xref: /linux/fs/ext4/page-io.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/jbd2.h>
13 #include <linux/highuid.h>
14 #include <linux/pagemap.h>
15 #include <linux/quotaops.h>
16 #include <linux/string.h>
17 #include <linux/buffer_head.h>
18 #include <linux/writeback.h>
19 #include <linux/pagevec.h>
20 #include <linux/mpage.h>
21 #include <linux/namei.h>
22 #include <linux/uio.h>
23 #include <linux/bio.h>
24 #include <linux/workqueue.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "ext4_extents.h"
32 
33 static struct kmem_cache *io_page_cachep, *io_end_cachep;
34 
35 int __init ext4_init_pageio(void)
36 {
37 	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
38 	if (io_page_cachep == NULL)
39 		return -ENOMEM;
40 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
41 	if (io_end_cachep == NULL) {
42 		kmem_cache_destroy(io_page_cachep);
43 		return -ENOMEM;
44 	}
45 	return 0;
46 }
47 
48 void ext4_exit_pageio(void)
49 {
50 	kmem_cache_destroy(io_end_cachep);
51 	kmem_cache_destroy(io_page_cachep);
52 }
53 
54 void ext4_ioend_wait(struct inode *inode)
55 {
56 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
57 
58 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
59 }
60 
61 static void put_io_page(struct ext4_io_page *io_page)
62 {
63 	if (atomic_dec_and_test(&io_page->p_count)) {
64 		end_page_writeback(io_page->p_page);
65 		put_page(io_page->p_page);
66 		kmem_cache_free(io_page_cachep, io_page);
67 	}
68 }
69 
70 void ext4_free_io_end(ext4_io_end_t *io)
71 {
72 	int i;
73 	wait_queue_head_t *wq;
74 
75 	BUG_ON(!io);
76 	if (io->page)
77 		put_page(io->page);
78 	for (i = 0; i < io->num_io_pages; i++)
79 		put_io_page(io->pages[i]);
80 	io->num_io_pages = 0;
81 	wq = ext4_ioend_wq(io->inode);
82 	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) &&
83 	    waitqueue_active(wq))
84 		wake_up_all(wq);
85 	kmem_cache_free(io_end_cachep, io);
86 }
87 
88 /*
89  * check a range of space and convert unwritten extents to written.
90  */
91 int ext4_end_io_nolock(ext4_io_end_t *io)
92 {
93 	struct inode *inode = io->inode;
94 	loff_t offset = io->offset;
95 	ssize_t size = io->size;
96 	wait_queue_head_t *wq;
97 	int ret = 0;
98 
99 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
100 		   "list->prev 0x%p\n",
101 		   io, inode->i_ino, io->list.next, io->list.prev);
102 
103 	if (list_empty(&io->list))
104 		return ret;
105 
106 	if (!(io->flag & EXT4_IO_END_UNWRITTEN))
107 		return ret;
108 
109 	ret = ext4_convert_unwritten_extents(inode, offset, size);
110 	if (ret < 0) {
111 		printk(KERN_EMERG "%s: failed to convert unwritten "
112 			"extents to written extents, error is %d "
113 			"io is still on inode %lu aio dio list\n",
114 		       __func__, ret, inode->i_ino);
115 		return ret;
116 	}
117 
118 	if (io->iocb)
119 		aio_complete(io->iocb, io->result, 0);
120 	/* clear the DIO AIO unwritten flag */
121 	if (io->flag & EXT4_IO_END_UNWRITTEN) {
122 		io->flag &= ~EXT4_IO_END_UNWRITTEN;
123 		/* Wake up anyone waiting on unwritten extent conversion */
124 		wq = ext4_ioend_wq(io->inode);
125 		if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) &&
126 		    waitqueue_active(wq)) {
127 			wake_up_all(wq);
128 		}
129 	}
130 
131 	return ret;
132 }
133 
134 /*
135  * work on completed aio dio IO, to convert unwritten extents to extents
136  */
137 static void ext4_end_io_work(struct work_struct *work)
138 {
139 	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
140 	struct inode		*inode = io->inode;
141 	struct ext4_inode_info	*ei = EXT4_I(inode);
142 	unsigned long		flags;
143 	int			ret;
144 
145 	if (!mutex_trylock(&inode->i_mutex)) {
146 		/*
147 		 * Requeue the work instead of waiting so that the work
148 		 * items queued after this can be processed.
149 		 */
150 		queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
151 		/*
152 		 * To prevent the ext4-dio-unwritten thread from keeping
153 		 * requeueing end_io requests and occupying cpu for too long,
154 		 * yield the cpu if it sees an end_io request that has already
155 		 * been requeued.
156 		 */
157 		if (io->flag & EXT4_IO_END_QUEUED)
158 			yield();
159 		io->flag |= EXT4_IO_END_QUEUED;
160 		return;
161 	}
162 	ret = ext4_end_io_nolock(io);
163 	if (ret < 0) {
164 		mutex_unlock(&inode->i_mutex);
165 		return;
166 	}
167 
168 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
169 	if (!list_empty(&io->list))
170 		list_del_init(&io->list);
171 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
172 	mutex_unlock(&inode->i_mutex);
173 	ext4_free_io_end(io);
174 }
175 
176 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
177 {
178 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
179 	if (io) {
180 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
181 		io->inode = inode;
182 		INIT_WORK(&io->work, ext4_end_io_work);
183 		INIT_LIST_HEAD(&io->list);
184 	}
185 	return io;
186 }
187 
188 /*
189  * Print an buffer I/O error compatible with the fs/buffer.c.  This
190  * provides compatibility with dmesg scrapers that look for a specific
191  * buffer I/O error message.  We really need a unified error reporting
192  * structure to userspace ala Digital Unix's uerf system, but it's
193  * probably not going to happen in my lifetime, due to LKML politics...
194  */
195 static void buffer_io_error(struct buffer_head *bh)
196 {
197 	char b[BDEVNAME_SIZE];
198 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
199 			bdevname(bh->b_bdev, b),
200 			(unsigned long long)bh->b_blocknr);
201 }
202 
203 static void ext4_end_bio(struct bio *bio, int error)
204 {
205 	ext4_io_end_t *io_end = bio->bi_private;
206 	struct workqueue_struct *wq;
207 	struct inode *inode;
208 	unsigned long flags;
209 	int i;
210 	sector_t bi_sector = bio->bi_sector;
211 
212 	BUG_ON(!io_end);
213 	bio->bi_private = NULL;
214 	bio->bi_end_io = NULL;
215 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
216 		error = 0;
217 	bio_put(bio);
218 
219 	for (i = 0; i < io_end->num_io_pages; i++) {
220 		struct page *page = io_end->pages[i]->p_page;
221 		struct buffer_head *bh, *head;
222 		loff_t offset;
223 		loff_t io_end_offset;
224 
225 		if (error) {
226 			SetPageError(page);
227 			set_bit(AS_EIO, &page->mapping->flags);
228 			head = page_buffers(page);
229 			BUG_ON(!head);
230 
231 			io_end_offset = io_end->offset + io_end->size;
232 
233 			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
234 			bh = head;
235 			do {
236 				if ((offset >= io_end->offset) &&
237 				    (offset+bh->b_size <= io_end_offset))
238 					buffer_io_error(bh);
239 
240 				offset += bh->b_size;
241 				bh = bh->b_this_page;
242 			} while (bh != head);
243 		}
244 
245 		put_io_page(io_end->pages[i]);
246 	}
247 	io_end->num_io_pages = 0;
248 	inode = io_end->inode;
249 
250 	if (error) {
251 		io_end->flag |= EXT4_IO_END_ERROR;
252 		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
253 			     "(offset %llu size %ld starting block %llu)",
254 			     inode->i_ino,
255 			     (unsigned long long) io_end->offset,
256 			     (long) io_end->size,
257 			     (unsigned long long)
258 			     bi_sector >> (inode->i_blkbits - 9));
259 	}
260 
261 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
262 		ext4_free_io_end(io_end);
263 		return;
264 	}
265 
266 	/* Add the io_end to per-inode completed io list*/
267 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
268 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
269 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
270 
271 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
272 	/* queue the work to convert unwritten extents to written */
273 	queue_work(wq, &io_end->work);
274 }
275 
276 void ext4_io_submit(struct ext4_io_submit *io)
277 {
278 	struct bio *bio = io->io_bio;
279 
280 	if (bio) {
281 		bio_get(io->io_bio);
282 		submit_bio(io->io_op, io->io_bio);
283 		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
284 		bio_put(io->io_bio);
285 	}
286 	io->io_bio = NULL;
287 	io->io_op = 0;
288 	io->io_end = NULL;
289 }
290 
291 static int io_submit_init(struct ext4_io_submit *io,
292 			  struct inode *inode,
293 			  struct writeback_control *wbc,
294 			  struct buffer_head *bh)
295 {
296 	ext4_io_end_t *io_end;
297 	struct page *page = bh->b_page;
298 	int nvecs = bio_get_nr_vecs(bh->b_bdev);
299 	struct bio *bio;
300 
301 	io_end = ext4_init_io_end(inode, GFP_NOFS);
302 	if (!io_end)
303 		return -ENOMEM;
304 	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
305 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
306 	bio->bi_bdev = bh->b_bdev;
307 	bio->bi_private = io->io_end = io_end;
308 	bio->bi_end_io = ext4_end_bio;
309 
310 	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
311 
312 	io->io_bio = bio;
313 	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
314 	io->io_next_block = bh->b_blocknr;
315 	return 0;
316 }
317 
318 static int io_submit_add_bh(struct ext4_io_submit *io,
319 			    struct ext4_io_page *io_page,
320 			    struct inode *inode,
321 			    struct writeback_control *wbc,
322 			    struct buffer_head *bh)
323 {
324 	ext4_io_end_t *io_end;
325 	int ret;
326 
327 	if (buffer_new(bh)) {
328 		clear_buffer_new(bh);
329 		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
330 	}
331 
332 	if (!buffer_mapped(bh) || buffer_delay(bh)) {
333 		if (!buffer_mapped(bh))
334 			clear_buffer_dirty(bh);
335 		if (io->io_bio)
336 			ext4_io_submit(io);
337 		return 0;
338 	}
339 
340 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
341 submit_and_retry:
342 		ext4_io_submit(io);
343 	}
344 	if (io->io_bio == NULL) {
345 		ret = io_submit_init(io, inode, wbc, bh);
346 		if (ret)
347 			return ret;
348 	}
349 	io_end = io->io_end;
350 	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
351 	    (io_end->pages[io_end->num_io_pages-1] != io_page))
352 		goto submit_and_retry;
353 	if (buffer_uninit(bh) && !(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
354 		io_end->flag |= EXT4_IO_END_UNWRITTEN;
355 		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
356 	}
357 	io->io_end->size += bh->b_size;
358 	io->io_next_block++;
359 	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
360 	if (ret != bh->b_size)
361 		goto submit_and_retry;
362 	if ((io_end->num_io_pages == 0) ||
363 	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
364 		io_end->pages[io_end->num_io_pages++] = io_page;
365 		atomic_inc(&io_page->p_count);
366 	}
367 	return 0;
368 }
369 
370 int ext4_bio_write_page(struct ext4_io_submit *io,
371 			struct page *page,
372 			int len,
373 			struct writeback_control *wbc)
374 {
375 	struct inode *inode = page->mapping->host;
376 	unsigned block_start, block_end, blocksize;
377 	struct ext4_io_page *io_page;
378 	struct buffer_head *bh, *head;
379 	int ret = 0;
380 
381 	blocksize = 1 << inode->i_blkbits;
382 
383 	BUG_ON(!PageLocked(page));
384 	BUG_ON(PageWriteback(page));
385 
386 	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
387 	if (!io_page) {
388 		set_page_dirty(page);
389 		unlock_page(page);
390 		return -ENOMEM;
391 	}
392 	io_page->p_page = page;
393 	atomic_set(&io_page->p_count, 1);
394 	get_page(page);
395 	set_page_writeback(page);
396 	ClearPageError(page);
397 
398 	for (bh = head = page_buffers(page), block_start = 0;
399 	     bh != head || !block_start;
400 	     block_start = block_end, bh = bh->b_this_page) {
401 
402 		block_end = block_start + blocksize;
403 		if (block_start >= len) {
404 			clear_buffer_dirty(bh);
405 			set_buffer_uptodate(bh);
406 			continue;
407 		}
408 		clear_buffer_dirty(bh);
409 		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
410 		if (ret) {
411 			/*
412 			 * We only get here on ENOMEM.  Not much else
413 			 * we can do but mark the page as dirty, and
414 			 * better luck next time.
415 			 */
416 			set_page_dirty(page);
417 			break;
418 		}
419 	}
420 	unlock_page(page);
421 	/*
422 	 * If the page was truncated before we could do the writeback,
423 	 * or we had a memory allocation error while trying to write
424 	 * the first buffer head, we won't have submitted any pages for
425 	 * I/O.  In that case we need to make sure we've cleared the
426 	 * PageWriteback bit from the page to prevent the system from
427 	 * wedging later on.
428 	 */
429 	put_io_page(io_page);
430 	return ret;
431 }
432