1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct proc_dir_entry *ext4_proc_root; 57 static struct kset *ext4_kset; 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ext4_features *ext4_feat; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static const char *ext4_decode_error(struct super_block *sb, int errno, 71 char nbuf[16]); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static void ext4_write_super(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 87 static struct file_system_type ext2_fs_type = { 88 .owner = THIS_MODULE, 89 .name = "ext2", 90 .mount = ext4_mount, 91 .kill_sb = kill_block_super, 92 .fs_flags = FS_REQUIRES_DEV, 93 }; 94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 95 #else 96 #define IS_EXT2_SB(sb) (0) 97 #endif 98 99 100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 101 static struct file_system_type ext3_fs_type = { 102 .owner = THIS_MODULE, 103 .name = "ext3", 104 .mount = ext4_mount, 105 .kill_sb = kill_block_super, 106 .fs_flags = FS_REQUIRES_DEV, 107 }; 108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 109 #else 110 #define IS_EXT3_SB(sb) (0) 111 #endif 112 113 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 114 struct ext4_group_desc *bg) 115 { 116 return le32_to_cpu(bg->bg_block_bitmap_lo) | 117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 118 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 119 } 120 121 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 122 struct ext4_group_desc *bg) 123 { 124 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 126 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 127 } 128 129 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 130 struct ext4_group_desc *bg) 131 { 132 return le32_to_cpu(bg->bg_inode_table_lo) | 133 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 134 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 135 } 136 137 __u32 ext4_free_blks_count(struct super_block *sb, 138 struct ext4_group_desc *bg) 139 { 140 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 141 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 142 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 143 } 144 145 __u32 ext4_free_inodes_count(struct super_block *sb, 146 struct ext4_group_desc *bg) 147 { 148 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 149 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 150 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 151 } 152 153 __u32 ext4_used_dirs_count(struct super_block *sb, 154 struct ext4_group_desc *bg) 155 { 156 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 157 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 158 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 159 } 160 161 __u32 ext4_itable_unused_count(struct super_block *sb, 162 struct ext4_group_desc *bg) 163 { 164 return le16_to_cpu(bg->bg_itable_unused_lo) | 165 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 166 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 167 } 168 169 void ext4_block_bitmap_set(struct super_block *sb, 170 struct ext4_group_desc *bg, ext4_fsblk_t blk) 171 { 172 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 174 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 175 } 176 177 void ext4_inode_bitmap_set(struct super_block *sb, 178 struct ext4_group_desc *bg, ext4_fsblk_t blk) 179 { 180 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 182 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 183 } 184 185 void ext4_inode_table_set(struct super_block *sb, 186 struct ext4_group_desc *bg, ext4_fsblk_t blk) 187 { 188 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 189 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 190 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 191 } 192 193 void ext4_free_blks_set(struct super_block *sb, 194 struct ext4_group_desc *bg, __u32 count) 195 { 196 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 197 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 198 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 199 } 200 201 void ext4_free_inodes_set(struct super_block *sb, 202 struct ext4_group_desc *bg, __u32 count) 203 { 204 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 205 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 206 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 207 } 208 209 void ext4_used_dirs_set(struct super_block *sb, 210 struct ext4_group_desc *bg, __u32 count) 211 { 212 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 213 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 214 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 215 } 216 217 void ext4_itable_unused_set(struct super_block *sb, 218 struct ext4_group_desc *bg, __u32 count) 219 { 220 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 221 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 222 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 223 } 224 225 226 /* Just increment the non-pointer handle value */ 227 static handle_t *ext4_get_nojournal(void) 228 { 229 handle_t *handle = current->journal_info; 230 unsigned long ref_cnt = (unsigned long)handle; 231 232 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 233 234 ref_cnt++; 235 handle = (handle_t *)ref_cnt; 236 237 current->journal_info = handle; 238 return handle; 239 } 240 241 242 /* Decrement the non-pointer handle value */ 243 static void ext4_put_nojournal(handle_t *handle) 244 { 245 unsigned long ref_cnt = (unsigned long)handle; 246 247 BUG_ON(ref_cnt == 0); 248 249 ref_cnt--; 250 handle = (handle_t *)ref_cnt; 251 252 current->journal_info = handle; 253 } 254 255 /* 256 * Wrappers for jbd2_journal_start/end. 257 * 258 * The only special thing we need to do here is to make sure that all 259 * journal_end calls result in the superblock being marked dirty, so 260 * that sync() will call the filesystem's write_super callback if 261 * appropriate. 262 * 263 * To avoid j_barrier hold in userspace when a user calls freeze(), 264 * ext4 prevents a new handle from being started by s_frozen, which 265 * is in an upper layer. 266 */ 267 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 268 { 269 journal_t *journal; 270 handle_t *handle; 271 272 if (sb->s_flags & MS_RDONLY) 273 return ERR_PTR(-EROFS); 274 275 journal = EXT4_SB(sb)->s_journal; 276 handle = ext4_journal_current_handle(); 277 278 /* 279 * If a handle has been started, it should be allowed to 280 * finish, otherwise deadlock could happen between freeze 281 * and others(e.g. truncate) due to the restart of the 282 * journal handle if the filesystem is forzen and active 283 * handles are not stopped. 284 */ 285 if (!handle) 286 vfs_check_frozen(sb, SB_FREEZE_TRANS); 287 288 if (!journal) 289 return ext4_get_nojournal(); 290 /* 291 * Special case here: if the journal has aborted behind our 292 * backs (eg. EIO in the commit thread), then we still need to 293 * take the FS itself readonly cleanly. 294 */ 295 if (is_journal_aborted(journal)) { 296 ext4_abort(sb, "Detected aborted journal"); 297 return ERR_PTR(-EROFS); 298 } 299 return jbd2_journal_start(journal, nblocks); 300 } 301 302 /* 303 * The only special thing we need to do here is to make sure that all 304 * jbd2_journal_stop calls result in the superblock being marked dirty, so 305 * that sync() will call the filesystem's write_super callback if 306 * appropriate. 307 */ 308 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 309 { 310 struct super_block *sb; 311 int err; 312 int rc; 313 314 if (!ext4_handle_valid(handle)) { 315 ext4_put_nojournal(handle); 316 return 0; 317 } 318 sb = handle->h_transaction->t_journal->j_private; 319 err = handle->h_err; 320 rc = jbd2_journal_stop(handle); 321 322 if (!err) 323 err = rc; 324 if (err) 325 __ext4_std_error(sb, where, line, err); 326 return err; 327 } 328 329 void ext4_journal_abort_handle(const char *caller, unsigned int line, 330 const char *err_fn, struct buffer_head *bh, 331 handle_t *handle, int err) 332 { 333 char nbuf[16]; 334 const char *errstr = ext4_decode_error(NULL, err, nbuf); 335 336 BUG_ON(!ext4_handle_valid(handle)); 337 338 if (bh) 339 BUFFER_TRACE(bh, "abort"); 340 341 if (!handle->h_err) 342 handle->h_err = err; 343 344 if (is_handle_aborted(handle)) 345 return; 346 347 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n", 348 caller, line, errstr, err_fn); 349 350 jbd2_journal_abort_handle(handle); 351 } 352 353 static void __save_error_info(struct super_block *sb, const char *func, 354 unsigned int line) 355 { 356 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 357 358 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 359 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 360 es->s_last_error_time = cpu_to_le32(get_seconds()); 361 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 362 es->s_last_error_line = cpu_to_le32(line); 363 if (!es->s_first_error_time) { 364 es->s_first_error_time = es->s_last_error_time; 365 strncpy(es->s_first_error_func, func, 366 sizeof(es->s_first_error_func)); 367 es->s_first_error_line = cpu_to_le32(line); 368 es->s_first_error_ino = es->s_last_error_ino; 369 es->s_first_error_block = es->s_last_error_block; 370 } 371 /* 372 * Start the daily error reporting function if it hasn't been 373 * started already 374 */ 375 if (!es->s_error_count) 376 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 377 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 378 } 379 380 static void save_error_info(struct super_block *sb, const char *func, 381 unsigned int line) 382 { 383 __save_error_info(sb, func, line); 384 ext4_commit_super(sb, 1); 385 } 386 387 388 /* Deal with the reporting of failure conditions on a filesystem such as 389 * inconsistencies detected or read IO failures. 390 * 391 * On ext2, we can store the error state of the filesystem in the 392 * superblock. That is not possible on ext4, because we may have other 393 * write ordering constraints on the superblock which prevent us from 394 * writing it out straight away; and given that the journal is about to 395 * be aborted, we can't rely on the current, or future, transactions to 396 * write out the superblock safely. 397 * 398 * We'll just use the jbd2_journal_abort() error code to record an error in 399 * the journal instead. On recovery, the journal will complain about 400 * that error until we've noted it down and cleared it. 401 */ 402 403 static void ext4_handle_error(struct super_block *sb) 404 { 405 if (sb->s_flags & MS_RDONLY) 406 return; 407 408 if (!test_opt(sb, ERRORS_CONT)) { 409 journal_t *journal = EXT4_SB(sb)->s_journal; 410 411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 412 if (journal) 413 jbd2_journal_abort(journal, -EIO); 414 } 415 if (test_opt(sb, ERRORS_RO)) { 416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 417 sb->s_flags |= MS_RDONLY; 418 } 419 if (test_opt(sb, ERRORS_PANIC)) 420 panic("EXT4-fs (device %s): panic forced after error\n", 421 sb->s_id); 422 } 423 424 void __ext4_error(struct super_block *sb, const char *function, 425 unsigned int line, const char *fmt, ...) 426 { 427 struct va_format vaf; 428 va_list args; 429 430 va_start(args, fmt); 431 vaf.fmt = fmt; 432 vaf.va = &args; 433 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 434 sb->s_id, function, line, current->comm, &vaf); 435 va_end(args); 436 437 ext4_handle_error(sb); 438 } 439 440 void ext4_error_inode(struct inode *inode, const char *function, 441 unsigned int line, ext4_fsblk_t block, 442 const char *fmt, ...) 443 { 444 va_list args; 445 struct va_format vaf; 446 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 447 448 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 449 es->s_last_error_block = cpu_to_le64(block); 450 save_error_info(inode->i_sb, function, line); 451 va_start(args, fmt); 452 vaf.fmt = fmt; 453 vaf.va = &args; 454 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 455 inode->i_sb->s_id, function, line, inode->i_ino); 456 if (block) 457 printk(KERN_CONT "block %llu: ", block); 458 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf); 459 va_end(args); 460 461 ext4_handle_error(inode->i_sb); 462 } 463 464 void ext4_error_file(struct file *file, const char *function, 465 unsigned int line, ext4_fsblk_t block, 466 const char *fmt, ...) 467 { 468 va_list args; 469 struct va_format vaf; 470 struct ext4_super_block *es; 471 struct inode *inode = file->f_dentry->d_inode; 472 char pathname[80], *path; 473 474 es = EXT4_SB(inode->i_sb)->s_es; 475 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 476 save_error_info(inode->i_sb, function, line); 477 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 478 if (IS_ERR(path)) 479 path = "(unknown)"; 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 482 inode->i_sb->s_id, function, line, inode->i_ino); 483 if (block) 484 printk(KERN_CONT "block %llu: ", block); 485 va_start(args, fmt); 486 vaf.fmt = fmt; 487 vaf.va = &args; 488 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf); 489 va_end(args); 490 491 ext4_handle_error(inode->i_sb); 492 } 493 494 static const char *ext4_decode_error(struct super_block *sb, int errno, 495 char nbuf[16]) 496 { 497 char *errstr = NULL; 498 499 switch (errno) { 500 case -EIO: 501 errstr = "IO failure"; 502 break; 503 case -ENOMEM: 504 errstr = "Out of memory"; 505 break; 506 case -EROFS: 507 if (!sb || (EXT4_SB(sb)->s_journal && 508 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 509 errstr = "Journal has aborted"; 510 else 511 errstr = "Readonly filesystem"; 512 break; 513 default: 514 /* If the caller passed in an extra buffer for unknown 515 * errors, textualise them now. Else we just return 516 * NULL. */ 517 if (nbuf) { 518 /* Check for truncated error codes... */ 519 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 520 errstr = nbuf; 521 } 522 break; 523 } 524 525 return errstr; 526 } 527 528 /* __ext4_std_error decodes expected errors from journaling functions 529 * automatically and invokes the appropriate error response. */ 530 531 void __ext4_std_error(struct super_block *sb, const char *function, 532 unsigned int line, int errno) 533 { 534 char nbuf[16]; 535 const char *errstr; 536 537 /* Special case: if the error is EROFS, and we're not already 538 * inside a transaction, then there's really no point in logging 539 * an error. */ 540 if (errno == -EROFS && journal_current_handle() == NULL && 541 (sb->s_flags & MS_RDONLY)) 542 return; 543 544 errstr = ext4_decode_error(sb, errno, nbuf); 545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 546 sb->s_id, function, line, errstr); 547 save_error_info(sb, function, line); 548 549 ext4_handle_error(sb); 550 } 551 552 /* 553 * ext4_abort is a much stronger failure handler than ext4_error. The 554 * abort function may be used to deal with unrecoverable failures such 555 * as journal IO errors or ENOMEM at a critical moment in log management. 556 * 557 * We unconditionally force the filesystem into an ABORT|READONLY state, 558 * unless the error response on the fs has been set to panic in which 559 * case we take the easy way out and panic immediately. 560 */ 561 562 void __ext4_abort(struct super_block *sb, const char *function, 563 unsigned int line, const char *fmt, ...) 564 { 565 va_list args; 566 567 save_error_info(sb, function, line); 568 va_start(args, fmt); 569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 570 function, line); 571 vprintk(fmt, args); 572 printk("\n"); 573 va_end(args); 574 575 if ((sb->s_flags & MS_RDONLY) == 0) { 576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 577 sb->s_flags |= MS_RDONLY; 578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 579 if (EXT4_SB(sb)->s_journal) 580 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 581 save_error_info(sb, function, line); 582 } 583 if (test_opt(sb, ERRORS_PANIC)) 584 panic("EXT4-fs panic from previous error\n"); 585 } 586 587 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 588 { 589 struct va_format vaf; 590 va_list args; 591 592 va_start(args, fmt); 593 vaf.fmt = fmt; 594 vaf.va = &args; 595 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 596 va_end(args); 597 } 598 599 void __ext4_warning(struct super_block *sb, const char *function, 600 unsigned int line, const char *fmt, ...) 601 { 602 struct va_format vaf; 603 va_list args; 604 605 va_start(args, fmt); 606 vaf.fmt = fmt; 607 vaf.va = &args; 608 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 609 sb->s_id, function, line, &vaf); 610 va_end(args); 611 } 612 613 void __ext4_grp_locked_error(const char *function, unsigned int line, 614 struct super_block *sb, ext4_group_t grp, 615 unsigned long ino, ext4_fsblk_t block, 616 const char *fmt, ...) 617 __releases(bitlock) 618 __acquires(bitlock) 619 { 620 struct va_format vaf; 621 va_list args; 622 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 623 624 es->s_last_error_ino = cpu_to_le32(ino); 625 es->s_last_error_block = cpu_to_le64(block); 626 __save_error_info(sb, function, line); 627 628 va_start(args, fmt); 629 630 vaf.fmt = fmt; 631 vaf.va = &args; 632 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 633 sb->s_id, function, line, grp); 634 if (ino) 635 printk(KERN_CONT "inode %lu: ", ino); 636 if (block) 637 printk(KERN_CONT "block %llu:", (unsigned long long) block); 638 printk(KERN_CONT "%pV\n", &vaf); 639 va_end(args); 640 641 if (test_opt(sb, ERRORS_CONT)) { 642 ext4_commit_super(sb, 0); 643 return; 644 } 645 646 ext4_unlock_group(sb, grp); 647 ext4_handle_error(sb); 648 /* 649 * We only get here in the ERRORS_RO case; relocking the group 650 * may be dangerous, but nothing bad will happen since the 651 * filesystem will have already been marked read/only and the 652 * journal has been aborted. We return 1 as a hint to callers 653 * who might what to use the return value from 654 * ext4_grp_locked_error() to distinguish between the 655 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 656 * aggressively from the ext4 function in question, with a 657 * more appropriate error code. 658 */ 659 ext4_lock_group(sb, grp); 660 return; 661 } 662 663 void ext4_update_dynamic_rev(struct super_block *sb) 664 { 665 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 666 667 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 668 return; 669 670 ext4_warning(sb, 671 "updating to rev %d because of new feature flag, " 672 "running e2fsck is recommended", 673 EXT4_DYNAMIC_REV); 674 675 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 676 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 677 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 678 /* leave es->s_feature_*compat flags alone */ 679 /* es->s_uuid will be set by e2fsck if empty */ 680 681 /* 682 * The rest of the superblock fields should be zero, and if not it 683 * means they are likely already in use, so leave them alone. We 684 * can leave it up to e2fsck to clean up any inconsistencies there. 685 */ 686 } 687 688 /* 689 * Open the external journal device 690 */ 691 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 692 { 693 struct block_device *bdev; 694 char b[BDEVNAME_SIZE]; 695 696 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 697 if (IS_ERR(bdev)) 698 goto fail; 699 return bdev; 700 701 fail: 702 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 703 __bdevname(dev, b), PTR_ERR(bdev)); 704 return NULL; 705 } 706 707 /* 708 * Release the journal device 709 */ 710 static int ext4_blkdev_put(struct block_device *bdev) 711 { 712 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 713 } 714 715 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 716 { 717 struct block_device *bdev; 718 int ret = -ENODEV; 719 720 bdev = sbi->journal_bdev; 721 if (bdev) { 722 ret = ext4_blkdev_put(bdev); 723 sbi->journal_bdev = NULL; 724 } 725 return ret; 726 } 727 728 static inline struct inode *orphan_list_entry(struct list_head *l) 729 { 730 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 731 } 732 733 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 734 { 735 struct list_head *l; 736 737 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 738 le32_to_cpu(sbi->s_es->s_last_orphan)); 739 740 printk(KERN_ERR "sb_info orphan list:\n"); 741 list_for_each(l, &sbi->s_orphan) { 742 struct inode *inode = orphan_list_entry(l); 743 printk(KERN_ERR " " 744 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 745 inode->i_sb->s_id, inode->i_ino, inode, 746 inode->i_mode, inode->i_nlink, 747 NEXT_ORPHAN(inode)); 748 } 749 } 750 751 static void ext4_put_super(struct super_block *sb) 752 { 753 struct ext4_sb_info *sbi = EXT4_SB(sb); 754 struct ext4_super_block *es = sbi->s_es; 755 int i, err; 756 757 ext4_unregister_li_request(sb); 758 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 759 760 flush_workqueue(sbi->dio_unwritten_wq); 761 destroy_workqueue(sbi->dio_unwritten_wq); 762 763 lock_super(sb); 764 if (sb->s_dirt) 765 ext4_commit_super(sb, 1); 766 767 if (sbi->s_journal) { 768 err = jbd2_journal_destroy(sbi->s_journal); 769 sbi->s_journal = NULL; 770 if (err < 0) 771 ext4_abort(sb, "Couldn't clean up the journal"); 772 } 773 774 del_timer(&sbi->s_err_report); 775 ext4_release_system_zone(sb); 776 ext4_mb_release(sb); 777 ext4_ext_release(sb); 778 ext4_xattr_put_super(sb); 779 780 if (!(sb->s_flags & MS_RDONLY)) { 781 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 782 es->s_state = cpu_to_le16(sbi->s_mount_state); 783 ext4_commit_super(sb, 1); 784 } 785 if (sbi->s_proc) { 786 remove_proc_entry(sb->s_id, ext4_proc_root); 787 } 788 kobject_del(&sbi->s_kobj); 789 790 for (i = 0; i < sbi->s_gdb_count; i++) 791 brelse(sbi->s_group_desc[i]); 792 kfree(sbi->s_group_desc); 793 if (is_vmalloc_addr(sbi->s_flex_groups)) 794 vfree(sbi->s_flex_groups); 795 else 796 kfree(sbi->s_flex_groups); 797 percpu_counter_destroy(&sbi->s_freeblocks_counter); 798 percpu_counter_destroy(&sbi->s_freeinodes_counter); 799 percpu_counter_destroy(&sbi->s_dirs_counter); 800 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 801 brelse(sbi->s_sbh); 802 #ifdef CONFIG_QUOTA 803 for (i = 0; i < MAXQUOTAS; i++) 804 kfree(sbi->s_qf_names[i]); 805 #endif 806 807 /* Debugging code just in case the in-memory inode orphan list 808 * isn't empty. The on-disk one can be non-empty if we've 809 * detected an error and taken the fs readonly, but the 810 * in-memory list had better be clean by this point. */ 811 if (!list_empty(&sbi->s_orphan)) 812 dump_orphan_list(sb, sbi); 813 J_ASSERT(list_empty(&sbi->s_orphan)); 814 815 invalidate_bdev(sb->s_bdev); 816 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 817 /* 818 * Invalidate the journal device's buffers. We don't want them 819 * floating about in memory - the physical journal device may 820 * hotswapped, and it breaks the `ro-after' testing code. 821 */ 822 sync_blockdev(sbi->journal_bdev); 823 invalidate_bdev(sbi->journal_bdev); 824 ext4_blkdev_remove(sbi); 825 } 826 if (sbi->s_mmp_tsk) 827 kthread_stop(sbi->s_mmp_tsk); 828 sb->s_fs_info = NULL; 829 /* 830 * Now that we are completely done shutting down the 831 * superblock, we need to actually destroy the kobject. 832 */ 833 unlock_super(sb); 834 kobject_put(&sbi->s_kobj); 835 wait_for_completion(&sbi->s_kobj_unregister); 836 kfree(sbi->s_blockgroup_lock); 837 kfree(sbi); 838 } 839 840 static struct kmem_cache *ext4_inode_cachep; 841 842 /* 843 * Called inside transaction, so use GFP_NOFS 844 */ 845 static struct inode *ext4_alloc_inode(struct super_block *sb) 846 { 847 struct ext4_inode_info *ei; 848 849 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 850 if (!ei) 851 return NULL; 852 853 ei->vfs_inode.i_version = 1; 854 ei->vfs_inode.i_data.writeback_index = 0; 855 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 856 INIT_LIST_HEAD(&ei->i_prealloc_list); 857 spin_lock_init(&ei->i_prealloc_lock); 858 ei->i_reserved_data_blocks = 0; 859 ei->i_reserved_meta_blocks = 0; 860 ei->i_allocated_meta_blocks = 0; 861 ei->i_da_metadata_calc_len = 0; 862 spin_lock_init(&(ei->i_block_reservation_lock)); 863 #ifdef CONFIG_QUOTA 864 ei->i_reserved_quota = 0; 865 #endif 866 ei->jinode = NULL; 867 INIT_LIST_HEAD(&ei->i_completed_io_list); 868 spin_lock_init(&ei->i_completed_io_lock); 869 ei->cur_aio_dio = NULL; 870 ei->i_sync_tid = 0; 871 ei->i_datasync_tid = 0; 872 atomic_set(&ei->i_ioend_count, 0); 873 atomic_set(&ei->i_aiodio_unwritten, 0); 874 875 return &ei->vfs_inode; 876 } 877 878 static int ext4_drop_inode(struct inode *inode) 879 { 880 int drop = generic_drop_inode(inode); 881 882 trace_ext4_drop_inode(inode, drop); 883 return drop; 884 } 885 886 static void ext4_i_callback(struct rcu_head *head) 887 { 888 struct inode *inode = container_of(head, struct inode, i_rcu); 889 INIT_LIST_HEAD(&inode->i_dentry); 890 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 891 } 892 893 static void ext4_destroy_inode(struct inode *inode) 894 { 895 ext4_ioend_wait(inode); 896 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 897 ext4_msg(inode->i_sb, KERN_ERR, 898 "Inode %lu (%p): orphan list check failed!", 899 inode->i_ino, EXT4_I(inode)); 900 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 901 EXT4_I(inode), sizeof(struct ext4_inode_info), 902 true); 903 dump_stack(); 904 } 905 call_rcu(&inode->i_rcu, ext4_i_callback); 906 } 907 908 static void init_once(void *foo) 909 { 910 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 911 912 INIT_LIST_HEAD(&ei->i_orphan); 913 #ifdef CONFIG_EXT4_FS_XATTR 914 init_rwsem(&ei->xattr_sem); 915 #endif 916 init_rwsem(&ei->i_data_sem); 917 inode_init_once(&ei->vfs_inode); 918 } 919 920 static int init_inodecache(void) 921 { 922 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 923 sizeof(struct ext4_inode_info), 924 0, (SLAB_RECLAIM_ACCOUNT| 925 SLAB_MEM_SPREAD), 926 init_once); 927 if (ext4_inode_cachep == NULL) 928 return -ENOMEM; 929 return 0; 930 } 931 932 static void destroy_inodecache(void) 933 { 934 kmem_cache_destroy(ext4_inode_cachep); 935 } 936 937 void ext4_clear_inode(struct inode *inode) 938 { 939 invalidate_inode_buffers(inode); 940 end_writeback(inode); 941 dquot_drop(inode); 942 ext4_discard_preallocations(inode); 943 if (EXT4_I(inode)->jinode) { 944 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 945 EXT4_I(inode)->jinode); 946 jbd2_free_inode(EXT4_I(inode)->jinode); 947 EXT4_I(inode)->jinode = NULL; 948 } 949 } 950 951 static inline void ext4_show_quota_options(struct seq_file *seq, 952 struct super_block *sb) 953 { 954 #if defined(CONFIG_QUOTA) 955 struct ext4_sb_info *sbi = EXT4_SB(sb); 956 957 if (sbi->s_jquota_fmt) { 958 char *fmtname = ""; 959 960 switch (sbi->s_jquota_fmt) { 961 case QFMT_VFS_OLD: 962 fmtname = "vfsold"; 963 break; 964 case QFMT_VFS_V0: 965 fmtname = "vfsv0"; 966 break; 967 case QFMT_VFS_V1: 968 fmtname = "vfsv1"; 969 break; 970 } 971 seq_printf(seq, ",jqfmt=%s", fmtname); 972 } 973 974 if (sbi->s_qf_names[USRQUOTA]) 975 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 976 977 if (sbi->s_qf_names[GRPQUOTA]) 978 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 979 980 if (test_opt(sb, USRQUOTA)) 981 seq_puts(seq, ",usrquota"); 982 983 if (test_opt(sb, GRPQUOTA)) 984 seq_puts(seq, ",grpquota"); 985 #endif 986 } 987 988 /* 989 * Show an option if 990 * - it's set to a non-default value OR 991 * - if the per-sb default is different from the global default 992 */ 993 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 994 { 995 int def_errors; 996 unsigned long def_mount_opts; 997 struct super_block *sb = vfs->mnt_sb; 998 struct ext4_sb_info *sbi = EXT4_SB(sb); 999 struct ext4_super_block *es = sbi->s_es; 1000 1001 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 1002 def_errors = le16_to_cpu(es->s_errors); 1003 1004 if (sbi->s_sb_block != 1) 1005 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 1006 if (test_opt(sb, MINIX_DF)) 1007 seq_puts(seq, ",minixdf"); 1008 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 1009 seq_puts(seq, ",grpid"); 1010 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 1011 seq_puts(seq, ",nogrpid"); 1012 if (sbi->s_resuid != EXT4_DEF_RESUID || 1013 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 1014 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 1015 } 1016 if (sbi->s_resgid != EXT4_DEF_RESGID || 1017 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 1018 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 1019 } 1020 if (test_opt(sb, ERRORS_RO)) { 1021 if (def_errors == EXT4_ERRORS_PANIC || 1022 def_errors == EXT4_ERRORS_CONTINUE) { 1023 seq_puts(seq, ",errors=remount-ro"); 1024 } 1025 } 1026 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1027 seq_puts(seq, ",errors=continue"); 1028 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1029 seq_puts(seq, ",errors=panic"); 1030 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 1031 seq_puts(seq, ",nouid32"); 1032 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 1033 seq_puts(seq, ",debug"); 1034 if (test_opt(sb, OLDALLOC)) 1035 seq_puts(seq, ",oldalloc"); 1036 #ifdef CONFIG_EXT4_FS_XATTR 1037 if (test_opt(sb, XATTR_USER)) 1038 seq_puts(seq, ",user_xattr"); 1039 if (!test_opt(sb, XATTR_USER)) 1040 seq_puts(seq, ",nouser_xattr"); 1041 #endif 1042 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1043 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 1044 seq_puts(seq, ",acl"); 1045 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 1046 seq_puts(seq, ",noacl"); 1047 #endif 1048 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 1049 seq_printf(seq, ",commit=%u", 1050 (unsigned) (sbi->s_commit_interval / HZ)); 1051 } 1052 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 1053 seq_printf(seq, ",min_batch_time=%u", 1054 (unsigned) sbi->s_min_batch_time); 1055 } 1056 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 1057 seq_printf(seq, ",max_batch_time=%u", 1058 (unsigned) sbi->s_min_batch_time); 1059 } 1060 1061 /* 1062 * We're changing the default of barrier mount option, so 1063 * let's always display its mount state so it's clear what its 1064 * status is. 1065 */ 1066 seq_puts(seq, ",barrier="); 1067 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 1068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 1069 seq_puts(seq, ",journal_async_commit"); 1070 else if (test_opt(sb, JOURNAL_CHECKSUM)) 1071 seq_puts(seq, ",journal_checksum"); 1072 if (test_opt(sb, I_VERSION)) 1073 seq_puts(seq, ",i_version"); 1074 if (!test_opt(sb, DELALLOC) && 1075 !(def_mount_opts & EXT4_DEFM_NODELALLOC)) 1076 seq_puts(seq, ",nodelalloc"); 1077 1078 if (!test_opt(sb, MBLK_IO_SUBMIT)) 1079 seq_puts(seq, ",nomblk_io_submit"); 1080 if (sbi->s_stripe) 1081 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 1082 /* 1083 * journal mode get enabled in different ways 1084 * So just print the value even if we didn't specify it 1085 */ 1086 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1087 seq_puts(seq, ",data=journal"); 1088 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1089 seq_puts(seq, ",data=ordered"); 1090 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1091 seq_puts(seq, ",data=writeback"); 1092 1093 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1094 seq_printf(seq, ",inode_readahead_blks=%u", 1095 sbi->s_inode_readahead_blks); 1096 1097 if (test_opt(sb, DATA_ERR_ABORT)) 1098 seq_puts(seq, ",data_err=abort"); 1099 1100 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 1101 seq_puts(seq, ",noauto_da_alloc"); 1102 1103 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD)) 1104 seq_puts(seq, ",discard"); 1105 1106 if (test_opt(sb, NOLOAD)) 1107 seq_puts(seq, ",norecovery"); 1108 1109 if (test_opt(sb, DIOREAD_NOLOCK)) 1110 seq_puts(seq, ",dioread_nolock"); 1111 1112 if (test_opt(sb, BLOCK_VALIDITY) && 1113 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)) 1114 seq_puts(seq, ",block_validity"); 1115 1116 if (!test_opt(sb, INIT_INODE_TABLE)) 1117 seq_puts(seq, ",noinit_inode_table"); 1118 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT) 1119 seq_printf(seq, ",init_inode_table=%u", 1120 (unsigned) sbi->s_li_wait_mult); 1121 1122 ext4_show_quota_options(seq, sb); 1123 1124 return 0; 1125 } 1126 1127 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1128 u64 ino, u32 generation) 1129 { 1130 struct inode *inode; 1131 1132 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1133 return ERR_PTR(-ESTALE); 1134 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1135 return ERR_PTR(-ESTALE); 1136 1137 /* iget isn't really right if the inode is currently unallocated!! 1138 * 1139 * ext4_read_inode will return a bad_inode if the inode had been 1140 * deleted, so we should be safe. 1141 * 1142 * Currently we don't know the generation for parent directory, so 1143 * a generation of 0 means "accept any" 1144 */ 1145 inode = ext4_iget(sb, ino); 1146 if (IS_ERR(inode)) 1147 return ERR_CAST(inode); 1148 if (generation && inode->i_generation != generation) { 1149 iput(inode); 1150 return ERR_PTR(-ESTALE); 1151 } 1152 1153 return inode; 1154 } 1155 1156 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1157 int fh_len, int fh_type) 1158 { 1159 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1160 ext4_nfs_get_inode); 1161 } 1162 1163 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1164 int fh_len, int fh_type) 1165 { 1166 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1167 ext4_nfs_get_inode); 1168 } 1169 1170 /* 1171 * Try to release metadata pages (indirect blocks, directories) which are 1172 * mapped via the block device. Since these pages could have journal heads 1173 * which would prevent try_to_free_buffers() from freeing them, we must use 1174 * jbd2 layer's try_to_free_buffers() function to release them. 1175 */ 1176 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1177 gfp_t wait) 1178 { 1179 journal_t *journal = EXT4_SB(sb)->s_journal; 1180 1181 WARN_ON(PageChecked(page)); 1182 if (!page_has_buffers(page)) 1183 return 0; 1184 if (journal) 1185 return jbd2_journal_try_to_free_buffers(journal, page, 1186 wait & ~__GFP_WAIT); 1187 return try_to_free_buffers(page); 1188 } 1189 1190 #ifdef CONFIG_QUOTA 1191 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1192 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1193 1194 static int ext4_write_dquot(struct dquot *dquot); 1195 static int ext4_acquire_dquot(struct dquot *dquot); 1196 static int ext4_release_dquot(struct dquot *dquot); 1197 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1198 static int ext4_write_info(struct super_block *sb, int type); 1199 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1200 struct path *path); 1201 static int ext4_quota_off(struct super_block *sb, int type); 1202 static int ext4_quota_on_mount(struct super_block *sb, int type); 1203 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1204 size_t len, loff_t off); 1205 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1206 const char *data, size_t len, loff_t off); 1207 1208 static const struct dquot_operations ext4_quota_operations = { 1209 .get_reserved_space = ext4_get_reserved_space, 1210 .write_dquot = ext4_write_dquot, 1211 .acquire_dquot = ext4_acquire_dquot, 1212 .release_dquot = ext4_release_dquot, 1213 .mark_dirty = ext4_mark_dquot_dirty, 1214 .write_info = ext4_write_info, 1215 .alloc_dquot = dquot_alloc, 1216 .destroy_dquot = dquot_destroy, 1217 }; 1218 1219 static const struct quotactl_ops ext4_qctl_operations = { 1220 .quota_on = ext4_quota_on, 1221 .quota_off = ext4_quota_off, 1222 .quota_sync = dquot_quota_sync, 1223 .get_info = dquot_get_dqinfo, 1224 .set_info = dquot_set_dqinfo, 1225 .get_dqblk = dquot_get_dqblk, 1226 .set_dqblk = dquot_set_dqblk 1227 }; 1228 #endif 1229 1230 static const struct super_operations ext4_sops = { 1231 .alloc_inode = ext4_alloc_inode, 1232 .destroy_inode = ext4_destroy_inode, 1233 .write_inode = ext4_write_inode, 1234 .dirty_inode = ext4_dirty_inode, 1235 .drop_inode = ext4_drop_inode, 1236 .evict_inode = ext4_evict_inode, 1237 .put_super = ext4_put_super, 1238 .sync_fs = ext4_sync_fs, 1239 .freeze_fs = ext4_freeze, 1240 .unfreeze_fs = ext4_unfreeze, 1241 .statfs = ext4_statfs, 1242 .remount_fs = ext4_remount, 1243 .show_options = ext4_show_options, 1244 #ifdef CONFIG_QUOTA 1245 .quota_read = ext4_quota_read, 1246 .quota_write = ext4_quota_write, 1247 #endif 1248 .bdev_try_to_free_page = bdev_try_to_free_page, 1249 }; 1250 1251 static const struct super_operations ext4_nojournal_sops = { 1252 .alloc_inode = ext4_alloc_inode, 1253 .destroy_inode = ext4_destroy_inode, 1254 .write_inode = ext4_write_inode, 1255 .dirty_inode = ext4_dirty_inode, 1256 .drop_inode = ext4_drop_inode, 1257 .evict_inode = ext4_evict_inode, 1258 .write_super = ext4_write_super, 1259 .put_super = ext4_put_super, 1260 .statfs = ext4_statfs, 1261 .remount_fs = ext4_remount, 1262 .show_options = ext4_show_options, 1263 #ifdef CONFIG_QUOTA 1264 .quota_read = ext4_quota_read, 1265 .quota_write = ext4_quota_write, 1266 #endif 1267 .bdev_try_to_free_page = bdev_try_to_free_page, 1268 }; 1269 1270 static const struct export_operations ext4_export_ops = { 1271 .fh_to_dentry = ext4_fh_to_dentry, 1272 .fh_to_parent = ext4_fh_to_parent, 1273 .get_parent = ext4_get_parent, 1274 }; 1275 1276 enum { 1277 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1278 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1279 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1280 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1281 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1282 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1283 Opt_journal_update, Opt_journal_dev, 1284 Opt_journal_checksum, Opt_journal_async_commit, 1285 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1286 Opt_data_err_abort, Opt_data_err_ignore, 1287 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1288 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1289 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1290 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1291 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1292 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1293 Opt_inode_readahead_blks, Opt_journal_ioprio, 1294 Opt_dioread_nolock, Opt_dioread_lock, 1295 Opt_discard, Opt_nodiscard, 1296 Opt_init_inode_table, Opt_noinit_inode_table, 1297 }; 1298 1299 static const match_table_t tokens = { 1300 {Opt_bsd_df, "bsddf"}, 1301 {Opt_minix_df, "minixdf"}, 1302 {Opt_grpid, "grpid"}, 1303 {Opt_grpid, "bsdgroups"}, 1304 {Opt_nogrpid, "nogrpid"}, 1305 {Opt_nogrpid, "sysvgroups"}, 1306 {Opt_resgid, "resgid=%u"}, 1307 {Opt_resuid, "resuid=%u"}, 1308 {Opt_sb, "sb=%u"}, 1309 {Opt_err_cont, "errors=continue"}, 1310 {Opt_err_panic, "errors=panic"}, 1311 {Opt_err_ro, "errors=remount-ro"}, 1312 {Opt_nouid32, "nouid32"}, 1313 {Opt_debug, "debug"}, 1314 {Opt_oldalloc, "oldalloc"}, 1315 {Opt_orlov, "orlov"}, 1316 {Opt_user_xattr, "user_xattr"}, 1317 {Opt_nouser_xattr, "nouser_xattr"}, 1318 {Opt_acl, "acl"}, 1319 {Opt_noacl, "noacl"}, 1320 {Opt_noload, "noload"}, 1321 {Opt_noload, "norecovery"}, 1322 {Opt_nobh, "nobh"}, 1323 {Opt_bh, "bh"}, 1324 {Opt_commit, "commit=%u"}, 1325 {Opt_min_batch_time, "min_batch_time=%u"}, 1326 {Opt_max_batch_time, "max_batch_time=%u"}, 1327 {Opt_journal_update, "journal=update"}, 1328 {Opt_journal_dev, "journal_dev=%u"}, 1329 {Opt_journal_checksum, "journal_checksum"}, 1330 {Opt_journal_async_commit, "journal_async_commit"}, 1331 {Opt_abort, "abort"}, 1332 {Opt_data_journal, "data=journal"}, 1333 {Opt_data_ordered, "data=ordered"}, 1334 {Opt_data_writeback, "data=writeback"}, 1335 {Opt_data_err_abort, "data_err=abort"}, 1336 {Opt_data_err_ignore, "data_err=ignore"}, 1337 {Opt_offusrjquota, "usrjquota="}, 1338 {Opt_usrjquota, "usrjquota=%s"}, 1339 {Opt_offgrpjquota, "grpjquota="}, 1340 {Opt_grpjquota, "grpjquota=%s"}, 1341 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1342 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1343 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1344 {Opt_grpquota, "grpquota"}, 1345 {Opt_noquota, "noquota"}, 1346 {Opt_quota, "quota"}, 1347 {Opt_usrquota, "usrquota"}, 1348 {Opt_barrier, "barrier=%u"}, 1349 {Opt_barrier, "barrier"}, 1350 {Opt_nobarrier, "nobarrier"}, 1351 {Opt_i_version, "i_version"}, 1352 {Opt_stripe, "stripe=%u"}, 1353 {Opt_resize, "resize"}, 1354 {Opt_delalloc, "delalloc"}, 1355 {Opt_nodelalloc, "nodelalloc"}, 1356 {Opt_mblk_io_submit, "mblk_io_submit"}, 1357 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1358 {Opt_block_validity, "block_validity"}, 1359 {Opt_noblock_validity, "noblock_validity"}, 1360 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1361 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1362 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1363 {Opt_auto_da_alloc, "auto_da_alloc"}, 1364 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1365 {Opt_dioread_nolock, "dioread_nolock"}, 1366 {Opt_dioread_lock, "dioread_lock"}, 1367 {Opt_discard, "discard"}, 1368 {Opt_nodiscard, "nodiscard"}, 1369 {Opt_init_inode_table, "init_itable=%u"}, 1370 {Opt_init_inode_table, "init_itable"}, 1371 {Opt_noinit_inode_table, "noinit_itable"}, 1372 {Opt_err, NULL}, 1373 }; 1374 1375 static ext4_fsblk_t get_sb_block(void **data) 1376 { 1377 ext4_fsblk_t sb_block; 1378 char *options = (char *) *data; 1379 1380 if (!options || strncmp(options, "sb=", 3) != 0) 1381 return 1; /* Default location */ 1382 1383 options += 3; 1384 /* TODO: use simple_strtoll with >32bit ext4 */ 1385 sb_block = simple_strtoul(options, &options, 0); 1386 if (*options && *options != ',') { 1387 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1388 (char *) *data); 1389 return 1; 1390 } 1391 if (*options == ',') 1392 options++; 1393 *data = (void *) options; 1394 1395 return sb_block; 1396 } 1397 1398 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1399 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1400 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1401 1402 #ifdef CONFIG_QUOTA 1403 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1404 { 1405 struct ext4_sb_info *sbi = EXT4_SB(sb); 1406 char *qname; 1407 1408 if (sb_any_quota_loaded(sb) && 1409 !sbi->s_qf_names[qtype]) { 1410 ext4_msg(sb, KERN_ERR, 1411 "Cannot change journaled " 1412 "quota options when quota turned on"); 1413 return 0; 1414 } 1415 qname = match_strdup(args); 1416 if (!qname) { 1417 ext4_msg(sb, KERN_ERR, 1418 "Not enough memory for storing quotafile name"); 1419 return 0; 1420 } 1421 if (sbi->s_qf_names[qtype] && 1422 strcmp(sbi->s_qf_names[qtype], qname)) { 1423 ext4_msg(sb, KERN_ERR, 1424 "%s quota file already specified", QTYPE2NAME(qtype)); 1425 kfree(qname); 1426 return 0; 1427 } 1428 sbi->s_qf_names[qtype] = qname; 1429 if (strchr(sbi->s_qf_names[qtype], '/')) { 1430 ext4_msg(sb, KERN_ERR, 1431 "quotafile must be on filesystem root"); 1432 kfree(sbi->s_qf_names[qtype]); 1433 sbi->s_qf_names[qtype] = NULL; 1434 return 0; 1435 } 1436 set_opt(sb, QUOTA); 1437 return 1; 1438 } 1439 1440 static int clear_qf_name(struct super_block *sb, int qtype) 1441 { 1442 1443 struct ext4_sb_info *sbi = EXT4_SB(sb); 1444 1445 if (sb_any_quota_loaded(sb) && 1446 sbi->s_qf_names[qtype]) { 1447 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1448 " when quota turned on"); 1449 return 0; 1450 } 1451 /* 1452 * The space will be released later when all options are confirmed 1453 * to be correct 1454 */ 1455 sbi->s_qf_names[qtype] = NULL; 1456 return 1; 1457 } 1458 #endif 1459 1460 static int parse_options(char *options, struct super_block *sb, 1461 unsigned long *journal_devnum, 1462 unsigned int *journal_ioprio, 1463 ext4_fsblk_t *n_blocks_count, int is_remount) 1464 { 1465 struct ext4_sb_info *sbi = EXT4_SB(sb); 1466 char *p; 1467 substring_t args[MAX_OPT_ARGS]; 1468 int data_opt = 0; 1469 int option; 1470 #ifdef CONFIG_QUOTA 1471 int qfmt; 1472 #endif 1473 1474 if (!options) 1475 return 1; 1476 1477 while ((p = strsep(&options, ",")) != NULL) { 1478 int token; 1479 if (!*p) 1480 continue; 1481 1482 /* 1483 * Initialize args struct so we know whether arg was 1484 * found; some options take optional arguments. 1485 */ 1486 args[0].to = args[0].from = NULL; 1487 token = match_token(p, tokens, args); 1488 switch (token) { 1489 case Opt_bsd_df: 1490 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1491 clear_opt(sb, MINIX_DF); 1492 break; 1493 case Opt_minix_df: 1494 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1495 set_opt(sb, MINIX_DF); 1496 1497 break; 1498 case Opt_grpid: 1499 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1500 set_opt(sb, GRPID); 1501 1502 break; 1503 case Opt_nogrpid: 1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1505 clear_opt(sb, GRPID); 1506 1507 break; 1508 case Opt_resuid: 1509 if (match_int(&args[0], &option)) 1510 return 0; 1511 sbi->s_resuid = option; 1512 break; 1513 case Opt_resgid: 1514 if (match_int(&args[0], &option)) 1515 return 0; 1516 sbi->s_resgid = option; 1517 break; 1518 case Opt_sb: 1519 /* handled by get_sb_block() instead of here */ 1520 /* *sb_block = match_int(&args[0]); */ 1521 break; 1522 case Opt_err_panic: 1523 clear_opt(sb, ERRORS_CONT); 1524 clear_opt(sb, ERRORS_RO); 1525 set_opt(sb, ERRORS_PANIC); 1526 break; 1527 case Opt_err_ro: 1528 clear_opt(sb, ERRORS_CONT); 1529 clear_opt(sb, ERRORS_PANIC); 1530 set_opt(sb, ERRORS_RO); 1531 break; 1532 case Opt_err_cont: 1533 clear_opt(sb, ERRORS_RO); 1534 clear_opt(sb, ERRORS_PANIC); 1535 set_opt(sb, ERRORS_CONT); 1536 break; 1537 case Opt_nouid32: 1538 set_opt(sb, NO_UID32); 1539 break; 1540 case Opt_debug: 1541 set_opt(sb, DEBUG); 1542 break; 1543 case Opt_oldalloc: 1544 set_opt(sb, OLDALLOC); 1545 break; 1546 case Opt_orlov: 1547 clear_opt(sb, OLDALLOC); 1548 break; 1549 #ifdef CONFIG_EXT4_FS_XATTR 1550 case Opt_user_xattr: 1551 set_opt(sb, XATTR_USER); 1552 break; 1553 case Opt_nouser_xattr: 1554 clear_opt(sb, XATTR_USER); 1555 break; 1556 #else 1557 case Opt_user_xattr: 1558 case Opt_nouser_xattr: 1559 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1560 break; 1561 #endif 1562 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1563 case Opt_acl: 1564 set_opt(sb, POSIX_ACL); 1565 break; 1566 case Opt_noacl: 1567 clear_opt(sb, POSIX_ACL); 1568 break; 1569 #else 1570 case Opt_acl: 1571 case Opt_noacl: 1572 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1573 break; 1574 #endif 1575 case Opt_journal_update: 1576 /* @@@ FIXME */ 1577 /* Eventually we will want to be able to create 1578 a journal file here. For now, only allow the 1579 user to specify an existing inode to be the 1580 journal file. */ 1581 if (is_remount) { 1582 ext4_msg(sb, KERN_ERR, 1583 "Cannot specify journal on remount"); 1584 return 0; 1585 } 1586 set_opt(sb, UPDATE_JOURNAL); 1587 break; 1588 case Opt_journal_dev: 1589 if (is_remount) { 1590 ext4_msg(sb, KERN_ERR, 1591 "Cannot specify journal on remount"); 1592 return 0; 1593 } 1594 if (match_int(&args[0], &option)) 1595 return 0; 1596 *journal_devnum = option; 1597 break; 1598 case Opt_journal_checksum: 1599 set_opt(sb, JOURNAL_CHECKSUM); 1600 break; 1601 case Opt_journal_async_commit: 1602 set_opt(sb, JOURNAL_ASYNC_COMMIT); 1603 set_opt(sb, JOURNAL_CHECKSUM); 1604 break; 1605 case Opt_noload: 1606 set_opt(sb, NOLOAD); 1607 break; 1608 case Opt_commit: 1609 if (match_int(&args[0], &option)) 1610 return 0; 1611 if (option < 0) 1612 return 0; 1613 if (option == 0) 1614 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1615 sbi->s_commit_interval = HZ * option; 1616 break; 1617 case Opt_max_batch_time: 1618 if (match_int(&args[0], &option)) 1619 return 0; 1620 if (option < 0) 1621 return 0; 1622 if (option == 0) 1623 option = EXT4_DEF_MAX_BATCH_TIME; 1624 sbi->s_max_batch_time = option; 1625 break; 1626 case Opt_min_batch_time: 1627 if (match_int(&args[0], &option)) 1628 return 0; 1629 if (option < 0) 1630 return 0; 1631 sbi->s_min_batch_time = option; 1632 break; 1633 case Opt_data_journal: 1634 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1635 goto datacheck; 1636 case Opt_data_ordered: 1637 data_opt = EXT4_MOUNT_ORDERED_DATA; 1638 goto datacheck; 1639 case Opt_data_writeback: 1640 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1641 datacheck: 1642 if (is_remount) { 1643 if (test_opt(sb, DATA_FLAGS) != data_opt) { 1644 ext4_msg(sb, KERN_ERR, 1645 "Cannot change data mode on remount"); 1646 return 0; 1647 } 1648 } else { 1649 clear_opt(sb, DATA_FLAGS); 1650 sbi->s_mount_opt |= data_opt; 1651 } 1652 break; 1653 case Opt_data_err_abort: 1654 set_opt(sb, DATA_ERR_ABORT); 1655 break; 1656 case Opt_data_err_ignore: 1657 clear_opt(sb, DATA_ERR_ABORT); 1658 break; 1659 #ifdef CONFIG_QUOTA 1660 case Opt_usrjquota: 1661 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1662 return 0; 1663 break; 1664 case Opt_grpjquota: 1665 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1666 return 0; 1667 break; 1668 case Opt_offusrjquota: 1669 if (!clear_qf_name(sb, USRQUOTA)) 1670 return 0; 1671 break; 1672 case Opt_offgrpjquota: 1673 if (!clear_qf_name(sb, GRPQUOTA)) 1674 return 0; 1675 break; 1676 1677 case Opt_jqfmt_vfsold: 1678 qfmt = QFMT_VFS_OLD; 1679 goto set_qf_format; 1680 case Opt_jqfmt_vfsv0: 1681 qfmt = QFMT_VFS_V0; 1682 goto set_qf_format; 1683 case Opt_jqfmt_vfsv1: 1684 qfmt = QFMT_VFS_V1; 1685 set_qf_format: 1686 if (sb_any_quota_loaded(sb) && 1687 sbi->s_jquota_fmt != qfmt) { 1688 ext4_msg(sb, KERN_ERR, "Cannot change " 1689 "journaled quota options when " 1690 "quota turned on"); 1691 return 0; 1692 } 1693 sbi->s_jquota_fmt = qfmt; 1694 break; 1695 case Opt_quota: 1696 case Opt_usrquota: 1697 set_opt(sb, QUOTA); 1698 set_opt(sb, USRQUOTA); 1699 break; 1700 case Opt_grpquota: 1701 set_opt(sb, QUOTA); 1702 set_opt(sb, GRPQUOTA); 1703 break; 1704 case Opt_noquota: 1705 if (sb_any_quota_loaded(sb)) { 1706 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1707 "options when quota turned on"); 1708 return 0; 1709 } 1710 clear_opt(sb, QUOTA); 1711 clear_opt(sb, USRQUOTA); 1712 clear_opt(sb, GRPQUOTA); 1713 break; 1714 #else 1715 case Opt_quota: 1716 case Opt_usrquota: 1717 case Opt_grpquota: 1718 ext4_msg(sb, KERN_ERR, 1719 "quota options not supported"); 1720 break; 1721 case Opt_usrjquota: 1722 case Opt_grpjquota: 1723 case Opt_offusrjquota: 1724 case Opt_offgrpjquota: 1725 case Opt_jqfmt_vfsold: 1726 case Opt_jqfmt_vfsv0: 1727 case Opt_jqfmt_vfsv1: 1728 ext4_msg(sb, KERN_ERR, 1729 "journaled quota options not supported"); 1730 break; 1731 case Opt_noquota: 1732 break; 1733 #endif 1734 case Opt_abort: 1735 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1736 break; 1737 case Opt_nobarrier: 1738 clear_opt(sb, BARRIER); 1739 break; 1740 case Opt_barrier: 1741 if (args[0].from) { 1742 if (match_int(&args[0], &option)) 1743 return 0; 1744 } else 1745 option = 1; /* No argument, default to 1 */ 1746 if (option) 1747 set_opt(sb, BARRIER); 1748 else 1749 clear_opt(sb, BARRIER); 1750 break; 1751 case Opt_ignore: 1752 break; 1753 case Opt_resize: 1754 if (!is_remount) { 1755 ext4_msg(sb, KERN_ERR, 1756 "resize option only available " 1757 "for remount"); 1758 return 0; 1759 } 1760 if (match_int(&args[0], &option) != 0) 1761 return 0; 1762 *n_blocks_count = option; 1763 break; 1764 case Opt_nobh: 1765 ext4_msg(sb, KERN_WARNING, 1766 "Ignoring deprecated nobh option"); 1767 break; 1768 case Opt_bh: 1769 ext4_msg(sb, KERN_WARNING, 1770 "Ignoring deprecated bh option"); 1771 break; 1772 case Opt_i_version: 1773 set_opt(sb, I_VERSION); 1774 sb->s_flags |= MS_I_VERSION; 1775 break; 1776 case Opt_nodelalloc: 1777 clear_opt(sb, DELALLOC); 1778 break; 1779 case Opt_mblk_io_submit: 1780 set_opt(sb, MBLK_IO_SUBMIT); 1781 break; 1782 case Opt_nomblk_io_submit: 1783 clear_opt(sb, MBLK_IO_SUBMIT); 1784 break; 1785 case Opt_stripe: 1786 if (match_int(&args[0], &option)) 1787 return 0; 1788 if (option < 0) 1789 return 0; 1790 sbi->s_stripe = option; 1791 break; 1792 case Opt_delalloc: 1793 set_opt(sb, DELALLOC); 1794 break; 1795 case Opt_block_validity: 1796 set_opt(sb, BLOCK_VALIDITY); 1797 break; 1798 case Opt_noblock_validity: 1799 clear_opt(sb, BLOCK_VALIDITY); 1800 break; 1801 case Opt_inode_readahead_blks: 1802 if (match_int(&args[0], &option)) 1803 return 0; 1804 if (option < 0 || option > (1 << 30)) 1805 return 0; 1806 if (option && !is_power_of_2(option)) { 1807 ext4_msg(sb, KERN_ERR, 1808 "EXT4-fs: inode_readahead_blks" 1809 " must be a power of 2"); 1810 return 0; 1811 } 1812 sbi->s_inode_readahead_blks = option; 1813 break; 1814 case Opt_journal_ioprio: 1815 if (match_int(&args[0], &option)) 1816 return 0; 1817 if (option < 0 || option > 7) 1818 break; 1819 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1820 option); 1821 break; 1822 case Opt_noauto_da_alloc: 1823 set_opt(sb, NO_AUTO_DA_ALLOC); 1824 break; 1825 case Opt_auto_da_alloc: 1826 if (args[0].from) { 1827 if (match_int(&args[0], &option)) 1828 return 0; 1829 } else 1830 option = 1; /* No argument, default to 1 */ 1831 if (option) 1832 clear_opt(sb, NO_AUTO_DA_ALLOC); 1833 else 1834 set_opt(sb,NO_AUTO_DA_ALLOC); 1835 break; 1836 case Opt_discard: 1837 set_opt(sb, DISCARD); 1838 break; 1839 case Opt_nodiscard: 1840 clear_opt(sb, DISCARD); 1841 break; 1842 case Opt_dioread_nolock: 1843 set_opt(sb, DIOREAD_NOLOCK); 1844 break; 1845 case Opt_dioread_lock: 1846 clear_opt(sb, DIOREAD_NOLOCK); 1847 break; 1848 case Opt_init_inode_table: 1849 set_opt(sb, INIT_INODE_TABLE); 1850 if (args[0].from) { 1851 if (match_int(&args[0], &option)) 1852 return 0; 1853 } else 1854 option = EXT4_DEF_LI_WAIT_MULT; 1855 if (option < 0) 1856 return 0; 1857 sbi->s_li_wait_mult = option; 1858 break; 1859 case Opt_noinit_inode_table: 1860 clear_opt(sb, INIT_INODE_TABLE); 1861 break; 1862 default: 1863 ext4_msg(sb, KERN_ERR, 1864 "Unrecognized mount option \"%s\" " 1865 "or missing value", p); 1866 return 0; 1867 } 1868 } 1869 #ifdef CONFIG_QUOTA 1870 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1871 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1872 clear_opt(sb, USRQUOTA); 1873 1874 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1875 clear_opt(sb, GRPQUOTA); 1876 1877 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1878 ext4_msg(sb, KERN_ERR, "old and new quota " 1879 "format mixing"); 1880 return 0; 1881 } 1882 1883 if (!sbi->s_jquota_fmt) { 1884 ext4_msg(sb, KERN_ERR, "journaled quota format " 1885 "not specified"); 1886 return 0; 1887 } 1888 } else { 1889 if (sbi->s_jquota_fmt) { 1890 ext4_msg(sb, KERN_ERR, "journaled quota format " 1891 "specified with no journaling " 1892 "enabled"); 1893 return 0; 1894 } 1895 } 1896 #endif 1897 return 1; 1898 } 1899 1900 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1901 int read_only) 1902 { 1903 struct ext4_sb_info *sbi = EXT4_SB(sb); 1904 int res = 0; 1905 1906 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1907 ext4_msg(sb, KERN_ERR, "revision level too high, " 1908 "forcing read-only mode"); 1909 res = MS_RDONLY; 1910 } 1911 if (read_only) 1912 return res; 1913 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1914 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1915 "running e2fsck is recommended"); 1916 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1917 ext4_msg(sb, KERN_WARNING, 1918 "warning: mounting fs with errors, " 1919 "running e2fsck is recommended"); 1920 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1921 le16_to_cpu(es->s_mnt_count) >= 1922 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1923 ext4_msg(sb, KERN_WARNING, 1924 "warning: maximal mount count reached, " 1925 "running e2fsck is recommended"); 1926 else if (le32_to_cpu(es->s_checkinterval) && 1927 (le32_to_cpu(es->s_lastcheck) + 1928 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1929 ext4_msg(sb, KERN_WARNING, 1930 "warning: checktime reached, " 1931 "running e2fsck is recommended"); 1932 if (!sbi->s_journal) 1933 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1934 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1935 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1936 le16_add_cpu(&es->s_mnt_count, 1); 1937 es->s_mtime = cpu_to_le32(get_seconds()); 1938 ext4_update_dynamic_rev(sb); 1939 if (sbi->s_journal) 1940 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1941 1942 ext4_commit_super(sb, 1); 1943 if (test_opt(sb, DEBUG)) 1944 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1945 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1946 sb->s_blocksize, 1947 sbi->s_groups_count, 1948 EXT4_BLOCKS_PER_GROUP(sb), 1949 EXT4_INODES_PER_GROUP(sb), 1950 sbi->s_mount_opt, sbi->s_mount_opt2); 1951 1952 cleancache_init_fs(sb); 1953 return res; 1954 } 1955 1956 static int ext4_fill_flex_info(struct super_block *sb) 1957 { 1958 struct ext4_sb_info *sbi = EXT4_SB(sb); 1959 struct ext4_group_desc *gdp = NULL; 1960 ext4_group_t flex_group_count; 1961 ext4_group_t flex_group; 1962 int groups_per_flex = 0; 1963 size_t size; 1964 int i; 1965 1966 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1967 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1968 1969 if (groups_per_flex < 2) { 1970 sbi->s_log_groups_per_flex = 0; 1971 return 1; 1972 } 1973 1974 /* We allocate both existing and potentially added groups */ 1975 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1976 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1977 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1978 size = flex_group_count * sizeof(struct flex_groups); 1979 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1980 if (sbi->s_flex_groups == NULL) { 1981 sbi->s_flex_groups = vzalloc(size); 1982 if (sbi->s_flex_groups == NULL) { 1983 ext4_msg(sb, KERN_ERR, 1984 "not enough memory for %u flex groups", 1985 flex_group_count); 1986 goto failed; 1987 } 1988 } 1989 1990 for (i = 0; i < sbi->s_groups_count; i++) { 1991 gdp = ext4_get_group_desc(sb, i, NULL); 1992 1993 flex_group = ext4_flex_group(sbi, i); 1994 atomic_add(ext4_free_inodes_count(sb, gdp), 1995 &sbi->s_flex_groups[flex_group].free_inodes); 1996 atomic_add(ext4_free_blks_count(sb, gdp), 1997 &sbi->s_flex_groups[flex_group].free_blocks); 1998 atomic_add(ext4_used_dirs_count(sb, gdp), 1999 &sbi->s_flex_groups[flex_group].used_dirs); 2000 } 2001 2002 return 1; 2003 failed: 2004 return 0; 2005 } 2006 2007 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2008 struct ext4_group_desc *gdp) 2009 { 2010 __u16 crc = 0; 2011 2012 if (sbi->s_es->s_feature_ro_compat & 2013 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 2014 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2015 __le32 le_group = cpu_to_le32(block_group); 2016 2017 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2018 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2019 crc = crc16(crc, (__u8 *)gdp, offset); 2020 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2021 /* for checksum of struct ext4_group_desc do the rest...*/ 2022 if ((sbi->s_es->s_feature_incompat & 2023 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2024 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2025 crc = crc16(crc, (__u8 *)gdp + offset, 2026 le16_to_cpu(sbi->s_es->s_desc_size) - 2027 offset); 2028 } 2029 2030 return cpu_to_le16(crc); 2031 } 2032 2033 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 2034 struct ext4_group_desc *gdp) 2035 { 2036 if ((sbi->s_es->s_feature_ro_compat & 2037 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 2038 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 2039 return 0; 2040 2041 return 1; 2042 } 2043 2044 /* Called at mount-time, super-block is locked */ 2045 static int ext4_check_descriptors(struct super_block *sb, 2046 ext4_group_t *first_not_zeroed) 2047 { 2048 struct ext4_sb_info *sbi = EXT4_SB(sb); 2049 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2050 ext4_fsblk_t last_block; 2051 ext4_fsblk_t block_bitmap; 2052 ext4_fsblk_t inode_bitmap; 2053 ext4_fsblk_t inode_table; 2054 int flexbg_flag = 0; 2055 ext4_group_t i, grp = sbi->s_groups_count; 2056 2057 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2058 flexbg_flag = 1; 2059 2060 ext4_debug("Checking group descriptors"); 2061 2062 for (i = 0; i < sbi->s_groups_count; i++) { 2063 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2064 2065 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2066 last_block = ext4_blocks_count(sbi->s_es) - 1; 2067 else 2068 last_block = first_block + 2069 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2070 2071 if ((grp == sbi->s_groups_count) && 2072 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2073 grp = i; 2074 2075 block_bitmap = ext4_block_bitmap(sb, gdp); 2076 if (block_bitmap < first_block || block_bitmap > last_block) { 2077 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2078 "Block bitmap for group %u not in group " 2079 "(block %llu)!", i, block_bitmap); 2080 return 0; 2081 } 2082 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2083 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2084 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2085 "Inode bitmap for group %u not in group " 2086 "(block %llu)!", i, inode_bitmap); 2087 return 0; 2088 } 2089 inode_table = ext4_inode_table(sb, gdp); 2090 if (inode_table < first_block || 2091 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2092 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2093 "Inode table for group %u not in group " 2094 "(block %llu)!", i, inode_table); 2095 return 0; 2096 } 2097 ext4_lock_group(sb, i); 2098 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2099 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2100 "Checksum for group %u failed (%u!=%u)", 2101 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2102 gdp)), le16_to_cpu(gdp->bg_checksum)); 2103 if (!(sb->s_flags & MS_RDONLY)) { 2104 ext4_unlock_group(sb, i); 2105 return 0; 2106 } 2107 } 2108 ext4_unlock_group(sb, i); 2109 if (!flexbg_flag) 2110 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2111 } 2112 if (NULL != first_not_zeroed) 2113 *first_not_zeroed = grp; 2114 2115 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 2116 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2117 return 1; 2118 } 2119 2120 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2121 * the superblock) which were deleted from all directories, but held open by 2122 * a process at the time of a crash. We walk the list and try to delete these 2123 * inodes at recovery time (only with a read-write filesystem). 2124 * 2125 * In order to keep the orphan inode chain consistent during traversal (in 2126 * case of crash during recovery), we link each inode into the superblock 2127 * orphan list_head and handle it the same way as an inode deletion during 2128 * normal operation (which journals the operations for us). 2129 * 2130 * We only do an iget() and an iput() on each inode, which is very safe if we 2131 * accidentally point at an in-use or already deleted inode. The worst that 2132 * can happen in this case is that we get a "bit already cleared" message from 2133 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2134 * e2fsck was run on this filesystem, and it must have already done the orphan 2135 * inode cleanup for us, so we can safely abort without any further action. 2136 */ 2137 static void ext4_orphan_cleanup(struct super_block *sb, 2138 struct ext4_super_block *es) 2139 { 2140 unsigned int s_flags = sb->s_flags; 2141 int nr_orphans = 0, nr_truncates = 0; 2142 #ifdef CONFIG_QUOTA 2143 int i; 2144 #endif 2145 if (!es->s_last_orphan) { 2146 jbd_debug(4, "no orphan inodes to clean up\n"); 2147 return; 2148 } 2149 2150 if (bdev_read_only(sb->s_bdev)) { 2151 ext4_msg(sb, KERN_ERR, "write access " 2152 "unavailable, skipping orphan cleanup"); 2153 return; 2154 } 2155 2156 /* Check if feature set would not allow a r/w mount */ 2157 if (!ext4_feature_set_ok(sb, 0)) { 2158 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2159 "unknown ROCOMPAT features"); 2160 return; 2161 } 2162 2163 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2164 if (es->s_last_orphan) 2165 jbd_debug(1, "Errors on filesystem, " 2166 "clearing orphan list.\n"); 2167 es->s_last_orphan = 0; 2168 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2169 return; 2170 } 2171 2172 if (s_flags & MS_RDONLY) { 2173 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2174 sb->s_flags &= ~MS_RDONLY; 2175 } 2176 #ifdef CONFIG_QUOTA 2177 /* Needed for iput() to work correctly and not trash data */ 2178 sb->s_flags |= MS_ACTIVE; 2179 /* Turn on quotas so that they are updated correctly */ 2180 for (i = 0; i < MAXQUOTAS; i++) { 2181 if (EXT4_SB(sb)->s_qf_names[i]) { 2182 int ret = ext4_quota_on_mount(sb, i); 2183 if (ret < 0) 2184 ext4_msg(sb, KERN_ERR, 2185 "Cannot turn on journaled " 2186 "quota: error %d", ret); 2187 } 2188 } 2189 #endif 2190 2191 while (es->s_last_orphan) { 2192 struct inode *inode; 2193 2194 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2195 if (IS_ERR(inode)) { 2196 es->s_last_orphan = 0; 2197 break; 2198 } 2199 2200 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2201 dquot_initialize(inode); 2202 if (inode->i_nlink) { 2203 ext4_msg(sb, KERN_DEBUG, 2204 "%s: truncating inode %lu to %lld bytes", 2205 __func__, inode->i_ino, inode->i_size); 2206 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2207 inode->i_ino, inode->i_size); 2208 ext4_truncate(inode); 2209 nr_truncates++; 2210 } else { 2211 ext4_msg(sb, KERN_DEBUG, 2212 "%s: deleting unreferenced inode %lu", 2213 __func__, inode->i_ino); 2214 jbd_debug(2, "deleting unreferenced inode %lu\n", 2215 inode->i_ino); 2216 nr_orphans++; 2217 } 2218 iput(inode); /* The delete magic happens here! */ 2219 } 2220 2221 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2222 2223 if (nr_orphans) 2224 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2225 PLURAL(nr_orphans)); 2226 if (nr_truncates) 2227 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2228 PLURAL(nr_truncates)); 2229 #ifdef CONFIG_QUOTA 2230 /* Turn quotas off */ 2231 for (i = 0; i < MAXQUOTAS; i++) { 2232 if (sb_dqopt(sb)->files[i]) 2233 dquot_quota_off(sb, i); 2234 } 2235 #endif 2236 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2237 } 2238 2239 /* 2240 * Maximal extent format file size. 2241 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2242 * extent format containers, within a sector_t, and within i_blocks 2243 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2244 * so that won't be a limiting factor. 2245 * 2246 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2247 */ 2248 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2249 { 2250 loff_t res; 2251 loff_t upper_limit = MAX_LFS_FILESIZE; 2252 2253 /* small i_blocks in vfs inode? */ 2254 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2255 /* 2256 * CONFIG_LBDAF is not enabled implies the inode 2257 * i_block represent total blocks in 512 bytes 2258 * 32 == size of vfs inode i_blocks * 8 2259 */ 2260 upper_limit = (1LL << 32) - 1; 2261 2262 /* total blocks in file system block size */ 2263 upper_limit >>= (blkbits - 9); 2264 upper_limit <<= blkbits; 2265 } 2266 2267 /* 32-bit extent-start container, ee_block */ 2268 res = 1LL << 32; 2269 res <<= blkbits; 2270 res -= 1; 2271 2272 /* Sanity check against vm- & vfs- imposed limits */ 2273 if (res > upper_limit) 2274 res = upper_limit; 2275 2276 return res; 2277 } 2278 2279 /* 2280 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2281 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2282 * We need to be 1 filesystem block less than the 2^48 sector limit. 2283 */ 2284 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2285 { 2286 loff_t res = EXT4_NDIR_BLOCKS; 2287 int meta_blocks; 2288 loff_t upper_limit; 2289 /* This is calculated to be the largest file size for a dense, block 2290 * mapped file such that the file's total number of 512-byte sectors, 2291 * including data and all indirect blocks, does not exceed (2^48 - 1). 2292 * 2293 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2294 * number of 512-byte sectors of the file. 2295 */ 2296 2297 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2298 /* 2299 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2300 * the inode i_block field represents total file blocks in 2301 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2302 */ 2303 upper_limit = (1LL << 32) - 1; 2304 2305 /* total blocks in file system block size */ 2306 upper_limit >>= (bits - 9); 2307 2308 } else { 2309 /* 2310 * We use 48 bit ext4_inode i_blocks 2311 * With EXT4_HUGE_FILE_FL set the i_blocks 2312 * represent total number of blocks in 2313 * file system block size 2314 */ 2315 upper_limit = (1LL << 48) - 1; 2316 2317 } 2318 2319 /* indirect blocks */ 2320 meta_blocks = 1; 2321 /* double indirect blocks */ 2322 meta_blocks += 1 + (1LL << (bits-2)); 2323 /* tripple indirect blocks */ 2324 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2325 2326 upper_limit -= meta_blocks; 2327 upper_limit <<= bits; 2328 2329 res += 1LL << (bits-2); 2330 res += 1LL << (2*(bits-2)); 2331 res += 1LL << (3*(bits-2)); 2332 res <<= bits; 2333 if (res > upper_limit) 2334 res = upper_limit; 2335 2336 if (res > MAX_LFS_FILESIZE) 2337 res = MAX_LFS_FILESIZE; 2338 2339 return res; 2340 } 2341 2342 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2343 ext4_fsblk_t logical_sb_block, int nr) 2344 { 2345 struct ext4_sb_info *sbi = EXT4_SB(sb); 2346 ext4_group_t bg, first_meta_bg; 2347 int has_super = 0; 2348 2349 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2350 2351 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2352 nr < first_meta_bg) 2353 return logical_sb_block + nr + 1; 2354 bg = sbi->s_desc_per_block * nr; 2355 if (ext4_bg_has_super(sb, bg)) 2356 has_super = 1; 2357 2358 return (has_super + ext4_group_first_block_no(sb, bg)); 2359 } 2360 2361 /** 2362 * ext4_get_stripe_size: Get the stripe size. 2363 * @sbi: In memory super block info 2364 * 2365 * If we have specified it via mount option, then 2366 * use the mount option value. If the value specified at mount time is 2367 * greater than the blocks per group use the super block value. 2368 * If the super block value is greater than blocks per group return 0. 2369 * Allocator needs it be less than blocks per group. 2370 * 2371 */ 2372 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2373 { 2374 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2375 unsigned long stripe_width = 2376 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2377 2378 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2379 return sbi->s_stripe; 2380 2381 if (stripe_width <= sbi->s_blocks_per_group) 2382 return stripe_width; 2383 2384 if (stride <= sbi->s_blocks_per_group) 2385 return stride; 2386 2387 return 0; 2388 } 2389 2390 /* sysfs supprt */ 2391 2392 struct ext4_attr { 2393 struct attribute attr; 2394 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2395 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2396 const char *, size_t); 2397 int offset; 2398 }; 2399 2400 static int parse_strtoul(const char *buf, 2401 unsigned long max, unsigned long *value) 2402 { 2403 char *endp; 2404 2405 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2406 endp = skip_spaces(endp); 2407 if (*endp || *value > max) 2408 return -EINVAL; 2409 2410 return 0; 2411 } 2412 2413 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2414 struct ext4_sb_info *sbi, 2415 char *buf) 2416 { 2417 return snprintf(buf, PAGE_SIZE, "%llu\n", 2418 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2419 } 2420 2421 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2422 struct ext4_sb_info *sbi, char *buf) 2423 { 2424 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2425 2426 if (!sb->s_bdev->bd_part) 2427 return snprintf(buf, PAGE_SIZE, "0\n"); 2428 return snprintf(buf, PAGE_SIZE, "%lu\n", 2429 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2430 sbi->s_sectors_written_start) >> 1); 2431 } 2432 2433 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2434 struct ext4_sb_info *sbi, char *buf) 2435 { 2436 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2437 2438 if (!sb->s_bdev->bd_part) 2439 return snprintf(buf, PAGE_SIZE, "0\n"); 2440 return snprintf(buf, PAGE_SIZE, "%llu\n", 2441 (unsigned long long)(sbi->s_kbytes_written + 2442 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2443 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2444 } 2445 2446 static ssize_t extent_cache_hits_show(struct ext4_attr *a, 2447 struct ext4_sb_info *sbi, char *buf) 2448 { 2449 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits); 2450 } 2451 2452 static ssize_t extent_cache_misses_show(struct ext4_attr *a, 2453 struct ext4_sb_info *sbi, char *buf) 2454 { 2455 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses); 2456 } 2457 2458 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2459 struct ext4_sb_info *sbi, 2460 const char *buf, size_t count) 2461 { 2462 unsigned long t; 2463 2464 if (parse_strtoul(buf, 0x40000000, &t)) 2465 return -EINVAL; 2466 2467 if (t && !is_power_of_2(t)) 2468 return -EINVAL; 2469 2470 sbi->s_inode_readahead_blks = t; 2471 return count; 2472 } 2473 2474 static ssize_t sbi_ui_show(struct ext4_attr *a, 2475 struct ext4_sb_info *sbi, char *buf) 2476 { 2477 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2478 2479 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2480 } 2481 2482 static ssize_t sbi_ui_store(struct ext4_attr *a, 2483 struct ext4_sb_info *sbi, 2484 const char *buf, size_t count) 2485 { 2486 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2487 unsigned long t; 2488 2489 if (parse_strtoul(buf, 0xffffffff, &t)) 2490 return -EINVAL; 2491 *ui = t; 2492 return count; 2493 } 2494 2495 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2496 static struct ext4_attr ext4_attr_##_name = { \ 2497 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2498 .show = _show, \ 2499 .store = _store, \ 2500 .offset = offsetof(struct ext4_sb_info, _elname), \ 2501 } 2502 #define EXT4_ATTR(name, mode, show, store) \ 2503 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2504 2505 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2506 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2507 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2508 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2509 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2510 #define ATTR_LIST(name) &ext4_attr_##name.attr 2511 2512 EXT4_RO_ATTR(delayed_allocation_blocks); 2513 EXT4_RO_ATTR(session_write_kbytes); 2514 EXT4_RO_ATTR(lifetime_write_kbytes); 2515 EXT4_RO_ATTR(extent_cache_hits); 2516 EXT4_RO_ATTR(extent_cache_misses); 2517 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2518 inode_readahead_blks_store, s_inode_readahead_blks); 2519 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2520 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2521 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2522 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2523 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2524 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2525 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2526 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2527 2528 static struct attribute *ext4_attrs[] = { 2529 ATTR_LIST(delayed_allocation_blocks), 2530 ATTR_LIST(session_write_kbytes), 2531 ATTR_LIST(lifetime_write_kbytes), 2532 ATTR_LIST(extent_cache_hits), 2533 ATTR_LIST(extent_cache_misses), 2534 ATTR_LIST(inode_readahead_blks), 2535 ATTR_LIST(inode_goal), 2536 ATTR_LIST(mb_stats), 2537 ATTR_LIST(mb_max_to_scan), 2538 ATTR_LIST(mb_min_to_scan), 2539 ATTR_LIST(mb_order2_req), 2540 ATTR_LIST(mb_stream_req), 2541 ATTR_LIST(mb_group_prealloc), 2542 ATTR_LIST(max_writeback_mb_bump), 2543 NULL, 2544 }; 2545 2546 /* Features this copy of ext4 supports */ 2547 EXT4_INFO_ATTR(lazy_itable_init); 2548 EXT4_INFO_ATTR(batched_discard); 2549 2550 static struct attribute *ext4_feat_attrs[] = { 2551 ATTR_LIST(lazy_itable_init), 2552 ATTR_LIST(batched_discard), 2553 NULL, 2554 }; 2555 2556 static ssize_t ext4_attr_show(struct kobject *kobj, 2557 struct attribute *attr, char *buf) 2558 { 2559 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2560 s_kobj); 2561 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2562 2563 return a->show ? a->show(a, sbi, buf) : 0; 2564 } 2565 2566 static ssize_t ext4_attr_store(struct kobject *kobj, 2567 struct attribute *attr, 2568 const char *buf, size_t len) 2569 { 2570 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2571 s_kobj); 2572 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2573 2574 return a->store ? a->store(a, sbi, buf, len) : 0; 2575 } 2576 2577 static void ext4_sb_release(struct kobject *kobj) 2578 { 2579 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2580 s_kobj); 2581 complete(&sbi->s_kobj_unregister); 2582 } 2583 2584 static const struct sysfs_ops ext4_attr_ops = { 2585 .show = ext4_attr_show, 2586 .store = ext4_attr_store, 2587 }; 2588 2589 static struct kobj_type ext4_ktype = { 2590 .default_attrs = ext4_attrs, 2591 .sysfs_ops = &ext4_attr_ops, 2592 .release = ext4_sb_release, 2593 }; 2594 2595 static void ext4_feat_release(struct kobject *kobj) 2596 { 2597 complete(&ext4_feat->f_kobj_unregister); 2598 } 2599 2600 static struct kobj_type ext4_feat_ktype = { 2601 .default_attrs = ext4_feat_attrs, 2602 .sysfs_ops = &ext4_attr_ops, 2603 .release = ext4_feat_release, 2604 }; 2605 2606 /* 2607 * Check whether this filesystem can be mounted based on 2608 * the features present and the RDONLY/RDWR mount requested. 2609 * Returns 1 if this filesystem can be mounted as requested, 2610 * 0 if it cannot be. 2611 */ 2612 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2613 { 2614 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2615 ext4_msg(sb, KERN_ERR, 2616 "Couldn't mount because of " 2617 "unsupported optional features (%x)", 2618 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2619 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2620 return 0; 2621 } 2622 2623 if (readonly) 2624 return 1; 2625 2626 /* Check that feature set is OK for a read-write mount */ 2627 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2628 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2629 "unsupported optional features (%x)", 2630 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2631 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2632 return 0; 2633 } 2634 /* 2635 * Large file size enabled file system can only be mounted 2636 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2637 */ 2638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2639 if (sizeof(blkcnt_t) < sizeof(u64)) { 2640 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2641 "cannot be mounted RDWR without " 2642 "CONFIG_LBDAF"); 2643 return 0; 2644 } 2645 } 2646 return 1; 2647 } 2648 2649 /* 2650 * This function is called once a day if we have errors logged 2651 * on the file system 2652 */ 2653 static void print_daily_error_info(unsigned long arg) 2654 { 2655 struct super_block *sb = (struct super_block *) arg; 2656 struct ext4_sb_info *sbi; 2657 struct ext4_super_block *es; 2658 2659 sbi = EXT4_SB(sb); 2660 es = sbi->s_es; 2661 2662 if (es->s_error_count) 2663 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2664 le32_to_cpu(es->s_error_count)); 2665 if (es->s_first_error_time) { 2666 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2667 sb->s_id, le32_to_cpu(es->s_first_error_time), 2668 (int) sizeof(es->s_first_error_func), 2669 es->s_first_error_func, 2670 le32_to_cpu(es->s_first_error_line)); 2671 if (es->s_first_error_ino) 2672 printk(": inode %u", 2673 le32_to_cpu(es->s_first_error_ino)); 2674 if (es->s_first_error_block) 2675 printk(": block %llu", (unsigned long long) 2676 le64_to_cpu(es->s_first_error_block)); 2677 printk("\n"); 2678 } 2679 if (es->s_last_error_time) { 2680 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2681 sb->s_id, le32_to_cpu(es->s_last_error_time), 2682 (int) sizeof(es->s_last_error_func), 2683 es->s_last_error_func, 2684 le32_to_cpu(es->s_last_error_line)); 2685 if (es->s_last_error_ino) 2686 printk(": inode %u", 2687 le32_to_cpu(es->s_last_error_ino)); 2688 if (es->s_last_error_block) 2689 printk(": block %llu", (unsigned long long) 2690 le64_to_cpu(es->s_last_error_block)); 2691 printk("\n"); 2692 } 2693 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2694 } 2695 2696 /* Find next suitable group and run ext4_init_inode_table */ 2697 static int ext4_run_li_request(struct ext4_li_request *elr) 2698 { 2699 struct ext4_group_desc *gdp = NULL; 2700 ext4_group_t group, ngroups; 2701 struct super_block *sb; 2702 unsigned long timeout = 0; 2703 int ret = 0; 2704 2705 sb = elr->lr_super; 2706 ngroups = EXT4_SB(sb)->s_groups_count; 2707 2708 for (group = elr->lr_next_group; group < ngroups; group++) { 2709 gdp = ext4_get_group_desc(sb, group, NULL); 2710 if (!gdp) { 2711 ret = 1; 2712 break; 2713 } 2714 2715 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2716 break; 2717 } 2718 2719 if (group == ngroups) 2720 ret = 1; 2721 2722 if (!ret) { 2723 timeout = jiffies; 2724 ret = ext4_init_inode_table(sb, group, 2725 elr->lr_timeout ? 0 : 1); 2726 if (elr->lr_timeout == 0) { 2727 timeout = (jiffies - timeout) * 2728 elr->lr_sbi->s_li_wait_mult; 2729 elr->lr_timeout = timeout; 2730 } 2731 elr->lr_next_sched = jiffies + elr->lr_timeout; 2732 elr->lr_next_group = group + 1; 2733 } 2734 2735 return ret; 2736 } 2737 2738 /* 2739 * Remove lr_request from the list_request and free the 2740 * request structure. Should be called with li_list_mtx held 2741 */ 2742 static void ext4_remove_li_request(struct ext4_li_request *elr) 2743 { 2744 struct ext4_sb_info *sbi; 2745 2746 if (!elr) 2747 return; 2748 2749 sbi = elr->lr_sbi; 2750 2751 list_del(&elr->lr_request); 2752 sbi->s_li_request = NULL; 2753 kfree(elr); 2754 } 2755 2756 static void ext4_unregister_li_request(struct super_block *sb) 2757 { 2758 mutex_lock(&ext4_li_mtx); 2759 if (!ext4_li_info) { 2760 mutex_unlock(&ext4_li_mtx); 2761 return; 2762 } 2763 2764 mutex_lock(&ext4_li_info->li_list_mtx); 2765 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2766 mutex_unlock(&ext4_li_info->li_list_mtx); 2767 mutex_unlock(&ext4_li_mtx); 2768 } 2769 2770 static struct task_struct *ext4_lazyinit_task; 2771 2772 /* 2773 * This is the function where ext4lazyinit thread lives. It walks 2774 * through the request list searching for next scheduled filesystem. 2775 * When such a fs is found, run the lazy initialization request 2776 * (ext4_rn_li_request) and keep track of the time spend in this 2777 * function. Based on that time we compute next schedule time of 2778 * the request. When walking through the list is complete, compute 2779 * next waking time and put itself into sleep. 2780 */ 2781 static int ext4_lazyinit_thread(void *arg) 2782 { 2783 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2784 struct list_head *pos, *n; 2785 struct ext4_li_request *elr; 2786 unsigned long next_wakeup, cur; 2787 2788 BUG_ON(NULL == eli); 2789 2790 cont_thread: 2791 while (true) { 2792 next_wakeup = MAX_JIFFY_OFFSET; 2793 2794 mutex_lock(&eli->li_list_mtx); 2795 if (list_empty(&eli->li_request_list)) { 2796 mutex_unlock(&eli->li_list_mtx); 2797 goto exit_thread; 2798 } 2799 2800 list_for_each_safe(pos, n, &eli->li_request_list) { 2801 elr = list_entry(pos, struct ext4_li_request, 2802 lr_request); 2803 2804 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2805 if (ext4_run_li_request(elr) != 0) { 2806 /* error, remove the lazy_init job */ 2807 ext4_remove_li_request(elr); 2808 continue; 2809 } 2810 } 2811 2812 if (time_before(elr->lr_next_sched, next_wakeup)) 2813 next_wakeup = elr->lr_next_sched; 2814 } 2815 mutex_unlock(&eli->li_list_mtx); 2816 2817 if (freezing(current)) 2818 refrigerator(); 2819 2820 cur = jiffies; 2821 if ((time_after_eq(cur, next_wakeup)) || 2822 (MAX_JIFFY_OFFSET == next_wakeup)) { 2823 cond_resched(); 2824 continue; 2825 } 2826 2827 schedule_timeout_interruptible(next_wakeup - cur); 2828 2829 if (kthread_should_stop()) { 2830 ext4_clear_request_list(); 2831 goto exit_thread; 2832 } 2833 } 2834 2835 exit_thread: 2836 /* 2837 * It looks like the request list is empty, but we need 2838 * to check it under the li_list_mtx lock, to prevent any 2839 * additions into it, and of course we should lock ext4_li_mtx 2840 * to atomically free the list and ext4_li_info, because at 2841 * this point another ext4 filesystem could be registering 2842 * new one. 2843 */ 2844 mutex_lock(&ext4_li_mtx); 2845 mutex_lock(&eli->li_list_mtx); 2846 if (!list_empty(&eli->li_request_list)) { 2847 mutex_unlock(&eli->li_list_mtx); 2848 mutex_unlock(&ext4_li_mtx); 2849 goto cont_thread; 2850 } 2851 mutex_unlock(&eli->li_list_mtx); 2852 kfree(ext4_li_info); 2853 ext4_li_info = NULL; 2854 mutex_unlock(&ext4_li_mtx); 2855 2856 return 0; 2857 } 2858 2859 static void ext4_clear_request_list(void) 2860 { 2861 struct list_head *pos, *n; 2862 struct ext4_li_request *elr; 2863 2864 mutex_lock(&ext4_li_info->li_list_mtx); 2865 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2866 elr = list_entry(pos, struct ext4_li_request, 2867 lr_request); 2868 ext4_remove_li_request(elr); 2869 } 2870 mutex_unlock(&ext4_li_info->li_list_mtx); 2871 } 2872 2873 static int ext4_run_lazyinit_thread(void) 2874 { 2875 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2876 ext4_li_info, "ext4lazyinit"); 2877 if (IS_ERR(ext4_lazyinit_task)) { 2878 int err = PTR_ERR(ext4_lazyinit_task); 2879 ext4_clear_request_list(); 2880 kfree(ext4_li_info); 2881 ext4_li_info = NULL; 2882 printk(KERN_CRIT "EXT4: error %d creating inode table " 2883 "initialization thread\n", 2884 err); 2885 return err; 2886 } 2887 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2888 return 0; 2889 } 2890 2891 /* 2892 * Check whether it make sense to run itable init. thread or not. 2893 * If there is at least one uninitialized inode table, return 2894 * corresponding group number, else the loop goes through all 2895 * groups and return total number of groups. 2896 */ 2897 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2898 { 2899 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2900 struct ext4_group_desc *gdp = NULL; 2901 2902 for (group = 0; group < ngroups; group++) { 2903 gdp = ext4_get_group_desc(sb, group, NULL); 2904 if (!gdp) 2905 continue; 2906 2907 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2908 break; 2909 } 2910 2911 return group; 2912 } 2913 2914 static int ext4_li_info_new(void) 2915 { 2916 struct ext4_lazy_init *eli = NULL; 2917 2918 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2919 if (!eli) 2920 return -ENOMEM; 2921 2922 INIT_LIST_HEAD(&eli->li_request_list); 2923 mutex_init(&eli->li_list_mtx); 2924 2925 eli->li_state |= EXT4_LAZYINIT_QUIT; 2926 2927 ext4_li_info = eli; 2928 2929 return 0; 2930 } 2931 2932 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2933 ext4_group_t start) 2934 { 2935 struct ext4_sb_info *sbi = EXT4_SB(sb); 2936 struct ext4_li_request *elr; 2937 unsigned long rnd; 2938 2939 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2940 if (!elr) 2941 return NULL; 2942 2943 elr->lr_super = sb; 2944 elr->lr_sbi = sbi; 2945 elr->lr_next_group = start; 2946 2947 /* 2948 * Randomize first schedule time of the request to 2949 * spread the inode table initialization requests 2950 * better. 2951 */ 2952 get_random_bytes(&rnd, sizeof(rnd)); 2953 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2954 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2955 2956 return elr; 2957 } 2958 2959 static int ext4_register_li_request(struct super_block *sb, 2960 ext4_group_t first_not_zeroed) 2961 { 2962 struct ext4_sb_info *sbi = EXT4_SB(sb); 2963 struct ext4_li_request *elr; 2964 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2965 int ret = 0; 2966 2967 if (sbi->s_li_request != NULL) { 2968 /* 2969 * Reset timeout so it can be computed again, because 2970 * s_li_wait_mult might have changed. 2971 */ 2972 sbi->s_li_request->lr_timeout = 0; 2973 return 0; 2974 } 2975 2976 if (first_not_zeroed == ngroups || 2977 (sb->s_flags & MS_RDONLY) || 2978 !test_opt(sb, INIT_INODE_TABLE)) 2979 return 0; 2980 2981 elr = ext4_li_request_new(sb, first_not_zeroed); 2982 if (!elr) 2983 return -ENOMEM; 2984 2985 mutex_lock(&ext4_li_mtx); 2986 2987 if (NULL == ext4_li_info) { 2988 ret = ext4_li_info_new(); 2989 if (ret) 2990 goto out; 2991 } 2992 2993 mutex_lock(&ext4_li_info->li_list_mtx); 2994 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2995 mutex_unlock(&ext4_li_info->li_list_mtx); 2996 2997 sbi->s_li_request = elr; 2998 /* 2999 * set elr to NULL here since it has been inserted to 3000 * the request_list and the removal and free of it is 3001 * handled by ext4_clear_request_list from now on. 3002 */ 3003 elr = NULL; 3004 3005 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3006 ret = ext4_run_lazyinit_thread(); 3007 if (ret) 3008 goto out; 3009 } 3010 out: 3011 mutex_unlock(&ext4_li_mtx); 3012 if (ret) 3013 kfree(elr); 3014 return ret; 3015 } 3016 3017 /* 3018 * We do not need to lock anything since this is called on 3019 * module unload. 3020 */ 3021 static void ext4_destroy_lazyinit_thread(void) 3022 { 3023 /* 3024 * If thread exited earlier 3025 * there's nothing to be done. 3026 */ 3027 if (!ext4_li_info || !ext4_lazyinit_task) 3028 return; 3029 3030 kthread_stop(ext4_lazyinit_task); 3031 } 3032 3033 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3034 __releases(kernel_lock) 3035 __acquires(kernel_lock) 3036 { 3037 char *orig_data = kstrdup(data, GFP_KERNEL); 3038 struct buffer_head *bh; 3039 struct ext4_super_block *es = NULL; 3040 struct ext4_sb_info *sbi; 3041 ext4_fsblk_t block; 3042 ext4_fsblk_t sb_block = get_sb_block(&data); 3043 ext4_fsblk_t logical_sb_block; 3044 unsigned long offset = 0; 3045 unsigned long journal_devnum = 0; 3046 unsigned long def_mount_opts; 3047 struct inode *root; 3048 char *cp; 3049 const char *descr; 3050 int ret = -ENOMEM; 3051 int blocksize; 3052 unsigned int db_count; 3053 unsigned int i; 3054 int needs_recovery, has_huge_files; 3055 __u64 blocks_count; 3056 int err; 3057 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3058 ext4_group_t first_not_zeroed; 3059 3060 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3061 if (!sbi) 3062 goto out_free_orig; 3063 3064 sbi->s_blockgroup_lock = 3065 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3066 if (!sbi->s_blockgroup_lock) { 3067 kfree(sbi); 3068 goto out_free_orig; 3069 } 3070 sb->s_fs_info = sbi; 3071 sbi->s_mount_opt = 0; 3072 sbi->s_resuid = EXT4_DEF_RESUID; 3073 sbi->s_resgid = EXT4_DEF_RESGID; 3074 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3075 sbi->s_sb_block = sb_block; 3076 if (sb->s_bdev->bd_part) 3077 sbi->s_sectors_written_start = 3078 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3079 3080 /* Cleanup superblock name */ 3081 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3082 *cp = '!'; 3083 3084 ret = -EINVAL; 3085 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3086 if (!blocksize) { 3087 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3088 goto out_fail; 3089 } 3090 3091 /* 3092 * The ext4 superblock will not be buffer aligned for other than 1kB 3093 * block sizes. We need to calculate the offset from buffer start. 3094 */ 3095 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3096 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3097 offset = do_div(logical_sb_block, blocksize); 3098 } else { 3099 logical_sb_block = sb_block; 3100 } 3101 3102 if (!(bh = sb_bread(sb, logical_sb_block))) { 3103 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3104 goto out_fail; 3105 } 3106 /* 3107 * Note: s_es must be initialized as soon as possible because 3108 * some ext4 macro-instructions depend on its value 3109 */ 3110 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3111 sbi->s_es = es; 3112 sb->s_magic = le16_to_cpu(es->s_magic); 3113 if (sb->s_magic != EXT4_SUPER_MAGIC) 3114 goto cantfind_ext4; 3115 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3116 3117 /* Set defaults before we parse the mount options */ 3118 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3119 set_opt(sb, INIT_INODE_TABLE); 3120 if (def_mount_opts & EXT4_DEFM_DEBUG) 3121 set_opt(sb, DEBUG); 3122 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) { 3123 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups", 3124 "2.6.38"); 3125 set_opt(sb, GRPID); 3126 } 3127 if (def_mount_opts & EXT4_DEFM_UID16) 3128 set_opt(sb, NO_UID32); 3129 /* xattr user namespace & acls are now defaulted on */ 3130 #ifdef CONFIG_EXT4_FS_XATTR 3131 set_opt(sb, XATTR_USER); 3132 #endif 3133 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3134 set_opt(sb, POSIX_ACL); 3135 #endif 3136 set_opt(sb, MBLK_IO_SUBMIT); 3137 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3138 set_opt(sb, JOURNAL_DATA); 3139 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3140 set_opt(sb, ORDERED_DATA); 3141 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3142 set_opt(sb, WRITEBACK_DATA); 3143 3144 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3145 set_opt(sb, ERRORS_PANIC); 3146 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3147 set_opt(sb, ERRORS_CONT); 3148 else 3149 set_opt(sb, ERRORS_RO); 3150 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3151 set_opt(sb, BLOCK_VALIDITY); 3152 if (def_mount_opts & EXT4_DEFM_DISCARD) 3153 set_opt(sb, DISCARD); 3154 3155 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3156 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3157 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3158 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3159 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3160 3161 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3162 set_opt(sb, BARRIER); 3163 3164 /* 3165 * enable delayed allocation by default 3166 * Use -o nodelalloc to turn it off 3167 */ 3168 if (!IS_EXT3_SB(sb) && 3169 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3170 set_opt(sb, DELALLOC); 3171 3172 /* 3173 * set default s_li_wait_mult for lazyinit, for the case there is 3174 * no mount option specified. 3175 */ 3176 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3177 3178 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3179 &journal_devnum, &journal_ioprio, NULL, 0)) { 3180 ext4_msg(sb, KERN_WARNING, 3181 "failed to parse options in superblock: %s", 3182 sbi->s_es->s_mount_opts); 3183 } 3184 if (!parse_options((char *) data, sb, &journal_devnum, 3185 &journal_ioprio, NULL, 0)) 3186 goto failed_mount; 3187 3188 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3189 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3190 3191 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3192 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3193 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3194 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3195 ext4_msg(sb, KERN_WARNING, 3196 "feature flags set on rev 0 fs, " 3197 "running e2fsck is recommended"); 3198 3199 if (IS_EXT2_SB(sb)) { 3200 if (ext2_feature_set_ok(sb)) 3201 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3202 "using the ext4 subsystem"); 3203 else { 3204 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3205 "to feature incompatibilities"); 3206 goto failed_mount; 3207 } 3208 } 3209 3210 if (IS_EXT3_SB(sb)) { 3211 if (ext3_feature_set_ok(sb)) 3212 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3213 "using the ext4 subsystem"); 3214 else { 3215 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3216 "to feature incompatibilities"); 3217 goto failed_mount; 3218 } 3219 } 3220 3221 /* 3222 * Check feature flags regardless of the revision level, since we 3223 * previously didn't change the revision level when setting the flags, 3224 * so there is a chance incompat flags are set on a rev 0 filesystem. 3225 */ 3226 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3227 goto failed_mount; 3228 3229 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3230 3231 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3232 blocksize > EXT4_MAX_BLOCK_SIZE) { 3233 ext4_msg(sb, KERN_ERR, 3234 "Unsupported filesystem blocksize %d", blocksize); 3235 goto failed_mount; 3236 } 3237 3238 if (sb->s_blocksize != blocksize) { 3239 /* Validate the filesystem blocksize */ 3240 if (!sb_set_blocksize(sb, blocksize)) { 3241 ext4_msg(sb, KERN_ERR, "bad block size %d", 3242 blocksize); 3243 goto failed_mount; 3244 } 3245 3246 brelse(bh); 3247 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3248 offset = do_div(logical_sb_block, blocksize); 3249 bh = sb_bread(sb, logical_sb_block); 3250 if (!bh) { 3251 ext4_msg(sb, KERN_ERR, 3252 "Can't read superblock on 2nd try"); 3253 goto failed_mount; 3254 } 3255 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3256 sbi->s_es = es; 3257 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3258 ext4_msg(sb, KERN_ERR, 3259 "Magic mismatch, very weird!"); 3260 goto failed_mount; 3261 } 3262 } 3263 3264 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3265 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3266 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3267 has_huge_files); 3268 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3269 3270 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3271 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3272 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3273 } else { 3274 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3275 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3276 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3277 (!is_power_of_2(sbi->s_inode_size)) || 3278 (sbi->s_inode_size > blocksize)) { 3279 ext4_msg(sb, KERN_ERR, 3280 "unsupported inode size: %d", 3281 sbi->s_inode_size); 3282 goto failed_mount; 3283 } 3284 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3285 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3286 } 3287 3288 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3289 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3290 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3291 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3292 !is_power_of_2(sbi->s_desc_size)) { 3293 ext4_msg(sb, KERN_ERR, 3294 "unsupported descriptor size %lu", 3295 sbi->s_desc_size); 3296 goto failed_mount; 3297 } 3298 } else 3299 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3300 3301 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3302 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3303 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3304 goto cantfind_ext4; 3305 3306 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3307 if (sbi->s_inodes_per_block == 0) 3308 goto cantfind_ext4; 3309 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3310 sbi->s_inodes_per_block; 3311 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3312 sbi->s_sbh = bh; 3313 sbi->s_mount_state = le16_to_cpu(es->s_state); 3314 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3315 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3316 3317 for (i = 0; i < 4; i++) 3318 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3319 sbi->s_def_hash_version = es->s_def_hash_version; 3320 i = le32_to_cpu(es->s_flags); 3321 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3322 sbi->s_hash_unsigned = 3; 3323 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3324 #ifdef __CHAR_UNSIGNED__ 3325 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3326 sbi->s_hash_unsigned = 3; 3327 #else 3328 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3329 #endif 3330 sb->s_dirt = 1; 3331 } 3332 3333 if (sbi->s_blocks_per_group > blocksize * 8) { 3334 ext4_msg(sb, KERN_ERR, 3335 "#blocks per group too big: %lu", 3336 sbi->s_blocks_per_group); 3337 goto failed_mount; 3338 } 3339 if (sbi->s_inodes_per_group > blocksize * 8) { 3340 ext4_msg(sb, KERN_ERR, 3341 "#inodes per group too big: %lu", 3342 sbi->s_inodes_per_group); 3343 goto failed_mount; 3344 } 3345 3346 /* 3347 * Test whether we have more sectors than will fit in sector_t, 3348 * and whether the max offset is addressable by the page cache. 3349 */ 3350 err = generic_check_addressable(sb->s_blocksize_bits, 3351 ext4_blocks_count(es)); 3352 if (err) { 3353 ext4_msg(sb, KERN_ERR, "filesystem" 3354 " too large to mount safely on this system"); 3355 if (sizeof(sector_t) < 8) 3356 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3357 ret = err; 3358 goto failed_mount; 3359 } 3360 3361 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3362 goto cantfind_ext4; 3363 3364 /* check blocks count against device size */ 3365 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3366 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3367 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3368 "exceeds size of device (%llu blocks)", 3369 ext4_blocks_count(es), blocks_count); 3370 goto failed_mount; 3371 } 3372 3373 /* 3374 * It makes no sense for the first data block to be beyond the end 3375 * of the filesystem. 3376 */ 3377 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3378 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 3379 "block %u is beyond end of filesystem (%llu)", 3380 le32_to_cpu(es->s_first_data_block), 3381 ext4_blocks_count(es)); 3382 goto failed_mount; 3383 } 3384 blocks_count = (ext4_blocks_count(es) - 3385 le32_to_cpu(es->s_first_data_block) + 3386 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3387 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3388 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3389 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3390 "(block count %llu, first data block %u, " 3391 "blocks per group %lu)", sbi->s_groups_count, 3392 ext4_blocks_count(es), 3393 le32_to_cpu(es->s_first_data_block), 3394 EXT4_BLOCKS_PER_GROUP(sb)); 3395 goto failed_mount; 3396 } 3397 sbi->s_groups_count = blocks_count; 3398 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3399 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3400 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3401 EXT4_DESC_PER_BLOCK(sb); 3402 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 3403 GFP_KERNEL); 3404 if (sbi->s_group_desc == NULL) { 3405 ext4_msg(sb, KERN_ERR, "not enough memory"); 3406 goto failed_mount; 3407 } 3408 3409 #ifdef CONFIG_PROC_FS 3410 if (ext4_proc_root) 3411 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3412 #endif 3413 3414 bgl_lock_init(sbi->s_blockgroup_lock); 3415 3416 for (i = 0; i < db_count; i++) { 3417 block = descriptor_loc(sb, logical_sb_block, i); 3418 sbi->s_group_desc[i] = sb_bread(sb, block); 3419 if (!sbi->s_group_desc[i]) { 3420 ext4_msg(sb, KERN_ERR, 3421 "can't read group descriptor %d", i); 3422 db_count = i; 3423 goto failed_mount2; 3424 } 3425 } 3426 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3427 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3428 goto failed_mount2; 3429 } 3430 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3431 if (!ext4_fill_flex_info(sb)) { 3432 ext4_msg(sb, KERN_ERR, 3433 "unable to initialize " 3434 "flex_bg meta info!"); 3435 goto failed_mount2; 3436 } 3437 3438 sbi->s_gdb_count = db_count; 3439 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3440 spin_lock_init(&sbi->s_next_gen_lock); 3441 3442 init_timer(&sbi->s_err_report); 3443 sbi->s_err_report.function = print_daily_error_info; 3444 sbi->s_err_report.data = (unsigned long) sb; 3445 3446 err = percpu_counter_init(&sbi->s_freeblocks_counter, 3447 ext4_count_free_blocks(sb)); 3448 if (!err) { 3449 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3450 ext4_count_free_inodes(sb)); 3451 } 3452 if (!err) { 3453 err = percpu_counter_init(&sbi->s_dirs_counter, 3454 ext4_count_dirs(sb)); 3455 } 3456 if (!err) { 3457 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 3458 } 3459 if (err) { 3460 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3461 goto failed_mount3; 3462 } 3463 3464 sbi->s_stripe = ext4_get_stripe_size(sbi); 3465 sbi->s_max_writeback_mb_bump = 128; 3466 3467 /* 3468 * set up enough so that it can read an inode 3469 */ 3470 if (!test_opt(sb, NOLOAD) && 3471 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3472 sb->s_op = &ext4_sops; 3473 else 3474 sb->s_op = &ext4_nojournal_sops; 3475 sb->s_export_op = &ext4_export_ops; 3476 sb->s_xattr = ext4_xattr_handlers; 3477 #ifdef CONFIG_QUOTA 3478 sb->s_qcop = &ext4_qctl_operations; 3479 sb->dq_op = &ext4_quota_operations; 3480 #endif 3481 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3482 3483 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3484 mutex_init(&sbi->s_orphan_lock); 3485 mutex_init(&sbi->s_resize_lock); 3486 3487 sb->s_root = NULL; 3488 3489 needs_recovery = (es->s_last_orphan != 0 || 3490 EXT4_HAS_INCOMPAT_FEATURE(sb, 3491 EXT4_FEATURE_INCOMPAT_RECOVER)); 3492 3493 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3494 !(sb->s_flags & MS_RDONLY)) 3495 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3496 goto failed_mount3; 3497 3498 /* 3499 * The first inode we look at is the journal inode. Don't try 3500 * root first: it may be modified in the journal! 3501 */ 3502 if (!test_opt(sb, NOLOAD) && 3503 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3504 if (ext4_load_journal(sb, es, journal_devnum)) 3505 goto failed_mount3; 3506 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3507 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3508 ext4_msg(sb, KERN_ERR, "required journal recovery " 3509 "suppressed and not mounted read-only"); 3510 goto failed_mount_wq; 3511 } else { 3512 clear_opt(sb, DATA_FLAGS); 3513 sbi->s_journal = NULL; 3514 needs_recovery = 0; 3515 goto no_journal; 3516 } 3517 3518 if (ext4_blocks_count(es) > 0xffffffffULL && 3519 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3520 JBD2_FEATURE_INCOMPAT_64BIT)) { 3521 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3522 goto failed_mount_wq; 3523 } 3524 3525 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3526 jbd2_journal_set_features(sbi->s_journal, 3527 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3528 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3529 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3530 jbd2_journal_set_features(sbi->s_journal, 3531 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3532 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3533 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3534 } else { 3535 jbd2_journal_clear_features(sbi->s_journal, 3536 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3537 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3538 } 3539 3540 /* We have now updated the journal if required, so we can 3541 * validate the data journaling mode. */ 3542 switch (test_opt(sb, DATA_FLAGS)) { 3543 case 0: 3544 /* No mode set, assume a default based on the journal 3545 * capabilities: ORDERED_DATA if the journal can 3546 * cope, else JOURNAL_DATA 3547 */ 3548 if (jbd2_journal_check_available_features 3549 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3550 set_opt(sb, ORDERED_DATA); 3551 else 3552 set_opt(sb, JOURNAL_DATA); 3553 break; 3554 3555 case EXT4_MOUNT_ORDERED_DATA: 3556 case EXT4_MOUNT_WRITEBACK_DATA: 3557 if (!jbd2_journal_check_available_features 3558 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3559 ext4_msg(sb, KERN_ERR, "Journal does not support " 3560 "requested data journaling mode"); 3561 goto failed_mount_wq; 3562 } 3563 default: 3564 break; 3565 } 3566 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3567 3568 /* 3569 * The journal may have updated the bg summary counts, so we 3570 * need to update the global counters. 3571 */ 3572 percpu_counter_set(&sbi->s_freeblocks_counter, 3573 ext4_count_free_blocks(sb)); 3574 percpu_counter_set(&sbi->s_freeinodes_counter, 3575 ext4_count_free_inodes(sb)); 3576 percpu_counter_set(&sbi->s_dirs_counter, 3577 ext4_count_dirs(sb)); 3578 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0); 3579 3580 no_journal: 3581 /* 3582 * The maximum number of concurrent works can be high and 3583 * concurrency isn't really necessary. Limit it to 1. 3584 */ 3585 EXT4_SB(sb)->dio_unwritten_wq = 3586 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3587 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3588 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3589 goto failed_mount_wq; 3590 } 3591 3592 /* 3593 * The jbd2_journal_load will have done any necessary log recovery, 3594 * so we can safely mount the rest of the filesystem now. 3595 */ 3596 3597 root = ext4_iget(sb, EXT4_ROOT_INO); 3598 if (IS_ERR(root)) { 3599 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3600 ret = PTR_ERR(root); 3601 root = NULL; 3602 goto failed_mount4; 3603 } 3604 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3605 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3606 goto failed_mount4; 3607 } 3608 sb->s_root = d_alloc_root(root); 3609 if (!sb->s_root) { 3610 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3611 ret = -ENOMEM; 3612 goto failed_mount4; 3613 } 3614 3615 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3616 3617 /* determine the minimum size of new large inodes, if present */ 3618 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3619 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3620 EXT4_GOOD_OLD_INODE_SIZE; 3621 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3622 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3623 if (sbi->s_want_extra_isize < 3624 le16_to_cpu(es->s_want_extra_isize)) 3625 sbi->s_want_extra_isize = 3626 le16_to_cpu(es->s_want_extra_isize); 3627 if (sbi->s_want_extra_isize < 3628 le16_to_cpu(es->s_min_extra_isize)) 3629 sbi->s_want_extra_isize = 3630 le16_to_cpu(es->s_min_extra_isize); 3631 } 3632 } 3633 /* Check if enough inode space is available */ 3634 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3635 sbi->s_inode_size) { 3636 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3637 EXT4_GOOD_OLD_INODE_SIZE; 3638 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3639 "available"); 3640 } 3641 3642 if (test_opt(sb, DELALLOC) && 3643 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 3644 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 3645 "requested data journaling mode"); 3646 clear_opt(sb, DELALLOC); 3647 } 3648 if (test_opt(sb, DIOREAD_NOLOCK)) { 3649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3650 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3651 "option - requested data journaling mode"); 3652 clear_opt(sb, DIOREAD_NOLOCK); 3653 } 3654 if (sb->s_blocksize < PAGE_SIZE) { 3655 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3656 "option - block size is too small"); 3657 clear_opt(sb, DIOREAD_NOLOCK); 3658 } 3659 } 3660 3661 err = ext4_setup_system_zone(sb); 3662 if (err) { 3663 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3664 "zone (%d)", err); 3665 goto failed_mount4; 3666 } 3667 3668 ext4_ext_init(sb); 3669 err = ext4_mb_init(sb, needs_recovery); 3670 if (err) { 3671 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3672 err); 3673 goto failed_mount4; 3674 } 3675 3676 err = ext4_register_li_request(sb, first_not_zeroed); 3677 if (err) 3678 goto failed_mount4; 3679 3680 sbi->s_kobj.kset = ext4_kset; 3681 init_completion(&sbi->s_kobj_unregister); 3682 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3683 "%s", sb->s_id); 3684 if (err) { 3685 ext4_mb_release(sb); 3686 ext4_ext_release(sb); 3687 goto failed_mount4; 3688 }; 3689 3690 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3691 ext4_orphan_cleanup(sb, es); 3692 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3693 if (needs_recovery) { 3694 ext4_msg(sb, KERN_INFO, "recovery complete"); 3695 ext4_mark_recovery_complete(sb, es); 3696 } 3697 if (EXT4_SB(sb)->s_journal) { 3698 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3699 descr = " journalled data mode"; 3700 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3701 descr = " ordered data mode"; 3702 else 3703 descr = " writeback data mode"; 3704 } else 3705 descr = "out journal"; 3706 3707 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3708 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3709 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3710 3711 if (es->s_error_count) 3712 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3713 3714 kfree(orig_data); 3715 return 0; 3716 3717 cantfind_ext4: 3718 if (!silent) 3719 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3720 goto failed_mount; 3721 3722 failed_mount4: 3723 iput(root); 3724 sb->s_root = NULL; 3725 ext4_msg(sb, KERN_ERR, "mount failed"); 3726 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3727 failed_mount_wq: 3728 ext4_release_system_zone(sb); 3729 if (sbi->s_journal) { 3730 jbd2_journal_destroy(sbi->s_journal); 3731 sbi->s_journal = NULL; 3732 } 3733 failed_mount3: 3734 del_timer(&sbi->s_err_report); 3735 if (sbi->s_flex_groups) { 3736 if (is_vmalloc_addr(sbi->s_flex_groups)) 3737 vfree(sbi->s_flex_groups); 3738 else 3739 kfree(sbi->s_flex_groups); 3740 } 3741 percpu_counter_destroy(&sbi->s_freeblocks_counter); 3742 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3743 percpu_counter_destroy(&sbi->s_dirs_counter); 3744 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 3745 if (sbi->s_mmp_tsk) 3746 kthread_stop(sbi->s_mmp_tsk); 3747 failed_mount2: 3748 for (i = 0; i < db_count; i++) 3749 brelse(sbi->s_group_desc[i]); 3750 kfree(sbi->s_group_desc); 3751 failed_mount: 3752 if (sbi->s_proc) { 3753 remove_proc_entry(sb->s_id, ext4_proc_root); 3754 } 3755 #ifdef CONFIG_QUOTA 3756 for (i = 0; i < MAXQUOTAS; i++) 3757 kfree(sbi->s_qf_names[i]); 3758 #endif 3759 ext4_blkdev_remove(sbi); 3760 brelse(bh); 3761 out_fail: 3762 sb->s_fs_info = NULL; 3763 kfree(sbi->s_blockgroup_lock); 3764 kfree(sbi); 3765 out_free_orig: 3766 kfree(orig_data); 3767 return ret; 3768 } 3769 3770 /* 3771 * Setup any per-fs journal parameters now. We'll do this both on 3772 * initial mount, once the journal has been initialised but before we've 3773 * done any recovery; and again on any subsequent remount. 3774 */ 3775 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3776 { 3777 struct ext4_sb_info *sbi = EXT4_SB(sb); 3778 3779 journal->j_commit_interval = sbi->s_commit_interval; 3780 journal->j_min_batch_time = sbi->s_min_batch_time; 3781 journal->j_max_batch_time = sbi->s_max_batch_time; 3782 3783 write_lock(&journal->j_state_lock); 3784 if (test_opt(sb, BARRIER)) 3785 journal->j_flags |= JBD2_BARRIER; 3786 else 3787 journal->j_flags &= ~JBD2_BARRIER; 3788 if (test_opt(sb, DATA_ERR_ABORT)) 3789 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3790 else 3791 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3792 write_unlock(&journal->j_state_lock); 3793 } 3794 3795 static journal_t *ext4_get_journal(struct super_block *sb, 3796 unsigned int journal_inum) 3797 { 3798 struct inode *journal_inode; 3799 journal_t *journal; 3800 3801 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3802 3803 /* First, test for the existence of a valid inode on disk. Bad 3804 * things happen if we iget() an unused inode, as the subsequent 3805 * iput() will try to delete it. */ 3806 3807 journal_inode = ext4_iget(sb, journal_inum); 3808 if (IS_ERR(journal_inode)) { 3809 ext4_msg(sb, KERN_ERR, "no journal found"); 3810 return NULL; 3811 } 3812 if (!journal_inode->i_nlink) { 3813 make_bad_inode(journal_inode); 3814 iput(journal_inode); 3815 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3816 return NULL; 3817 } 3818 3819 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3820 journal_inode, journal_inode->i_size); 3821 if (!S_ISREG(journal_inode->i_mode)) { 3822 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3823 iput(journal_inode); 3824 return NULL; 3825 } 3826 3827 journal = jbd2_journal_init_inode(journal_inode); 3828 if (!journal) { 3829 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3830 iput(journal_inode); 3831 return NULL; 3832 } 3833 journal->j_private = sb; 3834 ext4_init_journal_params(sb, journal); 3835 return journal; 3836 } 3837 3838 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3839 dev_t j_dev) 3840 { 3841 struct buffer_head *bh; 3842 journal_t *journal; 3843 ext4_fsblk_t start; 3844 ext4_fsblk_t len; 3845 int hblock, blocksize; 3846 ext4_fsblk_t sb_block; 3847 unsigned long offset; 3848 struct ext4_super_block *es; 3849 struct block_device *bdev; 3850 3851 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3852 3853 bdev = ext4_blkdev_get(j_dev, sb); 3854 if (bdev == NULL) 3855 return NULL; 3856 3857 blocksize = sb->s_blocksize; 3858 hblock = bdev_logical_block_size(bdev); 3859 if (blocksize < hblock) { 3860 ext4_msg(sb, KERN_ERR, 3861 "blocksize too small for journal device"); 3862 goto out_bdev; 3863 } 3864 3865 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3866 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3867 set_blocksize(bdev, blocksize); 3868 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3869 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3870 "external journal"); 3871 goto out_bdev; 3872 } 3873 3874 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3875 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3876 !(le32_to_cpu(es->s_feature_incompat) & 3877 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3878 ext4_msg(sb, KERN_ERR, "external journal has " 3879 "bad superblock"); 3880 brelse(bh); 3881 goto out_bdev; 3882 } 3883 3884 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3885 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3886 brelse(bh); 3887 goto out_bdev; 3888 } 3889 3890 len = ext4_blocks_count(es); 3891 start = sb_block + 1; 3892 brelse(bh); /* we're done with the superblock */ 3893 3894 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3895 start, len, blocksize); 3896 if (!journal) { 3897 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3898 goto out_bdev; 3899 } 3900 journal->j_private = sb; 3901 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3902 wait_on_buffer(journal->j_sb_buffer); 3903 if (!buffer_uptodate(journal->j_sb_buffer)) { 3904 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3905 goto out_journal; 3906 } 3907 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3908 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3909 "user (unsupported) - %d", 3910 be32_to_cpu(journal->j_superblock->s_nr_users)); 3911 goto out_journal; 3912 } 3913 EXT4_SB(sb)->journal_bdev = bdev; 3914 ext4_init_journal_params(sb, journal); 3915 return journal; 3916 3917 out_journal: 3918 jbd2_journal_destroy(journal); 3919 out_bdev: 3920 ext4_blkdev_put(bdev); 3921 return NULL; 3922 } 3923 3924 static int ext4_load_journal(struct super_block *sb, 3925 struct ext4_super_block *es, 3926 unsigned long journal_devnum) 3927 { 3928 journal_t *journal; 3929 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3930 dev_t journal_dev; 3931 int err = 0; 3932 int really_read_only; 3933 3934 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3935 3936 if (journal_devnum && 3937 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3938 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3939 "numbers have changed"); 3940 journal_dev = new_decode_dev(journal_devnum); 3941 } else 3942 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3943 3944 really_read_only = bdev_read_only(sb->s_bdev); 3945 3946 /* 3947 * Are we loading a blank journal or performing recovery after a 3948 * crash? For recovery, we need to check in advance whether we 3949 * can get read-write access to the device. 3950 */ 3951 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3952 if (sb->s_flags & MS_RDONLY) { 3953 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3954 "required on readonly filesystem"); 3955 if (really_read_only) { 3956 ext4_msg(sb, KERN_ERR, "write access " 3957 "unavailable, cannot proceed"); 3958 return -EROFS; 3959 } 3960 ext4_msg(sb, KERN_INFO, "write access will " 3961 "be enabled during recovery"); 3962 } 3963 } 3964 3965 if (journal_inum && journal_dev) { 3966 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3967 "and inode journals!"); 3968 return -EINVAL; 3969 } 3970 3971 if (journal_inum) { 3972 if (!(journal = ext4_get_journal(sb, journal_inum))) 3973 return -EINVAL; 3974 } else { 3975 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3976 return -EINVAL; 3977 } 3978 3979 if (!(journal->j_flags & JBD2_BARRIER)) 3980 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3981 3982 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3983 err = jbd2_journal_update_format(journal); 3984 if (err) { 3985 ext4_msg(sb, KERN_ERR, "error updating journal"); 3986 jbd2_journal_destroy(journal); 3987 return err; 3988 } 3989 } 3990 3991 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3992 err = jbd2_journal_wipe(journal, !really_read_only); 3993 if (!err) { 3994 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 3995 if (save) 3996 memcpy(save, ((char *) es) + 3997 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 3998 err = jbd2_journal_load(journal); 3999 if (save) 4000 memcpy(((char *) es) + EXT4_S_ERR_START, 4001 save, EXT4_S_ERR_LEN); 4002 kfree(save); 4003 } 4004 4005 if (err) { 4006 ext4_msg(sb, KERN_ERR, "error loading journal"); 4007 jbd2_journal_destroy(journal); 4008 return err; 4009 } 4010 4011 EXT4_SB(sb)->s_journal = journal; 4012 ext4_clear_journal_err(sb, es); 4013 4014 if (!really_read_only && journal_devnum && 4015 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4016 es->s_journal_dev = cpu_to_le32(journal_devnum); 4017 4018 /* Make sure we flush the recovery flag to disk. */ 4019 ext4_commit_super(sb, 1); 4020 } 4021 4022 return 0; 4023 } 4024 4025 static int ext4_commit_super(struct super_block *sb, int sync) 4026 { 4027 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4028 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4029 int error = 0; 4030 4031 if (!sbh) 4032 return error; 4033 if (buffer_write_io_error(sbh)) { 4034 /* 4035 * Oh, dear. A previous attempt to write the 4036 * superblock failed. This could happen because the 4037 * USB device was yanked out. Or it could happen to 4038 * be a transient write error and maybe the block will 4039 * be remapped. Nothing we can do but to retry the 4040 * write and hope for the best. 4041 */ 4042 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4043 "superblock detected"); 4044 clear_buffer_write_io_error(sbh); 4045 set_buffer_uptodate(sbh); 4046 } 4047 /* 4048 * If the file system is mounted read-only, don't update the 4049 * superblock write time. This avoids updating the superblock 4050 * write time when we are mounting the root file system 4051 * read/only but we need to replay the journal; at that point, 4052 * for people who are east of GMT and who make their clock 4053 * tick in localtime for Windows bug-for-bug compatibility, 4054 * the clock is set in the future, and this will cause e2fsck 4055 * to complain and force a full file system check. 4056 */ 4057 if (!(sb->s_flags & MS_RDONLY)) 4058 es->s_wtime = cpu_to_le32(get_seconds()); 4059 if (sb->s_bdev->bd_part) 4060 es->s_kbytes_written = 4061 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4062 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4063 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4064 else 4065 es->s_kbytes_written = 4066 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4067 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 4068 &EXT4_SB(sb)->s_freeblocks_counter)); 4069 es->s_free_inodes_count = 4070 cpu_to_le32(percpu_counter_sum_positive( 4071 &EXT4_SB(sb)->s_freeinodes_counter)); 4072 sb->s_dirt = 0; 4073 BUFFER_TRACE(sbh, "marking dirty"); 4074 mark_buffer_dirty(sbh); 4075 if (sync) { 4076 error = sync_dirty_buffer(sbh); 4077 if (error) 4078 return error; 4079 4080 error = buffer_write_io_error(sbh); 4081 if (error) { 4082 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4083 "superblock"); 4084 clear_buffer_write_io_error(sbh); 4085 set_buffer_uptodate(sbh); 4086 } 4087 } 4088 return error; 4089 } 4090 4091 /* 4092 * Have we just finished recovery? If so, and if we are mounting (or 4093 * remounting) the filesystem readonly, then we will end up with a 4094 * consistent fs on disk. Record that fact. 4095 */ 4096 static void ext4_mark_recovery_complete(struct super_block *sb, 4097 struct ext4_super_block *es) 4098 { 4099 journal_t *journal = EXT4_SB(sb)->s_journal; 4100 4101 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4102 BUG_ON(journal != NULL); 4103 return; 4104 } 4105 jbd2_journal_lock_updates(journal); 4106 if (jbd2_journal_flush(journal) < 0) 4107 goto out; 4108 4109 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4110 sb->s_flags & MS_RDONLY) { 4111 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4112 ext4_commit_super(sb, 1); 4113 } 4114 4115 out: 4116 jbd2_journal_unlock_updates(journal); 4117 } 4118 4119 /* 4120 * If we are mounting (or read-write remounting) a filesystem whose journal 4121 * has recorded an error from a previous lifetime, move that error to the 4122 * main filesystem now. 4123 */ 4124 static void ext4_clear_journal_err(struct super_block *sb, 4125 struct ext4_super_block *es) 4126 { 4127 journal_t *journal; 4128 int j_errno; 4129 const char *errstr; 4130 4131 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4132 4133 journal = EXT4_SB(sb)->s_journal; 4134 4135 /* 4136 * Now check for any error status which may have been recorded in the 4137 * journal by a prior ext4_error() or ext4_abort() 4138 */ 4139 4140 j_errno = jbd2_journal_errno(journal); 4141 if (j_errno) { 4142 char nbuf[16]; 4143 4144 errstr = ext4_decode_error(sb, j_errno, nbuf); 4145 ext4_warning(sb, "Filesystem error recorded " 4146 "from previous mount: %s", errstr); 4147 ext4_warning(sb, "Marking fs in need of filesystem check."); 4148 4149 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4150 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4151 ext4_commit_super(sb, 1); 4152 4153 jbd2_journal_clear_err(journal); 4154 } 4155 } 4156 4157 /* 4158 * Force the running and committing transactions to commit, 4159 * and wait on the commit. 4160 */ 4161 int ext4_force_commit(struct super_block *sb) 4162 { 4163 journal_t *journal; 4164 int ret = 0; 4165 4166 if (sb->s_flags & MS_RDONLY) 4167 return 0; 4168 4169 journal = EXT4_SB(sb)->s_journal; 4170 if (journal) { 4171 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4172 ret = ext4_journal_force_commit(journal); 4173 } 4174 4175 return ret; 4176 } 4177 4178 static void ext4_write_super(struct super_block *sb) 4179 { 4180 lock_super(sb); 4181 ext4_commit_super(sb, 1); 4182 unlock_super(sb); 4183 } 4184 4185 static int ext4_sync_fs(struct super_block *sb, int wait) 4186 { 4187 int ret = 0; 4188 tid_t target; 4189 struct ext4_sb_info *sbi = EXT4_SB(sb); 4190 4191 trace_ext4_sync_fs(sb, wait); 4192 flush_workqueue(sbi->dio_unwritten_wq); 4193 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4194 if (wait) 4195 jbd2_log_wait_commit(sbi->s_journal, target); 4196 } 4197 return ret; 4198 } 4199 4200 /* 4201 * LVM calls this function before a (read-only) snapshot is created. This 4202 * gives us a chance to flush the journal completely and mark the fs clean. 4203 * 4204 * Note that only this function cannot bring a filesystem to be in a clean 4205 * state independently, because ext4 prevents a new handle from being started 4206 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4207 * the upper layer. 4208 */ 4209 static int ext4_freeze(struct super_block *sb) 4210 { 4211 int error = 0; 4212 journal_t *journal; 4213 4214 if (sb->s_flags & MS_RDONLY) 4215 return 0; 4216 4217 journal = EXT4_SB(sb)->s_journal; 4218 4219 /* Now we set up the journal barrier. */ 4220 jbd2_journal_lock_updates(journal); 4221 4222 /* 4223 * Don't clear the needs_recovery flag if we failed to flush 4224 * the journal. 4225 */ 4226 error = jbd2_journal_flush(journal); 4227 if (error < 0) 4228 goto out; 4229 4230 /* Journal blocked and flushed, clear needs_recovery flag. */ 4231 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4232 error = ext4_commit_super(sb, 1); 4233 out: 4234 /* we rely on s_frozen to stop further updates */ 4235 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4236 return error; 4237 } 4238 4239 /* 4240 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4241 * flag here, even though the filesystem is not technically dirty yet. 4242 */ 4243 static int ext4_unfreeze(struct super_block *sb) 4244 { 4245 if (sb->s_flags & MS_RDONLY) 4246 return 0; 4247 4248 lock_super(sb); 4249 /* Reset the needs_recovery flag before the fs is unlocked. */ 4250 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4251 ext4_commit_super(sb, 1); 4252 unlock_super(sb); 4253 return 0; 4254 } 4255 4256 /* 4257 * Structure to save mount options for ext4_remount's benefit 4258 */ 4259 struct ext4_mount_options { 4260 unsigned long s_mount_opt; 4261 unsigned long s_mount_opt2; 4262 uid_t s_resuid; 4263 gid_t s_resgid; 4264 unsigned long s_commit_interval; 4265 u32 s_min_batch_time, s_max_batch_time; 4266 #ifdef CONFIG_QUOTA 4267 int s_jquota_fmt; 4268 char *s_qf_names[MAXQUOTAS]; 4269 #endif 4270 }; 4271 4272 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4273 { 4274 struct ext4_super_block *es; 4275 struct ext4_sb_info *sbi = EXT4_SB(sb); 4276 ext4_fsblk_t n_blocks_count = 0; 4277 unsigned long old_sb_flags; 4278 struct ext4_mount_options old_opts; 4279 int enable_quota = 0; 4280 ext4_group_t g; 4281 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4282 int err = 0; 4283 #ifdef CONFIG_QUOTA 4284 int i; 4285 #endif 4286 char *orig_data = kstrdup(data, GFP_KERNEL); 4287 4288 /* Store the original options */ 4289 lock_super(sb); 4290 old_sb_flags = sb->s_flags; 4291 old_opts.s_mount_opt = sbi->s_mount_opt; 4292 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4293 old_opts.s_resuid = sbi->s_resuid; 4294 old_opts.s_resgid = sbi->s_resgid; 4295 old_opts.s_commit_interval = sbi->s_commit_interval; 4296 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4297 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4298 #ifdef CONFIG_QUOTA 4299 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4300 for (i = 0; i < MAXQUOTAS; i++) 4301 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4302 #endif 4303 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4304 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4305 4306 /* 4307 * Allow the "check" option to be passed as a remount option. 4308 */ 4309 if (!parse_options(data, sb, NULL, &journal_ioprio, 4310 &n_blocks_count, 1)) { 4311 err = -EINVAL; 4312 goto restore_opts; 4313 } 4314 4315 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4316 ext4_abort(sb, "Abort forced by user"); 4317 4318 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4319 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4320 4321 es = sbi->s_es; 4322 4323 if (sbi->s_journal) { 4324 ext4_init_journal_params(sb, sbi->s_journal); 4325 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4326 } 4327 4328 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 4329 n_blocks_count > ext4_blocks_count(es)) { 4330 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4331 err = -EROFS; 4332 goto restore_opts; 4333 } 4334 4335 if (*flags & MS_RDONLY) { 4336 err = dquot_suspend(sb, -1); 4337 if (err < 0) 4338 goto restore_opts; 4339 4340 /* 4341 * First of all, the unconditional stuff we have to do 4342 * to disable replay of the journal when we next remount 4343 */ 4344 sb->s_flags |= MS_RDONLY; 4345 4346 /* 4347 * OK, test if we are remounting a valid rw partition 4348 * readonly, and if so set the rdonly flag and then 4349 * mark the partition as valid again. 4350 */ 4351 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4352 (sbi->s_mount_state & EXT4_VALID_FS)) 4353 es->s_state = cpu_to_le16(sbi->s_mount_state); 4354 4355 if (sbi->s_journal) 4356 ext4_mark_recovery_complete(sb, es); 4357 } else { 4358 /* Make sure we can mount this feature set readwrite */ 4359 if (!ext4_feature_set_ok(sb, 0)) { 4360 err = -EROFS; 4361 goto restore_opts; 4362 } 4363 /* 4364 * Make sure the group descriptor checksums 4365 * are sane. If they aren't, refuse to remount r/w. 4366 */ 4367 for (g = 0; g < sbi->s_groups_count; g++) { 4368 struct ext4_group_desc *gdp = 4369 ext4_get_group_desc(sb, g, NULL); 4370 4371 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4372 ext4_msg(sb, KERN_ERR, 4373 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4374 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4375 le16_to_cpu(gdp->bg_checksum)); 4376 err = -EINVAL; 4377 goto restore_opts; 4378 } 4379 } 4380 4381 /* 4382 * If we have an unprocessed orphan list hanging 4383 * around from a previously readonly bdev mount, 4384 * require a full umount/remount for now. 4385 */ 4386 if (es->s_last_orphan) { 4387 ext4_msg(sb, KERN_WARNING, "Couldn't " 4388 "remount RDWR because of unprocessed " 4389 "orphan inode list. Please " 4390 "umount/remount instead"); 4391 err = -EINVAL; 4392 goto restore_opts; 4393 } 4394 4395 /* 4396 * Mounting a RDONLY partition read-write, so reread 4397 * and store the current valid flag. (It may have 4398 * been changed by e2fsck since we originally mounted 4399 * the partition.) 4400 */ 4401 if (sbi->s_journal) 4402 ext4_clear_journal_err(sb, es); 4403 sbi->s_mount_state = le16_to_cpu(es->s_state); 4404 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 4405 goto restore_opts; 4406 if (!ext4_setup_super(sb, es, 0)) 4407 sb->s_flags &= ~MS_RDONLY; 4408 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4409 EXT4_FEATURE_INCOMPAT_MMP)) 4410 if (ext4_multi_mount_protect(sb, 4411 le64_to_cpu(es->s_mmp_block))) { 4412 err = -EROFS; 4413 goto restore_opts; 4414 } 4415 enable_quota = 1; 4416 } 4417 } 4418 4419 /* 4420 * Reinitialize lazy itable initialization thread based on 4421 * current settings 4422 */ 4423 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4424 ext4_unregister_li_request(sb); 4425 else { 4426 ext4_group_t first_not_zeroed; 4427 first_not_zeroed = ext4_has_uninit_itable(sb); 4428 ext4_register_li_request(sb, first_not_zeroed); 4429 } 4430 4431 ext4_setup_system_zone(sb); 4432 if (sbi->s_journal == NULL) 4433 ext4_commit_super(sb, 1); 4434 4435 #ifdef CONFIG_QUOTA 4436 /* Release old quota file names */ 4437 for (i = 0; i < MAXQUOTAS; i++) 4438 if (old_opts.s_qf_names[i] && 4439 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4440 kfree(old_opts.s_qf_names[i]); 4441 #endif 4442 unlock_super(sb); 4443 if (enable_quota) 4444 dquot_resume(sb, -1); 4445 4446 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4447 kfree(orig_data); 4448 return 0; 4449 4450 restore_opts: 4451 sb->s_flags = old_sb_flags; 4452 sbi->s_mount_opt = old_opts.s_mount_opt; 4453 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4454 sbi->s_resuid = old_opts.s_resuid; 4455 sbi->s_resgid = old_opts.s_resgid; 4456 sbi->s_commit_interval = old_opts.s_commit_interval; 4457 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4458 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4459 #ifdef CONFIG_QUOTA 4460 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4461 for (i = 0; i < MAXQUOTAS; i++) { 4462 if (sbi->s_qf_names[i] && 4463 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4464 kfree(sbi->s_qf_names[i]); 4465 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4466 } 4467 #endif 4468 unlock_super(sb); 4469 kfree(orig_data); 4470 return err; 4471 } 4472 4473 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4474 { 4475 struct super_block *sb = dentry->d_sb; 4476 struct ext4_sb_info *sbi = EXT4_SB(sb); 4477 struct ext4_super_block *es = sbi->s_es; 4478 u64 fsid; 4479 s64 bfree; 4480 4481 if (test_opt(sb, MINIX_DF)) { 4482 sbi->s_overhead_last = 0; 4483 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4484 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4485 ext4_fsblk_t overhead = 0; 4486 4487 /* 4488 * Compute the overhead (FS structures). This is constant 4489 * for a given filesystem unless the number of block groups 4490 * changes so we cache the previous value until it does. 4491 */ 4492 4493 /* 4494 * All of the blocks before first_data_block are 4495 * overhead 4496 */ 4497 overhead = le32_to_cpu(es->s_first_data_block); 4498 4499 /* 4500 * Add the overhead attributed to the superblock and 4501 * block group descriptors. If the sparse superblocks 4502 * feature is turned on, then not all groups have this. 4503 */ 4504 for (i = 0; i < ngroups; i++) { 4505 overhead += ext4_bg_has_super(sb, i) + 4506 ext4_bg_num_gdb(sb, i); 4507 cond_resched(); 4508 } 4509 4510 /* 4511 * Every block group has an inode bitmap, a block 4512 * bitmap, and an inode table. 4513 */ 4514 overhead += ngroups * (2 + sbi->s_itb_per_group); 4515 sbi->s_overhead_last = overhead; 4516 smp_wmb(); 4517 sbi->s_blocks_last = ext4_blocks_count(es); 4518 } 4519 4520 buf->f_type = EXT4_SUPER_MAGIC; 4521 buf->f_bsize = sb->s_blocksize; 4522 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 4523 bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 4524 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 4525 /* prevent underflow in case that few free space is available */ 4526 buf->f_bfree = max_t(s64, bfree, 0); 4527 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4528 if (buf->f_bfree < ext4_r_blocks_count(es)) 4529 buf->f_bavail = 0; 4530 buf->f_files = le32_to_cpu(es->s_inodes_count); 4531 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4532 buf->f_namelen = EXT4_NAME_LEN; 4533 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4534 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4535 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4536 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4537 4538 return 0; 4539 } 4540 4541 /* Helper function for writing quotas on sync - we need to start transaction 4542 * before quota file is locked for write. Otherwise the are possible deadlocks: 4543 * Process 1 Process 2 4544 * ext4_create() quota_sync() 4545 * jbd2_journal_start() write_dquot() 4546 * dquot_initialize() down(dqio_mutex) 4547 * down(dqio_mutex) jbd2_journal_start() 4548 * 4549 */ 4550 4551 #ifdef CONFIG_QUOTA 4552 4553 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4554 { 4555 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4556 } 4557 4558 static int ext4_write_dquot(struct dquot *dquot) 4559 { 4560 int ret, err; 4561 handle_t *handle; 4562 struct inode *inode; 4563 4564 inode = dquot_to_inode(dquot); 4565 handle = ext4_journal_start(inode, 4566 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4567 if (IS_ERR(handle)) 4568 return PTR_ERR(handle); 4569 ret = dquot_commit(dquot); 4570 err = ext4_journal_stop(handle); 4571 if (!ret) 4572 ret = err; 4573 return ret; 4574 } 4575 4576 static int ext4_acquire_dquot(struct dquot *dquot) 4577 { 4578 int ret, err; 4579 handle_t *handle; 4580 4581 handle = ext4_journal_start(dquot_to_inode(dquot), 4582 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4583 if (IS_ERR(handle)) 4584 return PTR_ERR(handle); 4585 ret = dquot_acquire(dquot); 4586 err = ext4_journal_stop(handle); 4587 if (!ret) 4588 ret = err; 4589 return ret; 4590 } 4591 4592 static int ext4_release_dquot(struct dquot *dquot) 4593 { 4594 int ret, err; 4595 handle_t *handle; 4596 4597 handle = ext4_journal_start(dquot_to_inode(dquot), 4598 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4599 if (IS_ERR(handle)) { 4600 /* Release dquot anyway to avoid endless cycle in dqput() */ 4601 dquot_release(dquot); 4602 return PTR_ERR(handle); 4603 } 4604 ret = dquot_release(dquot); 4605 err = ext4_journal_stop(handle); 4606 if (!ret) 4607 ret = err; 4608 return ret; 4609 } 4610 4611 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4612 { 4613 /* Are we journaling quotas? */ 4614 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4615 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4616 dquot_mark_dquot_dirty(dquot); 4617 return ext4_write_dquot(dquot); 4618 } else { 4619 return dquot_mark_dquot_dirty(dquot); 4620 } 4621 } 4622 4623 static int ext4_write_info(struct super_block *sb, int type) 4624 { 4625 int ret, err; 4626 handle_t *handle; 4627 4628 /* Data block + inode block */ 4629 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4630 if (IS_ERR(handle)) 4631 return PTR_ERR(handle); 4632 ret = dquot_commit_info(sb, type); 4633 err = ext4_journal_stop(handle); 4634 if (!ret) 4635 ret = err; 4636 return ret; 4637 } 4638 4639 /* 4640 * Turn on quotas during mount time - we need to find 4641 * the quota file and such... 4642 */ 4643 static int ext4_quota_on_mount(struct super_block *sb, int type) 4644 { 4645 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4646 EXT4_SB(sb)->s_jquota_fmt, type); 4647 } 4648 4649 /* 4650 * Standard function to be called on quota_on 4651 */ 4652 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4653 struct path *path) 4654 { 4655 int err; 4656 4657 if (!test_opt(sb, QUOTA)) 4658 return -EINVAL; 4659 4660 /* Quotafile not on the same filesystem? */ 4661 if (path->mnt->mnt_sb != sb) 4662 return -EXDEV; 4663 /* Journaling quota? */ 4664 if (EXT4_SB(sb)->s_qf_names[type]) { 4665 /* Quotafile not in fs root? */ 4666 if (path->dentry->d_parent != sb->s_root) 4667 ext4_msg(sb, KERN_WARNING, 4668 "Quota file not on filesystem root. " 4669 "Journaled quota will not work"); 4670 } 4671 4672 /* 4673 * When we journal data on quota file, we have to flush journal to see 4674 * all updates to the file when we bypass pagecache... 4675 */ 4676 if (EXT4_SB(sb)->s_journal && 4677 ext4_should_journal_data(path->dentry->d_inode)) { 4678 /* 4679 * We don't need to lock updates but journal_flush() could 4680 * otherwise be livelocked... 4681 */ 4682 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4683 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4684 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4685 if (err) 4686 return err; 4687 } 4688 4689 return dquot_quota_on(sb, type, format_id, path); 4690 } 4691 4692 static int ext4_quota_off(struct super_block *sb, int type) 4693 { 4694 struct inode *inode = sb_dqopt(sb)->files[type]; 4695 handle_t *handle; 4696 4697 /* Force all delayed allocation blocks to be allocated. 4698 * Caller already holds s_umount sem */ 4699 if (test_opt(sb, DELALLOC)) 4700 sync_filesystem(sb); 4701 4702 if (!inode) 4703 goto out; 4704 4705 /* Update modification times of quota files when userspace can 4706 * start looking at them */ 4707 handle = ext4_journal_start(inode, 1); 4708 if (IS_ERR(handle)) 4709 goto out; 4710 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4711 ext4_mark_inode_dirty(handle, inode); 4712 ext4_journal_stop(handle); 4713 4714 out: 4715 return dquot_quota_off(sb, type); 4716 } 4717 4718 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4719 * acquiring the locks... As quota files are never truncated and quota code 4720 * itself serializes the operations (and no one else should touch the files) 4721 * we don't have to be afraid of races */ 4722 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4723 size_t len, loff_t off) 4724 { 4725 struct inode *inode = sb_dqopt(sb)->files[type]; 4726 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4727 int err = 0; 4728 int offset = off & (sb->s_blocksize - 1); 4729 int tocopy; 4730 size_t toread; 4731 struct buffer_head *bh; 4732 loff_t i_size = i_size_read(inode); 4733 4734 if (off > i_size) 4735 return 0; 4736 if (off+len > i_size) 4737 len = i_size-off; 4738 toread = len; 4739 while (toread > 0) { 4740 tocopy = sb->s_blocksize - offset < toread ? 4741 sb->s_blocksize - offset : toread; 4742 bh = ext4_bread(NULL, inode, blk, 0, &err); 4743 if (err) 4744 return err; 4745 if (!bh) /* A hole? */ 4746 memset(data, 0, tocopy); 4747 else 4748 memcpy(data, bh->b_data+offset, tocopy); 4749 brelse(bh); 4750 offset = 0; 4751 toread -= tocopy; 4752 data += tocopy; 4753 blk++; 4754 } 4755 return len; 4756 } 4757 4758 /* Write to quotafile (we know the transaction is already started and has 4759 * enough credits) */ 4760 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4761 const char *data, size_t len, loff_t off) 4762 { 4763 struct inode *inode = sb_dqopt(sb)->files[type]; 4764 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4765 int err = 0; 4766 int offset = off & (sb->s_blocksize - 1); 4767 struct buffer_head *bh; 4768 handle_t *handle = journal_current_handle(); 4769 4770 if (EXT4_SB(sb)->s_journal && !handle) { 4771 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4772 " cancelled because transaction is not started", 4773 (unsigned long long)off, (unsigned long long)len); 4774 return -EIO; 4775 } 4776 /* 4777 * Since we account only one data block in transaction credits, 4778 * then it is impossible to cross a block boundary. 4779 */ 4780 if (sb->s_blocksize - offset < len) { 4781 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4782 " cancelled because not block aligned", 4783 (unsigned long long)off, (unsigned long long)len); 4784 return -EIO; 4785 } 4786 4787 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4788 bh = ext4_bread(handle, inode, blk, 1, &err); 4789 if (!bh) 4790 goto out; 4791 err = ext4_journal_get_write_access(handle, bh); 4792 if (err) { 4793 brelse(bh); 4794 goto out; 4795 } 4796 lock_buffer(bh); 4797 memcpy(bh->b_data+offset, data, len); 4798 flush_dcache_page(bh->b_page); 4799 unlock_buffer(bh); 4800 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4801 brelse(bh); 4802 out: 4803 if (err) { 4804 mutex_unlock(&inode->i_mutex); 4805 return err; 4806 } 4807 if (inode->i_size < off + len) { 4808 i_size_write(inode, off + len); 4809 EXT4_I(inode)->i_disksize = inode->i_size; 4810 ext4_mark_inode_dirty(handle, inode); 4811 } 4812 mutex_unlock(&inode->i_mutex); 4813 return len; 4814 } 4815 4816 #endif 4817 4818 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4819 const char *dev_name, void *data) 4820 { 4821 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4822 } 4823 4824 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4825 static inline void register_as_ext2(void) 4826 { 4827 int err = register_filesystem(&ext2_fs_type); 4828 if (err) 4829 printk(KERN_WARNING 4830 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4831 } 4832 4833 static inline void unregister_as_ext2(void) 4834 { 4835 unregister_filesystem(&ext2_fs_type); 4836 } 4837 4838 static inline int ext2_feature_set_ok(struct super_block *sb) 4839 { 4840 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 4841 return 0; 4842 if (sb->s_flags & MS_RDONLY) 4843 return 1; 4844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 4845 return 0; 4846 return 1; 4847 } 4848 MODULE_ALIAS("ext2"); 4849 #else 4850 static inline void register_as_ext2(void) { } 4851 static inline void unregister_as_ext2(void) { } 4852 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 4853 #endif 4854 4855 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4856 static inline void register_as_ext3(void) 4857 { 4858 int err = register_filesystem(&ext3_fs_type); 4859 if (err) 4860 printk(KERN_WARNING 4861 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4862 } 4863 4864 static inline void unregister_as_ext3(void) 4865 { 4866 unregister_filesystem(&ext3_fs_type); 4867 } 4868 4869 static inline int ext3_feature_set_ok(struct super_block *sb) 4870 { 4871 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 4872 return 0; 4873 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 4874 return 0; 4875 if (sb->s_flags & MS_RDONLY) 4876 return 1; 4877 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 4878 return 0; 4879 return 1; 4880 } 4881 MODULE_ALIAS("ext3"); 4882 #else 4883 static inline void register_as_ext3(void) { } 4884 static inline void unregister_as_ext3(void) { } 4885 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 4886 #endif 4887 4888 static struct file_system_type ext4_fs_type = { 4889 .owner = THIS_MODULE, 4890 .name = "ext4", 4891 .mount = ext4_mount, 4892 .kill_sb = kill_block_super, 4893 .fs_flags = FS_REQUIRES_DEV, 4894 }; 4895 4896 static int __init ext4_init_feat_adverts(void) 4897 { 4898 struct ext4_features *ef; 4899 int ret = -ENOMEM; 4900 4901 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4902 if (!ef) 4903 goto out; 4904 4905 ef->f_kobj.kset = ext4_kset; 4906 init_completion(&ef->f_kobj_unregister); 4907 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4908 "features"); 4909 if (ret) { 4910 kfree(ef); 4911 goto out; 4912 } 4913 4914 ext4_feat = ef; 4915 ret = 0; 4916 out: 4917 return ret; 4918 } 4919 4920 static void ext4_exit_feat_adverts(void) 4921 { 4922 kobject_put(&ext4_feat->f_kobj); 4923 wait_for_completion(&ext4_feat->f_kobj_unregister); 4924 kfree(ext4_feat); 4925 } 4926 4927 /* Shared across all ext4 file systems */ 4928 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 4929 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 4930 4931 static int __init ext4_init_fs(void) 4932 { 4933 int i, err; 4934 4935 ext4_check_flag_values(); 4936 4937 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 4938 mutex_init(&ext4__aio_mutex[i]); 4939 init_waitqueue_head(&ext4__ioend_wq[i]); 4940 } 4941 4942 err = ext4_init_pageio(); 4943 if (err) 4944 return err; 4945 err = ext4_init_system_zone(); 4946 if (err) 4947 goto out7; 4948 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4949 if (!ext4_kset) 4950 goto out6; 4951 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4952 if (!ext4_proc_root) 4953 goto out5; 4954 4955 err = ext4_init_feat_adverts(); 4956 if (err) 4957 goto out4; 4958 4959 err = ext4_init_mballoc(); 4960 if (err) 4961 goto out3; 4962 4963 err = ext4_init_xattr(); 4964 if (err) 4965 goto out2; 4966 err = init_inodecache(); 4967 if (err) 4968 goto out1; 4969 register_as_ext3(); 4970 register_as_ext2(); 4971 err = register_filesystem(&ext4_fs_type); 4972 if (err) 4973 goto out; 4974 4975 ext4_li_info = NULL; 4976 mutex_init(&ext4_li_mtx); 4977 return 0; 4978 out: 4979 unregister_as_ext2(); 4980 unregister_as_ext3(); 4981 destroy_inodecache(); 4982 out1: 4983 ext4_exit_xattr(); 4984 out2: 4985 ext4_exit_mballoc(); 4986 out3: 4987 ext4_exit_feat_adverts(); 4988 out4: 4989 remove_proc_entry("fs/ext4", NULL); 4990 out5: 4991 kset_unregister(ext4_kset); 4992 out6: 4993 ext4_exit_system_zone(); 4994 out7: 4995 ext4_exit_pageio(); 4996 return err; 4997 } 4998 4999 static void __exit ext4_exit_fs(void) 5000 { 5001 ext4_destroy_lazyinit_thread(); 5002 unregister_as_ext2(); 5003 unregister_as_ext3(); 5004 unregister_filesystem(&ext4_fs_type); 5005 destroy_inodecache(); 5006 ext4_exit_xattr(); 5007 ext4_exit_mballoc(); 5008 ext4_exit_feat_adverts(); 5009 remove_proc_entry("fs/ext4", NULL); 5010 kset_unregister(ext4_kset); 5011 ext4_exit_system_zone(); 5012 ext4_exit_pageio(); 5013 } 5014 5015 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5016 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5017 MODULE_LICENSE("GPL"); 5018 module_init(ext4_init_fs) 5019 module_exit(ext4_exit_fs) 5020