xref: /linux/fs/ext4/readpage.c (revision 8b8eed05a1c650c27e78bc47d07f7d6c9ba779e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 
47 #include "ext4.h"
48 
49 #define NUM_PREALLOC_POST_READ_CTXS	128
50 
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53 
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 	STEP_INITIAL = 0,
57 	STEP_DECRYPT,
58 	STEP_VERITY,
59 	STEP_MAX,
60 };
61 
62 struct bio_post_read_ctx {
63 	struct bio *bio;
64 	struct work_struct work;
65 	unsigned int cur_step;
66 	unsigned int enabled_steps;
67 };
68 
69 static void __read_end_io(struct bio *bio)
70 {
71 	struct folio_iter fi;
72 
73 	bio_for_each_folio_all(fi, bio)
74 		folio_end_read(fi.folio, bio->bi_status == 0);
75 	if (bio->bi_private)
76 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
77 	bio_put(bio);
78 }
79 
80 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
81 
82 static void decrypt_work(struct work_struct *work)
83 {
84 	struct bio_post_read_ctx *ctx =
85 		container_of(work, struct bio_post_read_ctx, work);
86 	struct bio *bio = ctx->bio;
87 
88 	if (fscrypt_decrypt_bio(bio))
89 		bio_post_read_processing(ctx);
90 	else
91 		__read_end_io(bio);
92 }
93 
94 static void verity_work(struct work_struct *work)
95 {
96 	struct bio_post_read_ctx *ctx =
97 		container_of(work, struct bio_post_read_ctx, work);
98 	struct bio *bio = ctx->bio;
99 
100 	/*
101 	 * fsverity_verify_bio() may call readahead() again, and although verity
102 	 * will be disabled for that, decryption may still be needed, causing
103 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
104 	 * mempool_alloc() never deadlocks we must free the current ctx first.
105 	 * This is safe because verity is the last post-read step.
106 	 */
107 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
108 	mempool_free(ctx, bio_post_read_ctx_pool);
109 	bio->bi_private = NULL;
110 
111 	fsverity_verify_bio(bio);
112 
113 	__read_end_io(bio);
114 }
115 
116 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
117 {
118 	/*
119 	 * We use different work queues for decryption and for verity because
120 	 * verity may require reading metadata pages that need decryption, and
121 	 * we shouldn't recurse to the same workqueue.
122 	 */
123 	switch (++ctx->cur_step) {
124 	case STEP_DECRYPT:
125 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
126 			INIT_WORK(&ctx->work, decrypt_work);
127 			fscrypt_enqueue_decrypt_work(&ctx->work);
128 			return;
129 		}
130 		ctx->cur_step++;
131 		fallthrough;
132 	case STEP_VERITY:
133 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
134 			INIT_WORK(&ctx->work, verity_work);
135 			fsverity_enqueue_verify_work(&ctx->work);
136 			return;
137 		}
138 		ctx->cur_step++;
139 		fallthrough;
140 	default:
141 		__read_end_io(ctx->bio);
142 	}
143 }
144 
145 static bool bio_post_read_required(struct bio *bio)
146 {
147 	return bio->bi_private && !bio->bi_status;
148 }
149 
150 /*
151  * I/O completion handler for multipage BIOs.
152  *
153  * The mpage code never puts partial pages into a BIO (except for end-of-file).
154  * If a page does not map to a contiguous run of blocks then it simply falls
155  * back to block_read_full_folio().
156  *
157  * Why is this?  If a page's completion depends on a number of different BIOs
158  * which can complete in any order (or at the same time) then determining the
159  * status of that page is hard.  See end_buffer_async_read() for the details.
160  * There is no point in duplicating all that complexity.
161  */
162 static void mpage_end_io(struct bio *bio)
163 {
164 	if (bio_post_read_required(bio)) {
165 		struct bio_post_read_ctx *ctx = bio->bi_private;
166 
167 		ctx->cur_step = STEP_INITIAL;
168 		bio_post_read_processing(ctx);
169 		return;
170 	}
171 	__read_end_io(bio);
172 }
173 
174 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
175 {
176 	return fsverity_active(inode) &&
177 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
178 }
179 
180 static void ext4_set_bio_post_read_ctx(struct bio *bio,
181 				       const struct inode *inode,
182 				       pgoff_t first_idx)
183 {
184 	unsigned int post_read_steps = 0;
185 
186 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
187 		post_read_steps |= 1 << STEP_DECRYPT;
188 
189 	if (ext4_need_verity(inode, first_idx))
190 		post_read_steps |= 1 << STEP_VERITY;
191 
192 	if (post_read_steps) {
193 		/* Due to the mempool, this never fails. */
194 		struct bio_post_read_ctx *ctx =
195 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
196 
197 		ctx->bio = bio;
198 		ctx->enabled_steps = post_read_steps;
199 		bio->bi_private = ctx;
200 	}
201 }
202 
203 static inline loff_t ext4_readpage_limit(struct inode *inode)
204 {
205 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
206 		return inode->i_sb->s_maxbytes;
207 
208 	return i_size_read(inode);
209 }
210 
211 int ext4_mpage_readpages(struct inode *inode,
212 		struct readahead_control *rac, struct folio *folio)
213 {
214 	struct bio *bio = NULL;
215 	sector_t last_block_in_bio = 0;
216 
217 	const unsigned blkbits = inode->i_blkbits;
218 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
219 	const unsigned blocksize = 1 << blkbits;
220 	sector_t next_block;
221 	sector_t block_in_file;
222 	sector_t last_block;
223 	sector_t last_block_in_file;
224 	sector_t blocks[MAX_BUF_PER_PAGE];
225 	unsigned page_block;
226 	struct block_device *bdev = inode->i_sb->s_bdev;
227 	int length;
228 	unsigned relative_block = 0;
229 	struct ext4_map_blocks map;
230 	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
231 
232 	map.m_pblk = 0;
233 	map.m_lblk = 0;
234 	map.m_len = 0;
235 	map.m_flags = 0;
236 
237 	for (; nr_pages; nr_pages--) {
238 		int fully_mapped = 1;
239 		unsigned first_hole = blocks_per_page;
240 
241 		if (rac)
242 			folio = readahead_folio(rac);
243 		prefetchw(&folio->flags);
244 
245 		if (folio_buffers(folio))
246 			goto confused;
247 
248 		block_in_file = next_block =
249 			(sector_t)folio->index << (PAGE_SHIFT - blkbits);
250 		last_block = block_in_file + nr_pages * blocks_per_page;
251 		last_block_in_file = (ext4_readpage_limit(inode) +
252 				      blocksize - 1) >> blkbits;
253 		if (last_block > last_block_in_file)
254 			last_block = last_block_in_file;
255 		page_block = 0;
256 
257 		/*
258 		 * Map blocks using the previous result first.
259 		 */
260 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
261 		    block_in_file > map.m_lblk &&
262 		    block_in_file < (map.m_lblk + map.m_len)) {
263 			unsigned map_offset = block_in_file - map.m_lblk;
264 			unsigned last = map.m_len - map_offset;
265 
266 			for (relative_block = 0; ; relative_block++) {
267 				if (relative_block == last) {
268 					/* needed? */
269 					map.m_flags &= ~EXT4_MAP_MAPPED;
270 					break;
271 				}
272 				if (page_block == blocks_per_page)
273 					break;
274 				blocks[page_block] = map.m_pblk + map_offset +
275 					relative_block;
276 				page_block++;
277 				block_in_file++;
278 			}
279 		}
280 
281 		/*
282 		 * Then do more ext4_map_blocks() calls until we are
283 		 * done with this folio.
284 		 */
285 		while (page_block < blocks_per_page) {
286 			if (block_in_file < last_block) {
287 				map.m_lblk = block_in_file;
288 				map.m_len = last_block - block_in_file;
289 
290 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
291 				set_error_page:
292 					folio_set_error(folio);
293 					folio_zero_segment(folio, 0,
294 							  folio_size(folio));
295 					folio_unlock(folio);
296 					goto next_page;
297 				}
298 			}
299 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
300 				fully_mapped = 0;
301 				if (first_hole == blocks_per_page)
302 					first_hole = page_block;
303 				page_block++;
304 				block_in_file++;
305 				continue;
306 			}
307 			if (first_hole != blocks_per_page)
308 				goto confused;		/* hole -> non-hole */
309 
310 			/* Contiguous blocks? */
311 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
312 				goto confused;
313 			for (relative_block = 0; ; relative_block++) {
314 				if (relative_block == map.m_len) {
315 					/* needed? */
316 					map.m_flags &= ~EXT4_MAP_MAPPED;
317 					break;
318 				} else if (page_block == blocks_per_page)
319 					break;
320 				blocks[page_block] = map.m_pblk+relative_block;
321 				page_block++;
322 				block_in_file++;
323 			}
324 		}
325 		if (first_hole != blocks_per_page) {
326 			folio_zero_segment(folio, first_hole << blkbits,
327 					  folio_size(folio));
328 			if (first_hole == 0) {
329 				if (ext4_need_verity(inode, folio->index) &&
330 				    !fsverity_verify_folio(folio))
331 					goto set_error_page;
332 				folio_end_read(folio, true);
333 				continue;
334 			}
335 		} else if (fully_mapped) {
336 			folio_set_mappedtodisk(folio);
337 		}
338 
339 		/*
340 		 * This folio will go to BIO.  Do we need to send this
341 		 * BIO off first?
342 		 */
343 		if (bio && (last_block_in_bio != blocks[0] - 1 ||
344 			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
345 		submit_and_realloc:
346 			submit_bio(bio);
347 			bio = NULL;
348 		}
349 		if (bio == NULL) {
350 			/*
351 			 * bio_alloc will _always_ be able to allocate a bio if
352 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
353 			 */
354 			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
355 					REQ_OP_READ, GFP_KERNEL);
356 			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
357 						  GFP_KERNEL);
358 			ext4_set_bio_post_read_ctx(bio, inode, folio->index);
359 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
360 			bio->bi_end_io = mpage_end_io;
361 			if (rac)
362 				bio->bi_opf |= REQ_RAHEAD;
363 		}
364 
365 		length = first_hole << blkbits;
366 		if (!bio_add_folio(bio, folio, length, 0))
367 			goto submit_and_realloc;
368 
369 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
370 		     (relative_block == map.m_len)) ||
371 		    (first_hole != blocks_per_page)) {
372 			submit_bio(bio);
373 			bio = NULL;
374 		} else
375 			last_block_in_bio = blocks[blocks_per_page - 1];
376 		continue;
377 	confused:
378 		if (bio) {
379 			submit_bio(bio);
380 			bio = NULL;
381 		}
382 		if (!folio_test_uptodate(folio))
383 			block_read_full_folio(folio, ext4_get_block);
384 		else
385 			folio_unlock(folio);
386 next_page:
387 		; /* A label shall be followed by a statement until C23 */
388 	}
389 	if (bio)
390 		submit_bio(bio);
391 	return 0;
392 }
393 
394 int __init ext4_init_post_read_processing(void)
395 {
396 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
397 
398 	if (!bio_post_read_ctx_cache)
399 		goto fail;
400 	bio_post_read_ctx_pool =
401 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
402 					 bio_post_read_ctx_cache);
403 	if (!bio_post_read_ctx_pool)
404 		goto fail_free_cache;
405 	return 0;
406 
407 fail_free_cache:
408 	kmem_cache_destroy(bio_post_read_ctx_cache);
409 fail:
410 	return -ENOMEM;
411 }
412 
413 void ext4_exit_post_read_processing(void)
414 {
415 	mempool_destroy(bio_post_read_ctx_pool);
416 	kmem_cache_destroy(bio_post_read_ctx_cache);
417 }
418