1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116 { 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122 } 123 124 static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126 { 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134 } 135 136 int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138 { 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb) 147 { 148 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 149 150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 152 return; 153 154 es->s_checksum = ext4_superblock_csum(sb, es); 155 } 156 157 void *ext4_kvmalloc(size_t size, gfp_t flags) 158 { 159 void *ret; 160 161 ret = kmalloc(size, flags); 162 if (!ret) 163 ret = __vmalloc(size, flags, PAGE_KERNEL); 164 return ret; 165 } 166 167 void *ext4_kvzalloc(size_t size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = kzalloc(size, flags); 172 if (!ret) 173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 174 return ret; 175 } 176 177 void ext4_kvfree(void *ptr) 178 { 179 if (is_vmalloc_addr(ptr)) 180 vfree(ptr); 181 else 182 kfree(ptr); 183 184 } 185 186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_block_bitmap_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 192 } 193 194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 200 } 201 202 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le32_to_cpu(bg->bg_inode_table_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 208 } 209 210 __u32 ext4_free_group_clusters(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_free_inodes_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 224 } 225 226 __u32 ext4_used_dirs_count(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 232 } 233 234 __u32 ext4_itable_unused_count(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le16_to_cpu(bg->bg_itable_unused_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 240 } 241 242 void ext4_block_bitmap_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_inode_bitmap_set(struct super_block *sb, 251 struct ext4_group_desc *bg, ext4_fsblk_t blk) 252 { 253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 256 } 257 258 void ext4_inode_table_set(struct super_block *sb, 259 struct ext4_group_desc *bg, ext4_fsblk_t blk) 260 { 261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 264 } 265 266 void ext4_free_group_clusters_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_free_inodes_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 280 } 281 282 void ext4_used_dirs_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284 { 285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 288 } 289 290 void ext4_itable_unused_set(struct super_block *sb, 291 struct ext4_group_desc *bg, __u32 count) 292 { 293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 296 } 297 298 299 /* Just increment the non-pointer handle value */ 300 static handle_t *ext4_get_nojournal(void) 301 { 302 handle_t *handle = current->journal_info; 303 unsigned long ref_cnt = (unsigned long)handle; 304 305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 306 307 ref_cnt++; 308 handle = (handle_t *)ref_cnt; 309 310 current->journal_info = handle; 311 return handle; 312 } 313 314 315 /* Decrement the non-pointer handle value */ 316 static void ext4_put_nojournal(handle_t *handle) 317 { 318 unsigned long ref_cnt = (unsigned long)handle; 319 320 BUG_ON(ref_cnt == 0); 321 322 ref_cnt--; 323 handle = (handle_t *)ref_cnt; 324 325 current->journal_info = handle; 326 } 327 328 /* 329 * Wrappers for jbd2_journal_start/end. 330 */ 331 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 332 { 333 journal_t *journal; 334 335 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 336 if (sb->s_flags & MS_RDONLY) 337 return ERR_PTR(-EROFS); 338 339 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE); 340 journal = EXT4_SB(sb)->s_journal; 341 if (!journal) 342 return ext4_get_nojournal(); 343 /* 344 * Special case here: if the journal has aborted behind our 345 * backs (eg. EIO in the commit thread), then we still need to 346 * take the FS itself readonly cleanly. 347 */ 348 if (is_journal_aborted(journal)) { 349 ext4_abort(sb, "Detected aborted journal"); 350 return ERR_PTR(-EROFS); 351 } 352 return jbd2_journal_start(journal, nblocks); 353 } 354 355 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 356 { 357 struct super_block *sb; 358 int err; 359 int rc; 360 361 if (!ext4_handle_valid(handle)) { 362 ext4_put_nojournal(handle); 363 return 0; 364 } 365 sb = handle->h_transaction->t_journal->j_private; 366 err = handle->h_err; 367 rc = jbd2_journal_stop(handle); 368 369 if (!err) 370 err = rc; 371 if (err) 372 __ext4_std_error(sb, where, line, err); 373 return err; 374 } 375 376 void ext4_journal_abort_handle(const char *caller, unsigned int line, 377 const char *err_fn, struct buffer_head *bh, 378 handle_t *handle, int err) 379 { 380 char nbuf[16]; 381 const char *errstr = ext4_decode_error(NULL, err, nbuf); 382 383 BUG_ON(!ext4_handle_valid(handle)); 384 385 if (bh) 386 BUFFER_TRACE(bh, "abort"); 387 388 if (!handle->h_err) 389 handle->h_err = err; 390 391 if (is_handle_aborted(handle)) 392 return; 393 394 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 395 caller, line, errstr, err_fn); 396 397 jbd2_journal_abort_handle(handle); 398 } 399 400 static void __save_error_info(struct super_block *sb, const char *func, 401 unsigned int line) 402 { 403 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 404 405 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 406 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 407 es->s_last_error_time = cpu_to_le32(get_seconds()); 408 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 409 es->s_last_error_line = cpu_to_le32(line); 410 if (!es->s_first_error_time) { 411 es->s_first_error_time = es->s_last_error_time; 412 strncpy(es->s_first_error_func, func, 413 sizeof(es->s_first_error_func)); 414 es->s_first_error_line = cpu_to_le32(line); 415 es->s_first_error_ino = es->s_last_error_ino; 416 es->s_first_error_block = es->s_last_error_block; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, const char *func, 428 unsigned int line) 429 { 430 __save_error_info(sb, func, line); 431 ext4_commit_super(sb, 1); 432 } 433 434 /* 435 * The del_gendisk() function uninitializes the disk-specific data 436 * structures, including the bdi structure, without telling anyone 437 * else. Once this happens, any attempt to call mark_buffer_dirty() 438 * (for example, by ext4_commit_super), will cause a kernel OOPS. 439 * This is a kludge to prevent these oops until we can put in a proper 440 * hook in del_gendisk() to inform the VFS and file system layers. 441 */ 442 static int block_device_ejected(struct super_block *sb) 443 { 444 struct inode *bd_inode = sb->s_bdev->bd_inode; 445 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 446 447 return bdi->dev == NULL; 448 } 449 450 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 451 { 452 struct super_block *sb = journal->j_private; 453 struct ext4_sb_info *sbi = EXT4_SB(sb); 454 int error = is_journal_aborted(journal); 455 struct ext4_journal_cb_entry *jce, *tmp; 456 457 spin_lock(&sbi->s_md_lock); 458 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 459 list_del_init(&jce->jce_list); 460 spin_unlock(&sbi->s_md_lock); 461 jce->jce_func(sb, jce, error); 462 spin_lock(&sbi->s_md_lock); 463 } 464 spin_unlock(&sbi->s_md_lock); 465 } 466 467 /* Deal with the reporting of failure conditions on a filesystem such as 468 * inconsistencies detected or read IO failures. 469 * 470 * On ext2, we can store the error state of the filesystem in the 471 * superblock. That is not possible on ext4, because we may have other 472 * write ordering constraints on the superblock which prevent us from 473 * writing it out straight away; and given that the journal is about to 474 * be aborted, we can't rely on the current, or future, transactions to 475 * write out the superblock safely. 476 * 477 * We'll just use the jbd2_journal_abort() error code to record an error in 478 * the journal instead. On recovery, the journal will complain about 479 * that error until we've noted it down and cleared it. 480 */ 481 482 static void ext4_handle_error(struct super_block *sb) 483 { 484 if (sb->s_flags & MS_RDONLY) 485 return; 486 487 if (!test_opt(sb, ERRORS_CONT)) { 488 journal_t *journal = EXT4_SB(sb)->s_journal; 489 490 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 491 if (journal) 492 jbd2_journal_abort(journal, -EIO); 493 } 494 if (test_opt(sb, ERRORS_RO)) { 495 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 496 sb->s_flags |= MS_RDONLY; 497 } 498 if (test_opt(sb, ERRORS_PANIC)) 499 panic("EXT4-fs (device %s): panic forced after error\n", 500 sb->s_id); 501 } 502 503 void __ext4_error(struct super_block *sb, const char *function, 504 unsigned int line, const char *fmt, ...) 505 { 506 struct va_format vaf; 507 va_list args; 508 509 va_start(args, fmt); 510 vaf.fmt = fmt; 511 vaf.va = &args; 512 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 513 sb->s_id, function, line, current->comm, &vaf); 514 va_end(args); 515 save_error_info(sb, function, line); 516 517 ext4_handle_error(sb); 518 } 519 520 void ext4_error_inode(struct inode *inode, const char *function, 521 unsigned int line, ext4_fsblk_t block, 522 const char *fmt, ...) 523 { 524 va_list args; 525 struct va_format vaf; 526 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 527 528 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 529 es->s_last_error_block = cpu_to_le64(block); 530 save_error_info(inode->i_sb, function, line); 531 va_start(args, fmt); 532 vaf.fmt = fmt; 533 vaf.va = &args; 534 if (block) 535 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 536 "inode #%lu: block %llu: comm %s: %pV\n", 537 inode->i_sb->s_id, function, line, inode->i_ino, 538 block, current->comm, &vaf); 539 else 540 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 541 "inode #%lu: comm %s: %pV\n", 542 inode->i_sb->s_id, function, line, inode->i_ino, 543 current->comm, &vaf); 544 va_end(args); 545 546 ext4_handle_error(inode->i_sb); 547 } 548 549 void ext4_error_file(struct file *file, const char *function, 550 unsigned int line, ext4_fsblk_t block, 551 const char *fmt, ...) 552 { 553 va_list args; 554 struct va_format vaf; 555 struct ext4_super_block *es; 556 struct inode *inode = file->f_dentry->d_inode; 557 char pathname[80], *path; 558 559 es = EXT4_SB(inode->i_sb)->s_es; 560 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 561 save_error_info(inode->i_sb, function, line); 562 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 563 if (IS_ERR(path)) 564 path = "(unknown)"; 565 va_start(args, fmt); 566 vaf.fmt = fmt; 567 vaf.va = &args; 568 if (block) 569 printk(KERN_CRIT 570 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 571 "block %llu: comm %s: path %s: %pV\n", 572 inode->i_sb->s_id, function, line, inode->i_ino, 573 block, current->comm, path, &vaf); 574 else 575 printk(KERN_CRIT 576 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 577 "comm %s: path %s: %pV\n", 578 inode->i_sb->s_id, function, line, inode->i_ino, 579 current->comm, path, &vaf); 580 va_end(args); 581 582 ext4_handle_error(inode->i_sb); 583 } 584 585 static const char *ext4_decode_error(struct super_block *sb, int errno, 586 char nbuf[16]) 587 { 588 char *errstr = NULL; 589 590 switch (errno) { 591 case -EIO: 592 errstr = "IO failure"; 593 break; 594 case -ENOMEM: 595 errstr = "Out of memory"; 596 break; 597 case -EROFS: 598 if (!sb || (EXT4_SB(sb)->s_journal && 599 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 600 errstr = "Journal has aborted"; 601 else 602 errstr = "Readonly filesystem"; 603 break; 604 default: 605 /* If the caller passed in an extra buffer for unknown 606 * errors, textualise them now. Else we just return 607 * NULL. */ 608 if (nbuf) { 609 /* Check for truncated error codes... */ 610 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 611 errstr = nbuf; 612 } 613 break; 614 } 615 616 return errstr; 617 } 618 619 /* __ext4_std_error decodes expected errors from journaling functions 620 * automatically and invokes the appropriate error response. */ 621 622 void __ext4_std_error(struct super_block *sb, const char *function, 623 unsigned int line, int errno) 624 { 625 char nbuf[16]; 626 const char *errstr; 627 628 /* Special case: if the error is EROFS, and we're not already 629 * inside a transaction, then there's really no point in logging 630 * an error. */ 631 if (errno == -EROFS && journal_current_handle() == NULL && 632 (sb->s_flags & MS_RDONLY)) 633 return; 634 635 errstr = ext4_decode_error(sb, errno, nbuf); 636 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 637 sb->s_id, function, line, errstr); 638 save_error_info(sb, function, line); 639 640 ext4_handle_error(sb); 641 } 642 643 /* 644 * ext4_abort is a much stronger failure handler than ext4_error. The 645 * abort function may be used to deal with unrecoverable failures such 646 * as journal IO errors or ENOMEM at a critical moment in log management. 647 * 648 * We unconditionally force the filesystem into an ABORT|READONLY state, 649 * unless the error response on the fs has been set to panic in which 650 * case we take the easy way out and panic immediately. 651 */ 652 653 void __ext4_abort(struct super_block *sb, const char *function, 654 unsigned int line, const char *fmt, ...) 655 { 656 va_list args; 657 658 save_error_info(sb, function, line); 659 va_start(args, fmt); 660 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 661 function, line); 662 vprintk(fmt, args); 663 printk("\n"); 664 va_end(args); 665 666 if ((sb->s_flags & MS_RDONLY) == 0) { 667 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 668 sb->s_flags |= MS_RDONLY; 669 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 670 if (EXT4_SB(sb)->s_journal) 671 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 672 save_error_info(sb, function, line); 673 } 674 if (test_opt(sb, ERRORS_PANIC)) 675 panic("EXT4-fs panic from previous error\n"); 676 } 677 678 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 679 { 680 struct va_format vaf; 681 va_list args; 682 683 va_start(args, fmt); 684 vaf.fmt = fmt; 685 vaf.va = &args; 686 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 687 va_end(args); 688 } 689 690 void __ext4_warning(struct super_block *sb, const char *function, 691 unsigned int line, const char *fmt, ...) 692 { 693 struct va_format vaf; 694 va_list args; 695 696 va_start(args, fmt); 697 vaf.fmt = fmt; 698 vaf.va = &args; 699 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 700 sb->s_id, function, line, &vaf); 701 va_end(args); 702 } 703 704 void __ext4_grp_locked_error(const char *function, unsigned int line, 705 struct super_block *sb, ext4_group_t grp, 706 unsigned long ino, ext4_fsblk_t block, 707 const char *fmt, ...) 708 __releases(bitlock) 709 __acquires(bitlock) 710 { 711 struct va_format vaf; 712 va_list args; 713 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 714 715 es->s_last_error_ino = cpu_to_le32(ino); 716 es->s_last_error_block = cpu_to_le64(block); 717 __save_error_info(sb, function, line); 718 719 va_start(args, fmt); 720 721 vaf.fmt = fmt; 722 vaf.va = &args; 723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 724 sb->s_id, function, line, grp); 725 if (ino) 726 printk(KERN_CONT "inode %lu: ", ino); 727 if (block) 728 printk(KERN_CONT "block %llu:", (unsigned long long) block); 729 printk(KERN_CONT "%pV\n", &vaf); 730 va_end(args); 731 732 if (test_opt(sb, ERRORS_CONT)) { 733 ext4_commit_super(sb, 0); 734 return; 735 } 736 737 ext4_unlock_group(sb, grp); 738 ext4_handle_error(sb); 739 /* 740 * We only get here in the ERRORS_RO case; relocking the group 741 * may be dangerous, but nothing bad will happen since the 742 * filesystem will have already been marked read/only and the 743 * journal has been aborted. We return 1 as a hint to callers 744 * who might what to use the return value from 745 * ext4_grp_locked_error() to distinguish between the 746 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 747 * aggressively from the ext4 function in question, with a 748 * more appropriate error code. 749 */ 750 ext4_lock_group(sb, grp); 751 return; 752 } 753 754 void ext4_update_dynamic_rev(struct super_block *sb) 755 { 756 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 757 758 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 759 return; 760 761 ext4_warning(sb, 762 "updating to rev %d because of new feature flag, " 763 "running e2fsck is recommended", 764 EXT4_DYNAMIC_REV); 765 766 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 767 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 768 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 769 /* leave es->s_feature_*compat flags alone */ 770 /* es->s_uuid will be set by e2fsck if empty */ 771 772 /* 773 * The rest of the superblock fields should be zero, and if not it 774 * means they are likely already in use, so leave them alone. We 775 * can leave it up to e2fsck to clean up any inconsistencies there. 776 */ 777 } 778 779 /* 780 * Open the external journal device 781 */ 782 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 783 { 784 struct block_device *bdev; 785 char b[BDEVNAME_SIZE]; 786 787 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 788 if (IS_ERR(bdev)) 789 goto fail; 790 return bdev; 791 792 fail: 793 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 794 __bdevname(dev, b), PTR_ERR(bdev)); 795 return NULL; 796 } 797 798 /* 799 * Release the journal device 800 */ 801 static int ext4_blkdev_put(struct block_device *bdev) 802 { 803 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 804 } 805 806 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 807 { 808 struct block_device *bdev; 809 int ret = -ENODEV; 810 811 bdev = sbi->journal_bdev; 812 if (bdev) { 813 ret = ext4_blkdev_put(bdev); 814 sbi->journal_bdev = NULL; 815 } 816 return ret; 817 } 818 819 static inline struct inode *orphan_list_entry(struct list_head *l) 820 { 821 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 822 } 823 824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 825 { 826 struct list_head *l; 827 828 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 829 le32_to_cpu(sbi->s_es->s_last_orphan)); 830 831 printk(KERN_ERR "sb_info orphan list:\n"); 832 list_for_each(l, &sbi->s_orphan) { 833 struct inode *inode = orphan_list_entry(l); 834 printk(KERN_ERR " " 835 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 836 inode->i_sb->s_id, inode->i_ino, inode, 837 inode->i_mode, inode->i_nlink, 838 NEXT_ORPHAN(inode)); 839 } 840 } 841 842 static void ext4_put_super(struct super_block *sb) 843 { 844 struct ext4_sb_info *sbi = EXT4_SB(sb); 845 struct ext4_super_block *es = sbi->s_es; 846 int i, err; 847 848 ext4_unregister_li_request(sb); 849 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 850 851 flush_workqueue(sbi->dio_unwritten_wq); 852 destroy_workqueue(sbi->dio_unwritten_wq); 853 854 if (sbi->s_journal) { 855 err = jbd2_journal_destroy(sbi->s_journal); 856 sbi->s_journal = NULL; 857 if (err < 0) 858 ext4_abort(sb, "Couldn't clean up the journal"); 859 } 860 861 del_timer(&sbi->s_err_report); 862 ext4_release_system_zone(sb); 863 ext4_mb_release(sb); 864 ext4_ext_release(sb); 865 ext4_xattr_put_super(sb); 866 867 if (!(sb->s_flags & MS_RDONLY)) { 868 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 869 es->s_state = cpu_to_le16(sbi->s_mount_state); 870 } 871 if (!(sb->s_flags & MS_RDONLY)) 872 ext4_commit_super(sb, 1); 873 874 if (sbi->s_proc) { 875 remove_proc_entry("options", sbi->s_proc); 876 remove_proc_entry(sb->s_id, ext4_proc_root); 877 } 878 kobject_del(&sbi->s_kobj); 879 880 for (i = 0; i < sbi->s_gdb_count; i++) 881 brelse(sbi->s_group_desc[i]); 882 ext4_kvfree(sbi->s_group_desc); 883 ext4_kvfree(sbi->s_flex_groups); 884 percpu_counter_destroy(&sbi->s_freeclusters_counter); 885 percpu_counter_destroy(&sbi->s_freeinodes_counter); 886 percpu_counter_destroy(&sbi->s_dirs_counter); 887 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 888 brelse(sbi->s_sbh); 889 #ifdef CONFIG_QUOTA 890 for (i = 0; i < MAXQUOTAS; i++) 891 kfree(sbi->s_qf_names[i]); 892 #endif 893 894 /* Debugging code just in case the in-memory inode orphan list 895 * isn't empty. The on-disk one can be non-empty if we've 896 * detected an error and taken the fs readonly, but the 897 * in-memory list had better be clean by this point. */ 898 if (!list_empty(&sbi->s_orphan)) 899 dump_orphan_list(sb, sbi); 900 J_ASSERT(list_empty(&sbi->s_orphan)); 901 902 invalidate_bdev(sb->s_bdev); 903 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 904 /* 905 * Invalidate the journal device's buffers. We don't want them 906 * floating about in memory - the physical journal device may 907 * hotswapped, and it breaks the `ro-after' testing code. 908 */ 909 sync_blockdev(sbi->journal_bdev); 910 invalidate_bdev(sbi->journal_bdev); 911 ext4_blkdev_remove(sbi); 912 } 913 if (sbi->s_mmp_tsk) 914 kthread_stop(sbi->s_mmp_tsk); 915 sb->s_fs_info = NULL; 916 /* 917 * Now that we are completely done shutting down the 918 * superblock, we need to actually destroy the kobject. 919 */ 920 kobject_put(&sbi->s_kobj); 921 wait_for_completion(&sbi->s_kobj_unregister); 922 if (sbi->s_chksum_driver) 923 crypto_free_shash(sbi->s_chksum_driver); 924 kfree(sbi->s_blockgroup_lock); 925 kfree(sbi); 926 } 927 928 static struct kmem_cache *ext4_inode_cachep; 929 930 /* 931 * Called inside transaction, so use GFP_NOFS 932 */ 933 static struct inode *ext4_alloc_inode(struct super_block *sb) 934 { 935 struct ext4_inode_info *ei; 936 937 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 938 if (!ei) 939 return NULL; 940 941 ei->vfs_inode.i_version = 1; 942 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 943 INIT_LIST_HEAD(&ei->i_prealloc_list); 944 spin_lock_init(&ei->i_prealloc_lock); 945 ext4_es_init_tree(&ei->i_es_tree); 946 rwlock_init(&ei->i_es_lock); 947 ei->i_reserved_data_blocks = 0; 948 ei->i_reserved_meta_blocks = 0; 949 ei->i_allocated_meta_blocks = 0; 950 ei->i_da_metadata_calc_len = 0; 951 ei->i_da_metadata_calc_last_lblock = 0; 952 spin_lock_init(&(ei->i_block_reservation_lock)); 953 #ifdef CONFIG_QUOTA 954 ei->i_reserved_quota = 0; 955 #endif 956 ei->jinode = NULL; 957 INIT_LIST_HEAD(&ei->i_completed_io_list); 958 spin_lock_init(&ei->i_completed_io_lock); 959 ei->i_sync_tid = 0; 960 ei->i_datasync_tid = 0; 961 atomic_set(&ei->i_ioend_count, 0); 962 atomic_set(&ei->i_unwritten, 0); 963 964 return &ei->vfs_inode; 965 } 966 967 static int ext4_drop_inode(struct inode *inode) 968 { 969 int drop = generic_drop_inode(inode); 970 971 trace_ext4_drop_inode(inode, drop); 972 return drop; 973 } 974 975 static void ext4_i_callback(struct rcu_head *head) 976 { 977 struct inode *inode = container_of(head, struct inode, i_rcu); 978 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 979 } 980 981 static void ext4_destroy_inode(struct inode *inode) 982 { 983 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 984 ext4_msg(inode->i_sb, KERN_ERR, 985 "Inode %lu (%p): orphan list check failed!", 986 inode->i_ino, EXT4_I(inode)); 987 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 988 EXT4_I(inode), sizeof(struct ext4_inode_info), 989 true); 990 dump_stack(); 991 } 992 call_rcu(&inode->i_rcu, ext4_i_callback); 993 } 994 995 static void init_once(void *foo) 996 { 997 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 998 999 INIT_LIST_HEAD(&ei->i_orphan); 1000 init_rwsem(&ei->xattr_sem); 1001 init_rwsem(&ei->i_data_sem); 1002 inode_init_once(&ei->vfs_inode); 1003 } 1004 1005 static int init_inodecache(void) 1006 { 1007 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1008 sizeof(struct ext4_inode_info), 1009 0, (SLAB_RECLAIM_ACCOUNT| 1010 SLAB_MEM_SPREAD), 1011 init_once); 1012 if (ext4_inode_cachep == NULL) 1013 return -ENOMEM; 1014 return 0; 1015 } 1016 1017 static void destroy_inodecache(void) 1018 { 1019 /* 1020 * Make sure all delayed rcu free inodes are flushed before we 1021 * destroy cache. 1022 */ 1023 rcu_barrier(); 1024 kmem_cache_destroy(ext4_inode_cachep); 1025 } 1026 1027 void ext4_clear_inode(struct inode *inode) 1028 { 1029 invalidate_inode_buffers(inode); 1030 clear_inode(inode); 1031 dquot_drop(inode); 1032 ext4_discard_preallocations(inode); 1033 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1034 if (EXT4_I(inode)->jinode) { 1035 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1036 EXT4_I(inode)->jinode); 1037 jbd2_free_inode(EXT4_I(inode)->jinode); 1038 EXT4_I(inode)->jinode = NULL; 1039 } 1040 } 1041 1042 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1043 u64 ino, u32 generation) 1044 { 1045 struct inode *inode; 1046 1047 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1048 return ERR_PTR(-ESTALE); 1049 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1050 return ERR_PTR(-ESTALE); 1051 1052 /* iget isn't really right if the inode is currently unallocated!! 1053 * 1054 * ext4_read_inode will return a bad_inode if the inode had been 1055 * deleted, so we should be safe. 1056 * 1057 * Currently we don't know the generation for parent directory, so 1058 * a generation of 0 means "accept any" 1059 */ 1060 inode = ext4_iget(sb, ino); 1061 if (IS_ERR(inode)) 1062 return ERR_CAST(inode); 1063 if (generation && inode->i_generation != generation) { 1064 iput(inode); 1065 return ERR_PTR(-ESTALE); 1066 } 1067 1068 return inode; 1069 } 1070 1071 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1072 int fh_len, int fh_type) 1073 { 1074 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1075 ext4_nfs_get_inode); 1076 } 1077 1078 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1079 int fh_len, int fh_type) 1080 { 1081 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1082 ext4_nfs_get_inode); 1083 } 1084 1085 /* 1086 * Try to release metadata pages (indirect blocks, directories) which are 1087 * mapped via the block device. Since these pages could have journal heads 1088 * which would prevent try_to_free_buffers() from freeing them, we must use 1089 * jbd2 layer's try_to_free_buffers() function to release them. 1090 */ 1091 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1092 gfp_t wait) 1093 { 1094 journal_t *journal = EXT4_SB(sb)->s_journal; 1095 1096 WARN_ON(PageChecked(page)); 1097 if (!page_has_buffers(page)) 1098 return 0; 1099 if (journal) 1100 return jbd2_journal_try_to_free_buffers(journal, page, 1101 wait & ~__GFP_WAIT); 1102 return try_to_free_buffers(page); 1103 } 1104 1105 #ifdef CONFIG_QUOTA 1106 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1107 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1108 1109 static int ext4_write_dquot(struct dquot *dquot); 1110 static int ext4_acquire_dquot(struct dquot *dquot); 1111 static int ext4_release_dquot(struct dquot *dquot); 1112 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1113 static int ext4_write_info(struct super_block *sb, int type); 1114 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1115 struct path *path); 1116 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1117 int format_id); 1118 static int ext4_quota_off(struct super_block *sb, int type); 1119 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1120 static int ext4_quota_on_mount(struct super_block *sb, int type); 1121 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1122 size_t len, loff_t off); 1123 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1124 const char *data, size_t len, loff_t off); 1125 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1126 unsigned int flags); 1127 static int ext4_enable_quotas(struct super_block *sb); 1128 1129 static const struct dquot_operations ext4_quota_operations = { 1130 .get_reserved_space = ext4_get_reserved_space, 1131 .write_dquot = ext4_write_dquot, 1132 .acquire_dquot = ext4_acquire_dquot, 1133 .release_dquot = ext4_release_dquot, 1134 .mark_dirty = ext4_mark_dquot_dirty, 1135 .write_info = ext4_write_info, 1136 .alloc_dquot = dquot_alloc, 1137 .destroy_dquot = dquot_destroy, 1138 }; 1139 1140 static const struct quotactl_ops ext4_qctl_operations = { 1141 .quota_on = ext4_quota_on, 1142 .quota_off = ext4_quota_off, 1143 .quota_sync = dquot_quota_sync, 1144 .get_info = dquot_get_dqinfo, 1145 .set_info = dquot_set_dqinfo, 1146 .get_dqblk = dquot_get_dqblk, 1147 .set_dqblk = dquot_set_dqblk 1148 }; 1149 1150 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1151 .quota_on_meta = ext4_quota_on_sysfile, 1152 .quota_off = ext4_quota_off_sysfile, 1153 .quota_sync = dquot_quota_sync, 1154 .get_info = dquot_get_dqinfo, 1155 .set_info = dquot_set_dqinfo, 1156 .get_dqblk = dquot_get_dqblk, 1157 .set_dqblk = dquot_set_dqblk 1158 }; 1159 #endif 1160 1161 static const struct super_operations ext4_sops = { 1162 .alloc_inode = ext4_alloc_inode, 1163 .destroy_inode = ext4_destroy_inode, 1164 .write_inode = ext4_write_inode, 1165 .dirty_inode = ext4_dirty_inode, 1166 .drop_inode = ext4_drop_inode, 1167 .evict_inode = ext4_evict_inode, 1168 .put_super = ext4_put_super, 1169 .sync_fs = ext4_sync_fs, 1170 .freeze_fs = ext4_freeze, 1171 .unfreeze_fs = ext4_unfreeze, 1172 .statfs = ext4_statfs, 1173 .remount_fs = ext4_remount, 1174 .show_options = ext4_show_options, 1175 #ifdef CONFIG_QUOTA 1176 .quota_read = ext4_quota_read, 1177 .quota_write = ext4_quota_write, 1178 #endif 1179 .bdev_try_to_free_page = bdev_try_to_free_page, 1180 }; 1181 1182 static const struct super_operations ext4_nojournal_sops = { 1183 .alloc_inode = ext4_alloc_inode, 1184 .destroy_inode = ext4_destroy_inode, 1185 .write_inode = ext4_write_inode, 1186 .dirty_inode = ext4_dirty_inode, 1187 .drop_inode = ext4_drop_inode, 1188 .evict_inode = ext4_evict_inode, 1189 .put_super = ext4_put_super, 1190 .statfs = ext4_statfs, 1191 .remount_fs = ext4_remount, 1192 .show_options = ext4_show_options, 1193 #ifdef CONFIG_QUOTA 1194 .quota_read = ext4_quota_read, 1195 .quota_write = ext4_quota_write, 1196 #endif 1197 .bdev_try_to_free_page = bdev_try_to_free_page, 1198 }; 1199 1200 static const struct export_operations ext4_export_ops = { 1201 .fh_to_dentry = ext4_fh_to_dentry, 1202 .fh_to_parent = ext4_fh_to_parent, 1203 .get_parent = ext4_get_parent, 1204 }; 1205 1206 enum { 1207 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1208 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1209 Opt_nouid32, Opt_debug, Opt_removed, 1210 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1211 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1212 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1213 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1214 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1215 Opt_data_err_abort, Opt_data_err_ignore, 1216 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1217 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1218 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1219 Opt_usrquota, Opt_grpquota, Opt_i_version, 1220 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1221 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1222 Opt_inode_readahead_blks, Opt_journal_ioprio, 1223 Opt_dioread_nolock, Opt_dioread_lock, 1224 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1225 Opt_max_dir_size_kb, 1226 }; 1227 1228 static const match_table_t tokens = { 1229 {Opt_bsd_df, "bsddf"}, 1230 {Opt_minix_df, "minixdf"}, 1231 {Opt_grpid, "grpid"}, 1232 {Opt_grpid, "bsdgroups"}, 1233 {Opt_nogrpid, "nogrpid"}, 1234 {Opt_nogrpid, "sysvgroups"}, 1235 {Opt_resgid, "resgid=%u"}, 1236 {Opt_resuid, "resuid=%u"}, 1237 {Opt_sb, "sb=%u"}, 1238 {Opt_err_cont, "errors=continue"}, 1239 {Opt_err_panic, "errors=panic"}, 1240 {Opt_err_ro, "errors=remount-ro"}, 1241 {Opt_nouid32, "nouid32"}, 1242 {Opt_debug, "debug"}, 1243 {Opt_removed, "oldalloc"}, 1244 {Opt_removed, "orlov"}, 1245 {Opt_user_xattr, "user_xattr"}, 1246 {Opt_nouser_xattr, "nouser_xattr"}, 1247 {Opt_acl, "acl"}, 1248 {Opt_noacl, "noacl"}, 1249 {Opt_noload, "norecovery"}, 1250 {Opt_noload, "noload"}, 1251 {Opt_removed, "nobh"}, 1252 {Opt_removed, "bh"}, 1253 {Opt_commit, "commit=%u"}, 1254 {Opt_min_batch_time, "min_batch_time=%u"}, 1255 {Opt_max_batch_time, "max_batch_time=%u"}, 1256 {Opt_journal_dev, "journal_dev=%u"}, 1257 {Opt_journal_checksum, "journal_checksum"}, 1258 {Opt_journal_async_commit, "journal_async_commit"}, 1259 {Opt_abort, "abort"}, 1260 {Opt_data_journal, "data=journal"}, 1261 {Opt_data_ordered, "data=ordered"}, 1262 {Opt_data_writeback, "data=writeback"}, 1263 {Opt_data_err_abort, "data_err=abort"}, 1264 {Opt_data_err_ignore, "data_err=ignore"}, 1265 {Opt_offusrjquota, "usrjquota="}, 1266 {Opt_usrjquota, "usrjquota=%s"}, 1267 {Opt_offgrpjquota, "grpjquota="}, 1268 {Opt_grpjquota, "grpjquota=%s"}, 1269 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1270 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1271 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1272 {Opt_grpquota, "grpquota"}, 1273 {Opt_noquota, "noquota"}, 1274 {Opt_quota, "quota"}, 1275 {Opt_usrquota, "usrquota"}, 1276 {Opt_barrier, "barrier=%u"}, 1277 {Opt_barrier, "barrier"}, 1278 {Opt_nobarrier, "nobarrier"}, 1279 {Opt_i_version, "i_version"}, 1280 {Opt_stripe, "stripe=%u"}, 1281 {Opt_delalloc, "delalloc"}, 1282 {Opt_nodelalloc, "nodelalloc"}, 1283 {Opt_mblk_io_submit, "mblk_io_submit"}, 1284 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1285 {Opt_block_validity, "block_validity"}, 1286 {Opt_noblock_validity, "noblock_validity"}, 1287 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1288 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1289 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1290 {Opt_auto_da_alloc, "auto_da_alloc"}, 1291 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1292 {Opt_dioread_nolock, "dioread_nolock"}, 1293 {Opt_dioread_lock, "dioread_lock"}, 1294 {Opt_discard, "discard"}, 1295 {Opt_nodiscard, "nodiscard"}, 1296 {Opt_init_itable, "init_itable=%u"}, 1297 {Opt_init_itable, "init_itable"}, 1298 {Opt_noinit_itable, "noinit_itable"}, 1299 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1300 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1301 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1302 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1303 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1304 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1305 {Opt_err, NULL}, 1306 }; 1307 1308 static ext4_fsblk_t get_sb_block(void **data) 1309 { 1310 ext4_fsblk_t sb_block; 1311 char *options = (char *) *data; 1312 1313 if (!options || strncmp(options, "sb=", 3) != 0) 1314 return 1; /* Default location */ 1315 1316 options += 3; 1317 /* TODO: use simple_strtoll with >32bit ext4 */ 1318 sb_block = simple_strtoul(options, &options, 0); 1319 if (*options && *options != ',') { 1320 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1321 (char *) *data); 1322 return 1; 1323 } 1324 if (*options == ',') 1325 options++; 1326 *data = (void *) options; 1327 1328 return sb_block; 1329 } 1330 1331 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1332 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1333 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1334 1335 #ifdef CONFIG_QUOTA 1336 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1337 { 1338 struct ext4_sb_info *sbi = EXT4_SB(sb); 1339 char *qname; 1340 1341 if (sb_any_quota_loaded(sb) && 1342 !sbi->s_qf_names[qtype]) { 1343 ext4_msg(sb, KERN_ERR, 1344 "Cannot change journaled " 1345 "quota options when quota turned on"); 1346 return -1; 1347 } 1348 qname = match_strdup(args); 1349 if (!qname) { 1350 ext4_msg(sb, KERN_ERR, 1351 "Not enough memory for storing quotafile name"); 1352 return -1; 1353 } 1354 if (sbi->s_qf_names[qtype] && 1355 strcmp(sbi->s_qf_names[qtype], qname)) { 1356 ext4_msg(sb, KERN_ERR, 1357 "%s quota file already specified", QTYPE2NAME(qtype)); 1358 kfree(qname); 1359 return -1; 1360 } 1361 sbi->s_qf_names[qtype] = qname; 1362 if (strchr(sbi->s_qf_names[qtype], '/')) { 1363 ext4_msg(sb, KERN_ERR, 1364 "quotafile must be on filesystem root"); 1365 kfree(sbi->s_qf_names[qtype]); 1366 sbi->s_qf_names[qtype] = NULL; 1367 return -1; 1368 } 1369 set_opt(sb, QUOTA); 1370 return 1; 1371 } 1372 1373 static int clear_qf_name(struct super_block *sb, int qtype) 1374 { 1375 1376 struct ext4_sb_info *sbi = EXT4_SB(sb); 1377 1378 if (sb_any_quota_loaded(sb) && 1379 sbi->s_qf_names[qtype]) { 1380 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1381 " when quota turned on"); 1382 return -1; 1383 } 1384 /* 1385 * The space will be released later when all options are confirmed 1386 * to be correct 1387 */ 1388 sbi->s_qf_names[qtype] = NULL; 1389 return 1; 1390 } 1391 #endif 1392 1393 #define MOPT_SET 0x0001 1394 #define MOPT_CLEAR 0x0002 1395 #define MOPT_NOSUPPORT 0x0004 1396 #define MOPT_EXPLICIT 0x0008 1397 #define MOPT_CLEAR_ERR 0x0010 1398 #define MOPT_GTE0 0x0020 1399 #ifdef CONFIG_QUOTA 1400 #define MOPT_Q 0 1401 #define MOPT_QFMT 0x0040 1402 #else 1403 #define MOPT_Q MOPT_NOSUPPORT 1404 #define MOPT_QFMT MOPT_NOSUPPORT 1405 #endif 1406 #define MOPT_DATAJ 0x0080 1407 1408 static const struct mount_opts { 1409 int token; 1410 int mount_opt; 1411 int flags; 1412 } ext4_mount_opts[] = { 1413 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1414 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1415 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1416 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1417 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1418 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1419 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1420 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1421 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1422 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1423 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1424 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1425 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1426 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1427 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1428 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1429 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1430 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1431 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1432 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1433 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1434 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1435 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1436 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1437 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1438 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1439 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1440 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1441 {Opt_commit, 0, MOPT_GTE0}, 1442 {Opt_max_batch_time, 0, MOPT_GTE0}, 1443 {Opt_min_batch_time, 0, MOPT_GTE0}, 1444 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1445 {Opt_init_itable, 0, MOPT_GTE0}, 1446 {Opt_stripe, 0, MOPT_GTE0}, 1447 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1448 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1449 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1450 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1451 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1452 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1453 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1454 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1455 #else 1456 {Opt_acl, 0, MOPT_NOSUPPORT}, 1457 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1458 #endif 1459 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1460 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1461 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1462 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1463 MOPT_SET | MOPT_Q}, 1464 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1465 MOPT_SET | MOPT_Q}, 1466 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1467 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1468 {Opt_usrjquota, 0, MOPT_Q}, 1469 {Opt_grpjquota, 0, MOPT_Q}, 1470 {Opt_offusrjquota, 0, MOPT_Q}, 1471 {Opt_offgrpjquota, 0, MOPT_Q}, 1472 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1473 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1474 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1475 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1476 {Opt_err, 0, 0} 1477 }; 1478 1479 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1480 substring_t *args, unsigned long *journal_devnum, 1481 unsigned int *journal_ioprio, int is_remount) 1482 { 1483 struct ext4_sb_info *sbi = EXT4_SB(sb); 1484 const struct mount_opts *m; 1485 kuid_t uid; 1486 kgid_t gid; 1487 int arg = 0; 1488 1489 #ifdef CONFIG_QUOTA 1490 if (token == Opt_usrjquota) 1491 return set_qf_name(sb, USRQUOTA, &args[0]); 1492 else if (token == Opt_grpjquota) 1493 return set_qf_name(sb, GRPQUOTA, &args[0]); 1494 else if (token == Opt_offusrjquota) 1495 return clear_qf_name(sb, USRQUOTA); 1496 else if (token == Opt_offgrpjquota) 1497 return clear_qf_name(sb, GRPQUOTA); 1498 #endif 1499 if (args->from && match_int(args, &arg)) 1500 return -1; 1501 switch (token) { 1502 case Opt_noacl: 1503 case Opt_nouser_xattr: 1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1505 break; 1506 case Opt_sb: 1507 return 1; /* handled by get_sb_block() */ 1508 case Opt_removed: 1509 ext4_msg(sb, KERN_WARNING, 1510 "Ignoring removed %s option", opt); 1511 return 1; 1512 case Opt_resuid: 1513 uid = make_kuid(current_user_ns(), arg); 1514 if (!uid_valid(uid)) { 1515 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1516 return -1; 1517 } 1518 sbi->s_resuid = uid; 1519 return 1; 1520 case Opt_resgid: 1521 gid = make_kgid(current_user_ns(), arg); 1522 if (!gid_valid(gid)) { 1523 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1524 return -1; 1525 } 1526 sbi->s_resgid = gid; 1527 return 1; 1528 case Opt_abort: 1529 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1530 return 1; 1531 case Opt_i_version: 1532 sb->s_flags |= MS_I_VERSION; 1533 return 1; 1534 case Opt_journal_dev: 1535 if (is_remount) { 1536 ext4_msg(sb, KERN_ERR, 1537 "Cannot specify journal on remount"); 1538 return -1; 1539 } 1540 *journal_devnum = arg; 1541 return 1; 1542 case Opt_journal_ioprio: 1543 if (arg < 0 || arg > 7) 1544 return -1; 1545 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1546 return 1; 1547 } 1548 1549 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1550 if (token != m->token) 1551 continue; 1552 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1553 return -1; 1554 if (m->flags & MOPT_EXPLICIT) 1555 set_opt2(sb, EXPLICIT_DELALLOC); 1556 if (m->flags & MOPT_CLEAR_ERR) 1557 clear_opt(sb, ERRORS_MASK); 1558 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1559 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1560 "options when quota turned on"); 1561 return -1; 1562 } 1563 1564 if (m->flags & MOPT_NOSUPPORT) { 1565 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1566 } else if (token == Opt_commit) { 1567 if (arg == 0) 1568 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1569 sbi->s_commit_interval = HZ * arg; 1570 } else if (token == Opt_max_batch_time) { 1571 if (arg == 0) 1572 arg = EXT4_DEF_MAX_BATCH_TIME; 1573 sbi->s_max_batch_time = arg; 1574 } else if (token == Opt_min_batch_time) { 1575 sbi->s_min_batch_time = arg; 1576 } else if (token == Opt_inode_readahead_blks) { 1577 if (arg > (1 << 30)) 1578 return -1; 1579 if (arg && !is_power_of_2(arg)) { 1580 ext4_msg(sb, KERN_ERR, 1581 "EXT4-fs: inode_readahead_blks" 1582 " must be a power of 2"); 1583 return -1; 1584 } 1585 sbi->s_inode_readahead_blks = arg; 1586 } else if (token == Opt_init_itable) { 1587 set_opt(sb, INIT_INODE_TABLE); 1588 if (!args->from) 1589 arg = EXT4_DEF_LI_WAIT_MULT; 1590 sbi->s_li_wait_mult = arg; 1591 } else if (token == Opt_max_dir_size_kb) { 1592 sbi->s_max_dir_size_kb = arg; 1593 } else if (token == Opt_stripe) { 1594 sbi->s_stripe = arg; 1595 } else if (m->flags & MOPT_DATAJ) { 1596 if (is_remount) { 1597 if (!sbi->s_journal) 1598 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1599 else if (test_opt(sb, DATA_FLAGS) != 1600 m->mount_opt) { 1601 ext4_msg(sb, KERN_ERR, 1602 "Cannot change data mode on remount"); 1603 return -1; 1604 } 1605 } else { 1606 clear_opt(sb, DATA_FLAGS); 1607 sbi->s_mount_opt |= m->mount_opt; 1608 } 1609 #ifdef CONFIG_QUOTA 1610 } else if (m->flags & MOPT_QFMT) { 1611 if (sb_any_quota_loaded(sb) && 1612 sbi->s_jquota_fmt != m->mount_opt) { 1613 ext4_msg(sb, KERN_ERR, "Cannot " 1614 "change journaled quota options " 1615 "when quota turned on"); 1616 return -1; 1617 } 1618 sbi->s_jquota_fmt = m->mount_opt; 1619 #endif 1620 } else { 1621 if (!args->from) 1622 arg = 1; 1623 if (m->flags & MOPT_CLEAR) 1624 arg = !arg; 1625 else if (unlikely(!(m->flags & MOPT_SET))) { 1626 ext4_msg(sb, KERN_WARNING, 1627 "buggy handling of option %s", opt); 1628 WARN_ON(1); 1629 return -1; 1630 } 1631 if (arg != 0) 1632 sbi->s_mount_opt |= m->mount_opt; 1633 else 1634 sbi->s_mount_opt &= ~m->mount_opt; 1635 } 1636 return 1; 1637 } 1638 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1639 "or missing value", opt); 1640 return -1; 1641 } 1642 1643 static int parse_options(char *options, struct super_block *sb, 1644 unsigned long *journal_devnum, 1645 unsigned int *journal_ioprio, 1646 int is_remount) 1647 { 1648 #ifdef CONFIG_QUOTA 1649 struct ext4_sb_info *sbi = EXT4_SB(sb); 1650 #endif 1651 char *p; 1652 substring_t args[MAX_OPT_ARGS]; 1653 int token; 1654 1655 if (!options) 1656 return 1; 1657 1658 while ((p = strsep(&options, ",")) != NULL) { 1659 if (!*p) 1660 continue; 1661 /* 1662 * Initialize args struct so we know whether arg was 1663 * found; some options take optional arguments. 1664 */ 1665 args[0].to = args[0].from = NULL; 1666 token = match_token(p, tokens, args); 1667 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1668 journal_ioprio, is_remount) < 0) 1669 return 0; 1670 } 1671 #ifdef CONFIG_QUOTA 1672 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1673 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1674 clear_opt(sb, USRQUOTA); 1675 1676 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1677 clear_opt(sb, GRPQUOTA); 1678 1679 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1680 ext4_msg(sb, KERN_ERR, "old and new quota " 1681 "format mixing"); 1682 return 0; 1683 } 1684 1685 if (!sbi->s_jquota_fmt) { 1686 ext4_msg(sb, KERN_ERR, "journaled quota format " 1687 "not specified"); 1688 return 0; 1689 } 1690 } else { 1691 if (sbi->s_jquota_fmt) { 1692 ext4_msg(sb, KERN_ERR, "journaled quota format " 1693 "specified with no journaling " 1694 "enabled"); 1695 return 0; 1696 } 1697 } 1698 #endif 1699 return 1; 1700 } 1701 1702 static inline void ext4_show_quota_options(struct seq_file *seq, 1703 struct super_block *sb) 1704 { 1705 #if defined(CONFIG_QUOTA) 1706 struct ext4_sb_info *sbi = EXT4_SB(sb); 1707 1708 if (sbi->s_jquota_fmt) { 1709 char *fmtname = ""; 1710 1711 switch (sbi->s_jquota_fmt) { 1712 case QFMT_VFS_OLD: 1713 fmtname = "vfsold"; 1714 break; 1715 case QFMT_VFS_V0: 1716 fmtname = "vfsv0"; 1717 break; 1718 case QFMT_VFS_V1: 1719 fmtname = "vfsv1"; 1720 break; 1721 } 1722 seq_printf(seq, ",jqfmt=%s", fmtname); 1723 } 1724 1725 if (sbi->s_qf_names[USRQUOTA]) 1726 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1727 1728 if (sbi->s_qf_names[GRPQUOTA]) 1729 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1730 1731 if (test_opt(sb, USRQUOTA)) 1732 seq_puts(seq, ",usrquota"); 1733 1734 if (test_opt(sb, GRPQUOTA)) 1735 seq_puts(seq, ",grpquota"); 1736 #endif 1737 } 1738 1739 static const char *token2str(int token) 1740 { 1741 const struct match_token *t; 1742 1743 for (t = tokens; t->token != Opt_err; t++) 1744 if (t->token == token && !strchr(t->pattern, '=')) 1745 break; 1746 return t->pattern; 1747 } 1748 1749 /* 1750 * Show an option if 1751 * - it's set to a non-default value OR 1752 * - if the per-sb default is different from the global default 1753 */ 1754 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1755 int nodefs) 1756 { 1757 struct ext4_sb_info *sbi = EXT4_SB(sb); 1758 struct ext4_super_block *es = sbi->s_es; 1759 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1760 const struct mount_opts *m; 1761 char sep = nodefs ? '\n' : ','; 1762 1763 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1764 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1765 1766 if (sbi->s_sb_block != 1) 1767 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1768 1769 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1770 int want_set = m->flags & MOPT_SET; 1771 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1772 (m->flags & MOPT_CLEAR_ERR)) 1773 continue; 1774 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1775 continue; /* skip if same as the default */ 1776 if ((want_set && 1777 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1778 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1779 continue; /* select Opt_noFoo vs Opt_Foo */ 1780 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1781 } 1782 1783 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1784 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1785 SEQ_OPTS_PRINT("resuid=%u", 1786 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1787 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1788 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1789 SEQ_OPTS_PRINT("resgid=%u", 1790 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1791 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1792 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1793 SEQ_OPTS_PUTS("errors=remount-ro"); 1794 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1795 SEQ_OPTS_PUTS("errors=continue"); 1796 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1797 SEQ_OPTS_PUTS("errors=panic"); 1798 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1799 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1800 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1801 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1802 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1803 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1804 if (sb->s_flags & MS_I_VERSION) 1805 SEQ_OPTS_PUTS("i_version"); 1806 if (nodefs || sbi->s_stripe) 1807 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1808 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1809 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1810 SEQ_OPTS_PUTS("data=journal"); 1811 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1812 SEQ_OPTS_PUTS("data=ordered"); 1813 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1814 SEQ_OPTS_PUTS("data=writeback"); 1815 } 1816 if (nodefs || 1817 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1818 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1819 sbi->s_inode_readahead_blks); 1820 1821 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1822 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1823 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1824 if (nodefs || sbi->s_max_dir_size_kb) 1825 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1826 1827 ext4_show_quota_options(seq, sb); 1828 return 0; 1829 } 1830 1831 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1832 { 1833 return _ext4_show_options(seq, root->d_sb, 0); 1834 } 1835 1836 static int options_seq_show(struct seq_file *seq, void *offset) 1837 { 1838 struct super_block *sb = seq->private; 1839 int rc; 1840 1841 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1842 rc = _ext4_show_options(seq, sb, 1); 1843 seq_puts(seq, "\n"); 1844 return rc; 1845 } 1846 1847 static int options_open_fs(struct inode *inode, struct file *file) 1848 { 1849 return single_open(file, options_seq_show, PDE(inode)->data); 1850 } 1851 1852 static const struct file_operations ext4_seq_options_fops = { 1853 .owner = THIS_MODULE, 1854 .open = options_open_fs, 1855 .read = seq_read, 1856 .llseek = seq_lseek, 1857 .release = single_release, 1858 }; 1859 1860 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1861 int read_only) 1862 { 1863 struct ext4_sb_info *sbi = EXT4_SB(sb); 1864 int res = 0; 1865 1866 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1867 ext4_msg(sb, KERN_ERR, "revision level too high, " 1868 "forcing read-only mode"); 1869 res = MS_RDONLY; 1870 } 1871 if (read_only) 1872 goto done; 1873 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1874 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1875 "running e2fsck is recommended"); 1876 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1877 ext4_msg(sb, KERN_WARNING, 1878 "warning: mounting fs with errors, " 1879 "running e2fsck is recommended"); 1880 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1881 le16_to_cpu(es->s_mnt_count) >= 1882 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1883 ext4_msg(sb, KERN_WARNING, 1884 "warning: maximal mount count reached, " 1885 "running e2fsck is recommended"); 1886 else if (le32_to_cpu(es->s_checkinterval) && 1887 (le32_to_cpu(es->s_lastcheck) + 1888 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1889 ext4_msg(sb, KERN_WARNING, 1890 "warning: checktime reached, " 1891 "running e2fsck is recommended"); 1892 if (!sbi->s_journal) 1893 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1894 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1895 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1896 le16_add_cpu(&es->s_mnt_count, 1); 1897 es->s_mtime = cpu_to_le32(get_seconds()); 1898 ext4_update_dynamic_rev(sb); 1899 if (sbi->s_journal) 1900 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1901 1902 ext4_commit_super(sb, 1); 1903 done: 1904 if (test_opt(sb, DEBUG)) 1905 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1906 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1907 sb->s_blocksize, 1908 sbi->s_groups_count, 1909 EXT4_BLOCKS_PER_GROUP(sb), 1910 EXT4_INODES_PER_GROUP(sb), 1911 sbi->s_mount_opt, sbi->s_mount_opt2); 1912 1913 cleancache_init_fs(sb); 1914 return res; 1915 } 1916 1917 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1918 { 1919 struct ext4_sb_info *sbi = EXT4_SB(sb); 1920 struct flex_groups *new_groups; 1921 int size; 1922 1923 if (!sbi->s_log_groups_per_flex) 1924 return 0; 1925 1926 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1927 if (size <= sbi->s_flex_groups_allocated) 1928 return 0; 1929 1930 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1931 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1932 if (!new_groups) { 1933 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1934 size / (int) sizeof(struct flex_groups)); 1935 return -ENOMEM; 1936 } 1937 1938 if (sbi->s_flex_groups) { 1939 memcpy(new_groups, sbi->s_flex_groups, 1940 (sbi->s_flex_groups_allocated * 1941 sizeof(struct flex_groups))); 1942 ext4_kvfree(sbi->s_flex_groups); 1943 } 1944 sbi->s_flex_groups = new_groups; 1945 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1946 return 0; 1947 } 1948 1949 static int ext4_fill_flex_info(struct super_block *sb) 1950 { 1951 struct ext4_sb_info *sbi = EXT4_SB(sb); 1952 struct ext4_group_desc *gdp = NULL; 1953 ext4_group_t flex_group; 1954 unsigned int groups_per_flex = 0; 1955 int i, err; 1956 1957 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1958 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1959 sbi->s_log_groups_per_flex = 0; 1960 return 1; 1961 } 1962 groups_per_flex = 1U << sbi->s_log_groups_per_flex; 1963 1964 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1965 if (err) 1966 goto failed; 1967 1968 for (i = 0; i < sbi->s_groups_count; i++) { 1969 gdp = ext4_get_group_desc(sb, i, NULL); 1970 1971 flex_group = ext4_flex_group(sbi, i); 1972 atomic_add(ext4_free_inodes_count(sb, gdp), 1973 &sbi->s_flex_groups[flex_group].free_inodes); 1974 atomic_add(ext4_free_group_clusters(sb, gdp), 1975 &sbi->s_flex_groups[flex_group].free_clusters); 1976 atomic_add(ext4_used_dirs_count(sb, gdp), 1977 &sbi->s_flex_groups[flex_group].used_dirs); 1978 } 1979 1980 return 1; 1981 failed: 1982 return 0; 1983 } 1984 1985 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1986 struct ext4_group_desc *gdp) 1987 { 1988 int offset; 1989 __u16 crc = 0; 1990 __le32 le_group = cpu_to_le32(block_group); 1991 1992 if ((sbi->s_es->s_feature_ro_compat & 1993 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1994 /* Use new metadata_csum algorithm */ 1995 __u16 old_csum; 1996 __u32 csum32; 1997 1998 old_csum = gdp->bg_checksum; 1999 gdp->bg_checksum = 0; 2000 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2001 sizeof(le_group)); 2002 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2003 sbi->s_desc_size); 2004 gdp->bg_checksum = old_csum; 2005 2006 crc = csum32 & 0xFFFF; 2007 goto out; 2008 } 2009 2010 /* old crc16 code */ 2011 offset = offsetof(struct ext4_group_desc, bg_checksum); 2012 2013 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2014 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2015 crc = crc16(crc, (__u8 *)gdp, offset); 2016 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2017 /* for checksum of struct ext4_group_desc do the rest...*/ 2018 if ((sbi->s_es->s_feature_incompat & 2019 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2020 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2021 crc = crc16(crc, (__u8 *)gdp + offset, 2022 le16_to_cpu(sbi->s_es->s_desc_size) - 2023 offset); 2024 2025 out: 2026 return cpu_to_le16(crc); 2027 } 2028 2029 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2030 struct ext4_group_desc *gdp) 2031 { 2032 if (ext4_has_group_desc_csum(sb) && 2033 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2034 block_group, gdp))) 2035 return 0; 2036 2037 return 1; 2038 } 2039 2040 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2041 struct ext4_group_desc *gdp) 2042 { 2043 if (!ext4_has_group_desc_csum(sb)) 2044 return; 2045 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2046 } 2047 2048 /* Called at mount-time, super-block is locked */ 2049 static int ext4_check_descriptors(struct super_block *sb, 2050 ext4_group_t *first_not_zeroed) 2051 { 2052 struct ext4_sb_info *sbi = EXT4_SB(sb); 2053 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2054 ext4_fsblk_t last_block; 2055 ext4_fsblk_t block_bitmap; 2056 ext4_fsblk_t inode_bitmap; 2057 ext4_fsblk_t inode_table; 2058 int flexbg_flag = 0; 2059 ext4_group_t i, grp = sbi->s_groups_count; 2060 2061 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2062 flexbg_flag = 1; 2063 2064 ext4_debug("Checking group descriptors"); 2065 2066 for (i = 0; i < sbi->s_groups_count; i++) { 2067 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2068 2069 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2070 last_block = ext4_blocks_count(sbi->s_es) - 1; 2071 else 2072 last_block = first_block + 2073 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2074 2075 if ((grp == sbi->s_groups_count) && 2076 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2077 grp = i; 2078 2079 block_bitmap = ext4_block_bitmap(sb, gdp); 2080 if (block_bitmap < first_block || block_bitmap > last_block) { 2081 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2082 "Block bitmap for group %u not in group " 2083 "(block %llu)!", i, block_bitmap); 2084 return 0; 2085 } 2086 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2087 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2089 "Inode bitmap for group %u not in group " 2090 "(block %llu)!", i, inode_bitmap); 2091 return 0; 2092 } 2093 inode_table = ext4_inode_table(sb, gdp); 2094 if (inode_table < first_block || 2095 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2096 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2097 "Inode table for group %u not in group " 2098 "(block %llu)!", i, inode_table); 2099 return 0; 2100 } 2101 ext4_lock_group(sb, i); 2102 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2103 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2104 "Checksum for group %u failed (%u!=%u)", 2105 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2106 gdp)), le16_to_cpu(gdp->bg_checksum)); 2107 if (!(sb->s_flags & MS_RDONLY)) { 2108 ext4_unlock_group(sb, i); 2109 return 0; 2110 } 2111 } 2112 ext4_unlock_group(sb, i); 2113 if (!flexbg_flag) 2114 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2115 } 2116 if (NULL != first_not_zeroed) 2117 *first_not_zeroed = grp; 2118 2119 ext4_free_blocks_count_set(sbi->s_es, 2120 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2121 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2122 return 1; 2123 } 2124 2125 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2126 * the superblock) which were deleted from all directories, but held open by 2127 * a process at the time of a crash. We walk the list and try to delete these 2128 * inodes at recovery time (only with a read-write filesystem). 2129 * 2130 * In order to keep the orphan inode chain consistent during traversal (in 2131 * case of crash during recovery), we link each inode into the superblock 2132 * orphan list_head and handle it the same way as an inode deletion during 2133 * normal operation (which journals the operations for us). 2134 * 2135 * We only do an iget() and an iput() on each inode, which is very safe if we 2136 * accidentally point at an in-use or already deleted inode. The worst that 2137 * can happen in this case is that we get a "bit already cleared" message from 2138 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2139 * e2fsck was run on this filesystem, and it must have already done the orphan 2140 * inode cleanup for us, so we can safely abort without any further action. 2141 */ 2142 static void ext4_orphan_cleanup(struct super_block *sb, 2143 struct ext4_super_block *es) 2144 { 2145 unsigned int s_flags = sb->s_flags; 2146 int nr_orphans = 0, nr_truncates = 0; 2147 #ifdef CONFIG_QUOTA 2148 int i; 2149 #endif 2150 if (!es->s_last_orphan) { 2151 jbd_debug(4, "no orphan inodes to clean up\n"); 2152 return; 2153 } 2154 2155 if (bdev_read_only(sb->s_bdev)) { 2156 ext4_msg(sb, KERN_ERR, "write access " 2157 "unavailable, skipping orphan cleanup"); 2158 return; 2159 } 2160 2161 /* Check if feature set would not allow a r/w mount */ 2162 if (!ext4_feature_set_ok(sb, 0)) { 2163 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2164 "unknown ROCOMPAT features"); 2165 return; 2166 } 2167 2168 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2169 /* don't clear list on RO mount w/ errors */ 2170 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2171 jbd_debug(1, "Errors on filesystem, " 2172 "clearing orphan list.\n"); 2173 es->s_last_orphan = 0; 2174 } 2175 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2176 return; 2177 } 2178 2179 if (s_flags & MS_RDONLY) { 2180 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2181 sb->s_flags &= ~MS_RDONLY; 2182 } 2183 #ifdef CONFIG_QUOTA 2184 /* Needed for iput() to work correctly and not trash data */ 2185 sb->s_flags |= MS_ACTIVE; 2186 /* Turn on quotas so that they are updated correctly */ 2187 for (i = 0; i < MAXQUOTAS; i++) { 2188 if (EXT4_SB(sb)->s_qf_names[i]) { 2189 int ret = ext4_quota_on_mount(sb, i); 2190 if (ret < 0) 2191 ext4_msg(sb, KERN_ERR, 2192 "Cannot turn on journaled " 2193 "quota: error %d", ret); 2194 } 2195 } 2196 #endif 2197 2198 while (es->s_last_orphan) { 2199 struct inode *inode; 2200 2201 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2202 if (IS_ERR(inode)) { 2203 es->s_last_orphan = 0; 2204 break; 2205 } 2206 2207 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2208 dquot_initialize(inode); 2209 if (inode->i_nlink) { 2210 ext4_msg(sb, KERN_DEBUG, 2211 "%s: truncating inode %lu to %lld bytes", 2212 __func__, inode->i_ino, inode->i_size); 2213 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2214 inode->i_ino, inode->i_size); 2215 ext4_truncate(inode); 2216 nr_truncates++; 2217 } else { 2218 ext4_msg(sb, KERN_DEBUG, 2219 "%s: deleting unreferenced inode %lu", 2220 __func__, inode->i_ino); 2221 jbd_debug(2, "deleting unreferenced inode %lu\n", 2222 inode->i_ino); 2223 nr_orphans++; 2224 } 2225 iput(inode); /* The delete magic happens here! */ 2226 } 2227 2228 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2229 2230 if (nr_orphans) 2231 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2232 PLURAL(nr_orphans)); 2233 if (nr_truncates) 2234 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2235 PLURAL(nr_truncates)); 2236 #ifdef CONFIG_QUOTA 2237 /* Turn quotas off */ 2238 for (i = 0; i < MAXQUOTAS; i++) { 2239 if (sb_dqopt(sb)->files[i]) 2240 dquot_quota_off(sb, i); 2241 } 2242 #endif 2243 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2244 } 2245 2246 /* 2247 * Maximal extent format file size. 2248 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2249 * extent format containers, within a sector_t, and within i_blocks 2250 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2251 * so that won't be a limiting factor. 2252 * 2253 * However there is other limiting factor. We do store extents in the form 2254 * of starting block and length, hence the resulting length of the extent 2255 * covering maximum file size must fit into on-disk format containers as 2256 * well. Given that length is always by 1 unit bigger than max unit (because 2257 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2258 * 2259 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2260 */ 2261 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2262 { 2263 loff_t res; 2264 loff_t upper_limit = MAX_LFS_FILESIZE; 2265 2266 /* small i_blocks in vfs inode? */ 2267 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2268 /* 2269 * CONFIG_LBDAF is not enabled implies the inode 2270 * i_block represent total blocks in 512 bytes 2271 * 32 == size of vfs inode i_blocks * 8 2272 */ 2273 upper_limit = (1LL << 32) - 1; 2274 2275 /* total blocks in file system block size */ 2276 upper_limit >>= (blkbits - 9); 2277 upper_limit <<= blkbits; 2278 } 2279 2280 /* 2281 * 32-bit extent-start container, ee_block. We lower the maxbytes 2282 * by one fs block, so ee_len can cover the extent of maximum file 2283 * size 2284 */ 2285 res = (1LL << 32) - 1; 2286 res <<= blkbits; 2287 2288 /* Sanity check against vm- & vfs- imposed limits */ 2289 if (res > upper_limit) 2290 res = upper_limit; 2291 2292 return res; 2293 } 2294 2295 /* 2296 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2297 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2298 * We need to be 1 filesystem block less than the 2^48 sector limit. 2299 */ 2300 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2301 { 2302 loff_t res = EXT4_NDIR_BLOCKS; 2303 int meta_blocks; 2304 loff_t upper_limit; 2305 /* This is calculated to be the largest file size for a dense, block 2306 * mapped file such that the file's total number of 512-byte sectors, 2307 * including data and all indirect blocks, does not exceed (2^48 - 1). 2308 * 2309 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2310 * number of 512-byte sectors of the file. 2311 */ 2312 2313 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2314 /* 2315 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2316 * the inode i_block field represents total file blocks in 2317 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2318 */ 2319 upper_limit = (1LL << 32) - 1; 2320 2321 /* total blocks in file system block size */ 2322 upper_limit >>= (bits - 9); 2323 2324 } else { 2325 /* 2326 * We use 48 bit ext4_inode i_blocks 2327 * With EXT4_HUGE_FILE_FL set the i_blocks 2328 * represent total number of blocks in 2329 * file system block size 2330 */ 2331 upper_limit = (1LL << 48) - 1; 2332 2333 } 2334 2335 /* indirect blocks */ 2336 meta_blocks = 1; 2337 /* double indirect blocks */ 2338 meta_blocks += 1 + (1LL << (bits-2)); 2339 /* tripple indirect blocks */ 2340 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2341 2342 upper_limit -= meta_blocks; 2343 upper_limit <<= bits; 2344 2345 res += 1LL << (bits-2); 2346 res += 1LL << (2*(bits-2)); 2347 res += 1LL << (3*(bits-2)); 2348 res <<= bits; 2349 if (res > upper_limit) 2350 res = upper_limit; 2351 2352 if (res > MAX_LFS_FILESIZE) 2353 res = MAX_LFS_FILESIZE; 2354 2355 return res; 2356 } 2357 2358 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2359 ext4_fsblk_t logical_sb_block, int nr) 2360 { 2361 struct ext4_sb_info *sbi = EXT4_SB(sb); 2362 ext4_group_t bg, first_meta_bg; 2363 int has_super = 0; 2364 2365 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2366 2367 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2368 nr < first_meta_bg) 2369 return logical_sb_block + nr + 1; 2370 bg = sbi->s_desc_per_block * nr; 2371 if (ext4_bg_has_super(sb, bg)) 2372 has_super = 1; 2373 2374 return (has_super + ext4_group_first_block_no(sb, bg)); 2375 } 2376 2377 /** 2378 * ext4_get_stripe_size: Get the stripe size. 2379 * @sbi: In memory super block info 2380 * 2381 * If we have specified it via mount option, then 2382 * use the mount option value. If the value specified at mount time is 2383 * greater than the blocks per group use the super block value. 2384 * If the super block value is greater than blocks per group return 0. 2385 * Allocator needs it be less than blocks per group. 2386 * 2387 */ 2388 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2389 { 2390 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2391 unsigned long stripe_width = 2392 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2393 int ret; 2394 2395 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2396 ret = sbi->s_stripe; 2397 else if (stripe_width <= sbi->s_blocks_per_group) 2398 ret = stripe_width; 2399 else if (stride <= sbi->s_blocks_per_group) 2400 ret = stride; 2401 else 2402 ret = 0; 2403 2404 /* 2405 * If the stripe width is 1, this makes no sense and 2406 * we set it to 0 to turn off stripe handling code. 2407 */ 2408 if (ret <= 1) 2409 ret = 0; 2410 2411 return ret; 2412 } 2413 2414 /* sysfs supprt */ 2415 2416 struct ext4_attr { 2417 struct attribute attr; 2418 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2419 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2420 const char *, size_t); 2421 int offset; 2422 }; 2423 2424 static int parse_strtoul(const char *buf, 2425 unsigned long max, unsigned long *value) 2426 { 2427 char *endp; 2428 2429 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2430 endp = skip_spaces(endp); 2431 if (*endp || *value > max) 2432 return -EINVAL; 2433 2434 return 0; 2435 } 2436 2437 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2438 struct ext4_sb_info *sbi, 2439 char *buf) 2440 { 2441 return snprintf(buf, PAGE_SIZE, "%llu\n", 2442 (s64) EXT4_C2B(sbi, 2443 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2444 } 2445 2446 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2447 struct ext4_sb_info *sbi, char *buf) 2448 { 2449 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2450 2451 if (!sb->s_bdev->bd_part) 2452 return snprintf(buf, PAGE_SIZE, "0\n"); 2453 return snprintf(buf, PAGE_SIZE, "%lu\n", 2454 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2455 sbi->s_sectors_written_start) >> 1); 2456 } 2457 2458 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2459 struct ext4_sb_info *sbi, char *buf) 2460 { 2461 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2462 2463 if (!sb->s_bdev->bd_part) 2464 return snprintf(buf, PAGE_SIZE, "0\n"); 2465 return snprintf(buf, PAGE_SIZE, "%llu\n", 2466 (unsigned long long)(sbi->s_kbytes_written + 2467 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2468 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2469 } 2470 2471 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2472 struct ext4_sb_info *sbi, 2473 const char *buf, size_t count) 2474 { 2475 unsigned long t; 2476 2477 if (parse_strtoul(buf, 0x40000000, &t)) 2478 return -EINVAL; 2479 2480 if (t && !is_power_of_2(t)) 2481 return -EINVAL; 2482 2483 sbi->s_inode_readahead_blks = t; 2484 return count; 2485 } 2486 2487 static ssize_t sbi_ui_show(struct ext4_attr *a, 2488 struct ext4_sb_info *sbi, char *buf) 2489 { 2490 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2491 2492 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2493 } 2494 2495 static ssize_t sbi_ui_store(struct ext4_attr *a, 2496 struct ext4_sb_info *sbi, 2497 const char *buf, size_t count) 2498 { 2499 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2500 unsigned long t; 2501 2502 if (parse_strtoul(buf, 0xffffffff, &t)) 2503 return -EINVAL; 2504 *ui = t; 2505 return count; 2506 } 2507 2508 static ssize_t trigger_test_error(struct ext4_attr *a, 2509 struct ext4_sb_info *sbi, 2510 const char *buf, size_t count) 2511 { 2512 int len = count; 2513 2514 if (!capable(CAP_SYS_ADMIN)) 2515 return -EPERM; 2516 2517 if (len && buf[len-1] == '\n') 2518 len--; 2519 2520 if (len) 2521 ext4_error(sbi->s_sb, "%.*s", len, buf); 2522 return count; 2523 } 2524 2525 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2526 static struct ext4_attr ext4_attr_##_name = { \ 2527 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2528 .show = _show, \ 2529 .store = _store, \ 2530 .offset = offsetof(struct ext4_sb_info, _elname), \ 2531 } 2532 #define EXT4_ATTR(name, mode, show, store) \ 2533 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2534 2535 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2536 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2537 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2538 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2539 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2540 #define ATTR_LIST(name) &ext4_attr_##name.attr 2541 2542 EXT4_RO_ATTR(delayed_allocation_blocks); 2543 EXT4_RO_ATTR(session_write_kbytes); 2544 EXT4_RO_ATTR(lifetime_write_kbytes); 2545 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2546 inode_readahead_blks_store, s_inode_readahead_blks); 2547 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2548 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2549 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2550 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2551 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2552 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2553 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2554 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2555 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2556 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2557 2558 static struct attribute *ext4_attrs[] = { 2559 ATTR_LIST(delayed_allocation_blocks), 2560 ATTR_LIST(session_write_kbytes), 2561 ATTR_LIST(lifetime_write_kbytes), 2562 ATTR_LIST(inode_readahead_blks), 2563 ATTR_LIST(inode_goal), 2564 ATTR_LIST(mb_stats), 2565 ATTR_LIST(mb_max_to_scan), 2566 ATTR_LIST(mb_min_to_scan), 2567 ATTR_LIST(mb_order2_req), 2568 ATTR_LIST(mb_stream_req), 2569 ATTR_LIST(mb_group_prealloc), 2570 ATTR_LIST(max_writeback_mb_bump), 2571 ATTR_LIST(extent_max_zeroout_kb), 2572 ATTR_LIST(trigger_fs_error), 2573 NULL, 2574 }; 2575 2576 /* Features this copy of ext4 supports */ 2577 EXT4_INFO_ATTR(lazy_itable_init); 2578 EXT4_INFO_ATTR(batched_discard); 2579 EXT4_INFO_ATTR(meta_bg_resize); 2580 2581 static struct attribute *ext4_feat_attrs[] = { 2582 ATTR_LIST(lazy_itable_init), 2583 ATTR_LIST(batched_discard), 2584 ATTR_LIST(meta_bg_resize), 2585 NULL, 2586 }; 2587 2588 static ssize_t ext4_attr_show(struct kobject *kobj, 2589 struct attribute *attr, char *buf) 2590 { 2591 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2592 s_kobj); 2593 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2594 2595 return a->show ? a->show(a, sbi, buf) : 0; 2596 } 2597 2598 static ssize_t ext4_attr_store(struct kobject *kobj, 2599 struct attribute *attr, 2600 const char *buf, size_t len) 2601 { 2602 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2603 s_kobj); 2604 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2605 2606 return a->store ? a->store(a, sbi, buf, len) : 0; 2607 } 2608 2609 static void ext4_sb_release(struct kobject *kobj) 2610 { 2611 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2612 s_kobj); 2613 complete(&sbi->s_kobj_unregister); 2614 } 2615 2616 static const struct sysfs_ops ext4_attr_ops = { 2617 .show = ext4_attr_show, 2618 .store = ext4_attr_store, 2619 }; 2620 2621 static struct kobj_type ext4_ktype = { 2622 .default_attrs = ext4_attrs, 2623 .sysfs_ops = &ext4_attr_ops, 2624 .release = ext4_sb_release, 2625 }; 2626 2627 static void ext4_feat_release(struct kobject *kobj) 2628 { 2629 complete(&ext4_feat->f_kobj_unregister); 2630 } 2631 2632 static struct kobj_type ext4_feat_ktype = { 2633 .default_attrs = ext4_feat_attrs, 2634 .sysfs_ops = &ext4_attr_ops, 2635 .release = ext4_feat_release, 2636 }; 2637 2638 /* 2639 * Check whether this filesystem can be mounted based on 2640 * the features present and the RDONLY/RDWR mount requested. 2641 * Returns 1 if this filesystem can be mounted as requested, 2642 * 0 if it cannot be. 2643 */ 2644 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2645 { 2646 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2647 ext4_msg(sb, KERN_ERR, 2648 "Couldn't mount because of " 2649 "unsupported optional features (%x)", 2650 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2651 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2652 return 0; 2653 } 2654 2655 if (readonly) 2656 return 1; 2657 2658 /* Check that feature set is OK for a read-write mount */ 2659 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2660 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2661 "unsupported optional features (%x)", 2662 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2663 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2664 return 0; 2665 } 2666 /* 2667 * Large file size enabled file system can only be mounted 2668 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2669 */ 2670 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2671 if (sizeof(blkcnt_t) < sizeof(u64)) { 2672 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2673 "cannot be mounted RDWR without " 2674 "CONFIG_LBDAF"); 2675 return 0; 2676 } 2677 } 2678 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2679 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2680 ext4_msg(sb, KERN_ERR, 2681 "Can't support bigalloc feature without " 2682 "extents feature\n"); 2683 return 0; 2684 } 2685 2686 #ifndef CONFIG_QUOTA 2687 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2688 !readonly) { 2689 ext4_msg(sb, KERN_ERR, 2690 "Filesystem with quota feature cannot be mounted RDWR " 2691 "without CONFIG_QUOTA"); 2692 return 0; 2693 } 2694 #endif /* CONFIG_QUOTA */ 2695 return 1; 2696 } 2697 2698 /* 2699 * This function is called once a day if we have errors logged 2700 * on the file system 2701 */ 2702 static void print_daily_error_info(unsigned long arg) 2703 { 2704 struct super_block *sb = (struct super_block *) arg; 2705 struct ext4_sb_info *sbi; 2706 struct ext4_super_block *es; 2707 2708 sbi = EXT4_SB(sb); 2709 es = sbi->s_es; 2710 2711 if (es->s_error_count) 2712 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2713 le32_to_cpu(es->s_error_count)); 2714 if (es->s_first_error_time) { 2715 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2716 sb->s_id, le32_to_cpu(es->s_first_error_time), 2717 (int) sizeof(es->s_first_error_func), 2718 es->s_first_error_func, 2719 le32_to_cpu(es->s_first_error_line)); 2720 if (es->s_first_error_ino) 2721 printk(": inode %u", 2722 le32_to_cpu(es->s_first_error_ino)); 2723 if (es->s_first_error_block) 2724 printk(": block %llu", (unsigned long long) 2725 le64_to_cpu(es->s_first_error_block)); 2726 printk("\n"); 2727 } 2728 if (es->s_last_error_time) { 2729 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2730 sb->s_id, le32_to_cpu(es->s_last_error_time), 2731 (int) sizeof(es->s_last_error_func), 2732 es->s_last_error_func, 2733 le32_to_cpu(es->s_last_error_line)); 2734 if (es->s_last_error_ino) 2735 printk(": inode %u", 2736 le32_to_cpu(es->s_last_error_ino)); 2737 if (es->s_last_error_block) 2738 printk(": block %llu", (unsigned long long) 2739 le64_to_cpu(es->s_last_error_block)); 2740 printk("\n"); 2741 } 2742 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2743 } 2744 2745 /* Find next suitable group and run ext4_init_inode_table */ 2746 static int ext4_run_li_request(struct ext4_li_request *elr) 2747 { 2748 struct ext4_group_desc *gdp = NULL; 2749 ext4_group_t group, ngroups; 2750 struct super_block *sb; 2751 unsigned long timeout = 0; 2752 int ret = 0; 2753 2754 sb = elr->lr_super; 2755 ngroups = EXT4_SB(sb)->s_groups_count; 2756 2757 sb_start_write(sb); 2758 for (group = elr->lr_next_group; group < ngroups; group++) { 2759 gdp = ext4_get_group_desc(sb, group, NULL); 2760 if (!gdp) { 2761 ret = 1; 2762 break; 2763 } 2764 2765 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2766 break; 2767 } 2768 2769 if (group == ngroups) 2770 ret = 1; 2771 2772 if (!ret) { 2773 timeout = jiffies; 2774 ret = ext4_init_inode_table(sb, group, 2775 elr->lr_timeout ? 0 : 1); 2776 if (elr->lr_timeout == 0) { 2777 timeout = (jiffies - timeout) * 2778 elr->lr_sbi->s_li_wait_mult; 2779 elr->lr_timeout = timeout; 2780 } 2781 elr->lr_next_sched = jiffies + elr->lr_timeout; 2782 elr->lr_next_group = group + 1; 2783 } 2784 sb_end_write(sb); 2785 2786 return ret; 2787 } 2788 2789 /* 2790 * Remove lr_request from the list_request and free the 2791 * request structure. Should be called with li_list_mtx held 2792 */ 2793 static void ext4_remove_li_request(struct ext4_li_request *elr) 2794 { 2795 struct ext4_sb_info *sbi; 2796 2797 if (!elr) 2798 return; 2799 2800 sbi = elr->lr_sbi; 2801 2802 list_del(&elr->lr_request); 2803 sbi->s_li_request = NULL; 2804 kfree(elr); 2805 } 2806 2807 static void ext4_unregister_li_request(struct super_block *sb) 2808 { 2809 mutex_lock(&ext4_li_mtx); 2810 if (!ext4_li_info) { 2811 mutex_unlock(&ext4_li_mtx); 2812 return; 2813 } 2814 2815 mutex_lock(&ext4_li_info->li_list_mtx); 2816 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2817 mutex_unlock(&ext4_li_info->li_list_mtx); 2818 mutex_unlock(&ext4_li_mtx); 2819 } 2820 2821 static struct task_struct *ext4_lazyinit_task; 2822 2823 /* 2824 * This is the function where ext4lazyinit thread lives. It walks 2825 * through the request list searching for next scheduled filesystem. 2826 * When such a fs is found, run the lazy initialization request 2827 * (ext4_rn_li_request) and keep track of the time spend in this 2828 * function. Based on that time we compute next schedule time of 2829 * the request. When walking through the list is complete, compute 2830 * next waking time and put itself into sleep. 2831 */ 2832 static int ext4_lazyinit_thread(void *arg) 2833 { 2834 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2835 struct list_head *pos, *n; 2836 struct ext4_li_request *elr; 2837 unsigned long next_wakeup, cur; 2838 2839 BUG_ON(NULL == eli); 2840 2841 cont_thread: 2842 while (true) { 2843 next_wakeup = MAX_JIFFY_OFFSET; 2844 2845 mutex_lock(&eli->li_list_mtx); 2846 if (list_empty(&eli->li_request_list)) { 2847 mutex_unlock(&eli->li_list_mtx); 2848 goto exit_thread; 2849 } 2850 2851 list_for_each_safe(pos, n, &eli->li_request_list) { 2852 elr = list_entry(pos, struct ext4_li_request, 2853 lr_request); 2854 2855 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2856 if (ext4_run_li_request(elr) != 0) { 2857 /* error, remove the lazy_init job */ 2858 ext4_remove_li_request(elr); 2859 continue; 2860 } 2861 } 2862 2863 if (time_before(elr->lr_next_sched, next_wakeup)) 2864 next_wakeup = elr->lr_next_sched; 2865 } 2866 mutex_unlock(&eli->li_list_mtx); 2867 2868 try_to_freeze(); 2869 2870 cur = jiffies; 2871 if ((time_after_eq(cur, next_wakeup)) || 2872 (MAX_JIFFY_OFFSET == next_wakeup)) { 2873 cond_resched(); 2874 continue; 2875 } 2876 2877 schedule_timeout_interruptible(next_wakeup - cur); 2878 2879 if (kthread_should_stop()) { 2880 ext4_clear_request_list(); 2881 goto exit_thread; 2882 } 2883 } 2884 2885 exit_thread: 2886 /* 2887 * It looks like the request list is empty, but we need 2888 * to check it under the li_list_mtx lock, to prevent any 2889 * additions into it, and of course we should lock ext4_li_mtx 2890 * to atomically free the list and ext4_li_info, because at 2891 * this point another ext4 filesystem could be registering 2892 * new one. 2893 */ 2894 mutex_lock(&ext4_li_mtx); 2895 mutex_lock(&eli->li_list_mtx); 2896 if (!list_empty(&eli->li_request_list)) { 2897 mutex_unlock(&eli->li_list_mtx); 2898 mutex_unlock(&ext4_li_mtx); 2899 goto cont_thread; 2900 } 2901 mutex_unlock(&eli->li_list_mtx); 2902 kfree(ext4_li_info); 2903 ext4_li_info = NULL; 2904 mutex_unlock(&ext4_li_mtx); 2905 2906 return 0; 2907 } 2908 2909 static void ext4_clear_request_list(void) 2910 { 2911 struct list_head *pos, *n; 2912 struct ext4_li_request *elr; 2913 2914 mutex_lock(&ext4_li_info->li_list_mtx); 2915 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2916 elr = list_entry(pos, struct ext4_li_request, 2917 lr_request); 2918 ext4_remove_li_request(elr); 2919 } 2920 mutex_unlock(&ext4_li_info->li_list_mtx); 2921 } 2922 2923 static int ext4_run_lazyinit_thread(void) 2924 { 2925 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2926 ext4_li_info, "ext4lazyinit"); 2927 if (IS_ERR(ext4_lazyinit_task)) { 2928 int err = PTR_ERR(ext4_lazyinit_task); 2929 ext4_clear_request_list(); 2930 kfree(ext4_li_info); 2931 ext4_li_info = NULL; 2932 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2933 "initialization thread\n", 2934 err); 2935 return err; 2936 } 2937 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2938 return 0; 2939 } 2940 2941 /* 2942 * Check whether it make sense to run itable init. thread or not. 2943 * If there is at least one uninitialized inode table, return 2944 * corresponding group number, else the loop goes through all 2945 * groups and return total number of groups. 2946 */ 2947 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2948 { 2949 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2950 struct ext4_group_desc *gdp = NULL; 2951 2952 for (group = 0; group < ngroups; group++) { 2953 gdp = ext4_get_group_desc(sb, group, NULL); 2954 if (!gdp) 2955 continue; 2956 2957 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2958 break; 2959 } 2960 2961 return group; 2962 } 2963 2964 static int ext4_li_info_new(void) 2965 { 2966 struct ext4_lazy_init *eli = NULL; 2967 2968 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2969 if (!eli) 2970 return -ENOMEM; 2971 2972 INIT_LIST_HEAD(&eli->li_request_list); 2973 mutex_init(&eli->li_list_mtx); 2974 2975 eli->li_state |= EXT4_LAZYINIT_QUIT; 2976 2977 ext4_li_info = eli; 2978 2979 return 0; 2980 } 2981 2982 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2983 ext4_group_t start) 2984 { 2985 struct ext4_sb_info *sbi = EXT4_SB(sb); 2986 struct ext4_li_request *elr; 2987 unsigned long rnd; 2988 2989 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2990 if (!elr) 2991 return NULL; 2992 2993 elr->lr_super = sb; 2994 elr->lr_sbi = sbi; 2995 elr->lr_next_group = start; 2996 2997 /* 2998 * Randomize first schedule time of the request to 2999 * spread the inode table initialization requests 3000 * better. 3001 */ 3002 get_random_bytes(&rnd, sizeof(rnd)); 3003 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3004 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3005 3006 return elr; 3007 } 3008 3009 static int ext4_register_li_request(struct super_block *sb, 3010 ext4_group_t first_not_zeroed) 3011 { 3012 struct ext4_sb_info *sbi = EXT4_SB(sb); 3013 struct ext4_li_request *elr; 3014 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3015 int ret = 0; 3016 3017 if (sbi->s_li_request != NULL) { 3018 /* 3019 * Reset timeout so it can be computed again, because 3020 * s_li_wait_mult might have changed. 3021 */ 3022 sbi->s_li_request->lr_timeout = 0; 3023 return 0; 3024 } 3025 3026 if (first_not_zeroed == ngroups || 3027 (sb->s_flags & MS_RDONLY) || 3028 !test_opt(sb, INIT_INODE_TABLE)) 3029 return 0; 3030 3031 elr = ext4_li_request_new(sb, first_not_zeroed); 3032 if (!elr) 3033 return -ENOMEM; 3034 3035 mutex_lock(&ext4_li_mtx); 3036 3037 if (NULL == ext4_li_info) { 3038 ret = ext4_li_info_new(); 3039 if (ret) 3040 goto out; 3041 } 3042 3043 mutex_lock(&ext4_li_info->li_list_mtx); 3044 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3045 mutex_unlock(&ext4_li_info->li_list_mtx); 3046 3047 sbi->s_li_request = elr; 3048 /* 3049 * set elr to NULL here since it has been inserted to 3050 * the request_list and the removal and free of it is 3051 * handled by ext4_clear_request_list from now on. 3052 */ 3053 elr = NULL; 3054 3055 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3056 ret = ext4_run_lazyinit_thread(); 3057 if (ret) 3058 goto out; 3059 } 3060 out: 3061 mutex_unlock(&ext4_li_mtx); 3062 if (ret) 3063 kfree(elr); 3064 return ret; 3065 } 3066 3067 /* 3068 * We do not need to lock anything since this is called on 3069 * module unload. 3070 */ 3071 static void ext4_destroy_lazyinit_thread(void) 3072 { 3073 /* 3074 * If thread exited earlier 3075 * there's nothing to be done. 3076 */ 3077 if (!ext4_li_info || !ext4_lazyinit_task) 3078 return; 3079 3080 kthread_stop(ext4_lazyinit_task); 3081 } 3082 3083 static int set_journal_csum_feature_set(struct super_block *sb) 3084 { 3085 int ret = 1; 3086 int compat, incompat; 3087 struct ext4_sb_info *sbi = EXT4_SB(sb); 3088 3089 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3090 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3091 /* journal checksum v2 */ 3092 compat = 0; 3093 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3094 } else { 3095 /* journal checksum v1 */ 3096 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3097 incompat = 0; 3098 } 3099 3100 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3101 ret = jbd2_journal_set_features(sbi->s_journal, 3102 compat, 0, 3103 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3104 incompat); 3105 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3106 ret = jbd2_journal_set_features(sbi->s_journal, 3107 compat, 0, 3108 incompat); 3109 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3111 } else { 3112 jbd2_journal_clear_features(sbi->s_journal, 3113 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3114 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3115 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3116 } 3117 3118 return ret; 3119 } 3120 3121 /* 3122 * Note: calculating the overhead so we can be compatible with 3123 * historical BSD practice is quite difficult in the face of 3124 * clusters/bigalloc. This is because multiple metadata blocks from 3125 * different block group can end up in the same allocation cluster. 3126 * Calculating the exact overhead in the face of clustered allocation 3127 * requires either O(all block bitmaps) in memory or O(number of block 3128 * groups**2) in time. We will still calculate the superblock for 3129 * older file systems --- and if we come across with a bigalloc file 3130 * system with zero in s_overhead_clusters the estimate will be close to 3131 * correct especially for very large cluster sizes --- but for newer 3132 * file systems, it's better to calculate this figure once at mkfs 3133 * time, and store it in the superblock. If the superblock value is 3134 * present (even for non-bigalloc file systems), we will use it. 3135 */ 3136 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3137 char *buf) 3138 { 3139 struct ext4_sb_info *sbi = EXT4_SB(sb); 3140 struct ext4_group_desc *gdp; 3141 ext4_fsblk_t first_block, last_block, b; 3142 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3143 int s, j, count = 0; 3144 3145 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3146 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3147 sbi->s_itb_per_group + 2); 3148 3149 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3150 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3151 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3152 for (i = 0; i < ngroups; i++) { 3153 gdp = ext4_get_group_desc(sb, i, NULL); 3154 b = ext4_block_bitmap(sb, gdp); 3155 if (b >= first_block && b <= last_block) { 3156 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3157 count++; 3158 } 3159 b = ext4_inode_bitmap(sb, gdp); 3160 if (b >= first_block && b <= last_block) { 3161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3162 count++; 3163 } 3164 b = ext4_inode_table(sb, gdp); 3165 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3166 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3167 int c = EXT4_B2C(sbi, b - first_block); 3168 ext4_set_bit(c, buf); 3169 count++; 3170 } 3171 if (i != grp) 3172 continue; 3173 s = 0; 3174 if (ext4_bg_has_super(sb, grp)) { 3175 ext4_set_bit(s++, buf); 3176 count++; 3177 } 3178 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3179 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3180 count++; 3181 } 3182 } 3183 if (!count) 3184 return 0; 3185 return EXT4_CLUSTERS_PER_GROUP(sb) - 3186 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3187 } 3188 3189 /* 3190 * Compute the overhead and stash it in sbi->s_overhead 3191 */ 3192 int ext4_calculate_overhead(struct super_block *sb) 3193 { 3194 struct ext4_sb_info *sbi = EXT4_SB(sb); 3195 struct ext4_super_block *es = sbi->s_es; 3196 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3197 ext4_fsblk_t overhead = 0; 3198 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3199 3200 if (!buf) 3201 return -ENOMEM; 3202 3203 /* 3204 * Compute the overhead (FS structures). This is constant 3205 * for a given filesystem unless the number of block groups 3206 * changes so we cache the previous value until it does. 3207 */ 3208 3209 /* 3210 * All of the blocks before first_data_block are overhead 3211 */ 3212 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3213 3214 /* 3215 * Add the overhead found in each block group 3216 */ 3217 for (i = 0; i < ngroups; i++) { 3218 int blks; 3219 3220 blks = count_overhead(sb, i, buf); 3221 overhead += blks; 3222 if (blks) 3223 memset(buf, 0, PAGE_SIZE); 3224 cond_resched(); 3225 } 3226 sbi->s_overhead = overhead; 3227 smp_wmb(); 3228 free_page((unsigned long) buf); 3229 return 0; 3230 } 3231 3232 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3233 { 3234 char *orig_data = kstrdup(data, GFP_KERNEL); 3235 struct buffer_head *bh; 3236 struct ext4_super_block *es = NULL; 3237 struct ext4_sb_info *sbi; 3238 ext4_fsblk_t block; 3239 ext4_fsblk_t sb_block = get_sb_block(&data); 3240 ext4_fsblk_t logical_sb_block; 3241 unsigned long offset = 0; 3242 unsigned long journal_devnum = 0; 3243 unsigned long def_mount_opts; 3244 struct inode *root; 3245 char *cp; 3246 const char *descr; 3247 int ret = -ENOMEM; 3248 int blocksize, clustersize; 3249 unsigned int db_count; 3250 unsigned int i; 3251 int needs_recovery, has_huge_files, has_bigalloc; 3252 __u64 blocks_count; 3253 int err = 0; 3254 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3255 ext4_group_t first_not_zeroed; 3256 3257 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3258 if (!sbi) 3259 goto out_free_orig; 3260 3261 sbi->s_blockgroup_lock = 3262 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3263 if (!sbi->s_blockgroup_lock) { 3264 kfree(sbi); 3265 goto out_free_orig; 3266 } 3267 sb->s_fs_info = sbi; 3268 sbi->s_sb = sb; 3269 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3270 sbi->s_sb_block = sb_block; 3271 if (sb->s_bdev->bd_part) 3272 sbi->s_sectors_written_start = 3273 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3274 3275 /* Cleanup superblock name */ 3276 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3277 *cp = '!'; 3278 3279 /* -EINVAL is default */ 3280 ret = -EINVAL; 3281 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3282 if (!blocksize) { 3283 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3284 goto out_fail; 3285 } 3286 3287 /* 3288 * The ext4 superblock will not be buffer aligned for other than 1kB 3289 * block sizes. We need to calculate the offset from buffer start. 3290 */ 3291 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3292 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3293 offset = do_div(logical_sb_block, blocksize); 3294 } else { 3295 logical_sb_block = sb_block; 3296 } 3297 3298 if (!(bh = sb_bread(sb, logical_sb_block))) { 3299 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3300 goto out_fail; 3301 } 3302 /* 3303 * Note: s_es must be initialized as soon as possible because 3304 * some ext4 macro-instructions depend on its value 3305 */ 3306 es = (struct ext4_super_block *) (bh->b_data + offset); 3307 sbi->s_es = es; 3308 sb->s_magic = le16_to_cpu(es->s_magic); 3309 if (sb->s_magic != EXT4_SUPER_MAGIC) 3310 goto cantfind_ext4; 3311 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3312 3313 /* Warn if metadata_csum and gdt_csum are both set. */ 3314 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3315 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3316 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3317 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3318 "redundant flags; please run fsck."); 3319 3320 /* Check for a known checksum algorithm */ 3321 if (!ext4_verify_csum_type(sb, es)) { 3322 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3323 "unknown checksum algorithm."); 3324 silent = 1; 3325 goto cantfind_ext4; 3326 } 3327 3328 /* Load the checksum driver */ 3329 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3330 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3331 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3332 if (IS_ERR(sbi->s_chksum_driver)) { 3333 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3334 ret = PTR_ERR(sbi->s_chksum_driver); 3335 sbi->s_chksum_driver = NULL; 3336 goto failed_mount; 3337 } 3338 } 3339 3340 /* Check superblock checksum */ 3341 if (!ext4_superblock_csum_verify(sb, es)) { 3342 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3343 "invalid superblock checksum. Run e2fsck?"); 3344 silent = 1; 3345 goto cantfind_ext4; 3346 } 3347 3348 /* Precompute checksum seed for all metadata */ 3349 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3350 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3351 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3352 sizeof(es->s_uuid)); 3353 3354 /* Set defaults before we parse the mount options */ 3355 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3356 set_opt(sb, INIT_INODE_TABLE); 3357 if (def_mount_opts & EXT4_DEFM_DEBUG) 3358 set_opt(sb, DEBUG); 3359 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3360 set_opt(sb, GRPID); 3361 if (def_mount_opts & EXT4_DEFM_UID16) 3362 set_opt(sb, NO_UID32); 3363 /* xattr user namespace & acls are now defaulted on */ 3364 set_opt(sb, XATTR_USER); 3365 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3366 set_opt(sb, POSIX_ACL); 3367 #endif 3368 set_opt(sb, MBLK_IO_SUBMIT); 3369 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3370 set_opt(sb, JOURNAL_DATA); 3371 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3372 set_opt(sb, ORDERED_DATA); 3373 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3374 set_opt(sb, WRITEBACK_DATA); 3375 3376 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3377 set_opt(sb, ERRORS_PANIC); 3378 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3379 set_opt(sb, ERRORS_CONT); 3380 else 3381 set_opt(sb, ERRORS_RO); 3382 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3383 set_opt(sb, BLOCK_VALIDITY); 3384 if (def_mount_opts & EXT4_DEFM_DISCARD) 3385 set_opt(sb, DISCARD); 3386 3387 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3388 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3389 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3390 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3391 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3392 3393 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3394 set_opt(sb, BARRIER); 3395 3396 /* 3397 * enable delayed allocation by default 3398 * Use -o nodelalloc to turn it off 3399 */ 3400 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3401 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3402 set_opt(sb, DELALLOC); 3403 3404 /* 3405 * set default s_li_wait_mult for lazyinit, for the case there is 3406 * no mount option specified. 3407 */ 3408 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3409 3410 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3411 &journal_devnum, &journal_ioprio, 0)) { 3412 ext4_msg(sb, KERN_WARNING, 3413 "failed to parse options in superblock: %s", 3414 sbi->s_es->s_mount_opts); 3415 } 3416 sbi->s_def_mount_opt = sbi->s_mount_opt; 3417 if (!parse_options((char *) data, sb, &journal_devnum, 3418 &journal_ioprio, 0)) 3419 goto failed_mount; 3420 3421 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3422 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3423 "with data=journal disables delayed " 3424 "allocation and O_DIRECT support!\n"); 3425 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3426 ext4_msg(sb, KERN_ERR, "can't mount with " 3427 "both data=journal and delalloc"); 3428 goto failed_mount; 3429 } 3430 if (test_opt(sb, DIOREAD_NOLOCK)) { 3431 ext4_msg(sb, KERN_ERR, "can't mount with " 3432 "both data=journal and delalloc"); 3433 goto failed_mount; 3434 } 3435 if (test_opt(sb, DELALLOC)) 3436 clear_opt(sb, DELALLOC); 3437 } 3438 3439 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3440 if (test_opt(sb, DIOREAD_NOLOCK)) { 3441 if (blocksize < PAGE_SIZE) { 3442 ext4_msg(sb, KERN_ERR, "can't mount with " 3443 "dioread_nolock if block size != PAGE_SIZE"); 3444 goto failed_mount; 3445 } 3446 } 3447 3448 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3449 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3450 3451 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3452 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3453 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3454 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3455 ext4_msg(sb, KERN_WARNING, 3456 "feature flags set on rev 0 fs, " 3457 "running e2fsck is recommended"); 3458 3459 if (IS_EXT2_SB(sb)) { 3460 if (ext2_feature_set_ok(sb)) 3461 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3462 "using the ext4 subsystem"); 3463 else { 3464 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3465 "to feature incompatibilities"); 3466 goto failed_mount; 3467 } 3468 } 3469 3470 if (IS_EXT3_SB(sb)) { 3471 if (ext3_feature_set_ok(sb)) 3472 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3473 "using the ext4 subsystem"); 3474 else { 3475 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3476 "to feature incompatibilities"); 3477 goto failed_mount; 3478 } 3479 } 3480 3481 /* 3482 * Check feature flags regardless of the revision level, since we 3483 * previously didn't change the revision level when setting the flags, 3484 * so there is a chance incompat flags are set on a rev 0 filesystem. 3485 */ 3486 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3487 goto failed_mount; 3488 3489 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3490 blocksize > EXT4_MAX_BLOCK_SIZE) { 3491 ext4_msg(sb, KERN_ERR, 3492 "Unsupported filesystem blocksize %d", blocksize); 3493 goto failed_mount; 3494 } 3495 3496 if (sb->s_blocksize != blocksize) { 3497 /* Validate the filesystem blocksize */ 3498 if (!sb_set_blocksize(sb, blocksize)) { 3499 ext4_msg(sb, KERN_ERR, "bad block size %d", 3500 blocksize); 3501 goto failed_mount; 3502 } 3503 3504 brelse(bh); 3505 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3506 offset = do_div(logical_sb_block, blocksize); 3507 bh = sb_bread(sb, logical_sb_block); 3508 if (!bh) { 3509 ext4_msg(sb, KERN_ERR, 3510 "Can't read superblock on 2nd try"); 3511 goto failed_mount; 3512 } 3513 es = (struct ext4_super_block *)(bh->b_data + offset); 3514 sbi->s_es = es; 3515 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3516 ext4_msg(sb, KERN_ERR, 3517 "Magic mismatch, very weird!"); 3518 goto failed_mount; 3519 } 3520 } 3521 3522 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3523 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3524 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3525 has_huge_files); 3526 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3527 3528 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3529 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3530 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3531 } else { 3532 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3533 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3534 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3535 (!is_power_of_2(sbi->s_inode_size)) || 3536 (sbi->s_inode_size > blocksize)) { 3537 ext4_msg(sb, KERN_ERR, 3538 "unsupported inode size: %d", 3539 sbi->s_inode_size); 3540 goto failed_mount; 3541 } 3542 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3543 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3544 } 3545 3546 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3547 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3548 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3549 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3550 !is_power_of_2(sbi->s_desc_size)) { 3551 ext4_msg(sb, KERN_ERR, 3552 "unsupported descriptor size %lu", 3553 sbi->s_desc_size); 3554 goto failed_mount; 3555 } 3556 } else 3557 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3558 3559 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3560 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3561 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3562 goto cantfind_ext4; 3563 3564 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3565 if (sbi->s_inodes_per_block == 0) 3566 goto cantfind_ext4; 3567 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3568 sbi->s_inodes_per_block; 3569 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3570 sbi->s_sbh = bh; 3571 sbi->s_mount_state = le16_to_cpu(es->s_state); 3572 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3573 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3574 3575 for (i = 0; i < 4; i++) 3576 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3577 sbi->s_def_hash_version = es->s_def_hash_version; 3578 i = le32_to_cpu(es->s_flags); 3579 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3580 sbi->s_hash_unsigned = 3; 3581 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3582 #ifdef __CHAR_UNSIGNED__ 3583 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3584 sbi->s_hash_unsigned = 3; 3585 #else 3586 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3587 #endif 3588 } 3589 3590 /* Handle clustersize */ 3591 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3592 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3593 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3594 if (has_bigalloc) { 3595 if (clustersize < blocksize) { 3596 ext4_msg(sb, KERN_ERR, 3597 "cluster size (%d) smaller than " 3598 "block size (%d)", clustersize, blocksize); 3599 goto failed_mount; 3600 } 3601 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3602 le32_to_cpu(es->s_log_block_size); 3603 sbi->s_clusters_per_group = 3604 le32_to_cpu(es->s_clusters_per_group); 3605 if (sbi->s_clusters_per_group > blocksize * 8) { 3606 ext4_msg(sb, KERN_ERR, 3607 "#clusters per group too big: %lu", 3608 sbi->s_clusters_per_group); 3609 goto failed_mount; 3610 } 3611 if (sbi->s_blocks_per_group != 3612 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3613 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3614 "clusters per group (%lu) inconsistent", 3615 sbi->s_blocks_per_group, 3616 sbi->s_clusters_per_group); 3617 goto failed_mount; 3618 } 3619 } else { 3620 if (clustersize != blocksize) { 3621 ext4_warning(sb, "fragment/cluster size (%d) != " 3622 "block size (%d)", clustersize, 3623 blocksize); 3624 clustersize = blocksize; 3625 } 3626 if (sbi->s_blocks_per_group > blocksize * 8) { 3627 ext4_msg(sb, KERN_ERR, 3628 "#blocks per group too big: %lu", 3629 sbi->s_blocks_per_group); 3630 goto failed_mount; 3631 } 3632 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3633 sbi->s_cluster_bits = 0; 3634 } 3635 sbi->s_cluster_ratio = clustersize / blocksize; 3636 3637 if (sbi->s_inodes_per_group > blocksize * 8) { 3638 ext4_msg(sb, KERN_ERR, 3639 "#inodes per group too big: %lu", 3640 sbi->s_inodes_per_group); 3641 goto failed_mount; 3642 } 3643 3644 /* 3645 * Test whether we have more sectors than will fit in sector_t, 3646 * and whether the max offset is addressable by the page cache. 3647 */ 3648 err = generic_check_addressable(sb->s_blocksize_bits, 3649 ext4_blocks_count(es)); 3650 if (err) { 3651 ext4_msg(sb, KERN_ERR, "filesystem" 3652 " too large to mount safely on this system"); 3653 if (sizeof(sector_t) < 8) 3654 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3655 goto failed_mount; 3656 } 3657 3658 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3659 goto cantfind_ext4; 3660 3661 /* check blocks count against device size */ 3662 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3663 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3664 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3665 "exceeds size of device (%llu blocks)", 3666 ext4_blocks_count(es), blocks_count); 3667 goto failed_mount; 3668 } 3669 3670 /* 3671 * It makes no sense for the first data block to be beyond the end 3672 * of the filesystem. 3673 */ 3674 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3675 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3676 "block %u is beyond end of filesystem (%llu)", 3677 le32_to_cpu(es->s_first_data_block), 3678 ext4_blocks_count(es)); 3679 goto failed_mount; 3680 } 3681 blocks_count = (ext4_blocks_count(es) - 3682 le32_to_cpu(es->s_first_data_block) + 3683 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3684 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3685 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3686 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3687 "(block count %llu, first data block %u, " 3688 "blocks per group %lu)", sbi->s_groups_count, 3689 ext4_blocks_count(es), 3690 le32_to_cpu(es->s_first_data_block), 3691 EXT4_BLOCKS_PER_GROUP(sb)); 3692 goto failed_mount; 3693 } 3694 sbi->s_groups_count = blocks_count; 3695 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3696 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3697 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3698 EXT4_DESC_PER_BLOCK(sb); 3699 sbi->s_group_desc = ext4_kvmalloc(db_count * 3700 sizeof(struct buffer_head *), 3701 GFP_KERNEL); 3702 if (sbi->s_group_desc == NULL) { 3703 ext4_msg(sb, KERN_ERR, "not enough memory"); 3704 ret = -ENOMEM; 3705 goto failed_mount; 3706 } 3707 3708 if (ext4_proc_root) 3709 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3710 3711 if (sbi->s_proc) 3712 proc_create_data("options", S_IRUGO, sbi->s_proc, 3713 &ext4_seq_options_fops, sb); 3714 3715 bgl_lock_init(sbi->s_blockgroup_lock); 3716 3717 for (i = 0; i < db_count; i++) { 3718 block = descriptor_loc(sb, logical_sb_block, i); 3719 sbi->s_group_desc[i] = sb_bread(sb, block); 3720 if (!sbi->s_group_desc[i]) { 3721 ext4_msg(sb, KERN_ERR, 3722 "can't read group descriptor %d", i); 3723 db_count = i; 3724 goto failed_mount2; 3725 } 3726 } 3727 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3728 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3729 goto failed_mount2; 3730 } 3731 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3732 if (!ext4_fill_flex_info(sb)) { 3733 ext4_msg(sb, KERN_ERR, 3734 "unable to initialize " 3735 "flex_bg meta info!"); 3736 goto failed_mount2; 3737 } 3738 3739 sbi->s_gdb_count = db_count; 3740 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3741 spin_lock_init(&sbi->s_next_gen_lock); 3742 3743 init_timer(&sbi->s_err_report); 3744 sbi->s_err_report.function = print_daily_error_info; 3745 sbi->s_err_report.data = (unsigned long) sb; 3746 3747 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3748 ext4_count_free_clusters(sb)); 3749 if (!err) { 3750 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3751 ext4_count_free_inodes(sb)); 3752 } 3753 if (!err) { 3754 err = percpu_counter_init(&sbi->s_dirs_counter, 3755 ext4_count_dirs(sb)); 3756 } 3757 if (!err) { 3758 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3759 } 3760 if (err) { 3761 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3762 goto failed_mount3; 3763 } 3764 3765 sbi->s_stripe = ext4_get_stripe_size(sbi); 3766 sbi->s_max_writeback_mb_bump = 128; 3767 sbi->s_extent_max_zeroout_kb = 32; 3768 3769 /* 3770 * set up enough so that it can read an inode 3771 */ 3772 if (!test_opt(sb, NOLOAD) && 3773 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3774 sb->s_op = &ext4_sops; 3775 else 3776 sb->s_op = &ext4_nojournal_sops; 3777 sb->s_export_op = &ext4_export_ops; 3778 sb->s_xattr = ext4_xattr_handlers; 3779 #ifdef CONFIG_QUOTA 3780 sb->s_qcop = &ext4_qctl_operations; 3781 sb->dq_op = &ext4_quota_operations; 3782 3783 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 3784 /* Use qctl operations for hidden quota files. */ 3785 sb->s_qcop = &ext4_qctl_sysfile_operations; 3786 } 3787 #endif 3788 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3789 3790 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3791 mutex_init(&sbi->s_orphan_lock); 3792 3793 sb->s_root = NULL; 3794 3795 needs_recovery = (es->s_last_orphan != 0 || 3796 EXT4_HAS_INCOMPAT_FEATURE(sb, 3797 EXT4_FEATURE_INCOMPAT_RECOVER)); 3798 3799 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3800 !(sb->s_flags & MS_RDONLY)) 3801 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3802 goto failed_mount3; 3803 3804 /* 3805 * The first inode we look at is the journal inode. Don't try 3806 * root first: it may be modified in the journal! 3807 */ 3808 if (!test_opt(sb, NOLOAD) && 3809 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3810 if (ext4_load_journal(sb, es, journal_devnum)) 3811 goto failed_mount3; 3812 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3813 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3814 ext4_msg(sb, KERN_ERR, "required journal recovery " 3815 "suppressed and not mounted read-only"); 3816 goto failed_mount_wq; 3817 } else { 3818 clear_opt(sb, DATA_FLAGS); 3819 sbi->s_journal = NULL; 3820 needs_recovery = 0; 3821 goto no_journal; 3822 } 3823 3824 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3826 JBD2_FEATURE_INCOMPAT_64BIT)) { 3827 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3828 goto failed_mount_wq; 3829 } 3830 3831 if (!set_journal_csum_feature_set(sb)) { 3832 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3833 "feature set"); 3834 goto failed_mount_wq; 3835 } 3836 3837 /* We have now updated the journal if required, so we can 3838 * validate the data journaling mode. */ 3839 switch (test_opt(sb, DATA_FLAGS)) { 3840 case 0: 3841 /* No mode set, assume a default based on the journal 3842 * capabilities: ORDERED_DATA if the journal can 3843 * cope, else JOURNAL_DATA 3844 */ 3845 if (jbd2_journal_check_available_features 3846 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3847 set_opt(sb, ORDERED_DATA); 3848 else 3849 set_opt(sb, JOURNAL_DATA); 3850 break; 3851 3852 case EXT4_MOUNT_ORDERED_DATA: 3853 case EXT4_MOUNT_WRITEBACK_DATA: 3854 if (!jbd2_journal_check_available_features 3855 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3856 ext4_msg(sb, KERN_ERR, "Journal does not support " 3857 "requested data journaling mode"); 3858 goto failed_mount_wq; 3859 } 3860 default: 3861 break; 3862 } 3863 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3864 3865 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3866 3867 /* 3868 * The journal may have updated the bg summary counts, so we 3869 * need to update the global counters. 3870 */ 3871 percpu_counter_set(&sbi->s_freeclusters_counter, 3872 ext4_count_free_clusters(sb)); 3873 percpu_counter_set(&sbi->s_freeinodes_counter, 3874 ext4_count_free_inodes(sb)); 3875 percpu_counter_set(&sbi->s_dirs_counter, 3876 ext4_count_dirs(sb)); 3877 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3878 3879 no_journal: 3880 /* 3881 * Get the # of file system overhead blocks from the 3882 * superblock if present. 3883 */ 3884 if (es->s_overhead_clusters) 3885 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3886 else { 3887 err = ext4_calculate_overhead(sb); 3888 if (err) 3889 goto failed_mount_wq; 3890 } 3891 3892 /* 3893 * The maximum number of concurrent works can be high and 3894 * concurrency isn't really necessary. Limit it to 1. 3895 */ 3896 EXT4_SB(sb)->dio_unwritten_wq = 3897 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3898 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3899 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3900 ret = -ENOMEM; 3901 goto failed_mount_wq; 3902 } 3903 3904 /* 3905 * The jbd2_journal_load will have done any necessary log recovery, 3906 * so we can safely mount the rest of the filesystem now. 3907 */ 3908 3909 root = ext4_iget(sb, EXT4_ROOT_INO); 3910 if (IS_ERR(root)) { 3911 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3912 ret = PTR_ERR(root); 3913 root = NULL; 3914 goto failed_mount4; 3915 } 3916 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3917 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3918 iput(root); 3919 goto failed_mount4; 3920 } 3921 sb->s_root = d_make_root(root); 3922 if (!sb->s_root) { 3923 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3924 ret = -ENOMEM; 3925 goto failed_mount4; 3926 } 3927 3928 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3929 sb->s_flags |= MS_RDONLY; 3930 3931 /* determine the minimum size of new large inodes, if present */ 3932 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3933 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3934 EXT4_GOOD_OLD_INODE_SIZE; 3935 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3936 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3937 if (sbi->s_want_extra_isize < 3938 le16_to_cpu(es->s_want_extra_isize)) 3939 sbi->s_want_extra_isize = 3940 le16_to_cpu(es->s_want_extra_isize); 3941 if (sbi->s_want_extra_isize < 3942 le16_to_cpu(es->s_min_extra_isize)) 3943 sbi->s_want_extra_isize = 3944 le16_to_cpu(es->s_min_extra_isize); 3945 } 3946 } 3947 /* Check if enough inode space is available */ 3948 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3949 sbi->s_inode_size) { 3950 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3951 EXT4_GOOD_OLD_INODE_SIZE; 3952 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3953 "available"); 3954 } 3955 3956 err = ext4_setup_system_zone(sb); 3957 if (err) { 3958 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3959 "zone (%d)", err); 3960 goto failed_mount4a; 3961 } 3962 3963 ext4_ext_init(sb); 3964 err = ext4_mb_init(sb); 3965 if (err) { 3966 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3967 err); 3968 goto failed_mount5; 3969 } 3970 3971 err = ext4_register_li_request(sb, first_not_zeroed); 3972 if (err) 3973 goto failed_mount6; 3974 3975 sbi->s_kobj.kset = ext4_kset; 3976 init_completion(&sbi->s_kobj_unregister); 3977 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3978 "%s", sb->s_id); 3979 if (err) 3980 goto failed_mount7; 3981 3982 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3983 ext4_orphan_cleanup(sb, es); 3984 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3985 if (needs_recovery) { 3986 ext4_msg(sb, KERN_INFO, "recovery complete"); 3987 ext4_mark_recovery_complete(sb, es); 3988 } 3989 if (EXT4_SB(sb)->s_journal) { 3990 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3991 descr = " journalled data mode"; 3992 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3993 descr = " ordered data mode"; 3994 else 3995 descr = " writeback data mode"; 3996 } else 3997 descr = "out journal"; 3998 3999 #ifdef CONFIG_QUOTA 4000 /* Enable quota usage during mount. */ 4001 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4002 !(sb->s_flags & MS_RDONLY)) { 4003 err = ext4_enable_quotas(sb); 4004 if (err) 4005 goto failed_mount7; 4006 } 4007 #endif /* CONFIG_QUOTA */ 4008 4009 if (test_opt(sb, DISCARD)) { 4010 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4011 if (!blk_queue_discard(q)) 4012 ext4_msg(sb, KERN_WARNING, 4013 "mounting with \"discard\" option, but " 4014 "the device does not support discard"); 4015 } 4016 4017 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4018 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4019 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4020 4021 if (es->s_error_count) 4022 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4023 4024 kfree(orig_data); 4025 return 0; 4026 4027 cantfind_ext4: 4028 if (!silent) 4029 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4030 goto failed_mount; 4031 4032 failed_mount7: 4033 ext4_unregister_li_request(sb); 4034 failed_mount6: 4035 ext4_mb_release(sb); 4036 failed_mount5: 4037 ext4_ext_release(sb); 4038 ext4_release_system_zone(sb); 4039 failed_mount4a: 4040 dput(sb->s_root); 4041 sb->s_root = NULL; 4042 failed_mount4: 4043 ext4_msg(sb, KERN_ERR, "mount failed"); 4044 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4045 failed_mount_wq: 4046 if (sbi->s_journal) { 4047 jbd2_journal_destroy(sbi->s_journal); 4048 sbi->s_journal = NULL; 4049 } 4050 failed_mount3: 4051 del_timer(&sbi->s_err_report); 4052 if (sbi->s_flex_groups) 4053 ext4_kvfree(sbi->s_flex_groups); 4054 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4055 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4056 percpu_counter_destroy(&sbi->s_dirs_counter); 4057 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4058 if (sbi->s_mmp_tsk) 4059 kthread_stop(sbi->s_mmp_tsk); 4060 failed_mount2: 4061 for (i = 0; i < db_count; i++) 4062 brelse(sbi->s_group_desc[i]); 4063 ext4_kvfree(sbi->s_group_desc); 4064 failed_mount: 4065 if (sbi->s_chksum_driver) 4066 crypto_free_shash(sbi->s_chksum_driver); 4067 if (sbi->s_proc) { 4068 remove_proc_entry("options", sbi->s_proc); 4069 remove_proc_entry(sb->s_id, ext4_proc_root); 4070 } 4071 #ifdef CONFIG_QUOTA 4072 for (i = 0; i < MAXQUOTAS; i++) 4073 kfree(sbi->s_qf_names[i]); 4074 #endif 4075 ext4_blkdev_remove(sbi); 4076 brelse(bh); 4077 out_fail: 4078 sb->s_fs_info = NULL; 4079 kfree(sbi->s_blockgroup_lock); 4080 kfree(sbi); 4081 out_free_orig: 4082 kfree(orig_data); 4083 return err ? err : ret; 4084 } 4085 4086 /* 4087 * Setup any per-fs journal parameters now. We'll do this both on 4088 * initial mount, once the journal has been initialised but before we've 4089 * done any recovery; and again on any subsequent remount. 4090 */ 4091 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4092 { 4093 struct ext4_sb_info *sbi = EXT4_SB(sb); 4094 4095 journal->j_commit_interval = sbi->s_commit_interval; 4096 journal->j_min_batch_time = sbi->s_min_batch_time; 4097 journal->j_max_batch_time = sbi->s_max_batch_time; 4098 4099 write_lock(&journal->j_state_lock); 4100 if (test_opt(sb, BARRIER)) 4101 journal->j_flags |= JBD2_BARRIER; 4102 else 4103 journal->j_flags &= ~JBD2_BARRIER; 4104 if (test_opt(sb, DATA_ERR_ABORT)) 4105 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4106 else 4107 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4108 write_unlock(&journal->j_state_lock); 4109 } 4110 4111 static journal_t *ext4_get_journal(struct super_block *sb, 4112 unsigned int journal_inum) 4113 { 4114 struct inode *journal_inode; 4115 journal_t *journal; 4116 4117 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4118 4119 /* First, test for the existence of a valid inode on disk. Bad 4120 * things happen if we iget() an unused inode, as the subsequent 4121 * iput() will try to delete it. */ 4122 4123 journal_inode = ext4_iget(sb, journal_inum); 4124 if (IS_ERR(journal_inode)) { 4125 ext4_msg(sb, KERN_ERR, "no journal found"); 4126 return NULL; 4127 } 4128 if (!journal_inode->i_nlink) { 4129 make_bad_inode(journal_inode); 4130 iput(journal_inode); 4131 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4132 return NULL; 4133 } 4134 4135 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4136 journal_inode, journal_inode->i_size); 4137 if (!S_ISREG(journal_inode->i_mode)) { 4138 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4139 iput(journal_inode); 4140 return NULL; 4141 } 4142 4143 journal = jbd2_journal_init_inode(journal_inode); 4144 if (!journal) { 4145 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4146 iput(journal_inode); 4147 return NULL; 4148 } 4149 journal->j_private = sb; 4150 ext4_init_journal_params(sb, journal); 4151 return journal; 4152 } 4153 4154 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4155 dev_t j_dev) 4156 { 4157 struct buffer_head *bh; 4158 journal_t *journal; 4159 ext4_fsblk_t start; 4160 ext4_fsblk_t len; 4161 int hblock, blocksize; 4162 ext4_fsblk_t sb_block; 4163 unsigned long offset; 4164 struct ext4_super_block *es; 4165 struct block_device *bdev; 4166 4167 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4168 4169 bdev = ext4_blkdev_get(j_dev, sb); 4170 if (bdev == NULL) 4171 return NULL; 4172 4173 blocksize = sb->s_blocksize; 4174 hblock = bdev_logical_block_size(bdev); 4175 if (blocksize < hblock) { 4176 ext4_msg(sb, KERN_ERR, 4177 "blocksize too small for journal device"); 4178 goto out_bdev; 4179 } 4180 4181 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4182 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4183 set_blocksize(bdev, blocksize); 4184 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4185 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4186 "external journal"); 4187 goto out_bdev; 4188 } 4189 4190 es = (struct ext4_super_block *) (bh->b_data + offset); 4191 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4192 !(le32_to_cpu(es->s_feature_incompat) & 4193 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4194 ext4_msg(sb, KERN_ERR, "external journal has " 4195 "bad superblock"); 4196 brelse(bh); 4197 goto out_bdev; 4198 } 4199 4200 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4201 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4202 brelse(bh); 4203 goto out_bdev; 4204 } 4205 4206 len = ext4_blocks_count(es); 4207 start = sb_block + 1; 4208 brelse(bh); /* we're done with the superblock */ 4209 4210 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4211 start, len, blocksize); 4212 if (!journal) { 4213 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4214 goto out_bdev; 4215 } 4216 journal->j_private = sb; 4217 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4218 wait_on_buffer(journal->j_sb_buffer); 4219 if (!buffer_uptodate(journal->j_sb_buffer)) { 4220 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4221 goto out_journal; 4222 } 4223 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4224 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4225 "user (unsupported) - %d", 4226 be32_to_cpu(journal->j_superblock->s_nr_users)); 4227 goto out_journal; 4228 } 4229 EXT4_SB(sb)->journal_bdev = bdev; 4230 ext4_init_journal_params(sb, journal); 4231 return journal; 4232 4233 out_journal: 4234 jbd2_journal_destroy(journal); 4235 out_bdev: 4236 ext4_blkdev_put(bdev); 4237 return NULL; 4238 } 4239 4240 static int ext4_load_journal(struct super_block *sb, 4241 struct ext4_super_block *es, 4242 unsigned long journal_devnum) 4243 { 4244 journal_t *journal; 4245 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4246 dev_t journal_dev; 4247 int err = 0; 4248 int really_read_only; 4249 4250 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4251 4252 if (journal_devnum && 4253 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4254 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4255 "numbers have changed"); 4256 journal_dev = new_decode_dev(journal_devnum); 4257 } else 4258 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4259 4260 really_read_only = bdev_read_only(sb->s_bdev); 4261 4262 /* 4263 * Are we loading a blank journal or performing recovery after a 4264 * crash? For recovery, we need to check in advance whether we 4265 * can get read-write access to the device. 4266 */ 4267 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4268 if (sb->s_flags & MS_RDONLY) { 4269 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4270 "required on readonly filesystem"); 4271 if (really_read_only) { 4272 ext4_msg(sb, KERN_ERR, "write access " 4273 "unavailable, cannot proceed"); 4274 return -EROFS; 4275 } 4276 ext4_msg(sb, KERN_INFO, "write access will " 4277 "be enabled during recovery"); 4278 } 4279 } 4280 4281 if (journal_inum && journal_dev) { 4282 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4283 "and inode journals!"); 4284 return -EINVAL; 4285 } 4286 4287 if (journal_inum) { 4288 if (!(journal = ext4_get_journal(sb, journal_inum))) 4289 return -EINVAL; 4290 } else { 4291 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4292 return -EINVAL; 4293 } 4294 4295 if (!(journal->j_flags & JBD2_BARRIER)) 4296 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4297 4298 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4299 err = jbd2_journal_wipe(journal, !really_read_only); 4300 if (!err) { 4301 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4302 if (save) 4303 memcpy(save, ((char *) es) + 4304 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4305 err = jbd2_journal_load(journal); 4306 if (save) 4307 memcpy(((char *) es) + EXT4_S_ERR_START, 4308 save, EXT4_S_ERR_LEN); 4309 kfree(save); 4310 } 4311 4312 if (err) { 4313 ext4_msg(sb, KERN_ERR, "error loading journal"); 4314 jbd2_journal_destroy(journal); 4315 return err; 4316 } 4317 4318 EXT4_SB(sb)->s_journal = journal; 4319 ext4_clear_journal_err(sb, es); 4320 4321 if (!really_read_only && journal_devnum && 4322 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4323 es->s_journal_dev = cpu_to_le32(journal_devnum); 4324 4325 /* Make sure we flush the recovery flag to disk. */ 4326 ext4_commit_super(sb, 1); 4327 } 4328 4329 return 0; 4330 } 4331 4332 static int ext4_commit_super(struct super_block *sb, int sync) 4333 { 4334 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4335 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4336 int error = 0; 4337 4338 if (!sbh || block_device_ejected(sb)) 4339 return error; 4340 if (buffer_write_io_error(sbh)) { 4341 /* 4342 * Oh, dear. A previous attempt to write the 4343 * superblock failed. This could happen because the 4344 * USB device was yanked out. Or it could happen to 4345 * be a transient write error and maybe the block will 4346 * be remapped. Nothing we can do but to retry the 4347 * write and hope for the best. 4348 */ 4349 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4350 "superblock detected"); 4351 clear_buffer_write_io_error(sbh); 4352 set_buffer_uptodate(sbh); 4353 } 4354 /* 4355 * If the file system is mounted read-only, don't update the 4356 * superblock write time. This avoids updating the superblock 4357 * write time when we are mounting the root file system 4358 * read/only but we need to replay the journal; at that point, 4359 * for people who are east of GMT and who make their clock 4360 * tick in localtime for Windows bug-for-bug compatibility, 4361 * the clock is set in the future, and this will cause e2fsck 4362 * to complain and force a full file system check. 4363 */ 4364 if (!(sb->s_flags & MS_RDONLY)) 4365 es->s_wtime = cpu_to_le32(get_seconds()); 4366 if (sb->s_bdev->bd_part) 4367 es->s_kbytes_written = 4368 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4369 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4370 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4371 else 4372 es->s_kbytes_written = 4373 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4374 ext4_free_blocks_count_set(es, 4375 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4376 &EXT4_SB(sb)->s_freeclusters_counter))); 4377 es->s_free_inodes_count = 4378 cpu_to_le32(percpu_counter_sum_positive( 4379 &EXT4_SB(sb)->s_freeinodes_counter)); 4380 BUFFER_TRACE(sbh, "marking dirty"); 4381 ext4_superblock_csum_set(sb); 4382 mark_buffer_dirty(sbh); 4383 if (sync) { 4384 error = sync_dirty_buffer(sbh); 4385 if (error) 4386 return error; 4387 4388 error = buffer_write_io_error(sbh); 4389 if (error) { 4390 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4391 "superblock"); 4392 clear_buffer_write_io_error(sbh); 4393 set_buffer_uptodate(sbh); 4394 } 4395 } 4396 return error; 4397 } 4398 4399 /* 4400 * Have we just finished recovery? If so, and if we are mounting (or 4401 * remounting) the filesystem readonly, then we will end up with a 4402 * consistent fs on disk. Record that fact. 4403 */ 4404 static void ext4_mark_recovery_complete(struct super_block *sb, 4405 struct ext4_super_block *es) 4406 { 4407 journal_t *journal = EXT4_SB(sb)->s_journal; 4408 4409 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4410 BUG_ON(journal != NULL); 4411 return; 4412 } 4413 jbd2_journal_lock_updates(journal); 4414 if (jbd2_journal_flush(journal) < 0) 4415 goto out; 4416 4417 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4418 sb->s_flags & MS_RDONLY) { 4419 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4420 ext4_commit_super(sb, 1); 4421 } 4422 4423 out: 4424 jbd2_journal_unlock_updates(journal); 4425 } 4426 4427 /* 4428 * If we are mounting (or read-write remounting) a filesystem whose journal 4429 * has recorded an error from a previous lifetime, move that error to the 4430 * main filesystem now. 4431 */ 4432 static void ext4_clear_journal_err(struct super_block *sb, 4433 struct ext4_super_block *es) 4434 { 4435 journal_t *journal; 4436 int j_errno; 4437 const char *errstr; 4438 4439 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4440 4441 journal = EXT4_SB(sb)->s_journal; 4442 4443 /* 4444 * Now check for any error status which may have been recorded in the 4445 * journal by a prior ext4_error() or ext4_abort() 4446 */ 4447 4448 j_errno = jbd2_journal_errno(journal); 4449 if (j_errno) { 4450 char nbuf[16]; 4451 4452 errstr = ext4_decode_error(sb, j_errno, nbuf); 4453 ext4_warning(sb, "Filesystem error recorded " 4454 "from previous mount: %s", errstr); 4455 ext4_warning(sb, "Marking fs in need of filesystem check."); 4456 4457 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4458 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4459 ext4_commit_super(sb, 1); 4460 4461 jbd2_journal_clear_err(journal); 4462 jbd2_journal_update_sb_errno(journal); 4463 } 4464 } 4465 4466 /* 4467 * Force the running and committing transactions to commit, 4468 * and wait on the commit. 4469 */ 4470 int ext4_force_commit(struct super_block *sb) 4471 { 4472 journal_t *journal; 4473 int ret = 0; 4474 4475 if (sb->s_flags & MS_RDONLY) 4476 return 0; 4477 4478 journal = EXT4_SB(sb)->s_journal; 4479 if (journal) 4480 ret = ext4_journal_force_commit(journal); 4481 4482 return ret; 4483 } 4484 4485 static int ext4_sync_fs(struct super_block *sb, int wait) 4486 { 4487 int ret = 0; 4488 tid_t target; 4489 struct ext4_sb_info *sbi = EXT4_SB(sb); 4490 4491 trace_ext4_sync_fs(sb, wait); 4492 flush_workqueue(sbi->dio_unwritten_wq); 4493 /* 4494 * Writeback quota in non-journalled quota case - journalled quota has 4495 * no dirty dquots 4496 */ 4497 dquot_writeback_dquots(sb, -1); 4498 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4499 if (wait) 4500 jbd2_log_wait_commit(sbi->s_journal, target); 4501 } 4502 return ret; 4503 } 4504 4505 /* 4506 * LVM calls this function before a (read-only) snapshot is created. This 4507 * gives us a chance to flush the journal completely and mark the fs clean. 4508 * 4509 * Note that only this function cannot bring a filesystem to be in a clean 4510 * state independently. It relies on upper layer to stop all data & metadata 4511 * modifications. 4512 */ 4513 static int ext4_freeze(struct super_block *sb) 4514 { 4515 int error = 0; 4516 journal_t *journal; 4517 4518 if (sb->s_flags & MS_RDONLY) 4519 return 0; 4520 4521 journal = EXT4_SB(sb)->s_journal; 4522 4523 /* Now we set up the journal barrier. */ 4524 jbd2_journal_lock_updates(journal); 4525 4526 /* 4527 * Don't clear the needs_recovery flag if we failed to flush 4528 * the journal. 4529 */ 4530 error = jbd2_journal_flush(journal); 4531 if (error < 0) 4532 goto out; 4533 4534 /* Journal blocked and flushed, clear needs_recovery flag. */ 4535 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4536 error = ext4_commit_super(sb, 1); 4537 out: 4538 /* we rely on upper layer to stop further updates */ 4539 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4540 return error; 4541 } 4542 4543 /* 4544 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4545 * flag here, even though the filesystem is not technically dirty yet. 4546 */ 4547 static int ext4_unfreeze(struct super_block *sb) 4548 { 4549 if (sb->s_flags & MS_RDONLY) 4550 return 0; 4551 4552 /* Reset the needs_recovery flag before the fs is unlocked. */ 4553 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4554 ext4_commit_super(sb, 1); 4555 return 0; 4556 } 4557 4558 /* 4559 * Structure to save mount options for ext4_remount's benefit 4560 */ 4561 struct ext4_mount_options { 4562 unsigned long s_mount_opt; 4563 unsigned long s_mount_opt2; 4564 kuid_t s_resuid; 4565 kgid_t s_resgid; 4566 unsigned long s_commit_interval; 4567 u32 s_min_batch_time, s_max_batch_time; 4568 #ifdef CONFIG_QUOTA 4569 int s_jquota_fmt; 4570 char *s_qf_names[MAXQUOTAS]; 4571 #endif 4572 }; 4573 4574 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4575 { 4576 struct ext4_super_block *es; 4577 struct ext4_sb_info *sbi = EXT4_SB(sb); 4578 unsigned long old_sb_flags; 4579 struct ext4_mount_options old_opts; 4580 int enable_quota = 0; 4581 ext4_group_t g; 4582 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4583 int err = 0; 4584 #ifdef CONFIG_QUOTA 4585 int i; 4586 #endif 4587 char *orig_data = kstrdup(data, GFP_KERNEL); 4588 4589 /* Store the original options */ 4590 old_sb_flags = sb->s_flags; 4591 old_opts.s_mount_opt = sbi->s_mount_opt; 4592 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4593 old_opts.s_resuid = sbi->s_resuid; 4594 old_opts.s_resgid = sbi->s_resgid; 4595 old_opts.s_commit_interval = sbi->s_commit_interval; 4596 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4597 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4598 #ifdef CONFIG_QUOTA 4599 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4600 for (i = 0; i < MAXQUOTAS; i++) 4601 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4602 #endif 4603 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4604 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4605 4606 /* 4607 * Allow the "check" option to be passed as a remount option. 4608 */ 4609 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4610 err = -EINVAL; 4611 goto restore_opts; 4612 } 4613 4614 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4615 ext4_abort(sb, "Abort forced by user"); 4616 4617 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4618 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4619 4620 es = sbi->s_es; 4621 4622 if (sbi->s_journal) { 4623 ext4_init_journal_params(sb, sbi->s_journal); 4624 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4625 } 4626 4627 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4628 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4629 err = -EROFS; 4630 goto restore_opts; 4631 } 4632 4633 if (*flags & MS_RDONLY) { 4634 err = dquot_suspend(sb, -1); 4635 if (err < 0) 4636 goto restore_opts; 4637 4638 /* 4639 * First of all, the unconditional stuff we have to do 4640 * to disable replay of the journal when we next remount 4641 */ 4642 sb->s_flags |= MS_RDONLY; 4643 4644 /* 4645 * OK, test if we are remounting a valid rw partition 4646 * readonly, and if so set the rdonly flag and then 4647 * mark the partition as valid again. 4648 */ 4649 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4650 (sbi->s_mount_state & EXT4_VALID_FS)) 4651 es->s_state = cpu_to_le16(sbi->s_mount_state); 4652 4653 if (sbi->s_journal) 4654 ext4_mark_recovery_complete(sb, es); 4655 } else { 4656 /* Make sure we can mount this feature set readwrite */ 4657 if (!ext4_feature_set_ok(sb, 0)) { 4658 err = -EROFS; 4659 goto restore_opts; 4660 } 4661 /* 4662 * Make sure the group descriptor checksums 4663 * are sane. If they aren't, refuse to remount r/w. 4664 */ 4665 for (g = 0; g < sbi->s_groups_count; g++) { 4666 struct ext4_group_desc *gdp = 4667 ext4_get_group_desc(sb, g, NULL); 4668 4669 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4670 ext4_msg(sb, KERN_ERR, 4671 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4672 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4673 le16_to_cpu(gdp->bg_checksum)); 4674 err = -EINVAL; 4675 goto restore_opts; 4676 } 4677 } 4678 4679 /* 4680 * If we have an unprocessed orphan list hanging 4681 * around from a previously readonly bdev mount, 4682 * require a full umount/remount for now. 4683 */ 4684 if (es->s_last_orphan) { 4685 ext4_msg(sb, KERN_WARNING, "Couldn't " 4686 "remount RDWR because of unprocessed " 4687 "orphan inode list. Please " 4688 "umount/remount instead"); 4689 err = -EINVAL; 4690 goto restore_opts; 4691 } 4692 4693 /* 4694 * Mounting a RDONLY partition read-write, so reread 4695 * and store the current valid flag. (It may have 4696 * been changed by e2fsck since we originally mounted 4697 * the partition.) 4698 */ 4699 if (sbi->s_journal) 4700 ext4_clear_journal_err(sb, es); 4701 sbi->s_mount_state = le16_to_cpu(es->s_state); 4702 if (!ext4_setup_super(sb, es, 0)) 4703 sb->s_flags &= ~MS_RDONLY; 4704 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4705 EXT4_FEATURE_INCOMPAT_MMP)) 4706 if (ext4_multi_mount_protect(sb, 4707 le64_to_cpu(es->s_mmp_block))) { 4708 err = -EROFS; 4709 goto restore_opts; 4710 } 4711 enable_quota = 1; 4712 } 4713 } 4714 4715 /* 4716 * Reinitialize lazy itable initialization thread based on 4717 * current settings 4718 */ 4719 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4720 ext4_unregister_li_request(sb); 4721 else { 4722 ext4_group_t first_not_zeroed; 4723 first_not_zeroed = ext4_has_uninit_itable(sb); 4724 ext4_register_li_request(sb, first_not_zeroed); 4725 } 4726 4727 ext4_setup_system_zone(sb); 4728 if (sbi->s_journal == NULL) 4729 ext4_commit_super(sb, 1); 4730 4731 #ifdef CONFIG_QUOTA 4732 /* Release old quota file names */ 4733 for (i = 0; i < MAXQUOTAS; i++) 4734 if (old_opts.s_qf_names[i] && 4735 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4736 kfree(old_opts.s_qf_names[i]); 4737 if (enable_quota) { 4738 if (sb_any_quota_suspended(sb)) 4739 dquot_resume(sb, -1); 4740 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4741 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4742 err = ext4_enable_quotas(sb); 4743 if (err) 4744 goto restore_opts; 4745 } 4746 } 4747 #endif 4748 4749 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4750 kfree(orig_data); 4751 return 0; 4752 4753 restore_opts: 4754 sb->s_flags = old_sb_flags; 4755 sbi->s_mount_opt = old_opts.s_mount_opt; 4756 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4757 sbi->s_resuid = old_opts.s_resuid; 4758 sbi->s_resgid = old_opts.s_resgid; 4759 sbi->s_commit_interval = old_opts.s_commit_interval; 4760 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4761 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4762 #ifdef CONFIG_QUOTA 4763 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4764 for (i = 0; i < MAXQUOTAS; i++) { 4765 if (sbi->s_qf_names[i] && 4766 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4767 kfree(sbi->s_qf_names[i]); 4768 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4769 } 4770 #endif 4771 kfree(orig_data); 4772 return err; 4773 } 4774 4775 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4776 { 4777 struct super_block *sb = dentry->d_sb; 4778 struct ext4_sb_info *sbi = EXT4_SB(sb); 4779 struct ext4_super_block *es = sbi->s_es; 4780 ext4_fsblk_t overhead = 0; 4781 u64 fsid; 4782 s64 bfree; 4783 4784 if (!test_opt(sb, MINIX_DF)) 4785 overhead = sbi->s_overhead; 4786 4787 buf->f_type = EXT4_SUPER_MAGIC; 4788 buf->f_bsize = sb->s_blocksize; 4789 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4790 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4791 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4792 /* prevent underflow in case that few free space is available */ 4793 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4794 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4795 if (buf->f_bfree < ext4_r_blocks_count(es)) 4796 buf->f_bavail = 0; 4797 buf->f_files = le32_to_cpu(es->s_inodes_count); 4798 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4799 buf->f_namelen = EXT4_NAME_LEN; 4800 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4801 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4802 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4803 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4804 4805 return 0; 4806 } 4807 4808 /* Helper function for writing quotas on sync - we need to start transaction 4809 * before quota file is locked for write. Otherwise the are possible deadlocks: 4810 * Process 1 Process 2 4811 * ext4_create() quota_sync() 4812 * jbd2_journal_start() write_dquot() 4813 * dquot_initialize() down(dqio_mutex) 4814 * down(dqio_mutex) jbd2_journal_start() 4815 * 4816 */ 4817 4818 #ifdef CONFIG_QUOTA 4819 4820 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4821 { 4822 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4823 } 4824 4825 static int ext4_write_dquot(struct dquot *dquot) 4826 { 4827 int ret, err; 4828 handle_t *handle; 4829 struct inode *inode; 4830 4831 inode = dquot_to_inode(dquot); 4832 handle = ext4_journal_start(inode, 4833 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4834 if (IS_ERR(handle)) 4835 return PTR_ERR(handle); 4836 ret = dquot_commit(dquot); 4837 err = ext4_journal_stop(handle); 4838 if (!ret) 4839 ret = err; 4840 return ret; 4841 } 4842 4843 static int ext4_acquire_dquot(struct dquot *dquot) 4844 { 4845 int ret, err; 4846 handle_t *handle; 4847 4848 handle = ext4_journal_start(dquot_to_inode(dquot), 4849 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4850 if (IS_ERR(handle)) 4851 return PTR_ERR(handle); 4852 ret = dquot_acquire(dquot); 4853 err = ext4_journal_stop(handle); 4854 if (!ret) 4855 ret = err; 4856 return ret; 4857 } 4858 4859 static int ext4_release_dquot(struct dquot *dquot) 4860 { 4861 int ret, err; 4862 handle_t *handle; 4863 4864 handle = ext4_journal_start(dquot_to_inode(dquot), 4865 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4866 if (IS_ERR(handle)) { 4867 /* Release dquot anyway to avoid endless cycle in dqput() */ 4868 dquot_release(dquot); 4869 return PTR_ERR(handle); 4870 } 4871 ret = dquot_release(dquot); 4872 err = ext4_journal_stop(handle); 4873 if (!ret) 4874 ret = err; 4875 return ret; 4876 } 4877 4878 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4879 { 4880 /* Are we journaling quotas? */ 4881 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4882 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4883 dquot_mark_dquot_dirty(dquot); 4884 return ext4_write_dquot(dquot); 4885 } else { 4886 return dquot_mark_dquot_dirty(dquot); 4887 } 4888 } 4889 4890 static int ext4_write_info(struct super_block *sb, int type) 4891 { 4892 int ret, err; 4893 handle_t *handle; 4894 4895 /* Data block + inode block */ 4896 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4897 if (IS_ERR(handle)) 4898 return PTR_ERR(handle); 4899 ret = dquot_commit_info(sb, type); 4900 err = ext4_journal_stop(handle); 4901 if (!ret) 4902 ret = err; 4903 return ret; 4904 } 4905 4906 /* 4907 * Turn on quotas during mount time - we need to find 4908 * the quota file and such... 4909 */ 4910 static int ext4_quota_on_mount(struct super_block *sb, int type) 4911 { 4912 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4913 EXT4_SB(sb)->s_jquota_fmt, type); 4914 } 4915 4916 /* 4917 * Standard function to be called on quota_on 4918 */ 4919 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4920 struct path *path) 4921 { 4922 int err; 4923 4924 if (!test_opt(sb, QUOTA)) 4925 return -EINVAL; 4926 4927 /* Quotafile not on the same filesystem? */ 4928 if (path->dentry->d_sb != sb) 4929 return -EXDEV; 4930 /* Journaling quota? */ 4931 if (EXT4_SB(sb)->s_qf_names[type]) { 4932 /* Quotafile not in fs root? */ 4933 if (path->dentry->d_parent != sb->s_root) 4934 ext4_msg(sb, KERN_WARNING, 4935 "Quota file not on filesystem root. " 4936 "Journaled quota will not work"); 4937 } 4938 4939 /* 4940 * When we journal data on quota file, we have to flush journal to see 4941 * all updates to the file when we bypass pagecache... 4942 */ 4943 if (EXT4_SB(sb)->s_journal && 4944 ext4_should_journal_data(path->dentry->d_inode)) { 4945 /* 4946 * We don't need to lock updates but journal_flush() could 4947 * otherwise be livelocked... 4948 */ 4949 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4950 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4951 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4952 if (err) 4953 return err; 4954 } 4955 4956 return dquot_quota_on(sb, type, format_id, path); 4957 } 4958 4959 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4960 unsigned int flags) 4961 { 4962 int err; 4963 struct inode *qf_inode; 4964 unsigned long qf_inums[MAXQUOTAS] = { 4965 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4966 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4967 }; 4968 4969 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4970 4971 if (!qf_inums[type]) 4972 return -EPERM; 4973 4974 qf_inode = ext4_iget(sb, qf_inums[type]); 4975 if (IS_ERR(qf_inode)) { 4976 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4977 return PTR_ERR(qf_inode); 4978 } 4979 4980 err = dquot_enable(qf_inode, type, format_id, flags); 4981 iput(qf_inode); 4982 4983 return err; 4984 } 4985 4986 /* Enable usage tracking for all quota types. */ 4987 static int ext4_enable_quotas(struct super_block *sb) 4988 { 4989 int type, err = 0; 4990 unsigned long qf_inums[MAXQUOTAS] = { 4991 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4992 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4993 }; 4994 4995 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4996 for (type = 0; type < MAXQUOTAS; type++) { 4997 if (qf_inums[type]) { 4998 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4999 DQUOT_USAGE_ENABLED); 5000 if (err) { 5001 ext4_warning(sb, 5002 "Failed to enable quota (type=%d) " 5003 "tracking. Please run e2fsck to fix.", 5004 type); 5005 return err; 5006 } 5007 } 5008 } 5009 return 0; 5010 } 5011 5012 /* 5013 * quota_on function that is used when QUOTA feature is set. 5014 */ 5015 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5016 int format_id) 5017 { 5018 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5019 return -EINVAL; 5020 5021 /* 5022 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5023 */ 5024 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5025 } 5026 5027 static int ext4_quota_off(struct super_block *sb, int type) 5028 { 5029 struct inode *inode = sb_dqopt(sb)->files[type]; 5030 handle_t *handle; 5031 5032 /* Force all delayed allocation blocks to be allocated. 5033 * Caller already holds s_umount sem */ 5034 if (test_opt(sb, DELALLOC)) 5035 sync_filesystem(sb); 5036 5037 if (!inode) 5038 goto out; 5039 5040 /* Update modification times of quota files when userspace can 5041 * start looking at them */ 5042 handle = ext4_journal_start(inode, 1); 5043 if (IS_ERR(handle)) 5044 goto out; 5045 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5046 ext4_mark_inode_dirty(handle, inode); 5047 ext4_journal_stop(handle); 5048 5049 out: 5050 return dquot_quota_off(sb, type); 5051 } 5052 5053 /* 5054 * quota_off function that is used when QUOTA feature is set. 5055 */ 5056 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5057 { 5058 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5059 return -EINVAL; 5060 5061 /* Disable only the limits. */ 5062 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5063 } 5064 5065 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5066 * acquiring the locks... As quota files are never truncated and quota code 5067 * itself serializes the operations (and no one else should touch the files) 5068 * we don't have to be afraid of races */ 5069 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5070 size_t len, loff_t off) 5071 { 5072 struct inode *inode = sb_dqopt(sb)->files[type]; 5073 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5074 int err = 0; 5075 int offset = off & (sb->s_blocksize - 1); 5076 int tocopy; 5077 size_t toread; 5078 struct buffer_head *bh; 5079 loff_t i_size = i_size_read(inode); 5080 5081 if (off > i_size) 5082 return 0; 5083 if (off+len > i_size) 5084 len = i_size-off; 5085 toread = len; 5086 while (toread > 0) { 5087 tocopy = sb->s_blocksize - offset < toread ? 5088 sb->s_blocksize - offset : toread; 5089 bh = ext4_bread(NULL, inode, blk, 0, &err); 5090 if (err) 5091 return err; 5092 if (!bh) /* A hole? */ 5093 memset(data, 0, tocopy); 5094 else 5095 memcpy(data, bh->b_data+offset, tocopy); 5096 brelse(bh); 5097 offset = 0; 5098 toread -= tocopy; 5099 data += tocopy; 5100 blk++; 5101 } 5102 return len; 5103 } 5104 5105 /* Write to quotafile (we know the transaction is already started and has 5106 * enough credits) */ 5107 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5108 const char *data, size_t len, loff_t off) 5109 { 5110 struct inode *inode = sb_dqopt(sb)->files[type]; 5111 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5112 int err = 0; 5113 int offset = off & (sb->s_blocksize - 1); 5114 struct buffer_head *bh; 5115 handle_t *handle = journal_current_handle(); 5116 5117 if (EXT4_SB(sb)->s_journal && !handle) { 5118 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5119 " cancelled because transaction is not started", 5120 (unsigned long long)off, (unsigned long long)len); 5121 return -EIO; 5122 } 5123 /* 5124 * Since we account only one data block in transaction credits, 5125 * then it is impossible to cross a block boundary. 5126 */ 5127 if (sb->s_blocksize - offset < len) { 5128 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5129 " cancelled because not block aligned", 5130 (unsigned long long)off, (unsigned long long)len); 5131 return -EIO; 5132 } 5133 5134 bh = ext4_bread(handle, inode, blk, 1, &err); 5135 if (!bh) 5136 goto out; 5137 err = ext4_journal_get_write_access(handle, bh); 5138 if (err) { 5139 brelse(bh); 5140 goto out; 5141 } 5142 lock_buffer(bh); 5143 memcpy(bh->b_data+offset, data, len); 5144 flush_dcache_page(bh->b_page); 5145 unlock_buffer(bh); 5146 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5147 brelse(bh); 5148 out: 5149 if (err) 5150 return err; 5151 if (inode->i_size < off + len) { 5152 i_size_write(inode, off + len); 5153 EXT4_I(inode)->i_disksize = inode->i_size; 5154 ext4_mark_inode_dirty(handle, inode); 5155 } 5156 return len; 5157 } 5158 5159 #endif 5160 5161 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5162 const char *dev_name, void *data) 5163 { 5164 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5165 } 5166 5167 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5168 static inline void register_as_ext2(void) 5169 { 5170 int err = register_filesystem(&ext2_fs_type); 5171 if (err) 5172 printk(KERN_WARNING 5173 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5174 } 5175 5176 static inline void unregister_as_ext2(void) 5177 { 5178 unregister_filesystem(&ext2_fs_type); 5179 } 5180 5181 static inline int ext2_feature_set_ok(struct super_block *sb) 5182 { 5183 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5184 return 0; 5185 if (sb->s_flags & MS_RDONLY) 5186 return 1; 5187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5188 return 0; 5189 return 1; 5190 } 5191 MODULE_ALIAS("ext2"); 5192 #else 5193 static inline void register_as_ext2(void) { } 5194 static inline void unregister_as_ext2(void) { } 5195 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5196 #endif 5197 5198 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5199 static inline void register_as_ext3(void) 5200 { 5201 int err = register_filesystem(&ext3_fs_type); 5202 if (err) 5203 printk(KERN_WARNING 5204 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5205 } 5206 5207 static inline void unregister_as_ext3(void) 5208 { 5209 unregister_filesystem(&ext3_fs_type); 5210 } 5211 5212 static inline int ext3_feature_set_ok(struct super_block *sb) 5213 { 5214 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5215 return 0; 5216 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5217 return 0; 5218 if (sb->s_flags & MS_RDONLY) 5219 return 1; 5220 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5221 return 0; 5222 return 1; 5223 } 5224 MODULE_ALIAS("ext3"); 5225 #else 5226 static inline void register_as_ext3(void) { } 5227 static inline void unregister_as_ext3(void) { } 5228 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5229 #endif 5230 5231 static struct file_system_type ext4_fs_type = { 5232 .owner = THIS_MODULE, 5233 .name = "ext4", 5234 .mount = ext4_mount, 5235 .kill_sb = kill_block_super, 5236 .fs_flags = FS_REQUIRES_DEV, 5237 }; 5238 5239 static int __init ext4_init_feat_adverts(void) 5240 { 5241 struct ext4_features *ef; 5242 int ret = -ENOMEM; 5243 5244 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5245 if (!ef) 5246 goto out; 5247 5248 ef->f_kobj.kset = ext4_kset; 5249 init_completion(&ef->f_kobj_unregister); 5250 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5251 "features"); 5252 if (ret) { 5253 kfree(ef); 5254 goto out; 5255 } 5256 5257 ext4_feat = ef; 5258 ret = 0; 5259 out: 5260 return ret; 5261 } 5262 5263 static void ext4_exit_feat_adverts(void) 5264 { 5265 kobject_put(&ext4_feat->f_kobj); 5266 wait_for_completion(&ext4_feat->f_kobj_unregister); 5267 kfree(ext4_feat); 5268 } 5269 5270 /* Shared across all ext4 file systems */ 5271 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5272 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5273 5274 static int __init ext4_init_fs(void) 5275 { 5276 int i, err; 5277 5278 ext4_li_info = NULL; 5279 mutex_init(&ext4_li_mtx); 5280 5281 /* Build-time check for flags consistency */ 5282 ext4_check_flag_values(); 5283 5284 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5285 mutex_init(&ext4__aio_mutex[i]); 5286 init_waitqueue_head(&ext4__ioend_wq[i]); 5287 } 5288 5289 err = ext4_init_es(); 5290 if (err) 5291 return err; 5292 5293 err = ext4_init_pageio(); 5294 if (err) 5295 goto out7; 5296 5297 err = ext4_init_system_zone(); 5298 if (err) 5299 goto out6; 5300 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5301 if (!ext4_kset) { 5302 err = -ENOMEM; 5303 goto out5; 5304 } 5305 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5306 5307 err = ext4_init_feat_adverts(); 5308 if (err) 5309 goto out4; 5310 5311 err = ext4_init_mballoc(); 5312 if (err) 5313 goto out3; 5314 5315 err = ext4_init_xattr(); 5316 if (err) 5317 goto out2; 5318 err = init_inodecache(); 5319 if (err) 5320 goto out1; 5321 register_as_ext3(); 5322 register_as_ext2(); 5323 err = register_filesystem(&ext4_fs_type); 5324 if (err) 5325 goto out; 5326 5327 return 0; 5328 out: 5329 unregister_as_ext2(); 5330 unregister_as_ext3(); 5331 destroy_inodecache(); 5332 out1: 5333 ext4_exit_xattr(); 5334 out2: 5335 ext4_exit_mballoc(); 5336 out3: 5337 ext4_exit_feat_adverts(); 5338 out4: 5339 if (ext4_proc_root) 5340 remove_proc_entry("fs/ext4", NULL); 5341 kset_unregister(ext4_kset); 5342 out5: 5343 ext4_exit_system_zone(); 5344 out6: 5345 ext4_exit_pageio(); 5346 out7: 5347 ext4_exit_es(); 5348 5349 return err; 5350 } 5351 5352 static void __exit ext4_exit_fs(void) 5353 { 5354 ext4_destroy_lazyinit_thread(); 5355 unregister_as_ext2(); 5356 unregister_as_ext3(); 5357 unregister_filesystem(&ext4_fs_type); 5358 destroy_inodecache(); 5359 ext4_exit_xattr(); 5360 ext4_exit_mballoc(); 5361 ext4_exit_feat_adverts(); 5362 remove_proc_entry("fs/ext4", NULL); 5363 kset_unregister(ext4_kset); 5364 ext4_exit_system_zone(); 5365 ext4_exit_pageio(); 5366 } 5367 5368 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5369 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5370 MODULE_LICENSE("GPL"); 5371 module_init(ext4_init_fs) 5372 module_exit(ext4_exit_fs) 5373