xref: /linux/fs/ext4/page-io.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 static struct kmem_cache *io_end_cachep;
32 
33 int __init ext4_init_pageio(void)
34 {
35 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 	if (io_end_cachep == NULL)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void ext4_exit_pageio(void)
42 {
43 	kmem_cache_destroy(io_end_cachep);
44 }
45 
46 /*
47  * Print an buffer I/O error compatible with the fs/buffer.c.  This
48  * provides compatibility with dmesg scrapers that look for a specific
49  * buffer I/O error message.  We really need a unified error reporting
50  * structure to userspace ala Digital Unix's uerf system, but it's
51  * probably not going to happen in my lifetime, due to LKML politics...
52  */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
56 		       bh->b_bdev,
57 			(unsigned long long)bh->b_blocknr);
58 }
59 
60 static void ext4_finish_bio(struct bio *bio)
61 {
62 	int i;
63 	struct bio_vec *bvec;
64 
65 	bio_for_each_segment_all(bvec, bio, i) {
66 		struct page *page = bvec->bv_page;
67 #ifdef CONFIG_EXT4_FS_ENCRYPTION
68 		struct page *data_page = NULL;
69 		struct ext4_crypto_ctx *ctx = NULL;
70 #endif
71 		struct buffer_head *bh, *head;
72 		unsigned bio_start = bvec->bv_offset;
73 		unsigned bio_end = bio_start + bvec->bv_len;
74 		unsigned under_io = 0;
75 		unsigned long flags;
76 
77 		if (!page)
78 			continue;
79 
80 #ifdef CONFIG_EXT4_FS_ENCRYPTION
81 		if (!page->mapping) {
82 			/* The bounce data pages are unmapped. */
83 			data_page = page;
84 			ctx = (struct ext4_crypto_ctx *)page_private(data_page);
85 			page = ctx->w.control_page;
86 		}
87 #endif
88 
89 		if (bio->bi_error) {
90 			SetPageError(page);
91 			set_bit(AS_EIO, &page->mapping->flags);
92 		}
93 		bh = head = page_buffers(page);
94 		/*
95 		 * We check all buffers in the page under BH_Uptodate_Lock
96 		 * to avoid races with other end io clearing async_write flags
97 		 */
98 		local_irq_save(flags);
99 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
100 		do {
101 			if (bh_offset(bh) < bio_start ||
102 			    bh_offset(bh) + bh->b_size > bio_end) {
103 				if (buffer_async_write(bh))
104 					under_io++;
105 				continue;
106 			}
107 			clear_buffer_async_write(bh);
108 			if (bio->bi_error)
109 				buffer_io_error(bh);
110 		} while ((bh = bh->b_this_page) != head);
111 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
112 		local_irq_restore(flags);
113 		if (!under_io) {
114 #ifdef CONFIG_EXT4_FS_ENCRYPTION
115 			if (ctx)
116 				ext4_restore_control_page(data_page);
117 #endif
118 			end_page_writeback(page);
119 		}
120 	}
121 }
122 
123 static void ext4_release_io_end(ext4_io_end_t *io_end)
124 {
125 	struct bio *bio, *next_bio;
126 
127 	BUG_ON(!list_empty(&io_end->list));
128 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
129 	WARN_ON(io_end->handle);
130 
131 	if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
132 		wake_up_all(ext4_ioend_wq(io_end->inode));
133 
134 	for (bio = io_end->bio; bio; bio = next_bio) {
135 		next_bio = bio->bi_private;
136 		ext4_finish_bio(bio);
137 		bio_put(bio);
138 	}
139 	kmem_cache_free(io_end_cachep, io_end);
140 }
141 
142 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
143 {
144 	struct inode *inode = io_end->inode;
145 
146 	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
147 	/* Wake up anyone waiting on unwritten extent conversion */
148 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
149 		wake_up_all(ext4_ioend_wq(inode));
150 }
151 
152 /*
153  * Check a range of space and convert unwritten extents to written. Note that
154  * we are protected from truncate touching same part of extent tree by the
155  * fact that truncate code waits for all DIO to finish (thus exclusion from
156  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
157  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
158  * completed (happens from ext4_free_ioend()).
159  */
160 static int ext4_end_io(ext4_io_end_t *io)
161 {
162 	struct inode *inode = io->inode;
163 	loff_t offset = io->offset;
164 	ssize_t size = io->size;
165 	handle_t *handle = io->handle;
166 	int ret = 0;
167 
168 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
169 		   "list->prev 0x%p\n",
170 		   io, inode->i_ino, io->list.next, io->list.prev);
171 
172 	io->handle = NULL;	/* Following call will use up the handle */
173 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
174 	if (ret < 0) {
175 		ext4_msg(inode->i_sb, KERN_EMERG,
176 			 "failed to convert unwritten extents to written "
177 			 "extents -- potential data loss!  "
178 			 "(inode %lu, offset %llu, size %zd, error %d)",
179 			 inode->i_ino, offset, size, ret);
180 	}
181 	ext4_clear_io_unwritten_flag(io);
182 	ext4_release_io_end(io);
183 	return ret;
184 }
185 
186 static void dump_completed_IO(struct inode *inode, struct list_head *head)
187 {
188 #ifdef	EXT4FS_DEBUG
189 	struct list_head *cur, *before, *after;
190 	ext4_io_end_t *io, *io0, *io1;
191 
192 	if (list_empty(head))
193 		return;
194 
195 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
196 	list_for_each_entry(io, head, list) {
197 		cur = &io->list;
198 		before = cur->prev;
199 		io0 = container_of(before, ext4_io_end_t, list);
200 		after = cur->next;
201 		io1 = container_of(after, ext4_io_end_t, list);
202 
203 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
204 			    io, inode->i_ino, io0, io1);
205 	}
206 #endif
207 }
208 
209 /* Add the io_end to per-inode completed end_io list. */
210 static void ext4_add_complete_io(ext4_io_end_t *io_end)
211 {
212 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
213 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
214 	struct workqueue_struct *wq;
215 	unsigned long flags;
216 
217 	/* Only reserved conversions from writeback should enter here */
218 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
219 	WARN_ON(!io_end->handle && sbi->s_journal);
220 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
221 	wq = sbi->rsv_conversion_wq;
222 	if (list_empty(&ei->i_rsv_conversion_list))
223 		queue_work(wq, &ei->i_rsv_conversion_work);
224 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
225 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
226 }
227 
228 static int ext4_do_flush_completed_IO(struct inode *inode,
229 				      struct list_head *head)
230 {
231 	ext4_io_end_t *io;
232 	struct list_head unwritten;
233 	unsigned long flags;
234 	struct ext4_inode_info *ei = EXT4_I(inode);
235 	int err, ret = 0;
236 
237 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
238 	dump_completed_IO(inode, head);
239 	list_replace_init(head, &unwritten);
240 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
241 
242 	while (!list_empty(&unwritten)) {
243 		io = list_entry(unwritten.next, ext4_io_end_t, list);
244 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
245 		list_del_init(&io->list);
246 
247 		err = ext4_end_io(io);
248 		if (unlikely(!ret && err))
249 			ret = err;
250 	}
251 	return ret;
252 }
253 
254 /*
255  * work on completed IO, to convert unwritten extents to extents
256  */
257 void ext4_end_io_rsv_work(struct work_struct *work)
258 {
259 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
260 						  i_rsv_conversion_work);
261 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
262 }
263 
264 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
265 {
266 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
267 	if (io) {
268 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
269 		io->inode = inode;
270 		INIT_LIST_HEAD(&io->list);
271 		atomic_set(&io->count, 1);
272 	}
273 	return io;
274 }
275 
276 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
277 {
278 	if (atomic_dec_and_test(&io_end->count)) {
279 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
280 			ext4_release_io_end(io_end);
281 			return;
282 		}
283 		ext4_add_complete_io(io_end);
284 	}
285 }
286 
287 int ext4_put_io_end(ext4_io_end_t *io_end)
288 {
289 	int err = 0;
290 
291 	if (atomic_dec_and_test(&io_end->count)) {
292 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
293 			err = ext4_convert_unwritten_extents(io_end->handle,
294 						io_end->inode, io_end->offset,
295 						io_end->size);
296 			io_end->handle = NULL;
297 			ext4_clear_io_unwritten_flag(io_end);
298 		}
299 		ext4_release_io_end(io_end);
300 	}
301 	return err;
302 }
303 
304 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
305 {
306 	atomic_inc(&io_end->count);
307 	return io_end;
308 }
309 
310 /* BIO completion function for page writeback */
311 static void ext4_end_bio(struct bio *bio)
312 {
313 	ext4_io_end_t *io_end = bio->bi_private;
314 	sector_t bi_sector = bio->bi_iter.bi_sector;
315 
316 	BUG_ON(!io_end);
317 	bio->bi_end_io = NULL;
318 
319 	if (bio->bi_error) {
320 		struct inode *inode = io_end->inode;
321 
322 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
323 			     "(offset %llu size %ld starting block %llu)",
324 			     bio->bi_error, inode->i_ino,
325 			     (unsigned long long) io_end->offset,
326 			     (long) io_end->size,
327 			     (unsigned long long)
328 			     bi_sector >> (inode->i_blkbits - 9));
329 		mapping_set_error(inode->i_mapping, bio->bi_error);
330 	}
331 
332 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
333 		/*
334 		 * Link bio into list hanging from io_end. We have to do it
335 		 * atomically as bio completions can be racing against each
336 		 * other.
337 		 */
338 		bio->bi_private = xchg(&io_end->bio, bio);
339 		ext4_put_io_end_defer(io_end);
340 	} else {
341 		/*
342 		 * Drop io_end reference early. Inode can get freed once
343 		 * we finish the bio.
344 		 */
345 		ext4_put_io_end_defer(io_end);
346 		ext4_finish_bio(bio);
347 		bio_put(bio);
348 	}
349 }
350 
351 void ext4_io_submit(struct ext4_io_submit *io)
352 {
353 	struct bio *bio = io->io_bio;
354 
355 	if (bio) {
356 		int io_op = io->io_wbc->sync_mode == WB_SYNC_ALL ?
357 			    WRITE_SYNC : WRITE;
358 		bio_get(io->io_bio);
359 		submit_bio(io_op, io->io_bio);
360 		bio_put(io->io_bio);
361 	}
362 	io->io_bio = NULL;
363 }
364 
365 void ext4_io_submit_init(struct ext4_io_submit *io,
366 			 struct writeback_control *wbc)
367 {
368 	io->io_wbc = wbc;
369 	io->io_bio = NULL;
370 	io->io_end = NULL;
371 }
372 
373 static int io_submit_init_bio(struct ext4_io_submit *io,
374 			      struct buffer_head *bh)
375 {
376 	struct bio *bio;
377 
378 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
379 	if (!bio)
380 		return -ENOMEM;
381 	wbc_init_bio(io->io_wbc, bio);
382 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
383 	bio->bi_bdev = bh->b_bdev;
384 	bio->bi_end_io = ext4_end_bio;
385 	bio->bi_private = ext4_get_io_end(io->io_end);
386 	io->io_bio = bio;
387 	io->io_next_block = bh->b_blocknr;
388 	return 0;
389 }
390 
391 static int io_submit_add_bh(struct ext4_io_submit *io,
392 			    struct inode *inode,
393 			    struct page *page,
394 			    struct buffer_head *bh)
395 {
396 	int ret;
397 
398 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
399 submit_and_retry:
400 		ext4_io_submit(io);
401 	}
402 	if (io->io_bio == NULL) {
403 		ret = io_submit_init_bio(io, bh);
404 		if (ret)
405 			return ret;
406 	}
407 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
408 	if (ret != bh->b_size)
409 		goto submit_and_retry;
410 	wbc_account_io(io->io_wbc, page, bh->b_size);
411 	io->io_next_block++;
412 	return 0;
413 }
414 
415 int ext4_bio_write_page(struct ext4_io_submit *io,
416 			struct page *page,
417 			int len,
418 			struct writeback_control *wbc,
419 			bool keep_towrite)
420 {
421 	struct page *data_page = NULL;
422 	struct inode *inode = page->mapping->host;
423 	unsigned block_start, blocksize;
424 	struct buffer_head *bh, *head;
425 	int ret = 0;
426 	int nr_submitted = 0;
427 	int nr_to_submit = 0;
428 
429 	blocksize = 1 << inode->i_blkbits;
430 
431 	BUG_ON(!PageLocked(page));
432 	BUG_ON(PageWriteback(page));
433 
434 	if (keep_towrite)
435 		set_page_writeback_keepwrite(page);
436 	else
437 		set_page_writeback(page);
438 	ClearPageError(page);
439 
440 	/*
441 	 * Comments copied from block_write_full_page:
442 	 *
443 	 * The page straddles i_size.  It must be zeroed out on each and every
444 	 * writepage invocation because it may be mmapped.  "A file is mapped
445 	 * in multiples of the page size.  For a file that is not a multiple of
446 	 * the page size, the remaining memory is zeroed when mapped, and
447 	 * writes to that region are not written out to the file."
448 	 */
449 	if (len < PAGE_CACHE_SIZE)
450 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
451 	/*
452 	 * In the first loop we prepare and mark buffers to submit. We have to
453 	 * mark all buffers in the page before submitting so that
454 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
455 	 * on the first buffer finishes and we are still working on submitting
456 	 * the second buffer.
457 	 */
458 	bh = head = page_buffers(page);
459 	do {
460 		block_start = bh_offset(bh);
461 		if (block_start >= len) {
462 			clear_buffer_dirty(bh);
463 			set_buffer_uptodate(bh);
464 			continue;
465 		}
466 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
467 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
468 			/* A hole? We can safely clear the dirty bit */
469 			if (!buffer_mapped(bh))
470 				clear_buffer_dirty(bh);
471 			if (io->io_bio)
472 				ext4_io_submit(io);
473 			continue;
474 		}
475 		if (buffer_new(bh)) {
476 			clear_buffer_new(bh);
477 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
478 		}
479 		set_buffer_async_write(bh);
480 		nr_to_submit++;
481 	} while ((bh = bh->b_this_page) != head);
482 
483 	bh = head = page_buffers(page);
484 
485 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
486 	    nr_to_submit) {
487 		data_page = ext4_encrypt(inode, page);
488 		if (IS_ERR(data_page)) {
489 			ret = PTR_ERR(data_page);
490 			data_page = NULL;
491 			goto out;
492 		}
493 	}
494 
495 	/* Now submit buffers to write */
496 	do {
497 		if (!buffer_async_write(bh))
498 			continue;
499 		ret = io_submit_add_bh(io, inode,
500 				       data_page ? data_page : page, bh);
501 		if (ret) {
502 			/*
503 			 * We only get here on ENOMEM.  Not much else
504 			 * we can do but mark the page as dirty, and
505 			 * better luck next time.
506 			 */
507 			break;
508 		}
509 		nr_submitted++;
510 		clear_buffer_dirty(bh);
511 	} while ((bh = bh->b_this_page) != head);
512 
513 	/* Error stopped previous loop? Clean up buffers... */
514 	if (ret) {
515 	out:
516 		if (data_page)
517 			ext4_restore_control_page(data_page);
518 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
519 		redirty_page_for_writepage(wbc, page);
520 		do {
521 			clear_buffer_async_write(bh);
522 			bh = bh->b_this_page;
523 		} while (bh != head);
524 	}
525 	unlock_page(page);
526 	/* Nothing submitted - we have to end page writeback */
527 	if (!nr_submitted)
528 		end_page_writeback(page);
529 	return ret;
530 }
531