xref: /linux/fs/ext4/readpage.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 
47 #include "ext4.h"
48 
49 #define NUM_PREALLOC_POST_READ_CTXS	128
50 
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53 
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 	STEP_INITIAL = 0,
57 	STEP_DECRYPT,
58 	STEP_VERITY,
59 	STEP_MAX,
60 };
61 
62 struct bio_post_read_ctx {
63 	struct bio *bio;
64 	struct work_struct work;
65 	unsigned int cur_step;
66 	unsigned int enabled_steps;
67 };
68 
69 static void __read_end_io(struct bio *bio)
70 {
71 	struct folio_iter fi;
72 
73 	bio_for_each_folio_all(fi, bio)
74 		folio_end_read(fi.folio, bio->bi_status == 0);
75 	if (bio->bi_private)
76 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
77 	bio_put(bio);
78 }
79 
80 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
81 
82 static void decrypt_work(struct work_struct *work)
83 {
84 	struct bio_post_read_ctx *ctx =
85 		container_of(work, struct bio_post_read_ctx, work);
86 	struct bio *bio = ctx->bio;
87 
88 	if (fscrypt_decrypt_bio(bio))
89 		bio_post_read_processing(ctx);
90 	else
91 		__read_end_io(bio);
92 }
93 
94 static void verity_work(struct work_struct *work)
95 {
96 	struct bio_post_read_ctx *ctx =
97 		container_of(work, struct bio_post_read_ctx, work);
98 	struct bio *bio = ctx->bio;
99 
100 	/*
101 	 * fsverity_verify_bio() may call readahead() again, and although verity
102 	 * will be disabled for that, decryption may still be needed, causing
103 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
104 	 * mempool_alloc() never deadlocks we must free the current ctx first.
105 	 * This is safe because verity is the last post-read step.
106 	 */
107 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
108 	mempool_free(ctx, bio_post_read_ctx_pool);
109 	bio->bi_private = NULL;
110 
111 	fsverity_verify_bio(bio);
112 
113 	__read_end_io(bio);
114 }
115 
116 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
117 {
118 	/*
119 	 * We use different work queues for decryption and for verity because
120 	 * verity may require reading metadata pages that need decryption, and
121 	 * we shouldn't recurse to the same workqueue.
122 	 */
123 	switch (++ctx->cur_step) {
124 	case STEP_DECRYPT:
125 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
126 			INIT_WORK(&ctx->work, decrypt_work);
127 			fscrypt_enqueue_decrypt_work(&ctx->work);
128 			return;
129 		}
130 		ctx->cur_step++;
131 		fallthrough;
132 	case STEP_VERITY:
133 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
134 			INIT_WORK(&ctx->work, verity_work);
135 			fsverity_enqueue_verify_work(&ctx->work);
136 			return;
137 		}
138 		ctx->cur_step++;
139 		fallthrough;
140 	default:
141 		__read_end_io(ctx->bio);
142 	}
143 }
144 
145 static bool bio_post_read_required(struct bio *bio)
146 {
147 	return bio->bi_private && !bio->bi_status;
148 }
149 
150 /*
151  * I/O completion handler for multipage BIOs.
152  *
153  * The mpage code never puts partial pages into a BIO (except for end-of-file).
154  * If a page does not map to a contiguous run of blocks then it simply falls
155  * back to block_read_full_folio().
156  *
157  * Why is this?  If a page's completion depends on a number of different BIOs
158  * which can complete in any order (or at the same time) then determining the
159  * status of that page is hard.  See end_buffer_async_read() for the details.
160  * There is no point in duplicating all that complexity.
161  */
162 static void mpage_end_io(struct bio *bio)
163 {
164 	if (bio_post_read_required(bio)) {
165 		struct bio_post_read_ctx *ctx = bio->bi_private;
166 
167 		ctx->cur_step = STEP_INITIAL;
168 		bio_post_read_processing(ctx);
169 		return;
170 	}
171 	__read_end_io(bio);
172 }
173 
174 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
175 {
176 	return fsverity_active(inode) &&
177 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
178 }
179 
180 static void ext4_set_bio_post_read_ctx(struct bio *bio,
181 				       const struct inode *inode,
182 				       pgoff_t first_idx)
183 {
184 	unsigned int post_read_steps = 0;
185 
186 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
187 		post_read_steps |= 1 << STEP_DECRYPT;
188 
189 	if (ext4_need_verity(inode, first_idx))
190 		post_read_steps |= 1 << STEP_VERITY;
191 
192 	if (post_read_steps) {
193 		/* Due to the mempool, this never fails. */
194 		struct bio_post_read_ctx *ctx =
195 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
196 
197 		ctx->bio = bio;
198 		ctx->enabled_steps = post_read_steps;
199 		bio->bi_private = ctx;
200 	}
201 }
202 
203 static inline loff_t ext4_readpage_limit(struct inode *inode)
204 {
205 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
206 		return inode->i_sb->s_maxbytes;
207 
208 	return i_size_read(inode);
209 }
210 
211 int ext4_mpage_readpages(struct inode *inode,
212 		struct readahead_control *rac, struct folio *folio)
213 {
214 	struct bio *bio = NULL;
215 	sector_t last_block_in_bio = 0;
216 	const unsigned blkbits = inode->i_blkbits;
217 	const unsigned blocksize = 1 << blkbits;
218 	sector_t next_block;
219 	sector_t block_in_file;
220 	sector_t last_block;
221 	sector_t last_block_in_file;
222 	sector_t first_block;
223 	unsigned page_block;
224 	struct block_device *bdev = inode->i_sb->s_bdev;
225 	int length;
226 	unsigned relative_block = 0;
227 	struct ext4_map_blocks map;
228 	unsigned int nr_pages, folio_pages;
229 
230 	map.m_pblk = 0;
231 	map.m_lblk = 0;
232 	map.m_len = 0;
233 	map.m_flags = 0;
234 
235 	nr_pages = rac ? readahead_count(rac) : folio_nr_pages(folio);
236 	for (; nr_pages; nr_pages -= folio_pages) {
237 		int fully_mapped = 1;
238 		unsigned int first_hole;
239 		unsigned int blocks_per_folio;
240 
241 		if (rac)
242 			folio = readahead_folio(rac);
243 
244 		folio_pages = folio_nr_pages(folio);
245 		prefetchw(&folio->flags);
246 
247 		if (folio_buffers(folio))
248 			goto confused;
249 
250 		blocks_per_folio = folio_size(folio) >> blkbits;
251 		first_hole = blocks_per_folio;
252 		block_in_file = next_block = EXT4_PG_TO_LBLK(inode, folio->index);
253 		last_block = EXT4_PG_TO_LBLK(inode, folio->index + nr_pages);
254 		last_block_in_file = (ext4_readpage_limit(inode) +
255 				      blocksize - 1) >> blkbits;
256 		if (last_block > last_block_in_file)
257 			last_block = last_block_in_file;
258 		page_block = 0;
259 
260 		/*
261 		 * Map blocks using the previous result first.
262 		 */
263 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
264 		    block_in_file > map.m_lblk &&
265 		    block_in_file < (map.m_lblk + map.m_len)) {
266 			unsigned map_offset = block_in_file - map.m_lblk;
267 			unsigned last = map.m_len - map_offset;
268 
269 			first_block = map.m_pblk + map_offset;
270 			for (relative_block = 0; ; relative_block++) {
271 				if (relative_block == last) {
272 					/* needed? */
273 					map.m_flags &= ~EXT4_MAP_MAPPED;
274 					break;
275 				}
276 				if (page_block == blocks_per_folio)
277 					break;
278 				page_block++;
279 				block_in_file++;
280 			}
281 		}
282 
283 		/*
284 		 * Then do more ext4_map_blocks() calls until we are
285 		 * done with this folio.
286 		 */
287 		while (page_block < blocks_per_folio) {
288 			if (block_in_file < last_block) {
289 				map.m_lblk = block_in_file;
290 				map.m_len = last_block - block_in_file;
291 
292 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
293 				set_error_page:
294 					folio_zero_segment(folio, 0,
295 							  folio_size(folio));
296 					folio_unlock(folio);
297 					goto next_page;
298 				}
299 			}
300 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
301 				fully_mapped = 0;
302 				if (first_hole == blocks_per_folio)
303 					first_hole = page_block;
304 				page_block++;
305 				block_in_file++;
306 				continue;
307 			}
308 			if (first_hole != blocks_per_folio)
309 				goto confused;		/* hole -> non-hole */
310 
311 			/* Contiguous blocks? */
312 			if (!page_block)
313 				first_block = map.m_pblk;
314 			else if (first_block + page_block != map.m_pblk)
315 				goto confused;
316 			for (relative_block = 0; ; relative_block++) {
317 				if (relative_block == map.m_len) {
318 					/* needed? */
319 					map.m_flags &= ~EXT4_MAP_MAPPED;
320 					break;
321 				} else if (page_block == blocks_per_folio)
322 					break;
323 				page_block++;
324 				block_in_file++;
325 			}
326 		}
327 		if (first_hole != blocks_per_folio) {
328 			folio_zero_segment(folio, first_hole << blkbits,
329 					  folio_size(folio));
330 			if (first_hole == 0) {
331 				if (ext4_need_verity(inode, folio->index) &&
332 				    !fsverity_verify_folio(folio))
333 					goto set_error_page;
334 				folio_end_read(folio, true);
335 				continue;
336 			}
337 		} else if (fully_mapped) {
338 			folio_set_mappedtodisk(folio);
339 		}
340 
341 		/*
342 		 * This folio will go to BIO.  Do we need to send this
343 		 * BIO off first?
344 		 */
345 		if (bio && (last_block_in_bio != first_block - 1 ||
346 			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
347 		submit_and_realloc:
348 			submit_bio(bio);
349 			bio = NULL;
350 		}
351 		if (bio == NULL) {
352 			/*
353 			 * bio_alloc will _always_ be able to allocate a bio if
354 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
355 			 */
356 			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
357 					REQ_OP_READ, GFP_KERNEL);
358 			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
359 						  GFP_KERNEL);
360 			ext4_set_bio_post_read_ctx(bio, inode, folio->index);
361 			bio->bi_iter.bi_sector = first_block << (blkbits - 9);
362 			bio->bi_end_io = mpage_end_io;
363 			if (rac)
364 				bio->bi_opf |= REQ_RAHEAD;
365 		}
366 
367 		length = first_hole << blkbits;
368 		if (!bio_add_folio(bio, folio, length, 0))
369 			goto submit_and_realloc;
370 
371 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
372 		     (relative_block == map.m_len)) ||
373 		    (first_hole != blocks_per_folio)) {
374 			submit_bio(bio);
375 			bio = NULL;
376 		} else
377 			last_block_in_bio = first_block + blocks_per_folio - 1;
378 		continue;
379 	confused:
380 		if (bio) {
381 			submit_bio(bio);
382 			bio = NULL;
383 		}
384 		if (!folio_test_uptodate(folio))
385 			block_read_full_folio(folio, ext4_get_block);
386 		else
387 			folio_unlock(folio);
388 next_page:
389 		; /* A label shall be followed by a statement until C23 */
390 	}
391 	if (bio)
392 		submit_bio(bio);
393 	return 0;
394 }
395 
396 int __init ext4_init_post_read_processing(void)
397 {
398 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
399 
400 	if (!bio_post_read_ctx_cache)
401 		goto fail;
402 	bio_post_read_ctx_pool =
403 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
404 					 bio_post_read_ctx_cache);
405 	if (!bio_post_read_ctx_pool)
406 		goto fail_free_cache;
407 	return 0;
408 
409 fail_free_cache:
410 	kmem_cache_destroy(bio_post_read_ctx_cache);
411 fail:
412 	return -ENOMEM;
413 }
414 
415 void ext4_exit_post_read_processing(void)
416 {
417 	mempool_destroy(bio_post_read_ctx_pool);
418 	kmem_cache_destroy(bio_post_read_ctx_cache);
419 }
420