1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <linux/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 #include "fsmap.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct ext4_lazy_init *ext4_li_info; 58 static struct mutex ext4_li_mtx; 59 static struct ratelimit_state ext4_mount_msg_ratelimit; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static int ext4_remount(struct super_block *sb, int *flags, char *data); 71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 72 static int ext4_unfreeze(struct super_block *sb); 73 static int ext4_freeze(struct super_block *sb); 74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 75 const char *dev_name, void *data); 76 static inline int ext2_feature_set_ok(struct super_block *sb); 77 static inline int ext3_feature_set_ok(struct super_block *sb); 78 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 79 static void ext4_destroy_lazyinit_thread(void); 80 static void ext4_unregister_li_request(struct super_block *sb); 81 static void ext4_clear_request_list(void); 82 static struct inode *ext4_get_journal_inode(struct super_block *sb, 83 unsigned int journal_inum); 84 85 /* 86 * Lock ordering 87 * 88 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 89 * i_mmap_rwsem (inode->i_mmap_rwsem)! 90 * 91 * page fault path: 92 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 93 * page lock -> i_data_sem (rw) 94 * 95 * buffered write path: 96 * sb_start_write -> i_mutex -> mmap_sem 97 * sb_start_write -> i_mutex -> transaction start -> page lock -> 98 * i_data_sem (rw) 99 * 100 * truncate: 101 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 102 * i_mmap_rwsem (w) -> page lock 103 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 104 * transaction start -> i_data_sem (rw) 105 * 106 * direct IO: 107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 109 * transaction start -> i_data_sem (rw) 110 * 111 * writepages: 112 * transaction start -> page lock(s) -> i_data_sem (rw) 113 */ 114 115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 116 static struct file_system_type ext2_fs_type = { 117 .owner = THIS_MODULE, 118 .name = "ext2", 119 .mount = ext4_mount, 120 .kill_sb = kill_block_super, 121 .fs_flags = FS_REQUIRES_DEV, 122 }; 123 MODULE_ALIAS_FS("ext2"); 124 MODULE_ALIAS("ext2"); 125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 126 #else 127 #define IS_EXT2_SB(sb) (0) 128 #endif 129 130 131 static struct file_system_type ext3_fs_type = { 132 .owner = THIS_MODULE, 133 .name = "ext3", 134 .mount = ext4_mount, 135 .kill_sb = kill_block_super, 136 .fs_flags = FS_REQUIRES_DEV, 137 }; 138 MODULE_ALIAS_FS("ext3"); 139 MODULE_ALIAS("ext3"); 140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 141 142 static int ext4_verify_csum_type(struct super_block *sb, 143 struct ext4_super_block *es) 144 { 145 if (!ext4_has_feature_metadata_csum(sb)) 146 return 1; 147 148 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 149 } 150 151 static __le32 ext4_superblock_csum(struct super_block *sb, 152 struct ext4_super_block *es) 153 { 154 struct ext4_sb_info *sbi = EXT4_SB(sb); 155 int offset = offsetof(struct ext4_super_block, s_checksum); 156 __u32 csum; 157 158 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 159 160 return cpu_to_le32(csum); 161 } 162 163 static int ext4_superblock_csum_verify(struct super_block *sb, 164 struct ext4_super_block *es) 165 { 166 if (!ext4_has_metadata_csum(sb)) 167 return 1; 168 169 return es->s_checksum == ext4_superblock_csum(sb, es); 170 } 171 172 void ext4_superblock_csum_set(struct super_block *sb) 173 { 174 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 175 176 if (!ext4_has_metadata_csum(sb)) 177 return; 178 179 es->s_checksum = ext4_superblock_csum(sb, es); 180 } 181 182 void *ext4_kvmalloc(size_t size, gfp_t flags) 183 { 184 void *ret; 185 186 ret = kmalloc(size, flags | __GFP_NOWARN); 187 if (!ret) 188 ret = __vmalloc(size, flags, PAGE_KERNEL); 189 return ret; 190 } 191 192 void *ext4_kvzalloc(size_t size, gfp_t flags) 193 { 194 void *ret; 195 196 ret = kzalloc(size, flags | __GFP_NOWARN); 197 if (!ret) 198 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 199 return ret; 200 } 201 202 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le32_to_cpu(bg->bg_block_bitmap_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 208 } 209 210 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 216 } 217 218 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le32_to_cpu(bg->bg_inode_table_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 224 } 225 226 __u32 ext4_free_group_clusters(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 232 } 233 234 __u32 ext4_free_inodes_count(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 240 } 241 242 __u32 ext4_used_dirs_count(struct super_block *sb, 243 struct ext4_group_desc *bg) 244 { 245 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 247 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 248 } 249 250 __u32 ext4_itable_unused_count(struct super_block *sb, 251 struct ext4_group_desc *bg) 252 { 253 return le16_to_cpu(bg->bg_itable_unused_lo) | 254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 255 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 256 } 257 258 void ext4_block_bitmap_set(struct super_block *sb, 259 struct ext4_group_desc *bg, ext4_fsblk_t blk) 260 { 261 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 264 } 265 266 void ext4_inode_bitmap_set(struct super_block *sb, 267 struct ext4_group_desc *bg, ext4_fsblk_t blk) 268 { 269 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 272 } 273 274 void ext4_inode_table_set(struct super_block *sb, 275 struct ext4_group_desc *bg, ext4_fsblk_t blk) 276 { 277 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 280 } 281 282 void ext4_free_group_clusters_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284 { 285 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 288 } 289 290 void ext4_free_inodes_set(struct super_block *sb, 291 struct ext4_group_desc *bg, __u32 count) 292 { 293 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 296 } 297 298 void ext4_used_dirs_set(struct super_block *sb, 299 struct ext4_group_desc *bg, __u32 count) 300 { 301 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 303 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 304 } 305 306 void ext4_itable_unused_set(struct super_block *sb, 307 struct ext4_group_desc *bg, __u32 count) 308 { 309 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 311 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 312 } 313 314 315 static void __save_error_info(struct super_block *sb, const char *func, 316 unsigned int line) 317 { 318 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 319 320 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 321 if (bdev_read_only(sb->s_bdev)) 322 return; 323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 324 es->s_last_error_time = cpu_to_le32(get_seconds()); 325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 326 es->s_last_error_line = cpu_to_le32(line); 327 if (!es->s_first_error_time) { 328 es->s_first_error_time = es->s_last_error_time; 329 strncpy(es->s_first_error_func, func, 330 sizeof(es->s_first_error_func)); 331 es->s_first_error_line = cpu_to_le32(line); 332 es->s_first_error_ino = es->s_last_error_ino; 333 es->s_first_error_block = es->s_last_error_block; 334 } 335 /* 336 * Start the daily error reporting function if it hasn't been 337 * started already 338 */ 339 if (!es->s_error_count) 340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 341 le32_add_cpu(&es->s_error_count, 1); 342 } 343 344 static void save_error_info(struct super_block *sb, const char *func, 345 unsigned int line) 346 { 347 __save_error_info(sb, func, line); 348 ext4_commit_super(sb, 1); 349 } 350 351 /* 352 * The del_gendisk() function uninitializes the disk-specific data 353 * structures, including the bdi structure, without telling anyone 354 * else. Once this happens, any attempt to call mark_buffer_dirty() 355 * (for example, by ext4_commit_super), will cause a kernel OOPS. 356 * This is a kludge to prevent these oops until we can put in a proper 357 * hook in del_gendisk() to inform the VFS and file system layers. 358 */ 359 static int block_device_ejected(struct super_block *sb) 360 { 361 struct inode *bd_inode = sb->s_bdev->bd_inode; 362 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 363 364 return bdi->dev == NULL; 365 } 366 367 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 368 { 369 struct super_block *sb = journal->j_private; 370 struct ext4_sb_info *sbi = EXT4_SB(sb); 371 int error = is_journal_aborted(journal); 372 struct ext4_journal_cb_entry *jce; 373 374 BUG_ON(txn->t_state == T_FINISHED); 375 spin_lock(&sbi->s_md_lock); 376 while (!list_empty(&txn->t_private_list)) { 377 jce = list_entry(txn->t_private_list.next, 378 struct ext4_journal_cb_entry, jce_list); 379 list_del_init(&jce->jce_list); 380 spin_unlock(&sbi->s_md_lock); 381 jce->jce_func(sb, jce, error); 382 spin_lock(&sbi->s_md_lock); 383 } 384 spin_unlock(&sbi->s_md_lock); 385 } 386 387 /* Deal with the reporting of failure conditions on a filesystem such as 388 * inconsistencies detected or read IO failures. 389 * 390 * On ext2, we can store the error state of the filesystem in the 391 * superblock. That is not possible on ext4, because we may have other 392 * write ordering constraints on the superblock which prevent us from 393 * writing it out straight away; and given that the journal is about to 394 * be aborted, we can't rely on the current, or future, transactions to 395 * write out the superblock safely. 396 * 397 * We'll just use the jbd2_journal_abort() error code to record an error in 398 * the journal instead. On recovery, the journal will complain about 399 * that error until we've noted it down and cleared it. 400 */ 401 402 static void ext4_handle_error(struct super_block *sb) 403 { 404 if (sb->s_flags & MS_RDONLY) 405 return; 406 407 if (!test_opt(sb, ERRORS_CONT)) { 408 journal_t *journal = EXT4_SB(sb)->s_journal; 409 410 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 411 if (journal) 412 jbd2_journal_abort(journal, -EIO); 413 } 414 if (test_opt(sb, ERRORS_RO)) { 415 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 416 /* 417 * Make sure updated value of ->s_mount_flags will be visible 418 * before ->s_flags update 419 */ 420 smp_wmb(); 421 sb->s_flags |= MS_RDONLY; 422 } 423 if (test_opt(sb, ERRORS_PANIC)) { 424 if (EXT4_SB(sb)->s_journal && 425 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 426 return; 427 panic("EXT4-fs (device %s): panic forced after error\n", 428 sb->s_id); 429 } 430 } 431 432 #define ext4_error_ratelimit(sb) \ 433 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 434 "EXT4-fs error") 435 436 void __ext4_error(struct super_block *sb, const char *function, 437 unsigned int line, const char *fmt, ...) 438 { 439 struct va_format vaf; 440 va_list args; 441 442 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 443 return; 444 445 if (ext4_error_ratelimit(sb)) { 446 va_start(args, fmt); 447 vaf.fmt = fmt; 448 vaf.va = &args; 449 printk(KERN_CRIT 450 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 451 sb->s_id, function, line, current->comm, &vaf); 452 va_end(args); 453 } 454 save_error_info(sb, function, line); 455 ext4_handle_error(sb); 456 } 457 458 void __ext4_error_inode(struct inode *inode, const char *function, 459 unsigned int line, ext4_fsblk_t block, 460 const char *fmt, ...) 461 { 462 va_list args; 463 struct va_format vaf; 464 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 465 466 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 467 return; 468 469 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 470 es->s_last_error_block = cpu_to_le64(block); 471 if (ext4_error_ratelimit(inode->i_sb)) { 472 va_start(args, fmt); 473 vaf.fmt = fmt; 474 vaf.va = &args; 475 if (block) 476 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 477 "inode #%lu: block %llu: comm %s: %pV\n", 478 inode->i_sb->s_id, function, line, inode->i_ino, 479 block, current->comm, &vaf); 480 else 481 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 482 "inode #%lu: comm %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 current->comm, &vaf); 485 va_end(args); 486 } 487 save_error_info(inode->i_sb, function, line); 488 ext4_handle_error(inode->i_sb); 489 } 490 491 void __ext4_error_file(struct file *file, const char *function, 492 unsigned int line, ext4_fsblk_t block, 493 const char *fmt, ...) 494 { 495 va_list args; 496 struct va_format vaf; 497 struct ext4_super_block *es; 498 struct inode *inode = file_inode(file); 499 char pathname[80], *path; 500 501 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 502 return; 503 504 es = EXT4_SB(inode->i_sb)->s_es; 505 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 506 if (ext4_error_ratelimit(inode->i_sb)) { 507 path = file_path(file, pathname, sizeof(pathname)); 508 if (IS_ERR(path)) 509 path = "(unknown)"; 510 va_start(args, fmt); 511 vaf.fmt = fmt; 512 vaf.va = &args; 513 if (block) 514 printk(KERN_CRIT 515 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 516 "block %llu: comm %s: path %s: %pV\n", 517 inode->i_sb->s_id, function, line, inode->i_ino, 518 block, current->comm, path, &vaf); 519 else 520 printk(KERN_CRIT 521 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 522 "comm %s: path %s: %pV\n", 523 inode->i_sb->s_id, function, line, inode->i_ino, 524 current->comm, path, &vaf); 525 va_end(args); 526 } 527 save_error_info(inode->i_sb, function, line); 528 ext4_handle_error(inode->i_sb); 529 } 530 531 const char *ext4_decode_error(struct super_block *sb, int errno, 532 char nbuf[16]) 533 { 534 char *errstr = NULL; 535 536 switch (errno) { 537 case -EFSCORRUPTED: 538 errstr = "Corrupt filesystem"; 539 break; 540 case -EFSBADCRC: 541 errstr = "Filesystem failed CRC"; 542 break; 543 case -EIO: 544 errstr = "IO failure"; 545 break; 546 case -ENOMEM: 547 errstr = "Out of memory"; 548 break; 549 case -EROFS: 550 if (!sb || (EXT4_SB(sb)->s_journal && 551 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 552 errstr = "Journal has aborted"; 553 else 554 errstr = "Readonly filesystem"; 555 break; 556 default: 557 /* If the caller passed in an extra buffer for unknown 558 * errors, textualise them now. Else we just return 559 * NULL. */ 560 if (nbuf) { 561 /* Check for truncated error codes... */ 562 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 563 errstr = nbuf; 564 } 565 break; 566 } 567 568 return errstr; 569 } 570 571 /* __ext4_std_error decodes expected errors from journaling functions 572 * automatically and invokes the appropriate error response. */ 573 574 void __ext4_std_error(struct super_block *sb, const char *function, 575 unsigned int line, int errno) 576 { 577 char nbuf[16]; 578 const char *errstr; 579 580 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 581 return; 582 583 /* Special case: if the error is EROFS, and we're not already 584 * inside a transaction, then there's really no point in logging 585 * an error. */ 586 if (errno == -EROFS && journal_current_handle() == NULL && 587 (sb->s_flags & MS_RDONLY)) 588 return; 589 590 if (ext4_error_ratelimit(sb)) { 591 errstr = ext4_decode_error(sb, errno, nbuf); 592 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 593 sb->s_id, function, line, errstr); 594 } 595 596 save_error_info(sb, function, line); 597 ext4_handle_error(sb); 598 } 599 600 /* 601 * ext4_abort is a much stronger failure handler than ext4_error. The 602 * abort function may be used to deal with unrecoverable failures such 603 * as journal IO errors or ENOMEM at a critical moment in log management. 604 * 605 * We unconditionally force the filesystem into an ABORT|READONLY state, 606 * unless the error response on the fs has been set to panic in which 607 * case we take the easy way out and panic immediately. 608 */ 609 610 void __ext4_abort(struct super_block *sb, const char *function, 611 unsigned int line, const char *fmt, ...) 612 { 613 struct va_format vaf; 614 va_list args; 615 616 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 617 return; 618 619 save_error_info(sb, function, line); 620 va_start(args, fmt); 621 vaf.fmt = fmt; 622 vaf.va = &args; 623 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 624 sb->s_id, function, line, &vaf); 625 va_end(args); 626 627 if ((sb->s_flags & MS_RDONLY) == 0) { 628 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 629 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 630 /* 631 * Make sure updated value of ->s_mount_flags will be visible 632 * before ->s_flags update 633 */ 634 smp_wmb(); 635 sb->s_flags |= MS_RDONLY; 636 if (EXT4_SB(sb)->s_journal) 637 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 638 save_error_info(sb, function, line); 639 } 640 if (test_opt(sb, ERRORS_PANIC)) { 641 if (EXT4_SB(sb)->s_journal && 642 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 643 return; 644 panic("EXT4-fs panic from previous error\n"); 645 } 646 } 647 648 void __ext4_msg(struct super_block *sb, 649 const char *prefix, const char *fmt, ...) 650 { 651 struct va_format vaf; 652 va_list args; 653 654 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 655 return; 656 657 va_start(args, fmt); 658 vaf.fmt = fmt; 659 vaf.va = &args; 660 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 661 va_end(args); 662 } 663 664 #define ext4_warning_ratelimit(sb) \ 665 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 666 "EXT4-fs warning") 667 668 void __ext4_warning(struct super_block *sb, const char *function, 669 unsigned int line, const char *fmt, ...) 670 { 671 struct va_format vaf; 672 va_list args; 673 674 if (!ext4_warning_ratelimit(sb)) 675 return; 676 677 va_start(args, fmt); 678 vaf.fmt = fmt; 679 vaf.va = &args; 680 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 681 sb->s_id, function, line, &vaf); 682 va_end(args); 683 } 684 685 void __ext4_warning_inode(const struct inode *inode, const char *function, 686 unsigned int line, const char *fmt, ...) 687 { 688 struct va_format vaf; 689 va_list args; 690 691 if (!ext4_warning_ratelimit(inode->i_sb)) 692 return; 693 694 va_start(args, fmt); 695 vaf.fmt = fmt; 696 vaf.va = &args; 697 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 698 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 699 function, line, inode->i_ino, current->comm, &vaf); 700 va_end(args); 701 } 702 703 void __ext4_grp_locked_error(const char *function, unsigned int line, 704 struct super_block *sb, ext4_group_t grp, 705 unsigned long ino, ext4_fsblk_t block, 706 const char *fmt, ...) 707 __releases(bitlock) 708 __acquires(bitlock) 709 { 710 struct va_format vaf; 711 va_list args; 712 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 713 714 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 715 return; 716 717 es->s_last_error_ino = cpu_to_le32(ino); 718 es->s_last_error_block = cpu_to_le64(block); 719 __save_error_info(sb, function, line); 720 721 if (ext4_error_ratelimit(sb)) { 722 va_start(args, fmt); 723 vaf.fmt = fmt; 724 vaf.va = &args; 725 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 726 sb->s_id, function, line, grp); 727 if (ino) 728 printk(KERN_CONT "inode %lu: ", ino); 729 if (block) 730 printk(KERN_CONT "block %llu:", 731 (unsigned long long) block); 732 printk(KERN_CONT "%pV\n", &vaf); 733 va_end(args); 734 } 735 736 if (test_opt(sb, ERRORS_CONT)) { 737 ext4_commit_super(sb, 0); 738 return; 739 } 740 741 ext4_unlock_group(sb, grp); 742 ext4_handle_error(sb); 743 /* 744 * We only get here in the ERRORS_RO case; relocking the group 745 * may be dangerous, but nothing bad will happen since the 746 * filesystem will have already been marked read/only and the 747 * journal has been aborted. We return 1 as a hint to callers 748 * who might what to use the return value from 749 * ext4_grp_locked_error() to distinguish between the 750 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 751 * aggressively from the ext4 function in question, with a 752 * more appropriate error code. 753 */ 754 ext4_lock_group(sb, grp); 755 return; 756 } 757 758 void ext4_update_dynamic_rev(struct super_block *sb) 759 { 760 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 761 762 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 763 return; 764 765 ext4_warning(sb, 766 "updating to rev %d because of new feature flag, " 767 "running e2fsck is recommended", 768 EXT4_DYNAMIC_REV); 769 770 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 771 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 772 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 773 /* leave es->s_feature_*compat flags alone */ 774 /* es->s_uuid will be set by e2fsck if empty */ 775 776 /* 777 * The rest of the superblock fields should be zero, and if not it 778 * means they are likely already in use, so leave them alone. We 779 * can leave it up to e2fsck to clean up any inconsistencies there. 780 */ 781 } 782 783 /* 784 * Open the external journal device 785 */ 786 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 787 { 788 struct block_device *bdev; 789 char b[BDEVNAME_SIZE]; 790 791 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 792 if (IS_ERR(bdev)) 793 goto fail; 794 return bdev; 795 796 fail: 797 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 798 __bdevname(dev, b), PTR_ERR(bdev)); 799 return NULL; 800 } 801 802 /* 803 * Release the journal device 804 */ 805 static void ext4_blkdev_put(struct block_device *bdev) 806 { 807 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 808 } 809 810 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 811 { 812 struct block_device *bdev; 813 bdev = sbi->journal_bdev; 814 if (bdev) { 815 ext4_blkdev_put(bdev); 816 sbi->journal_bdev = NULL; 817 } 818 } 819 820 static inline struct inode *orphan_list_entry(struct list_head *l) 821 { 822 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 823 } 824 825 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 826 { 827 struct list_head *l; 828 829 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 830 le32_to_cpu(sbi->s_es->s_last_orphan)); 831 832 printk(KERN_ERR "sb_info orphan list:\n"); 833 list_for_each(l, &sbi->s_orphan) { 834 struct inode *inode = orphan_list_entry(l); 835 printk(KERN_ERR " " 836 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 837 inode->i_sb->s_id, inode->i_ino, inode, 838 inode->i_mode, inode->i_nlink, 839 NEXT_ORPHAN(inode)); 840 } 841 } 842 843 #ifdef CONFIG_QUOTA 844 static int ext4_quota_off(struct super_block *sb, int type); 845 846 static inline void ext4_quota_off_umount(struct super_block *sb) 847 { 848 int type; 849 850 if (ext4_has_feature_quota(sb)) { 851 dquot_disable(sb, -1, 852 DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 853 } else { 854 /* Use our quota_off function to clear inode flags etc. */ 855 for (type = 0; type < EXT4_MAXQUOTAS; type++) 856 ext4_quota_off(sb, type); 857 } 858 } 859 #else 860 static inline void ext4_quota_off_umount(struct super_block *sb) 861 { 862 } 863 #endif 864 865 static void ext4_put_super(struct super_block *sb) 866 { 867 struct ext4_sb_info *sbi = EXT4_SB(sb); 868 struct ext4_super_block *es = sbi->s_es; 869 int aborted = 0; 870 int i, err; 871 872 ext4_unregister_li_request(sb); 873 ext4_quota_off_umount(sb); 874 875 flush_workqueue(sbi->rsv_conversion_wq); 876 destroy_workqueue(sbi->rsv_conversion_wq); 877 878 if (sbi->s_journal) { 879 aborted = is_journal_aborted(sbi->s_journal); 880 err = jbd2_journal_destroy(sbi->s_journal); 881 sbi->s_journal = NULL; 882 if ((err < 0) && !aborted) 883 ext4_abort(sb, "Couldn't clean up the journal"); 884 } 885 886 ext4_unregister_sysfs(sb); 887 ext4_es_unregister_shrinker(sbi); 888 del_timer_sync(&sbi->s_err_report); 889 ext4_release_system_zone(sb); 890 ext4_mb_release(sb); 891 ext4_ext_release(sb); 892 893 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 894 ext4_clear_feature_journal_needs_recovery(sb); 895 es->s_state = cpu_to_le16(sbi->s_mount_state); 896 } 897 if (!(sb->s_flags & MS_RDONLY)) 898 ext4_commit_super(sb, 1); 899 900 for (i = 0; i < sbi->s_gdb_count; i++) 901 brelse(sbi->s_group_desc[i]); 902 kvfree(sbi->s_group_desc); 903 kvfree(sbi->s_flex_groups); 904 percpu_counter_destroy(&sbi->s_freeclusters_counter); 905 percpu_counter_destroy(&sbi->s_freeinodes_counter); 906 percpu_counter_destroy(&sbi->s_dirs_counter); 907 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 908 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 909 #ifdef CONFIG_QUOTA 910 for (i = 0; i < EXT4_MAXQUOTAS; i++) 911 kfree(sbi->s_qf_names[i]); 912 #endif 913 914 /* Debugging code just in case the in-memory inode orphan list 915 * isn't empty. The on-disk one can be non-empty if we've 916 * detected an error and taken the fs readonly, but the 917 * in-memory list had better be clean by this point. */ 918 if (!list_empty(&sbi->s_orphan)) 919 dump_orphan_list(sb, sbi); 920 J_ASSERT(list_empty(&sbi->s_orphan)); 921 922 sync_blockdev(sb->s_bdev); 923 invalidate_bdev(sb->s_bdev); 924 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 925 /* 926 * Invalidate the journal device's buffers. We don't want them 927 * floating about in memory - the physical journal device may 928 * hotswapped, and it breaks the `ro-after' testing code. 929 */ 930 sync_blockdev(sbi->journal_bdev); 931 invalidate_bdev(sbi->journal_bdev); 932 ext4_blkdev_remove(sbi); 933 } 934 if (sbi->s_mb_cache) { 935 ext4_xattr_destroy_cache(sbi->s_mb_cache); 936 sbi->s_mb_cache = NULL; 937 } 938 if (sbi->s_mmp_tsk) 939 kthread_stop(sbi->s_mmp_tsk); 940 brelse(sbi->s_sbh); 941 sb->s_fs_info = NULL; 942 /* 943 * Now that we are completely done shutting down the 944 * superblock, we need to actually destroy the kobject. 945 */ 946 kobject_put(&sbi->s_kobj); 947 wait_for_completion(&sbi->s_kobj_unregister); 948 if (sbi->s_chksum_driver) 949 crypto_free_shash(sbi->s_chksum_driver); 950 kfree(sbi->s_blockgroup_lock); 951 kfree(sbi); 952 } 953 954 static struct kmem_cache *ext4_inode_cachep; 955 956 /* 957 * Called inside transaction, so use GFP_NOFS 958 */ 959 static struct inode *ext4_alloc_inode(struct super_block *sb) 960 { 961 struct ext4_inode_info *ei; 962 963 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 964 if (!ei) 965 return NULL; 966 967 ei->vfs_inode.i_version = 1; 968 spin_lock_init(&ei->i_raw_lock); 969 INIT_LIST_HEAD(&ei->i_prealloc_list); 970 spin_lock_init(&ei->i_prealloc_lock); 971 ext4_es_init_tree(&ei->i_es_tree); 972 rwlock_init(&ei->i_es_lock); 973 INIT_LIST_HEAD(&ei->i_es_list); 974 ei->i_es_all_nr = 0; 975 ei->i_es_shk_nr = 0; 976 ei->i_es_shrink_lblk = 0; 977 ei->i_reserved_data_blocks = 0; 978 ei->i_reserved_meta_blocks = 0; 979 ei->i_allocated_meta_blocks = 0; 980 ei->i_da_metadata_calc_len = 0; 981 ei->i_da_metadata_calc_last_lblock = 0; 982 spin_lock_init(&(ei->i_block_reservation_lock)); 983 #ifdef CONFIG_QUOTA 984 ei->i_reserved_quota = 0; 985 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 986 #endif 987 ei->jinode = NULL; 988 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 989 spin_lock_init(&ei->i_completed_io_lock); 990 ei->i_sync_tid = 0; 991 ei->i_datasync_tid = 0; 992 atomic_set(&ei->i_unwritten, 0); 993 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 994 return &ei->vfs_inode; 995 } 996 997 static int ext4_drop_inode(struct inode *inode) 998 { 999 int drop = generic_drop_inode(inode); 1000 1001 trace_ext4_drop_inode(inode, drop); 1002 return drop; 1003 } 1004 1005 static void ext4_i_callback(struct rcu_head *head) 1006 { 1007 struct inode *inode = container_of(head, struct inode, i_rcu); 1008 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1009 } 1010 1011 static void ext4_destroy_inode(struct inode *inode) 1012 { 1013 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1014 ext4_msg(inode->i_sb, KERN_ERR, 1015 "Inode %lu (%p): orphan list check failed!", 1016 inode->i_ino, EXT4_I(inode)); 1017 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1018 EXT4_I(inode), sizeof(struct ext4_inode_info), 1019 true); 1020 dump_stack(); 1021 } 1022 call_rcu(&inode->i_rcu, ext4_i_callback); 1023 } 1024 1025 static void init_once(void *foo) 1026 { 1027 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1028 1029 INIT_LIST_HEAD(&ei->i_orphan); 1030 init_rwsem(&ei->xattr_sem); 1031 init_rwsem(&ei->i_data_sem); 1032 init_rwsem(&ei->i_mmap_sem); 1033 inode_init_once(&ei->vfs_inode); 1034 } 1035 1036 static int __init init_inodecache(void) 1037 { 1038 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1039 sizeof(struct ext4_inode_info), 1040 0, (SLAB_RECLAIM_ACCOUNT| 1041 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1042 init_once); 1043 if (ext4_inode_cachep == NULL) 1044 return -ENOMEM; 1045 return 0; 1046 } 1047 1048 static void destroy_inodecache(void) 1049 { 1050 /* 1051 * Make sure all delayed rcu free inodes are flushed before we 1052 * destroy cache. 1053 */ 1054 rcu_barrier(); 1055 kmem_cache_destroy(ext4_inode_cachep); 1056 } 1057 1058 void ext4_clear_inode(struct inode *inode) 1059 { 1060 invalidate_inode_buffers(inode); 1061 clear_inode(inode); 1062 dquot_drop(inode); 1063 ext4_discard_preallocations(inode); 1064 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1065 if (EXT4_I(inode)->jinode) { 1066 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1067 EXT4_I(inode)->jinode); 1068 jbd2_free_inode(EXT4_I(inode)->jinode); 1069 EXT4_I(inode)->jinode = NULL; 1070 } 1071 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1072 fscrypt_put_encryption_info(inode, NULL); 1073 #endif 1074 } 1075 1076 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1077 u64 ino, u32 generation) 1078 { 1079 struct inode *inode; 1080 1081 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1082 return ERR_PTR(-ESTALE); 1083 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1084 return ERR_PTR(-ESTALE); 1085 1086 /* iget isn't really right if the inode is currently unallocated!! 1087 * 1088 * ext4_read_inode will return a bad_inode if the inode had been 1089 * deleted, so we should be safe. 1090 * 1091 * Currently we don't know the generation for parent directory, so 1092 * a generation of 0 means "accept any" 1093 */ 1094 inode = ext4_iget_normal(sb, ino); 1095 if (IS_ERR(inode)) 1096 return ERR_CAST(inode); 1097 if (generation && inode->i_generation != generation) { 1098 iput(inode); 1099 return ERR_PTR(-ESTALE); 1100 } 1101 1102 return inode; 1103 } 1104 1105 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1106 int fh_len, int fh_type) 1107 { 1108 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1109 ext4_nfs_get_inode); 1110 } 1111 1112 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1113 int fh_len, int fh_type) 1114 { 1115 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1116 ext4_nfs_get_inode); 1117 } 1118 1119 /* 1120 * Try to release metadata pages (indirect blocks, directories) which are 1121 * mapped via the block device. Since these pages could have journal heads 1122 * which would prevent try_to_free_buffers() from freeing them, we must use 1123 * jbd2 layer's try_to_free_buffers() function to release them. 1124 */ 1125 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1126 gfp_t wait) 1127 { 1128 journal_t *journal = EXT4_SB(sb)->s_journal; 1129 1130 WARN_ON(PageChecked(page)); 1131 if (!page_has_buffers(page)) 1132 return 0; 1133 if (journal) 1134 return jbd2_journal_try_to_free_buffers(journal, page, 1135 wait & ~__GFP_DIRECT_RECLAIM); 1136 return try_to_free_buffers(page); 1137 } 1138 1139 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1140 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1141 { 1142 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1143 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1144 } 1145 1146 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1147 void *fs_data) 1148 { 1149 handle_t *handle = fs_data; 1150 int res, res2, retries = 0; 1151 1152 res = ext4_convert_inline_data(inode); 1153 if (res) 1154 return res; 1155 1156 /* 1157 * If a journal handle was specified, then the encryption context is 1158 * being set on a new inode via inheritance and is part of a larger 1159 * transaction to create the inode. Otherwise the encryption context is 1160 * being set on an existing inode in its own transaction. Only in the 1161 * latter case should the "retry on ENOSPC" logic be used. 1162 */ 1163 1164 if (handle) { 1165 res = ext4_xattr_set_handle(handle, inode, 1166 EXT4_XATTR_INDEX_ENCRYPTION, 1167 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1168 ctx, len, 0); 1169 if (!res) { 1170 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1171 ext4_clear_inode_state(inode, 1172 EXT4_STATE_MAY_INLINE_DATA); 1173 /* 1174 * Update inode->i_flags - e.g. S_DAX may get disabled 1175 */ 1176 ext4_set_inode_flags(inode); 1177 } 1178 return res; 1179 } 1180 1181 retry: 1182 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1183 ext4_jbd2_credits_xattr(inode)); 1184 if (IS_ERR(handle)) 1185 return PTR_ERR(handle); 1186 1187 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1188 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1189 ctx, len, 0); 1190 if (!res) { 1191 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1192 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1193 ext4_set_inode_flags(inode); 1194 res = ext4_mark_inode_dirty(handle, inode); 1195 if (res) 1196 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1197 } 1198 res2 = ext4_journal_stop(handle); 1199 1200 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1201 goto retry; 1202 if (!res) 1203 res = res2; 1204 return res; 1205 } 1206 1207 static int ext4_dummy_context(struct inode *inode) 1208 { 1209 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1210 } 1211 1212 static unsigned ext4_max_namelen(struct inode *inode) 1213 { 1214 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1215 EXT4_NAME_LEN; 1216 } 1217 1218 static const struct fscrypt_operations ext4_cryptops = { 1219 .key_prefix = "ext4:", 1220 .get_context = ext4_get_context, 1221 .set_context = ext4_set_context, 1222 .dummy_context = ext4_dummy_context, 1223 .is_encrypted = ext4_encrypted_inode, 1224 .empty_dir = ext4_empty_dir, 1225 .max_namelen = ext4_max_namelen, 1226 }; 1227 #else 1228 static const struct fscrypt_operations ext4_cryptops = { 1229 .is_encrypted = ext4_encrypted_inode, 1230 }; 1231 #endif 1232 1233 #ifdef CONFIG_QUOTA 1234 static const char * const quotatypes[] = INITQFNAMES; 1235 #define QTYPE2NAME(t) (quotatypes[t]) 1236 1237 static int ext4_write_dquot(struct dquot *dquot); 1238 static int ext4_acquire_dquot(struct dquot *dquot); 1239 static int ext4_release_dquot(struct dquot *dquot); 1240 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1241 static int ext4_write_info(struct super_block *sb, int type); 1242 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1243 const struct path *path); 1244 static int ext4_quota_on_mount(struct super_block *sb, int type); 1245 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1246 size_t len, loff_t off); 1247 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1248 const char *data, size_t len, loff_t off); 1249 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1250 unsigned int flags); 1251 static int ext4_enable_quotas(struct super_block *sb); 1252 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1253 1254 static struct dquot **ext4_get_dquots(struct inode *inode) 1255 { 1256 return EXT4_I(inode)->i_dquot; 1257 } 1258 1259 static const struct dquot_operations ext4_quota_operations = { 1260 .get_reserved_space = ext4_get_reserved_space, 1261 .write_dquot = ext4_write_dquot, 1262 .acquire_dquot = ext4_acquire_dquot, 1263 .release_dquot = ext4_release_dquot, 1264 .mark_dirty = ext4_mark_dquot_dirty, 1265 .write_info = ext4_write_info, 1266 .alloc_dquot = dquot_alloc, 1267 .destroy_dquot = dquot_destroy, 1268 .get_projid = ext4_get_projid, 1269 .get_next_id = ext4_get_next_id, 1270 }; 1271 1272 static const struct quotactl_ops ext4_qctl_operations = { 1273 .quota_on = ext4_quota_on, 1274 .quota_off = ext4_quota_off, 1275 .quota_sync = dquot_quota_sync, 1276 .get_state = dquot_get_state, 1277 .set_info = dquot_set_dqinfo, 1278 .get_dqblk = dquot_get_dqblk, 1279 .set_dqblk = dquot_set_dqblk, 1280 .get_nextdqblk = dquot_get_next_dqblk, 1281 }; 1282 #endif 1283 1284 static const struct super_operations ext4_sops = { 1285 .alloc_inode = ext4_alloc_inode, 1286 .destroy_inode = ext4_destroy_inode, 1287 .write_inode = ext4_write_inode, 1288 .dirty_inode = ext4_dirty_inode, 1289 .drop_inode = ext4_drop_inode, 1290 .evict_inode = ext4_evict_inode, 1291 .put_super = ext4_put_super, 1292 .sync_fs = ext4_sync_fs, 1293 .freeze_fs = ext4_freeze, 1294 .unfreeze_fs = ext4_unfreeze, 1295 .statfs = ext4_statfs, 1296 .remount_fs = ext4_remount, 1297 .show_options = ext4_show_options, 1298 #ifdef CONFIG_QUOTA 1299 .quota_read = ext4_quota_read, 1300 .quota_write = ext4_quota_write, 1301 .get_dquots = ext4_get_dquots, 1302 #endif 1303 .bdev_try_to_free_page = bdev_try_to_free_page, 1304 }; 1305 1306 static const struct export_operations ext4_export_ops = { 1307 .fh_to_dentry = ext4_fh_to_dentry, 1308 .fh_to_parent = ext4_fh_to_parent, 1309 .get_parent = ext4_get_parent, 1310 }; 1311 1312 enum { 1313 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1314 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1315 Opt_nouid32, Opt_debug, Opt_removed, 1316 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1317 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1318 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1319 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1320 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1321 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1322 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1323 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1324 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1325 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1326 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1327 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1328 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1329 Opt_inode_readahead_blks, Opt_journal_ioprio, 1330 Opt_dioread_nolock, Opt_dioread_lock, 1331 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1332 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1333 }; 1334 1335 static const match_table_t tokens = { 1336 {Opt_bsd_df, "bsddf"}, 1337 {Opt_minix_df, "minixdf"}, 1338 {Opt_grpid, "grpid"}, 1339 {Opt_grpid, "bsdgroups"}, 1340 {Opt_nogrpid, "nogrpid"}, 1341 {Opt_nogrpid, "sysvgroups"}, 1342 {Opt_resgid, "resgid=%u"}, 1343 {Opt_resuid, "resuid=%u"}, 1344 {Opt_sb, "sb=%u"}, 1345 {Opt_err_cont, "errors=continue"}, 1346 {Opt_err_panic, "errors=panic"}, 1347 {Opt_err_ro, "errors=remount-ro"}, 1348 {Opt_nouid32, "nouid32"}, 1349 {Opt_debug, "debug"}, 1350 {Opt_removed, "oldalloc"}, 1351 {Opt_removed, "orlov"}, 1352 {Opt_user_xattr, "user_xattr"}, 1353 {Opt_nouser_xattr, "nouser_xattr"}, 1354 {Opt_acl, "acl"}, 1355 {Opt_noacl, "noacl"}, 1356 {Opt_noload, "norecovery"}, 1357 {Opt_noload, "noload"}, 1358 {Opt_removed, "nobh"}, 1359 {Opt_removed, "bh"}, 1360 {Opt_commit, "commit=%u"}, 1361 {Opt_min_batch_time, "min_batch_time=%u"}, 1362 {Opt_max_batch_time, "max_batch_time=%u"}, 1363 {Opt_journal_dev, "journal_dev=%u"}, 1364 {Opt_journal_path, "journal_path=%s"}, 1365 {Opt_journal_checksum, "journal_checksum"}, 1366 {Opt_nojournal_checksum, "nojournal_checksum"}, 1367 {Opt_journal_async_commit, "journal_async_commit"}, 1368 {Opt_abort, "abort"}, 1369 {Opt_data_journal, "data=journal"}, 1370 {Opt_data_ordered, "data=ordered"}, 1371 {Opt_data_writeback, "data=writeback"}, 1372 {Opt_data_err_abort, "data_err=abort"}, 1373 {Opt_data_err_ignore, "data_err=ignore"}, 1374 {Opt_offusrjquota, "usrjquota="}, 1375 {Opt_usrjquota, "usrjquota=%s"}, 1376 {Opt_offgrpjquota, "grpjquota="}, 1377 {Opt_grpjquota, "grpjquota=%s"}, 1378 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1379 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1380 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1381 {Opt_grpquota, "grpquota"}, 1382 {Opt_noquota, "noquota"}, 1383 {Opt_quota, "quota"}, 1384 {Opt_usrquota, "usrquota"}, 1385 {Opt_prjquota, "prjquota"}, 1386 {Opt_barrier, "barrier=%u"}, 1387 {Opt_barrier, "barrier"}, 1388 {Opt_nobarrier, "nobarrier"}, 1389 {Opt_i_version, "i_version"}, 1390 {Opt_dax, "dax"}, 1391 {Opt_stripe, "stripe=%u"}, 1392 {Opt_delalloc, "delalloc"}, 1393 {Opt_lazytime, "lazytime"}, 1394 {Opt_nolazytime, "nolazytime"}, 1395 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1396 {Opt_nodelalloc, "nodelalloc"}, 1397 {Opt_removed, "mblk_io_submit"}, 1398 {Opt_removed, "nomblk_io_submit"}, 1399 {Opt_block_validity, "block_validity"}, 1400 {Opt_noblock_validity, "noblock_validity"}, 1401 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1402 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1403 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1404 {Opt_auto_da_alloc, "auto_da_alloc"}, 1405 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1406 {Opt_dioread_nolock, "dioread_nolock"}, 1407 {Opt_dioread_lock, "dioread_lock"}, 1408 {Opt_discard, "discard"}, 1409 {Opt_nodiscard, "nodiscard"}, 1410 {Opt_init_itable, "init_itable=%u"}, 1411 {Opt_init_itable, "init_itable"}, 1412 {Opt_noinit_itable, "noinit_itable"}, 1413 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1414 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1415 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1416 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1417 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1418 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1419 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1420 {Opt_err, NULL}, 1421 }; 1422 1423 static ext4_fsblk_t get_sb_block(void **data) 1424 { 1425 ext4_fsblk_t sb_block; 1426 char *options = (char *) *data; 1427 1428 if (!options || strncmp(options, "sb=", 3) != 0) 1429 return 1; /* Default location */ 1430 1431 options += 3; 1432 /* TODO: use simple_strtoll with >32bit ext4 */ 1433 sb_block = simple_strtoul(options, &options, 0); 1434 if (*options && *options != ',') { 1435 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1436 (char *) *data); 1437 return 1; 1438 } 1439 if (*options == ',') 1440 options++; 1441 *data = (void *) options; 1442 1443 return sb_block; 1444 } 1445 1446 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1447 static const char deprecated_msg[] = 1448 "Mount option \"%s\" will be removed by %s\n" 1449 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1450 1451 #ifdef CONFIG_QUOTA 1452 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1453 { 1454 struct ext4_sb_info *sbi = EXT4_SB(sb); 1455 char *qname; 1456 int ret = -1; 1457 1458 if (sb_any_quota_loaded(sb) && 1459 !sbi->s_qf_names[qtype]) { 1460 ext4_msg(sb, KERN_ERR, 1461 "Cannot change journaled " 1462 "quota options when quota turned on"); 1463 return -1; 1464 } 1465 if (ext4_has_feature_quota(sb)) { 1466 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1467 "ignored when QUOTA feature is enabled"); 1468 return 1; 1469 } 1470 qname = match_strdup(args); 1471 if (!qname) { 1472 ext4_msg(sb, KERN_ERR, 1473 "Not enough memory for storing quotafile name"); 1474 return -1; 1475 } 1476 if (sbi->s_qf_names[qtype]) { 1477 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1478 ret = 1; 1479 else 1480 ext4_msg(sb, KERN_ERR, 1481 "%s quota file already specified", 1482 QTYPE2NAME(qtype)); 1483 goto errout; 1484 } 1485 if (strchr(qname, '/')) { 1486 ext4_msg(sb, KERN_ERR, 1487 "quotafile must be on filesystem root"); 1488 goto errout; 1489 } 1490 sbi->s_qf_names[qtype] = qname; 1491 set_opt(sb, QUOTA); 1492 return 1; 1493 errout: 1494 kfree(qname); 1495 return ret; 1496 } 1497 1498 static int clear_qf_name(struct super_block *sb, int qtype) 1499 { 1500 1501 struct ext4_sb_info *sbi = EXT4_SB(sb); 1502 1503 if (sb_any_quota_loaded(sb) && 1504 sbi->s_qf_names[qtype]) { 1505 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1506 " when quota turned on"); 1507 return -1; 1508 } 1509 kfree(sbi->s_qf_names[qtype]); 1510 sbi->s_qf_names[qtype] = NULL; 1511 return 1; 1512 } 1513 #endif 1514 1515 #define MOPT_SET 0x0001 1516 #define MOPT_CLEAR 0x0002 1517 #define MOPT_NOSUPPORT 0x0004 1518 #define MOPT_EXPLICIT 0x0008 1519 #define MOPT_CLEAR_ERR 0x0010 1520 #define MOPT_GTE0 0x0020 1521 #ifdef CONFIG_QUOTA 1522 #define MOPT_Q 0 1523 #define MOPT_QFMT 0x0040 1524 #else 1525 #define MOPT_Q MOPT_NOSUPPORT 1526 #define MOPT_QFMT MOPT_NOSUPPORT 1527 #endif 1528 #define MOPT_DATAJ 0x0080 1529 #define MOPT_NO_EXT2 0x0100 1530 #define MOPT_NO_EXT3 0x0200 1531 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1532 #define MOPT_STRING 0x0400 1533 1534 static const struct mount_opts { 1535 int token; 1536 int mount_opt; 1537 int flags; 1538 } ext4_mount_opts[] = { 1539 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1540 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1541 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1542 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1543 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1544 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1545 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1546 MOPT_EXT4_ONLY | MOPT_SET}, 1547 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1548 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1549 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1550 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1551 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1552 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1553 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1554 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1555 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1556 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1557 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1558 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1559 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1560 EXT4_MOUNT_JOURNAL_CHECKSUM), 1561 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1562 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1563 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1564 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1565 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1566 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1567 MOPT_NO_EXT2}, 1568 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1569 MOPT_NO_EXT2}, 1570 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1571 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1572 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1573 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1574 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1575 {Opt_commit, 0, MOPT_GTE0}, 1576 {Opt_max_batch_time, 0, MOPT_GTE0}, 1577 {Opt_min_batch_time, 0, MOPT_GTE0}, 1578 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1579 {Opt_init_itable, 0, MOPT_GTE0}, 1580 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1581 {Opt_stripe, 0, MOPT_GTE0}, 1582 {Opt_resuid, 0, MOPT_GTE0}, 1583 {Opt_resgid, 0, MOPT_GTE0}, 1584 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1585 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1586 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1587 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1588 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1589 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1590 MOPT_NO_EXT2 | MOPT_DATAJ}, 1591 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1592 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1593 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1594 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1595 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1596 #else 1597 {Opt_acl, 0, MOPT_NOSUPPORT}, 1598 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1599 #endif 1600 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1601 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1602 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1603 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1604 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1605 MOPT_SET | MOPT_Q}, 1606 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1607 MOPT_SET | MOPT_Q}, 1608 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1609 MOPT_SET | MOPT_Q}, 1610 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1611 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1612 MOPT_CLEAR | MOPT_Q}, 1613 {Opt_usrjquota, 0, MOPT_Q}, 1614 {Opt_grpjquota, 0, MOPT_Q}, 1615 {Opt_offusrjquota, 0, MOPT_Q}, 1616 {Opt_offgrpjquota, 0, MOPT_Q}, 1617 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1618 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1619 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1620 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1621 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1622 {Opt_err, 0, 0} 1623 }; 1624 1625 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1626 substring_t *args, unsigned long *journal_devnum, 1627 unsigned int *journal_ioprio, int is_remount) 1628 { 1629 struct ext4_sb_info *sbi = EXT4_SB(sb); 1630 const struct mount_opts *m; 1631 kuid_t uid; 1632 kgid_t gid; 1633 int arg = 0; 1634 1635 #ifdef CONFIG_QUOTA 1636 if (token == Opt_usrjquota) 1637 return set_qf_name(sb, USRQUOTA, &args[0]); 1638 else if (token == Opt_grpjquota) 1639 return set_qf_name(sb, GRPQUOTA, &args[0]); 1640 else if (token == Opt_offusrjquota) 1641 return clear_qf_name(sb, USRQUOTA); 1642 else if (token == Opt_offgrpjquota) 1643 return clear_qf_name(sb, GRPQUOTA); 1644 #endif 1645 switch (token) { 1646 case Opt_noacl: 1647 case Opt_nouser_xattr: 1648 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1649 break; 1650 case Opt_sb: 1651 return 1; /* handled by get_sb_block() */ 1652 case Opt_removed: 1653 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1654 return 1; 1655 case Opt_abort: 1656 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1657 return 1; 1658 case Opt_i_version: 1659 sb->s_flags |= MS_I_VERSION; 1660 return 1; 1661 case Opt_lazytime: 1662 sb->s_flags |= MS_LAZYTIME; 1663 return 1; 1664 case Opt_nolazytime: 1665 sb->s_flags &= ~MS_LAZYTIME; 1666 return 1; 1667 } 1668 1669 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1670 if (token == m->token) 1671 break; 1672 1673 if (m->token == Opt_err) { 1674 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1675 "or missing value", opt); 1676 return -1; 1677 } 1678 1679 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1680 ext4_msg(sb, KERN_ERR, 1681 "Mount option \"%s\" incompatible with ext2", opt); 1682 return -1; 1683 } 1684 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1685 ext4_msg(sb, KERN_ERR, 1686 "Mount option \"%s\" incompatible with ext3", opt); 1687 return -1; 1688 } 1689 1690 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1691 return -1; 1692 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1693 return -1; 1694 if (m->flags & MOPT_EXPLICIT) { 1695 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1696 set_opt2(sb, EXPLICIT_DELALLOC); 1697 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1698 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1699 } else 1700 return -1; 1701 } 1702 if (m->flags & MOPT_CLEAR_ERR) 1703 clear_opt(sb, ERRORS_MASK); 1704 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1705 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1706 "options when quota turned on"); 1707 return -1; 1708 } 1709 1710 if (m->flags & MOPT_NOSUPPORT) { 1711 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1712 } else if (token == Opt_commit) { 1713 if (arg == 0) 1714 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1715 sbi->s_commit_interval = HZ * arg; 1716 } else if (token == Opt_debug_want_extra_isize) { 1717 sbi->s_want_extra_isize = arg; 1718 } else if (token == Opt_max_batch_time) { 1719 sbi->s_max_batch_time = arg; 1720 } else if (token == Opt_min_batch_time) { 1721 sbi->s_min_batch_time = arg; 1722 } else if (token == Opt_inode_readahead_blks) { 1723 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1724 ext4_msg(sb, KERN_ERR, 1725 "EXT4-fs: inode_readahead_blks must be " 1726 "0 or a power of 2 smaller than 2^31"); 1727 return -1; 1728 } 1729 sbi->s_inode_readahead_blks = arg; 1730 } else if (token == Opt_init_itable) { 1731 set_opt(sb, INIT_INODE_TABLE); 1732 if (!args->from) 1733 arg = EXT4_DEF_LI_WAIT_MULT; 1734 sbi->s_li_wait_mult = arg; 1735 } else if (token == Opt_max_dir_size_kb) { 1736 sbi->s_max_dir_size_kb = arg; 1737 } else if (token == Opt_stripe) { 1738 sbi->s_stripe = arg; 1739 } else if (token == Opt_resuid) { 1740 uid = make_kuid(current_user_ns(), arg); 1741 if (!uid_valid(uid)) { 1742 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1743 return -1; 1744 } 1745 sbi->s_resuid = uid; 1746 } else if (token == Opt_resgid) { 1747 gid = make_kgid(current_user_ns(), arg); 1748 if (!gid_valid(gid)) { 1749 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1750 return -1; 1751 } 1752 sbi->s_resgid = gid; 1753 } else if (token == Opt_journal_dev) { 1754 if (is_remount) { 1755 ext4_msg(sb, KERN_ERR, 1756 "Cannot specify journal on remount"); 1757 return -1; 1758 } 1759 *journal_devnum = arg; 1760 } else if (token == Opt_journal_path) { 1761 char *journal_path; 1762 struct inode *journal_inode; 1763 struct path path; 1764 int error; 1765 1766 if (is_remount) { 1767 ext4_msg(sb, KERN_ERR, 1768 "Cannot specify journal on remount"); 1769 return -1; 1770 } 1771 journal_path = match_strdup(&args[0]); 1772 if (!journal_path) { 1773 ext4_msg(sb, KERN_ERR, "error: could not dup " 1774 "journal device string"); 1775 return -1; 1776 } 1777 1778 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1779 if (error) { 1780 ext4_msg(sb, KERN_ERR, "error: could not find " 1781 "journal device path: error %d", error); 1782 kfree(journal_path); 1783 return -1; 1784 } 1785 1786 journal_inode = d_inode(path.dentry); 1787 if (!S_ISBLK(journal_inode->i_mode)) { 1788 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1789 "is not a block device", journal_path); 1790 path_put(&path); 1791 kfree(journal_path); 1792 return -1; 1793 } 1794 1795 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1796 path_put(&path); 1797 kfree(journal_path); 1798 } else if (token == Opt_journal_ioprio) { 1799 if (arg > 7) { 1800 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1801 " (must be 0-7)"); 1802 return -1; 1803 } 1804 *journal_ioprio = 1805 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1806 } else if (token == Opt_test_dummy_encryption) { 1807 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1808 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1809 ext4_msg(sb, KERN_WARNING, 1810 "Test dummy encryption mode enabled"); 1811 #else 1812 ext4_msg(sb, KERN_WARNING, 1813 "Test dummy encryption mount option ignored"); 1814 #endif 1815 } else if (m->flags & MOPT_DATAJ) { 1816 if (is_remount) { 1817 if (!sbi->s_journal) 1818 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1819 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1820 ext4_msg(sb, KERN_ERR, 1821 "Cannot change data mode on remount"); 1822 return -1; 1823 } 1824 } else { 1825 clear_opt(sb, DATA_FLAGS); 1826 sbi->s_mount_opt |= m->mount_opt; 1827 } 1828 #ifdef CONFIG_QUOTA 1829 } else if (m->flags & MOPT_QFMT) { 1830 if (sb_any_quota_loaded(sb) && 1831 sbi->s_jquota_fmt != m->mount_opt) { 1832 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1833 "quota options when quota turned on"); 1834 return -1; 1835 } 1836 if (ext4_has_feature_quota(sb)) { 1837 ext4_msg(sb, KERN_INFO, 1838 "Quota format mount options ignored " 1839 "when QUOTA feature is enabled"); 1840 return 1; 1841 } 1842 sbi->s_jquota_fmt = m->mount_opt; 1843 #endif 1844 } else if (token == Opt_dax) { 1845 #ifdef CONFIG_FS_DAX 1846 ext4_msg(sb, KERN_WARNING, 1847 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1848 sbi->s_mount_opt |= m->mount_opt; 1849 #else 1850 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1851 return -1; 1852 #endif 1853 } else if (token == Opt_data_err_abort) { 1854 sbi->s_mount_opt |= m->mount_opt; 1855 } else if (token == Opt_data_err_ignore) { 1856 sbi->s_mount_opt &= ~m->mount_opt; 1857 } else { 1858 if (!args->from) 1859 arg = 1; 1860 if (m->flags & MOPT_CLEAR) 1861 arg = !arg; 1862 else if (unlikely(!(m->flags & MOPT_SET))) { 1863 ext4_msg(sb, KERN_WARNING, 1864 "buggy handling of option %s", opt); 1865 WARN_ON(1); 1866 return -1; 1867 } 1868 if (arg != 0) 1869 sbi->s_mount_opt |= m->mount_opt; 1870 else 1871 sbi->s_mount_opt &= ~m->mount_opt; 1872 } 1873 return 1; 1874 } 1875 1876 static int parse_options(char *options, struct super_block *sb, 1877 unsigned long *journal_devnum, 1878 unsigned int *journal_ioprio, 1879 int is_remount) 1880 { 1881 struct ext4_sb_info *sbi = EXT4_SB(sb); 1882 char *p; 1883 substring_t args[MAX_OPT_ARGS]; 1884 int token; 1885 1886 if (!options) 1887 return 1; 1888 1889 while ((p = strsep(&options, ",")) != NULL) { 1890 if (!*p) 1891 continue; 1892 /* 1893 * Initialize args struct so we know whether arg was 1894 * found; some options take optional arguments. 1895 */ 1896 args[0].to = args[0].from = NULL; 1897 token = match_token(p, tokens, args); 1898 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1899 journal_ioprio, is_remount) < 0) 1900 return 0; 1901 } 1902 #ifdef CONFIG_QUOTA 1903 /* 1904 * We do the test below only for project quotas. 'usrquota' and 1905 * 'grpquota' mount options are allowed even without quota feature 1906 * to support legacy quotas in quota files. 1907 */ 1908 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1909 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1910 "Cannot enable project quota enforcement."); 1911 return 0; 1912 } 1913 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1914 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1915 clear_opt(sb, USRQUOTA); 1916 1917 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1918 clear_opt(sb, GRPQUOTA); 1919 1920 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1921 ext4_msg(sb, KERN_ERR, "old and new quota " 1922 "format mixing"); 1923 return 0; 1924 } 1925 1926 if (!sbi->s_jquota_fmt) { 1927 ext4_msg(sb, KERN_ERR, "journaled quota format " 1928 "not specified"); 1929 return 0; 1930 } 1931 } 1932 #endif 1933 if (test_opt(sb, DIOREAD_NOLOCK)) { 1934 int blocksize = 1935 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1936 1937 if (blocksize < PAGE_SIZE) { 1938 ext4_msg(sb, KERN_ERR, "can't mount with " 1939 "dioread_nolock if block size != PAGE_SIZE"); 1940 return 0; 1941 } 1942 } 1943 return 1; 1944 } 1945 1946 static inline void ext4_show_quota_options(struct seq_file *seq, 1947 struct super_block *sb) 1948 { 1949 #if defined(CONFIG_QUOTA) 1950 struct ext4_sb_info *sbi = EXT4_SB(sb); 1951 1952 if (sbi->s_jquota_fmt) { 1953 char *fmtname = ""; 1954 1955 switch (sbi->s_jquota_fmt) { 1956 case QFMT_VFS_OLD: 1957 fmtname = "vfsold"; 1958 break; 1959 case QFMT_VFS_V0: 1960 fmtname = "vfsv0"; 1961 break; 1962 case QFMT_VFS_V1: 1963 fmtname = "vfsv1"; 1964 break; 1965 } 1966 seq_printf(seq, ",jqfmt=%s", fmtname); 1967 } 1968 1969 if (sbi->s_qf_names[USRQUOTA]) 1970 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1971 1972 if (sbi->s_qf_names[GRPQUOTA]) 1973 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1974 #endif 1975 } 1976 1977 static const char *token2str(int token) 1978 { 1979 const struct match_token *t; 1980 1981 for (t = tokens; t->token != Opt_err; t++) 1982 if (t->token == token && !strchr(t->pattern, '=')) 1983 break; 1984 return t->pattern; 1985 } 1986 1987 /* 1988 * Show an option if 1989 * - it's set to a non-default value OR 1990 * - if the per-sb default is different from the global default 1991 */ 1992 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1993 int nodefs) 1994 { 1995 struct ext4_sb_info *sbi = EXT4_SB(sb); 1996 struct ext4_super_block *es = sbi->s_es; 1997 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1998 const struct mount_opts *m; 1999 char sep = nodefs ? '\n' : ','; 2000 2001 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2002 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2003 2004 if (sbi->s_sb_block != 1) 2005 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2006 2007 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2008 int want_set = m->flags & MOPT_SET; 2009 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2010 (m->flags & MOPT_CLEAR_ERR)) 2011 continue; 2012 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2013 continue; /* skip if same as the default */ 2014 if ((want_set && 2015 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2016 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2017 continue; /* select Opt_noFoo vs Opt_Foo */ 2018 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2019 } 2020 2021 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2022 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2023 SEQ_OPTS_PRINT("resuid=%u", 2024 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2025 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2026 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2027 SEQ_OPTS_PRINT("resgid=%u", 2028 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2029 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2030 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2031 SEQ_OPTS_PUTS("errors=remount-ro"); 2032 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2033 SEQ_OPTS_PUTS("errors=continue"); 2034 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2035 SEQ_OPTS_PUTS("errors=panic"); 2036 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2037 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2038 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2039 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2040 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2041 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2042 if (sb->s_flags & MS_I_VERSION) 2043 SEQ_OPTS_PUTS("i_version"); 2044 if (nodefs || sbi->s_stripe) 2045 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2046 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2047 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2048 SEQ_OPTS_PUTS("data=journal"); 2049 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2050 SEQ_OPTS_PUTS("data=ordered"); 2051 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2052 SEQ_OPTS_PUTS("data=writeback"); 2053 } 2054 if (nodefs || 2055 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2056 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2057 sbi->s_inode_readahead_blks); 2058 2059 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2060 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2061 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2062 if (nodefs || sbi->s_max_dir_size_kb) 2063 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2064 if (test_opt(sb, DATA_ERR_ABORT)) 2065 SEQ_OPTS_PUTS("data_err=abort"); 2066 2067 ext4_show_quota_options(seq, sb); 2068 return 0; 2069 } 2070 2071 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2072 { 2073 return _ext4_show_options(seq, root->d_sb, 0); 2074 } 2075 2076 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2077 { 2078 struct super_block *sb = seq->private; 2079 int rc; 2080 2081 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2082 rc = _ext4_show_options(seq, sb, 1); 2083 seq_puts(seq, "\n"); 2084 return rc; 2085 } 2086 2087 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2088 int read_only) 2089 { 2090 struct ext4_sb_info *sbi = EXT4_SB(sb); 2091 int res = 0; 2092 2093 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2094 ext4_msg(sb, KERN_ERR, "revision level too high, " 2095 "forcing read-only mode"); 2096 res = MS_RDONLY; 2097 } 2098 if (read_only) 2099 goto done; 2100 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2101 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2102 "running e2fsck is recommended"); 2103 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2104 ext4_msg(sb, KERN_WARNING, 2105 "warning: mounting fs with errors, " 2106 "running e2fsck is recommended"); 2107 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2108 le16_to_cpu(es->s_mnt_count) >= 2109 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2110 ext4_msg(sb, KERN_WARNING, 2111 "warning: maximal mount count reached, " 2112 "running e2fsck is recommended"); 2113 else if (le32_to_cpu(es->s_checkinterval) && 2114 (le32_to_cpu(es->s_lastcheck) + 2115 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2116 ext4_msg(sb, KERN_WARNING, 2117 "warning: checktime reached, " 2118 "running e2fsck is recommended"); 2119 if (!sbi->s_journal) 2120 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2121 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2122 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2123 le16_add_cpu(&es->s_mnt_count, 1); 2124 es->s_mtime = cpu_to_le32(get_seconds()); 2125 ext4_update_dynamic_rev(sb); 2126 if (sbi->s_journal) 2127 ext4_set_feature_journal_needs_recovery(sb); 2128 2129 ext4_commit_super(sb, 1); 2130 done: 2131 if (test_opt(sb, DEBUG)) 2132 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2133 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2134 sb->s_blocksize, 2135 sbi->s_groups_count, 2136 EXT4_BLOCKS_PER_GROUP(sb), 2137 EXT4_INODES_PER_GROUP(sb), 2138 sbi->s_mount_opt, sbi->s_mount_opt2); 2139 2140 cleancache_init_fs(sb); 2141 return res; 2142 } 2143 2144 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2145 { 2146 struct ext4_sb_info *sbi = EXT4_SB(sb); 2147 struct flex_groups *new_groups; 2148 int size; 2149 2150 if (!sbi->s_log_groups_per_flex) 2151 return 0; 2152 2153 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2154 if (size <= sbi->s_flex_groups_allocated) 2155 return 0; 2156 2157 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2158 new_groups = kvzalloc(size, GFP_KERNEL); 2159 if (!new_groups) { 2160 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2161 size / (int) sizeof(struct flex_groups)); 2162 return -ENOMEM; 2163 } 2164 2165 if (sbi->s_flex_groups) { 2166 memcpy(new_groups, sbi->s_flex_groups, 2167 (sbi->s_flex_groups_allocated * 2168 sizeof(struct flex_groups))); 2169 kvfree(sbi->s_flex_groups); 2170 } 2171 sbi->s_flex_groups = new_groups; 2172 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2173 return 0; 2174 } 2175 2176 static int ext4_fill_flex_info(struct super_block *sb) 2177 { 2178 struct ext4_sb_info *sbi = EXT4_SB(sb); 2179 struct ext4_group_desc *gdp = NULL; 2180 ext4_group_t flex_group; 2181 int i, err; 2182 2183 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2184 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2185 sbi->s_log_groups_per_flex = 0; 2186 return 1; 2187 } 2188 2189 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2190 if (err) 2191 goto failed; 2192 2193 for (i = 0; i < sbi->s_groups_count; i++) { 2194 gdp = ext4_get_group_desc(sb, i, NULL); 2195 2196 flex_group = ext4_flex_group(sbi, i); 2197 atomic_add(ext4_free_inodes_count(sb, gdp), 2198 &sbi->s_flex_groups[flex_group].free_inodes); 2199 atomic64_add(ext4_free_group_clusters(sb, gdp), 2200 &sbi->s_flex_groups[flex_group].free_clusters); 2201 atomic_add(ext4_used_dirs_count(sb, gdp), 2202 &sbi->s_flex_groups[flex_group].used_dirs); 2203 } 2204 2205 return 1; 2206 failed: 2207 return 0; 2208 } 2209 2210 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2211 struct ext4_group_desc *gdp) 2212 { 2213 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2214 __u16 crc = 0; 2215 __le32 le_group = cpu_to_le32(block_group); 2216 struct ext4_sb_info *sbi = EXT4_SB(sb); 2217 2218 if (ext4_has_metadata_csum(sbi->s_sb)) { 2219 /* Use new metadata_csum algorithm */ 2220 __u32 csum32; 2221 __u16 dummy_csum = 0; 2222 2223 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2224 sizeof(le_group)); 2225 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2226 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2227 sizeof(dummy_csum)); 2228 offset += sizeof(dummy_csum); 2229 if (offset < sbi->s_desc_size) 2230 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2231 sbi->s_desc_size - offset); 2232 2233 crc = csum32 & 0xFFFF; 2234 goto out; 2235 } 2236 2237 /* old crc16 code */ 2238 if (!ext4_has_feature_gdt_csum(sb)) 2239 return 0; 2240 2241 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2242 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2243 crc = crc16(crc, (__u8 *)gdp, offset); 2244 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2245 /* for checksum of struct ext4_group_desc do the rest...*/ 2246 if (ext4_has_feature_64bit(sb) && 2247 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2248 crc = crc16(crc, (__u8 *)gdp + offset, 2249 le16_to_cpu(sbi->s_es->s_desc_size) - 2250 offset); 2251 2252 out: 2253 return cpu_to_le16(crc); 2254 } 2255 2256 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2257 struct ext4_group_desc *gdp) 2258 { 2259 if (ext4_has_group_desc_csum(sb) && 2260 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2261 return 0; 2262 2263 return 1; 2264 } 2265 2266 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2267 struct ext4_group_desc *gdp) 2268 { 2269 if (!ext4_has_group_desc_csum(sb)) 2270 return; 2271 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2272 } 2273 2274 /* Called at mount-time, super-block is locked */ 2275 static int ext4_check_descriptors(struct super_block *sb, 2276 ext4_fsblk_t sb_block, 2277 ext4_group_t *first_not_zeroed) 2278 { 2279 struct ext4_sb_info *sbi = EXT4_SB(sb); 2280 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2281 ext4_fsblk_t last_block; 2282 ext4_fsblk_t block_bitmap; 2283 ext4_fsblk_t inode_bitmap; 2284 ext4_fsblk_t inode_table; 2285 int flexbg_flag = 0; 2286 ext4_group_t i, grp = sbi->s_groups_count; 2287 2288 if (ext4_has_feature_flex_bg(sb)) 2289 flexbg_flag = 1; 2290 2291 ext4_debug("Checking group descriptors"); 2292 2293 for (i = 0; i < sbi->s_groups_count; i++) { 2294 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2295 2296 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2297 last_block = ext4_blocks_count(sbi->s_es) - 1; 2298 else 2299 last_block = first_block + 2300 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2301 2302 if ((grp == sbi->s_groups_count) && 2303 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2304 grp = i; 2305 2306 block_bitmap = ext4_block_bitmap(sb, gdp); 2307 if (block_bitmap == sb_block) { 2308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2309 "Block bitmap for group %u overlaps " 2310 "superblock", i); 2311 } 2312 if (block_bitmap < first_block || block_bitmap > last_block) { 2313 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2314 "Block bitmap for group %u not in group " 2315 "(block %llu)!", i, block_bitmap); 2316 return 0; 2317 } 2318 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2319 if (inode_bitmap == sb_block) { 2320 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2321 "Inode bitmap for group %u overlaps " 2322 "superblock", i); 2323 } 2324 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2325 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2326 "Inode bitmap for group %u not in group " 2327 "(block %llu)!", i, inode_bitmap); 2328 return 0; 2329 } 2330 inode_table = ext4_inode_table(sb, gdp); 2331 if (inode_table == sb_block) { 2332 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2333 "Inode table for group %u overlaps " 2334 "superblock", i); 2335 } 2336 if (inode_table < first_block || 2337 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2339 "Inode table for group %u not in group " 2340 "(block %llu)!", i, inode_table); 2341 return 0; 2342 } 2343 ext4_lock_group(sb, i); 2344 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2346 "Checksum for group %u failed (%u!=%u)", 2347 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2348 gdp)), le16_to_cpu(gdp->bg_checksum)); 2349 if (!(sb->s_flags & MS_RDONLY)) { 2350 ext4_unlock_group(sb, i); 2351 return 0; 2352 } 2353 } 2354 ext4_unlock_group(sb, i); 2355 if (!flexbg_flag) 2356 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2357 } 2358 if (NULL != first_not_zeroed) 2359 *first_not_zeroed = grp; 2360 return 1; 2361 } 2362 2363 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2364 * the superblock) which were deleted from all directories, but held open by 2365 * a process at the time of a crash. We walk the list and try to delete these 2366 * inodes at recovery time (only with a read-write filesystem). 2367 * 2368 * In order to keep the orphan inode chain consistent during traversal (in 2369 * case of crash during recovery), we link each inode into the superblock 2370 * orphan list_head and handle it the same way as an inode deletion during 2371 * normal operation (which journals the operations for us). 2372 * 2373 * We only do an iget() and an iput() on each inode, which is very safe if we 2374 * accidentally point at an in-use or already deleted inode. The worst that 2375 * can happen in this case is that we get a "bit already cleared" message from 2376 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2377 * e2fsck was run on this filesystem, and it must have already done the orphan 2378 * inode cleanup for us, so we can safely abort without any further action. 2379 */ 2380 static void ext4_orphan_cleanup(struct super_block *sb, 2381 struct ext4_super_block *es) 2382 { 2383 unsigned int s_flags = sb->s_flags; 2384 int ret, nr_orphans = 0, nr_truncates = 0; 2385 #ifdef CONFIG_QUOTA 2386 int i; 2387 #endif 2388 if (!es->s_last_orphan) { 2389 jbd_debug(4, "no orphan inodes to clean up\n"); 2390 return; 2391 } 2392 2393 if (bdev_read_only(sb->s_bdev)) { 2394 ext4_msg(sb, KERN_ERR, "write access " 2395 "unavailable, skipping orphan cleanup"); 2396 return; 2397 } 2398 2399 /* Check if feature set would not allow a r/w mount */ 2400 if (!ext4_feature_set_ok(sb, 0)) { 2401 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2402 "unknown ROCOMPAT features"); 2403 return; 2404 } 2405 2406 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2407 /* don't clear list on RO mount w/ errors */ 2408 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2409 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2410 "clearing orphan list.\n"); 2411 es->s_last_orphan = 0; 2412 } 2413 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2414 return; 2415 } 2416 2417 if (s_flags & MS_RDONLY) { 2418 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2419 sb->s_flags &= ~MS_RDONLY; 2420 } 2421 #ifdef CONFIG_QUOTA 2422 /* Needed for iput() to work correctly and not trash data */ 2423 sb->s_flags |= MS_ACTIVE; 2424 /* Turn on quotas so that they are updated correctly */ 2425 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2426 if (EXT4_SB(sb)->s_qf_names[i]) { 2427 int ret = ext4_quota_on_mount(sb, i); 2428 if (ret < 0) 2429 ext4_msg(sb, KERN_ERR, 2430 "Cannot turn on journaled " 2431 "quota: error %d", ret); 2432 } 2433 } 2434 #endif 2435 2436 while (es->s_last_orphan) { 2437 struct inode *inode; 2438 2439 /* 2440 * We may have encountered an error during cleanup; if 2441 * so, skip the rest. 2442 */ 2443 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2444 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2445 es->s_last_orphan = 0; 2446 break; 2447 } 2448 2449 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2450 if (IS_ERR(inode)) { 2451 es->s_last_orphan = 0; 2452 break; 2453 } 2454 2455 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2456 dquot_initialize(inode); 2457 if (inode->i_nlink) { 2458 if (test_opt(sb, DEBUG)) 2459 ext4_msg(sb, KERN_DEBUG, 2460 "%s: truncating inode %lu to %lld bytes", 2461 __func__, inode->i_ino, inode->i_size); 2462 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2463 inode->i_ino, inode->i_size); 2464 inode_lock(inode); 2465 truncate_inode_pages(inode->i_mapping, inode->i_size); 2466 ret = ext4_truncate(inode); 2467 if (ret) 2468 ext4_std_error(inode->i_sb, ret); 2469 inode_unlock(inode); 2470 nr_truncates++; 2471 } else { 2472 if (test_opt(sb, DEBUG)) 2473 ext4_msg(sb, KERN_DEBUG, 2474 "%s: deleting unreferenced inode %lu", 2475 __func__, inode->i_ino); 2476 jbd_debug(2, "deleting unreferenced inode %lu\n", 2477 inode->i_ino); 2478 nr_orphans++; 2479 } 2480 iput(inode); /* The delete magic happens here! */ 2481 } 2482 2483 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2484 2485 if (nr_orphans) 2486 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2487 PLURAL(nr_orphans)); 2488 if (nr_truncates) 2489 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2490 PLURAL(nr_truncates)); 2491 #ifdef CONFIG_QUOTA 2492 /* Turn quotas off */ 2493 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2494 if (sb_dqopt(sb)->files[i]) 2495 dquot_quota_off(sb, i); 2496 } 2497 #endif 2498 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2499 } 2500 2501 /* 2502 * Maximal extent format file size. 2503 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2504 * extent format containers, within a sector_t, and within i_blocks 2505 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2506 * so that won't be a limiting factor. 2507 * 2508 * However there is other limiting factor. We do store extents in the form 2509 * of starting block and length, hence the resulting length of the extent 2510 * covering maximum file size must fit into on-disk format containers as 2511 * well. Given that length is always by 1 unit bigger than max unit (because 2512 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2513 * 2514 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2515 */ 2516 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2517 { 2518 loff_t res; 2519 loff_t upper_limit = MAX_LFS_FILESIZE; 2520 2521 /* small i_blocks in vfs inode? */ 2522 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2523 /* 2524 * CONFIG_LBDAF is not enabled implies the inode 2525 * i_block represent total blocks in 512 bytes 2526 * 32 == size of vfs inode i_blocks * 8 2527 */ 2528 upper_limit = (1LL << 32) - 1; 2529 2530 /* total blocks in file system block size */ 2531 upper_limit >>= (blkbits - 9); 2532 upper_limit <<= blkbits; 2533 } 2534 2535 /* 2536 * 32-bit extent-start container, ee_block. We lower the maxbytes 2537 * by one fs block, so ee_len can cover the extent of maximum file 2538 * size 2539 */ 2540 res = (1LL << 32) - 1; 2541 res <<= blkbits; 2542 2543 /* Sanity check against vm- & vfs- imposed limits */ 2544 if (res > upper_limit) 2545 res = upper_limit; 2546 2547 return res; 2548 } 2549 2550 /* 2551 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2552 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2553 * We need to be 1 filesystem block less than the 2^48 sector limit. 2554 */ 2555 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2556 { 2557 loff_t res = EXT4_NDIR_BLOCKS; 2558 int meta_blocks; 2559 loff_t upper_limit; 2560 /* This is calculated to be the largest file size for a dense, block 2561 * mapped file such that the file's total number of 512-byte sectors, 2562 * including data and all indirect blocks, does not exceed (2^48 - 1). 2563 * 2564 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2565 * number of 512-byte sectors of the file. 2566 */ 2567 2568 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2569 /* 2570 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2571 * the inode i_block field represents total file blocks in 2572 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2573 */ 2574 upper_limit = (1LL << 32) - 1; 2575 2576 /* total blocks in file system block size */ 2577 upper_limit >>= (bits - 9); 2578 2579 } else { 2580 /* 2581 * We use 48 bit ext4_inode i_blocks 2582 * With EXT4_HUGE_FILE_FL set the i_blocks 2583 * represent total number of blocks in 2584 * file system block size 2585 */ 2586 upper_limit = (1LL << 48) - 1; 2587 2588 } 2589 2590 /* indirect blocks */ 2591 meta_blocks = 1; 2592 /* double indirect blocks */ 2593 meta_blocks += 1 + (1LL << (bits-2)); 2594 /* tripple indirect blocks */ 2595 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2596 2597 upper_limit -= meta_blocks; 2598 upper_limit <<= bits; 2599 2600 res += 1LL << (bits-2); 2601 res += 1LL << (2*(bits-2)); 2602 res += 1LL << (3*(bits-2)); 2603 res <<= bits; 2604 if (res > upper_limit) 2605 res = upper_limit; 2606 2607 if (res > MAX_LFS_FILESIZE) 2608 res = MAX_LFS_FILESIZE; 2609 2610 return res; 2611 } 2612 2613 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2614 ext4_fsblk_t logical_sb_block, int nr) 2615 { 2616 struct ext4_sb_info *sbi = EXT4_SB(sb); 2617 ext4_group_t bg, first_meta_bg; 2618 int has_super = 0; 2619 2620 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2621 2622 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2623 return logical_sb_block + nr + 1; 2624 bg = sbi->s_desc_per_block * nr; 2625 if (ext4_bg_has_super(sb, bg)) 2626 has_super = 1; 2627 2628 /* 2629 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2630 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2631 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2632 * compensate. 2633 */ 2634 if (sb->s_blocksize == 1024 && nr == 0 && 2635 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2636 has_super++; 2637 2638 return (has_super + ext4_group_first_block_no(sb, bg)); 2639 } 2640 2641 /** 2642 * ext4_get_stripe_size: Get the stripe size. 2643 * @sbi: In memory super block info 2644 * 2645 * If we have specified it via mount option, then 2646 * use the mount option value. If the value specified at mount time is 2647 * greater than the blocks per group use the super block value. 2648 * If the super block value is greater than blocks per group return 0. 2649 * Allocator needs it be less than blocks per group. 2650 * 2651 */ 2652 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2653 { 2654 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2655 unsigned long stripe_width = 2656 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2657 int ret; 2658 2659 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2660 ret = sbi->s_stripe; 2661 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2662 ret = stripe_width; 2663 else if (stride && stride <= sbi->s_blocks_per_group) 2664 ret = stride; 2665 else 2666 ret = 0; 2667 2668 /* 2669 * If the stripe width is 1, this makes no sense and 2670 * we set it to 0 to turn off stripe handling code. 2671 */ 2672 if (ret <= 1) 2673 ret = 0; 2674 2675 return ret; 2676 } 2677 2678 /* 2679 * Check whether this filesystem can be mounted based on 2680 * the features present and the RDONLY/RDWR mount requested. 2681 * Returns 1 if this filesystem can be mounted as requested, 2682 * 0 if it cannot be. 2683 */ 2684 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2685 { 2686 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2687 ext4_msg(sb, KERN_ERR, 2688 "Couldn't mount because of " 2689 "unsupported optional features (%x)", 2690 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2691 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2692 return 0; 2693 } 2694 2695 if (readonly) 2696 return 1; 2697 2698 if (ext4_has_feature_readonly(sb)) { 2699 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2700 sb->s_flags |= MS_RDONLY; 2701 return 1; 2702 } 2703 2704 /* Check that feature set is OK for a read-write mount */ 2705 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2706 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2707 "unsupported optional features (%x)", 2708 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2709 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2710 return 0; 2711 } 2712 /* 2713 * Large file size enabled file system can only be mounted 2714 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2715 */ 2716 if (ext4_has_feature_huge_file(sb)) { 2717 if (sizeof(blkcnt_t) < sizeof(u64)) { 2718 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2719 "cannot be mounted RDWR without " 2720 "CONFIG_LBDAF"); 2721 return 0; 2722 } 2723 } 2724 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2725 ext4_msg(sb, KERN_ERR, 2726 "Can't support bigalloc feature without " 2727 "extents feature\n"); 2728 return 0; 2729 } 2730 2731 #ifndef CONFIG_QUOTA 2732 if (ext4_has_feature_quota(sb) && !readonly) { 2733 ext4_msg(sb, KERN_ERR, 2734 "Filesystem with quota feature cannot be mounted RDWR " 2735 "without CONFIG_QUOTA"); 2736 return 0; 2737 } 2738 if (ext4_has_feature_project(sb) && !readonly) { 2739 ext4_msg(sb, KERN_ERR, 2740 "Filesystem with project quota feature cannot be mounted RDWR " 2741 "without CONFIG_QUOTA"); 2742 return 0; 2743 } 2744 #endif /* CONFIG_QUOTA */ 2745 return 1; 2746 } 2747 2748 /* 2749 * This function is called once a day if we have errors logged 2750 * on the file system 2751 */ 2752 static void print_daily_error_info(unsigned long arg) 2753 { 2754 struct super_block *sb = (struct super_block *) arg; 2755 struct ext4_sb_info *sbi; 2756 struct ext4_super_block *es; 2757 2758 sbi = EXT4_SB(sb); 2759 es = sbi->s_es; 2760 2761 if (es->s_error_count) 2762 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2763 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2764 le32_to_cpu(es->s_error_count)); 2765 if (es->s_first_error_time) { 2766 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2767 sb->s_id, le32_to_cpu(es->s_first_error_time), 2768 (int) sizeof(es->s_first_error_func), 2769 es->s_first_error_func, 2770 le32_to_cpu(es->s_first_error_line)); 2771 if (es->s_first_error_ino) 2772 printk(KERN_CONT ": inode %u", 2773 le32_to_cpu(es->s_first_error_ino)); 2774 if (es->s_first_error_block) 2775 printk(KERN_CONT ": block %llu", (unsigned long long) 2776 le64_to_cpu(es->s_first_error_block)); 2777 printk(KERN_CONT "\n"); 2778 } 2779 if (es->s_last_error_time) { 2780 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2781 sb->s_id, le32_to_cpu(es->s_last_error_time), 2782 (int) sizeof(es->s_last_error_func), 2783 es->s_last_error_func, 2784 le32_to_cpu(es->s_last_error_line)); 2785 if (es->s_last_error_ino) 2786 printk(KERN_CONT ": inode %u", 2787 le32_to_cpu(es->s_last_error_ino)); 2788 if (es->s_last_error_block) 2789 printk(KERN_CONT ": block %llu", (unsigned long long) 2790 le64_to_cpu(es->s_last_error_block)); 2791 printk(KERN_CONT "\n"); 2792 } 2793 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2794 } 2795 2796 /* Find next suitable group and run ext4_init_inode_table */ 2797 static int ext4_run_li_request(struct ext4_li_request *elr) 2798 { 2799 struct ext4_group_desc *gdp = NULL; 2800 ext4_group_t group, ngroups; 2801 struct super_block *sb; 2802 unsigned long timeout = 0; 2803 int ret = 0; 2804 2805 sb = elr->lr_super; 2806 ngroups = EXT4_SB(sb)->s_groups_count; 2807 2808 for (group = elr->lr_next_group; group < ngroups; group++) { 2809 gdp = ext4_get_group_desc(sb, group, NULL); 2810 if (!gdp) { 2811 ret = 1; 2812 break; 2813 } 2814 2815 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2816 break; 2817 } 2818 2819 if (group >= ngroups) 2820 ret = 1; 2821 2822 if (!ret) { 2823 timeout = jiffies; 2824 ret = ext4_init_inode_table(sb, group, 2825 elr->lr_timeout ? 0 : 1); 2826 if (elr->lr_timeout == 0) { 2827 timeout = (jiffies - timeout) * 2828 elr->lr_sbi->s_li_wait_mult; 2829 elr->lr_timeout = timeout; 2830 } 2831 elr->lr_next_sched = jiffies + elr->lr_timeout; 2832 elr->lr_next_group = group + 1; 2833 } 2834 return ret; 2835 } 2836 2837 /* 2838 * Remove lr_request from the list_request and free the 2839 * request structure. Should be called with li_list_mtx held 2840 */ 2841 static void ext4_remove_li_request(struct ext4_li_request *elr) 2842 { 2843 struct ext4_sb_info *sbi; 2844 2845 if (!elr) 2846 return; 2847 2848 sbi = elr->lr_sbi; 2849 2850 list_del(&elr->lr_request); 2851 sbi->s_li_request = NULL; 2852 kfree(elr); 2853 } 2854 2855 static void ext4_unregister_li_request(struct super_block *sb) 2856 { 2857 mutex_lock(&ext4_li_mtx); 2858 if (!ext4_li_info) { 2859 mutex_unlock(&ext4_li_mtx); 2860 return; 2861 } 2862 2863 mutex_lock(&ext4_li_info->li_list_mtx); 2864 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2865 mutex_unlock(&ext4_li_info->li_list_mtx); 2866 mutex_unlock(&ext4_li_mtx); 2867 } 2868 2869 static struct task_struct *ext4_lazyinit_task; 2870 2871 /* 2872 * This is the function where ext4lazyinit thread lives. It walks 2873 * through the request list searching for next scheduled filesystem. 2874 * When such a fs is found, run the lazy initialization request 2875 * (ext4_rn_li_request) and keep track of the time spend in this 2876 * function. Based on that time we compute next schedule time of 2877 * the request. When walking through the list is complete, compute 2878 * next waking time and put itself into sleep. 2879 */ 2880 static int ext4_lazyinit_thread(void *arg) 2881 { 2882 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2883 struct list_head *pos, *n; 2884 struct ext4_li_request *elr; 2885 unsigned long next_wakeup, cur; 2886 2887 BUG_ON(NULL == eli); 2888 2889 cont_thread: 2890 while (true) { 2891 next_wakeup = MAX_JIFFY_OFFSET; 2892 2893 mutex_lock(&eli->li_list_mtx); 2894 if (list_empty(&eli->li_request_list)) { 2895 mutex_unlock(&eli->li_list_mtx); 2896 goto exit_thread; 2897 } 2898 list_for_each_safe(pos, n, &eli->li_request_list) { 2899 int err = 0; 2900 int progress = 0; 2901 elr = list_entry(pos, struct ext4_li_request, 2902 lr_request); 2903 2904 if (time_before(jiffies, elr->lr_next_sched)) { 2905 if (time_before(elr->lr_next_sched, next_wakeup)) 2906 next_wakeup = elr->lr_next_sched; 2907 continue; 2908 } 2909 if (down_read_trylock(&elr->lr_super->s_umount)) { 2910 if (sb_start_write_trylock(elr->lr_super)) { 2911 progress = 1; 2912 /* 2913 * We hold sb->s_umount, sb can not 2914 * be removed from the list, it is 2915 * now safe to drop li_list_mtx 2916 */ 2917 mutex_unlock(&eli->li_list_mtx); 2918 err = ext4_run_li_request(elr); 2919 sb_end_write(elr->lr_super); 2920 mutex_lock(&eli->li_list_mtx); 2921 n = pos->next; 2922 } 2923 up_read((&elr->lr_super->s_umount)); 2924 } 2925 /* error, remove the lazy_init job */ 2926 if (err) { 2927 ext4_remove_li_request(elr); 2928 continue; 2929 } 2930 if (!progress) { 2931 elr->lr_next_sched = jiffies + 2932 (prandom_u32() 2933 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2934 } 2935 if (time_before(elr->lr_next_sched, next_wakeup)) 2936 next_wakeup = elr->lr_next_sched; 2937 } 2938 mutex_unlock(&eli->li_list_mtx); 2939 2940 try_to_freeze(); 2941 2942 cur = jiffies; 2943 if ((time_after_eq(cur, next_wakeup)) || 2944 (MAX_JIFFY_OFFSET == next_wakeup)) { 2945 cond_resched(); 2946 continue; 2947 } 2948 2949 schedule_timeout_interruptible(next_wakeup - cur); 2950 2951 if (kthread_should_stop()) { 2952 ext4_clear_request_list(); 2953 goto exit_thread; 2954 } 2955 } 2956 2957 exit_thread: 2958 /* 2959 * It looks like the request list is empty, but we need 2960 * to check it under the li_list_mtx lock, to prevent any 2961 * additions into it, and of course we should lock ext4_li_mtx 2962 * to atomically free the list and ext4_li_info, because at 2963 * this point another ext4 filesystem could be registering 2964 * new one. 2965 */ 2966 mutex_lock(&ext4_li_mtx); 2967 mutex_lock(&eli->li_list_mtx); 2968 if (!list_empty(&eli->li_request_list)) { 2969 mutex_unlock(&eli->li_list_mtx); 2970 mutex_unlock(&ext4_li_mtx); 2971 goto cont_thread; 2972 } 2973 mutex_unlock(&eli->li_list_mtx); 2974 kfree(ext4_li_info); 2975 ext4_li_info = NULL; 2976 mutex_unlock(&ext4_li_mtx); 2977 2978 return 0; 2979 } 2980 2981 static void ext4_clear_request_list(void) 2982 { 2983 struct list_head *pos, *n; 2984 struct ext4_li_request *elr; 2985 2986 mutex_lock(&ext4_li_info->li_list_mtx); 2987 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2988 elr = list_entry(pos, struct ext4_li_request, 2989 lr_request); 2990 ext4_remove_li_request(elr); 2991 } 2992 mutex_unlock(&ext4_li_info->li_list_mtx); 2993 } 2994 2995 static int ext4_run_lazyinit_thread(void) 2996 { 2997 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2998 ext4_li_info, "ext4lazyinit"); 2999 if (IS_ERR(ext4_lazyinit_task)) { 3000 int err = PTR_ERR(ext4_lazyinit_task); 3001 ext4_clear_request_list(); 3002 kfree(ext4_li_info); 3003 ext4_li_info = NULL; 3004 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3005 "initialization thread\n", 3006 err); 3007 return err; 3008 } 3009 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3010 return 0; 3011 } 3012 3013 /* 3014 * Check whether it make sense to run itable init. thread or not. 3015 * If there is at least one uninitialized inode table, return 3016 * corresponding group number, else the loop goes through all 3017 * groups and return total number of groups. 3018 */ 3019 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3020 { 3021 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3022 struct ext4_group_desc *gdp = NULL; 3023 3024 for (group = 0; group < ngroups; group++) { 3025 gdp = ext4_get_group_desc(sb, group, NULL); 3026 if (!gdp) 3027 continue; 3028 3029 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3030 break; 3031 } 3032 3033 return group; 3034 } 3035 3036 static int ext4_li_info_new(void) 3037 { 3038 struct ext4_lazy_init *eli = NULL; 3039 3040 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3041 if (!eli) 3042 return -ENOMEM; 3043 3044 INIT_LIST_HEAD(&eli->li_request_list); 3045 mutex_init(&eli->li_list_mtx); 3046 3047 eli->li_state |= EXT4_LAZYINIT_QUIT; 3048 3049 ext4_li_info = eli; 3050 3051 return 0; 3052 } 3053 3054 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3055 ext4_group_t start) 3056 { 3057 struct ext4_sb_info *sbi = EXT4_SB(sb); 3058 struct ext4_li_request *elr; 3059 3060 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3061 if (!elr) 3062 return NULL; 3063 3064 elr->lr_super = sb; 3065 elr->lr_sbi = sbi; 3066 elr->lr_next_group = start; 3067 3068 /* 3069 * Randomize first schedule time of the request to 3070 * spread the inode table initialization requests 3071 * better. 3072 */ 3073 elr->lr_next_sched = jiffies + (prandom_u32() % 3074 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3075 return elr; 3076 } 3077 3078 int ext4_register_li_request(struct super_block *sb, 3079 ext4_group_t first_not_zeroed) 3080 { 3081 struct ext4_sb_info *sbi = EXT4_SB(sb); 3082 struct ext4_li_request *elr = NULL; 3083 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3084 int ret = 0; 3085 3086 mutex_lock(&ext4_li_mtx); 3087 if (sbi->s_li_request != NULL) { 3088 /* 3089 * Reset timeout so it can be computed again, because 3090 * s_li_wait_mult might have changed. 3091 */ 3092 sbi->s_li_request->lr_timeout = 0; 3093 goto out; 3094 } 3095 3096 if (first_not_zeroed == ngroups || 3097 (sb->s_flags & MS_RDONLY) || 3098 !test_opt(sb, INIT_INODE_TABLE)) 3099 goto out; 3100 3101 elr = ext4_li_request_new(sb, first_not_zeroed); 3102 if (!elr) { 3103 ret = -ENOMEM; 3104 goto out; 3105 } 3106 3107 if (NULL == ext4_li_info) { 3108 ret = ext4_li_info_new(); 3109 if (ret) 3110 goto out; 3111 } 3112 3113 mutex_lock(&ext4_li_info->li_list_mtx); 3114 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3115 mutex_unlock(&ext4_li_info->li_list_mtx); 3116 3117 sbi->s_li_request = elr; 3118 /* 3119 * set elr to NULL here since it has been inserted to 3120 * the request_list and the removal and free of it is 3121 * handled by ext4_clear_request_list from now on. 3122 */ 3123 elr = NULL; 3124 3125 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3126 ret = ext4_run_lazyinit_thread(); 3127 if (ret) 3128 goto out; 3129 } 3130 out: 3131 mutex_unlock(&ext4_li_mtx); 3132 if (ret) 3133 kfree(elr); 3134 return ret; 3135 } 3136 3137 /* 3138 * We do not need to lock anything since this is called on 3139 * module unload. 3140 */ 3141 static void ext4_destroy_lazyinit_thread(void) 3142 { 3143 /* 3144 * If thread exited earlier 3145 * there's nothing to be done. 3146 */ 3147 if (!ext4_li_info || !ext4_lazyinit_task) 3148 return; 3149 3150 kthread_stop(ext4_lazyinit_task); 3151 } 3152 3153 static int set_journal_csum_feature_set(struct super_block *sb) 3154 { 3155 int ret = 1; 3156 int compat, incompat; 3157 struct ext4_sb_info *sbi = EXT4_SB(sb); 3158 3159 if (ext4_has_metadata_csum(sb)) { 3160 /* journal checksum v3 */ 3161 compat = 0; 3162 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3163 } else { 3164 /* journal checksum v1 */ 3165 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3166 incompat = 0; 3167 } 3168 3169 jbd2_journal_clear_features(sbi->s_journal, 3170 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3171 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3172 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3173 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3174 ret = jbd2_journal_set_features(sbi->s_journal, 3175 compat, 0, 3176 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3177 incompat); 3178 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3179 ret = jbd2_journal_set_features(sbi->s_journal, 3180 compat, 0, 3181 incompat); 3182 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3183 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3184 } else { 3185 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3186 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3187 } 3188 3189 return ret; 3190 } 3191 3192 /* 3193 * Note: calculating the overhead so we can be compatible with 3194 * historical BSD practice is quite difficult in the face of 3195 * clusters/bigalloc. This is because multiple metadata blocks from 3196 * different block group can end up in the same allocation cluster. 3197 * Calculating the exact overhead in the face of clustered allocation 3198 * requires either O(all block bitmaps) in memory or O(number of block 3199 * groups**2) in time. We will still calculate the superblock for 3200 * older file systems --- and if we come across with a bigalloc file 3201 * system with zero in s_overhead_clusters the estimate will be close to 3202 * correct especially for very large cluster sizes --- but for newer 3203 * file systems, it's better to calculate this figure once at mkfs 3204 * time, and store it in the superblock. If the superblock value is 3205 * present (even for non-bigalloc file systems), we will use it. 3206 */ 3207 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3208 char *buf) 3209 { 3210 struct ext4_sb_info *sbi = EXT4_SB(sb); 3211 struct ext4_group_desc *gdp; 3212 ext4_fsblk_t first_block, last_block, b; 3213 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3214 int s, j, count = 0; 3215 3216 if (!ext4_has_feature_bigalloc(sb)) 3217 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3218 sbi->s_itb_per_group + 2); 3219 3220 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3221 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3222 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3223 for (i = 0; i < ngroups; i++) { 3224 gdp = ext4_get_group_desc(sb, i, NULL); 3225 b = ext4_block_bitmap(sb, gdp); 3226 if (b >= first_block && b <= last_block) { 3227 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3228 count++; 3229 } 3230 b = ext4_inode_bitmap(sb, gdp); 3231 if (b >= first_block && b <= last_block) { 3232 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3233 count++; 3234 } 3235 b = ext4_inode_table(sb, gdp); 3236 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3237 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3238 int c = EXT4_B2C(sbi, b - first_block); 3239 ext4_set_bit(c, buf); 3240 count++; 3241 } 3242 if (i != grp) 3243 continue; 3244 s = 0; 3245 if (ext4_bg_has_super(sb, grp)) { 3246 ext4_set_bit(s++, buf); 3247 count++; 3248 } 3249 j = ext4_bg_num_gdb(sb, grp); 3250 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3251 ext4_error(sb, "Invalid number of block group " 3252 "descriptor blocks: %d", j); 3253 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3254 } 3255 count += j; 3256 for (; j > 0; j--) 3257 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3258 } 3259 if (!count) 3260 return 0; 3261 return EXT4_CLUSTERS_PER_GROUP(sb) - 3262 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3263 } 3264 3265 /* 3266 * Compute the overhead and stash it in sbi->s_overhead 3267 */ 3268 int ext4_calculate_overhead(struct super_block *sb) 3269 { 3270 struct ext4_sb_info *sbi = EXT4_SB(sb); 3271 struct ext4_super_block *es = sbi->s_es; 3272 struct inode *j_inode; 3273 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3274 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3275 ext4_fsblk_t overhead = 0; 3276 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3277 3278 if (!buf) 3279 return -ENOMEM; 3280 3281 /* 3282 * Compute the overhead (FS structures). This is constant 3283 * for a given filesystem unless the number of block groups 3284 * changes so we cache the previous value until it does. 3285 */ 3286 3287 /* 3288 * All of the blocks before first_data_block are overhead 3289 */ 3290 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3291 3292 /* 3293 * Add the overhead found in each block group 3294 */ 3295 for (i = 0; i < ngroups; i++) { 3296 int blks; 3297 3298 blks = count_overhead(sb, i, buf); 3299 overhead += blks; 3300 if (blks) 3301 memset(buf, 0, PAGE_SIZE); 3302 cond_resched(); 3303 } 3304 3305 /* 3306 * Add the internal journal blocks whether the journal has been 3307 * loaded or not 3308 */ 3309 if (sbi->s_journal && !sbi->journal_bdev) 3310 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3311 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3312 j_inode = ext4_get_journal_inode(sb, j_inum); 3313 if (j_inode) { 3314 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3315 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3316 iput(j_inode); 3317 } else { 3318 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3319 } 3320 } 3321 sbi->s_overhead = overhead; 3322 smp_wmb(); 3323 free_page((unsigned long) buf); 3324 return 0; 3325 } 3326 3327 static void ext4_set_resv_clusters(struct super_block *sb) 3328 { 3329 ext4_fsblk_t resv_clusters; 3330 struct ext4_sb_info *sbi = EXT4_SB(sb); 3331 3332 /* 3333 * There's no need to reserve anything when we aren't using extents. 3334 * The space estimates are exact, there are no unwritten extents, 3335 * hole punching doesn't need new metadata... This is needed especially 3336 * to keep ext2/3 backward compatibility. 3337 */ 3338 if (!ext4_has_feature_extents(sb)) 3339 return; 3340 /* 3341 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3342 * This should cover the situations where we can not afford to run 3343 * out of space like for example punch hole, or converting 3344 * unwritten extents in delalloc path. In most cases such 3345 * allocation would require 1, or 2 blocks, higher numbers are 3346 * very rare. 3347 */ 3348 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3349 sbi->s_cluster_bits); 3350 3351 do_div(resv_clusters, 50); 3352 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3353 3354 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3355 } 3356 3357 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3358 { 3359 char *orig_data = kstrdup(data, GFP_KERNEL); 3360 struct buffer_head *bh; 3361 struct ext4_super_block *es = NULL; 3362 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3363 ext4_fsblk_t block; 3364 ext4_fsblk_t sb_block = get_sb_block(&data); 3365 ext4_fsblk_t logical_sb_block; 3366 unsigned long offset = 0; 3367 unsigned long journal_devnum = 0; 3368 unsigned long def_mount_opts; 3369 struct inode *root; 3370 const char *descr; 3371 int ret = -ENOMEM; 3372 int blocksize, clustersize; 3373 unsigned int db_count; 3374 unsigned int i; 3375 int needs_recovery, has_huge_files, has_bigalloc; 3376 __u64 blocks_count; 3377 int err = 0; 3378 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3379 ext4_group_t first_not_zeroed; 3380 3381 if ((data && !orig_data) || !sbi) 3382 goto out_free_base; 3383 3384 sbi->s_blockgroup_lock = 3385 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3386 if (!sbi->s_blockgroup_lock) 3387 goto out_free_base; 3388 3389 sb->s_fs_info = sbi; 3390 sbi->s_sb = sb; 3391 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3392 sbi->s_sb_block = sb_block; 3393 if (sb->s_bdev->bd_part) 3394 sbi->s_sectors_written_start = 3395 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3396 3397 /* Cleanup superblock name */ 3398 strreplace(sb->s_id, '/', '!'); 3399 3400 /* -EINVAL is default */ 3401 ret = -EINVAL; 3402 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3403 if (!blocksize) { 3404 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3405 goto out_fail; 3406 } 3407 3408 /* 3409 * The ext4 superblock will not be buffer aligned for other than 1kB 3410 * block sizes. We need to calculate the offset from buffer start. 3411 */ 3412 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3413 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3414 offset = do_div(logical_sb_block, blocksize); 3415 } else { 3416 logical_sb_block = sb_block; 3417 } 3418 3419 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3420 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3421 goto out_fail; 3422 } 3423 /* 3424 * Note: s_es must be initialized as soon as possible because 3425 * some ext4 macro-instructions depend on its value 3426 */ 3427 es = (struct ext4_super_block *) (bh->b_data + offset); 3428 sbi->s_es = es; 3429 sb->s_magic = le16_to_cpu(es->s_magic); 3430 if (sb->s_magic != EXT4_SUPER_MAGIC) 3431 goto cantfind_ext4; 3432 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3433 3434 /* Warn if metadata_csum and gdt_csum are both set. */ 3435 if (ext4_has_feature_metadata_csum(sb) && 3436 ext4_has_feature_gdt_csum(sb)) 3437 ext4_warning(sb, "metadata_csum and uninit_bg are " 3438 "redundant flags; please run fsck."); 3439 3440 /* Check for a known checksum algorithm */ 3441 if (!ext4_verify_csum_type(sb, es)) { 3442 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3443 "unknown checksum algorithm."); 3444 silent = 1; 3445 goto cantfind_ext4; 3446 } 3447 3448 /* Load the checksum driver */ 3449 if (ext4_has_feature_metadata_csum(sb)) { 3450 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3451 if (IS_ERR(sbi->s_chksum_driver)) { 3452 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3453 ret = PTR_ERR(sbi->s_chksum_driver); 3454 sbi->s_chksum_driver = NULL; 3455 goto failed_mount; 3456 } 3457 } 3458 3459 /* Check superblock checksum */ 3460 if (!ext4_superblock_csum_verify(sb, es)) { 3461 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3462 "invalid superblock checksum. Run e2fsck?"); 3463 silent = 1; 3464 ret = -EFSBADCRC; 3465 goto cantfind_ext4; 3466 } 3467 3468 /* Precompute checksum seed for all metadata */ 3469 if (ext4_has_feature_csum_seed(sb)) 3470 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3471 else if (ext4_has_metadata_csum(sb)) 3472 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3473 sizeof(es->s_uuid)); 3474 3475 /* Set defaults before we parse the mount options */ 3476 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3477 set_opt(sb, INIT_INODE_TABLE); 3478 if (def_mount_opts & EXT4_DEFM_DEBUG) 3479 set_opt(sb, DEBUG); 3480 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3481 set_opt(sb, GRPID); 3482 if (def_mount_opts & EXT4_DEFM_UID16) 3483 set_opt(sb, NO_UID32); 3484 /* xattr user namespace & acls are now defaulted on */ 3485 set_opt(sb, XATTR_USER); 3486 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3487 set_opt(sb, POSIX_ACL); 3488 #endif 3489 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3490 if (ext4_has_metadata_csum(sb)) 3491 set_opt(sb, JOURNAL_CHECKSUM); 3492 3493 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3494 set_opt(sb, JOURNAL_DATA); 3495 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3496 set_opt(sb, ORDERED_DATA); 3497 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3498 set_opt(sb, WRITEBACK_DATA); 3499 3500 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3501 set_opt(sb, ERRORS_PANIC); 3502 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3503 set_opt(sb, ERRORS_CONT); 3504 else 3505 set_opt(sb, ERRORS_RO); 3506 /* block_validity enabled by default; disable with noblock_validity */ 3507 set_opt(sb, BLOCK_VALIDITY); 3508 if (def_mount_opts & EXT4_DEFM_DISCARD) 3509 set_opt(sb, DISCARD); 3510 3511 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3512 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3513 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3514 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3515 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3516 3517 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3518 set_opt(sb, BARRIER); 3519 3520 /* 3521 * enable delayed allocation by default 3522 * Use -o nodelalloc to turn it off 3523 */ 3524 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3525 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3526 set_opt(sb, DELALLOC); 3527 3528 /* 3529 * set default s_li_wait_mult for lazyinit, for the case there is 3530 * no mount option specified. 3531 */ 3532 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3533 3534 if (sbi->s_es->s_mount_opts[0]) { 3535 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3536 sizeof(sbi->s_es->s_mount_opts), 3537 GFP_KERNEL); 3538 if (!s_mount_opts) 3539 goto failed_mount; 3540 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3541 &journal_ioprio, 0)) { 3542 ext4_msg(sb, KERN_WARNING, 3543 "failed to parse options in superblock: %s", 3544 s_mount_opts); 3545 } 3546 kfree(s_mount_opts); 3547 } 3548 sbi->s_def_mount_opt = sbi->s_mount_opt; 3549 if (!parse_options((char *) data, sb, &journal_devnum, 3550 &journal_ioprio, 0)) 3551 goto failed_mount; 3552 3553 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3554 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3555 "with data=journal disables delayed " 3556 "allocation and O_DIRECT support!\n"); 3557 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3558 ext4_msg(sb, KERN_ERR, "can't mount with " 3559 "both data=journal and delalloc"); 3560 goto failed_mount; 3561 } 3562 if (test_opt(sb, DIOREAD_NOLOCK)) { 3563 ext4_msg(sb, KERN_ERR, "can't mount with " 3564 "both data=journal and dioread_nolock"); 3565 goto failed_mount; 3566 } 3567 if (test_opt(sb, DAX)) { 3568 ext4_msg(sb, KERN_ERR, "can't mount with " 3569 "both data=journal and dax"); 3570 goto failed_mount; 3571 } 3572 if (ext4_has_feature_encrypt(sb)) { 3573 ext4_msg(sb, KERN_WARNING, 3574 "encrypted files will use data=ordered " 3575 "instead of data journaling mode"); 3576 } 3577 if (test_opt(sb, DELALLOC)) 3578 clear_opt(sb, DELALLOC); 3579 } else { 3580 sb->s_iflags |= SB_I_CGROUPWB; 3581 } 3582 3583 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3584 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3585 3586 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3587 (ext4_has_compat_features(sb) || 3588 ext4_has_ro_compat_features(sb) || 3589 ext4_has_incompat_features(sb))) 3590 ext4_msg(sb, KERN_WARNING, 3591 "feature flags set on rev 0 fs, " 3592 "running e2fsck is recommended"); 3593 3594 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3595 set_opt2(sb, HURD_COMPAT); 3596 if (ext4_has_feature_64bit(sb)) { 3597 ext4_msg(sb, KERN_ERR, 3598 "The Hurd can't support 64-bit file systems"); 3599 goto failed_mount; 3600 } 3601 } 3602 3603 if (IS_EXT2_SB(sb)) { 3604 if (ext2_feature_set_ok(sb)) 3605 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3606 "using the ext4 subsystem"); 3607 else { 3608 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3609 "to feature incompatibilities"); 3610 goto failed_mount; 3611 } 3612 } 3613 3614 if (IS_EXT3_SB(sb)) { 3615 if (ext3_feature_set_ok(sb)) 3616 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3617 "using the ext4 subsystem"); 3618 else { 3619 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3620 "to feature incompatibilities"); 3621 goto failed_mount; 3622 } 3623 } 3624 3625 /* 3626 * Check feature flags regardless of the revision level, since we 3627 * previously didn't change the revision level when setting the flags, 3628 * so there is a chance incompat flags are set on a rev 0 filesystem. 3629 */ 3630 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3631 goto failed_mount; 3632 3633 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3634 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3635 blocksize > EXT4_MAX_BLOCK_SIZE) { 3636 ext4_msg(sb, KERN_ERR, 3637 "Unsupported filesystem blocksize %d (%d log_block_size)", 3638 blocksize, le32_to_cpu(es->s_log_block_size)); 3639 goto failed_mount; 3640 } 3641 if (le32_to_cpu(es->s_log_block_size) > 3642 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3643 ext4_msg(sb, KERN_ERR, 3644 "Invalid log block size: %u", 3645 le32_to_cpu(es->s_log_block_size)); 3646 goto failed_mount; 3647 } 3648 3649 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3650 ext4_msg(sb, KERN_ERR, 3651 "Number of reserved GDT blocks insanely large: %d", 3652 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3653 goto failed_mount; 3654 } 3655 3656 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3657 err = bdev_dax_supported(sb, blocksize); 3658 if (err) 3659 goto failed_mount; 3660 } 3661 3662 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3663 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3664 es->s_encryption_level); 3665 goto failed_mount; 3666 } 3667 3668 if (sb->s_blocksize != blocksize) { 3669 /* Validate the filesystem blocksize */ 3670 if (!sb_set_blocksize(sb, blocksize)) { 3671 ext4_msg(sb, KERN_ERR, "bad block size %d", 3672 blocksize); 3673 goto failed_mount; 3674 } 3675 3676 brelse(bh); 3677 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3678 offset = do_div(logical_sb_block, blocksize); 3679 bh = sb_bread_unmovable(sb, logical_sb_block); 3680 if (!bh) { 3681 ext4_msg(sb, KERN_ERR, 3682 "Can't read superblock on 2nd try"); 3683 goto failed_mount; 3684 } 3685 es = (struct ext4_super_block *)(bh->b_data + offset); 3686 sbi->s_es = es; 3687 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3688 ext4_msg(sb, KERN_ERR, 3689 "Magic mismatch, very weird!"); 3690 goto failed_mount; 3691 } 3692 } 3693 3694 has_huge_files = ext4_has_feature_huge_file(sb); 3695 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3696 has_huge_files); 3697 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3698 3699 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3700 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3701 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3702 } else { 3703 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3704 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3705 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3706 (!is_power_of_2(sbi->s_inode_size)) || 3707 (sbi->s_inode_size > blocksize)) { 3708 ext4_msg(sb, KERN_ERR, 3709 "unsupported inode size: %d", 3710 sbi->s_inode_size); 3711 goto failed_mount; 3712 } 3713 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3714 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3715 } 3716 3717 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3718 if (ext4_has_feature_64bit(sb)) { 3719 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3720 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3721 !is_power_of_2(sbi->s_desc_size)) { 3722 ext4_msg(sb, KERN_ERR, 3723 "unsupported descriptor size %lu", 3724 sbi->s_desc_size); 3725 goto failed_mount; 3726 } 3727 } else 3728 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3729 3730 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3731 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3732 3733 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3734 if (sbi->s_inodes_per_block == 0) 3735 goto cantfind_ext4; 3736 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3737 sbi->s_inodes_per_group > blocksize * 8) { 3738 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3739 sbi->s_blocks_per_group); 3740 goto failed_mount; 3741 } 3742 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3743 sbi->s_inodes_per_block; 3744 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3745 sbi->s_sbh = bh; 3746 sbi->s_mount_state = le16_to_cpu(es->s_state); 3747 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3748 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3749 3750 for (i = 0; i < 4; i++) 3751 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3752 sbi->s_def_hash_version = es->s_def_hash_version; 3753 if (ext4_has_feature_dir_index(sb)) { 3754 i = le32_to_cpu(es->s_flags); 3755 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3756 sbi->s_hash_unsigned = 3; 3757 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3758 #ifdef __CHAR_UNSIGNED__ 3759 if (!(sb->s_flags & MS_RDONLY)) 3760 es->s_flags |= 3761 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3762 sbi->s_hash_unsigned = 3; 3763 #else 3764 if (!(sb->s_flags & MS_RDONLY)) 3765 es->s_flags |= 3766 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3767 #endif 3768 } 3769 } 3770 3771 /* Handle clustersize */ 3772 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3773 has_bigalloc = ext4_has_feature_bigalloc(sb); 3774 if (has_bigalloc) { 3775 if (clustersize < blocksize) { 3776 ext4_msg(sb, KERN_ERR, 3777 "cluster size (%d) smaller than " 3778 "block size (%d)", clustersize, blocksize); 3779 goto failed_mount; 3780 } 3781 if (le32_to_cpu(es->s_log_cluster_size) > 3782 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3783 ext4_msg(sb, KERN_ERR, 3784 "Invalid log cluster size: %u", 3785 le32_to_cpu(es->s_log_cluster_size)); 3786 goto failed_mount; 3787 } 3788 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3789 le32_to_cpu(es->s_log_block_size); 3790 sbi->s_clusters_per_group = 3791 le32_to_cpu(es->s_clusters_per_group); 3792 if (sbi->s_clusters_per_group > blocksize * 8) { 3793 ext4_msg(sb, KERN_ERR, 3794 "#clusters per group too big: %lu", 3795 sbi->s_clusters_per_group); 3796 goto failed_mount; 3797 } 3798 if (sbi->s_blocks_per_group != 3799 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3800 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3801 "clusters per group (%lu) inconsistent", 3802 sbi->s_blocks_per_group, 3803 sbi->s_clusters_per_group); 3804 goto failed_mount; 3805 } 3806 } else { 3807 if (clustersize != blocksize) { 3808 ext4_warning(sb, "fragment/cluster size (%d) != " 3809 "block size (%d)", clustersize, 3810 blocksize); 3811 clustersize = blocksize; 3812 } 3813 if (sbi->s_blocks_per_group > blocksize * 8) { 3814 ext4_msg(sb, KERN_ERR, 3815 "#blocks per group too big: %lu", 3816 sbi->s_blocks_per_group); 3817 goto failed_mount; 3818 } 3819 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3820 sbi->s_cluster_bits = 0; 3821 } 3822 sbi->s_cluster_ratio = clustersize / blocksize; 3823 3824 /* Do we have standard group size of clustersize * 8 blocks ? */ 3825 if (sbi->s_blocks_per_group == clustersize << 3) 3826 set_opt2(sb, STD_GROUP_SIZE); 3827 3828 /* 3829 * Test whether we have more sectors than will fit in sector_t, 3830 * and whether the max offset is addressable by the page cache. 3831 */ 3832 err = generic_check_addressable(sb->s_blocksize_bits, 3833 ext4_blocks_count(es)); 3834 if (err) { 3835 ext4_msg(sb, KERN_ERR, "filesystem" 3836 " too large to mount safely on this system"); 3837 if (sizeof(sector_t) < 8) 3838 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3839 goto failed_mount; 3840 } 3841 3842 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3843 goto cantfind_ext4; 3844 3845 /* check blocks count against device size */ 3846 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3847 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3848 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3849 "exceeds size of device (%llu blocks)", 3850 ext4_blocks_count(es), blocks_count); 3851 goto failed_mount; 3852 } 3853 3854 /* 3855 * It makes no sense for the first data block to be beyond the end 3856 * of the filesystem. 3857 */ 3858 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3859 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3860 "block %u is beyond end of filesystem (%llu)", 3861 le32_to_cpu(es->s_first_data_block), 3862 ext4_blocks_count(es)); 3863 goto failed_mount; 3864 } 3865 blocks_count = (ext4_blocks_count(es) - 3866 le32_to_cpu(es->s_first_data_block) + 3867 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3868 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3869 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3870 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3871 "(block count %llu, first data block %u, " 3872 "blocks per group %lu)", sbi->s_groups_count, 3873 ext4_blocks_count(es), 3874 le32_to_cpu(es->s_first_data_block), 3875 EXT4_BLOCKS_PER_GROUP(sb)); 3876 goto failed_mount; 3877 } 3878 sbi->s_groups_count = blocks_count; 3879 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3880 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3881 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3882 EXT4_DESC_PER_BLOCK(sb); 3883 if (ext4_has_feature_meta_bg(sb)) { 3884 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3885 ext4_msg(sb, KERN_WARNING, 3886 "first meta block group too large: %u " 3887 "(group descriptor block count %u)", 3888 le32_to_cpu(es->s_first_meta_bg), db_count); 3889 goto failed_mount; 3890 } 3891 } 3892 sbi->s_group_desc = kvmalloc(db_count * 3893 sizeof(struct buffer_head *), 3894 GFP_KERNEL); 3895 if (sbi->s_group_desc == NULL) { 3896 ext4_msg(sb, KERN_ERR, "not enough memory"); 3897 ret = -ENOMEM; 3898 goto failed_mount; 3899 } 3900 3901 bgl_lock_init(sbi->s_blockgroup_lock); 3902 3903 /* Pre-read the descriptors into the buffer cache */ 3904 for (i = 0; i < db_count; i++) { 3905 block = descriptor_loc(sb, logical_sb_block, i); 3906 sb_breadahead(sb, block); 3907 } 3908 3909 for (i = 0; i < db_count; i++) { 3910 block = descriptor_loc(sb, logical_sb_block, i); 3911 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3912 if (!sbi->s_group_desc[i]) { 3913 ext4_msg(sb, KERN_ERR, 3914 "can't read group descriptor %d", i); 3915 db_count = i; 3916 goto failed_mount2; 3917 } 3918 } 3919 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3920 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3921 ret = -EFSCORRUPTED; 3922 goto failed_mount2; 3923 } 3924 3925 sbi->s_gdb_count = db_count; 3926 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3927 spin_lock_init(&sbi->s_next_gen_lock); 3928 3929 setup_timer(&sbi->s_err_report, print_daily_error_info, 3930 (unsigned long) sb); 3931 3932 /* Register extent status tree shrinker */ 3933 if (ext4_es_register_shrinker(sbi)) 3934 goto failed_mount3; 3935 3936 sbi->s_stripe = ext4_get_stripe_size(sbi); 3937 sbi->s_extent_max_zeroout_kb = 32; 3938 3939 /* 3940 * set up enough so that it can read an inode 3941 */ 3942 sb->s_op = &ext4_sops; 3943 sb->s_export_op = &ext4_export_ops; 3944 sb->s_xattr = ext4_xattr_handlers; 3945 sb->s_cop = &ext4_cryptops; 3946 #ifdef CONFIG_QUOTA 3947 sb->dq_op = &ext4_quota_operations; 3948 if (ext4_has_feature_quota(sb)) 3949 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3950 else 3951 sb->s_qcop = &ext4_qctl_operations; 3952 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3953 #endif 3954 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3955 3956 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3957 mutex_init(&sbi->s_orphan_lock); 3958 3959 sb->s_root = NULL; 3960 3961 needs_recovery = (es->s_last_orphan != 0 || 3962 ext4_has_feature_journal_needs_recovery(sb)); 3963 3964 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3965 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3966 goto failed_mount3a; 3967 3968 /* 3969 * The first inode we look at is the journal inode. Don't try 3970 * root first: it may be modified in the journal! 3971 */ 3972 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3973 err = ext4_load_journal(sb, es, journal_devnum); 3974 if (err) 3975 goto failed_mount3a; 3976 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3977 ext4_has_feature_journal_needs_recovery(sb)) { 3978 ext4_msg(sb, KERN_ERR, "required journal recovery " 3979 "suppressed and not mounted read-only"); 3980 goto failed_mount_wq; 3981 } else { 3982 /* Nojournal mode, all journal mount options are illegal */ 3983 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3984 ext4_msg(sb, KERN_ERR, "can't mount with " 3985 "journal_checksum, fs mounted w/o journal"); 3986 goto failed_mount_wq; 3987 } 3988 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3989 ext4_msg(sb, KERN_ERR, "can't mount with " 3990 "journal_async_commit, fs mounted w/o journal"); 3991 goto failed_mount_wq; 3992 } 3993 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3994 ext4_msg(sb, KERN_ERR, "can't mount with " 3995 "commit=%lu, fs mounted w/o journal", 3996 sbi->s_commit_interval / HZ); 3997 goto failed_mount_wq; 3998 } 3999 if (EXT4_MOUNT_DATA_FLAGS & 4000 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4001 ext4_msg(sb, KERN_ERR, "can't mount with " 4002 "data=, fs mounted w/o journal"); 4003 goto failed_mount_wq; 4004 } 4005 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4006 clear_opt(sb, JOURNAL_CHECKSUM); 4007 clear_opt(sb, DATA_FLAGS); 4008 sbi->s_journal = NULL; 4009 needs_recovery = 0; 4010 goto no_journal; 4011 } 4012 4013 if (ext4_has_feature_64bit(sb) && 4014 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4015 JBD2_FEATURE_INCOMPAT_64BIT)) { 4016 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4017 goto failed_mount_wq; 4018 } 4019 4020 if (!set_journal_csum_feature_set(sb)) { 4021 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4022 "feature set"); 4023 goto failed_mount_wq; 4024 } 4025 4026 /* We have now updated the journal if required, so we can 4027 * validate the data journaling mode. */ 4028 switch (test_opt(sb, DATA_FLAGS)) { 4029 case 0: 4030 /* No mode set, assume a default based on the journal 4031 * capabilities: ORDERED_DATA if the journal can 4032 * cope, else JOURNAL_DATA 4033 */ 4034 if (jbd2_journal_check_available_features 4035 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4036 set_opt(sb, ORDERED_DATA); 4037 else 4038 set_opt(sb, JOURNAL_DATA); 4039 break; 4040 4041 case EXT4_MOUNT_ORDERED_DATA: 4042 case EXT4_MOUNT_WRITEBACK_DATA: 4043 if (!jbd2_journal_check_available_features 4044 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4045 ext4_msg(sb, KERN_ERR, "Journal does not support " 4046 "requested data journaling mode"); 4047 goto failed_mount_wq; 4048 } 4049 default: 4050 break; 4051 } 4052 4053 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4054 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4055 ext4_msg(sb, KERN_ERR, "can't mount with " 4056 "journal_async_commit in data=ordered mode"); 4057 goto failed_mount_wq; 4058 } 4059 4060 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4061 4062 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4063 4064 no_journal: 4065 sbi->s_mb_cache = ext4_xattr_create_cache(); 4066 if (!sbi->s_mb_cache) { 4067 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4068 goto failed_mount_wq; 4069 } 4070 4071 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4072 (blocksize != PAGE_SIZE)) { 4073 ext4_msg(sb, KERN_ERR, 4074 "Unsupported blocksize for fs encryption"); 4075 goto failed_mount_wq; 4076 } 4077 4078 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4079 !ext4_has_feature_encrypt(sb)) { 4080 ext4_set_feature_encrypt(sb); 4081 ext4_commit_super(sb, 1); 4082 } 4083 4084 /* 4085 * Get the # of file system overhead blocks from the 4086 * superblock if present. 4087 */ 4088 if (es->s_overhead_clusters) 4089 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4090 else { 4091 err = ext4_calculate_overhead(sb); 4092 if (err) 4093 goto failed_mount_wq; 4094 } 4095 4096 /* 4097 * The maximum number of concurrent works can be high and 4098 * concurrency isn't really necessary. Limit it to 1. 4099 */ 4100 EXT4_SB(sb)->rsv_conversion_wq = 4101 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4102 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4103 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4104 ret = -ENOMEM; 4105 goto failed_mount4; 4106 } 4107 4108 /* 4109 * The jbd2_journal_load will have done any necessary log recovery, 4110 * so we can safely mount the rest of the filesystem now. 4111 */ 4112 4113 root = ext4_iget(sb, EXT4_ROOT_INO); 4114 if (IS_ERR(root)) { 4115 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4116 ret = PTR_ERR(root); 4117 root = NULL; 4118 goto failed_mount4; 4119 } 4120 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4121 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4122 iput(root); 4123 goto failed_mount4; 4124 } 4125 sb->s_root = d_make_root(root); 4126 if (!sb->s_root) { 4127 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4128 ret = -ENOMEM; 4129 goto failed_mount4; 4130 } 4131 4132 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4133 sb->s_flags |= MS_RDONLY; 4134 4135 /* determine the minimum size of new large inodes, if present */ 4136 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4137 sbi->s_want_extra_isize == 0) { 4138 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4139 EXT4_GOOD_OLD_INODE_SIZE; 4140 if (ext4_has_feature_extra_isize(sb)) { 4141 if (sbi->s_want_extra_isize < 4142 le16_to_cpu(es->s_want_extra_isize)) 4143 sbi->s_want_extra_isize = 4144 le16_to_cpu(es->s_want_extra_isize); 4145 if (sbi->s_want_extra_isize < 4146 le16_to_cpu(es->s_min_extra_isize)) 4147 sbi->s_want_extra_isize = 4148 le16_to_cpu(es->s_min_extra_isize); 4149 } 4150 } 4151 /* Check if enough inode space is available */ 4152 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4153 sbi->s_inode_size) { 4154 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4155 EXT4_GOOD_OLD_INODE_SIZE; 4156 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4157 "available"); 4158 } 4159 4160 ext4_set_resv_clusters(sb); 4161 4162 err = ext4_setup_system_zone(sb); 4163 if (err) { 4164 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4165 "zone (%d)", err); 4166 goto failed_mount4a; 4167 } 4168 4169 ext4_ext_init(sb); 4170 err = ext4_mb_init(sb); 4171 if (err) { 4172 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4173 err); 4174 goto failed_mount5; 4175 } 4176 4177 block = ext4_count_free_clusters(sb); 4178 ext4_free_blocks_count_set(sbi->s_es, 4179 EXT4_C2B(sbi, block)); 4180 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4181 GFP_KERNEL); 4182 if (!err) { 4183 unsigned long freei = ext4_count_free_inodes(sb); 4184 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4185 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4186 GFP_KERNEL); 4187 } 4188 if (!err) 4189 err = percpu_counter_init(&sbi->s_dirs_counter, 4190 ext4_count_dirs(sb), GFP_KERNEL); 4191 if (!err) 4192 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4193 GFP_KERNEL); 4194 if (!err) 4195 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4196 4197 if (err) { 4198 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4199 goto failed_mount6; 4200 } 4201 4202 if (ext4_has_feature_flex_bg(sb)) 4203 if (!ext4_fill_flex_info(sb)) { 4204 ext4_msg(sb, KERN_ERR, 4205 "unable to initialize " 4206 "flex_bg meta info!"); 4207 goto failed_mount6; 4208 } 4209 4210 err = ext4_register_li_request(sb, first_not_zeroed); 4211 if (err) 4212 goto failed_mount6; 4213 4214 err = ext4_register_sysfs(sb); 4215 if (err) 4216 goto failed_mount7; 4217 4218 #ifdef CONFIG_QUOTA 4219 /* Enable quota usage during mount. */ 4220 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4221 err = ext4_enable_quotas(sb); 4222 if (err) 4223 goto failed_mount8; 4224 } 4225 #endif /* CONFIG_QUOTA */ 4226 4227 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4228 ext4_orphan_cleanup(sb, es); 4229 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4230 if (needs_recovery) { 4231 ext4_msg(sb, KERN_INFO, "recovery complete"); 4232 ext4_mark_recovery_complete(sb, es); 4233 } 4234 if (EXT4_SB(sb)->s_journal) { 4235 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4236 descr = " journalled data mode"; 4237 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4238 descr = " ordered data mode"; 4239 else 4240 descr = " writeback data mode"; 4241 } else 4242 descr = "out journal"; 4243 4244 if (test_opt(sb, DISCARD)) { 4245 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4246 if (!blk_queue_discard(q)) 4247 ext4_msg(sb, KERN_WARNING, 4248 "mounting with \"discard\" option, but " 4249 "the device does not support discard"); 4250 } 4251 4252 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4253 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4254 "Opts: %.*s%s%s", descr, 4255 (int) sizeof(sbi->s_es->s_mount_opts), 4256 sbi->s_es->s_mount_opts, 4257 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4258 4259 if (es->s_error_count) 4260 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4261 4262 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4263 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4264 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4265 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4266 4267 kfree(orig_data); 4268 return 0; 4269 4270 cantfind_ext4: 4271 if (!silent) 4272 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4273 goto failed_mount; 4274 4275 #ifdef CONFIG_QUOTA 4276 failed_mount8: 4277 ext4_unregister_sysfs(sb); 4278 #endif 4279 failed_mount7: 4280 ext4_unregister_li_request(sb); 4281 failed_mount6: 4282 ext4_mb_release(sb); 4283 if (sbi->s_flex_groups) 4284 kvfree(sbi->s_flex_groups); 4285 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4286 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4287 percpu_counter_destroy(&sbi->s_dirs_counter); 4288 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4289 failed_mount5: 4290 ext4_ext_release(sb); 4291 ext4_release_system_zone(sb); 4292 failed_mount4a: 4293 dput(sb->s_root); 4294 sb->s_root = NULL; 4295 failed_mount4: 4296 ext4_msg(sb, KERN_ERR, "mount failed"); 4297 if (EXT4_SB(sb)->rsv_conversion_wq) 4298 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4299 failed_mount_wq: 4300 if (sbi->s_mb_cache) { 4301 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4302 sbi->s_mb_cache = NULL; 4303 } 4304 if (sbi->s_journal) { 4305 jbd2_journal_destroy(sbi->s_journal); 4306 sbi->s_journal = NULL; 4307 } 4308 failed_mount3a: 4309 ext4_es_unregister_shrinker(sbi); 4310 failed_mount3: 4311 del_timer_sync(&sbi->s_err_report); 4312 if (sbi->s_mmp_tsk) 4313 kthread_stop(sbi->s_mmp_tsk); 4314 failed_mount2: 4315 for (i = 0; i < db_count; i++) 4316 brelse(sbi->s_group_desc[i]); 4317 kvfree(sbi->s_group_desc); 4318 failed_mount: 4319 if (sbi->s_chksum_driver) 4320 crypto_free_shash(sbi->s_chksum_driver); 4321 #ifdef CONFIG_QUOTA 4322 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4323 kfree(sbi->s_qf_names[i]); 4324 #endif 4325 ext4_blkdev_remove(sbi); 4326 brelse(bh); 4327 out_fail: 4328 sb->s_fs_info = NULL; 4329 kfree(sbi->s_blockgroup_lock); 4330 out_free_base: 4331 kfree(sbi); 4332 kfree(orig_data); 4333 return err ? err : ret; 4334 } 4335 4336 /* 4337 * Setup any per-fs journal parameters now. We'll do this both on 4338 * initial mount, once the journal has been initialised but before we've 4339 * done any recovery; and again on any subsequent remount. 4340 */ 4341 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4342 { 4343 struct ext4_sb_info *sbi = EXT4_SB(sb); 4344 4345 journal->j_commit_interval = sbi->s_commit_interval; 4346 journal->j_min_batch_time = sbi->s_min_batch_time; 4347 journal->j_max_batch_time = sbi->s_max_batch_time; 4348 4349 write_lock(&journal->j_state_lock); 4350 if (test_opt(sb, BARRIER)) 4351 journal->j_flags |= JBD2_BARRIER; 4352 else 4353 journal->j_flags &= ~JBD2_BARRIER; 4354 if (test_opt(sb, DATA_ERR_ABORT)) 4355 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4356 else 4357 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4358 write_unlock(&journal->j_state_lock); 4359 } 4360 4361 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4362 unsigned int journal_inum) 4363 { 4364 struct inode *journal_inode; 4365 4366 /* 4367 * Test for the existence of a valid inode on disk. Bad things 4368 * happen if we iget() an unused inode, as the subsequent iput() 4369 * will try to delete it. 4370 */ 4371 journal_inode = ext4_iget(sb, journal_inum); 4372 if (IS_ERR(journal_inode)) { 4373 ext4_msg(sb, KERN_ERR, "no journal found"); 4374 return NULL; 4375 } 4376 if (!journal_inode->i_nlink) { 4377 make_bad_inode(journal_inode); 4378 iput(journal_inode); 4379 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4380 return NULL; 4381 } 4382 4383 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4384 journal_inode, journal_inode->i_size); 4385 if (!S_ISREG(journal_inode->i_mode)) { 4386 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4387 iput(journal_inode); 4388 return NULL; 4389 } 4390 return journal_inode; 4391 } 4392 4393 static journal_t *ext4_get_journal(struct super_block *sb, 4394 unsigned int journal_inum) 4395 { 4396 struct inode *journal_inode; 4397 journal_t *journal; 4398 4399 BUG_ON(!ext4_has_feature_journal(sb)); 4400 4401 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4402 if (!journal_inode) 4403 return NULL; 4404 4405 journal = jbd2_journal_init_inode(journal_inode); 4406 if (!journal) { 4407 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4408 iput(journal_inode); 4409 return NULL; 4410 } 4411 journal->j_private = sb; 4412 ext4_init_journal_params(sb, journal); 4413 return journal; 4414 } 4415 4416 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4417 dev_t j_dev) 4418 { 4419 struct buffer_head *bh; 4420 journal_t *journal; 4421 ext4_fsblk_t start; 4422 ext4_fsblk_t len; 4423 int hblock, blocksize; 4424 ext4_fsblk_t sb_block; 4425 unsigned long offset; 4426 struct ext4_super_block *es; 4427 struct block_device *bdev; 4428 4429 BUG_ON(!ext4_has_feature_journal(sb)); 4430 4431 bdev = ext4_blkdev_get(j_dev, sb); 4432 if (bdev == NULL) 4433 return NULL; 4434 4435 blocksize = sb->s_blocksize; 4436 hblock = bdev_logical_block_size(bdev); 4437 if (blocksize < hblock) { 4438 ext4_msg(sb, KERN_ERR, 4439 "blocksize too small for journal device"); 4440 goto out_bdev; 4441 } 4442 4443 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4444 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4445 set_blocksize(bdev, blocksize); 4446 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4447 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4448 "external journal"); 4449 goto out_bdev; 4450 } 4451 4452 es = (struct ext4_super_block *) (bh->b_data + offset); 4453 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4454 !(le32_to_cpu(es->s_feature_incompat) & 4455 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4456 ext4_msg(sb, KERN_ERR, "external journal has " 4457 "bad superblock"); 4458 brelse(bh); 4459 goto out_bdev; 4460 } 4461 4462 if ((le32_to_cpu(es->s_feature_ro_compat) & 4463 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4464 es->s_checksum != ext4_superblock_csum(sb, es)) { 4465 ext4_msg(sb, KERN_ERR, "external journal has " 4466 "corrupt superblock"); 4467 brelse(bh); 4468 goto out_bdev; 4469 } 4470 4471 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4472 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4473 brelse(bh); 4474 goto out_bdev; 4475 } 4476 4477 len = ext4_blocks_count(es); 4478 start = sb_block + 1; 4479 brelse(bh); /* we're done with the superblock */ 4480 4481 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4482 start, len, blocksize); 4483 if (!journal) { 4484 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4485 goto out_bdev; 4486 } 4487 journal->j_private = sb; 4488 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4489 wait_on_buffer(journal->j_sb_buffer); 4490 if (!buffer_uptodate(journal->j_sb_buffer)) { 4491 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4492 goto out_journal; 4493 } 4494 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4495 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4496 "user (unsupported) - %d", 4497 be32_to_cpu(journal->j_superblock->s_nr_users)); 4498 goto out_journal; 4499 } 4500 EXT4_SB(sb)->journal_bdev = bdev; 4501 ext4_init_journal_params(sb, journal); 4502 return journal; 4503 4504 out_journal: 4505 jbd2_journal_destroy(journal); 4506 out_bdev: 4507 ext4_blkdev_put(bdev); 4508 return NULL; 4509 } 4510 4511 static int ext4_load_journal(struct super_block *sb, 4512 struct ext4_super_block *es, 4513 unsigned long journal_devnum) 4514 { 4515 journal_t *journal; 4516 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4517 dev_t journal_dev; 4518 int err = 0; 4519 int really_read_only; 4520 4521 BUG_ON(!ext4_has_feature_journal(sb)); 4522 4523 if (journal_devnum && 4524 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4525 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4526 "numbers have changed"); 4527 journal_dev = new_decode_dev(journal_devnum); 4528 } else 4529 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4530 4531 really_read_only = bdev_read_only(sb->s_bdev); 4532 4533 /* 4534 * Are we loading a blank journal or performing recovery after a 4535 * crash? For recovery, we need to check in advance whether we 4536 * can get read-write access to the device. 4537 */ 4538 if (ext4_has_feature_journal_needs_recovery(sb)) { 4539 if (sb->s_flags & MS_RDONLY) { 4540 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4541 "required on readonly filesystem"); 4542 if (really_read_only) { 4543 ext4_msg(sb, KERN_ERR, "write access " 4544 "unavailable, cannot proceed"); 4545 return -EROFS; 4546 } 4547 ext4_msg(sb, KERN_INFO, "write access will " 4548 "be enabled during recovery"); 4549 } 4550 } 4551 4552 if (journal_inum && journal_dev) { 4553 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4554 "and inode journals!"); 4555 return -EINVAL; 4556 } 4557 4558 if (journal_inum) { 4559 if (!(journal = ext4_get_journal(sb, journal_inum))) 4560 return -EINVAL; 4561 } else { 4562 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4563 return -EINVAL; 4564 } 4565 4566 if (!(journal->j_flags & JBD2_BARRIER)) 4567 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4568 4569 if (!ext4_has_feature_journal_needs_recovery(sb)) 4570 err = jbd2_journal_wipe(journal, !really_read_only); 4571 if (!err) { 4572 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4573 if (save) 4574 memcpy(save, ((char *) es) + 4575 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4576 err = jbd2_journal_load(journal); 4577 if (save) 4578 memcpy(((char *) es) + EXT4_S_ERR_START, 4579 save, EXT4_S_ERR_LEN); 4580 kfree(save); 4581 } 4582 4583 if (err) { 4584 ext4_msg(sb, KERN_ERR, "error loading journal"); 4585 jbd2_journal_destroy(journal); 4586 return err; 4587 } 4588 4589 EXT4_SB(sb)->s_journal = journal; 4590 ext4_clear_journal_err(sb, es); 4591 4592 if (!really_read_only && journal_devnum && 4593 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4594 es->s_journal_dev = cpu_to_le32(journal_devnum); 4595 4596 /* Make sure we flush the recovery flag to disk. */ 4597 ext4_commit_super(sb, 1); 4598 } 4599 4600 return 0; 4601 } 4602 4603 static int ext4_commit_super(struct super_block *sb, int sync) 4604 { 4605 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4606 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4607 int error = 0; 4608 4609 if (!sbh || block_device_ejected(sb)) 4610 return error; 4611 /* 4612 * If the file system is mounted read-only, don't update the 4613 * superblock write time. This avoids updating the superblock 4614 * write time when we are mounting the root file system 4615 * read/only but we need to replay the journal; at that point, 4616 * for people who are east of GMT and who make their clock 4617 * tick in localtime for Windows bug-for-bug compatibility, 4618 * the clock is set in the future, and this will cause e2fsck 4619 * to complain and force a full file system check. 4620 */ 4621 if (!(sb->s_flags & MS_RDONLY)) 4622 es->s_wtime = cpu_to_le32(get_seconds()); 4623 if (sb->s_bdev->bd_part) 4624 es->s_kbytes_written = 4625 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4626 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4627 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4628 else 4629 es->s_kbytes_written = 4630 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4631 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4632 ext4_free_blocks_count_set(es, 4633 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4634 &EXT4_SB(sb)->s_freeclusters_counter))); 4635 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4636 es->s_free_inodes_count = 4637 cpu_to_le32(percpu_counter_sum_positive( 4638 &EXT4_SB(sb)->s_freeinodes_counter)); 4639 BUFFER_TRACE(sbh, "marking dirty"); 4640 ext4_superblock_csum_set(sb); 4641 if (sync) 4642 lock_buffer(sbh); 4643 if (buffer_write_io_error(sbh)) { 4644 /* 4645 * Oh, dear. A previous attempt to write the 4646 * superblock failed. This could happen because the 4647 * USB device was yanked out. Or it could happen to 4648 * be a transient write error and maybe the block will 4649 * be remapped. Nothing we can do but to retry the 4650 * write and hope for the best. 4651 */ 4652 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4653 "superblock detected"); 4654 clear_buffer_write_io_error(sbh); 4655 set_buffer_uptodate(sbh); 4656 } 4657 mark_buffer_dirty(sbh); 4658 if (sync) { 4659 unlock_buffer(sbh); 4660 error = __sync_dirty_buffer(sbh, 4661 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4662 if (error) 4663 return error; 4664 4665 error = buffer_write_io_error(sbh); 4666 if (error) { 4667 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4668 "superblock"); 4669 clear_buffer_write_io_error(sbh); 4670 set_buffer_uptodate(sbh); 4671 } 4672 } 4673 return error; 4674 } 4675 4676 /* 4677 * Have we just finished recovery? If so, and if we are mounting (or 4678 * remounting) the filesystem readonly, then we will end up with a 4679 * consistent fs on disk. Record that fact. 4680 */ 4681 static void ext4_mark_recovery_complete(struct super_block *sb, 4682 struct ext4_super_block *es) 4683 { 4684 journal_t *journal = EXT4_SB(sb)->s_journal; 4685 4686 if (!ext4_has_feature_journal(sb)) { 4687 BUG_ON(journal != NULL); 4688 return; 4689 } 4690 jbd2_journal_lock_updates(journal); 4691 if (jbd2_journal_flush(journal) < 0) 4692 goto out; 4693 4694 if (ext4_has_feature_journal_needs_recovery(sb) && 4695 sb->s_flags & MS_RDONLY) { 4696 ext4_clear_feature_journal_needs_recovery(sb); 4697 ext4_commit_super(sb, 1); 4698 } 4699 4700 out: 4701 jbd2_journal_unlock_updates(journal); 4702 } 4703 4704 /* 4705 * If we are mounting (or read-write remounting) a filesystem whose journal 4706 * has recorded an error from a previous lifetime, move that error to the 4707 * main filesystem now. 4708 */ 4709 static void ext4_clear_journal_err(struct super_block *sb, 4710 struct ext4_super_block *es) 4711 { 4712 journal_t *journal; 4713 int j_errno; 4714 const char *errstr; 4715 4716 BUG_ON(!ext4_has_feature_journal(sb)); 4717 4718 journal = EXT4_SB(sb)->s_journal; 4719 4720 /* 4721 * Now check for any error status which may have been recorded in the 4722 * journal by a prior ext4_error() or ext4_abort() 4723 */ 4724 4725 j_errno = jbd2_journal_errno(journal); 4726 if (j_errno) { 4727 char nbuf[16]; 4728 4729 errstr = ext4_decode_error(sb, j_errno, nbuf); 4730 ext4_warning(sb, "Filesystem error recorded " 4731 "from previous mount: %s", errstr); 4732 ext4_warning(sb, "Marking fs in need of filesystem check."); 4733 4734 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4735 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4736 ext4_commit_super(sb, 1); 4737 4738 jbd2_journal_clear_err(journal); 4739 jbd2_journal_update_sb_errno(journal); 4740 } 4741 } 4742 4743 /* 4744 * Force the running and committing transactions to commit, 4745 * and wait on the commit. 4746 */ 4747 int ext4_force_commit(struct super_block *sb) 4748 { 4749 journal_t *journal; 4750 4751 if (sb->s_flags & MS_RDONLY) 4752 return 0; 4753 4754 journal = EXT4_SB(sb)->s_journal; 4755 return ext4_journal_force_commit(journal); 4756 } 4757 4758 static int ext4_sync_fs(struct super_block *sb, int wait) 4759 { 4760 int ret = 0; 4761 tid_t target; 4762 bool needs_barrier = false; 4763 struct ext4_sb_info *sbi = EXT4_SB(sb); 4764 4765 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4766 return 0; 4767 4768 trace_ext4_sync_fs(sb, wait); 4769 flush_workqueue(sbi->rsv_conversion_wq); 4770 /* 4771 * Writeback quota in non-journalled quota case - journalled quota has 4772 * no dirty dquots 4773 */ 4774 dquot_writeback_dquots(sb, -1); 4775 /* 4776 * Data writeback is possible w/o journal transaction, so barrier must 4777 * being sent at the end of the function. But we can skip it if 4778 * transaction_commit will do it for us. 4779 */ 4780 if (sbi->s_journal) { 4781 target = jbd2_get_latest_transaction(sbi->s_journal); 4782 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4783 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4784 needs_barrier = true; 4785 4786 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4787 if (wait) 4788 ret = jbd2_log_wait_commit(sbi->s_journal, 4789 target); 4790 } 4791 } else if (wait && test_opt(sb, BARRIER)) 4792 needs_barrier = true; 4793 if (needs_barrier) { 4794 int err; 4795 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4796 if (!ret) 4797 ret = err; 4798 } 4799 4800 return ret; 4801 } 4802 4803 /* 4804 * LVM calls this function before a (read-only) snapshot is created. This 4805 * gives us a chance to flush the journal completely and mark the fs clean. 4806 * 4807 * Note that only this function cannot bring a filesystem to be in a clean 4808 * state independently. It relies on upper layer to stop all data & metadata 4809 * modifications. 4810 */ 4811 static int ext4_freeze(struct super_block *sb) 4812 { 4813 int error = 0; 4814 journal_t *journal; 4815 4816 if (sb->s_flags & MS_RDONLY) 4817 return 0; 4818 4819 journal = EXT4_SB(sb)->s_journal; 4820 4821 if (journal) { 4822 /* Now we set up the journal barrier. */ 4823 jbd2_journal_lock_updates(journal); 4824 4825 /* 4826 * Don't clear the needs_recovery flag if we failed to 4827 * flush the journal. 4828 */ 4829 error = jbd2_journal_flush(journal); 4830 if (error < 0) 4831 goto out; 4832 4833 /* Journal blocked and flushed, clear needs_recovery flag. */ 4834 ext4_clear_feature_journal_needs_recovery(sb); 4835 } 4836 4837 error = ext4_commit_super(sb, 1); 4838 out: 4839 if (journal) 4840 /* we rely on upper layer to stop further updates */ 4841 jbd2_journal_unlock_updates(journal); 4842 return error; 4843 } 4844 4845 /* 4846 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4847 * flag here, even though the filesystem is not technically dirty yet. 4848 */ 4849 static int ext4_unfreeze(struct super_block *sb) 4850 { 4851 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4852 return 0; 4853 4854 if (EXT4_SB(sb)->s_journal) { 4855 /* Reset the needs_recovery flag before the fs is unlocked. */ 4856 ext4_set_feature_journal_needs_recovery(sb); 4857 } 4858 4859 ext4_commit_super(sb, 1); 4860 return 0; 4861 } 4862 4863 /* 4864 * Structure to save mount options for ext4_remount's benefit 4865 */ 4866 struct ext4_mount_options { 4867 unsigned long s_mount_opt; 4868 unsigned long s_mount_opt2; 4869 kuid_t s_resuid; 4870 kgid_t s_resgid; 4871 unsigned long s_commit_interval; 4872 u32 s_min_batch_time, s_max_batch_time; 4873 #ifdef CONFIG_QUOTA 4874 int s_jquota_fmt; 4875 char *s_qf_names[EXT4_MAXQUOTAS]; 4876 #endif 4877 }; 4878 4879 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4880 { 4881 struct ext4_super_block *es; 4882 struct ext4_sb_info *sbi = EXT4_SB(sb); 4883 unsigned long old_sb_flags; 4884 struct ext4_mount_options old_opts; 4885 int enable_quota = 0; 4886 ext4_group_t g; 4887 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4888 int err = 0; 4889 #ifdef CONFIG_QUOTA 4890 int i, j; 4891 #endif 4892 char *orig_data = kstrdup(data, GFP_KERNEL); 4893 4894 /* Store the original options */ 4895 old_sb_flags = sb->s_flags; 4896 old_opts.s_mount_opt = sbi->s_mount_opt; 4897 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4898 old_opts.s_resuid = sbi->s_resuid; 4899 old_opts.s_resgid = sbi->s_resgid; 4900 old_opts.s_commit_interval = sbi->s_commit_interval; 4901 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4902 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4903 #ifdef CONFIG_QUOTA 4904 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4905 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4906 if (sbi->s_qf_names[i]) { 4907 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4908 GFP_KERNEL); 4909 if (!old_opts.s_qf_names[i]) { 4910 for (j = 0; j < i; j++) 4911 kfree(old_opts.s_qf_names[j]); 4912 kfree(orig_data); 4913 return -ENOMEM; 4914 } 4915 } else 4916 old_opts.s_qf_names[i] = NULL; 4917 #endif 4918 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4919 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4920 4921 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4922 err = -EINVAL; 4923 goto restore_opts; 4924 } 4925 4926 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4927 test_opt(sb, JOURNAL_CHECKSUM)) { 4928 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4929 "during remount not supported; ignoring"); 4930 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4931 } 4932 4933 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4934 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4935 ext4_msg(sb, KERN_ERR, "can't mount with " 4936 "both data=journal and delalloc"); 4937 err = -EINVAL; 4938 goto restore_opts; 4939 } 4940 if (test_opt(sb, DIOREAD_NOLOCK)) { 4941 ext4_msg(sb, KERN_ERR, "can't mount with " 4942 "both data=journal and dioread_nolock"); 4943 err = -EINVAL; 4944 goto restore_opts; 4945 } 4946 if (test_opt(sb, DAX)) { 4947 ext4_msg(sb, KERN_ERR, "can't mount with " 4948 "both data=journal and dax"); 4949 err = -EINVAL; 4950 goto restore_opts; 4951 } 4952 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 4953 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4954 ext4_msg(sb, KERN_ERR, "can't mount with " 4955 "journal_async_commit in data=ordered mode"); 4956 err = -EINVAL; 4957 goto restore_opts; 4958 } 4959 } 4960 4961 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4962 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4963 "dax flag with busy inodes while remounting"); 4964 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4965 } 4966 4967 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4968 ext4_abort(sb, "Abort forced by user"); 4969 4970 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4971 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4972 4973 es = sbi->s_es; 4974 4975 if (sbi->s_journal) { 4976 ext4_init_journal_params(sb, sbi->s_journal); 4977 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4978 } 4979 4980 if (*flags & MS_LAZYTIME) 4981 sb->s_flags |= MS_LAZYTIME; 4982 4983 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4984 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4985 err = -EROFS; 4986 goto restore_opts; 4987 } 4988 4989 if (*flags & MS_RDONLY) { 4990 err = sync_filesystem(sb); 4991 if (err < 0) 4992 goto restore_opts; 4993 err = dquot_suspend(sb, -1); 4994 if (err < 0) 4995 goto restore_opts; 4996 4997 /* 4998 * First of all, the unconditional stuff we have to do 4999 * to disable replay of the journal when we next remount 5000 */ 5001 sb->s_flags |= MS_RDONLY; 5002 5003 /* 5004 * OK, test if we are remounting a valid rw partition 5005 * readonly, and if so set the rdonly flag and then 5006 * mark the partition as valid again. 5007 */ 5008 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5009 (sbi->s_mount_state & EXT4_VALID_FS)) 5010 es->s_state = cpu_to_le16(sbi->s_mount_state); 5011 5012 if (sbi->s_journal) 5013 ext4_mark_recovery_complete(sb, es); 5014 } else { 5015 /* Make sure we can mount this feature set readwrite */ 5016 if (ext4_has_feature_readonly(sb) || 5017 !ext4_feature_set_ok(sb, 0)) { 5018 err = -EROFS; 5019 goto restore_opts; 5020 } 5021 /* 5022 * Make sure the group descriptor checksums 5023 * are sane. If they aren't, refuse to remount r/w. 5024 */ 5025 for (g = 0; g < sbi->s_groups_count; g++) { 5026 struct ext4_group_desc *gdp = 5027 ext4_get_group_desc(sb, g, NULL); 5028 5029 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5030 ext4_msg(sb, KERN_ERR, 5031 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5032 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5033 le16_to_cpu(gdp->bg_checksum)); 5034 err = -EFSBADCRC; 5035 goto restore_opts; 5036 } 5037 } 5038 5039 /* 5040 * If we have an unprocessed orphan list hanging 5041 * around from a previously readonly bdev mount, 5042 * require a full umount/remount for now. 5043 */ 5044 if (es->s_last_orphan) { 5045 ext4_msg(sb, KERN_WARNING, "Couldn't " 5046 "remount RDWR because of unprocessed " 5047 "orphan inode list. Please " 5048 "umount/remount instead"); 5049 err = -EINVAL; 5050 goto restore_opts; 5051 } 5052 5053 /* 5054 * Mounting a RDONLY partition read-write, so reread 5055 * and store the current valid flag. (It may have 5056 * been changed by e2fsck since we originally mounted 5057 * the partition.) 5058 */ 5059 if (sbi->s_journal) 5060 ext4_clear_journal_err(sb, es); 5061 sbi->s_mount_state = le16_to_cpu(es->s_state); 5062 if (!ext4_setup_super(sb, es, 0)) 5063 sb->s_flags &= ~MS_RDONLY; 5064 if (ext4_has_feature_mmp(sb)) 5065 if (ext4_multi_mount_protect(sb, 5066 le64_to_cpu(es->s_mmp_block))) { 5067 err = -EROFS; 5068 goto restore_opts; 5069 } 5070 enable_quota = 1; 5071 } 5072 } 5073 5074 /* 5075 * Reinitialize lazy itable initialization thread based on 5076 * current settings 5077 */ 5078 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5079 ext4_unregister_li_request(sb); 5080 else { 5081 ext4_group_t first_not_zeroed; 5082 first_not_zeroed = ext4_has_uninit_itable(sb); 5083 ext4_register_li_request(sb, first_not_zeroed); 5084 } 5085 5086 ext4_setup_system_zone(sb); 5087 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5088 ext4_commit_super(sb, 1); 5089 5090 #ifdef CONFIG_QUOTA 5091 /* Release old quota file names */ 5092 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5093 kfree(old_opts.s_qf_names[i]); 5094 if (enable_quota) { 5095 if (sb_any_quota_suspended(sb)) 5096 dquot_resume(sb, -1); 5097 else if (ext4_has_feature_quota(sb)) { 5098 err = ext4_enable_quotas(sb); 5099 if (err) 5100 goto restore_opts; 5101 } 5102 } 5103 #endif 5104 5105 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5106 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5107 kfree(orig_data); 5108 return 0; 5109 5110 restore_opts: 5111 sb->s_flags = old_sb_flags; 5112 sbi->s_mount_opt = old_opts.s_mount_opt; 5113 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5114 sbi->s_resuid = old_opts.s_resuid; 5115 sbi->s_resgid = old_opts.s_resgid; 5116 sbi->s_commit_interval = old_opts.s_commit_interval; 5117 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5118 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5119 #ifdef CONFIG_QUOTA 5120 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5121 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5122 kfree(sbi->s_qf_names[i]); 5123 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5124 } 5125 #endif 5126 kfree(orig_data); 5127 return err; 5128 } 5129 5130 #ifdef CONFIG_QUOTA 5131 static int ext4_statfs_project(struct super_block *sb, 5132 kprojid_t projid, struct kstatfs *buf) 5133 { 5134 struct kqid qid; 5135 struct dquot *dquot; 5136 u64 limit; 5137 u64 curblock; 5138 5139 qid = make_kqid_projid(projid); 5140 dquot = dqget(sb, qid); 5141 if (IS_ERR(dquot)) 5142 return PTR_ERR(dquot); 5143 spin_lock(&dq_data_lock); 5144 5145 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5146 dquot->dq_dqb.dqb_bsoftlimit : 5147 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5148 if (limit && buf->f_blocks > limit) { 5149 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5150 buf->f_blocks = limit; 5151 buf->f_bfree = buf->f_bavail = 5152 (buf->f_blocks > curblock) ? 5153 (buf->f_blocks - curblock) : 0; 5154 } 5155 5156 limit = dquot->dq_dqb.dqb_isoftlimit ? 5157 dquot->dq_dqb.dqb_isoftlimit : 5158 dquot->dq_dqb.dqb_ihardlimit; 5159 if (limit && buf->f_files > limit) { 5160 buf->f_files = limit; 5161 buf->f_ffree = 5162 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5163 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5164 } 5165 5166 spin_unlock(&dq_data_lock); 5167 dqput(dquot); 5168 return 0; 5169 } 5170 #endif 5171 5172 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5173 { 5174 struct super_block *sb = dentry->d_sb; 5175 struct ext4_sb_info *sbi = EXT4_SB(sb); 5176 struct ext4_super_block *es = sbi->s_es; 5177 ext4_fsblk_t overhead = 0, resv_blocks; 5178 u64 fsid; 5179 s64 bfree; 5180 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5181 5182 if (!test_opt(sb, MINIX_DF)) 5183 overhead = sbi->s_overhead; 5184 5185 buf->f_type = EXT4_SUPER_MAGIC; 5186 buf->f_bsize = sb->s_blocksize; 5187 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5188 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5189 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5190 /* prevent underflow in case that few free space is available */ 5191 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5192 buf->f_bavail = buf->f_bfree - 5193 (ext4_r_blocks_count(es) + resv_blocks); 5194 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5195 buf->f_bavail = 0; 5196 buf->f_files = le32_to_cpu(es->s_inodes_count); 5197 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5198 buf->f_namelen = EXT4_NAME_LEN; 5199 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5200 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5201 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5202 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5203 5204 #ifdef CONFIG_QUOTA 5205 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5206 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5207 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5208 #endif 5209 return 0; 5210 } 5211 5212 /* Helper function for writing quotas on sync - we need to start transaction 5213 * before quota file is locked for write. Otherwise the are possible deadlocks: 5214 * Process 1 Process 2 5215 * ext4_create() quota_sync() 5216 * jbd2_journal_start() write_dquot() 5217 * dquot_initialize() down(dqio_mutex) 5218 * down(dqio_mutex) jbd2_journal_start() 5219 * 5220 */ 5221 5222 #ifdef CONFIG_QUOTA 5223 5224 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5225 { 5226 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5227 } 5228 5229 static int ext4_write_dquot(struct dquot *dquot) 5230 { 5231 int ret, err; 5232 handle_t *handle; 5233 struct inode *inode; 5234 5235 inode = dquot_to_inode(dquot); 5236 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5237 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5238 if (IS_ERR(handle)) 5239 return PTR_ERR(handle); 5240 ret = dquot_commit(dquot); 5241 err = ext4_journal_stop(handle); 5242 if (!ret) 5243 ret = err; 5244 return ret; 5245 } 5246 5247 static int ext4_acquire_dquot(struct dquot *dquot) 5248 { 5249 int ret, err; 5250 handle_t *handle; 5251 5252 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5253 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5254 if (IS_ERR(handle)) 5255 return PTR_ERR(handle); 5256 ret = dquot_acquire(dquot); 5257 err = ext4_journal_stop(handle); 5258 if (!ret) 5259 ret = err; 5260 return ret; 5261 } 5262 5263 static int ext4_release_dquot(struct dquot *dquot) 5264 { 5265 int ret, err; 5266 handle_t *handle; 5267 5268 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5269 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5270 if (IS_ERR(handle)) { 5271 /* Release dquot anyway to avoid endless cycle in dqput() */ 5272 dquot_release(dquot); 5273 return PTR_ERR(handle); 5274 } 5275 ret = dquot_release(dquot); 5276 err = ext4_journal_stop(handle); 5277 if (!ret) 5278 ret = err; 5279 return ret; 5280 } 5281 5282 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5283 { 5284 struct super_block *sb = dquot->dq_sb; 5285 struct ext4_sb_info *sbi = EXT4_SB(sb); 5286 5287 /* Are we journaling quotas? */ 5288 if (ext4_has_feature_quota(sb) || 5289 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5290 dquot_mark_dquot_dirty(dquot); 5291 return ext4_write_dquot(dquot); 5292 } else { 5293 return dquot_mark_dquot_dirty(dquot); 5294 } 5295 } 5296 5297 static int ext4_write_info(struct super_block *sb, int type) 5298 { 5299 int ret, err; 5300 handle_t *handle; 5301 5302 /* Data block + inode block */ 5303 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5304 if (IS_ERR(handle)) 5305 return PTR_ERR(handle); 5306 ret = dquot_commit_info(sb, type); 5307 err = ext4_journal_stop(handle); 5308 if (!ret) 5309 ret = err; 5310 return ret; 5311 } 5312 5313 /* 5314 * Turn on quotas during mount time - we need to find 5315 * the quota file and such... 5316 */ 5317 static int ext4_quota_on_mount(struct super_block *sb, int type) 5318 { 5319 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5320 EXT4_SB(sb)->s_jquota_fmt, type); 5321 } 5322 5323 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5324 { 5325 struct ext4_inode_info *ei = EXT4_I(inode); 5326 5327 /* The first argument of lockdep_set_subclass has to be 5328 * *exactly* the same as the argument to init_rwsem() --- in 5329 * this case, in init_once() --- or lockdep gets unhappy 5330 * because the name of the lock is set using the 5331 * stringification of the argument to init_rwsem(). 5332 */ 5333 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5334 lockdep_set_subclass(&ei->i_data_sem, subclass); 5335 } 5336 5337 /* 5338 * Standard function to be called on quota_on 5339 */ 5340 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5341 const struct path *path) 5342 { 5343 int err; 5344 5345 if (!test_opt(sb, QUOTA)) 5346 return -EINVAL; 5347 5348 /* Quotafile not on the same filesystem? */ 5349 if (path->dentry->d_sb != sb) 5350 return -EXDEV; 5351 /* Journaling quota? */ 5352 if (EXT4_SB(sb)->s_qf_names[type]) { 5353 /* Quotafile not in fs root? */ 5354 if (path->dentry->d_parent != sb->s_root) 5355 ext4_msg(sb, KERN_WARNING, 5356 "Quota file not on filesystem root. " 5357 "Journaled quota will not work"); 5358 } 5359 5360 /* 5361 * When we journal data on quota file, we have to flush journal to see 5362 * all updates to the file when we bypass pagecache... 5363 */ 5364 if (EXT4_SB(sb)->s_journal && 5365 ext4_should_journal_data(d_inode(path->dentry))) { 5366 /* 5367 * We don't need to lock updates but journal_flush() could 5368 * otherwise be livelocked... 5369 */ 5370 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5371 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5372 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5373 if (err) 5374 return err; 5375 } 5376 5377 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5378 err = dquot_quota_on(sb, type, format_id, path); 5379 if (err) { 5380 lockdep_set_quota_inode(path->dentry->d_inode, 5381 I_DATA_SEM_NORMAL); 5382 } else { 5383 struct inode *inode = d_inode(path->dentry); 5384 handle_t *handle; 5385 5386 /* 5387 * Set inode flags to prevent userspace from messing with quota 5388 * files. If this fails, we return success anyway since quotas 5389 * are already enabled and this is not a hard failure. 5390 */ 5391 inode_lock(inode); 5392 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5393 if (IS_ERR(handle)) 5394 goto unlock_inode; 5395 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5396 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5397 S_NOATIME | S_IMMUTABLE); 5398 ext4_mark_inode_dirty(handle, inode); 5399 ext4_journal_stop(handle); 5400 unlock_inode: 5401 inode_unlock(inode); 5402 } 5403 return err; 5404 } 5405 5406 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5407 unsigned int flags) 5408 { 5409 int err; 5410 struct inode *qf_inode; 5411 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5412 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5413 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5414 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5415 }; 5416 5417 BUG_ON(!ext4_has_feature_quota(sb)); 5418 5419 if (!qf_inums[type]) 5420 return -EPERM; 5421 5422 qf_inode = ext4_iget(sb, qf_inums[type]); 5423 if (IS_ERR(qf_inode)) { 5424 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5425 return PTR_ERR(qf_inode); 5426 } 5427 5428 /* Don't account quota for quota files to avoid recursion */ 5429 qf_inode->i_flags |= S_NOQUOTA; 5430 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5431 err = dquot_enable(qf_inode, type, format_id, flags); 5432 iput(qf_inode); 5433 if (err) 5434 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5435 5436 return err; 5437 } 5438 5439 /* Enable usage tracking for all quota types. */ 5440 static int ext4_enable_quotas(struct super_block *sb) 5441 { 5442 int type, err = 0; 5443 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5444 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5445 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5446 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5447 }; 5448 bool quota_mopt[EXT4_MAXQUOTAS] = { 5449 test_opt(sb, USRQUOTA), 5450 test_opt(sb, GRPQUOTA), 5451 test_opt(sb, PRJQUOTA), 5452 }; 5453 5454 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5455 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5456 if (qf_inums[type]) { 5457 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5458 DQUOT_USAGE_ENABLED | 5459 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5460 if (err) { 5461 ext4_warning(sb, 5462 "Failed to enable quota tracking " 5463 "(type=%d, err=%d). Please run " 5464 "e2fsck to fix.", type, err); 5465 return err; 5466 } 5467 } 5468 } 5469 return 0; 5470 } 5471 5472 static int ext4_quota_off(struct super_block *sb, int type) 5473 { 5474 struct inode *inode = sb_dqopt(sb)->files[type]; 5475 handle_t *handle; 5476 int err; 5477 5478 /* Force all delayed allocation blocks to be allocated. 5479 * Caller already holds s_umount sem */ 5480 if (test_opt(sb, DELALLOC)) 5481 sync_filesystem(sb); 5482 5483 if (!inode || !igrab(inode)) 5484 goto out; 5485 5486 err = dquot_quota_off(sb, type); 5487 if (err) 5488 goto out_put; 5489 5490 inode_lock(inode); 5491 /* 5492 * Update modification times of quota files when userspace can 5493 * start looking at them. If we fail, we return success anyway since 5494 * this is not a hard failure and quotas are already disabled. 5495 */ 5496 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5497 if (IS_ERR(handle)) 5498 goto out_unlock; 5499 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5500 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5501 inode->i_mtime = inode->i_ctime = current_time(inode); 5502 ext4_mark_inode_dirty(handle, inode); 5503 ext4_journal_stop(handle); 5504 out_unlock: 5505 inode_unlock(inode); 5506 out_put: 5507 iput(inode); 5508 return err; 5509 out: 5510 return dquot_quota_off(sb, type); 5511 } 5512 5513 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5514 * acquiring the locks... As quota files are never truncated and quota code 5515 * itself serializes the operations (and no one else should touch the files) 5516 * we don't have to be afraid of races */ 5517 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5518 size_t len, loff_t off) 5519 { 5520 struct inode *inode = sb_dqopt(sb)->files[type]; 5521 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5522 int offset = off & (sb->s_blocksize - 1); 5523 int tocopy; 5524 size_t toread; 5525 struct buffer_head *bh; 5526 loff_t i_size = i_size_read(inode); 5527 5528 if (off > i_size) 5529 return 0; 5530 if (off+len > i_size) 5531 len = i_size-off; 5532 toread = len; 5533 while (toread > 0) { 5534 tocopy = sb->s_blocksize - offset < toread ? 5535 sb->s_blocksize - offset : toread; 5536 bh = ext4_bread(NULL, inode, blk, 0); 5537 if (IS_ERR(bh)) 5538 return PTR_ERR(bh); 5539 if (!bh) /* A hole? */ 5540 memset(data, 0, tocopy); 5541 else 5542 memcpy(data, bh->b_data+offset, tocopy); 5543 brelse(bh); 5544 offset = 0; 5545 toread -= tocopy; 5546 data += tocopy; 5547 blk++; 5548 } 5549 return len; 5550 } 5551 5552 /* Write to quotafile (we know the transaction is already started and has 5553 * enough credits) */ 5554 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5555 const char *data, size_t len, loff_t off) 5556 { 5557 struct inode *inode = sb_dqopt(sb)->files[type]; 5558 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5559 int err, offset = off & (sb->s_blocksize - 1); 5560 int retries = 0; 5561 struct buffer_head *bh; 5562 handle_t *handle = journal_current_handle(); 5563 5564 if (EXT4_SB(sb)->s_journal && !handle) { 5565 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5566 " cancelled because transaction is not started", 5567 (unsigned long long)off, (unsigned long long)len); 5568 return -EIO; 5569 } 5570 /* 5571 * Since we account only one data block in transaction credits, 5572 * then it is impossible to cross a block boundary. 5573 */ 5574 if (sb->s_blocksize - offset < len) { 5575 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5576 " cancelled because not block aligned", 5577 (unsigned long long)off, (unsigned long long)len); 5578 return -EIO; 5579 } 5580 5581 do { 5582 bh = ext4_bread(handle, inode, blk, 5583 EXT4_GET_BLOCKS_CREATE | 5584 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5585 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5586 ext4_should_retry_alloc(inode->i_sb, &retries)); 5587 if (IS_ERR(bh)) 5588 return PTR_ERR(bh); 5589 if (!bh) 5590 goto out; 5591 BUFFER_TRACE(bh, "get write access"); 5592 err = ext4_journal_get_write_access(handle, bh); 5593 if (err) { 5594 brelse(bh); 5595 return err; 5596 } 5597 lock_buffer(bh); 5598 memcpy(bh->b_data+offset, data, len); 5599 flush_dcache_page(bh->b_page); 5600 unlock_buffer(bh); 5601 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5602 brelse(bh); 5603 out: 5604 if (inode->i_size < off + len) { 5605 i_size_write(inode, off + len); 5606 EXT4_I(inode)->i_disksize = inode->i_size; 5607 ext4_mark_inode_dirty(handle, inode); 5608 } 5609 return len; 5610 } 5611 5612 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5613 { 5614 const struct quota_format_ops *ops; 5615 5616 if (!sb_has_quota_loaded(sb, qid->type)) 5617 return -ESRCH; 5618 ops = sb_dqopt(sb)->ops[qid->type]; 5619 if (!ops || !ops->get_next_id) 5620 return -ENOSYS; 5621 return dquot_get_next_id(sb, qid); 5622 } 5623 #endif 5624 5625 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5626 const char *dev_name, void *data) 5627 { 5628 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5629 } 5630 5631 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5632 static inline void register_as_ext2(void) 5633 { 5634 int err = register_filesystem(&ext2_fs_type); 5635 if (err) 5636 printk(KERN_WARNING 5637 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5638 } 5639 5640 static inline void unregister_as_ext2(void) 5641 { 5642 unregister_filesystem(&ext2_fs_type); 5643 } 5644 5645 static inline int ext2_feature_set_ok(struct super_block *sb) 5646 { 5647 if (ext4_has_unknown_ext2_incompat_features(sb)) 5648 return 0; 5649 if (sb->s_flags & MS_RDONLY) 5650 return 1; 5651 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5652 return 0; 5653 return 1; 5654 } 5655 #else 5656 static inline void register_as_ext2(void) { } 5657 static inline void unregister_as_ext2(void) { } 5658 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5659 #endif 5660 5661 static inline void register_as_ext3(void) 5662 { 5663 int err = register_filesystem(&ext3_fs_type); 5664 if (err) 5665 printk(KERN_WARNING 5666 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5667 } 5668 5669 static inline void unregister_as_ext3(void) 5670 { 5671 unregister_filesystem(&ext3_fs_type); 5672 } 5673 5674 static inline int ext3_feature_set_ok(struct super_block *sb) 5675 { 5676 if (ext4_has_unknown_ext3_incompat_features(sb)) 5677 return 0; 5678 if (!ext4_has_feature_journal(sb)) 5679 return 0; 5680 if (sb->s_flags & MS_RDONLY) 5681 return 1; 5682 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5683 return 0; 5684 return 1; 5685 } 5686 5687 static struct file_system_type ext4_fs_type = { 5688 .owner = THIS_MODULE, 5689 .name = "ext4", 5690 .mount = ext4_mount, 5691 .kill_sb = kill_block_super, 5692 .fs_flags = FS_REQUIRES_DEV, 5693 }; 5694 MODULE_ALIAS_FS("ext4"); 5695 5696 /* Shared across all ext4 file systems */ 5697 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5698 5699 static int __init ext4_init_fs(void) 5700 { 5701 int i, err; 5702 5703 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5704 ext4_li_info = NULL; 5705 mutex_init(&ext4_li_mtx); 5706 5707 /* Build-time check for flags consistency */ 5708 ext4_check_flag_values(); 5709 5710 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5711 init_waitqueue_head(&ext4__ioend_wq[i]); 5712 5713 err = ext4_init_es(); 5714 if (err) 5715 return err; 5716 5717 err = ext4_init_pageio(); 5718 if (err) 5719 goto out5; 5720 5721 err = ext4_init_system_zone(); 5722 if (err) 5723 goto out4; 5724 5725 err = ext4_init_sysfs(); 5726 if (err) 5727 goto out3; 5728 5729 err = ext4_init_mballoc(); 5730 if (err) 5731 goto out2; 5732 err = init_inodecache(); 5733 if (err) 5734 goto out1; 5735 register_as_ext3(); 5736 register_as_ext2(); 5737 err = register_filesystem(&ext4_fs_type); 5738 if (err) 5739 goto out; 5740 5741 return 0; 5742 out: 5743 unregister_as_ext2(); 5744 unregister_as_ext3(); 5745 destroy_inodecache(); 5746 out1: 5747 ext4_exit_mballoc(); 5748 out2: 5749 ext4_exit_sysfs(); 5750 out3: 5751 ext4_exit_system_zone(); 5752 out4: 5753 ext4_exit_pageio(); 5754 out5: 5755 ext4_exit_es(); 5756 5757 return err; 5758 } 5759 5760 static void __exit ext4_exit_fs(void) 5761 { 5762 ext4_destroy_lazyinit_thread(); 5763 unregister_as_ext2(); 5764 unregister_as_ext3(); 5765 unregister_filesystem(&ext4_fs_type); 5766 destroy_inodecache(); 5767 ext4_exit_mballoc(); 5768 ext4_exit_sysfs(); 5769 ext4_exit_system_zone(); 5770 ext4_exit_pageio(); 5771 ext4_exit_es(); 5772 } 5773 5774 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5775 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5776 MODULE_LICENSE("GPL"); 5777 module_init(ext4_init_fs) 5778 module_exit(ext4_exit_fs) 5779