1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 145 return 1; 146 147 return es->s_checksum == ext4_superblock_csum(sb, es); 148 } 149 150 void ext4_superblock_csum_set(struct super_block *sb) 151 { 152 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 153 154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 156 return; 157 158 es->s_checksum = ext4_superblock_csum(sb, es); 159 } 160 161 void *ext4_kvmalloc(size_t size, gfp_t flags) 162 { 163 void *ret; 164 165 ret = kmalloc(size, flags); 166 if (!ret) 167 ret = __vmalloc(size, flags, PAGE_KERNEL); 168 return ret; 169 } 170 171 void *ext4_kvzalloc(size_t size, gfp_t flags) 172 { 173 void *ret; 174 175 ret = kzalloc(size, flags); 176 if (!ret) 177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 178 return ret; 179 } 180 181 void ext4_kvfree(void *ptr) 182 { 183 if (is_vmalloc_addr(ptr)) 184 vfree(ptr); 185 else 186 kfree(ptr); 187 188 } 189 190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 191 struct ext4_group_desc *bg) 192 { 193 return le32_to_cpu(bg->bg_block_bitmap_lo) | 194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 196 } 197 198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 199 struct ext4_group_desc *bg) 200 { 201 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 204 } 205 206 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 207 struct ext4_group_desc *bg) 208 { 209 return le32_to_cpu(bg->bg_inode_table_lo) | 210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 212 } 213 214 __u32 ext4_free_group_clusters(struct super_block *sb, 215 struct ext4_group_desc *bg) 216 { 217 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 220 } 221 222 __u32 ext4_free_inodes_count(struct super_block *sb, 223 struct ext4_group_desc *bg) 224 { 225 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 228 } 229 230 __u32 ext4_used_dirs_count(struct super_block *sb, 231 struct ext4_group_desc *bg) 232 { 233 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 236 } 237 238 __u32 ext4_itable_unused_count(struct super_block *sb, 239 struct ext4_group_desc *bg) 240 { 241 return le16_to_cpu(bg->bg_itable_unused_lo) | 242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 244 } 245 246 void ext4_block_bitmap_set(struct super_block *sb, 247 struct ext4_group_desc *bg, ext4_fsblk_t blk) 248 { 249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 252 } 253 254 void ext4_inode_bitmap_set(struct super_block *sb, 255 struct ext4_group_desc *bg, ext4_fsblk_t blk) 256 { 257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 260 } 261 262 void ext4_inode_table_set(struct super_block *sb, 263 struct ext4_group_desc *bg, ext4_fsblk_t blk) 264 { 265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 268 } 269 270 void ext4_free_group_clusters_set(struct super_block *sb, 271 struct ext4_group_desc *bg, __u32 count) 272 { 273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 276 } 277 278 void ext4_free_inodes_set(struct super_block *sb, 279 struct ext4_group_desc *bg, __u32 count) 280 { 281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 284 } 285 286 void ext4_used_dirs_set(struct super_block *sb, 287 struct ext4_group_desc *bg, __u32 count) 288 { 289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 292 } 293 294 void ext4_itable_unused_set(struct super_block *sb, 295 struct ext4_group_desc *bg, __u32 count) 296 { 297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 300 } 301 302 303 static void __save_error_info(struct super_block *sb, const char *func, 304 unsigned int line) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 310 es->s_last_error_time = cpu_to_le32(get_seconds()); 311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 312 es->s_last_error_line = cpu_to_le32(line); 313 if (!es->s_first_error_time) { 314 es->s_first_error_time = es->s_last_error_time; 315 strncpy(es->s_first_error_func, func, 316 sizeof(es->s_first_error_func)); 317 es->s_first_error_line = cpu_to_le32(line); 318 es->s_first_error_ino = es->s_last_error_ino; 319 es->s_first_error_block = es->s_last_error_block; 320 } 321 /* 322 * Start the daily error reporting function if it hasn't been 323 * started already 324 */ 325 if (!es->s_error_count) 326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 327 le32_add_cpu(&es->s_error_count, 1); 328 } 329 330 static void save_error_info(struct super_block *sb, const char *func, 331 unsigned int line) 332 { 333 __save_error_info(sb, func, line); 334 ext4_commit_super(sb, 1); 335 } 336 337 /* 338 * The del_gendisk() function uninitializes the disk-specific data 339 * structures, including the bdi structure, without telling anyone 340 * else. Once this happens, any attempt to call mark_buffer_dirty() 341 * (for example, by ext4_commit_super), will cause a kernel OOPS. 342 * This is a kludge to prevent these oops until we can put in a proper 343 * hook in del_gendisk() to inform the VFS and file system layers. 344 */ 345 static int block_device_ejected(struct super_block *sb) 346 { 347 struct inode *bd_inode = sb->s_bdev->bd_inode; 348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 349 350 return bdi->dev == NULL; 351 } 352 353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 354 { 355 struct super_block *sb = journal->j_private; 356 struct ext4_sb_info *sbi = EXT4_SB(sb); 357 int error = is_journal_aborted(journal); 358 struct ext4_journal_cb_entry *jce; 359 360 BUG_ON(txn->t_state == T_FINISHED); 361 spin_lock(&sbi->s_md_lock); 362 while (!list_empty(&txn->t_private_list)) { 363 jce = list_entry(txn->t_private_list.next, 364 struct ext4_journal_cb_entry, jce_list); 365 list_del_init(&jce->jce_list); 366 spin_unlock(&sbi->s_md_lock); 367 jce->jce_func(sb, jce, error); 368 spin_lock(&sbi->s_md_lock); 369 } 370 spin_unlock(&sbi->s_md_lock); 371 } 372 373 /* Deal with the reporting of failure conditions on a filesystem such as 374 * inconsistencies detected or read IO failures. 375 * 376 * On ext2, we can store the error state of the filesystem in the 377 * superblock. That is not possible on ext4, because we may have other 378 * write ordering constraints on the superblock which prevent us from 379 * writing it out straight away; and given that the journal is about to 380 * be aborted, we can't rely on the current, or future, transactions to 381 * write out the superblock safely. 382 * 383 * We'll just use the jbd2_journal_abort() error code to record an error in 384 * the journal instead. On recovery, the journal will complain about 385 * that error until we've noted it down and cleared it. 386 */ 387 388 static void ext4_handle_error(struct super_block *sb) 389 { 390 if (sb->s_flags & MS_RDONLY) 391 return; 392 393 if (!test_opt(sb, ERRORS_CONT)) { 394 journal_t *journal = EXT4_SB(sb)->s_journal; 395 396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 397 if (journal) 398 jbd2_journal_abort(journal, -EIO); 399 } 400 if (test_opt(sb, ERRORS_RO)) { 401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 402 /* 403 * Make sure updated value of ->s_mount_flags will be visible 404 * before ->s_flags update 405 */ 406 smp_wmb(); 407 sb->s_flags |= MS_RDONLY; 408 } 409 if (test_opt(sb, ERRORS_PANIC)) 410 panic("EXT4-fs (device %s): panic forced after error\n", 411 sb->s_id); 412 } 413 414 void __ext4_error(struct super_block *sb, const char *function, 415 unsigned int line, const char *fmt, ...) 416 { 417 struct va_format vaf; 418 va_list args; 419 420 va_start(args, fmt); 421 vaf.fmt = fmt; 422 vaf.va = &args; 423 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 424 sb->s_id, function, line, current->comm, &vaf); 425 va_end(args); 426 save_error_info(sb, function, line); 427 428 ext4_handle_error(sb); 429 } 430 431 void __ext4_error_inode(struct inode *inode, const char *function, 432 unsigned int line, ext4_fsblk_t block, 433 const char *fmt, ...) 434 { 435 va_list args; 436 struct va_format vaf; 437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 438 439 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 440 es->s_last_error_block = cpu_to_le64(block); 441 save_error_info(inode->i_sb, function, line); 442 va_start(args, fmt); 443 vaf.fmt = fmt; 444 vaf.va = &args; 445 if (block) 446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 447 "inode #%lu: block %llu: comm %s: %pV\n", 448 inode->i_sb->s_id, function, line, inode->i_ino, 449 block, current->comm, &vaf); 450 else 451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 452 "inode #%lu: comm %s: %pV\n", 453 inode->i_sb->s_id, function, line, inode->i_ino, 454 current->comm, &vaf); 455 va_end(args); 456 457 ext4_handle_error(inode->i_sb); 458 } 459 460 void __ext4_error_file(struct file *file, const char *function, 461 unsigned int line, ext4_fsblk_t block, 462 const char *fmt, ...) 463 { 464 va_list args; 465 struct va_format vaf; 466 struct ext4_super_block *es; 467 struct inode *inode = file_inode(file); 468 char pathname[80], *path; 469 470 es = EXT4_SB(inode->i_sb)->s_es; 471 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 472 save_error_info(inode->i_sb, function, line); 473 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 474 if (IS_ERR(path)) 475 path = "(unknown)"; 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 482 "block %llu: comm %s: path %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 block, current->comm, path, &vaf); 485 else 486 printk(KERN_CRIT 487 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 488 "comm %s: path %s: %pV\n", 489 inode->i_sb->s_id, function, line, inode->i_ino, 490 current->comm, path, &vaf); 491 va_end(args); 492 493 ext4_handle_error(inode->i_sb); 494 } 495 496 const char *ext4_decode_error(struct super_block *sb, int errno, 497 char nbuf[16]) 498 { 499 char *errstr = NULL; 500 501 switch (errno) { 502 case -EIO: 503 errstr = "IO failure"; 504 break; 505 case -ENOMEM: 506 errstr = "Out of memory"; 507 break; 508 case -EROFS: 509 if (!sb || (EXT4_SB(sb)->s_journal && 510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 511 errstr = "Journal has aborted"; 512 else 513 errstr = "Readonly filesystem"; 514 break; 515 default: 516 /* If the caller passed in an extra buffer for unknown 517 * errors, textualise them now. Else we just return 518 * NULL. */ 519 if (nbuf) { 520 /* Check for truncated error codes... */ 521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 522 errstr = nbuf; 523 } 524 break; 525 } 526 527 return errstr; 528 } 529 530 /* __ext4_std_error decodes expected errors from journaling functions 531 * automatically and invokes the appropriate error response. */ 532 533 void __ext4_std_error(struct super_block *sb, const char *function, 534 unsigned int line, int errno) 535 { 536 char nbuf[16]; 537 const char *errstr; 538 539 /* Special case: if the error is EROFS, and we're not already 540 * inside a transaction, then there's really no point in logging 541 * an error. */ 542 if (errno == -EROFS && journal_current_handle() == NULL && 543 (sb->s_flags & MS_RDONLY)) 544 return; 545 546 errstr = ext4_decode_error(sb, errno, nbuf); 547 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 548 sb->s_id, function, line, errstr); 549 save_error_info(sb, function, line); 550 551 ext4_handle_error(sb); 552 } 553 554 /* 555 * ext4_abort is a much stronger failure handler than ext4_error. The 556 * abort function may be used to deal with unrecoverable failures such 557 * as journal IO errors or ENOMEM at a critical moment in log management. 558 * 559 * We unconditionally force the filesystem into an ABORT|READONLY state, 560 * unless the error response on the fs has been set to panic in which 561 * case we take the easy way out and panic immediately. 562 */ 563 564 void __ext4_abort(struct super_block *sb, const char *function, 565 unsigned int line, const char *fmt, ...) 566 { 567 va_list args; 568 569 save_error_info(sb, function, line); 570 va_start(args, fmt); 571 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 572 function, line); 573 vprintk(fmt, args); 574 printk("\n"); 575 va_end(args); 576 577 if ((sb->s_flags & MS_RDONLY) == 0) { 578 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 579 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 580 /* 581 * Make sure updated value of ->s_mount_flags will be visible 582 * before ->s_flags update 583 */ 584 smp_wmb(); 585 sb->s_flags |= MS_RDONLY; 586 if (EXT4_SB(sb)->s_journal) 587 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 588 save_error_info(sb, function, line); 589 } 590 if (test_opt(sb, ERRORS_PANIC)) 591 panic("EXT4-fs panic from previous error\n"); 592 } 593 594 void __ext4_msg(struct super_block *sb, 595 const char *prefix, const char *fmt, ...) 596 { 597 struct va_format vaf; 598 va_list args; 599 600 va_start(args, fmt); 601 vaf.fmt = fmt; 602 vaf.va = &args; 603 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 604 va_end(args); 605 } 606 607 void __ext4_warning(struct super_block *sb, const char *function, 608 unsigned int line, const char *fmt, ...) 609 { 610 struct va_format vaf; 611 va_list args; 612 613 va_start(args, fmt); 614 vaf.fmt = fmt; 615 vaf.va = &args; 616 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 617 sb->s_id, function, line, &vaf); 618 va_end(args); 619 } 620 621 void __ext4_grp_locked_error(const char *function, unsigned int line, 622 struct super_block *sb, ext4_group_t grp, 623 unsigned long ino, ext4_fsblk_t block, 624 const char *fmt, ...) 625 __releases(bitlock) 626 __acquires(bitlock) 627 { 628 struct va_format vaf; 629 va_list args; 630 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 631 632 es->s_last_error_ino = cpu_to_le32(ino); 633 es->s_last_error_block = cpu_to_le64(block); 634 __save_error_info(sb, function, line); 635 636 va_start(args, fmt); 637 638 vaf.fmt = fmt; 639 vaf.va = &args; 640 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 641 sb->s_id, function, line, grp); 642 if (ino) 643 printk(KERN_CONT "inode %lu: ", ino); 644 if (block) 645 printk(KERN_CONT "block %llu:", (unsigned long long) block); 646 printk(KERN_CONT "%pV\n", &vaf); 647 va_end(args); 648 649 if (test_opt(sb, ERRORS_CONT)) { 650 ext4_commit_super(sb, 0); 651 return; 652 } 653 654 ext4_unlock_group(sb, grp); 655 ext4_handle_error(sb); 656 /* 657 * We only get here in the ERRORS_RO case; relocking the group 658 * may be dangerous, but nothing bad will happen since the 659 * filesystem will have already been marked read/only and the 660 * journal has been aborted. We return 1 as a hint to callers 661 * who might what to use the return value from 662 * ext4_grp_locked_error() to distinguish between the 663 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 664 * aggressively from the ext4 function in question, with a 665 * more appropriate error code. 666 */ 667 ext4_lock_group(sb, grp); 668 return; 669 } 670 671 void ext4_update_dynamic_rev(struct super_block *sb) 672 { 673 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 674 675 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 676 return; 677 678 ext4_warning(sb, 679 "updating to rev %d because of new feature flag, " 680 "running e2fsck is recommended", 681 EXT4_DYNAMIC_REV); 682 683 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 684 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 685 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 686 /* leave es->s_feature_*compat flags alone */ 687 /* es->s_uuid will be set by e2fsck if empty */ 688 689 /* 690 * The rest of the superblock fields should be zero, and if not it 691 * means they are likely already in use, so leave them alone. We 692 * can leave it up to e2fsck to clean up any inconsistencies there. 693 */ 694 } 695 696 /* 697 * Open the external journal device 698 */ 699 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 700 { 701 struct block_device *bdev; 702 char b[BDEVNAME_SIZE]; 703 704 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 705 if (IS_ERR(bdev)) 706 goto fail; 707 return bdev; 708 709 fail: 710 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 711 __bdevname(dev, b), PTR_ERR(bdev)); 712 return NULL; 713 } 714 715 /* 716 * Release the journal device 717 */ 718 static void ext4_blkdev_put(struct block_device *bdev) 719 { 720 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 721 } 722 723 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 724 { 725 struct block_device *bdev; 726 bdev = sbi->journal_bdev; 727 if (bdev) { 728 ext4_blkdev_put(bdev); 729 sbi->journal_bdev = NULL; 730 } 731 } 732 733 static inline struct inode *orphan_list_entry(struct list_head *l) 734 { 735 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 736 } 737 738 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 739 { 740 struct list_head *l; 741 742 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 743 le32_to_cpu(sbi->s_es->s_last_orphan)); 744 745 printk(KERN_ERR "sb_info orphan list:\n"); 746 list_for_each(l, &sbi->s_orphan) { 747 struct inode *inode = orphan_list_entry(l); 748 printk(KERN_ERR " " 749 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 750 inode->i_sb->s_id, inode->i_ino, inode, 751 inode->i_mode, inode->i_nlink, 752 NEXT_ORPHAN(inode)); 753 } 754 } 755 756 static void ext4_put_super(struct super_block *sb) 757 { 758 struct ext4_sb_info *sbi = EXT4_SB(sb); 759 struct ext4_super_block *es = sbi->s_es; 760 int i, err; 761 762 ext4_unregister_li_request(sb); 763 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 764 765 flush_workqueue(sbi->unrsv_conversion_wq); 766 flush_workqueue(sbi->rsv_conversion_wq); 767 destroy_workqueue(sbi->unrsv_conversion_wq); 768 destroy_workqueue(sbi->rsv_conversion_wq); 769 770 if (sbi->s_journal) { 771 err = jbd2_journal_destroy(sbi->s_journal); 772 sbi->s_journal = NULL; 773 if (err < 0) 774 ext4_abort(sb, "Couldn't clean up the journal"); 775 } 776 777 ext4_es_unregister_shrinker(sbi); 778 del_timer(&sbi->s_err_report); 779 ext4_release_system_zone(sb); 780 ext4_mb_release(sb); 781 ext4_ext_release(sb); 782 ext4_xattr_put_super(sb); 783 784 if (!(sb->s_flags & MS_RDONLY)) { 785 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 786 es->s_state = cpu_to_le16(sbi->s_mount_state); 787 } 788 if (!(sb->s_flags & MS_RDONLY)) 789 ext4_commit_super(sb, 1); 790 791 if (sbi->s_proc) { 792 remove_proc_entry("options", sbi->s_proc); 793 remove_proc_entry(sb->s_id, ext4_proc_root); 794 } 795 kobject_del(&sbi->s_kobj); 796 797 for (i = 0; i < sbi->s_gdb_count; i++) 798 brelse(sbi->s_group_desc[i]); 799 ext4_kvfree(sbi->s_group_desc); 800 ext4_kvfree(sbi->s_flex_groups); 801 percpu_counter_destroy(&sbi->s_freeclusters_counter); 802 percpu_counter_destroy(&sbi->s_freeinodes_counter); 803 percpu_counter_destroy(&sbi->s_dirs_counter); 804 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 805 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 806 brelse(sbi->s_sbh); 807 #ifdef CONFIG_QUOTA 808 for (i = 0; i < MAXQUOTAS; i++) 809 kfree(sbi->s_qf_names[i]); 810 #endif 811 812 /* Debugging code just in case the in-memory inode orphan list 813 * isn't empty. The on-disk one can be non-empty if we've 814 * detected an error and taken the fs readonly, but the 815 * in-memory list had better be clean by this point. */ 816 if (!list_empty(&sbi->s_orphan)) 817 dump_orphan_list(sb, sbi); 818 J_ASSERT(list_empty(&sbi->s_orphan)); 819 820 invalidate_bdev(sb->s_bdev); 821 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 822 /* 823 * Invalidate the journal device's buffers. We don't want them 824 * floating about in memory - the physical journal device may 825 * hotswapped, and it breaks the `ro-after' testing code. 826 */ 827 sync_blockdev(sbi->journal_bdev); 828 invalidate_bdev(sbi->journal_bdev); 829 ext4_blkdev_remove(sbi); 830 } 831 if (sbi->s_mmp_tsk) 832 kthread_stop(sbi->s_mmp_tsk); 833 sb->s_fs_info = NULL; 834 /* 835 * Now that we are completely done shutting down the 836 * superblock, we need to actually destroy the kobject. 837 */ 838 kobject_put(&sbi->s_kobj); 839 wait_for_completion(&sbi->s_kobj_unregister); 840 if (sbi->s_chksum_driver) 841 crypto_free_shash(sbi->s_chksum_driver); 842 kfree(sbi->s_blockgroup_lock); 843 kfree(sbi); 844 } 845 846 static struct kmem_cache *ext4_inode_cachep; 847 848 /* 849 * Called inside transaction, so use GFP_NOFS 850 */ 851 static struct inode *ext4_alloc_inode(struct super_block *sb) 852 { 853 struct ext4_inode_info *ei; 854 855 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 856 if (!ei) 857 return NULL; 858 859 ei->vfs_inode.i_version = 1; 860 INIT_LIST_HEAD(&ei->i_prealloc_list); 861 spin_lock_init(&ei->i_prealloc_lock); 862 ext4_es_init_tree(&ei->i_es_tree); 863 rwlock_init(&ei->i_es_lock); 864 INIT_LIST_HEAD(&ei->i_es_lru); 865 ei->i_es_lru_nr = 0; 866 ei->i_touch_when = 0; 867 ei->i_reserved_data_blocks = 0; 868 ei->i_reserved_meta_blocks = 0; 869 ei->i_allocated_meta_blocks = 0; 870 ei->i_da_metadata_calc_len = 0; 871 ei->i_da_metadata_calc_last_lblock = 0; 872 spin_lock_init(&(ei->i_block_reservation_lock)); 873 #ifdef CONFIG_QUOTA 874 ei->i_reserved_quota = 0; 875 #endif 876 ei->jinode = NULL; 877 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 878 INIT_LIST_HEAD(&ei->i_unrsv_conversion_list); 879 spin_lock_init(&ei->i_completed_io_lock); 880 ei->i_sync_tid = 0; 881 ei->i_datasync_tid = 0; 882 atomic_set(&ei->i_ioend_count, 0); 883 atomic_set(&ei->i_unwritten, 0); 884 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 885 INIT_WORK(&ei->i_unrsv_conversion_work, ext4_end_io_unrsv_work); 886 887 return &ei->vfs_inode; 888 } 889 890 static int ext4_drop_inode(struct inode *inode) 891 { 892 int drop = generic_drop_inode(inode); 893 894 trace_ext4_drop_inode(inode, drop); 895 return drop; 896 } 897 898 static void ext4_i_callback(struct rcu_head *head) 899 { 900 struct inode *inode = container_of(head, struct inode, i_rcu); 901 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 902 } 903 904 static void ext4_destroy_inode(struct inode *inode) 905 { 906 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 907 ext4_msg(inode->i_sb, KERN_ERR, 908 "Inode %lu (%p): orphan list check failed!", 909 inode->i_ino, EXT4_I(inode)); 910 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 911 EXT4_I(inode), sizeof(struct ext4_inode_info), 912 true); 913 dump_stack(); 914 } 915 call_rcu(&inode->i_rcu, ext4_i_callback); 916 } 917 918 static void init_once(void *foo) 919 { 920 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 921 922 INIT_LIST_HEAD(&ei->i_orphan); 923 init_rwsem(&ei->xattr_sem); 924 init_rwsem(&ei->i_data_sem); 925 inode_init_once(&ei->vfs_inode); 926 } 927 928 static int init_inodecache(void) 929 { 930 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 931 sizeof(struct ext4_inode_info), 932 0, (SLAB_RECLAIM_ACCOUNT| 933 SLAB_MEM_SPREAD), 934 init_once); 935 if (ext4_inode_cachep == NULL) 936 return -ENOMEM; 937 return 0; 938 } 939 940 static void destroy_inodecache(void) 941 { 942 /* 943 * Make sure all delayed rcu free inodes are flushed before we 944 * destroy cache. 945 */ 946 rcu_barrier(); 947 kmem_cache_destroy(ext4_inode_cachep); 948 } 949 950 void ext4_clear_inode(struct inode *inode) 951 { 952 invalidate_inode_buffers(inode); 953 clear_inode(inode); 954 dquot_drop(inode); 955 ext4_discard_preallocations(inode); 956 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 957 ext4_es_lru_del(inode); 958 if (EXT4_I(inode)->jinode) { 959 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 960 EXT4_I(inode)->jinode); 961 jbd2_free_inode(EXT4_I(inode)->jinode); 962 EXT4_I(inode)->jinode = NULL; 963 } 964 } 965 966 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 967 u64 ino, u32 generation) 968 { 969 struct inode *inode; 970 971 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 972 return ERR_PTR(-ESTALE); 973 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 974 return ERR_PTR(-ESTALE); 975 976 /* iget isn't really right if the inode is currently unallocated!! 977 * 978 * ext4_read_inode will return a bad_inode if the inode had been 979 * deleted, so we should be safe. 980 * 981 * Currently we don't know the generation for parent directory, so 982 * a generation of 0 means "accept any" 983 */ 984 inode = ext4_iget(sb, ino); 985 if (IS_ERR(inode)) 986 return ERR_CAST(inode); 987 if (generation && inode->i_generation != generation) { 988 iput(inode); 989 return ERR_PTR(-ESTALE); 990 } 991 992 return inode; 993 } 994 995 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 996 int fh_len, int fh_type) 997 { 998 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 999 ext4_nfs_get_inode); 1000 } 1001 1002 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1003 int fh_len, int fh_type) 1004 { 1005 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1006 ext4_nfs_get_inode); 1007 } 1008 1009 /* 1010 * Try to release metadata pages (indirect blocks, directories) which are 1011 * mapped via the block device. Since these pages could have journal heads 1012 * which would prevent try_to_free_buffers() from freeing them, we must use 1013 * jbd2 layer's try_to_free_buffers() function to release them. 1014 */ 1015 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1016 gfp_t wait) 1017 { 1018 journal_t *journal = EXT4_SB(sb)->s_journal; 1019 1020 WARN_ON(PageChecked(page)); 1021 if (!page_has_buffers(page)) 1022 return 0; 1023 if (journal) 1024 return jbd2_journal_try_to_free_buffers(journal, page, 1025 wait & ~__GFP_WAIT); 1026 return try_to_free_buffers(page); 1027 } 1028 1029 #ifdef CONFIG_QUOTA 1030 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1031 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1032 1033 static int ext4_write_dquot(struct dquot *dquot); 1034 static int ext4_acquire_dquot(struct dquot *dquot); 1035 static int ext4_release_dquot(struct dquot *dquot); 1036 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1037 static int ext4_write_info(struct super_block *sb, int type); 1038 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1039 struct path *path); 1040 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1041 int format_id); 1042 static int ext4_quota_off(struct super_block *sb, int type); 1043 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1044 static int ext4_quota_on_mount(struct super_block *sb, int type); 1045 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1046 size_t len, loff_t off); 1047 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1048 const char *data, size_t len, loff_t off); 1049 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1050 unsigned int flags); 1051 static int ext4_enable_quotas(struct super_block *sb); 1052 1053 static const struct dquot_operations ext4_quota_operations = { 1054 .get_reserved_space = ext4_get_reserved_space, 1055 .write_dquot = ext4_write_dquot, 1056 .acquire_dquot = ext4_acquire_dquot, 1057 .release_dquot = ext4_release_dquot, 1058 .mark_dirty = ext4_mark_dquot_dirty, 1059 .write_info = ext4_write_info, 1060 .alloc_dquot = dquot_alloc, 1061 .destroy_dquot = dquot_destroy, 1062 }; 1063 1064 static const struct quotactl_ops ext4_qctl_operations = { 1065 .quota_on = ext4_quota_on, 1066 .quota_off = ext4_quota_off, 1067 .quota_sync = dquot_quota_sync, 1068 .get_info = dquot_get_dqinfo, 1069 .set_info = dquot_set_dqinfo, 1070 .get_dqblk = dquot_get_dqblk, 1071 .set_dqblk = dquot_set_dqblk 1072 }; 1073 1074 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1075 .quota_on_meta = ext4_quota_on_sysfile, 1076 .quota_off = ext4_quota_off_sysfile, 1077 .quota_sync = dquot_quota_sync, 1078 .get_info = dquot_get_dqinfo, 1079 .set_info = dquot_set_dqinfo, 1080 .get_dqblk = dquot_get_dqblk, 1081 .set_dqblk = dquot_set_dqblk 1082 }; 1083 #endif 1084 1085 static const struct super_operations ext4_sops = { 1086 .alloc_inode = ext4_alloc_inode, 1087 .destroy_inode = ext4_destroy_inode, 1088 .write_inode = ext4_write_inode, 1089 .dirty_inode = ext4_dirty_inode, 1090 .drop_inode = ext4_drop_inode, 1091 .evict_inode = ext4_evict_inode, 1092 .put_super = ext4_put_super, 1093 .sync_fs = ext4_sync_fs, 1094 .freeze_fs = ext4_freeze, 1095 .unfreeze_fs = ext4_unfreeze, 1096 .statfs = ext4_statfs, 1097 .remount_fs = ext4_remount, 1098 .show_options = ext4_show_options, 1099 #ifdef CONFIG_QUOTA 1100 .quota_read = ext4_quota_read, 1101 .quota_write = ext4_quota_write, 1102 #endif 1103 .bdev_try_to_free_page = bdev_try_to_free_page, 1104 }; 1105 1106 static const struct super_operations ext4_nojournal_sops = { 1107 .alloc_inode = ext4_alloc_inode, 1108 .destroy_inode = ext4_destroy_inode, 1109 .write_inode = ext4_write_inode, 1110 .dirty_inode = ext4_dirty_inode, 1111 .drop_inode = ext4_drop_inode, 1112 .evict_inode = ext4_evict_inode, 1113 .sync_fs = ext4_sync_fs_nojournal, 1114 .put_super = ext4_put_super, 1115 .statfs = ext4_statfs, 1116 .remount_fs = ext4_remount, 1117 .show_options = ext4_show_options, 1118 #ifdef CONFIG_QUOTA 1119 .quota_read = ext4_quota_read, 1120 .quota_write = ext4_quota_write, 1121 #endif 1122 .bdev_try_to_free_page = bdev_try_to_free_page, 1123 }; 1124 1125 static const struct export_operations ext4_export_ops = { 1126 .fh_to_dentry = ext4_fh_to_dentry, 1127 .fh_to_parent = ext4_fh_to_parent, 1128 .get_parent = ext4_get_parent, 1129 }; 1130 1131 enum { 1132 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1133 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1134 Opt_nouid32, Opt_debug, Opt_removed, 1135 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1136 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1137 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1138 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1139 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1140 Opt_data_err_abort, Opt_data_err_ignore, 1141 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1142 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1143 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1144 Opt_usrquota, Opt_grpquota, Opt_i_version, 1145 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1146 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1147 Opt_inode_readahead_blks, Opt_journal_ioprio, 1148 Opt_dioread_nolock, Opt_dioread_lock, 1149 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1150 Opt_max_dir_size_kb, 1151 }; 1152 1153 static const match_table_t tokens = { 1154 {Opt_bsd_df, "bsddf"}, 1155 {Opt_minix_df, "minixdf"}, 1156 {Opt_grpid, "grpid"}, 1157 {Opt_grpid, "bsdgroups"}, 1158 {Opt_nogrpid, "nogrpid"}, 1159 {Opt_nogrpid, "sysvgroups"}, 1160 {Opt_resgid, "resgid=%u"}, 1161 {Opt_resuid, "resuid=%u"}, 1162 {Opt_sb, "sb=%u"}, 1163 {Opt_err_cont, "errors=continue"}, 1164 {Opt_err_panic, "errors=panic"}, 1165 {Opt_err_ro, "errors=remount-ro"}, 1166 {Opt_nouid32, "nouid32"}, 1167 {Opt_debug, "debug"}, 1168 {Opt_removed, "oldalloc"}, 1169 {Opt_removed, "orlov"}, 1170 {Opt_user_xattr, "user_xattr"}, 1171 {Opt_nouser_xattr, "nouser_xattr"}, 1172 {Opt_acl, "acl"}, 1173 {Opt_noacl, "noacl"}, 1174 {Opt_noload, "norecovery"}, 1175 {Opt_noload, "noload"}, 1176 {Opt_removed, "nobh"}, 1177 {Opt_removed, "bh"}, 1178 {Opt_commit, "commit=%u"}, 1179 {Opt_min_batch_time, "min_batch_time=%u"}, 1180 {Opt_max_batch_time, "max_batch_time=%u"}, 1181 {Opt_journal_dev, "journal_dev=%u"}, 1182 {Opt_journal_checksum, "journal_checksum"}, 1183 {Opt_journal_async_commit, "journal_async_commit"}, 1184 {Opt_abort, "abort"}, 1185 {Opt_data_journal, "data=journal"}, 1186 {Opt_data_ordered, "data=ordered"}, 1187 {Opt_data_writeback, "data=writeback"}, 1188 {Opt_data_err_abort, "data_err=abort"}, 1189 {Opt_data_err_ignore, "data_err=ignore"}, 1190 {Opt_offusrjquota, "usrjquota="}, 1191 {Opt_usrjquota, "usrjquota=%s"}, 1192 {Opt_offgrpjquota, "grpjquota="}, 1193 {Opt_grpjquota, "grpjquota=%s"}, 1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1197 {Opt_grpquota, "grpquota"}, 1198 {Opt_noquota, "noquota"}, 1199 {Opt_quota, "quota"}, 1200 {Opt_usrquota, "usrquota"}, 1201 {Opt_barrier, "barrier=%u"}, 1202 {Opt_barrier, "barrier"}, 1203 {Opt_nobarrier, "nobarrier"}, 1204 {Opt_i_version, "i_version"}, 1205 {Opt_stripe, "stripe=%u"}, 1206 {Opt_delalloc, "delalloc"}, 1207 {Opt_nodelalloc, "nodelalloc"}, 1208 {Opt_removed, "mblk_io_submit"}, 1209 {Opt_removed, "nomblk_io_submit"}, 1210 {Opt_block_validity, "block_validity"}, 1211 {Opt_noblock_validity, "noblock_validity"}, 1212 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1213 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1214 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1215 {Opt_auto_da_alloc, "auto_da_alloc"}, 1216 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1217 {Opt_dioread_nolock, "dioread_nolock"}, 1218 {Opt_dioread_lock, "dioread_lock"}, 1219 {Opt_discard, "discard"}, 1220 {Opt_nodiscard, "nodiscard"}, 1221 {Opt_init_itable, "init_itable=%u"}, 1222 {Opt_init_itable, "init_itable"}, 1223 {Opt_noinit_itable, "noinit_itable"}, 1224 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1225 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1226 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1227 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1228 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1229 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1230 {Opt_err, NULL}, 1231 }; 1232 1233 static ext4_fsblk_t get_sb_block(void **data) 1234 { 1235 ext4_fsblk_t sb_block; 1236 char *options = (char *) *data; 1237 1238 if (!options || strncmp(options, "sb=", 3) != 0) 1239 return 1; /* Default location */ 1240 1241 options += 3; 1242 /* TODO: use simple_strtoll with >32bit ext4 */ 1243 sb_block = simple_strtoul(options, &options, 0); 1244 if (*options && *options != ',') { 1245 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1246 (char *) *data); 1247 return 1; 1248 } 1249 if (*options == ',') 1250 options++; 1251 *data = (void *) options; 1252 1253 return sb_block; 1254 } 1255 1256 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1257 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1258 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1259 1260 #ifdef CONFIG_QUOTA 1261 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1262 { 1263 struct ext4_sb_info *sbi = EXT4_SB(sb); 1264 char *qname; 1265 int ret = -1; 1266 1267 if (sb_any_quota_loaded(sb) && 1268 !sbi->s_qf_names[qtype]) { 1269 ext4_msg(sb, KERN_ERR, 1270 "Cannot change journaled " 1271 "quota options when quota turned on"); 1272 return -1; 1273 } 1274 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1275 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1276 "when QUOTA feature is enabled"); 1277 return -1; 1278 } 1279 qname = match_strdup(args); 1280 if (!qname) { 1281 ext4_msg(sb, KERN_ERR, 1282 "Not enough memory for storing quotafile name"); 1283 return -1; 1284 } 1285 if (sbi->s_qf_names[qtype]) { 1286 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1287 ret = 1; 1288 else 1289 ext4_msg(sb, KERN_ERR, 1290 "%s quota file already specified", 1291 QTYPE2NAME(qtype)); 1292 goto errout; 1293 } 1294 if (strchr(qname, '/')) { 1295 ext4_msg(sb, KERN_ERR, 1296 "quotafile must be on filesystem root"); 1297 goto errout; 1298 } 1299 sbi->s_qf_names[qtype] = qname; 1300 set_opt(sb, QUOTA); 1301 return 1; 1302 errout: 1303 kfree(qname); 1304 return ret; 1305 } 1306 1307 static int clear_qf_name(struct super_block *sb, int qtype) 1308 { 1309 1310 struct ext4_sb_info *sbi = EXT4_SB(sb); 1311 1312 if (sb_any_quota_loaded(sb) && 1313 sbi->s_qf_names[qtype]) { 1314 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1315 " when quota turned on"); 1316 return -1; 1317 } 1318 kfree(sbi->s_qf_names[qtype]); 1319 sbi->s_qf_names[qtype] = NULL; 1320 return 1; 1321 } 1322 #endif 1323 1324 #define MOPT_SET 0x0001 1325 #define MOPT_CLEAR 0x0002 1326 #define MOPT_NOSUPPORT 0x0004 1327 #define MOPT_EXPLICIT 0x0008 1328 #define MOPT_CLEAR_ERR 0x0010 1329 #define MOPT_GTE0 0x0020 1330 #ifdef CONFIG_QUOTA 1331 #define MOPT_Q 0 1332 #define MOPT_QFMT 0x0040 1333 #else 1334 #define MOPT_Q MOPT_NOSUPPORT 1335 #define MOPT_QFMT MOPT_NOSUPPORT 1336 #endif 1337 #define MOPT_DATAJ 0x0080 1338 #define MOPT_NO_EXT2 0x0100 1339 #define MOPT_NO_EXT3 0x0200 1340 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1341 1342 static const struct mount_opts { 1343 int token; 1344 int mount_opt; 1345 int flags; 1346 } ext4_mount_opts[] = { 1347 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1348 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1349 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1350 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1351 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1352 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1353 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1354 MOPT_EXT4_ONLY | MOPT_SET}, 1355 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1356 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1357 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1358 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1359 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1360 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1361 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1362 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT}, 1363 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1364 MOPT_EXT4_ONLY | MOPT_SET}, 1365 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1366 EXT4_MOUNT_JOURNAL_CHECKSUM), 1367 MOPT_EXT4_ONLY | MOPT_SET}, 1368 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1369 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1370 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1371 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1372 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1373 MOPT_NO_EXT2 | MOPT_SET}, 1374 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1375 MOPT_NO_EXT2 | MOPT_CLEAR}, 1376 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1377 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1378 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1379 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1380 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1381 {Opt_commit, 0, MOPT_GTE0}, 1382 {Opt_max_batch_time, 0, MOPT_GTE0}, 1383 {Opt_min_batch_time, 0, MOPT_GTE0}, 1384 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1385 {Opt_init_itable, 0, MOPT_GTE0}, 1386 {Opt_stripe, 0, MOPT_GTE0}, 1387 {Opt_resuid, 0, MOPT_GTE0}, 1388 {Opt_resgid, 0, MOPT_GTE0}, 1389 {Opt_journal_dev, 0, MOPT_GTE0}, 1390 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1391 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1392 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1393 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1394 MOPT_NO_EXT2 | MOPT_DATAJ}, 1395 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1396 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1397 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1398 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1399 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1400 #else 1401 {Opt_acl, 0, MOPT_NOSUPPORT}, 1402 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1403 #endif 1404 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1405 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1406 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1407 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1408 MOPT_SET | MOPT_Q}, 1409 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1410 MOPT_SET | MOPT_Q}, 1411 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1412 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1413 {Opt_usrjquota, 0, MOPT_Q}, 1414 {Opt_grpjquota, 0, MOPT_Q}, 1415 {Opt_offusrjquota, 0, MOPT_Q}, 1416 {Opt_offgrpjquota, 0, MOPT_Q}, 1417 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1418 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1419 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1420 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1421 {Opt_err, 0, 0} 1422 }; 1423 1424 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1425 substring_t *args, unsigned long *journal_devnum, 1426 unsigned int *journal_ioprio, int is_remount) 1427 { 1428 struct ext4_sb_info *sbi = EXT4_SB(sb); 1429 const struct mount_opts *m; 1430 kuid_t uid; 1431 kgid_t gid; 1432 int arg = 0; 1433 1434 #ifdef CONFIG_QUOTA 1435 if (token == Opt_usrjquota) 1436 return set_qf_name(sb, USRQUOTA, &args[0]); 1437 else if (token == Opt_grpjquota) 1438 return set_qf_name(sb, GRPQUOTA, &args[0]); 1439 else if (token == Opt_offusrjquota) 1440 return clear_qf_name(sb, USRQUOTA); 1441 else if (token == Opt_offgrpjquota) 1442 return clear_qf_name(sb, GRPQUOTA); 1443 #endif 1444 switch (token) { 1445 case Opt_noacl: 1446 case Opt_nouser_xattr: 1447 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1448 break; 1449 case Opt_sb: 1450 return 1; /* handled by get_sb_block() */ 1451 case Opt_removed: 1452 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1453 return 1; 1454 case Opt_abort: 1455 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1456 return 1; 1457 case Opt_i_version: 1458 sb->s_flags |= MS_I_VERSION; 1459 return 1; 1460 } 1461 1462 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1463 if (token == m->token) 1464 break; 1465 1466 if (m->token == Opt_err) { 1467 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1468 "or missing value", opt); 1469 return -1; 1470 } 1471 1472 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1473 ext4_msg(sb, KERN_ERR, 1474 "Mount option \"%s\" incompatible with ext2", opt); 1475 return -1; 1476 } 1477 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1478 ext4_msg(sb, KERN_ERR, 1479 "Mount option \"%s\" incompatible with ext3", opt); 1480 return -1; 1481 } 1482 1483 if (args->from && match_int(args, &arg)) 1484 return -1; 1485 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1486 return -1; 1487 if (m->flags & MOPT_EXPLICIT) 1488 set_opt2(sb, EXPLICIT_DELALLOC); 1489 if (m->flags & MOPT_CLEAR_ERR) 1490 clear_opt(sb, ERRORS_MASK); 1491 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1492 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1493 "options when quota turned on"); 1494 return -1; 1495 } 1496 1497 if (m->flags & MOPT_NOSUPPORT) { 1498 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1499 } else if (token == Opt_commit) { 1500 if (arg == 0) 1501 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1502 sbi->s_commit_interval = HZ * arg; 1503 } else if (token == Opt_max_batch_time) { 1504 if (arg == 0) 1505 arg = EXT4_DEF_MAX_BATCH_TIME; 1506 sbi->s_max_batch_time = arg; 1507 } else if (token == Opt_min_batch_time) { 1508 sbi->s_min_batch_time = arg; 1509 } else if (token == Opt_inode_readahead_blks) { 1510 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1511 ext4_msg(sb, KERN_ERR, 1512 "EXT4-fs: inode_readahead_blks must be " 1513 "0 or a power of 2 smaller than 2^31"); 1514 return -1; 1515 } 1516 sbi->s_inode_readahead_blks = arg; 1517 } else if (token == Opt_init_itable) { 1518 set_opt(sb, INIT_INODE_TABLE); 1519 if (!args->from) 1520 arg = EXT4_DEF_LI_WAIT_MULT; 1521 sbi->s_li_wait_mult = arg; 1522 } else if (token == Opt_max_dir_size_kb) { 1523 sbi->s_max_dir_size_kb = arg; 1524 } else if (token == Opt_stripe) { 1525 sbi->s_stripe = arg; 1526 } else if (token == Opt_resuid) { 1527 uid = make_kuid(current_user_ns(), arg); 1528 if (!uid_valid(uid)) { 1529 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1530 return -1; 1531 } 1532 sbi->s_resuid = uid; 1533 } else if (token == Opt_resgid) { 1534 gid = make_kgid(current_user_ns(), arg); 1535 if (!gid_valid(gid)) { 1536 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1537 return -1; 1538 } 1539 sbi->s_resgid = gid; 1540 } else if (token == Opt_journal_dev) { 1541 if (is_remount) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Cannot specify journal on remount"); 1544 return -1; 1545 } 1546 *journal_devnum = arg; 1547 } else if (token == Opt_journal_ioprio) { 1548 if (arg > 7) { 1549 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1550 " (must be 0-7)"); 1551 return -1; 1552 } 1553 *journal_ioprio = 1554 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1555 } else if (m->flags & MOPT_DATAJ) { 1556 if (is_remount) { 1557 if (!sbi->s_journal) 1558 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1559 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1560 ext4_msg(sb, KERN_ERR, 1561 "Cannot change data mode on remount"); 1562 return -1; 1563 } 1564 } else { 1565 clear_opt(sb, DATA_FLAGS); 1566 sbi->s_mount_opt |= m->mount_opt; 1567 } 1568 #ifdef CONFIG_QUOTA 1569 } else if (m->flags & MOPT_QFMT) { 1570 if (sb_any_quota_loaded(sb) && 1571 sbi->s_jquota_fmt != m->mount_opt) { 1572 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1573 "quota options when quota turned on"); 1574 return -1; 1575 } 1576 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1577 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1578 ext4_msg(sb, KERN_ERR, 1579 "Cannot set journaled quota options " 1580 "when QUOTA feature is enabled"); 1581 return -1; 1582 } 1583 sbi->s_jquota_fmt = m->mount_opt; 1584 #endif 1585 } else { 1586 if (!args->from) 1587 arg = 1; 1588 if (m->flags & MOPT_CLEAR) 1589 arg = !arg; 1590 else if (unlikely(!(m->flags & MOPT_SET))) { 1591 ext4_msg(sb, KERN_WARNING, 1592 "buggy handling of option %s", opt); 1593 WARN_ON(1); 1594 return -1; 1595 } 1596 if (arg != 0) 1597 sbi->s_mount_opt |= m->mount_opt; 1598 else 1599 sbi->s_mount_opt &= ~m->mount_opt; 1600 } 1601 return 1; 1602 } 1603 1604 static int parse_options(char *options, struct super_block *sb, 1605 unsigned long *journal_devnum, 1606 unsigned int *journal_ioprio, 1607 int is_remount) 1608 { 1609 struct ext4_sb_info *sbi = EXT4_SB(sb); 1610 char *p; 1611 substring_t args[MAX_OPT_ARGS]; 1612 int token; 1613 1614 if (!options) 1615 return 1; 1616 1617 while ((p = strsep(&options, ",")) != NULL) { 1618 if (!*p) 1619 continue; 1620 /* 1621 * Initialize args struct so we know whether arg was 1622 * found; some options take optional arguments. 1623 */ 1624 args[0].to = args[0].from = NULL; 1625 token = match_token(p, tokens, args); 1626 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1627 journal_ioprio, is_remount) < 0) 1628 return 0; 1629 } 1630 #ifdef CONFIG_QUOTA 1631 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1632 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1633 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1634 "feature is enabled"); 1635 return 0; 1636 } 1637 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1638 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1639 clear_opt(sb, USRQUOTA); 1640 1641 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1642 clear_opt(sb, GRPQUOTA); 1643 1644 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1645 ext4_msg(sb, KERN_ERR, "old and new quota " 1646 "format mixing"); 1647 return 0; 1648 } 1649 1650 if (!sbi->s_jquota_fmt) { 1651 ext4_msg(sb, KERN_ERR, "journaled quota format " 1652 "not specified"); 1653 return 0; 1654 } 1655 } else { 1656 if (sbi->s_jquota_fmt) { 1657 ext4_msg(sb, KERN_ERR, "journaled quota format " 1658 "specified with no journaling " 1659 "enabled"); 1660 return 0; 1661 } 1662 } 1663 #endif 1664 if (test_opt(sb, DIOREAD_NOLOCK)) { 1665 int blocksize = 1666 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1667 1668 if (blocksize < PAGE_CACHE_SIZE) { 1669 ext4_msg(sb, KERN_ERR, "can't mount with " 1670 "dioread_nolock if block size != PAGE_SIZE"); 1671 return 0; 1672 } 1673 } 1674 return 1; 1675 } 1676 1677 static inline void ext4_show_quota_options(struct seq_file *seq, 1678 struct super_block *sb) 1679 { 1680 #if defined(CONFIG_QUOTA) 1681 struct ext4_sb_info *sbi = EXT4_SB(sb); 1682 1683 if (sbi->s_jquota_fmt) { 1684 char *fmtname = ""; 1685 1686 switch (sbi->s_jquota_fmt) { 1687 case QFMT_VFS_OLD: 1688 fmtname = "vfsold"; 1689 break; 1690 case QFMT_VFS_V0: 1691 fmtname = "vfsv0"; 1692 break; 1693 case QFMT_VFS_V1: 1694 fmtname = "vfsv1"; 1695 break; 1696 } 1697 seq_printf(seq, ",jqfmt=%s", fmtname); 1698 } 1699 1700 if (sbi->s_qf_names[USRQUOTA]) 1701 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1702 1703 if (sbi->s_qf_names[GRPQUOTA]) 1704 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1705 1706 if (test_opt(sb, USRQUOTA)) 1707 seq_puts(seq, ",usrquota"); 1708 1709 if (test_opt(sb, GRPQUOTA)) 1710 seq_puts(seq, ",grpquota"); 1711 #endif 1712 } 1713 1714 static const char *token2str(int token) 1715 { 1716 const struct match_token *t; 1717 1718 for (t = tokens; t->token != Opt_err; t++) 1719 if (t->token == token && !strchr(t->pattern, '=')) 1720 break; 1721 return t->pattern; 1722 } 1723 1724 /* 1725 * Show an option if 1726 * - it's set to a non-default value OR 1727 * - if the per-sb default is different from the global default 1728 */ 1729 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1730 int nodefs) 1731 { 1732 struct ext4_sb_info *sbi = EXT4_SB(sb); 1733 struct ext4_super_block *es = sbi->s_es; 1734 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1735 const struct mount_opts *m; 1736 char sep = nodefs ? '\n' : ','; 1737 1738 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1739 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1740 1741 if (sbi->s_sb_block != 1) 1742 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1743 1744 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1745 int want_set = m->flags & MOPT_SET; 1746 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1747 (m->flags & MOPT_CLEAR_ERR)) 1748 continue; 1749 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1750 continue; /* skip if same as the default */ 1751 if ((want_set && 1752 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1753 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1754 continue; /* select Opt_noFoo vs Opt_Foo */ 1755 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1756 } 1757 1758 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1759 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1760 SEQ_OPTS_PRINT("resuid=%u", 1761 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1762 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1763 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1764 SEQ_OPTS_PRINT("resgid=%u", 1765 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1766 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1767 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1768 SEQ_OPTS_PUTS("errors=remount-ro"); 1769 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1770 SEQ_OPTS_PUTS("errors=continue"); 1771 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1772 SEQ_OPTS_PUTS("errors=panic"); 1773 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1774 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1775 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1776 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1777 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1778 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1779 if (sb->s_flags & MS_I_VERSION) 1780 SEQ_OPTS_PUTS("i_version"); 1781 if (nodefs || sbi->s_stripe) 1782 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1783 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1784 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1785 SEQ_OPTS_PUTS("data=journal"); 1786 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1787 SEQ_OPTS_PUTS("data=ordered"); 1788 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1789 SEQ_OPTS_PUTS("data=writeback"); 1790 } 1791 if (nodefs || 1792 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1793 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1794 sbi->s_inode_readahead_blks); 1795 1796 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1797 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1798 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1799 if (nodefs || sbi->s_max_dir_size_kb) 1800 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1801 1802 ext4_show_quota_options(seq, sb); 1803 return 0; 1804 } 1805 1806 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1807 { 1808 return _ext4_show_options(seq, root->d_sb, 0); 1809 } 1810 1811 static int options_seq_show(struct seq_file *seq, void *offset) 1812 { 1813 struct super_block *sb = seq->private; 1814 int rc; 1815 1816 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1817 rc = _ext4_show_options(seq, sb, 1); 1818 seq_puts(seq, "\n"); 1819 return rc; 1820 } 1821 1822 static int options_open_fs(struct inode *inode, struct file *file) 1823 { 1824 return single_open(file, options_seq_show, PDE_DATA(inode)); 1825 } 1826 1827 static const struct file_operations ext4_seq_options_fops = { 1828 .owner = THIS_MODULE, 1829 .open = options_open_fs, 1830 .read = seq_read, 1831 .llseek = seq_lseek, 1832 .release = single_release, 1833 }; 1834 1835 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1836 int read_only) 1837 { 1838 struct ext4_sb_info *sbi = EXT4_SB(sb); 1839 int res = 0; 1840 1841 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1842 ext4_msg(sb, KERN_ERR, "revision level too high, " 1843 "forcing read-only mode"); 1844 res = MS_RDONLY; 1845 } 1846 if (read_only) 1847 goto done; 1848 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1849 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1850 "running e2fsck is recommended"); 1851 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1852 ext4_msg(sb, KERN_WARNING, 1853 "warning: mounting fs with errors, " 1854 "running e2fsck is recommended"); 1855 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1856 le16_to_cpu(es->s_mnt_count) >= 1857 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1858 ext4_msg(sb, KERN_WARNING, 1859 "warning: maximal mount count reached, " 1860 "running e2fsck is recommended"); 1861 else if (le32_to_cpu(es->s_checkinterval) && 1862 (le32_to_cpu(es->s_lastcheck) + 1863 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1864 ext4_msg(sb, KERN_WARNING, 1865 "warning: checktime reached, " 1866 "running e2fsck is recommended"); 1867 if (!sbi->s_journal) 1868 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1869 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1870 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1871 le16_add_cpu(&es->s_mnt_count, 1); 1872 es->s_mtime = cpu_to_le32(get_seconds()); 1873 ext4_update_dynamic_rev(sb); 1874 if (sbi->s_journal) 1875 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1876 1877 ext4_commit_super(sb, 1); 1878 done: 1879 if (test_opt(sb, DEBUG)) 1880 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1881 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1882 sb->s_blocksize, 1883 sbi->s_groups_count, 1884 EXT4_BLOCKS_PER_GROUP(sb), 1885 EXT4_INODES_PER_GROUP(sb), 1886 sbi->s_mount_opt, sbi->s_mount_opt2); 1887 1888 cleancache_init_fs(sb); 1889 return res; 1890 } 1891 1892 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1893 { 1894 struct ext4_sb_info *sbi = EXT4_SB(sb); 1895 struct flex_groups *new_groups; 1896 int size; 1897 1898 if (!sbi->s_log_groups_per_flex) 1899 return 0; 1900 1901 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1902 if (size <= sbi->s_flex_groups_allocated) 1903 return 0; 1904 1905 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1906 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1907 if (!new_groups) { 1908 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1909 size / (int) sizeof(struct flex_groups)); 1910 return -ENOMEM; 1911 } 1912 1913 if (sbi->s_flex_groups) { 1914 memcpy(new_groups, sbi->s_flex_groups, 1915 (sbi->s_flex_groups_allocated * 1916 sizeof(struct flex_groups))); 1917 ext4_kvfree(sbi->s_flex_groups); 1918 } 1919 sbi->s_flex_groups = new_groups; 1920 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1921 return 0; 1922 } 1923 1924 static int ext4_fill_flex_info(struct super_block *sb) 1925 { 1926 struct ext4_sb_info *sbi = EXT4_SB(sb); 1927 struct ext4_group_desc *gdp = NULL; 1928 ext4_group_t flex_group; 1929 int i, err; 1930 1931 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1932 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1933 sbi->s_log_groups_per_flex = 0; 1934 return 1; 1935 } 1936 1937 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1938 if (err) 1939 goto failed; 1940 1941 for (i = 0; i < sbi->s_groups_count; i++) { 1942 gdp = ext4_get_group_desc(sb, i, NULL); 1943 1944 flex_group = ext4_flex_group(sbi, i); 1945 atomic_add(ext4_free_inodes_count(sb, gdp), 1946 &sbi->s_flex_groups[flex_group].free_inodes); 1947 atomic64_add(ext4_free_group_clusters(sb, gdp), 1948 &sbi->s_flex_groups[flex_group].free_clusters); 1949 atomic_add(ext4_used_dirs_count(sb, gdp), 1950 &sbi->s_flex_groups[flex_group].used_dirs); 1951 } 1952 1953 return 1; 1954 failed: 1955 return 0; 1956 } 1957 1958 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1959 struct ext4_group_desc *gdp) 1960 { 1961 int offset; 1962 __u16 crc = 0; 1963 __le32 le_group = cpu_to_le32(block_group); 1964 1965 if ((sbi->s_es->s_feature_ro_compat & 1966 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1967 /* Use new metadata_csum algorithm */ 1968 __le16 save_csum; 1969 __u32 csum32; 1970 1971 save_csum = gdp->bg_checksum; 1972 gdp->bg_checksum = 0; 1973 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1974 sizeof(le_group)); 1975 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1976 sbi->s_desc_size); 1977 gdp->bg_checksum = save_csum; 1978 1979 crc = csum32 & 0xFFFF; 1980 goto out; 1981 } 1982 1983 /* old crc16 code */ 1984 offset = offsetof(struct ext4_group_desc, bg_checksum); 1985 1986 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1987 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1988 crc = crc16(crc, (__u8 *)gdp, offset); 1989 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1990 /* for checksum of struct ext4_group_desc do the rest...*/ 1991 if ((sbi->s_es->s_feature_incompat & 1992 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1993 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1994 crc = crc16(crc, (__u8 *)gdp + offset, 1995 le16_to_cpu(sbi->s_es->s_desc_size) - 1996 offset); 1997 1998 out: 1999 return cpu_to_le16(crc); 2000 } 2001 2002 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2003 struct ext4_group_desc *gdp) 2004 { 2005 if (ext4_has_group_desc_csum(sb) && 2006 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2007 block_group, gdp))) 2008 return 0; 2009 2010 return 1; 2011 } 2012 2013 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2014 struct ext4_group_desc *gdp) 2015 { 2016 if (!ext4_has_group_desc_csum(sb)) 2017 return; 2018 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2019 } 2020 2021 /* Called at mount-time, super-block is locked */ 2022 static int ext4_check_descriptors(struct super_block *sb, 2023 ext4_group_t *first_not_zeroed) 2024 { 2025 struct ext4_sb_info *sbi = EXT4_SB(sb); 2026 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2027 ext4_fsblk_t last_block; 2028 ext4_fsblk_t block_bitmap; 2029 ext4_fsblk_t inode_bitmap; 2030 ext4_fsblk_t inode_table; 2031 int flexbg_flag = 0; 2032 ext4_group_t i, grp = sbi->s_groups_count; 2033 2034 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2035 flexbg_flag = 1; 2036 2037 ext4_debug("Checking group descriptors"); 2038 2039 for (i = 0; i < sbi->s_groups_count; i++) { 2040 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2041 2042 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2043 last_block = ext4_blocks_count(sbi->s_es) - 1; 2044 else 2045 last_block = first_block + 2046 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2047 2048 if ((grp == sbi->s_groups_count) && 2049 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2050 grp = i; 2051 2052 block_bitmap = ext4_block_bitmap(sb, gdp); 2053 if (block_bitmap < first_block || block_bitmap > last_block) { 2054 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2055 "Block bitmap for group %u not in group " 2056 "(block %llu)!", i, block_bitmap); 2057 return 0; 2058 } 2059 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2060 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2061 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2062 "Inode bitmap for group %u not in group " 2063 "(block %llu)!", i, inode_bitmap); 2064 return 0; 2065 } 2066 inode_table = ext4_inode_table(sb, gdp); 2067 if (inode_table < first_block || 2068 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2069 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2070 "Inode table for group %u not in group " 2071 "(block %llu)!", i, inode_table); 2072 return 0; 2073 } 2074 ext4_lock_group(sb, i); 2075 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2076 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2077 "Checksum for group %u failed (%u!=%u)", 2078 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2079 gdp)), le16_to_cpu(gdp->bg_checksum)); 2080 if (!(sb->s_flags & MS_RDONLY)) { 2081 ext4_unlock_group(sb, i); 2082 return 0; 2083 } 2084 } 2085 ext4_unlock_group(sb, i); 2086 if (!flexbg_flag) 2087 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2088 } 2089 if (NULL != first_not_zeroed) 2090 *first_not_zeroed = grp; 2091 2092 ext4_free_blocks_count_set(sbi->s_es, 2093 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2094 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2095 return 1; 2096 } 2097 2098 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2099 * the superblock) which were deleted from all directories, but held open by 2100 * a process at the time of a crash. We walk the list and try to delete these 2101 * inodes at recovery time (only with a read-write filesystem). 2102 * 2103 * In order to keep the orphan inode chain consistent during traversal (in 2104 * case of crash during recovery), we link each inode into the superblock 2105 * orphan list_head and handle it the same way as an inode deletion during 2106 * normal operation (which journals the operations for us). 2107 * 2108 * We only do an iget() and an iput() on each inode, which is very safe if we 2109 * accidentally point at an in-use or already deleted inode. The worst that 2110 * can happen in this case is that we get a "bit already cleared" message from 2111 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2112 * e2fsck was run on this filesystem, and it must have already done the orphan 2113 * inode cleanup for us, so we can safely abort without any further action. 2114 */ 2115 static void ext4_orphan_cleanup(struct super_block *sb, 2116 struct ext4_super_block *es) 2117 { 2118 unsigned int s_flags = sb->s_flags; 2119 int nr_orphans = 0, nr_truncates = 0; 2120 #ifdef CONFIG_QUOTA 2121 int i; 2122 #endif 2123 if (!es->s_last_orphan) { 2124 jbd_debug(4, "no orphan inodes to clean up\n"); 2125 return; 2126 } 2127 2128 if (bdev_read_only(sb->s_bdev)) { 2129 ext4_msg(sb, KERN_ERR, "write access " 2130 "unavailable, skipping orphan cleanup"); 2131 return; 2132 } 2133 2134 /* Check if feature set would not allow a r/w mount */ 2135 if (!ext4_feature_set_ok(sb, 0)) { 2136 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2137 "unknown ROCOMPAT features"); 2138 return; 2139 } 2140 2141 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2142 /* don't clear list on RO mount w/ errors */ 2143 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2144 jbd_debug(1, "Errors on filesystem, " 2145 "clearing orphan list.\n"); 2146 es->s_last_orphan = 0; 2147 } 2148 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2149 return; 2150 } 2151 2152 if (s_flags & MS_RDONLY) { 2153 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2154 sb->s_flags &= ~MS_RDONLY; 2155 } 2156 #ifdef CONFIG_QUOTA 2157 /* Needed for iput() to work correctly and not trash data */ 2158 sb->s_flags |= MS_ACTIVE; 2159 /* Turn on quotas so that they are updated correctly */ 2160 for (i = 0; i < MAXQUOTAS; i++) { 2161 if (EXT4_SB(sb)->s_qf_names[i]) { 2162 int ret = ext4_quota_on_mount(sb, i); 2163 if (ret < 0) 2164 ext4_msg(sb, KERN_ERR, 2165 "Cannot turn on journaled " 2166 "quota: error %d", ret); 2167 } 2168 } 2169 #endif 2170 2171 while (es->s_last_orphan) { 2172 struct inode *inode; 2173 2174 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2175 if (IS_ERR(inode)) { 2176 es->s_last_orphan = 0; 2177 break; 2178 } 2179 2180 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2181 dquot_initialize(inode); 2182 if (inode->i_nlink) { 2183 if (test_opt(sb, DEBUG)) 2184 ext4_msg(sb, KERN_DEBUG, 2185 "%s: truncating inode %lu to %lld bytes", 2186 __func__, inode->i_ino, inode->i_size); 2187 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2188 inode->i_ino, inode->i_size); 2189 mutex_lock(&inode->i_mutex); 2190 truncate_inode_pages(inode->i_mapping, inode->i_size); 2191 ext4_truncate(inode); 2192 mutex_unlock(&inode->i_mutex); 2193 nr_truncates++; 2194 } else { 2195 if (test_opt(sb, DEBUG)) 2196 ext4_msg(sb, KERN_DEBUG, 2197 "%s: deleting unreferenced inode %lu", 2198 __func__, inode->i_ino); 2199 jbd_debug(2, "deleting unreferenced inode %lu\n", 2200 inode->i_ino); 2201 nr_orphans++; 2202 } 2203 iput(inode); /* The delete magic happens here! */ 2204 } 2205 2206 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2207 2208 if (nr_orphans) 2209 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2210 PLURAL(nr_orphans)); 2211 if (nr_truncates) 2212 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2213 PLURAL(nr_truncates)); 2214 #ifdef CONFIG_QUOTA 2215 /* Turn quotas off */ 2216 for (i = 0; i < MAXQUOTAS; i++) { 2217 if (sb_dqopt(sb)->files[i]) 2218 dquot_quota_off(sb, i); 2219 } 2220 #endif 2221 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2222 } 2223 2224 /* 2225 * Maximal extent format file size. 2226 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2227 * extent format containers, within a sector_t, and within i_blocks 2228 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2229 * so that won't be a limiting factor. 2230 * 2231 * However there is other limiting factor. We do store extents in the form 2232 * of starting block and length, hence the resulting length of the extent 2233 * covering maximum file size must fit into on-disk format containers as 2234 * well. Given that length is always by 1 unit bigger than max unit (because 2235 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2236 * 2237 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2238 */ 2239 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2240 { 2241 loff_t res; 2242 loff_t upper_limit = MAX_LFS_FILESIZE; 2243 2244 /* small i_blocks in vfs inode? */ 2245 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2246 /* 2247 * CONFIG_LBDAF is not enabled implies the inode 2248 * i_block represent total blocks in 512 bytes 2249 * 32 == size of vfs inode i_blocks * 8 2250 */ 2251 upper_limit = (1LL << 32) - 1; 2252 2253 /* total blocks in file system block size */ 2254 upper_limit >>= (blkbits - 9); 2255 upper_limit <<= blkbits; 2256 } 2257 2258 /* 2259 * 32-bit extent-start container, ee_block. We lower the maxbytes 2260 * by one fs block, so ee_len can cover the extent of maximum file 2261 * size 2262 */ 2263 res = (1LL << 32) - 1; 2264 res <<= blkbits; 2265 2266 /* Sanity check against vm- & vfs- imposed limits */ 2267 if (res > upper_limit) 2268 res = upper_limit; 2269 2270 return res; 2271 } 2272 2273 /* 2274 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2275 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2276 * We need to be 1 filesystem block less than the 2^48 sector limit. 2277 */ 2278 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2279 { 2280 loff_t res = EXT4_NDIR_BLOCKS; 2281 int meta_blocks; 2282 loff_t upper_limit; 2283 /* This is calculated to be the largest file size for a dense, block 2284 * mapped file such that the file's total number of 512-byte sectors, 2285 * including data and all indirect blocks, does not exceed (2^48 - 1). 2286 * 2287 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2288 * number of 512-byte sectors of the file. 2289 */ 2290 2291 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2292 /* 2293 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2294 * the inode i_block field represents total file blocks in 2295 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2296 */ 2297 upper_limit = (1LL << 32) - 1; 2298 2299 /* total blocks in file system block size */ 2300 upper_limit >>= (bits - 9); 2301 2302 } else { 2303 /* 2304 * We use 48 bit ext4_inode i_blocks 2305 * With EXT4_HUGE_FILE_FL set the i_blocks 2306 * represent total number of blocks in 2307 * file system block size 2308 */ 2309 upper_limit = (1LL << 48) - 1; 2310 2311 } 2312 2313 /* indirect blocks */ 2314 meta_blocks = 1; 2315 /* double indirect blocks */ 2316 meta_blocks += 1 + (1LL << (bits-2)); 2317 /* tripple indirect blocks */ 2318 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2319 2320 upper_limit -= meta_blocks; 2321 upper_limit <<= bits; 2322 2323 res += 1LL << (bits-2); 2324 res += 1LL << (2*(bits-2)); 2325 res += 1LL << (3*(bits-2)); 2326 res <<= bits; 2327 if (res > upper_limit) 2328 res = upper_limit; 2329 2330 if (res > MAX_LFS_FILESIZE) 2331 res = MAX_LFS_FILESIZE; 2332 2333 return res; 2334 } 2335 2336 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2337 ext4_fsblk_t logical_sb_block, int nr) 2338 { 2339 struct ext4_sb_info *sbi = EXT4_SB(sb); 2340 ext4_group_t bg, first_meta_bg; 2341 int has_super = 0; 2342 2343 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2344 2345 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2346 nr < first_meta_bg) 2347 return logical_sb_block + nr + 1; 2348 bg = sbi->s_desc_per_block * nr; 2349 if (ext4_bg_has_super(sb, bg)) 2350 has_super = 1; 2351 2352 return (has_super + ext4_group_first_block_no(sb, bg)); 2353 } 2354 2355 /** 2356 * ext4_get_stripe_size: Get the stripe size. 2357 * @sbi: In memory super block info 2358 * 2359 * If we have specified it via mount option, then 2360 * use the mount option value. If the value specified at mount time is 2361 * greater than the blocks per group use the super block value. 2362 * If the super block value is greater than blocks per group return 0. 2363 * Allocator needs it be less than blocks per group. 2364 * 2365 */ 2366 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2367 { 2368 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2369 unsigned long stripe_width = 2370 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2371 int ret; 2372 2373 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2374 ret = sbi->s_stripe; 2375 else if (stripe_width <= sbi->s_blocks_per_group) 2376 ret = stripe_width; 2377 else if (stride <= sbi->s_blocks_per_group) 2378 ret = stride; 2379 else 2380 ret = 0; 2381 2382 /* 2383 * If the stripe width is 1, this makes no sense and 2384 * we set it to 0 to turn off stripe handling code. 2385 */ 2386 if (ret <= 1) 2387 ret = 0; 2388 2389 return ret; 2390 } 2391 2392 /* sysfs supprt */ 2393 2394 struct ext4_attr { 2395 struct attribute attr; 2396 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2397 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2398 const char *, size_t); 2399 union { 2400 int offset; 2401 int deprecated_val; 2402 } u; 2403 }; 2404 2405 static int parse_strtoull(const char *buf, 2406 unsigned long long max, unsigned long long *value) 2407 { 2408 int ret; 2409 2410 ret = kstrtoull(skip_spaces(buf), 0, value); 2411 if (!ret && *value > max) 2412 ret = -EINVAL; 2413 return ret; 2414 } 2415 2416 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2417 struct ext4_sb_info *sbi, 2418 char *buf) 2419 { 2420 return snprintf(buf, PAGE_SIZE, "%llu\n", 2421 (s64) EXT4_C2B(sbi, 2422 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2423 } 2424 2425 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2426 struct ext4_sb_info *sbi, char *buf) 2427 { 2428 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2429 2430 if (!sb->s_bdev->bd_part) 2431 return snprintf(buf, PAGE_SIZE, "0\n"); 2432 return snprintf(buf, PAGE_SIZE, "%lu\n", 2433 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2434 sbi->s_sectors_written_start) >> 1); 2435 } 2436 2437 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2438 struct ext4_sb_info *sbi, char *buf) 2439 { 2440 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2441 2442 if (!sb->s_bdev->bd_part) 2443 return snprintf(buf, PAGE_SIZE, "0\n"); 2444 return snprintf(buf, PAGE_SIZE, "%llu\n", 2445 (unsigned long long)(sbi->s_kbytes_written + 2446 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2447 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2448 } 2449 2450 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2451 struct ext4_sb_info *sbi, 2452 const char *buf, size_t count) 2453 { 2454 unsigned long t; 2455 int ret; 2456 2457 ret = kstrtoul(skip_spaces(buf), 0, &t); 2458 if (ret) 2459 return ret; 2460 2461 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2462 return -EINVAL; 2463 2464 sbi->s_inode_readahead_blks = t; 2465 return count; 2466 } 2467 2468 static ssize_t sbi_ui_show(struct ext4_attr *a, 2469 struct ext4_sb_info *sbi, char *buf) 2470 { 2471 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2472 2473 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2474 } 2475 2476 static ssize_t sbi_ui_store(struct ext4_attr *a, 2477 struct ext4_sb_info *sbi, 2478 const char *buf, size_t count) 2479 { 2480 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2481 unsigned long t; 2482 int ret; 2483 2484 ret = kstrtoul(skip_spaces(buf), 0, &t); 2485 if (ret) 2486 return ret; 2487 *ui = t; 2488 return count; 2489 } 2490 2491 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2492 struct ext4_sb_info *sbi, char *buf) 2493 { 2494 return snprintf(buf, PAGE_SIZE, "%llu\n", 2495 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2496 } 2497 2498 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2499 struct ext4_sb_info *sbi, 2500 const char *buf, size_t count) 2501 { 2502 unsigned long long val; 2503 int ret; 2504 2505 if (parse_strtoull(buf, -1ULL, &val)) 2506 return -EINVAL; 2507 ret = ext4_reserve_clusters(sbi, val); 2508 2509 return ret ? ret : count; 2510 } 2511 2512 static ssize_t trigger_test_error(struct ext4_attr *a, 2513 struct ext4_sb_info *sbi, 2514 const char *buf, size_t count) 2515 { 2516 int len = count; 2517 2518 if (!capable(CAP_SYS_ADMIN)) 2519 return -EPERM; 2520 2521 if (len && buf[len-1] == '\n') 2522 len--; 2523 2524 if (len) 2525 ext4_error(sbi->s_sb, "%.*s", len, buf); 2526 return count; 2527 } 2528 2529 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2530 struct ext4_sb_info *sbi, char *buf) 2531 { 2532 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2533 } 2534 2535 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2536 static struct ext4_attr ext4_attr_##_name = { \ 2537 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2538 .show = _show, \ 2539 .store = _store, \ 2540 .u = { \ 2541 .offset = offsetof(struct ext4_sb_info, _elname),\ 2542 }, \ 2543 } 2544 #define EXT4_ATTR(name, mode, show, store) \ 2545 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2546 2547 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2548 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2549 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2550 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2551 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2552 #define ATTR_LIST(name) &ext4_attr_##name.attr 2553 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2554 static struct ext4_attr ext4_attr_##_name = { \ 2555 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2556 .show = sbi_deprecated_show, \ 2557 .u = { \ 2558 .deprecated_val = _val, \ 2559 }, \ 2560 } 2561 2562 EXT4_RO_ATTR(delayed_allocation_blocks); 2563 EXT4_RO_ATTR(session_write_kbytes); 2564 EXT4_RO_ATTR(lifetime_write_kbytes); 2565 EXT4_RW_ATTR(reserved_clusters); 2566 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2567 inode_readahead_blks_store, s_inode_readahead_blks); 2568 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2569 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2570 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2571 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2572 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2573 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2574 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2575 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2576 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2577 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2578 2579 static struct attribute *ext4_attrs[] = { 2580 ATTR_LIST(delayed_allocation_blocks), 2581 ATTR_LIST(session_write_kbytes), 2582 ATTR_LIST(lifetime_write_kbytes), 2583 ATTR_LIST(reserved_clusters), 2584 ATTR_LIST(inode_readahead_blks), 2585 ATTR_LIST(inode_goal), 2586 ATTR_LIST(mb_stats), 2587 ATTR_LIST(mb_max_to_scan), 2588 ATTR_LIST(mb_min_to_scan), 2589 ATTR_LIST(mb_order2_req), 2590 ATTR_LIST(mb_stream_req), 2591 ATTR_LIST(mb_group_prealloc), 2592 ATTR_LIST(max_writeback_mb_bump), 2593 ATTR_LIST(extent_max_zeroout_kb), 2594 ATTR_LIST(trigger_fs_error), 2595 NULL, 2596 }; 2597 2598 /* Features this copy of ext4 supports */ 2599 EXT4_INFO_ATTR(lazy_itable_init); 2600 EXT4_INFO_ATTR(batched_discard); 2601 EXT4_INFO_ATTR(meta_bg_resize); 2602 2603 static struct attribute *ext4_feat_attrs[] = { 2604 ATTR_LIST(lazy_itable_init), 2605 ATTR_LIST(batched_discard), 2606 ATTR_LIST(meta_bg_resize), 2607 NULL, 2608 }; 2609 2610 static ssize_t ext4_attr_show(struct kobject *kobj, 2611 struct attribute *attr, char *buf) 2612 { 2613 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2614 s_kobj); 2615 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2616 2617 return a->show ? a->show(a, sbi, buf) : 0; 2618 } 2619 2620 static ssize_t ext4_attr_store(struct kobject *kobj, 2621 struct attribute *attr, 2622 const char *buf, size_t len) 2623 { 2624 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2625 s_kobj); 2626 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2627 2628 return a->store ? a->store(a, sbi, buf, len) : 0; 2629 } 2630 2631 static void ext4_sb_release(struct kobject *kobj) 2632 { 2633 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2634 s_kobj); 2635 complete(&sbi->s_kobj_unregister); 2636 } 2637 2638 static const struct sysfs_ops ext4_attr_ops = { 2639 .show = ext4_attr_show, 2640 .store = ext4_attr_store, 2641 }; 2642 2643 static struct kobj_type ext4_ktype = { 2644 .default_attrs = ext4_attrs, 2645 .sysfs_ops = &ext4_attr_ops, 2646 .release = ext4_sb_release, 2647 }; 2648 2649 static void ext4_feat_release(struct kobject *kobj) 2650 { 2651 complete(&ext4_feat->f_kobj_unregister); 2652 } 2653 2654 static struct kobj_type ext4_feat_ktype = { 2655 .default_attrs = ext4_feat_attrs, 2656 .sysfs_ops = &ext4_attr_ops, 2657 .release = ext4_feat_release, 2658 }; 2659 2660 /* 2661 * Check whether this filesystem can be mounted based on 2662 * the features present and the RDONLY/RDWR mount requested. 2663 * Returns 1 if this filesystem can be mounted as requested, 2664 * 0 if it cannot be. 2665 */ 2666 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2667 { 2668 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2669 ext4_msg(sb, KERN_ERR, 2670 "Couldn't mount because of " 2671 "unsupported optional features (%x)", 2672 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2673 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2674 return 0; 2675 } 2676 2677 if (readonly) 2678 return 1; 2679 2680 /* Check that feature set is OK for a read-write mount */ 2681 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2682 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2683 "unsupported optional features (%x)", 2684 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2685 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2686 return 0; 2687 } 2688 /* 2689 * Large file size enabled file system can only be mounted 2690 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2691 */ 2692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2693 if (sizeof(blkcnt_t) < sizeof(u64)) { 2694 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2695 "cannot be mounted RDWR without " 2696 "CONFIG_LBDAF"); 2697 return 0; 2698 } 2699 } 2700 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2701 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2702 ext4_msg(sb, KERN_ERR, 2703 "Can't support bigalloc feature without " 2704 "extents feature\n"); 2705 return 0; 2706 } 2707 2708 #ifndef CONFIG_QUOTA 2709 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2710 !readonly) { 2711 ext4_msg(sb, KERN_ERR, 2712 "Filesystem with quota feature cannot be mounted RDWR " 2713 "without CONFIG_QUOTA"); 2714 return 0; 2715 } 2716 #endif /* CONFIG_QUOTA */ 2717 return 1; 2718 } 2719 2720 /* 2721 * This function is called once a day if we have errors logged 2722 * on the file system 2723 */ 2724 static void print_daily_error_info(unsigned long arg) 2725 { 2726 struct super_block *sb = (struct super_block *) arg; 2727 struct ext4_sb_info *sbi; 2728 struct ext4_super_block *es; 2729 2730 sbi = EXT4_SB(sb); 2731 es = sbi->s_es; 2732 2733 if (es->s_error_count) 2734 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2735 le32_to_cpu(es->s_error_count)); 2736 if (es->s_first_error_time) { 2737 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2738 sb->s_id, le32_to_cpu(es->s_first_error_time), 2739 (int) sizeof(es->s_first_error_func), 2740 es->s_first_error_func, 2741 le32_to_cpu(es->s_first_error_line)); 2742 if (es->s_first_error_ino) 2743 printk(": inode %u", 2744 le32_to_cpu(es->s_first_error_ino)); 2745 if (es->s_first_error_block) 2746 printk(": block %llu", (unsigned long long) 2747 le64_to_cpu(es->s_first_error_block)); 2748 printk("\n"); 2749 } 2750 if (es->s_last_error_time) { 2751 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2752 sb->s_id, le32_to_cpu(es->s_last_error_time), 2753 (int) sizeof(es->s_last_error_func), 2754 es->s_last_error_func, 2755 le32_to_cpu(es->s_last_error_line)); 2756 if (es->s_last_error_ino) 2757 printk(": inode %u", 2758 le32_to_cpu(es->s_last_error_ino)); 2759 if (es->s_last_error_block) 2760 printk(": block %llu", (unsigned long long) 2761 le64_to_cpu(es->s_last_error_block)); 2762 printk("\n"); 2763 } 2764 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2765 } 2766 2767 /* Find next suitable group and run ext4_init_inode_table */ 2768 static int ext4_run_li_request(struct ext4_li_request *elr) 2769 { 2770 struct ext4_group_desc *gdp = NULL; 2771 ext4_group_t group, ngroups; 2772 struct super_block *sb; 2773 unsigned long timeout = 0; 2774 int ret = 0; 2775 2776 sb = elr->lr_super; 2777 ngroups = EXT4_SB(sb)->s_groups_count; 2778 2779 sb_start_write(sb); 2780 for (group = elr->lr_next_group; group < ngroups; group++) { 2781 gdp = ext4_get_group_desc(sb, group, NULL); 2782 if (!gdp) { 2783 ret = 1; 2784 break; 2785 } 2786 2787 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2788 break; 2789 } 2790 2791 if (group >= ngroups) 2792 ret = 1; 2793 2794 if (!ret) { 2795 timeout = jiffies; 2796 ret = ext4_init_inode_table(sb, group, 2797 elr->lr_timeout ? 0 : 1); 2798 if (elr->lr_timeout == 0) { 2799 timeout = (jiffies - timeout) * 2800 elr->lr_sbi->s_li_wait_mult; 2801 elr->lr_timeout = timeout; 2802 } 2803 elr->lr_next_sched = jiffies + elr->lr_timeout; 2804 elr->lr_next_group = group + 1; 2805 } 2806 sb_end_write(sb); 2807 2808 return ret; 2809 } 2810 2811 /* 2812 * Remove lr_request from the list_request and free the 2813 * request structure. Should be called with li_list_mtx held 2814 */ 2815 static void ext4_remove_li_request(struct ext4_li_request *elr) 2816 { 2817 struct ext4_sb_info *sbi; 2818 2819 if (!elr) 2820 return; 2821 2822 sbi = elr->lr_sbi; 2823 2824 list_del(&elr->lr_request); 2825 sbi->s_li_request = NULL; 2826 kfree(elr); 2827 } 2828 2829 static void ext4_unregister_li_request(struct super_block *sb) 2830 { 2831 mutex_lock(&ext4_li_mtx); 2832 if (!ext4_li_info) { 2833 mutex_unlock(&ext4_li_mtx); 2834 return; 2835 } 2836 2837 mutex_lock(&ext4_li_info->li_list_mtx); 2838 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2839 mutex_unlock(&ext4_li_info->li_list_mtx); 2840 mutex_unlock(&ext4_li_mtx); 2841 } 2842 2843 static struct task_struct *ext4_lazyinit_task; 2844 2845 /* 2846 * This is the function where ext4lazyinit thread lives. It walks 2847 * through the request list searching for next scheduled filesystem. 2848 * When such a fs is found, run the lazy initialization request 2849 * (ext4_rn_li_request) and keep track of the time spend in this 2850 * function. Based on that time we compute next schedule time of 2851 * the request. When walking through the list is complete, compute 2852 * next waking time and put itself into sleep. 2853 */ 2854 static int ext4_lazyinit_thread(void *arg) 2855 { 2856 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2857 struct list_head *pos, *n; 2858 struct ext4_li_request *elr; 2859 unsigned long next_wakeup, cur; 2860 2861 BUG_ON(NULL == eli); 2862 2863 cont_thread: 2864 while (true) { 2865 next_wakeup = MAX_JIFFY_OFFSET; 2866 2867 mutex_lock(&eli->li_list_mtx); 2868 if (list_empty(&eli->li_request_list)) { 2869 mutex_unlock(&eli->li_list_mtx); 2870 goto exit_thread; 2871 } 2872 2873 list_for_each_safe(pos, n, &eli->li_request_list) { 2874 elr = list_entry(pos, struct ext4_li_request, 2875 lr_request); 2876 2877 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2878 if (ext4_run_li_request(elr) != 0) { 2879 /* error, remove the lazy_init job */ 2880 ext4_remove_li_request(elr); 2881 continue; 2882 } 2883 } 2884 2885 if (time_before(elr->lr_next_sched, next_wakeup)) 2886 next_wakeup = elr->lr_next_sched; 2887 } 2888 mutex_unlock(&eli->li_list_mtx); 2889 2890 try_to_freeze(); 2891 2892 cur = jiffies; 2893 if ((time_after_eq(cur, next_wakeup)) || 2894 (MAX_JIFFY_OFFSET == next_wakeup)) { 2895 cond_resched(); 2896 continue; 2897 } 2898 2899 schedule_timeout_interruptible(next_wakeup - cur); 2900 2901 if (kthread_should_stop()) { 2902 ext4_clear_request_list(); 2903 goto exit_thread; 2904 } 2905 } 2906 2907 exit_thread: 2908 /* 2909 * It looks like the request list is empty, but we need 2910 * to check it under the li_list_mtx lock, to prevent any 2911 * additions into it, and of course we should lock ext4_li_mtx 2912 * to atomically free the list and ext4_li_info, because at 2913 * this point another ext4 filesystem could be registering 2914 * new one. 2915 */ 2916 mutex_lock(&ext4_li_mtx); 2917 mutex_lock(&eli->li_list_mtx); 2918 if (!list_empty(&eli->li_request_list)) { 2919 mutex_unlock(&eli->li_list_mtx); 2920 mutex_unlock(&ext4_li_mtx); 2921 goto cont_thread; 2922 } 2923 mutex_unlock(&eli->li_list_mtx); 2924 kfree(ext4_li_info); 2925 ext4_li_info = NULL; 2926 mutex_unlock(&ext4_li_mtx); 2927 2928 return 0; 2929 } 2930 2931 static void ext4_clear_request_list(void) 2932 { 2933 struct list_head *pos, *n; 2934 struct ext4_li_request *elr; 2935 2936 mutex_lock(&ext4_li_info->li_list_mtx); 2937 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2938 elr = list_entry(pos, struct ext4_li_request, 2939 lr_request); 2940 ext4_remove_li_request(elr); 2941 } 2942 mutex_unlock(&ext4_li_info->li_list_mtx); 2943 } 2944 2945 static int ext4_run_lazyinit_thread(void) 2946 { 2947 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2948 ext4_li_info, "ext4lazyinit"); 2949 if (IS_ERR(ext4_lazyinit_task)) { 2950 int err = PTR_ERR(ext4_lazyinit_task); 2951 ext4_clear_request_list(); 2952 kfree(ext4_li_info); 2953 ext4_li_info = NULL; 2954 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2955 "initialization thread\n", 2956 err); 2957 return err; 2958 } 2959 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2960 return 0; 2961 } 2962 2963 /* 2964 * Check whether it make sense to run itable init. thread or not. 2965 * If there is at least one uninitialized inode table, return 2966 * corresponding group number, else the loop goes through all 2967 * groups and return total number of groups. 2968 */ 2969 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2970 { 2971 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2972 struct ext4_group_desc *gdp = NULL; 2973 2974 for (group = 0; group < ngroups; group++) { 2975 gdp = ext4_get_group_desc(sb, group, NULL); 2976 if (!gdp) 2977 continue; 2978 2979 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2980 break; 2981 } 2982 2983 return group; 2984 } 2985 2986 static int ext4_li_info_new(void) 2987 { 2988 struct ext4_lazy_init *eli = NULL; 2989 2990 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2991 if (!eli) 2992 return -ENOMEM; 2993 2994 INIT_LIST_HEAD(&eli->li_request_list); 2995 mutex_init(&eli->li_list_mtx); 2996 2997 eli->li_state |= EXT4_LAZYINIT_QUIT; 2998 2999 ext4_li_info = eli; 3000 3001 return 0; 3002 } 3003 3004 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3005 ext4_group_t start) 3006 { 3007 struct ext4_sb_info *sbi = EXT4_SB(sb); 3008 struct ext4_li_request *elr; 3009 unsigned long rnd; 3010 3011 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3012 if (!elr) 3013 return NULL; 3014 3015 elr->lr_super = sb; 3016 elr->lr_sbi = sbi; 3017 elr->lr_next_group = start; 3018 3019 /* 3020 * Randomize first schedule time of the request to 3021 * spread the inode table initialization requests 3022 * better. 3023 */ 3024 get_random_bytes(&rnd, sizeof(rnd)); 3025 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3026 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3027 3028 return elr; 3029 } 3030 3031 int ext4_register_li_request(struct super_block *sb, 3032 ext4_group_t first_not_zeroed) 3033 { 3034 struct ext4_sb_info *sbi = EXT4_SB(sb); 3035 struct ext4_li_request *elr = NULL; 3036 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3037 int ret = 0; 3038 3039 mutex_lock(&ext4_li_mtx); 3040 if (sbi->s_li_request != NULL) { 3041 /* 3042 * Reset timeout so it can be computed again, because 3043 * s_li_wait_mult might have changed. 3044 */ 3045 sbi->s_li_request->lr_timeout = 0; 3046 goto out; 3047 } 3048 3049 if (first_not_zeroed == ngroups || 3050 (sb->s_flags & MS_RDONLY) || 3051 !test_opt(sb, INIT_INODE_TABLE)) 3052 goto out; 3053 3054 elr = ext4_li_request_new(sb, first_not_zeroed); 3055 if (!elr) { 3056 ret = -ENOMEM; 3057 goto out; 3058 } 3059 3060 if (NULL == ext4_li_info) { 3061 ret = ext4_li_info_new(); 3062 if (ret) 3063 goto out; 3064 } 3065 3066 mutex_lock(&ext4_li_info->li_list_mtx); 3067 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3068 mutex_unlock(&ext4_li_info->li_list_mtx); 3069 3070 sbi->s_li_request = elr; 3071 /* 3072 * set elr to NULL here since it has been inserted to 3073 * the request_list and the removal and free of it is 3074 * handled by ext4_clear_request_list from now on. 3075 */ 3076 elr = NULL; 3077 3078 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3079 ret = ext4_run_lazyinit_thread(); 3080 if (ret) 3081 goto out; 3082 } 3083 out: 3084 mutex_unlock(&ext4_li_mtx); 3085 if (ret) 3086 kfree(elr); 3087 return ret; 3088 } 3089 3090 /* 3091 * We do not need to lock anything since this is called on 3092 * module unload. 3093 */ 3094 static void ext4_destroy_lazyinit_thread(void) 3095 { 3096 /* 3097 * If thread exited earlier 3098 * there's nothing to be done. 3099 */ 3100 if (!ext4_li_info || !ext4_lazyinit_task) 3101 return; 3102 3103 kthread_stop(ext4_lazyinit_task); 3104 } 3105 3106 static int set_journal_csum_feature_set(struct super_block *sb) 3107 { 3108 int ret = 1; 3109 int compat, incompat; 3110 struct ext4_sb_info *sbi = EXT4_SB(sb); 3111 3112 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3113 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3114 /* journal checksum v2 */ 3115 compat = 0; 3116 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3117 } else { 3118 /* journal checksum v1 */ 3119 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3120 incompat = 0; 3121 } 3122 3123 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3124 ret = jbd2_journal_set_features(sbi->s_journal, 3125 compat, 0, 3126 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3127 incompat); 3128 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3129 ret = jbd2_journal_set_features(sbi->s_journal, 3130 compat, 0, 3131 incompat); 3132 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3133 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3134 } else { 3135 jbd2_journal_clear_features(sbi->s_journal, 3136 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3137 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3138 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3139 } 3140 3141 return ret; 3142 } 3143 3144 /* 3145 * Note: calculating the overhead so we can be compatible with 3146 * historical BSD practice is quite difficult in the face of 3147 * clusters/bigalloc. This is because multiple metadata blocks from 3148 * different block group can end up in the same allocation cluster. 3149 * Calculating the exact overhead in the face of clustered allocation 3150 * requires either O(all block bitmaps) in memory or O(number of block 3151 * groups**2) in time. We will still calculate the superblock for 3152 * older file systems --- and if we come across with a bigalloc file 3153 * system with zero in s_overhead_clusters the estimate will be close to 3154 * correct especially for very large cluster sizes --- but for newer 3155 * file systems, it's better to calculate this figure once at mkfs 3156 * time, and store it in the superblock. If the superblock value is 3157 * present (even for non-bigalloc file systems), we will use it. 3158 */ 3159 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3160 char *buf) 3161 { 3162 struct ext4_sb_info *sbi = EXT4_SB(sb); 3163 struct ext4_group_desc *gdp; 3164 ext4_fsblk_t first_block, last_block, b; 3165 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3166 int s, j, count = 0; 3167 3168 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3169 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3170 sbi->s_itb_per_group + 2); 3171 3172 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3173 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3174 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3175 for (i = 0; i < ngroups; i++) { 3176 gdp = ext4_get_group_desc(sb, i, NULL); 3177 b = ext4_block_bitmap(sb, gdp); 3178 if (b >= first_block && b <= last_block) { 3179 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3180 count++; 3181 } 3182 b = ext4_inode_bitmap(sb, gdp); 3183 if (b >= first_block && b <= last_block) { 3184 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3185 count++; 3186 } 3187 b = ext4_inode_table(sb, gdp); 3188 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3189 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3190 int c = EXT4_B2C(sbi, b - first_block); 3191 ext4_set_bit(c, buf); 3192 count++; 3193 } 3194 if (i != grp) 3195 continue; 3196 s = 0; 3197 if (ext4_bg_has_super(sb, grp)) { 3198 ext4_set_bit(s++, buf); 3199 count++; 3200 } 3201 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3202 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3203 count++; 3204 } 3205 } 3206 if (!count) 3207 return 0; 3208 return EXT4_CLUSTERS_PER_GROUP(sb) - 3209 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3210 } 3211 3212 /* 3213 * Compute the overhead and stash it in sbi->s_overhead 3214 */ 3215 int ext4_calculate_overhead(struct super_block *sb) 3216 { 3217 struct ext4_sb_info *sbi = EXT4_SB(sb); 3218 struct ext4_super_block *es = sbi->s_es; 3219 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3220 ext4_fsblk_t overhead = 0; 3221 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3222 3223 if (!buf) 3224 return -ENOMEM; 3225 3226 /* 3227 * Compute the overhead (FS structures). This is constant 3228 * for a given filesystem unless the number of block groups 3229 * changes so we cache the previous value until it does. 3230 */ 3231 3232 /* 3233 * All of the blocks before first_data_block are overhead 3234 */ 3235 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3236 3237 /* 3238 * Add the overhead found in each block group 3239 */ 3240 for (i = 0; i < ngroups; i++) { 3241 int blks; 3242 3243 blks = count_overhead(sb, i, buf); 3244 overhead += blks; 3245 if (blks) 3246 memset(buf, 0, PAGE_SIZE); 3247 cond_resched(); 3248 } 3249 /* Add the journal blocks as well */ 3250 if (sbi->s_journal) 3251 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3252 3253 sbi->s_overhead = overhead; 3254 smp_wmb(); 3255 free_page((unsigned long) buf); 3256 return 0; 3257 } 3258 3259 3260 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi) 3261 { 3262 ext4_fsblk_t resv_clusters; 3263 3264 /* 3265 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3266 * This should cover the situations where we can not afford to run 3267 * out of space like for example punch hole, or converting 3268 * uninitialized extents in delalloc path. In most cases such 3269 * allocation would require 1, or 2 blocks, higher numbers are 3270 * very rare. 3271 */ 3272 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits; 3273 3274 do_div(resv_clusters, 50); 3275 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3276 3277 return resv_clusters; 3278 } 3279 3280 3281 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3282 { 3283 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3284 sbi->s_cluster_bits; 3285 3286 if (count >= clusters) 3287 return -EINVAL; 3288 3289 atomic64_set(&sbi->s_resv_clusters, count); 3290 return 0; 3291 } 3292 3293 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3294 { 3295 char *orig_data = kstrdup(data, GFP_KERNEL); 3296 struct buffer_head *bh; 3297 struct ext4_super_block *es = NULL; 3298 struct ext4_sb_info *sbi; 3299 ext4_fsblk_t block; 3300 ext4_fsblk_t sb_block = get_sb_block(&data); 3301 ext4_fsblk_t logical_sb_block; 3302 unsigned long offset = 0; 3303 unsigned long journal_devnum = 0; 3304 unsigned long def_mount_opts; 3305 struct inode *root; 3306 char *cp; 3307 const char *descr; 3308 int ret = -ENOMEM; 3309 int blocksize, clustersize; 3310 unsigned int db_count; 3311 unsigned int i; 3312 int needs_recovery, has_huge_files, has_bigalloc; 3313 __u64 blocks_count; 3314 int err = 0; 3315 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3316 ext4_group_t first_not_zeroed; 3317 3318 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3319 if (!sbi) 3320 goto out_free_orig; 3321 3322 sbi->s_blockgroup_lock = 3323 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3324 if (!sbi->s_blockgroup_lock) { 3325 kfree(sbi); 3326 goto out_free_orig; 3327 } 3328 sb->s_fs_info = sbi; 3329 sbi->s_sb = sb; 3330 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3331 sbi->s_sb_block = sb_block; 3332 if (sb->s_bdev->bd_part) 3333 sbi->s_sectors_written_start = 3334 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3335 3336 /* Cleanup superblock name */ 3337 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3338 *cp = '!'; 3339 3340 /* -EINVAL is default */ 3341 ret = -EINVAL; 3342 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3343 if (!blocksize) { 3344 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3345 goto out_fail; 3346 } 3347 3348 /* 3349 * The ext4 superblock will not be buffer aligned for other than 1kB 3350 * block sizes. We need to calculate the offset from buffer start. 3351 */ 3352 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3353 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3354 offset = do_div(logical_sb_block, blocksize); 3355 } else { 3356 logical_sb_block = sb_block; 3357 } 3358 3359 if (!(bh = sb_bread(sb, logical_sb_block))) { 3360 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3361 goto out_fail; 3362 } 3363 /* 3364 * Note: s_es must be initialized as soon as possible because 3365 * some ext4 macro-instructions depend on its value 3366 */ 3367 es = (struct ext4_super_block *) (bh->b_data + offset); 3368 sbi->s_es = es; 3369 sb->s_magic = le16_to_cpu(es->s_magic); 3370 if (sb->s_magic != EXT4_SUPER_MAGIC) 3371 goto cantfind_ext4; 3372 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3373 3374 /* Warn if metadata_csum and gdt_csum are both set. */ 3375 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3376 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3377 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3378 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3379 "redundant flags; please run fsck."); 3380 3381 /* Check for a known checksum algorithm */ 3382 if (!ext4_verify_csum_type(sb, es)) { 3383 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3384 "unknown checksum algorithm."); 3385 silent = 1; 3386 goto cantfind_ext4; 3387 } 3388 3389 /* Load the checksum driver */ 3390 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3391 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3392 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3393 if (IS_ERR(sbi->s_chksum_driver)) { 3394 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3395 ret = PTR_ERR(sbi->s_chksum_driver); 3396 sbi->s_chksum_driver = NULL; 3397 goto failed_mount; 3398 } 3399 } 3400 3401 /* Check superblock checksum */ 3402 if (!ext4_superblock_csum_verify(sb, es)) { 3403 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3404 "invalid superblock checksum. Run e2fsck?"); 3405 silent = 1; 3406 goto cantfind_ext4; 3407 } 3408 3409 /* Precompute checksum seed for all metadata */ 3410 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3411 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3412 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3413 sizeof(es->s_uuid)); 3414 3415 /* Set defaults before we parse the mount options */ 3416 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3417 set_opt(sb, INIT_INODE_TABLE); 3418 if (def_mount_opts & EXT4_DEFM_DEBUG) 3419 set_opt(sb, DEBUG); 3420 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3421 set_opt(sb, GRPID); 3422 if (def_mount_opts & EXT4_DEFM_UID16) 3423 set_opt(sb, NO_UID32); 3424 /* xattr user namespace & acls are now defaulted on */ 3425 set_opt(sb, XATTR_USER); 3426 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3427 set_opt(sb, POSIX_ACL); 3428 #endif 3429 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3430 set_opt(sb, JOURNAL_DATA); 3431 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3432 set_opt(sb, ORDERED_DATA); 3433 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3434 set_opt(sb, WRITEBACK_DATA); 3435 3436 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3437 set_opt(sb, ERRORS_PANIC); 3438 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3439 set_opt(sb, ERRORS_CONT); 3440 else 3441 set_opt(sb, ERRORS_RO); 3442 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3443 set_opt(sb, BLOCK_VALIDITY); 3444 if (def_mount_opts & EXT4_DEFM_DISCARD) 3445 set_opt(sb, DISCARD); 3446 3447 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3448 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3449 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3450 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3451 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3452 3453 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3454 set_opt(sb, BARRIER); 3455 3456 /* 3457 * enable delayed allocation by default 3458 * Use -o nodelalloc to turn it off 3459 */ 3460 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3461 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3462 set_opt(sb, DELALLOC); 3463 3464 /* 3465 * set default s_li_wait_mult for lazyinit, for the case there is 3466 * no mount option specified. 3467 */ 3468 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3469 3470 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3471 &journal_devnum, &journal_ioprio, 0)) { 3472 ext4_msg(sb, KERN_WARNING, 3473 "failed to parse options in superblock: %s", 3474 sbi->s_es->s_mount_opts); 3475 } 3476 sbi->s_def_mount_opt = sbi->s_mount_opt; 3477 if (!parse_options((char *) data, sb, &journal_devnum, 3478 &journal_ioprio, 0)) 3479 goto failed_mount; 3480 3481 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3482 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3483 "with data=journal disables delayed " 3484 "allocation and O_DIRECT support!\n"); 3485 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3486 ext4_msg(sb, KERN_ERR, "can't mount with " 3487 "both data=journal and delalloc"); 3488 goto failed_mount; 3489 } 3490 if (test_opt(sb, DIOREAD_NOLOCK)) { 3491 ext4_msg(sb, KERN_ERR, "can't mount with " 3492 "both data=journal and delalloc"); 3493 goto failed_mount; 3494 } 3495 if (test_opt(sb, DELALLOC)) 3496 clear_opt(sb, DELALLOC); 3497 } 3498 3499 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3500 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3501 3502 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3503 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3504 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3505 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3506 ext4_msg(sb, KERN_WARNING, 3507 "feature flags set on rev 0 fs, " 3508 "running e2fsck is recommended"); 3509 3510 if (IS_EXT2_SB(sb)) { 3511 if (ext2_feature_set_ok(sb)) 3512 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3513 "using the ext4 subsystem"); 3514 else { 3515 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3516 "to feature incompatibilities"); 3517 goto failed_mount; 3518 } 3519 } 3520 3521 if (IS_EXT3_SB(sb)) { 3522 if (ext3_feature_set_ok(sb)) 3523 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3524 "using the ext4 subsystem"); 3525 else { 3526 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3527 "to feature incompatibilities"); 3528 goto failed_mount; 3529 } 3530 } 3531 3532 /* 3533 * Check feature flags regardless of the revision level, since we 3534 * previously didn't change the revision level when setting the flags, 3535 * so there is a chance incompat flags are set on a rev 0 filesystem. 3536 */ 3537 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3538 goto failed_mount; 3539 3540 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3541 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3542 blocksize > EXT4_MAX_BLOCK_SIZE) { 3543 ext4_msg(sb, KERN_ERR, 3544 "Unsupported filesystem blocksize %d", blocksize); 3545 goto failed_mount; 3546 } 3547 3548 if (sb->s_blocksize != blocksize) { 3549 /* Validate the filesystem blocksize */ 3550 if (!sb_set_blocksize(sb, blocksize)) { 3551 ext4_msg(sb, KERN_ERR, "bad block size %d", 3552 blocksize); 3553 goto failed_mount; 3554 } 3555 3556 brelse(bh); 3557 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3558 offset = do_div(logical_sb_block, blocksize); 3559 bh = sb_bread(sb, logical_sb_block); 3560 if (!bh) { 3561 ext4_msg(sb, KERN_ERR, 3562 "Can't read superblock on 2nd try"); 3563 goto failed_mount; 3564 } 3565 es = (struct ext4_super_block *)(bh->b_data + offset); 3566 sbi->s_es = es; 3567 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3568 ext4_msg(sb, KERN_ERR, 3569 "Magic mismatch, very weird!"); 3570 goto failed_mount; 3571 } 3572 } 3573 3574 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3575 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3576 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3577 has_huge_files); 3578 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3579 3580 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3581 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3582 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3583 } else { 3584 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3585 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3586 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3587 (!is_power_of_2(sbi->s_inode_size)) || 3588 (sbi->s_inode_size > blocksize)) { 3589 ext4_msg(sb, KERN_ERR, 3590 "unsupported inode size: %d", 3591 sbi->s_inode_size); 3592 goto failed_mount; 3593 } 3594 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3595 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3596 } 3597 3598 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3599 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3600 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3601 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3602 !is_power_of_2(sbi->s_desc_size)) { 3603 ext4_msg(sb, KERN_ERR, 3604 "unsupported descriptor size %lu", 3605 sbi->s_desc_size); 3606 goto failed_mount; 3607 } 3608 } else 3609 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3610 3611 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3612 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3613 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3614 goto cantfind_ext4; 3615 3616 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3617 if (sbi->s_inodes_per_block == 0) 3618 goto cantfind_ext4; 3619 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3620 sbi->s_inodes_per_block; 3621 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3622 sbi->s_sbh = bh; 3623 sbi->s_mount_state = le16_to_cpu(es->s_state); 3624 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3625 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3626 3627 /* Do we have standard group size of blocksize * 8 blocks ? */ 3628 if (sbi->s_blocks_per_group == blocksize << 3) 3629 set_opt2(sb, STD_GROUP_SIZE); 3630 3631 for (i = 0; i < 4; i++) 3632 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3633 sbi->s_def_hash_version = es->s_def_hash_version; 3634 i = le32_to_cpu(es->s_flags); 3635 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3636 sbi->s_hash_unsigned = 3; 3637 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3638 #ifdef __CHAR_UNSIGNED__ 3639 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3640 sbi->s_hash_unsigned = 3; 3641 #else 3642 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3643 #endif 3644 } 3645 3646 /* Handle clustersize */ 3647 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3648 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3649 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3650 if (has_bigalloc) { 3651 if (clustersize < blocksize) { 3652 ext4_msg(sb, KERN_ERR, 3653 "cluster size (%d) smaller than " 3654 "block size (%d)", clustersize, blocksize); 3655 goto failed_mount; 3656 } 3657 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3658 le32_to_cpu(es->s_log_block_size); 3659 sbi->s_clusters_per_group = 3660 le32_to_cpu(es->s_clusters_per_group); 3661 if (sbi->s_clusters_per_group > blocksize * 8) { 3662 ext4_msg(sb, KERN_ERR, 3663 "#clusters per group too big: %lu", 3664 sbi->s_clusters_per_group); 3665 goto failed_mount; 3666 } 3667 if (sbi->s_blocks_per_group != 3668 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3669 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3670 "clusters per group (%lu) inconsistent", 3671 sbi->s_blocks_per_group, 3672 sbi->s_clusters_per_group); 3673 goto failed_mount; 3674 } 3675 } else { 3676 if (clustersize != blocksize) { 3677 ext4_warning(sb, "fragment/cluster size (%d) != " 3678 "block size (%d)", clustersize, 3679 blocksize); 3680 clustersize = blocksize; 3681 } 3682 if (sbi->s_blocks_per_group > blocksize * 8) { 3683 ext4_msg(sb, KERN_ERR, 3684 "#blocks per group too big: %lu", 3685 sbi->s_blocks_per_group); 3686 goto failed_mount; 3687 } 3688 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3689 sbi->s_cluster_bits = 0; 3690 } 3691 sbi->s_cluster_ratio = clustersize / blocksize; 3692 3693 if (sbi->s_inodes_per_group > blocksize * 8) { 3694 ext4_msg(sb, KERN_ERR, 3695 "#inodes per group too big: %lu", 3696 sbi->s_inodes_per_group); 3697 goto failed_mount; 3698 } 3699 3700 /* 3701 * Test whether we have more sectors than will fit in sector_t, 3702 * and whether the max offset is addressable by the page cache. 3703 */ 3704 err = generic_check_addressable(sb->s_blocksize_bits, 3705 ext4_blocks_count(es)); 3706 if (err) { 3707 ext4_msg(sb, KERN_ERR, "filesystem" 3708 " too large to mount safely on this system"); 3709 if (sizeof(sector_t) < 8) 3710 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3711 goto failed_mount; 3712 } 3713 3714 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3715 goto cantfind_ext4; 3716 3717 /* check blocks count against device size */ 3718 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3719 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3720 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3721 "exceeds size of device (%llu blocks)", 3722 ext4_blocks_count(es), blocks_count); 3723 goto failed_mount; 3724 } 3725 3726 /* 3727 * It makes no sense for the first data block to be beyond the end 3728 * of the filesystem. 3729 */ 3730 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3731 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3732 "block %u is beyond end of filesystem (%llu)", 3733 le32_to_cpu(es->s_first_data_block), 3734 ext4_blocks_count(es)); 3735 goto failed_mount; 3736 } 3737 blocks_count = (ext4_blocks_count(es) - 3738 le32_to_cpu(es->s_first_data_block) + 3739 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3740 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3741 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3742 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3743 "(block count %llu, first data block %u, " 3744 "blocks per group %lu)", sbi->s_groups_count, 3745 ext4_blocks_count(es), 3746 le32_to_cpu(es->s_first_data_block), 3747 EXT4_BLOCKS_PER_GROUP(sb)); 3748 goto failed_mount; 3749 } 3750 sbi->s_groups_count = blocks_count; 3751 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3752 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3753 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3754 EXT4_DESC_PER_BLOCK(sb); 3755 sbi->s_group_desc = ext4_kvmalloc(db_count * 3756 sizeof(struct buffer_head *), 3757 GFP_KERNEL); 3758 if (sbi->s_group_desc == NULL) { 3759 ext4_msg(sb, KERN_ERR, "not enough memory"); 3760 ret = -ENOMEM; 3761 goto failed_mount; 3762 } 3763 3764 if (ext4_proc_root) 3765 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3766 3767 if (sbi->s_proc) 3768 proc_create_data("options", S_IRUGO, sbi->s_proc, 3769 &ext4_seq_options_fops, sb); 3770 3771 bgl_lock_init(sbi->s_blockgroup_lock); 3772 3773 for (i = 0; i < db_count; i++) { 3774 block = descriptor_loc(sb, logical_sb_block, i); 3775 sbi->s_group_desc[i] = sb_bread(sb, block); 3776 if (!sbi->s_group_desc[i]) { 3777 ext4_msg(sb, KERN_ERR, 3778 "can't read group descriptor %d", i); 3779 db_count = i; 3780 goto failed_mount2; 3781 } 3782 } 3783 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3784 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3785 goto failed_mount2; 3786 } 3787 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3788 if (!ext4_fill_flex_info(sb)) { 3789 ext4_msg(sb, KERN_ERR, 3790 "unable to initialize " 3791 "flex_bg meta info!"); 3792 goto failed_mount2; 3793 } 3794 3795 sbi->s_gdb_count = db_count; 3796 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3797 spin_lock_init(&sbi->s_next_gen_lock); 3798 3799 init_timer(&sbi->s_err_report); 3800 sbi->s_err_report.function = print_daily_error_info; 3801 sbi->s_err_report.data = (unsigned long) sb; 3802 3803 /* Register extent status tree shrinker */ 3804 ext4_es_register_shrinker(sbi); 3805 3806 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3807 ext4_count_free_clusters(sb)); 3808 if (!err) { 3809 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3810 ext4_count_free_inodes(sb)); 3811 } 3812 if (!err) { 3813 err = percpu_counter_init(&sbi->s_dirs_counter, 3814 ext4_count_dirs(sb)); 3815 } 3816 if (!err) { 3817 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3818 } 3819 if (!err) { 3820 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3821 } 3822 if (err) { 3823 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3824 goto failed_mount3; 3825 } 3826 3827 sbi->s_stripe = ext4_get_stripe_size(sbi); 3828 sbi->s_extent_max_zeroout_kb = 32; 3829 3830 /* 3831 * set up enough so that it can read an inode 3832 */ 3833 if (!test_opt(sb, NOLOAD) && 3834 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3835 sb->s_op = &ext4_sops; 3836 else 3837 sb->s_op = &ext4_nojournal_sops; 3838 sb->s_export_op = &ext4_export_ops; 3839 sb->s_xattr = ext4_xattr_handlers; 3840 #ifdef CONFIG_QUOTA 3841 sb->dq_op = &ext4_quota_operations; 3842 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3843 sb->s_qcop = &ext4_qctl_sysfile_operations; 3844 else 3845 sb->s_qcop = &ext4_qctl_operations; 3846 #endif 3847 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3848 3849 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3850 mutex_init(&sbi->s_orphan_lock); 3851 3852 sb->s_root = NULL; 3853 3854 needs_recovery = (es->s_last_orphan != 0 || 3855 EXT4_HAS_INCOMPAT_FEATURE(sb, 3856 EXT4_FEATURE_INCOMPAT_RECOVER)); 3857 3858 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3859 !(sb->s_flags & MS_RDONLY)) 3860 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3861 goto failed_mount3; 3862 3863 /* 3864 * The first inode we look at is the journal inode. Don't try 3865 * root first: it may be modified in the journal! 3866 */ 3867 if (!test_opt(sb, NOLOAD) && 3868 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3869 if (ext4_load_journal(sb, es, journal_devnum)) 3870 goto failed_mount3; 3871 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3872 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3873 ext4_msg(sb, KERN_ERR, "required journal recovery " 3874 "suppressed and not mounted read-only"); 3875 goto failed_mount_wq; 3876 } else { 3877 clear_opt(sb, DATA_FLAGS); 3878 sbi->s_journal = NULL; 3879 needs_recovery = 0; 3880 goto no_journal; 3881 } 3882 3883 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3884 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3885 JBD2_FEATURE_INCOMPAT_64BIT)) { 3886 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3887 goto failed_mount_wq; 3888 } 3889 3890 if (!set_journal_csum_feature_set(sb)) { 3891 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3892 "feature set"); 3893 goto failed_mount_wq; 3894 } 3895 3896 /* We have now updated the journal if required, so we can 3897 * validate the data journaling mode. */ 3898 switch (test_opt(sb, DATA_FLAGS)) { 3899 case 0: 3900 /* No mode set, assume a default based on the journal 3901 * capabilities: ORDERED_DATA if the journal can 3902 * cope, else JOURNAL_DATA 3903 */ 3904 if (jbd2_journal_check_available_features 3905 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3906 set_opt(sb, ORDERED_DATA); 3907 else 3908 set_opt(sb, JOURNAL_DATA); 3909 break; 3910 3911 case EXT4_MOUNT_ORDERED_DATA: 3912 case EXT4_MOUNT_WRITEBACK_DATA: 3913 if (!jbd2_journal_check_available_features 3914 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3915 ext4_msg(sb, KERN_ERR, "Journal does not support " 3916 "requested data journaling mode"); 3917 goto failed_mount_wq; 3918 } 3919 default: 3920 break; 3921 } 3922 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3923 3924 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3925 3926 /* 3927 * The journal may have updated the bg summary counts, so we 3928 * need to update the global counters. 3929 */ 3930 percpu_counter_set(&sbi->s_freeclusters_counter, 3931 ext4_count_free_clusters(sb)); 3932 percpu_counter_set(&sbi->s_freeinodes_counter, 3933 ext4_count_free_inodes(sb)); 3934 percpu_counter_set(&sbi->s_dirs_counter, 3935 ext4_count_dirs(sb)); 3936 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3937 3938 no_journal: 3939 /* 3940 * Get the # of file system overhead blocks from the 3941 * superblock if present. 3942 */ 3943 if (es->s_overhead_clusters) 3944 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3945 else { 3946 err = ext4_calculate_overhead(sb); 3947 if (err) 3948 goto failed_mount_wq; 3949 } 3950 3951 /* 3952 * The maximum number of concurrent works can be high and 3953 * concurrency isn't really necessary. Limit it to 1. 3954 */ 3955 EXT4_SB(sb)->rsv_conversion_wq = 3956 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3957 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3958 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3959 ret = -ENOMEM; 3960 goto failed_mount4; 3961 } 3962 3963 EXT4_SB(sb)->unrsv_conversion_wq = 3964 alloc_workqueue("ext4-unrsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3965 if (!EXT4_SB(sb)->unrsv_conversion_wq) { 3966 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3967 ret = -ENOMEM; 3968 goto failed_mount4; 3969 } 3970 3971 /* 3972 * The jbd2_journal_load will have done any necessary log recovery, 3973 * so we can safely mount the rest of the filesystem now. 3974 */ 3975 3976 root = ext4_iget(sb, EXT4_ROOT_INO); 3977 if (IS_ERR(root)) { 3978 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3979 ret = PTR_ERR(root); 3980 root = NULL; 3981 goto failed_mount4; 3982 } 3983 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3984 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3985 iput(root); 3986 goto failed_mount4; 3987 } 3988 sb->s_root = d_make_root(root); 3989 if (!sb->s_root) { 3990 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3991 ret = -ENOMEM; 3992 goto failed_mount4; 3993 } 3994 3995 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3996 sb->s_flags |= MS_RDONLY; 3997 3998 /* determine the minimum size of new large inodes, if present */ 3999 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4000 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4001 EXT4_GOOD_OLD_INODE_SIZE; 4002 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4003 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4004 if (sbi->s_want_extra_isize < 4005 le16_to_cpu(es->s_want_extra_isize)) 4006 sbi->s_want_extra_isize = 4007 le16_to_cpu(es->s_want_extra_isize); 4008 if (sbi->s_want_extra_isize < 4009 le16_to_cpu(es->s_min_extra_isize)) 4010 sbi->s_want_extra_isize = 4011 le16_to_cpu(es->s_min_extra_isize); 4012 } 4013 } 4014 /* Check if enough inode space is available */ 4015 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4016 sbi->s_inode_size) { 4017 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4018 EXT4_GOOD_OLD_INODE_SIZE; 4019 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4020 "available"); 4021 } 4022 4023 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi)); 4024 if (err) { 4025 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4026 "reserved pool", ext4_calculate_resv_clusters(sbi)); 4027 goto failed_mount4a; 4028 } 4029 4030 err = ext4_setup_system_zone(sb); 4031 if (err) { 4032 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4033 "zone (%d)", err); 4034 goto failed_mount4a; 4035 } 4036 4037 ext4_ext_init(sb); 4038 err = ext4_mb_init(sb); 4039 if (err) { 4040 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4041 err); 4042 goto failed_mount5; 4043 } 4044 4045 err = ext4_register_li_request(sb, first_not_zeroed); 4046 if (err) 4047 goto failed_mount6; 4048 4049 sbi->s_kobj.kset = ext4_kset; 4050 init_completion(&sbi->s_kobj_unregister); 4051 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4052 "%s", sb->s_id); 4053 if (err) 4054 goto failed_mount7; 4055 4056 #ifdef CONFIG_QUOTA 4057 /* Enable quota usage during mount. */ 4058 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4059 !(sb->s_flags & MS_RDONLY)) { 4060 err = ext4_enable_quotas(sb); 4061 if (err) 4062 goto failed_mount8; 4063 } 4064 #endif /* CONFIG_QUOTA */ 4065 4066 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4067 ext4_orphan_cleanup(sb, es); 4068 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4069 if (needs_recovery) { 4070 ext4_msg(sb, KERN_INFO, "recovery complete"); 4071 ext4_mark_recovery_complete(sb, es); 4072 } 4073 if (EXT4_SB(sb)->s_journal) { 4074 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4075 descr = " journalled data mode"; 4076 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4077 descr = " ordered data mode"; 4078 else 4079 descr = " writeback data mode"; 4080 } else 4081 descr = "out journal"; 4082 4083 if (test_opt(sb, DISCARD)) { 4084 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4085 if (!blk_queue_discard(q)) 4086 ext4_msg(sb, KERN_WARNING, 4087 "mounting with \"discard\" option, but " 4088 "the device does not support discard"); 4089 } 4090 4091 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4092 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4093 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4094 4095 if (es->s_error_count) 4096 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4097 4098 kfree(orig_data); 4099 return 0; 4100 4101 cantfind_ext4: 4102 if (!silent) 4103 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4104 goto failed_mount; 4105 4106 #ifdef CONFIG_QUOTA 4107 failed_mount8: 4108 kobject_del(&sbi->s_kobj); 4109 #endif 4110 failed_mount7: 4111 ext4_unregister_li_request(sb); 4112 failed_mount6: 4113 ext4_mb_release(sb); 4114 failed_mount5: 4115 ext4_ext_release(sb); 4116 ext4_release_system_zone(sb); 4117 failed_mount4a: 4118 dput(sb->s_root); 4119 sb->s_root = NULL; 4120 failed_mount4: 4121 ext4_msg(sb, KERN_ERR, "mount failed"); 4122 if (EXT4_SB(sb)->rsv_conversion_wq) 4123 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4124 if (EXT4_SB(sb)->unrsv_conversion_wq) 4125 destroy_workqueue(EXT4_SB(sb)->unrsv_conversion_wq); 4126 failed_mount_wq: 4127 if (sbi->s_journal) { 4128 jbd2_journal_destroy(sbi->s_journal); 4129 sbi->s_journal = NULL; 4130 } 4131 failed_mount3: 4132 ext4_es_unregister_shrinker(sbi); 4133 del_timer(&sbi->s_err_report); 4134 if (sbi->s_flex_groups) 4135 ext4_kvfree(sbi->s_flex_groups); 4136 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4137 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4138 percpu_counter_destroy(&sbi->s_dirs_counter); 4139 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4140 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4141 if (sbi->s_mmp_tsk) 4142 kthread_stop(sbi->s_mmp_tsk); 4143 failed_mount2: 4144 for (i = 0; i < db_count; i++) 4145 brelse(sbi->s_group_desc[i]); 4146 ext4_kvfree(sbi->s_group_desc); 4147 failed_mount: 4148 if (sbi->s_chksum_driver) 4149 crypto_free_shash(sbi->s_chksum_driver); 4150 if (sbi->s_proc) { 4151 remove_proc_entry("options", sbi->s_proc); 4152 remove_proc_entry(sb->s_id, ext4_proc_root); 4153 } 4154 #ifdef CONFIG_QUOTA 4155 for (i = 0; i < MAXQUOTAS; i++) 4156 kfree(sbi->s_qf_names[i]); 4157 #endif 4158 ext4_blkdev_remove(sbi); 4159 brelse(bh); 4160 out_fail: 4161 sb->s_fs_info = NULL; 4162 kfree(sbi->s_blockgroup_lock); 4163 kfree(sbi); 4164 out_free_orig: 4165 kfree(orig_data); 4166 return err ? err : ret; 4167 } 4168 4169 /* 4170 * Setup any per-fs journal parameters now. We'll do this both on 4171 * initial mount, once the journal has been initialised but before we've 4172 * done any recovery; and again on any subsequent remount. 4173 */ 4174 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4175 { 4176 struct ext4_sb_info *sbi = EXT4_SB(sb); 4177 4178 journal->j_commit_interval = sbi->s_commit_interval; 4179 journal->j_min_batch_time = sbi->s_min_batch_time; 4180 journal->j_max_batch_time = sbi->s_max_batch_time; 4181 4182 write_lock(&journal->j_state_lock); 4183 if (test_opt(sb, BARRIER)) 4184 journal->j_flags |= JBD2_BARRIER; 4185 else 4186 journal->j_flags &= ~JBD2_BARRIER; 4187 if (test_opt(sb, DATA_ERR_ABORT)) 4188 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4189 else 4190 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4191 write_unlock(&journal->j_state_lock); 4192 } 4193 4194 static journal_t *ext4_get_journal(struct super_block *sb, 4195 unsigned int journal_inum) 4196 { 4197 struct inode *journal_inode; 4198 journal_t *journal; 4199 4200 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4201 4202 /* First, test for the existence of a valid inode on disk. Bad 4203 * things happen if we iget() an unused inode, as the subsequent 4204 * iput() will try to delete it. */ 4205 4206 journal_inode = ext4_iget(sb, journal_inum); 4207 if (IS_ERR(journal_inode)) { 4208 ext4_msg(sb, KERN_ERR, "no journal found"); 4209 return NULL; 4210 } 4211 if (!journal_inode->i_nlink) { 4212 make_bad_inode(journal_inode); 4213 iput(journal_inode); 4214 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4215 return NULL; 4216 } 4217 4218 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4219 journal_inode, journal_inode->i_size); 4220 if (!S_ISREG(journal_inode->i_mode)) { 4221 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4222 iput(journal_inode); 4223 return NULL; 4224 } 4225 4226 journal = jbd2_journal_init_inode(journal_inode); 4227 if (!journal) { 4228 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4229 iput(journal_inode); 4230 return NULL; 4231 } 4232 journal->j_private = sb; 4233 ext4_init_journal_params(sb, journal); 4234 return journal; 4235 } 4236 4237 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4238 dev_t j_dev) 4239 { 4240 struct buffer_head *bh; 4241 journal_t *journal; 4242 ext4_fsblk_t start; 4243 ext4_fsblk_t len; 4244 int hblock, blocksize; 4245 ext4_fsblk_t sb_block; 4246 unsigned long offset; 4247 struct ext4_super_block *es; 4248 struct block_device *bdev; 4249 4250 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4251 4252 bdev = ext4_blkdev_get(j_dev, sb); 4253 if (bdev == NULL) 4254 return NULL; 4255 4256 blocksize = sb->s_blocksize; 4257 hblock = bdev_logical_block_size(bdev); 4258 if (blocksize < hblock) { 4259 ext4_msg(sb, KERN_ERR, 4260 "blocksize too small for journal device"); 4261 goto out_bdev; 4262 } 4263 4264 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4265 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4266 set_blocksize(bdev, blocksize); 4267 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4268 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4269 "external journal"); 4270 goto out_bdev; 4271 } 4272 4273 es = (struct ext4_super_block *) (bh->b_data + offset); 4274 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4275 !(le32_to_cpu(es->s_feature_incompat) & 4276 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4277 ext4_msg(sb, KERN_ERR, "external journal has " 4278 "bad superblock"); 4279 brelse(bh); 4280 goto out_bdev; 4281 } 4282 4283 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4284 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4285 brelse(bh); 4286 goto out_bdev; 4287 } 4288 4289 len = ext4_blocks_count(es); 4290 start = sb_block + 1; 4291 brelse(bh); /* we're done with the superblock */ 4292 4293 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4294 start, len, blocksize); 4295 if (!journal) { 4296 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4297 goto out_bdev; 4298 } 4299 journal->j_private = sb; 4300 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4301 wait_on_buffer(journal->j_sb_buffer); 4302 if (!buffer_uptodate(journal->j_sb_buffer)) { 4303 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4304 goto out_journal; 4305 } 4306 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4307 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4308 "user (unsupported) - %d", 4309 be32_to_cpu(journal->j_superblock->s_nr_users)); 4310 goto out_journal; 4311 } 4312 EXT4_SB(sb)->journal_bdev = bdev; 4313 ext4_init_journal_params(sb, journal); 4314 return journal; 4315 4316 out_journal: 4317 jbd2_journal_destroy(journal); 4318 out_bdev: 4319 ext4_blkdev_put(bdev); 4320 return NULL; 4321 } 4322 4323 static int ext4_load_journal(struct super_block *sb, 4324 struct ext4_super_block *es, 4325 unsigned long journal_devnum) 4326 { 4327 journal_t *journal; 4328 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4329 dev_t journal_dev; 4330 int err = 0; 4331 int really_read_only; 4332 4333 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4334 4335 if (journal_devnum && 4336 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4337 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4338 "numbers have changed"); 4339 journal_dev = new_decode_dev(journal_devnum); 4340 } else 4341 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4342 4343 really_read_only = bdev_read_only(sb->s_bdev); 4344 4345 /* 4346 * Are we loading a blank journal or performing recovery after a 4347 * crash? For recovery, we need to check in advance whether we 4348 * can get read-write access to the device. 4349 */ 4350 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4351 if (sb->s_flags & MS_RDONLY) { 4352 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4353 "required on readonly filesystem"); 4354 if (really_read_only) { 4355 ext4_msg(sb, KERN_ERR, "write access " 4356 "unavailable, cannot proceed"); 4357 return -EROFS; 4358 } 4359 ext4_msg(sb, KERN_INFO, "write access will " 4360 "be enabled during recovery"); 4361 } 4362 } 4363 4364 if (journal_inum && journal_dev) { 4365 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4366 "and inode journals!"); 4367 return -EINVAL; 4368 } 4369 4370 if (journal_inum) { 4371 if (!(journal = ext4_get_journal(sb, journal_inum))) 4372 return -EINVAL; 4373 } else { 4374 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4375 return -EINVAL; 4376 } 4377 4378 if (!(journal->j_flags & JBD2_BARRIER)) 4379 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4380 4381 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4382 err = jbd2_journal_wipe(journal, !really_read_only); 4383 if (!err) { 4384 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4385 if (save) 4386 memcpy(save, ((char *) es) + 4387 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4388 err = jbd2_journal_load(journal); 4389 if (save) 4390 memcpy(((char *) es) + EXT4_S_ERR_START, 4391 save, EXT4_S_ERR_LEN); 4392 kfree(save); 4393 } 4394 4395 if (err) { 4396 ext4_msg(sb, KERN_ERR, "error loading journal"); 4397 jbd2_journal_destroy(journal); 4398 return err; 4399 } 4400 4401 EXT4_SB(sb)->s_journal = journal; 4402 ext4_clear_journal_err(sb, es); 4403 4404 if (!really_read_only && journal_devnum && 4405 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4406 es->s_journal_dev = cpu_to_le32(journal_devnum); 4407 4408 /* Make sure we flush the recovery flag to disk. */ 4409 ext4_commit_super(sb, 1); 4410 } 4411 4412 return 0; 4413 } 4414 4415 static int ext4_commit_super(struct super_block *sb, int sync) 4416 { 4417 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4418 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4419 int error = 0; 4420 4421 if (!sbh || block_device_ejected(sb)) 4422 return error; 4423 if (buffer_write_io_error(sbh)) { 4424 /* 4425 * Oh, dear. A previous attempt to write the 4426 * superblock failed. This could happen because the 4427 * USB device was yanked out. Or it could happen to 4428 * be a transient write error and maybe the block will 4429 * be remapped. Nothing we can do but to retry the 4430 * write and hope for the best. 4431 */ 4432 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4433 "superblock detected"); 4434 clear_buffer_write_io_error(sbh); 4435 set_buffer_uptodate(sbh); 4436 } 4437 /* 4438 * If the file system is mounted read-only, don't update the 4439 * superblock write time. This avoids updating the superblock 4440 * write time when we are mounting the root file system 4441 * read/only but we need to replay the journal; at that point, 4442 * for people who are east of GMT and who make their clock 4443 * tick in localtime for Windows bug-for-bug compatibility, 4444 * the clock is set in the future, and this will cause e2fsck 4445 * to complain and force a full file system check. 4446 */ 4447 if (!(sb->s_flags & MS_RDONLY)) 4448 es->s_wtime = cpu_to_le32(get_seconds()); 4449 if (sb->s_bdev->bd_part) 4450 es->s_kbytes_written = 4451 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4452 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4453 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4454 else 4455 es->s_kbytes_written = 4456 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4457 ext4_free_blocks_count_set(es, 4458 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4459 &EXT4_SB(sb)->s_freeclusters_counter))); 4460 es->s_free_inodes_count = 4461 cpu_to_le32(percpu_counter_sum_positive( 4462 &EXT4_SB(sb)->s_freeinodes_counter)); 4463 BUFFER_TRACE(sbh, "marking dirty"); 4464 ext4_superblock_csum_set(sb); 4465 mark_buffer_dirty(sbh); 4466 if (sync) { 4467 error = sync_dirty_buffer(sbh); 4468 if (error) 4469 return error; 4470 4471 error = buffer_write_io_error(sbh); 4472 if (error) { 4473 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4474 "superblock"); 4475 clear_buffer_write_io_error(sbh); 4476 set_buffer_uptodate(sbh); 4477 } 4478 } 4479 return error; 4480 } 4481 4482 /* 4483 * Have we just finished recovery? If so, and if we are mounting (or 4484 * remounting) the filesystem readonly, then we will end up with a 4485 * consistent fs on disk. Record that fact. 4486 */ 4487 static void ext4_mark_recovery_complete(struct super_block *sb, 4488 struct ext4_super_block *es) 4489 { 4490 journal_t *journal = EXT4_SB(sb)->s_journal; 4491 4492 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4493 BUG_ON(journal != NULL); 4494 return; 4495 } 4496 jbd2_journal_lock_updates(journal); 4497 if (jbd2_journal_flush(journal) < 0) 4498 goto out; 4499 4500 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4501 sb->s_flags & MS_RDONLY) { 4502 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4503 ext4_commit_super(sb, 1); 4504 } 4505 4506 out: 4507 jbd2_journal_unlock_updates(journal); 4508 } 4509 4510 /* 4511 * If we are mounting (or read-write remounting) a filesystem whose journal 4512 * has recorded an error from a previous lifetime, move that error to the 4513 * main filesystem now. 4514 */ 4515 static void ext4_clear_journal_err(struct super_block *sb, 4516 struct ext4_super_block *es) 4517 { 4518 journal_t *journal; 4519 int j_errno; 4520 const char *errstr; 4521 4522 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4523 4524 journal = EXT4_SB(sb)->s_journal; 4525 4526 /* 4527 * Now check for any error status which may have been recorded in the 4528 * journal by a prior ext4_error() or ext4_abort() 4529 */ 4530 4531 j_errno = jbd2_journal_errno(journal); 4532 if (j_errno) { 4533 char nbuf[16]; 4534 4535 errstr = ext4_decode_error(sb, j_errno, nbuf); 4536 ext4_warning(sb, "Filesystem error recorded " 4537 "from previous mount: %s", errstr); 4538 ext4_warning(sb, "Marking fs in need of filesystem check."); 4539 4540 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4541 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4542 ext4_commit_super(sb, 1); 4543 4544 jbd2_journal_clear_err(journal); 4545 jbd2_journal_update_sb_errno(journal); 4546 } 4547 } 4548 4549 /* 4550 * Force the running and committing transactions to commit, 4551 * and wait on the commit. 4552 */ 4553 int ext4_force_commit(struct super_block *sb) 4554 { 4555 journal_t *journal; 4556 4557 if (sb->s_flags & MS_RDONLY) 4558 return 0; 4559 4560 journal = EXT4_SB(sb)->s_journal; 4561 return ext4_journal_force_commit(journal); 4562 } 4563 4564 static int ext4_sync_fs(struct super_block *sb, int wait) 4565 { 4566 int ret = 0; 4567 tid_t target; 4568 bool needs_barrier = false; 4569 struct ext4_sb_info *sbi = EXT4_SB(sb); 4570 4571 trace_ext4_sync_fs(sb, wait); 4572 flush_workqueue(sbi->rsv_conversion_wq); 4573 flush_workqueue(sbi->unrsv_conversion_wq); 4574 /* 4575 * Writeback quota in non-journalled quota case - journalled quota has 4576 * no dirty dquots 4577 */ 4578 dquot_writeback_dquots(sb, -1); 4579 /* 4580 * Data writeback is possible w/o journal transaction, so barrier must 4581 * being sent at the end of the function. But we can skip it if 4582 * transaction_commit will do it for us. 4583 */ 4584 target = jbd2_get_latest_transaction(sbi->s_journal); 4585 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4586 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4587 needs_barrier = true; 4588 4589 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4590 if (wait) 4591 ret = jbd2_log_wait_commit(sbi->s_journal, target); 4592 } 4593 if (needs_barrier) { 4594 int err; 4595 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4596 if (!ret) 4597 ret = err; 4598 } 4599 4600 return ret; 4601 } 4602 4603 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait) 4604 { 4605 int ret = 0; 4606 4607 trace_ext4_sync_fs(sb, wait); 4608 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4609 flush_workqueue(EXT4_SB(sb)->unrsv_conversion_wq); 4610 dquot_writeback_dquots(sb, -1); 4611 if (wait && test_opt(sb, BARRIER)) 4612 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4613 4614 return ret; 4615 } 4616 4617 /* 4618 * LVM calls this function before a (read-only) snapshot is created. This 4619 * gives us a chance to flush the journal completely and mark the fs clean. 4620 * 4621 * Note that only this function cannot bring a filesystem to be in a clean 4622 * state independently. It relies on upper layer to stop all data & metadata 4623 * modifications. 4624 */ 4625 static int ext4_freeze(struct super_block *sb) 4626 { 4627 int error = 0; 4628 journal_t *journal; 4629 4630 if (sb->s_flags & MS_RDONLY) 4631 return 0; 4632 4633 journal = EXT4_SB(sb)->s_journal; 4634 4635 /* Now we set up the journal barrier. */ 4636 jbd2_journal_lock_updates(journal); 4637 4638 /* 4639 * Don't clear the needs_recovery flag if we failed to flush 4640 * the journal. 4641 */ 4642 error = jbd2_journal_flush(journal); 4643 if (error < 0) 4644 goto out; 4645 4646 /* Journal blocked and flushed, clear needs_recovery flag. */ 4647 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4648 error = ext4_commit_super(sb, 1); 4649 out: 4650 /* we rely on upper layer to stop further updates */ 4651 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4652 return error; 4653 } 4654 4655 /* 4656 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4657 * flag here, even though the filesystem is not technically dirty yet. 4658 */ 4659 static int ext4_unfreeze(struct super_block *sb) 4660 { 4661 if (sb->s_flags & MS_RDONLY) 4662 return 0; 4663 4664 /* Reset the needs_recovery flag before the fs is unlocked. */ 4665 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4666 ext4_commit_super(sb, 1); 4667 return 0; 4668 } 4669 4670 /* 4671 * Structure to save mount options for ext4_remount's benefit 4672 */ 4673 struct ext4_mount_options { 4674 unsigned long s_mount_opt; 4675 unsigned long s_mount_opt2; 4676 kuid_t s_resuid; 4677 kgid_t s_resgid; 4678 unsigned long s_commit_interval; 4679 u32 s_min_batch_time, s_max_batch_time; 4680 #ifdef CONFIG_QUOTA 4681 int s_jquota_fmt; 4682 char *s_qf_names[MAXQUOTAS]; 4683 #endif 4684 }; 4685 4686 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4687 { 4688 struct ext4_super_block *es; 4689 struct ext4_sb_info *sbi = EXT4_SB(sb); 4690 unsigned long old_sb_flags; 4691 struct ext4_mount_options old_opts; 4692 int enable_quota = 0; 4693 ext4_group_t g; 4694 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4695 int err = 0; 4696 #ifdef CONFIG_QUOTA 4697 int i, j; 4698 #endif 4699 char *orig_data = kstrdup(data, GFP_KERNEL); 4700 4701 /* Store the original options */ 4702 old_sb_flags = sb->s_flags; 4703 old_opts.s_mount_opt = sbi->s_mount_opt; 4704 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4705 old_opts.s_resuid = sbi->s_resuid; 4706 old_opts.s_resgid = sbi->s_resgid; 4707 old_opts.s_commit_interval = sbi->s_commit_interval; 4708 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4709 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4710 #ifdef CONFIG_QUOTA 4711 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4712 for (i = 0; i < MAXQUOTAS; i++) 4713 if (sbi->s_qf_names[i]) { 4714 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4715 GFP_KERNEL); 4716 if (!old_opts.s_qf_names[i]) { 4717 for (j = 0; j < i; j++) 4718 kfree(old_opts.s_qf_names[j]); 4719 kfree(orig_data); 4720 return -ENOMEM; 4721 } 4722 } else 4723 old_opts.s_qf_names[i] = NULL; 4724 #endif 4725 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4726 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4727 4728 /* 4729 * Allow the "check" option to be passed as a remount option. 4730 */ 4731 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4732 err = -EINVAL; 4733 goto restore_opts; 4734 } 4735 4736 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4737 ext4_abort(sb, "Abort forced by user"); 4738 4739 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4740 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4741 4742 es = sbi->s_es; 4743 4744 if (sbi->s_journal) { 4745 ext4_init_journal_params(sb, sbi->s_journal); 4746 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4747 } 4748 4749 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4750 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4751 err = -EROFS; 4752 goto restore_opts; 4753 } 4754 4755 if (*flags & MS_RDONLY) { 4756 err = dquot_suspend(sb, -1); 4757 if (err < 0) 4758 goto restore_opts; 4759 4760 /* 4761 * First of all, the unconditional stuff we have to do 4762 * to disable replay of the journal when we next remount 4763 */ 4764 sb->s_flags |= MS_RDONLY; 4765 4766 /* 4767 * OK, test if we are remounting a valid rw partition 4768 * readonly, and if so set the rdonly flag and then 4769 * mark the partition as valid again. 4770 */ 4771 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4772 (sbi->s_mount_state & EXT4_VALID_FS)) 4773 es->s_state = cpu_to_le16(sbi->s_mount_state); 4774 4775 if (sbi->s_journal) 4776 ext4_mark_recovery_complete(sb, es); 4777 } else { 4778 /* Make sure we can mount this feature set readwrite */ 4779 if (!ext4_feature_set_ok(sb, 0)) { 4780 err = -EROFS; 4781 goto restore_opts; 4782 } 4783 /* 4784 * Make sure the group descriptor checksums 4785 * are sane. If they aren't, refuse to remount r/w. 4786 */ 4787 for (g = 0; g < sbi->s_groups_count; g++) { 4788 struct ext4_group_desc *gdp = 4789 ext4_get_group_desc(sb, g, NULL); 4790 4791 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4792 ext4_msg(sb, KERN_ERR, 4793 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4794 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4795 le16_to_cpu(gdp->bg_checksum)); 4796 err = -EINVAL; 4797 goto restore_opts; 4798 } 4799 } 4800 4801 /* 4802 * If we have an unprocessed orphan list hanging 4803 * around from a previously readonly bdev mount, 4804 * require a full umount/remount for now. 4805 */ 4806 if (es->s_last_orphan) { 4807 ext4_msg(sb, KERN_WARNING, "Couldn't " 4808 "remount RDWR because of unprocessed " 4809 "orphan inode list. Please " 4810 "umount/remount instead"); 4811 err = -EINVAL; 4812 goto restore_opts; 4813 } 4814 4815 /* 4816 * Mounting a RDONLY partition read-write, so reread 4817 * and store the current valid flag. (It may have 4818 * been changed by e2fsck since we originally mounted 4819 * the partition.) 4820 */ 4821 if (sbi->s_journal) 4822 ext4_clear_journal_err(sb, es); 4823 sbi->s_mount_state = le16_to_cpu(es->s_state); 4824 if (!ext4_setup_super(sb, es, 0)) 4825 sb->s_flags &= ~MS_RDONLY; 4826 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4827 EXT4_FEATURE_INCOMPAT_MMP)) 4828 if (ext4_multi_mount_protect(sb, 4829 le64_to_cpu(es->s_mmp_block))) { 4830 err = -EROFS; 4831 goto restore_opts; 4832 } 4833 enable_quota = 1; 4834 } 4835 } 4836 4837 /* 4838 * Reinitialize lazy itable initialization thread based on 4839 * current settings 4840 */ 4841 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4842 ext4_unregister_li_request(sb); 4843 else { 4844 ext4_group_t first_not_zeroed; 4845 first_not_zeroed = ext4_has_uninit_itable(sb); 4846 ext4_register_li_request(sb, first_not_zeroed); 4847 } 4848 4849 ext4_setup_system_zone(sb); 4850 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4851 ext4_commit_super(sb, 1); 4852 4853 #ifdef CONFIG_QUOTA 4854 /* Release old quota file names */ 4855 for (i = 0; i < MAXQUOTAS; i++) 4856 kfree(old_opts.s_qf_names[i]); 4857 if (enable_quota) { 4858 if (sb_any_quota_suspended(sb)) 4859 dquot_resume(sb, -1); 4860 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4861 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4862 err = ext4_enable_quotas(sb); 4863 if (err) 4864 goto restore_opts; 4865 } 4866 } 4867 #endif 4868 4869 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4870 kfree(orig_data); 4871 return 0; 4872 4873 restore_opts: 4874 sb->s_flags = old_sb_flags; 4875 sbi->s_mount_opt = old_opts.s_mount_opt; 4876 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4877 sbi->s_resuid = old_opts.s_resuid; 4878 sbi->s_resgid = old_opts.s_resgid; 4879 sbi->s_commit_interval = old_opts.s_commit_interval; 4880 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4881 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4882 #ifdef CONFIG_QUOTA 4883 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4884 for (i = 0; i < MAXQUOTAS; i++) { 4885 kfree(sbi->s_qf_names[i]); 4886 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4887 } 4888 #endif 4889 kfree(orig_data); 4890 return err; 4891 } 4892 4893 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4894 { 4895 struct super_block *sb = dentry->d_sb; 4896 struct ext4_sb_info *sbi = EXT4_SB(sb); 4897 struct ext4_super_block *es = sbi->s_es; 4898 ext4_fsblk_t overhead = 0, resv_blocks; 4899 u64 fsid; 4900 s64 bfree; 4901 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4902 4903 if (!test_opt(sb, MINIX_DF)) 4904 overhead = sbi->s_overhead; 4905 4906 buf->f_type = EXT4_SUPER_MAGIC; 4907 buf->f_bsize = sb->s_blocksize; 4908 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4909 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4910 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4911 /* prevent underflow in case that few free space is available */ 4912 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4913 buf->f_bavail = buf->f_bfree - 4914 (ext4_r_blocks_count(es) + resv_blocks); 4915 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4916 buf->f_bavail = 0; 4917 buf->f_files = le32_to_cpu(es->s_inodes_count); 4918 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4919 buf->f_namelen = EXT4_NAME_LEN; 4920 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4921 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4922 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4923 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4924 4925 return 0; 4926 } 4927 4928 /* Helper function for writing quotas on sync - we need to start transaction 4929 * before quota file is locked for write. Otherwise the are possible deadlocks: 4930 * Process 1 Process 2 4931 * ext4_create() quota_sync() 4932 * jbd2_journal_start() write_dquot() 4933 * dquot_initialize() down(dqio_mutex) 4934 * down(dqio_mutex) jbd2_journal_start() 4935 * 4936 */ 4937 4938 #ifdef CONFIG_QUOTA 4939 4940 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4941 { 4942 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4943 } 4944 4945 static int ext4_write_dquot(struct dquot *dquot) 4946 { 4947 int ret, err; 4948 handle_t *handle; 4949 struct inode *inode; 4950 4951 inode = dquot_to_inode(dquot); 4952 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4953 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4954 if (IS_ERR(handle)) 4955 return PTR_ERR(handle); 4956 ret = dquot_commit(dquot); 4957 err = ext4_journal_stop(handle); 4958 if (!ret) 4959 ret = err; 4960 return ret; 4961 } 4962 4963 static int ext4_acquire_dquot(struct dquot *dquot) 4964 { 4965 int ret, err; 4966 handle_t *handle; 4967 4968 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4969 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4970 if (IS_ERR(handle)) 4971 return PTR_ERR(handle); 4972 ret = dquot_acquire(dquot); 4973 err = ext4_journal_stop(handle); 4974 if (!ret) 4975 ret = err; 4976 return ret; 4977 } 4978 4979 static int ext4_release_dquot(struct dquot *dquot) 4980 { 4981 int ret, err; 4982 handle_t *handle; 4983 4984 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4985 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4986 if (IS_ERR(handle)) { 4987 /* Release dquot anyway to avoid endless cycle in dqput() */ 4988 dquot_release(dquot); 4989 return PTR_ERR(handle); 4990 } 4991 ret = dquot_release(dquot); 4992 err = ext4_journal_stop(handle); 4993 if (!ret) 4994 ret = err; 4995 return ret; 4996 } 4997 4998 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4999 { 5000 struct super_block *sb = dquot->dq_sb; 5001 struct ext4_sb_info *sbi = EXT4_SB(sb); 5002 5003 /* Are we journaling quotas? */ 5004 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5005 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5006 dquot_mark_dquot_dirty(dquot); 5007 return ext4_write_dquot(dquot); 5008 } else { 5009 return dquot_mark_dquot_dirty(dquot); 5010 } 5011 } 5012 5013 static int ext4_write_info(struct super_block *sb, int type) 5014 { 5015 int ret, err; 5016 handle_t *handle; 5017 5018 /* Data block + inode block */ 5019 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5020 if (IS_ERR(handle)) 5021 return PTR_ERR(handle); 5022 ret = dquot_commit_info(sb, type); 5023 err = ext4_journal_stop(handle); 5024 if (!ret) 5025 ret = err; 5026 return ret; 5027 } 5028 5029 /* 5030 * Turn on quotas during mount time - we need to find 5031 * the quota file and such... 5032 */ 5033 static int ext4_quota_on_mount(struct super_block *sb, int type) 5034 { 5035 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5036 EXT4_SB(sb)->s_jquota_fmt, type); 5037 } 5038 5039 /* 5040 * Standard function to be called on quota_on 5041 */ 5042 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5043 struct path *path) 5044 { 5045 int err; 5046 5047 if (!test_opt(sb, QUOTA)) 5048 return -EINVAL; 5049 5050 /* Quotafile not on the same filesystem? */ 5051 if (path->dentry->d_sb != sb) 5052 return -EXDEV; 5053 /* Journaling quota? */ 5054 if (EXT4_SB(sb)->s_qf_names[type]) { 5055 /* Quotafile not in fs root? */ 5056 if (path->dentry->d_parent != sb->s_root) 5057 ext4_msg(sb, KERN_WARNING, 5058 "Quota file not on filesystem root. " 5059 "Journaled quota will not work"); 5060 } 5061 5062 /* 5063 * When we journal data on quota file, we have to flush journal to see 5064 * all updates to the file when we bypass pagecache... 5065 */ 5066 if (EXT4_SB(sb)->s_journal && 5067 ext4_should_journal_data(path->dentry->d_inode)) { 5068 /* 5069 * We don't need to lock updates but journal_flush() could 5070 * otherwise be livelocked... 5071 */ 5072 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5073 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5074 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5075 if (err) 5076 return err; 5077 } 5078 5079 return dquot_quota_on(sb, type, format_id, path); 5080 } 5081 5082 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5083 unsigned int flags) 5084 { 5085 int err; 5086 struct inode *qf_inode; 5087 unsigned long qf_inums[MAXQUOTAS] = { 5088 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5089 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5090 }; 5091 5092 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5093 5094 if (!qf_inums[type]) 5095 return -EPERM; 5096 5097 qf_inode = ext4_iget(sb, qf_inums[type]); 5098 if (IS_ERR(qf_inode)) { 5099 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5100 return PTR_ERR(qf_inode); 5101 } 5102 5103 /* Don't account quota for quota files to avoid recursion */ 5104 qf_inode->i_flags |= S_NOQUOTA; 5105 err = dquot_enable(qf_inode, type, format_id, flags); 5106 iput(qf_inode); 5107 5108 return err; 5109 } 5110 5111 /* Enable usage tracking for all quota types. */ 5112 static int ext4_enable_quotas(struct super_block *sb) 5113 { 5114 int type, err = 0; 5115 unsigned long qf_inums[MAXQUOTAS] = { 5116 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5117 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5118 }; 5119 5120 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5121 for (type = 0; type < MAXQUOTAS; type++) { 5122 if (qf_inums[type]) { 5123 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5124 DQUOT_USAGE_ENABLED); 5125 if (err) { 5126 ext4_warning(sb, 5127 "Failed to enable quota tracking " 5128 "(type=%d, err=%d). Please run " 5129 "e2fsck to fix.", type, err); 5130 return err; 5131 } 5132 } 5133 } 5134 return 0; 5135 } 5136 5137 /* 5138 * quota_on function that is used when QUOTA feature is set. 5139 */ 5140 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5141 int format_id) 5142 { 5143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5144 return -EINVAL; 5145 5146 /* 5147 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5148 */ 5149 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5150 } 5151 5152 static int ext4_quota_off(struct super_block *sb, int type) 5153 { 5154 struct inode *inode = sb_dqopt(sb)->files[type]; 5155 handle_t *handle; 5156 5157 /* Force all delayed allocation blocks to be allocated. 5158 * Caller already holds s_umount sem */ 5159 if (test_opt(sb, DELALLOC)) 5160 sync_filesystem(sb); 5161 5162 if (!inode) 5163 goto out; 5164 5165 /* Update modification times of quota files when userspace can 5166 * start looking at them */ 5167 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5168 if (IS_ERR(handle)) 5169 goto out; 5170 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5171 ext4_mark_inode_dirty(handle, inode); 5172 ext4_journal_stop(handle); 5173 5174 out: 5175 return dquot_quota_off(sb, type); 5176 } 5177 5178 /* 5179 * quota_off function that is used when QUOTA feature is set. 5180 */ 5181 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5182 { 5183 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5184 return -EINVAL; 5185 5186 /* Disable only the limits. */ 5187 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5188 } 5189 5190 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5191 * acquiring the locks... As quota files are never truncated and quota code 5192 * itself serializes the operations (and no one else should touch the files) 5193 * we don't have to be afraid of races */ 5194 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5195 size_t len, loff_t off) 5196 { 5197 struct inode *inode = sb_dqopt(sb)->files[type]; 5198 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5199 int err = 0; 5200 int offset = off & (sb->s_blocksize - 1); 5201 int tocopy; 5202 size_t toread; 5203 struct buffer_head *bh; 5204 loff_t i_size = i_size_read(inode); 5205 5206 if (off > i_size) 5207 return 0; 5208 if (off+len > i_size) 5209 len = i_size-off; 5210 toread = len; 5211 while (toread > 0) { 5212 tocopy = sb->s_blocksize - offset < toread ? 5213 sb->s_blocksize - offset : toread; 5214 bh = ext4_bread(NULL, inode, blk, 0, &err); 5215 if (err) 5216 return err; 5217 if (!bh) /* A hole? */ 5218 memset(data, 0, tocopy); 5219 else 5220 memcpy(data, bh->b_data+offset, tocopy); 5221 brelse(bh); 5222 offset = 0; 5223 toread -= tocopy; 5224 data += tocopy; 5225 blk++; 5226 } 5227 return len; 5228 } 5229 5230 /* Write to quotafile (we know the transaction is already started and has 5231 * enough credits) */ 5232 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5233 const char *data, size_t len, loff_t off) 5234 { 5235 struct inode *inode = sb_dqopt(sb)->files[type]; 5236 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5237 int err = 0; 5238 int offset = off & (sb->s_blocksize - 1); 5239 struct buffer_head *bh; 5240 handle_t *handle = journal_current_handle(); 5241 5242 if (EXT4_SB(sb)->s_journal && !handle) { 5243 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5244 " cancelled because transaction is not started", 5245 (unsigned long long)off, (unsigned long long)len); 5246 return -EIO; 5247 } 5248 /* 5249 * Since we account only one data block in transaction credits, 5250 * then it is impossible to cross a block boundary. 5251 */ 5252 if (sb->s_blocksize - offset < len) { 5253 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5254 " cancelled because not block aligned", 5255 (unsigned long long)off, (unsigned long long)len); 5256 return -EIO; 5257 } 5258 5259 bh = ext4_bread(handle, inode, blk, 1, &err); 5260 if (!bh) 5261 goto out; 5262 err = ext4_journal_get_write_access(handle, bh); 5263 if (err) { 5264 brelse(bh); 5265 goto out; 5266 } 5267 lock_buffer(bh); 5268 memcpy(bh->b_data+offset, data, len); 5269 flush_dcache_page(bh->b_page); 5270 unlock_buffer(bh); 5271 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5272 brelse(bh); 5273 out: 5274 if (err) 5275 return err; 5276 if (inode->i_size < off + len) { 5277 i_size_write(inode, off + len); 5278 EXT4_I(inode)->i_disksize = inode->i_size; 5279 ext4_mark_inode_dirty(handle, inode); 5280 } 5281 return len; 5282 } 5283 5284 #endif 5285 5286 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5287 const char *dev_name, void *data) 5288 { 5289 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5290 } 5291 5292 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5293 static inline void register_as_ext2(void) 5294 { 5295 int err = register_filesystem(&ext2_fs_type); 5296 if (err) 5297 printk(KERN_WARNING 5298 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5299 } 5300 5301 static inline void unregister_as_ext2(void) 5302 { 5303 unregister_filesystem(&ext2_fs_type); 5304 } 5305 5306 static inline int ext2_feature_set_ok(struct super_block *sb) 5307 { 5308 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5309 return 0; 5310 if (sb->s_flags & MS_RDONLY) 5311 return 1; 5312 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5313 return 0; 5314 return 1; 5315 } 5316 #else 5317 static inline void register_as_ext2(void) { } 5318 static inline void unregister_as_ext2(void) { } 5319 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5320 #endif 5321 5322 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5323 static inline void register_as_ext3(void) 5324 { 5325 int err = register_filesystem(&ext3_fs_type); 5326 if (err) 5327 printk(KERN_WARNING 5328 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5329 } 5330 5331 static inline void unregister_as_ext3(void) 5332 { 5333 unregister_filesystem(&ext3_fs_type); 5334 } 5335 5336 static inline int ext3_feature_set_ok(struct super_block *sb) 5337 { 5338 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5339 return 0; 5340 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5341 return 0; 5342 if (sb->s_flags & MS_RDONLY) 5343 return 1; 5344 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5345 return 0; 5346 return 1; 5347 } 5348 #else 5349 static inline void register_as_ext3(void) { } 5350 static inline void unregister_as_ext3(void) { } 5351 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5352 #endif 5353 5354 static struct file_system_type ext4_fs_type = { 5355 .owner = THIS_MODULE, 5356 .name = "ext4", 5357 .mount = ext4_mount, 5358 .kill_sb = kill_block_super, 5359 .fs_flags = FS_REQUIRES_DEV, 5360 }; 5361 MODULE_ALIAS_FS("ext4"); 5362 5363 static int __init ext4_init_feat_adverts(void) 5364 { 5365 struct ext4_features *ef; 5366 int ret = -ENOMEM; 5367 5368 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5369 if (!ef) 5370 goto out; 5371 5372 ef->f_kobj.kset = ext4_kset; 5373 init_completion(&ef->f_kobj_unregister); 5374 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5375 "features"); 5376 if (ret) { 5377 kfree(ef); 5378 goto out; 5379 } 5380 5381 ext4_feat = ef; 5382 ret = 0; 5383 out: 5384 return ret; 5385 } 5386 5387 static void ext4_exit_feat_adverts(void) 5388 { 5389 kobject_put(&ext4_feat->f_kobj); 5390 wait_for_completion(&ext4_feat->f_kobj_unregister); 5391 kfree(ext4_feat); 5392 } 5393 5394 /* Shared across all ext4 file systems */ 5395 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5396 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5397 5398 static int __init ext4_init_fs(void) 5399 { 5400 int i, err; 5401 5402 ext4_li_info = NULL; 5403 mutex_init(&ext4_li_mtx); 5404 5405 /* Build-time check for flags consistency */ 5406 ext4_check_flag_values(); 5407 5408 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5409 mutex_init(&ext4__aio_mutex[i]); 5410 init_waitqueue_head(&ext4__ioend_wq[i]); 5411 } 5412 5413 err = ext4_init_es(); 5414 if (err) 5415 return err; 5416 5417 err = ext4_init_pageio(); 5418 if (err) 5419 goto out7; 5420 5421 err = ext4_init_system_zone(); 5422 if (err) 5423 goto out6; 5424 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5425 if (!ext4_kset) { 5426 err = -ENOMEM; 5427 goto out5; 5428 } 5429 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5430 5431 err = ext4_init_feat_adverts(); 5432 if (err) 5433 goto out4; 5434 5435 err = ext4_init_mballoc(); 5436 if (err) 5437 goto out3; 5438 5439 err = ext4_init_xattr(); 5440 if (err) 5441 goto out2; 5442 err = init_inodecache(); 5443 if (err) 5444 goto out1; 5445 register_as_ext3(); 5446 register_as_ext2(); 5447 err = register_filesystem(&ext4_fs_type); 5448 if (err) 5449 goto out; 5450 5451 return 0; 5452 out: 5453 unregister_as_ext2(); 5454 unregister_as_ext3(); 5455 destroy_inodecache(); 5456 out1: 5457 ext4_exit_xattr(); 5458 out2: 5459 ext4_exit_mballoc(); 5460 out3: 5461 ext4_exit_feat_adverts(); 5462 out4: 5463 if (ext4_proc_root) 5464 remove_proc_entry("fs/ext4", NULL); 5465 kset_unregister(ext4_kset); 5466 out5: 5467 ext4_exit_system_zone(); 5468 out6: 5469 ext4_exit_pageio(); 5470 out7: 5471 ext4_exit_es(); 5472 5473 return err; 5474 } 5475 5476 static void __exit ext4_exit_fs(void) 5477 { 5478 ext4_destroy_lazyinit_thread(); 5479 unregister_as_ext2(); 5480 unregister_as_ext3(); 5481 unregister_filesystem(&ext4_fs_type); 5482 destroy_inodecache(); 5483 ext4_exit_xattr(); 5484 ext4_exit_mballoc(); 5485 ext4_exit_feat_adverts(); 5486 remove_proc_entry("fs/ext4", NULL); 5487 kset_unregister(ext4_kset); 5488 ext4_exit_system_zone(); 5489 ext4_exit_pageio(); 5490 } 5491 5492 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5493 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5494 MODULE_LICENSE("GPL"); 5495 module_init(ext4_init_fs) 5496 module_exit(ext4_exit_fs) 5497