xref: /linux/fs/ext4/super.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io)
165 {
166 	/*
167 	 * buffer's verified bit is no longer valid after reading from
168 	 * disk again due to write out error, clear it to make sure we
169 	 * recheck the buffer contents.
170 	 */
171 	clear_buffer_verified(bh);
172 
173 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 	get_bh(bh);
175 	submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 			 bh_end_io_t *end_io)
180 {
181 	BUG_ON(!buffer_locked(bh));
182 
183 	if (ext4_buffer_uptodate(bh)) {
184 		unlock_buffer(bh);
185 		return;
186 	}
187 	__ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 	BUG_ON(!buffer_locked(bh));
193 
194 	if (ext4_buffer_uptodate(bh)) {
195 		unlock_buffer(bh);
196 		return 0;
197 	}
198 
199 	__ext4_read_bh(bh, op_flags, end_io);
200 
201 	wait_on_buffer(bh);
202 	if (buffer_uptodate(bh))
203 		return 0;
204 	return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 	lock_buffer(bh);
210 	if (!wait) {
211 		ext4_read_bh_nowait(bh, op_flags, NULL);
212 		return 0;
213 	}
214 	return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 					       sector_t block,
225 					       blk_opf_t op_flags, gfp_t gfp)
226 {
227 	struct buffer_head *bh;
228 	int ret;
229 
230 	bh = sb_getblk_gfp(sb, block, gfp);
231 	if (bh == NULL)
232 		return ERR_PTR(-ENOMEM);
233 	if (ext4_buffer_uptodate(bh))
234 		return bh;
235 
236 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 	if (ret) {
238 		put_bh(bh);
239 		return ERR_PTR(ret);
240 	}
241 	return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 				   blk_opf_t op_flags)
246 {
247 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
248 			~__GFP_FS) | __GFP_MOVABLE;
249 
250 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
251 }
252 
253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
254 					    sector_t block)
255 {
256 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
257 			~__GFP_FS);
258 
259 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
260 }
261 
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
263 {
264 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
265 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
266 
267 	if (likely(bh)) {
268 		if (trylock_buffer(bh))
269 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
270 		brelse(bh);
271 	}
272 }
273 
274 static int ext4_verify_csum_type(struct super_block *sb,
275 				 struct ext4_super_block *es)
276 {
277 	if (!ext4_has_feature_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282 
283 __le32 ext4_superblock_csum(struct super_block *sb,
284 			    struct ext4_super_block *es)
285 {
286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
287 	int offset = offsetof(struct ext4_super_block, s_checksum);
288 	__u32 csum;
289 
290 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291 
292 	return cpu_to_le32(csum);
293 }
294 
295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 				       struct ext4_super_block *es)
297 {
298 	if (!ext4_has_metadata_csum(sb))
299 		return 1;
300 
301 	return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303 
304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307 
308 	if (!ext4_has_metadata_csum(sb))
309 		return;
310 
311 	es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313 
314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321 
322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 			       struct ext4_group_desc *bg)
324 {
325 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329 
330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le32_to_cpu(bg->bg_inode_table_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337 
338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 			       struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345 
346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 			      struct ext4_group_desc *bg)
348 {
349 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
350 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 }
353 
354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 			      struct ext4_group_desc *bg)
356 {
357 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361 
362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 			      struct ext4_group_desc *bg)
364 {
365 	return le16_to_cpu(bg->bg_itable_unused_lo) |
366 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369 
370 void ext4_block_bitmap_set(struct super_block *sb,
371 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
378 void ext4_inode_bitmap_set(struct super_block *sb,
379 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385 
386 void ext4_inode_table_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393 
394 void ext4_free_group_clusters_set(struct super_block *sb,
395 				  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401 
402 void ext4_free_inodes_set(struct super_block *sb,
403 			  struct ext4_group_desc *bg, __u32 count)
404 {
405 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
406 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 }
409 
410 void ext4_used_dirs_set(struct super_block *sb,
411 			  struct ext4_group_desc *bg, __u32 count)
412 {
413 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417 
418 void ext4_itable_unused_set(struct super_block *sb,
419 			  struct ext4_group_desc *bg, __u32 count)
420 {
421 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425 
426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 	now = clamp_val(now, 0, (1ull << 40) - 1);
429 
430 	*lo = cpu_to_le32(lower_32_bits(now));
431 	*hi = upper_32_bits(now);
432 }
433 
434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 			     ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446 
447 /*
448  * The ext4_maybe_update_superblock() function checks and updates the
449  * superblock if needed.
450  *
451  * This function is designed to update the on-disk superblock only under
452  * certain conditions to prevent excessive disk writes and unnecessary
453  * waking of the disk from sleep. The superblock will be updated if:
454  * 1. More than an hour has passed since the last superblock update, and
455  * 2. More than 16MB have been written since the last superblock update.
456  *
457  * @sb: The superblock
458  */
459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 	struct ext4_sb_info *sbi = EXT4_SB(sb);
462 	struct ext4_super_block *es = sbi->s_es;
463 	journal_t *journal = sbi->s_journal;
464 	time64_t now;
465 	__u64 last_update;
466 	__u64 lifetime_write_kbytes;
467 	__u64 diff_size;
468 
469 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
471 		return;
472 
473 	now = ktime_get_real_seconds();
474 	last_update = ext4_get_tstamp(es, s_wtime);
475 
476 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 		return;
478 
479 	lifetime_write_kbytes = sbi->s_kbytes_written +
480 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 		  sbi->s_sectors_written_start) >> 1);
482 
483 	/* Get the number of kilobytes not written to disk to account
484 	 * for statistics and compare with a multiple of 16 MB. This
485 	 * is used to determine when the next superblock commit should
486 	 * occur (i.e. not more often than once per 16MB if there was
487 	 * less written in an hour).
488 	 */
489 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490 
491 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494 
495 /*
496  * The del_gendisk() function uninitializes the disk-specific data
497  * structures, including the bdi structure, without telling anyone
498  * else.  Once this happens, any attempt to call mark_buffer_dirty()
499  * (for example, by ext4_commit_super), will cause a kernel OOPS.
500  * This is a kludge to prevent these oops until we can put in a proper
501  * hook in del_gendisk() to inform the VFS and file system layers.
502  */
503 static int block_device_ejected(struct super_block *sb)
504 {
505 	struct inode *bd_inode = sb->s_bdev->bd_inode;
506 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507 
508 	return bdi->dev == NULL;
509 }
510 
511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 	struct super_block		*sb = journal->j_private;
514 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
515 	int				error = is_journal_aborted(journal);
516 	struct ext4_journal_cb_entry	*jce;
517 
518 	BUG_ON(txn->t_state == T_FINISHED);
519 
520 	ext4_process_freed_data(sb, txn->t_tid);
521 	ext4_maybe_update_superblock(sb);
522 
523 	spin_lock(&sbi->s_md_lock);
524 	while (!list_empty(&txn->t_private_list)) {
525 		jce = list_entry(txn->t_private_list.next,
526 				 struct ext4_journal_cb_entry, jce_list);
527 		list_del_init(&jce->jce_list);
528 		spin_unlock(&sbi->s_md_lock);
529 		jce->jce_func(sb, jce, error);
530 		spin_lock(&sbi->s_md_lock);
531 	}
532 	spin_unlock(&sbi->s_md_lock);
533 }
534 
535 /*
536  * This writepage callback for write_cache_pages()
537  * takes care of a few cases after page cleaning.
538  *
539  * write_cache_pages() already checks for dirty pages
540  * and calls clear_page_dirty_for_io(), which we want,
541  * to write protect the pages.
542  *
543  * However, we may have to redirty a page (see below.)
544  */
545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 					      struct writeback_control *wbc,
547 					      void *data)
548 {
549 	transaction_t *transaction = (transaction_t *) data;
550 	struct buffer_head *bh, *head;
551 	struct journal_head *jh;
552 
553 	bh = head = folio_buffers(folio);
554 	do {
555 		/*
556 		 * We have to redirty a page in these cases:
557 		 * 1) If buffer is dirty, it means the page was dirty because it
558 		 * contains a buffer that needs checkpointing. So the dirty bit
559 		 * needs to be preserved so that checkpointing writes the buffer
560 		 * properly.
561 		 * 2) If buffer is not part of the committing transaction
562 		 * (we may have just accidentally come across this buffer because
563 		 * inode range tracking is not exact) or if the currently running
564 		 * transaction already contains this buffer as well, dirty bit
565 		 * needs to be preserved so that the buffer gets writeprotected
566 		 * properly on running transaction's commit.
567 		 */
568 		jh = bh2jh(bh);
569 		if (buffer_dirty(bh) ||
570 		    (jh && (jh->b_transaction != transaction ||
571 			    jh->b_next_transaction))) {
572 			folio_redirty_for_writepage(wbc, folio);
573 			goto out;
574 		}
575 	} while ((bh = bh->b_this_page) != head);
576 
577 out:
578 	return AOP_WRITEPAGE_ACTIVATE;
579 }
580 
581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 	struct writeback_control wbc = {
585 		.sync_mode =  WB_SYNC_ALL,
586 		.nr_to_write = LONG_MAX,
587 		.range_start = jinode->i_dirty_start,
588 		.range_end = jinode->i_dirty_end,
589         };
590 
591 	return write_cache_pages(mapping, &wbc,
592 				 ext4_journalled_writepage_callback,
593 				 jinode->i_transaction);
594 }
595 
596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 	int ret;
599 
600 	if (ext4_should_journal_data(jinode->i_vfs_inode))
601 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 	else
603 		ret = ext4_normal_submit_inode_data_buffers(jinode);
604 	return ret;
605 }
606 
607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 	int ret = 0;
610 
611 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
613 
614 	return ret;
615 }
616 
617 static bool system_going_down(void)
618 {
619 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 		|| system_state == SYSTEM_RESTART;
621 }
622 
623 struct ext4_err_translation {
624 	int code;
625 	int errno;
626 };
627 
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629 
630 static struct ext4_err_translation err_translation[] = {
631 	EXT4_ERR_TRANSLATE(EIO),
632 	EXT4_ERR_TRANSLATE(ENOMEM),
633 	EXT4_ERR_TRANSLATE(EFSBADCRC),
634 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 	EXT4_ERR_TRANSLATE(ENOSPC),
636 	EXT4_ERR_TRANSLATE(ENOKEY),
637 	EXT4_ERR_TRANSLATE(EROFS),
638 	EXT4_ERR_TRANSLATE(EFBIG),
639 	EXT4_ERR_TRANSLATE(EEXIST),
640 	EXT4_ERR_TRANSLATE(ERANGE),
641 	EXT4_ERR_TRANSLATE(EOVERFLOW),
642 	EXT4_ERR_TRANSLATE(EBUSY),
643 	EXT4_ERR_TRANSLATE(ENOTDIR),
644 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 	EXT4_ERR_TRANSLATE(EFAULT),
647 };
648 
649 static int ext4_errno_to_code(int errno)
650 {
651 	int i;
652 
653 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 		if (err_translation[i].errno == errno)
655 			return err_translation[i].code;
656 	return EXT4_ERR_UNKNOWN;
657 }
658 
659 static void save_error_info(struct super_block *sb, int error,
660 			    __u32 ino, __u64 block,
661 			    const char *func, unsigned int line)
662 {
663 	struct ext4_sb_info *sbi = EXT4_SB(sb);
664 
665 	/* We default to EFSCORRUPTED error... */
666 	if (error == 0)
667 		error = EFSCORRUPTED;
668 
669 	spin_lock(&sbi->s_error_lock);
670 	sbi->s_add_error_count++;
671 	sbi->s_last_error_code = error;
672 	sbi->s_last_error_line = line;
673 	sbi->s_last_error_ino = ino;
674 	sbi->s_last_error_block = block;
675 	sbi->s_last_error_func = func;
676 	sbi->s_last_error_time = ktime_get_real_seconds();
677 	if (!sbi->s_first_error_time) {
678 		sbi->s_first_error_code = error;
679 		sbi->s_first_error_line = line;
680 		sbi->s_first_error_ino = ino;
681 		sbi->s_first_error_block = block;
682 		sbi->s_first_error_func = func;
683 		sbi->s_first_error_time = sbi->s_last_error_time;
684 	}
685 	spin_unlock(&sbi->s_error_lock);
686 }
687 
688 /* Deal with the reporting of failure conditions on a filesystem such as
689  * inconsistencies detected or read IO failures.
690  *
691  * On ext2, we can store the error state of the filesystem in the
692  * superblock.  That is not possible on ext4, because we may have other
693  * write ordering constraints on the superblock which prevent us from
694  * writing it out straight away; and given that the journal is about to
695  * be aborted, we can't rely on the current, or future, transactions to
696  * write out the superblock safely.
697  *
698  * We'll just use the jbd2_journal_abort() error code to record an error in
699  * the journal instead.  On recovery, the journal will complain about
700  * that error until we've noted it down and cleared it.
701  *
702  * If force_ro is set, we unconditionally force the filesystem into an
703  * ABORT|READONLY state, unless the error response on the fs has been set to
704  * panic in which case we take the easy way out and panic immediately. This is
705  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706  * at a critical moment in log management.
707  */
708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 			      __u32 ino, __u64 block,
710 			      const char *func, unsigned int line)
711 {
712 	journal_t *journal = EXT4_SB(sb)->s_journal;
713 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714 
715 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 	if (test_opt(sb, WARN_ON_ERROR))
717 		WARN_ON_ONCE(1);
718 
719 	if (!continue_fs && !sb_rdonly(sb)) {
720 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 		if (journal)
722 			jbd2_journal_abort(journal, -EIO);
723 	}
724 
725 	if (!bdev_read_only(sb->s_bdev)) {
726 		save_error_info(sb, error, ino, block, func, line);
727 		/*
728 		 * In case the fs should keep running, we need to writeout
729 		 * superblock through the journal. Due to lock ordering
730 		 * constraints, it may not be safe to do it right here so we
731 		 * defer superblock flushing to a workqueue.
732 		 */
733 		if (continue_fs && journal)
734 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
735 		else
736 			ext4_commit_super(sb);
737 	}
738 
739 	/*
740 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 	 * could panic during 'reboot -f' as the underlying device got already
742 	 * disabled.
743 	 */
744 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 		panic("EXT4-fs (device %s): panic forced after error\n",
746 			sb->s_id);
747 	}
748 
749 	if (sb_rdonly(sb) || continue_fs)
750 		return;
751 
752 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
753 	/*
754 	 * Make sure updated value of ->s_mount_flags will be visible before
755 	 * ->s_flags update
756 	 */
757 	smp_wmb();
758 	sb->s_flags |= SB_RDONLY;
759 }
760 
761 static void update_super_work(struct work_struct *work)
762 {
763 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
764 						s_sb_upd_work);
765 	journal_t *journal = sbi->s_journal;
766 	handle_t *handle;
767 
768 	/*
769 	 * If the journal is still running, we have to write out superblock
770 	 * through the journal to avoid collisions of other journalled sb
771 	 * updates.
772 	 *
773 	 * We use directly jbd2 functions here to avoid recursing back into
774 	 * ext4 error handling code during handling of previous errors.
775 	 */
776 	if (!sb_rdonly(sbi->s_sb) && journal) {
777 		struct buffer_head *sbh = sbi->s_sbh;
778 		bool call_notify_err = false;
779 
780 		handle = jbd2_journal_start(journal, 1);
781 		if (IS_ERR(handle))
782 			goto write_directly;
783 		if (jbd2_journal_get_write_access(handle, sbh)) {
784 			jbd2_journal_stop(handle);
785 			goto write_directly;
786 		}
787 
788 		if (sbi->s_add_error_count > 0)
789 			call_notify_err = true;
790 
791 		ext4_update_super(sbi->s_sb);
792 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
793 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
794 				 "superblock detected");
795 			clear_buffer_write_io_error(sbh);
796 			set_buffer_uptodate(sbh);
797 		}
798 
799 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
800 			jbd2_journal_stop(handle);
801 			goto write_directly;
802 		}
803 		jbd2_journal_stop(handle);
804 
805 		if (call_notify_err)
806 			ext4_notify_error_sysfs(sbi);
807 
808 		return;
809 	}
810 write_directly:
811 	/*
812 	 * Write through journal failed. Write sb directly to get error info
813 	 * out and hope for the best.
814 	 */
815 	ext4_commit_super(sbi->s_sb);
816 	ext4_notify_error_sysfs(sbi);
817 }
818 
819 #define ext4_error_ratelimit(sb)					\
820 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
821 			     "EXT4-fs error")
822 
823 void __ext4_error(struct super_block *sb, const char *function,
824 		  unsigned int line, bool force_ro, int error, __u64 block,
825 		  const char *fmt, ...)
826 {
827 	struct va_format vaf;
828 	va_list args;
829 
830 	if (unlikely(ext4_forced_shutdown(sb)))
831 		return;
832 
833 	trace_ext4_error(sb, function, line);
834 	if (ext4_error_ratelimit(sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		printk(KERN_CRIT
839 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
840 		       sb->s_id, function, line, current->comm, &vaf);
841 		va_end(args);
842 	}
843 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
844 
845 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
846 }
847 
848 void __ext4_error_inode(struct inode *inode, const char *function,
849 			unsigned int line, ext4_fsblk_t block, int error,
850 			const char *fmt, ...)
851 {
852 	va_list args;
853 	struct va_format vaf;
854 
855 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
856 		return;
857 
858 	trace_ext4_error(inode->i_sb, function, line);
859 	if (ext4_error_ratelimit(inode->i_sb)) {
860 		va_start(args, fmt);
861 		vaf.fmt = fmt;
862 		vaf.va = &args;
863 		if (block)
864 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
865 			       "inode #%lu: block %llu: comm %s: %pV\n",
866 			       inode->i_sb->s_id, function, line, inode->i_ino,
867 			       block, current->comm, &vaf);
868 		else
869 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
870 			       "inode #%lu: comm %s: %pV\n",
871 			       inode->i_sb->s_id, function, line, inode->i_ino,
872 			       current->comm, &vaf);
873 		va_end(args);
874 	}
875 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
876 
877 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
878 			  function, line);
879 }
880 
881 void __ext4_error_file(struct file *file, const char *function,
882 		       unsigned int line, ext4_fsblk_t block,
883 		       const char *fmt, ...)
884 {
885 	va_list args;
886 	struct va_format vaf;
887 	struct inode *inode = file_inode(file);
888 	char pathname[80], *path;
889 
890 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
891 		return;
892 
893 	trace_ext4_error(inode->i_sb, function, line);
894 	if (ext4_error_ratelimit(inode->i_sb)) {
895 		path = file_path(file, pathname, sizeof(pathname));
896 		if (IS_ERR(path))
897 			path = "(unknown)";
898 		va_start(args, fmt);
899 		vaf.fmt = fmt;
900 		vaf.va = &args;
901 		if (block)
902 			printk(KERN_CRIT
903 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
904 			       "block %llu: comm %s: path %s: %pV\n",
905 			       inode->i_sb->s_id, function, line, inode->i_ino,
906 			       block, current->comm, path, &vaf);
907 		else
908 			printk(KERN_CRIT
909 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
910 			       "comm %s: path %s: %pV\n",
911 			       inode->i_sb->s_id, function, line, inode->i_ino,
912 			       current->comm, path, &vaf);
913 		va_end(args);
914 	}
915 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
916 
917 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
918 			  function, line);
919 }
920 
921 const char *ext4_decode_error(struct super_block *sb, int errno,
922 			      char nbuf[16])
923 {
924 	char *errstr = NULL;
925 
926 	switch (errno) {
927 	case -EFSCORRUPTED:
928 		errstr = "Corrupt filesystem";
929 		break;
930 	case -EFSBADCRC:
931 		errstr = "Filesystem failed CRC";
932 		break;
933 	case -EIO:
934 		errstr = "IO failure";
935 		break;
936 	case -ENOMEM:
937 		errstr = "Out of memory";
938 		break;
939 	case -EROFS:
940 		if (!sb || (EXT4_SB(sb)->s_journal &&
941 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
942 			errstr = "Journal has aborted";
943 		else
944 			errstr = "Readonly filesystem";
945 		break;
946 	default:
947 		/* If the caller passed in an extra buffer for unknown
948 		 * errors, textualise them now.  Else we just return
949 		 * NULL. */
950 		if (nbuf) {
951 			/* Check for truncated error codes... */
952 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
953 				errstr = nbuf;
954 		}
955 		break;
956 	}
957 
958 	return errstr;
959 }
960 
961 /* __ext4_std_error decodes expected errors from journaling functions
962  * automatically and invokes the appropriate error response.  */
963 
964 void __ext4_std_error(struct super_block *sb, const char *function,
965 		      unsigned int line, int errno)
966 {
967 	char nbuf[16];
968 	const char *errstr;
969 
970 	if (unlikely(ext4_forced_shutdown(sb)))
971 		return;
972 
973 	/* Special case: if the error is EROFS, and we're not already
974 	 * inside a transaction, then there's really no point in logging
975 	 * an error. */
976 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
977 		return;
978 
979 	if (ext4_error_ratelimit(sb)) {
980 		errstr = ext4_decode_error(sb, errno, nbuf);
981 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
982 		       sb->s_id, function, line, errstr);
983 	}
984 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
985 
986 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
987 }
988 
989 void __ext4_msg(struct super_block *sb,
990 		const char *prefix, const char *fmt, ...)
991 {
992 	struct va_format vaf;
993 	va_list args;
994 
995 	if (sb) {
996 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
997 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
998 				  "EXT4-fs"))
999 			return;
1000 	}
1001 
1002 	va_start(args, fmt);
1003 	vaf.fmt = fmt;
1004 	vaf.va = &args;
1005 	if (sb)
1006 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007 	else
1008 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009 	va_end(args);
1010 }
1011 
1012 static int ext4_warning_ratelimit(struct super_block *sb)
1013 {
1014 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016 			    "EXT4-fs warning");
1017 }
1018 
1019 void __ext4_warning(struct super_block *sb, const char *function,
1020 		    unsigned int line, const char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	if (!ext4_warning_ratelimit(sb))
1026 		return;
1027 
1028 	va_start(args, fmt);
1029 	vaf.fmt = fmt;
1030 	vaf.va = &args;
1031 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032 	       sb->s_id, function, line, &vaf);
1033 	va_end(args);
1034 }
1035 
1036 void __ext4_warning_inode(const struct inode *inode, const char *function,
1037 			  unsigned int line, const char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	if (!ext4_warning_ratelimit(inode->i_sb))
1043 		return;
1044 
1045 	va_start(args, fmt);
1046 	vaf.fmt = fmt;
1047 	vaf.va = &args;
1048 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050 	       function, line, inode->i_ino, current->comm, &vaf);
1051 	va_end(args);
1052 }
1053 
1054 void __ext4_grp_locked_error(const char *function, unsigned int line,
1055 			     struct super_block *sb, ext4_group_t grp,
1056 			     unsigned long ino, ext4_fsblk_t block,
1057 			     const char *fmt, ...)
1058 __releases(bitlock)
1059 __acquires(bitlock)
1060 {
1061 	struct va_format vaf;
1062 	va_list args;
1063 
1064 	if (unlikely(ext4_forced_shutdown(sb)))
1065 		return;
1066 
1067 	trace_ext4_error(sb, function, line);
1068 	if (ext4_error_ratelimit(sb)) {
1069 		va_start(args, fmt);
1070 		vaf.fmt = fmt;
1071 		vaf.va = &args;
1072 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073 		       sb->s_id, function, line, grp);
1074 		if (ino)
1075 			printk(KERN_CONT "inode %lu: ", ino);
1076 		if (block)
1077 			printk(KERN_CONT "block %llu:",
1078 			       (unsigned long long) block);
1079 		printk(KERN_CONT "%pV\n", &vaf);
1080 		va_end(args);
1081 	}
1082 
1083 	if (test_opt(sb, ERRORS_CONT)) {
1084 		if (test_opt(sb, WARN_ON_ERROR))
1085 			WARN_ON_ONCE(1);
1086 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087 		if (!bdev_read_only(sb->s_bdev)) {
1088 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089 					line);
1090 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091 		}
1092 		return;
1093 	}
1094 	ext4_unlock_group(sb, grp);
1095 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096 	/*
1097 	 * We only get here in the ERRORS_RO case; relocking the group
1098 	 * may be dangerous, but nothing bad will happen since the
1099 	 * filesystem will have already been marked read/only and the
1100 	 * journal has been aborted.  We return 1 as a hint to callers
1101 	 * who might what to use the return value from
1102 	 * ext4_grp_locked_error() to distinguish between the
1103 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104 	 * aggressively from the ext4 function in question, with a
1105 	 * more appropriate error code.
1106 	 */
1107 	ext4_lock_group(sb, grp);
1108 	return;
1109 }
1110 
1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112 				     ext4_group_t group,
1113 				     unsigned int flags)
1114 {
1115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118 	int ret;
1119 
1120 	if (!grp || !gdp)
1121 		return;
1122 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124 					    &grp->bb_state);
1125 		if (!ret)
1126 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127 					   grp->bb_free);
1128 	}
1129 
1130 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132 					    &grp->bb_state);
1133 		if (!ret && gdp) {
1134 			int count;
1135 
1136 			count = ext4_free_inodes_count(sb, gdp);
1137 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138 					   count);
1139 		}
1140 	}
1141 }
1142 
1143 void ext4_update_dynamic_rev(struct super_block *sb)
1144 {
1145 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146 
1147 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148 		return;
1149 
1150 	ext4_warning(sb,
1151 		     "updating to rev %d because of new feature flag, "
1152 		     "running e2fsck is recommended",
1153 		     EXT4_DYNAMIC_REV);
1154 
1155 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158 	/* leave es->s_feature_*compat flags alone */
1159 	/* es->s_uuid will be set by e2fsck if empty */
1160 
1161 	/*
1162 	 * The rest of the superblock fields should be zero, and if not it
1163 	 * means they are likely already in use, so leave them alone.  We
1164 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165 	 */
1166 }
1167 
1168 static inline struct inode *orphan_list_entry(struct list_head *l)
1169 {
1170 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171 }
1172 
1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174 {
1175 	struct list_head *l;
1176 
1177 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179 
1180 	printk(KERN_ERR "sb_info orphan list:\n");
1181 	list_for_each(l, &sbi->s_orphan) {
1182 		struct inode *inode = orphan_list_entry(l);
1183 		printk(KERN_ERR "  "
1184 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185 		       inode->i_sb->s_id, inode->i_ino, inode,
1186 		       inode->i_mode, inode->i_nlink,
1187 		       NEXT_ORPHAN(inode));
1188 	}
1189 }
1190 
1191 #ifdef CONFIG_QUOTA
1192 static int ext4_quota_off(struct super_block *sb, int type);
1193 
1194 static inline void ext4_quotas_off(struct super_block *sb, int type)
1195 {
1196 	BUG_ON(type > EXT4_MAXQUOTAS);
1197 
1198 	/* Use our quota_off function to clear inode flags etc. */
1199 	for (type--; type >= 0; type--)
1200 		ext4_quota_off(sb, type);
1201 }
1202 
1203 /*
1204  * This is a helper function which is used in the mount/remount
1205  * codepaths (which holds s_umount) to fetch the quota file name.
1206  */
1207 static inline char *get_qf_name(struct super_block *sb,
1208 				struct ext4_sb_info *sbi,
1209 				int type)
1210 {
1211 	return rcu_dereference_protected(sbi->s_qf_names[type],
1212 					 lockdep_is_held(&sb->s_umount));
1213 }
1214 #else
1215 static inline void ext4_quotas_off(struct super_block *sb, int type)
1216 {
1217 }
1218 #endif
1219 
1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221 {
1222 	ext4_fsblk_t block;
1223 	int err;
1224 
1225 	block = ext4_count_free_clusters(sbi->s_sb);
1226 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228 				  GFP_KERNEL);
1229 	if (!err) {
1230 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233 					  GFP_KERNEL);
1234 	}
1235 	if (!err)
1236 		err = percpu_counter_init(&sbi->s_dirs_counter,
1237 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238 	if (!err)
1239 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240 					  GFP_KERNEL);
1241 	if (!err)
1242 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243 					  GFP_KERNEL);
1244 	if (!err)
1245 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246 
1247 	if (err)
1248 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249 
1250 	return err;
1251 }
1252 
1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254 {
1255 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257 	percpu_counter_destroy(&sbi->s_dirs_counter);
1258 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261 }
1262 
1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264 {
1265 	struct buffer_head **group_desc;
1266 	int i;
1267 
1268 	rcu_read_lock();
1269 	group_desc = rcu_dereference(sbi->s_group_desc);
1270 	for (i = 0; i < sbi->s_gdb_count; i++)
1271 		brelse(group_desc[i]);
1272 	kvfree(group_desc);
1273 	rcu_read_unlock();
1274 }
1275 
1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277 {
1278 	struct flex_groups **flex_groups;
1279 	int i;
1280 
1281 	rcu_read_lock();
1282 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283 	if (flex_groups) {
1284 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285 			kvfree(flex_groups[i]);
1286 		kvfree(flex_groups);
1287 	}
1288 	rcu_read_unlock();
1289 }
1290 
1291 static void ext4_put_super(struct super_block *sb)
1292 {
1293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294 	struct ext4_super_block *es = sbi->s_es;
1295 	int aborted = 0;
1296 	int err;
1297 
1298 	/*
1299 	 * Unregister sysfs before destroying jbd2 journal.
1300 	 * Since we could still access attr_journal_task attribute via sysfs
1301 	 * path which could have sbi->s_journal->j_task as NULL
1302 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304 	 * read metadata verify failed then will queue error work.
1305 	 * update_super_work will call start_this_handle may trigger
1306 	 * BUG_ON.
1307 	 */
1308 	ext4_unregister_sysfs(sb);
1309 
1310 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312 			 &sb->s_uuid);
1313 
1314 	ext4_unregister_li_request(sb);
1315 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316 
1317 	flush_work(&sbi->s_sb_upd_work);
1318 	destroy_workqueue(sbi->rsv_conversion_wq);
1319 	ext4_release_orphan_info(sb);
1320 
1321 	if (sbi->s_journal) {
1322 		aborted = is_journal_aborted(sbi->s_journal);
1323 		err = jbd2_journal_destroy(sbi->s_journal);
1324 		sbi->s_journal = NULL;
1325 		if ((err < 0) && !aborted) {
1326 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327 		}
1328 	}
1329 
1330 	ext4_es_unregister_shrinker(sbi);
1331 	timer_shutdown_sync(&sbi->s_err_report);
1332 	ext4_release_system_zone(sb);
1333 	ext4_mb_release(sb);
1334 	ext4_ext_release(sb);
1335 
1336 	if (!sb_rdonly(sb) && !aborted) {
1337 		ext4_clear_feature_journal_needs_recovery(sb);
1338 		ext4_clear_feature_orphan_present(sb);
1339 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340 	}
1341 	if (!sb_rdonly(sb))
1342 		ext4_commit_super(sb);
1343 
1344 	ext4_group_desc_free(sbi);
1345 	ext4_flex_groups_free(sbi);
1346 	ext4_percpu_param_destroy(sbi);
1347 #ifdef CONFIG_QUOTA
1348 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349 		kfree(get_qf_name(sb, sbi, i));
1350 #endif
1351 
1352 	/* Debugging code just in case the in-memory inode orphan list
1353 	 * isn't empty.  The on-disk one can be non-empty if we've
1354 	 * detected an error and taken the fs readonly, but the
1355 	 * in-memory list had better be clean by this point. */
1356 	if (!list_empty(&sbi->s_orphan))
1357 		dump_orphan_list(sb, sbi);
1358 	ASSERT(list_empty(&sbi->s_orphan));
1359 
1360 	sync_blockdev(sb->s_bdev);
1361 	invalidate_bdev(sb->s_bdev);
1362 	if (sbi->s_journal_bdev_file) {
1363 		/*
1364 		 * Invalidate the journal device's buffers.  We don't want them
1365 		 * floating about in memory - the physical journal device may
1366 		 * hotswapped, and it breaks the `ro-after' testing code.
1367 		 */
1368 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1369 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1370 	}
1371 
1372 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373 	sbi->s_ea_inode_cache = NULL;
1374 
1375 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376 	sbi->s_ea_block_cache = NULL;
1377 
1378 	ext4_stop_mmpd(sbi);
1379 
1380 	brelse(sbi->s_sbh);
1381 	sb->s_fs_info = NULL;
1382 	/*
1383 	 * Now that we are completely done shutting down the
1384 	 * superblock, we need to actually destroy the kobject.
1385 	 */
1386 	kobject_put(&sbi->s_kobj);
1387 	wait_for_completion(&sbi->s_kobj_unregister);
1388 	if (sbi->s_chksum_driver)
1389 		crypto_free_shash(sbi->s_chksum_driver);
1390 	kfree(sbi->s_blockgroup_lock);
1391 	fs_put_dax(sbi->s_daxdev, NULL);
1392 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393 #if IS_ENABLED(CONFIG_UNICODE)
1394 	utf8_unload(sb->s_encoding);
1395 #endif
1396 	kfree(sbi);
1397 }
1398 
1399 static struct kmem_cache *ext4_inode_cachep;
1400 
1401 /*
1402  * Called inside transaction, so use GFP_NOFS
1403  */
1404 static struct inode *ext4_alloc_inode(struct super_block *sb)
1405 {
1406 	struct ext4_inode_info *ei;
1407 
1408 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409 	if (!ei)
1410 		return NULL;
1411 
1412 	inode_set_iversion(&ei->vfs_inode, 1);
1413 	ei->i_flags = 0;
1414 	spin_lock_init(&ei->i_raw_lock);
1415 	ei->i_prealloc_node = RB_ROOT;
1416 	atomic_set(&ei->i_prealloc_active, 0);
1417 	rwlock_init(&ei->i_prealloc_lock);
1418 	ext4_es_init_tree(&ei->i_es_tree);
1419 	rwlock_init(&ei->i_es_lock);
1420 	INIT_LIST_HEAD(&ei->i_es_list);
1421 	ei->i_es_all_nr = 0;
1422 	ei->i_es_shk_nr = 0;
1423 	ei->i_es_shrink_lblk = 0;
1424 	ei->i_reserved_data_blocks = 0;
1425 	spin_lock_init(&(ei->i_block_reservation_lock));
1426 	ext4_init_pending_tree(&ei->i_pending_tree);
1427 #ifdef CONFIG_QUOTA
1428 	ei->i_reserved_quota = 0;
1429 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430 #endif
1431 	ei->jinode = NULL;
1432 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433 	spin_lock_init(&ei->i_completed_io_lock);
1434 	ei->i_sync_tid = 0;
1435 	ei->i_datasync_tid = 0;
1436 	atomic_set(&ei->i_unwritten, 0);
1437 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438 	ext4_fc_init_inode(&ei->vfs_inode);
1439 	mutex_init(&ei->i_fc_lock);
1440 	return &ei->vfs_inode;
1441 }
1442 
1443 static int ext4_drop_inode(struct inode *inode)
1444 {
1445 	int drop = generic_drop_inode(inode);
1446 
1447 	if (!drop)
1448 		drop = fscrypt_drop_inode(inode);
1449 
1450 	trace_ext4_drop_inode(inode, drop);
1451 	return drop;
1452 }
1453 
1454 static void ext4_free_in_core_inode(struct inode *inode)
1455 {
1456 	fscrypt_free_inode(inode);
1457 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458 		pr_warn("%s: inode %ld still in fc list",
1459 			__func__, inode->i_ino);
1460 	}
1461 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462 }
1463 
1464 static void ext4_destroy_inode(struct inode *inode)
1465 {
1466 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467 		ext4_msg(inode->i_sb, KERN_ERR,
1468 			 "Inode %lu (%p): orphan list check failed!",
1469 			 inode->i_ino, EXT4_I(inode));
1470 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472 				true);
1473 		dump_stack();
1474 	}
1475 
1476 	if (EXT4_I(inode)->i_reserved_data_blocks)
1477 		ext4_msg(inode->i_sb, KERN_ERR,
1478 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479 			 inode->i_ino, EXT4_I(inode),
1480 			 EXT4_I(inode)->i_reserved_data_blocks);
1481 }
1482 
1483 static void ext4_shutdown(struct super_block *sb)
1484 {
1485        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486 }
1487 
1488 static void init_once(void *foo)
1489 {
1490 	struct ext4_inode_info *ei = foo;
1491 
1492 	INIT_LIST_HEAD(&ei->i_orphan);
1493 	init_rwsem(&ei->xattr_sem);
1494 	init_rwsem(&ei->i_data_sem);
1495 	inode_init_once(&ei->vfs_inode);
1496 	ext4_fc_init_inode(&ei->vfs_inode);
1497 }
1498 
1499 static int __init init_inodecache(void)
1500 {
1501 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502 				sizeof(struct ext4_inode_info), 0,
1503 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1504 				offsetof(struct ext4_inode_info, i_data),
1505 				sizeof_field(struct ext4_inode_info, i_data),
1506 				init_once);
1507 	if (ext4_inode_cachep == NULL)
1508 		return -ENOMEM;
1509 	return 0;
1510 }
1511 
1512 static void destroy_inodecache(void)
1513 {
1514 	/*
1515 	 * Make sure all delayed rcu free inodes are flushed before we
1516 	 * destroy cache.
1517 	 */
1518 	rcu_barrier();
1519 	kmem_cache_destroy(ext4_inode_cachep);
1520 }
1521 
1522 void ext4_clear_inode(struct inode *inode)
1523 {
1524 	ext4_fc_del(inode);
1525 	invalidate_inode_buffers(inode);
1526 	clear_inode(inode);
1527 	ext4_discard_preallocations(inode);
1528 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1529 	dquot_drop(inode);
1530 	if (EXT4_I(inode)->jinode) {
1531 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532 					       EXT4_I(inode)->jinode);
1533 		jbd2_free_inode(EXT4_I(inode)->jinode);
1534 		EXT4_I(inode)->jinode = NULL;
1535 	}
1536 	fscrypt_put_encryption_info(inode);
1537 	fsverity_cleanup_inode(inode);
1538 }
1539 
1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541 					u64 ino, u32 generation)
1542 {
1543 	struct inode *inode;
1544 
1545 	/*
1546 	 * Currently we don't know the generation for parent directory, so
1547 	 * a generation of 0 means "accept any"
1548 	 */
1549 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1550 	if (IS_ERR(inode))
1551 		return ERR_CAST(inode);
1552 	if (generation && inode->i_generation != generation) {
1553 		iput(inode);
1554 		return ERR_PTR(-ESTALE);
1555 	}
1556 
1557 	return inode;
1558 }
1559 
1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561 					int fh_len, int fh_type)
1562 {
1563 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564 				    ext4_nfs_get_inode);
1565 }
1566 
1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568 					int fh_len, int fh_type)
1569 {
1570 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571 				    ext4_nfs_get_inode);
1572 }
1573 
1574 static int ext4_nfs_commit_metadata(struct inode *inode)
1575 {
1576 	struct writeback_control wbc = {
1577 		.sync_mode = WB_SYNC_ALL
1578 	};
1579 
1580 	trace_ext4_nfs_commit_metadata(inode);
1581 	return ext4_write_inode(inode, &wbc);
1582 }
1583 
1584 #ifdef CONFIG_QUOTA
1585 static const char * const quotatypes[] = INITQFNAMES;
1586 #define QTYPE2NAME(t) (quotatypes[t])
1587 
1588 static int ext4_write_dquot(struct dquot *dquot);
1589 static int ext4_acquire_dquot(struct dquot *dquot);
1590 static int ext4_release_dquot(struct dquot *dquot);
1591 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592 static int ext4_write_info(struct super_block *sb, int type);
1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594 			 const struct path *path);
1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 			       size_t len, loff_t off);
1597 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 				const char *data, size_t len, loff_t off);
1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 			     unsigned int flags);
1601 
1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1603 {
1604 	return EXT4_I(inode)->i_dquot;
1605 }
1606 
1607 static const struct dquot_operations ext4_quota_operations = {
1608 	.get_reserved_space	= ext4_get_reserved_space,
1609 	.write_dquot		= ext4_write_dquot,
1610 	.acquire_dquot		= ext4_acquire_dquot,
1611 	.release_dquot		= ext4_release_dquot,
1612 	.mark_dirty		= ext4_mark_dquot_dirty,
1613 	.write_info		= ext4_write_info,
1614 	.alloc_dquot		= dquot_alloc,
1615 	.destroy_dquot		= dquot_destroy,
1616 	.get_projid		= ext4_get_projid,
1617 	.get_inode_usage	= ext4_get_inode_usage,
1618 	.get_next_id		= dquot_get_next_id,
1619 };
1620 
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 	.quota_on	= ext4_quota_on,
1623 	.quota_off	= ext4_quota_off,
1624 	.quota_sync	= dquot_quota_sync,
1625 	.get_state	= dquot_get_state,
1626 	.set_info	= dquot_set_dqinfo,
1627 	.get_dqblk	= dquot_get_dqblk,
1628 	.set_dqblk	= dquot_set_dqblk,
1629 	.get_nextdqblk	= dquot_get_next_dqblk,
1630 };
1631 #endif
1632 
1633 static const struct super_operations ext4_sops = {
1634 	.alloc_inode	= ext4_alloc_inode,
1635 	.free_inode	= ext4_free_in_core_inode,
1636 	.destroy_inode	= ext4_destroy_inode,
1637 	.write_inode	= ext4_write_inode,
1638 	.dirty_inode	= ext4_dirty_inode,
1639 	.drop_inode	= ext4_drop_inode,
1640 	.evict_inode	= ext4_evict_inode,
1641 	.put_super	= ext4_put_super,
1642 	.sync_fs	= ext4_sync_fs,
1643 	.freeze_fs	= ext4_freeze,
1644 	.unfreeze_fs	= ext4_unfreeze,
1645 	.statfs		= ext4_statfs,
1646 	.show_options	= ext4_show_options,
1647 	.shutdown	= ext4_shutdown,
1648 #ifdef CONFIG_QUOTA
1649 	.quota_read	= ext4_quota_read,
1650 	.quota_write	= ext4_quota_write,
1651 	.get_dquots	= ext4_get_dquots,
1652 #endif
1653 };
1654 
1655 static const struct export_operations ext4_export_ops = {
1656 	.encode_fh = generic_encode_ino32_fh,
1657 	.fh_to_dentry = ext4_fh_to_dentry,
1658 	.fh_to_parent = ext4_fh_to_parent,
1659 	.get_parent = ext4_get_parent,
1660 	.commit_metadata = ext4_nfs_commit_metadata,
1661 };
1662 
1663 enum {
1664 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 	Opt_resgid, Opt_resuid, Opt_sb,
1666 	Opt_nouid32, Opt_debug, Opt_removed,
1667 	Opt_user_xattr, Opt_acl,
1668 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 	Opt_inlinecrypt,
1674 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1675 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1680 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 	Opt_dioread_nolock, Opt_dioread_lock,
1683 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691 
1692 static const struct constant_table ext4_param_errors[] = {
1693 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1694 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1695 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1696 	{}
1697 };
1698 
1699 static const struct constant_table ext4_param_data[] = {
1700 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1701 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1702 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1703 	{}
1704 };
1705 
1706 static const struct constant_table ext4_param_data_err[] = {
1707 	{"abort",	Opt_data_err_abort},
1708 	{"ignore",	Opt_data_err_ignore},
1709 	{}
1710 };
1711 
1712 static const struct constant_table ext4_param_jqfmt[] = {
1713 	{"vfsold",	QFMT_VFS_OLD},
1714 	{"vfsv0",	QFMT_VFS_V0},
1715 	{"vfsv1",	QFMT_VFS_V1},
1716 	{}
1717 };
1718 
1719 static const struct constant_table ext4_param_dax[] = {
1720 	{"always",	Opt_dax_always},
1721 	{"inode",	Opt_dax_inode},
1722 	{"never",	Opt_dax_never},
1723 	{}
1724 };
1725 
1726 /* String parameter that allows empty argument */
1727 #define fsparam_string_empty(NAME, OPT) \
1728 	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1729 
1730 /*
1731  * Mount option specification
1732  * We don't use fsparam_flag_no because of the way we set the
1733  * options and the way we show them in _ext4_show_options(). To
1734  * keep the changes to a minimum, let's keep the negative options
1735  * separate for now.
1736  */
1737 static const struct fs_parameter_spec ext4_param_specs[] = {
1738 	fsparam_flag	("bsddf",		Opt_bsd_df),
1739 	fsparam_flag	("minixdf",		Opt_minix_df),
1740 	fsparam_flag	("grpid",		Opt_grpid),
1741 	fsparam_flag	("bsdgroups",		Opt_grpid),
1742 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1743 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1744 	fsparam_u32	("resgid",		Opt_resgid),
1745 	fsparam_u32	("resuid",		Opt_resuid),
1746 	fsparam_u32	("sb",			Opt_sb),
1747 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1748 	fsparam_flag	("nouid32",		Opt_nouid32),
1749 	fsparam_flag	("debug",		Opt_debug),
1750 	fsparam_flag	("oldalloc",		Opt_removed),
1751 	fsparam_flag	("orlov",		Opt_removed),
1752 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1753 	fsparam_flag	("acl",			Opt_acl),
1754 	fsparam_flag	("norecovery",		Opt_noload),
1755 	fsparam_flag	("noload",		Opt_noload),
1756 	fsparam_flag	("bh",			Opt_removed),
1757 	fsparam_flag	("nobh",		Opt_removed),
1758 	fsparam_u32	("commit",		Opt_commit),
1759 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1760 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1761 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1762 	fsparam_bdev	("journal_path",	Opt_journal_path),
1763 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1764 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1765 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1766 	fsparam_flag	("abort",		Opt_abort),
1767 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1768 	fsparam_enum	("data_err",		Opt_data_err,
1769 						ext4_param_data_err),
1770 	fsparam_string_empty
1771 			("usrjquota",		Opt_usrjquota),
1772 	fsparam_string_empty
1773 			("grpjquota",		Opt_grpjquota),
1774 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1775 	fsparam_flag	("grpquota",		Opt_grpquota),
1776 	fsparam_flag	("quota",		Opt_quota),
1777 	fsparam_flag	("noquota",		Opt_noquota),
1778 	fsparam_flag	("usrquota",		Opt_usrquota),
1779 	fsparam_flag	("prjquota",		Opt_prjquota),
1780 	fsparam_flag	("barrier",		Opt_barrier),
1781 	fsparam_u32	("barrier",		Opt_barrier),
1782 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1783 	fsparam_flag	("i_version",		Opt_removed),
1784 	fsparam_flag	("dax",			Opt_dax),
1785 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1786 	fsparam_u32	("stripe",		Opt_stripe),
1787 	fsparam_flag	("delalloc",		Opt_delalloc),
1788 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1789 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1790 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1791 	fsparam_u32	("debug_want_extra_isize",
1792 						Opt_debug_want_extra_isize),
1793 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1794 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1795 	fsparam_flag	("block_validity",	Opt_block_validity),
1796 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1797 	fsparam_u32	("inode_readahead_blks",
1798 						Opt_inode_readahead_blks),
1799 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1800 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1801 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1802 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1803 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1804 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1805 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1806 	fsparam_flag	("discard",		Opt_discard),
1807 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1808 	fsparam_u32	("init_itable",		Opt_init_itable),
1809 	fsparam_flag	("init_itable",		Opt_init_itable),
1810 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1811 #ifdef CONFIG_EXT4_DEBUG
1812 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1813 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1814 #endif
1815 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1816 	fsparam_flag	("test_dummy_encryption",
1817 						Opt_test_dummy_encryption),
1818 	fsparam_string	("test_dummy_encryption",
1819 						Opt_test_dummy_encryption),
1820 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1821 	fsparam_flag	("nombcache",		Opt_nombcache),
1822 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1823 	fsparam_flag	("prefetch_block_bitmaps",
1824 						Opt_removed),
1825 	fsparam_flag	("no_prefetch_block_bitmaps",
1826 						Opt_no_prefetch_block_bitmaps),
1827 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1828 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1829 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1830 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1831 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1832 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1833 	{}
1834 };
1835 
1836 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1837 
1838 #define MOPT_SET	0x0001
1839 #define MOPT_CLEAR	0x0002
1840 #define MOPT_NOSUPPORT	0x0004
1841 #define MOPT_EXPLICIT	0x0008
1842 #ifdef CONFIG_QUOTA
1843 #define MOPT_Q		0
1844 #define MOPT_QFMT	0x0010
1845 #else
1846 #define MOPT_Q		MOPT_NOSUPPORT
1847 #define MOPT_QFMT	MOPT_NOSUPPORT
1848 #endif
1849 #define MOPT_NO_EXT2	0x0020
1850 #define MOPT_NO_EXT3	0x0040
1851 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1852 #define MOPT_SKIP	0x0080
1853 #define	MOPT_2		0x0100
1854 
1855 static const struct mount_opts {
1856 	int	token;
1857 	int	mount_opt;
1858 	int	flags;
1859 } ext4_mount_opts[] = {
1860 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1861 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1862 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1863 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1864 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1865 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1866 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1867 	 MOPT_EXT4_ONLY | MOPT_SET},
1868 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1869 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1870 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1871 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1872 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1873 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1874 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1875 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1876 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1877 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1878 	{Opt_commit, 0, MOPT_NO_EXT2},
1879 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1880 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1881 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1882 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1883 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1884 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1885 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1886 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1887 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1888 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1889 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1890 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1891 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1892 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1893 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1894 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1895 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1896 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1897 	{Opt_data, 0, MOPT_NO_EXT2},
1898 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1899 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1900 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1901 #else
1902 	{Opt_acl, 0, MOPT_NOSUPPORT},
1903 #endif
1904 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1905 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1906 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1907 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1908 							MOPT_SET | MOPT_Q},
1909 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1910 							MOPT_SET | MOPT_Q},
1911 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1912 							MOPT_SET | MOPT_Q},
1913 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1914 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1915 							MOPT_CLEAR | MOPT_Q},
1916 	{Opt_usrjquota, 0, MOPT_Q},
1917 	{Opt_grpjquota, 0, MOPT_Q},
1918 	{Opt_jqfmt, 0, MOPT_QFMT},
1919 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1920 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1921 	 MOPT_SET},
1922 #ifdef CONFIG_EXT4_DEBUG
1923 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1924 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1925 #endif
1926 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1927 	{Opt_err, 0, 0}
1928 };
1929 
1930 #if IS_ENABLED(CONFIG_UNICODE)
1931 static const struct ext4_sb_encodings {
1932 	__u16 magic;
1933 	char *name;
1934 	unsigned int version;
1935 } ext4_sb_encoding_map[] = {
1936 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1937 };
1938 
1939 static const struct ext4_sb_encodings *
1940 ext4_sb_read_encoding(const struct ext4_super_block *es)
1941 {
1942 	__u16 magic = le16_to_cpu(es->s_encoding);
1943 	int i;
1944 
1945 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1946 		if (magic == ext4_sb_encoding_map[i].magic)
1947 			return &ext4_sb_encoding_map[i];
1948 
1949 	return NULL;
1950 }
1951 #endif
1952 
1953 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1954 #define EXT4_SPEC_JQFMT				(1 <<  1)
1955 #define EXT4_SPEC_DATAJ				(1 <<  2)
1956 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1957 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1958 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1959 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1960 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1961 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1962 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1963 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1964 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1965 #define EXT4_SPEC_s_stripe			(1 << 13)
1966 #define EXT4_SPEC_s_resuid			(1 << 14)
1967 #define EXT4_SPEC_s_resgid			(1 << 15)
1968 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1969 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1970 #define EXT4_SPEC_s_sb_block			(1 << 18)
1971 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1972 
1973 struct ext4_fs_context {
1974 	char		*s_qf_names[EXT4_MAXQUOTAS];
1975 	struct fscrypt_dummy_policy dummy_enc_policy;
1976 	int		s_jquota_fmt;	/* Format of quota to use */
1977 #ifdef CONFIG_EXT4_DEBUG
1978 	int s_fc_debug_max_replay;
1979 #endif
1980 	unsigned short	qname_spec;
1981 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1982 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1983 	unsigned long	journal_devnum;
1984 	unsigned long	s_commit_interval;
1985 	unsigned long	s_stripe;
1986 	unsigned int	s_inode_readahead_blks;
1987 	unsigned int	s_want_extra_isize;
1988 	unsigned int	s_li_wait_mult;
1989 	unsigned int	s_max_dir_size_kb;
1990 	unsigned int	journal_ioprio;
1991 	unsigned int	vals_s_mount_opt;
1992 	unsigned int	mask_s_mount_opt;
1993 	unsigned int	vals_s_mount_opt2;
1994 	unsigned int	mask_s_mount_opt2;
1995 	unsigned int	opt_flags;	/* MOPT flags */
1996 	unsigned int	spec;
1997 	u32		s_max_batch_time;
1998 	u32		s_min_batch_time;
1999 	kuid_t		s_resuid;
2000 	kgid_t		s_resgid;
2001 	ext4_fsblk_t	s_sb_block;
2002 };
2003 
2004 static void ext4_fc_free(struct fs_context *fc)
2005 {
2006 	struct ext4_fs_context *ctx = fc->fs_private;
2007 	int i;
2008 
2009 	if (!ctx)
2010 		return;
2011 
2012 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2013 		kfree(ctx->s_qf_names[i]);
2014 
2015 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2016 	kfree(ctx);
2017 }
2018 
2019 int ext4_init_fs_context(struct fs_context *fc)
2020 {
2021 	struct ext4_fs_context *ctx;
2022 
2023 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2024 	if (!ctx)
2025 		return -ENOMEM;
2026 
2027 	fc->fs_private = ctx;
2028 	fc->ops = &ext4_context_ops;
2029 
2030 	return 0;
2031 }
2032 
2033 #ifdef CONFIG_QUOTA
2034 /*
2035  * Note the name of the specified quota file.
2036  */
2037 static int note_qf_name(struct fs_context *fc, int qtype,
2038 		       struct fs_parameter *param)
2039 {
2040 	struct ext4_fs_context *ctx = fc->fs_private;
2041 	char *qname;
2042 
2043 	if (param->size < 1) {
2044 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2045 		return -EINVAL;
2046 	}
2047 	if (strchr(param->string, '/')) {
2048 		ext4_msg(NULL, KERN_ERR,
2049 			 "quotafile must be on filesystem root");
2050 		return -EINVAL;
2051 	}
2052 	if (ctx->s_qf_names[qtype]) {
2053 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2054 			ext4_msg(NULL, KERN_ERR,
2055 				 "%s quota file already specified",
2056 				 QTYPE2NAME(qtype));
2057 			return -EINVAL;
2058 		}
2059 		return 0;
2060 	}
2061 
2062 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2063 	if (!qname) {
2064 		ext4_msg(NULL, KERN_ERR,
2065 			 "Not enough memory for storing quotafile name");
2066 		return -ENOMEM;
2067 	}
2068 	ctx->s_qf_names[qtype] = qname;
2069 	ctx->qname_spec |= 1 << qtype;
2070 	ctx->spec |= EXT4_SPEC_JQUOTA;
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Clear the name of the specified quota file.
2076  */
2077 static int unnote_qf_name(struct fs_context *fc, int qtype)
2078 {
2079 	struct ext4_fs_context *ctx = fc->fs_private;
2080 
2081 	if (ctx->s_qf_names[qtype])
2082 		kfree(ctx->s_qf_names[qtype]);
2083 
2084 	ctx->s_qf_names[qtype] = NULL;
2085 	ctx->qname_spec |= 1 << qtype;
2086 	ctx->spec |= EXT4_SPEC_JQUOTA;
2087 	return 0;
2088 }
2089 #endif
2090 
2091 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2092 					    struct ext4_fs_context *ctx)
2093 {
2094 	int err;
2095 
2096 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2097 		ext4_msg(NULL, KERN_WARNING,
2098 			 "test_dummy_encryption option not supported");
2099 		return -EINVAL;
2100 	}
2101 	err = fscrypt_parse_test_dummy_encryption(param,
2102 						  &ctx->dummy_enc_policy);
2103 	if (err == -EINVAL) {
2104 		ext4_msg(NULL, KERN_WARNING,
2105 			 "Value of option \"%s\" is unrecognized", param->key);
2106 	} else if (err == -EEXIST) {
2107 		ext4_msg(NULL, KERN_WARNING,
2108 			 "Conflicting test_dummy_encryption options");
2109 		return -EINVAL;
2110 	}
2111 	return err;
2112 }
2113 
2114 #define EXT4_SET_CTX(name)						\
2115 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2116 				  unsigned long flag)			\
2117 {									\
2118 	ctx->mask_s_##name |= flag;					\
2119 	ctx->vals_s_##name |= flag;					\
2120 }
2121 
2122 #define EXT4_CLEAR_CTX(name)						\
2123 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2124 				    unsigned long flag)			\
2125 {									\
2126 	ctx->mask_s_##name |= flag;					\
2127 	ctx->vals_s_##name &= ~flag;					\
2128 }
2129 
2130 #define EXT4_TEST_CTX(name)						\
2131 static inline unsigned long						\
2132 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2133 {									\
2134 	return (ctx->vals_s_##name & flag);				\
2135 }
2136 
2137 EXT4_SET_CTX(flags); /* set only */
2138 EXT4_SET_CTX(mount_opt);
2139 EXT4_CLEAR_CTX(mount_opt);
2140 EXT4_TEST_CTX(mount_opt);
2141 EXT4_SET_CTX(mount_opt2);
2142 EXT4_CLEAR_CTX(mount_opt2);
2143 EXT4_TEST_CTX(mount_opt2);
2144 
2145 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2146 {
2147 	struct ext4_fs_context *ctx = fc->fs_private;
2148 	struct fs_parse_result result;
2149 	const struct mount_opts *m;
2150 	int is_remount;
2151 	kuid_t uid;
2152 	kgid_t gid;
2153 	int token;
2154 
2155 	token = fs_parse(fc, ext4_param_specs, param, &result);
2156 	if (token < 0)
2157 		return token;
2158 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2159 
2160 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2161 		if (token == m->token)
2162 			break;
2163 
2164 	ctx->opt_flags |= m->flags;
2165 
2166 	if (m->flags & MOPT_EXPLICIT) {
2167 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2168 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2169 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2170 			ctx_set_mount_opt2(ctx,
2171 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2172 		} else
2173 			return -EINVAL;
2174 	}
2175 
2176 	if (m->flags & MOPT_NOSUPPORT) {
2177 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2178 			 param->key);
2179 		return 0;
2180 	}
2181 
2182 	switch (token) {
2183 #ifdef CONFIG_QUOTA
2184 	case Opt_usrjquota:
2185 		if (!*param->string)
2186 			return unnote_qf_name(fc, USRQUOTA);
2187 		else
2188 			return note_qf_name(fc, USRQUOTA, param);
2189 	case Opt_grpjquota:
2190 		if (!*param->string)
2191 			return unnote_qf_name(fc, GRPQUOTA);
2192 		else
2193 			return note_qf_name(fc, GRPQUOTA, param);
2194 #endif
2195 	case Opt_sb:
2196 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2197 			ext4_msg(NULL, KERN_WARNING,
2198 				 "Ignoring %s option on remount", param->key);
2199 		} else {
2200 			ctx->s_sb_block = result.uint_32;
2201 			ctx->spec |= EXT4_SPEC_s_sb_block;
2202 		}
2203 		return 0;
2204 	case Opt_removed:
2205 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2206 			 param->key);
2207 		return 0;
2208 	case Opt_inlinecrypt:
2209 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2210 		ctx_set_flags(ctx, SB_INLINECRYPT);
2211 #else
2212 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2213 #endif
2214 		return 0;
2215 	case Opt_errors:
2216 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2217 		ctx_set_mount_opt(ctx, result.uint_32);
2218 		return 0;
2219 #ifdef CONFIG_QUOTA
2220 	case Opt_jqfmt:
2221 		ctx->s_jquota_fmt = result.uint_32;
2222 		ctx->spec |= EXT4_SPEC_JQFMT;
2223 		return 0;
2224 #endif
2225 	case Opt_data:
2226 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2227 		ctx_set_mount_opt(ctx, result.uint_32);
2228 		ctx->spec |= EXT4_SPEC_DATAJ;
2229 		return 0;
2230 	case Opt_commit:
2231 		if (result.uint_32 == 0)
2232 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2233 		else if (result.uint_32 > INT_MAX / HZ) {
2234 			ext4_msg(NULL, KERN_ERR,
2235 				 "Invalid commit interval %d, "
2236 				 "must be smaller than %d",
2237 				 result.uint_32, INT_MAX / HZ);
2238 			return -EINVAL;
2239 		}
2240 		ctx->s_commit_interval = HZ * result.uint_32;
2241 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2242 		return 0;
2243 	case Opt_debug_want_extra_isize:
2244 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2245 			ext4_msg(NULL, KERN_ERR,
2246 				 "Invalid want_extra_isize %d", result.uint_32);
2247 			return -EINVAL;
2248 		}
2249 		ctx->s_want_extra_isize = result.uint_32;
2250 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2251 		return 0;
2252 	case Opt_max_batch_time:
2253 		ctx->s_max_batch_time = result.uint_32;
2254 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2255 		return 0;
2256 	case Opt_min_batch_time:
2257 		ctx->s_min_batch_time = result.uint_32;
2258 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2259 		return 0;
2260 	case Opt_inode_readahead_blks:
2261 		if (result.uint_32 &&
2262 		    (result.uint_32 > (1 << 30) ||
2263 		     !is_power_of_2(result.uint_32))) {
2264 			ext4_msg(NULL, KERN_ERR,
2265 				 "EXT4-fs: inode_readahead_blks must be "
2266 				 "0 or a power of 2 smaller than 2^31");
2267 			return -EINVAL;
2268 		}
2269 		ctx->s_inode_readahead_blks = result.uint_32;
2270 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2271 		return 0;
2272 	case Opt_init_itable:
2273 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2274 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2275 		if (param->type == fs_value_is_string)
2276 			ctx->s_li_wait_mult = result.uint_32;
2277 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2278 		return 0;
2279 	case Opt_max_dir_size_kb:
2280 		ctx->s_max_dir_size_kb = result.uint_32;
2281 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2282 		return 0;
2283 #ifdef CONFIG_EXT4_DEBUG
2284 	case Opt_fc_debug_max_replay:
2285 		ctx->s_fc_debug_max_replay = result.uint_32;
2286 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2287 		return 0;
2288 #endif
2289 	case Opt_stripe:
2290 		ctx->s_stripe = result.uint_32;
2291 		ctx->spec |= EXT4_SPEC_s_stripe;
2292 		return 0;
2293 	case Opt_resuid:
2294 		uid = make_kuid(current_user_ns(), result.uint_32);
2295 		if (!uid_valid(uid)) {
2296 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2297 				 result.uint_32);
2298 			return -EINVAL;
2299 		}
2300 		ctx->s_resuid = uid;
2301 		ctx->spec |= EXT4_SPEC_s_resuid;
2302 		return 0;
2303 	case Opt_resgid:
2304 		gid = make_kgid(current_user_ns(), result.uint_32);
2305 		if (!gid_valid(gid)) {
2306 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2307 				 result.uint_32);
2308 			return -EINVAL;
2309 		}
2310 		ctx->s_resgid = gid;
2311 		ctx->spec |= EXT4_SPEC_s_resgid;
2312 		return 0;
2313 	case Opt_journal_dev:
2314 		if (is_remount) {
2315 			ext4_msg(NULL, KERN_ERR,
2316 				 "Cannot specify journal on remount");
2317 			return -EINVAL;
2318 		}
2319 		ctx->journal_devnum = result.uint_32;
2320 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321 		return 0;
2322 	case Opt_journal_path:
2323 	{
2324 		struct inode *journal_inode;
2325 		struct path path;
2326 		int error;
2327 
2328 		if (is_remount) {
2329 			ext4_msg(NULL, KERN_ERR,
2330 				 "Cannot specify journal on remount");
2331 			return -EINVAL;
2332 		}
2333 
2334 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2335 		if (error) {
2336 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2337 				 "journal device path");
2338 			return -EINVAL;
2339 		}
2340 
2341 		journal_inode = d_inode(path.dentry);
2342 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2343 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2344 		path_put(&path);
2345 		return 0;
2346 	}
2347 	case Opt_journal_ioprio:
2348 		if (result.uint_32 > 7) {
2349 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2350 				 " (must be 0-7)");
2351 			return -EINVAL;
2352 		}
2353 		ctx->journal_ioprio =
2354 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2355 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2356 		return 0;
2357 	case Opt_test_dummy_encryption:
2358 		return ext4_parse_test_dummy_encryption(param, ctx);
2359 	case Opt_dax:
2360 	case Opt_dax_type:
2361 #ifdef CONFIG_FS_DAX
2362 	{
2363 		int type = (token == Opt_dax) ?
2364 			   Opt_dax : result.uint_32;
2365 
2366 		switch (type) {
2367 		case Opt_dax:
2368 		case Opt_dax_always:
2369 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2370 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2371 			break;
2372 		case Opt_dax_never:
2373 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2374 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2375 			break;
2376 		case Opt_dax_inode:
2377 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2378 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2379 			/* Strictly for printing options */
2380 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2381 			break;
2382 		}
2383 		return 0;
2384 	}
2385 #else
2386 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2387 		return -EINVAL;
2388 #endif
2389 	case Opt_data_err:
2390 		if (result.uint_32 == Opt_data_err_abort)
2391 			ctx_set_mount_opt(ctx, m->mount_opt);
2392 		else if (result.uint_32 == Opt_data_err_ignore)
2393 			ctx_clear_mount_opt(ctx, m->mount_opt);
2394 		return 0;
2395 	case Opt_mb_optimize_scan:
2396 		if (result.int_32 == 1) {
2397 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2398 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2399 		} else if (result.int_32 == 0) {
2400 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2401 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2402 		} else {
2403 			ext4_msg(NULL, KERN_WARNING,
2404 				 "mb_optimize_scan should be set to 0 or 1.");
2405 			return -EINVAL;
2406 		}
2407 		return 0;
2408 	}
2409 
2410 	/*
2411 	 * At this point we should only be getting options requiring MOPT_SET,
2412 	 * or MOPT_CLEAR. Anything else is a bug
2413 	 */
2414 	if (m->token == Opt_err) {
2415 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2416 			 param->key);
2417 		WARN_ON(1);
2418 		return -EINVAL;
2419 	}
2420 
2421 	else {
2422 		unsigned int set = 0;
2423 
2424 		if ((param->type == fs_value_is_flag) ||
2425 		    result.uint_32 > 0)
2426 			set = 1;
2427 
2428 		if (m->flags & MOPT_CLEAR)
2429 			set = !set;
2430 		else if (unlikely(!(m->flags & MOPT_SET))) {
2431 			ext4_msg(NULL, KERN_WARNING,
2432 				 "buggy handling of option %s",
2433 				 param->key);
2434 			WARN_ON(1);
2435 			return -EINVAL;
2436 		}
2437 		if (m->flags & MOPT_2) {
2438 			if (set != 0)
2439 				ctx_set_mount_opt2(ctx, m->mount_opt);
2440 			else
2441 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2442 		} else {
2443 			if (set != 0)
2444 				ctx_set_mount_opt(ctx, m->mount_opt);
2445 			else
2446 				ctx_clear_mount_opt(ctx, m->mount_opt);
2447 		}
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static int parse_options(struct fs_context *fc, char *options)
2454 {
2455 	struct fs_parameter param;
2456 	int ret;
2457 	char *key;
2458 
2459 	if (!options)
2460 		return 0;
2461 
2462 	while ((key = strsep(&options, ",")) != NULL) {
2463 		if (*key) {
2464 			size_t v_len = 0;
2465 			char *value = strchr(key, '=');
2466 
2467 			param.type = fs_value_is_flag;
2468 			param.string = NULL;
2469 
2470 			if (value) {
2471 				if (value == key)
2472 					continue;
2473 
2474 				*value++ = 0;
2475 				v_len = strlen(value);
2476 				param.string = kmemdup_nul(value, v_len,
2477 							   GFP_KERNEL);
2478 				if (!param.string)
2479 					return -ENOMEM;
2480 				param.type = fs_value_is_string;
2481 			}
2482 
2483 			param.key = key;
2484 			param.size = v_len;
2485 
2486 			ret = ext4_parse_param(fc, &param);
2487 			if (param.string)
2488 				kfree(param.string);
2489 			if (ret < 0)
2490 				return ret;
2491 		}
2492 	}
2493 
2494 	ret = ext4_validate_options(fc);
2495 	if (ret < 0)
2496 		return ret;
2497 
2498 	return 0;
2499 }
2500 
2501 static int parse_apply_sb_mount_options(struct super_block *sb,
2502 					struct ext4_fs_context *m_ctx)
2503 {
2504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 	char *s_mount_opts = NULL;
2506 	struct ext4_fs_context *s_ctx = NULL;
2507 	struct fs_context *fc = NULL;
2508 	int ret = -ENOMEM;
2509 
2510 	if (!sbi->s_es->s_mount_opts[0])
2511 		return 0;
2512 
2513 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2514 				sizeof(sbi->s_es->s_mount_opts),
2515 				GFP_KERNEL);
2516 	if (!s_mount_opts)
2517 		return ret;
2518 
2519 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2520 	if (!fc)
2521 		goto out_free;
2522 
2523 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2524 	if (!s_ctx)
2525 		goto out_free;
2526 
2527 	fc->fs_private = s_ctx;
2528 	fc->s_fs_info = sbi;
2529 
2530 	ret = parse_options(fc, s_mount_opts);
2531 	if (ret < 0)
2532 		goto parse_failed;
2533 
2534 	ret = ext4_check_opt_consistency(fc, sb);
2535 	if (ret < 0) {
2536 parse_failed:
2537 		ext4_msg(sb, KERN_WARNING,
2538 			 "failed to parse options in superblock: %s",
2539 			 s_mount_opts);
2540 		ret = 0;
2541 		goto out_free;
2542 	}
2543 
2544 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2545 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2546 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2547 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2548 
2549 	ext4_apply_options(fc, sb);
2550 	ret = 0;
2551 
2552 out_free:
2553 	if (fc) {
2554 		ext4_fc_free(fc);
2555 		kfree(fc);
2556 	}
2557 	kfree(s_mount_opts);
2558 	return ret;
2559 }
2560 
2561 static void ext4_apply_quota_options(struct fs_context *fc,
2562 				     struct super_block *sb)
2563 {
2564 #ifdef CONFIG_QUOTA
2565 	bool quota_feature = ext4_has_feature_quota(sb);
2566 	struct ext4_fs_context *ctx = fc->fs_private;
2567 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2568 	char *qname;
2569 	int i;
2570 
2571 	if (quota_feature)
2572 		return;
2573 
2574 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2575 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2576 			if (!(ctx->qname_spec & (1 << i)))
2577 				continue;
2578 
2579 			qname = ctx->s_qf_names[i]; /* May be NULL */
2580 			if (qname)
2581 				set_opt(sb, QUOTA);
2582 			ctx->s_qf_names[i] = NULL;
2583 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2584 						lockdep_is_held(&sb->s_umount));
2585 			if (qname)
2586 				kfree_rcu_mightsleep(qname);
2587 		}
2588 	}
2589 
2590 	if (ctx->spec & EXT4_SPEC_JQFMT)
2591 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2592 #endif
2593 }
2594 
2595 /*
2596  * Check quota settings consistency.
2597  */
2598 static int ext4_check_quota_consistency(struct fs_context *fc,
2599 					struct super_block *sb)
2600 {
2601 #ifdef CONFIG_QUOTA
2602 	struct ext4_fs_context *ctx = fc->fs_private;
2603 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2604 	bool quota_feature = ext4_has_feature_quota(sb);
2605 	bool quota_loaded = sb_any_quota_loaded(sb);
2606 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2607 	int quota_flags, i;
2608 
2609 	/*
2610 	 * We do the test below only for project quotas. 'usrquota' and
2611 	 * 'grpquota' mount options are allowed even without quota feature
2612 	 * to support legacy quotas in quota files.
2613 	 */
2614 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2615 	    !ext4_has_feature_project(sb)) {
2616 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2617 			 "Cannot enable project quota enforcement.");
2618 		return -EINVAL;
2619 	}
2620 
2621 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2622 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2623 	if (quota_loaded &&
2624 	    ctx->mask_s_mount_opt & quota_flags &&
2625 	    !ctx_test_mount_opt(ctx, quota_flags))
2626 		goto err_quota_change;
2627 
2628 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2629 
2630 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2631 			if (!(ctx->qname_spec & (1 << i)))
2632 				continue;
2633 
2634 			if (quota_loaded &&
2635 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2636 				goto err_jquota_change;
2637 
2638 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2639 			    strcmp(get_qf_name(sb, sbi, i),
2640 				   ctx->s_qf_names[i]) != 0)
2641 				goto err_jquota_specified;
2642 		}
2643 
2644 		if (quota_feature) {
2645 			ext4_msg(NULL, KERN_INFO,
2646 				 "Journaled quota options ignored when "
2647 				 "QUOTA feature is enabled");
2648 			return 0;
2649 		}
2650 	}
2651 
2652 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2653 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2654 			goto err_jquota_change;
2655 		if (quota_feature) {
2656 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2657 				 "ignored when QUOTA feature is enabled");
2658 			return 0;
2659 		}
2660 	}
2661 
2662 	/* Make sure we don't mix old and new quota format */
2663 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2664 		       ctx->s_qf_names[USRQUOTA]);
2665 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2666 		       ctx->s_qf_names[GRPQUOTA]);
2667 
2668 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2669 		    test_opt(sb, USRQUOTA));
2670 
2671 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2672 		    test_opt(sb, GRPQUOTA));
2673 
2674 	if (usr_qf_name) {
2675 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2676 		usrquota = false;
2677 	}
2678 	if (grp_qf_name) {
2679 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2680 		grpquota = false;
2681 	}
2682 
2683 	if (usr_qf_name || grp_qf_name) {
2684 		if (usrquota || grpquota) {
2685 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2686 				 "format mixing");
2687 			return -EINVAL;
2688 		}
2689 
2690 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2691 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2692 				 "not specified");
2693 			return -EINVAL;
2694 		}
2695 	}
2696 
2697 	return 0;
2698 
2699 err_quota_change:
2700 	ext4_msg(NULL, KERN_ERR,
2701 		 "Cannot change quota options when quota turned on");
2702 	return -EINVAL;
2703 err_jquota_change:
2704 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2705 		 "options when quota turned on");
2706 	return -EINVAL;
2707 err_jquota_specified:
2708 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2709 		 QTYPE2NAME(i));
2710 	return -EINVAL;
2711 #else
2712 	return 0;
2713 #endif
2714 }
2715 
2716 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2717 					    struct super_block *sb)
2718 {
2719 	const struct ext4_fs_context *ctx = fc->fs_private;
2720 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 
2722 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2723 		return 0;
2724 
2725 	if (!ext4_has_feature_encrypt(sb)) {
2726 		ext4_msg(NULL, KERN_WARNING,
2727 			 "test_dummy_encryption requires encrypt feature");
2728 		return -EINVAL;
2729 	}
2730 	/*
2731 	 * This mount option is just for testing, and it's not worthwhile to
2732 	 * implement the extra complexity (e.g. RCU protection) that would be
2733 	 * needed to allow it to be set or changed during remount.  We do allow
2734 	 * it to be specified during remount, but only if there is no change.
2735 	 */
2736 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2737 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2738 						 &ctx->dummy_enc_policy))
2739 			return 0;
2740 		ext4_msg(NULL, KERN_WARNING,
2741 			 "Can't set or change test_dummy_encryption on remount");
2742 		return -EINVAL;
2743 	}
2744 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2745 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2746 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2747 						 &ctx->dummy_enc_policy))
2748 			return 0;
2749 		ext4_msg(NULL, KERN_WARNING,
2750 			 "Conflicting test_dummy_encryption options");
2751 		return -EINVAL;
2752 	}
2753 	return 0;
2754 }
2755 
2756 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2757 					     struct super_block *sb)
2758 {
2759 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2760 	    /* if already set, it was already verified to be the same */
2761 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2762 		return;
2763 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2764 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2765 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2766 }
2767 
2768 static int ext4_check_opt_consistency(struct fs_context *fc,
2769 				      struct super_block *sb)
2770 {
2771 	struct ext4_fs_context *ctx = fc->fs_private;
2772 	struct ext4_sb_info *sbi = fc->s_fs_info;
2773 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2774 	int err;
2775 
2776 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2777 		ext4_msg(NULL, KERN_ERR,
2778 			 "Mount option(s) incompatible with ext2");
2779 		return -EINVAL;
2780 	}
2781 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2782 		ext4_msg(NULL, KERN_ERR,
2783 			 "Mount option(s) incompatible with ext3");
2784 		return -EINVAL;
2785 	}
2786 
2787 	if (ctx->s_want_extra_isize >
2788 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2789 		ext4_msg(NULL, KERN_ERR,
2790 			 "Invalid want_extra_isize %d",
2791 			 ctx->s_want_extra_isize);
2792 		return -EINVAL;
2793 	}
2794 
2795 	err = ext4_check_test_dummy_encryption(fc, sb);
2796 	if (err)
2797 		return err;
2798 
2799 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2800 		if (!sbi->s_journal) {
2801 			ext4_msg(NULL, KERN_WARNING,
2802 				 "Remounting file system with no journal "
2803 				 "so ignoring journalled data option");
2804 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2805 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2806 			   test_opt(sb, DATA_FLAGS)) {
2807 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2808 				 "on remount");
2809 			return -EINVAL;
2810 		}
2811 	}
2812 
2813 	if (is_remount) {
2814 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2815 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2816 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2817 				 "both data=journal and dax");
2818 			return -EINVAL;
2819 		}
2820 
2821 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2822 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2823 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2824 fail_dax_change_remount:
2825 			ext4_msg(NULL, KERN_ERR, "can't change "
2826 				 "dax mount option while remounting");
2827 			return -EINVAL;
2828 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2829 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2830 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2831 			goto fail_dax_change_remount;
2832 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2833 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2834 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2835 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2836 			goto fail_dax_change_remount;
2837 		}
2838 	}
2839 
2840 	return ext4_check_quota_consistency(fc, sb);
2841 }
2842 
2843 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2844 {
2845 	struct ext4_fs_context *ctx = fc->fs_private;
2846 	struct ext4_sb_info *sbi = fc->s_fs_info;
2847 
2848 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2849 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2850 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2851 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2852 	sb->s_flags &= ~ctx->mask_s_flags;
2853 	sb->s_flags |= ctx->vals_s_flags;
2854 
2855 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2856 	APPLY(s_commit_interval);
2857 	APPLY(s_stripe);
2858 	APPLY(s_max_batch_time);
2859 	APPLY(s_min_batch_time);
2860 	APPLY(s_want_extra_isize);
2861 	APPLY(s_inode_readahead_blks);
2862 	APPLY(s_max_dir_size_kb);
2863 	APPLY(s_li_wait_mult);
2864 	APPLY(s_resgid);
2865 	APPLY(s_resuid);
2866 
2867 #ifdef CONFIG_EXT4_DEBUG
2868 	APPLY(s_fc_debug_max_replay);
2869 #endif
2870 
2871 	ext4_apply_quota_options(fc, sb);
2872 	ext4_apply_test_dummy_encryption(ctx, sb);
2873 }
2874 
2875 
2876 static int ext4_validate_options(struct fs_context *fc)
2877 {
2878 #ifdef CONFIG_QUOTA
2879 	struct ext4_fs_context *ctx = fc->fs_private;
2880 	char *usr_qf_name, *grp_qf_name;
2881 
2882 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2883 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2884 
2885 	if (usr_qf_name || grp_qf_name) {
2886 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2887 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2888 
2889 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2890 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2891 
2892 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2893 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2894 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2895 				 "format mixing");
2896 			return -EINVAL;
2897 		}
2898 	}
2899 #endif
2900 	return 1;
2901 }
2902 
2903 static inline void ext4_show_quota_options(struct seq_file *seq,
2904 					   struct super_block *sb)
2905 {
2906 #if defined(CONFIG_QUOTA)
2907 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2908 	char *usr_qf_name, *grp_qf_name;
2909 
2910 	if (sbi->s_jquota_fmt) {
2911 		char *fmtname = "";
2912 
2913 		switch (sbi->s_jquota_fmt) {
2914 		case QFMT_VFS_OLD:
2915 			fmtname = "vfsold";
2916 			break;
2917 		case QFMT_VFS_V0:
2918 			fmtname = "vfsv0";
2919 			break;
2920 		case QFMT_VFS_V1:
2921 			fmtname = "vfsv1";
2922 			break;
2923 		}
2924 		seq_printf(seq, ",jqfmt=%s", fmtname);
2925 	}
2926 
2927 	rcu_read_lock();
2928 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2929 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2930 	if (usr_qf_name)
2931 		seq_show_option(seq, "usrjquota", usr_qf_name);
2932 	if (grp_qf_name)
2933 		seq_show_option(seq, "grpjquota", grp_qf_name);
2934 	rcu_read_unlock();
2935 #endif
2936 }
2937 
2938 static const char *token2str(int token)
2939 {
2940 	const struct fs_parameter_spec *spec;
2941 
2942 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2943 		if (spec->opt == token && !spec->type)
2944 			break;
2945 	return spec->name;
2946 }
2947 
2948 /*
2949  * Show an option if
2950  *  - it's set to a non-default value OR
2951  *  - if the per-sb default is different from the global default
2952  */
2953 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2954 			      int nodefs)
2955 {
2956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2957 	struct ext4_super_block *es = sbi->s_es;
2958 	int def_errors;
2959 	const struct mount_opts *m;
2960 	char sep = nodefs ? '\n' : ',';
2961 
2962 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2963 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2964 
2965 	if (sbi->s_sb_block != 1)
2966 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2967 
2968 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2969 		int want_set = m->flags & MOPT_SET;
2970 		int opt_2 = m->flags & MOPT_2;
2971 		unsigned int mount_opt, def_mount_opt;
2972 
2973 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2974 		    m->flags & MOPT_SKIP)
2975 			continue;
2976 
2977 		if (opt_2) {
2978 			mount_opt = sbi->s_mount_opt2;
2979 			def_mount_opt = sbi->s_def_mount_opt2;
2980 		} else {
2981 			mount_opt = sbi->s_mount_opt;
2982 			def_mount_opt = sbi->s_def_mount_opt;
2983 		}
2984 		/* skip if same as the default */
2985 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2986 			continue;
2987 		/* select Opt_noFoo vs Opt_Foo */
2988 		if ((want_set &&
2989 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2990 		    (!want_set && (mount_opt & m->mount_opt)))
2991 			continue;
2992 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2993 	}
2994 
2995 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2996 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2997 		SEQ_OPTS_PRINT("resuid=%u",
2998 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2999 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3000 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3001 		SEQ_OPTS_PRINT("resgid=%u",
3002 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3003 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3004 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3005 		SEQ_OPTS_PUTS("errors=remount-ro");
3006 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3007 		SEQ_OPTS_PUTS("errors=continue");
3008 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3009 		SEQ_OPTS_PUTS("errors=panic");
3010 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3011 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3012 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3013 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3014 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3015 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3016 	if (nodefs || sbi->s_stripe)
3017 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3018 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3019 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3020 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3021 			SEQ_OPTS_PUTS("data=journal");
3022 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3023 			SEQ_OPTS_PUTS("data=ordered");
3024 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3025 			SEQ_OPTS_PUTS("data=writeback");
3026 	}
3027 	if (nodefs ||
3028 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3029 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3030 			       sbi->s_inode_readahead_blks);
3031 
3032 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3033 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3034 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3035 	if (nodefs || sbi->s_max_dir_size_kb)
3036 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3037 	if (test_opt(sb, DATA_ERR_ABORT))
3038 		SEQ_OPTS_PUTS("data_err=abort");
3039 
3040 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3041 
3042 	if (sb->s_flags & SB_INLINECRYPT)
3043 		SEQ_OPTS_PUTS("inlinecrypt");
3044 
3045 	if (test_opt(sb, DAX_ALWAYS)) {
3046 		if (IS_EXT2_SB(sb))
3047 			SEQ_OPTS_PUTS("dax");
3048 		else
3049 			SEQ_OPTS_PUTS("dax=always");
3050 	} else if (test_opt2(sb, DAX_NEVER)) {
3051 		SEQ_OPTS_PUTS("dax=never");
3052 	} else if (test_opt2(sb, DAX_INODE)) {
3053 		SEQ_OPTS_PUTS("dax=inode");
3054 	}
3055 
3056 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3057 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3058 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3059 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3060 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3061 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3062 	}
3063 
3064 	ext4_show_quota_options(seq, sb);
3065 	return 0;
3066 }
3067 
3068 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3069 {
3070 	return _ext4_show_options(seq, root->d_sb, 0);
3071 }
3072 
3073 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3074 {
3075 	struct super_block *sb = seq->private;
3076 	int rc;
3077 
3078 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3079 	rc = _ext4_show_options(seq, sb, 1);
3080 	seq_puts(seq, "\n");
3081 	return rc;
3082 }
3083 
3084 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3085 			    int read_only)
3086 {
3087 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3088 	int err = 0;
3089 
3090 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3091 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3092 			 "forcing read-only mode");
3093 		err = -EROFS;
3094 		goto done;
3095 	}
3096 	if (read_only)
3097 		goto done;
3098 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3099 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3100 			 "running e2fsck is recommended");
3101 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3102 		ext4_msg(sb, KERN_WARNING,
3103 			 "warning: mounting fs with errors, "
3104 			 "running e2fsck is recommended");
3105 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3106 		 le16_to_cpu(es->s_mnt_count) >=
3107 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3108 		ext4_msg(sb, KERN_WARNING,
3109 			 "warning: maximal mount count reached, "
3110 			 "running e2fsck is recommended");
3111 	else if (le32_to_cpu(es->s_checkinterval) &&
3112 		 (ext4_get_tstamp(es, s_lastcheck) +
3113 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3114 		ext4_msg(sb, KERN_WARNING,
3115 			 "warning: checktime reached, "
3116 			 "running e2fsck is recommended");
3117 	if (!sbi->s_journal)
3118 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3119 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3120 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3121 	le16_add_cpu(&es->s_mnt_count, 1);
3122 	ext4_update_tstamp(es, s_mtime);
3123 	if (sbi->s_journal) {
3124 		ext4_set_feature_journal_needs_recovery(sb);
3125 		if (ext4_has_feature_orphan_file(sb))
3126 			ext4_set_feature_orphan_present(sb);
3127 	}
3128 
3129 	err = ext4_commit_super(sb);
3130 done:
3131 	if (test_opt(sb, DEBUG))
3132 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3133 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3134 			sb->s_blocksize,
3135 			sbi->s_groups_count,
3136 			EXT4_BLOCKS_PER_GROUP(sb),
3137 			EXT4_INODES_PER_GROUP(sb),
3138 			sbi->s_mount_opt, sbi->s_mount_opt2);
3139 	return err;
3140 }
3141 
3142 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3143 {
3144 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3145 	struct flex_groups **old_groups, **new_groups;
3146 	int size, i, j;
3147 
3148 	if (!sbi->s_log_groups_per_flex)
3149 		return 0;
3150 
3151 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3152 	if (size <= sbi->s_flex_groups_allocated)
3153 		return 0;
3154 
3155 	new_groups = kvzalloc(roundup_pow_of_two(size *
3156 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3157 	if (!new_groups) {
3158 		ext4_msg(sb, KERN_ERR,
3159 			 "not enough memory for %d flex group pointers", size);
3160 		return -ENOMEM;
3161 	}
3162 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3163 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3164 					 sizeof(struct flex_groups)),
3165 					 GFP_KERNEL);
3166 		if (!new_groups[i]) {
3167 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3168 				kvfree(new_groups[j]);
3169 			kvfree(new_groups);
3170 			ext4_msg(sb, KERN_ERR,
3171 				 "not enough memory for %d flex groups", size);
3172 			return -ENOMEM;
3173 		}
3174 	}
3175 	rcu_read_lock();
3176 	old_groups = rcu_dereference(sbi->s_flex_groups);
3177 	if (old_groups)
3178 		memcpy(new_groups, old_groups,
3179 		       (sbi->s_flex_groups_allocated *
3180 			sizeof(struct flex_groups *)));
3181 	rcu_read_unlock();
3182 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3183 	sbi->s_flex_groups_allocated = size;
3184 	if (old_groups)
3185 		ext4_kvfree_array_rcu(old_groups);
3186 	return 0;
3187 }
3188 
3189 static int ext4_fill_flex_info(struct super_block *sb)
3190 {
3191 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3192 	struct ext4_group_desc *gdp = NULL;
3193 	struct flex_groups *fg;
3194 	ext4_group_t flex_group;
3195 	int i, err;
3196 
3197 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3198 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3199 		sbi->s_log_groups_per_flex = 0;
3200 		return 1;
3201 	}
3202 
3203 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3204 	if (err)
3205 		goto failed;
3206 
3207 	for (i = 0; i < sbi->s_groups_count; i++) {
3208 		gdp = ext4_get_group_desc(sb, i, NULL);
3209 
3210 		flex_group = ext4_flex_group(sbi, i);
3211 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3212 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3213 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3214 			     &fg->free_clusters);
3215 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3216 	}
3217 
3218 	return 1;
3219 failed:
3220 	return 0;
3221 }
3222 
3223 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3224 				   struct ext4_group_desc *gdp)
3225 {
3226 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3227 	__u16 crc = 0;
3228 	__le32 le_group = cpu_to_le32(block_group);
3229 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3230 
3231 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3232 		/* Use new metadata_csum algorithm */
3233 		__u32 csum32;
3234 		__u16 dummy_csum = 0;
3235 
3236 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3237 				     sizeof(le_group));
3238 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3239 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3240 				     sizeof(dummy_csum));
3241 		offset += sizeof(dummy_csum);
3242 		if (offset < sbi->s_desc_size)
3243 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3244 					     sbi->s_desc_size - offset);
3245 
3246 		crc = csum32 & 0xFFFF;
3247 		goto out;
3248 	}
3249 
3250 	/* old crc16 code */
3251 	if (!ext4_has_feature_gdt_csum(sb))
3252 		return 0;
3253 
3254 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3255 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3256 	crc = crc16(crc, (__u8 *)gdp, offset);
3257 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3258 	/* for checksum of struct ext4_group_desc do the rest...*/
3259 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3260 		crc = crc16(crc, (__u8 *)gdp + offset,
3261 			    sbi->s_desc_size - offset);
3262 
3263 out:
3264 	return cpu_to_le16(crc);
3265 }
3266 
3267 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3268 				struct ext4_group_desc *gdp)
3269 {
3270 	if (ext4_has_group_desc_csum(sb) &&
3271 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3272 		return 0;
3273 
3274 	return 1;
3275 }
3276 
3277 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3278 			      struct ext4_group_desc *gdp)
3279 {
3280 	if (!ext4_has_group_desc_csum(sb))
3281 		return;
3282 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3283 }
3284 
3285 /* Called at mount-time, super-block is locked */
3286 static int ext4_check_descriptors(struct super_block *sb,
3287 				  ext4_fsblk_t sb_block,
3288 				  ext4_group_t *first_not_zeroed)
3289 {
3290 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3291 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3292 	ext4_fsblk_t last_block;
3293 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3294 	ext4_fsblk_t block_bitmap;
3295 	ext4_fsblk_t inode_bitmap;
3296 	ext4_fsblk_t inode_table;
3297 	int flexbg_flag = 0;
3298 	ext4_group_t i, grp = sbi->s_groups_count;
3299 
3300 	if (ext4_has_feature_flex_bg(sb))
3301 		flexbg_flag = 1;
3302 
3303 	ext4_debug("Checking group descriptors");
3304 
3305 	for (i = 0; i < sbi->s_groups_count; i++) {
3306 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3307 
3308 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3309 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3310 		else
3311 			last_block = first_block +
3312 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3313 
3314 		if ((grp == sbi->s_groups_count) &&
3315 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3316 			grp = i;
3317 
3318 		block_bitmap = ext4_block_bitmap(sb, gdp);
3319 		if (block_bitmap == sb_block) {
3320 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3321 				 "Block bitmap for group %u overlaps "
3322 				 "superblock", i);
3323 			if (!sb_rdonly(sb))
3324 				return 0;
3325 		}
3326 		if (block_bitmap >= sb_block + 1 &&
3327 		    block_bitmap <= last_bg_block) {
3328 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3329 				 "Block bitmap for group %u overlaps "
3330 				 "block group descriptors", i);
3331 			if (!sb_rdonly(sb))
3332 				return 0;
3333 		}
3334 		if (block_bitmap < first_block || block_bitmap > last_block) {
3335 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3336 			       "Block bitmap for group %u not in group "
3337 			       "(block %llu)!", i, block_bitmap);
3338 			return 0;
3339 		}
3340 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3341 		if (inode_bitmap == sb_block) {
3342 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3343 				 "Inode bitmap for group %u overlaps "
3344 				 "superblock", i);
3345 			if (!sb_rdonly(sb))
3346 				return 0;
3347 		}
3348 		if (inode_bitmap >= sb_block + 1 &&
3349 		    inode_bitmap <= last_bg_block) {
3350 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3351 				 "Inode bitmap for group %u overlaps "
3352 				 "block group descriptors", i);
3353 			if (!sb_rdonly(sb))
3354 				return 0;
3355 		}
3356 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3357 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3358 			       "Inode bitmap for group %u not in group "
3359 			       "(block %llu)!", i, inode_bitmap);
3360 			return 0;
3361 		}
3362 		inode_table = ext4_inode_table(sb, gdp);
3363 		if (inode_table == sb_block) {
3364 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365 				 "Inode table for group %u overlaps "
3366 				 "superblock", i);
3367 			if (!sb_rdonly(sb))
3368 				return 0;
3369 		}
3370 		if (inode_table >= sb_block + 1 &&
3371 		    inode_table <= last_bg_block) {
3372 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3373 				 "Inode table for group %u overlaps "
3374 				 "block group descriptors", i);
3375 			if (!sb_rdonly(sb))
3376 				return 0;
3377 		}
3378 		if (inode_table < first_block ||
3379 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3380 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3381 			       "Inode table for group %u not in group "
3382 			       "(block %llu)!", i, inode_table);
3383 			return 0;
3384 		}
3385 		ext4_lock_group(sb, i);
3386 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3387 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3388 				 "Checksum for group %u failed (%u!=%u)",
3389 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3390 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3391 			if (!sb_rdonly(sb)) {
3392 				ext4_unlock_group(sb, i);
3393 				return 0;
3394 			}
3395 		}
3396 		ext4_unlock_group(sb, i);
3397 		if (!flexbg_flag)
3398 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3399 	}
3400 	if (NULL != first_not_zeroed)
3401 		*first_not_zeroed = grp;
3402 	return 1;
3403 }
3404 
3405 /*
3406  * Maximal extent format file size.
3407  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3408  * extent format containers, within a sector_t, and within i_blocks
3409  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3410  * so that won't be a limiting factor.
3411  *
3412  * However there is other limiting factor. We do store extents in the form
3413  * of starting block and length, hence the resulting length of the extent
3414  * covering maximum file size must fit into on-disk format containers as
3415  * well. Given that length is always by 1 unit bigger than max unit (because
3416  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3417  *
3418  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3419  */
3420 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3421 {
3422 	loff_t res;
3423 	loff_t upper_limit = MAX_LFS_FILESIZE;
3424 
3425 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3426 
3427 	if (!has_huge_files) {
3428 		upper_limit = (1LL << 32) - 1;
3429 
3430 		/* total blocks in file system block size */
3431 		upper_limit >>= (blkbits - 9);
3432 		upper_limit <<= blkbits;
3433 	}
3434 
3435 	/*
3436 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3437 	 * by one fs block, so ee_len can cover the extent of maximum file
3438 	 * size
3439 	 */
3440 	res = (1LL << 32) - 1;
3441 	res <<= blkbits;
3442 
3443 	/* Sanity check against vm- & vfs- imposed limits */
3444 	if (res > upper_limit)
3445 		res = upper_limit;
3446 
3447 	return res;
3448 }
3449 
3450 /*
3451  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3452  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3453  * We need to be 1 filesystem block less than the 2^48 sector limit.
3454  */
3455 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3456 {
3457 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3458 	int meta_blocks;
3459 	unsigned int ppb = 1 << (bits - 2);
3460 
3461 	/*
3462 	 * This is calculated to be the largest file size for a dense, block
3463 	 * mapped file such that the file's total number of 512-byte sectors,
3464 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3465 	 *
3466 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3467 	 * number of 512-byte sectors of the file.
3468 	 */
3469 	if (!has_huge_files) {
3470 		/*
3471 		 * !has_huge_files or implies that the inode i_block field
3472 		 * represents total file blocks in 2^32 512-byte sectors ==
3473 		 * size of vfs inode i_blocks * 8
3474 		 */
3475 		upper_limit = (1LL << 32) - 1;
3476 
3477 		/* total blocks in file system block size */
3478 		upper_limit >>= (bits - 9);
3479 
3480 	} else {
3481 		/*
3482 		 * We use 48 bit ext4_inode i_blocks
3483 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3484 		 * represent total number of blocks in
3485 		 * file system block size
3486 		 */
3487 		upper_limit = (1LL << 48) - 1;
3488 
3489 	}
3490 
3491 	/* Compute how many blocks we can address by block tree */
3492 	res += ppb;
3493 	res += ppb * ppb;
3494 	res += ((loff_t)ppb) * ppb * ppb;
3495 	/* Compute how many metadata blocks are needed */
3496 	meta_blocks = 1;
3497 	meta_blocks += 1 + ppb;
3498 	meta_blocks += 1 + ppb + ppb * ppb;
3499 	/* Does block tree limit file size? */
3500 	if (res + meta_blocks <= upper_limit)
3501 		goto check_lfs;
3502 
3503 	res = upper_limit;
3504 	/* How many metadata blocks are needed for addressing upper_limit? */
3505 	upper_limit -= EXT4_NDIR_BLOCKS;
3506 	/* indirect blocks */
3507 	meta_blocks = 1;
3508 	upper_limit -= ppb;
3509 	/* double indirect blocks */
3510 	if (upper_limit < ppb * ppb) {
3511 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3512 		res -= meta_blocks;
3513 		goto check_lfs;
3514 	}
3515 	meta_blocks += 1 + ppb;
3516 	upper_limit -= ppb * ppb;
3517 	/* tripple indirect blocks for the rest */
3518 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3519 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3520 	res -= meta_blocks;
3521 check_lfs:
3522 	res <<= bits;
3523 	if (res > MAX_LFS_FILESIZE)
3524 		res = MAX_LFS_FILESIZE;
3525 
3526 	return res;
3527 }
3528 
3529 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3530 				   ext4_fsblk_t logical_sb_block, int nr)
3531 {
3532 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3533 	ext4_group_t bg, first_meta_bg;
3534 	int has_super = 0;
3535 
3536 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3537 
3538 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3539 		return logical_sb_block + nr + 1;
3540 	bg = sbi->s_desc_per_block * nr;
3541 	if (ext4_bg_has_super(sb, bg))
3542 		has_super = 1;
3543 
3544 	/*
3545 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3546 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3547 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3548 	 * compensate.
3549 	 */
3550 	if (sb->s_blocksize == 1024 && nr == 0 &&
3551 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3552 		has_super++;
3553 
3554 	return (has_super + ext4_group_first_block_no(sb, bg));
3555 }
3556 
3557 /**
3558  * ext4_get_stripe_size: Get the stripe size.
3559  * @sbi: In memory super block info
3560  *
3561  * If we have specified it via mount option, then
3562  * use the mount option value. If the value specified at mount time is
3563  * greater than the blocks per group use the super block value.
3564  * If the super block value is greater than blocks per group return 0.
3565  * Allocator needs it be less than blocks per group.
3566  *
3567  */
3568 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3569 {
3570 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3571 	unsigned long stripe_width =
3572 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3573 	int ret;
3574 
3575 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3576 		ret = sbi->s_stripe;
3577 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3578 		ret = stripe_width;
3579 	else if (stride && stride <= sbi->s_blocks_per_group)
3580 		ret = stride;
3581 	else
3582 		ret = 0;
3583 
3584 	/*
3585 	 * If the stripe width is 1, this makes no sense and
3586 	 * we set it to 0 to turn off stripe handling code.
3587 	 */
3588 	if (ret <= 1)
3589 		ret = 0;
3590 
3591 	return ret;
3592 }
3593 
3594 /*
3595  * Check whether this filesystem can be mounted based on
3596  * the features present and the RDONLY/RDWR mount requested.
3597  * Returns 1 if this filesystem can be mounted as requested,
3598  * 0 if it cannot be.
3599  */
3600 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3601 {
3602 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3603 		ext4_msg(sb, KERN_ERR,
3604 			"Couldn't mount because of "
3605 			"unsupported optional features (%x)",
3606 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3607 			~EXT4_FEATURE_INCOMPAT_SUPP));
3608 		return 0;
3609 	}
3610 
3611 #if !IS_ENABLED(CONFIG_UNICODE)
3612 	if (ext4_has_feature_casefold(sb)) {
3613 		ext4_msg(sb, KERN_ERR,
3614 			 "Filesystem with casefold feature cannot be "
3615 			 "mounted without CONFIG_UNICODE");
3616 		return 0;
3617 	}
3618 #endif
3619 
3620 	if (readonly)
3621 		return 1;
3622 
3623 	if (ext4_has_feature_readonly(sb)) {
3624 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3625 		sb->s_flags |= SB_RDONLY;
3626 		return 1;
3627 	}
3628 
3629 	/* Check that feature set is OK for a read-write mount */
3630 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3631 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3632 			 "unsupported optional features (%x)",
3633 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3634 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3635 		return 0;
3636 	}
3637 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3638 		ext4_msg(sb, KERN_ERR,
3639 			 "Can't support bigalloc feature without "
3640 			 "extents feature\n");
3641 		return 0;
3642 	}
3643 
3644 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3645 	if (!readonly && (ext4_has_feature_quota(sb) ||
3646 			  ext4_has_feature_project(sb))) {
3647 		ext4_msg(sb, KERN_ERR,
3648 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3649 		return 0;
3650 	}
3651 #endif  /* CONFIG_QUOTA */
3652 	return 1;
3653 }
3654 
3655 /*
3656  * This function is called once a day if we have errors logged
3657  * on the file system
3658  */
3659 static void print_daily_error_info(struct timer_list *t)
3660 {
3661 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3662 	struct super_block *sb = sbi->s_sb;
3663 	struct ext4_super_block *es = sbi->s_es;
3664 
3665 	if (es->s_error_count)
3666 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3667 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3668 			 le32_to_cpu(es->s_error_count));
3669 	if (es->s_first_error_time) {
3670 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3671 		       sb->s_id,
3672 		       ext4_get_tstamp(es, s_first_error_time),
3673 		       (int) sizeof(es->s_first_error_func),
3674 		       es->s_first_error_func,
3675 		       le32_to_cpu(es->s_first_error_line));
3676 		if (es->s_first_error_ino)
3677 			printk(KERN_CONT ": inode %u",
3678 			       le32_to_cpu(es->s_first_error_ino));
3679 		if (es->s_first_error_block)
3680 			printk(KERN_CONT ": block %llu", (unsigned long long)
3681 			       le64_to_cpu(es->s_first_error_block));
3682 		printk(KERN_CONT "\n");
3683 	}
3684 	if (es->s_last_error_time) {
3685 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3686 		       sb->s_id,
3687 		       ext4_get_tstamp(es, s_last_error_time),
3688 		       (int) sizeof(es->s_last_error_func),
3689 		       es->s_last_error_func,
3690 		       le32_to_cpu(es->s_last_error_line));
3691 		if (es->s_last_error_ino)
3692 			printk(KERN_CONT ": inode %u",
3693 			       le32_to_cpu(es->s_last_error_ino));
3694 		if (es->s_last_error_block)
3695 			printk(KERN_CONT ": block %llu", (unsigned long long)
3696 			       le64_to_cpu(es->s_last_error_block));
3697 		printk(KERN_CONT "\n");
3698 	}
3699 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3700 }
3701 
3702 /* Find next suitable group and run ext4_init_inode_table */
3703 static int ext4_run_li_request(struct ext4_li_request *elr)
3704 {
3705 	struct ext4_group_desc *gdp = NULL;
3706 	struct super_block *sb = elr->lr_super;
3707 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3708 	ext4_group_t group = elr->lr_next_group;
3709 	unsigned int prefetch_ios = 0;
3710 	int ret = 0;
3711 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3712 	u64 start_time;
3713 
3714 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3715 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3716 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3717 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3718 		if (group >= elr->lr_next_group) {
3719 			ret = 1;
3720 			if (elr->lr_first_not_zeroed != ngroups &&
3721 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3722 				elr->lr_next_group = elr->lr_first_not_zeroed;
3723 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3724 				ret = 0;
3725 			}
3726 		}
3727 		return ret;
3728 	}
3729 
3730 	for (; group < ngroups; group++) {
3731 		gdp = ext4_get_group_desc(sb, group, NULL);
3732 		if (!gdp) {
3733 			ret = 1;
3734 			break;
3735 		}
3736 
3737 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3738 			break;
3739 	}
3740 
3741 	if (group >= ngroups)
3742 		ret = 1;
3743 
3744 	if (!ret) {
3745 		start_time = ktime_get_real_ns();
3746 		ret = ext4_init_inode_table(sb, group,
3747 					    elr->lr_timeout ? 0 : 1);
3748 		trace_ext4_lazy_itable_init(sb, group);
3749 		if (elr->lr_timeout == 0) {
3750 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3751 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3752 		}
3753 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3754 		elr->lr_next_group = group + 1;
3755 	}
3756 	return ret;
3757 }
3758 
3759 /*
3760  * Remove lr_request from the list_request and free the
3761  * request structure. Should be called with li_list_mtx held
3762  */
3763 static void ext4_remove_li_request(struct ext4_li_request *elr)
3764 {
3765 	if (!elr)
3766 		return;
3767 
3768 	list_del(&elr->lr_request);
3769 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3770 	kfree(elr);
3771 }
3772 
3773 static void ext4_unregister_li_request(struct super_block *sb)
3774 {
3775 	mutex_lock(&ext4_li_mtx);
3776 	if (!ext4_li_info) {
3777 		mutex_unlock(&ext4_li_mtx);
3778 		return;
3779 	}
3780 
3781 	mutex_lock(&ext4_li_info->li_list_mtx);
3782 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3783 	mutex_unlock(&ext4_li_info->li_list_mtx);
3784 	mutex_unlock(&ext4_li_mtx);
3785 }
3786 
3787 static struct task_struct *ext4_lazyinit_task;
3788 
3789 /*
3790  * This is the function where ext4lazyinit thread lives. It walks
3791  * through the request list searching for next scheduled filesystem.
3792  * When such a fs is found, run the lazy initialization request
3793  * (ext4_rn_li_request) and keep track of the time spend in this
3794  * function. Based on that time we compute next schedule time of
3795  * the request. When walking through the list is complete, compute
3796  * next waking time and put itself into sleep.
3797  */
3798 static int ext4_lazyinit_thread(void *arg)
3799 {
3800 	struct ext4_lazy_init *eli = arg;
3801 	struct list_head *pos, *n;
3802 	struct ext4_li_request *elr;
3803 	unsigned long next_wakeup, cur;
3804 
3805 	BUG_ON(NULL == eli);
3806 	set_freezable();
3807 
3808 cont_thread:
3809 	while (true) {
3810 		next_wakeup = MAX_JIFFY_OFFSET;
3811 
3812 		mutex_lock(&eli->li_list_mtx);
3813 		if (list_empty(&eli->li_request_list)) {
3814 			mutex_unlock(&eli->li_list_mtx);
3815 			goto exit_thread;
3816 		}
3817 		list_for_each_safe(pos, n, &eli->li_request_list) {
3818 			int err = 0;
3819 			int progress = 0;
3820 			elr = list_entry(pos, struct ext4_li_request,
3821 					 lr_request);
3822 
3823 			if (time_before(jiffies, elr->lr_next_sched)) {
3824 				if (time_before(elr->lr_next_sched, next_wakeup))
3825 					next_wakeup = elr->lr_next_sched;
3826 				continue;
3827 			}
3828 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3829 				if (sb_start_write_trylock(elr->lr_super)) {
3830 					progress = 1;
3831 					/*
3832 					 * We hold sb->s_umount, sb can not
3833 					 * be removed from the list, it is
3834 					 * now safe to drop li_list_mtx
3835 					 */
3836 					mutex_unlock(&eli->li_list_mtx);
3837 					err = ext4_run_li_request(elr);
3838 					sb_end_write(elr->lr_super);
3839 					mutex_lock(&eli->li_list_mtx);
3840 					n = pos->next;
3841 				}
3842 				up_read((&elr->lr_super->s_umount));
3843 			}
3844 			/* error, remove the lazy_init job */
3845 			if (err) {
3846 				ext4_remove_li_request(elr);
3847 				continue;
3848 			}
3849 			if (!progress) {
3850 				elr->lr_next_sched = jiffies +
3851 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3852 			}
3853 			if (time_before(elr->lr_next_sched, next_wakeup))
3854 				next_wakeup = elr->lr_next_sched;
3855 		}
3856 		mutex_unlock(&eli->li_list_mtx);
3857 
3858 		try_to_freeze();
3859 
3860 		cur = jiffies;
3861 		if ((time_after_eq(cur, next_wakeup)) ||
3862 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3863 			cond_resched();
3864 			continue;
3865 		}
3866 
3867 		schedule_timeout_interruptible(next_wakeup - cur);
3868 
3869 		if (kthread_should_stop()) {
3870 			ext4_clear_request_list();
3871 			goto exit_thread;
3872 		}
3873 	}
3874 
3875 exit_thread:
3876 	/*
3877 	 * It looks like the request list is empty, but we need
3878 	 * to check it under the li_list_mtx lock, to prevent any
3879 	 * additions into it, and of course we should lock ext4_li_mtx
3880 	 * to atomically free the list and ext4_li_info, because at
3881 	 * this point another ext4 filesystem could be registering
3882 	 * new one.
3883 	 */
3884 	mutex_lock(&ext4_li_mtx);
3885 	mutex_lock(&eli->li_list_mtx);
3886 	if (!list_empty(&eli->li_request_list)) {
3887 		mutex_unlock(&eli->li_list_mtx);
3888 		mutex_unlock(&ext4_li_mtx);
3889 		goto cont_thread;
3890 	}
3891 	mutex_unlock(&eli->li_list_mtx);
3892 	kfree(ext4_li_info);
3893 	ext4_li_info = NULL;
3894 	mutex_unlock(&ext4_li_mtx);
3895 
3896 	return 0;
3897 }
3898 
3899 static void ext4_clear_request_list(void)
3900 {
3901 	struct list_head *pos, *n;
3902 	struct ext4_li_request *elr;
3903 
3904 	mutex_lock(&ext4_li_info->li_list_mtx);
3905 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3906 		elr = list_entry(pos, struct ext4_li_request,
3907 				 lr_request);
3908 		ext4_remove_li_request(elr);
3909 	}
3910 	mutex_unlock(&ext4_li_info->li_list_mtx);
3911 }
3912 
3913 static int ext4_run_lazyinit_thread(void)
3914 {
3915 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3916 					 ext4_li_info, "ext4lazyinit");
3917 	if (IS_ERR(ext4_lazyinit_task)) {
3918 		int err = PTR_ERR(ext4_lazyinit_task);
3919 		ext4_clear_request_list();
3920 		kfree(ext4_li_info);
3921 		ext4_li_info = NULL;
3922 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3923 				 "initialization thread\n",
3924 				 err);
3925 		return err;
3926 	}
3927 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3928 	return 0;
3929 }
3930 
3931 /*
3932  * Check whether it make sense to run itable init. thread or not.
3933  * If there is at least one uninitialized inode table, return
3934  * corresponding group number, else the loop goes through all
3935  * groups and return total number of groups.
3936  */
3937 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3938 {
3939 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3940 	struct ext4_group_desc *gdp = NULL;
3941 
3942 	if (!ext4_has_group_desc_csum(sb))
3943 		return ngroups;
3944 
3945 	for (group = 0; group < ngroups; group++) {
3946 		gdp = ext4_get_group_desc(sb, group, NULL);
3947 		if (!gdp)
3948 			continue;
3949 
3950 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3951 			break;
3952 	}
3953 
3954 	return group;
3955 }
3956 
3957 static int ext4_li_info_new(void)
3958 {
3959 	struct ext4_lazy_init *eli = NULL;
3960 
3961 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3962 	if (!eli)
3963 		return -ENOMEM;
3964 
3965 	INIT_LIST_HEAD(&eli->li_request_list);
3966 	mutex_init(&eli->li_list_mtx);
3967 
3968 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3969 
3970 	ext4_li_info = eli;
3971 
3972 	return 0;
3973 }
3974 
3975 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3976 					    ext4_group_t start)
3977 {
3978 	struct ext4_li_request *elr;
3979 
3980 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3981 	if (!elr)
3982 		return NULL;
3983 
3984 	elr->lr_super = sb;
3985 	elr->lr_first_not_zeroed = start;
3986 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3987 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3988 		elr->lr_next_group = start;
3989 	} else {
3990 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3991 	}
3992 
3993 	/*
3994 	 * Randomize first schedule time of the request to
3995 	 * spread the inode table initialization requests
3996 	 * better.
3997 	 */
3998 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3999 	return elr;
4000 }
4001 
4002 int ext4_register_li_request(struct super_block *sb,
4003 			     ext4_group_t first_not_zeroed)
4004 {
4005 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4006 	struct ext4_li_request *elr = NULL;
4007 	ext4_group_t ngroups = sbi->s_groups_count;
4008 	int ret = 0;
4009 
4010 	mutex_lock(&ext4_li_mtx);
4011 	if (sbi->s_li_request != NULL) {
4012 		/*
4013 		 * Reset timeout so it can be computed again, because
4014 		 * s_li_wait_mult might have changed.
4015 		 */
4016 		sbi->s_li_request->lr_timeout = 0;
4017 		goto out;
4018 	}
4019 
4020 	if (sb_rdonly(sb) ||
4021 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4022 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4023 		goto out;
4024 
4025 	elr = ext4_li_request_new(sb, first_not_zeroed);
4026 	if (!elr) {
4027 		ret = -ENOMEM;
4028 		goto out;
4029 	}
4030 
4031 	if (NULL == ext4_li_info) {
4032 		ret = ext4_li_info_new();
4033 		if (ret)
4034 			goto out;
4035 	}
4036 
4037 	mutex_lock(&ext4_li_info->li_list_mtx);
4038 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4039 	mutex_unlock(&ext4_li_info->li_list_mtx);
4040 
4041 	sbi->s_li_request = elr;
4042 	/*
4043 	 * set elr to NULL here since it has been inserted to
4044 	 * the request_list and the removal and free of it is
4045 	 * handled by ext4_clear_request_list from now on.
4046 	 */
4047 	elr = NULL;
4048 
4049 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4050 		ret = ext4_run_lazyinit_thread();
4051 		if (ret)
4052 			goto out;
4053 	}
4054 out:
4055 	mutex_unlock(&ext4_li_mtx);
4056 	if (ret)
4057 		kfree(elr);
4058 	return ret;
4059 }
4060 
4061 /*
4062  * We do not need to lock anything since this is called on
4063  * module unload.
4064  */
4065 static void ext4_destroy_lazyinit_thread(void)
4066 {
4067 	/*
4068 	 * If thread exited earlier
4069 	 * there's nothing to be done.
4070 	 */
4071 	if (!ext4_li_info || !ext4_lazyinit_task)
4072 		return;
4073 
4074 	kthread_stop(ext4_lazyinit_task);
4075 }
4076 
4077 static int set_journal_csum_feature_set(struct super_block *sb)
4078 {
4079 	int ret = 1;
4080 	int compat, incompat;
4081 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4082 
4083 	if (ext4_has_metadata_csum(sb)) {
4084 		/* journal checksum v3 */
4085 		compat = 0;
4086 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4087 	} else {
4088 		/* journal checksum v1 */
4089 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4090 		incompat = 0;
4091 	}
4092 
4093 	jbd2_journal_clear_features(sbi->s_journal,
4094 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4095 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4096 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4097 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4098 		ret = jbd2_journal_set_features(sbi->s_journal,
4099 				compat, 0,
4100 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4101 				incompat);
4102 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4103 		ret = jbd2_journal_set_features(sbi->s_journal,
4104 				compat, 0,
4105 				incompat);
4106 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4107 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4108 	} else {
4109 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4110 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4111 	}
4112 
4113 	return ret;
4114 }
4115 
4116 /*
4117  * Note: calculating the overhead so we can be compatible with
4118  * historical BSD practice is quite difficult in the face of
4119  * clusters/bigalloc.  This is because multiple metadata blocks from
4120  * different block group can end up in the same allocation cluster.
4121  * Calculating the exact overhead in the face of clustered allocation
4122  * requires either O(all block bitmaps) in memory or O(number of block
4123  * groups**2) in time.  We will still calculate the superblock for
4124  * older file systems --- and if we come across with a bigalloc file
4125  * system with zero in s_overhead_clusters the estimate will be close to
4126  * correct especially for very large cluster sizes --- but for newer
4127  * file systems, it's better to calculate this figure once at mkfs
4128  * time, and store it in the superblock.  If the superblock value is
4129  * present (even for non-bigalloc file systems), we will use it.
4130  */
4131 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4132 			  char *buf)
4133 {
4134 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4135 	struct ext4_group_desc	*gdp;
4136 	ext4_fsblk_t		first_block, last_block, b;
4137 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4138 	int			s, j, count = 0;
4139 	int			has_super = ext4_bg_has_super(sb, grp);
4140 
4141 	if (!ext4_has_feature_bigalloc(sb))
4142 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4143 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4144 			sbi->s_itb_per_group + 2);
4145 
4146 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4147 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4148 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4149 	for (i = 0; i < ngroups; i++) {
4150 		gdp = ext4_get_group_desc(sb, i, NULL);
4151 		b = ext4_block_bitmap(sb, gdp);
4152 		if (b >= first_block && b <= last_block) {
4153 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4154 			count++;
4155 		}
4156 		b = ext4_inode_bitmap(sb, gdp);
4157 		if (b >= first_block && b <= last_block) {
4158 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4159 			count++;
4160 		}
4161 		b = ext4_inode_table(sb, gdp);
4162 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4163 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4164 				int c = EXT4_B2C(sbi, b - first_block);
4165 				ext4_set_bit(c, buf);
4166 				count++;
4167 			}
4168 		if (i != grp)
4169 			continue;
4170 		s = 0;
4171 		if (ext4_bg_has_super(sb, grp)) {
4172 			ext4_set_bit(s++, buf);
4173 			count++;
4174 		}
4175 		j = ext4_bg_num_gdb(sb, grp);
4176 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4177 			ext4_error(sb, "Invalid number of block group "
4178 				   "descriptor blocks: %d", j);
4179 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4180 		}
4181 		count += j;
4182 		for (; j > 0; j--)
4183 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4184 	}
4185 	if (!count)
4186 		return 0;
4187 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4188 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4189 }
4190 
4191 /*
4192  * Compute the overhead and stash it in sbi->s_overhead
4193  */
4194 int ext4_calculate_overhead(struct super_block *sb)
4195 {
4196 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4197 	struct ext4_super_block *es = sbi->s_es;
4198 	struct inode *j_inode;
4199 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4200 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4201 	ext4_fsblk_t overhead = 0;
4202 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4203 
4204 	if (!buf)
4205 		return -ENOMEM;
4206 
4207 	/*
4208 	 * Compute the overhead (FS structures).  This is constant
4209 	 * for a given filesystem unless the number of block groups
4210 	 * changes so we cache the previous value until it does.
4211 	 */
4212 
4213 	/*
4214 	 * All of the blocks before first_data_block are overhead
4215 	 */
4216 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4217 
4218 	/*
4219 	 * Add the overhead found in each block group
4220 	 */
4221 	for (i = 0; i < ngroups; i++) {
4222 		int blks;
4223 
4224 		blks = count_overhead(sb, i, buf);
4225 		overhead += blks;
4226 		if (blks)
4227 			memset(buf, 0, PAGE_SIZE);
4228 		cond_resched();
4229 	}
4230 
4231 	/*
4232 	 * Add the internal journal blocks whether the journal has been
4233 	 * loaded or not
4234 	 */
4235 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4236 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4237 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4238 		/* j_inum for internal journal is non-zero */
4239 		j_inode = ext4_get_journal_inode(sb, j_inum);
4240 		if (!IS_ERR(j_inode)) {
4241 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4242 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4243 			iput(j_inode);
4244 		} else {
4245 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4246 		}
4247 	}
4248 	sbi->s_overhead = overhead;
4249 	smp_wmb();
4250 	free_page((unsigned long) buf);
4251 	return 0;
4252 }
4253 
4254 static void ext4_set_resv_clusters(struct super_block *sb)
4255 {
4256 	ext4_fsblk_t resv_clusters;
4257 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4258 
4259 	/*
4260 	 * There's no need to reserve anything when we aren't using extents.
4261 	 * The space estimates are exact, there are no unwritten extents,
4262 	 * hole punching doesn't need new metadata... This is needed especially
4263 	 * to keep ext2/3 backward compatibility.
4264 	 */
4265 	if (!ext4_has_feature_extents(sb))
4266 		return;
4267 	/*
4268 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4269 	 * This should cover the situations where we can not afford to run
4270 	 * out of space like for example punch hole, or converting
4271 	 * unwritten extents in delalloc path. In most cases such
4272 	 * allocation would require 1, or 2 blocks, higher numbers are
4273 	 * very rare.
4274 	 */
4275 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4276 			 sbi->s_cluster_bits);
4277 
4278 	do_div(resv_clusters, 50);
4279 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4280 
4281 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4282 }
4283 
4284 static const char *ext4_quota_mode(struct super_block *sb)
4285 {
4286 #ifdef CONFIG_QUOTA
4287 	if (!ext4_quota_capable(sb))
4288 		return "none";
4289 
4290 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4291 		return "journalled";
4292 	else
4293 		return "writeback";
4294 #else
4295 	return "disabled";
4296 #endif
4297 }
4298 
4299 static void ext4_setup_csum_trigger(struct super_block *sb,
4300 				    enum ext4_journal_trigger_type type,
4301 				    void (*trigger)(
4302 					struct jbd2_buffer_trigger_type *type,
4303 					struct buffer_head *bh,
4304 					void *mapped_data,
4305 					size_t size))
4306 {
4307 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4308 
4309 	sbi->s_journal_triggers[type].sb = sb;
4310 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4311 }
4312 
4313 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4314 {
4315 	if (!sbi)
4316 		return;
4317 
4318 	kfree(sbi->s_blockgroup_lock);
4319 	fs_put_dax(sbi->s_daxdev, NULL);
4320 	kfree(sbi);
4321 }
4322 
4323 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4324 {
4325 	struct ext4_sb_info *sbi;
4326 
4327 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4328 	if (!sbi)
4329 		return NULL;
4330 
4331 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4332 					   NULL, NULL);
4333 
4334 	sbi->s_blockgroup_lock =
4335 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4336 
4337 	if (!sbi->s_blockgroup_lock)
4338 		goto err_out;
4339 
4340 	sb->s_fs_info = sbi;
4341 	sbi->s_sb = sb;
4342 	return sbi;
4343 err_out:
4344 	fs_put_dax(sbi->s_daxdev, NULL);
4345 	kfree(sbi);
4346 	return NULL;
4347 }
4348 
4349 static void ext4_set_def_opts(struct super_block *sb,
4350 			      struct ext4_super_block *es)
4351 {
4352 	unsigned long def_mount_opts;
4353 
4354 	/* Set defaults before we parse the mount options */
4355 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4356 	set_opt(sb, INIT_INODE_TABLE);
4357 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4358 		set_opt(sb, DEBUG);
4359 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4360 		set_opt(sb, GRPID);
4361 	if (def_mount_opts & EXT4_DEFM_UID16)
4362 		set_opt(sb, NO_UID32);
4363 	/* xattr user namespace & acls are now defaulted on */
4364 	set_opt(sb, XATTR_USER);
4365 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4366 	set_opt(sb, POSIX_ACL);
4367 #endif
4368 	if (ext4_has_feature_fast_commit(sb))
4369 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4370 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4371 	if (ext4_has_metadata_csum(sb))
4372 		set_opt(sb, JOURNAL_CHECKSUM);
4373 
4374 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4375 		set_opt(sb, JOURNAL_DATA);
4376 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4377 		set_opt(sb, ORDERED_DATA);
4378 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4379 		set_opt(sb, WRITEBACK_DATA);
4380 
4381 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4382 		set_opt(sb, ERRORS_PANIC);
4383 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4384 		set_opt(sb, ERRORS_CONT);
4385 	else
4386 		set_opt(sb, ERRORS_RO);
4387 	/* block_validity enabled by default; disable with noblock_validity */
4388 	set_opt(sb, BLOCK_VALIDITY);
4389 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4390 		set_opt(sb, DISCARD);
4391 
4392 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4393 		set_opt(sb, BARRIER);
4394 
4395 	/*
4396 	 * enable delayed allocation by default
4397 	 * Use -o nodelalloc to turn it off
4398 	 */
4399 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4400 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4401 		set_opt(sb, DELALLOC);
4402 
4403 	if (sb->s_blocksize <= PAGE_SIZE)
4404 		set_opt(sb, DIOREAD_NOLOCK);
4405 }
4406 
4407 static int ext4_handle_clustersize(struct super_block *sb)
4408 {
4409 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4410 	struct ext4_super_block *es = sbi->s_es;
4411 	int clustersize;
4412 
4413 	/* Handle clustersize */
4414 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4415 	if (ext4_has_feature_bigalloc(sb)) {
4416 		if (clustersize < sb->s_blocksize) {
4417 			ext4_msg(sb, KERN_ERR,
4418 				 "cluster size (%d) smaller than "
4419 				 "block size (%lu)", clustersize, sb->s_blocksize);
4420 			return -EINVAL;
4421 		}
4422 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4423 			le32_to_cpu(es->s_log_block_size);
4424 	} else {
4425 		if (clustersize != sb->s_blocksize) {
4426 			ext4_msg(sb, KERN_ERR,
4427 				 "fragment/cluster size (%d) != "
4428 				 "block size (%lu)", clustersize, sb->s_blocksize);
4429 			return -EINVAL;
4430 		}
4431 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4432 			ext4_msg(sb, KERN_ERR,
4433 				 "#blocks per group too big: %lu",
4434 				 sbi->s_blocks_per_group);
4435 			return -EINVAL;
4436 		}
4437 		sbi->s_cluster_bits = 0;
4438 	}
4439 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4440 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4441 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4442 			 sbi->s_clusters_per_group);
4443 		return -EINVAL;
4444 	}
4445 	if (sbi->s_blocks_per_group !=
4446 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4447 		ext4_msg(sb, KERN_ERR,
4448 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4449 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4450 		return -EINVAL;
4451 	}
4452 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4453 
4454 	/* Do we have standard group size of clustersize * 8 blocks ? */
4455 	if (sbi->s_blocks_per_group == clustersize << 3)
4456 		set_opt2(sb, STD_GROUP_SIZE);
4457 
4458 	return 0;
4459 }
4460 
4461 static void ext4_fast_commit_init(struct super_block *sb)
4462 {
4463 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4464 
4465 	/* Initialize fast commit stuff */
4466 	atomic_set(&sbi->s_fc_subtid, 0);
4467 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4468 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4469 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4470 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4471 	sbi->s_fc_bytes = 0;
4472 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4473 	sbi->s_fc_ineligible_tid = 0;
4474 	spin_lock_init(&sbi->s_fc_lock);
4475 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4476 	sbi->s_fc_replay_state.fc_regions = NULL;
4477 	sbi->s_fc_replay_state.fc_regions_size = 0;
4478 	sbi->s_fc_replay_state.fc_regions_used = 0;
4479 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4480 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4481 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4482 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4483 }
4484 
4485 static int ext4_inode_info_init(struct super_block *sb,
4486 				struct ext4_super_block *es)
4487 {
4488 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4489 
4490 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4491 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4492 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4493 	} else {
4494 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4495 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4496 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4497 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4498 				 sbi->s_first_ino);
4499 			return -EINVAL;
4500 		}
4501 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4502 		    (!is_power_of_2(sbi->s_inode_size)) ||
4503 		    (sbi->s_inode_size > sb->s_blocksize)) {
4504 			ext4_msg(sb, KERN_ERR,
4505 			       "unsupported inode size: %d",
4506 			       sbi->s_inode_size);
4507 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4508 			return -EINVAL;
4509 		}
4510 		/*
4511 		 * i_atime_extra is the last extra field available for
4512 		 * [acm]times in struct ext4_inode. Checking for that
4513 		 * field should suffice to ensure we have extra space
4514 		 * for all three.
4515 		 */
4516 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4517 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4518 			sb->s_time_gran = 1;
4519 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4520 		} else {
4521 			sb->s_time_gran = NSEC_PER_SEC;
4522 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4523 		}
4524 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4525 	}
4526 
4527 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4528 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4529 			EXT4_GOOD_OLD_INODE_SIZE;
4530 		if (ext4_has_feature_extra_isize(sb)) {
4531 			unsigned v, max = (sbi->s_inode_size -
4532 					   EXT4_GOOD_OLD_INODE_SIZE);
4533 
4534 			v = le16_to_cpu(es->s_want_extra_isize);
4535 			if (v > max) {
4536 				ext4_msg(sb, KERN_ERR,
4537 					 "bad s_want_extra_isize: %d", v);
4538 				return -EINVAL;
4539 			}
4540 			if (sbi->s_want_extra_isize < v)
4541 				sbi->s_want_extra_isize = v;
4542 
4543 			v = le16_to_cpu(es->s_min_extra_isize);
4544 			if (v > max) {
4545 				ext4_msg(sb, KERN_ERR,
4546 					 "bad s_min_extra_isize: %d", v);
4547 				return -EINVAL;
4548 			}
4549 			if (sbi->s_want_extra_isize < v)
4550 				sbi->s_want_extra_isize = v;
4551 		}
4552 	}
4553 
4554 	return 0;
4555 }
4556 
4557 #if IS_ENABLED(CONFIG_UNICODE)
4558 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4559 {
4560 	const struct ext4_sb_encodings *encoding_info;
4561 	struct unicode_map *encoding;
4562 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4563 
4564 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4565 		return 0;
4566 
4567 	encoding_info = ext4_sb_read_encoding(es);
4568 	if (!encoding_info) {
4569 		ext4_msg(sb, KERN_ERR,
4570 			"Encoding requested by superblock is unknown");
4571 		return -EINVAL;
4572 	}
4573 
4574 	encoding = utf8_load(encoding_info->version);
4575 	if (IS_ERR(encoding)) {
4576 		ext4_msg(sb, KERN_ERR,
4577 			"can't mount with superblock charset: %s-%u.%u.%u "
4578 			"not supported by the kernel. flags: 0x%x.",
4579 			encoding_info->name,
4580 			unicode_major(encoding_info->version),
4581 			unicode_minor(encoding_info->version),
4582 			unicode_rev(encoding_info->version),
4583 			encoding_flags);
4584 		return -EINVAL;
4585 	}
4586 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4587 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4588 		unicode_major(encoding_info->version),
4589 		unicode_minor(encoding_info->version),
4590 		unicode_rev(encoding_info->version),
4591 		encoding_flags);
4592 
4593 	sb->s_encoding = encoding;
4594 	sb->s_encoding_flags = encoding_flags;
4595 
4596 	return 0;
4597 }
4598 #else
4599 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4600 {
4601 	return 0;
4602 }
4603 #endif
4604 
4605 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4606 {
4607 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4608 
4609 	/* Warn if metadata_csum and gdt_csum are both set. */
4610 	if (ext4_has_feature_metadata_csum(sb) &&
4611 	    ext4_has_feature_gdt_csum(sb))
4612 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4613 			     "redundant flags; please run fsck.");
4614 
4615 	/* Check for a known checksum algorithm */
4616 	if (!ext4_verify_csum_type(sb, es)) {
4617 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4618 			 "unknown checksum algorithm.");
4619 		return -EINVAL;
4620 	}
4621 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4622 				ext4_orphan_file_block_trigger);
4623 
4624 	/* Load the checksum driver */
4625 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4626 	if (IS_ERR(sbi->s_chksum_driver)) {
4627 		int ret = PTR_ERR(sbi->s_chksum_driver);
4628 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4629 		sbi->s_chksum_driver = NULL;
4630 		return ret;
4631 	}
4632 
4633 	/* Check superblock checksum */
4634 	if (!ext4_superblock_csum_verify(sb, es)) {
4635 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4636 			 "invalid superblock checksum.  Run e2fsck?");
4637 		return -EFSBADCRC;
4638 	}
4639 
4640 	/* Precompute checksum seed for all metadata */
4641 	if (ext4_has_feature_csum_seed(sb))
4642 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4643 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4644 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4645 					       sizeof(es->s_uuid));
4646 	return 0;
4647 }
4648 
4649 static int ext4_check_feature_compatibility(struct super_block *sb,
4650 					    struct ext4_super_block *es,
4651 					    int silent)
4652 {
4653 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4654 
4655 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4656 	    (ext4_has_compat_features(sb) ||
4657 	     ext4_has_ro_compat_features(sb) ||
4658 	     ext4_has_incompat_features(sb)))
4659 		ext4_msg(sb, KERN_WARNING,
4660 		       "feature flags set on rev 0 fs, "
4661 		       "running e2fsck is recommended");
4662 
4663 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4664 		set_opt2(sb, HURD_COMPAT);
4665 		if (ext4_has_feature_64bit(sb)) {
4666 			ext4_msg(sb, KERN_ERR,
4667 				 "The Hurd can't support 64-bit file systems");
4668 			return -EINVAL;
4669 		}
4670 
4671 		/*
4672 		 * ea_inode feature uses l_i_version field which is not
4673 		 * available in HURD_COMPAT mode.
4674 		 */
4675 		if (ext4_has_feature_ea_inode(sb)) {
4676 			ext4_msg(sb, KERN_ERR,
4677 				 "ea_inode feature is not supported for Hurd");
4678 			return -EINVAL;
4679 		}
4680 	}
4681 
4682 	if (IS_EXT2_SB(sb)) {
4683 		if (ext2_feature_set_ok(sb))
4684 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4685 				 "using the ext4 subsystem");
4686 		else {
4687 			/*
4688 			 * If we're probing be silent, if this looks like
4689 			 * it's actually an ext[34] filesystem.
4690 			 */
4691 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4692 				return -EINVAL;
4693 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4694 				 "to feature incompatibilities");
4695 			return -EINVAL;
4696 		}
4697 	}
4698 
4699 	if (IS_EXT3_SB(sb)) {
4700 		if (ext3_feature_set_ok(sb))
4701 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4702 				 "using the ext4 subsystem");
4703 		else {
4704 			/*
4705 			 * If we're probing be silent, if this looks like
4706 			 * it's actually an ext4 filesystem.
4707 			 */
4708 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4709 				return -EINVAL;
4710 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4711 				 "to feature incompatibilities");
4712 			return -EINVAL;
4713 		}
4714 	}
4715 
4716 	/*
4717 	 * Check feature flags regardless of the revision level, since we
4718 	 * previously didn't change the revision level when setting the flags,
4719 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4720 	 */
4721 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4722 		return -EINVAL;
4723 
4724 	if (sbi->s_daxdev) {
4725 		if (sb->s_blocksize == PAGE_SIZE)
4726 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4727 		else
4728 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4729 	}
4730 
4731 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4732 		if (ext4_has_feature_inline_data(sb)) {
4733 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4734 					" that may contain inline data");
4735 			return -EINVAL;
4736 		}
4737 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4738 			ext4_msg(sb, KERN_ERR,
4739 				"DAX unsupported by block device.");
4740 			return -EINVAL;
4741 		}
4742 	}
4743 
4744 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4745 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4746 			 es->s_encryption_level);
4747 		return -EINVAL;
4748 	}
4749 
4750 	return 0;
4751 }
4752 
4753 static int ext4_check_geometry(struct super_block *sb,
4754 			       struct ext4_super_block *es)
4755 {
4756 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4757 	__u64 blocks_count;
4758 	int err;
4759 
4760 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4761 		ext4_msg(sb, KERN_ERR,
4762 			 "Number of reserved GDT blocks insanely large: %d",
4763 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4764 		return -EINVAL;
4765 	}
4766 	/*
4767 	 * Test whether we have more sectors than will fit in sector_t,
4768 	 * and whether the max offset is addressable by the page cache.
4769 	 */
4770 	err = generic_check_addressable(sb->s_blocksize_bits,
4771 					ext4_blocks_count(es));
4772 	if (err) {
4773 		ext4_msg(sb, KERN_ERR, "filesystem"
4774 			 " too large to mount safely on this system");
4775 		return err;
4776 	}
4777 
4778 	/* check blocks count against device size */
4779 	blocks_count = sb_bdev_nr_blocks(sb);
4780 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4781 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4782 		       "exceeds size of device (%llu blocks)",
4783 		       ext4_blocks_count(es), blocks_count);
4784 		return -EINVAL;
4785 	}
4786 
4787 	/*
4788 	 * It makes no sense for the first data block to be beyond the end
4789 	 * of the filesystem.
4790 	 */
4791 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4792 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4793 			 "block %u is beyond end of filesystem (%llu)",
4794 			 le32_to_cpu(es->s_first_data_block),
4795 			 ext4_blocks_count(es));
4796 		return -EINVAL;
4797 	}
4798 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4799 	    (sbi->s_cluster_ratio == 1)) {
4800 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4801 			 "block is 0 with a 1k block and cluster size");
4802 		return -EINVAL;
4803 	}
4804 
4805 	blocks_count = (ext4_blocks_count(es) -
4806 			le32_to_cpu(es->s_first_data_block) +
4807 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4808 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4809 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4810 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4811 		       "(block count %llu, first data block %u, "
4812 		       "blocks per group %lu)", blocks_count,
4813 		       ext4_blocks_count(es),
4814 		       le32_to_cpu(es->s_first_data_block),
4815 		       EXT4_BLOCKS_PER_GROUP(sb));
4816 		return -EINVAL;
4817 	}
4818 	sbi->s_groups_count = blocks_count;
4819 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4820 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4821 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4822 	    le32_to_cpu(es->s_inodes_count)) {
4823 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4824 			 le32_to_cpu(es->s_inodes_count),
4825 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4826 		return -EINVAL;
4827 	}
4828 
4829 	return 0;
4830 }
4831 
4832 static int ext4_group_desc_init(struct super_block *sb,
4833 				struct ext4_super_block *es,
4834 				ext4_fsblk_t logical_sb_block,
4835 				ext4_group_t *first_not_zeroed)
4836 {
4837 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4838 	unsigned int db_count;
4839 	ext4_fsblk_t block;
4840 	int i;
4841 
4842 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4843 		   EXT4_DESC_PER_BLOCK(sb);
4844 	if (ext4_has_feature_meta_bg(sb)) {
4845 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4846 			ext4_msg(sb, KERN_WARNING,
4847 				 "first meta block group too large: %u "
4848 				 "(group descriptor block count %u)",
4849 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4850 			return -EINVAL;
4851 		}
4852 	}
4853 	rcu_assign_pointer(sbi->s_group_desc,
4854 			   kvmalloc_array(db_count,
4855 					  sizeof(struct buffer_head *),
4856 					  GFP_KERNEL));
4857 	if (sbi->s_group_desc == NULL) {
4858 		ext4_msg(sb, KERN_ERR, "not enough memory");
4859 		return -ENOMEM;
4860 	}
4861 
4862 	bgl_lock_init(sbi->s_blockgroup_lock);
4863 
4864 	/* Pre-read the descriptors into the buffer cache */
4865 	for (i = 0; i < db_count; i++) {
4866 		block = descriptor_loc(sb, logical_sb_block, i);
4867 		ext4_sb_breadahead_unmovable(sb, block);
4868 	}
4869 
4870 	for (i = 0; i < db_count; i++) {
4871 		struct buffer_head *bh;
4872 
4873 		block = descriptor_loc(sb, logical_sb_block, i);
4874 		bh = ext4_sb_bread_unmovable(sb, block);
4875 		if (IS_ERR(bh)) {
4876 			ext4_msg(sb, KERN_ERR,
4877 			       "can't read group descriptor %d", i);
4878 			sbi->s_gdb_count = i;
4879 			return PTR_ERR(bh);
4880 		}
4881 		rcu_read_lock();
4882 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4883 		rcu_read_unlock();
4884 	}
4885 	sbi->s_gdb_count = db_count;
4886 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4887 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4888 		return -EFSCORRUPTED;
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 static int ext4_load_and_init_journal(struct super_block *sb,
4895 				      struct ext4_super_block *es,
4896 				      struct ext4_fs_context *ctx)
4897 {
4898 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4899 	int err;
4900 
4901 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4902 	if (err)
4903 		return err;
4904 
4905 	if (ext4_has_feature_64bit(sb) &&
4906 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4907 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4908 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4909 		goto out;
4910 	}
4911 
4912 	if (!set_journal_csum_feature_set(sb)) {
4913 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4914 			 "feature set");
4915 		goto out;
4916 	}
4917 
4918 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4919 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4921 		ext4_msg(sb, KERN_ERR,
4922 			"Failed to set fast commit journal feature");
4923 		goto out;
4924 	}
4925 
4926 	/* We have now updated the journal if required, so we can
4927 	 * validate the data journaling mode. */
4928 	switch (test_opt(sb, DATA_FLAGS)) {
4929 	case 0:
4930 		/* No mode set, assume a default based on the journal
4931 		 * capabilities: ORDERED_DATA if the journal can
4932 		 * cope, else JOURNAL_DATA
4933 		 */
4934 		if (jbd2_journal_check_available_features
4935 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4936 			set_opt(sb, ORDERED_DATA);
4937 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4938 		} else {
4939 			set_opt(sb, JOURNAL_DATA);
4940 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4941 		}
4942 		break;
4943 
4944 	case EXT4_MOUNT_ORDERED_DATA:
4945 	case EXT4_MOUNT_WRITEBACK_DATA:
4946 		if (!jbd2_journal_check_available_features
4947 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4948 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4949 			       "requested data journaling mode");
4950 			goto out;
4951 		}
4952 		break;
4953 	default:
4954 		break;
4955 	}
4956 
4957 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4958 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4959 		ext4_msg(sb, KERN_ERR, "can't mount with "
4960 			"journal_async_commit in data=ordered mode");
4961 		goto out;
4962 	}
4963 
4964 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4965 
4966 	sbi->s_journal->j_submit_inode_data_buffers =
4967 		ext4_journal_submit_inode_data_buffers;
4968 	sbi->s_journal->j_finish_inode_data_buffers =
4969 		ext4_journal_finish_inode_data_buffers;
4970 
4971 	return 0;
4972 
4973 out:
4974 	/* flush s_sb_upd_work before destroying the journal. */
4975 	flush_work(&sbi->s_sb_upd_work);
4976 	jbd2_journal_destroy(sbi->s_journal);
4977 	sbi->s_journal = NULL;
4978 	return -EINVAL;
4979 }
4980 
4981 static int ext4_check_journal_data_mode(struct super_block *sb)
4982 {
4983 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4984 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4985 			    "data=journal disables delayed allocation, "
4986 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4987 		/* can't mount with both data=journal and dioread_nolock. */
4988 		clear_opt(sb, DIOREAD_NOLOCK);
4989 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4990 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4991 			ext4_msg(sb, KERN_ERR, "can't mount with "
4992 				 "both data=journal and delalloc");
4993 			return -EINVAL;
4994 		}
4995 		if (test_opt(sb, DAX_ALWAYS)) {
4996 			ext4_msg(sb, KERN_ERR, "can't mount with "
4997 				 "both data=journal and dax");
4998 			return -EINVAL;
4999 		}
5000 		if (ext4_has_feature_encrypt(sb)) {
5001 			ext4_msg(sb, KERN_WARNING,
5002 				 "encrypted files will use data=ordered "
5003 				 "instead of data journaling mode");
5004 		}
5005 		if (test_opt(sb, DELALLOC))
5006 			clear_opt(sb, DELALLOC);
5007 	} else {
5008 		sb->s_iflags |= SB_I_CGROUPWB;
5009 	}
5010 
5011 	return 0;
5012 }
5013 
5014 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5015 			   int silent)
5016 {
5017 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5018 	struct ext4_super_block *es;
5019 	ext4_fsblk_t logical_sb_block;
5020 	unsigned long offset = 0;
5021 	struct buffer_head *bh;
5022 	int ret = -EINVAL;
5023 	int blocksize;
5024 
5025 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5026 	if (!blocksize) {
5027 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5028 		return -EINVAL;
5029 	}
5030 
5031 	/*
5032 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5033 	 * block sizes.  We need to calculate the offset from buffer start.
5034 	 */
5035 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5036 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5037 		offset = do_div(logical_sb_block, blocksize);
5038 	} else {
5039 		logical_sb_block = sbi->s_sb_block;
5040 	}
5041 
5042 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5043 	if (IS_ERR(bh)) {
5044 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5045 		return PTR_ERR(bh);
5046 	}
5047 	/*
5048 	 * Note: s_es must be initialized as soon as possible because
5049 	 *       some ext4 macro-instructions depend on its value
5050 	 */
5051 	es = (struct ext4_super_block *) (bh->b_data + offset);
5052 	sbi->s_es = es;
5053 	sb->s_magic = le16_to_cpu(es->s_magic);
5054 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5055 		if (!silent)
5056 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5057 		goto out;
5058 	}
5059 
5060 	if (le32_to_cpu(es->s_log_block_size) >
5061 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5062 		ext4_msg(sb, KERN_ERR,
5063 			 "Invalid log block size: %u",
5064 			 le32_to_cpu(es->s_log_block_size));
5065 		goto out;
5066 	}
5067 	if (le32_to_cpu(es->s_log_cluster_size) >
5068 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5069 		ext4_msg(sb, KERN_ERR,
5070 			 "Invalid log cluster size: %u",
5071 			 le32_to_cpu(es->s_log_cluster_size));
5072 		goto out;
5073 	}
5074 
5075 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5076 
5077 	/*
5078 	 * If the default block size is not the same as the real block size,
5079 	 * we need to reload it.
5080 	 */
5081 	if (sb->s_blocksize == blocksize) {
5082 		*lsb = logical_sb_block;
5083 		sbi->s_sbh = bh;
5084 		return 0;
5085 	}
5086 
5087 	/*
5088 	 * bh must be released before kill_bdev(), otherwise
5089 	 * it won't be freed and its page also. kill_bdev()
5090 	 * is called by sb_set_blocksize().
5091 	 */
5092 	brelse(bh);
5093 	/* Validate the filesystem blocksize */
5094 	if (!sb_set_blocksize(sb, blocksize)) {
5095 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5096 				blocksize);
5097 		bh = NULL;
5098 		goto out;
5099 	}
5100 
5101 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5102 	offset = do_div(logical_sb_block, blocksize);
5103 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5104 	if (IS_ERR(bh)) {
5105 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5106 		ret = PTR_ERR(bh);
5107 		bh = NULL;
5108 		goto out;
5109 	}
5110 	es = (struct ext4_super_block *)(bh->b_data + offset);
5111 	sbi->s_es = es;
5112 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5113 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5114 		goto out;
5115 	}
5116 	*lsb = logical_sb_block;
5117 	sbi->s_sbh = bh;
5118 	return 0;
5119 out:
5120 	brelse(bh);
5121 	return ret;
5122 }
5123 
5124 static void ext4_hash_info_init(struct super_block *sb)
5125 {
5126 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5127 	struct ext4_super_block *es = sbi->s_es;
5128 	unsigned int i;
5129 
5130 	for (i = 0; i < 4; i++)
5131 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5132 
5133 	sbi->s_def_hash_version = es->s_def_hash_version;
5134 	if (ext4_has_feature_dir_index(sb)) {
5135 		i = le32_to_cpu(es->s_flags);
5136 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5137 			sbi->s_hash_unsigned = 3;
5138 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5139 #ifdef __CHAR_UNSIGNED__
5140 			if (!sb_rdonly(sb))
5141 				es->s_flags |=
5142 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5143 			sbi->s_hash_unsigned = 3;
5144 #else
5145 			if (!sb_rdonly(sb))
5146 				es->s_flags |=
5147 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5148 #endif
5149 		}
5150 	}
5151 }
5152 
5153 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5154 {
5155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5156 	struct ext4_super_block *es = sbi->s_es;
5157 	int has_huge_files;
5158 
5159 	has_huge_files = ext4_has_feature_huge_file(sb);
5160 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5161 						      has_huge_files);
5162 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5163 
5164 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5165 	if (ext4_has_feature_64bit(sb)) {
5166 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5167 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5168 		    !is_power_of_2(sbi->s_desc_size)) {
5169 			ext4_msg(sb, KERN_ERR,
5170 			       "unsupported descriptor size %lu",
5171 			       sbi->s_desc_size);
5172 			return -EINVAL;
5173 		}
5174 	} else
5175 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5176 
5177 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5178 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5179 
5180 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5181 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5182 		if (!silent)
5183 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5184 		return -EINVAL;
5185 	}
5186 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5187 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5188 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5189 			 sbi->s_inodes_per_group);
5190 		return -EINVAL;
5191 	}
5192 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5193 					sbi->s_inodes_per_block;
5194 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5195 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5196 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5197 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5198 
5199 	return 0;
5200 }
5201 
5202 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5203 {
5204 	struct ext4_super_block *es = NULL;
5205 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5206 	ext4_fsblk_t logical_sb_block;
5207 	struct inode *root;
5208 	int needs_recovery;
5209 	int err;
5210 	ext4_group_t first_not_zeroed;
5211 	struct ext4_fs_context *ctx = fc->fs_private;
5212 	int silent = fc->sb_flags & SB_SILENT;
5213 
5214 	/* Set defaults for the variables that will be set during parsing */
5215 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5216 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5217 
5218 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5219 	sbi->s_sectors_written_start =
5220 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5221 
5222 	err = ext4_load_super(sb, &logical_sb_block, silent);
5223 	if (err)
5224 		goto out_fail;
5225 
5226 	es = sbi->s_es;
5227 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5228 
5229 	err = ext4_init_metadata_csum(sb, es);
5230 	if (err)
5231 		goto failed_mount;
5232 
5233 	ext4_set_def_opts(sb, es);
5234 
5235 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5236 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5237 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5238 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5239 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5240 
5241 	/*
5242 	 * set default s_li_wait_mult for lazyinit, for the case there is
5243 	 * no mount option specified.
5244 	 */
5245 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5246 
5247 	err = ext4_inode_info_init(sb, es);
5248 	if (err)
5249 		goto failed_mount;
5250 
5251 	err = parse_apply_sb_mount_options(sb, ctx);
5252 	if (err < 0)
5253 		goto failed_mount;
5254 
5255 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5256 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5257 
5258 	err = ext4_check_opt_consistency(fc, sb);
5259 	if (err < 0)
5260 		goto failed_mount;
5261 
5262 	ext4_apply_options(fc, sb);
5263 
5264 	err = ext4_encoding_init(sb, es);
5265 	if (err)
5266 		goto failed_mount;
5267 
5268 	err = ext4_check_journal_data_mode(sb);
5269 	if (err)
5270 		goto failed_mount;
5271 
5272 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5273 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5274 
5275 	/* i_version is always enabled now */
5276 	sb->s_flags |= SB_I_VERSION;
5277 
5278 	err = ext4_check_feature_compatibility(sb, es, silent);
5279 	if (err)
5280 		goto failed_mount;
5281 
5282 	err = ext4_block_group_meta_init(sb, silent);
5283 	if (err)
5284 		goto failed_mount;
5285 
5286 	ext4_hash_info_init(sb);
5287 
5288 	err = ext4_handle_clustersize(sb);
5289 	if (err)
5290 		goto failed_mount;
5291 
5292 	err = ext4_check_geometry(sb, es);
5293 	if (err)
5294 		goto failed_mount;
5295 
5296 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5297 	spin_lock_init(&sbi->s_error_lock);
5298 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5299 
5300 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5301 	if (err)
5302 		goto failed_mount3;
5303 
5304 	err = ext4_es_register_shrinker(sbi);
5305 	if (err)
5306 		goto failed_mount3;
5307 
5308 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5309 	/*
5310 	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5311 	 * cluster, just disable stripe and alert user to simpfy code and avoid
5312 	 * stripe aligned allocation which will rarely successes.
5313 	 */
5314 	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5315 	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5316 		ext4_msg(sb, KERN_WARNING,
5317 			 "stripe (%lu) is not aligned with cluster size (%u), "
5318 			 "stripe is disabled",
5319 			 sbi->s_stripe, sbi->s_cluster_ratio);
5320 		sbi->s_stripe = 0;
5321 	}
5322 	sbi->s_extent_max_zeroout_kb = 32;
5323 
5324 	/*
5325 	 * set up enough so that it can read an inode
5326 	 */
5327 	sb->s_op = &ext4_sops;
5328 	sb->s_export_op = &ext4_export_ops;
5329 	sb->s_xattr = ext4_xattr_handlers;
5330 #ifdef CONFIG_FS_ENCRYPTION
5331 	sb->s_cop = &ext4_cryptops;
5332 #endif
5333 #ifdef CONFIG_FS_VERITY
5334 	sb->s_vop = &ext4_verityops;
5335 #endif
5336 #ifdef CONFIG_QUOTA
5337 	sb->dq_op = &ext4_quota_operations;
5338 	if (ext4_has_feature_quota(sb))
5339 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5340 	else
5341 		sb->s_qcop = &ext4_qctl_operations;
5342 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5343 #endif
5344 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5345 
5346 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5347 	mutex_init(&sbi->s_orphan_lock);
5348 
5349 	ext4_fast_commit_init(sb);
5350 
5351 	sb->s_root = NULL;
5352 
5353 	needs_recovery = (es->s_last_orphan != 0 ||
5354 			  ext4_has_feature_orphan_present(sb) ||
5355 			  ext4_has_feature_journal_needs_recovery(sb));
5356 
5357 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5358 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5359 		if (err)
5360 			goto failed_mount3a;
5361 	}
5362 
5363 	err = -EINVAL;
5364 	/*
5365 	 * The first inode we look at is the journal inode.  Don't try
5366 	 * root first: it may be modified in the journal!
5367 	 */
5368 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5369 		err = ext4_load_and_init_journal(sb, es, ctx);
5370 		if (err)
5371 			goto failed_mount3a;
5372 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5373 		   ext4_has_feature_journal_needs_recovery(sb)) {
5374 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5375 		       "suppressed and not mounted read-only");
5376 		goto failed_mount3a;
5377 	} else {
5378 		/* Nojournal mode, all journal mount options are illegal */
5379 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5380 			ext4_msg(sb, KERN_ERR, "can't mount with "
5381 				 "journal_async_commit, fs mounted w/o journal");
5382 			goto failed_mount3a;
5383 		}
5384 
5385 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5386 			ext4_msg(sb, KERN_ERR, "can't mount with "
5387 				 "journal_checksum, fs mounted w/o journal");
5388 			goto failed_mount3a;
5389 		}
5390 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5391 			ext4_msg(sb, KERN_ERR, "can't mount with "
5392 				 "commit=%lu, fs mounted w/o journal",
5393 				 sbi->s_commit_interval / HZ);
5394 			goto failed_mount3a;
5395 		}
5396 		if (EXT4_MOUNT_DATA_FLAGS &
5397 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5398 			ext4_msg(sb, KERN_ERR, "can't mount with "
5399 				 "data=, fs mounted w/o journal");
5400 			goto failed_mount3a;
5401 		}
5402 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5403 		clear_opt(sb, JOURNAL_CHECKSUM);
5404 		clear_opt(sb, DATA_FLAGS);
5405 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5406 		sbi->s_journal = NULL;
5407 		needs_recovery = 0;
5408 	}
5409 
5410 	if (!test_opt(sb, NO_MBCACHE)) {
5411 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5412 		if (!sbi->s_ea_block_cache) {
5413 			ext4_msg(sb, KERN_ERR,
5414 				 "Failed to create ea_block_cache");
5415 			err = -EINVAL;
5416 			goto failed_mount_wq;
5417 		}
5418 
5419 		if (ext4_has_feature_ea_inode(sb)) {
5420 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5421 			if (!sbi->s_ea_inode_cache) {
5422 				ext4_msg(sb, KERN_ERR,
5423 					 "Failed to create ea_inode_cache");
5424 				err = -EINVAL;
5425 				goto failed_mount_wq;
5426 			}
5427 		}
5428 	}
5429 
5430 	/*
5431 	 * Get the # of file system overhead blocks from the
5432 	 * superblock if present.
5433 	 */
5434 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5435 	/* ignore the precalculated value if it is ridiculous */
5436 	if (sbi->s_overhead > ext4_blocks_count(es))
5437 		sbi->s_overhead = 0;
5438 	/*
5439 	 * If the bigalloc feature is not enabled recalculating the
5440 	 * overhead doesn't take long, so we might as well just redo
5441 	 * it to make sure we are using the correct value.
5442 	 */
5443 	if (!ext4_has_feature_bigalloc(sb))
5444 		sbi->s_overhead = 0;
5445 	if (sbi->s_overhead == 0) {
5446 		err = ext4_calculate_overhead(sb);
5447 		if (err)
5448 			goto failed_mount_wq;
5449 	}
5450 
5451 	/*
5452 	 * The maximum number of concurrent works can be high and
5453 	 * concurrency isn't really necessary.  Limit it to 1.
5454 	 */
5455 	EXT4_SB(sb)->rsv_conversion_wq =
5456 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5457 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5458 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5459 		err = -ENOMEM;
5460 		goto failed_mount4;
5461 	}
5462 
5463 	/*
5464 	 * The jbd2_journal_load will have done any necessary log recovery,
5465 	 * so we can safely mount the rest of the filesystem now.
5466 	 */
5467 
5468 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5469 	if (IS_ERR(root)) {
5470 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5471 		err = PTR_ERR(root);
5472 		root = NULL;
5473 		goto failed_mount4;
5474 	}
5475 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5476 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5477 		iput(root);
5478 		err = -EFSCORRUPTED;
5479 		goto failed_mount4;
5480 	}
5481 
5482 	generic_set_sb_d_ops(sb);
5483 	sb->s_root = d_make_root(root);
5484 	if (!sb->s_root) {
5485 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5486 		err = -ENOMEM;
5487 		goto failed_mount4;
5488 	}
5489 
5490 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5491 	if (err == -EROFS) {
5492 		sb->s_flags |= SB_RDONLY;
5493 	} else if (err)
5494 		goto failed_mount4a;
5495 
5496 	ext4_set_resv_clusters(sb);
5497 
5498 	if (test_opt(sb, BLOCK_VALIDITY)) {
5499 		err = ext4_setup_system_zone(sb);
5500 		if (err) {
5501 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5502 				 "zone (%d)", err);
5503 			goto failed_mount4a;
5504 		}
5505 	}
5506 	ext4_fc_replay_cleanup(sb);
5507 
5508 	ext4_ext_init(sb);
5509 
5510 	/*
5511 	 * Enable optimize_scan if number of groups is > threshold. This can be
5512 	 * turned off by passing "mb_optimize_scan=0". This can also be
5513 	 * turned on forcefully by passing "mb_optimize_scan=1".
5514 	 */
5515 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5516 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5517 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5518 		else
5519 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5520 	}
5521 
5522 	err = ext4_mb_init(sb);
5523 	if (err) {
5524 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5525 			 err);
5526 		goto failed_mount5;
5527 	}
5528 
5529 	/*
5530 	 * We can only set up the journal commit callback once
5531 	 * mballoc is initialized
5532 	 */
5533 	if (sbi->s_journal)
5534 		sbi->s_journal->j_commit_callback =
5535 			ext4_journal_commit_callback;
5536 
5537 	err = ext4_percpu_param_init(sbi);
5538 	if (err)
5539 		goto failed_mount6;
5540 
5541 	if (ext4_has_feature_flex_bg(sb))
5542 		if (!ext4_fill_flex_info(sb)) {
5543 			ext4_msg(sb, KERN_ERR,
5544 			       "unable to initialize "
5545 			       "flex_bg meta info!");
5546 			err = -ENOMEM;
5547 			goto failed_mount6;
5548 		}
5549 
5550 	err = ext4_register_li_request(sb, first_not_zeroed);
5551 	if (err)
5552 		goto failed_mount6;
5553 
5554 	err = ext4_register_sysfs(sb);
5555 	if (err)
5556 		goto failed_mount7;
5557 
5558 	err = ext4_init_orphan_info(sb);
5559 	if (err)
5560 		goto failed_mount8;
5561 #ifdef CONFIG_QUOTA
5562 	/* Enable quota usage during mount. */
5563 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5564 		err = ext4_enable_quotas(sb);
5565 		if (err)
5566 			goto failed_mount9;
5567 	}
5568 #endif  /* CONFIG_QUOTA */
5569 
5570 	/*
5571 	 * Save the original bdev mapping's wb_err value which could be
5572 	 * used to detect the metadata async write error.
5573 	 */
5574 	spin_lock_init(&sbi->s_bdev_wb_lock);
5575 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5576 				 &sbi->s_bdev_wb_err);
5577 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5578 	ext4_orphan_cleanup(sb, es);
5579 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5580 	/*
5581 	 * Update the checksum after updating free space/inode counters and
5582 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5583 	 * checksum in the buffer cache until it is written out and
5584 	 * e2fsprogs programs trying to open a file system immediately
5585 	 * after it is mounted can fail.
5586 	 */
5587 	ext4_superblock_csum_set(sb);
5588 	if (needs_recovery) {
5589 		ext4_msg(sb, KERN_INFO, "recovery complete");
5590 		err = ext4_mark_recovery_complete(sb, es);
5591 		if (err)
5592 			goto failed_mount10;
5593 	}
5594 
5595 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5596 		ext4_msg(sb, KERN_WARNING,
5597 			 "mounting with \"discard\" option, but the device does not support discard");
5598 
5599 	if (es->s_error_count)
5600 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5601 
5602 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5603 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5604 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5605 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5606 	atomic_set(&sbi->s_warning_count, 0);
5607 	atomic_set(&sbi->s_msg_count, 0);
5608 
5609 	return 0;
5610 
5611 failed_mount10:
5612 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5613 failed_mount9: __maybe_unused
5614 	ext4_release_orphan_info(sb);
5615 failed_mount8:
5616 	ext4_unregister_sysfs(sb);
5617 	kobject_put(&sbi->s_kobj);
5618 failed_mount7:
5619 	ext4_unregister_li_request(sb);
5620 failed_mount6:
5621 	ext4_mb_release(sb);
5622 	ext4_flex_groups_free(sbi);
5623 	ext4_percpu_param_destroy(sbi);
5624 failed_mount5:
5625 	ext4_ext_release(sb);
5626 	ext4_release_system_zone(sb);
5627 failed_mount4a:
5628 	dput(sb->s_root);
5629 	sb->s_root = NULL;
5630 failed_mount4:
5631 	ext4_msg(sb, KERN_ERR, "mount failed");
5632 	if (EXT4_SB(sb)->rsv_conversion_wq)
5633 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5634 failed_mount_wq:
5635 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5636 	sbi->s_ea_inode_cache = NULL;
5637 
5638 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5639 	sbi->s_ea_block_cache = NULL;
5640 
5641 	if (sbi->s_journal) {
5642 		/* flush s_sb_upd_work before journal destroy. */
5643 		flush_work(&sbi->s_sb_upd_work);
5644 		jbd2_journal_destroy(sbi->s_journal);
5645 		sbi->s_journal = NULL;
5646 	}
5647 failed_mount3a:
5648 	ext4_es_unregister_shrinker(sbi);
5649 failed_mount3:
5650 	/* flush s_sb_upd_work before sbi destroy */
5651 	flush_work(&sbi->s_sb_upd_work);
5652 	del_timer_sync(&sbi->s_err_report);
5653 	ext4_stop_mmpd(sbi);
5654 	ext4_group_desc_free(sbi);
5655 failed_mount:
5656 	if (sbi->s_chksum_driver)
5657 		crypto_free_shash(sbi->s_chksum_driver);
5658 
5659 #if IS_ENABLED(CONFIG_UNICODE)
5660 	utf8_unload(sb->s_encoding);
5661 #endif
5662 
5663 #ifdef CONFIG_QUOTA
5664 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5665 		kfree(get_qf_name(sb, sbi, i));
5666 #endif
5667 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5668 	brelse(sbi->s_sbh);
5669 	if (sbi->s_journal_bdev_file) {
5670 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5671 		bdev_fput(sbi->s_journal_bdev_file);
5672 	}
5673 out_fail:
5674 	invalidate_bdev(sb->s_bdev);
5675 	sb->s_fs_info = NULL;
5676 	return err;
5677 }
5678 
5679 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5680 {
5681 	struct ext4_fs_context *ctx = fc->fs_private;
5682 	struct ext4_sb_info *sbi;
5683 	const char *descr;
5684 	int ret;
5685 
5686 	sbi = ext4_alloc_sbi(sb);
5687 	if (!sbi)
5688 		return -ENOMEM;
5689 
5690 	fc->s_fs_info = sbi;
5691 
5692 	/* Cleanup superblock name */
5693 	strreplace(sb->s_id, '/', '!');
5694 
5695 	sbi->s_sb_block = 1;	/* Default super block location */
5696 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5697 		sbi->s_sb_block = ctx->s_sb_block;
5698 
5699 	ret = __ext4_fill_super(fc, sb);
5700 	if (ret < 0)
5701 		goto free_sbi;
5702 
5703 	if (sbi->s_journal) {
5704 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5705 			descr = " journalled data mode";
5706 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5707 			descr = " ordered data mode";
5708 		else
5709 			descr = " writeback data mode";
5710 	} else
5711 		descr = "out journal";
5712 
5713 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5714 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5715 			 "Quota mode: %s.", &sb->s_uuid,
5716 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5717 			 ext4_quota_mode(sb));
5718 
5719 	/* Update the s_overhead_clusters if necessary */
5720 	ext4_update_overhead(sb, false);
5721 	return 0;
5722 
5723 free_sbi:
5724 	ext4_free_sbi(sbi);
5725 	fc->s_fs_info = NULL;
5726 	return ret;
5727 }
5728 
5729 static int ext4_get_tree(struct fs_context *fc)
5730 {
5731 	return get_tree_bdev(fc, ext4_fill_super);
5732 }
5733 
5734 /*
5735  * Setup any per-fs journal parameters now.  We'll do this both on
5736  * initial mount, once the journal has been initialised but before we've
5737  * done any recovery; and again on any subsequent remount.
5738  */
5739 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5740 {
5741 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5742 
5743 	journal->j_commit_interval = sbi->s_commit_interval;
5744 	journal->j_min_batch_time = sbi->s_min_batch_time;
5745 	journal->j_max_batch_time = sbi->s_max_batch_time;
5746 	ext4_fc_init(sb, journal);
5747 
5748 	write_lock(&journal->j_state_lock);
5749 	if (test_opt(sb, BARRIER))
5750 		journal->j_flags |= JBD2_BARRIER;
5751 	else
5752 		journal->j_flags &= ~JBD2_BARRIER;
5753 	if (test_opt(sb, DATA_ERR_ABORT))
5754 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5755 	else
5756 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5757 	/*
5758 	 * Always enable journal cycle record option, letting the journal
5759 	 * records log transactions continuously between each mount.
5760 	 */
5761 	journal->j_flags |= JBD2_CYCLE_RECORD;
5762 	write_unlock(&journal->j_state_lock);
5763 }
5764 
5765 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5766 					     unsigned int journal_inum)
5767 {
5768 	struct inode *journal_inode;
5769 
5770 	/*
5771 	 * Test for the existence of a valid inode on disk.  Bad things
5772 	 * happen if we iget() an unused inode, as the subsequent iput()
5773 	 * will try to delete it.
5774 	 */
5775 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5776 	if (IS_ERR(journal_inode)) {
5777 		ext4_msg(sb, KERN_ERR, "no journal found");
5778 		return ERR_CAST(journal_inode);
5779 	}
5780 	if (!journal_inode->i_nlink) {
5781 		make_bad_inode(journal_inode);
5782 		iput(journal_inode);
5783 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5784 		return ERR_PTR(-EFSCORRUPTED);
5785 	}
5786 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5787 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5788 		iput(journal_inode);
5789 		return ERR_PTR(-EFSCORRUPTED);
5790 	}
5791 
5792 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5793 		  journal_inode, journal_inode->i_size);
5794 	return journal_inode;
5795 }
5796 
5797 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5798 {
5799 	struct ext4_map_blocks map;
5800 	int ret;
5801 
5802 	if (journal->j_inode == NULL)
5803 		return 0;
5804 
5805 	map.m_lblk = *block;
5806 	map.m_len = 1;
5807 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5808 	if (ret <= 0) {
5809 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5810 			 "journal bmap failed: block %llu ret %d\n",
5811 			 *block, ret);
5812 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5813 		return ret;
5814 	}
5815 	*block = map.m_pblk;
5816 	return 0;
5817 }
5818 
5819 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5820 					  unsigned int journal_inum)
5821 {
5822 	struct inode *journal_inode;
5823 	journal_t *journal;
5824 
5825 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5826 	if (IS_ERR(journal_inode))
5827 		return ERR_CAST(journal_inode);
5828 
5829 	journal = jbd2_journal_init_inode(journal_inode);
5830 	if (IS_ERR(journal)) {
5831 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5832 		iput(journal_inode);
5833 		return ERR_CAST(journal);
5834 	}
5835 	journal->j_private = sb;
5836 	journal->j_bmap = ext4_journal_bmap;
5837 	ext4_init_journal_params(sb, journal);
5838 	return journal;
5839 }
5840 
5841 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5842 					dev_t j_dev, ext4_fsblk_t *j_start,
5843 					ext4_fsblk_t *j_len)
5844 {
5845 	struct buffer_head *bh;
5846 	struct block_device *bdev;
5847 	struct file *bdev_file;
5848 	int hblock, blocksize;
5849 	ext4_fsblk_t sb_block;
5850 	unsigned long offset;
5851 	struct ext4_super_block *es;
5852 	int errno;
5853 
5854 	bdev_file = bdev_file_open_by_dev(j_dev,
5855 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5856 		sb, &fs_holder_ops);
5857 	if (IS_ERR(bdev_file)) {
5858 		ext4_msg(sb, KERN_ERR,
5859 			 "failed to open journal device unknown-block(%u,%u) %ld",
5860 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5861 		return bdev_file;
5862 	}
5863 
5864 	bdev = file_bdev(bdev_file);
5865 	blocksize = sb->s_blocksize;
5866 	hblock = bdev_logical_block_size(bdev);
5867 	if (blocksize < hblock) {
5868 		ext4_msg(sb, KERN_ERR,
5869 			"blocksize too small for journal device");
5870 		errno = -EINVAL;
5871 		goto out_bdev;
5872 	}
5873 
5874 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5875 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5876 	set_blocksize(bdev, blocksize);
5877 	bh = __bread(bdev, sb_block, blocksize);
5878 	if (!bh) {
5879 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5880 		       "external journal");
5881 		errno = -EINVAL;
5882 		goto out_bdev;
5883 	}
5884 
5885 	es = (struct ext4_super_block *) (bh->b_data + offset);
5886 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5887 	    !(le32_to_cpu(es->s_feature_incompat) &
5888 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5889 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5890 		errno = -EFSCORRUPTED;
5891 		goto out_bh;
5892 	}
5893 
5894 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5895 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5896 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5897 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5898 		errno = -EFSCORRUPTED;
5899 		goto out_bh;
5900 	}
5901 
5902 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5903 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5904 		errno = -EFSCORRUPTED;
5905 		goto out_bh;
5906 	}
5907 
5908 	*j_start = sb_block + 1;
5909 	*j_len = ext4_blocks_count(es);
5910 	brelse(bh);
5911 	return bdev_file;
5912 
5913 out_bh:
5914 	brelse(bh);
5915 out_bdev:
5916 	bdev_fput(bdev_file);
5917 	return ERR_PTR(errno);
5918 }
5919 
5920 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5921 					dev_t j_dev)
5922 {
5923 	journal_t *journal;
5924 	ext4_fsblk_t j_start;
5925 	ext4_fsblk_t j_len;
5926 	struct file *bdev_file;
5927 	int errno = 0;
5928 
5929 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5930 	if (IS_ERR(bdev_file))
5931 		return ERR_CAST(bdev_file);
5932 
5933 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5934 					j_len, sb->s_blocksize);
5935 	if (IS_ERR(journal)) {
5936 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5937 		errno = PTR_ERR(journal);
5938 		goto out_bdev;
5939 	}
5940 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5941 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5942 					"user (unsupported) - %d",
5943 			be32_to_cpu(journal->j_superblock->s_nr_users));
5944 		errno = -EINVAL;
5945 		goto out_journal;
5946 	}
5947 	journal->j_private = sb;
5948 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5949 	ext4_init_journal_params(sb, journal);
5950 	return journal;
5951 
5952 out_journal:
5953 	jbd2_journal_destroy(journal);
5954 out_bdev:
5955 	bdev_fput(bdev_file);
5956 	return ERR_PTR(errno);
5957 }
5958 
5959 static int ext4_load_journal(struct super_block *sb,
5960 			     struct ext4_super_block *es,
5961 			     unsigned long journal_devnum)
5962 {
5963 	journal_t *journal;
5964 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5965 	dev_t journal_dev;
5966 	int err = 0;
5967 	int really_read_only;
5968 	int journal_dev_ro;
5969 
5970 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5971 		return -EFSCORRUPTED;
5972 
5973 	if (journal_devnum &&
5974 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5975 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5976 			"numbers have changed");
5977 		journal_dev = new_decode_dev(journal_devnum);
5978 	} else
5979 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5980 
5981 	if (journal_inum && journal_dev) {
5982 		ext4_msg(sb, KERN_ERR,
5983 			 "filesystem has both journal inode and journal device!");
5984 		return -EINVAL;
5985 	}
5986 
5987 	if (journal_inum) {
5988 		journal = ext4_open_inode_journal(sb, journal_inum);
5989 		if (IS_ERR(journal))
5990 			return PTR_ERR(journal);
5991 	} else {
5992 		journal = ext4_open_dev_journal(sb, journal_dev);
5993 		if (IS_ERR(journal))
5994 			return PTR_ERR(journal);
5995 	}
5996 
5997 	journal_dev_ro = bdev_read_only(journal->j_dev);
5998 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5999 
6000 	if (journal_dev_ro && !sb_rdonly(sb)) {
6001 		ext4_msg(sb, KERN_ERR,
6002 			 "journal device read-only, try mounting with '-o ro'");
6003 		err = -EROFS;
6004 		goto err_out;
6005 	}
6006 
6007 	/*
6008 	 * Are we loading a blank journal or performing recovery after a
6009 	 * crash?  For recovery, we need to check in advance whether we
6010 	 * can get read-write access to the device.
6011 	 */
6012 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6013 		if (sb_rdonly(sb)) {
6014 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6015 					"required on readonly filesystem");
6016 			if (really_read_only) {
6017 				ext4_msg(sb, KERN_ERR, "write access "
6018 					"unavailable, cannot proceed "
6019 					"(try mounting with noload)");
6020 				err = -EROFS;
6021 				goto err_out;
6022 			}
6023 			ext4_msg(sb, KERN_INFO, "write access will "
6024 			       "be enabled during recovery");
6025 		}
6026 	}
6027 
6028 	if (!(journal->j_flags & JBD2_BARRIER))
6029 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6030 
6031 	if (!ext4_has_feature_journal_needs_recovery(sb))
6032 		err = jbd2_journal_wipe(journal, !really_read_only);
6033 	if (!err) {
6034 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6035 		__le16 orig_state;
6036 		bool changed = false;
6037 
6038 		if (save)
6039 			memcpy(save, ((char *) es) +
6040 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6041 		err = jbd2_journal_load(journal);
6042 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6043 				   save, EXT4_S_ERR_LEN)) {
6044 			memcpy(((char *) es) + EXT4_S_ERR_START,
6045 			       save, EXT4_S_ERR_LEN);
6046 			changed = true;
6047 		}
6048 		kfree(save);
6049 		orig_state = es->s_state;
6050 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6051 					   EXT4_ERROR_FS);
6052 		if (orig_state != es->s_state)
6053 			changed = true;
6054 		/* Write out restored error information to the superblock */
6055 		if (changed && !really_read_only) {
6056 			int err2;
6057 			err2 = ext4_commit_super(sb);
6058 			err = err ? : err2;
6059 		}
6060 	}
6061 
6062 	if (err) {
6063 		ext4_msg(sb, KERN_ERR, "error loading journal");
6064 		goto err_out;
6065 	}
6066 
6067 	EXT4_SB(sb)->s_journal = journal;
6068 	err = ext4_clear_journal_err(sb, es);
6069 	if (err) {
6070 		EXT4_SB(sb)->s_journal = NULL;
6071 		jbd2_journal_destroy(journal);
6072 		return err;
6073 	}
6074 
6075 	if (!really_read_only && journal_devnum &&
6076 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6077 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6078 		ext4_commit_super(sb);
6079 	}
6080 	if (!really_read_only && journal_inum &&
6081 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6082 		es->s_journal_inum = cpu_to_le32(journal_inum);
6083 		ext4_commit_super(sb);
6084 	}
6085 
6086 	return 0;
6087 
6088 err_out:
6089 	jbd2_journal_destroy(journal);
6090 	return err;
6091 }
6092 
6093 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6094 static void ext4_update_super(struct super_block *sb)
6095 {
6096 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6097 	struct ext4_super_block *es = sbi->s_es;
6098 	struct buffer_head *sbh = sbi->s_sbh;
6099 
6100 	lock_buffer(sbh);
6101 	/*
6102 	 * If the file system is mounted read-only, don't update the
6103 	 * superblock write time.  This avoids updating the superblock
6104 	 * write time when we are mounting the root file system
6105 	 * read/only but we need to replay the journal; at that point,
6106 	 * for people who are east of GMT and who make their clock
6107 	 * tick in localtime for Windows bug-for-bug compatibility,
6108 	 * the clock is set in the future, and this will cause e2fsck
6109 	 * to complain and force a full file system check.
6110 	 */
6111 	if (!sb_rdonly(sb))
6112 		ext4_update_tstamp(es, s_wtime);
6113 	es->s_kbytes_written =
6114 		cpu_to_le64(sbi->s_kbytes_written +
6115 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6116 		      sbi->s_sectors_written_start) >> 1));
6117 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6118 		ext4_free_blocks_count_set(es,
6119 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6120 				&sbi->s_freeclusters_counter)));
6121 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6122 		es->s_free_inodes_count =
6123 			cpu_to_le32(percpu_counter_sum_positive(
6124 				&sbi->s_freeinodes_counter));
6125 	/* Copy error information to the on-disk superblock */
6126 	spin_lock(&sbi->s_error_lock);
6127 	if (sbi->s_add_error_count > 0) {
6128 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6129 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6130 			__ext4_update_tstamp(&es->s_first_error_time,
6131 					     &es->s_first_error_time_hi,
6132 					     sbi->s_first_error_time);
6133 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6134 				sizeof(es->s_first_error_func));
6135 			es->s_first_error_line =
6136 				cpu_to_le32(sbi->s_first_error_line);
6137 			es->s_first_error_ino =
6138 				cpu_to_le32(sbi->s_first_error_ino);
6139 			es->s_first_error_block =
6140 				cpu_to_le64(sbi->s_first_error_block);
6141 			es->s_first_error_errcode =
6142 				ext4_errno_to_code(sbi->s_first_error_code);
6143 		}
6144 		__ext4_update_tstamp(&es->s_last_error_time,
6145 				     &es->s_last_error_time_hi,
6146 				     sbi->s_last_error_time);
6147 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6148 			sizeof(es->s_last_error_func));
6149 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6150 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6151 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6152 		es->s_last_error_errcode =
6153 				ext4_errno_to_code(sbi->s_last_error_code);
6154 		/*
6155 		 * Start the daily error reporting function if it hasn't been
6156 		 * started already
6157 		 */
6158 		if (!es->s_error_count)
6159 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6160 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6161 		sbi->s_add_error_count = 0;
6162 	}
6163 	spin_unlock(&sbi->s_error_lock);
6164 
6165 	ext4_superblock_csum_set(sb);
6166 	unlock_buffer(sbh);
6167 }
6168 
6169 static int ext4_commit_super(struct super_block *sb)
6170 {
6171 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6172 
6173 	if (!sbh)
6174 		return -EINVAL;
6175 	if (block_device_ejected(sb))
6176 		return -ENODEV;
6177 
6178 	ext4_update_super(sb);
6179 
6180 	lock_buffer(sbh);
6181 	/* Buffer got discarded which means block device got invalidated */
6182 	if (!buffer_mapped(sbh)) {
6183 		unlock_buffer(sbh);
6184 		return -EIO;
6185 	}
6186 
6187 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6188 		/*
6189 		 * Oh, dear.  A previous attempt to write the
6190 		 * superblock failed.  This could happen because the
6191 		 * USB device was yanked out.  Or it could happen to
6192 		 * be a transient write error and maybe the block will
6193 		 * be remapped.  Nothing we can do but to retry the
6194 		 * write and hope for the best.
6195 		 */
6196 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6197 		       "superblock detected");
6198 		clear_buffer_write_io_error(sbh);
6199 		set_buffer_uptodate(sbh);
6200 	}
6201 	get_bh(sbh);
6202 	/* Clear potential dirty bit if it was journalled update */
6203 	clear_buffer_dirty(sbh);
6204 	sbh->b_end_io = end_buffer_write_sync;
6205 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6206 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6207 	wait_on_buffer(sbh);
6208 	if (buffer_write_io_error(sbh)) {
6209 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6210 		       "superblock");
6211 		clear_buffer_write_io_error(sbh);
6212 		set_buffer_uptodate(sbh);
6213 		return -EIO;
6214 	}
6215 	return 0;
6216 }
6217 
6218 /*
6219  * Have we just finished recovery?  If so, and if we are mounting (or
6220  * remounting) the filesystem readonly, then we will end up with a
6221  * consistent fs on disk.  Record that fact.
6222  */
6223 static int ext4_mark_recovery_complete(struct super_block *sb,
6224 				       struct ext4_super_block *es)
6225 {
6226 	int err;
6227 	journal_t *journal = EXT4_SB(sb)->s_journal;
6228 
6229 	if (!ext4_has_feature_journal(sb)) {
6230 		if (journal != NULL) {
6231 			ext4_error(sb, "Journal got removed while the fs was "
6232 				   "mounted!");
6233 			return -EFSCORRUPTED;
6234 		}
6235 		return 0;
6236 	}
6237 	jbd2_journal_lock_updates(journal);
6238 	err = jbd2_journal_flush(journal, 0);
6239 	if (err < 0)
6240 		goto out;
6241 
6242 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6243 	    ext4_has_feature_orphan_present(sb))) {
6244 		if (!ext4_orphan_file_empty(sb)) {
6245 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6246 			err = -EFSCORRUPTED;
6247 			goto out;
6248 		}
6249 		ext4_clear_feature_journal_needs_recovery(sb);
6250 		ext4_clear_feature_orphan_present(sb);
6251 		ext4_commit_super(sb);
6252 	}
6253 out:
6254 	jbd2_journal_unlock_updates(journal);
6255 	return err;
6256 }
6257 
6258 /*
6259  * If we are mounting (or read-write remounting) a filesystem whose journal
6260  * has recorded an error from a previous lifetime, move that error to the
6261  * main filesystem now.
6262  */
6263 static int ext4_clear_journal_err(struct super_block *sb,
6264 				   struct ext4_super_block *es)
6265 {
6266 	journal_t *journal;
6267 	int j_errno;
6268 	const char *errstr;
6269 
6270 	if (!ext4_has_feature_journal(sb)) {
6271 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6272 		return -EFSCORRUPTED;
6273 	}
6274 
6275 	journal = EXT4_SB(sb)->s_journal;
6276 
6277 	/*
6278 	 * Now check for any error status which may have been recorded in the
6279 	 * journal by a prior ext4_error() or ext4_abort()
6280 	 */
6281 
6282 	j_errno = jbd2_journal_errno(journal);
6283 	if (j_errno) {
6284 		char nbuf[16];
6285 
6286 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6287 		ext4_warning(sb, "Filesystem error recorded "
6288 			     "from previous mount: %s", errstr);
6289 
6290 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6291 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6292 		j_errno = ext4_commit_super(sb);
6293 		if (j_errno)
6294 			return j_errno;
6295 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6296 
6297 		jbd2_journal_clear_err(journal);
6298 		jbd2_journal_update_sb_errno(journal);
6299 	}
6300 	return 0;
6301 }
6302 
6303 /*
6304  * Force the running and committing transactions to commit,
6305  * and wait on the commit.
6306  */
6307 int ext4_force_commit(struct super_block *sb)
6308 {
6309 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6310 }
6311 
6312 static int ext4_sync_fs(struct super_block *sb, int wait)
6313 {
6314 	int ret = 0;
6315 	tid_t target;
6316 	bool needs_barrier = false;
6317 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6318 
6319 	if (unlikely(ext4_forced_shutdown(sb)))
6320 		return 0;
6321 
6322 	trace_ext4_sync_fs(sb, wait);
6323 	flush_workqueue(sbi->rsv_conversion_wq);
6324 	/*
6325 	 * Writeback quota in non-journalled quota case - journalled quota has
6326 	 * no dirty dquots
6327 	 */
6328 	dquot_writeback_dquots(sb, -1);
6329 	/*
6330 	 * Data writeback is possible w/o journal transaction, so barrier must
6331 	 * being sent at the end of the function. But we can skip it if
6332 	 * transaction_commit will do it for us.
6333 	 */
6334 	if (sbi->s_journal) {
6335 		target = jbd2_get_latest_transaction(sbi->s_journal);
6336 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6337 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6338 			needs_barrier = true;
6339 
6340 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6341 			if (wait)
6342 				ret = jbd2_log_wait_commit(sbi->s_journal,
6343 							   target);
6344 		}
6345 	} else if (wait && test_opt(sb, BARRIER))
6346 		needs_barrier = true;
6347 	if (needs_barrier) {
6348 		int err;
6349 		err = blkdev_issue_flush(sb->s_bdev);
6350 		if (!ret)
6351 			ret = err;
6352 	}
6353 
6354 	return ret;
6355 }
6356 
6357 /*
6358  * LVM calls this function before a (read-only) snapshot is created.  This
6359  * gives us a chance to flush the journal completely and mark the fs clean.
6360  *
6361  * Note that only this function cannot bring a filesystem to be in a clean
6362  * state independently. It relies on upper layer to stop all data & metadata
6363  * modifications.
6364  */
6365 static int ext4_freeze(struct super_block *sb)
6366 {
6367 	int error = 0;
6368 	journal_t *journal = EXT4_SB(sb)->s_journal;
6369 
6370 	if (journal) {
6371 		/* Now we set up the journal barrier. */
6372 		jbd2_journal_lock_updates(journal);
6373 
6374 		/*
6375 		 * Don't clear the needs_recovery flag if we failed to
6376 		 * flush the journal.
6377 		 */
6378 		error = jbd2_journal_flush(journal, 0);
6379 		if (error < 0)
6380 			goto out;
6381 
6382 		/* Journal blocked and flushed, clear needs_recovery flag. */
6383 		ext4_clear_feature_journal_needs_recovery(sb);
6384 		if (ext4_orphan_file_empty(sb))
6385 			ext4_clear_feature_orphan_present(sb);
6386 	}
6387 
6388 	error = ext4_commit_super(sb);
6389 out:
6390 	if (journal)
6391 		/* we rely on upper layer to stop further updates */
6392 		jbd2_journal_unlock_updates(journal);
6393 	return error;
6394 }
6395 
6396 /*
6397  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6398  * flag here, even though the filesystem is not technically dirty yet.
6399  */
6400 static int ext4_unfreeze(struct super_block *sb)
6401 {
6402 	if (ext4_forced_shutdown(sb))
6403 		return 0;
6404 
6405 	if (EXT4_SB(sb)->s_journal) {
6406 		/* Reset the needs_recovery flag before the fs is unlocked. */
6407 		ext4_set_feature_journal_needs_recovery(sb);
6408 		if (ext4_has_feature_orphan_file(sb))
6409 			ext4_set_feature_orphan_present(sb);
6410 	}
6411 
6412 	ext4_commit_super(sb);
6413 	return 0;
6414 }
6415 
6416 /*
6417  * Structure to save mount options for ext4_remount's benefit
6418  */
6419 struct ext4_mount_options {
6420 	unsigned long s_mount_opt;
6421 	unsigned long s_mount_opt2;
6422 	kuid_t s_resuid;
6423 	kgid_t s_resgid;
6424 	unsigned long s_commit_interval;
6425 	u32 s_min_batch_time, s_max_batch_time;
6426 #ifdef CONFIG_QUOTA
6427 	int s_jquota_fmt;
6428 	char *s_qf_names[EXT4_MAXQUOTAS];
6429 #endif
6430 };
6431 
6432 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6433 {
6434 	struct ext4_fs_context *ctx = fc->fs_private;
6435 	struct ext4_super_block *es;
6436 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6437 	unsigned long old_sb_flags;
6438 	struct ext4_mount_options old_opts;
6439 	ext4_group_t g;
6440 	int err = 0;
6441 	int alloc_ctx;
6442 #ifdef CONFIG_QUOTA
6443 	int enable_quota = 0;
6444 	int i, j;
6445 	char *to_free[EXT4_MAXQUOTAS];
6446 #endif
6447 
6448 
6449 	/* Store the original options */
6450 	old_sb_flags = sb->s_flags;
6451 	old_opts.s_mount_opt = sbi->s_mount_opt;
6452 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6453 	old_opts.s_resuid = sbi->s_resuid;
6454 	old_opts.s_resgid = sbi->s_resgid;
6455 	old_opts.s_commit_interval = sbi->s_commit_interval;
6456 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6457 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6458 #ifdef CONFIG_QUOTA
6459 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6460 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6461 		if (sbi->s_qf_names[i]) {
6462 			char *qf_name = get_qf_name(sb, sbi, i);
6463 
6464 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6465 			if (!old_opts.s_qf_names[i]) {
6466 				for (j = 0; j < i; j++)
6467 					kfree(old_opts.s_qf_names[j]);
6468 				return -ENOMEM;
6469 			}
6470 		} else
6471 			old_opts.s_qf_names[i] = NULL;
6472 #endif
6473 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6474 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6475 			ctx->journal_ioprio =
6476 				sbi->s_journal->j_task->io_context->ioprio;
6477 		else
6478 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6479 
6480 	}
6481 
6482 	/*
6483 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6484 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6485 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6486 	 * here s_writepages_rwsem to avoid race between writepages ops and
6487 	 * remount.
6488 	 */
6489 	alloc_ctx = ext4_writepages_down_write(sb);
6490 	ext4_apply_options(fc, sb);
6491 	ext4_writepages_up_write(sb, alloc_ctx);
6492 
6493 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6494 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6495 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6496 			 "during remount not supported; ignoring");
6497 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6498 	}
6499 
6500 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6501 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6502 			ext4_msg(sb, KERN_ERR, "can't mount with "
6503 				 "both data=journal and delalloc");
6504 			err = -EINVAL;
6505 			goto restore_opts;
6506 		}
6507 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6508 			ext4_msg(sb, KERN_ERR, "can't mount with "
6509 				 "both data=journal and dioread_nolock");
6510 			err = -EINVAL;
6511 			goto restore_opts;
6512 		}
6513 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6514 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6515 			ext4_msg(sb, KERN_ERR, "can't mount with "
6516 				"journal_async_commit in data=ordered mode");
6517 			err = -EINVAL;
6518 			goto restore_opts;
6519 		}
6520 	}
6521 
6522 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6523 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6524 		err = -EINVAL;
6525 		goto restore_opts;
6526 	}
6527 
6528 	if (test_opt2(sb, ABORT))
6529 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6530 
6531 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6532 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6533 
6534 	es = sbi->s_es;
6535 
6536 	if (sbi->s_journal) {
6537 		ext4_init_journal_params(sb, sbi->s_journal);
6538 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6539 	}
6540 
6541 	/* Flush outstanding errors before changing fs state */
6542 	flush_work(&sbi->s_sb_upd_work);
6543 
6544 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6545 		if (ext4_forced_shutdown(sb)) {
6546 			err = -EROFS;
6547 			goto restore_opts;
6548 		}
6549 
6550 		if (fc->sb_flags & SB_RDONLY) {
6551 			err = sync_filesystem(sb);
6552 			if (err < 0)
6553 				goto restore_opts;
6554 			err = dquot_suspend(sb, -1);
6555 			if (err < 0)
6556 				goto restore_opts;
6557 
6558 			/*
6559 			 * First of all, the unconditional stuff we have to do
6560 			 * to disable replay of the journal when we next remount
6561 			 */
6562 			sb->s_flags |= SB_RDONLY;
6563 
6564 			/*
6565 			 * OK, test if we are remounting a valid rw partition
6566 			 * readonly, and if so set the rdonly flag and then
6567 			 * mark the partition as valid again.
6568 			 */
6569 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6570 			    (sbi->s_mount_state & EXT4_VALID_FS))
6571 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6572 
6573 			if (sbi->s_journal) {
6574 				/*
6575 				 * We let remount-ro finish even if marking fs
6576 				 * as clean failed...
6577 				 */
6578 				ext4_mark_recovery_complete(sb, es);
6579 			}
6580 		} else {
6581 			/* Make sure we can mount this feature set readwrite */
6582 			if (ext4_has_feature_readonly(sb) ||
6583 			    !ext4_feature_set_ok(sb, 0)) {
6584 				err = -EROFS;
6585 				goto restore_opts;
6586 			}
6587 			/*
6588 			 * Make sure the group descriptor checksums
6589 			 * are sane.  If they aren't, refuse to remount r/w.
6590 			 */
6591 			for (g = 0; g < sbi->s_groups_count; g++) {
6592 				struct ext4_group_desc *gdp =
6593 					ext4_get_group_desc(sb, g, NULL);
6594 
6595 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6596 					ext4_msg(sb, KERN_ERR,
6597 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6598 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6599 					       le16_to_cpu(gdp->bg_checksum));
6600 					err = -EFSBADCRC;
6601 					goto restore_opts;
6602 				}
6603 			}
6604 
6605 			/*
6606 			 * If we have an unprocessed orphan list hanging
6607 			 * around from a previously readonly bdev mount,
6608 			 * require a full umount/remount for now.
6609 			 */
6610 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6611 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6612 				       "remount RDWR because of unprocessed "
6613 				       "orphan inode list.  Please "
6614 				       "umount/remount instead");
6615 				err = -EINVAL;
6616 				goto restore_opts;
6617 			}
6618 
6619 			/*
6620 			 * Mounting a RDONLY partition read-write, so reread
6621 			 * and store the current valid flag.  (It may have
6622 			 * been changed by e2fsck since we originally mounted
6623 			 * the partition.)
6624 			 */
6625 			if (sbi->s_journal) {
6626 				err = ext4_clear_journal_err(sb, es);
6627 				if (err)
6628 					goto restore_opts;
6629 			}
6630 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6631 					      ~EXT4_FC_REPLAY);
6632 
6633 			err = ext4_setup_super(sb, es, 0);
6634 			if (err)
6635 				goto restore_opts;
6636 
6637 			sb->s_flags &= ~SB_RDONLY;
6638 			if (ext4_has_feature_mmp(sb)) {
6639 				err = ext4_multi_mount_protect(sb,
6640 						le64_to_cpu(es->s_mmp_block));
6641 				if (err)
6642 					goto restore_opts;
6643 			}
6644 #ifdef CONFIG_QUOTA
6645 			enable_quota = 1;
6646 #endif
6647 		}
6648 	}
6649 
6650 	/*
6651 	 * Handle creation of system zone data early because it can fail.
6652 	 * Releasing of existing data is done when we are sure remount will
6653 	 * succeed.
6654 	 */
6655 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6656 		err = ext4_setup_system_zone(sb);
6657 		if (err)
6658 			goto restore_opts;
6659 	}
6660 
6661 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6662 		err = ext4_commit_super(sb);
6663 		if (err)
6664 			goto restore_opts;
6665 	}
6666 
6667 #ifdef CONFIG_QUOTA
6668 	if (enable_quota) {
6669 		if (sb_any_quota_suspended(sb))
6670 			dquot_resume(sb, -1);
6671 		else if (ext4_has_feature_quota(sb)) {
6672 			err = ext4_enable_quotas(sb);
6673 			if (err)
6674 				goto restore_opts;
6675 		}
6676 	}
6677 	/* Release old quota file names */
6678 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6679 		kfree(old_opts.s_qf_names[i]);
6680 #endif
6681 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6682 		ext4_release_system_zone(sb);
6683 
6684 	/*
6685 	 * Reinitialize lazy itable initialization thread based on
6686 	 * current settings
6687 	 */
6688 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6689 		ext4_unregister_li_request(sb);
6690 	else {
6691 		ext4_group_t first_not_zeroed;
6692 		first_not_zeroed = ext4_has_uninit_itable(sb);
6693 		ext4_register_li_request(sb, first_not_zeroed);
6694 	}
6695 
6696 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6697 		ext4_stop_mmpd(sbi);
6698 
6699 	return 0;
6700 
6701 restore_opts:
6702 	/*
6703 	 * If there was a failing r/w to ro transition, we may need to
6704 	 * re-enable quota
6705 	 */
6706 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6707 	    sb_any_quota_suspended(sb))
6708 		dquot_resume(sb, -1);
6709 
6710 	alloc_ctx = ext4_writepages_down_write(sb);
6711 	sb->s_flags = old_sb_flags;
6712 	sbi->s_mount_opt = old_opts.s_mount_opt;
6713 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6714 	sbi->s_resuid = old_opts.s_resuid;
6715 	sbi->s_resgid = old_opts.s_resgid;
6716 	sbi->s_commit_interval = old_opts.s_commit_interval;
6717 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6718 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6719 	ext4_writepages_up_write(sb, alloc_ctx);
6720 
6721 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6722 		ext4_release_system_zone(sb);
6723 #ifdef CONFIG_QUOTA
6724 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6725 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6726 		to_free[i] = get_qf_name(sb, sbi, i);
6727 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6728 	}
6729 	synchronize_rcu();
6730 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6731 		kfree(to_free[i]);
6732 #endif
6733 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6734 		ext4_stop_mmpd(sbi);
6735 	return err;
6736 }
6737 
6738 static int ext4_reconfigure(struct fs_context *fc)
6739 {
6740 	struct super_block *sb = fc->root->d_sb;
6741 	int ret;
6742 
6743 	fc->s_fs_info = EXT4_SB(sb);
6744 
6745 	ret = ext4_check_opt_consistency(fc, sb);
6746 	if (ret < 0)
6747 		return ret;
6748 
6749 	ret = __ext4_remount(fc, sb);
6750 	if (ret < 0)
6751 		return ret;
6752 
6753 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6754 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6755 		 ext4_quota_mode(sb));
6756 
6757 	return 0;
6758 }
6759 
6760 #ifdef CONFIG_QUOTA
6761 static int ext4_statfs_project(struct super_block *sb,
6762 			       kprojid_t projid, struct kstatfs *buf)
6763 {
6764 	struct kqid qid;
6765 	struct dquot *dquot;
6766 	u64 limit;
6767 	u64 curblock;
6768 
6769 	qid = make_kqid_projid(projid);
6770 	dquot = dqget(sb, qid);
6771 	if (IS_ERR(dquot))
6772 		return PTR_ERR(dquot);
6773 	spin_lock(&dquot->dq_dqb_lock);
6774 
6775 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6776 			     dquot->dq_dqb.dqb_bhardlimit);
6777 	limit >>= sb->s_blocksize_bits;
6778 
6779 	if (limit && buf->f_blocks > limit) {
6780 		curblock = (dquot->dq_dqb.dqb_curspace +
6781 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6782 		buf->f_blocks = limit;
6783 		buf->f_bfree = buf->f_bavail =
6784 			(buf->f_blocks > curblock) ?
6785 			 (buf->f_blocks - curblock) : 0;
6786 	}
6787 
6788 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6789 			     dquot->dq_dqb.dqb_ihardlimit);
6790 	if (limit && buf->f_files > limit) {
6791 		buf->f_files = limit;
6792 		buf->f_ffree =
6793 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6794 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6795 	}
6796 
6797 	spin_unlock(&dquot->dq_dqb_lock);
6798 	dqput(dquot);
6799 	return 0;
6800 }
6801 #endif
6802 
6803 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6804 {
6805 	struct super_block *sb = dentry->d_sb;
6806 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6807 	struct ext4_super_block *es = sbi->s_es;
6808 	ext4_fsblk_t overhead = 0, resv_blocks;
6809 	s64 bfree;
6810 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6811 
6812 	if (!test_opt(sb, MINIX_DF))
6813 		overhead = sbi->s_overhead;
6814 
6815 	buf->f_type = EXT4_SUPER_MAGIC;
6816 	buf->f_bsize = sb->s_blocksize;
6817 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6818 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6819 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6820 	/* prevent underflow in case that few free space is available */
6821 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6822 	buf->f_bavail = buf->f_bfree -
6823 			(ext4_r_blocks_count(es) + resv_blocks);
6824 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6825 		buf->f_bavail = 0;
6826 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6827 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6828 	buf->f_namelen = EXT4_NAME_LEN;
6829 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6830 
6831 #ifdef CONFIG_QUOTA
6832 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6833 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6834 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6835 #endif
6836 	return 0;
6837 }
6838 
6839 
6840 #ifdef CONFIG_QUOTA
6841 
6842 /*
6843  * Helper functions so that transaction is started before we acquire dqio_sem
6844  * to keep correct lock ordering of transaction > dqio_sem
6845  */
6846 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6847 {
6848 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6849 }
6850 
6851 static int ext4_write_dquot(struct dquot *dquot)
6852 {
6853 	int ret, err;
6854 	handle_t *handle;
6855 	struct inode *inode;
6856 
6857 	inode = dquot_to_inode(dquot);
6858 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6859 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6860 	if (IS_ERR(handle))
6861 		return PTR_ERR(handle);
6862 	ret = dquot_commit(dquot);
6863 	if (ret < 0)
6864 		ext4_error_err(dquot->dq_sb, -ret,
6865 			       "Failed to commit dquot type %d",
6866 			       dquot->dq_id.type);
6867 	err = ext4_journal_stop(handle);
6868 	if (!ret)
6869 		ret = err;
6870 	return ret;
6871 }
6872 
6873 static int ext4_acquire_dquot(struct dquot *dquot)
6874 {
6875 	int ret, err;
6876 	handle_t *handle;
6877 
6878 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6879 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6880 	if (IS_ERR(handle))
6881 		return PTR_ERR(handle);
6882 	ret = dquot_acquire(dquot);
6883 	if (ret < 0)
6884 		ext4_error_err(dquot->dq_sb, -ret,
6885 			      "Failed to acquire dquot type %d",
6886 			      dquot->dq_id.type);
6887 	err = ext4_journal_stop(handle);
6888 	if (!ret)
6889 		ret = err;
6890 	return ret;
6891 }
6892 
6893 static int ext4_release_dquot(struct dquot *dquot)
6894 {
6895 	int ret, err;
6896 	handle_t *handle;
6897 
6898 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6899 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6900 	if (IS_ERR(handle)) {
6901 		/* Release dquot anyway to avoid endless cycle in dqput() */
6902 		dquot_release(dquot);
6903 		return PTR_ERR(handle);
6904 	}
6905 	ret = dquot_release(dquot);
6906 	if (ret < 0)
6907 		ext4_error_err(dquot->dq_sb, -ret,
6908 			       "Failed to release dquot type %d",
6909 			       dquot->dq_id.type);
6910 	err = ext4_journal_stop(handle);
6911 	if (!ret)
6912 		ret = err;
6913 	return ret;
6914 }
6915 
6916 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6917 {
6918 	struct super_block *sb = dquot->dq_sb;
6919 
6920 	if (ext4_is_quota_journalled(sb)) {
6921 		dquot_mark_dquot_dirty(dquot);
6922 		return ext4_write_dquot(dquot);
6923 	} else {
6924 		return dquot_mark_dquot_dirty(dquot);
6925 	}
6926 }
6927 
6928 static int ext4_write_info(struct super_block *sb, int type)
6929 {
6930 	int ret, err;
6931 	handle_t *handle;
6932 
6933 	/* Data block + inode block */
6934 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6935 	if (IS_ERR(handle))
6936 		return PTR_ERR(handle);
6937 	ret = dquot_commit_info(sb, type);
6938 	err = ext4_journal_stop(handle);
6939 	if (!ret)
6940 		ret = err;
6941 	return ret;
6942 }
6943 
6944 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6945 {
6946 	struct ext4_inode_info *ei = EXT4_I(inode);
6947 
6948 	/* The first argument of lockdep_set_subclass has to be
6949 	 * *exactly* the same as the argument to init_rwsem() --- in
6950 	 * this case, in init_once() --- or lockdep gets unhappy
6951 	 * because the name of the lock is set using the
6952 	 * stringification of the argument to init_rwsem().
6953 	 */
6954 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6955 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6956 }
6957 
6958 /*
6959  * Standard function to be called on quota_on
6960  */
6961 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6962 			 const struct path *path)
6963 {
6964 	int err;
6965 
6966 	if (!test_opt(sb, QUOTA))
6967 		return -EINVAL;
6968 
6969 	/* Quotafile not on the same filesystem? */
6970 	if (path->dentry->d_sb != sb)
6971 		return -EXDEV;
6972 
6973 	/* Quota already enabled for this file? */
6974 	if (IS_NOQUOTA(d_inode(path->dentry)))
6975 		return -EBUSY;
6976 
6977 	/* Journaling quota? */
6978 	if (EXT4_SB(sb)->s_qf_names[type]) {
6979 		/* Quotafile not in fs root? */
6980 		if (path->dentry->d_parent != sb->s_root)
6981 			ext4_msg(sb, KERN_WARNING,
6982 				"Quota file not on filesystem root. "
6983 				"Journaled quota will not work");
6984 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6985 	} else {
6986 		/*
6987 		 * Clear the flag just in case mount options changed since
6988 		 * last time.
6989 		 */
6990 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6991 	}
6992 
6993 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6994 	err = dquot_quota_on(sb, type, format_id, path);
6995 	if (!err) {
6996 		struct inode *inode = d_inode(path->dentry);
6997 		handle_t *handle;
6998 
6999 		/*
7000 		 * Set inode flags to prevent userspace from messing with quota
7001 		 * files. If this fails, we return success anyway since quotas
7002 		 * are already enabled and this is not a hard failure.
7003 		 */
7004 		inode_lock(inode);
7005 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7006 		if (IS_ERR(handle))
7007 			goto unlock_inode;
7008 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7009 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7010 				S_NOATIME | S_IMMUTABLE);
7011 		err = ext4_mark_inode_dirty(handle, inode);
7012 		ext4_journal_stop(handle);
7013 	unlock_inode:
7014 		inode_unlock(inode);
7015 		if (err)
7016 			dquot_quota_off(sb, type);
7017 	}
7018 	if (err)
7019 		lockdep_set_quota_inode(path->dentry->d_inode,
7020 					     I_DATA_SEM_NORMAL);
7021 	return err;
7022 }
7023 
7024 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7025 {
7026 	switch (type) {
7027 	case USRQUOTA:
7028 		return qf_inum == EXT4_USR_QUOTA_INO;
7029 	case GRPQUOTA:
7030 		return qf_inum == EXT4_GRP_QUOTA_INO;
7031 	case PRJQUOTA:
7032 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7033 	default:
7034 		BUG();
7035 	}
7036 }
7037 
7038 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7039 			     unsigned int flags)
7040 {
7041 	int err;
7042 	struct inode *qf_inode;
7043 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7044 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7045 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7046 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7047 	};
7048 
7049 	BUG_ON(!ext4_has_feature_quota(sb));
7050 
7051 	if (!qf_inums[type])
7052 		return -EPERM;
7053 
7054 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7055 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7056 				qf_inums[type], type);
7057 		return -EUCLEAN;
7058 	}
7059 
7060 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7061 	if (IS_ERR(qf_inode)) {
7062 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7063 				qf_inums[type], type);
7064 		return PTR_ERR(qf_inode);
7065 	}
7066 
7067 	/* Don't account quota for quota files to avoid recursion */
7068 	qf_inode->i_flags |= S_NOQUOTA;
7069 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7070 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7071 	if (err)
7072 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7073 	iput(qf_inode);
7074 
7075 	return err;
7076 }
7077 
7078 /* Enable usage tracking for all quota types. */
7079 int ext4_enable_quotas(struct super_block *sb)
7080 {
7081 	int type, err = 0;
7082 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7083 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7084 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7085 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7086 	};
7087 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7088 		test_opt(sb, USRQUOTA),
7089 		test_opt(sb, GRPQUOTA),
7090 		test_opt(sb, PRJQUOTA),
7091 	};
7092 
7093 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7094 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7095 		if (qf_inums[type]) {
7096 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7097 				DQUOT_USAGE_ENABLED |
7098 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7099 			if (err) {
7100 				ext4_warning(sb,
7101 					"Failed to enable quota tracking "
7102 					"(type=%d, err=%d, ino=%lu). "
7103 					"Please run e2fsck to fix.", type,
7104 					err, qf_inums[type]);
7105 
7106 				ext4_quotas_off(sb, type);
7107 				return err;
7108 			}
7109 		}
7110 	}
7111 	return 0;
7112 }
7113 
7114 static int ext4_quota_off(struct super_block *sb, int type)
7115 {
7116 	struct inode *inode = sb_dqopt(sb)->files[type];
7117 	handle_t *handle;
7118 	int err;
7119 
7120 	/* Force all delayed allocation blocks to be allocated.
7121 	 * Caller already holds s_umount sem */
7122 	if (test_opt(sb, DELALLOC))
7123 		sync_filesystem(sb);
7124 
7125 	if (!inode || !igrab(inode))
7126 		goto out;
7127 
7128 	err = dquot_quota_off(sb, type);
7129 	if (err || ext4_has_feature_quota(sb))
7130 		goto out_put;
7131 	/*
7132 	 * When the filesystem was remounted read-only first, we cannot cleanup
7133 	 * inode flags here. Bad luck but people should be using QUOTA feature
7134 	 * these days anyway.
7135 	 */
7136 	if (sb_rdonly(sb))
7137 		goto out_put;
7138 
7139 	inode_lock(inode);
7140 	/*
7141 	 * Update modification times of quota files when userspace can
7142 	 * start looking at them. If we fail, we return success anyway since
7143 	 * this is not a hard failure and quotas are already disabled.
7144 	 */
7145 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7146 	if (IS_ERR(handle)) {
7147 		err = PTR_ERR(handle);
7148 		goto out_unlock;
7149 	}
7150 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7151 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7152 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7153 	err = ext4_mark_inode_dirty(handle, inode);
7154 	ext4_journal_stop(handle);
7155 out_unlock:
7156 	inode_unlock(inode);
7157 out_put:
7158 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7159 	iput(inode);
7160 	return err;
7161 out:
7162 	return dquot_quota_off(sb, type);
7163 }
7164 
7165 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7166  * acquiring the locks... As quota files are never truncated and quota code
7167  * itself serializes the operations (and no one else should touch the files)
7168  * we don't have to be afraid of races */
7169 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7170 			       size_t len, loff_t off)
7171 {
7172 	struct inode *inode = sb_dqopt(sb)->files[type];
7173 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7174 	int offset = off & (sb->s_blocksize - 1);
7175 	int tocopy;
7176 	size_t toread;
7177 	struct buffer_head *bh;
7178 	loff_t i_size = i_size_read(inode);
7179 
7180 	if (off > i_size)
7181 		return 0;
7182 	if (off+len > i_size)
7183 		len = i_size-off;
7184 	toread = len;
7185 	while (toread > 0) {
7186 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7187 		bh = ext4_bread(NULL, inode, blk, 0);
7188 		if (IS_ERR(bh))
7189 			return PTR_ERR(bh);
7190 		if (!bh)	/* A hole? */
7191 			memset(data, 0, tocopy);
7192 		else
7193 			memcpy(data, bh->b_data+offset, tocopy);
7194 		brelse(bh);
7195 		offset = 0;
7196 		toread -= tocopy;
7197 		data += tocopy;
7198 		blk++;
7199 	}
7200 	return len;
7201 }
7202 
7203 /* Write to quotafile (we know the transaction is already started and has
7204  * enough credits) */
7205 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7206 				const char *data, size_t len, loff_t off)
7207 {
7208 	struct inode *inode = sb_dqopt(sb)->files[type];
7209 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7210 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7211 	int retries = 0;
7212 	struct buffer_head *bh;
7213 	handle_t *handle = journal_current_handle();
7214 
7215 	if (!handle) {
7216 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7217 			" cancelled because transaction is not started",
7218 			(unsigned long long)off, (unsigned long long)len);
7219 		return -EIO;
7220 	}
7221 	/*
7222 	 * Since we account only one data block in transaction credits,
7223 	 * then it is impossible to cross a block boundary.
7224 	 */
7225 	if (sb->s_blocksize - offset < len) {
7226 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7227 			" cancelled because not block aligned",
7228 			(unsigned long long)off, (unsigned long long)len);
7229 		return -EIO;
7230 	}
7231 
7232 	do {
7233 		bh = ext4_bread(handle, inode, blk,
7234 				EXT4_GET_BLOCKS_CREATE |
7235 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7236 	} while (PTR_ERR(bh) == -ENOSPC &&
7237 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7238 	if (IS_ERR(bh))
7239 		return PTR_ERR(bh);
7240 	if (!bh)
7241 		goto out;
7242 	BUFFER_TRACE(bh, "get write access");
7243 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7244 	if (err) {
7245 		brelse(bh);
7246 		return err;
7247 	}
7248 	lock_buffer(bh);
7249 	memcpy(bh->b_data+offset, data, len);
7250 	flush_dcache_page(bh->b_page);
7251 	unlock_buffer(bh);
7252 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7253 	brelse(bh);
7254 out:
7255 	if (inode->i_size < off + len) {
7256 		i_size_write(inode, off + len);
7257 		EXT4_I(inode)->i_disksize = inode->i_size;
7258 		err2 = ext4_mark_inode_dirty(handle, inode);
7259 		if (unlikely(err2 && !err))
7260 			err = err2;
7261 	}
7262 	return err ? err : len;
7263 }
7264 #endif
7265 
7266 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7267 static inline void register_as_ext2(void)
7268 {
7269 	int err = register_filesystem(&ext2_fs_type);
7270 	if (err)
7271 		printk(KERN_WARNING
7272 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7273 }
7274 
7275 static inline void unregister_as_ext2(void)
7276 {
7277 	unregister_filesystem(&ext2_fs_type);
7278 }
7279 
7280 static inline int ext2_feature_set_ok(struct super_block *sb)
7281 {
7282 	if (ext4_has_unknown_ext2_incompat_features(sb))
7283 		return 0;
7284 	if (sb_rdonly(sb))
7285 		return 1;
7286 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7287 		return 0;
7288 	return 1;
7289 }
7290 #else
7291 static inline void register_as_ext2(void) { }
7292 static inline void unregister_as_ext2(void) { }
7293 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7294 #endif
7295 
7296 static inline void register_as_ext3(void)
7297 {
7298 	int err = register_filesystem(&ext3_fs_type);
7299 	if (err)
7300 		printk(KERN_WARNING
7301 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7302 }
7303 
7304 static inline void unregister_as_ext3(void)
7305 {
7306 	unregister_filesystem(&ext3_fs_type);
7307 }
7308 
7309 static inline int ext3_feature_set_ok(struct super_block *sb)
7310 {
7311 	if (ext4_has_unknown_ext3_incompat_features(sb))
7312 		return 0;
7313 	if (!ext4_has_feature_journal(sb))
7314 		return 0;
7315 	if (sb_rdonly(sb))
7316 		return 1;
7317 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7318 		return 0;
7319 	return 1;
7320 }
7321 
7322 static void ext4_kill_sb(struct super_block *sb)
7323 {
7324 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7325 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7326 
7327 	kill_block_super(sb);
7328 
7329 	if (bdev_file)
7330 		bdev_fput(bdev_file);
7331 }
7332 
7333 static struct file_system_type ext4_fs_type = {
7334 	.owner			= THIS_MODULE,
7335 	.name			= "ext4",
7336 	.init_fs_context	= ext4_init_fs_context,
7337 	.parameters		= ext4_param_specs,
7338 	.kill_sb		= ext4_kill_sb,
7339 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7340 };
7341 MODULE_ALIAS_FS("ext4");
7342 
7343 /* Shared across all ext4 file systems */
7344 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7345 
7346 static int __init ext4_init_fs(void)
7347 {
7348 	int i, err;
7349 
7350 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7351 	ext4_li_info = NULL;
7352 
7353 	/* Build-time check for flags consistency */
7354 	ext4_check_flag_values();
7355 
7356 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7357 		init_waitqueue_head(&ext4__ioend_wq[i]);
7358 
7359 	err = ext4_init_es();
7360 	if (err)
7361 		return err;
7362 
7363 	err = ext4_init_pending();
7364 	if (err)
7365 		goto out7;
7366 
7367 	err = ext4_init_post_read_processing();
7368 	if (err)
7369 		goto out6;
7370 
7371 	err = ext4_init_pageio();
7372 	if (err)
7373 		goto out5;
7374 
7375 	err = ext4_init_system_zone();
7376 	if (err)
7377 		goto out4;
7378 
7379 	err = ext4_init_sysfs();
7380 	if (err)
7381 		goto out3;
7382 
7383 	err = ext4_init_mballoc();
7384 	if (err)
7385 		goto out2;
7386 	err = init_inodecache();
7387 	if (err)
7388 		goto out1;
7389 
7390 	err = ext4_fc_init_dentry_cache();
7391 	if (err)
7392 		goto out05;
7393 
7394 	register_as_ext3();
7395 	register_as_ext2();
7396 	err = register_filesystem(&ext4_fs_type);
7397 	if (err)
7398 		goto out;
7399 
7400 	return 0;
7401 out:
7402 	unregister_as_ext2();
7403 	unregister_as_ext3();
7404 	ext4_fc_destroy_dentry_cache();
7405 out05:
7406 	destroy_inodecache();
7407 out1:
7408 	ext4_exit_mballoc();
7409 out2:
7410 	ext4_exit_sysfs();
7411 out3:
7412 	ext4_exit_system_zone();
7413 out4:
7414 	ext4_exit_pageio();
7415 out5:
7416 	ext4_exit_post_read_processing();
7417 out6:
7418 	ext4_exit_pending();
7419 out7:
7420 	ext4_exit_es();
7421 
7422 	return err;
7423 }
7424 
7425 static void __exit ext4_exit_fs(void)
7426 {
7427 	ext4_destroy_lazyinit_thread();
7428 	unregister_as_ext2();
7429 	unregister_as_ext3();
7430 	unregister_filesystem(&ext4_fs_type);
7431 	ext4_fc_destroy_dentry_cache();
7432 	destroy_inodecache();
7433 	ext4_exit_mballoc();
7434 	ext4_exit_sysfs();
7435 	ext4_exit_system_zone();
7436 	ext4_exit_pageio();
7437 	ext4_exit_post_read_processing();
7438 	ext4_exit_es();
7439 	ext4_exit_pending();
7440 }
7441 
7442 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7443 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7444 MODULE_LICENSE("GPL");
7445 MODULE_SOFTDEP("pre: crc32c");
7446 module_init(ext4_init_fs)
7447 module_exit(ext4_exit_fs)
7448