1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/parser.h> 28 #include <linux/smp_lock.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/marker.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <asm/uaccess.h> 42 43 #include "ext4.h" 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "namei.h" 48 #include "group.h" 49 50 struct proc_dir_entry *ext4_proc_root; 51 52 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 53 unsigned long journal_devnum); 54 static int ext4_commit_super(struct super_block *sb, 55 struct ext4_super_block *es, int sync); 56 static void ext4_mark_recovery_complete(struct super_block *sb, 57 struct ext4_super_block *es); 58 static void ext4_clear_journal_err(struct super_block *sb, 59 struct ext4_super_block *es); 60 static int ext4_sync_fs(struct super_block *sb, int wait); 61 static const char *ext4_decode_error(struct super_block *sb, int errno, 62 char nbuf[16]); 63 static int ext4_remount(struct super_block *sb, int *flags, char *data); 64 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 65 static int ext4_unfreeze(struct super_block *sb); 66 static void ext4_write_super(struct super_block *sb); 67 static int ext4_freeze(struct super_block *sb); 68 69 70 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 71 struct ext4_group_desc *bg) 72 { 73 return le32_to_cpu(bg->bg_block_bitmap_lo) | 74 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 75 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 76 } 77 78 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 79 struct ext4_group_desc *bg) 80 { 81 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 82 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 83 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 84 } 85 86 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 87 struct ext4_group_desc *bg) 88 { 89 return le32_to_cpu(bg->bg_inode_table_lo) | 90 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 91 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 92 } 93 94 __u32 ext4_free_blks_count(struct super_block *sb, 95 struct ext4_group_desc *bg) 96 { 97 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 99 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 100 } 101 102 __u32 ext4_free_inodes_count(struct super_block *sb, 103 struct ext4_group_desc *bg) 104 { 105 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 107 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 108 } 109 110 __u32 ext4_used_dirs_count(struct super_block *sb, 111 struct ext4_group_desc *bg) 112 { 113 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 115 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 116 } 117 118 __u32 ext4_itable_unused_count(struct super_block *sb, 119 struct ext4_group_desc *bg) 120 { 121 return le16_to_cpu(bg->bg_itable_unused_lo) | 122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 123 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 124 } 125 126 void ext4_block_bitmap_set(struct super_block *sb, 127 struct ext4_group_desc *bg, ext4_fsblk_t blk) 128 { 129 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 130 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 131 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 132 } 133 134 void ext4_inode_bitmap_set(struct super_block *sb, 135 struct ext4_group_desc *bg, ext4_fsblk_t blk) 136 { 137 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 138 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 139 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 140 } 141 142 void ext4_inode_table_set(struct super_block *sb, 143 struct ext4_group_desc *bg, ext4_fsblk_t blk) 144 { 145 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 146 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 147 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 148 } 149 150 void ext4_free_blks_set(struct super_block *sb, 151 struct ext4_group_desc *bg, __u32 count) 152 { 153 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 155 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 156 } 157 158 void ext4_free_inodes_set(struct super_block *sb, 159 struct ext4_group_desc *bg, __u32 count) 160 { 161 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 163 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 164 } 165 166 void ext4_used_dirs_set(struct super_block *sb, 167 struct ext4_group_desc *bg, __u32 count) 168 { 169 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 171 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 172 } 173 174 void ext4_itable_unused_set(struct super_block *sb, 175 struct ext4_group_desc *bg, __u32 count) 176 { 177 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 179 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 180 } 181 182 /* 183 * Wrappers for jbd2_journal_start/end. 184 * 185 * The only special thing we need to do here is to make sure that all 186 * journal_end calls result in the superblock being marked dirty, so 187 * that sync() will call the filesystem's write_super callback if 188 * appropriate. 189 */ 190 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 191 { 192 journal_t *journal; 193 194 if (sb->s_flags & MS_RDONLY) 195 return ERR_PTR(-EROFS); 196 197 /* Special case here: if the journal has aborted behind our 198 * backs (eg. EIO in the commit thread), then we still need to 199 * take the FS itself readonly cleanly. */ 200 journal = EXT4_SB(sb)->s_journal; 201 if (journal) { 202 if (is_journal_aborted(journal)) { 203 ext4_abort(sb, __func__, 204 "Detected aborted journal"); 205 return ERR_PTR(-EROFS); 206 } 207 return jbd2_journal_start(journal, nblocks); 208 } 209 /* 210 * We're not journaling, return the appropriate indication. 211 */ 212 current->journal_info = EXT4_NOJOURNAL_HANDLE; 213 return current->journal_info; 214 } 215 216 /* 217 * The only special thing we need to do here is to make sure that all 218 * jbd2_journal_stop calls result in the superblock being marked dirty, so 219 * that sync() will call the filesystem's write_super callback if 220 * appropriate. 221 */ 222 int __ext4_journal_stop(const char *where, handle_t *handle) 223 { 224 struct super_block *sb; 225 int err; 226 int rc; 227 228 if (!ext4_handle_valid(handle)) { 229 /* 230 * Do this here since we don't call jbd2_journal_stop() in 231 * no-journal mode. 232 */ 233 current->journal_info = NULL; 234 return 0; 235 } 236 sb = handle->h_transaction->t_journal->j_private; 237 err = handle->h_err; 238 rc = jbd2_journal_stop(handle); 239 240 if (!err) 241 err = rc; 242 if (err) 243 __ext4_std_error(sb, where, err); 244 return err; 245 } 246 247 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 248 struct buffer_head *bh, handle_t *handle, int err) 249 { 250 char nbuf[16]; 251 const char *errstr = ext4_decode_error(NULL, err, nbuf); 252 253 BUG_ON(!ext4_handle_valid(handle)); 254 255 if (bh) 256 BUFFER_TRACE(bh, "abort"); 257 258 if (!handle->h_err) 259 handle->h_err = err; 260 261 if (is_handle_aborted(handle)) 262 return; 263 264 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 265 caller, errstr, err_fn); 266 267 jbd2_journal_abort_handle(handle); 268 } 269 270 /* Deal with the reporting of failure conditions on a filesystem such as 271 * inconsistencies detected or read IO failures. 272 * 273 * On ext2, we can store the error state of the filesystem in the 274 * superblock. That is not possible on ext4, because we may have other 275 * write ordering constraints on the superblock which prevent us from 276 * writing it out straight away; and given that the journal is about to 277 * be aborted, we can't rely on the current, or future, transactions to 278 * write out the superblock safely. 279 * 280 * We'll just use the jbd2_journal_abort() error code to record an error in 281 * the journal instead. On recovery, the journal will compain about 282 * that error until we've noted it down and cleared it. 283 */ 284 285 static void ext4_handle_error(struct super_block *sb) 286 { 287 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 288 289 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 290 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 291 292 if (sb->s_flags & MS_RDONLY) 293 return; 294 295 if (!test_opt(sb, ERRORS_CONT)) { 296 journal_t *journal = EXT4_SB(sb)->s_journal; 297 298 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 299 if (journal) 300 jbd2_journal_abort(journal, -EIO); 301 } 302 if (test_opt(sb, ERRORS_RO)) { 303 printk(KERN_CRIT "Remounting filesystem read-only\n"); 304 sb->s_flags |= MS_RDONLY; 305 } 306 ext4_commit_super(sb, es, 1); 307 if (test_opt(sb, ERRORS_PANIC)) 308 panic("EXT4-fs (device %s): panic forced after error\n", 309 sb->s_id); 310 } 311 312 void ext4_error(struct super_block *sb, const char *function, 313 const char *fmt, ...) 314 { 315 va_list args; 316 317 va_start(args, fmt); 318 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 319 vprintk(fmt, args); 320 printk("\n"); 321 va_end(args); 322 323 ext4_handle_error(sb); 324 } 325 326 static const char *ext4_decode_error(struct super_block *sb, int errno, 327 char nbuf[16]) 328 { 329 char *errstr = NULL; 330 331 switch (errno) { 332 case -EIO: 333 errstr = "IO failure"; 334 break; 335 case -ENOMEM: 336 errstr = "Out of memory"; 337 break; 338 case -EROFS: 339 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) 340 errstr = "Journal has aborted"; 341 else 342 errstr = "Readonly filesystem"; 343 break; 344 default: 345 /* If the caller passed in an extra buffer for unknown 346 * errors, textualise them now. Else we just return 347 * NULL. */ 348 if (nbuf) { 349 /* Check for truncated error codes... */ 350 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 351 errstr = nbuf; 352 } 353 break; 354 } 355 356 return errstr; 357 } 358 359 /* __ext4_std_error decodes expected errors from journaling functions 360 * automatically and invokes the appropriate error response. */ 361 362 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 363 { 364 char nbuf[16]; 365 const char *errstr; 366 367 /* Special case: if the error is EROFS, and we're not already 368 * inside a transaction, then there's really no point in logging 369 * an error. */ 370 if (errno == -EROFS && journal_current_handle() == NULL && 371 (sb->s_flags & MS_RDONLY)) 372 return; 373 374 errstr = ext4_decode_error(sb, errno, nbuf); 375 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 376 sb->s_id, function, errstr); 377 378 ext4_handle_error(sb); 379 } 380 381 /* 382 * ext4_abort is a much stronger failure handler than ext4_error. The 383 * abort function may be used to deal with unrecoverable failures such 384 * as journal IO errors or ENOMEM at a critical moment in log management. 385 * 386 * We unconditionally force the filesystem into an ABORT|READONLY state, 387 * unless the error response on the fs has been set to panic in which 388 * case we take the easy way out and panic immediately. 389 */ 390 391 void ext4_abort(struct super_block *sb, const char *function, 392 const char *fmt, ...) 393 { 394 va_list args; 395 396 printk(KERN_CRIT "ext4_abort called.\n"); 397 398 va_start(args, fmt); 399 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 400 vprintk(fmt, args); 401 printk("\n"); 402 va_end(args); 403 404 if (test_opt(sb, ERRORS_PANIC)) 405 panic("EXT4-fs panic from previous error\n"); 406 407 if (sb->s_flags & MS_RDONLY) 408 return; 409 410 printk(KERN_CRIT "Remounting filesystem read-only\n"); 411 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 412 sb->s_flags |= MS_RDONLY; 413 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 414 if (EXT4_SB(sb)->s_journal) 415 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 416 } 417 418 void ext4_warning(struct super_block *sb, const char *function, 419 const char *fmt, ...) 420 { 421 va_list args; 422 423 va_start(args, fmt); 424 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 425 sb->s_id, function); 426 vprintk(fmt, args); 427 printk("\n"); 428 va_end(args); 429 } 430 431 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 432 const char *function, const char *fmt, ...) 433 __releases(bitlock) 434 __acquires(bitlock) 435 { 436 va_list args; 437 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 438 439 va_start(args, fmt); 440 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 441 vprintk(fmt, args); 442 printk("\n"); 443 va_end(args); 444 445 if (test_opt(sb, ERRORS_CONT)) { 446 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 447 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 448 ext4_commit_super(sb, es, 0); 449 return; 450 } 451 ext4_unlock_group(sb, grp); 452 ext4_handle_error(sb); 453 /* 454 * We only get here in the ERRORS_RO case; relocking the group 455 * may be dangerous, but nothing bad will happen since the 456 * filesystem will have already been marked read/only and the 457 * journal has been aborted. We return 1 as a hint to callers 458 * who might what to use the return value from 459 * ext4_grp_locked_error() to distinguish beween the 460 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 461 * aggressively from the ext4 function in question, with a 462 * more appropriate error code. 463 */ 464 ext4_lock_group(sb, grp); 465 return; 466 } 467 468 469 void ext4_update_dynamic_rev(struct super_block *sb) 470 { 471 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 472 473 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 474 return; 475 476 ext4_warning(sb, __func__, 477 "updating to rev %d because of new feature flag, " 478 "running e2fsck is recommended", 479 EXT4_DYNAMIC_REV); 480 481 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 482 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 483 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 484 /* leave es->s_feature_*compat flags alone */ 485 /* es->s_uuid will be set by e2fsck if empty */ 486 487 /* 488 * The rest of the superblock fields should be zero, and if not it 489 * means they are likely already in use, so leave them alone. We 490 * can leave it up to e2fsck to clean up any inconsistencies there. 491 */ 492 } 493 494 /* 495 * Open the external journal device 496 */ 497 static struct block_device *ext4_blkdev_get(dev_t dev) 498 { 499 struct block_device *bdev; 500 char b[BDEVNAME_SIZE]; 501 502 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 503 if (IS_ERR(bdev)) 504 goto fail; 505 return bdev; 506 507 fail: 508 printk(KERN_ERR "EXT4-fs: failed to open journal device %s: %ld\n", 509 __bdevname(dev, b), PTR_ERR(bdev)); 510 return NULL; 511 } 512 513 /* 514 * Release the journal device 515 */ 516 static int ext4_blkdev_put(struct block_device *bdev) 517 { 518 bd_release(bdev); 519 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 520 } 521 522 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 523 { 524 struct block_device *bdev; 525 int ret = -ENODEV; 526 527 bdev = sbi->journal_bdev; 528 if (bdev) { 529 ret = ext4_blkdev_put(bdev); 530 sbi->journal_bdev = NULL; 531 } 532 return ret; 533 } 534 535 static inline struct inode *orphan_list_entry(struct list_head *l) 536 { 537 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 538 } 539 540 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 541 { 542 struct list_head *l; 543 544 printk(KERN_ERR "sb orphan head is %d\n", 545 le32_to_cpu(sbi->s_es->s_last_orphan)); 546 547 printk(KERN_ERR "sb_info orphan list:\n"); 548 list_for_each(l, &sbi->s_orphan) { 549 struct inode *inode = orphan_list_entry(l); 550 printk(KERN_ERR " " 551 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 552 inode->i_sb->s_id, inode->i_ino, inode, 553 inode->i_mode, inode->i_nlink, 554 NEXT_ORPHAN(inode)); 555 } 556 } 557 558 static void ext4_put_super(struct super_block *sb) 559 { 560 struct ext4_sb_info *sbi = EXT4_SB(sb); 561 struct ext4_super_block *es = sbi->s_es; 562 int i, err; 563 564 ext4_mb_release(sb); 565 ext4_ext_release(sb); 566 ext4_xattr_put_super(sb); 567 if (sbi->s_journal) { 568 err = jbd2_journal_destroy(sbi->s_journal); 569 sbi->s_journal = NULL; 570 if (err < 0) 571 ext4_abort(sb, __func__, 572 "Couldn't clean up the journal"); 573 } 574 if (!(sb->s_flags & MS_RDONLY)) { 575 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 576 es->s_state = cpu_to_le16(sbi->s_mount_state); 577 ext4_commit_super(sb, es, 1); 578 } 579 if (sbi->s_proc) { 580 remove_proc_entry("inode_readahead_blks", sbi->s_proc); 581 remove_proc_entry(sb->s_id, ext4_proc_root); 582 } 583 584 for (i = 0; i < sbi->s_gdb_count; i++) 585 brelse(sbi->s_group_desc[i]); 586 kfree(sbi->s_group_desc); 587 kfree(sbi->s_flex_groups); 588 percpu_counter_destroy(&sbi->s_freeblocks_counter); 589 percpu_counter_destroy(&sbi->s_freeinodes_counter); 590 percpu_counter_destroy(&sbi->s_dirs_counter); 591 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 592 brelse(sbi->s_sbh); 593 #ifdef CONFIG_QUOTA 594 for (i = 0; i < MAXQUOTAS; i++) 595 kfree(sbi->s_qf_names[i]); 596 #endif 597 598 /* Debugging code just in case the in-memory inode orphan list 599 * isn't empty. The on-disk one can be non-empty if we've 600 * detected an error and taken the fs readonly, but the 601 * in-memory list had better be clean by this point. */ 602 if (!list_empty(&sbi->s_orphan)) 603 dump_orphan_list(sb, sbi); 604 J_ASSERT(list_empty(&sbi->s_orphan)); 605 606 invalidate_bdev(sb->s_bdev); 607 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 608 /* 609 * Invalidate the journal device's buffers. We don't want them 610 * floating about in memory - the physical journal device may 611 * hotswapped, and it breaks the `ro-after' testing code. 612 */ 613 sync_blockdev(sbi->journal_bdev); 614 invalidate_bdev(sbi->journal_bdev); 615 ext4_blkdev_remove(sbi); 616 } 617 sb->s_fs_info = NULL; 618 kfree(sbi); 619 return; 620 } 621 622 static struct kmem_cache *ext4_inode_cachep; 623 624 /* 625 * Called inside transaction, so use GFP_NOFS 626 */ 627 static struct inode *ext4_alloc_inode(struct super_block *sb) 628 { 629 struct ext4_inode_info *ei; 630 631 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 632 if (!ei) 633 return NULL; 634 #ifdef CONFIG_EXT4_FS_POSIX_ACL 635 ei->i_acl = EXT4_ACL_NOT_CACHED; 636 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 637 #endif 638 ei->vfs_inode.i_version = 1; 639 ei->vfs_inode.i_data.writeback_index = 0; 640 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 641 INIT_LIST_HEAD(&ei->i_prealloc_list); 642 spin_lock_init(&ei->i_prealloc_lock); 643 /* 644 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 645 * therefore it can be null here. Don't check it, just initialize 646 * jinode. 647 */ 648 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 649 ei->i_reserved_data_blocks = 0; 650 ei->i_reserved_meta_blocks = 0; 651 ei->i_allocated_meta_blocks = 0; 652 ei->i_delalloc_reserved_flag = 0; 653 spin_lock_init(&(ei->i_block_reservation_lock)); 654 return &ei->vfs_inode; 655 } 656 657 static void ext4_destroy_inode(struct inode *inode) 658 { 659 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 660 printk("EXT4 Inode %p: orphan list check failed!\n", 661 EXT4_I(inode)); 662 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 663 EXT4_I(inode), sizeof(struct ext4_inode_info), 664 true); 665 dump_stack(); 666 } 667 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 668 } 669 670 static void init_once(void *foo) 671 { 672 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 673 674 INIT_LIST_HEAD(&ei->i_orphan); 675 #ifdef CONFIG_EXT4_FS_XATTR 676 init_rwsem(&ei->xattr_sem); 677 #endif 678 init_rwsem(&ei->i_data_sem); 679 inode_init_once(&ei->vfs_inode); 680 } 681 682 static int init_inodecache(void) 683 { 684 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 685 sizeof(struct ext4_inode_info), 686 0, (SLAB_RECLAIM_ACCOUNT| 687 SLAB_MEM_SPREAD), 688 init_once); 689 if (ext4_inode_cachep == NULL) 690 return -ENOMEM; 691 return 0; 692 } 693 694 static void destroy_inodecache(void) 695 { 696 kmem_cache_destroy(ext4_inode_cachep); 697 } 698 699 static void ext4_clear_inode(struct inode *inode) 700 { 701 #ifdef CONFIG_EXT4_FS_POSIX_ACL 702 if (EXT4_I(inode)->i_acl && 703 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) { 704 posix_acl_release(EXT4_I(inode)->i_acl); 705 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED; 706 } 707 if (EXT4_I(inode)->i_default_acl && 708 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) { 709 posix_acl_release(EXT4_I(inode)->i_default_acl); 710 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED; 711 } 712 #endif 713 ext4_discard_preallocations(inode); 714 if (EXT4_JOURNAL(inode)) 715 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 716 &EXT4_I(inode)->jinode); 717 } 718 719 static inline void ext4_show_quota_options(struct seq_file *seq, 720 struct super_block *sb) 721 { 722 #if defined(CONFIG_QUOTA) 723 struct ext4_sb_info *sbi = EXT4_SB(sb); 724 725 if (sbi->s_jquota_fmt) 726 seq_printf(seq, ",jqfmt=%s", 727 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 728 729 if (sbi->s_qf_names[USRQUOTA]) 730 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 731 732 if (sbi->s_qf_names[GRPQUOTA]) 733 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 734 735 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 736 seq_puts(seq, ",usrquota"); 737 738 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 739 seq_puts(seq, ",grpquota"); 740 #endif 741 } 742 743 /* 744 * Show an option if 745 * - it's set to a non-default value OR 746 * - if the per-sb default is different from the global default 747 */ 748 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 749 { 750 int def_errors; 751 unsigned long def_mount_opts; 752 struct super_block *sb = vfs->mnt_sb; 753 struct ext4_sb_info *sbi = EXT4_SB(sb); 754 struct ext4_super_block *es = sbi->s_es; 755 756 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 757 def_errors = le16_to_cpu(es->s_errors); 758 759 if (sbi->s_sb_block != 1) 760 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 761 if (test_opt(sb, MINIX_DF)) 762 seq_puts(seq, ",minixdf"); 763 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 764 seq_puts(seq, ",grpid"); 765 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 766 seq_puts(seq, ",nogrpid"); 767 if (sbi->s_resuid != EXT4_DEF_RESUID || 768 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 769 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 770 } 771 if (sbi->s_resgid != EXT4_DEF_RESGID || 772 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 773 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 774 } 775 if (test_opt(sb, ERRORS_RO)) { 776 if (def_errors == EXT4_ERRORS_PANIC || 777 def_errors == EXT4_ERRORS_CONTINUE) { 778 seq_puts(seq, ",errors=remount-ro"); 779 } 780 } 781 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 782 seq_puts(seq, ",errors=continue"); 783 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 784 seq_puts(seq, ",errors=panic"); 785 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 786 seq_puts(seq, ",nouid32"); 787 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 788 seq_puts(seq, ",debug"); 789 if (test_opt(sb, OLDALLOC)) 790 seq_puts(seq, ",oldalloc"); 791 #ifdef CONFIG_EXT4_FS_XATTR 792 if (test_opt(sb, XATTR_USER) && 793 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 794 seq_puts(seq, ",user_xattr"); 795 if (!test_opt(sb, XATTR_USER) && 796 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 797 seq_puts(seq, ",nouser_xattr"); 798 } 799 #endif 800 #ifdef CONFIG_EXT4_FS_POSIX_ACL 801 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 802 seq_puts(seq, ",acl"); 803 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 804 seq_puts(seq, ",noacl"); 805 #endif 806 if (!test_opt(sb, RESERVATION)) 807 seq_puts(seq, ",noreservation"); 808 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 809 seq_printf(seq, ",commit=%u", 810 (unsigned) (sbi->s_commit_interval / HZ)); 811 } 812 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 813 seq_printf(seq, ",min_batch_time=%u", 814 (unsigned) sbi->s_min_batch_time); 815 } 816 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 817 seq_printf(seq, ",max_batch_time=%u", 818 (unsigned) sbi->s_min_batch_time); 819 } 820 821 /* 822 * We're changing the default of barrier mount option, so 823 * let's always display its mount state so it's clear what its 824 * status is. 825 */ 826 seq_puts(seq, ",barrier="); 827 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 828 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 829 seq_puts(seq, ",journal_async_commit"); 830 if (test_opt(sb, NOBH)) 831 seq_puts(seq, ",nobh"); 832 if (test_opt(sb, I_VERSION)) 833 seq_puts(seq, ",i_version"); 834 if (!test_opt(sb, DELALLOC)) 835 seq_puts(seq, ",nodelalloc"); 836 837 838 if (sbi->s_stripe) 839 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 840 /* 841 * journal mode get enabled in different ways 842 * So just print the value even if we didn't specify it 843 */ 844 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 845 seq_puts(seq, ",data=journal"); 846 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 847 seq_puts(seq, ",data=ordered"); 848 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 849 seq_puts(seq, ",data=writeback"); 850 851 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 852 seq_printf(seq, ",inode_readahead_blks=%u", 853 sbi->s_inode_readahead_blks); 854 855 if (test_opt(sb, DATA_ERR_ABORT)) 856 seq_puts(seq, ",data_err=abort"); 857 858 ext4_show_quota_options(seq, sb); 859 return 0; 860 } 861 862 863 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 864 u64 ino, u32 generation) 865 { 866 struct inode *inode; 867 868 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 869 return ERR_PTR(-ESTALE); 870 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 871 return ERR_PTR(-ESTALE); 872 873 /* iget isn't really right if the inode is currently unallocated!! 874 * 875 * ext4_read_inode will return a bad_inode if the inode had been 876 * deleted, so we should be safe. 877 * 878 * Currently we don't know the generation for parent directory, so 879 * a generation of 0 means "accept any" 880 */ 881 inode = ext4_iget(sb, ino); 882 if (IS_ERR(inode)) 883 return ERR_CAST(inode); 884 if (generation && inode->i_generation != generation) { 885 iput(inode); 886 return ERR_PTR(-ESTALE); 887 } 888 889 return inode; 890 } 891 892 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 893 int fh_len, int fh_type) 894 { 895 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 896 ext4_nfs_get_inode); 897 } 898 899 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 900 int fh_len, int fh_type) 901 { 902 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 903 ext4_nfs_get_inode); 904 } 905 906 /* 907 * Try to release metadata pages (indirect blocks, directories) which are 908 * mapped via the block device. Since these pages could have journal heads 909 * which would prevent try_to_free_buffers() from freeing them, we must use 910 * jbd2 layer's try_to_free_buffers() function to release them. 911 */ 912 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait) 913 { 914 journal_t *journal = EXT4_SB(sb)->s_journal; 915 916 WARN_ON(PageChecked(page)); 917 if (!page_has_buffers(page)) 918 return 0; 919 if (journal) 920 return jbd2_journal_try_to_free_buffers(journal, page, 921 wait & ~__GFP_WAIT); 922 return try_to_free_buffers(page); 923 } 924 925 #ifdef CONFIG_QUOTA 926 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 927 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 928 929 static int ext4_dquot_initialize(struct inode *inode, int type); 930 static int ext4_dquot_drop(struct inode *inode); 931 static int ext4_write_dquot(struct dquot *dquot); 932 static int ext4_acquire_dquot(struct dquot *dquot); 933 static int ext4_release_dquot(struct dquot *dquot); 934 static int ext4_mark_dquot_dirty(struct dquot *dquot); 935 static int ext4_write_info(struct super_block *sb, int type); 936 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 937 char *path, int remount); 938 static int ext4_quota_on_mount(struct super_block *sb, int type); 939 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 940 size_t len, loff_t off); 941 static ssize_t ext4_quota_write(struct super_block *sb, int type, 942 const char *data, size_t len, loff_t off); 943 944 static struct dquot_operations ext4_quota_operations = { 945 .initialize = ext4_dquot_initialize, 946 .drop = ext4_dquot_drop, 947 .alloc_space = dquot_alloc_space, 948 .alloc_inode = dquot_alloc_inode, 949 .free_space = dquot_free_space, 950 .free_inode = dquot_free_inode, 951 .transfer = dquot_transfer, 952 .write_dquot = ext4_write_dquot, 953 .acquire_dquot = ext4_acquire_dquot, 954 .release_dquot = ext4_release_dquot, 955 .mark_dirty = ext4_mark_dquot_dirty, 956 .write_info = ext4_write_info, 957 .alloc_dquot = dquot_alloc, 958 .destroy_dquot = dquot_destroy, 959 }; 960 961 static struct quotactl_ops ext4_qctl_operations = { 962 .quota_on = ext4_quota_on, 963 .quota_off = vfs_quota_off, 964 .quota_sync = vfs_quota_sync, 965 .get_info = vfs_get_dqinfo, 966 .set_info = vfs_set_dqinfo, 967 .get_dqblk = vfs_get_dqblk, 968 .set_dqblk = vfs_set_dqblk 969 }; 970 #endif 971 972 static const struct super_operations ext4_sops = { 973 .alloc_inode = ext4_alloc_inode, 974 .destroy_inode = ext4_destroy_inode, 975 .write_inode = ext4_write_inode, 976 .dirty_inode = ext4_dirty_inode, 977 .delete_inode = ext4_delete_inode, 978 .put_super = ext4_put_super, 979 .write_super = ext4_write_super, 980 .sync_fs = ext4_sync_fs, 981 .freeze_fs = ext4_freeze, 982 .unfreeze_fs = ext4_unfreeze, 983 .statfs = ext4_statfs, 984 .remount_fs = ext4_remount, 985 .clear_inode = ext4_clear_inode, 986 .show_options = ext4_show_options, 987 #ifdef CONFIG_QUOTA 988 .quota_read = ext4_quota_read, 989 .quota_write = ext4_quota_write, 990 #endif 991 .bdev_try_to_free_page = bdev_try_to_free_page, 992 }; 993 994 static const struct export_operations ext4_export_ops = { 995 .fh_to_dentry = ext4_fh_to_dentry, 996 .fh_to_parent = ext4_fh_to_parent, 997 .get_parent = ext4_get_parent, 998 }; 999 1000 enum { 1001 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1002 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1003 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1004 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1005 Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh, 1006 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1007 Opt_journal_update, Opt_journal_dev, 1008 Opt_journal_checksum, Opt_journal_async_commit, 1009 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1010 Opt_data_err_abort, Opt_data_err_ignore, 1011 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1012 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1013 Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota, 1014 Opt_grpquota, Opt_i_version, 1015 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1016 Opt_inode_readahead_blks, Opt_journal_ioprio 1017 }; 1018 1019 static const match_table_t tokens = { 1020 {Opt_bsd_df, "bsddf"}, 1021 {Opt_minix_df, "minixdf"}, 1022 {Opt_grpid, "grpid"}, 1023 {Opt_grpid, "bsdgroups"}, 1024 {Opt_nogrpid, "nogrpid"}, 1025 {Opt_nogrpid, "sysvgroups"}, 1026 {Opt_resgid, "resgid=%u"}, 1027 {Opt_resuid, "resuid=%u"}, 1028 {Opt_sb, "sb=%u"}, 1029 {Opt_err_cont, "errors=continue"}, 1030 {Opt_err_panic, "errors=panic"}, 1031 {Opt_err_ro, "errors=remount-ro"}, 1032 {Opt_nouid32, "nouid32"}, 1033 {Opt_debug, "debug"}, 1034 {Opt_oldalloc, "oldalloc"}, 1035 {Opt_orlov, "orlov"}, 1036 {Opt_user_xattr, "user_xattr"}, 1037 {Opt_nouser_xattr, "nouser_xattr"}, 1038 {Opt_acl, "acl"}, 1039 {Opt_noacl, "noacl"}, 1040 {Opt_reservation, "reservation"}, 1041 {Opt_noreservation, "noreservation"}, 1042 {Opt_noload, "noload"}, 1043 {Opt_nobh, "nobh"}, 1044 {Opt_bh, "bh"}, 1045 {Opt_commit, "commit=%u"}, 1046 {Opt_min_batch_time, "min_batch_time=%u"}, 1047 {Opt_max_batch_time, "max_batch_time=%u"}, 1048 {Opt_journal_update, "journal=update"}, 1049 {Opt_journal_dev, "journal_dev=%u"}, 1050 {Opt_journal_checksum, "journal_checksum"}, 1051 {Opt_journal_async_commit, "journal_async_commit"}, 1052 {Opt_abort, "abort"}, 1053 {Opt_data_journal, "data=journal"}, 1054 {Opt_data_ordered, "data=ordered"}, 1055 {Opt_data_writeback, "data=writeback"}, 1056 {Opt_data_err_abort, "data_err=abort"}, 1057 {Opt_data_err_ignore, "data_err=ignore"}, 1058 {Opt_offusrjquota, "usrjquota="}, 1059 {Opt_usrjquota, "usrjquota=%s"}, 1060 {Opt_offgrpjquota, "grpjquota="}, 1061 {Opt_grpjquota, "grpjquota=%s"}, 1062 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1063 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1064 {Opt_grpquota, "grpquota"}, 1065 {Opt_noquota, "noquota"}, 1066 {Opt_quota, "quota"}, 1067 {Opt_usrquota, "usrquota"}, 1068 {Opt_barrier, "barrier=%u"}, 1069 {Opt_i_version, "i_version"}, 1070 {Opt_stripe, "stripe=%u"}, 1071 {Opt_resize, "resize"}, 1072 {Opt_delalloc, "delalloc"}, 1073 {Opt_nodelalloc, "nodelalloc"}, 1074 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1075 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1076 {Opt_err, NULL}, 1077 }; 1078 1079 static ext4_fsblk_t get_sb_block(void **data) 1080 { 1081 ext4_fsblk_t sb_block; 1082 char *options = (char *) *data; 1083 1084 if (!options || strncmp(options, "sb=", 3) != 0) 1085 return 1; /* Default location */ 1086 options += 3; 1087 /*todo: use simple_strtoll with >32bit ext4 */ 1088 sb_block = simple_strtoul(options, &options, 0); 1089 if (*options && *options != ',') { 1090 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1091 (char *) *data); 1092 return 1; 1093 } 1094 if (*options == ',') 1095 options++; 1096 *data = (void *) options; 1097 return sb_block; 1098 } 1099 1100 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1101 1102 static int parse_options(char *options, struct super_block *sb, 1103 unsigned long *journal_devnum, 1104 unsigned int *journal_ioprio, 1105 ext4_fsblk_t *n_blocks_count, int is_remount) 1106 { 1107 struct ext4_sb_info *sbi = EXT4_SB(sb); 1108 char *p; 1109 substring_t args[MAX_OPT_ARGS]; 1110 int data_opt = 0; 1111 int option; 1112 #ifdef CONFIG_QUOTA 1113 int qtype, qfmt; 1114 char *qname; 1115 #endif 1116 1117 if (!options) 1118 return 1; 1119 1120 while ((p = strsep(&options, ",")) != NULL) { 1121 int token; 1122 if (!*p) 1123 continue; 1124 1125 token = match_token(p, tokens, args); 1126 switch (token) { 1127 case Opt_bsd_df: 1128 clear_opt(sbi->s_mount_opt, MINIX_DF); 1129 break; 1130 case Opt_minix_df: 1131 set_opt(sbi->s_mount_opt, MINIX_DF); 1132 break; 1133 case Opt_grpid: 1134 set_opt(sbi->s_mount_opt, GRPID); 1135 break; 1136 case Opt_nogrpid: 1137 clear_opt(sbi->s_mount_opt, GRPID); 1138 break; 1139 case Opt_resuid: 1140 if (match_int(&args[0], &option)) 1141 return 0; 1142 sbi->s_resuid = option; 1143 break; 1144 case Opt_resgid: 1145 if (match_int(&args[0], &option)) 1146 return 0; 1147 sbi->s_resgid = option; 1148 break; 1149 case Opt_sb: 1150 /* handled by get_sb_block() instead of here */ 1151 /* *sb_block = match_int(&args[0]); */ 1152 break; 1153 case Opt_err_panic: 1154 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1155 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1156 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1157 break; 1158 case Opt_err_ro: 1159 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1160 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1161 set_opt(sbi->s_mount_opt, ERRORS_RO); 1162 break; 1163 case Opt_err_cont: 1164 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1165 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1166 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1167 break; 1168 case Opt_nouid32: 1169 set_opt(sbi->s_mount_opt, NO_UID32); 1170 break; 1171 case Opt_debug: 1172 set_opt(sbi->s_mount_opt, DEBUG); 1173 break; 1174 case Opt_oldalloc: 1175 set_opt(sbi->s_mount_opt, OLDALLOC); 1176 break; 1177 case Opt_orlov: 1178 clear_opt(sbi->s_mount_opt, OLDALLOC); 1179 break; 1180 #ifdef CONFIG_EXT4_FS_XATTR 1181 case Opt_user_xattr: 1182 set_opt(sbi->s_mount_opt, XATTR_USER); 1183 break; 1184 case Opt_nouser_xattr: 1185 clear_opt(sbi->s_mount_opt, XATTR_USER); 1186 break; 1187 #else 1188 case Opt_user_xattr: 1189 case Opt_nouser_xattr: 1190 printk(KERN_ERR "EXT4 (no)user_xattr options " 1191 "not supported\n"); 1192 break; 1193 #endif 1194 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1195 case Opt_acl: 1196 set_opt(sbi->s_mount_opt, POSIX_ACL); 1197 break; 1198 case Opt_noacl: 1199 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1200 break; 1201 #else 1202 case Opt_acl: 1203 case Opt_noacl: 1204 printk(KERN_ERR "EXT4 (no)acl options " 1205 "not supported\n"); 1206 break; 1207 #endif 1208 case Opt_reservation: 1209 set_opt(sbi->s_mount_opt, RESERVATION); 1210 break; 1211 case Opt_noreservation: 1212 clear_opt(sbi->s_mount_opt, RESERVATION); 1213 break; 1214 case Opt_journal_update: 1215 /* @@@ FIXME */ 1216 /* Eventually we will want to be able to create 1217 a journal file here. For now, only allow the 1218 user to specify an existing inode to be the 1219 journal file. */ 1220 if (is_remount) { 1221 printk(KERN_ERR "EXT4-fs: cannot specify " 1222 "journal on remount\n"); 1223 return 0; 1224 } 1225 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1226 break; 1227 case Opt_journal_dev: 1228 if (is_remount) { 1229 printk(KERN_ERR "EXT4-fs: cannot specify " 1230 "journal on remount\n"); 1231 return 0; 1232 } 1233 if (match_int(&args[0], &option)) 1234 return 0; 1235 *journal_devnum = option; 1236 break; 1237 case Opt_journal_checksum: 1238 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1239 break; 1240 case Opt_journal_async_commit: 1241 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1242 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1243 break; 1244 case Opt_noload: 1245 set_opt(sbi->s_mount_opt, NOLOAD); 1246 break; 1247 case Opt_commit: 1248 if (match_int(&args[0], &option)) 1249 return 0; 1250 if (option < 0) 1251 return 0; 1252 if (option == 0) 1253 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1254 sbi->s_commit_interval = HZ * option; 1255 break; 1256 case Opt_max_batch_time: 1257 if (match_int(&args[0], &option)) 1258 return 0; 1259 if (option < 0) 1260 return 0; 1261 if (option == 0) 1262 option = EXT4_DEF_MAX_BATCH_TIME; 1263 sbi->s_max_batch_time = option; 1264 break; 1265 case Opt_min_batch_time: 1266 if (match_int(&args[0], &option)) 1267 return 0; 1268 if (option < 0) 1269 return 0; 1270 sbi->s_min_batch_time = option; 1271 break; 1272 case Opt_data_journal: 1273 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1274 goto datacheck; 1275 case Opt_data_ordered: 1276 data_opt = EXT4_MOUNT_ORDERED_DATA; 1277 goto datacheck; 1278 case Opt_data_writeback: 1279 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1280 datacheck: 1281 if (is_remount) { 1282 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1283 != data_opt) { 1284 printk(KERN_ERR 1285 "EXT4-fs: cannot change data " 1286 "mode on remount\n"); 1287 return 0; 1288 } 1289 } else { 1290 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1291 sbi->s_mount_opt |= data_opt; 1292 } 1293 break; 1294 case Opt_data_err_abort: 1295 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1296 break; 1297 case Opt_data_err_ignore: 1298 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1299 break; 1300 #ifdef CONFIG_QUOTA 1301 case Opt_usrjquota: 1302 qtype = USRQUOTA; 1303 goto set_qf_name; 1304 case Opt_grpjquota: 1305 qtype = GRPQUOTA; 1306 set_qf_name: 1307 if (sb_any_quota_loaded(sb) && 1308 !sbi->s_qf_names[qtype]) { 1309 printk(KERN_ERR 1310 "EXT4-fs: Cannot change journaled " 1311 "quota options when quota turned on.\n"); 1312 return 0; 1313 } 1314 qname = match_strdup(&args[0]); 1315 if (!qname) { 1316 printk(KERN_ERR 1317 "EXT4-fs: not enough memory for " 1318 "storing quotafile name.\n"); 1319 return 0; 1320 } 1321 if (sbi->s_qf_names[qtype] && 1322 strcmp(sbi->s_qf_names[qtype], qname)) { 1323 printk(KERN_ERR 1324 "EXT4-fs: %s quota file already " 1325 "specified.\n", QTYPE2NAME(qtype)); 1326 kfree(qname); 1327 return 0; 1328 } 1329 sbi->s_qf_names[qtype] = qname; 1330 if (strchr(sbi->s_qf_names[qtype], '/')) { 1331 printk(KERN_ERR 1332 "EXT4-fs: quotafile must be on " 1333 "filesystem root.\n"); 1334 kfree(sbi->s_qf_names[qtype]); 1335 sbi->s_qf_names[qtype] = NULL; 1336 return 0; 1337 } 1338 set_opt(sbi->s_mount_opt, QUOTA); 1339 break; 1340 case Opt_offusrjquota: 1341 qtype = USRQUOTA; 1342 goto clear_qf_name; 1343 case Opt_offgrpjquota: 1344 qtype = GRPQUOTA; 1345 clear_qf_name: 1346 if (sb_any_quota_loaded(sb) && 1347 sbi->s_qf_names[qtype]) { 1348 printk(KERN_ERR "EXT4-fs: Cannot change " 1349 "journaled quota options when " 1350 "quota turned on.\n"); 1351 return 0; 1352 } 1353 /* 1354 * The space will be released later when all options 1355 * are confirmed to be correct 1356 */ 1357 sbi->s_qf_names[qtype] = NULL; 1358 break; 1359 case Opt_jqfmt_vfsold: 1360 qfmt = QFMT_VFS_OLD; 1361 goto set_qf_format; 1362 case Opt_jqfmt_vfsv0: 1363 qfmt = QFMT_VFS_V0; 1364 set_qf_format: 1365 if (sb_any_quota_loaded(sb) && 1366 sbi->s_jquota_fmt != qfmt) { 1367 printk(KERN_ERR "EXT4-fs: Cannot change " 1368 "journaled quota options when " 1369 "quota turned on.\n"); 1370 return 0; 1371 } 1372 sbi->s_jquota_fmt = qfmt; 1373 break; 1374 case Opt_quota: 1375 case Opt_usrquota: 1376 set_opt(sbi->s_mount_opt, QUOTA); 1377 set_opt(sbi->s_mount_opt, USRQUOTA); 1378 break; 1379 case Opt_grpquota: 1380 set_opt(sbi->s_mount_opt, QUOTA); 1381 set_opt(sbi->s_mount_opt, GRPQUOTA); 1382 break; 1383 case Opt_noquota: 1384 if (sb_any_quota_loaded(sb)) { 1385 printk(KERN_ERR "EXT4-fs: Cannot change quota " 1386 "options when quota turned on.\n"); 1387 return 0; 1388 } 1389 clear_opt(sbi->s_mount_opt, QUOTA); 1390 clear_opt(sbi->s_mount_opt, USRQUOTA); 1391 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1392 break; 1393 #else 1394 case Opt_quota: 1395 case Opt_usrquota: 1396 case Opt_grpquota: 1397 printk(KERN_ERR 1398 "EXT4-fs: quota options not supported.\n"); 1399 break; 1400 case Opt_usrjquota: 1401 case Opt_grpjquota: 1402 case Opt_offusrjquota: 1403 case Opt_offgrpjquota: 1404 case Opt_jqfmt_vfsold: 1405 case Opt_jqfmt_vfsv0: 1406 printk(KERN_ERR 1407 "EXT4-fs: journaled quota options not " 1408 "supported.\n"); 1409 break; 1410 case Opt_noquota: 1411 break; 1412 #endif 1413 case Opt_abort: 1414 set_opt(sbi->s_mount_opt, ABORT); 1415 break; 1416 case Opt_barrier: 1417 if (match_int(&args[0], &option)) 1418 return 0; 1419 if (option) 1420 set_opt(sbi->s_mount_opt, BARRIER); 1421 else 1422 clear_opt(sbi->s_mount_opt, BARRIER); 1423 break; 1424 case Opt_ignore: 1425 break; 1426 case Opt_resize: 1427 if (!is_remount) { 1428 printk("EXT4-fs: resize option only available " 1429 "for remount\n"); 1430 return 0; 1431 } 1432 if (match_int(&args[0], &option) != 0) 1433 return 0; 1434 *n_blocks_count = option; 1435 break; 1436 case Opt_nobh: 1437 set_opt(sbi->s_mount_opt, NOBH); 1438 break; 1439 case Opt_bh: 1440 clear_opt(sbi->s_mount_opt, NOBH); 1441 break; 1442 case Opt_i_version: 1443 set_opt(sbi->s_mount_opt, I_VERSION); 1444 sb->s_flags |= MS_I_VERSION; 1445 break; 1446 case Opt_nodelalloc: 1447 clear_opt(sbi->s_mount_opt, DELALLOC); 1448 break; 1449 case Opt_stripe: 1450 if (match_int(&args[0], &option)) 1451 return 0; 1452 if (option < 0) 1453 return 0; 1454 sbi->s_stripe = option; 1455 break; 1456 case Opt_delalloc: 1457 set_opt(sbi->s_mount_opt, DELALLOC); 1458 break; 1459 case Opt_inode_readahead_blks: 1460 if (match_int(&args[0], &option)) 1461 return 0; 1462 if (option < 0 || option > (1 << 30)) 1463 return 0; 1464 sbi->s_inode_readahead_blks = option; 1465 break; 1466 case Opt_journal_ioprio: 1467 if (match_int(&args[0], &option)) 1468 return 0; 1469 if (option < 0 || option > 7) 1470 break; 1471 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1472 option); 1473 break; 1474 default: 1475 printk(KERN_ERR 1476 "EXT4-fs: Unrecognized mount option \"%s\" " 1477 "or missing value\n", p); 1478 return 0; 1479 } 1480 } 1481 #ifdef CONFIG_QUOTA 1482 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1483 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1484 sbi->s_qf_names[USRQUOTA]) 1485 clear_opt(sbi->s_mount_opt, USRQUOTA); 1486 1487 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1488 sbi->s_qf_names[GRPQUOTA]) 1489 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1490 1491 if ((sbi->s_qf_names[USRQUOTA] && 1492 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1493 (sbi->s_qf_names[GRPQUOTA] && 1494 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1495 printk(KERN_ERR "EXT4-fs: old and new quota " 1496 "format mixing.\n"); 1497 return 0; 1498 } 1499 1500 if (!sbi->s_jquota_fmt) { 1501 printk(KERN_ERR "EXT4-fs: journaled quota format " 1502 "not specified.\n"); 1503 return 0; 1504 } 1505 } else { 1506 if (sbi->s_jquota_fmt) { 1507 printk(KERN_ERR "EXT4-fs: journaled quota format " 1508 "specified with no journaling " 1509 "enabled.\n"); 1510 return 0; 1511 } 1512 } 1513 #endif 1514 return 1; 1515 } 1516 1517 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1518 int read_only) 1519 { 1520 struct ext4_sb_info *sbi = EXT4_SB(sb); 1521 int res = 0; 1522 1523 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1524 printk(KERN_ERR "EXT4-fs warning: revision level too high, " 1525 "forcing read-only mode\n"); 1526 res = MS_RDONLY; 1527 } 1528 if (read_only) 1529 return res; 1530 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1531 printk(KERN_WARNING "EXT4-fs warning: mounting unchecked fs, " 1532 "running e2fsck is recommended\n"); 1533 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1534 printk(KERN_WARNING 1535 "EXT4-fs warning: mounting fs with errors, " 1536 "running e2fsck is recommended\n"); 1537 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1538 le16_to_cpu(es->s_mnt_count) >= 1539 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1540 printk(KERN_WARNING 1541 "EXT4-fs warning: maximal mount count reached, " 1542 "running e2fsck is recommended\n"); 1543 else if (le32_to_cpu(es->s_checkinterval) && 1544 (le32_to_cpu(es->s_lastcheck) + 1545 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1546 printk(KERN_WARNING 1547 "EXT4-fs warning: checktime reached, " 1548 "running e2fsck is recommended\n"); 1549 if (!sbi->s_journal) 1550 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1551 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1552 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1553 le16_add_cpu(&es->s_mnt_count, 1); 1554 es->s_mtime = cpu_to_le32(get_seconds()); 1555 ext4_update_dynamic_rev(sb); 1556 if (sbi->s_journal) 1557 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1558 1559 ext4_commit_super(sb, es, 1); 1560 if (test_opt(sb, DEBUG)) 1561 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1562 "bpg=%lu, ipg=%lu, mo=%04lx]\n", 1563 sb->s_blocksize, 1564 sbi->s_groups_count, 1565 EXT4_BLOCKS_PER_GROUP(sb), 1566 EXT4_INODES_PER_GROUP(sb), 1567 sbi->s_mount_opt); 1568 1569 if (EXT4_SB(sb)->s_journal) { 1570 printk(KERN_INFO "EXT4 FS on %s, %s journal on %s\n", 1571 sb->s_id, EXT4_SB(sb)->s_journal->j_inode ? "internal" : 1572 "external", EXT4_SB(sb)->s_journal->j_devname); 1573 } else { 1574 printk(KERN_INFO "EXT4 FS on %s, no journal\n", sb->s_id); 1575 } 1576 return res; 1577 } 1578 1579 static int ext4_fill_flex_info(struct super_block *sb) 1580 { 1581 struct ext4_sb_info *sbi = EXT4_SB(sb); 1582 struct ext4_group_desc *gdp = NULL; 1583 struct buffer_head *bh; 1584 ext4_group_t flex_group_count; 1585 ext4_group_t flex_group; 1586 int groups_per_flex = 0; 1587 int i; 1588 1589 if (!sbi->s_es->s_log_groups_per_flex) { 1590 sbi->s_log_groups_per_flex = 0; 1591 return 1; 1592 } 1593 1594 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1595 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1596 1597 /* We allocate both existing and potentially added groups */ 1598 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1599 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1600 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1601 sbi->s_flex_groups = kzalloc(flex_group_count * 1602 sizeof(struct flex_groups), GFP_KERNEL); 1603 if (sbi->s_flex_groups == NULL) { 1604 printk(KERN_ERR "EXT4-fs: not enough memory for " 1605 "%u flex groups\n", flex_group_count); 1606 goto failed; 1607 } 1608 1609 for (i = 0; i < sbi->s_groups_count; i++) { 1610 gdp = ext4_get_group_desc(sb, i, &bh); 1611 1612 flex_group = ext4_flex_group(sbi, i); 1613 sbi->s_flex_groups[flex_group].free_inodes += 1614 ext4_free_inodes_count(sb, gdp); 1615 sbi->s_flex_groups[flex_group].free_blocks += 1616 ext4_free_blks_count(sb, gdp); 1617 } 1618 1619 return 1; 1620 failed: 1621 return 0; 1622 } 1623 1624 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1625 struct ext4_group_desc *gdp) 1626 { 1627 __u16 crc = 0; 1628 1629 if (sbi->s_es->s_feature_ro_compat & 1630 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1631 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1632 __le32 le_group = cpu_to_le32(block_group); 1633 1634 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1635 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1636 crc = crc16(crc, (__u8 *)gdp, offset); 1637 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1638 /* for checksum of struct ext4_group_desc do the rest...*/ 1639 if ((sbi->s_es->s_feature_incompat & 1640 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1641 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1642 crc = crc16(crc, (__u8 *)gdp + offset, 1643 le16_to_cpu(sbi->s_es->s_desc_size) - 1644 offset); 1645 } 1646 1647 return cpu_to_le16(crc); 1648 } 1649 1650 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1651 struct ext4_group_desc *gdp) 1652 { 1653 if ((sbi->s_es->s_feature_ro_compat & 1654 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1655 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1656 return 0; 1657 1658 return 1; 1659 } 1660 1661 /* Called at mount-time, super-block is locked */ 1662 static int ext4_check_descriptors(struct super_block *sb) 1663 { 1664 struct ext4_sb_info *sbi = EXT4_SB(sb); 1665 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1666 ext4_fsblk_t last_block; 1667 ext4_fsblk_t block_bitmap; 1668 ext4_fsblk_t inode_bitmap; 1669 ext4_fsblk_t inode_table; 1670 int flexbg_flag = 0; 1671 ext4_group_t i; 1672 1673 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1674 flexbg_flag = 1; 1675 1676 ext4_debug("Checking group descriptors"); 1677 1678 for (i = 0; i < sbi->s_groups_count; i++) { 1679 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1680 1681 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1682 last_block = ext4_blocks_count(sbi->s_es) - 1; 1683 else 1684 last_block = first_block + 1685 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1686 1687 block_bitmap = ext4_block_bitmap(sb, gdp); 1688 if (block_bitmap < first_block || block_bitmap > last_block) { 1689 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1690 "Block bitmap for group %u not in group " 1691 "(block %llu)!\n", i, block_bitmap); 1692 return 0; 1693 } 1694 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1695 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1696 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1697 "Inode bitmap for group %u not in group " 1698 "(block %llu)!\n", i, inode_bitmap); 1699 return 0; 1700 } 1701 inode_table = ext4_inode_table(sb, gdp); 1702 if (inode_table < first_block || 1703 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1704 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1705 "Inode table for group %u not in group " 1706 "(block %llu)!\n", i, inode_table); 1707 return 0; 1708 } 1709 spin_lock(sb_bgl_lock(sbi, i)); 1710 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1711 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1712 "Checksum for group %u failed (%u!=%u)\n", 1713 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1714 gdp)), le16_to_cpu(gdp->bg_checksum)); 1715 if (!(sb->s_flags & MS_RDONLY)) { 1716 spin_unlock(sb_bgl_lock(sbi, i)); 1717 return 0; 1718 } 1719 } 1720 spin_unlock(sb_bgl_lock(sbi, i)); 1721 if (!flexbg_flag) 1722 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1723 } 1724 1725 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1726 sbi->s_es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb)); 1727 return 1; 1728 } 1729 1730 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1731 * the superblock) which were deleted from all directories, but held open by 1732 * a process at the time of a crash. We walk the list and try to delete these 1733 * inodes at recovery time (only with a read-write filesystem). 1734 * 1735 * In order to keep the orphan inode chain consistent during traversal (in 1736 * case of crash during recovery), we link each inode into the superblock 1737 * orphan list_head and handle it the same way as an inode deletion during 1738 * normal operation (which journals the operations for us). 1739 * 1740 * We only do an iget() and an iput() on each inode, which is very safe if we 1741 * accidentally point at an in-use or already deleted inode. The worst that 1742 * can happen in this case is that we get a "bit already cleared" message from 1743 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1744 * e2fsck was run on this filesystem, and it must have already done the orphan 1745 * inode cleanup for us, so we can safely abort without any further action. 1746 */ 1747 static void ext4_orphan_cleanup(struct super_block *sb, 1748 struct ext4_super_block *es) 1749 { 1750 unsigned int s_flags = sb->s_flags; 1751 int nr_orphans = 0, nr_truncates = 0; 1752 #ifdef CONFIG_QUOTA 1753 int i; 1754 #endif 1755 if (!es->s_last_orphan) { 1756 jbd_debug(4, "no orphan inodes to clean up\n"); 1757 return; 1758 } 1759 1760 if (bdev_read_only(sb->s_bdev)) { 1761 printk(KERN_ERR "EXT4-fs: write access " 1762 "unavailable, skipping orphan cleanup.\n"); 1763 return; 1764 } 1765 1766 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1767 if (es->s_last_orphan) 1768 jbd_debug(1, "Errors on filesystem, " 1769 "clearing orphan list.\n"); 1770 es->s_last_orphan = 0; 1771 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1772 return; 1773 } 1774 1775 if (s_flags & MS_RDONLY) { 1776 printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n", 1777 sb->s_id); 1778 sb->s_flags &= ~MS_RDONLY; 1779 } 1780 #ifdef CONFIG_QUOTA 1781 /* Needed for iput() to work correctly and not trash data */ 1782 sb->s_flags |= MS_ACTIVE; 1783 /* Turn on quotas so that they are updated correctly */ 1784 for (i = 0; i < MAXQUOTAS; i++) { 1785 if (EXT4_SB(sb)->s_qf_names[i]) { 1786 int ret = ext4_quota_on_mount(sb, i); 1787 if (ret < 0) 1788 printk(KERN_ERR 1789 "EXT4-fs: Cannot turn on journaled " 1790 "quota: error %d\n", ret); 1791 } 1792 } 1793 #endif 1794 1795 while (es->s_last_orphan) { 1796 struct inode *inode; 1797 1798 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1799 if (IS_ERR(inode)) { 1800 es->s_last_orphan = 0; 1801 break; 1802 } 1803 1804 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1805 DQUOT_INIT(inode); 1806 if (inode->i_nlink) { 1807 printk(KERN_DEBUG 1808 "%s: truncating inode %lu to %lld bytes\n", 1809 __func__, inode->i_ino, inode->i_size); 1810 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1811 inode->i_ino, inode->i_size); 1812 ext4_truncate(inode); 1813 nr_truncates++; 1814 } else { 1815 printk(KERN_DEBUG 1816 "%s: deleting unreferenced inode %lu\n", 1817 __func__, inode->i_ino); 1818 jbd_debug(2, "deleting unreferenced inode %lu\n", 1819 inode->i_ino); 1820 nr_orphans++; 1821 } 1822 iput(inode); /* The delete magic happens here! */ 1823 } 1824 1825 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1826 1827 if (nr_orphans) 1828 printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n", 1829 sb->s_id, PLURAL(nr_orphans)); 1830 if (nr_truncates) 1831 printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n", 1832 sb->s_id, PLURAL(nr_truncates)); 1833 #ifdef CONFIG_QUOTA 1834 /* Turn quotas off */ 1835 for (i = 0; i < MAXQUOTAS; i++) { 1836 if (sb_dqopt(sb)->files[i]) 1837 vfs_quota_off(sb, i, 0); 1838 } 1839 #endif 1840 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1841 } 1842 /* 1843 * Maximal extent format file size. 1844 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1845 * extent format containers, within a sector_t, and within i_blocks 1846 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1847 * so that won't be a limiting factor. 1848 * 1849 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1850 */ 1851 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1852 { 1853 loff_t res; 1854 loff_t upper_limit = MAX_LFS_FILESIZE; 1855 1856 /* small i_blocks in vfs inode? */ 1857 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1858 /* 1859 * CONFIG_LBD is not enabled implies the inode 1860 * i_block represent total blocks in 512 bytes 1861 * 32 == size of vfs inode i_blocks * 8 1862 */ 1863 upper_limit = (1LL << 32) - 1; 1864 1865 /* total blocks in file system block size */ 1866 upper_limit >>= (blkbits - 9); 1867 upper_limit <<= blkbits; 1868 } 1869 1870 /* 32-bit extent-start container, ee_block */ 1871 res = 1LL << 32; 1872 res <<= blkbits; 1873 res -= 1; 1874 1875 /* Sanity check against vm- & vfs- imposed limits */ 1876 if (res > upper_limit) 1877 res = upper_limit; 1878 1879 return res; 1880 } 1881 1882 /* 1883 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1884 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1885 * We need to be 1 filesystem block less than the 2^48 sector limit. 1886 */ 1887 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1888 { 1889 loff_t res = EXT4_NDIR_BLOCKS; 1890 int meta_blocks; 1891 loff_t upper_limit; 1892 /* This is calculated to be the largest file size for a 1893 * dense, bitmapped file such that the total number of 1894 * sectors in the file, including data and all indirect blocks, 1895 * does not exceed 2^48 -1 1896 * __u32 i_blocks_lo and _u16 i_blocks_high representing the 1897 * total number of 512 bytes blocks of the file 1898 */ 1899 1900 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1901 /* 1902 * !has_huge_files or CONFIG_LBD is not enabled 1903 * implies the inode i_block represent total blocks in 1904 * 512 bytes 32 == size of vfs inode i_blocks * 8 1905 */ 1906 upper_limit = (1LL << 32) - 1; 1907 1908 /* total blocks in file system block size */ 1909 upper_limit >>= (bits - 9); 1910 1911 } else { 1912 /* 1913 * We use 48 bit ext4_inode i_blocks 1914 * With EXT4_HUGE_FILE_FL set the i_blocks 1915 * represent total number of blocks in 1916 * file system block size 1917 */ 1918 upper_limit = (1LL << 48) - 1; 1919 1920 } 1921 1922 /* indirect blocks */ 1923 meta_blocks = 1; 1924 /* double indirect blocks */ 1925 meta_blocks += 1 + (1LL << (bits-2)); 1926 /* tripple indirect blocks */ 1927 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 1928 1929 upper_limit -= meta_blocks; 1930 upper_limit <<= bits; 1931 1932 res += 1LL << (bits-2); 1933 res += 1LL << (2*(bits-2)); 1934 res += 1LL << (3*(bits-2)); 1935 res <<= bits; 1936 if (res > upper_limit) 1937 res = upper_limit; 1938 1939 if (res > MAX_LFS_FILESIZE) 1940 res = MAX_LFS_FILESIZE; 1941 1942 return res; 1943 } 1944 1945 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 1946 ext4_fsblk_t logical_sb_block, int nr) 1947 { 1948 struct ext4_sb_info *sbi = EXT4_SB(sb); 1949 ext4_group_t bg, first_meta_bg; 1950 int has_super = 0; 1951 1952 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 1953 1954 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 1955 nr < first_meta_bg) 1956 return logical_sb_block + nr + 1; 1957 bg = sbi->s_desc_per_block * nr; 1958 if (ext4_bg_has_super(sb, bg)) 1959 has_super = 1; 1960 return (has_super + ext4_group_first_block_no(sb, bg)); 1961 } 1962 1963 /** 1964 * ext4_get_stripe_size: Get the stripe size. 1965 * @sbi: In memory super block info 1966 * 1967 * If we have specified it via mount option, then 1968 * use the mount option value. If the value specified at mount time is 1969 * greater than the blocks per group use the super block value. 1970 * If the super block value is greater than blocks per group return 0. 1971 * Allocator needs it be less than blocks per group. 1972 * 1973 */ 1974 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 1975 { 1976 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 1977 unsigned long stripe_width = 1978 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 1979 1980 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 1981 return sbi->s_stripe; 1982 1983 if (stripe_width <= sbi->s_blocks_per_group) 1984 return stripe_width; 1985 1986 if (stride <= sbi->s_blocks_per_group) 1987 return stride; 1988 1989 return 0; 1990 } 1991 1992 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 1993 __releases(kernel_lock) 1994 __acquires(kernel_lock) 1995 1996 { 1997 struct buffer_head *bh; 1998 struct ext4_super_block *es = NULL; 1999 struct ext4_sb_info *sbi; 2000 ext4_fsblk_t block; 2001 ext4_fsblk_t sb_block = get_sb_block(&data); 2002 ext4_fsblk_t logical_sb_block; 2003 unsigned long offset = 0; 2004 unsigned long journal_devnum = 0; 2005 unsigned long def_mount_opts; 2006 struct inode *root; 2007 char *cp; 2008 const char *descr; 2009 int ret = -EINVAL; 2010 int blocksize; 2011 unsigned int db_count; 2012 unsigned int i; 2013 int needs_recovery, has_huge_files; 2014 int features; 2015 __u64 blocks_count; 2016 int err; 2017 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2018 2019 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2020 if (!sbi) 2021 return -ENOMEM; 2022 sb->s_fs_info = sbi; 2023 sbi->s_mount_opt = 0; 2024 sbi->s_resuid = EXT4_DEF_RESUID; 2025 sbi->s_resgid = EXT4_DEF_RESGID; 2026 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2027 sbi->s_sb_block = sb_block; 2028 2029 unlock_kernel(); 2030 2031 /* Cleanup superblock name */ 2032 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2033 *cp = '!'; 2034 2035 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2036 if (!blocksize) { 2037 printk(KERN_ERR "EXT4-fs: unable to set blocksize\n"); 2038 goto out_fail; 2039 } 2040 2041 /* 2042 * The ext4 superblock will not be buffer aligned for other than 1kB 2043 * block sizes. We need to calculate the offset from buffer start. 2044 */ 2045 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2046 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2047 offset = do_div(logical_sb_block, blocksize); 2048 } else { 2049 logical_sb_block = sb_block; 2050 } 2051 2052 if (!(bh = sb_bread(sb, logical_sb_block))) { 2053 printk(KERN_ERR "EXT4-fs: unable to read superblock\n"); 2054 goto out_fail; 2055 } 2056 /* 2057 * Note: s_es must be initialized as soon as possible because 2058 * some ext4 macro-instructions depend on its value 2059 */ 2060 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2061 sbi->s_es = es; 2062 sb->s_magic = le16_to_cpu(es->s_magic); 2063 if (sb->s_magic != EXT4_SUPER_MAGIC) 2064 goto cantfind_ext4; 2065 2066 /* Set defaults before we parse the mount options */ 2067 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2068 if (def_mount_opts & EXT4_DEFM_DEBUG) 2069 set_opt(sbi->s_mount_opt, DEBUG); 2070 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2071 set_opt(sbi->s_mount_opt, GRPID); 2072 if (def_mount_opts & EXT4_DEFM_UID16) 2073 set_opt(sbi->s_mount_opt, NO_UID32); 2074 #ifdef CONFIG_EXT4_FS_XATTR 2075 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2076 set_opt(sbi->s_mount_opt, XATTR_USER); 2077 #endif 2078 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2079 if (def_mount_opts & EXT4_DEFM_ACL) 2080 set_opt(sbi->s_mount_opt, POSIX_ACL); 2081 #endif 2082 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2083 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2084 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2085 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2086 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2087 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2088 2089 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2090 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2091 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2092 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2093 else 2094 set_opt(sbi->s_mount_opt, ERRORS_RO); 2095 2096 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2097 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2098 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2099 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2100 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2101 2102 set_opt(sbi->s_mount_opt, RESERVATION); 2103 set_opt(sbi->s_mount_opt, BARRIER); 2104 2105 /* 2106 * enable delayed allocation by default 2107 * Use -o nodelalloc to turn it off 2108 */ 2109 set_opt(sbi->s_mount_opt, DELALLOC); 2110 2111 2112 if (!parse_options((char *) data, sb, &journal_devnum, 2113 &journal_ioprio, NULL, 0)) 2114 goto failed_mount; 2115 2116 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2117 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2118 2119 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2120 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2121 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2122 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2123 printk(KERN_WARNING 2124 "EXT4-fs warning: feature flags set on rev 0 fs, " 2125 "running e2fsck is recommended\n"); 2126 2127 /* 2128 * Check feature flags regardless of the revision level, since we 2129 * previously didn't change the revision level when setting the flags, 2130 * so there is a chance incompat flags are set on a rev 0 filesystem. 2131 */ 2132 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); 2133 if (features) { 2134 printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of " 2135 "unsupported optional features (%x).\n", sb->s_id, 2136 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2137 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2138 goto failed_mount; 2139 } 2140 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); 2141 if (!(sb->s_flags & MS_RDONLY) && features) { 2142 printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of " 2143 "unsupported optional features (%x).\n", sb->s_id, 2144 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2145 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2146 goto failed_mount; 2147 } 2148 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2149 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2150 if (has_huge_files) { 2151 /* 2152 * Large file size enabled file system can only be 2153 * mount if kernel is build with CONFIG_LBD 2154 */ 2155 if (sizeof(root->i_blocks) < sizeof(u64) && 2156 !(sb->s_flags & MS_RDONLY)) { 2157 printk(KERN_ERR "EXT4-fs: %s: Filesystem with huge " 2158 "files cannot be mounted read-write " 2159 "without CONFIG_LBD.\n", sb->s_id); 2160 goto failed_mount; 2161 } 2162 } 2163 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2164 2165 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2166 blocksize > EXT4_MAX_BLOCK_SIZE) { 2167 printk(KERN_ERR 2168 "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n", 2169 blocksize, sb->s_id); 2170 goto failed_mount; 2171 } 2172 2173 if (sb->s_blocksize != blocksize) { 2174 2175 /* Validate the filesystem blocksize */ 2176 if (!sb_set_blocksize(sb, blocksize)) { 2177 printk(KERN_ERR "EXT4-fs: bad block size %d.\n", 2178 blocksize); 2179 goto failed_mount; 2180 } 2181 2182 brelse(bh); 2183 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2184 offset = do_div(logical_sb_block, blocksize); 2185 bh = sb_bread(sb, logical_sb_block); 2186 if (!bh) { 2187 printk(KERN_ERR 2188 "EXT4-fs: Can't read superblock on 2nd try.\n"); 2189 goto failed_mount; 2190 } 2191 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2192 sbi->s_es = es; 2193 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2194 printk(KERN_ERR 2195 "EXT4-fs: Magic mismatch, very weird !\n"); 2196 goto failed_mount; 2197 } 2198 } 2199 2200 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2201 has_huge_files); 2202 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2203 2204 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2205 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2206 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2207 } else { 2208 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2209 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2210 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2211 (!is_power_of_2(sbi->s_inode_size)) || 2212 (sbi->s_inode_size > blocksize)) { 2213 printk(KERN_ERR 2214 "EXT4-fs: unsupported inode size: %d\n", 2215 sbi->s_inode_size); 2216 goto failed_mount; 2217 } 2218 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2219 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2220 } 2221 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2222 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2223 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2224 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2225 !is_power_of_2(sbi->s_desc_size)) { 2226 printk(KERN_ERR 2227 "EXT4-fs: unsupported descriptor size %lu\n", 2228 sbi->s_desc_size); 2229 goto failed_mount; 2230 } 2231 } else 2232 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2233 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2234 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2235 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2236 goto cantfind_ext4; 2237 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2238 if (sbi->s_inodes_per_block == 0) 2239 goto cantfind_ext4; 2240 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2241 sbi->s_inodes_per_block; 2242 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2243 sbi->s_sbh = bh; 2244 sbi->s_mount_state = le16_to_cpu(es->s_state); 2245 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2246 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2247 for (i = 0; i < 4; i++) 2248 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2249 sbi->s_def_hash_version = es->s_def_hash_version; 2250 i = le32_to_cpu(es->s_flags); 2251 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2252 sbi->s_hash_unsigned = 3; 2253 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2254 #ifdef __CHAR_UNSIGNED__ 2255 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2256 sbi->s_hash_unsigned = 3; 2257 #else 2258 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2259 #endif 2260 sb->s_dirt = 1; 2261 } 2262 2263 if (sbi->s_blocks_per_group > blocksize * 8) { 2264 printk(KERN_ERR 2265 "EXT4-fs: #blocks per group too big: %lu\n", 2266 sbi->s_blocks_per_group); 2267 goto failed_mount; 2268 } 2269 if (sbi->s_inodes_per_group > blocksize * 8) { 2270 printk(KERN_ERR 2271 "EXT4-fs: #inodes per group too big: %lu\n", 2272 sbi->s_inodes_per_group); 2273 goto failed_mount; 2274 } 2275 2276 if (ext4_blocks_count(es) > 2277 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { 2278 printk(KERN_ERR "EXT4-fs: filesystem on %s:" 2279 " too large to mount safely\n", sb->s_id); 2280 if (sizeof(sector_t) < 8) 2281 printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not " 2282 "enabled\n"); 2283 goto failed_mount; 2284 } 2285 2286 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2287 goto cantfind_ext4; 2288 2289 /* 2290 * It makes no sense for the first data block to be beyond the end 2291 * of the filesystem. 2292 */ 2293 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2294 printk(KERN_WARNING "EXT4-fs: bad geometry: first data" 2295 "block %u is beyond end of filesystem (%llu)\n", 2296 le32_to_cpu(es->s_first_data_block), 2297 ext4_blocks_count(es)); 2298 goto failed_mount; 2299 } 2300 blocks_count = (ext4_blocks_count(es) - 2301 le32_to_cpu(es->s_first_data_block) + 2302 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2303 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2304 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2305 printk(KERN_WARNING "EXT4-fs: groups count too large: %u " 2306 "(block count %llu, first data block %u, " 2307 "blocks per group %lu)\n", sbi->s_groups_count, 2308 ext4_blocks_count(es), 2309 le32_to_cpu(es->s_first_data_block), 2310 EXT4_BLOCKS_PER_GROUP(sb)); 2311 goto failed_mount; 2312 } 2313 sbi->s_groups_count = blocks_count; 2314 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2315 EXT4_DESC_PER_BLOCK(sb); 2316 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2317 GFP_KERNEL); 2318 if (sbi->s_group_desc == NULL) { 2319 printk(KERN_ERR "EXT4-fs: not enough memory\n"); 2320 goto failed_mount; 2321 } 2322 2323 #ifdef CONFIG_PROC_FS 2324 if (ext4_proc_root) 2325 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2326 2327 if (sbi->s_proc) 2328 proc_create_data("inode_readahead_blks", 0644, sbi->s_proc, 2329 &ext4_ui_proc_fops, 2330 &sbi->s_inode_readahead_blks); 2331 #endif 2332 2333 bgl_lock_init(&sbi->s_blockgroup_lock); 2334 2335 for (i = 0; i < db_count; i++) { 2336 block = descriptor_loc(sb, logical_sb_block, i); 2337 sbi->s_group_desc[i] = sb_bread(sb, block); 2338 if (!sbi->s_group_desc[i]) { 2339 printk(KERN_ERR "EXT4-fs: " 2340 "can't read group descriptor %d\n", i); 2341 db_count = i; 2342 goto failed_mount2; 2343 } 2344 } 2345 if (!ext4_check_descriptors(sb)) { 2346 printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n"); 2347 goto failed_mount2; 2348 } 2349 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2350 if (!ext4_fill_flex_info(sb)) { 2351 printk(KERN_ERR 2352 "EXT4-fs: unable to initialize " 2353 "flex_bg meta info!\n"); 2354 goto failed_mount2; 2355 } 2356 2357 sbi->s_gdb_count = db_count; 2358 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2359 spin_lock_init(&sbi->s_next_gen_lock); 2360 2361 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2362 ext4_count_free_blocks(sb)); 2363 if (!err) { 2364 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2365 ext4_count_free_inodes(sb)); 2366 } 2367 if (!err) { 2368 err = percpu_counter_init(&sbi->s_dirs_counter, 2369 ext4_count_dirs(sb)); 2370 } 2371 if (!err) { 2372 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2373 } 2374 if (err) { 2375 printk(KERN_ERR "EXT4-fs: insufficient memory\n"); 2376 goto failed_mount3; 2377 } 2378 2379 sbi->s_stripe = ext4_get_stripe_size(sbi); 2380 2381 /* 2382 * set up enough so that it can read an inode 2383 */ 2384 sb->s_op = &ext4_sops; 2385 sb->s_export_op = &ext4_export_ops; 2386 sb->s_xattr = ext4_xattr_handlers; 2387 #ifdef CONFIG_QUOTA 2388 sb->s_qcop = &ext4_qctl_operations; 2389 sb->dq_op = &ext4_quota_operations; 2390 #endif 2391 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2392 2393 sb->s_root = NULL; 2394 2395 needs_recovery = (es->s_last_orphan != 0 || 2396 EXT4_HAS_INCOMPAT_FEATURE(sb, 2397 EXT4_FEATURE_INCOMPAT_RECOVER)); 2398 2399 /* 2400 * The first inode we look at is the journal inode. Don't try 2401 * root first: it may be modified in the journal! 2402 */ 2403 if (!test_opt(sb, NOLOAD) && 2404 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2405 if (ext4_load_journal(sb, es, journal_devnum)) 2406 goto failed_mount3; 2407 if (!(sb->s_flags & MS_RDONLY) && 2408 EXT4_SB(sb)->s_journal->j_failed_commit) { 2409 printk(KERN_CRIT "EXT4-fs error (device %s): " 2410 "ext4_fill_super: Journal transaction " 2411 "%u is corrupt\n", sb->s_id, 2412 EXT4_SB(sb)->s_journal->j_failed_commit); 2413 if (test_opt(sb, ERRORS_RO)) { 2414 printk(KERN_CRIT 2415 "Mounting filesystem read-only\n"); 2416 sb->s_flags |= MS_RDONLY; 2417 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2418 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2419 } 2420 if (test_opt(sb, ERRORS_PANIC)) { 2421 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2422 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2423 ext4_commit_super(sb, es, 1); 2424 goto failed_mount4; 2425 } 2426 } 2427 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2428 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2429 printk(KERN_ERR "EXT4-fs: required journal recovery " 2430 "suppressed and not mounted read-only\n"); 2431 goto failed_mount4; 2432 } else { 2433 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2434 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2435 sbi->s_journal = NULL; 2436 needs_recovery = 0; 2437 goto no_journal; 2438 } 2439 2440 if (ext4_blocks_count(es) > 0xffffffffULL && 2441 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2442 JBD2_FEATURE_INCOMPAT_64BIT)) { 2443 printk(KERN_ERR "EXT4-fs: Failed to set 64-bit journal feature\n"); 2444 goto failed_mount4; 2445 } 2446 2447 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2448 jbd2_journal_set_features(sbi->s_journal, 2449 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2450 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2451 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2452 jbd2_journal_set_features(sbi->s_journal, 2453 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2454 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2455 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2456 } else { 2457 jbd2_journal_clear_features(sbi->s_journal, 2458 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2459 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2460 } 2461 2462 /* We have now updated the journal if required, so we can 2463 * validate the data journaling mode. */ 2464 switch (test_opt(sb, DATA_FLAGS)) { 2465 case 0: 2466 /* No mode set, assume a default based on the journal 2467 * capabilities: ORDERED_DATA if the journal can 2468 * cope, else JOURNAL_DATA 2469 */ 2470 if (jbd2_journal_check_available_features 2471 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2472 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2473 else 2474 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2475 break; 2476 2477 case EXT4_MOUNT_ORDERED_DATA: 2478 case EXT4_MOUNT_WRITEBACK_DATA: 2479 if (!jbd2_journal_check_available_features 2480 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2481 printk(KERN_ERR "EXT4-fs: Journal does not support " 2482 "requested data journaling mode\n"); 2483 goto failed_mount4; 2484 } 2485 default: 2486 break; 2487 } 2488 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2489 2490 no_journal: 2491 2492 if (test_opt(sb, NOBH)) { 2493 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2494 printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - " 2495 "its supported only with writeback mode\n"); 2496 clear_opt(sbi->s_mount_opt, NOBH); 2497 } 2498 } 2499 /* 2500 * The jbd2_journal_load will have done any necessary log recovery, 2501 * so we can safely mount the rest of the filesystem now. 2502 */ 2503 2504 root = ext4_iget(sb, EXT4_ROOT_INO); 2505 if (IS_ERR(root)) { 2506 printk(KERN_ERR "EXT4-fs: get root inode failed\n"); 2507 ret = PTR_ERR(root); 2508 goto failed_mount4; 2509 } 2510 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2511 iput(root); 2512 printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n"); 2513 goto failed_mount4; 2514 } 2515 sb->s_root = d_alloc_root(root); 2516 if (!sb->s_root) { 2517 printk(KERN_ERR "EXT4-fs: get root dentry failed\n"); 2518 iput(root); 2519 ret = -ENOMEM; 2520 goto failed_mount4; 2521 } 2522 2523 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2524 2525 /* determine the minimum size of new large inodes, if present */ 2526 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2527 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2528 EXT4_GOOD_OLD_INODE_SIZE; 2529 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2530 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2531 if (sbi->s_want_extra_isize < 2532 le16_to_cpu(es->s_want_extra_isize)) 2533 sbi->s_want_extra_isize = 2534 le16_to_cpu(es->s_want_extra_isize); 2535 if (sbi->s_want_extra_isize < 2536 le16_to_cpu(es->s_min_extra_isize)) 2537 sbi->s_want_extra_isize = 2538 le16_to_cpu(es->s_min_extra_isize); 2539 } 2540 } 2541 /* Check if enough inode space is available */ 2542 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2543 sbi->s_inode_size) { 2544 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2545 EXT4_GOOD_OLD_INODE_SIZE; 2546 printk(KERN_INFO "EXT4-fs: required extra inode space not" 2547 "available.\n"); 2548 } 2549 2550 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 2551 printk(KERN_WARNING "EXT4-fs: Ignoring delalloc option - " 2552 "requested data journaling mode\n"); 2553 clear_opt(sbi->s_mount_opt, DELALLOC); 2554 } else if (test_opt(sb, DELALLOC)) 2555 printk(KERN_INFO "EXT4-fs: delayed allocation enabled\n"); 2556 2557 ext4_ext_init(sb); 2558 err = ext4_mb_init(sb, needs_recovery); 2559 if (err) { 2560 printk(KERN_ERR "EXT4-fs: failed to initalize mballoc (%d)\n", 2561 err); 2562 goto failed_mount4; 2563 } 2564 2565 /* 2566 * akpm: core read_super() calls in here with the superblock locked. 2567 * That deadlocks, because orphan cleanup needs to lock the superblock 2568 * in numerous places. Here we just pop the lock - it's relatively 2569 * harmless, because we are now ready to accept write_super() requests, 2570 * and aviro says that's the only reason for hanging onto the 2571 * superblock lock. 2572 */ 2573 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2574 ext4_orphan_cleanup(sb, es); 2575 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2576 if (needs_recovery) { 2577 printk(KERN_INFO "EXT4-fs: recovery complete.\n"); 2578 ext4_mark_recovery_complete(sb, es); 2579 } 2580 if (EXT4_SB(sb)->s_journal) { 2581 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2582 descr = " journalled data mode"; 2583 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2584 descr = " ordered data mode"; 2585 else 2586 descr = " writeback data mode"; 2587 } else 2588 descr = "out journal"; 2589 2590 printk(KERN_INFO "EXT4-fs: mounted filesystem %s with%s\n", 2591 sb->s_id, descr); 2592 2593 lock_kernel(); 2594 return 0; 2595 2596 cantfind_ext4: 2597 if (!silent) 2598 printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n", 2599 sb->s_id); 2600 goto failed_mount; 2601 2602 failed_mount4: 2603 printk(KERN_ERR "EXT4-fs (device %s): mount failed\n", sb->s_id); 2604 if (sbi->s_journal) { 2605 jbd2_journal_destroy(sbi->s_journal); 2606 sbi->s_journal = NULL; 2607 } 2608 failed_mount3: 2609 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2610 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2611 percpu_counter_destroy(&sbi->s_dirs_counter); 2612 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2613 failed_mount2: 2614 for (i = 0; i < db_count; i++) 2615 brelse(sbi->s_group_desc[i]); 2616 kfree(sbi->s_group_desc); 2617 failed_mount: 2618 if (sbi->s_proc) { 2619 remove_proc_entry("inode_readahead_blks", sbi->s_proc); 2620 remove_proc_entry(sb->s_id, ext4_proc_root); 2621 } 2622 #ifdef CONFIG_QUOTA 2623 for (i = 0; i < MAXQUOTAS; i++) 2624 kfree(sbi->s_qf_names[i]); 2625 #endif 2626 ext4_blkdev_remove(sbi); 2627 brelse(bh); 2628 out_fail: 2629 sb->s_fs_info = NULL; 2630 kfree(sbi); 2631 lock_kernel(); 2632 return ret; 2633 } 2634 2635 /* 2636 * Setup any per-fs journal parameters now. We'll do this both on 2637 * initial mount, once the journal has been initialised but before we've 2638 * done any recovery; and again on any subsequent remount. 2639 */ 2640 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2641 { 2642 struct ext4_sb_info *sbi = EXT4_SB(sb); 2643 2644 journal->j_commit_interval = sbi->s_commit_interval; 2645 journal->j_min_batch_time = sbi->s_min_batch_time; 2646 journal->j_max_batch_time = sbi->s_max_batch_time; 2647 2648 spin_lock(&journal->j_state_lock); 2649 if (test_opt(sb, BARRIER)) 2650 journal->j_flags |= JBD2_BARRIER; 2651 else 2652 journal->j_flags &= ~JBD2_BARRIER; 2653 if (test_opt(sb, DATA_ERR_ABORT)) 2654 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2655 else 2656 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2657 spin_unlock(&journal->j_state_lock); 2658 } 2659 2660 static journal_t *ext4_get_journal(struct super_block *sb, 2661 unsigned int journal_inum) 2662 { 2663 struct inode *journal_inode; 2664 journal_t *journal; 2665 2666 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2667 2668 /* First, test for the existence of a valid inode on disk. Bad 2669 * things happen if we iget() an unused inode, as the subsequent 2670 * iput() will try to delete it. */ 2671 2672 journal_inode = ext4_iget(sb, journal_inum); 2673 if (IS_ERR(journal_inode)) { 2674 printk(KERN_ERR "EXT4-fs: no journal found.\n"); 2675 return NULL; 2676 } 2677 if (!journal_inode->i_nlink) { 2678 make_bad_inode(journal_inode); 2679 iput(journal_inode); 2680 printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n"); 2681 return NULL; 2682 } 2683 2684 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 2685 journal_inode, journal_inode->i_size); 2686 if (!S_ISREG(journal_inode->i_mode)) { 2687 printk(KERN_ERR "EXT4-fs: invalid journal inode.\n"); 2688 iput(journal_inode); 2689 return NULL; 2690 } 2691 2692 journal = jbd2_journal_init_inode(journal_inode); 2693 if (!journal) { 2694 printk(KERN_ERR "EXT4-fs: Could not load journal inode\n"); 2695 iput(journal_inode); 2696 return NULL; 2697 } 2698 journal->j_private = sb; 2699 ext4_init_journal_params(sb, journal); 2700 return journal; 2701 } 2702 2703 static journal_t *ext4_get_dev_journal(struct super_block *sb, 2704 dev_t j_dev) 2705 { 2706 struct buffer_head *bh; 2707 journal_t *journal; 2708 ext4_fsblk_t start; 2709 ext4_fsblk_t len; 2710 int hblock, blocksize; 2711 ext4_fsblk_t sb_block; 2712 unsigned long offset; 2713 struct ext4_super_block *es; 2714 struct block_device *bdev; 2715 2716 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2717 2718 bdev = ext4_blkdev_get(j_dev); 2719 if (bdev == NULL) 2720 return NULL; 2721 2722 if (bd_claim(bdev, sb)) { 2723 printk(KERN_ERR 2724 "EXT4-fs: failed to claim external journal device.\n"); 2725 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 2726 return NULL; 2727 } 2728 2729 blocksize = sb->s_blocksize; 2730 hblock = bdev_hardsect_size(bdev); 2731 if (blocksize < hblock) { 2732 printk(KERN_ERR 2733 "EXT4-fs: blocksize too small for journal device.\n"); 2734 goto out_bdev; 2735 } 2736 2737 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 2738 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 2739 set_blocksize(bdev, blocksize); 2740 if (!(bh = __bread(bdev, sb_block, blocksize))) { 2741 printk(KERN_ERR "EXT4-fs: couldn't read superblock of " 2742 "external journal\n"); 2743 goto out_bdev; 2744 } 2745 2746 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2747 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 2748 !(le32_to_cpu(es->s_feature_incompat) & 2749 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 2750 printk(KERN_ERR "EXT4-fs: external journal has " 2751 "bad superblock\n"); 2752 brelse(bh); 2753 goto out_bdev; 2754 } 2755 2756 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 2757 printk(KERN_ERR "EXT4-fs: journal UUID does not match\n"); 2758 brelse(bh); 2759 goto out_bdev; 2760 } 2761 2762 len = ext4_blocks_count(es); 2763 start = sb_block + 1; 2764 brelse(bh); /* we're done with the superblock */ 2765 2766 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 2767 start, len, blocksize); 2768 if (!journal) { 2769 printk(KERN_ERR "EXT4-fs: failed to create device journal\n"); 2770 goto out_bdev; 2771 } 2772 journal->j_private = sb; 2773 ll_rw_block(READ, 1, &journal->j_sb_buffer); 2774 wait_on_buffer(journal->j_sb_buffer); 2775 if (!buffer_uptodate(journal->j_sb_buffer)) { 2776 printk(KERN_ERR "EXT4-fs: I/O error on journal device\n"); 2777 goto out_journal; 2778 } 2779 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 2780 printk(KERN_ERR "EXT4-fs: External journal has more than one " 2781 "user (unsupported) - %d\n", 2782 be32_to_cpu(journal->j_superblock->s_nr_users)); 2783 goto out_journal; 2784 } 2785 EXT4_SB(sb)->journal_bdev = bdev; 2786 ext4_init_journal_params(sb, journal); 2787 return journal; 2788 out_journal: 2789 jbd2_journal_destroy(journal); 2790 out_bdev: 2791 ext4_blkdev_put(bdev); 2792 return NULL; 2793 } 2794 2795 static int ext4_load_journal(struct super_block *sb, 2796 struct ext4_super_block *es, 2797 unsigned long journal_devnum) 2798 { 2799 journal_t *journal; 2800 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 2801 dev_t journal_dev; 2802 int err = 0; 2803 int really_read_only; 2804 2805 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2806 2807 if (journal_devnum && 2808 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 2809 printk(KERN_INFO "EXT4-fs: external journal device major/minor " 2810 "numbers have changed\n"); 2811 journal_dev = new_decode_dev(journal_devnum); 2812 } else 2813 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 2814 2815 really_read_only = bdev_read_only(sb->s_bdev); 2816 2817 /* 2818 * Are we loading a blank journal or performing recovery after a 2819 * crash? For recovery, we need to check in advance whether we 2820 * can get read-write access to the device. 2821 */ 2822 2823 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2824 if (sb->s_flags & MS_RDONLY) { 2825 printk(KERN_INFO "EXT4-fs: INFO: recovery " 2826 "required on readonly filesystem.\n"); 2827 if (really_read_only) { 2828 printk(KERN_ERR "EXT4-fs: write access " 2829 "unavailable, cannot proceed.\n"); 2830 return -EROFS; 2831 } 2832 printk(KERN_INFO "EXT4-fs: write access will " 2833 "be enabled during recovery.\n"); 2834 } 2835 } 2836 2837 if (journal_inum && journal_dev) { 2838 printk(KERN_ERR "EXT4-fs: filesystem has both journal " 2839 "and inode journals!\n"); 2840 return -EINVAL; 2841 } 2842 2843 if (journal_inum) { 2844 if (!(journal = ext4_get_journal(sb, journal_inum))) 2845 return -EINVAL; 2846 } else { 2847 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 2848 return -EINVAL; 2849 } 2850 2851 if (journal->j_flags & JBD2_BARRIER) 2852 printk(KERN_INFO "EXT4-fs: barriers enabled\n"); 2853 else 2854 printk(KERN_INFO "EXT4-fs: barriers disabled\n"); 2855 2856 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 2857 err = jbd2_journal_update_format(journal); 2858 if (err) { 2859 printk(KERN_ERR "EXT4-fs: error updating journal.\n"); 2860 jbd2_journal_destroy(journal); 2861 return err; 2862 } 2863 } 2864 2865 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 2866 err = jbd2_journal_wipe(journal, !really_read_only); 2867 if (!err) 2868 err = jbd2_journal_load(journal); 2869 2870 if (err) { 2871 printk(KERN_ERR "EXT4-fs: error loading journal.\n"); 2872 jbd2_journal_destroy(journal); 2873 return err; 2874 } 2875 2876 EXT4_SB(sb)->s_journal = journal; 2877 ext4_clear_journal_err(sb, es); 2878 2879 if (journal_devnum && 2880 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 2881 es->s_journal_dev = cpu_to_le32(journal_devnum); 2882 sb->s_dirt = 1; 2883 2884 /* Make sure we flush the recovery flag to disk. */ 2885 ext4_commit_super(sb, es, 1); 2886 } 2887 2888 return 0; 2889 } 2890 2891 static int ext4_commit_super(struct super_block *sb, 2892 struct ext4_super_block *es, int sync) 2893 { 2894 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 2895 int error = 0; 2896 2897 if (!sbh) 2898 return error; 2899 if (buffer_write_io_error(sbh)) { 2900 /* 2901 * Oh, dear. A previous attempt to write the 2902 * superblock failed. This could happen because the 2903 * USB device was yanked out. Or it could happen to 2904 * be a transient write error and maybe the block will 2905 * be remapped. Nothing we can do but to retry the 2906 * write and hope for the best. 2907 */ 2908 printk(KERN_ERR "EXT4-fs: previous I/O error to " 2909 "superblock detected for %s.\n", sb->s_id); 2910 clear_buffer_write_io_error(sbh); 2911 set_buffer_uptodate(sbh); 2912 } 2913 es->s_wtime = cpu_to_le32(get_seconds()); 2914 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 2915 &EXT4_SB(sb)->s_freeblocks_counter)); 2916 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 2917 &EXT4_SB(sb)->s_freeinodes_counter)); 2918 2919 BUFFER_TRACE(sbh, "marking dirty"); 2920 mark_buffer_dirty(sbh); 2921 if (sync) { 2922 error = sync_dirty_buffer(sbh); 2923 if (error) 2924 return error; 2925 2926 error = buffer_write_io_error(sbh); 2927 if (error) { 2928 printk(KERN_ERR "EXT4-fs: I/O error while writing " 2929 "superblock for %s.\n", sb->s_id); 2930 clear_buffer_write_io_error(sbh); 2931 set_buffer_uptodate(sbh); 2932 } 2933 } 2934 return error; 2935 } 2936 2937 2938 /* 2939 * Have we just finished recovery? If so, and if we are mounting (or 2940 * remounting) the filesystem readonly, then we will end up with a 2941 * consistent fs on disk. Record that fact. 2942 */ 2943 static void ext4_mark_recovery_complete(struct super_block *sb, 2944 struct ext4_super_block *es) 2945 { 2946 journal_t *journal = EXT4_SB(sb)->s_journal; 2947 2948 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2949 BUG_ON(journal != NULL); 2950 return; 2951 } 2952 jbd2_journal_lock_updates(journal); 2953 if (jbd2_journal_flush(journal) < 0) 2954 goto out; 2955 2956 lock_super(sb); 2957 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 2958 sb->s_flags & MS_RDONLY) { 2959 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2960 sb->s_dirt = 0; 2961 ext4_commit_super(sb, es, 1); 2962 } 2963 unlock_super(sb); 2964 2965 out: 2966 jbd2_journal_unlock_updates(journal); 2967 } 2968 2969 /* 2970 * If we are mounting (or read-write remounting) a filesystem whose journal 2971 * has recorded an error from a previous lifetime, move that error to the 2972 * main filesystem now. 2973 */ 2974 static void ext4_clear_journal_err(struct super_block *sb, 2975 struct ext4_super_block *es) 2976 { 2977 journal_t *journal; 2978 int j_errno; 2979 const char *errstr; 2980 2981 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2982 2983 journal = EXT4_SB(sb)->s_journal; 2984 2985 /* 2986 * Now check for any error status which may have been recorded in the 2987 * journal by a prior ext4_error() or ext4_abort() 2988 */ 2989 2990 j_errno = jbd2_journal_errno(journal); 2991 if (j_errno) { 2992 char nbuf[16]; 2993 2994 errstr = ext4_decode_error(sb, j_errno, nbuf); 2995 ext4_warning(sb, __func__, "Filesystem error recorded " 2996 "from previous mount: %s", errstr); 2997 ext4_warning(sb, __func__, "Marking fs in need of " 2998 "filesystem check."); 2999 3000 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3001 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3002 ext4_commit_super(sb, es, 1); 3003 3004 jbd2_journal_clear_err(journal); 3005 } 3006 } 3007 3008 /* 3009 * Force the running and committing transactions to commit, 3010 * and wait on the commit. 3011 */ 3012 int ext4_force_commit(struct super_block *sb) 3013 { 3014 journal_t *journal; 3015 int ret = 0; 3016 3017 if (sb->s_flags & MS_RDONLY) 3018 return 0; 3019 3020 journal = EXT4_SB(sb)->s_journal; 3021 if (journal) { 3022 sb->s_dirt = 0; 3023 ret = ext4_journal_force_commit(journal); 3024 } 3025 3026 return ret; 3027 } 3028 3029 /* 3030 * Ext4 always journals updates to the superblock itself, so we don't 3031 * have to propagate any other updates to the superblock on disk at this 3032 * point. (We can probably nuke this function altogether, and remove 3033 * any mention to sb->s_dirt in all of fs/ext4; eventual cleanup...) 3034 */ 3035 static void ext4_write_super(struct super_block *sb) 3036 { 3037 if (EXT4_SB(sb)->s_journal) { 3038 if (mutex_trylock(&sb->s_lock) != 0) 3039 BUG(); 3040 sb->s_dirt = 0; 3041 } else { 3042 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 3043 } 3044 } 3045 3046 static int ext4_sync_fs(struct super_block *sb, int wait) 3047 { 3048 int ret = 0; 3049 tid_t target; 3050 3051 trace_mark(ext4_sync_fs, "dev %s wait %d", sb->s_id, wait); 3052 sb->s_dirt = 0; 3053 if (EXT4_SB(sb)->s_journal) { 3054 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, 3055 &target)) { 3056 if (wait) 3057 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, 3058 target); 3059 } 3060 } else { 3061 ext4_commit_super(sb, EXT4_SB(sb)->s_es, wait); 3062 } 3063 return ret; 3064 } 3065 3066 /* 3067 * LVM calls this function before a (read-only) snapshot is created. This 3068 * gives us a chance to flush the journal completely and mark the fs clean. 3069 */ 3070 static int ext4_freeze(struct super_block *sb) 3071 { 3072 int error = 0; 3073 journal_t *journal; 3074 sb->s_dirt = 0; 3075 3076 if (!(sb->s_flags & MS_RDONLY)) { 3077 journal = EXT4_SB(sb)->s_journal; 3078 3079 if (journal) { 3080 /* Now we set up the journal barrier. */ 3081 jbd2_journal_lock_updates(journal); 3082 3083 /* 3084 * We don't want to clear needs_recovery flag when we 3085 * failed to flush the journal. 3086 */ 3087 error = jbd2_journal_flush(journal); 3088 if (error < 0) 3089 goto out; 3090 } 3091 3092 /* Journal blocked and flushed, clear needs_recovery flag. */ 3093 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3094 error = ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 3095 if (error) 3096 goto out; 3097 } 3098 return 0; 3099 out: 3100 jbd2_journal_unlock_updates(journal); 3101 return error; 3102 } 3103 3104 /* 3105 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3106 * flag here, even though the filesystem is not technically dirty yet. 3107 */ 3108 static int ext4_unfreeze(struct super_block *sb) 3109 { 3110 if (EXT4_SB(sb)->s_journal && !(sb->s_flags & MS_RDONLY)) { 3111 lock_super(sb); 3112 /* Reser the needs_recovery flag before the fs is unlocked. */ 3113 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3114 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 3115 unlock_super(sb); 3116 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3117 } 3118 return 0; 3119 } 3120 3121 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3122 { 3123 struct ext4_super_block *es; 3124 struct ext4_sb_info *sbi = EXT4_SB(sb); 3125 ext4_fsblk_t n_blocks_count = 0; 3126 unsigned long old_sb_flags; 3127 struct ext4_mount_options old_opts; 3128 ext4_group_t g; 3129 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3130 int err; 3131 #ifdef CONFIG_QUOTA 3132 int i; 3133 #endif 3134 3135 /* Store the original options */ 3136 old_sb_flags = sb->s_flags; 3137 old_opts.s_mount_opt = sbi->s_mount_opt; 3138 old_opts.s_resuid = sbi->s_resuid; 3139 old_opts.s_resgid = sbi->s_resgid; 3140 old_opts.s_commit_interval = sbi->s_commit_interval; 3141 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3142 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3143 #ifdef CONFIG_QUOTA 3144 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3145 for (i = 0; i < MAXQUOTAS; i++) 3146 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3147 #endif 3148 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3149 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3150 3151 /* 3152 * Allow the "check" option to be passed as a remount option. 3153 */ 3154 if (!parse_options(data, sb, NULL, &journal_ioprio, 3155 &n_blocks_count, 1)) { 3156 err = -EINVAL; 3157 goto restore_opts; 3158 } 3159 3160 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) 3161 ext4_abort(sb, __func__, "Abort forced by user"); 3162 3163 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3164 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3165 3166 es = sbi->s_es; 3167 3168 if (sbi->s_journal) { 3169 ext4_init_journal_params(sb, sbi->s_journal); 3170 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3171 } 3172 3173 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3174 n_blocks_count > ext4_blocks_count(es)) { 3175 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) { 3176 err = -EROFS; 3177 goto restore_opts; 3178 } 3179 3180 if (*flags & MS_RDONLY) { 3181 /* 3182 * First of all, the unconditional stuff we have to do 3183 * to disable replay of the journal when we next remount 3184 */ 3185 sb->s_flags |= MS_RDONLY; 3186 3187 /* 3188 * OK, test if we are remounting a valid rw partition 3189 * readonly, and if so set the rdonly flag and then 3190 * mark the partition as valid again. 3191 */ 3192 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3193 (sbi->s_mount_state & EXT4_VALID_FS)) 3194 es->s_state = cpu_to_le16(sbi->s_mount_state); 3195 3196 /* 3197 * We have to unlock super so that we can wait for 3198 * transactions. 3199 */ 3200 if (sbi->s_journal) { 3201 unlock_super(sb); 3202 ext4_mark_recovery_complete(sb, es); 3203 lock_super(sb); 3204 } 3205 } else { 3206 int ret; 3207 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3208 ~EXT4_FEATURE_RO_COMPAT_SUPP))) { 3209 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 3210 "remount RDWR because of unsupported " 3211 "optional features (%x).\n", sb->s_id, 3212 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) & 3213 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3214 err = -EROFS; 3215 goto restore_opts; 3216 } 3217 3218 /* 3219 * Make sure the group descriptor checksums 3220 * are sane. If they aren't, refuse to 3221 * remount r/w. 3222 */ 3223 for (g = 0; g < sbi->s_groups_count; g++) { 3224 struct ext4_group_desc *gdp = 3225 ext4_get_group_desc(sb, g, NULL); 3226 3227 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3228 printk(KERN_ERR 3229 "EXT4-fs: ext4_remount: " 3230 "Checksum for group %u failed (%u!=%u)\n", 3231 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3232 le16_to_cpu(gdp->bg_checksum)); 3233 err = -EINVAL; 3234 goto restore_opts; 3235 } 3236 } 3237 3238 /* 3239 * If we have an unprocessed orphan list hanging 3240 * around from a previously readonly bdev mount, 3241 * require a full umount/remount for now. 3242 */ 3243 if (es->s_last_orphan) { 3244 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 3245 "remount RDWR because of unprocessed " 3246 "orphan inode list. Please " 3247 "umount/remount instead.\n", 3248 sb->s_id); 3249 err = -EINVAL; 3250 goto restore_opts; 3251 } 3252 3253 /* 3254 * Mounting a RDONLY partition read-write, so reread 3255 * and store the current valid flag. (It may have 3256 * been changed by e2fsck since we originally mounted 3257 * the partition.) 3258 */ 3259 if (sbi->s_journal) 3260 ext4_clear_journal_err(sb, es); 3261 sbi->s_mount_state = le16_to_cpu(es->s_state); 3262 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3263 goto restore_opts; 3264 if (!ext4_setup_super(sb, es, 0)) 3265 sb->s_flags &= ~MS_RDONLY; 3266 } 3267 } 3268 if (sbi->s_journal == NULL) 3269 ext4_commit_super(sb, es, 1); 3270 3271 #ifdef CONFIG_QUOTA 3272 /* Release old quota file names */ 3273 for (i = 0; i < MAXQUOTAS; i++) 3274 if (old_opts.s_qf_names[i] && 3275 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3276 kfree(old_opts.s_qf_names[i]); 3277 #endif 3278 return 0; 3279 restore_opts: 3280 sb->s_flags = old_sb_flags; 3281 sbi->s_mount_opt = old_opts.s_mount_opt; 3282 sbi->s_resuid = old_opts.s_resuid; 3283 sbi->s_resgid = old_opts.s_resgid; 3284 sbi->s_commit_interval = old_opts.s_commit_interval; 3285 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3286 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3287 #ifdef CONFIG_QUOTA 3288 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3289 for (i = 0; i < MAXQUOTAS; i++) { 3290 if (sbi->s_qf_names[i] && 3291 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3292 kfree(sbi->s_qf_names[i]); 3293 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3294 } 3295 #endif 3296 return err; 3297 } 3298 3299 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3300 { 3301 struct super_block *sb = dentry->d_sb; 3302 struct ext4_sb_info *sbi = EXT4_SB(sb); 3303 struct ext4_super_block *es = sbi->s_es; 3304 u64 fsid; 3305 3306 if (test_opt(sb, MINIX_DF)) { 3307 sbi->s_overhead_last = 0; 3308 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3309 ext4_group_t ngroups = sbi->s_groups_count, i; 3310 ext4_fsblk_t overhead = 0; 3311 smp_rmb(); 3312 3313 /* 3314 * Compute the overhead (FS structures). This is constant 3315 * for a given filesystem unless the number of block groups 3316 * changes so we cache the previous value until it does. 3317 */ 3318 3319 /* 3320 * All of the blocks before first_data_block are 3321 * overhead 3322 */ 3323 overhead = le32_to_cpu(es->s_first_data_block); 3324 3325 /* 3326 * Add the overhead attributed to the superblock and 3327 * block group descriptors. If the sparse superblocks 3328 * feature is turned on, then not all groups have this. 3329 */ 3330 for (i = 0; i < ngroups; i++) { 3331 overhead += ext4_bg_has_super(sb, i) + 3332 ext4_bg_num_gdb(sb, i); 3333 cond_resched(); 3334 } 3335 3336 /* 3337 * Every block group has an inode bitmap, a block 3338 * bitmap, and an inode table. 3339 */ 3340 overhead += ngroups * (2 + sbi->s_itb_per_group); 3341 sbi->s_overhead_last = overhead; 3342 smp_wmb(); 3343 sbi->s_blocks_last = ext4_blocks_count(es); 3344 } 3345 3346 buf->f_type = EXT4_SUPER_MAGIC; 3347 buf->f_bsize = sb->s_blocksize; 3348 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3349 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3350 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3351 ext4_free_blocks_count_set(es, buf->f_bfree); 3352 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3353 if (buf->f_bfree < ext4_r_blocks_count(es)) 3354 buf->f_bavail = 0; 3355 buf->f_files = le32_to_cpu(es->s_inodes_count); 3356 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3357 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3358 buf->f_namelen = EXT4_NAME_LEN; 3359 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3360 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3361 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3362 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3363 return 0; 3364 } 3365 3366 /* Helper function for writing quotas on sync - we need to start transaction before quota file 3367 * is locked for write. Otherwise the are possible deadlocks: 3368 * Process 1 Process 2 3369 * ext4_create() quota_sync() 3370 * jbd2_journal_start() write_dquot() 3371 * DQUOT_INIT() down(dqio_mutex) 3372 * down(dqio_mutex) jbd2_journal_start() 3373 * 3374 */ 3375 3376 #ifdef CONFIG_QUOTA 3377 3378 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3379 { 3380 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3381 } 3382 3383 static int ext4_dquot_initialize(struct inode *inode, int type) 3384 { 3385 handle_t *handle; 3386 int ret, err; 3387 3388 /* We may create quota structure so we need to reserve enough blocks */ 3389 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)); 3390 if (IS_ERR(handle)) 3391 return PTR_ERR(handle); 3392 ret = dquot_initialize(inode, type); 3393 err = ext4_journal_stop(handle); 3394 if (!ret) 3395 ret = err; 3396 return ret; 3397 } 3398 3399 static int ext4_dquot_drop(struct inode *inode) 3400 { 3401 handle_t *handle; 3402 int ret, err; 3403 3404 /* We may delete quota structure so we need to reserve enough blocks */ 3405 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_DEL_BLOCKS(inode->i_sb)); 3406 if (IS_ERR(handle)) { 3407 /* 3408 * We call dquot_drop() anyway to at least release references 3409 * to quota structures so that umount does not hang. 3410 */ 3411 dquot_drop(inode); 3412 return PTR_ERR(handle); 3413 } 3414 ret = dquot_drop(inode); 3415 err = ext4_journal_stop(handle); 3416 if (!ret) 3417 ret = err; 3418 return ret; 3419 } 3420 3421 static int ext4_write_dquot(struct dquot *dquot) 3422 { 3423 int ret, err; 3424 handle_t *handle; 3425 struct inode *inode; 3426 3427 inode = dquot_to_inode(dquot); 3428 handle = ext4_journal_start(inode, 3429 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3430 if (IS_ERR(handle)) 3431 return PTR_ERR(handle); 3432 ret = dquot_commit(dquot); 3433 err = ext4_journal_stop(handle); 3434 if (!ret) 3435 ret = err; 3436 return ret; 3437 } 3438 3439 static int ext4_acquire_dquot(struct dquot *dquot) 3440 { 3441 int ret, err; 3442 handle_t *handle; 3443 3444 handle = ext4_journal_start(dquot_to_inode(dquot), 3445 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3446 if (IS_ERR(handle)) 3447 return PTR_ERR(handle); 3448 ret = dquot_acquire(dquot); 3449 err = ext4_journal_stop(handle); 3450 if (!ret) 3451 ret = err; 3452 return ret; 3453 } 3454 3455 static int ext4_release_dquot(struct dquot *dquot) 3456 { 3457 int ret, err; 3458 handle_t *handle; 3459 3460 handle = ext4_journal_start(dquot_to_inode(dquot), 3461 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3462 if (IS_ERR(handle)) { 3463 /* Release dquot anyway to avoid endless cycle in dqput() */ 3464 dquot_release(dquot); 3465 return PTR_ERR(handle); 3466 } 3467 ret = dquot_release(dquot); 3468 err = ext4_journal_stop(handle); 3469 if (!ret) 3470 ret = err; 3471 return ret; 3472 } 3473 3474 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3475 { 3476 /* Are we journaling quotas? */ 3477 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3478 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3479 dquot_mark_dquot_dirty(dquot); 3480 return ext4_write_dquot(dquot); 3481 } else { 3482 return dquot_mark_dquot_dirty(dquot); 3483 } 3484 } 3485 3486 static int ext4_write_info(struct super_block *sb, int type) 3487 { 3488 int ret, err; 3489 handle_t *handle; 3490 3491 /* Data block + inode block */ 3492 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3493 if (IS_ERR(handle)) 3494 return PTR_ERR(handle); 3495 ret = dquot_commit_info(sb, type); 3496 err = ext4_journal_stop(handle); 3497 if (!ret) 3498 ret = err; 3499 return ret; 3500 } 3501 3502 /* 3503 * Turn on quotas during mount time - we need to find 3504 * the quota file and such... 3505 */ 3506 static int ext4_quota_on_mount(struct super_block *sb, int type) 3507 { 3508 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3509 EXT4_SB(sb)->s_jquota_fmt, type); 3510 } 3511 3512 /* 3513 * Standard function to be called on quota_on 3514 */ 3515 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3516 char *name, int remount) 3517 { 3518 int err; 3519 struct path path; 3520 3521 if (!test_opt(sb, QUOTA)) 3522 return -EINVAL; 3523 /* When remounting, no checks are needed and in fact, name is NULL */ 3524 if (remount) 3525 return vfs_quota_on(sb, type, format_id, name, remount); 3526 3527 err = kern_path(name, LOOKUP_FOLLOW, &path); 3528 if (err) 3529 return err; 3530 3531 /* Quotafile not on the same filesystem? */ 3532 if (path.mnt->mnt_sb != sb) { 3533 path_put(&path); 3534 return -EXDEV; 3535 } 3536 /* Journaling quota? */ 3537 if (EXT4_SB(sb)->s_qf_names[type]) { 3538 /* Quotafile not in fs root? */ 3539 if (path.dentry->d_parent != sb->s_root) 3540 printk(KERN_WARNING 3541 "EXT4-fs: Quota file not on filesystem root. " 3542 "Journaled quota will not work.\n"); 3543 } 3544 3545 /* 3546 * When we journal data on quota file, we have to flush journal to see 3547 * all updates to the file when we bypass pagecache... 3548 */ 3549 if (EXT4_SB(sb)->s_journal && 3550 ext4_should_journal_data(path.dentry->d_inode)) { 3551 /* 3552 * We don't need to lock updates but journal_flush() could 3553 * otherwise be livelocked... 3554 */ 3555 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3556 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3557 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3558 if (err) { 3559 path_put(&path); 3560 return err; 3561 } 3562 } 3563 3564 err = vfs_quota_on_path(sb, type, format_id, &path); 3565 path_put(&path); 3566 return err; 3567 } 3568 3569 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3570 * acquiring the locks... As quota files are never truncated and quota code 3571 * itself serializes the operations (and noone else should touch the files) 3572 * we don't have to be afraid of races */ 3573 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3574 size_t len, loff_t off) 3575 { 3576 struct inode *inode = sb_dqopt(sb)->files[type]; 3577 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3578 int err = 0; 3579 int offset = off & (sb->s_blocksize - 1); 3580 int tocopy; 3581 size_t toread; 3582 struct buffer_head *bh; 3583 loff_t i_size = i_size_read(inode); 3584 3585 if (off > i_size) 3586 return 0; 3587 if (off+len > i_size) 3588 len = i_size-off; 3589 toread = len; 3590 while (toread > 0) { 3591 tocopy = sb->s_blocksize - offset < toread ? 3592 sb->s_blocksize - offset : toread; 3593 bh = ext4_bread(NULL, inode, blk, 0, &err); 3594 if (err) 3595 return err; 3596 if (!bh) /* A hole? */ 3597 memset(data, 0, tocopy); 3598 else 3599 memcpy(data, bh->b_data+offset, tocopy); 3600 brelse(bh); 3601 offset = 0; 3602 toread -= tocopy; 3603 data += tocopy; 3604 blk++; 3605 } 3606 return len; 3607 } 3608 3609 /* Write to quotafile (we know the transaction is already started and has 3610 * enough credits) */ 3611 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3612 const char *data, size_t len, loff_t off) 3613 { 3614 struct inode *inode = sb_dqopt(sb)->files[type]; 3615 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3616 int err = 0; 3617 int offset = off & (sb->s_blocksize - 1); 3618 int tocopy; 3619 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3620 size_t towrite = len; 3621 struct buffer_head *bh; 3622 handle_t *handle = journal_current_handle(); 3623 3624 if (EXT4_SB(sb)->s_journal && !handle) { 3625 printk(KERN_WARNING "EXT4-fs: Quota write (off=%llu, len=%llu)" 3626 " cancelled because transaction is not started.\n", 3627 (unsigned long long)off, (unsigned long long)len); 3628 return -EIO; 3629 } 3630 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3631 while (towrite > 0) { 3632 tocopy = sb->s_blocksize - offset < towrite ? 3633 sb->s_blocksize - offset : towrite; 3634 bh = ext4_bread(handle, inode, blk, 1, &err); 3635 if (!bh) 3636 goto out; 3637 if (journal_quota) { 3638 err = ext4_journal_get_write_access(handle, bh); 3639 if (err) { 3640 brelse(bh); 3641 goto out; 3642 } 3643 } 3644 lock_buffer(bh); 3645 memcpy(bh->b_data+offset, data, tocopy); 3646 flush_dcache_page(bh->b_page); 3647 unlock_buffer(bh); 3648 if (journal_quota) 3649 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3650 else { 3651 /* Always do at least ordered writes for quotas */ 3652 err = ext4_jbd2_file_inode(handle, inode); 3653 mark_buffer_dirty(bh); 3654 } 3655 brelse(bh); 3656 if (err) 3657 goto out; 3658 offset = 0; 3659 towrite -= tocopy; 3660 data += tocopy; 3661 blk++; 3662 } 3663 out: 3664 if (len == towrite) { 3665 mutex_unlock(&inode->i_mutex); 3666 return err; 3667 } 3668 if (inode->i_size < off+len-towrite) { 3669 i_size_write(inode, off+len-towrite); 3670 EXT4_I(inode)->i_disksize = inode->i_size; 3671 } 3672 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3673 ext4_mark_inode_dirty(handle, inode); 3674 mutex_unlock(&inode->i_mutex); 3675 return len - towrite; 3676 } 3677 3678 #endif 3679 3680 static int ext4_get_sb(struct file_system_type *fs_type, 3681 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 3682 { 3683 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); 3684 } 3685 3686 #ifdef CONFIG_PROC_FS 3687 static int ext4_ui_proc_show(struct seq_file *m, void *v) 3688 { 3689 unsigned int *p = m->private; 3690 3691 seq_printf(m, "%u\n", *p); 3692 return 0; 3693 } 3694 3695 static int ext4_ui_proc_open(struct inode *inode, struct file *file) 3696 { 3697 return single_open(file, ext4_ui_proc_show, PDE(inode)->data); 3698 } 3699 3700 static ssize_t ext4_ui_proc_write(struct file *file, const char __user *buf, 3701 size_t cnt, loff_t *ppos) 3702 { 3703 unsigned long *p = PDE(file->f_path.dentry->d_inode)->data; 3704 char str[32]; 3705 3706 if (cnt >= sizeof(str)) 3707 return -EINVAL; 3708 if (copy_from_user(str, buf, cnt)) 3709 return -EFAULT; 3710 3711 *p = simple_strtoul(str, NULL, 0); 3712 return cnt; 3713 } 3714 3715 const struct file_operations ext4_ui_proc_fops = { 3716 .owner = THIS_MODULE, 3717 .open = ext4_ui_proc_open, 3718 .read = seq_read, 3719 .llseek = seq_lseek, 3720 .release = single_release, 3721 .write = ext4_ui_proc_write, 3722 }; 3723 #endif 3724 3725 static struct file_system_type ext4_fs_type = { 3726 .owner = THIS_MODULE, 3727 .name = "ext4", 3728 .get_sb = ext4_get_sb, 3729 .kill_sb = kill_block_super, 3730 .fs_flags = FS_REQUIRES_DEV, 3731 }; 3732 3733 #ifdef CONFIG_EXT4DEV_COMPAT 3734 static int ext4dev_get_sb(struct file_system_type *fs_type, 3735 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 3736 { 3737 printk(KERN_WARNING "EXT4-fs: Update your userspace programs " 3738 "to mount using ext4\n"); 3739 printk(KERN_WARNING "EXT4-fs: ext4dev backwards compatibility " 3740 "will go away by 2.6.31\n"); 3741 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); 3742 } 3743 3744 static struct file_system_type ext4dev_fs_type = { 3745 .owner = THIS_MODULE, 3746 .name = "ext4dev", 3747 .get_sb = ext4dev_get_sb, 3748 .kill_sb = kill_block_super, 3749 .fs_flags = FS_REQUIRES_DEV, 3750 }; 3751 MODULE_ALIAS("ext4dev"); 3752 #endif 3753 3754 static int __init init_ext4_fs(void) 3755 { 3756 int err; 3757 3758 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3759 err = init_ext4_mballoc(); 3760 if (err) 3761 return err; 3762 3763 err = init_ext4_xattr(); 3764 if (err) 3765 goto out2; 3766 err = init_inodecache(); 3767 if (err) 3768 goto out1; 3769 err = register_filesystem(&ext4_fs_type); 3770 if (err) 3771 goto out; 3772 #ifdef CONFIG_EXT4DEV_COMPAT 3773 err = register_filesystem(&ext4dev_fs_type); 3774 if (err) { 3775 unregister_filesystem(&ext4_fs_type); 3776 goto out; 3777 } 3778 #endif 3779 return 0; 3780 out: 3781 destroy_inodecache(); 3782 out1: 3783 exit_ext4_xattr(); 3784 out2: 3785 exit_ext4_mballoc(); 3786 return err; 3787 } 3788 3789 static void __exit exit_ext4_fs(void) 3790 { 3791 unregister_filesystem(&ext4_fs_type); 3792 #ifdef CONFIG_EXT4DEV_COMPAT 3793 unregister_filesystem(&ext4dev_fs_type); 3794 #endif 3795 destroy_inodecache(); 3796 exit_ext4_xattr(); 3797 exit_ext4_mballoc(); 3798 remove_proc_entry("fs/ext4", NULL); 3799 } 3800 3801 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 3802 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 3803 MODULE_LICENSE("GPL"); 3804 module_init(init_ext4_fs) 3805 module_exit(exit_ext4_fs) 3806