1 /* 2 * linux/fs/ext4/page-io.c 3 * 4 * This contains the new page_io functions for ext4 5 * 6 * Written by Theodore Ts'o, 2010. 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/time.h> 11 #include <linux/jbd2.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 static struct kmem_cache *io_page_cachep, *io_end_cachep; 33 34 int __init ext4_init_pageio(void) 35 { 36 io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT); 37 if (io_page_cachep == NULL) 38 return -ENOMEM; 39 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 40 if (io_end_cachep == NULL) { 41 kmem_cache_destroy(io_page_cachep); 42 return -ENOMEM; 43 } 44 return 0; 45 } 46 47 void ext4_exit_pageio(void) 48 { 49 kmem_cache_destroy(io_end_cachep); 50 kmem_cache_destroy(io_page_cachep); 51 } 52 53 /* 54 * This function is called by ext4_evict_inode() to make sure there is 55 * no more pending I/O completion work left to do. 56 */ 57 void ext4_ioend_shutdown(struct inode *inode) 58 { 59 wait_queue_head_t *wq = ext4_ioend_wq(inode); 60 61 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0)); 62 /* 63 * We need to make sure the work structure is finished being 64 * used before we let the inode get destroyed. 65 */ 66 if (work_pending(&EXT4_I(inode)->i_unwritten_work)) 67 cancel_work_sync(&EXT4_I(inode)->i_unwritten_work); 68 } 69 70 static void put_io_page(struct ext4_io_page *io_page) 71 { 72 if (atomic_dec_and_test(&io_page->p_count)) { 73 end_page_writeback(io_page->p_page); 74 put_page(io_page->p_page); 75 kmem_cache_free(io_page_cachep, io_page); 76 } 77 } 78 79 void ext4_free_io_end(ext4_io_end_t *io) 80 { 81 int i; 82 83 BUG_ON(!io); 84 BUG_ON(!list_empty(&io->list)); 85 BUG_ON(io->flag & EXT4_IO_END_UNWRITTEN); 86 87 for (i = 0; i < io->num_io_pages; i++) 88 put_io_page(io->pages[i]); 89 io->num_io_pages = 0; 90 if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count)) 91 wake_up_all(ext4_ioend_wq(io->inode)); 92 kmem_cache_free(io_end_cachep, io); 93 } 94 95 /* check a range of space and convert unwritten extents to written. */ 96 static int ext4_end_io(ext4_io_end_t *io) 97 { 98 struct inode *inode = io->inode; 99 loff_t offset = io->offset; 100 ssize_t size = io->size; 101 int ret = 0; 102 103 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 104 "list->prev 0x%p\n", 105 io, inode->i_ino, io->list.next, io->list.prev); 106 107 ret = ext4_convert_unwritten_extents(inode, offset, size); 108 if (ret < 0) { 109 ext4_msg(inode->i_sb, KERN_EMERG, 110 "failed to convert unwritten extents to written " 111 "extents -- potential data loss! " 112 "(inode %lu, offset %llu, size %zd, error %d)", 113 inode->i_ino, offset, size, ret); 114 } 115 /* Wake up anyone waiting on unwritten extent conversion */ 116 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) 117 wake_up_all(ext4_ioend_wq(inode)); 118 if (io->flag & EXT4_IO_END_DIRECT) 119 inode_dio_done(inode); 120 if (io->iocb) 121 aio_complete(io->iocb, io->result, 0); 122 return ret; 123 } 124 125 static void dump_completed_IO(struct inode *inode) 126 { 127 #ifdef EXT4FS_DEBUG 128 struct list_head *cur, *before, *after; 129 ext4_io_end_t *io, *io0, *io1; 130 131 if (list_empty(&EXT4_I(inode)->i_completed_io_list)) { 132 ext4_debug("inode %lu completed_io list is empty\n", 133 inode->i_ino); 134 return; 135 } 136 137 ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino); 138 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) { 139 cur = &io->list; 140 before = cur->prev; 141 io0 = container_of(before, ext4_io_end_t, list); 142 after = cur->next; 143 io1 = container_of(after, ext4_io_end_t, list); 144 145 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 146 io, inode->i_ino, io0, io1); 147 } 148 #endif 149 } 150 151 /* Add the io_end to per-inode completed end_io list. */ 152 void ext4_add_complete_io(ext4_io_end_t *io_end) 153 { 154 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 155 struct workqueue_struct *wq; 156 unsigned long flags; 157 158 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 159 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 160 161 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 162 if (list_empty(&ei->i_completed_io_list)) 163 queue_work(wq, &ei->i_unwritten_work); 164 list_add_tail(&io_end->list, &ei->i_completed_io_list); 165 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 166 } 167 168 static int ext4_do_flush_completed_IO(struct inode *inode) 169 { 170 ext4_io_end_t *io; 171 struct list_head unwritten; 172 unsigned long flags; 173 struct ext4_inode_info *ei = EXT4_I(inode); 174 int err, ret = 0; 175 176 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 177 dump_completed_IO(inode); 178 list_replace_init(&ei->i_completed_io_list, &unwritten); 179 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 180 181 while (!list_empty(&unwritten)) { 182 io = list_entry(unwritten.next, ext4_io_end_t, list); 183 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 184 list_del_init(&io->list); 185 186 err = ext4_end_io(io); 187 if (unlikely(!ret && err)) 188 ret = err; 189 io->flag &= ~EXT4_IO_END_UNWRITTEN; 190 ext4_free_io_end(io); 191 } 192 return ret; 193 } 194 195 /* 196 * work on completed aio dio IO, to convert unwritten extents to extents 197 */ 198 void ext4_end_io_work(struct work_struct *work) 199 { 200 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 201 i_unwritten_work); 202 ext4_do_flush_completed_IO(&ei->vfs_inode); 203 } 204 205 int ext4_flush_unwritten_io(struct inode *inode) 206 { 207 int ret; 208 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) && 209 !(inode->i_state & I_FREEING)); 210 ret = ext4_do_flush_completed_IO(inode); 211 ext4_unwritten_wait(inode); 212 return ret; 213 } 214 215 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 216 { 217 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 218 if (io) { 219 atomic_inc(&EXT4_I(inode)->i_ioend_count); 220 io->inode = inode; 221 INIT_LIST_HEAD(&io->list); 222 } 223 return io; 224 } 225 226 /* 227 * Print an buffer I/O error compatible with the fs/buffer.c. This 228 * provides compatibility with dmesg scrapers that look for a specific 229 * buffer I/O error message. We really need a unified error reporting 230 * structure to userspace ala Digital Unix's uerf system, but it's 231 * probably not going to happen in my lifetime, due to LKML politics... 232 */ 233 static void buffer_io_error(struct buffer_head *bh) 234 { 235 char b[BDEVNAME_SIZE]; 236 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", 237 bdevname(bh->b_bdev, b), 238 (unsigned long long)bh->b_blocknr); 239 } 240 241 static void ext4_end_bio(struct bio *bio, int error) 242 { 243 ext4_io_end_t *io_end = bio->bi_private; 244 struct inode *inode; 245 int i; 246 sector_t bi_sector = bio->bi_sector; 247 248 BUG_ON(!io_end); 249 bio->bi_private = NULL; 250 bio->bi_end_io = NULL; 251 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 252 error = 0; 253 bio_put(bio); 254 255 for (i = 0; i < io_end->num_io_pages; i++) { 256 struct page *page = io_end->pages[i]->p_page; 257 struct buffer_head *bh, *head; 258 loff_t offset; 259 loff_t io_end_offset; 260 261 if (error) { 262 SetPageError(page); 263 set_bit(AS_EIO, &page->mapping->flags); 264 head = page_buffers(page); 265 BUG_ON(!head); 266 267 io_end_offset = io_end->offset + io_end->size; 268 269 offset = (sector_t) page->index << PAGE_CACHE_SHIFT; 270 bh = head; 271 do { 272 if ((offset >= io_end->offset) && 273 (offset+bh->b_size <= io_end_offset)) 274 buffer_io_error(bh); 275 276 offset += bh->b_size; 277 bh = bh->b_this_page; 278 } while (bh != head); 279 } 280 281 put_io_page(io_end->pages[i]); 282 } 283 io_end->num_io_pages = 0; 284 inode = io_end->inode; 285 286 if (error) { 287 io_end->flag |= EXT4_IO_END_ERROR; 288 ext4_warning(inode->i_sb, "I/O error writing to inode %lu " 289 "(offset %llu size %ld starting block %llu)", 290 inode->i_ino, 291 (unsigned long long) io_end->offset, 292 (long) io_end->size, 293 (unsigned long long) 294 bi_sector >> (inode->i_blkbits - 9)); 295 } 296 297 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 298 ext4_free_io_end(io_end); 299 return; 300 } 301 302 ext4_add_complete_io(io_end); 303 } 304 305 void ext4_io_submit(struct ext4_io_submit *io) 306 { 307 struct bio *bio = io->io_bio; 308 309 if (bio) { 310 bio_get(io->io_bio); 311 submit_bio(io->io_op, io->io_bio); 312 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); 313 bio_put(io->io_bio); 314 } 315 io->io_bio = NULL; 316 io->io_op = 0; 317 io->io_end = NULL; 318 } 319 320 static int io_submit_init(struct ext4_io_submit *io, 321 struct inode *inode, 322 struct writeback_control *wbc, 323 struct buffer_head *bh) 324 { 325 ext4_io_end_t *io_end; 326 struct page *page = bh->b_page; 327 int nvecs = bio_get_nr_vecs(bh->b_bdev); 328 struct bio *bio; 329 330 io_end = ext4_init_io_end(inode, GFP_NOFS); 331 if (!io_end) 332 return -ENOMEM; 333 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES)); 334 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 335 bio->bi_bdev = bh->b_bdev; 336 bio->bi_private = io->io_end = io_end; 337 bio->bi_end_io = ext4_end_bio; 338 339 io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh); 340 341 io->io_bio = bio; 342 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 343 io->io_next_block = bh->b_blocknr; 344 return 0; 345 } 346 347 static int io_submit_add_bh(struct ext4_io_submit *io, 348 struct ext4_io_page *io_page, 349 struct inode *inode, 350 struct writeback_control *wbc, 351 struct buffer_head *bh) 352 { 353 ext4_io_end_t *io_end; 354 int ret; 355 356 if (buffer_new(bh)) { 357 clear_buffer_new(bh); 358 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 359 } 360 361 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 362 submit_and_retry: 363 ext4_io_submit(io); 364 } 365 if (io->io_bio == NULL) { 366 ret = io_submit_init(io, inode, wbc, bh); 367 if (ret) 368 return ret; 369 } 370 io_end = io->io_end; 371 if ((io_end->num_io_pages >= MAX_IO_PAGES) && 372 (io_end->pages[io_end->num_io_pages-1] != io_page)) 373 goto submit_and_retry; 374 if (buffer_uninit(bh)) 375 ext4_set_io_unwritten_flag(inode, io_end); 376 io->io_end->size += bh->b_size; 377 io->io_next_block++; 378 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); 379 if (ret != bh->b_size) 380 goto submit_and_retry; 381 if ((io_end->num_io_pages == 0) || 382 (io_end->pages[io_end->num_io_pages-1] != io_page)) { 383 io_end->pages[io_end->num_io_pages++] = io_page; 384 atomic_inc(&io_page->p_count); 385 } 386 return 0; 387 } 388 389 int ext4_bio_write_page(struct ext4_io_submit *io, 390 struct page *page, 391 int len, 392 struct writeback_control *wbc) 393 { 394 struct inode *inode = page->mapping->host; 395 unsigned block_start, block_end, blocksize; 396 struct ext4_io_page *io_page; 397 struct buffer_head *bh, *head; 398 int ret = 0; 399 400 blocksize = 1 << inode->i_blkbits; 401 402 BUG_ON(!PageLocked(page)); 403 BUG_ON(PageWriteback(page)); 404 405 io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS); 406 if (!io_page) { 407 redirty_page_for_writepage(wbc, page); 408 unlock_page(page); 409 return -ENOMEM; 410 } 411 io_page->p_page = page; 412 atomic_set(&io_page->p_count, 1); 413 get_page(page); 414 set_page_writeback(page); 415 ClearPageError(page); 416 417 for (bh = head = page_buffers(page), block_start = 0; 418 bh != head || !block_start; 419 block_start = block_end, bh = bh->b_this_page) { 420 421 block_end = block_start + blocksize; 422 if (block_start >= len) { 423 /* 424 * Comments copied from block_write_full_page_endio: 425 * 426 * The page straddles i_size. It must be zeroed out on 427 * each and every writepage invocation because it may 428 * be mmapped. "A file is mapped in multiples of the 429 * page size. For a file that is not a multiple of 430 * the page size, the remaining memory is zeroed when 431 * mapped, and writes to that region are not written 432 * out to the file." 433 */ 434 zero_user_segment(page, block_start, block_end); 435 clear_buffer_dirty(bh); 436 set_buffer_uptodate(bh); 437 continue; 438 } 439 if (!buffer_dirty(bh) || buffer_delay(bh) || 440 !buffer_mapped(bh) || buffer_unwritten(bh)) { 441 /* A hole? We can safely clear the dirty bit */ 442 if (!buffer_mapped(bh)) 443 clear_buffer_dirty(bh); 444 if (io->io_bio) 445 ext4_io_submit(io); 446 continue; 447 } 448 ret = io_submit_add_bh(io, io_page, inode, wbc, bh); 449 if (ret) { 450 /* 451 * We only get here on ENOMEM. Not much else 452 * we can do but mark the page as dirty, and 453 * better luck next time. 454 */ 455 redirty_page_for_writepage(wbc, page); 456 break; 457 } 458 clear_buffer_dirty(bh); 459 } 460 unlock_page(page); 461 /* 462 * If the page was truncated before we could do the writeback, 463 * or we had a memory allocation error while trying to write 464 * the first buffer head, we won't have submitted any pages for 465 * I/O. In that case we need to make sure we've cleared the 466 * PageWriteback bit from the page to prevent the system from 467 * wedging later on. 468 */ 469 put_io_page(io_page); 470 return ret; 471 } 472