW_HSM; 5322 5323 err = ext4_check_feature_compatibility(sb, es, silent); 5324 if (err) 5325 goto failed_mount; 5326 5327 err = ext4_block_group_meta_init(sb, silent); 5328 if (err) 5329 goto failed_mount; 5330 5331 err = ext4_hash_info_init(sb); 5332 if (err) 5333 goto failed_mount; 5334 5335 err = ext4_handle_clustersize(sb); 5336 if (err) 5337 goto failed_mount; 5338 5339 err = ext4_check_geometry(sb, es); 5340 if (err) 5341 goto failed_mount; 5342 5343 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5344 spin_lock_init(&sbi->s_error_lock); 5345 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5346 5347 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5348 if (err) 5349 goto failed_mount3; 5350 5351 err = ext4_es_register_shrinker(sbi); 5352 if (err) 5353 goto failed_mount3; 5354 5355 sbi->s_stripe = ext4_get_stripe_size(sbi); 5356 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) { 5357 ext4_msg(sb, KERN_WARNING, 5358 "stripe (%lu) is not aligned with cluster size (%u), " 5359 "stripe is disabled", 5360 sbi->s_stripe, sbi->s_cluster_ratio); 5361 sbi->s_stripe = 0; 5362 } 5363 sbi->s_extent_max_zeroout_kb = 32; 5364 5365 /* 5366 * set up enough so that it can read an inode 5367 */ 5368 sb->s_op = &ext4_sops; 5369 sb->s_export_op = &ext4_export_ops; 5370 sb->s_xattr = ext4_xattr_handlers; 5371 #ifdef CONFIG_FS_ENCRYPTION 5372 sb->s_cop = &ext4_cryptops; 5373 #endif 5374 #ifdef CONFIG_FS_VERITY 5375 sb->s_vop = &ext4_verityops; 5376 #endif 5377 #ifdef CONFIG_QUOTA 5378 sb->dq_op = &ext4_quota_operations; 5379 if (ext4_has_feature_quota(sb)) 5380 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5381 else 5382 sb->s_qcop = &ext4_qctl_operations; 5383 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5384 #endif 5385 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5386 super_set_sysfs_name_bdev(sb); 5387 5388 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5389 mutex_init(&sbi->s_orphan_lock); 5390 5391 spin_lock_init(&sbi->s_bdev_wb_lock); 5392 5393 ext4_atomic_write_init(sb); 5394 ext4_fast_commit_init(sb); 5395 5396 sb->s_root = NULL; 5397 5398 needs_recovery = (es->s_last_orphan != 0 || 5399 ext4_has_feature_orphan_present(sb) || 5400 ext4_has_feature_journal_needs_recovery(sb)); 5401 5402 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5403 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5404 if (err) 5405 goto failed_mount3a; 5406 } 5407 5408 err = -EINVAL; 5409 /* 5410 * The first inode we look at is the journal inode. Don't try 5411 * root first: it may be modified in the journal! 5412 */ 5413 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5414 err = ext4_load_and_init_journal(sb, es, ctx); 5415 if (err) 5416 goto failed_mount3a; 5417 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5418 ext4_has_feature_journal_needs_recovery(sb)) { 5419 ext4_msg(sb, KERN_ERR, "required journal recovery " 5420 "suppressed and not mounted read-only"); 5421 goto failed_mount3a; 5422 } else { 5423 const char *journal_option; 5424 5425 /* Nojournal mode, all journal mount options are illegal */ 5426 journal_option = ext4_has_journal_option(sb); 5427 if (journal_option != NULL) { 5428 ext4_msg(sb, KERN_ERR, 5429 "can't mount with %s, fs mounted w/o journal", 5430 journal_option); 5431 goto failed_mount3a; 5432 } 5433 5434 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5435 clear_opt(sb, JOURNAL_CHECKSUM); 5436 clear_opt(sb, DATA_FLAGS); 5437 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5438 sbi->s_journal = NULL; 5439 needs_recovery = 0; 5440 } 5441 5442 if (!test_opt(sb, NO_MBCACHE)) { 5443 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5444 if (!sbi->s_ea_block_cache) { 5445 ext4_msg(sb, KERN_ERR, 5446 "Failed to create ea_block_cache"); 5447 err = -EINVAL; 5448 goto failed_mount_wq; 5449 } 5450 5451 if (ext4_has_feature_ea_inode(sb)) { 5452 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5453 if (!sbi->s_ea_inode_cache) { 5454 ext4_msg(sb, KERN_ERR, 5455 "Failed to create ea_inode_cache"); 5456 err = -EINVAL; 5457 goto failed_mount_wq; 5458 } 5459 } 5460 } 5461 5462 /* 5463 * Get the # of file system overhead blocks from the 5464 * superblock if present. 5465 */ 5466 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5467 /* ignore the precalculated value if it is ridiculous */ 5468 if (sbi->s_overhead > ext4_blocks_count(es)) 5469 sbi->s_overhead = 0; 5470 /* 5471 * If the bigalloc feature is not enabled recalculating the 5472 * overhead doesn't take long, so we might as well just redo 5473 * it to make sure we are using the correct value. 5474 */ 5475 if (!ext4_has_feature_bigalloc(sb)) 5476 sbi->s_overhead = 0; 5477 if (sbi->s_overhead == 0) { 5478 err = ext4_calculate_overhead(sb); 5479 if (err) 5480 goto failed_mount_wq; 5481 } 5482 5483 /* 5484 * The maximum number of concurrent works can be high and 5485 * concurrency isn't really necessary. Limit it to 1. 5486 */ 5487 EXT4_SB(sb)->rsv_conversion_wq = 5488 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5489 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5490 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5491 err = -ENOMEM; 5492 goto failed_mount4; 5493 } 5494 5495 /* 5496 * The jbd2_journal_load will have done any necessary log recovery, 5497 * so we can safely mount the rest of the filesystem now. 5498 */ 5499 5500 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5501 if (IS_ERR(root)) { 5502 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5503 err = PTR_ERR(root); 5504 root = NULL; 5505 goto failed_mount4; 5506 } 5507 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5508 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5509 iput(root); 5510 err = -EFSCORRUPTED; 5511 goto failed_mount4; 5512 } 5513 5514 generic_set_sb_d_ops(sb); 5515 sb->s_root = d_make_root(root); 5516 if (!sb->s_root) { 5517 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5518 err = -ENOMEM; 5519 goto failed_mount4; 5520 } 5521 5522 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5523 if (err == -EROFS) { 5524 sb->s_flags |= SB_RDONLY; 5525 } else if (err) 5526 goto failed_mount4a; 5527 5528 ext4_set_resv_clusters(sb); 5529 5530 if (test_opt(sb, BLOCK_VALIDITY)) { 5531 err = ext4_setup_system_zone(sb); 5532 if (err) { 5533 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5534 "zone (%d)", err); 5535 goto failed_mount4a; 5536 } 5537 } 5538 ext4_fc_replay_cleanup(sb); 5539 5540 ext4_ext_init(sb); 5541 5542 /* 5543 * Enable optimize_scan if number of groups is > threshold. This can be 5544 * turned off by passing "mb_optimize_scan=0". This can also be 5545 * turned on forcefully by passing "mb_optimize_scan=1". 5546 */ 5547 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5548 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5549 set_opt2(sb, MB_OPTIMIZE_SCAN); 5550 else 5551 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5552 } 5553 5554 err = ext4_mb_init(sb); 5555 if (err) { 5556 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5557 err); 5558 goto failed_mount5; 5559 } 5560 5561 /* 5562 * We can only set up the journal commit callback once 5563 * mballoc is initialized 5564 */ 5565 if (sbi->s_journal) 5566 sbi->s_journal->j_commit_callback = 5567 ext4_journal_commit_callback; 5568 5569 err = ext4_percpu_param_init(sbi); 5570 if (err) 5571 goto failed_mount6; 5572 5573 if (ext4_has_feature_flex_bg(sb)) 5574 if (!ext4_fill_flex_info(sb)) { 5575 ext4_msg(sb, KERN_ERR, 5576 "unable to initialize " 5577 "flex_bg meta info!"); 5578 err = -ENOMEM; 5579 goto failed_mount6; 5580 } 5581 5582 err = ext4_register_li_request(sb, first_not_zeroed); 5583 if (err) 5584 goto failed_mount6; 5585 5586 err = ext4_init_orphan_info(sb); 5587 if (err) 5588 goto failed_mount7; 5589 #ifdef CONFIG_QUOTA 5590 /* Enable quota usage during mount. */ 5591 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5592 err = ext4_enable_quotas(sb); 5593 if (err) 5594 goto failed_mount8; 5595 } 5596 #endif /* CONFIG_QUOTA */ 5597 5598 /* 5599 * Save the original bdev mapping's wb_err value which could be 5600 * used to detect the metadata async write error. 5601 */ 5602 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err, 5603 &sbi->s_bdev_wb_err); 5604 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5605 ext4_orphan_cleanup(sb, es); 5606 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5607 /* 5608 * Update the checksum after updating free space/inode counters and 5609 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5610 * checksum in the buffer cache until it is written out and 5611 * e2fsprogs programs trying to open a file system immediately 5612 * after it is mounted can fail. 5613 */ 5614 ext4_superblock_csum_set(sb); 5615 if (needs_recovery) { 5616 ext4_msg(sb, KERN_INFO, "recovery complete"); 5617 err = ext4_mark_recovery_complete(sb, es); 5618 if (err) 5619 goto failed_mount9; 5620 } 5621 5622 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) { 5623 ext4_msg(sb, KERN_WARNING, 5624 "mounting with \"discard\" option, but the device does not support discard"); 5625 clear_opt(sb, DISCARD); 5626 } 5627 5628 if (es->s_error_count) 5629 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5630 5631 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5632 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5633 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5634 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5635 atomic_set(&sbi->s_warning_count, 0); 5636 atomic_set(&sbi->s_msg_count, 0); 5637 5638 /* Register sysfs after all initializations are complete. */ 5639 err = ext4_register_sysfs(sb); 5640 if (err) 5641 goto failed_mount9; 5642 5643 return 0; 5644 5645 failed_mount9: 5646 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5647 failed_mount8: __maybe_unused 5648 ext4_release_orphan_info(sb); 5649 failed_mount7: 5650 ext4_unregister_li_request(sb); 5651 failed_mount6: 5652 ext4_mb_release(sb); 5653 ext4_flex_groups_free(sbi); 5654 ext4_percpu_param_destroy(sbi); 5655 failed_mount5: 5656 ext4_ext_release(sb); 5657 ext4_release_system_zone(sb); 5658 failed_mount4a: 5659 dput(sb->s_root); 5660 sb->s_root = NULL; 5661 failed_mount4: 5662 ext4_msg(sb, KERN_ERR, "mount failed"); 5663 if (EXT4_SB(sb)->rsv_conversion_wq) 5664 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5665 failed_mount_wq: 5666 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5667 sbi->s_ea_inode_cache = NULL; 5668 5669 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5670 sbi->s_ea_block_cache = NULL; 5671 5672 if (sbi->s_journal) { 5673 ext4_journal_destroy(sbi, sbi->s_journal); 5674 } 5675 failed_mount3a: 5676 ext4_es_unregister_shrinker(sbi); 5677 failed_mount3: 5678 /* flush s_sb_upd_work before sbi destroy */ 5679 flush_work(&sbi->s_sb_upd_work); 5680 ext4_stop_mmpd(sbi); 5681 timer_delete_sync(&sbi->s_err_report); 5682 ext4_group_desc_free(sbi); 5683 failed_mount: 5684 #if IS_ENABLED(CONFIG_UNICODE) 5685 utf8_unload(sb->s_encoding); 5686 #endif 5687 5688 #ifdef CONFIG_QUOTA 5689 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5690 kfree(get_qf_name(sb, sbi, i)); 5691 #endif 5692 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5693 brelse(sbi->s_sbh); 5694 if (sbi->s_journal_bdev_file) { 5695 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5696 bdev_fput(sbi->s_journal_bdev_file); 5697 } 5698 out_fail: 5699 invalidate_bdev(sb->s_bdev); 5700 sb->s_fs_info = NULL; 5701 return err; 5702 } 5703 5704 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5705 { 5706 struct ext4_fs_context *ctx = fc->fs_private; 5707 struct ext4_sb_info *sbi; 5708 const char *descr; 5709 int ret; 5710 5711 sbi = ext4_alloc_sbi(sb); 5712 if (!sbi) 5713 return -ENOMEM; 5714 5715 fc->s_fs_info = sbi; 5716 5717 /* Cleanup superblock name */ 5718 strreplace(sb->s_id, '/', '!'); 5719 5720 sbi->s_sb_block = 1; /* Default super block location */ 5721 if (ctx->spec & EXT4_SPEC_s_sb_block) 5722 sbi->s_sb_block = ctx->s_sb_block; 5723 5724 ret = __ext4_fill_super(fc, sb); 5725 if (ret < 0) 5726 goto free_sbi; 5727 5728 if (sbi->s_journal) { 5729 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5730 descr = " journalled data mode"; 5731 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5732 descr = " ordered data mode"; 5733 else 5734 descr = " writeback data mode"; 5735 } else 5736 descr = "out journal"; 5737 5738 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5739 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5740 "Quota mode: %s.", &sb->s_uuid, 5741 sb_rdonly(sb) ? "ro" : "r/w", descr, 5742 ext4_quota_mode(sb)); 5743 5744 /* Update the s_overhead_clusters if necessary */ 5745 ext4_update_overhead(sb, false); 5746 return 0; 5747 5748 free_sbi: 5749 ext4_free_sbi(sbi); 5750 fc->s_fs_info = NULL; 5751 return ret; 5752 } 5753 5754 static int ext4_get_tree(struct fs_context *fc) 5755 { 5756 return get_tree_bdev(fc, ext4_fill_super); 5757 } 5758 5759 /* 5760 * Setup any per-fs journal parameters now. We'll do this both on 5761 * initial mount, once the journal has been initialised but before we've 5762 * done any recovery; and again on any subsequent remount. 5763 */ 5764 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5765 { 5766 struct ext4_sb_info *sbi = EXT4_SB(sb); 5767 5768 journal->j_commit_interval = sbi->s_commit_interval; 5769 journal->j_min_batch_time = sbi->s_min_batch_time; 5770 journal->j_max_batch_time = sbi->s_max_batch_time; 5771 ext4_fc_init(sb, journal); 5772 5773 write_lock(&journal->j_state_lock); 5774 if (test_opt(sb, BARRIER)) 5775 journal->j_flags |= JBD2_BARRIER; 5776 else 5777 journal->j_flags &= ~JBD2_BARRIER; 5778 /* 5779 * Always enable journal cycle record option, letting the journal 5780 * records log transactions continuously between each mount. 5781 */ 5782 journal->j_flags |= JBD2_CYCLE_RECORD; 5783 write_unlock(&journal->j_state_lock); 5784 } 5785 5786 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5787 unsigned int journal_inum) 5788 { 5789 struct inode *journal_inode; 5790 5791 /* 5792 * Test for the existence of a valid inode on disk. Bad things 5793 * happen if we iget() an unused inode, as the subsequent iput() 5794 * will try to delete it. 5795 */ 5796 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5797 if (IS_ERR(journal_inode)) { 5798 ext4_msg(sb, KERN_ERR, "no journal found"); 5799 return ERR_CAST(journal_inode); 5800 } 5801 if (!journal_inode->i_nlink) { 5802 make_bad_inode(journal_inode); 5803 iput(journal_inode); 5804 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5805 return ERR_PTR(-EFSCORRUPTED); 5806 } 5807 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5808 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5809 iput(journal_inode); 5810 return ERR_PTR(-EFSCORRUPTED); 5811 } 5812 5813 ext4_debug("Journal inode found at %p: %lld bytes\n", 5814 journal_inode, journal_inode->i_size); 5815 return journal_inode; 5816 } 5817 5818 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5819 { 5820 struct ext4_map_blocks map; 5821 int ret; 5822 5823 if (journal->j_inode == NULL) 5824 return 0; 5825 5826 map.m_lblk = *block; 5827 map.m_len = 1; 5828 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5829 if (ret <= 0) { 5830 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5831 "journal bmap failed: block %llu ret %d\n", 5832 *block, ret); 5833 jbd2_journal_abort(journal, ret ? ret : -EIO); 5834 return ret; 5835 } 5836 *block = map.m_pblk; 5837 return 0; 5838 } 5839 5840 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5841 unsigned int journal_inum) 5842 { 5843 struct inode *journal_inode; 5844 journal_t *journal; 5845 5846 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5847 if (IS_ERR(journal_inode)) 5848 return ERR_CAST(journal_inode); 5849 5850 journal = jbd2_journal_init_inode(journal_inode); 5851 if (IS_ERR(journal)) { 5852 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5853 iput(journal_inode); 5854 return ERR_CAST(journal); 5855 } 5856 journal->j_private = sb; 5857 journal->j_bmap = ext4_journal_bmap; 5858 ext4_init_journal_params(sb, journal); 5859 return journal; 5860 } 5861 5862 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5863 dev_t j_dev, ext4_fsblk_t *j_start, 5864 ext4_fsblk_t *j_len) 5865 { 5866 struct buffer_head *bh; 5867 struct block_device *bdev; 5868 struct file *bdev_file; 5869 int hblock, blocksize; 5870 ext4_fsblk_t sb_block; 5871 unsigned long offset; 5872 struct ext4_super_block *es; 5873 int errno; 5874 5875 bdev_file = bdev_file_open_by_dev(j_dev, 5876 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5877 sb, &fs_holder_ops); 5878 if (IS_ERR(bdev_file)) { 5879 ext4_msg(sb, KERN_ERR, 5880 "failed to open journal device unknown-block(%u,%u) %ld", 5881 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5882 return bdev_file; 5883 } 5884 5885 bdev = file_bdev(bdev_file); 5886 blocksize = sb->s_blocksize; 5887 hblock = bdev_logical_block_size(bdev); 5888 if (blocksize < hblock) { 5889 ext4_msg(sb, KERN_ERR, 5890 "blocksize too small for journal device"); 5891 errno = -EINVAL; 5892 goto out_bdev; 5893 } 5894 5895 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5896 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5897 set_blocksize(bdev_file, blocksize); 5898 bh = __bread(bdev, sb_block, blocksize); 5899 if (!bh) { 5900 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5901 "external journal"); 5902 errno = -EINVAL; 5903 goto out_bdev; 5904 } 5905 5906 es = (struct ext4_super_block *) (bh->b_data + offset); 5907 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5908 !(le32_to_cpu(es->s_feature_incompat) & 5909 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5910 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5911 errno = -EFSCORRUPTED; 5912 goto out_bh; 5913 } 5914 5915 if ((le32_to_cpu(es->s_feature_ro_compat) & 5916 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5917 es->s_checksum != ext4_superblock_csum(es)) { 5918 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5919 errno = -EFSCORRUPTED; 5920 goto out_bh; 5921 } 5922 5923 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5924 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5925 errno = -EFSCORRUPTED; 5926 goto out_bh; 5927 } 5928 5929 *j_start = sb_block + 1; 5930 *j_len = ext4_blocks_count(es); 5931 brelse(bh); 5932 return bdev_file; 5933 5934 out_bh: 5935 brelse(bh); 5936 out_bdev: 5937 bdev_fput(bdev_file); 5938 return ERR_PTR(errno); 5939 } 5940 5941 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5942 dev_t j_dev) 5943 { 5944 journal_t *journal; 5945 ext4_fsblk_t j_start; 5946 ext4_fsblk_t j_len; 5947 struct file *bdev_file; 5948 int errno = 0; 5949 5950 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5951 if (IS_ERR(bdev_file)) 5952 return ERR_CAST(bdev_file); 5953 5954 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5955 j_len, sb->s_blocksize); 5956 if (IS_ERR(journal)) { 5957 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5958 errno = PTR_ERR(journal); 5959 goto out_bdev; 5960 } 5961 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5962 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5963 "user (unsupported) - %d", 5964 be32_to_cpu(journal->j_superblock->s_nr_users)); 5965 errno = -EINVAL; 5966 goto out_journal; 5967 } 5968 journal->j_private = sb; 5969 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5970 ext4_init_journal_params(sb, journal); 5971 return journal; 5972 5973 out_journal: 5974 ext4_journal_destroy(EXT4_SB(sb), journal); 5975 out_bdev: 5976 bdev_fput(bdev_file); 5977 return ERR_PTR(errno); 5978 } 5979 5980 static int ext4_load_journal(struct super_block *sb, 5981 struct ext4_super_block *es, 5982 unsigned long journal_devnum) 5983 { 5984 journal_t *journal; 5985 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5986 dev_t journal_dev; 5987 int err = 0; 5988 int really_read_only; 5989 int journal_dev_ro; 5990 5991 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5992 return -EFSCORRUPTED; 5993 5994 if (journal_devnum && 5995 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5996 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5997 "numbers have changed"); 5998 journal_dev = new_decode_dev(journal_devnum); 5999 } else 6000 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 6001 6002 if (journal_inum && journal_dev) { 6003 ext4_msg(sb, KERN_ERR, 6004 "filesystem has both journal inode and journal device!"); 6005 return -EINVAL; 6006 } 6007 6008 if (journal_inum) { 6009 journal = ext4_open_inode_journal(sb, journal_inum); 6010 if (IS_ERR(journal)) 6011 return PTR_ERR(journal); 6012 } else { 6013 journal = ext4_open_dev_journal(sb, journal_dev); 6014 if (IS_ERR(journal)) 6015 return PTR_ERR(journal); 6016 } 6017 6018 journal_dev_ro = bdev_read_only(journal->j_dev); 6019 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 6020 6021 if (journal_dev_ro && !sb_rdonly(sb)) { 6022 ext4_msg(sb, KERN_ERR, 6023 "journal device read-only, try mounting with '-o ro'"); 6024 err = -EROFS; 6025 goto err_out; 6026 } 6027 6028 /* 6029 * Are we loading a blank journal or performing recovery after a 6030 * crash? For recovery, we need to check in advance whether we 6031 * can get read-write access to the device. 6032 */ 6033 if (ext4_has_feature_journal_needs_recovery(sb)) { 6034 if (sb_rdonly(sb)) { 6035 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6036 "required on readonly filesystem"); 6037 if (really_read_only) { 6038 ext4_msg(sb, KERN_ERR, "write access " 6039 "unavailable, cannot proceed " 6040 "(try mounting with noload)"); 6041 err = -EROFS; 6042 goto err_out; 6043 } 6044 ext4_msg(sb, KERN_INFO, "write access will " 6045 "be enabled during recovery"); 6046 } 6047 } 6048 6049 if (!(journal->j_flags & JBD2_BARRIER)) 6050 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6051 6052 if (!ext4_has_feature_journal_needs_recovery(sb)) 6053 err = jbd2_journal_wipe(journal, !really_read_only); 6054 if (!err) { 6055 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6056 __le16 orig_state; 6057 bool changed = false; 6058 6059 if (save) 6060 memcpy(save, ((char *) es) + 6061 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6062 err = jbd2_journal_load(journal); 6063 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6064 save, EXT4_S_ERR_LEN)) { 6065 memcpy(((char *) es) + EXT4_S_ERR_START, 6066 save, EXT4_S_ERR_LEN); 6067 changed = true; 6068 } 6069 kfree(save); 6070 orig_state = es->s_state; 6071 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6072 EXT4_ERROR_FS); 6073 if (orig_state != es->s_state) 6074 changed = true; 6075 /* Write out restored error information to the superblock */ 6076 if (changed && !really_read_only) { 6077 int err2; 6078 err2 = ext4_commit_super(sb); 6079 err = err ? : err2; 6080 } 6081 } 6082 6083 if (err) { 6084 ext4_msg(sb, KERN_ERR, "error loading journal"); 6085 goto err_out; 6086 } 6087 6088 EXT4_SB(sb)->s_journal = journal; 6089 err = ext4_clear_journal_err(sb, es); 6090 if (err) { 6091 ext4_journal_destroy(EXT4_SB(sb), journal); 6092 return err; 6093 } 6094 6095 if (!really_read_only && journal_devnum && 6096 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6097 es->s_journal_dev = cpu_to_le32(journal_devnum); 6098 ext4_commit_super(sb); 6099 } 6100 if (!really_read_only && journal_inum && 6101 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6102 es->s_journal_inum = cpu_to_le32(journal_inum); 6103 ext4_commit_super(sb); 6104 } 6105 6106 return 0; 6107 6108 err_out: 6109 ext4_journal_destroy(EXT4_SB(sb), journal); 6110 return err; 6111 } 6112 6113 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6114 static void ext4_update_super(struct super_block *sb) 6115 { 6116 struct ext4_sb_info *sbi = EXT4_SB(sb); 6117 struct ext4_super_block *es = sbi->s_es; 6118 struct buffer_head *sbh = sbi->s_sbh; 6119 6120 lock_buffer(sbh); 6121 /* 6122 * If the file system is mounted read-only, don't update the 6123 * superblock write time. This avoids updating the superblock 6124 * write time when we are mounting the root file system 6125 * read/only but we need to replay the journal; at that point, 6126 * for people who are east of GMT and who make their clock 6127 * tick in localtime for Windows bug-for-bug compatibility, 6128 * the clock is set in the future, and this will cause e2fsck 6129 * to complain and force a full file system check. 6130 */ 6131 if (!sb_rdonly(sb)) 6132 ext4_update_tstamp(es, s_wtime); 6133 es->s_kbytes_written = 6134 cpu_to_le64(sbi->s_kbytes_written + 6135 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6136 sbi->s_sectors_written_start) >> 1)); 6137 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6138 ext4_free_blocks_count_set(es, 6139 EXT4_C2B(sbi, percpu_counter_sum_positive( 6140 &sbi->s_freeclusters_counter))); 6141 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6142 es->s_free_inodes_count = 6143 cpu_to_le32(percpu_counter_sum_positive( 6144 &sbi->s_freeinodes_counter)); 6145 /* Copy error information to the on-disk superblock */ 6146 spin_lock(&sbi->s_error_lock); 6147 if (sbi->s_add_error_count > 0) { 6148 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6149 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6150 __ext4_update_tstamp(&es->s_first_error_time, 6151 &es->s_first_error_time_hi, 6152 sbi->s_first_error_time); 6153 strtomem_pad(es->s_first_error_func, 6154 sbi->s_first_error_func, 0); 6155 es->s_first_error_line = 6156 cpu_to_le32(sbi->s_first_error_line); 6157 es->s_first_error_ino = 6158 cpu_to_le32(sbi->s_first_error_ino); 6159 es->s_first_error_block = 6160 cpu_to_le64(sbi->s_first_error_block); 6161 es->s_first_error_errcode = 6162 ext4_errno_to_code(sbi->s_first_error_code); 6163 } 6164 __ext4_update_tstamp(&es->s_last_error_time, 6165 &es->s_last_error_time_hi, 6166 sbi->s_last_error_time); 6167 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0); 6168 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6169 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6170 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6171 es->s_last_error_errcode = 6172 ext4_errno_to_code(sbi->s_last_error_code); 6173 /* 6174 * Start the daily error reporting function if it hasn't been 6175 * started already 6176 */ 6177 if (!es->s_error_count) 6178 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6179 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6180 sbi->s_add_error_count = 0; 6181 } 6182 spin_unlock(&sbi->s_error_lock); 6183 6184 ext4_superblock_csum_set(sb); 6185 unlock_buffer(sbh); 6186 } 6187 6188 static int ext4_commit_super(struct super_block *sb) 6189 { 6190 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6191 6192 if (!sbh) 6193 return -EINVAL; 6194 6195 ext4_update_super(sb); 6196 6197 lock_buffer(sbh); 6198 /* Buffer got discarded which means block device got invalidated */ 6199 if (!buffer_mapped(sbh)) { 6200 unlock_buffer(sbh); 6201 return -EIO; 6202 } 6203 6204 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6205 /* 6206 * Oh, dear. A previous attempt to write the 6207 * superblock failed. This could happen because the 6208 * USB device was yanked out. Or it could happen to 6209 * be a transient write error and maybe the block will 6210 * be remapped. Nothing we can do but to retry the 6211 * write and hope for the best. 6212 */ 6213 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6214 "superblock detected"); 6215 clear_buffer_write_io_error(sbh); 6216 set_buffer_uptodate(sbh); 6217 } 6218 get_bh(sbh); 6219 /* Clear potential dirty bit if it was journalled update */ 6220 clear_buffer_dirty(sbh); 6221 sbh->b_end_io = end_buffer_write_sync; 6222 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6223 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6224 wait_on_buffer(sbh); 6225 if (buffer_write_io_error(sbh)) { 6226 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6227 "superblock"); 6228 clear_buffer_write_io_error(sbh); 6229 set_buffer_uptodate(sbh); 6230 return -EIO; 6231 } 6232 return 0; 6233 } 6234 6235 /* 6236 * Have we just finished recovery? If so, and if we are mounting (or 6237 * remounting) the filesystem readonly, then we will end up with a 6238 * consistent fs on disk. Record that fact. 6239 */ 6240 static int ext4_mark_recovery_complete(struct super_block *sb, 6241 struct ext4_super_block *es) 6242 { 6243 int err; 6244 journal_t *journal = EXT4_SB(sb)->s_journal; 6245 6246 if (!ext4_has_feature_journal(sb)) { 6247 if (journal != NULL) { 6248 ext4_error(sb, "Journal got removed while the fs was " 6249 "mounted!"); 6250 return -EFSCORRUPTED; 6251 } 6252 return 0; 6253 } 6254 jbd2_journal_lock_updates(journal); 6255 err = jbd2_journal_flush(journal, 0); 6256 if (err < 0) 6257 goto out; 6258 6259 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6260 ext4_has_feature_orphan_present(sb))) { 6261 if (!ext4_orphan_file_empty(sb)) { 6262 ext4_error(sb, "Orphan file not empty on read-only fs."); 6263 err = -EFSCORRUPTED; 6264 goto out; 6265 } 6266 ext4_clear_feature_journal_needs_recovery(sb); 6267 ext4_clear_feature_orphan_present(sb); 6268 ext4_commit_super(sb); 6269 } 6270 out: 6271 jbd2_journal_unlock_updates(journal); 6272 return err; 6273 } 6274 6275 /* 6276 * If we are mounting (or read-write remounting) a filesystem whose journal 6277 * has recorded an error from a previous lifetime, move that error to the 6278 * main filesystem now. 6279 */ 6280 static int ext4_clear_journal_err(struct super_block *sb, 6281 struct ext4_super_block *es) 6282 { 6283 journal_t *journal; 6284 int j_errno; 6285 const char *errstr; 6286 6287 if (!ext4_has_feature_journal(sb)) { 6288 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6289 return -EFSCORRUPTED; 6290 } 6291 6292 journal = EXT4_SB(sb)->s_journal; 6293 6294 /* 6295 * Now check for any error status which may have been recorded in the 6296 * journal by a prior ext4_error() or ext4_abort() 6297 */ 6298 6299 j_errno = jbd2_journal_errno(journal); 6300 if (j_errno) { 6301 char nbuf[16]; 6302 6303 errstr = ext4_decode_error(sb, j_errno, nbuf); 6304 ext4_warning(sb, "Filesystem error recorded " 6305 "from previous mount: %s", errstr); 6306 6307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6309 j_errno = ext4_commit_super(sb); 6310 if (j_errno) 6311 return j_errno; 6312 ext4_warning(sb, "Marked fs in need of filesystem check."); 6313 6314 jbd2_journal_clear_err(journal); 6315 jbd2_journal_update_sb_errno(journal); 6316 } 6317 return 0; 6318 } 6319 6320 /* 6321 * Force the running and committing transactions to commit, 6322 * and wait on the commit. 6323 */ 6324 int ext4_force_commit(struct super_block *sb) 6325 { 6326 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6327 } 6328 6329 static int ext4_sync_fs(struct super_block *sb, int wait) 6330 { 6331 int ret = 0; 6332 tid_t target; 6333 bool needs_barrier = false; 6334 struct ext4_sb_info *sbi = EXT4_SB(sb); 6335 6336 ret = ext4_emergency_state(sb); 6337 if (unlikely(ret)) 6338 return ret; 6339 6340 trace_ext4_sync_fs(sb, wait); 6341 flush_workqueue(sbi->rsv_conversion_wq); 6342 /* 6343 * Writeback quota in non-journalled quota case - journalled quota has 6344 * no dirty dquots 6345 */ 6346 dquot_writeback_dquots(sb, -1); 6347 /* 6348 * Data writeback is possible w/o journal transaction, so barrier must 6349 * being sent at the end of the function. But we can skip it if 6350 * transaction_commit will do it for us. 6351 */ 6352 if (sbi->s_journal) { 6353 target = jbd2_get_latest_transaction(sbi->s_journal); 6354 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6355 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6356 needs_barrier = true; 6357 6358 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6359 if (wait) 6360 ret = jbd2_log_wait_commit(sbi->s_journal, 6361 target); 6362 } 6363 } else if (wait && test_opt(sb, BARRIER)) 6364 needs_barrier = true; 6365 if (needs_barrier) { 6366 int err; 6367 err = blkdev_issue_flush(sb->s_bdev); 6368 if (!ret) 6369 ret = err; 6370 } 6371 6372 return ret; 6373 } 6374 6375 /* 6376 * LVM calls this function before a (read-only) snapshot is created. This 6377 * gives us a chance to flush the journal completely and mark the fs clean. 6378 * 6379 * Note that only this function cannot bring a filesystem to be in a clean 6380 * state independently. It relies on upper layer to stop all data & metadata 6381 * modifications. 6382 */ 6383 static int ext4_freeze(struct super_block *sb) 6384 { 6385 int error = 0; 6386 journal_t *journal = EXT4_SB(sb)->s_journal; 6387 6388 if (journal) { 6389 /* Now we set up the journal barrier. */ 6390 jbd2_journal_lock_updates(journal); 6391 6392 /* 6393 * Don't clear the needs_recovery flag if we failed to 6394 * flush the journal. 6395 */ 6396 error = jbd2_journal_flush(journal, 0); 6397 if (error < 0) 6398 goto out; 6399 6400 /* Journal blocked and flushed, clear needs_recovery flag. */ 6401 ext4_clear_feature_journal_needs_recovery(sb); 6402 if (ext4_orphan_file_empty(sb)) 6403 ext4_clear_feature_orphan_present(sb); 6404 } 6405 6406 error = ext4_commit_super(sb); 6407 out: 6408 if (journal) 6409 /* we rely on upper layer to stop further updates */ 6410 jbd2_journal_unlock_updates(journal); 6411 return error; 6412 } 6413 6414 /* 6415 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6416 * flag here, even though the filesystem is not technically dirty yet. 6417 */ 6418 static int ext4_unfreeze(struct super_block *sb) 6419 { 6420 if (ext4_emergency_state(sb)) 6421 return 0; 6422 6423 if (EXT4_SB(sb)->s_journal) { 6424 /* Reset the needs_recovery flag before the fs is unlocked. */ 6425 ext4_set_feature_journal_needs_recovery(sb); 6426 if (ext4_has_feature_orphan_file(sb)) 6427 ext4_set_feature_orphan_present(sb); 6428 } 6429 6430 ext4_commit_super(sb); 6431 return 0; 6432 } 6433 6434 /* 6435 * Structure to save mount options for ext4_remount's benefit 6436 */ 6437 struct ext4_mount_options { 6438 unsigned long s_mount_opt; 6439 unsigned long s_mount_opt2; 6440 kuid_t s_resuid; 6441 kgid_t s_resgid; 6442 unsigned long s_commit_interval; 6443 u32 s_min_batch_time, s_max_batch_time; 6444 #ifdef CONFIG_QUOTA 6445 int s_jquota_fmt; 6446 char *s_qf_names[EXT4_MAXQUOTAS]; 6447 #endif 6448 }; 6449 6450 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6451 { 6452 struct ext4_fs_context *ctx = fc->fs_private; 6453 struct ext4_super_block *es; 6454 struct ext4_sb_info *sbi = EXT4_SB(sb); 6455 unsigned long old_sb_flags; 6456 struct ext4_mount_options old_opts; 6457 ext4_group_t g; 6458 int err = 0; 6459 int alloc_ctx; 6460 #ifdef CONFIG_QUOTA 6461 int enable_quota = 0; 6462 int i, j; 6463 char *to_free[EXT4_MAXQUOTAS]; 6464 #endif 6465 6466 6467 /* Store the original options */ 6468 old_sb_flags = sb->s_flags; 6469 old_opts.s_mount_opt = sbi->s_mount_opt; 6470 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6471 old_opts.s_resuid = sbi->s_resuid; 6472 old_opts.s_resgid = sbi->s_resgid; 6473 old_opts.s_commit_interval = sbi->s_commit_interval; 6474 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6475 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6476 #ifdef CONFIG_QUOTA 6477 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6478 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6479 if (sbi->s_qf_names[i]) { 6480 char *qf_name = get_qf_name(sb, sbi, i); 6481 6482 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6483 if (!old_opts.s_qf_names[i]) { 6484 for (j = 0; j < i; j++) 6485 kfree(old_opts.s_qf_names[j]); 6486 return -ENOMEM; 6487 } 6488 } else 6489 old_opts.s_qf_names[i] = NULL; 6490 #endif 6491 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6492 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6493 ctx->journal_ioprio = 6494 sbi->s_journal->j_task->io_context->ioprio; 6495 else 6496 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; 6497 6498 } 6499 6500 if ((ctx->spec & EXT4_SPEC_s_stripe) && 6501 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) { 6502 ext4_msg(sb, KERN_WARNING, 6503 "stripe (%lu) is not aligned with cluster size (%u), " 6504 "stripe is disabled", 6505 ctx->s_stripe, sbi->s_cluster_ratio); 6506 ctx->s_stripe = 0; 6507 } 6508 6509 /* 6510 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6511 * two calls to ext4_should_dioread_nolock() to return inconsistent 6512 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6513 * here s_writepages_rwsem to avoid race between writepages ops and 6514 * remount. 6515 */ 6516 alloc_ctx = ext4_writepages_down_write(sb); 6517 ext4_apply_options(fc, sb); 6518 ext4_writepages_up_write(sb, alloc_ctx); 6519 6520 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6521 test_opt(sb, JOURNAL_CHECKSUM)) { 6522 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6523 "during remount not supported; ignoring"); 6524 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6525 } 6526 6527 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6528 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6529 ext4_msg(sb, KERN_ERR, "can't mount with " 6530 "both data=journal and delalloc"); 6531 err = -EINVAL; 6532 goto restore_opts; 6533 } 6534 if (test_opt(sb, DIOREAD_NOLOCK)) { 6535 ext4_msg(sb, KERN_ERR, "can't mount with " 6536 "both data=journal and dioread_nolock"); 6537 err = -EINVAL; 6538 goto restore_opts; 6539 } 6540 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6541 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6542 ext4_msg(sb, KERN_ERR, "can't mount with " 6543 "journal_async_commit in data=ordered mode"); 6544 err = -EINVAL; 6545 goto restore_opts; 6546 } 6547 } 6548 6549 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6550 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6551 err = -EINVAL; 6552 goto restore_opts; 6553 } 6554 6555 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) && 6556 !test_opt(sb, DELALLOC)) { 6557 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount"); 6558 err = -EINVAL; 6559 goto restore_opts; 6560 } 6561 6562 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6563 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6564 6565 es = sbi->s_es; 6566 6567 if (sbi->s_journal) { 6568 ext4_init_journal_params(sb, sbi->s_journal); 6569 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6570 } 6571 6572 /* Flush outstanding errors before changing fs state */ 6573 flush_work(&sbi->s_sb_upd_work); 6574 6575 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6576 if (ext4_emergency_state(sb)) { 6577 err = -EROFS; 6578 goto restore_opts; 6579 } 6580 6581 if (fc->sb_flags & SB_RDONLY) { 6582 err = sync_filesystem(sb); 6583 if (err < 0) 6584 goto restore_opts; 6585 err = dquot_suspend(sb, -1); 6586 if (err < 0) 6587 goto restore_opts; 6588 6589 /* 6590 * First of all, the unconditional stuff we have to do 6591 * to disable replay of the journal when we next remount 6592 */ 6593 sb->s_flags |= SB_RDONLY; 6594 6595 /* 6596 * OK, test if we are remounting a valid rw partition 6597 * readonly, and if so set the rdonly flag and then 6598 * mark the partition as valid again. 6599 */ 6600 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6601 (sbi->s_mount_state & EXT4_VALID_FS)) 6602 es->s_state = cpu_to_le16(sbi->s_mount_state); 6603 6604 if (sbi->s_journal) { 6605 /* 6606 * We let remount-ro finish even if marking fs 6607 * as clean failed... 6608 */ 6609 ext4_mark_recovery_complete(sb, es); 6610 } 6611 } else { 6612 /* Make sure we can mount this feature set readwrite */ 6613 if (ext4_has_feature_readonly(sb) || 6614 !ext4_feature_set_ok(sb, 0)) { 6615 err = -EROFS; 6616 goto restore_opts; 6617 } 6618 /* 6619 * Make sure the group descriptor checksums 6620 * are sane. If they aren't, refuse to remount r/w. 6621 */ 6622 for (g = 0; g < sbi->s_groups_count; g++) { 6623 struct ext4_group_desc *gdp = 6624 ext4_get_group_desc(sb, g, NULL); 6625 6626 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6627 ext4_msg(sb, KERN_ERR, 6628 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6629 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6630 le16_to_cpu(gdp->bg_checksum)); 6631 err = -EFSBADCRC; 6632 goto restore_opts; 6633 } 6634 } 6635 6636 /* 6637 * If we have an unprocessed orphan list hanging 6638 * around from a previously readonly bdev mount, 6639 * require a full umount/remount for now. 6640 */ 6641 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6642 ext4_msg(sb, KERN_WARNING, "Couldn't " 6643 "remount RDWR because of unprocessed " 6644 "orphan inode list. Please " 6645 "umount/remount instead"); 6646 err = -EINVAL; 6647 goto restore_opts; 6648 } 6649 6650 /* 6651 * Mounting a RDONLY partition read-write, so reread 6652 * and store the current valid flag. (It may have 6653 * been changed by e2fsck since we originally mounted 6654 * the partition.) 6655 */ 6656 if (sbi->s_journal) { 6657 err = ext4_clear_journal_err(sb, es); 6658 if (err) 6659 goto restore_opts; 6660 } 6661 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6662 ~EXT4_FC_REPLAY); 6663 6664 err = ext4_setup_super(sb, es, 0); 6665 if (err) 6666 goto restore_opts; 6667 6668 sb->s_flags &= ~SB_RDONLY; 6669 if (ext4_has_feature_mmp(sb)) { 6670 err = ext4_multi_mount_protect(sb, 6671 le64_to_cpu(es->s_mmp_block)); 6672 if (err) 6673 goto restore_opts; 6674 } 6675 #ifdef CONFIG_QUOTA 6676 enable_quota = 1; 6677 #endif 6678 } 6679 } 6680 6681 /* 6682 * Handle creation of system zone data early because it can fail. 6683 * Releasing of existing data is done when we are sure remount will 6684 * succeed. 6685 */ 6686 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6687 err = ext4_setup_system_zone(sb); 6688 if (err) 6689 goto restore_opts; 6690 } 6691 6692 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6693 err = ext4_commit_super(sb); 6694 if (err) 6695 goto restore_opts; 6696 } 6697 6698 #ifdef CONFIG_QUOTA 6699 if (enable_quota) { 6700 if (sb_any_quota_suspended(sb)) 6701 dquot_resume(sb, -1); 6702 else if (ext4_has_feature_quota(sb)) { 6703 err = ext4_enable_quotas(sb); 6704 if (err) 6705 goto restore_opts; 6706 } 6707 } 6708 /* Release old quota file names */ 6709 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6710 kfree(old_opts.s_qf_names[i]); 6711 #endif 6712 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6713 ext4_release_system_zone(sb); 6714 6715 /* 6716 * Reinitialize lazy itable initialization thread based on 6717 * current settings 6718 */ 6719 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6720 ext4_unregister_li_request(sb); 6721 else { 6722 ext4_group_t first_not_zeroed; 6723 first_not_zeroed = ext4_has_uninit_itable(sb); 6724 ext4_register_li_request(sb, first_not_zeroed); 6725 } 6726 6727 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6728 ext4_stop_mmpd(sbi); 6729 6730 /* 6731 * Handle aborting the filesystem as the last thing during remount to 6732 * avoid obsure errors during remount when some option changes fail to 6733 * apply due to shutdown filesystem. 6734 */ 6735 if (test_opt2(sb, ABORT)) 6736 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6737 6738 return 0; 6739 6740 restore_opts: 6741 /* 6742 * If there was a failing r/w to ro transition, we may need to 6743 * re-enable quota 6744 */ 6745 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6746 sb_any_quota_suspended(sb)) 6747 dquot_resume(sb, -1); 6748 6749 alloc_ctx = ext4_writepages_down_write(sb); 6750 sb->s_flags = old_sb_flags; 6751 sbi->s_mount_opt = old_opts.s_mount_opt; 6752 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6753 sbi->s_resuid = old_opts.s_resuid; 6754 sbi->s_resgid = old_opts.s_resgid; 6755 sbi->s_commit_interval = old_opts.s_commit_interval; 6756 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6757 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6758 ext4_writepages_up_write(sb, alloc_ctx); 6759 6760 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6761 ext4_release_system_zone(sb); 6762 #ifdef CONFIG_QUOTA 6763 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6764 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6765 to_free[i] = get_qf_name(sb, sbi, i); 6766 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6767 } 6768 synchronize_rcu(); 6769 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6770 kfree(to_free[i]); 6771 #endif 6772 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6773 ext4_stop_mmpd(sbi); 6774 return err; 6775 } 6776 6777 static int ext4_reconfigure(struct fs_context *fc) 6778 { 6779 struct super_block *sb = fc->root->d_sb; 6780 int ret; 6781 bool old_ro = sb_rdonly(sb); 6782 6783 fc->s_fs_info = EXT4_SB(sb); 6784 6785 ret = ext4_check_opt_consistency(fc, sb); 6786 if (ret < 0) 6787 return ret; 6788 6789 ret = __ext4_remount(fc, sb); 6790 if (ret < 0) 6791 return ret; 6792 6793 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.", 6794 &sb->s_uuid, 6795 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : ""); 6796 6797 return 0; 6798 } 6799 6800 #ifdef CONFIG_QUOTA 6801 static int ext4_statfs_project(struct super_block *sb, 6802 kprojid_t projid, struct kstatfs *buf) 6803 { 6804 struct kqid qid; 6805 struct dquot *dquot; 6806 u64 limit; 6807 u64 curblock; 6808 6809 qid = make_kqid_projid(projid); 6810 dquot = dqget(sb, qid); 6811 if (IS_ERR(dquot)) 6812 return PTR_ERR(dquot); 6813 spin_lock(&dquot->dq_dqb_lock); 6814 6815 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6816 dquot->dq_dqb.dqb_bhardlimit); 6817 limit >>= sb->s_blocksize_bits; 6818 6819 if (limit) { 6820 uint64_t remaining = 0; 6821 6822 curblock = (dquot->dq_dqb.dqb_curspace + 6823 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6824 if (limit > curblock) 6825 remaining = limit - curblock; 6826 6827 buf->f_blocks = min(buf->f_blocks, limit); 6828 buf->f_bfree = min(buf->f_bfree, remaining); 6829 buf->f_bavail = min(buf->f_bavail, remaining); 6830 } 6831 6832 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6833 dquot->dq_dqb.dqb_ihardlimit); 6834 if (limit) { 6835 uint64_t remaining = 0; 6836 6837 if (limit > dquot->dq_dqb.dqb_curinodes) 6838 remaining = limit - dquot->dq_dqb.dqb_curinodes; 6839 6840 buf->f_files = min(buf->f_files, limit); 6841 buf->f_ffree = min(buf->f_ffree, remaining); 6842 } 6843 6844 spin_unlock(&dquot->dq_dqb_lock); 6845 dqput(dquot); 6846 return 0; 6847 } 6848 #endif 6849 6850 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6851 { 6852 struct super_block *sb = dentry->d_sb; 6853 struct ext4_sb_info *sbi = EXT4_SB(sb); 6854 struct ext4_super_block *es = sbi->s_es; 6855 ext4_fsblk_t overhead = 0, resv_blocks; 6856 s64 bfree; 6857 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6858 6859 if (!test_opt(sb, MINIX_DF)) 6860 overhead = sbi->s_overhead; 6861 6862 buf->f_type = EXT4_SUPER_MAGIC; 6863 buf->f_bsize = sb->s_blocksize; 6864 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6865 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6866 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6867 /* prevent underflow in case that few free space is available */ 6868 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6869 buf->f_bavail = buf->f_bfree - 6870 (ext4_r_blocks_count(es) + resv_blocks); 6871 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6872 buf->f_bavail = 0; 6873 buf->f_files = le32_to_cpu(es->s_inodes_count); 6874 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6875 buf->f_namelen = EXT4_NAME_LEN; 6876 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6877 6878 #ifdef CONFIG_QUOTA 6879 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6880 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6881 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6882 #endif 6883 return 0; 6884 } 6885 6886 6887 #ifdef CONFIG_QUOTA 6888 6889 /* 6890 * Helper functions so that transaction is started before we acquire dqio_sem 6891 * to keep correct lock ordering of transaction > dqio_sem 6892 */ 6893 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6894 { 6895 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6896 } 6897 6898 static int ext4_write_dquot(struct dquot *dquot) 6899 { 6900 int ret, err; 6901 handle_t *handle; 6902 struct inode *inode; 6903 6904 inode = dquot_to_inode(dquot); 6905 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6906 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6907 if (IS_ERR(handle)) 6908 return PTR_ERR(handle); 6909 ret = dquot_commit(dquot); 6910 if (ret < 0) 6911 ext4_error_err(dquot->dq_sb, -ret, 6912 "Failed to commit dquot type %d", 6913 dquot->dq_id.type); 6914 err = ext4_journal_stop(handle); 6915 if (!ret) 6916 ret = err; 6917 return ret; 6918 } 6919 6920 static int ext4_acquire_dquot(struct dquot *dquot) 6921 { 6922 int ret, err; 6923 handle_t *handle; 6924 6925 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6926 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6927 if (IS_ERR(handle)) 6928 return PTR_ERR(handle); 6929 ret = dquot_acquire(dquot); 6930 if (ret < 0) 6931 ext4_error_err(dquot->dq_sb, -ret, 6932 "Failed to acquire dquot type %d", 6933 dquot->dq_id.type); 6934 err = ext4_journal_stop(handle); 6935 if (!ret) 6936 ret = err; 6937 return ret; 6938 } 6939 6940 static int ext4_release_dquot(struct dquot *dquot) 6941 { 6942 int ret, err; 6943 handle_t *handle; 6944 bool freeze_protected = false; 6945 6946 /* 6947 * Trying to sb_start_intwrite() in a running transaction 6948 * can result in a deadlock. Further, running transactions 6949 * are already protected from freezing. 6950 */ 6951 if (!ext4_journal_current_handle()) { 6952 sb_start_intwrite(dquot->dq_sb); 6953 freeze_protected = true; 6954 } 6955 6956 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6957 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6958 if (IS_ERR(handle)) { 6959 /* Release dquot anyway to avoid endless cycle in dqput() */ 6960 dquot_release(dquot); 6961 if (freeze_protected) 6962 sb_end_intwrite(dquot->dq_sb); 6963 return PTR_ERR(handle); 6964 } 6965 ret = dquot_release(dquot); 6966 if (ret < 0) 6967 ext4_error_err(dquot->dq_sb, -ret, 6968 "Failed to release dquot type %d", 6969 dquot->dq_id.type); 6970 err = ext4_journal_stop(handle); 6971 if (!ret) 6972 ret = err; 6973 6974 if (freeze_protected) 6975 sb_end_intwrite(dquot->dq_sb); 6976 6977 return ret; 6978 } 6979 6980 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6981 { 6982 struct super_block *sb = dquot->dq_sb; 6983 6984 if (ext4_is_quota_journalled(sb)) { 6985 dquot_mark_dquot_dirty(dquot); 6986 return ext4_write_dquot(dquot); 6987 } else { 6988 return dquot_mark_dquot_dirty(dquot); 6989 } 6990 } 6991 6992 static int ext4_write_info(struct super_block *sb, int type) 6993 { 6994 int ret, err; 6995 handle_t *handle; 6996 6997 /* Data block + inode block */ 6998 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6999 if (IS_ERR(handle)) 7000 return PTR_ERR(handle); 7001 ret = dquot_commit_info(sb, type); 7002 err = ext4_journal_stop(handle); 7003 if (!ret) 7004 ret = err; 7005 return ret; 7006 } 7007 7008 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 7009 { 7010 struct ext4_inode_info *ei = EXT4_I(inode); 7011 7012 /* The first argument of lockdep_set_subclass has to be 7013 * *exactly* the same as the argument to init_rwsem() --- in 7014 * this case, in init_once() --- or lockdep gets unhappy 7015 * because the name of the lock is set using the 7016 * stringification of the argument to init_rwsem(). 7017 */ 7018 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 7019 lockdep_set_subclass(&ei->i_data_sem, subclass); 7020 } 7021 7022 /* 7023 * Standard function to be called on quota_on 7024 */ 7025 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 7026 const struct path *path) 7027 { 7028 int err; 7029 7030 if (!test_opt(sb, QUOTA)) 7031 return -EINVAL; 7032 7033 /* Quotafile not on the same filesystem? */ 7034 if (path->dentry->d_sb != sb) 7035 return -EXDEV; 7036 7037 /* Quota already enabled for this file? */ 7038 if (IS_NOQUOTA(d_inode(path->dentry))) 7039 return -EBUSY; 7040 7041 /* Journaling quota? */ 7042 if (EXT4_SB(sb)->s_qf_names[type]) { 7043 /* Quotafile not in fs root? */ 7044 if (path->dentry->d_parent != sb->s_root) 7045 ext4_msg(sb, KERN_WARNING, 7046 "Quota file not on filesystem root. " 7047 "Journaled quota will not work"); 7048 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 7049 } else { 7050 /* 7051 * Clear the flag just in case mount options changed since 7052 * last time. 7053 */ 7054 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 7055 } 7056 7057 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 7058 err = dquot_quota_on(sb, type, format_id, path); 7059 if (!err) { 7060 struct inode *inode = d_inode(path->dentry); 7061 handle_t *handle; 7062 7063 /* 7064 * Set inode flags to prevent userspace from messing with quota 7065 * files. If this fails, we return success anyway since quotas 7066 * are already enabled and this is not a hard failure. 7067 */ 7068 inode_lock(inode); 7069 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7070 if (IS_ERR(handle)) 7071 goto unlock_inode; 7072 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7073 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7074 S_NOATIME | S_IMMUTABLE); 7075 err = ext4_mark_inode_dirty(handle, inode); 7076 ext4_journal_stop(handle); 7077 unlock_inode: 7078 inode_unlock(inode); 7079 if (err) 7080 dquot_quota_off(sb, type); 7081 } 7082 if (err) 7083 lockdep_set_quota_inode(path->dentry->d_inode, 7084 I_DATA_SEM_NORMAL); 7085 return err; 7086 } 7087 7088 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7089 { 7090 switch (type) { 7091 case USRQUOTA: 7092 return qf_inum == EXT4_USR_QUOTA_INO; 7093 case GRPQUOTA: 7094 return qf_inum == EXT4_GRP_QUOTA_INO; 7095 case PRJQUOTA: 7096 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7097 default: 7098 BUG(); 7099 } 7100 } 7101 7102 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7103 unsigned int flags) 7104 { 7105 int err; 7106 struct inode *qf_inode; 7107 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7108 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7109 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7110 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7111 }; 7112 7113 BUG_ON(!ext4_has_feature_quota(sb)); 7114 7115 if (!qf_inums[type]) 7116 return -EPERM; 7117 7118 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7119 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7120 qf_inums[type], type); 7121 return -EUCLEAN; 7122 } 7123 7124 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7125 if (IS_ERR(qf_inode)) { 7126 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7127 qf_inums[type], type); 7128 return PTR_ERR(qf_inode); 7129 } 7130 7131 /* Don't account quota for quota files to avoid recursion */ 7132 qf_inode->i_flags |= S_NOQUOTA; 7133 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7134 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7135 if (err) 7136 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7137 iput(qf_inode); 7138 7139 return err; 7140 } 7141 7142 /* Enable usage tracking for all quota types. */ 7143 int ext4_enable_quotas(struct super_block *sb) 7144 { 7145 int type, err = 0; 7146 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7147 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7148 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7149 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7150 }; 7151 bool quota_mopt[EXT4_MAXQUOTAS] = { 7152 test_opt(sb, USRQUOTA), 7153 test_opt(sb, GRPQUOTA), 7154 test_opt(sb, PRJQUOTA), 7155 }; 7156 7157 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7158 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7159 if (qf_inums[type]) { 7160 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7161 DQUOT_USAGE_ENABLED | 7162 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7163 if (err) { 7164 ext4_warning(sb, 7165 "Failed to enable quota tracking " 7166 "(type=%d, err=%d, ino=%lu). " 7167 "Please run e2fsck to fix.", type, 7168 err, qf_inums[type]); 7169 7170 ext4_quotas_off(sb, type); 7171 return err; 7172 } 7173 } 7174 } 7175 return 0; 7176 } 7177 7178 static int ext4_quota_off(struct super_block *sb, int type) 7179 { 7180 struct inode *inode = sb_dqopt(sb)->files[type]; 7181 handle_t *handle; 7182 int err; 7183 7184 /* Force all delayed allocation blocks to be allocated. 7185 * Caller already holds s_umount sem */ 7186 if (test_opt(sb, DELALLOC)) 7187 sync_filesystem(sb); 7188 7189 if (!inode || !igrab(inode)) 7190 goto out; 7191 7192 err = dquot_quota_off(sb, type); 7193 if (err || ext4_has_feature_quota(sb)) 7194 goto out_put; 7195 /* 7196 * When the filesystem was remounted read-only first, we cannot cleanup 7197 * inode flags here. Bad luck but people should be using QUOTA feature 7198 * these days anyway. 7199 */ 7200 if (sb_rdonly(sb)) 7201 goto out_put; 7202 7203 inode_lock(inode); 7204 /* 7205 * Update modification times of quota files when userspace can 7206 * start looking at them. If we fail, we return success anyway since 7207 * this is not a hard failure and quotas are already disabled. 7208 */ 7209 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7210 if (IS_ERR(handle)) { 7211 err = PTR_ERR(handle); 7212 goto out_unlock; 7213 } 7214 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7215 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7216 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7217 err = ext4_mark_inode_dirty(handle, inode); 7218 ext4_journal_stop(handle); 7219 out_unlock: 7220 inode_unlock(inode); 7221 out_put: 7222 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7223 iput(inode); 7224 return err; 7225 out: 7226 return dquot_quota_off(sb, type); 7227 } 7228 7229 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7230 * acquiring the locks... As quota files are never truncated and quota code 7231 * itself serializes the operations (and no one else should touch the files) 7232 * we don't have to be afraid of races */ 7233 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7234 size_t len, loff_t off) 7235 { 7236 struct inode *inode = sb_dqopt(sb)->files[type]; 7237 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7238 int offset = off & (sb->s_blocksize - 1); 7239 int tocopy; 7240 size_t toread; 7241 struct buffer_head *bh; 7242 loff_t i_size = i_size_read(inode); 7243 7244 if (off > i_size) 7245 return 0; 7246 if (off+len > i_size) 7247 len = i_size-off; 7248 toread = len; 7249 while (toread > 0) { 7250 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7251 bh = ext4_bread(NULL, inode, blk, 0); 7252 if (IS_ERR(bh)) 7253 return PTR_ERR(bh); 7254 if (!bh) /* A hole? */ 7255 memset(data, 0, tocopy); 7256 else 7257 memcpy(data, bh->b_data+offset, tocopy); 7258 brelse(bh); 7259 offset = 0; 7260 toread -= tocopy; 7261 data += tocopy; 7262 blk++; 7263 } 7264 return len; 7265 } 7266 7267 /* Write to quotafile (we know the transaction is already started and has 7268 * enough credits) */ 7269 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7270 const char *data, size_t len, loff_t off) 7271 { 7272 struct inode *inode = sb_dqopt(sb)->files[type]; 7273 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7274 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7275 int retries = 0; 7276 struct buffer_head *bh; 7277 handle_t *handle = journal_current_handle(); 7278 7279 if (!handle) { 7280 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7281 " cancelled because transaction is not started", 7282 (unsigned long long)off, (unsigned long long)len); 7283 return -EIO; 7284 } 7285 /* 7286 * Since we account only one data block in transaction credits, 7287 * then it is impossible to cross a block boundary. 7288 */ 7289 if (sb->s_blocksize - offset < len) { 7290 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7291 " cancelled because not block aligned", 7292 (unsigned long long)off, (unsigned long long)len); 7293 return -EIO; 7294 } 7295 7296 do { 7297 bh = ext4_bread(handle, inode, blk, 7298 EXT4_GET_BLOCKS_CREATE | 7299 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7300 } while (PTR_ERR(bh) == -ENOSPC && 7301 ext4_should_retry_alloc(inode->i_sb, &retries)); 7302 if (IS_ERR(bh)) 7303 return PTR_ERR(bh); 7304 if (!bh) 7305 goto out; 7306 BUFFER_TRACE(bh, "get write access"); 7307 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7308 if (err) { 7309 brelse(bh); 7310 return err; 7311 } 7312 lock_buffer(bh); 7313 memcpy(bh->b_data+offset, data, len); 7314 flush_dcache_folio(bh->b_folio); 7315 unlock_buffer(bh); 7316 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7317 brelse(bh); 7318 out: 7319 if (inode->i_size < off + len) { 7320 i_size_write(inode, off + len); 7321 EXT4_I(inode)->i_disksize = inode->i_size; 7322 err2 = ext4_mark_inode_dirty(handle, inode); 7323 if (unlikely(err2 && !err)) 7324 err = err2; 7325 } 7326 return err ? err : len; 7327 } 7328 #endif 7329 7330 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7331 static inline void register_as_ext2(void) 7332 { 7333 int err = register_filesystem(&ext2_fs_type); 7334 if (err) 7335 printk(KERN_WARNING 7336 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7337 } 7338 7339 static inline void unregister_as_ext2(void) 7340 { 7341 unregister_filesystem(&ext2_fs_type); 7342 } 7343 7344 static inline int ext2_feature_set_ok(struct super_block *sb) 7345 { 7346 if (ext4_has_unknown_ext2_incompat_features(sb)) 7347 return 0; 7348 if (sb_rdonly(sb)) 7349 return 1; 7350 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7351 return 0; 7352 return 1; 7353 } 7354 #else 7355 static inline void register_as_ext2(void) { } 7356 static inline void unregister_as_ext2(void) { } 7357 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7358 #endif 7359 7360 static inline void register_as_ext3(void) 7361 { 7362 int err = register_filesystem(&ext3_fs_type); 7363 if (err) 7364 printk(KERN_WARNING 7365 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7366 } 7367 7368 static inline void unregister_as_ext3(void) 7369 { 7370 unregister_filesystem(&ext3_fs_type); 7371 } 7372 7373 static inline int ext3_feature_set_ok(struct super_block *sb) 7374 { 7375 if (ext4_has_unknown_ext3_incompat_features(sb)) 7376 return 0; 7377 if (!ext4_has_feature_journal(sb)) 7378 return 0; 7379 if (sb_rdonly(sb)) 7380 return 1; 7381 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7382 return 0; 7383 return 1; 7384 } 7385 7386 static void ext4_kill_sb(struct super_block *sb) 7387 { 7388 struct ext4_sb_info *sbi = EXT4_SB(sb); 7389 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7390 7391 kill_block_super(sb); 7392 7393 if (bdev_file) 7394 bdev_fput(bdev_file); 7395 } 7396 7397 static struct file_system_type ext4_fs_type = { 7398 .owner = THIS_MODULE, 7399 .name = "ext4", 7400 .init_fs_context = ext4_init_fs_context, 7401 .parameters = ext4_param_specs, 7402 .kill_sb = ext4_kill_sb, 7403 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME, 7404 }; 7405 MODULE_ALIAS_FS("ext4"); 7406 7407 static int __init ext4_init_fs(void) 7408 { 7409 int err; 7410 7411 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7412 ext4_li_info = NULL; 7413 7414 /* Build-time check for flags consistency */ 7415 ext4_check_flag_values(); 7416 7417 err = ext4_init_es(); 7418 if (err) 7419 return err; 7420 7421 err = ext4_init_pending(); 7422 if (err) 7423 goto out7; 7424 7425 err = ext4_init_post_read_processing(); 7426 if (err) 7427 goto out6; 7428 7429 err = ext4_init_pageio(); 7430 if (err) 7431 goto out5; 7432 7433 err = ext4_init_system_zone(); 7434 if (err) 7435 goto out4; 7436 7437 err = ext4_init_sysfs(); 7438 if (err) 7439 goto out3; 7440 7441 err = ext4_init_mballoc(); 7442 if (err) 7443 goto out2; 7444 err = init_inodecache(); 7445 if (err) 7446 goto out1; 7447 7448 err = ext4_fc_init_dentry_cache(); 7449 if (err) 7450 goto out05; 7451 7452 register_as_ext3(); 7453 register_as_ext2(); 7454 err = register_filesystem(&ext4_fs_type); 7455 if (err) 7456 goto out; 7457 7458 return 0; 7459 out: 7460 unregister_as_ext2(); 7461 unregister_as_ext3(); 7462 ext4_fc_destroy_dentry_cache(); 7463 out05: 7464 destroy_inodecache(); 7465 out1: 7466 ext4_exit_mballoc(); 7467 out2: 7468 ext4_exit_sysfs(); 7469 out3: 7470 ext4_exit_system_zone(); 7471 out4: 7472 ext4_exit_pageio(); 7473 out5: 7474 ext4_exit_post_read_processing(); 7475 out6: 7476 ext4_exit_pending(); 7477 out7: 7478 ext4_exit_es(); 7479 7480 return err; 7481 } 7482 7483 static void __exit ext4_exit_fs(void) 7484 { 7485 ext4_destroy_lazyinit_thread(); 7486 unregister_as_ext2(); 7487 unregister_as_ext3(); 7488 unregister_filesystem(&ext4_fs_type); 7489 ext4_fc_destroy_dentry_cache(); 7490 destroy_inodecache(); 7491 ext4_exit_mballoc(); 7492 ext4_exit_sysfs(); 7493 ext4_exit_system_zone(); 7494 ext4_exit_pageio(); 7495 ext4_exit_post_read_processing(); 7496 ext4_exit_es(); 7497 ext4_exit_pending(); 7498 } 7499 7500 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7501 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7502 MODULE_LICENSE("GPL"); 7503 module_init(ext4_init_fs) 7504 module_exit(ext4_exit_fs) 7505