xref: /linux/fs/ext4/page-io.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/jbd2.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 static struct kmem_cache *io_page_cachep, *io_end_cachep;
33 
34 int __init ext4_init_pageio(void)
35 {
36 	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
37 	if (io_page_cachep == NULL)
38 		return -ENOMEM;
39 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
40 	if (io_end_cachep == NULL) {
41 		kmem_cache_destroy(io_page_cachep);
42 		return -ENOMEM;
43 	}
44 	return 0;
45 }
46 
47 void ext4_exit_pageio(void)
48 {
49 	kmem_cache_destroy(io_end_cachep);
50 	kmem_cache_destroy(io_page_cachep);
51 }
52 
53 /*
54  * This function is called by ext4_evict_inode() to make sure there is
55  * no more pending I/O completion work left to do.
56  */
57 void ext4_ioend_shutdown(struct inode *inode)
58 {
59 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
60 
61 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
62 	/*
63 	 * We need to make sure the work structure is finished being
64 	 * used before we let the inode get destroyed.
65 	 */
66 	if (work_pending(&EXT4_I(inode)->i_unwritten_work))
67 		cancel_work_sync(&EXT4_I(inode)->i_unwritten_work);
68 }
69 
70 static void put_io_page(struct ext4_io_page *io_page)
71 {
72 	if (atomic_dec_and_test(&io_page->p_count)) {
73 		end_page_writeback(io_page->p_page);
74 		put_page(io_page->p_page);
75 		kmem_cache_free(io_page_cachep, io_page);
76 	}
77 }
78 
79 void ext4_free_io_end(ext4_io_end_t *io)
80 {
81 	int i;
82 
83 	BUG_ON(!io);
84 	BUG_ON(!list_empty(&io->list));
85 	BUG_ON(io->flag & EXT4_IO_END_UNWRITTEN);
86 
87 	for (i = 0; i < io->num_io_pages; i++)
88 		put_io_page(io->pages[i]);
89 	io->num_io_pages = 0;
90 	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
91 		wake_up_all(ext4_ioend_wq(io->inode));
92 	kmem_cache_free(io_end_cachep, io);
93 }
94 
95 /* check a range of space and convert unwritten extents to written. */
96 static int ext4_end_io(ext4_io_end_t *io)
97 {
98 	struct inode *inode = io->inode;
99 	loff_t offset = io->offset;
100 	ssize_t size = io->size;
101 	int ret = 0;
102 
103 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
104 		   "list->prev 0x%p\n",
105 		   io, inode->i_ino, io->list.next, io->list.prev);
106 
107 	ret = ext4_convert_unwritten_extents(inode, offset, size);
108 	if (ret < 0) {
109 		ext4_msg(inode->i_sb, KERN_EMERG,
110 			 "failed to convert unwritten extents to written "
111 			 "extents -- potential data loss!  "
112 			 "(inode %lu, offset %llu, size %zd, error %d)",
113 			 inode->i_ino, offset, size, ret);
114 	}
115 	/* Wake up anyone waiting on unwritten extent conversion */
116 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
117 		wake_up_all(ext4_ioend_wq(inode));
118 	if (io->flag & EXT4_IO_END_DIRECT)
119 		inode_dio_done(inode);
120 	if (io->iocb)
121 		aio_complete(io->iocb, io->result, 0);
122 	return ret;
123 }
124 
125 static void dump_completed_IO(struct inode *inode)
126 {
127 #ifdef	EXT4FS_DEBUG
128 	struct list_head *cur, *before, *after;
129 	ext4_io_end_t *io, *io0, *io1;
130 
131 	if (list_empty(&EXT4_I(inode)->i_completed_io_list)) {
132 		ext4_debug("inode %lu completed_io list is empty\n",
133 			   inode->i_ino);
134 		return;
135 	}
136 
137 	ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino);
138 	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) {
139 		cur = &io->list;
140 		before = cur->prev;
141 		io0 = container_of(before, ext4_io_end_t, list);
142 		after = cur->next;
143 		io1 = container_of(after, ext4_io_end_t, list);
144 
145 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
146 			    io, inode->i_ino, io0, io1);
147 	}
148 #endif
149 }
150 
151 /* Add the io_end to per-inode completed end_io list. */
152 void ext4_add_complete_io(ext4_io_end_t *io_end)
153 {
154 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
155 	struct workqueue_struct *wq;
156 	unsigned long flags;
157 
158 	BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
159 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
160 
161 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
162 	if (list_empty(&ei->i_completed_io_list))
163 		queue_work(wq, &ei->i_unwritten_work);
164 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
165 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
166 }
167 
168 static int ext4_do_flush_completed_IO(struct inode *inode)
169 {
170 	ext4_io_end_t *io;
171 	struct list_head unwritten;
172 	unsigned long flags;
173 	struct ext4_inode_info *ei = EXT4_I(inode);
174 	int err, ret = 0;
175 
176 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
177 	dump_completed_IO(inode);
178 	list_replace_init(&ei->i_completed_io_list, &unwritten);
179 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
180 
181 	while (!list_empty(&unwritten)) {
182 		io = list_entry(unwritten.next, ext4_io_end_t, list);
183 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
184 		list_del_init(&io->list);
185 
186 		err = ext4_end_io(io);
187 		if (unlikely(!ret && err))
188 			ret = err;
189 		io->flag &= ~EXT4_IO_END_UNWRITTEN;
190 		ext4_free_io_end(io);
191 	}
192 	return ret;
193 }
194 
195 /*
196  * work on completed aio dio IO, to convert unwritten extents to extents
197  */
198 void ext4_end_io_work(struct work_struct *work)
199 {
200 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
201 						  i_unwritten_work);
202 	ext4_do_flush_completed_IO(&ei->vfs_inode);
203 }
204 
205 int ext4_flush_unwritten_io(struct inode *inode)
206 {
207 	int ret;
208 	WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) &&
209 		     !(inode->i_state & I_FREEING));
210 	ret = ext4_do_flush_completed_IO(inode);
211 	ext4_unwritten_wait(inode);
212 	return ret;
213 }
214 
215 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
216 {
217 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
218 	if (io) {
219 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
220 		io->inode = inode;
221 		INIT_LIST_HEAD(&io->list);
222 	}
223 	return io;
224 }
225 
226 /*
227  * Print an buffer I/O error compatible with the fs/buffer.c.  This
228  * provides compatibility with dmesg scrapers that look for a specific
229  * buffer I/O error message.  We really need a unified error reporting
230  * structure to userspace ala Digital Unix's uerf system, but it's
231  * probably not going to happen in my lifetime, due to LKML politics...
232  */
233 static void buffer_io_error(struct buffer_head *bh)
234 {
235 	char b[BDEVNAME_SIZE];
236 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
237 			bdevname(bh->b_bdev, b),
238 			(unsigned long long)bh->b_blocknr);
239 }
240 
241 static void ext4_end_bio(struct bio *bio, int error)
242 {
243 	ext4_io_end_t *io_end = bio->bi_private;
244 	struct inode *inode;
245 	int i;
246 	sector_t bi_sector = bio->bi_sector;
247 
248 	BUG_ON(!io_end);
249 	bio->bi_private = NULL;
250 	bio->bi_end_io = NULL;
251 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
252 		error = 0;
253 	bio_put(bio);
254 
255 	for (i = 0; i < io_end->num_io_pages; i++) {
256 		struct page *page = io_end->pages[i]->p_page;
257 		struct buffer_head *bh, *head;
258 		loff_t offset;
259 		loff_t io_end_offset;
260 
261 		if (error) {
262 			SetPageError(page);
263 			set_bit(AS_EIO, &page->mapping->flags);
264 			head = page_buffers(page);
265 			BUG_ON(!head);
266 
267 			io_end_offset = io_end->offset + io_end->size;
268 
269 			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
270 			bh = head;
271 			do {
272 				if ((offset >= io_end->offset) &&
273 				    (offset+bh->b_size <= io_end_offset))
274 					buffer_io_error(bh);
275 
276 				offset += bh->b_size;
277 				bh = bh->b_this_page;
278 			} while (bh != head);
279 		}
280 
281 		put_io_page(io_end->pages[i]);
282 	}
283 	io_end->num_io_pages = 0;
284 	inode = io_end->inode;
285 
286 	if (error) {
287 		io_end->flag |= EXT4_IO_END_ERROR;
288 		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
289 			     "(offset %llu size %ld starting block %llu)",
290 			     inode->i_ino,
291 			     (unsigned long long) io_end->offset,
292 			     (long) io_end->size,
293 			     (unsigned long long)
294 			     bi_sector >> (inode->i_blkbits - 9));
295 	}
296 
297 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
298 		ext4_free_io_end(io_end);
299 		return;
300 	}
301 
302 	ext4_add_complete_io(io_end);
303 }
304 
305 void ext4_io_submit(struct ext4_io_submit *io)
306 {
307 	struct bio *bio = io->io_bio;
308 
309 	if (bio) {
310 		bio_get(io->io_bio);
311 		submit_bio(io->io_op, io->io_bio);
312 		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
313 		bio_put(io->io_bio);
314 	}
315 	io->io_bio = NULL;
316 	io->io_op = 0;
317 	io->io_end = NULL;
318 }
319 
320 static int io_submit_init(struct ext4_io_submit *io,
321 			  struct inode *inode,
322 			  struct writeback_control *wbc,
323 			  struct buffer_head *bh)
324 {
325 	ext4_io_end_t *io_end;
326 	struct page *page = bh->b_page;
327 	int nvecs = bio_get_nr_vecs(bh->b_bdev);
328 	struct bio *bio;
329 
330 	io_end = ext4_init_io_end(inode, GFP_NOFS);
331 	if (!io_end)
332 		return -ENOMEM;
333 	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
334 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
335 	bio->bi_bdev = bh->b_bdev;
336 	bio->bi_private = io->io_end = io_end;
337 	bio->bi_end_io = ext4_end_bio;
338 
339 	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
340 
341 	io->io_bio = bio;
342 	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
343 	io->io_next_block = bh->b_blocknr;
344 	return 0;
345 }
346 
347 static int io_submit_add_bh(struct ext4_io_submit *io,
348 			    struct ext4_io_page *io_page,
349 			    struct inode *inode,
350 			    struct writeback_control *wbc,
351 			    struct buffer_head *bh)
352 {
353 	ext4_io_end_t *io_end;
354 	int ret;
355 
356 	if (buffer_new(bh)) {
357 		clear_buffer_new(bh);
358 		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
359 	}
360 
361 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
362 submit_and_retry:
363 		ext4_io_submit(io);
364 	}
365 	if (io->io_bio == NULL) {
366 		ret = io_submit_init(io, inode, wbc, bh);
367 		if (ret)
368 			return ret;
369 	}
370 	io_end = io->io_end;
371 	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
372 	    (io_end->pages[io_end->num_io_pages-1] != io_page))
373 		goto submit_and_retry;
374 	if (buffer_uninit(bh))
375 		ext4_set_io_unwritten_flag(inode, io_end);
376 	io->io_end->size += bh->b_size;
377 	io->io_next_block++;
378 	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
379 	if (ret != bh->b_size)
380 		goto submit_and_retry;
381 	if ((io_end->num_io_pages == 0) ||
382 	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
383 		io_end->pages[io_end->num_io_pages++] = io_page;
384 		atomic_inc(&io_page->p_count);
385 	}
386 	return 0;
387 }
388 
389 int ext4_bio_write_page(struct ext4_io_submit *io,
390 			struct page *page,
391 			int len,
392 			struct writeback_control *wbc)
393 {
394 	struct inode *inode = page->mapping->host;
395 	unsigned block_start, block_end, blocksize;
396 	struct ext4_io_page *io_page;
397 	struct buffer_head *bh, *head;
398 	int ret = 0;
399 
400 	blocksize = 1 << inode->i_blkbits;
401 
402 	BUG_ON(!PageLocked(page));
403 	BUG_ON(PageWriteback(page));
404 
405 	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
406 	if (!io_page) {
407 		redirty_page_for_writepage(wbc, page);
408 		unlock_page(page);
409 		return -ENOMEM;
410 	}
411 	io_page->p_page = page;
412 	atomic_set(&io_page->p_count, 1);
413 	get_page(page);
414 	set_page_writeback(page);
415 	ClearPageError(page);
416 
417 	for (bh = head = page_buffers(page), block_start = 0;
418 	     bh != head || !block_start;
419 	     block_start = block_end, bh = bh->b_this_page) {
420 
421 		block_end = block_start + blocksize;
422 		if (block_start >= len) {
423 			/*
424 			 * Comments copied from block_write_full_page_endio:
425 			 *
426 			 * The page straddles i_size.  It must be zeroed out on
427 			 * each and every writepage invocation because it may
428 			 * be mmapped.  "A file is mapped in multiples of the
429 			 * page size.  For a file that is not a multiple of
430 			 * the  page size, the remaining memory is zeroed when
431 			 * mapped, and writes to that region are not written
432 			 * out to the file."
433 			 */
434 			zero_user_segment(page, block_start, block_end);
435 			clear_buffer_dirty(bh);
436 			set_buffer_uptodate(bh);
437 			continue;
438 		}
439 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
440 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
441 			/* A hole? We can safely clear the dirty bit */
442 			if (!buffer_mapped(bh))
443 				clear_buffer_dirty(bh);
444 			if (io->io_bio)
445 				ext4_io_submit(io);
446 			continue;
447 		}
448 		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
449 		if (ret) {
450 			/*
451 			 * We only get here on ENOMEM.  Not much else
452 			 * we can do but mark the page as dirty, and
453 			 * better luck next time.
454 			 */
455 			redirty_page_for_writepage(wbc, page);
456 			break;
457 		}
458 		clear_buffer_dirty(bh);
459 	}
460 	unlock_page(page);
461 	/*
462 	 * If the page was truncated before we could do the writeback,
463 	 * or we had a memory allocation error while trying to write
464 	 * the first buffer head, we won't have submitted any pages for
465 	 * I/O.  In that case we need to make sure we've cleared the
466 	 * PageWriteback bit from the page to prevent the system from
467 	 * wedging later on.
468 	 */
469 	put_io_page(io_page);
470 	return ret;
471 }
472