1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_jbd2.h" 48 #include "xattr.h" 49 #include "acl.h" 50 #include "mballoc.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/ext4.h> 54 55 static struct proc_dir_entry *ext4_proc_root; 56 static struct kset *ext4_kset; 57 struct ext4_lazy_init *ext4_li_info; 58 struct mutex ext4_li_mtx; 59 struct ext4_features *ext4_feat; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static const char *ext4_decode_error(struct super_block *sb, int errno, 70 char nbuf[16]); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static void ext4_write_super(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data, struct vfsmount *mnt); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 82 static struct file_system_type ext3_fs_type = { 83 .owner = THIS_MODULE, 84 .name = "ext3", 85 .get_sb = ext4_get_sb, 86 .kill_sb = kill_block_super, 87 .fs_flags = FS_REQUIRES_DEV, 88 }; 89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 90 #else 91 #define IS_EXT3_SB(sb) (0) 92 #endif 93 94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 95 struct ext4_group_desc *bg) 96 { 97 return le32_to_cpu(bg->bg_block_bitmap_lo) | 98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 99 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 100 } 101 102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 103 struct ext4_group_desc *bg) 104 { 105 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 107 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 108 } 109 110 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 111 struct ext4_group_desc *bg) 112 { 113 return le32_to_cpu(bg->bg_inode_table_lo) | 114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 115 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 116 } 117 118 __u32 ext4_free_blks_count(struct super_block *sb, 119 struct ext4_group_desc *bg) 120 { 121 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 123 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 124 } 125 126 __u32 ext4_free_inodes_count(struct super_block *sb, 127 struct ext4_group_desc *bg) 128 { 129 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 130 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 131 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 132 } 133 134 __u32 ext4_used_dirs_count(struct super_block *sb, 135 struct ext4_group_desc *bg) 136 { 137 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 138 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 139 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 140 } 141 142 __u32 ext4_itable_unused_count(struct super_block *sb, 143 struct ext4_group_desc *bg) 144 { 145 return le16_to_cpu(bg->bg_itable_unused_lo) | 146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 147 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 148 } 149 150 void ext4_block_bitmap_set(struct super_block *sb, 151 struct ext4_group_desc *bg, ext4_fsblk_t blk) 152 { 153 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 155 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 156 } 157 158 void ext4_inode_bitmap_set(struct super_block *sb, 159 struct ext4_group_desc *bg, ext4_fsblk_t blk) 160 { 161 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 163 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 164 } 165 166 void ext4_inode_table_set(struct super_block *sb, 167 struct ext4_group_desc *bg, ext4_fsblk_t blk) 168 { 169 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 171 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 172 } 173 174 void ext4_free_blks_set(struct super_block *sb, 175 struct ext4_group_desc *bg, __u32 count) 176 { 177 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 179 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 180 } 181 182 void ext4_free_inodes_set(struct super_block *sb, 183 struct ext4_group_desc *bg, __u32 count) 184 { 185 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 186 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 187 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 188 } 189 190 void ext4_used_dirs_set(struct super_block *sb, 191 struct ext4_group_desc *bg, __u32 count) 192 { 193 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 194 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 195 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 196 } 197 198 void ext4_itable_unused_set(struct super_block *sb, 199 struct ext4_group_desc *bg, __u32 count) 200 { 201 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 203 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 204 } 205 206 207 /* Just increment the non-pointer handle value */ 208 static handle_t *ext4_get_nojournal(void) 209 { 210 handle_t *handle = current->journal_info; 211 unsigned long ref_cnt = (unsigned long)handle; 212 213 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 214 215 ref_cnt++; 216 handle = (handle_t *)ref_cnt; 217 218 current->journal_info = handle; 219 return handle; 220 } 221 222 223 /* Decrement the non-pointer handle value */ 224 static void ext4_put_nojournal(handle_t *handle) 225 { 226 unsigned long ref_cnt = (unsigned long)handle; 227 228 BUG_ON(ref_cnt == 0); 229 230 ref_cnt--; 231 handle = (handle_t *)ref_cnt; 232 233 current->journal_info = handle; 234 } 235 236 /* 237 * Wrappers for jbd2_journal_start/end. 238 * 239 * The only special thing we need to do here is to make sure that all 240 * journal_end calls result in the superblock being marked dirty, so 241 * that sync() will call the filesystem's write_super callback if 242 * appropriate. 243 */ 244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 245 { 246 journal_t *journal; 247 248 if (sb->s_flags & MS_RDONLY) 249 return ERR_PTR(-EROFS); 250 251 vfs_check_frozen(sb, SB_FREEZE_TRANS); 252 /* Special case here: if the journal has aborted behind our 253 * backs (eg. EIO in the commit thread), then we still need to 254 * take the FS itself readonly cleanly. */ 255 journal = EXT4_SB(sb)->s_journal; 256 if (journal) { 257 if (is_journal_aborted(journal)) { 258 ext4_abort(sb, "Detected aborted journal"); 259 return ERR_PTR(-EROFS); 260 } 261 return jbd2_journal_start(journal, nblocks); 262 } 263 return ext4_get_nojournal(); 264 } 265 266 /* 267 * The only special thing we need to do here is to make sure that all 268 * jbd2_journal_stop calls result in the superblock being marked dirty, so 269 * that sync() will call the filesystem's write_super callback if 270 * appropriate. 271 */ 272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 273 { 274 struct super_block *sb; 275 int err; 276 int rc; 277 278 if (!ext4_handle_valid(handle)) { 279 ext4_put_nojournal(handle); 280 return 0; 281 } 282 sb = handle->h_transaction->t_journal->j_private; 283 err = handle->h_err; 284 rc = jbd2_journal_stop(handle); 285 286 if (!err) 287 err = rc; 288 if (err) 289 __ext4_std_error(sb, where, line, err); 290 return err; 291 } 292 293 void ext4_journal_abort_handle(const char *caller, unsigned int line, 294 const char *err_fn, struct buffer_head *bh, 295 handle_t *handle, int err) 296 { 297 char nbuf[16]; 298 const char *errstr = ext4_decode_error(NULL, err, nbuf); 299 300 BUG_ON(!ext4_handle_valid(handle)); 301 302 if (bh) 303 BUFFER_TRACE(bh, "abort"); 304 305 if (!handle->h_err) 306 handle->h_err = err; 307 308 if (is_handle_aborted(handle)) 309 return; 310 311 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n", 312 caller, line, errstr, err_fn); 313 314 jbd2_journal_abort_handle(handle); 315 } 316 317 static void __save_error_info(struct super_block *sb, const char *func, 318 unsigned int line) 319 { 320 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 321 322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 324 es->s_last_error_time = cpu_to_le32(get_seconds()); 325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 326 es->s_last_error_line = cpu_to_le32(line); 327 if (!es->s_first_error_time) { 328 es->s_first_error_time = es->s_last_error_time; 329 strncpy(es->s_first_error_func, func, 330 sizeof(es->s_first_error_func)); 331 es->s_first_error_line = cpu_to_le32(line); 332 es->s_first_error_ino = es->s_last_error_ino; 333 es->s_first_error_block = es->s_last_error_block; 334 } 335 /* 336 * Start the daily error reporting function if it hasn't been 337 * started already 338 */ 339 if (!es->s_error_count) 340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 341 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 342 } 343 344 static void save_error_info(struct super_block *sb, const char *func, 345 unsigned int line) 346 { 347 __save_error_info(sb, func, line); 348 ext4_commit_super(sb, 1); 349 } 350 351 352 /* Deal with the reporting of failure conditions on a filesystem such as 353 * inconsistencies detected or read IO failures. 354 * 355 * On ext2, we can store the error state of the filesystem in the 356 * superblock. That is not possible on ext4, because we may have other 357 * write ordering constraints on the superblock which prevent us from 358 * writing it out straight away; and given that the journal is about to 359 * be aborted, we can't rely on the current, or future, transactions to 360 * write out the superblock safely. 361 * 362 * We'll just use the jbd2_journal_abort() error code to record an error in 363 * the journal instead. On recovery, the journal will complain about 364 * that error until we've noted it down and cleared it. 365 */ 366 367 static void ext4_handle_error(struct super_block *sb) 368 { 369 if (sb->s_flags & MS_RDONLY) 370 return; 371 372 if (!test_opt(sb, ERRORS_CONT)) { 373 journal_t *journal = EXT4_SB(sb)->s_journal; 374 375 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 376 if (journal) 377 jbd2_journal_abort(journal, -EIO); 378 } 379 if (test_opt(sb, ERRORS_RO)) { 380 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 381 sb->s_flags |= MS_RDONLY; 382 } 383 if (test_opt(sb, ERRORS_PANIC)) 384 panic("EXT4-fs (device %s): panic forced after error\n", 385 sb->s_id); 386 } 387 388 void __ext4_error(struct super_block *sb, const char *function, 389 unsigned int line, const char *fmt, ...) 390 { 391 va_list args; 392 393 va_start(args, fmt); 394 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ", 395 sb->s_id, function, line, current->comm); 396 vprintk(fmt, args); 397 printk("\n"); 398 va_end(args); 399 400 ext4_handle_error(sb); 401 } 402 403 void ext4_error_inode(struct inode *inode, const char *function, 404 unsigned int line, ext4_fsblk_t block, 405 const char *fmt, ...) 406 { 407 va_list args; 408 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 409 410 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 411 es->s_last_error_block = cpu_to_le64(block); 412 save_error_info(inode->i_sb, function, line); 413 va_start(args, fmt); 414 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 415 inode->i_sb->s_id, function, line, inode->i_ino); 416 if (block) 417 printk("block %llu: ", block); 418 printk("comm %s: ", current->comm); 419 vprintk(fmt, args); 420 printk("\n"); 421 va_end(args); 422 423 ext4_handle_error(inode->i_sb); 424 } 425 426 void ext4_error_file(struct file *file, const char *function, 427 unsigned int line, const char *fmt, ...) 428 { 429 va_list args; 430 struct ext4_super_block *es; 431 struct inode *inode = file->f_dentry->d_inode; 432 char pathname[80], *path; 433 434 es = EXT4_SB(inode->i_sb)->s_es; 435 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 436 save_error_info(inode->i_sb, function, line); 437 va_start(args, fmt); 438 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 439 if (!path) 440 path = "(unknown)"; 441 printk(KERN_CRIT 442 "EXT4-fs error (device %s): %s:%d: inode #%lu " 443 "(comm %s path %s): ", 444 inode->i_sb->s_id, function, line, inode->i_ino, 445 current->comm, path); 446 vprintk(fmt, args); 447 printk("\n"); 448 va_end(args); 449 450 ext4_handle_error(inode->i_sb); 451 } 452 453 static const char *ext4_decode_error(struct super_block *sb, int errno, 454 char nbuf[16]) 455 { 456 char *errstr = NULL; 457 458 switch (errno) { 459 case -EIO: 460 errstr = "IO failure"; 461 break; 462 case -ENOMEM: 463 errstr = "Out of memory"; 464 break; 465 case -EROFS: 466 if (!sb || (EXT4_SB(sb)->s_journal && 467 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 468 errstr = "Journal has aborted"; 469 else 470 errstr = "Readonly filesystem"; 471 break; 472 default: 473 /* If the caller passed in an extra buffer for unknown 474 * errors, textualise them now. Else we just return 475 * NULL. */ 476 if (nbuf) { 477 /* Check for truncated error codes... */ 478 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 479 errstr = nbuf; 480 } 481 break; 482 } 483 484 return errstr; 485 } 486 487 /* __ext4_std_error decodes expected errors from journaling functions 488 * automatically and invokes the appropriate error response. */ 489 490 void __ext4_std_error(struct super_block *sb, const char *function, 491 unsigned int line, int errno) 492 { 493 char nbuf[16]; 494 const char *errstr; 495 496 /* Special case: if the error is EROFS, and we're not already 497 * inside a transaction, then there's really no point in logging 498 * an error. */ 499 if (errno == -EROFS && journal_current_handle() == NULL && 500 (sb->s_flags & MS_RDONLY)) 501 return; 502 503 errstr = ext4_decode_error(sb, errno, nbuf); 504 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 505 sb->s_id, function, line, errstr); 506 save_error_info(sb, function, line); 507 508 ext4_handle_error(sb); 509 } 510 511 /* 512 * ext4_abort is a much stronger failure handler than ext4_error. The 513 * abort function may be used to deal with unrecoverable failures such 514 * as journal IO errors or ENOMEM at a critical moment in log management. 515 * 516 * We unconditionally force the filesystem into an ABORT|READONLY state, 517 * unless the error response on the fs has been set to panic in which 518 * case we take the easy way out and panic immediately. 519 */ 520 521 void __ext4_abort(struct super_block *sb, const char *function, 522 unsigned int line, const char *fmt, ...) 523 { 524 va_list args; 525 526 save_error_info(sb, function, line); 527 va_start(args, fmt); 528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 529 function, line); 530 vprintk(fmt, args); 531 printk("\n"); 532 va_end(args); 533 534 if ((sb->s_flags & MS_RDONLY) == 0) { 535 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 536 sb->s_flags |= MS_RDONLY; 537 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 538 if (EXT4_SB(sb)->s_journal) 539 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 540 save_error_info(sb, function, line); 541 } 542 if (test_opt(sb, ERRORS_PANIC)) 543 panic("EXT4-fs panic from previous error\n"); 544 } 545 546 void ext4_msg (struct super_block * sb, const char *prefix, 547 const char *fmt, ...) 548 { 549 va_list args; 550 551 va_start(args, fmt); 552 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 553 vprintk(fmt, args); 554 printk("\n"); 555 va_end(args); 556 } 557 558 void __ext4_warning(struct super_block *sb, const char *function, 559 unsigned int line, const char *fmt, ...) 560 { 561 va_list args; 562 563 va_start(args, fmt); 564 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ", 565 sb->s_id, function, line); 566 vprintk(fmt, args); 567 printk("\n"); 568 va_end(args); 569 } 570 571 void __ext4_grp_locked_error(const char *function, unsigned int line, 572 struct super_block *sb, ext4_group_t grp, 573 unsigned long ino, ext4_fsblk_t block, 574 const char *fmt, ...) 575 __releases(bitlock) 576 __acquires(bitlock) 577 { 578 va_list args; 579 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 580 581 es->s_last_error_ino = cpu_to_le32(ino); 582 es->s_last_error_block = cpu_to_le64(block); 583 __save_error_info(sb, function, line); 584 va_start(args, fmt); 585 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u", 586 sb->s_id, function, line, grp); 587 if (ino) 588 printk("inode %lu: ", ino); 589 if (block) 590 printk("block %llu:", (unsigned long long) block); 591 vprintk(fmt, args); 592 printk("\n"); 593 va_end(args); 594 595 if (test_opt(sb, ERRORS_CONT)) { 596 ext4_commit_super(sb, 0); 597 return; 598 } 599 600 ext4_unlock_group(sb, grp); 601 ext4_handle_error(sb); 602 /* 603 * We only get here in the ERRORS_RO case; relocking the group 604 * may be dangerous, but nothing bad will happen since the 605 * filesystem will have already been marked read/only and the 606 * journal has been aborted. We return 1 as a hint to callers 607 * who might what to use the return value from 608 * ext4_grp_locked_error() to distinguish beween the 609 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 610 * aggressively from the ext4 function in question, with a 611 * more appropriate error code. 612 */ 613 ext4_lock_group(sb, grp); 614 return; 615 } 616 617 void ext4_update_dynamic_rev(struct super_block *sb) 618 { 619 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 620 621 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 622 return; 623 624 ext4_warning(sb, 625 "updating to rev %d because of new feature flag, " 626 "running e2fsck is recommended", 627 EXT4_DYNAMIC_REV); 628 629 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 630 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 631 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 632 /* leave es->s_feature_*compat flags alone */ 633 /* es->s_uuid will be set by e2fsck if empty */ 634 635 /* 636 * The rest of the superblock fields should be zero, and if not it 637 * means they are likely already in use, so leave them alone. We 638 * can leave it up to e2fsck to clean up any inconsistencies there. 639 */ 640 } 641 642 /* 643 * Open the external journal device 644 */ 645 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 646 { 647 struct block_device *bdev; 648 char b[BDEVNAME_SIZE]; 649 650 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 651 if (IS_ERR(bdev)) 652 goto fail; 653 return bdev; 654 655 fail: 656 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 657 __bdevname(dev, b), PTR_ERR(bdev)); 658 return NULL; 659 } 660 661 /* 662 * Release the journal device 663 */ 664 static int ext4_blkdev_put(struct block_device *bdev) 665 { 666 bd_release(bdev); 667 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 668 } 669 670 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 671 { 672 struct block_device *bdev; 673 int ret = -ENODEV; 674 675 bdev = sbi->journal_bdev; 676 if (bdev) { 677 ret = ext4_blkdev_put(bdev); 678 sbi->journal_bdev = NULL; 679 } 680 return ret; 681 } 682 683 static inline struct inode *orphan_list_entry(struct list_head *l) 684 { 685 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 686 } 687 688 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 689 { 690 struct list_head *l; 691 692 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 693 le32_to_cpu(sbi->s_es->s_last_orphan)); 694 695 printk(KERN_ERR "sb_info orphan list:\n"); 696 list_for_each(l, &sbi->s_orphan) { 697 struct inode *inode = orphan_list_entry(l); 698 printk(KERN_ERR " " 699 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 700 inode->i_sb->s_id, inode->i_ino, inode, 701 inode->i_mode, inode->i_nlink, 702 NEXT_ORPHAN(inode)); 703 } 704 } 705 706 static void ext4_put_super(struct super_block *sb) 707 { 708 struct ext4_sb_info *sbi = EXT4_SB(sb); 709 struct ext4_super_block *es = sbi->s_es; 710 int i, err; 711 712 ext4_unregister_li_request(sb); 713 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 714 715 flush_workqueue(sbi->dio_unwritten_wq); 716 destroy_workqueue(sbi->dio_unwritten_wq); 717 718 lock_super(sb); 719 if (sb->s_dirt) 720 ext4_commit_super(sb, 1); 721 722 if (sbi->s_journal) { 723 err = jbd2_journal_destroy(sbi->s_journal); 724 sbi->s_journal = NULL; 725 if (err < 0) 726 ext4_abort(sb, "Couldn't clean up the journal"); 727 } 728 729 del_timer(&sbi->s_err_report); 730 ext4_release_system_zone(sb); 731 ext4_mb_release(sb); 732 ext4_ext_release(sb); 733 ext4_xattr_put_super(sb); 734 735 if (!(sb->s_flags & MS_RDONLY)) { 736 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 737 es->s_state = cpu_to_le16(sbi->s_mount_state); 738 ext4_commit_super(sb, 1); 739 } 740 if (sbi->s_proc) { 741 remove_proc_entry(sb->s_id, ext4_proc_root); 742 } 743 kobject_del(&sbi->s_kobj); 744 745 for (i = 0; i < sbi->s_gdb_count; i++) 746 brelse(sbi->s_group_desc[i]); 747 kfree(sbi->s_group_desc); 748 if (is_vmalloc_addr(sbi->s_flex_groups)) 749 vfree(sbi->s_flex_groups); 750 else 751 kfree(sbi->s_flex_groups); 752 percpu_counter_destroy(&sbi->s_freeblocks_counter); 753 percpu_counter_destroy(&sbi->s_freeinodes_counter); 754 percpu_counter_destroy(&sbi->s_dirs_counter); 755 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 756 brelse(sbi->s_sbh); 757 #ifdef CONFIG_QUOTA 758 for (i = 0; i < MAXQUOTAS; i++) 759 kfree(sbi->s_qf_names[i]); 760 #endif 761 762 /* Debugging code just in case the in-memory inode orphan list 763 * isn't empty. The on-disk one can be non-empty if we've 764 * detected an error and taken the fs readonly, but the 765 * in-memory list had better be clean by this point. */ 766 if (!list_empty(&sbi->s_orphan)) 767 dump_orphan_list(sb, sbi); 768 J_ASSERT(list_empty(&sbi->s_orphan)); 769 770 invalidate_bdev(sb->s_bdev); 771 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 772 /* 773 * Invalidate the journal device's buffers. We don't want them 774 * floating about in memory - the physical journal device may 775 * hotswapped, and it breaks the `ro-after' testing code. 776 */ 777 sync_blockdev(sbi->journal_bdev); 778 invalidate_bdev(sbi->journal_bdev); 779 ext4_blkdev_remove(sbi); 780 } 781 sb->s_fs_info = NULL; 782 /* 783 * Now that we are completely done shutting down the 784 * superblock, we need to actually destroy the kobject. 785 */ 786 unlock_super(sb); 787 kobject_put(&sbi->s_kobj); 788 wait_for_completion(&sbi->s_kobj_unregister); 789 kfree(sbi->s_blockgroup_lock); 790 kfree(sbi); 791 } 792 793 static struct kmem_cache *ext4_inode_cachep; 794 795 /* 796 * Called inside transaction, so use GFP_NOFS 797 */ 798 static struct inode *ext4_alloc_inode(struct super_block *sb) 799 { 800 struct ext4_inode_info *ei; 801 802 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 803 if (!ei) 804 return NULL; 805 806 ei->vfs_inode.i_version = 1; 807 ei->vfs_inode.i_data.writeback_index = 0; 808 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 809 INIT_LIST_HEAD(&ei->i_prealloc_list); 810 spin_lock_init(&ei->i_prealloc_lock); 811 /* 812 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 813 * therefore it can be null here. Don't check it, just initialize 814 * jinode. 815 */ 816 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 817 ei->i_reserved_data_blocks = 0; 818 ei->i_reserved_meta_blocks = 0; 819 ei->i_allocated_meta_blocks = 0; 820 ei->i_da_metadata_calc_len = 0; 821 ei->i_delalloc_reserved_flag = 0; 822 spin_lock_init(&(ei->i_block_reservation_lock)); 823 #ifdef CONFIG_QUOTA 824 ei->i_reserved_quota = 0; 825 #endif 826 INIT_LIST_HEAD(&ei->i_completed_io_list); 827 spin_lock_init(&ei->i_completed_io_lock); 828 ei->cur_aio_dio = NULL; 829 ei->i_sync_tid = 0; 830 ei->i_datasync_tid = 0; 831 832 return &ei->vfs_inode; 833 } 834 835 static void ext4_destroy_inode(struct inode *inode) 836 { 837 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 838 ext4_msg(inode->i_sb, KERN_ERR, 839 "Inode %lu (%p): orphan list check failed!", 840 inode->i_ino, EXT4_I(inode)); 841 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 842 EXT4_I(inode), sizeof(struct ext4_inode_info), 843 true); 844 dump_stack(); 845 } 846 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 847 } 848 849 static void init_once(void *foo) 850 { 851 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 852 853 INIT_LIST_HEAD(&ei->i_orphan); 854 #ifdef CONFIG_EXT4_FS_XATTR 855 init_rwsem(&ei->xattr_sem); 856 #endif 857 init_rwsem(&ei->i_data_sem); 858 inode_init_once(&ei->vfs_inode); 859 } 860 861 static int init_inodecache(void) 862 { 863 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 864 sizeof(struct ext4_inode_info), 865 0, (SLAB_RECLAIM_ACCOUNT| 866 SLAB_MEM_SPREAD), 867 init_once); 868 if (ext4_inode_cachep == NULL) 869 return -ENOMEM; 870 return 0; 871 } 872 873 static void destroy_inodecache(void) 874 { 875 kmem_cache_destroy(ext4_inode_cachep); 876 } 877 878 void ext4_clear_inode(struct inode *inode) 879 { 880 invalidate_inode_buffers(inode); 881 end_writeback(inode); 882 dquot_drop(inode); 883 ext4_discard_preallocations(inode); 884 if (EXT4_JOURNAL(inode)) 885 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 886 &EXT4_I(inode)->jinode); 887 } 888 889 static inline void ext4_show_quota_options(struct seq_file *seq, 890 struct super_block *sb) 891 { 892 #if defined(CONFIG_QUOTA) 893 struct ext4_sb_info *sbi = EXT4_SB(sb); 894 895 if (sbi->s_jquota_fmt) { 896 char *fmtname = ""; 897 898 switch (sbi->s_jquota_fmt) { 899 case QFMT_VFS_OLD: 900 fmtname = "vfsold"; 901 break; 902 case QFMT_VFS_V0: 903 fmtname = "vfsv0"; 904 break; 905 case QFMT_VFS_V1: 906 fmtname = "vfsv1"; 907 break; 908 } 909 seq_printf(seq, ",jqfmt=%s", fmtname); 910 } 911 912 if (sbi->s_qf_names[USRQUOTA]) 913 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 914 915 if (sbi->s_qf_names[GRPQUOTA]) 916 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 917 918 if (test_opt(sb, USRQUOTA)) 919 seq_puts(seq, ",usrquota"); 920 921 if (test_opt(sb, GRPQUOTA)) 922 seq_puts(seq, ",grpquota"); 923 #endif 924 } 925 926 /* 927 * Show an option if 928 * - it's set to a non-default value OR 929 * - if the per-sb default is different from the global default 930 */ 931 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 932 { 933 int def_errors; 934 unsigned long def_mount_opts; 935 struct super_block *sb = vfs->mnt_sb; 936 struct ext4_sb_info *sbi = EXT4_SB(sb); 937 struct ext4_super_block *es = sbi->s_es; 938 939 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 940 def_errors = le16_to_cpu(es->s_errors); 941 942 if (sbi->s_sb_block != 1) 943 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 944 if (test_opt(sb, MINIX_DF)) 945 seq_puts(seq, ",minixdf"); 946 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 947 seq_puts(seq, ",grpid"); 948 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 949 seq_puts(seq, ",nogrpid"); 950 if (sbi->s_resuid != EXT4_DEF_RESUID || 951 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 952 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 953 } 954 if (sbi->s_resgid != EXT4_DEF_RESGID || 955 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 956 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 957 } 958 if (test_opt(sb, ERRORS_RO)) { 959 if (def_errors == EXT4_ERRORS_PANIC || 960 def_errors == EXT4_ERRORS_CONTINUE) { 961 seq_puts(seq, ",errors=remount-ro"); 962 } 963 } 964 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 965 seq_puts(seq, ",errors=continue"); 966 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 967 seq_puts(seq, ",errors=panic"); 968 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 969 seq_puts(seq, ",nouid32"); 970 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 971 seq_puts(seq, ",debug"); 972 if (test_opt(sb, OLDALLOC)) 973 seq_puts(seq, ",oldalloc"); 974 #ifdef CONFIG_EXT4_FS_XATTR 975 if (test_opt(sb, XATTR_USER) && 976 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 977 seq_puts(seq, ",user_xattr"); 978 if (!test_opt(sb, XATTR_USER) && 979 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 980 seq_puts(seq, ",nouser_xattr"); 981 } 982 #endif 983 #ifdef CONFIG_EXT4_FS_POSIX_ACL 984 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 985 seq_puts(seq, ",acl"); 986 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 987 seq_puts(seq, ",noacl"); 988 #endif 989 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 990 seq_printf(seq, ",commit=%u", 991 (unsigned) (sbi->s_commit_interval / HZ)); 992 } 993 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 994 seq_printf(seq, ",min_batch_time=%u", 995 (unsigned) sbi->s_min_batch_time); 996 } 997 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 998 seq_printf(seq, ",max_batch_time=%u", 999 (unsigned) sbi->s_min_batch_time); 1000 } 1001 1002 /* 1003 * We're changing the default of barrier mount option, so 1004 * let's always display its mount state so it's clear what its 1005 * status is. 1006 */ 1007 seq_puts(seq, ",barrier="); 1008 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 1009 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 1010 seq_puts(seq, ",journal_async_commit"); 1011 else if (test_opt(sb, JOURNAL_CHECKSUM)) 1012 seq_puts(seq, ",journal_checksum"); 1013 if (test_opt(sb, I_VERSION)) 1014 seq_puts(seq, ",i_version"); 1015 if (!test_opt(sb, DELALLOC) && 1016 !(def_mount_opts & EXT4_DEFM_NODELALLOC)) 1017 seq_puts(seq, ",nodelalloc"); 1018 1019 if (sbi->s_stripe) 1020 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 1021 /* 1022 * journal mode get enabled in different ways 1023 * So just print the value even if we didn't specify it 1024 */ 1025 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1026 seq_puts(seq, ",data=journal"); 1027 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1028 seq_puts(seq, ",data=ordered"); 1029 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1030 seq_puts(seq, ",data=writeback"); 1031 1032 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1033 seq_printf(seq, ",inode_readahead_blks=%u", 1034 sbi->s_inode_readahead_blks); 1035 1036 if (test_opt(sb, DATA_ERR_ABORT)) 1037 seq_puts(seq, ",data_err=abort"); 1038 1039 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 1040 seq_puts(seq, ",noauto_da_alloc"); 1041 1042 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD)) 1043 seq_puts(seq, ",discard"); 1044 1045 if (test_opt(sb, NOLOAD)) 1046 seq_puts(seq, ",norecovery"); 1047 1048 if (test_opt(sb, DIOREAD_NOLOCK)) 1049 seq_puts(seq, ",dioread_nolock"); 1050 1051 if (test_opt(sb, BLOCK_VALIDITY) && 1052 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)) 1053 seq_puts(seq, ",block_validity"); 1054 1055 if (!test_opt(sb, INIT_INODE_TABLE)) 1056 seq_puts(seq, ",noinit_inode_table"); 1057 else if (sbi->s_li_wait_mult) 1058 seq_printf(seq, ",init_inode_table=%u", 1059 (unsigned) sbi->s_li_wait_mult); 1060 1061 ext4_show_quota_options(seq, sb); 1062 1063 return 0; 1064 } 1065 1066 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1067 u64 ino, u32 generation) 1068 { 1069 struct inode *inode; 1070 1071 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1072 return ERR_PTR(-ESTALE); 1073 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1074 return ERR_PTR(-ESTALE); 1075 1076 /* iget isn't really right if the inode is currently unallocated!! 1077 * 1078 * ext4_read_inode will return a bad_inode if the inode had been 1079 * deleted, so we should be safe. 1080 * 1081 * Currently we don't know the generation for parent directory, so 1082 * a generation of 0 means "accept any" 1083 */ 1084 inode = ext4_iget(sb, ino); 1085 if (IS_ERR(inode)) 1086 return ERR_CAST(inode); 1087 if (generation && inode->i_generation != generation) { 1088 iput(inode); 1089 return ERR_PTR(-ESTALE); 1090 } 1091 1092 return inode; 1093 } 1094 1095 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1096 int fh_len, int fh_type) 1097 { 1098 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1099 ext4_nfs_get_inode); 1100 } 1101 1102 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1103 int fh_len, int fh_type) 1104 { 1105 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1106 ext4_nfs_get_inode); 1107 } 1108 1109 /* 1110 * Try to release metadata pages (indirect blocks, directories) which are 1111 * mapped via the block device. Since these pages could have journal heads 1112 * which would prevent try_to_free_buffers() from freeing them, we must use 1113 * jbd2 layer's try_to_free_buffers() function to release them. 1114 */ 1115 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1116 gfp_t wait) 1117 { 1118 journal_t *journal = EXT4_SB(sb)->s_journal; 1119 1120 WARN_ON(PageChecked(page)); 1121 if (!page_has_buffers(page)) 1122 return 0; 1123 if (journal) 1124 return jbd2_journal_try_to_free_buffers(journal, page, 1125 wait & ~__GFP_WAIT); 1126 return try_to_free_buffers(page); 1127 } 1128 1129 #ifdef CONFIG_QUOTA 1130 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1131 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1132 1133 static int ext4_write_dquot(struct dquot *dquot); 1134 static int ext4_acquire_dquot(struct dquot *dquot); 1135 static int ext4_release_dquot(struct dquot *dquot); 1136 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1137 static int ext4_write_info(struct super_block *sb, int type); 1138 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1139 char *path); 1140 static int ext4_quota_off(struct super_block *sb, int type); 1141 static int ext4_quota_on_mount(struct super_block *sb, int type); 1142 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1143 size_t len, loff_t off); 1144 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1145 const char *data, size_t len, loff_t off); 1146 1147 static const struct dquot_operations ext4_quota_operations = { 1148 #ifdef CONFIG_QUOTA 1149 .get_reserved_space = ext4_get_reserved_space, 1150 #endif 1151 .write_dquot = ext4_write_dquot, 1152 .acquire_dquot = ext4_acquire_dquot, 1153 .release_dquot = ext4_release_dquot, 1154 .mark_dirty = ext4_mark_dquot_dirty, 1155 .write_info = ext4_write_info, 1156 .alloc_dquot = dquot_alloc, 1157 .destroy_dquot = dquot_destroy, 1158 }; 1159 1160 static const struct quotactl_ops ext4_qctl_operations = { 1161 .quota_on = ext4_quota_on, 1162 .quota_off = ext4_quota_off, 1163 .quota_sync = dquot_quota_sync, 1164 .get_info = dquot_get_dqinfo, 1165 .set_info = dquot_set_dqinfo, 1166 .get_dqblk = dquot_get_dqblk, 1167 .set_dqblk = dquot_set_dqblk 1168 }; 1169 #endif 1170 1171 static const struct super_operations ext4_sops = { 1172 .alloc_inode = ext4_alloc_inode, 1173 .destroy_inode = ext4_destroy_inode, 1174 .write_inode = ext4_write_inode, 1175 .dirty_inode = ext4_dirty_inode, 1176 .evict_inode = ext4_evict_inode, 1177 .put_super = ext4_put_super, 1178 .sync_fs = ext4_sync_fs, 1179 .freeze_fs = ext4_freeze, 1180 .unfreeze_fs = ext4_unfreeze, 1181 .statfs = ext4_statfs, 1182 .remount_fs = ext4_remount, 1183 .show_options = ext4_show_options, 1184 #ifdef CONFIG_QUOTA 1185 .quota_read = ext4_quota_read, 1186 .quota_write = ext4_quota_write, 1187 #endif 1188 .bdev_try_to_free_page = bdev_try_to_free_page, 1189 .trim_fs = ext4_trim_fs 1190 }; 1191 1192 static const struct super_operations ext4_nojournal_sops = { 1193 .alloc_inode = ext4_alloc_inode, 1194 .destroy_inode = ext4_destroy_inode, 1195 .write_inode = ext4_write_inode, 1196 .dirty_inode = ext4_dirty_inode, 1197 .evict_inode = ext4_evict_inode, 1198 .write_super = ext4_write_super, 1199 .put_super = ext4_put_super, 1200 .statfs = ext4_statfs, 1201 .remount_fs = ext4_remount, 1202 .show_options = ext4_show_options, 1203 #ifdef CONFIG_QUOTA 1204 .quota_read = ext4_quota_read, 1205 .quota_write = ext4_quota_write, 1206 #endif 1207 .bdev_try_to_free_page = bdev_try_to_free_page, 1208 }; 1209 1210 static const struct export_operations ext4_export_ops = { 1211 .fh_to_dentry = ext4_fh_to_dentry, 1212 .fh_to_parent = ext4_fh_to_parent, 1213 .get_parent = ext4_get_parent, 1214 }; 1215 1216 enum { 1217 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1218 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1219 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1220 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1221 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1222 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1223 Opt_journal_update, Opt_journal_dev, 1224 Opt_journal_checksum, Opt_journal_async_commit, 1225 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1226 Opt_data_err_abort, Opt_data_err_ignore, 1227 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1228 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1229 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1230 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1231 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1232 Opt_block_validity, Opt_noblock_validity, 1233 Opt_inode_readahead_blks, Opt_journal_ioprio, 1234 Opt_dioread_nolock, Opt_dioread_lock, 1235 Opt_discard, Opt_nodiscard, 1236 Opt_init_inode_table, Opt_noinit_inode_table, 1237 }; 1238 1239 static const match_table_t tokens = { 1240 {Opt_bsd_df, "bsddf"}, 1241 {Opt_minix_df, "minixdf"}, 1242 {Opt_grpid, "grpid"}, 1243 {Opt_grpid, "bsdgroups"}, 1244 {Opt_nogrpid, "nogrpid"}, 1245 {Opt_nogrpid, "sysvgroups"}, 1246 {Opt_resgid, "resgid=%u"}, 1247 {Opt_resuid, "resuid=%u"}, 1248 {Opt_sb, "sb=%u"}, 1249 {Opt_err_cont, "errors=continue"}, 1250 {Opt_err_panic, "errors=panic"}, 1251 {Opt_err_ro, "errors=remount-ro"}, 1252 {Opt_nouid32, "nouid32"}, 1253 {Opt_debug, "debug"}, 1254 {Opt_oldalloc, "oldalloc"}, 1255 {Opt_orlov, "orlov"}, 1256 {Opt_user_xattr, "user_xattr"}, 1257 {Opt_nouser_xattr, "nouser_xattr"}, 1258 {Opt_acl, "acl"}, 1259 {Opt_noacl, "noacl"}, 1260 {Opt_noload, "noload"}, 1261 {Opt_noload, "norecovery"}, 1262 {Opt_nobh, "nobh"}, 1263 {Opt_bh, "bh"}, 1264 {Opt_commit, "commit=%u"}, 1265 {Opt_min_batch_time, "min_batch_time=%u"}, 1266 {Opt_max_batch_time, "max_batch_time=%u"}, 1267 {Opt_journal_update, "journal=update"}, 1268 {Opt_journal_dev, "journal_dev=%u"}, 1269 {Opt_journal_checksum, "journal_checksum"}, 1270 {Opt_journal_async_commit, "journal_async_commit"}, 1271 {Opt_abort, "abort"}, 1272 {Opt_data_journal, "data=journal"}, 1273 {Opt_data_ordered, "data=ordered"}, 1274 {Opt_data_writeback, "data=writeback"}, 1275 {Opt_data_err_abort, "data_err=abort"}, 1276 {Opt_data_err_ignore, "data_err=ignore"}, 1277 {Opt_offusrjquota, "usrjquota="}, 1278 {Opt_usrjquota, "usrjquota=%s"}, 1279 {Opt_offgrpjquota, "grpjquota="}, 1280 {Opt_grpjquota, "grpjquota=%s"}, 1281 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1282 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1283 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1284 {Opt_grpquota, "grpquota"}, 1285 {Opt_noquota, "noquota"}, 1286 {Opt_quota, "quota"}, 1287 {Opt_usrquota, "usrquota"}, 1288 {Opt_barrier, "barrier=%u"}, 1289 {Opt_barrier, "barrier"}, 1290 {Opt_nobarrier, "nobarrier"}, 1291 {Opt_i_version, "i_version"}, 1292 {Opt_stripe, "stripe=%u"}, 1293 {Opt_resize, "resize"}, 1294 {Opt_delalloc, "delalloc"}, 1295 {Opt_nodelalloc, "nodelalloc"}, 1296 {Opt_block_validity, "block_validity"}, 1297 {Opt_noblock_validity, "noblock_validity"}, 1298 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1299 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1300 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1301 {Opt_auto_da_alloc, "auto_da_alloc"}, 1302 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1303 {Opt_dioread_nolock, "dioread_nolock"}, 1304 {Opt_dioread_lock, "dioread_lock"}, 1305 {Opt_discard, "discard"}, 1306 {Opt_nodiscard, "nodiscard"}, 1307 {Opt_init_inode_table, "init_itable=%u"}, 1308 {Opt_init_inode_table, "init_itable"}, 1309 {Opt_noinit_inode_table, "noinit_itable"}, 1310 {Opt_err, NULL}, 1311 }; 1312 1313 static ext4_fsblk_t get_sb_block(void **data) 1314 { 1315 ext4_fsblk_t sb_block; 1316 char *options = (char *) *data; 1317 1318 if (!options || strncmp(options, "sb=", 3) != 0) 1319 return 1; /* Default location */ 1320 1321 options += 3; 1322 /* TODO: use simple_strtoll with >32bit ext4 */ 1323 sb_block = simple_strtoul(options, &options, 0); 1324 if (*options && *options != ',') { 1325 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1326 (char *) *data); 1327 return 1; 1328 } 1329 if (*options == ',') 1330 options++; 1331 *data = (void *) options; 1332 1333 return sb_block; 1334 } 1335 1336 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1337 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1338 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1339 1340 #ifdef CONFIG_QUOTA 1341 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1342 { 1343 struct ext4_sb_info *sbi = EXT4_SB(sb); 1344 char *qname; 1345 1346 if (sb_any_quota_loaded(sb) && 1347 !sbi->s_qf_names[qtype]) { 1348 ext4_msg(sb, KERN_ERR, 1349 "Cannot change journaled " 1350 "quota options when quota turned on"); 1351 return 0; 1352 } 1353 qname = match_strdup(args); 1354 if (!qname) { 1355 ext4_msg(sb, KERN_ERR, 1356 "Not enough memory for storing quotafile name"); 1357 return 0; 1358 } 1359 if (sbi->s_qf_names[qtype] && 1360 strcmp(sbi->s_qf_names[qtype], qname)) { 1361 ext4_msg(sb, KERN_ERR, 1362 "%s quota file already specified", QTYPE2NAME(qtype)); 1363 kfree(qname); 1364 return 0; 1365 } 1366 sbi->s_qf_names[qtype] = qname; 1367 if (strchr(sbi->s_qf_names[qtype], '/')) { 1368 ext4_msg(sb, KERN_ERR, 1369 "quotafile must be on filesystem root"); 1370 kfree(sbi->s_qf_names[qtype]); 1371 sbi->s_qf_names[qtype] = NULL; 1372 return 0; 1373 } 1374 set_opt(sbi->s_mount_opt, QUOTA); 1375 return 1; 1376 } 1377 1378 static int clear_qf_name(struct super_block *sb, int qtype) 1379 { 1380 1381 struct ext4_sb_info *sbi = EXT4_SB(sb); 1382 1383 if (sb_any_quota_loaded(sb) && 1384 sbi->s_qf_names[qtype]) { 1385 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1386 " when quota turned on"); 1387 return 0; 1388 } 1389 /* 1390 * The space will be released later when all options are confirmed 1391 * to be correct 1392 */ 1393 sbi->s_qf_names[qtype] = NULL; 1394 return 1; 1395 } 1396 #endif 1397 1398 static int parse_options(char *options, struct super_block *sb, 1399 unsigned long *journal_devnum, 1400 unsigned int *journal_ioprio, 1401 ext4_fsblk_t *n_blocks_count, int is_remount) 1402 { 1403 struct ext4_sb_info *sbi = EXT4_SB(sb); 1404 char *p; 1405 substring_t args[MAX_OPT_ARGS]; 1406 int data_opt = 0; 1407 int option; 1408 #ifdef CONFIG_QUOTA 1409 int qfmt; 1410 #endif 1411 1412 if (!options) 1413 return 1; 1414 1415 while ((p = strsep(&options, ",")) != NULL) { 1416 int token; 1417 if (!*p) 1418 continue; 1419 1420 /* 1421 * Initialize args struct so we know whether arg was 1422 * found; some options take optional arguments. 1423 */ 1424 args[0].to = args[0].from = 0; 1425 token = match_token(p, tokens, args); 1426 switch (token) { 1427 case Opt_bsd_df: 1428 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1429 clear_opt(sbi->s_mount_opt, MINIX_DF); 1430 break; 1431 case Opt_minix_df: 1432 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1433 set_opt(sbi->s_mount_opt, MINIX_DF); 1434 1435 break; 1436 case Opt_grpid: 1437 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1438 set_opt(sbi->s_mount_opt, GRPID); 1439 1440 break; 1441 case Opt_nogrpid: 1442 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1443 clear_opt(sbi->s_mount_opt, GRPID); 1444 1445 break; 1446 case Opt_resuid: 1447 if (match_int(&args[0], &option)) 1448 return 0; 1449 sbi->s_resuid = option; 1450 break; 1451 case Opt_resgid: 1452 if (match_int(&args[0], &option)) 1453 return 0; 1454 sbi->s_resgid = option; 1455 break; 1456 case Opt_sb: 1457 /* handled by get_sb_block() instead of here */ 1458 /* *sb_block = match_int(&args[0]); */ 1459 break; 1460 case Opt_err_panic: 1461 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1462 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1463 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1464 break; 1465 case Opt_err_ro: 1466 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1467 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1468 set_opt(sbi->s_mount_opt, ERRORS_RO); 1469 break; 1470 case Opt_err_cont: 1471 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1472 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1473 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1474 break; 1475 case Opt_nouid32: 1476 set_opt(sbi->s_mount_opt, NO_UID32); 1477 break; 1478 case Opt_debug: 1479 set_opt(sbi->s_mount_opt, DEBUG); 1480 break; 1481 case Opt_oldalloc: 1482 set_opt(sbi->s_mount_opt, OLDALLOC); 1483 break; 1484 case Opt_orlov: 1485 clear_opt(sbi->s_mount_opt, OLDALLOC); 1486 break; 1487 #ifdef CONFIG_EXT4_FS_XATTR 1488 case Opt_user_xattr: 1489 set_opt(sbi->s_mount_opt, XATTR_USER); 1490 break; 1491 case Opt_nouser_xattr: 1492 clear_opt(sbi->s_mount_opt, XATTR_USER); 1493 break; 1494 #else 1495 case Opt_user_xattr: 1496 case Opt_nouser_xattr: 1497 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1498 break; 1499 #endif 1500 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1501 case Opt_acl: 1502 set_opt(sbi->s_mount_opt, POSIX_ACL); 1503 break; 1504 case Opt_noacl: 1505 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1506 break; 1507 #else 1508 case Opt_acl: 1509 case Opt_noacl: 1510 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1511 break; 1512 #endif 1513 case Opt_journal_update: 1514 /* @@@ FIXME */ 1515 /* Eventually we will want to be able to create 1516 a journal file here. For now, only allow the 1517 user to specify an existing inode to be the 1518 journal file. */ 1519 if (is_remount) { 1520 ext4_msg(sb, KERN_ERR, 1521 "Cannot specify journal on remount"); 1522 return 0; 1523 } 1524 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1525 break; 1526 case Opt_journal_dev: 1527 if (is_remount) { 1528 ext4_msg(sb, KERN_ERR, 1529 "Cannot specify journal on remount"); 1530 return 0; 1531 } 1532 if (match_int(&args[0], &option)) 1533 return 0; 1534 *journal_devnum = option; 1535 break; 1536 case Opt_journal_checksum: 1537 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1538 break; 1539 case Opt_journal_async_commit: 1540 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1541 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1542 break; 1543 case Opt_noload: 1544 set_opt(sbi->s_mount_opt, NOLOAD); 1545 break; 1546 case Opt_commit: 1547 if (match_int(&args[0], &option)) 1548 return 0; 1549 if (option < 0) 1550 return 0; 1551 if (option == 0) 1552 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1553 sbi->s_commit_interval = HZ * option; 1554 break; 1555 case Opt_max_batch_time: 1556 if (match_int(&args[0], &option)) 1557 return 0; 1558 if (option < 0) 1559 return 0; 1560 if (option == 0) 1561 option = EXT4_DEF_MAX_BATCH_TIME; 1562 sbi->s_max_batch_time = option; 1563 break; 1564 case Opt_min_batch_time: 1565 if (match_int(&args[0], &option)) 1566 return 0; 1567 if (option < 0) 1568 return 0; 1569 sbi->s_min_batch_time = option; 1570 break; 1571 case Opt_data_journal: 1572 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1573 goto datacheck; 1574 case Opt_data_ordered: 1575 data_opt = EXT4_MOUNT_ORDERED_DATA; 1576 goto datacheck; 1577 case Opt_data_writeback: 1578 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1579 datacheck: 1580 if (is_remount) { 1581 if (test_opt(sb, DATA_FLAGS) != data_opt) { 1582 ext4_msg(sb, KERN_ERR, 1583 "Cannot change data mode on remount"); 1584 return 0; 1585 } 1586 } else { 1587 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 1588 sbi->s_mount_opt |= data_opt; 1589 } 1590 break; 1591 case Opt_data_err_abort: 1592 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1593 break; 1594 case Opt_data_err_ignore: 1595 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1596 break; 1597 #ifdef CONFIG_QUOTA 1598 case Opt_usrjquota: 1599 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1600 return 0; 1601 break; 1602 case Opt_grpjquota: 1603 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1604 return 0; 1605 break; 1606 case Opt_offusrjquota: 1607 if (!clear_qf_name(sb, USRQUOTA)) 1608 return 0; 1609 break; 1610 case Opt_offgrpjquota: 1611 if (!clear_qf_name(sb, GRPQUOTA)) 1612 return 0; 1613 break; 1614 1615 case Opt_jqfmt_vfsold: 1616 qfmt = QFMT_VFS_OLD; 1617 goto set_qf_format; 1618 case Opt_jqfmt_vfsv0: 1619 qfmt = QFMT_VFS_V0; 1620 goto set_qf_format; 1621 case Opt_jqfmt_vfsv1: 1622 qfmt = QFMT_VFS_V1; 1623 set_qf_format: 1624 if (sb_any_quota_loaded(sb) && 1625 sbi->s_jquota_fmt != qfmt) { 1626 ext4_msg(sb, KERN_ERR, "Cannot change " 1627 "journaled quota options when " 1628 "quota turned on"); 1629 return 0; 1630 } 1631 sbi->s_jquota_fmt = qfmt; 1632 break; 1633 case Opt_quota: 1634 case Opt_usrquota: 1635 set_opt(sbi->s_mount_opt, QUOTA); 1636 set_opt(sbi->s_mount_opt, USRQUOTA); 1637 break; 1638 case Opt_grpquota: 1639 set_opt(sbi->s_mount_opt, QUOTA); 1640 set_opt(sbi->s_mount_opt, GRPQUOTA); 1641 break; 1642 case Opt_noquota: 1643 if (sb_any_quota_loaded(sb)) { 1644 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1645 "options when quota turned on"); 1646 return 0; 1647 } 1648 clear_opt(sbi->s_mount_opt, QUOTA); 1649 clear_opt(sbi->s_mount_opt, USRQUOTA); 1650 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1651 break; 1652 #else 1653 case Opt_quota: 1654 case Opt_usrquota: 1655 case Opt_grpquota: 1656 ext4_msg(sb, KERN_ERR, 1657 "quota options not supported"); 1658 break; 1659 case Opt_usrjquota: 1660 case Opt_grpjquota: 1661 case Opt_offusrjquota: 1662 case Opt_offgrpjquota: 1663 case Opt_jqfmt_vfsold: 1664 case Opt_jqfmt_vfsv0: 1665 case Opt_jqfmt_vfsv1: 1666 ext4_msg(sb, KERN_ERR, 1667 "journaled quota options not supported"); 1668 break; 1669 case Opt_noquota: 1670 break; 1671 #endif 1672 case Opt_abort: 1673 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1674 break; 1675 case Opt_nobarrier: 1676 clear_opt(sbi->s_mount_opt, BARRIER); 1677 break; 1678 case Opt_barrier: 1679 if (args[0].from) { 1680 if (match_int(&args[0], &option)) 1681 return 0; 1682 } else 1683 option = 1; /* No argument, default to 1 */ 1684 if (option) 1685 set_opt(sbi->s_mount_opt, BARRIER); 1686 else 1687 clear_opt(sbi->s_mount_opt, BARRIER); 1688 break; 1689 case Opt_ignore: 1690 break; 1691 case Opt_resize: 1692 if (!is_remount) { 1693 ext4_msg(sb, KERN_ERR, 1694 "resize option only available " 1695 "for remount"); 1696 return 0; 1697 } 1698 if (match_int(&args[0], &option) != 0) 1699 return 0; 1700 *n_blocks_count = option; 1701 break; 1702 case Opt_nobh: 1703 ext4_msg(sb, KERN_WARNING, 1704 "Ignoring deprecated nobh option"); 1705 break; 1706 case Opt_bh: 1707 ext4_msg(sb, KERN_WARNING, 1708 "Ignoring deprecated bh option"); 1709 break; 1710 case Opt_i_version: 1711 set_opt(sbi->s_mount_opt, I_VERSION); 1712 sb->s_flags |= MS_I_VERSION; 1713 break; 1714 case Opt_nodelalloc: 1715 clear_opt(sbi->s_mount_opt, DELALLOC); 1716 break; 1717 case Opt_stripe: 1718 if (match_int(&args[0], &option)) 1719 return 0; 1720 if (option < 0) 1721 return 0; 1722 sbi->s_stripe = option; 1723 break; 1724 case Opt_delalloc: 1725 set_opt(sbi->s_mount_opt, DELALLOC); 1726 break; 1727 case Opt_block_validity: 1728 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1729 break; 1730 case Opt_noblock_validity: 1731 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1732 break; 1733 case Opt_inode_readahead_blks: 1734 if (match_int(&args[0], &option)) 1735 return 0; 1736 if (option < 0 || option > (1 << 30)) 1737 return 0; 1738 if (!is_power_of_2(option)) { 1739 ext4_msg(sb, KERN_ERR, 1740 "EXT4-fs: inode_readahead_blks" 1741 " must be a power of 2"); 1742 return 0; 1743 } 1744 sbi->s_inode_readahead_blks = option; 1745 break; 1746 case Opt_journal_ioprio: 1747 if (match_int(&args[0], &option)) 1748 return 0; 1749 if (option < 0 || option > 7) 1750 break; 1751 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1752 option); 1753 break; 1754 case Opt_noauto_da_alloc: 1755 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1756 break; 1757 case Opt_auto_da_alloc: 1758 if (args[0].from) { 1759 if (match_int(&args[0], &option)) 1760 return 0; 1761 } else 1762 option = 1; /* No argument, default to 1 */ 1763 if (option) 1764 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1765 else 1766 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1767 break; 1768 case Opt_discard: 1769 set_opt(sbi->s_mount_opt, DISCARD); 1770 break; 1771 case Opt_nodiscard: 1772 clear_opt(sbi->s_mount_opt, DISCARD); 1773 break; 1774 case Opt_dioread_nolock: 1775 set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 1776 break; 1777 case Opt_dioread_lock: 1778 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 1779 break; 1780 case Opt_init_inode_table: 1781 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE); 1782 if (args[0].from) { 1783 if (match_int(&args[0], &option)) 1784 return 0; 1785 } else 1786 option = EXT4_DEF_LI_WAIT_MULT; 1787 if (option < 0) 1788 return 0; 1789 sbi->s_li_wait_mult = option; 1790 break; 1791 case Opt_noinit_inode_table: 1792 clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE); 1793 break; 1794 default: 1795 ext4_msg(sb, KERN_ERR, 1796 "Unrecognized mount option \"%s\" " 1797 "or missing value", p); 1798 return 0; 1799 } 1800 } 1801 #ifdef CONFIG_QUOTA 1802 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1803 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1804 clear_opt(sbi->s_mount_opt, USRQUOTA); 1805 1806 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1807 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1808 1809 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1810 ext4_msg(sb, KERN_ERR, "old and new quota " 1811 "format mixing"); 1812 return 0; 1813 } 1814 1815 if (!sbi->s_jquota_fmt) { 1816 ext4_msg(sb, KERN_ERR, "journaled quota format " 1817 "not specified"); 1818 return 0; 1819 } 1820 } else { 1821 if (sbi->s_jquota_fmt) { 1822 ext4_msg(sb, KERN_ERR, "journaled quota format " 1823 "specified with no journaling " 1824 "enabled"); 1825 return 0; 1826 } 1827 } 1828 #endif 1829 return 1; 1830 } 1831 1832 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1833 int read_only) 1834 { 1835 struct ext4_sb_info *sbi = EXT4_SB(sb); 1836 int res = 0; 1837 1838 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1839 ext4_msg(sb, KERN_ERR, "revision level too high, " 1840 "forcing read-only mode"); 1841 res = MS_RDONLY; 1842 } 1843 if (read_only) 1844 return res; 1845 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1846 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1847 "running e2fsck is recommended"); 1848 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1849 ext4_msg(sb, KERN_WARNING, 1850 "warning: mounting fs with errors, " 1851 "running e2fsck is recommended"); 1852 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1853 le16_to_cpu(es->s_mnt_count) >= 1854 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1855 ext4_msg(sb, KERN_WARNING, 1856 "warning: maximal mount count reached, " 1857 "running e2fsck is recommended"); 1858 else if (le32_to_cpu(es->s_checkinterval) && 1859 (le32_to_cpu(es->s_lastcheck) + 1860 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1861 ext4_msg(sb, KERN_WARNING, 1862 "warning: checktime reached, " 1863 "running e2fsck is recommended"); 1864 if (!sbi->s_journal) 1865 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1866 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1867 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1868 le16_add_cpu(&es->s_mnt_count, 1); 1869 es->s_mtime = cpu_to_le32(get_seconds()); 1870 ext4_update_dynamic_rev(sb); 1871 if (sbi->s_journal) 1872 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1873 1874 ext4_commit_super(sb, 1); 1875 if (test_opt(sb, DEBUG)) 1876 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1877 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1878 sb->s_blocksize, 1879 sbi->s_groups_count, 1880 EXT4_BLOCKS_PER_GROUP(sb), 1881 EXT4_INODES_PER_GROUP(sb), 1882 sbi->s_mount_opt); 1883 1884 return res; 1885 } 1886 1887 static int ext4_fill_flex_info(struct super_block *sb) 1888 { 1889 struct ext4_sb_info *sbi = EXT4_SB(sb); 1890 struct ext4_group_desc *gdp = NULL; 1891 ext4_group_t flex_group_count; 1892 ext4_group_t flex_group; 1893 int groups_per_flex = 0; 1894 size_t size; 1895 int i; 1896 1897 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1898 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1899 1900 if (groups_per_flex < 2) { 1901 sbi->s_log_groups_per_flex = 0; 1902 return 1; 1903 } 1904 1905 /* We allocate both existing and potentially added groups */ 1906 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1907 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1908 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1909 size = flex_group_count * sizeof(struct flex_groups); 1910 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1911 if (sbi->s_flex_groups == NULL) { 1912 sbi->s_flex_groups = vmalloc(size); 1913 if (sbi->s_flex_groups) 1914 memset(sbi->s_flex_groups, 0, size); 1915 } 1916 if (sbi->s_flex_groups == NULL) { 1917 ext4_msg(sb, KERN_ERR, "not enough memory for " 1918 "%u flex groups", flex_group_count); 1919 goto failed; 1920 } 1921 1922 for (i = 0; i < sbi->s_groups_count; i++) { 1923 gdp = ext4_get_group_desc(sb, i, NULL); 1924 1925 flex_group = ext4_flex_group(sbi, i); 1926 atomic_add(ext4_free_inodes_count(sb, gdp), 1927 &sbi->s_flex_groups[flex_group].free_inodes); 1928 atomic_add(ext4_free_blks_count(sb, gdp), 1929 &sbi->s_flex_groups[flex_group].free_blocks); 1930 atomic_add(ext4_used_dirs_count(sb, gdp), 1931 &sbi->s_flex_groups[flex_group].used_dirs); 1932 } 1933 1934 return 1; 1935 failed: 1936 return 0; 1937 } 1938 1939 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1940 struct ext4_group_desc *gdp) 1941 { 1942 __u16 crc = 0; 1943 1944 if (sbi->s_es->s_feature_ro_compat & 1945 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1946 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1947 __le32 le_group = cpu_to_le32(block_group); 1948 1949 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1950 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1951 crc = crc16(crc, (__u8 *)gdp, offset); 1952 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1953 /* for checksum of struct ext4_group_desc do the rest...*/ 1954 if ((sbi->s_es->s_feature_incompat & 1955 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1956 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1957 crc = crc16(crc, (__u8 *)gdp + offset, 1958 le16_to_cpu(sbi->s_es->s_desc_size) - 1959 offset); 1960 } 1961 1962 return cpu_to_le16(crc); 1963 } 1964 1965 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1966 struct ext4_group_desc *gdp) 1967 { 1968 if ((sbi->s_es->s_feature_ro_compat & 1969 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1970 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1971 return 0; 1972 1973 return 1; 1974 } 1975 1976 /* Called at mount-time, super-block is locked */ 1977 static int ext4_check_descriptors(struct super_block *sb, 1978 ext4_group_t *first_not_zeroed) 1979 { 1980 struct ext4_sb_info *sbi = EXT4_SB(sb); 1981 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1982 ext4_fsblk_t last_block; 1983 ext4_fsblk_t block_bitmap; 1984 ext4_fsblk_t inode_bitmap; 1985 ext4_fsblk_t inode_table; 1986 int flexbg_flag = 0; 1987 ext4_group_t i, grp = sbi->s_groups_count; 1988 1989 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1990 flexbg_flag = 1; 1991 1992 ext4_debug("Checking group descriptors"); 1993 1994 for (i = 0; i < sbi->s_groups_count; i++) { 1995 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1996 1997 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1998 last_block = ext4_blocks_count(sbi->s_es) - 1; 1999 else 2000 last_block = first_block + 2001 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2002 2003 if ((grp == sbi->s_groups_count) && 2004 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2005 grp = i; 2006 2007 block_bitmap = ext4_block_bitmap(sb, gdp); 2008 if (block_bitmap < first_block || block_bitmap > last_block) { 2009 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2010 "Block bitmap for group %u not in group " 2011 "(block %llu)!", i, block_bitmap); 2012 return 0; 2013 } 2014 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2015 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2016 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2017 "Inode bitmap for group %u not in group " 2018 "(block %llu)!", i, inode_bitmap); 2019 return 0; 2020 } 2021 inode_table = ext4_inode_table(sb, gdp); 2022 if (inode_table < first_block || 2023 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2024 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2025 "Inode table for group %u not in group " 2026 "(block %llu)!", i, inode_table); 2027 return 0; 2028 } 2029 ext4_lock_group(sb, i); 2030 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2031 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2032 "Checksum for group %u failed (%u!=%u)", 2033 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2034 gdp)), le16_to_cpu(gdp->bg_checksum)); 2035 if (!(sb->s_flags & MS_RDONLY)) { 2036 ext4_unlock_group(sb, i); 2037 return 0; 2038 } 2039 } 2040 ext4_unlock_group(sb, i); 2041 if (!flexbg_flag) 2042 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2043 } 2044 if (NULL != first_not_zeroed) 2045 *first_not_zeroed = grp; 2046 2047 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 2048 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2049 return 1; 2050 } 2051 2052 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2053 * the superblock) which were deleted from all directories, but held open by 2054 * a process at the time of a crash. We walk the list and try to delete these 2055 * inodes at recovery time (only with a read-write filesystem). 2056 * 2057 * In order to keep the orphan inode chain consistent during traversal (in 2058 * case of crash during recovery), we link each inode into the superblock 2059 * orphan list_head and handle it the same way as an inode deletion during 2060 * normal operation (which journals the operations for us). 2061 * 2062 * We only do an iget() and an iput() on each inode, which is very safe if we 2063 * accidentally point at an in-use or already deleted inode. The worst that 2064 * can happen in this case is that we get a "bit already cleared" message from 2065 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2066 * e2fsck was run on this filesystem, and it must have already done the orphan 2067 * inode cleanup for us, so we can safely abort without any further action. 2068 */ 2069 static void ext4_orphan_cleanup(struct super_block *sb, 2070 struct ext4_super_block *es) 2071 { 2072 unsigned int s_flags = sb->s_flags; 2073 int nr_orphans = 0, nr_truncates = 0; 2074 #ifdef CONFIG_QUOTA 2075 int i; 2076 #endif 2077 if (!es->s_last_orphan) { 2078 jbd_debug(4, "no orphan inodes to clean up\n"); 2079 return; 2080 } 2081 2082 if (bdev_read_only(sb->s_bdev)) { 2083 ext4_msg(sb, KERN_ERR, "write access " 2084 "unavailable, skipping orphan cleanup"); 2085 return; 2086 } 2087 2088 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2089 if (es->s_last_orphan) 2090 jbd_debug(1, "Errors on filesystem, " 2091 "clearing orphan list.\n"); 2092 es->s_last_orphan = 0; 2093 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2094 return; 2095 } 2096 2097 if (s_flags & MS_RDONLY) { 2098 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2099 sb->s_flags &= ~MS_RDONLY; 2100 } 2101 #ifdef CONFIG_QUOTA 2102 /* Needed for iput() to work correctly and not trash data */ 2103 sb->s_flags |= MS_ACTIVE; 2104 /* Turn on quotas so that they are updated correctly */ 2105 for (i = 0; i < MAXQUOTAS; i++) { 2106 if (EXT4_SB(sb)->s_qf_names[i]) { 2107 int ret = ext4_quota_on_mount(sb, i); 2108 if (ret < 0) 2109 ext4_msg(sb, KERN_ERR, 2110 "Cannot turn on journaled " 2111 "quota: error %d", ret); 2112 } 2113 } 2114 #endif 2115 2116 while (es->s_last_orphan) { 2117 struct inode *inode; 2118 2119 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2120 if (IS_ERR(inode)) { 2121 es->s_last_orphan = 0; 2122 break; 2123 } 2124 2125 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2126 dquot_initialize(inode); 2127 if (inode->i_nlink) { 2128 ext4_msg(sb, KERN_DEBUG, 2129 "%s: truncating inode %lu to %lld bytes", 2130 __func__, inode->i_ino, inode->i_size); 2131 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2132 inode->i_ino, inode->i_size); 2133 ext4_truncate(inode); 2134 nr_truncates++; 2135 } else { 2136 ext4_msg(sb, KERN_DEBUG, 2137 "%s: deleting unreferenced inode %lu", 2138 __func__, inode->i_ino); 2139 jbd_debug(2, "deleting unreferenced inode %lu\n", 2140 inode->i_ino); 2141 nr_orphans++; 2142 } 2143 iput(inode); /* The delete magic happens here! */ 2144 } 2145 2146 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2147 2148 if (nr_orphans) 2149 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2150 PLURAL(nr_orphans)); 2151 if (nr_truncates) 2152 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2153 PLURAL(nr_truncates)); 2154 #ifdef CONFIG_QUOTA 2155 /* Turn quotas off */ 2156 for (i = 0; i < MAXQUOTAS; i++) { 2157 if (sb_dqopt(sb)->files[i]) 2158 dquot_quota_off(sb, i); 2159 } 2160 #endif 2161 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2162 } 2163 2164 /* 2165 * Maximal extent format file size. 2166 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2167 * extent format containers, within a sector_t, and within i_blocks 2168 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2169 * so that won't be a limiting factor. 2170 * 2171 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2172 */ 2173 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2174 { 2175 loff_t res; 2176 loff_t upper_limit = MAX_LFS_FILESIZE; 2177 2178 /* small i_blocks in vfs inode? */ 2179 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2180 /* 2181 * CONFIG_LBDAF is not enabled implies the inode 2182 * i_block represent total blocks in 512 bytes 2183 * 32 == size of vfs inode i_blocks * 8 2184 */ 2185 upper_limit = (1LL << 32) - 1; 2186 2187 /* total blocks in file system block size */ 2188 upper_limit >>= (blkbits - 9); 2189 upper_limit <<= blkbits; 2190 } 2191 2192 /* 32-bit extent-start container, ee_block */ 2193 res = 1LL << 32; 2194 res <<= blkbits; 2195 res -= 1; 2196 2197 /* Sanity check against vm- & vfs- imposed limits */ 2198 if (res > upper_limit) 2199 res = upper_limit; 2200 2201 return res; 2202 } 2203 2204 /* 2205 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2206 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2207 * We need to be 1 filesystem block less than the 2^48 sector limit. 2208 */ 2209 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2210 { 2211 loff_t res = EXT4_NDIR_BLOCKS; 2212 int meta_blocks; 2213 loff_t upper_limit; 2214 /* This is calculated to be the largest file size for a dense, block 2215 * mapped file such that the file's total number of 512-byte sectors, 2216 * including data and all indirect blocks, does not exceed (2^48 - 1). 2217 * 2218 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2219 * number of 512-byte sectors of the file. 2220 */ 2221 2222 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2223 /* 2224 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2225 * the inode i_block field represents total file blocks in 2226 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2227 */ 2228 upper_limit = (1LL << 32) - 1; 2229 2230 /* total blocks in file system block size */ 2231 upper_limit >>= (bits - 9); 2232 2233 } else { 2234 /* 2235 * We use 48 bit ext4_inode i_blocks 2236 * With EXT4_HUGE_FILE_FL set the i_blocks 2237 * represent total number of blocks in 2238 * file system block size 2239 */ 2240 upper_limit = (1LL << 48) - 1; 2241 2242 } 2243 2244 /* indirect blocks */ 2245 meta_blocks = 1; 2246 /* double indirect blocks */ 2247 meta_blocks += 1 + (1LL << (bits-2)); 2248 /* tripple indirect blocks */ 2249 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2250 2251 upper_limit -= meta_blocks; 2252 upper_limit <<= bits; 2253 2254 res += 1LL << (bits-2); 2255 res += 1LL << (2*(bits-2)); 2256 res += 1LL << (3*(bits-2)); 2257 res <<= bits; 2258 if (res > upper_limit) 2259 res = upper_limit; 2260 2261 if (res > MAX_LFS_FILESIZE) 2262 res = MAX_LFS_FILESIZE; 2263 2264 return res; 2265 } 2266 2267 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2268 ext4_fsblk_t logical_sb_block, int nr) 2269 { 2270 struct ext4_sb_info *sbi = EXT4_SB(sb); 2271 ext4_group_t bg, first_meta_bg; 2272 int has_super = 0; 2273 2274 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2275 2276 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2277 nr < first_meta_bg) 2278 return logical_sb_block + nr + 1; 2279 bg = sbi->s_desc_per_block * nr; 2280 if (ext4_bg_has_super(sb, bg)) 2281 has_super = 1; 2282 2283 return (has_super + ext4_group_first_block_no(sb, bg)); 2284 } 2285 2286 /** 2287 * ext4_get_stripe_size: Get the stripe size. 2288 * @sbi: In memory super block info 2289 * 2290 * If we have specified it via mount option, then 2291 * use the mount option value. If the value specified at mount time is 2292 * greater than the blocks per group use the super block value. 2293 * If the super block value is greater than blocks per group return 0. 2294 * Allocator needs it be less than blocks per group. 2295 * 2296 */ 2297 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2298 { 2299 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2300 unsigned long stripe_width = 2301 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2302 2303 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2304 return sbi->s_stripe; 2305 2306 if (stripe_width <= sbi->s_blocks_per_group) 2307 return stripe_width; 2308 2309 if (stride <= sbi->s_blocks_per_group) 2310 return stride; 2311 2312 return 0; 2313 } 2314 2315 /* sysfs supprt */ 2316 2317 struct ext4_attr { 2318 struct attribute attr; 2319 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2320 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2321 const char *, size_t); 2322 int offset; 2323 }; 2324 2325 static int parse_strtoul(const char *buf, 2326 unsigned long max, unsigned long *value) 2327 { 2328 char *endp; 2329 2330 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2331 endp = skip_spaces(endp); 2332 if (*endp || *value > max) 2333 return -EINVAL; 2334 2335 return 0; 2336 } 2337 2338 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2339 struct ext4_sb_info *sbi, 2340 char *buf) 2341 { 2342 return snprintf(buf, PAGE_SIZE, "%llu\n", 2343 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2344 } 2345 2346 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2347 struct ext4_sb_info *sbi, char *buf) 2348 { 2349 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2350 2351 if (!sb->s_bdev->bd_part) 2352 return snprintf(buf, PAGE_SIZE, "0\n"); 2353 return snprintf(buf, PAGE_SIZE, "%lu\n", 2354 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2355 sbi->s_sectors_written_start) >> 1); 2356 } 2357 2358 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2359 struct ext4_sb_info *sbi, char *buf) 2360 { 2361 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2362 2363 if (!sb->s_bdev->bd_part) 2364 return snprintf(buf, PAGE_SIZE, "0\n"); 2365 return snprintf(buf, PAGE_SIZE, "%llu\n", 2366 (unsigned long long)(sbi->s_kbytes_written + 2367 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2368 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2369 } 2370 2371 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2372 struct ext4_sb_info *sbi, 2373 const char *buf, size_t count) 2374 { 2375 unsigned long t; 2376 2377 if (parse_strtoul(buf, 0x40000000, &t)) 2378 return -EINVAL; 2379 2380 if (!is_power_of_2(t)) 2381 return -EINVAL; 2382 2383 sbi->s_inode_readahead_blks = t; 2384 return count; 2385 } 2386 2387 static ssize_t sbi_ui_show(struct ext4_attr *a, 2388 struct ext4_sb_info *sbi, char *buf) 2389 { 2390 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2391 2392 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2393 } 2394 2395 static ssize_t sbi_ui_store(struct ext4_attr *a, 2396 struct ext4_sb_info *sbi, 2397 const char *buf, size_t count) 2398 { 2399 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2400 unsigned long t; 2401 2402 if (parse_strtoul(buf, 0xffffffff, &t)) 2403 return -EINVAL; 2404 *ui = t; 2405 return count; 2406 } 2407 2408 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2409 static struct ext4_attr ext4_attr_##_name = { \ 2410 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2411 .show = _show, \ 2412 .store = _store, \ 2413 .offset = offsetof(struct ext4_sb_info, _elname), \ 2414 } 2415 #define EXT4_ATTR(name, mode, show, store) \ 2416 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2417 2418 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2419 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2420 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2421 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2422 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2423 #define ATTR_LIST(name) &ext4_attr_##name.attr 2424 2425 EXT4_RO_ATTR(delayed_allocation_blocks); 2426 EXT4_RO_ATTR(session_write_kbytes); 2427 EXT4_RO_ATTR(lifetime_write_kbytes); 2428 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2429 inode_readahead_blks_store, s_inode_readahead_blks); 2430 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2431 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2432 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2433 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2434 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2435 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2436 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2437 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2438 2439 static struct attribute *ext4_attrs[] = { 2440 ATTR_LIST(delayed_allocation_blocks), 2441 ATTR_LIST(session_write_kbytes), 2442 ATTR_LIST(lifetime_write_kbytes), 2443 ATTR_LIST(inode_readahead_blks), 2444 ATTR_LIST(inode_goal), 2445 ATTR_LIST(mb_stats), 2446 ATTR_LIST(mb_max_to_scan), 2447 ATTR_LIST(mb_min_to_scan), 2448 ATTR_LIST(mb_order2_req), 2449 ATTR_LIST(mb_stream_req), 2450 ATTR_LIST(mb_group_prealloc), 2451 ATTR_LIST(max_writeback_mb_bump), 2452 NULL, 2453 }; 2454 2455 /* Features this copy of ext4 supports */ 2456 EXT4_INFO_ATTR(lazy_itable_init); 2457 EXT4_INFO_ATTR(batched_discard); 2458 2459 static struct attribute *ext4_feat_attrs[] = { 2460 ATTR_LIST(lazy_itable_init), 2461 ATTR_LIST(batched_discard), 2462 NULL, 2463 }; 2464 2465 static ssize_t ext4_attr_show(struct kobject *kobj, 2466 struct attribute *attr, char *buf) 2467 { 2468 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2469 s_kobj); 2470 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2471 2472 return a->show ? a->show(a, sbi, buf) : 0; 2473 } 2474 2475 static ssize_t ext4_attr_store(struct kobject *kobj, 2476 struct attribute *attr, 2477 const char *buf, size_t len) 2478 { 2479 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2480 s_kobj); 2481 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2482 2483 return a->store ? a->store(a, sbi, buf, len) : 0; 2484 } 2485 2486 static void ext4_sb_release(struct kobject *kobj) 2487 { 2488 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2489 s_kobj); 2490 complete(&sbi->s_kobj_unregister); 2491 } 2492 2493 static const struct sysfs_ops ext4_attr_ops = { 2494 .show = ext4_attr_show, 2495 .store = ext4_attr_store, 2496 }; 2497 2498 static struct kobj_type ext4_ktype = { 2499 .default_attrs = ext4_attrs, 2500 .sysfs_ops = &ext4_attr_ops, 2501 .release = ext4_sb_release, 2502 }; 2503 2504 static void ext4_feat_release(struct kobject *kobj) 2505 { 2506 complete(&ext4_feat->f_kobj_unregister); 2507 } 2508 2509 static struct kobj_type ext4_feat_ktype = { 2510 .default_attrs = ext4_feat_attrs, 2511 .sysfs_ops = &ext4_attr_ops, 2512 .release = ext4_feat_release, 2513 }; 2514 2515 /* 2516 * Check whether this filesystem can be mounted based on 2517 * the features present and the RDONLY/RDWR mount requested. 2518 * Returns 1 if this filesystem can be mounted as requested, 2519 * 0 if it cannot be. 2520 */ 2521 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2522 { 2523 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2524 ext4_msg(sb, KERN_ERR, 2525 "Couldn't mount because of " 2526 "unsupported optional features (%x)", 2527 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2528 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2529 return 0; 2530 } 2531 2532 if (readonly) 2533 return 1; 2534 2535 /* Check that feature set is OK for a read-write mount */ 2536 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2537 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2538 "unsupported optional features (%x)", 2539 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2540 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2541 return 0; 2542 } 2543 /* 2544 * Large file size enabled file system can only be mounted 2545 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2546 */ 2547 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2548 if (sizeof(blkcnt_t) < sizeof(u64)) { 2549 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2550 "cannot be mounted RDWR without " 2551 "CONFIG_LBDAF"); 2552 return 0; 2553 } 2554 } 2555 return 1; 2556 } 2557 2558 /* 2559 * This function is called once a day if we have errors logged 2560 * on the file system 2561 */ 2562 static void print_daily_error_info(unsigned long arg) 2563 { 2564 struct super_block *sb = (struct super_block *) arg; 2565 struct ext4_sb_info *sbi; 2566 struct ext4_super_block *es; 2567 2568 sbi = EXT4_SB(sb); 2569 es = sbi->s_es; 2570 2571 if (es->s_error_count) 2572 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2573 le32_to_cpu(es->s_error_count)); 2574 if (es->s_first_error_time) { 2575 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2576 sb->s_id, le32_to_cpu(es->s_first_error_time), 2577 (int) sizeof(es->s_first_error_func), 2578 es->s_first_error_func, 2579 le32_to_cpu(es->s_first_error_line)); 2580 if (es->s_first_error_ino) 2581 printk(": inode %u", 2582 le32_to_cpu(es->s_first_error_ino)); 2583 if (es->s_first_error_block) 2584 printk(": block %llu", (unsigned long long) 2585 le64_to_cpu(es->s_first_error_block)); 2586 printk("\n"); 2587 } 2588 if (es->s_last_error_time) { 2589 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2590 sb->s_id, le32_to_cpu(es->s_last_error_time), 2591 (int) sizeof(es->s_last_error_func), 2592 es->s_last_error_func, 2593 le32_to_cpu(es->s_last_error_line)); 2594 if (es->s_last_error_ino) 2595 printk(": inode %u", 2596 le32_to_cpu(es->s_last_error_ino)); 2597 if (es->s_last_error_block) 2598 printk(": block %llu", (unsigned long long) 2599 le64_to_cpu(es->s_last_error_block)); 2600 printk("\n"); 2601 } 2602 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2603 } 2604 2605 static void ext4_lazyinode_timeout(unsigned long data) 2606 { 2607 struct task_struct *p = (struct task_struct *)data; 2608 wake_up_process(p); 2609 } 2610 2611 /* Find next suitable group and run ext4_init_inode_table */ 2612 static int ext4_run_li_request(struct ext4_li_request *elr) 2613 { 2614 struct ext4_group_desc *gdp = NULL; 2615 ext4_group_t group, ngroups; 2616 struct super_block *sb; 2617 unsigned long timeout = 0; 2618 int ret = 0; 2619 2620 sb = elr->lr_super; 2621 ngroups = EXT4_SB(sb)->s_groups_count; 2622 2623 for (group = elr->lr_next_group; group < ngroups; group++) { 2624 gdp = ext4_get_group_desc(sb, group, NULL); 2625 if (!gdp) { 2626 ret = 1; 2627 break; 2628 } 2629 2630 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2631 break; 2632 } 2633 2634 if (group == ngroups) 2635 ret = 1; 2636 2637 if (!ret) { 2638 timeout = jiffies; 2639 ret = ext4_init_inode_table(sb, group, 2640 elr->lr_timeout ? 0 : 1); 2641 if (elr->lr_timeout == 0) { 2642 timeout = jiffies - timeout; 2643 if (elr->lr_sbi->s_li_wait_mult) 2644 timeout *= elr->lr_sbi->s_li_wait_mult; 2645 else 2646 timeout *= 20; 2647 elr->lr_timeout = timeout; 2648 } 2649 elr->lr_next_sched = jiffies + elr->lr_timeout; 2650 elr->lr_next_group = group + 1; 2651 } 2652 2653 return ret; 2654 } 2655 2656 /* 2657 * Remove lr_request from the list_request and free the 2658 * request tructure. Should be called with li_list_mtx held 2659 */ 2660 static void ext4_remove_li_request(struct ext4_li_request *elr) 2661 { 2662 struct ext4_sb_info *sbi; 2663 2664 if (!elr) 2665 return; 2666 2667 sbi = elr->lr_sbi; 2668 2669 list_del(&elr->lr_request); 2670 sbi->s_li_request = NULL; 2671 kfree(elr); 2672 } 2673 2674 static void ext4_unregister_li_request(struct super_block *sb) 2675 { 2676 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request; 2677 2678 if (!ext4_li_info) 2679 return; 2680 2681 mutex_lock(&ext4_li_info->li_list_mtx); 2682 ext4_remove_li_request(elr); 2683 mutex_unlock(&ext4_li_info->li_list_mtx); 2684 } 2685 2686 /* 2687 * This is the function where ext4lazyinit thread lives. It walks 2688 * through the request list searching for next scheduled filesystem. 2689 * When such a fs is found, run the lazy initialization request 2690 * (ext4_rn_li_request) and keep track of the time spend in this 2691 * function. Based on that time we compute next schedule time of 2692 * the request. When walking through the list is complete, compute 2693 * next waking time and put itself into sleep. 2694 */ 2695 static int ext4_lazyinit_thread(void *arg) 2696 { 2697 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2698 struct list_head *pos, *n; 2699 struct ext4_li_request *elr; 2700 unsigned long next_wakeup; 2701 DEFINE_WAIT(wait); 2702 int ret; 2703 2704 BUG_ON(NULL == eli); 2705 2706 eli->li_timer.data = (unsigned long)current; 2707 eli->li_timer.function = ext4_lazyinode_timeout; 2708 2709 eli->li_task = current; 2710 wake_up(&eli->li_wait_task); 2711 2712 cont_thread: 2713 while (true) { 2714 next_wakeup = MAX_JIFFY_OFFSET; 2715 2716 mutex_lock(&eli->li_list_mtx); 2717 if (list_empty(&eli->li_request_list)) { 2718 mutex_unlock(&eli->li_list_mtx); 2719 goto exit_thread; 2720 } 2721 2722 list_for_each_safe(pos, n, &eli->li_request_list) { 2723 elr = list_entry(pos, struct ext4_li_request, 2724 lr_request); 2725 2726 if (time_after_eq(jiffies, elr->lr_next_sched)) 2727 ret = ext4_run_li_request(elr); 2728 2729 if (ret) { 2730 ret = 0; 2731 ext4_remove_li_request(elr); 2732 continue; 2733 } 2734 2735 if (time_before(elr->lr_next_sched, next_wakeup)) 2736 next_wakeup = elr->lr_next_sched; 2737 } 2738 mutex_unlock(&eli->li_list_mtx); 2739 2740 if (freezing(current)) 2741 refrigerator(); 2742 2743 if (time_after_eq(jiffies, next_wakeup)) { 2744 cond_resched(); 2745 continue; 2746 } 2747 2748 eli->li_timer.expires = next_wakeup; 2749 add_timer(&eli->li_timer); 2750 prepare_to_wait(&eli->li_wait_daemon, &wait, 2751 TASK_INTERRUPTIBLE); 2752 if (time_before(jiffies, next_wakeup)) 2753 schedule(); 2754 finish_wait(&eli->li_wait_daemon, &wait); 2755 } 2756 2757 exit_thread: 2758 /* 2759 * It looks like the request list is empty, but we need 2760 * to check it under the li_list_mtx lock, to prevent any 2761 * additions into it, and of course we should lock ext4_li_mtx 2762 * to atomically free the list and ext4_li_info, because at 2763 * this point another ext4 filesystem could be registering 2764 * new one. 2765 */ 2766 mutex_lock(&ext4_li_mtx); 2767 mutex_lock(&eli->li_list_mtx); 2768 if (!list_empty(&eli->li_request_list)) { 2769 mutex_unlock(&eli->li_list_mtx); 2770 mutex_unlock(&ext4_li_mtx); 2771 goto cont_thread; 2772 } 2773 mutex_unlock(&eli->li_list_mtx); 2774 del_timer_sync(&ext4_li_info->li_timer); 2775 eli->li_task = NULL; 2776 wake_up(&eli->li_wait_task); 2777 2778 kfree(ext4_li_info); 2779 ext4_li_info = NULL; 2780 mutex_unlock(&ext4_li_mtx); 2781 2782 return 0; 2783 } 2784 2785 static void ext4_clear_request_list(void) 2786 { 2787 struct list_head *pos, *n; 2788 struct ext4_li_request *elr; 2789 2790 mutex_lock(&ext4_li_info->li_list_mtx); 2791 if (list_empty(&ext4_li_info->li_request_list)) 2792 return; 2793 2794 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2795 elr = list_entry(pos, struct ext4_li_request, 2796 lr_request); 2797 ext4_remove_li_request(elr); 2798 } 2799 mutex_unlock(&ext4_li_info->li_list_mtx); 2800 } 2801 2802 static int ext4_run_lazyinit_thread(void) 2803 { 2804 struct task_struct *t; 2805 2806 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit"); 2807 if (IS_ERR(t)) { 2808 int err = PTR_ERR(t); 2809 ext4_clear_request_list(); 2810 del_timer_sync(&ext4_li_info->li_timer); 2811 kfree(ext4_li_info); 2812 ext4_li_info = NULL; 2813 printk(KERN_CRIT "EXT4: error %d creating inode table " 2814 "initialization thread\n", 2815 err); 2816 return err; 2817 } 2818 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2819 2820 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL); 2821 return 0; 2822 } 2823 2824 /* 2825 * Check whether it make sense to run itable init. thread or not. 2826 * If there is at least one uninitialized inode table, return 2827 * corresponding group number, else the loop goes through all 2828 * groups and return total number of groups. 2829 */ 2830 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2831 { 2832 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2833 struct ext4_group_desc *gdp = NULL; 2834 2835 for (group = 0; group < ngroups; group++) { 2836 gdp = ext4_get_group_desc(sb, group, NULL); 2837 if (!gdp) 2838 continue; 2839 2840 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2841 break; 2842 } 2843 2844 return group; 2845 } 2846 2847 static int ext4_li_info_new(void) 2848 { 2849 struct ext4_lazy_init *eli = NULL; 2850 2851 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2852 if (!eli) 2853 return -ENOMEM; 2854 2855 eli->li_task = NULL; 2856 INIT_LIST_HEAD(&eli->li_request_list); 2857 mutex_init(&eli->li_list_mtx); 2858 2859 init_waitqueue_head(&eli->li_wait_daemon); 2860 init_waitqueue_head(&eli->li_wait_task); 2861 init_timer(&eli->li_timer); 2862 eli->li_state |= EXT4_LAZYINIT_QUIT; 2863 2864 ext4_li_info = eli; 2865 2866 return 0; 2867 } 2868 2869 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2870 ext4_group_t start) 2871 { 2872 struct ext4_sb_info *sbi = EXT4_SB(sb); 2873 struct ext4_li_request *elr; 2874 unsigned long rnd; 2875 2876 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2877 if (!elr) 2878 return NULL; 2879 2880 elr->lr_super = sb; 2881 elr->lr_sbi = sbi; 2882 elr->lr_next_group = start; 2883 2884 /* 2885 * Randomize first schedule time of the request to 2886 * spread the inode table initialization requests 2887 * better. 2888 */ 2889 get_random_bytes(&rnd, sizeof(rnd)); 2890 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2891 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2892 2893 return elr; 2894 } 2895 2896 static int ext4_register_li_request(struct super_block *sb, 2897 ext4_group_t first_not_zeroed) 2898 { 2899 struct ext4_sb_info *sbi = EXT4_SB(sb); 2900 struct ext4_li_request *elr; 2901 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2902 int ret; 2903 2904 if (sbi->s_li_request != NULL) 2905 return 0; 2906 2907 if (first_not_zeroed == ngroups || 2908 (sb->s_flags & MS_RDONLY) || 2909 !test_opt(sb, INIT_INODE_TABLE)) { 2910 sbi->s_li_request = NULL; 2911 return 0; 2912 } 2913 2914 if (first_not_zeroed == ngroups) { 2915 sbi->s_li_request = NULL; 2916 return 0; 2917 } 2918 2919 elr = ext4_li_request_new(sb, first_not_zeroed); 2920 if (!elr) 2921 return -ENOMEM; 2922 2923 mutex_lock(&ext4_li_mtx); 2924 2925 if (NULL == ext4_li_info) { 2926 ret = ext4_li_info_new(); 2927 if (ret) 2928 goto out; 2929 } 2930 2931 mutex_lock(&ext4_li_info->li_list_mtx); 2932 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2933 mutex_unlock(&ext4_li_info->li_list_mtx); 2934 2935 sbi->s_li_request = elr; 2936 2937 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2938 ret = ext4_run_lazyinit_thread(); 2939 if (ret) 2940 goto out; 2941 } 2942 out: 2943 mutex_unlock(&ext4_li_mtx); 2944 if (ret) 2945 kfree(elr); 2946 return ret; 2947 } 2948 2949 /* 2950 * We do not need to lock anything since this is called on 2951 * module unload. 2952 */ 2953 static void ext4_destroy_lazyinit_thread(void) 2954 { 2955 /* 2956 * If thread exited earlier 2957 * there's nothing to be done. 2958 */ 2959 if (!ext4_li_info) 2960 return; 2961 2962 ext4_clear_request_list(); 2963 2964 while (ext4_li_info->li_task) { 2965 wake_up(&ext4_li_info->li_wait_daemon); 2966 wait_event(ext4_li_info->li_wait_task, 2967 ext4_li_info->li_task == NULL); 2968 } 2969 } 2970 2971 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2972 __releases(kernel_lock) 2973 __acquires(kernel_lock) 2974 { 2975 char *orig_data = kstrdup(data, GFP_KERNEL); 2976 struct buffer_head *bh; 2977 struct ext4_super_block *es = NULL; 2978 struct ext4_sb_info *sbi; 2979 ext4_fsblk_t block; 2980 ext4_fsblk_t sb_block = get_sb_block(&data); 2981 ext4_fsblk_t logical_sb_block; 2982 unsigned long offset = 0; 2983 unsigned long journal_devnum = 0; 2984 unsigned long def_mount_opts; 2985 struct inode *root; 2986 char *cp; 2987 const char *descr; 2988 int ret = -ENOMEM; 2989 int blocksize; 2990 unsigned int db_count; 2991 unsigned int i; 2992 int needs_recovery, has_huge_files; 2993 __u64 blocks_count; 2994 int err; 2995 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2996 ext4_group_t first_not_zeroed; 2997 2998 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2999 if (!sbi) 3000 goto out_free_orig; 3001 3002 sbi->s_blockgroup_lock = 3003 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3004 if (!sbi->s_blockgroup_lock) { 3005 kfree(sbi); 3006 goto out_free_orig; 3007 } 3008 sb->s_fs_info = sbi; 3009 sbi->s_mount_opt = 0; 3010 sbi->s_resuid = EXT4_DEF_RESUID; 3011 sbi->s_resgid = EXT4_DEF_RESGID; 3012 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3013 sbi->s_sb_block = sb_block; 3014 if (sb->s_bdev->bd_part) 3015 sbi->s_sectors_written_start = 3016 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3017 3018 /* Cleanup superblock name */ 3019 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3020 *cp = '!'; 3021 3022 ret = -EINVAL; 3023 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3024 if (!blocksize) { 3025 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3026 goto out_fail; 3027 } 3028 3029 /* 3030 * The ext4 superblock will not be buffer aligned for other than 1kB 3031 * block sizes. We need to calculate the offset from buffer start. 3032 */ 3033 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3034 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3035 offset = do_div(logical_sb_block, blocksize); 3036 } else { 3037 logical_sb_block = sb_block; 3038 } 3039 3040 if (!(bh = sb_bread(sb, logical_sb_block))) { 3041 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3042 goto out_fail; 3043 } 3044 /* 3045 * Note: s_es must be initialized as soon as possible because 3046 * some ext4 macro-instructions depend on its value 3047 */ 3048 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3049 sbi->s_es = es; 3050 sb->s_magic = le16_to_cpu(es->s_magic); 3051 if (sb->s_magic != EXT4_SUPER_MAGIC) 3052 goto cantfind_ext4; 3053 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3054 3055 /* Set defaults before we parse the mount options */ 3056 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3057 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE); 3058 if (def_mount_opts & EXT4_DEFM_DEBUG) 3059 set_opt(sbi->s_mount_opt, DEBUG); 3060 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) { 3061 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups", 3062 "2.6.38"); 3063 set_opt(sbi->s_mount_opt, GRPID); 3064 } 3065 if (def_mount_opts & EXT4_DEFM_UID16) 3066 set_opt(sbi->s_mount_opt, NO_UID32); 3067 #ifdef CONFIG_EXT4_FS_XATTR 3068 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 3069 set_opt(sbi->s_mount_opt, XATTR_USER); 3070 #endif 3071 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3072 if (def_mount_opts & EXT4_DEFM_ACL) 3073 set_opt(sbi->s_mount_opt, POSIX_ACL); 3074 #endif 3075 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3076 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 3077 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3078 set_opt(sbi->s_mount_opt, ORDERED_DATA); 3079 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3080 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 3081 3082 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3083 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 3084 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3085 set_opt(sbi->s_mount_opt, ERRORS_CONT); 3086 else 3087 set_opt(sbi->s_mount_opt, ERRORS_RO); 3088 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3089 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 3090 if (def_mount_opts & EXT4_DEFM_DISCARD) 3091 set_opt(sbi->s_mount_opt, DISCARD); 3092 3093 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3094 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3095 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3096 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3097 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3098 3099 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3100 set_opt(sbi->s_mount_opt, BARRIER); 3101 3102 /* 3103 * enable delayed allocation by default 3104 * Use -o nodelalloc to turn it off 3105 */ 3106 if (!IS_EXT3_SB(sb) && 3107 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3108 set_opt(sbi->s_mount_opt, DELALLOC); 3109 3110 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3111 &journal_devnum, &journal_ioprio, NULL, 0)) { 3112 ext4_msg(sb, KERN_WARNING, 3113 "failed to parse options in superblock: %s", 3114 sbi->s_es->s_mount_opts); 3115 } 3116 if (!parse_options((char *) data, sb, &journal_devnum, 3117 &journal_ioprio, NULL, 0)) 3118 goto failed_mount; 3119 3120 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3121 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3122 3123 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3124 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3125 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3126 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3127 ext4_msg(sb, KERN_WARNING, 3128 "feature flags set on rev 0 fs, " 3129 "running e2fsck is recommended"); 3130 3131 /* 3132 * Check feature flags regardless of the revision level, since we 3133 * previously didn't change the revision level when setting the flags, 3134 * so there is a chance incompat flags are set on a rev 0 filesystem. 3135 */ 3136 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3137 goto failed_mount; 3138 3139 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3140 3141 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3142 blocksize > EXT4_MAX_BLOCK_SIZE) { 3143 ext4_msg(sb, KERN_ERR, 3144 "Unsupported filesystem blocksize %d", blocksize); 3145 goto failed_mount; 3146 } 3147 3148 if (sb->s_blocksize != blocksize) { 3149 /* Validate the filesystem blocksize */ 3150 if (!sb_set_blocksize(sb, blocksize)) { 3151 ext4_msg(sb, KERN_ERR, "bad block size %d", 3152 blocksize); 3153 goto failed_mount; 3154 } 3155 3156 brelse(bh); 3157 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3158 offset = do_div(logical_sb_block, blocksize); 3159 bh = sb_bread(sb, logical_sb_block); 3160 if (!bh) { 3161 ext4_msg(sb, KERN_ERR, 3162 "Can't read superblock on 2nd try"); 3163 goto failed_mount; 3164 } 3165 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3166 sbi->s_es = es; 3167 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3168 ext4_msg(sb, KERN_ERR, 3169 "Magic mismatch, very weird!"); 3170 goto failed_mount; 3171 } 3172 } 3173 3174 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3175 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3176 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3177 has_huge_files); 3178 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3179 3180 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3181 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3182 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3183 } else { 3184 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3185 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3186 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3187 (!is_power_of_2(sbi->s_inode_size)) || 3188 (sbi->s_inode_size > blocksize)) { 3189 ext4_msg(sb, KERN_ERR, 3190 "unsupported inode size: %d", 3191 sbi->s_inode_size); 3192 goto failed_mount; 3193 } 3194 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3195 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3196 } 3197 3198 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3199 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3200 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3201 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3202 !is_power_of_2(sbi->s_desc_size)) { 3203 ext4_msg(sb, KERN_ERR, 3204 "unsupported descriptor size %lu", 3205 sbi->s_desc_size); 3206 goto failed_mount; 3207 } 3208 } else 3209 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3210 3211 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3212 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3213 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3214 goto cantfind_ext4; 3215 3216 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3217 if (sbi->s_inodes_per_block == 0) 3218 goto cantfind_ext4; 3219 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3220 sbi->s_inodes_per_block; 3221 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3222 sbi->s_sbh = bh; 3223 sbi->s_mount_state = le16_to_cpu(es->s_state); 3224 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3225 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3226 3227 for (i = 0; i < 4; i++) 3228 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3229 sbi->s_def_hash_version = es->s_def_hash_version; 3230 i = le32_to_cpu(es->s_flags); 3231 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3232 sbi->s_hash_unsigned = 3; 3233 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3234 #ifdef __CHAR_UNSIGNED__ 3235 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3236 sbi->s_hash_unsigned = 3; 3237 #else 3238 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3239 #endif 3240 sb->s_dirt = 1; 3241 } 3242 3243 if (sbi->s_blocks_per_group > blocksize * 8) { 3244 ext4_msg(sb, KERN_ERR, 3245 "#blocks per group too big: %lu", 3246 sbi->s_blocks_per_group); 3247 goto failed_mount; 3248 } 3249 if (sbi->s_inodes_per_group > blocksize * 8) { 3250 ext4_msg(sb, KERN_ERR, 3251 "#inodes per group too big: %lu", 3252 sbi->s_inodes_per_group); 3253 goto failed_mount; 3254 } 3255 3256 /* 3257 * Test whether we have more sectors than will fit in sector_t, 3258 * and whether the max offset is addressable by the page cache. 3259 */ 3260 ret = generic_check_addressable(sb->s_blocksize_bits, 3261 ext4_blocks_count(es)); 3262 if (ret) { 3263 ext4_msg(sb, KERN_ERR, "filesystem" 3264 " too large to mount safely on this system"); 3265 if (sizeof(sector_t) < 8) 3266 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3267 goto failed_mount; 3268 } 3269 3270 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3271 goto cantfind_ext4; 3272 3273 /* check blocks count against device size */ 3274 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3275 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3276 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3277 "exceeds size of device (%llu blocks)", 3278 ext4_blocks_count(es), blocks_count); 3279 goto failed_mount; 3280 } 3281 3282 /* 3283 * It makes no sense for the first data block to be beyond the end 3284 * of the filesystem. 3285 */ 3286 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3287 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 3288 "block %u is beyond end of filesystem (%llu)", 3289 le32_to_cpu(es->s_first_data_block), 3290 ext4_blocks_count(es)); 3291 goto failed_mount; 3292 } 3293 blocks_count = (ext4_blocks_count(es) - 3294 le32_to_cpu(es->s_first_data_block) + 3295 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3296 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3297 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3298 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3299 "(block count %llu, first data block %u, " 3300 "blocks per group %lu)", sbi->s_groups_count, 3301 ext4_blocks_count(es), 3302 le32_to_cpu(es->s_first_data_block), 3303 EXT4_BLOCKS_PER_GROUP(sb)); 3304 goto failed_mount; 3305 } 3306 sbi->s_groups_count = blocks_count; 3307 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3308 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3309 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3310 EXT4_DESC_PER_BLOCK(sb); 3311 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 3312 GFP_KERNEL); 3313 if (sbi->s_group_desc == NULL) { 3314 ext4_msg(sb, KERN_ERR, "not enough memory"); 3315 goto failed_mount; 3316 } 3317 3318 #ifdef CONFIG_PROC_FS 3319 if (ext4_proc_root) 3320 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3321 #endif 3322 3323 bgl_lock_init(sbi->s_blockgroup_lock); 3324 3325 for (i = 0; i < db_count; i++) { 3326 block = descriptor_loc(sb, logical_sb_block, i); 3327 sbi->s_group_desc[i] = sb_bread(sb, block); 3328 if (!sbi->s_group_desc[i]) { 3329 ext4_msg(sb, KERN_ERR, 3330 "can't read group descriptor %d", i); 3331 db_count = i; 3332 goto failed_mount2; 3333 } 3334 } 3335 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3336 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3337 goto failed_mount2; 3338 } 3339 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3340 if (!ext4_fill_flex_info(sb)) { 3341 ext4_msg(sb, KERN_ERR, 3342 "unable to initialize " 3343 "flex_bg meta info!"); 3344 goto failed_mount2; 3345 } 3346 3347 sbi->s_gdb_count = db_count; 3348 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3349 spin_lock_init(&sbi->s_next_gen_lock); 3350 3351 sbi->s_stripe = ext4_get_stripe_size(sbi); 3352 sbi->s_max_writeback_mb_bump = 128; 3353 3354 /* 3355 * set up enough so that it can read an inode 3356 */ 3357 if (!test_opt(sb, NOLOAD) && 3358 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3359 sb->s_op = &ext4_sops; 3360 else 3361 sb->s_op = &ext4_nojournal_sops; 3362 sb->s_export_op = &ext4_export_ops; 3363 sb->s_xattr = ext4_xattr_handlers; 3364 #ifdef CONFIG_QUOTA 3365 sb->s_qcop = &ext4_qctl_operations; 3366 sb->dq_op = &ext4_quota_operations; 3367 #endif 3368 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3369 mutex_init(&sbi->s_orphan_lock); 3370 mutex_init(&sbi->s_resize_lock); 3371 3372 sb->s_root = NULL; 3373 3374 needs_recovery = (es->s_last_orphan != 0 || 3375 EXT4_HAS_INCOMPAT_FEATURE(sb, 3376 EXT4_FEATURE_INCOMPAT_RECOVER)); 3377 3378 /* 3379 * The first inode we look at is the journal inode. Don't try 3380 * root first: it may be modified in the journal! 3381 */ 3382 if (!test_opt(sb, NOLOAD) && 3383 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3384 if (ext4_load_journal(sb, es, journal_devnum)) 3385 goto failed_mount3; 3386 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3387 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3388 ext4_msg(sb, KERN_ERR, "required journal recovery " 3389 "suppressed and not mounted read-only"); 3390 goto failed_mount_wq; 3391 } else { 3392 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 3393 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 3394 sbi->s_journal = NULL; 3395 needs_recovery = 0; 3396 goto no_journal; 3397 } 3398 3399 if (ext4_blocks_count(es) > 0xffffffffULL && 3400 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3401 JBD2_FEATURE_INCOMPAT_64BIT)) { 3402 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3403 goto failed_mount_wq; 3404 } 3405 3406 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3407 jbd2_journal_set_features(sbi->s_journal, 3408 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3409 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3410 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3411 jbd2_journal_set_features(sbi->s_journal, 3412 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3413 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3414 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3415 } else { 3416 jbd2_journal_clear_features(sbi->s_journal, 3417 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3418 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3419 } 3420 3421 /* We have now updated the journal if required, so we can 3422 * validate the data journaling mode. */ 3423 switch (test_opt(sb, DATA_FLAGS)) { 3424 case 0: 3425 /* No mode set, assume a default based on the journal 3426 * capabilities: ORDERED_DATA if the journal can 3427 * cope, else JOURNAL_DATA 3428 */ 3429 if (jbd2_journal_check_available_features 3430 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3431 set_opt(sbi->s_mount_opt, ORDERED_DATA); 3432 else 3433 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 3434 break; 3435 3436 case EXT4_MOUNT_ORDERED_DATA: 3437 case EXT4_MOUNT_WRITEBACK_DATA: 3438 if (!jbd2_journal_check_available_features 3439 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3440 ext4_msg(sb, KERN_ERR, "Journal does not support " 3441 "requested data journaling mode"); 3442 goto failed_mount_wq; 3443 } 3444 default: 3445 break; 3446 } 3447 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3448 3449 no_journal: 3450 err = percpu_counter_init(&sbi->s_freeblocks_counter, 3451 ext4_count_free_blocks(sb)); 3452 if (!err) 3453 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3454 ext4_count_free_inodes(sb)); 3455 if (!err) 3456 err = percpu_counter_init(&sbi->s_dirs_counter, 3457 ext4_count_dirs(sb)); 3458 if (!err) 3459 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 3460 if (err) { 3461 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3462 goto failed_mount_wq; 3463 } 3464 3465 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 3466 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3467 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3468 goto failed_mount_wq; 3469 } 3470 3471 /* 3472 * The jbd2_journal_load will have done any necessary log recovery, 3473 * so we can safely mount the rest of the filesystem now. 3474 */ 3475 3476 root = ext4_iget(sb, EXT4_ROOT_INO); 3477 if (IS_ERR(root)) { 3478 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3479 ret = PTR_ERR(root); 3480 goto failed_mount4; 3481 } 3482 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3483 iput(root); 3484 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3485 goto failed_mount4; 3486 } 3487 sb->s_root = d_alloc_root(root); 3488 if (!sb->s_root) { 3489 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3490 iput(root); 3491 ret = -ENOMEM; 3492 goto failed_mount4; 3493 } 3494 3495 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3496 3497 /* determine the minimum size of new large inodes, if present */ 3498 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3499 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3500 EXT4_GOOD_OLD_INODE_SIZE; 3501 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3502 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3503 if (sbi->s_want_extra_isize < 3504 le16_to_cpu(es->s_want_extra_isize)) 3505 sbi->s_want_extra_isize = 3506 le16_to_cpu(es->s_want_extra_isize); 3507 if (sbi->s_want_extra_isize < 3508 le16_to_cpu(es->s_min_extra_isize)) 3509 sbi->s_want_extra_isize = 3510 le16_to_cpu(es->s_min_extra_isize); 3511 } 3512 } 3513 /* Check if enough inode space is available */ 3514 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3515 sbi->s_inode_size) { 3516 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3517 EXT4_GOOD_OLD_INODE_SIZE; 3518 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3519 "available"); 3520 } 3521 3522 if (test_opt(sb, DELALLOC) && 3523 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 3524 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 3525 "requested data journaling mode"); 3526 clear_opt(sbi->s_mount_opt, DELALLOC); 3527 } 3528 if (test_opt(sb, DIOREAD_NOLOCK)) { 3529 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3530 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3531 "option - requested data journaling mode"); 3532 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 3533 } 3534 if (sb->s_blocksize < PAGE_SIZE) { 3535 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3536 "option - block size is too small"); 3537 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 3538 } 3539 } 3540 3541 err = ext4_setup_system_zone(sb); 3542 if (err) { 3543 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3544 "zone (%d)", err); 3545 goto failed_mount4; 3546 } 3547 3548 ext4_ext_init(sb); 3549 err = ext4_mb_init(sb, needs_recovery); 3550 if (err) { 3551 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3552 err); 3553 goto failed_mount4; 3554 } 3555 3556 err = ext4_register_li_request(sb, first_not_zeroed); 3557 if (err) 3558 goto failed_mount4; 3559 3560 sbi->s_kobj.kset = ext4_kset; 3561 init_completion(&sbi->s_kobj_unregister); 3562 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3563 "%s", sb->s_id); 3564 if (err) { 3565 ext4_mb_release(sb); 3566 ext4_ext_release(sb); 3567 goto failed_mount4; 3568 }; 3569 3570 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3571 ext4_orphan_cleanup(sb, es); 3572 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3573 if (needs_recovery) { 3574 ext4_msg(sb, KERN_INFO, "recovery complete"); 3575 ext4_mark_recovery_complete(sb, es); 3576 } 3577 if (EXT4_SB(sb)->s_journal) { 3578 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3579 descr = " journalled data mode"; 3580 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3581 descr = " ordered data mode"; 3582 else 3583 descr = " writeback data mode"; 3584 } else 3585 descr = "out journal"; 3586 3587 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3588 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3589 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3590 3591 init_timer(&sbi->s_err_report); 3592 sbi->s_err_report.function = print_daily_error_info; 3593 sbi->s_err_report.data = (unsigned long) sb; 3594 if (es->s_error_count) 3595 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3596 3597 kfree(orig_data); 3598 return 0; 3599 3600 cantfind_ext4: 3601 if (!silent) 3602 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3603 goto failed_mount; 3604 3605 failed_mount4: 3606 ext4_msg(sb, KERN_ERR, "mount failed"); 3607 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3608 failed_mount_wq: 3609 ext4_release_system_zone(sb); 3610 if (sbi->s_journal) { 3611 jbd2_journal_destroy(sbi->s_journal); 3612 sbi->s_journal = NULL; 3613 } 3614 percpu_counter_destroy(&sbi->s_freeblocks_counter); 3615 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3616 percpu_counter_destroy(&sbi->s_dirs_counter); 3617 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 3618 failed_mount3: 3619 if (sbi->s_flex_groups) { 3620 if (is_vmalloc_addr(sbi->s_flex_groups)) 3621 vfree(sbi->s_flex_groups); 3622 else 3623 kfree(sbi->s_flex_groups); 3624 } 3625 failed_mount2: 3626 for (i = 0; i < db_count; i++) 3627 brelse(sbi->s_group_desc[i]); 3628 kfree(sbi->s_group_desc); 3629 failed_mount: 3630 if (sbi->s_proc) { 3631 remove_proc_entry(sb->s_id, ext4_proc_root); 3632 } 3633 #ifdef CONFIG_QUOTA 3634 for (i = 0; i < MAXQUOTAS; i++) 3635 kfree(sbi->s_qf_names[i]); 3636 #endif 3637 ext4_blkdev_remove(sbi); 3638 brelse(bh); 3639 out_fail: 3640 sb->s_fs_info = NULL; 3641 kfree(sbi->s_blockgroup_lock); 3642 kfree(sbi); 3643 out_free_orig: 3644 kfree(orig_data); 3645 return ret; 3646 } 3647 3648 /* 3649 * Setup any per-fs journal parameters now. We'll do this both on 3650 * initial mount, once the journal has been initialised but before we've 3651 * done any recovery; and again on any subsequent remount. 3652 */ 3653 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3654 { 3655 struct ext4_sb_info *sbi = EXT4_SB(sb); 3656 3657 journal->j_commit_interval = sbi->s_commit_interval; 3658 journal->j_min_batch_time = sbi->s_min_batch_time; 3659 journal->j_max_batch_time = sbi->s_max_batch_time; 3660 3661 write_lock(&journal->j_state_lock); 3662 if (test_opt(sb, BARRIER)) 3663 journal->j_flags |= JBD2_BARRIER; 3664 else 3665 journal->j_flags &= ~JBD2_BARRIER; 3666 if (test_opt(sb, DATA_ERR_ABORT)) 3667 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3668 else 3669 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3670 write_unlock(&journal->j_state_lock); 3671 } 3672 3673 static journal_t *ext4_get_journal(struct super_block *sb, 3674 unsigned int journal_inum) 3675 { 3676 struct inode *journal_inode; 3677 journal_t *journal; 3678 3679 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3680 3681 /* First, test for the existence of a valid inode on disk. Bad 3682 * things happen if we iget() an unused inode, as the subsequent 3683 * iput() will try to delete it. */ 3684 3685 journal_inode = ext4_iget(sb, journal_inum); 3686 if (IS_ERR(journal_inode)) { 3687 ext4_msg(sb, KERN_ERR, "no journal found"); 3688 return NULL; 3689 } 3690 if (!journal_inode->i_nlink) { 3691 make_bad_inode(journal_inode); 3692 iput(journal_inode); 3693 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3694 return NULL; 3695 } 3696 3697 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3698 journal_inode, journal_inode->i_size); 3699 if (!S_ISREG(journal_inode->i_mode)) { 3700 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3701 iput(journal_inode); 3702 return NULL; 3703 } 3704 3705 journal = jbd2_journal_init_inode(journal_inode); 3706 if (!journal) { 3707 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3708 iput(journal_inode); 3709 return NULL; 3710 } 3711 journal->j_private = sb; 3712 ext4_init_journal_params(sb, journal); 3713 return journal; 3714 } 3715 3716 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3717 dev_t j_dev) 3718 { 3719 struct buffer_head *bh; 3720 journal_t *journal; 3721 ext4_fsblk_t start; 3722 ext4_fsblk_t len; 3723 int hblock, blocksize; 3724 ext4_fsblk_t sb_block; 3725 unsigned long offset; 3726 struct ext4_super_block *es; 3727 struct block_device *bdev; 3728 3729 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3730 3731 bdev = ext4_blkdev_get(j_dev, sb); 3732 if (bdev == NULL) 3733 return NULL; 3734 3735 if (bd_claim(bdev, sb)) { 3736 ext4_msg(sb, KERN_ERR, 3737 "failed to claim external journal device"); 3738 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3739 return NULL; 3740 } 3741 3742 blocksize = sb->s_blocksize; 3743 hblock = bdev_logical_block_size(bdev); 3744 if (blocksize < hblock) { 3745 ext4_msg(sb, KERN_ERR, 3746 "blocksize too small for journal device"); 3747 goto out_bdev; 3748 } 3749 3750 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3751 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3752 set_blocksize(bdev, blocksize); 3753 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3754 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3755 "external journal"); 3756 goto out_bdev; 3757 } 3758 3759 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3760 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3761 !(le32_to_cpu(es->s_feature_incompat) & 3762 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3763 ext4_msg(sb, KERN_ERR, "external journal has " 3764 "bad superblock"); 3765 brelse(bh); 3766 goto out_bdev; 3767 } 3768 3769 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3770 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3771 brelse(bh); 3772 goto out_bdev; 3773 } 3774 3775 len = ext4_blocks_count(es); 3776 start = sb_block + 1; 3777 brelse(bh); /* we're done with the superblock */ 3778 3779 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3780 start, len, blocksize); 3781 if (!journal) { 3782 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3783 goto out_bdev; 3784 } 3785 journal->j_private = sb; 3786 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3787 wait_on_buffer(journal->j_sb_buffer); 3788 if (!buffer_uptodate(journal->j_sb_buffer)) { 3789 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3790 goto out_journal; 3791 } 3792 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3793 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3794 "user (unsupported) - %d", 3795 be32_to_cpu(journal->j_superblock->s_nr_users)); 3796 goto out_journal; 3797 } 3798 EXT4_SB(sb)->journal_bdev = bdev; 3799 ext4_init_journal_params(sb, journal); 3800 return journal; 3801 3802 out_journal: 3803 jbd2_journal_destroy(journal); 3804 out_bdev: 3805 ext4_blkdev_put(bdev); 3806 return NULL; 3807 } 3808 3809 static int ext4_load_journal(struct super_block *sb, 3810 struct ext4_super_block *es, 3811 unsigned long journal_devnum) 3812 { 3813 journal_t *journal; 3814 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3815 dev_t journal_dev; 3816 int err = 0; 3817 int really_read_only; 3818 3819 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3820 3821 if (journal_devnum && 3822 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3823 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3824 "numbers have changed"); 3825 journal_dev = new_decode_dev(journal_devnum); 3826 } else 3827 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3828 3829 really_read_only = bdev_read_only(sb->s_bdev); 3830 3831 /* 3832 * Are we loading a blank journal or performing recovery after a 3833 * crash? For recovery, we need to check in advance whether we 3834 * can get read-write access to the device. 3835 */ 3836 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3837 if (sb->s_flags & MS_RDONLY) { 3838 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3839 "required on readonly filesystem"); 3840 if (really_read_only) { 3841 ext4_msg(sb, KERN_ERR, "write access " 3842 "unavailable, cannot proceed"); 3843 return -EROFS; 3844 } 3845 ext4_msg(sb, KERN_INFO, "write access will " 3846 "be enabled during recovery"); 3847 } 3848 } 3849 3850 if (journal_inum && journal_dev) { 3851 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3852 "and inode journals!"); 3853 return -EINVAL; 3854 } 3855 3856 if (journal_inum) { 3857 if (!(journal = ext4_get_journal(sb, journal_inum))) 3858 return -EINVAL; 3859 } else { 3860 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3861 return -EINVAL; 3862 } 3863 3864 if (!(journal->j_flags & JBD2_BARRIER)) 3865 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3866 3867 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3868 err = jbd2_journal_update_format(journal); 3869 if (err) { 3870 ext4_msg(sb, KERN_ERR, "error updating journal"); 3871 jbd2_journal_destroy(journal); 3872 return err; 3873 } 3874 } 3875 3876 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3877 err = jbd2_journal_wipe(journal, !really_read_only); 3878 if (!err) { 3879 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 3880 if (save) 3881 memcpy(save, ((char *) es) + 3882 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 3883 err = jbd2_journal_load(journal); 3884 if (save) 3885 memcpy(((char *) es) + EXT4_S_ERR_START, 3886 save, EXT4_S_ERR_LEN); 3887 kfree(save); 3888 } 3889 3890 if (err) { 3891 ext4_msg(sb, KERN_ERR, "error loading journal"); 3892 jbd2_journal_destroy(journal); 3893 return err; 3894 } 3895 3896 EXT4_SB(sb)->s_journal = journal; 3897 ext4_clear_journal_err(sb, es); 3898 3899 if (!really_read_only && journal_devnum && 3900 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3901 es->s_journal_dev = cpu_to_le32(journal_devnum); 3902 3903 /* Make sure we flush the recovery flag to disk. */ 3904 ext4_commit_super(sb, 1); 3905 } 3906 3907 return 0; 3908 } 3909 3910 static int ext4_commit_super(struct super_block *sb, int sync) 3911 { 3912 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3913 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3914 int error = 0; 3915 3916 if (!sbh) 3917 return error; 3918 if (buffer_write_io_error(sbh)) { 3919 /* 3920 * Oh, dear. A previous attempt to write the 3921 * superblock failed. This could happen because the 3922 * USB device was yanked out. Or it could happen to 3923 * be a transient write error and maybe the block will 3924 * be remapped. Nothing we can do but to retry the 3925 * write and hope for the best. 3926 */ 3927 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3928 "superblock detected"); 3929 clear_buffer_write_io_error(sbh); 3930 set_buffer_uptodate(sbh); 3931 } 3932 /* 3933 * If the file system is mounted read-only, don't update the 3934 * superblock write time. This avoids updating the superblock 3935 * write time when we are mounting the root file system 3936 * read/only but we need to replay the journal; at that point, 3937 * for people who are east of GMT and who make their clock 3938 * tick in localtime for Windows bug-for-bug compatibility, 3939 * the clock is set in the future, and this will cause e2fsck 3940 * to complain and force a full file system check. 3941 */ 3942 if (!(sb->s_flags & MS_RDONLY)) 3943 es->s_wtime = cpu_to_le32(get_seconds()); 3944 if (sb->s_bdev->bd_part) 3945 es->s_kbytes_written = 3946 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3947 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3948 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3949 else 3950 es->s_kbytes_written = 3951 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 3952 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeblocks_counter)) 3953 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3954 &EXT4_SB(sb)->s_freeblocks_counter)); 3955 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 3956 es->s_free_inodes_count = 3957 cpu_to_le32(percpu_counter_sum_positive( 3958 &EXT4_SB(sb)->s_freeinodes_counter)); 3959 sb->s_dirt = 0; 3960 BUFFER_TRACE(sbh, "marking dirty"); 3961 mark_buffer_dirty(sbh); 3962 if (sync) { 3963 error = sync_dirty_buffer(sbh); 3964 if (error) 3965 return error; 3966 3967 error = buffer_write_io_error(sbh); 3968 if (error) { 3969 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3970 "superblock"); 3971 clear_buffer_write_io_error(sbh); 3972 set_buffer_uptodate(sbh); 3973 } 3974 } 3975 return error; 3976 } 3977 3978 /* 3979 * Have we just finished recovery? If so, and if we are mounting (or 3980 * remounting) the filesystem readonly, then we will end up with a 3981 * consistent fs on disk. Record that fact. 3982 */ 3983 static void ext4_mark_recovery_complete(struct super_block *sb, 3984 struct ext4_super_block *es) 3985 { 3986 journal_t *journal = EXT4_SB(sb)->s_journal; 3987 3988 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3989 BUG_ON(journal != NULL); 3990 return; 3991 } 3992 jbd2_journal_lock_updates(journal); 3993 if (jbd2_journal_flush(journal) < 0) 3994 goto out; 3995 3996 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3997 sb->s_flags & MS_RDONLY) { 3998 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3999 ext4_commit_super(sb, 1); 4000 } 4001 4002 out: 4003 jbd2_journal_unlock_updates(journal); 4004 } 4005 4006 /* 4007 * If we are mounting (or read-write remounting) a filesystem whose journal 4008 * has recorded an error from a previous lifetime, move that error to the 4009 * main filesystem now. 4010 */ 4011 static void ext4_clear_journal_err(struct super_block *sb, 4012 struct ext4_super_block *es) 4013 { 4014 journal_t *journal; 4015 int j_errno; 4016 const char *errstr; 4017 4018 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4019 4020 journal = EXT4_SB(sb)->s_journal; 4021 4022 /* 4023 * Now check for any error status which may have been recorded in the 4024 * journal by a prior ext4_error() or ext4_abort() 4025 */ 4026 4027 j_errno = jbd2_journal_errno(journal); 4028 if (j_errno) { 4029 char nbuf[16]; 4030 4031 errstr = ext4_decode_error(sb, j_errno, nbuf); 4032 ext4_warning(sb, "Filesystem error recorded " 4033 "from previous mount: %s", errstr); 4034 ext4_warning(sb, "Marking fs in need of filesystem check."); 4035 4036 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4037 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4038 ext4_commit_super(sb, 1); 4039 4040 jbd2_journal_clear_err(journal); 4041 } 4042 } 4043 4044 /* 4045 * Force the running and committing transactions to commit, 4046 * and wait on the commit. 4047 */ 4048 int ext4_force_commit(struct super_block *sb) 4049 { 4050 journal_t *journal; 4051 int ret = 0; 4052 4053 if (sb->s_flags & MS_RDONLY) 4054 return 0; 4055 4056 journal = EXT4_SB(sb)->s_journal; 4057 if (journal) { 4058 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4059 ret = ext4_journal_force_commit(journal); 4060 } 4061 4062 return ret; 4063 } 4064 4065 static void ext4_write_super(struct super_block *sb) 4066 { 4067 lock_super(sb); 4068 ext4_commit_super(sb, 1); 4069 unlock_super(sb); 4070 } 4071 4072 static int ext4_sync_fs(struct super_block *sb, int wait) 4073 { 4074 int ret = 0; 4075 tid_t target; 4076 struct ext4_sb_info *sbi = EXT4_SB(sb); 4077 4078 trace_ext4_sync_fs(sb, wait); 4079 flush_workqueue(sbi->dio_unwritten_wq); 4080 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4081 if (wait) 4082 jbd2_log_wait_commit(sbi->s_journal, target); 4083 } 4084 return ret; 4085 } 4086 4087 /* 4088 * LVM calls this function before a (read-only) snapshot is created. This 4089 * gives us a chance to flush the journal completely and mark the fs clean. 4090 */ 4091 static int ext4_freeze(struct super_block *sb) 4092 { 4093 int error = 0; 4094 journal_t *journal; 4095 4096 if (sb->s_flags & MS_RDONLY) 4097 return 0; 4098 4099 journal = EXT4_SB(sb)->s_journal; 4100 4101 /* Now we set up the journal barrier. */ 4102 jbd2_journal_lock_updates(journal); 4103 4104 /* 4105 * Don't clear the needs_recovery flag if we failed to flush 4106 * the journal. 4107 */ 4108 error = jbd2_journal_flush(journal); 4109 if (error < 0) 4110 goto out; 4111 4112 /* Journal blocked and flushed, clear needs_recovery flag. */ 4113 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4114 error = ext4_commit_super(sb, 1); 4115 out: 4116 /* we rely on s_frozen to stop further updates */ 4117 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4118 return error; 4119 } 4120 4121 /* 4122 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4123 * flag here, even though the filesystem is not technically dirty yet. 4124 */ 4125 static int ext4_unfreeze(struct super_block *sb) 4126 { 4127 if (sb->s_flags & MS_RDONLY) 4128 return 0; 4129 4130 lock_super(sb); 4131 /* Reset the needs_recovery flag before the fs is unlocked. */ 4132 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4133 ext4_commit_super(sb, 1); 4134 unlock_super(sb); 4135 return 0; 4136 } 4137 4138 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4139 { 4140 struct ext4_super_block *es; 4141 struct ext4_sb_info *sbi = EXT4_SB(sb); 4142 ext4_fsblk_t n_blocks_count = 0; 4143 unsigned long old_sb_flags; 4144 struct ext4_mount_options old_opts; 4145 int enable_quota = 0; 4146 ext4_group_t g; 4147 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4148 int err; 4149 #ifdef CONFIG_QUOTA 4150 int i; 4151 #endif 4152 char *orig_data = kstrdup(data, GFP_KERNEL); 4153 4154 /* Store the original options */ 4155 lock_super(sb); 4156 old_sb_flags = sb->s_flags; 4157 old_opts.s_mount_opt = sbi->s_mount_opt; 4158 old_opts.s_resuid = sbi->s_resuid; 4159 old_opts.s_resgid = sbi->s_resgid; 4160 old_opts.s_commit_interval = sbi->s_commit_interval; 4161 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4162 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4163 #ifdef CONFIG_QUOTA 4164 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4165 for (i = 0; i < MAXQUOTAS; i++) 4166 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4167 #endif 4168 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4169 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4170 4171 /* 4172 * Allow the "check" option to be passed as a remount option. 4173 */ 4174 if (!parse_options(data, sb, NULL, &journal_ioprio, 4175 &n_blocks_count, 1)) { 4176 err = -EINVAL; 4177 goto restore_opts; 4178 } 4179 4180 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4181 ext4_abort(sb, "Abort forced by user"); 4182 4183 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4184 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4185 4186 es = sbi->s_es; 4187 4188 if (sbi->s_journal) { 4189 ext4_init_journal_params(sb, sbi->s_journal); 4190 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4191 } 4192 4193 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 4194 n_blocks_count > ext4_blocks_count(es)) { 4195 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4196 err = -EROFS; 4197 goto restore_opts; 4198 } 4199 4200 if (*flags & MS_RDONLY) { 4201 err = dquot_suspend(sb, -1); 4202 if (err < 0) 4203 goto restore_opts; 4204 4205 /* 4206 * First of all, the unconditional stuff we have to do 4207 * to disable replay of the journal when we next remount 4208 */ 4209 sb->s_flags |= MS_RDONLY; 4210 4211 /* 4212 * OK, test if we are remounting a valid rw partition 4213 * readonly, and if so set the rdonly flag and then 4214 * mark the partition as valid again. 4215 */ 4216 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4217 (sbi->s_mount_state & EXT4_VALID_FS)) 4218 es->s_state = cpu_to_le16(sbi->s_mount_state); 4219 4220 if (sbi->s_journal) 4221 ext4_mark_recovery_complete(sb, es); 4222 } else { 4223 /* Make sure we can mount this feature set readwrite */ 4224 if (!ext4_feature_set_ok(sb, 0)) { 4225 err = -EROFS; 4226 goto restore_opts; 4227 } 4228 /* 4229 * Make sure the group descriptor checksums 4230 * are sane. If they aren't, refuse to remount r/w. 4231 */ 4232 for (g = 0; g < sbi->s_groups_count; g++) { 4233 struct ext4_group_desc *gdp = 4234 ext4_get_group_desc(sb, g, NULL); 4235 4236 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4237 ext4_msg(sb, KERN_ERR, 4238 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4239 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4240 le16_to_cpu(gdp->bg_checksum)); 4241 err = -EINVAL; 4242 goto restore_opts; 4243 } 4244 } 4245 4246 /* 4247 * If we have an unprocessed orphan list hanging 4248 * around from a previously readonly bdev mount, 4249 * require a full umount/remount for now. 4250 */ 4251 if (es->s_last_orphan) { 4252 ext4_msg(sb, KERN_WARNING, "Couldn't " 4253 "remount RDWR because of unprocessed " 4254 "orphan inode list. Please " 4255 "umount/remount instead"); 4256 err = -EINVAL; 4257 goto restore_opts; 4258 } 4259 4260 /* 4261 * Mounting a RDONLY partition read-write, so reread 4262 * and store the current valid flag. (It may have 4263 * been changed by e2fsck since we originally mounted 4264 * the partition.) 4265 */ 4266 if (sbi->s_journal) 4267 ext4_clear_journal_err(sb, es); 4268 sbi->s_mount_state = le16_to_cpu(es->s_state); 4269 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 4270 goto restore_opts; 4271 if (!ext4_setup_super(sb, es, 0)) 4272 sb->s_flags &= ~MS_RDONLY; 4273 enable_quota = 1; 4274 } 4275 } 4276 4277 /* 4278 * Reinitialize lazy itable initialization thread based on 4279 * current settings 4280 */ 4281 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4282 ext4_unregister_li_request(sb); 4283 else { 4284 ext4_group_t first_not_zeroed; 4285 first_not_zeroed = ext4_has_uninit_itable(sb); 4286 ext4_register_li_request(sb, first_not_zeroed); 4287 } 4288 4289 ext4_setup_system_zone(sb); 4290 if (sbi->s_journal == NULL) 4291 ext4_commit_super(sb, 1); 4292 4293 #ifdef CONFIG_QUOTA 4294 /* Release old quota file names */ 4295 for (i = 0; i < MAXQUOTAS; i++) 4296 if (old_opts.s_qf_names[i] && 4297 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4298 kfree(old_opts.s_qf_names[i]); 4299 #endif 4300 unlock_super(sb); 4301 if (enable_quota) 4302 dquot_resume(sb, -1); 4303 4304 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4305 kfree(orig_data); 4306 return 0; 4307 4308 restore_opts: 4309 sb->s_flags = old_sb_flags; 4310 sbi->s_mount_opt = old_opts.s_mount_opt; 4311 sbi->s_resuid = old_opts.s_resuid; 4312 sbi->s_resgid = old_opts.s_resgid; 4313 sbi->s_commit_interval = old_opts.s_commit_interval; 4314 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4315 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4316 #ifdef CONFIG_QUOTA 4317 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4318 for (i = 0; i < MAXQUOTAS; i++) { 4319 if (sbi->s_qf_names[i] && 4320 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4321 kfree(sbi->s_qf_names[i]); 4322 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4323 } 4324 #endif 4325 unlock_super(sb); 4326 kfree(orig_data); 4327 return err; 4328 } 4329 4330 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4331 { 4332 struct super_block *sb = dentry->d_sb; 4333 struct ext4_sb_info *sbi = EXT4_SB(sb); 4334 struct ext4_super_block *es = sbi->s_es; 4335 u64 fsid; 4336 4337 if (test_opt(sb, MINIX_DF)) { 4338 sbi->s_overhead_last = 0; 4339 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4340 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4341 ext4_fsblk_t overhead = 0; 4342 4343 /* 4344 * Compute the overhead (FS structures). This is constant 4345 * for a given filesystem unless the number of block groups 4346 * changes so we cache the previous value until it does. 4347 */ 4348 4349 /* 4350 * All of the blocks before first_data_block are 4351 * overhead 4352 */ 4353 overhead = le32_to_cpu(es->s_first_data_block); 4354 4355 /* 4356 * Add the overhead attributed to the superblock and 4357 * block group descriptors. If the sparse superblocks 4358 * feature is turned on, then not all groups have this. 4359 */ 4360 for (i = 0; i < ngroups; i++) { 4361 overhead += ext4_bg_has_super(sb, i) + 4362 ext4_bg_num_gdb(sb, i); 4363 cond_resched(); 4364 } 4365 4366 /* 4367 * Every block group has an inode bitmap, a block 4368 * bitmap, and an inode table. 4369 */ 4370 overhead += ngroups * (2 + sbi->s_itb_per_group); 4371 sbi->s_overhead_last = overhead; 4372 smp_wmb(); 4373 sbi->s_blocks_last = ext4_blocks_count(es); 4374 } 4375 4376 buf->f_type = EXT4_SUPER_MAGIC; 4377 buf->f_bsize = sb->s_blocksize; 4378 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 4379 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 4380 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 4381 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4382 if (buf->f_bfree < ext4_r_blocks_count(es)) 4383 buf->f_bavail = 0; 4384 buf->f_files = le32_to_cpu(es->s_inodes_count); 4385 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4386 buf->f_namelen = EXT4_NAME_LEN; 4387 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4388 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4389 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4390 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4391 4392 return 0; 4393 } 4394 4395 /* Helper function for writing quotas on sync - we need to start transaction 4396 * before quota file is locked for write. Otherwise the are possible deadlocks: 4397 * Process 1 Process 2 4398 * ext4_create() quota_sync() 4399 * jbd2_journal_start() write_dquot() 4400 * dquot_initialize() down(dqio_mutex) 4401 * down(dqio_mutex) jbd2_journal_start() 4402 * 4403 */ 4404 4405 #ifdef CONFIG_QUOTA 4406 4407 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4408 { 4409 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4410 } 4411 4412 static int ext4_write_dquot(struct dquot *dquot) 4413 { 4414 int ret, err; 4415 handle_t *handle; 4416 struct inode *inode; 4417 4418 inode = dquot_to_inode(dquot); 4419 handle = ext4_journal_start(inode, 4420 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4421 if (IS_ERR(handle)) 4422 return PTR_ERR(handle); 4423 ret = dquot_commit(dquot); 4424 err = ext4_journal_stop(handle); 4425 if (!ret) 4426 ret = err; 4427 return ret; 4428 } 4429 4430 static int ext4_acquire_dquot(struct dquot *dquot) 4431 { 4432 int ret, err; 4433 handle_t *handle; 4434 4435 handle = ext4_journal_start(dquot_to_inode(dquot), 4436 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4437 if (IS_ERR(handle)) 4438 return PTR_ERR(handle); 4439 ret = dquot_acquire(dquot); 4440 err = ext4_journal_stop(handle); 4441 if (!ret) 4442 ret = err; 4443 return ret; 4444 } 4445 4446 static int ext4_release_dquot(struct dquot *dquot) 4447 { 4448 int ret, err; 4449 handle_t *handle; 4450 4451 handle = ext4_journal_start(dquot_to_inode(dquot), 4452 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4453 if (IS_ERR(handle)) { 4454 /* Release dquot anyway to avoid endless cycle in dqput() */ 4455 dquot_release(dquot); 4456 return PTR_ERR(handle); 4457 } 4458 ret = dquot_release(dquot); 4459 err = ext4_journal_stop(handle); 4460 if (!ret) 4461 ret = err; 4462 return ret; 4463 } 4464 4465 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4466 { 4467 /* Are we journaling quotas? */ 4468 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4469 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4470 dquot_mark_dquot_dirty(dquot); 4471 return ext4_write_dquot(dquot); 4472 } else { 4473 return dquot_mark_dquot_dirty(dquot); 4474 } 4475 } 4476 4477 static int ext4_write_info(struct super_block *sb, int type) 4478 { 4479 int ret, err; 4480 handle_t *handle; 4481 4482 /* Data block + inode block */ 4483 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4484 if (IS_ERR(handle)) 4485 return PTR_ERR(handle); 4486 ret = dquot_commit_info(sb, type); 4487 err = ext4_journal_stop(handle); 4488 if (!ret) 4489 ret = err; 4490 return ret; 4491 } 4492 4493 /* 4494 * Turn on quotas during mount time - we need to find 4495 * the quota file and such... 4496 */ 4497 static int ext4_quota_on_mount(struct super_block *sb, int type) 4498 { 4499 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4500 EXT4_SB(sb)->s_jquota_fmt, type); 4501 } 4502 4503 /* 4504 * Standard function to be called on quota_on 4505 */ 4506 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4507 char *name) 4508 { 4509 int err; 4510 struct path path; 4511 4512 if (!test_opt(sb, QUOTA)) 4513 return -EINVAL; 4514 4515 err = kern_path(name, LOOKUP_FOLLOW, &path); 4516 if (err) 4517 return err; 4518 4519 /* Quotafile not on the same filesystem? */ 4520 if (path.mnt->mnt_sb != sb) { 4521 path_put(&path); 4522 return -EXDEV; 4523 } 4524 /* Journaling quota? */ 4525 if (EXT4_SB(sb)->s_qf_names[type]) { 4526 /* Quotafile not in fs root? */ 4527 if (path.dentry->d_parent != sb->s_root) 4528 ext4_msg(sb, KERN_WARNING, 4529 "Quota file not on filesystem root. " 4530 "Journaled quota will not work"); 4531 } 4532 4533 /* 4534 * When we journal data on quota file, we have to flush journal to see 4535 * all updates to the file when we bypass pagecache... 4536 */ 4537 if (EXT4_SB(sb)->s_journal && 4538 ext4_should_journal_data(path.dentry->d_inode)) { 4539 /* 4540 * We don't need to lock updates but journal_flush() could 4541 * otherwise be livelocked... 4542 */ 4543 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4544 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4545 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4546 if (err) { 4547 path_put(&path); 4548 return err; 4549 } 4550 } 4551 4552 err = dquot_quota_on_path(sb, type, format_id, &path); 4553 path_put(&path); 4554 return err; 4555 } 4556 4557 static int ext4_quota_off(struct super_block *sb, int type) 4558 { 4559 /* Force all delayed allocation blocks to be allocated */ 4560 if (test_opt(sb, DELALLOC)) { 4561 down_read(&sb->s_umount); 4562 sync_filesystem(sb); 4563 up_read(&sb->s_umount); 4564 } 4565 4566 return dquot_quota_off(sb, type); 4567 } 4568 4569 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4570 * acquiring the locks... As quota files are never truncated and quota code 4571 * itself serializes the operations (and noone else should touch the files) 4572 * we don't have to be afraid of races */ 4573 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4574 size_t len, loff_t off) 4575 { 4576 struct inode *inode = sb_dqopt(sb)->files[type]; 4577 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4578 int err = 0; 4579 int offset = off & (sb->s_blocksize - 1); 4580 int tocopy; 4581 size_t toread; 4582 struct buffer_head *bh; 4583 loff_t i_size = i_size_read(inode); 4584 4585 if (off > i_size) 4586 return 0; 4587 if (off+len > i_size) 4588 len = i_size-off; 4589 toread = len; 4590 while (toread > 0) { 4591 tocopy = sb->s_blocksize - offset < toread ? 4592 sb->s_blocksize - offset : toread; 4593 bh = ext4_bread(NULL, inode, blk, 0, &err); 4594 if (err) 4595 return err; 4596 if (!bh) /* A hole? */ 4597 memset(data, 0, tocopy); 4598 else 4599 memcpy(data, bh->b_data+offset, tocopy); 4600 brelse(bh); 4601 offset = 0; 4602 toread -= tocopy; 4603 data += tocopy; 4604 blk++; 4605 } 4606 return len; 4607 } 4608 4609 /* Write to quotafile (we know the transaction is already started and has 4610 * enough credits) */ 4611 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4612 const char *data, size_t len, loff_t off) 4613 { 4614 struct inode *inode = sb_dqopt(sb)->files[type]; 4615 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4616 int err = 0; 4617 int offset = off & (sb->s_blocksize - 1); 4618 struct buffer_head *bh; 4619 handle_t *handle = journal_current_handle(); 4620 4621 if (EXT4_SB(sb)->s_journal && !handle) { 4622 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4623 " cancelled because transaction is not started", 4624 (unsigned long long)off, (unsigned long long)len); 4625 return -EIO; 4626 } 4627 /* 4628 * Since we account only one data block in transaction credits, 4629 * then it is impossible to cross a block boundary. 4630 */ 4631 if (sb->s_blocksize - offset < len) { 4632 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4633 " cancelled because not block aligned", 4634 (unsigned long long)off, (unsigned long long)len); 4635 return -EIO; 4636 } 4637 4638 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4639 bh = ext4_bread(handle, inode, blk, 1, &err); 4640 if (!bh) 4641 goto out; 4642 err = ext4_journal_get_write_access(handle, bh); 4643 if (err) { 4644 brelse(bh); 4645 goto out; 4646 } 4647 lock_buffer(bh); 4648 memcpy(bh->b_data+offset, data, len); 4649 flush_dcache_page(bh->b_page); 4650 unlock_buffer(bh); 4651 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4652 brelse(bh); 4653 out: 4654 if (err) { 4655 mutex_unlock(&inode->i_mutex); 4656 return err; 4657 } 4658 if (inode->i_size < off + len) { 4659 i_size_write(inode, off + len); 4660 EXT4_I(inode)->i_disksize = inode->i_size; 4661 } 4662 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4663 ext4_mark_inode_dirty(handle, inode); 4664 mutex_unlock(&inode->i_mutex); 4665 return len; 4666 } 4667 4668 #endif 4669 4670 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 4671 const char *dev_name, void *data, struct vfsmount *mnt) 4672 { 4673 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 4674 } 4675 4676 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4677 static struct file_system_type ext2_fs_type = { 4678 .owner = THIS_MODULE, 4679 .name = "ext2", 4680 .get_sb = ext4_get_sb, 4681 .kill_sb = kill_block_super, 4682 .fs_flags = FS_REQUIRES_DEV, 4683 }; 4684 4685 static inline void register_as_ext2(void) 4686 { 4687 int err = register_filesystem(&ext2_fs_type); 4688 if (err) 4689 printk(KERN_WARNING 4690 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4691 } 4692 4693 static inline void unregister_as_ext2(void) 4694 { 4695 unregister_filesystem(&ext2_fs_type); 4696 } 4697 MODULE_ALIAS("ext2"); 4698 #else 4699 static inline void register_as_ext2(void) { } 4700 static inline void unregister_as_ext2(void) { } 4701 #endif 4702 4703 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4704 static inline void register_as_ext3(void) 4705 { 4706 int err = register_filesystem(&ext3_fs_type); 4707 if (err) 4708 printk(KERN_WARNING 4709 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4710 } 4711 4712 static inline void unregister_as_ext3(void) 4713 { 4714 unregister_filesystem(&ext3_fs_type); 4715 } 4716 MODULE_ALIAS("ext3"); 4717 #else 4718 static inline void register_as_ext3(void) { } 4719 static inline void unregister_as_ext3(void) { } 4720 #endif 4721 4722 static struct file_system_type ext4_fs_type = { 4723 .owner = THIS_MODULE, 4724 .name = "ext4", 4725 .get_sb = ext4_get_sb, 4726 .kill_sb = kill_block_super, 4727 .fs_flags = FS_REQUIRES_DEV, 4728 }; 4729 4730 int __init ext4_init_feat_adverts(void) 4731 { 4732 struct ext4_features *ef; 4733 int ret = -ENOMEM; 4734 4735 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4736 if (!ef) 4737 goto out; 4738 4739 ef->f_kobj.kset = ext4_kset; 4740 init_completion(&ef->f_kobj_unregister); 4741 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4742 "features"); 4743 if (ret) { 4744 kfree(ef); 4745 goto out; 4746 } 4747 4748 ext4_feat = ef; 4749 ret = 0; 4750 out: 4751 return ret; 4752 } 4753 4754 static int __init ext4_init_fs(void) 4755 { 4756 int err; 4757 4758 ext4_check_flag_values(); 4759 err = ext4_init_pageio(); 4760 if (err) 4761 return err; 4762 err = ext4_init_system_zone(); 4763 if (err) 4764 goto out5; 4765 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4766 if (!ext4_kset) 4767 goto out4; 4768 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4769 4770 err = ext4_init_feat_adverts(); 4771 4772 err = ext4_init_mballoc(); 4773 if (err) 4774 goto out3; 4775 4776 err = ext4_init_xattr(); 4777 if (err) 4778 goto out2; 4779 err = init_inodecache(); 4780 if (err) 4781 goto out1; 4782 register_as_ext2(); 4783 register_as_ext3(); 4784 err = register_filesystem(&ext4_fs_type); 4785 if (err) 4786 goto out; 4787 4788 ext4_li_info = NULL; 4789 mutex_init(&ext4_li_mtx); 4790 return 0; 4791 out: 4792 unregister_as_ext2(); 4793 unregister_as_ext3(); 4794 destroy_inodecache(); 4795 out1: 4796 ext4_exit_xattr(); 4797 out2: 4798 ext4_exit_mballoc(); 4799 out3: 4800 kfree(ext4_feat); 4801 remove_proc_entry("fs/ext4", NULL); 4802 kset_unregister(ext4_kset); 4803 out4: 4804 ext4_exit_system_zone(); 4805 out5: 4806 ext4_exit_pageio(); 4807 return err; 4808 } 4809 4810 static void __exit ext4_exit_fs(void) 4811 { 4812 ext4_destroy_lazyinit_thread(); 4813 unregister_as_ext2(); 4814 unregister_as_ext3(); 4815 unregister_filesystem(&ext4_fs_type); 4816 destroy_inodecache(); 4817 ext4_exit_xattr(); 4818 ext4_exit_mballoc(); 4819 remove_proc_entry("fs/ext4", NULL); 4820 kset_unregister(ext4_kset); 4821 ext4_exit_system_zone(); 4822 ext4_exit_pageio(); 4823 } 4824 4825 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4826 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4827 MODULE_LICENSE("GPL"); 4828 module_init(ext4_init_fs) 4829 module_exit(ext4_exit_fs) 4830