xref: /linux/fs/ext4/readpage.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 
47 #include "ext4.h"
48 
49 #define NUM_PREALLOC_POST_READ_CTXS	128
50 
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53 
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 	STEP_INITIAL = 0,
57 	STEP_DECRYPT,
58 	STEP_VERITY,
59 	STEP_MAX,
60 };
61 
62 struct bio_post_read_ctx {
63 	struct bio *bio;
64 	struct work_struct work;
65 	unsigned int cur_step;
66 	unsigned int enabled_steps;
67 };
68 
69 static void __read_end_io(struct bio *bio)
70 {
71 	struct page *page;
72 	struct bio_vec *bv;
73 	struct bvec_iter_all iter_all;
74 
75 	bio_for_each_segment_all(bv, bio, iter_all) {
76 		page = bv->bv_page;
77 
78 		/* PG_error was set if any post_read step failed */
79 		if (bio->bi_status || PageError(page)) {
80 			ClearPageUptodate(page);
81 			/* will re-read again later */
82 			ClearPageError(page);
83 		} else {
84 			SetPageUptodate(page);
85 		}
86 		unlock_page(page);
87 	}
88 	if (bio->bi_private)
89 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
90 	bio_put(bio);
91 }
92 
93 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
94 
95 static void decrypt_work(struct work_struct *work)
96 {
97 	struct bio_post_read_ctx *ctx =
98 		container_of(work, struct bio_post_read_ctx, work);
99 
100 	fscrypt_decrypt_bio(ctx->bio);
101 
102 	bio_post_read_processing(ctx);
103 }
104 
105 static void verity_work(struct work_struct *work)
106 {
107 	struct bio_post_read_ctx *ctx =
108 		container_of(work, struct bio_post_read_ctx, work);
109 	struct bio *bio = ctx->bio;
110 
111 	/*
112 	 * fsverity_verify_bio() may call readahead() again, and although verity
113 	 * will be disabled for that, decryption may still be needed, causing
114 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
115 	 * mempool_alloc() never deadlocks we must free the current ctx first.
116 	 * This is safe because verity is the last post-read step.
117 	 */
118 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
119 	mempool_free(ctx, bio_post_read_ctx_pool);
120 	bio->bi_private = NULL;
121 
122 	fsverity_verify_bio(bio);
123 
124 	__read_end_io(bio);
125 }
126 
127 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
128 {
129 	/*
130 	 * We use different work queues for decryption and for verity because
131 	 * verity may require reading metadata pages that need decryption, and
132 	 * we shouldn't recurse to the same workqueue.
133 	 */
134 	switch (++ctx->cur_step) {
135 	case STEP_DECRYPT:
136 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
137 			INIT_WORK(&ctx->work, decrypt_work);
138 			fscrypt_enqueue_decrypt_work(&ctx->work);
139 			return;
140 		}
141 		ctx->cur_step++;
142 		fallthrough;
143 	case STEP_VERITY:
144 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
145 			INIT_WORK(&ctx->work, verity_work);
146 			fsverity_enqueue_verify_work(&ctx->work);
147 			return;
148 		}
149 		ctx->cur_step++;
150 		fallthrough;
151 	default:
152 		__read_end_io(ctx->bio);
153 	}
154 }
155 
156 static bool bio_post_read_required(struct bio *bio)
157 {
158 	return bio->bi_private && !bio->bi_status;
159 }
160 
161 /*
162  * I/O completion handler for multipage BIOs.
163  *
164  * The mpage code never puts partial pages into a BIO (except for end-of-file).
165  * If a page does not map to a contiguous run of blocks then it simply falls
166  * back to block_read_full_folio().
167  *
168  * Why is this?  If a page's completion depends on a number of different BIOs
169  * which can complete in any order (or at the same time) then determining the
170  * status of that page is hard.  See end_buffer_async_read() for the details.
171  * There is no point in duplicating all that complexity.
172  */
173 static void mpage_end_io(struct bio *bio)
174 {
175 	if (bio_post_read_required(bio)) {
176 		struct bio_post_read_ctx *ctx = bio->bi_private;
177 
178 		ctx->cur_step = STEP_INITIAL;
179 		bio_post_read_processing(ctx);
180 		return;
181 	}
182 	__read_end_io(bio);
183 }
184 
185 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
186 {
187 	return fsverity_active(inode) &&
188 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
189 }
190 
191 static void ext4_set_bio_post_read_ctx(struct bio *bio,
192 				       const struct inode *inode,
193 				       pgoff_t first_idx)
194 {
195 	unsigned int post_read_steps = 0;
196 
197 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
198 		post_read_steps |= 1 << STEP_DECRYPT;
199 
200 	if (ext4_need_verity(inode, first_idx))
201 		post_read_steps |= 1 << STEP_VERITY;
202 
203 	if (post_read_steps) {
204 		/* Due to the mempool, this never fails. */
205 		struct bio_post_read_ctx *ctx =
206 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
207 
208 		ctx->bio = bio;
209 		ctx->enabled_steps = post_read_steps;
210 		bio->bi_private = ctx;
211 	}
212 }
213 
214 static inline loff_t ext4_readpage_limit(struct inode *inode)
215 {
216 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
217 	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
218 		return inode->i_sb->s_maxbytes;
219 
220 	return i_size_read(inode);
221 }
222 
223 int ext4_mpage_readpages(struct inode *inode,
224 		struct readahead_control *rac, struct page *page)
225 {
226 	struct bio *bio = NULL;
227 	sector_t last_block_in_bio = 0;
228 
229 	const unsigned blkbits = inode->i_blkbits;
230 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
231 	const unsigned blocksize = 1 << blkbits;
232 	sector_t next_block;
233 	sector_t block_in_file;
234 	sector_t last_block;
235 	sector_t last_block_in_file;
236 	sector_t blocks[MAX_BUF_PER_PAGE];
237 	unsigned page_block;
238 	struct block_device *bdev = inode->i_sb->s_bdev;
239 	int length;
240 	unsigned relative_block = 0;
241 	struct ext4_map_blocks map;
242 	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
243 
244 	map.m_pblk = 0;
245 	map.m_lblk = 0;
246 	map.m_len = 0;
247 	map.m_flags = 0;
248 
249 	for (; nr_pages; nr_pages--) {
250 		int fully_mapped = 1;
251 		unsigned first_hole = blocks_per_page;
252 
253 		if (rac) {
254 			page = readahead_page(rac);
255 			prefetchw(&page->flags);
256 		}
257 
258 		if (page_has_buffers(page))
259 			goto confused;
260 
261 		block_in_file = next_block =
262 			(sector_t)page->index << (PAGE_SHIFT - blkbits);
263 		last_block = block_in_file + nr_pages * blocks_per_page;
264 		last_block_in_file = (ext4_readpage_limit(inode) +
265 				      blocksize - 1) >> blkbits;
266 		if (last_block > last_block_in_file)
267 			last_block = last_block_in_file;
268 		page_block = 0;
269 
270 		/*
271 		 * Map blocks using the previous result first.
272 		 */
273 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
274 		    block_in_file > map.m_lblk &&
275 		    block_in_file < (map.m_lblk + map.m_len)) {
276 			unsigned map_offset = block_in_file - map.m_lblk;
277 			unsigned last = map.m_len - map_offset;
278 
279 			for (relative_block = 0; ; relative_block++) {
280 				if (relative_block == last) {
281 					/* needed? */
282 					map.m_flags &= ~EXT4_MAP_MAPPED;
283 					break;
284 				}
285 				if (page_block == blocks_per_page)
286 					break;
287 				blocks[page_block] = map.m_pblk + map_offset +
288 					relative_block;
289 				page_block++;
290 				block_in_file++;
291 			}
292 		}
293 
294 		/*
295 		 * Then do more ext4_map_blocks() calls until we are
296 		 * done with this page.
297 		 */
298 		while (page_block < blocks_per_page) {
299 			if (block_in_file < last_block) {
300 				map.m_lblk = block_in_file;
301 				map.m_len = last_block - block_in_file;
302 
303 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
304 				set_error_page:
305 					SetPageError(page);
306 					zero_user_segment(page, 0,
307 							  PAGE_SIZE);
308 					unlock_page(page);
309 					goto next_page;
310 				}
311 			}
312 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
313 				fully_mapped = 0;
314 				if (first_hole == blocks_per_page)
315 					first_hole = page_block;
316 				page_block++;
317 				block_in_file++;
318 				continue;
319 			}
320 			if (first_hole != blocks_per_page)
321 				goto confused;		/* hole -> non-hole */
322 
323 			/* Contiguous blocks? */
324 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
325 				goto confused;
326 			for (relative_block = 0; ; relative_block++) {
327 				if (relative_block == map.m_len) {
328 					/* needed? */
329 					map.m_flags &= ~EXT4_MAP_MAPPED;
330 					break;
331 				} else if (page_block == blocks_per_page)
332 					break;
333 				blocks[page_block] = map.m_pblk+relative_block;
334 				page_block++;
335 				block_in_file++;
336 			}
337 		}
338 		if (first_hole != blocks_per_page) {
339 			zero_user_segment(page, first_hole << blkbits,
340 					  PAGE_SIZE);
341 			if (first_hole == 0) {
342 				if (ext4_need_verity(inode, page->index) &&
343 				    !fsverity_verify_page(page))
344 					goto set_error_page;
345 				SetPageUptodate(page);
346 				unlock_page(page);
347 				goto next_page;
348 			}
349 		} else if (fully_mapped) {
350 			SetPageMappedToDisk(page);
351 		}
352 
353 		/*
354 		 * This page will go to BIO.  Do we need to send this
355 		 * BIO off first?
356 		 */
357 		if (bio && (last_block_in_bio != blocks[0] - 1 ||
358 			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
359 		submit_and_realloc:
360 			submit_bio(bio);
361 			bio = NULL;
362 		}
363 		if (bio == NULL) {
364 			/*
365 			 * bio_alloc will _always_ be able to allocate a bio if
366 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
367 			 */
368 			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
369 					REQ_OP_READ, GFP_KERNEL);
370 			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
371 						  GFP_KERNEL);
372 			ext4_set_bio_post_read_ctx(bio, inode, page->index);
373 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
374 			bio->bi_end_io = mpage_end_io;
375 			if (rac)
376 				bio->bi_opf |= REQ_RAHEAD;
377 		}
378 
379 		length = first_hole << blkbits;
380 		if (bio_add_page(bio, page, length, 0) < length)
381 			goto submit_and_realloc;
382 
383 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
384 		     (relative_block == map.m_len)) ||
385 		    (first_hole != blocks_per_page)) {
386 			submit_bio(bio);
387 			bio = NULL;
388 		} else
389 			last_block_in_bio = blocks[blocks_per_page - 1];
390 		goto next_page;
391 	confused:
392 		if (bio) {
393 			submit_bio(bio);
394 			bio = NULL;
395 		}
396 		if (!PageUptodate(page))
397 			block_read_full_folio(page_folio(page), ext4_get_block);
398 		else
399 			unlock_page(page);
400 	next_page:
401 		if (rac)
402 			put_page(page);
403 	}
404 	if (bio)
405 		submit_bio(bio);
406 	return 0;
407 }
408 
409 int __init ext4_init_post_read_processing(void)
410 {
411 	bio_post_read_ctx_cache =
412 		kmem_cache_create("ext4_bio_post_read_ctx",
413 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
414 	if (!bio_post_read_ctx_cache)
415 		goto fail;
416 	bio_post_read_ctx_pool =
417 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
418 					 bio_post_read_ctx_cache);
419 	if (!bio_post_read_ctx_pool)
420 		goto fail_free_cache;
421 	return 0;
422 
423 fail_free_cache:
424 	kmem_cache_destroy(bio_post_read_ctx_cache);
425 fail:
426 	return -ENOMEM;
427 }
428 
429 void ext4_exit_post_read_processing(void)
430 {
431 	mempool_destroy(bio_post_read_ctx_pool);
432 	kmem_cache_destroy(bio_post_read_ctx_cache);
433 }
434